|
| 1 | +import torch |
| 2 | +from torch import nn |
| 3 | +from torch.nn import functional as F |
| 4 | + |
| 5 | + |
| 6 | +class _NonLocalBlockND(nn.Module): |
| 7 | + def __init__(self, in_channels, inter_channels=None, dimension=3, sub_sample=True, bn_layer=True): |
| 8 | + super(_NonLocalBlockND, self).__init__() |
| 9 | + |
| 10 | + assert dimension in [1, 2, 3] |
| 11 | + |
| 12 | + self.dimension = dimension |
| 13 | + self.sub_sample = sub_sample |
| 14 | + |
| 15 | + self.in_channels = in_channels |
| 16 | + self.inter_channels = inter_channels |
| 17 | + |
| 18 | + if self.inter_channels is None: |
| 19 | + self.inter_channels = in_channels // 2 |
| 20 | + if self.inter_channels == 0: |
| 21 | + self.inter_channels = 1 |
| 22 | + |
| 23 | + if dimension == 3: |
| 24 | + conv_nd = nn.Conv3d |
| 25 | + max_pool_layer = nn.MaxPool3d(kernel_size=(1, 2, 2)) |
| 26 | + bn = nn.BatchNorm3d |
| 27 | + elif dimension == 2: |
| 28 | + conv_nd = nn.Conv2d |
| 29 | + max_pool_layer = nn.MaxPool2d(kernel_size=(2, 2)) |
| 30 | + bn = nn.BatchNorm2d |
| 31 | + else: |
| 32 | + conv_nd = nn.Conv1d |
| 33 | + max_pool_layer = nn.MaxPool1d(kernel_size=(2)) |
| 34 | + bn = nn.BatchNorm1d |
| 35 | + |
| 36 | + self.g = conv_nd(in_channels=self.in_channels, out_channels=self.inter_channels, |
| 37 | + kernel_size=1, stride=1, padding=0) |
| 38 | + |
| 39 | + if bn_layer: |
| 40 | + self.W = nn.Sequential( |
| 41 | + conv_nd(in_channels=self.inter_channels, out_channels=self.in_channels, |
| 42 | + kernel_size=1, stride=1, padding=0), |
| 43 | + bn(self.in_channels) |
| 44 | + ) |
| 45 | + nn.init.constant_(self.W[1].weight, 0) |
| 46 | + nn.init.constant_(self.W[1].bias, 0) |
| 47 | + else: |
| 48 | + self.W = conv_nd(in_channels=self.inter_channels, out_channels=self.in_channels, |
| 49 | + kernel_size=1, stride=1, padding=0) |
| 50 | + nn.init.constant_(self.W.weight, 0) |
| 51 | + nn.init.constant_(self.W.bias, 0) |
| 52 | + |
| 53 | + self.theta = conv_nd(in_channels=self.in_channels, out_channels=self.inter_channels, |
| 54 | + kernel_size=1, stride=1, padding=0) |
| 55 | + |
| 56 | + self.phi = conv_nd(in_channels=self.in_channels, out_channels=self.inter_channels, |
| 57 | + kernel_size=1, stride=1, padding=0) |
| 58 | + |
| 59 | + self.concat_project = nn.Sequential( |
| 60 | + nn.Conv2d(self.inter_channels * 2, 1, 1, 1, 0, bias=False), |
| 61 | + nn.ReLU() |
| 62 | + ) |
| 63 | + |
| 64 | + if sub_sample: |
| 65 | + self.g = nn.Sequential(self.g, max_pool_layer) |
| 66 | + self.phi = nn.Sequential(self.phi, max_pool_layer) |
| 67 | + |
| 68 | + def forward(self, x): |
| 69 | + ''' |
| 70 | + :param x: (b, c, t, h, w) |
| 71 | + :return: |
| 72 | + ''' |
| 73 | + |
| 74 | + batch_size = x.size(0) |
| 75 | + |
| 76 | + g_x = self.g(x).view(batch_size, self.inter_channels, -1) |
| 77 | + g_x = g_x.permute(0, 2, 1) |
| 78 | + |
| 79 | + # (b, c, N, 1) |
| 80 | + theta_x = self.theta(x).view(batch_size, self.inter_channels, -1, 1) |
| 81 | + # (b, c, 1, N) |
| 82 | + phi_x = self.phi(x).view(batch_size, self.inter_channels, 1, -1) |
| 83 | + |
| 84 | + h = theta_x.size(2) |
| 85 | + w = phi_x.size(3) |
| 86 | + theta_x = theta_x.repeat(1, 1, 1, w) |
| 87 | + phi_x = phi_x.repeat(1, 1, h, 1) |
| 88 | + |
| 89 | + concat_feature = torch.cat([theta_x, phi_x], dim=1) |
| 90 | + f = self.concat_project(concat_feature) |
| 91 | + b, _, h, w = f.size() |
| 92 | + f = f.view(b, h, w) |
| 93 | + |
| 94 | + N = f.size(-1) |
| 95 | + f_div_C = f / N |
| 96 | + |
| 97 | + y = torch.matmul(f_div_C, g_x) |
| 98 | + y = y.permute(0, 2, 1).contiguous() |
| 99 | + y = y.view(batch_size, self.inter_channels, *x.size()[2:]) |
| 100 | + W_y = self.W(y) |
| 101 | + z = W_y + x |
| 102 | + |
| 103 | + return z |
| 104 | + |
| 105 | + |
| 106 | +class NONLocalBlock1D(_NonLocalBlockND): |
| 107 | + def __init__(self, in_channels, inter_channels=None, sub_sample=True, bn_layer=True): |
| 108 | + super(NONLocalBlock1D, self).__init__(in_channels, |
| 109 | + inter_channels=inter_channels, |
| 110 | + dimension=1, sub_sample=sub_sample, |
| 111 | + bn_layer=bn_layer) |
| 112 | + |
| 113 | + |
| 114 | +class NONLocalBlock2D(_NonLocalBlockND): |
| 115 | + def __init__(self, in_channels, inter_channels=None, sub_sample=True, bn_layer=True): |
| 116 | + super(NONLocalBlock2D, self).__init__(in_channels, |
| 117 | + inter_channels=inter_channels, |
| 118 | + dimension=2, sub_sample=sub_sample, |
| 119 | + bn_layer=bn_layer) |
| 120 | + |
| 121 | + |
| 122 | +class NONLocalBlock3D(_NonLocalBlockND): |
| 123 | + def __init__(self, in_channels, inter_channels=None, sub_sample=True, bn_layer=True): |
| 124 | + super(NONLocalBlock3D, self).__init__(in_channels, |
| 125 | + inter_channels=inter_channels, |
| 126 | + dimension=3, sub_sample=sub_sample, |
| 127 | + bn_layer=bn_layer) |
| 128 | + |
| 129 | + |
| 130 | +if __name__ == '__main__': |
| 131 | + import torch |
| 132 | + |
| 133 | + for (sub_sample, bn_layer) in [(True, True), (False, False), (True, False), (False, True)]: |
| 134 | + img = torch.zeros(2, 3, 20) |
| 135 | + net = NONLocalBlock1D(3, sub_sample=sub_sample, bn_layer=bn_layer) |
| 136 | + out = net(img) |
| 137 | + print(out.size()) |
| 138 | + |
| 139 | + img = torch.zeros(2, 3, 20, 20) |
| 140 | + net = NONLocalBlock2D(3, sub_sample=sub_sample, bn_layer=bn_layer) |
| 141 | + out = net(img) |
| 142 | + print(out.size()) |
| 143 | + |
| 144 | + img = torch.randn(2, 3, 8, 20, 20) |
| 145 | + net = NONLocalBlock3D(3, sub_sample=sub_sample, bn_layer=bn_layer) |
| 146 | + out = net(img) |
| 147 | + print(out.size()) |
0 commit comments