diff --git a/charts/README.md b/charts/README.md new file mode 100644 index 0000000..a5e24b0 --- /dev/null +++ b/charts/README.md @@ -0,0 +1,83 @@ +# README + +## Repeatable Information Charts Kit + +This module was inspired by charts created for the VFH Bylaw Review Report. There was a need to develop a standardized brand and design language for everything BDITTO produces, so this module aims to produce a regularized set of charts and maps that are consistent with previous charts we create. All of the chart/map producing functions returns a matplotlib `fig` and `ax` object so that the figure can be furthere modified using matplotlib functions. + +### `geo.ttc(con)` + +Returns a geopandas dataframe of the TTC subway network. + +### `geo.island(con)` + +Returns a geopandas dataframe of the Toronto Island. + +### `charts.chloro_map(con, df, lower, upper, title, **kwargs)` + +This function creates a chloropleth map. + +The following arguments must be passed in order for the function to run. + +|argument|variable type|description| +|-----|-----|-----| +con|SQL Connection Object|Used to additional layers from the SQL database. +df|GeoPandas DataFrame|Data for the chloropleth map. The data must only contain 2 columns; the first column has to be the `geom` column and the second has to be the data that needs to be mapped. +lower|int|Lower bound for the colourmap +upper|int|Upper bound for the colourmap +title|str|Text string for the title text + +Additionally, there are optional arguments that can be passed to the function + +|argument|variable type|default|description| +|-----|-----|-----|-----| +subway|boolean|`False`|Flag to plot the subway network on the map. False indicates the subway network does not show up. +island|boolean|`True`|Flag to plot the Toronto Islands as having no data. True indicates the islands are coloured the same as the Waterfront neighbourhood. +cmap|str|`YlOrRd`|String to specify colourmap for the map. +unit|str|`None`|Specifies if a unit should be added to the legend box. The automatic placement of the unit only works if the upper or lower are whole numbers. +nbins|int|`2`|Number of ticks in the colourmap + +### `charts.line_chart(data, ylab, xlab, **kwargs)` + +Produces a simple line chart. The xaxis is not formatted by this function and requires further manipulation with matplotlib. In addition, annotation boxes must be added on manually with a something like this: + +```python +fig.text(0.94, 0.96, '176,000', transform=ax.transAxes, wrap = True, fontsize=9, fontname = 'Libre Franklin', + verticalalignment='top', ha = 'center', bbox=props, color = purple) +``` + +The function defines the styling with the `props` variable, so the only manipulations needed is the positioning and the text itself. + +The following arguments must be passed in order for the function to run. + +|argument|variable type|description| +|-----|-----|-----| +data|Series or list|Data for the chart +ylab|str|Label for the yaxis +xlab|str|Label for the xaxis + +Additionally, there are optional arguments that can be passed to the function + +|argument|variable type|default|description| +|-----|-----|-----|-----| +ymin|int|0|Lower bound for the yaxis +ymax|int|The maximum value of the dataset|Upper bound for the yaxis +yinc|int|One-third of the range of the data|Interval for the yaxis ticks + +### `charts.tow_chart(data, ylab, **kwargs)` + +Produces a 7-Day time of week chart that shows data points for each hour during one week. The xaxis is fixed to the 168 hours that produces the week, and the data must be ordered so that the first entry represents Monday at midnight. + +The following arguments must be passed in order for the function to run. + +|argument|variable type|description| +|-----|-----|-----| +data|Series or list|Data for the chart +ylab|str|Label for the yaxis + +Additionally, there are optional arguments that can be passed to the function + +|argument|variable type|default|description| +|-----|-----|-----|-----| +ymin|int|0|Lower bound for the yaxis +ymax|int|The maximum value of the dataset|Upper bound for the yaxis +yinc|int|One-third of the range of the data|Interval for the yaxis ticks \ No newline at end of file diff --git a/charts/__init__.py b/charts/__init__.py new file mode 100644 index 0000000..dfdceca --- /dev/null +++ b/charts/__init__.py @@ -0,0 +1 @@ +from rick import * \ No newline at end of file diff --git a/charts/module_test.ipynb b/charts/module_test.ipynb new file mode 100644 index 0000000..78535e6 --- /dev/null +++ b/charts/module_test.ipynb @@ -0,0 +1,532 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [], + "source": [ + "from sqlalchemy import create_engine\n", + "import matplotlib.pyplot as plt\n", + "import matplotlib as mpl\n", + "import pandas as pd \n", + "import configparser\n", + "from psycopg2 import connect\n", + "import psycopg2.sql as pg\n", + "import pandas.io.sql as pandasql\n", + "import numpy as np \n", + "import datetime\n", + "import math\n", + "import rick\n", + "import geopandas as gpd\n", + "import os\n", + "import shapely\n", + "from shapely.geometry import Point\n", + "#os.environ[\"PROJ_LIB\"]=r\"C:\\Users\\rliu4\\AppData\\Local\\Continuum\\anaconda3\\Library\\share\"\n", + "import importlib\n", + "import matplotlib.ticker as ticker\n", + "import matplotlib.font_manager as font_manager\n", + "CONFIG = configparser.ConfigParser()\n", + "CONFIG.read('/home/rliu/bdit_vfh/config.cfg')\n", + "dbset = CONFIG['DBSETTINGS']\n", + "con = connect(**dbset)" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [], + "source": [ + "mpl.rcParams['figure.dpi'] = 450" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [], + "source": [ + "query = '''\n", + "\n", + "WITH sum AS (\n", + "SELECT extract(month from pickup_datetime) as mon, extract(year from pickup_datetime) as yr, extract(week from pickup_datetime) as wk, pickup_neighbourhood, \n", + "sum(count) as count FROM ptc.trip_data_agg_neighbourhood\n", + "GROUP BY pickup_datetime, pickup_neighbourhood\n", + "\n", + "), ward1 AS (\n", + "\n", + "SELECT avg(count) as count, pickup_neighbourhood from sum\n", + "WHERE (yr=2018 AND mon IN (9))\n", + "GROUP BY pickup_neighbourhood\n", + "ORDER BY count\n", + "), ward2 AS (\n", + "\n", + "SELECT avg(count) as count, pickup_neighbourhood from sum\n", + "WHERE (yr=2016 AND mon IN (10))\n", + "GROUP BY pickup_neighbourhood\n", + "ORDER BY count\n", + ")\n", + "\n", + "SELECT pickup_neighbourhood, geom, (b.count - a.count)/(a.count)*100 as growth FROM ward2 a \n", + "LEFT JOIN ward1 b USING ( pickup_neighbourhood)\n", + "LEFT JOIN gis.neighbourhood ON area_s_cd::integer=pickup_neighbourhood\n", + "\n", + "'''\n", + "\n", + "data = gpd.GeoDataFrame.from_postgis(query, con, geom_col='geom')\n", + "data = data.to_crs({'init' :'epsg:3857'})\n", + "\n", + "for index, row in data.iterrows():\n", + " rotated = shapely.affinity.rotate(row['geom'], angle=-17, origin = Point(0, 0))\n", + " data.at[index, 'geom'] = rotated" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [], + "source": [ + "data=data[['geom', 'growth']]" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": { + "scrolled": false + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAACRUAAATKCAYAAADFfRH6AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAABFNAAARTQBrsa1HQAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzs3XmUXHd5J/ynll4ktfZ99SJLXiR53zfAgSQQlgESmAnhnUlgkrwJ5MBkD1kICXlnTjI5kwGSGSZhIAkhGXZiGMxiwMbGO8KWN9mWZO1q7eqW1EtV3feP7q66V1J3y1Z1V3f153OOjn636ta9v+6qru1+7/PkkiRJAgAAAAAAAAAAYFC+0RMAAAAAAAAAAAAmFqEiAAAAAAAAAAAgQ6gIAAAAAAAAAADIECoCAAAAAAAAAAAyhIoAAAAAAAAAAIAMoSIAAAAAAAAAACBDqAgAAAAAAAAAAMgQKgIAAAAAAAAAADKEigAAAAAAAAAAgAyhIgAAAAAAAAAAIEOoCAAAAAAAAAAAyBAqAgAAAAAAAAAAMoSKAAAAAAAAAACADKEiAAAAAAAAAAAgQ6gIAAAAAAAAAADIECoCAAAAAAAAAAAyhIoAAAAAAAAAAIAMoSIAAAAAAAAAACBDqAgAAAAAAAAAAMgQKgIAAAAAAAAAADKEigAAAAAAAAAAgAyhIgAAAAAAAAAAIEOoCAAAAAAAAAAAyBAqAgAAAAAAAAAAMoSKAAAAAAAAAACADKEiAAAAAAAAAAAgQ6gIAAAAAAAAAADIECoCAAAAAAAAAAAyhIoAAAAAAAAAAIAMoSIAAAAAAAAAACBDqAgAAAAAAAAAAMgQKgIAAAAAAAAAADKEigAAAAAAAAAAgAyhIgAAAAAAAAAAIEOoCAAAAAAAAAAAyBAqAgAAAAAAAAAAMoSKAAAAAAAAAACADKEiAAAAAAAAAAAgQ6gIAAAAAAAAAADIECoCAAAAAAAAAAAyhIoAAAAAAAAAAIAMoSIAAAAAAAAAACBDqAgAAAAAAAAAAMgQKgIAAAAAAAAAADKEigAAAAAAAAAAgAyhIgAAAAAAAAAAIEOoCAAAAAAAAAAAyBAqAgAAAAAAAAAAMoSKAAAAAAAAAACADKEiAAAAAAAAAAAgQ6gIAAAAAAAAAADIECoCAAAAAAAAAAAyhIoAAAAAAAAAAIAMoSIAAAAAAAAAACBDqAgAAAAAAAAAAMgQKgIAAAAAAAAAADKEigAAAAAAAAAAgAyhIgAAAAAAAAAAIEOoCAAAAAAAAAAAyBAqAgAAAAAAAAAAMoSKAAAAAAAAAACADKEiAAAAAAAAAAAgQ6gIAAAAAAAAAADIECoCAAAAAAAAAAAyhIoAAAAAAAAAAIAMoSIAAAAAAAAAACBDqAgAAAAAAAAAAMgQKgIAAAAAAAAAADKEigAAAAAAAAAAgAyhIgAAAAAAAAAAIEOoCAAAAAAAAAAAyBAqAgAAAAAAAAAAMoSKAAAAAAAAAACADKEiAAAAAAAAAAAgQ6gIAAAAAAAAAADIECoCAAAAAAAAAAAyhIoAAAAAAAAAAIAMoSIAAAAAAAAAACBDqAgAAAAAAAAAAMgQKgIAAAAAAAAAADKEigAAAAAAAAAAgAyhIgAAAAAAAAAAIEOoCAAAAAAAAAAAyBAqAgAAAAAAAAAAMoSKAAAAAAAAAACADKEiAAAAAAAAAAAgQ6gIAAAAAAAAAADIECoCAAAAAAAAAAAyhIoAAAAAAAAAAIAMoSIAAAAAAAAAACBDqAgAAAAAAAAAAMgQKgIAAAAAAAAAADKEigAAAAAAAAAAgAyhIgAAAAAAAAAAIEOoCAAAAAAAAAAAyBAqAgAAAAAAAAAAMoSKAAAAAAAAAACADKEiAAAAAAAAAAAgQ6gIAAAAAAAAAADIECoCAAAAAAAAAAAyhIoAAAAAAAAAAIAMoSIAAAAAAAAAACBDqAgAAAAAAAAAAMgQKgIAAAAAAAAAADKEigAAAAAAAAAAgAyhIgAAAAAAAAAAIEOoCAAAAAAAAAAAyBAqAgAAAAAAAAAAMoSKAAAAAAAAAACADKEiAAAAAAAAAAAgQ6gIAAAAAAAAAADIECoCAAAAAAAAAAAyhIoAAAAAAAAAAIAMoSIAAAAAAAAAACBDqAgAAAAAAAAAAMgQKgIAAAAAAAAAADKEigAAAAAAAAAAgAyhIgAAAAAAAAAAIEOoCAAAAAAAAAAAyBAqAgAAAAAAAAAAMoSKAAAAAAAAAACADKEiAAAAAAAAAAAgQ6gIAAAAAAAAAADIECoCAAAAAAAAAAAyhIoAAAAAAAAAAIAMoSIAAAAAAAAAACBDqAgAAAAAAAAAAMgQKgIAAAAAAAAAADKEigAAAAAAAAAAgAyhIgAAAAAAAAAAIEOoCAAAAAAAAAAAyBAqAgAAAAAAAAAAMoSKAAAAAAAAAACADKEiAAAAAAAAAAAgQ6gIAAAAAAAAAADIECoCAAAAAAAAAAAyhIoAAAAAAAAAAIAMoSIAAAAAAAAAACBDqAgAAAAAAAAAAMgoNnoCAAAAAAAAAFAP5UoS5SSJUmXgXzlJolxJojT4/9B189pbYk57S6OnCzChCRUBAAAAAAAAMKq+ciV6SpXoK1eid/BfX7kSPYP/D417S5Xoqwxc31+uRH8lGbi+kkR/eeC6/nIS/ZUk+iu16/sHLy9VkuirVKrBoFKlEuUkqiGhUiUbECqnAkPJWf4s77/m/Hj35avG9PcFMNkJFQEAAAAAAABMcOVKUg3xpAM9fZVK9JVroZyh8dDl/UNBn1ODQKXKadurLg9e1zMYChoKDZ1tYGcyKFWa6acBGBtCRQAAAAAAADCJlCpJ5CKikM8Nu04lSaKSRCSRRJJEJElEZXD8Ug1tY2h7EQPbS065fmB8VhuMSgzOb7CyTCUZmPPQ3Ie2NbTdXC5i6KfN5XLV2w3NI5daJ5fLpdat7bZ26dByapwb+L32D1bFGaiiUxmspJMalyvV9dKXnegvx4lSOVW1Z2A7ERH5XC7KSRKVJIny4M88UFknolSpRClVeac02KarLxX2Gfq/LANTV/1CRQCjEioCAAAAAACgqaTbIpUqQ2GOWqijtjywbnq5v1LJhktS41orplpLpv70clILpJSSpNr2aSiAUhoKopSTVPun2nJfqk1UqZJkQkCVVPjmVPlcNuQDjE6lIoDRCRUBAAAAAAA0iUqSDb2U02GayqmBmsHlyuiBm1Ilif6kVkmlFtipnBbeSSLiP16+qjqnrUdPxBef21tttXSyNBCeqSRJpopM6ZRtlwdDOunqLWf8+QZDO+Xqz5hMuXCNbAS8dP2DlaQAGJ5QEQAATCDPPPNMHDp0KK6//vooFr1dBwAAOJOhtk6VJElVb8m2Z0qSGAiXDP5fTpJqG6GhqjBDIZjKqUGapFa5Jqkun17RZuD6WhDn1FBOktlWRH+5En2DrZL6ypVqpZpyapvDVdBJksHWTMmZquUkUUqGfp5G3zsR7YV8/Pt1K6K1kI+IiE89uTM+++zeBs8KIEv7M4DROUoBjLu+vnK0thYaPQ0AmHA6Ozvjsccei0qlEkeOHInbb789Ojo6Gj0tAABgDPSXK6dVYDmtAsxQ1ZVUFZlKElGJWvikv1JrrzTULqmUJMNWnhmqVJOu6HLqdSOFWkaqAJNExPG+UvSUK4PhniQqEZEMhX0G5x1DQZuohYCGgkFD+8uGa04P7TCxXbloVjVQlCRJ/OtznQ2eEcDphIoARidUBIyp57Ydjoef2BuPPLE3Xth+JLbsOBI9veVobSnEkoUzYt7s9li+uCOu3bAkbrlmeVywYnajp8w5SpIkcumaxQCclZMnT8Y999wTlcGyy4cOHYqvfe1rceutt8ayZcsaPDsAAE5VrlSikM83ehqT3lCVlyQGWpCUkyT6K5Vq1ZVyJR2iGQydDIVvkiTKg5VZ0u2d0oGYodvVQjqV1G2HtlOphnAqceZKNZUkiQ9cub4677/Z+GJ8c9uB6C0PtHLqHwz+JIOhmSQV+qkGZtKhGmhyNy6bUx0f6umPHi2GgAmo5LkJYFRCRUBdnTjZH995cEfcde/WuP+x3XG0q/eM6/X1l2P77mOxffex2Ph0Z3z1u1siImLl0plx01XL4roNS+Lmq5fHovnTx3P61EGzBIoqlUqUy4NfXlYqUS4nUa5UIkmNK5VkcJ2B8dBtKpWB64fGZ7q8epvU+NTL3/qGGzJz2r7zcDyycUfmsvSvO5fLRU9vKfZ2dkWlXInW1mIU8rnI5XJRrlSiVK5Ed3dvHD/RF+Vy5bQN5FLbGW77uVxEIZ+PXD4X+VwuCoVc5Af3kc/nMusNbDOX2c7QtnO57A7yuVwUi/koFPLRUsxHsVgY/D8fLS2FKKYuG1hn4LKWYiGKLdnl9DZOvW5ojjDRVCqVuOeee6KnpydzeV9fX9x9991x5ZVXxvr164e5NTAROLAMMPW81Of9obBMf7rd0mDApDR4WfnU+i9JDIRgUqGYcipIUzolSJNERJIKtAy1fxpqC1X9N7gcUfssmFZKkoE5JdmWSuVkqHJOpRa6iVpVmdptTv2/FuYZqnIzNN/JpL9SiZbB+31j57F49vDxBs8IJq4bltZCRY/vP9bAmQAMr1/pO4BRCRUBdXX3A9vj/R/+zsu+/Y49XbFjz7Pxf772bERELFk4I9acPzcuXDE7Fi+YEfPntseMaS3RUhxonzb0BVh+MNAwFHCIJAbDGwNniVUGQyADAZEkStWAx9B1SSrwMXhm2uAZZEn1PeXAYGg5SU5ZjtTlp64zuF5S/YJvYJ30Poaui/RlQ1/+Va8bGLe1DYRFBoIqUQulDP4cp47Tb4uT2g+U+tkG95ueZ2r/ccrch37E7M8asXJpR/zJ+2+rbvI3P/jp2LxlT+QiN/izJtWQTWVwnFSS6jbLlUpqncGz+4bGg5cP7HAgtJLL5Qavqwz+H5ltn7qvSGr37dB1p96mtp/G+/U/+sf4zhf/IC44b1FEREyf3hq/9rtfbPCsJrdcLqJYyEexpRDFwkBAaSBwNDguDIaXWgrR1lqI1tZitLUVo23w//bWYrS2FqqXtbYWB553crnIF/JRyA8+F+XzkS8MBa8GglGtrYVobSkM3m5g26cut7UWB+ZSrM2lWBhYbm3RNrKZPfLII7F///5hr9+4cWMcPHgwbrrppmhtbR3HmfFylCsDLSiGDg4O/Rv2snJSPejWX04y15cqtbPe0/+XTtlW/xluU6ok0ZrPx1+85uLq3D6zZWsc6OmN1nw+WvL5aC3koyWXj2I+H8V8Llpy+XjdyuWZn+fr924dfL4qxLS2YrS3FQefIwvR1lKI9raB69pap/bHS4GixlAlE5pHJdWGqTzYbmkoxFJJXtpntKH2TJXBMEs1/JJuJTW4j6GgztBn3lODODG0nNru8b5yvPWSxdXnn+/v7YzHDx2Jnkolesvl6CmXo7u/FMdLpegtV6KvUh54HX+JPwcTW97rDwxrVmsx1s2fWV3+6hatz4CJqeT9GcCopva3vkDd3XHjqpjWXoyTPaW6bG/v/uOxd//xuPfhnXXZHmPvA79yU7S3Dby8tLYW4zvff6rBM5q8Dh05Hr/xwU/H5//3+yMiYsG8GfHB3/qJ+J+f+kF0dfXEsmWzY8/eo9HV3dfgmU4eSRLRX6pEf2lylrXN53PVkFG2olPq/5ZTlwfG+fxAgCodphoKUtVCTNnKTi0tA0GooYpRLcVCvOUNG6K9raU6p4c27o7p01pixvSWmDG9NVpb8nHqZ/GhMFdLS37Khw7O5IUXXojNmzePut6OHTviyJEj8YpXvCLmzJkz6vqNVq4k0TfYBqJ/MCzTX0mi/9TLBgM1Q60m0q0hqi0rhlpFpJcH91GpHgBMt6iIwe0NrJOkzsYvVZLoK9cCPENzKaXGQ0Gf7LgW1ukvZ4M7Qz/TUKhnIn0d9avXrqyOe8rluHPHzugfJTx70ayZsXb2rIiI+PRXnooPfvQHZ7WvXC6ipZiPofBvPj9Qr26oStxAZbuBA3BDFe5yuYGqdvn8wAYGguIDlw1to1jMR2uxEMVibvC5aeA58NR9DYXMB8YR+Xw+8vn6H/DL5bJzzedy8ce/dkv1+vu3Hoo7n9pbfXwOtVUZeuxGRBSq1f9ykY/UODcw93RFiUyYOwb211LIRSGfi+JgkLVYHQ9cd1qlwEhXEYzq7z2q44ErTr0sl8ulKhkOrVe7LJ+rhfvzuYGf60zLhXwuG2xP/T7Trxnpy3OD288N/k6GfvZ8buhxFHHdqrnV+/dEfznu2XkoNdfc4O0j8oPjfC535r/P4f4kcpn/sr/PU3+OU05ASG82d4bbZqpBDgXmh5nG2RgKQQzNIUnNKZfa8qn7Hs5Ny+ZmljceOBq5yEUhV7sfBvabOvEgaidTDFVBGbrfc7lc5COqj/FcLheFqN2/lcGTGCoR2e2lTnyIiMzjuHZSRww+RgYfG6fsr5DPRSGXG3w8RvW1ova3mQyetpCqqhm1x1H6dWZoTpVhfs5Tped46v1TzOfiukXZ1/OHdx8daP2UCoumg6r96fFgCLUyuNEksvd97bljYCZDy7WKNoOvkVF7fawGegaDNwNVZ5JTXmNrr8nlofstyW53aHtDty2dut1KVIM96esm0uvn2XjzxYujMPiY/OqO3bH5WFdjJ8S4SP+5F1TChWFdv3R29W+kkiRx19YDDZ4RwJn1lyfn98QA48lRHaCupk9riTtuXFVtZ8bU88TmA3HdhiUREfHaH7syPvK3dzV4RpPbt+7ZFE9v3hWXrh2oGvHud94Y737njdXrkySJw0dOxtve9cl45rnhq5zQHCqVJPoq5Yj+cpxs0BwWzJ8RP/6qgaond9//YvzS7730v/FCIRctg9WXWlsHqjG1tg5Wh2oZ+pevVneq/msdDDsNhgmGAlMDoaeB0EFLS34wwDSwjaEww4mT/XGsuy+OHO2JV960Kq68bHFEDLRnuOMfHomecjnaC4XoaC3Eko62WDGzLVbMao/lM9tjRmshWgv5aCvko62YG/h/8N9QaOXUg21DB+oqMXDgLB2OSYdeThw7Es8/dF9UKuXUmfCpA9VD1eAGBwdOHIztn/9yXHXdDbF05arqQcTqqrUCclFJknjhyMno7O5NnXVfO/jXW65kAjG1sM/AuJQOBZXTwaDTLytVktr2Bi+bbAcGm9W/WbuoOn780OFRA0URteBLRER7+9l/ZEySiL7+qfll3B+95+bq881ffOe5eGzX0QbPaGrY8vuvqY7fddcT8cQBB/Tr5RfWr4j/dO0FERGx70Rv/NJ3n2jwjJrTN95wQ8weDGt/4Lub45+e3NPgGfFSKFIzNVVS73JbhIpgWOmA8t7jvTE1PyUAk0FpgnQtAJjIhIqAunv9HauFiqawz399czVUdOM1F8Xc2TPi8NHjDZ7V5JUkSbznd/53fO0zvx1tqeowQ3K5XMybOz2+8KlfiMtu/i8NmCFTzcrltTPqd+59eQdvy+UkyuVy9PSW6zWtl2Tn3u5qqKiYz8fPrl8Sf3bf1ur1m/Z3j8s82qMUP9a3JYrl3pd8283/91ux7MK1sWLtZZEfpeXSxn1d8ZXNnaFF/NSTj4iL5s2oLj9y4OBZ3W7PyZNxyZzZERHxltesiY//y+OxZYeQzHA6prdWA0UREXu7XvrfNC/dQJ2qmiO9/Y2aSlOa115733miVJ8qtGTlI2JGqr3t0V6/58nM26ypI12ZTKgIhndzKlT0wJ7DDZwJwMiEigBGN/IRCICX4fbrVsTcWW2NngYN8sVvbo7K4BvxYrEQr37F+gbPaPJ7eOOWeP3P/Xncfe+m6D7ec8Z1Zs1sj+uuWnnG66CeFsyvBRR27pmcFSH+9dvPx/dTbTV//ooV4z+JJIlbK3teVqBoyO4tm+PZh++P/r6Rt3H9stnxy9esjNltzieYav7tuqWZlgOPHjy7UNGTh49Ux7lcLv77798xJvNrFpdcmG0Ttb9bqGg8XDh/RrVVVYRQUb0t72ivjjtParU7Fj584yVRHAwGV5IkHt0jvDmZiZZMHenjjsVRwv0wVS3vaI9Vs6ZVl//PM3sbOBuAkfVX1FIDGI1PPkDdtbYU4qdetbrR06BBKpWIF1MtP177Y1c2cDbN48FHn493/upfx199/P9GX9+Zz2LOqb/POJiVOsi462VWKmq0SiWJD3/sB9XltmI+/uFNG8Z1Dje0HIkZvUdGX3EURw92xqb7vhPHj468rRUz2+M9162KC+dMG3E9mss7NiytjjcdPhJd/WdXBeNkOVtFbFaHsPhI1q9dUB3v7+49qxZznLtrV9Yq5x3t7Y+uvsZUv2tWS1N/9zu6GtV0tXm9/aJl8arl86vLd71wIPYeF96abFIFa7RCm0K0P4PR3bys9j6tr1zRohaY0FQqAhidUBEwJv7t6y/xpdoUdte926rjH7t9fRSLheFX5qzcduMl8fA3PhwfeP+bo7X19GojL2w9EA89tr0BM2OqaW2t/T2/3PZnE8Hz2w7Ht+97sbr8ivPmxVO/fEvcuGz2mO/7sgUz4nXXXR6z5i0YfeWz0HvyRDz5g+/F/p0vjrheR0sh3n3Virht1dwR16M55CPisgUd1eUH9h8469v+3OoLq+MkSeJL33yunlNrOtesW1wdv3BAy9fxsm7prOp4Z9eZKzny8i2eXgsVbe060cCZNKdfXreqekLAnu7e+MN7Pc9OdnlfgEwZlVSarChUBGd0Y6r12daj3kcAE5sTgwBGJ1QEjImLL5gX11++dPQVaUqf/MKmSAa/aJs7e0bceM1FDZ7R5PaTd1wRX/rUf4plS2pfyiRJEgcPHY8HHnkxfu9PvxqveOPHGjhDporV58/PVMSarO3PhvzhX94bBw7VvuDsaC3GZ95yRVwwu32EW52bBdNa4m2XLYnW9va45PpbY+n59Xl+rFTK8cLjj8bWTRujMkLZ5lxEvG71gvjZdUujreAgSDM7tfXZQ2cZKloyrT2WTq9VtPr4/3k8/vKTj47JHJtBPh9x6zXLq8tPTuKw5WRz0YLp1fEOoaK6aivkY+H01uryc0eE5eqpGBHTUidd/M53no0DJ7Tvm4zSh59yGqBNGenjji3an8FpchFxw9JapaLvbj+7FswAjaL9GcDoTi91AFAnay+YGw/+aE+jp0EDHDzSE4eP9sS8wTY7r/2xK+P7Dz7b4FlNDpeuXR5v+PGr47yVC6K3tz+WL50XP/7Ky6NQGPiyMkmSePiHO+J3/uTO2Pz8/gbPlqnmmitWVMdd3X1xrHtyt+noPHgi3varX47f/dWb4jW3nh8REYV8Lu5+5/XxRGdXfP6ZffGpx3fXbX9thVy88/Jl0Tb495zP5+O8yy6PGXPmxtYnfhjl8tm1phrJvu1b4kTX0Vhz1fXR2j58q7MNizpicceq+Mcndsd+BzKbUrr12ZNHjsSx/rO7n9+0amV13Ndfjr/4u0fqPrdm8tm/emN0pMIXX31qbwNnM7UsnVULgKpUVF/LU61OkySJpw8Ly9XTmrkzMiHth3cfHWFtJrYkYjBMpGDN1JGuVFRwx8Np1s6dEXPbWyJi4H3EZzf7bhiY2FQqAhidUBEwZpYu7Bh9JZrW/T/cHa9/1eqIiPipV18ZH/izf2nwjCa+P/j1t8Rv/urrh70+SZL4jT/8SvzLlzaO46yg5tKLay1+JnPrs7Qde7riV37/G/HL77gyfv0/Xh8RAwcHrlwyK65YPDNePHoyvvvi4brs66cvXRKLUuGDIQuWrYzpM2fF5kcfjJ4T3ee8n67DB+OJ738n1lx1fcyaP3yLtUXTW+M9166Kzz69LzbtP/f9MnGc1vqsM1ulaGF7W7Tk87HvZE+UkyRWz+yI6xcuiNktrXHHsiXV9e5/bNd4TXnSyecjPvWfXxuXX7ywetk3nu2Mx3YJB4yXeann013dQkX1tHJmLVRUSpLoc+JuXZ03s1Zlq6uvFCdLfsGTVSpbolLRFFJJ1agqansHp7lxWa1K0clSJfYcn9wnIwHNryRUBDAqoSJgzCxdNKPRU6CBPvHZx6uhogvPXxyXrl0eT292cHI4b/iJq0cMFPX1leJ9H/hSfOXrT47jrCDrwvPmV8fNEioa8r/++Udx49XL4pZratWYcrlc/IfLl9clVHTVkpmxfoSw7fSZs2P9za+MFx5/JA53nnulk/6+nnj6oXvjvEs3xJIRWqy1FvLxjvVL457th+PrLxwIX6M0h7evW5JpffbgYOuzua2t8Z/WXxoXz54dERHd/f1xpK8/VsyYfto2SqVKvPdPvj1+k55EprcX42v/6y2xfPHM6mVP7T0Wv/HlTQ2c1dQzvaXWPmr38d4GzqT5pENFx/vLDZxJc1ozu/Y5eZcqW01DwZqpI33cseiOh9OkW59tPuzkFWDi0/4MYHRCRcCYUaloanti88E4cbI/pk8bKHn8+tdcJVQ0gvf94mur43K5Ehs37YpCIR8nTvTF9x/YEv/jU/dHn9PEabAVqTMOdzVZqKhcTuKv//6HmVBRRMSzh47XZfuP7+uKlbPa46blc4Zdp9jaGmuvuSl2Pf9M7Hzu6XPeZ5Ikse2px6P7yOG4YMNVUSgM/9b/9lVzY8Ws9vjMk3uiu88B5Mnu5zYsq46fOnK02vrs3WsvqgaKIiI6Wlqio6XltNsnSRIf+tj90eN15zQzphXjW598WyyYW2svuOXg8fj5f/5hHOs99xaGnJ1iPttyZo9KRXWVDhUd6lFdoJ5et2ph/Oza5dXlPd0CcZNZOoytUtHUUUlq748KKhVBRks+F9ctqX3m/ca2AyOsDTAxqFQEMDqhImDMLFOpaMp79Ml9cdu1AwfoX//jV8eff+zOBs9oYpo3tyOuu2p1dfl9H/hSfPGrTzRwRnBmC+alzqxvslBRRMQNVy3LLO84ejL+/Adb67LtchLxlc37Y8exnnjzxYujZZizmnO5XKxYc2nMmD03Xtj4cJRK/ee87wO7d8SJrmOx9uobon3G8IHfC+dMi/deuyo+vWlPbD/mAP1klY+IS1Otz37Qub863jBv7oi33XvgeDyxeX/81088Ei9s18brVK3FfHzzf/9MJlDvCgn5AAAgAElEQVR0zwsH4r1feDyO9ggUjad1S2ZFLnUgd49KRXW1cmbtMb7zuNeDevq9a9dEPvXYfaJTBYdmoWDN1FFWqQiGtWHhzGo1ySRJ4vOb9zR4RgCj6y8LFQGMRqgIGDOL5k+PQj4XZUnvKesfv/RkNVR01YbzY9Xy+bF918EGz2p8vOrWy+Ltb7opWloK8d37n47PfOH+KJXOXP1j0YJZ1XGSJAJFTFgzO9qq42ZrfxYRMX9OrTLD0Z7+uOVTD9V9Hz/c2xV7u/vinRuWxdz24d+Kz120JNbf8qrY/NiDcaLr3MMdJ7qOxqb7vhOrr7g25i5eOux6s9qK8YtXr4g7n9sfD+wSKpmM3r5uSfUAVyVJ4qH9tbOD+yuVaC8MfMn/ubuejWltLXHbtQMVM/7pzmfiv37ikfGf8CTy5b/5N7FwXq1V3Nef2Rfv/fzj0e+97rhbt6T23ulQT3+cLKmqVU8rZtVeD7ccO9HAmTSXOa3FaMnnq8vbj56MT/xoZwNnxLny7D81VZLaPS9UBFk3L6udxHC0txTd/d6jARNfKfFcBTCa/OirALw8PX3lzJctTD13P7Aj+vprQZpbb7i4gbMZP+9510/El//+N+Jn33pL/Mwbb4yP/eefj+99+Q9j9fmLzrj+tPbW6tifDBNZy+AZhxERu/Y235n1h4/WqjG0FwvROkbvlPd098ZHHn4xNh8a+UBt+4yOWHfTK2L+0hUjrne2SqX+ePbRH8SOzU9FMsKTTSGXizetXRQ/fcliB0omoVNbnx3tr1W72nT4SHX85leviS9967m45i3/GNe85R8Fikbx+79yY1x0Xu0gyTef7Yz3CBQ1zMWLatW4tD6rr3wuYmVHLVT09KHmCxE3yrp5MzPLd3z6oTiqbeLk5iVgSiqn3kdrfwZZN6Zapj++/1gDZwJw9lQqAhidSkXAmHnkib0CEsTufd1x/orZERFxxbrz4p++cH+DZzS2liyaE3/8W2897fINl66Mb33uA/Enf/nFePRHW+LQ4eORz+di4fxZ8Su/8JrqeoJ4TFSXrFmYaTWzY0/zfUH4jXu3xXv+/TUREdFWzMe9/+HGuOETD4zJvk6WKvHJH+2KV184P+44b96w6xWKxVhz1fXRMXtubH9204hhoLO16/lnovvI4bjoymujpbVt2PWuWTorFne0xac37Y4jWjtNCiO1PouI+OzWF+O6BfOjmM9HoZCPj//Jj8dTzx+MJzYfiOMn+2PJghmx9oK5USpV4p5HdsZH/+Gx6Olzxl5ExM/+1CXV8aM7jsR7v/B4lASKGua8VAs6rc/qa/H0tmgp1FK1Gw803+t9o6yZU2sju+PYyXDsornkQrhkqlCpCM6so6UQG1KVuP91S2cDZwNw9ny2BxidUBEwZlYtmzX6SjS9Z7YcqoaK1l1Sn2obE9kt16+NlpaBl9ckSaJzf3csXjRwVvL8eTPjv/3p/zPi7XftPjLi9dAoV21YXh0fOdYT3cf7R1h7cnr6+YPxre9vi1ffen5ERCztaIubVsyOH+wcmzZgSUR8c8vB2HWsJ9522ZJoKwxfGmnphWti+uw58fwPH4r+vnM/gH70wL7YdN93Ys1VN0THnLnDrrdiZlu859pV8Zkn98QLh0+e834ZWz9z2eJhW59FROw8cSI++dwL8e6L10RERC6Xi3VrFsS6NQtO29alq+fHu966Ie76/rb44EfviyPH+sb+B5igXn3zedVKbZUkiV//yqbo0W6roZbNEioaKytm1qoUlZMkjvQJldbLBTNr7RN3dXncwmSVDhUVhIqg6spFszKfRb6+Zf8otwCYGEpO8gUYlfZnwJi5YMXsaG8rjL4iTe2JZ2tfIqw+f3EDZzI+Zs+qHSw4fORkXPNjfxmf/tyjZ1VdpL+/HL/8G58by+nBy3bJmtrfbzO2PhvylW89n1ne1Dn2bV+eOnA8Pvrw9ug8MXJoY/b8hbH+lldFx+zhQ0AvRe/JE/HUA/dE545tI643o6UQ77pyRdy2qj77Zey8MxX+O7X12ZBv7N4T/+XxTXG4d/QD2sViPn7qlRfGQ5/9ufj8R94Yyxd3jHqbZvTGO1ZXx0/u7Ypto7QuZOzNn1FrHbtL+7O6Wp5qfdZTKo+wJi/V0hm13+2uLo9bmKzS7c+K2p9B1WXza58VDvf0hwg+MJn0lz1rAYxEqAgYUzNTX/gzNT26aV91vHzpvOhIfZnejMqpDyC5wVfZ3/7jO+P//c3PxTPPdcbJnv5MwChJkug+3hvfve/5uPm1/z2eeGrPeE8ZzsrqC2qVTHbtHfugTaMcPKUaz9svWzou+z1wsj/++pHtsWn/yIGttmnT47Ibb49FK8+vy34rlXJseeKx2PLEY1EpD3/wOBcRr1u9IN6xfmm0FRw8maguW1j7Iv+BzuHPDH704KH4tQcfjr/b/Fw82Lk/nj16NLZ0dcWTh4/EXTt3x337OqNUSb2e5XJx+cUL4+6/f1t86r/8ZCycN23YbTejyy6aXx0/sO1QA2fCkJlttaLLwhn1tXRGrS1mV78qRfW0oL322XhPt0pFzSCdJyk7w33KSHdIUakIai6ZV/sssu2oED4wufRrgQYwIu3PgDHVMb019h/SLmUq++HT+yJJksgNfuN68eql8ejjWxs8q/o5f+XC+Ok33BDtbS2xd/+ReMNPXFO9Lv298p13PRV33vVUdblYzEdJ6xQmkeVLZ1fHO/Y0b6joh0/ui117u2L5koG2hX9w2+p48ejJ+ObWsQ8S9JaT+PSmPXH7qrnxk6sXxHCHKPKFQly44eromDMvtm7aGEly7s8lnTu2xYmuY7Hmquujbdr0Yddbv7AjFs84Lz69aXfsOz5122FNRG9cuzDTbuDBAwdGXL+3XIm7du2Ju3adOcy6oK0tXr9yRbxq6eKYVhz42JjP5eLmq5bH3Z96W7zm5z8bew9MjYMFsztqQYAXtQGcEFpS4cbdwhl1tSQVKjrY03ytThtpVmvtK7jd2p81hfR7tUo4EDVVpANkeZWKoGr1nNrnyKcONm91Y6A59VcqEaHrBsBwVCoCxlTHjJZGT4EGq1QiSuXal24zZzZPdYMbrrko7v/aH8cf/sZb4rfe+4b4yw+9M151y2XV63fsOjLsbQWKmGzmz5tRHe9s4kpF/aVKvO9D346TPQPVGXK5XHzstZdFe3H83jbfs/1wfGLjrjgxyvPEopXnx7qbbo/W9vo8r3YfORSb7vtOHDs4chhl4fSW+JVrV8WVi2fWZb/UxxvXLqqOnz/WFUf7zi0McKC3Nz75/Avxi/c9EP/0wtY4UapVLGlvK8bffvgnzmn7k8n0abX3s3tVxWm4tQtnVMPqERG7j7tP6ildqWiv321dTSvWDlLs9FzSFNJ5kopKRVNGkgqQiRTBgEIu4rxZtc+lj+w72sDZALx0JZWKAEYkVASMKe3PiIhMyZ5mOZOvrbUYH/+Ldw/bzq1cqcTvfOjOcZ4VjJ2ZqYOMzdz+LCJi41Od8Wsf/GZ1ub1YiN+75cJxncPzh0/ERx5+cdQKHB1z5sWGW++IWfMX1mW//X298fRD98aerc+PuF5rPhdvv2xJvHHtwtANbWK4dH4t+Pf00fp9id9bqcSXtu+I9/zgobh3b2f18jXnza3bPia6llSocM8xQYBGW7dkVnXc1VeKrr7hWzfy0i3rqL3eb+tSmateWvP5zOvlDs8lTaJ2pzoONXWk82PN8v0GnKuVM6dFS2HgPXOSJPHA7sMNnhHAS6P9GcDIhIqAMdUxXaiIyBSCb5bv3N702mvjgvNqVSEOHDoeh4+eiGNdPfHs853xxp/923jiqTO3lIHJpljMRzF1UL2Z258N+e4DO2Lbzlow45JUYGO8HOkpxd88uiMe3XNsxPVaWtvikutuiWUXrq3LfpMkiReffjye3/hwlMulEde9afmc+KWrV8bsNl2VG21B6j3X9u7jdd9+d6kU9+7bV/ftTnQrl3Zkq+IcFQRotLULO6rjvce1kKqnXEQs7agF5p87Wv/nkqlq3bzac0klSWK3SkVNIdP+TKWiKSPd6i7fJN9vwLlKVykqJUl096vODUwufWXPWwAj8e0/MKZmdQgVkZXPN0ee9ZWpNmcv7jgUt7zuIw2cDYyt9ZcsyRxUb/ZKRRERc2a1xbLFtQPXP9w3crBnrJQqSXzumX2x/VjPYFWgMx+5yOfzseqS9dExZ2688PijUS6NHAY6Gwd274gTXcdizdU3xLQZHcOut3JWe7z3ulXx6U17YusRVS0aIR+RadG368SJMdnPihnTq+MjXVMjzLHuogXVcU9/OQ6fPLe2cpy7C+bVHof7TkyNx+F4mT+tJdoKteeSJw82/+v9eLlsXu11dN/xvuhzJnRTSL8tKwsVTRnpP9/h3pvDVNPRWmvx6cA8MBn1Vzx3AYykOY7sAhPWvNlnbg3F1JIpD94kp/K1FGtfmOxpUNgAxstVG5ZXxwcOnYiTPeceWJnozl8xO1pban/nf/Xgiw2cTcRDu4/Gxx/bGcd6R/7dz1uyPNbf/KqY1jGzLvs90XU0Nt13dxzau2vE9Wa0FOLdV66I65bOGnE9xsb6RadU0zkxNuGullQw+OQoj8VmkW7zpvXZxLA09flCpaL6Wp6qUlRJkujs6WvgbJrL6lm1ioc7PZc0JZWKpo4kdV/LFMGQ2h+Dp0NgMuore/ICGIlQETCm5goVERHpBmi5JvnWbfuug9XxJWsWN3AmMPYuWVt7jO+cAlWKIiI6D2Yrvbz6wvkNmknN9mM98ZFHto9aDWhax8xYf/OrYv6S5SOud7bKpVJsfuzBePHpJ6Iywplb+VzEWy5ZHD+5esGw6zA2rlpSC3Md7euLnnJ5TPbT3V8LEi2ZPz3WnDdnTPYzkZy/YnZ1vOeYAMtEsHBGrRLqnm73ST0tS4WKVBmor3Rga6fWZ00j0/4sHIiaKtKVivJN8v0GnKt0tTZ/F8Bk1OvzD8CIhIqAMTVvjlARzVmp6Fv3PFEdz5k9LX7lF25p4GxgbF14Xi1Qs3PP1AgVpasURUSsnTdjmDXHV3dfOf524874/o7DI65XKBZjzdU3xHmXXl63MOeerc/FMw99P/p6Rj4Y+opVc+PNFy+K5ni2nxwumV97fHaOcv+ci02Hj1THhUI+/u7DPzFm+5ooli+q/W5VKpoYZk9rqY53CxXV1fKOtuq4q39swolT1aJptd+tSkXNSUe7qSMdIGuSrzfgnJUrKngBk5uTKgBGJlQEjKnF8yfGQVgmjny+OV56fvDwc/HAI89Vl3/hHdc3cDYwtpYsrlVBmSqViubMasssf/7pvQ2ayekqScRXnz8Qn3lyb/SNcgRr6QUXxaXX3xYtrfUJ+R47dCA23Xd3dB06MOJ61y+bHW9ft8SBlnFywZxp1fH+k2N3sHrPyZPx9Z21VnhLFjb/+7yF86ZXx7sFASaEaakWtLuPu0/qKV1N56DWZ3U1u7VYHe9QqagpaX82dVRUZIHTlFIVbf1dAJNR/wiVuQEQKgLG2FQ42MTo0t+vFgrN8+XCX/z1ndXx4oUzo7XVyyrNaf7c2kH1qVKpqK8vW6GhpTDx/r4f7+yKv35kexw42T/ierPmL4gNt94RM+fWp4VbX29PPPXgvbF32/MjrnfFopnx05cuqcs+GdmymbUgwFhWKoqI+N7ezjHd/kQze2YtYLhXqKjhZrUXM1UvVSqqrxWp55Kd3SO32uSlaU+F4VQqak4iRVOHUBGcrj9dqaiB8wB4ufrK3s0BjGTiHR0BmspSoSIiopQqHzpjWtsIa04u9z7wbFQGz2LI5XJx7RWrGjwjGBvTp7dWx1MlVLR566HYu/94dfn3brmwgbMZ3r7jffHRh7fHkwe6R1yvtb09Lr3htli8qj4/R5Ikse2px2Prpo3V58EzuWrxzHj9moV12SfDm5tqB7W/Z2xDFq2nVBxs9vd606fVqouoVNR4Vy2fXR2XKkl0nhAqqqcVqUpFW4+daOBMmktHMR+FVPBgh+eSppSoVDRlpN/5NtE5U3BO0qEi1WqByUj7M4CRCRUBY2r6tJbMGd5MTX39tYofHTPq04JnIpjZ0Z5p59be3jLC2jA5TW8vRiH1reCOKdL+rFRO4nNfe6a6fMcF8+OPblsdMydgRbLeciX+8Yk98fUtB0Y8Sz6fz8cF66+MCzdcHfl8YYQ1z96+7VviucceiHK5NOw6t6yYE9cvmz3s9Zy7GS21+3OsKxVt6+6O3vLA63oul4svfvRN0SSdTc+omKpSJlTUeOuX1Npx7j3eG04mrZ9CLmJpKlT09OGRw6qcvcvmzayOy5Uk9h4XhmtGORVrpox0paKcmiwQEQOvbzX+LoDJp0/7M4ARNfHXv8BE0exnsDO6nt7aweaOjuYJFf3p776tOi6XK3H/w1sbOBsYG1ddvqJ6kKRSSWLPvqlzkPGb39+WWX7XVSvi8V+8NV59wbzqZUs7WmNBqpJJI33vxcPxdxt3xvH+8ojrLVp5flx24+3RNm36iOudrcOde+PZh++PUv/wbdjeuHZhrJzVPM//E0lrPnuWfOfJsQ2+nCyX4wsvbq8uz587LX7r3deP6T4bZfWq2ZmDxHuOChU12prU54o9x90f9bR4RlsUUyHixw9MjRDxeLh0bi1UtPd4b5Qq0nAwmSWJiixwqmzYDmDy6XfGCsCIhIqAMbdsUUejp0CD9fTWDnDP7JjWwJnUTy6Xi3/zuuuqy9/47rPR0zN8pQ6YrK5Yv7w63rv/ePSXps6ZO089dzC+9+D2zGWFfC7+vzvWxv/9d1fHtvfeHg/+wk3x6LtvjkffdWPctKLx1XheOHwyPvLw9tjZNfLB9o45c2P9za+MWfPr05rs2KED8czD90W5dObnwUIuF+9YvzTaiz5+1Nvli2dlgi8Hese+AsaXXtwRjx08VF1+y2vWjPk+G2F9qnVfV28pjvV6nW+0VXNr7yNHe57jpUm3PisnSXQN83zOS3f+rNrjdpfHbdNyEH3qSOcC8ypUQURElNKhIn8WwCSkUhHAyHyrD4y5JYtUKprqTqbCNjObpP3ZzI72aG+rtTv7z//t2w2cDYydtatrB9V3TZHWZ2nv/aNvxUMbd2cuWzyjLdYtnFk9iJDL5WLhjLb45zdfEV//d1fHRXPrUwHo5TraW4r/8eiOeGj30RHXa2lrj0uuuyWWrb64LvvtPnIoNj/6QFSG+SJmdlsx3nrJ4rrsi5rLF9UqYBzu7Y3+cfgiLImIf92+o7o8d3Z7vOXHLxrz/Y63tefPqY53q1I0ISxKBV/2aCFVVytm1n63PaWRK97x0ixLff7Z1eVxC5NdORWeKEhPQERkKxUBTEb9qokCjEioCBhz2p9x/GStJU5Hk4SKTpzsi3K5duD2mitWNHA2MHbOXzm3Ot6xZ+qFik72lOId77sz/vx/PjjqurlcLi5bODO+9XPXxvuvP28cZje8chLxxWc744vPdmbOGj1VPp+PVRevi4uvuSmKxZZh1ztbRw92xotP/WjY69cv7IjLVTCsq4vn195n7e8Zv4PVTx45Gi8cqz0n/PZ/vGHc9j1ezlteqz62++jJBs6EIXOm1Z6ndnULetVTulLREVW56mphe1t1rFJR89IGa+ooa38Gp3EsHpjs+ssqFQGMRKgIGHNLFzp4ONV1H++rjpul/VmpVI5HNm6pLn/od18bHdNbGzgjGBtLFs+qjndOwUpFQ+6+/8VMkDAi4pOfeyJu+5lPx/s+9O3Yd+B49fJ8Lhfvu+G8+OlLG1+V56HdR+Pjj+0ctW3T3MVLY/0tr4oZs+aMuN7Z2Ld9a3Tu2Dbs9T910cJoLTgCUy/nz6m9rnb2jO/B6n/euq06nje7PRbPb2yVrnpblqq2ueeYIMBEMK2lUB3v7lbxpZ6WpyoVjWdAcSqY1VqsjnerVNRU0sfQCzlfsU4VSaRDRd7TQkT2+dBfBTAZqVQEMDKfeIExp1IR6UpF06c1T/Dmf3zqW9Vxx4y2uOtzv9TA2cDYmDu7FljYuedYA2fSWM+/eCT++K/ui737j8d9j+6Mn//Nr8WHP/qD2Lv/eHz17hfi1e/45/izj/2gun4ul4v3XLuqgTOu2XGsJz7yyPbYemTkSivtMzrisptuj4XLz73K0rYnfxQnus78eJnVVoxXnjfvnPfBgKUdtQoY+8c5VPTUkWyLvT/79dvGdf9jbUGqleEuoaKGm9Gaj0KqJMRulYrqanmqUtH2LpW56mlasfbVmwpbzUsbrKlDpSI4XaL9GTDJqVQEMDKhImDMLV0kVDTV9aQqZLS1nXt7nYni83c+FJ/6l3uqy+etnBeve80lDZwR1N+0VKuZnVOw/VnaZ77ydNz2M5+O//DrX4vvP7wzc11Pbzn+/gub4tDR2sHC4gQ6ytDdV46/3bgz7tt5ZMT1CoVirL7imrhww9WRO4cz7iuVcjy/8eGoVM78pcxtq+bGzNbCGa/jpZmb+hvtPDm+B6tLlUqcKNVe42+/dkW88Y4LM+tcu35x/M4vXh+vu/2CcZ1bPczqqAWhdx8VBGi0K5fXKqmVK0nsS1XC5NytTFUqeu7I8RHW5KXIRzZsskeFraaSPoYuVDR1pAsZqFQEA2SKgMlOpSKAkQkVAWNu8YIZ4XuWqe1ET+2A47T25gkVRUS8/w/+IToP1Co1vPmnLm/gbKC+5s2dHvl87e3ijikeKhrNtRuWxLzZtYOyfRPsLKdKEnHnc/vjM0/uGXVui1aeH+tuuj1aWttHXG8kJ7qOxt5tz5/xumIuF7etmvuyt03NjFQ7qPFuWZRExBdf3JG57EO/dmsUi/k4f/ms+M7fvy0+85evj3f99Ib4q9+/I3773deN6/zOVXtb7Xer/VnjrVsyszref7IvSo5e1c20Yj7mp6qJPnmou4GzaS7nz5wWuXSoSPuzppJugzWRwuSMrWylIvc7RGT/LgAmo/5hTooDYIBQETDmWlsKMX/OtNFXpGmd7Km1P2umSkUREZVKJXNGVud+B2FoHtdesaI67usvR+fBEw2czcR35Fj2QOGFc6dHcQK+2368szs+9siO6DwxcpWPjjnzYv0tr4xpHTNHXG8ku55/JvqGacl1w/I5mZYwvHSt+YhC6ljWeLc/i4j48vYd8T+f2VxdnjG9Je77zL+Lr//dW2PFkuxj5+ffun68p/eyTW8vZg4U7hYqari1Czuq451d7o96WpZqfZYkSTx7WIi4XtbOrT1uu/pK0d1fbuBsqLdExZopKdH+DE4jUwRMdp7HAEbmW3xgXGiBNrUdP5GuVNQ6wpqTz+03XRqLF86OiIEvFz/x6QcbPCOon3WXLq2O93R2R0Up4BE9u+VQbHxqX3U5n8vFL161soEzGl7nib742CPb40edIx84bps2PS678faYMWvOiOsNp1wqxe4tz57xutZ8Lm5Y/vK2y4DLF8/KVMA40NuYoMW39+yNe/fWHvvzZrdHIX/6R81CIR+vuG7FaZdPRBsuXlD93VaSJPZof9Zw582dXh3vOe7+qKd067NSkkRphHV5adbMrn0O3q1KUdNJn89eFCqaMtIVWbS9gwEqFQGTXSU8jwGMRKgIGBcL500ffSWa1omTtUpF7U1Wqejtb7qxOj546Hi8sO1gA2cD9bV29cLqeKfWZ2flbb/65czyb998Qbz7yuUNms3I+spJ/POTe+Nfn9sfI+XFWlrb4tIbbnvZwaLO7dtGqFY0OxyKefkuX1SrBHSotzf6Gxj8+/jm5+L5Y6M/T1y6ev44zObcrbtoQXXc2dXY3y0DFs9sq453dQtn1FM6VNTdL1JUT+fNrFXs3aniWdNJhEumpHR4Iud+h4gYCOEDTGY+8gOMTKgIGBeL5wsVTWXdqRY7zRYqunLD+dXx9+5/oXETgTGwasXc6niHUNFZSZKID/6371eXc7lcvPmSxQ2c0eju33kkPv7DHXGsd/gDycWWlrj42puipbV92HWGU6mUY++LZ35+nNNWjLXzVTN8uS5O/e4a0fosrbdciQ9tfDy++OL22HH8eGzt6o6/efrZ+IPHNmbW++r3Jsdr5eqVtRDdLlWKJoS502rvIfd0u0/qaWUq+HIwdTIA527p9Nrr5o6ukw2cCWMhfQz9TBX6aE7pUFFR/zOIiOzBeGE7YDISjgQYmU+8wLhQqWhq6/7/2bvv+EbuOg/4nylqlty7d729l2x6IYQjCQkJacCFhBbgSCjPcXC05wGOQI7jaBcgcPSjXCC0BEIooYQDAiEkIb3XzVa3XXtdZZXRlOcPSTM/yZJseWXPSPq8X9l4JI3lnyV5NJrfZ75fsVJRjbU/S6UMe3mH0CqKqBZ0d0bsZVYqWrj8x+pP+8ZdGsnC7Z9K4Mv3H8DATPGJen8whA3HnbSo+z98YC9Mwyh420m9TYu6TwLWtjhBgLGE+5VbEoaBH+3Zh/fd+wA+cP+DuH3kELa3OOEcy7IwPBpzcYQLt6rPqQI1OMUggBeE/Iq9zEpFlSVWKhpga7mKags6YbhBtj+rOeLUEw+w1o+U6TS+Y9s7orT89mfcJhJRtWGlIiKi0rh/R0TLoquDoaJ6NhOt3fZnP/3V3+3lzRu68OmPXuDiaIgqq7lJaNkxwlDRQuUHafdNVkcgYUYz8D8PDuCZI7NF12lu70Tfuk1l37ee0nBkZLDgbVs6wgiq/FiyGL0Rpx3UYZcrFRXzkj4ncBuNpaDrZom1vaO7w6kCxUpF7vPLck5roeFZhjMqSQwV7Zku/h5A5Qv7VHt5sERwl6qTeEa7zHBJ3RBborJSEVFafoUPP6u3EVGVsVipiIioJO7dEdGyYPuz+jYbcyZ+FEWGz6eUWLu6fOv7f8Izu4fsy6+79AR89yuvcXFERJUTDAgTYQwVLdg9Dw3lXH7HiatcGkn5UqaFGx4bwhOj0aLrrNiwBf5A+W3QRg/uK3i9IknY1KfhlPAAACAASURBVMYWaIvRJrSDOhz33mS1BKAj6ASfGsN+nHHiCvcGVIbWZuc1zkpF7tvR15jTSmOY1XQqRpGAFRHn9f7EEb7fV5JfCBwMs8JWzclpf8ZQUd3IqVTEUBERAMDIm4tnpoiIqg0rFRERlcbdOyJaFl0MFdW16aiWc7mhhlqgxeIaXvO2L+Pw2BSAdO/4s1+0CX/55TsQDKrzfDeRd/WvaM6ZwD3I9mcLll/VSTOrozJLlmEBP35ypGgrNEVV0bd+c9n3Oz0+hmS8cOurjWyTuigNQkjXi5WKLADPT+f+PXzqvWe4M5gyhYXA1gArFblup9AmcSyuQcufuaJF6wkH4FOcQ0OPjPH9vlLag76cfSm2P6s9Oe3PmC2pG5rptPRlqIgoLb/CBysVEVG1McHPmEREpXDvjoiWRX4rGKovY3mtf8Lh8itceNnuvSM4/9Wfwd4Do/Z169d24N7fvwddHREXR0a0eMftXGkvx+IpHJlgpY5y3HDLE/byto4IXrm5y8XRlE83Lfzg8WEkirSq6upfA5+//G355OGRgtevaQkVvJ6Ki/jknAlML1YqAoDrdz+fc7kazv6TZUBVhCAAKxW5blOnsz/Fai+V1d/obH8N08KMrrs4mtqytcV53WqGibGYVmJtqkbiJLoMhkvqRcpw9o99DE4QAQCMvFCRyr8NIqoy7H5GRFQa9+6IaFm0t4RyJmeovszG9JwDruGGQIm1q9Nze0Zw5is+jrvvf86+rq21AX/77buwc1uviyMjWpwdW3vsZbY+K9/Pb3s25/J1527BS9a2uTSaxZlM6Pj93iMFb5MVBV2r1pR9n9NHRgte3xHyIVxDrTGXw7HdTXYFDNOyMJb0ZtDimalpPD4xaV9+5OnDLo5mYbasbc+tLjLpzcBWPVnd6gRfhtj6rKJWNTkB0ZhulFiTyrWp1QkVjUSTPPe5BolBWZkVa+qGJjzxrFRElJZ/4oDCWSciqjImU0VERCVx946IloUsS+hoZRWCeibulzdGaqtSUdb4RBQXv/5a/OzX99nXhYI+3Pqjq/C6S493cWRE5duwttNezm/nRfN77Jnc8IwkSXjrcf0ujWbx7h2cxFSycNWKrv41Zd/fzEThkBIAdIdrpzXmctjZ1WgvjyeTc84O9pKOoBMm1lLebwe4Y1OHvTwR0xBLMWjhth4h+MJKRZUlVioaT7KSTiWtER7bg0VailJ1E997VYmHWOuF2NqYoSKitPzJeFbxIqJqww7bRESlce+OiJZNd0fY7SGQi8QDDJEaa38mSmo6/uldX8d/f/N39nWKLOPTH70Q77jydBdHRlSe/hUt9vLASNTFkVQny5obxhJDINXCsIA7D04UvC0QakBTe2fB24rRkgmkkoUnVrsjtVfFbiltbnf2qw4nvD1ZPTgbs5cvfPE6rFnR5OJo5rdpbau9PDjl7ce2XrQ1OKHD4VmGiippVaMQ2OJjW1Erwk6oaJChopqUGypiuKReiKEiWZLAXBHR3PZnflarJ6Iq4+UTtYiIvIChIiJaNl3tDW4PgVxkGM6Bt3BD7YaKAMCyLFz9qZvwzg9dj2QyBSBdpeQD7zobWzaWNwFP5JZOIbAwMDzt4kiq1z0PDuVcDvsV+Ktw7/uB4WnoRQ6utHR0lX1/sWjhylcdIV/Z91XPVrc476Wjce8GAVRJwi8PDtiXZVnC+688ycURzW9NnxN6GpyKuzgSyor4VXt5KMpwRiX1NznBl73TsRJrUrnE97WBae9up2nxDKHfj8JkSd3QjNwKhqzIQgSk8kp8hFS2tiai6mLk93EkIqIc/NRDRMuGoaL6putOqKhW25/l++6Nd+AVb/o8orPpyS9ZlvDVay91eVREC9MoVC4YGGb7s8W45rq/zrnuT1ec7MJIjk5cN/H02GzB28ItbWXfX2K2cOWrdoaKytITdio7ebVS0dm9PfjWC0/DNccek3O91ydee7si9jIrFXmDTzjbfYjVdCqqX3i/f3KC7/eV1OR33tdYqag2iWe0K6xUVDfESkUAW6ARAYBuWTkVysM+hoqIqLqwUhERUWkMFRHRsulqZ/uzeqalnANvtdz+LN+df38GH7v2ZvvyxnWdWN3fWuI7iLzBLxwEZKhocbSUiUefPpxzXX9TEP1N1bcN3DtZuFpLQ6T8lm7JeOFKGGIlEppfS9B5vLwYKjqrtwdv27IJDaoKWZhotSwL19/yuIsjm197s/M3ylCR+9a1N0ASXkPDUYaKKqUz5M+pJPDwKCsTVlJQcQ65DUxzW1KLhGK8rFZTRzSDoSKiQpLC30YDQ0VEVGVYqYiIqDR+4iWiZdPNSkV1TUs5JcLDDYESa9ae63/8F4wdSYcyJEnCZz56ocsjIipt47qOnAncgRGGihbrmuvuzHn8JEmCX6m+iYdDRSqD+AJBKGp5YSBdK3xfQZUfTcoREg7UeylU1Ojz4Zpjj8Hbt2wqePsd9w3g74+MLPOoyhMJC9VF2P7MdTt7nXZ0sykd05ru4mhqy2qh9ZlpWTic0FwcTW1p8ucGKgfZtq8miWe0cy+mfiTzKhX5GCoiApAbuGOoiIiqDSsVERGVxs+8RLRsujsYKqpnCWECqF7an2UlNR3f/P6f7Munn7IWLztni4sjIirtmG299nJ0VsN0lJOMi/X4M2P4wrfvty/rpoXnJ6ovpDCRKD6Jr/r8Zd2XVeTsL6+3xPKStmDuZPXhuHcmq9+zfSu2t7bYly3Lwl/uO4gbf/M03nbN73HV1b93cXQLI1ZqY6Ui923pciqiDbFKUUWtaXZCRXHdKLEmlWtbq9NG0TAtjPC1W5PEM9pltj+rGwkzd79YZZUqIgB5oSKFfxdEVF10VioiIiqJPQaIaNl0sVJRXYsLE9L11P4s6+vX/wFXvu7F6OpohiRJ+NpnX4WXv/47eOixQbeHRjTH1k3d9vLQ4aiLI6kNh8Zm7WVFSqf6zeKre1KpMtCSVN4BY8sq/NvzsPPCHS9UbtFNE+NJb0xWn97ViR1CoGhyOoFrv30/bvrtMy6Oqjy9neGcSm1DDBW5bp3wGWK4SNU0Wpw1QqWiI4mUiyOpPRuandftodkkDM5R1CRTOKNdYaiobuh5u7Iqn3siAMh5r1MZKiKiKsNKRUREpXHvjoiWDUNF9S2eENuf1V+oaGJqFu/4wP/CyJy5pcgyfvCN16O5qf4eC/K+tWva7eWhEYaKjtbYeMxeliQJ/ips82Xx4IqnbO9wKreMJZNYymdHAtDoUxGY5yz8na0teMfWzfblaEzDSZf+oKoCRQCwa0unvZxIGTgSY6U2t/U1O/tKIwwVVZTY/mxwlgG6Slrd6Hz2ZYWt2iVOPrHiYn0R941VPvdEANIn0GTpRrWdRkNE9a7UyXRERMRKRUS0jFqaggj4FSQ1ltavR1FhUq6pMVRizdp12+2P4t1Xfw9f+tSbAABNjUHc+3/vwVvefSPuuHuPu4MjEqzsdSqNDB6acXEktSH/fe9Xlx2Hc374gEujWRxOlHnLxjZnsno0sXRBgDO6u3DF+nVoCaRb3E0kkziUSGA4FkfKNBFUFLT4/WgLBLAy7IzJsiy87zN/XrJxLaVNa1rt5aFphiy8oDMSsJeHGc6oqNVC+7NnJ2dLrEnl6hMqs/J1W7vEuScZ3FeqVwwVEaWJbSBZoY+Iqo3Ok+mIiEqqvtOkiaiqdbNaUd2aFg6mN9dpqAgAvnvjHbjpF3fbl8MNfvzgG6/H/37p1Yg0+F0cGZGjoz1sLw8dYqWio3VweAZ/f3jIvrypPYy3H7/SxRGVrylQ/FwEXStvsrRYuzQeeF64VULllsPxpQm+nN7ViXdu22IHigCgNRDAluZmnNnbg3NX9OFFPd04pq11TqDo3z7/V/zp7oNLMq6ltrbfCVWy9Zk3NAd99vJAlM9JpaiShP5GZ1vy+Pi0i6OpPd0NThhucIav21olViqS2QKrbjFURDQXP9oRUbVhpSIiotIYKiKiZcUWaPVrJupUKmoQDrLXo7e9/9v49g9vty9LkoRzXrwZT979QfzkO2/E2tVtLo6OKF1FK2uQoaKKePuHb7PDlZIk4UOnr8Ou7sZ5vss7mgO+gtfrqRR0PVXWffmChds+JnRWMlyorrAT9BlNVL4CxvaWZrxty6ayvy+VMvDh6+7ET297ruJjWi4ruiL28jArFXlCUGgZOchQUcWsagrCl2lraFkW7j886fKIakub8L65fyru4khoKZnC5BMzRfVFnHb0zdMiloiIiLzPYKUiIqKS2P6MiJZVV0d4/pWoJkVjzqRzQ6i+Q0WGYeI9V9+AP97xBK77+BXo7mwGAMiyhNNOWoM7fvUvuPfBA3j/Nb/E3v3jLo+W6lHA7+wiDo6w/VklRGdTeMN7f40f/ffFCAVVSJKEb124HSd9+x63h7YgLcHCHxu0RKzs+woEC1erm0rqZd9XvRJDXpVsf7aztQXnr1yB49vb7IoLlmXh3Z+4HYOHozhuWxe2rW/H6hVNUGQJiaSBQ0diGDocxZ4Dk/j1n/dA082KjccNnW3O65Ptz9y3ojkISZipZ8WXylnX7JzsoVsWYlX+t+s1IVWxl/ez6lnNEv9q2P6sfvlYqYiIiKjq6axURERUEkNFRLSsWKmofs3MCpWKQmzzBQC3/v5B3HXvM7j6fa/Ea1/5AjtsJUkSTjlhNe741b9gJprE9EwCk1NxTEzGoaV0+FQFk9MJ/Op3j+O3f3za5d+Cak1XRwSycGCc7c8q54lnx/DvX7gTn/ngiwEA3eEA3nLcSnzzoQF3B7YAxUJFyXj51Rf8ocL7AgwVLVzI55wRf7hAqEgC8KKebpzc0Y7OUBCqJGE6peNANIpHJyaxbyb9dx1QFLQHAljbGMaLerrRH84Nf1uWhc9881785o69AIBHnh5dul/KI5obneAz25+574SVTju6WMrAkUR5ldGouHUtzrZ4ktvfimryqzmtsA5Ms1JRrRLbZDBXUl8sC8jmyGq1/ZkiAYosQZUkKLIEWXKWFUmCmvmqZK/LWTfdZtOvyAgosr2uLNwuI/NVkiBJgGml9z0NCzAtCxbSX9P/kPfVWc+00tUl0tdZsHIuZ+/Tgmmmr9fN9OWUacEwLeiWCcPMXM7cHxER1R9WKiIiKo2hIiJaVt0MFdWtnPZndV6pSDQ+OYv3fuQG/OfnfoYrX3cm3vHmc9HWmm69IkkSmhqDaGoMYmVfy5zvvfi87fjr3XvwmrfesNzDphp23DEr7GVNMzA6Xn4lGiruZ797Fq+6YAtO3NkDAHj78dURKirW/kxLlD9RGggVrlQ0meCk9kJ0hHInq/MrFQUUGR/etRNbmpvnfO+2lmact3LFnOsLSWoG/v1Lf6vqVmaLERICdKxU5L7tPU6byCG2PqsosVLR0Cwf20o6ps153aYME8PRyrepJG8QJ58U9j+rK+nIS/o590L7s95wAO88fg06Q34n7JMJ+cgyckNA2eul3CBQdh0587VemZaVEzLSM+GjVOZ63TTt67P/sped7zEL3kf2VSNJEiQA05qO6x8fwGhcm2dU1ad+X0FEVK0MpkqJiEpiqIiIlpVPdf9gC7ljmpWKShqfnMW1X7kVX//uH/C2N7wEb3/T2ejqmDshnO+M09bhja8+Cd/98X3LMEqqB9s299jLw6NR8ESdyvvBLU/YoaLWUOGwjtcUbX8WLz905g8UCxWxAslCHNfTZC/rpomJZO4kxOVr1xQMFC3U2EQc3/v5E/jGjY/ArLNuSKoqQxErtTFU5Lq1bULwhcGMilovVCraPTXr4khqz5bMCQJA+nXL+YnalTKEUFGZwRIZToUWGRIkSazeIlRwyawnS5LwPdKc77fXES4XzTkVeU0WutoqtnL29ryb565tFb1U+nutguvJYmUcSah+I/xLB2lyr8v+k/IeFKnYcpEHL3utKjzfXgjgvPfEtXjZui63h1ETZEmCrEjwKfOvWwn9jUG8609PLs8PW2Li3zBzlkRUbXQeACUiKomhIiJaVmMTLP1er2aEiaAQQ0VFzUQT+OxXb8UXv/lbHLdjDY7ZvgptLRH0dDWjuakBqqrAMExcetEp9vdc+fpTGCqiitm4rtNeHhxh67OlsOfApL2syjL6GwM4OOPtyfKWYOHwU7LMSkWKqkL1F34PYKWihdnR6VTAGEskcw7eK5KEc/p67cuT0wnc/PvnEIunsLa/BSds60J3R9hucWhlzriOxlLYvX8CX7rhIdz10NBy/Sqes3lNa84k4jDbn7mutzloL4/EvL2drCayBKxtdgKeD49NuTia2rO2yQlsHWQ4sWYEVRm7uhpxbHcjtrRHsKYlhC3tTtvQkzva8M0XnpwJAjmhIDv8I17H2faa4oVQUVuRffWlZFmFY2DZqy04rciszPpm5vbsbVbe/WQr+EgSIEHKfM2t7pOzHtL/S18v3u6MK//ZKRYYc8uKSHD+lYiIaMmxUhERUWkMFRHRsprgQdW6NTEthIqCfsiyBJM760WlUgbufeh53PvQ8wVvv/1vT+Irn/4nAECfULWC6Git7m+1lw8OT7s4ktqVMvLKv3jswHY+nyyhoUilwXIrFfmDhasUAcBkkpWKFmKDULnlcF7rs76GEAJK+rRqy7Jw3lU348jk3H2voF+GbgK6XmeliOaxbUO7vTwZTyGWMlwcDQFAR9hpmTsyy1BRpfSFgwiqTgmGew9NllibytUXdiaIB/j5t6r0Rfw4qa8FOzoiWN/WgP7GIDoa/Ij4lYJVbkR+RUGbskylTchTfIr7FbnFQyuzKR2/3TcK3TKhGxZ0y0JKaMelWyY0I92iS7cAzTCRMi2kjPQ6SdNEyjSRyqyTNC1ohgnNNKGZFjQ9fXs170WqMuCXZQQVGX5FRkBREJAlBFQFPllGQJEyX2X4FAl+WYZPSV+vSjL8igRVljPXp69Lf01/nyqnW8ipmVZyauY6KxOw6g0H0d0QmHec1UYVtpFiJTciompgsFIREVFJDBUR0bLqbG2YfyWqSVN5VThCQT9mecb5ogX8zls4w1lUSd2dTsuOg0MzLo6kdr3hFTvs5aRher6KQbHWZwCgJcobuz9YeD/AAjCdZKWihehvciarR/Me/4AwmWlZKBgoAoCEVs3TQEtn42onVDk0xeqaXtAsbH8Go97eVlaTdS1OwFM3LUxq3P5WUnvQqcg3MMPXrZf4ZWBXd3Om2lAYa1pC6AkH0BL0IajKnq4glF8VJve2zFekS79Y6QvzNC6b35xH4ygfnpLfXvRGKWfJrnBjpR8TywJM4atpWTBNC6YFWGa6ImP2OsO07MexaBs24ULxVm0W1vQ02ZUfVQ+8bkxhgH8dHMen7t/t4mi8TzfTbYRjLgXs37lrDd60rd+Vn72UTOGvRvFABS8ionLoPL5ORFQSQ0VEtKz6+xrnX4lq0nje5FwoxFDRYjU1hvCut5xnXx45zOAHVU5zkzPRODDC11alrexpxKsu2GxffvKw91vMtRZpp2BZFpJlVioKhApXKppJ6uDxm4XpFiq35FcqyinXzeP4ZVuz0qn8N+jxsF+9CPqcoNxQlPuNlbK22Ql4zqRYJa7SmoTwP0NFy6837McJvc3Y2RnBhrYw+puC6Ailqw2pculqQ/MxTQvD0wkcnIjhwEQcp61tQ3/mxCnTtHDNd+5DyjChGyZMu/ILYBhmetmwoOumXREmlVk2M8u6aaZv103oRrqioJa5nrzloW9diqZwOkDohfZnuhAq8sJ4aOFq6SOQuKlS+TIkoirDSkVERKUxVEREy6q/l22a6tV0VMu5HA4FMAYGFhbjC//5Bqzp7wSQntS/5tO/dXlEVEuCAWf38OAQ259VwuknrMAZJ/djfDKO9tYQlEyLhJRh4opfPOby6ObXUiRUlEomYFnlTXIVq1Q0xSpFCyZWbhlN5IYsEobTrksCoKoyW5yVYWW3E34/OMFKRW5r9Ks5VUPY/qxyVgsB4tG4VmJNWoyA0AqJ7c+WzsfO2IBLNnXBr8hQZAmyJEGRcFShIQCIaTr2j8dwcCKOAxMxHBiPZb7GMTgVR1J4X738+JX4zMt3AgCmYxp++EdWh6kXYjUDvwfan6VMMVTk/nioPhkWX4dEVL0MnulGRFQSQ0VEtKxW9bJSUb0yzXQAJnuQNxyuvf7xy+GyS07FpRedYl++8569uP3O510cEdWS1f2tORMxA8MM/h2tj7zrBXjDK3cUvO2B4WlMV0HLmdYi7c+Ssdmy76tYpaLJhPcfB68Iqs4B+vz2Z+NJJ3QhSRJ2be7AA08cXraxVbv2Fqe13MAkQ0Vu2y58bjAtC6Mxhl8qZY0QKjoww9d6JbUHfTlhOFYqWhpb2sO4YmffogNEI9OJTHAoXXHIXh6PYWyW2xqanxjaDnghVGQ44/GzUhG5RAwV+RS+DomouuisVEREVBJDRUS0rLo7wggGFCSSxvwrU82xLCB73DfSECy9Ms3R0d6Ia695rX15ajqBK/75By6OiGrNScf228vRmIbxKU6EHY1jt3UVDRRZloVr/lIdZ7O3hgpXKkomyp+IDoTCBa+fSLD9zkJ0hHIrt+SHipKmicPxBLpC6ffY9/7TiXjd+3+zrGOsZpFMGxMAOMhQket2CBVOR2MaD/JW0JpmJ1T01AQDxJW0s80JwyUNE4cZUFkS567rKBkoSqQMHJiIORWHxmPYnwkNDUzmVhsiWgzd8FaoSDfZ/qxaWTXUAE2smBVQlBJrEhF5DysVERGVxlARES27lT2N2L1/0u1hkAsM04Qspw8sRMIMFZXrw+95OVpbIgDSgYTXv/37bGtDFbV9a4+9fHCIk4xHo6MthJ989eVFb39geBpPHSm/0o8bWgJFQkWxWNn3FWgo3P6MoaKFOa7HCVnopomJ5NzJ6r+PjuKiVemA4MnH9OI/3306rv7C35ZtjNXMJ1SBGmSo0nUb2p0Q4jBbn1VM2Kegq8GpGPrgKFudVtKmzL46AAzNJGpoqthbtrTnhpTfdMP9SKQMxFMGhqYSGI0uzzZDnHySj7LtGlWXnMpAHggViWEOH9tOeV6tPkO6Kf5dcJtIRNXF4I47EVFJDBUR0bJb1dvEUFGd0g0Lvsw7D9uflee4nWvwpsv/wb78uz89jYceG3RxRFSLNqztsJcHRhgqOhrXf/aCOdfdNzSFWMrAcDSJD/7xWRdGtThF25/FywtFSZIEX6BwoHSC7c8WZEenUwFjLJEsOFn98wMHcXJnB7ozreYuf9kWnLijB2/5yG04OBxdppFWnzUrmnKqXgxOsVKR21a3OdV0Rhgqqhix9ZllWXh6gtuFSlrb5IRnD04znLhUVjc5+xPfv/cA/vzcqCvjEIMcMqvD1JXc9mfuP/dimIOViqpLLRVi1HMqFdVqdIqIapluWnwfJSIqgnt3RLTsdm3tdHsI5BLxwFsjKxWV5b8++loomYMymqbjXz/4M5dHRLVoZV+LvXxwiJULFmvDmlZsXteWc51lWfjfhwdwxS8ew//3x2dRLTXGFAloChQLFZUXuvAHQ5CLnDk9yUpFC7KhzZmsPpwoPFk9k9LxyUcex5TmVDFav6oFv//Oq3DeGWuWeohVa/sGJ1Q5q+mYYtDNdT2Nzr7iQJThjEpZLYSKkoZZNe9H1aJP+IwzMMPX7VLpEk5Q2T9RfuXEShFbYLFSUX3RhXIGigcmH1M57c94uN/rxPfeWtp2JIVtYlBl+zMiqj5sgUZEVBw/ZRDRsnvNRVsRaSjcSoVqm5Yy7OUwQ0ULduyO1TjlhA325U998Y+IcbKTlkBHm9NK4uAwKxUtVjI59+/zqlsfx627x1wYzdFpDhZ/vy63UlEgVLj1GcBQ0UL1C5UZxhLFK7cMx+P4yIMPY9+MU4FEVWR88eqzcNZp/Us6xmq1eW2rvTzM6iKe0Bpytj/Dy9TKqB6sEkJFUxq3vZXWEfTby6xUtHTEwPOBcRdDRcLEUw3lAmgBxElH1QNPvp4TKnJ/PFSantM60cWBVJgmhO2CrFRERFXIqKXycUREFca9OyJadq1NQbz+km1uD4NcoGlOqCjCUNGCnX/2sfZydDaJb37vHhdHQ7UsEnHO+malosU7ODyDv90/kHNdPFWdtSCa/MW7JaeKVMopJhAKF7w+pptIsnn9gnSGncnq0WTpx38knsCHHngIP3x+L8zMgTFZkvDVa87BC47rW9JxVqM1K5vt5aEpBgG8oEEIDQzP8jmplLXNTqjoUEwrsSYtRrPwut3jYgWdWiYD8Amz8G6GigyGiuqWYXqrSlVKbH/mgfFQaTnPVw1VlhIrFQXU2vm9iKh+6KxURERUFPfuiMgVb37VTlYrqkMJoXoHQ0ULt6LXaaP03POjLo6EapmqylCFswkHWKnoqHz35sdzLh+s0hYoxVqf6akUDKO8imn+UKjg9RNxVspYqBbh+ShVqSjLsCz8/MBBfOGJp+xgkSJL+PYnX4qTd/Ys2TirUV+XE3obYnURTxBDAyOzrFRUKeuanapxz02VV3GOSvPLcs5k/vOT5bUJpYXZ2dUISXicD7gY3hLPZpcY5Kgrpumx9mcGKxVVE80QQ0W183zpDLcRUZXTreo8IZCIaDkwVERErmC1ovqUFNqfhUq01KFcUeHs/La24u2DiI7Gru19OZMhAyMMFR0NI6/yzi2vOs6lkRydpoBS8PrUPFVyCvEHC4eKpgq0i6PCgqrzfIyWUSnqntExfP3pZ+3LqiLj+599Gb727y9BTwffVwCgo9V5fY5MM8Ditg3t4Zz3pGGGiipCArBGqFT06NiUe4OpQSd0NdmvW920cGCKoaKlcHxPk708Gk1iVqiGu9xYqah+6cK+vuKBJ1+sfOOF8VBpKY+1z6sUscBHLYWliKh+pFhFm4ioqOL9DIiIltiFZ63H13/0iNvDoGWUTDoHfINBf4k1SXT/w3vs5VUrWvHSszbjtj894+KIrhTEFAAAIABJREFUqBYdf8xKe/nwkRiSLk7Q1IL7Hh3GE8+OYfumDgBAR4Mf/3JSP75830GXR1aeYpWKtET5E6X+QOEKdVNJVipaiEa/nHMm/OgCKhWJ/jxyCH5ZxlWbNwJIV1R4yQtW4+zTVmF8MgFJSk8E7B+cwuO7j+C7tzyOg8PRiv4OXtYktH9kpSL3be9ttJejmo4ZvidVRG8kgJAQTrz30KSLo6k9O9qc1+3ATCJn0pgqZ1tHxF52s/UZkBcqAifQ64lpeS1U5K3KSVRaTqiohp4vsXobX4dEVI00k5WKiIiKYaiIiFzjY3/tuiNWKgoGWKlooX7zh4cwOjaNzo702c/f+sLlePCRAdxw0/342a8fBT/vUCVs2dhlLw8MT7s4ktoQT+i47F9+gR9+8SLs2pp+bF+9rbd2QkUVrFQ0k2RYYCF2dTmVGUzLwniy/Motvx8axqyu4y2bN6JBTT+3kiShXajS09Eawgk7evCGS7ZhZlbDgeEZPPzkIdzwy6ew52DtVjUJCa/1EYaKXLet2wlnsPVZ5awVWp/ppoVxjZXiKmllxNmWDlZp29NqsLbFeZz3eylUxPnzumJ4LMSTMx73h0Pz0Gu0shSjtERU7VipiIioOIaKiMg1SU4i1h2x8knI46GicEMAJ+xai0g4iFDQj2DQj1DQh2Ag/TUU8iMU9MPvU3HXfc/i5lvvXbKxxOIaPvSJH+Nb170VQHoC+IRj+3HCsf343McvwYOPDuAt774RYy4fVKfqtmZVm718cJitzypB0wzs3jdhh4qq8SzURn/hjwupRVQq8hWpVDTN9mcLsrPLCVmMJ5M5ZwKX42+HR/H4xCQuXrUSZ/b2IOIr/H4sSRKaIgHs2BjAjo0deN3F2/Cz/3sOH/zsXwuuf/rxfbAs4K6HhhY1LrcpwgzcyAxDLG5b3xG2lweiDGdUylqh9Vk0xW1vpfULoaJhbkeWTK9QWe7AhMuhIouhonplGE4oxAu7+Ll7hR4YEJWU83zx6SIi8owUz9wlIiqKoSIico2WYqio3szGnBY34XDhyWUvCPhV3PXrj2Ht6q75VwbwlivOwoGBMdwntCmrtJt+cQ8SyRS+/Ol/QkuTc5a5osg46bhVuP+P78OHP/Fr/OCnDy7ZGKi29fU4VVAGGCqqmBOP6bGX+xqDOHdtO8YTKTw+GkVC9/7BikpVKpIkCb5AoOBtM6yUsSAb251tf7mtz/JNpVK44fm9uGnffhzf1oYWvx+GZSHsU7EqHMb21ha0+HPblEqShH88dxNaGgN4+zV/wEtfuBoXnrkeOzZ2oLcrDEVOV6CcjiZx4dtuwfDo7FGNcTmt62+GJMwGs1JR5TUFVTT4FIzHNGgLOPtzZTMrviyFdUKlosMxhl4qrSvkvM/tnSo/fEsL0xJ0wrCeqlTEZEBdya0M5P5zL1a+8ULIiUpjHQwiIm9ipSIiouIYKiIi1+za2oVgQEGCFYvqxozQviLi4VDR+rXdCw4UZW1c17OkoSIA+OXvHsCf//Yk3nj5i3DBOcfh5OPWQ1UVAICqyvj0Ry/EGy4/CW/45x/g0Gh0ScdCtae1xZloZKiocvS84NC3LtoBID0R8c7fPYlbd4+5MawFa/IrBa/XEuVN8vsCwZzQhmiKlYoWpL/Jed8cK/PxLyZpmLh7dO5rUAKwqbkJG5oasSYSwSmdHQgq6dfC2aetxqO/fCNCwcIfJZsiAXz83afjqg//viJjXA5b17Xby7OazupZS+DE/ha8ZGMnACCqGRiPaTgyq2F0cgaHRkYwbaqYMlREzfTrrFOoRMJKRZUjViraN8MKl5XWLFT32zfJx3ephIQ26m6HinROPNUtr4WKUsJ4ZA+Mhxaupp4ti69DIqpuKcv7J/8REblFnn8VIqKl8+tv/iPW9Te7PQxaJlMzmr3cGPFuqCiVV0VrNpbE1HQcR8ZnMXJ4GgcGJ7B77yh0oeR5MOjPv5slMT0Tx5e+dRvOu/zT2Hjqe3Htl38FXU+PV5IkbN/Sg3tuezcuveiYZRkP1Y6QcNb3weFpF0dSW/7rG/fmtEfIUmQJX33Zdnz+nM1QPbpHHlBk+JXCg0uVWanIX6T1GcD2ZwvVE3ZCFkdbqWg+FoBnpqbx64OD+MpTz+B9996PI8LPLBYoyhJDOtVg45oWe3lkmtVblkJbyNlPivgVrGoJ4bgVzTixXcbG1ABOMPbhLOzGRepzOM+/Hw///U7cf//9ePrppzF1+BBaLA0yD/AetTVCtcunJxlAryQVgE8oD7JnkpWKlkJ/U25I+YCXKhVx/ryuiIEyxQOlgVIeCzlRaVaNtk4UXoa1FZYiorqhmwyMExEVw0pFROSqVX1NuP4z5+OCt/wMM7Pa/N9AVW1SmKhr9HClIi2vFc/mUz8Js0BP5Ydv///Q1dkIAAgGfHNuX2pHxmfw8c/fgttufxTf+NxVWL+mGwDg8ym47hMvxz9feTre95Ff4qHHBhf9M5qbgiUPcslybuAg/3hq/u0AYJomkpqOeEKfU8WF3NHcFIQihEcGRlipqFL+dNd+7Hzpd/CFa87GuWesnXP7pVt7cMmmLrzrtqfwa49VLWou0voMALREeZOl/mCo4PW6ZSHO7cCCtIac95nRClUqWqjRRBJff+ZZfHDnjpyJs4HZGB4ZH8fTU9N4xep+rGtMvyemCgTpvGx1n9P+cYSttpZEW7hw+DoRz22TJ5kmAlYCQ4ODGB4aAgBYYzM4MfOaMn0BdB97KmYlH8YTKUwkUhhPpDCZTHFbMo+wT0Fng/M8PDg65eJoas+m1khu2GWaoaKlcFKvc0LSbFLHmMvHEPQCnxGpPoifY1UPpELEfS8PZJxoHrU6Z22C4TYiqm5GrW6giYgqgKEiInJdb1cEl563Cf978+NuD4WW2PiUc3A94uFKRcm8UFG4wYeZ6NzKBZpQ0SgYXLpQkSxLCAX9CAb9CAV9CAayX30IBv3w+xR89DM/wQffdQl2bu0HkK5atGl9F371w6vw3POjeOypYcTi6YPuXR2NUBQJfp+KjvYwWltCCAV9kGUZPp8MVVEgKxKkzP0sJfEMvYK32/9zrsm/zhL+J96WXrbm3I8FC5n/nDFY6a9W5rJlIfPPEi5bMDPrBgIq/D7FPv3OMtNhKcO0oOsGEkkdhmHCsoBEMoV9Bybw7POHMXxoBqNHZjA8MoPDYzNIJnXohgk9ZUI3TWiaDjfmJk7Y1W8vp3QTI6OzJdauHFmWoCrpB9EwLRhFWkhIUjosp8iS/bimqmjyOKWbeMdH/g9b1rfh/Bevwz9fcXzO7T5FxnXnbsGvd9/p0ggLawwUbn0GLK79WSGsUrRwDT7n+RhLLn81nUfGJ/DvDz+Cl67oQ0CWcf+RcfxlZASmBfSGQnagCAB+9afnl318R6OvK2IvD08zVLQU2hoK7ycl43Pfb8IBJWf/QxPeG+RUEus6mqEocw9l/OSZYTw1vjzvX9VovdDm1LIsPDXBx6qSdnU44cTRmIZYqnr2U6rJjk5ne31gwv0WczybvX6JIR7VAykeg22nqpZUQzV9xGMZfBkSUTXivh0RUXEMFRGRJ/zDyf0MFdWBI5PORF1jpHDVCi9IJlM5lyPhQMFQkdgm7awXboeqKDBNC6oqw+dLh04Cfh98fgV+n4qAX81cn/nnz/zzKfBlbvf7Muv4FQQCPoQCfvj9R/d2vXF9Jzau7zyq+1gq84WWJPt/OddUnU3ru3DumZsXvP58Yav0OoBpWtANA2axD71WXiYr843510WEtko+Vcb3PndBzjrZ4WTHZQkBLQnpYJCiyOnXvio7y4oMRZHs61VVhqpk/qky5AIH4E0zHd4yDQsWLKiKnFNFKWt0PIandx/Bc/sm8MyecTy1+wj2HJhEUjPmrOsVTz8/bv974UkrcdkFW+zbfAWqermtuUgFtpSWhFVmG6JioaKZpHefLy8JqjIU4c9luSsVZT0zNY1npua2RwypTuDJsix87jv3L+ewjlpfV9hevnTXCjT4FDx1KIrdY1E8fTiK/eMxLOQVLwOQZUCVZcgApBJ/1tk/IUWW4VMl+GQJqiIDVrryhWE6FTACmW1nQJVhWYCmm4jrBpK6gaRuIpuxVGVAhgxZhv3zlcxY7DHKEmRI8CnpbbdPkeGX09tjWUqfOW+aFkxYMM3MRKmcrsKQfcs2zMyZ6Gb6oKsqS/CpEgKZ7btmmJCB9PZblhDyKdjW3QhVlqDIEiwrPflpAZhQDOiZKkYW0u8rLXlBbZ8iwZd5//cHgmgOBjIh4Ox3pf+vSBK6GvzpUDQASNmANDLXOX9EFiz7PrIhZAti4NiOKgPIey8V3ltNy4KZWde00pfT16eXs/cj5YxFsqtISJDs8dmPgRiCzlzOPh8mLEgAgqoCRZJgZALPZuYxzX+Dl6R0haKIT8Ul67uF6yV86Ywd6edEkqDKElQp8zqUZSiSBEXOjivvcbOyv3v+45i+Tdy1yz7m2dvMzOOc/ZoT8hYfYjEUnvlqCvsglnifyAa/049P9udkf0b+noaFTJDZsqCbFnTLQlCRocqS/bwZluU87pbz+5lW+v5kKf0cHkmk8NxUFHcPT2JrqxN22eOBsEut2tDqhOP2u9z6DODZ7PVMPMHBC6EivhKri7iP4f6rp3LESkUMtxFRNdIXcDyWiKheMVRERJ7Q3dEw/0pU9Y5MOpWKQkE/FEWG4cEWKfFEbhn91uYQhg/NnUQVKxq96LSteNFpW5d8bFQfFlIhSpIylX7UyodRTj62r+L3uVDZCW8UL5IDAOhsa0DnyQ0442SnypJhmBgYmcHI6CxGx+OIxVNIJHRYlgVZkZ3wU+Zrdjkn3GQHqHIndNNfcyc0gXR7AUWWISsSZCk9YS7JECaQnYl4SM4Ecr6xuPdagBZrf6bFy2/p4g8WCRVprFS0EMf3NNrbBdOycDjurWo6E0nn9StJEl7ygtX4w137XRxRedpbcoPOL9vWg5dtcy6XCnoudUW/WnfkUQnNHeGS6+zocKpgdXV14dx1XQXXu0gIzdD8Tu5ucXsINcOyrJxtwfOT7oddatXKJmd/wguhIvFsdr4f1BddOI6heCBURNWlVvOI4u/lvVNmiIjmx0pFRETFMVRERJ6gFqhCQbXHzAsQefXAayKZgq4bUDOVFzrbIwAOzVnv0SeHsGXj8k9gOcGG9Fnr2bZcVrbCi5n+5/MpCPjVgtVgAOA3tz+Pw0diGD0Sw/hUAlrKwGwsheishmjmayyemv8MXCv/Yu4V+XOxsiTlVK9RFDkdkJEkIHPmtySlgx4SAEmW7NslKRvSkCDLmbP95fQp/rL4PZn/2RUBhJBH9nrx/mRZsqs0SLIYDpHs+5UlQFHS1RxmZjXMRDUYpgVJgl15x++TEQqoiIT9kDMVGVqbg1i9shkruiNojPjRGAkgHFq6dnn1TFFkrF7RjNUrmt0eStn2TZYf1FlqzcEioaJk+YEWf7Bwdboptj9bkON7nbY6R5JJz509N6Fp2BeNYk0kXanjna8/rqpCRcXeJ7O8ur9SC2Kx8kIBkUhk/pWIlln+NuK12/swOqvhlmcOYT9bKhakykBAqNIoVnbLVlxTJUCS0tXWopqOWd1EZ4PfXm/PmPst/LS8z7fhoIrZBPdt6oHmsUpFLFVUbcRAoovDqDAxiM/9ZyKqRgwVEREVx1AREXmC6bHJMVoaYolwIH1Gn1cPuc5E42htSU9cdXQUnsC6+hO3oiHkw44tvZkwTDqkYpgW9JSBlG5C1w2kdAOaZkBLGUildGiagYSmQ9N0JDUdyaSOREJHIplCMplCPKkjHkshFtcwHU1gJprE9EwCU9NxTE4noJVZ2ePD7z0Xb3/j6XNaSK1e0Yybbn0af3tgcHEPEi2aqkhoCPmgKukKNxLghKsyYSQpE76Sc0JPkn34UVEkhEM+RML+nGBmTtuRzIXsdXawKu+6z119lv09hydiuP1+5zUhC+sBKPj9mm5CNwxoKQspPf3a11IGtJSJlG4gmUr/07T09cmUgaRmIK4ZdhtBnyJDVtJtgFQlHTiTJAlJzUAsqSOppe834JMR8Ks4dUc3jt3UifUrm9HT3oCAX6naA5eWZeE7D3vv77CpaKWi8isDMFR0dLYJ70Mji6gUtRz+ODSCKzdtAACsWdE0z9reIcu5oaJnpyZhWhbaAgG0+APwK/OUTaMcpmXZ7S7S7acyLbEyl01kW5EBiWQCWirTclZsBwbnPSe/SlQ4XLqq0XzyK8rUi/zfO5rScfehCeiWCV1oBaaZJjTTSrfgs9u3wW4jlg1uy9lqfBDC4JnbhK509j5L9vsUScr5HqGQn03Key1AaF8nFVjOvt5kae540vtNVk7AXZbSLd/kzHhUWUIq87vLBb7frjqY+RmmUMmwNeBHX0MAgQLbiX89eQ3+9eQ1MEwLKdOEYc5tP5t+bvIuZ56vOW3h7CqJVs7jKmc/g2Qfg2xAX6iMKLZvy953ttWb3b7PtGBk2ugldRNJI9tm0bTbxFlW+mcEVQU+WYJfkRFU0/8CioygqkCV818TuW0Inee5/L/D/Nfx7rFo2fdRaVre59tIiKGieiEe2/CV6ne6TJJi5aQ6fJ+rNuLz5cU22IslvqV5IWtHRFQuhoqIiIpjqIiIPCFYZOKSasvkTDLncrghkNNCzEtmZhN2qKitpXB7vmhMw1vfe+NyDmtRPvH53+Mb1/8N3/7ia3Hisf32wfjtmzpw/ecuwCNPHcYnvnw3HnpibjUmWhq6YWE66p12V//5/hchlKlK88nv3I9b79zn7oAW4KFnRnMu+1UZJ27rwknburCyqxFdbSGEAioCPgWQANO0oBsWDCM9sacbJnQj/dXKTJSJE5n2BHeBMJUY1jJNKz1RaKW/GkamWphQUcyycluonXFcHzpbne3K63/+GP56cGJpHqijULT9WWIx7c+KhIo48bYgq5udx28k5s2qFylTmFitokmE9f0tOZPUX33qUSQMw74cUlQ0+nxCqNMJKJiZWX5n8t8S2iNamXDA3J/pbGucgEJ2cj97ezYcAaQn/rMBDwCZQIQkhCNygxPZn2/al3MHIf5My0r/HtltVnaLlw0AiAGHnIBI3jqGaaUfDzjXZW1vacOu9o45j8PM5CT2ROe2l13REEGDmt7+RHUNo0KQLhSPInYoN4QpSRKGYjO4d3Q4/ftl/meml1Cq0a5sf5WR+a/AOkJwF05FFSdUk3kuhGUAOc+PaQc50o9MNmAFy7JfR/adAuk2oOlfzg63KMJ9x3UdKctMh2Ik2b4974EBLAszuoaUYeLjJ5xhv9avuuMRDHl0W1Jt/LKMM3racM0JmwversgSFJnhxErIDyI9P+p+paL8iaegn8c16oWWcvYVvFCpKK4745Hz3w/IczTd2XbUUghM3O+tnd+KiOqJbpb69EhEVN/4aZeIPIGtgOrD+ETu5EUo5Acm3T8YXEg06oy1tUioqJqMjc/ikiu+ieOPWYmvXXsZ+le02rft2tqFm75yCW769dP4zNfu8VTYhZZHMOBMdg0cdv+s78XQdBN3PTqCux4dcXso8/rgG0/AVS/fDgB49sisJwNFQIlKRYnyJqIVVYXqK/w+P5VMlT2uetQTCdjLXqxUJAF42coV9uXhw958by9k2wYn7BLX9ZxAEQDEDR1xo97CbxZQIAy10HXyrw6phbclyXjhbYk4OZs/YR8IzQ0oWpaFaCoFbREHgE37q1kifWSWvFgNdrR02IEM3TRxqMhjT+XTTBP7o7nb5b/sH8eOzgjahVZdVFkTMQ2Tcff3IfInnnxq7VQcodK81v4sLozHA8OheSRNb71+KoX1PYio2rFSERFRcQwVEZEnNDBUVBc03cwpW98QCszzHe6JzjqTLc2NQRdHUlkPPjqAU176ebz2H0/Ah/71HLS3OW1ELrtgC15wwgq87UO/w7N7vRlyoMpb0R3JOfP7wKHqDBVVk9W9jfbySDRZYk33KBIQ8RWurFBupaJiVYoAtj9bKLFqlBdDRasjYayKpN9PLMvCZ79zv8sjWriNa1rs5UnNm3+P1S5cLFRUZFuiCm1kNDM35BUIFd4ni9Vd8Ks8qxudloSDsQQMHiuvqM3Nzv70ZCKFK37+GACgrzGA1c0hNAdU+BSnTVnWnJaymQpgipxtL5e93WkhJl42M23r9EzVRD1TNTHb0i7bXSfbkkzNtNhVJSlTQclZVjNtdgOqjJAqo8GnIJRpa6bIEnyZ1rymZUEzTGiGhYRuIqmbiKZ0xFImZjQds5oBzUi3TEuZ6XVTRroFXHZcmpG+Pl3p0Xk8xKpqppVbKS2oyrjunC04fVX6xIjnx7wRXjXyJp78RfadqPZoKW+FQiaFoL4EQJUBvQpDsPUip11dZptfa2/N9dhuloiqH0NFRETFMVRERJ7gU2X4fXLOgRmqTRacA+ThBu+GiuIJ56BcQw2eZfzDmx/AD29+AG969cn46PvPQzCYDvat7GnEjV+5BG//t9vw94eHXR4lLYfjdnTby7FECuNTrF6w1DatckIMjx6ecXEkxRWrUgQAWrLMUFGgeKhohqGieaky4BMmq7wYKtrQ5AQW4gkdf7hrv4ujKc+qXmfs40mGipZCg1r45IFEgddytoVYVn6oKFigUhEAJHT3K5Z4WW8oYi8PRPk+X2n9EaFFpRAWHppJYmiG25VKifidwM4ej4SK8iee/KxUVDdSQrsxxQOhorG4U21YkiRsb2vEI2Pe/JxBcwOJiiRBL9Qzt8rkt9wlIqo2qRrYFhMRLRV+2iUiz2ALtPpgCQdPvFypKJF0Dso1hGovVJR1/Y/vxbYXfhJ/uWs3rMwHp0iDH9/+r/Nx1mmrXB4dLYftG53WP9Xa+qyatDUFsFoIMdx1cNLF0RTXHCj+nqyVGWopVqkomjJYLWMBdnU15pzpe9iDbYv6w06b0GBAxfvefCJ2bel0cUQL19flVBiZ0Lz32NaCcJFQUTJWIFQkO4coLMtCSjiTX1YU+PyF98nqr0VdedqF7fDArPeCidWuVzhR4tAs2wgvlT6heqxXQkX5805+Hw+z1gvx/Un1QEWWuG5iSAiNnrmyo8Ta5Lb8IJpRK5PYwq/h/l8FEVH58lvbEhGRg592icgz2AKtPohnZFVLpaJQsLYL+yUSOl7z1u/iuq/fbgeLAn4VX/74uTjt+D6XR0dLbZ1QNWeArc+WVNCv4JtXn21ftiwL9wx5M1RUrFKRnkrBKHPy3h8s3K5oKsEQwEIc39tsL48nk0h68CBXQHaqR8iyhLe/ehd++t8X48nfvAk//e+L8P4rT8SVl+7AiUJlNK/oaHMCUROsVFRxqiTBrxQ+7JCIxeZc55OLH6IINRSvehbTuT0ppdHnhLEGZxmeq7SOIENFy6FZ+Ey294g3QkVAbrjEr7L9Wb1ICVW2ZQ+EigDgwUPT9vIL+9pcHAnNJ7+4VY1EinJ+D4/8WRARlYXtz4iIiqvtWVIiqir55X+pNumGCb8vfbA1Ei480ewFiYQzIRAM1m6lItFnv3I7Do1G8emPXARJkuBTZVzzr6fjgjf/FAbLidSsFT2N9vJBhoqW1H+8/VTsEipDPTQyDd17+RAAuRN3Ii1RfoWLYpWKptj6bEG2dzhti0Y8WKUIAPZGZwD0zLnepyrYtaULu7Z02dclkjo+cO0d+M0de5dxhMW1NDphgCMJbz6+1axY6zOgcPszsdqDmTfFFmxoyF8dQHoCK85QUUkBxdmmD8b4Oq+0VqG636Eow4lLIajKOa1An/dIpSIgfRwj8/EWapEQJdUeTdiJVz3Q/gwA/jY4jgvXp/e5VjeF4JcBzaOfNeqdIjnbCrNWqhTlqdFfi4hqXIrHv4mIiuKnXSLyBC1l4PCRuWcrU+0Rz+iLRLwbKqqnSkWiG266Dx/4j1/aFYvWr27F+f+wzuVR0VLqaBVaorD92ZK58uJteOWZ6+3Lu8djuPTmh10cUWnNRSoVLSpUFCocBJhmqGhB1gl/o4fKbD23XP4wNIIb9+7Dvpko9kejGC0RzgkGVHz+385EU8Qbgd2Q8Fo/kmTYotLCauFtiWVZ81Yqyp9kC4YKBxQThj4ngESOoKzmHPhh+7PKa/Y5oaJhhoqWxCl9zXYrUMO0cGDcO8cOxDPa2f6sfiRThr3slVDRXw6O25WzZEnCm7b1uzwiKkZ8ydTS+ZXe+EsgIlo8zYOVoYmIvKJ+ZkmJyNMGRmZg1tInaSpKEw6+NVZJpaJAoL5a833/J/fjHVeegdUr0yXT3/GG43H73QcwG0/N851UjRqFiX1WKqocRZZw7qmrcNK2bvR3R3DmiSvt22aSOi788QOerVIEVDhUVKz9GUNFC9ITcSrpjHg0VGRYFm7edwA37ztgX9ceCODkjnbsbGtFdyiIkKLaLYIUWcKFL16HH976NPp7I3j52Rvh9yu45f+ew56DU8s27qaIH7Iwq3Mk6c3Ht5qFfYX3obRE0g4wi1QhVJRfer5YpSK2PittXZMTxtBNE4fjDL1UWoPPaXm1f4rhxKVwYp/TCvTgRAya4Z2dKLHicsDH9mf1IiHsx5Zq3bmcpjQdfx4Yxzmr05VRX7WxD//z+EGXR0WFiLs4XgmlVRqP8BJRNfLSPiYRkdcwVEREnnBgaMbtIdAySSSdUJGX259FY86ES0OovkJFAHDd1/6ML3zilQCADWta8eX/OAdXffC3bINWg3yqcxCclYoqo6MliP/5t7NwjNDqLEs3LVz2s4cR83KiCKVCReVPlhZvf8ag4kK0CNXyRmLVE3o5kkzit4ND+O3gkH3d9We8AA2ZyjVNkQBu/tLF2Lmpww48vO3yY3Djb57BR774t2UZ43FbnbZshmViMqmVWJsWI1yk/VkiXrjKiCq0A0lZRs5twYbC25KYzm1JKavDThhjOJYEd+Uqq8mnQhHa9u2d8E4FnVqyrSNsL+/fZvXCAAAgAElEQVTzUJUiIDcAqSq1GQ6guWLCcQ2/h9re/eipITtU1BrwoT8SxMEow45eE9Vy9138igStFt6guQkkoipnsHcjEVFR3vnUQ0R17cDwtNtDoGUintHX6OH2Z1PTzsHqUNAbLVqW002/eAiPPz1sX37hSSvx/rec7OKIaCmsX91iT+YDwCBDRUetOeLHjZ88r2CgKJYy8PKbHsQTo7MujKw8xUNF5U3kSZIMnz9Q8Da2P1uYgDBRNRKv7kkhsZT4+958Io7Z3JmzDZIkCZe+dNOyjWfbhnZ7eSKZZAutJdBQpP1ZokhATqxUlMo7S7RopSKDoaJSehucMMYgW59V3DHtTfZyUjcxxPZnS6K/2fncuO+It/ajDOG9zc9KRXUjJoTjVVmCV4rN3Ds8idHMCVKSJOGtO1a5PCIqZCaVF5xWuO2guba1h3HZ5l7s7GiEylk8omXBRhpERMWxUhERecLBIYaK6kVMaKEVqZpQUX2+XZ532dfx99veixW96TPcr3r1Ljzy1GH87i97XR4ZVcoxmzvt5ZlZDTMxTswerfNfsBqre50JxtHZJJ4dj+GJ0Sj+66490LxdoAhA+gTTiL8y7c8CocIhAACYSjBUNJ+t7eGc0I1X258t1ERSQ4u/dFBXWcYqD+tXtdjLR5LVHdjyqoayKxU5z3/SzJtwCxWrVMRtSSntQrW4gVm+zittS3PEXh6YSXAiYol0hZ33jgMT3novFCsV+TnrWzfyPzcFFBlxD1QitQD8bt8Yrti2AgBwck+ruwOigswarYQhsVRRxbxoZSu++pId9mdBy7KQMi1EUzrGYikMRuPYMxXD7/aO4kmPhW2Jqlmtbp+JiCqBn3aJyBPY/qx+zAqhokYPtz9LJJwWKIqHypkvJ9M0cf7lX0NCOAvzqst3uTgiqrTN69vs5cEqqJ5TDaZncycYEoaJ19zyKP7zzuoIFAFAo18perZ1ue3P/MHi2/lpjUGA+Zy8wmlbNK1piBtGibW972f7D+RcTugGfrbvAH60xwmrTkWXrwVZf2+jvTy+iNZ+NL9ilYqSBSoVqZKcE6LT8l7vgaKhIgZiS2nyOdXiBmN8nVfamkbndXlgio/vUmkUws77Pdb+zBBDRaxUVDcmZnL3V7xUaebOgXF7uS3o48F/WjbiR0iLE/NH5bVb++ZUdPUrMtqCfmxqC+PMVR24cucq/OTiE/DwG1+In158HC5a11XiHoloIWqhEyUR0VLh5woi8oSRMU5m1wux/ZnfX/jsdS8QDw6LH+Trzdj4LG76xUP2ZTGEQtVvzUonsDA0ytZnR6shqOKdlx2Tc11/UwhXHbvCpREtTluoeCWZcisV+YOFQwBx3YTGozXz2tbhVMCo9tZnAPD30TG88+57cd0TT+GTjzyGt911D368dx98Qsurqenl+z27251KWqxUtDTCxdqfFai6pQppRsuycs4S9QcCUIpM2MZZqagkcaJ7kJWKKq63wQnPHpjyVgWdWuGXc7cPXg4VKV7pgUVLLj8EHfJ55xD7Q4en7fdQWZJweh8/w9PyEA+d8ZPe0VnZWPhzdCE+WcbW9kZ86kWbcd2ZW5dwVES1j4FIIqLi6rOfCxF5zsQyTiCRu7SUU6rDy2dyGoYzTrmOQ0WqKuP8s7fZlwcPMXhSS/q6nSodrFS0eJIEXPaSjfjAG09AU7h0a6dq0NlQOPCpaxr0VHlVZIqFiqaTDAEsxLpW5/E7VAOhIgA4lEjgUF5VoLjuVKRZ1deE/776LPz7l+7C+BJX/WhpdMIADBVVnl+Wi+5DJQuFiiRnQjb/UG6xKkUAKxWVoiL3ORhipaKK6wg67/sH+Zl2SRzb05xzksfBCY+FioTJJ7VOK9zWI900YVmW/doMeahS0WzKwO7JGDa1hgEAp/a24K9D4/N8F9HRy61U5NowakKHcKLPx+7Yjb8emMDq5hBWNQexqjmEVU1BbOuMoDfiVKSUJAnnrO7Ah05Zj0/9/Xk3hk1U9QxuvIiIimKoiIg8YYKl4uuGlnImDgMerlSUEiY4pTo+4/SXN7wFne1OpYzv3Pioi6OhSusQAgsMFS1OKKDii+9/Ec46cWXO9ZZl4Ug8hVufG8W3Hh50aXSL095QOBiViJUfKizW/myKoaIFWSGEXkYKhDBqxROTk/ayJEk4/0Vrcfapq/CGD/wGDzxxeMl+bjDgTACOM1RUcQ1q8f28QpWKxIpVZt7B3GBD4VCRAQtJs7rbAi6lVY2NOWGMEYaKKk6sxsX2Z0vj+B4nBD8ynUBS91Y/WVMYjqrU7+fGemRZTmWW5qAKTLk7HtFeIVS0qSUyz9rktlrZcoj7HJyWPzph4STMJ8dm8ex4DM/mVepTZQmv3taDnkgAr9jSjf6mICRJwuu29iGhG7jugX3LPGqi6sdMERFRcTyFhohcl0jqSCQ5GVAvxFCRz8OViuLxpL2s1OkZp91djdi1w2nb9Oe7D+Cnv33GxRFRpTVGnPDI0GFWoSqXJAFffN8ZcwJFh2aT2PiVO3D8t+7GR/+y26XRLV5LsPB5B/HZ8l8jwXBjwesnE6wsshBtISeUUcuhoj0zUfxk7/6c6/x+Bd+/9gJsXN2yJD/Tr8qQhdDwRDJZYm1ajGKtz0zThJaYG74QKxXlnyEaLFKpiK3PSlvb6Pz9HIonoZk8Sl5pPmE7MsBKRUtii9AK1GutzwBWKqpncSEkv7apocSay+9QzNmviXj4uEu90vNnrWslVSSwGCtatBf3t+VUmnzmSOETwHTTwvcfH8Zn79mHN/3yMRyJp6sKS5KEK3f2413Hr1mO4RLVFFYqIiIqjp92ich1k9OcxKknSSFAFgx4t1LRbNxp8aPUaaWiN15+sn2mWTSm4d3/8UeYnIyqKQG/c4CZlYrK9//8406cdVK/fXkykcJn7tqDk759DzRvnURflpYi22ZtEaGWYLjwmdGjsfLaqNWroOp8XKvlUBEA/GTffrzn7/fh94ND9nWqKuPGL1wEv1r5j61bN7TnnE09oXF/tNKKVSoqFCgCAEUWQ0W5G9FilYrY+qy0FQ3ONnggWtvbEDf0h4M525GBGYaKlsLaFufv/4AHQ0WWMPkk1+nnxnp1eNLZrm5o9VaoSKz+x0/w3mPkHVdRirSLrTZsf1YZ7ztxnb38+OgMxuPz7+8+Nx7D6255FFOZk3ckScJbj+nHe09cs1TDJKpJPOxNRFQc258RketirFZQV2aF5zsYLNxixwtiwpl99XpwOBBwdhNkSUJCYzWAWtLT2ZAzETY4ykpF5Xjpqavw3tcdZ18+PJvEqf97DzzWkWNRilUq0hLlTeRJkoRAqPAEy1iM7/3z6W8K5pyheihe+5PVg7E4vvXsbhyKJ3DFhvTB9MawH3f84NV487/dhiefP1Kxn7VtfZu9PJPSkDJr4I/XYxqKVCpKxApvS3zC613Pez4CwSKVigzum5TSGXS2wQOztb8NWW5bhJZCs5qByQRfj0uhJxKwl/dPeC9UlDKc2aelCMGSdz1zYBJre5sAABes68L3nhiEKkvwyRL8igy/IiOgyPDJMgzLgipJ8CsSfLIMnyLDr0jwy8J6mcu+7Dpydl0JAUVGSFUQVDNfFRmKLEGRpPR9yel1sj9X1Ojj4X+vyd/PObW3BaNxDUnDRCxlYDZlIKGbiOsGUqYJo0omucXPLvmtbGlhXr6hG2ubnf3eGx4dKrF2rifHZvG6nz+GH7ziGDQHVEiShDfv6IciSbj2vr1LMVyimsNtFxFRcfxUQUSuM6rl0zFVRFSYSA55OVQUZ8WCRx4btJcbQj7c+KVL8OXvPYA77h1gxaIasGtrt72c1AwcmeJk40K1NwfxqX95gX05ZZh4xU0P1USgSALQFCgWKiqvyoU/GMoJrokmGCie1ykrmu3lmK5jOlU/j9mvDg5gVSSMf+hJb6faW0O4+csX49XvuRWPPD1akZ+xea0TKhpn67MlUSxUlCwSkFOFqgqamdsamZWKFqfJ54QxBmdZqajSNjQJlaDY+mzJiGFnL1YqEsMBPoaK6sqP/rgb552yCgDQHvLjD5ed4vKICmv0s/2Z1+RHUK998daS65uWhZRhQbdMpAwLKdOEblpImRYMy8qrrJG+oEgSVFmGKkt22M0ny5CldHsfPfO9hmlBt9LVk7LX66aJpGFCM7L3b8Gy0i3NTAv2ZcMSv8fCheu77FHs7GzC91+2CynTgmaY9pgtpKsYmVbusp4dS2Yc6TCVBd1M325mbtdMC4ZpQjeBlGXCMNNjsjJjMTJjK8aygKSZfhx104QFZB6D9Delx2jBNAETzs+2rHTbuqRhIqGbkAEoMiBBhiwDSolzEWVJggQJigzIkCBJ6euyISzdTD/WQVXGx07faH+Gfm58Fj956lDJ10a+Rw/P4LU/ewQ/eMUxaAn6IEkS3rh9JRRJwqfv3VPWfRHVI4aKiIiKY6iIiFxXr1Vg6lU06rS88XKoKDrrTDBKkoRIgx/ROmvX88vbHsfHPvgydHc2AgB2bevCNz99PoYORXHNdX/Fn+85aK+7Y3MHXnPxNoyNx3HDLY9jbJwTV163VajSMTQ2y/LkBUgS0NUaQko3MS606nzbK3egKZzeflmWhTf/6nEcnKmNUEJTQEWxd+Vkme23/EUqiwDpVnFU2s4uZ7K61lufFfI/zzyHRp+K49vbAQCqIuP6T5+HF77mR5iNH301kLX9TmhrrMzAHC1MuEj7s0S8cChAbP0xJ1QUKlKpSGdlmFJCQrBrMMbQS6X1R4L2MlufLR2xFegBj1cqCvgY3qgndz42giNTCbQ3B+df2UWzujH/SrSsNN2EZVlFT8DIJ0sSAqqEAGSg8O6V5zT6VRzX3Tz/ilSQaVn40J+eg76IE/oeG43iNbc8ih++/Bi0htLBotdvW4HBaAI3PLnwykdE9Yjn0BIRFcdQERG5rjHs3WAJVd70rBPMaQh597mfnsk9YN3X14xnd1emOoKXrV7Riqv/35fitBPX/v/snXecG9X59c8U9bK7Wm1v3mqvK+6YZpteHHoLhE5IIaQREgIJEEIg5A0k/AgQAoQUSiABQqgxzcQYF1xx99re3vuql5l5/9CuZrQrbbO0Kvt8Px/bI2lmdC2N7szc59xzIIkSBsIUSPJzjHjm1+fA4fLhk40NeO29g3j8vtNhHPwtX3VBNX5w/0f4bGvziG2JxKG0OD243NxB0WfDyc7Q4eVfnYWSwUiDhjYbDtb3YkaeGZWKz+6D2m582tAbr2ZGnbQILkUA4I0gBIhEpOgzl1+Eh1wKx6QywxBcng7RZ8PxiSIe/nIv1hQVBqPQjHo13n76Yqy+9tVj3n+BQrTVSaKimGCYgFORimFDCmteYVj8WQRRETkVjY5SqNXqTA3xayKRo5OdoFpSRFycaJRnhLoe1iegU5FPIKei6cwPn/gcz/1kFfjByDFJMVNDUji6MABESJAGXVcEUYIoSvAL4uAfCflW+drP5vGjptcx6EojwSeIcPgE2H0C7B4/HD4BHiHg/OL1i3AKAhzeQGyWyy/i0lk5uKw6DwDgTgU71RRDBPCf2nacU5IdEhnGMoFjZbxiIyJ1eXZHE7a09E96+72ddlz5xi68fNECWAaFRXcsLceH9V1odUyvCZMEMREEmnFJEAQRERIVEQQRdzLStGBZhuKUpgk2uzzgrktgUZHT5YXb44NWE5gGVlxgSXlR0e8euAiXXbAwZFAr02KIuL5Bp8KaU8ux5tTykOfTzVo8/oszcPE330BtY+ggSHlxOhbNy4FOw6Ot04GtX7ahZ4KxW+XF6agszYBep0JLux3b97TB66OB0olSmGsKLjd3OuLYksTkhvNnBwVFAFCca0Kx4jMDAjbpP/rw4FQ3LaZEEhUJfj/8EyzeqyOIivo95CwyHgrN8qz36ehUBATCG95qbEK+XofT8gOFscJcE644dyZeeffYfnuWdFmkQk5FsUEXQVTkdo4UBfAK51JpMGZiCI1WC5YNX6h3CdSfRCJPZwgpSraSU1HUsSpcV+v7qR+JBYtz5WuxAbcPvc7EExIqRUXkVDT9+Gx3G2Z+7R9IN6phd/pD4vAmygs/OxUr5uQCAD5t6MFta/dPel+nFMuutKChtoTk/s01uH9zTdjXeBYwq3ikaVTQcRy0PAcNx0DLs9BwHDQcCw3HQsux4DkWQ1dJQ2d9hgnEeHnFwGSOQJTZkBAtsH8Vyw7+YaDiWPBMICJNzbHQchw0PAMtx4FjGfCD1xMMAq5J3GB0F8cy4JhAhC3PMFiamx7y/3hpT0vgPbjAfnmWCe5jqJ3y/hB8L3ZwvxzLgIX82tC68vsyYBh5n0pRVqTDnmUQ3AfPyFFkicT7R7rwm421x7yf/V0OXPef3Xjt0uOg5lhwLIM/nTkfX3ljaxRaSRCpiUSiIoIgiIiQqIggiLij4llkZejQ3p14sw6J6NNvC40/YxgmYS/Ye3rtyM/NAAAU5qW2bfM3rz8RV1y4KGr7MxrUeOjHK3Hlbf8BAKhVLH78jeW45uK5IZGHgiDi823NePeTo/hkUwO6e+WCDM8FBog0Gg4lBWlYOj8XF51VhdmV1pD36upx4tlXvsSfX/2SIrwmQFamLPggp6KRLKjMHPV1SZLwxNYG9LlTq6Cdpg1/e+CdhOhCrQkfBdFP0WfjwqqXsw2mo1ORkmcPHcaq3Fxwg+ePRbOzj1lUpFcc613u6f35xgItx0Us0LjDiOR4RhYNDT+Va/WRoxTJqSgyJUaFGMPro/ibGGBUyf1IbS+JimLB3BxZ0N2QgC5FQGj8mZpERdOWPvuxO380tNuxYk5guch8jJFqyhvjxNJLEOPALwI9Hj96kmwyxsbLT4R60LXrG+/sxXtHuuLcookxJEpiB8VGQ1IqlgkVQKk5BqIUuGYNiOED2482tiki8LOUIA26mAFDV72yQCswPjrgjd412652G363uR4/OaEUAFCWrseVM/Pwj4OtUXsPgkglyFSbIAgiMiQqIggiIcjLNpCoaJrQNyxOS6dVwelKTOvd/gFnUFRkzYzs2JMKfP+WlcFlr1fAi2/uQ1unHQU5JixdkIuifDNYhsHW3W34aEM9fvGDk0bsY8+BVqzbUIPv3HQKAGDxvFycvKwQ67c04dc/WYWvnF4xYhuOY3HysiKcvKwIAHC0oQ8+v4iCXCOM+vE5WVktetz5reOxZF4ufvDLj+D2UNFsPJhNisgOcioKgWGA46qygo/73D5sau6DVafGnk47OpwevHmgA40pGHWSoVWFfX5SoiJteCEAORWND72iMNk6TZ2KhhAkCTafD+mawHmhpr7vmPepFLj2eVPvtxxv9BFcioBITkWyqEgcVpCJFH0mSIEZ+ER4CvSyGKOFos+ijopF0LkBAGr7pnc/HSsqMmQRfCJGnwGA1690KqL4M2LytCvEiRZd+Gvy8aI8k5KmiJgKjHzA9WiII72J2WePxpA4KDT+aCoUBrF9j6e3N+L8qixUWwPxzz9eXo43j7TDRdGIBDGC4feiBEEQhAyJigiCSAjyso3YuT+1o6WIAH0DoUUNnU6TsKKiAZtiUC89dUVF82bnwWyWC3a3/PR9bNjWHHF9S7o2RFT0m8c/xPpNR7FtVyMA4OpLliAjPVAAWLmsCDlWQ4igSBRF9Pa7kG7WgeNCB97LikPtsiPh8frh8wkw6NXBaI/TT5qBu289AT9/dP249jHd0Slirpo7yaloCBXP4g93rAyZad7n9uOWd/bFsVVTR0aEAobHNfFBYQ3Fn02aHIM6xOWlzUnFao8oC0ZvuWI+9tR0YdPOyc2wLcgxhsRCDfgS8zokmTHw4fsSURDg8478vJVORYIUWuDQRhAVkUvR6GQr+uAWB7lxRZvqNFNIP9I4QP10LFBGgTYmqBuURxF/Rk5FxLHQqphol645RlERqYqIKeaskuzgedHtF5JSVJSq+EUJP/24Bq9fdhxYhoGGY/F/p87G19fuiXfTCCLhEEhURBAEERGaQkMQREKQn22MdxOIKaJ/mC24Xjs+N5p4YLPLA9dpaZGjN5Kd6y5fFlxubBkYVVAEAD19btid8vdY39QbFBR9/ZoVSFd8VhWlGfj+jUuCj/v6Xag+4UHMO/nXKFn4C9z94Ns4UNMOvzD6DClJkuB0erFtVwOu/86LKF30C1QtfwAnr3kMHV224HpXnl+NBdVZo+yJAACzUR3i0tFMTkVBHv3BSTht0DlrCPc0ioyxRHAqcjsnfoyotZHiz0hUNBbHF8iRmx5BQF8YEcZ0Y0tnd3A5w6zF3x4+Bx//9TKkmyd+HVGhELAKoginn47JaKOPICoKF30GACqFU5F/nE5FToG+t9HIUERQNpMwMepUZ8hOUG12DzyUlRATMhVi52RwKlLzNMxKTJ5OheOZmju2Y4l6JGKq+UpZTnB5R5uNIoQSjO1tA3hhd0vw8Yr8DByfnzbKFgQxPRGp7yIIgogIORURBJEQWDNSV7BBhOL3i5AkKTiDSadLXFHRgF2e1Z1uDl8cTwXKy2QRzv4j3aOsKdPW4UDFjMB3N7M8GwDwq7vOww1XHR+y3tL5ecEZu5Ik4au3/AU2e8CtShRFPP/SZjz/0mYAwKoTK7BiSSkkSUJ9U09QbOR0eVFb3wsxTMTJ0fpuHH/2ozjw+d1QqwOXNSuXF2MXOZ+NyoLq7OCyIIgUPznI6cuKcM4JM0Ke63J6cdPbe+PToDhgUIefYe+ZoKiI43ioNOH7zT4PuYuMxYIcc3C5zeWiwhCAf9XVo9xswuz0wOA3wzAoyjPj9huW4uePbZjQvkry5c/X5qPjMRYYIsSfRRIVcQqhq18IFXLq9OFdz8ipaHSMvHyNTU5F0afcLLuYNvTT5xsrlFGg9QnqeuFVOhXx5FRETB6lQI2NorsQGRURsYZngdkWWWy79mhXHFtDROLhz2txdrkV2QYNGIbBo6tm44SXNsa7WQSRUAikKiIIgogIiYoIgkgIsizhiwVE6qOL4IqRCAzY5IFroyF1RUX1jT1YvqgEAFA+zvix1g47KmZkAAjEpwHAFRctClnH4/Vjy85WnDzo+tLV7cCuvS2IxLoNh7Fuw+EJt9/t9uNIXTeqqwIz47Kt1J+MxdyZ1uBya7eTbpoHOem4vOCy3evHsuc2wu4b3UUr1dBGmGHvn6DwQqOPHBnZ7SIhwFhUKa6L2lxUrAYAlyDg/p27cHFJMS4vnRF8nucnXiorL5HPdX1ezyhrEpMlUvyZ2xFeFKBSxJ95h8ef6cNPPnCRw9SoqDlZ3NDipOM82uQr7g0a+skJKhboeTZEWNGUoPFnSiGIipyKiGPA65NFtcoY3MkgkSSdmEKurCoICsT9ooR/H+yIc4uIcNi8Au799DCeOncOACBNo8K9Kyrwi40TH4cjiFSF4s8IgiAiQ3e7BEEkBFYLORVNJ0SFgEGn08SxJaPjcslxM1pt6upw//nmjuByeUkGTj2hZMxtdu2XB4lOWl4Oq8UQIhB79pVdOPvaf6JNEavV0NwTpRaPpKQoI7jc3GaP2fukClWlluByY7ttlDWnFzPyZPeS9Q29005QFE1YNvJthtM3feLkJktRmlysbqPYoiCiBPR6QqPg/vrGxJ3EZhTIv/UuD32+scCgihR/NlJUxIIBp+gzPMOcirQ6ciqaKHqeDylIU/xZ9MlSRDg32Ui0FQsW5JqC7raiKKF1IDGPY48iJlc1CaErQQzhVdx7HKOmiCCmlCur8oPL6+p7aBJJAvPO4S58VCs7lF86Mw8lKezMThATxU+TLgmCICJCoiKCIBKCLIo/m1YoRUV6beLGn7m98kCIRp26oqINW2rR3SOLf37xgxORlx3ZZQQAXn//EIRBq3+VisP/u++CkNff+fgI1GoWa06rCD7X2RV9sY9eq8a7L38DekWM3qebGqL+PqlGsaKg3kgirCAVhWnB5X2dE4v7ShUiuVaNJhIKhyhEFg6ZU7g/jRZWRZ/WFiEuarqiVbivOFw+HDjaO+F95GXJ57huNzlBxYKI8WdhnIp4Rf8iSRK8iv6DYRmoteEF6A4SFUWkzCi7cflEEV0u7yhrE5MhTSUf400D1I/EguMUUaCtA274hMQs8nhCnIoo/oyYPGKM3BEYCkAjYsisDANy9fK12j/2tsaxNcR4+Nm6muBEH5Zh8Mcz5sW5RQSROJBTEUEQRGRIVEQQREJgpfizaYWyaK3XJ65TkdstF6vUqtQeIP7Bz9+ANHjjlJtlxBtPX4zjF+ZHXL+x1YY3P6gJPj5z9awQg/U3nr4Y//3bFdApHJ4aW/qi2ubFC4qw+7M7cdy8wuBzn2ysx77D3aNsRQBATqZcUCenogAcyyDXKn8uG5uje7wmC74IoiIugkAgEh6XE6IY3umpgGZCjolecc4hUVEoM9PkInN988Ck9mFJk8Xs3R4SA0QbFgw0XPjrJneY41k1imhRq9cHnUqGQ05FkSkyKMQYTg/Idy/6aBXikXqKP4sJ1Yrrssbe8NGJiYBbISpSU/wZkSBQTZSYKn62rDJ4rdZsc4e44BCJSbPNg99uqgs+LjbrcN2cgvg1iCASiEgT7QiCIAgSFREEkSBY0rRQ0QDctEF5ga7VhI/HSARcbnlWt0qV2s4aH356EB+vPxR8nJmhw19+ey5u//pSqNXhC4MP/3EzevoDxViGYUJiNoYjCCL+9LfPo9rml/90XUjkGhAoMBv1iXtMJQpmkyzma2gnpyIA4LjQ49fh88epJfHF4Q3vMKTWTsxRUBD8cNnDCz4KTYkrJk0EsvRqcKx8PLaSqCgEvULg1to5uf7LoDhPkFNR9NGN4tThCXM884rrBwmhg7haXeS+xylMz356POTq5QkbrU46xqONVasOue6t66N+OhbMSJd///U9CSwq8injz2hMgyCI6cOirDTMyjAGH/95ZzMS1FSOGMbzO5uwu0OeYPaDxYbbVe0AACAASURBVKUwqugcRhDkVEQQBBEZulIgCCJhyEwn54Lpgl8xm1OrTVwBSIhTUQRhTSpxzbdfwD/e2B50LOI4Ft+8eiHefu4SXHbeTBgNod9VT58bb66V3YqcLi/aOkJFBG6PD//9eD9Wnv9/aG7tj1pby0szYTSMFCZcf+k8/PbuU6P2PqmKViMfz00kKgIAeH2hPg5mTWoLCSPR5w7v/KE1GMM+PxrOgfC/+dlZE9/XdGKFIobPKwjo9VBskRKlc9OMgrRR1gyPXsuHiLY63SQGiDa6UZzNPGFEXBwjD0sML0Rp9eHdTN2iELOYmFTAopHFGCQqij7zMmQnKLdfQIeD+ulYkGtUiOB7E7evVoqKeI6GWYnEQGm0MMrcH4I4Jh45pTroUtRu9+BvX7bEuUXEeBEk4M6PDgUnfao4Fk+ePjfOrSKI+EOiIoIgiMhMz2oJQRAJidWiR1tX4s5AJKKHX5CL9zqtOo4tGZ0Qp6JpMuv0hz9/A+s3HcHvH7gYqsH4ndKidDx4x0rc/8OTsfdQF/Ye6kJ9cz8MejUuPLMyuO2AzY1lZz6CO249DVXlWdi0tQ5PR9mdaIjWVhtEUQLLjhwhXXV8EVQ8C5+fwj7CUZRnComSofgzGZvDC5Mh0Cf9/sxqXPqvnWgcmF7F2C6XDzPDPG9Mt0x4XwM9XcgqLBnxvEWrQmm6DrXk7BCWWYp4wna3GzSkFUqX2xNc1msnfju7cHZ2sA8UJYniz2KAgQ8vGPf7/BD8I92FeMW5XJBCz90abfhJB64w+yFkTCr5+rrV6RllTWIylJtlsVvTgIf66RiRpujjGxLaqUjut4Y7XxJEvFAKb1nQcUlEn3uXV8Kslq/57l9/BB6BxmCSid2ddjy/qxk3LywEACzKScOqQgvWNfXEuWUEET8o/owgCCIy06NCShBEUpBtCT8TmUg9QpyKEjj+zK0QFfGjRHmkGm+88yUWnvobfLm3OehaBARm3i6ozsZVF8zGT7+9At+9fjEy0uRi30uvbYXfL+Khxz7ADd99KWaCIgBwur344c/fgMczsqjY2eMKEa4RoSyalxNctrt86BmgYuMQ72yoCy7nGTVYf90yPHPe7GllA97QH15goTUYwbIT6wd721shiuF/i2eUZk64bdOFTJ0sBnCQcGIEesX52BXmHDAWC6qzg8s9HjfNRIwBkURFbqcj7PM8q3AqEofHn4UXFbmF8K5qRAC94jtoIaeiqFNklI/LFht9vrFCq3D9qe0O338kAm6/7FTEhZnwQBDxQCkqIqciItpUpenxlVJ5XGHt0S68VdMZxxYRk+W3m2rRNDiRimEYPLxyFhUMiWmNn8YHCIIgIkLXCARBJAxWi27slYiUQBkzlMhORU6FqIibZlb2Pb1OnH3FH3HDbS9h/6E2iKPM1JAkCR+vP4TfPvHJFLYQePXNHShd/Avc8N0XQ55/5uWdoHvAyMyptAaXG9vIpUjJw3/dhpqGvuBjlmFwVnkWtn39BDxxdjW+s7QIJnVq9wWt9vDFUZZloTeZw74WCb/Pi/7O9rCvlabrsCx/4tFV04GqTFlkrXTlIQLMt2QEl9u6Jl5knlUqu25R9Fls0EeIP3M7w3/evCL+zCsKIa9pdeEnHZBTUWR4sOAUFeR6W+I6vCQrOQqxW7ON+ulYMCfLEOKsWZ8sTkVsal8nErFFiuJNbEj8WdT2ShABHls1N9hH27x+3P1JTZxbREwWp0/Ez9fJ359RzePBk8N5FxPE9ICcigiCICJDd7sEQSQMWRkkKpoueH1ywUirTVynIq9XLliFi9maDqxddwCnXfwEio+7D7f++FW8+e6X2HewDd29DvT1u7B+0xFcftPz+Nq3/h63Nm7ZVh8yAPvz756IT1+5Cn//3RrcfMV8qNXTx2VqPJQVpweXG9vtcWxJ4mFz+nDJT97FIy/ugN0piwp1PIevVGXjxyvKsPnGFUhlXVGX0wdfhEEUszU77POj0Vp3OOJr51VYYdUl7jkgXhSa5WJ1oyNxnRniAccwKDOZgo/f/Cjy8RWJknx5exIVxQZDBFGRJ8LnrWJHERUZwouKHH5yKopEickcEvFHTkXRJ1PhtNpqJ1FRLFAKj7vsHtgm4Uw3VSidiqbpLSMRJaIpBAqJPyOrIiKK/OC4UmTrNcHHD312FO0O7yhbEInOR3U9eEfhNLWmPBsV6ZQmQExPBNIUEQRBRCT8aB9BEEQcsFL82bRBKSpKZKcir08hKprkQJxWy0OnUUGvV8NgUEPN86hv6oEtyQoQoijijXd34413d8e7KSPo7Xdh+5eNWLygOPhcfo4R+TlGHL8wH5eeOxPX/vAddHQn7gznqaQgRy6oN3WQqGg4TrcfT/1rN175oAY/unohLj+jMuR1o5rHbctm4JFNdfFpYIyRANT3u1CRMfKcnGbNRsuRgxPa30B3J/o625GelTPiNTXH4roFBfjjtkY4fEKYracnyvizJgf1W0oESYLD54dBFbiNTTeFj8YajexMQ3C5y01ii1igjxR/5hopKuLAhFxjeYXhTkXhJx04yakoIjNMshijw+WBl2bbRh2TWh5Ka6b4s5gwL1u+Xq1LYJciAHArrmEYUhURx0A03RHIqYiIBQUGLa6aVRB8vKm5Dy/saY1ji4hoce+nh3FycQbMGh4Mw+DJ0+fizH9tiXezCGLKIacigiCIyKTwPGuCIJKNLIo/mzZ4vMnhVORTDhBPYCROrebxm3vPx8FNd+PIF/dg74a78MUHP8K6f38Xa//1bRzYeDeObrsH77/yTdx640lIM0+8KEqEcskNz2Pz9vqwlvHlJRl44Ecnx6FViYkyapLizyLT0+/GXU9uxA8eXT/itX53ajtk1EQo3pktVqg1E++v6vbugiCEFwBYdSp8fWEh0jQ01wEAqjMN4BUFySM2+o0Op2ZgILh83qqyCW9vMsjXHV3kVBQTIsWfecLEnymjgiRJgk+UY4RYjoNKHV587iSnoogU6I3B5WYHCV5igY6TXTDr++gzjgVlChfj+u7Edu1zKeLPSLxBHAtSFAuZyvR2MfJqBDEh/rB6TlAM7vIJuOPDiU04IRKXDqcXD39eG3xcYNLipnmFcWwRQcQHMYpRpARBEKkGiYoIgkgYrGFcEYjURCkq0mkS16nI45ELVuOJP2NZFvfecTYObbobX7tsKUxGbTB+QgnDMNBqVJg/pwB3//As7NtwF/ZtuAsvPHUNTlxWGtX/w3TB6/XjomufxYKVD+P677yIB3+/FvVNPcHXV68owQXDHGemKwa9/JtroPizMXF7Q8Uw/6vvwbM7m+PUmqnhYITiHcMwsOQVhH1tNNxOO5oO7Y/4eo5BjduWFmNuljHiOtOFS6tlR6cutxs9HooSGM627u7g8rwqK05YmD+h7dUqWQzQ5SExQLRhGQYaLnzsqNs5UrCojD4bjk4fecKBK4JQkQCsWvmeqolERVGnzKQPub6v6UlswUuykq9woqtNJqciipkijoFoFjIZhcQt3MQbgpgo583IRrFJvsZ4ZFMd6vvpOiOVeHFPC3a0yRM4bls4A0YVlQ+J6YVA50yCIIiI0FUBQRAJAzkVTR/cHrkQpE3g+DOHS44oG2uA+LabT0HN5rvxjetOhFo9MccNhmGQnqbDqSdX4dXnbsDrf71pwvsgAnT1OLB23QH84dn1WHH279DTJxch7vrOCqSZNHFsXfxRq1jwnHwsN7aTC8pYWIY5iU2HmK52hxftjvBiluyiyQkfW2tr0NvRFvF1g4rD1XPzcNNxBZiVaZi2M/1PKs4ILu/v649jSxKXDe2dcAzGkzIMg+cfOhsLZmWNa9uSPFPI+byb4s+ijjFC9BkQPv6MV3wfIkIHcDURos8AwEXxZxFJU8nXOs1OOsajzUKrHC/X5fSi103HYixI18r3QnUJ7lTk8YdeG5r1iXt/SyQ20Uxc4RSToqg8SkSDHy2WHUL3d9nx7M6mOLaGiAWiBNz1SU0w/knFsXji9LlxbhVBTC3kVEQQBBEZqlgSBJEwZFnIqWi64FUU5ZWOAYmG0zm6Q0S21Yg7v3cGLjx3HrSa0CKaIIh445MjeOX9Q2hot8HnE+H1C5AkoDjXhCWzc7BqSQGWz8uDUS9vyzAMjl88Axve+R5OPO8xeL1UqDgWrv323/HWi7cEHFbStLj12kV48ImN8W5W3Jg/KzukoN7UQU5FY7HzUGfI43MqsvDUOdX41nuRnXdSgd0dNuSUZo54Xm8yIy0zG/3dHRPe55GdX2D2ilOgN6VFXKciQ4+KDD163X7s7rCh2eZGp9MHryDCL0qQJAkSAsWRobGeoUEf5XOjwbGhQgZBAjyD+483JoWgtCVMVBQB2P1+/OXwEdxaPRNAwEnw93etxuprXx1z2wXVsvjILfjhoAitqGOIEH0mSdKYTkXDB3C1+vD3Bm7BP0KARMhoefnaupVERVGn0mwILtf1UT8dC1gAGkV2U113ojsVhYZLpRlVGBjjPpIgwiFGM/5ModBPgEtcIsm5sjIfZrU8bvXA+qN0XKUoezvt+POuZnx9YSD6bHFOGk4uyMD65t44t4wgpgaB+jaCIIiIkKiIIIiEQaflYdSrYHdSgSfV8fnlgVdVAouKhjsVnbFyJnJzzFi8oAinrChHTpYprIPRu5/V4vGXd6GmoS/sfmsa+lDT0IeX3z8IFc9iXqUVJx2Xj8vOqEReVqBQUZCXjo9evxUnr3ksNv+5acL2L5uwbkMNVp9UBQC4+oLZ+Mu/dqNlmsZ+LZgtF9TbuhzwDiuCECM5WN+H//f37bjjmkXB584uz8J3ltrxxv52NNtTs2i0tXUAp5VmhnUMKqiYNSlRkd/vw4EtGzBr2UnQm8yjrpuh5XGKwrVnKpAQcKJyeAX0uX3ocfvQ6fShxeZGq90D7xSMLimFTSxFqETk07Z2GHke11WWAwAKc024+MwKvL728KjbVZfJQjlyKYoNRlV4hw6P2x02foVXiIr8Yug5SRdBVOSk6LNR4Rn5MyVRUfQpNMoOWg0U+xIT5mYbQ+6x6hI8/swrDOu7NDTUSkyOaIqKQPFnRBS5eW5RcHljUx/WN5LAJJV5ZFMtzquwIt+kBcMw+M3Kaqx46fN4N4sgpgSBFJMEQRARoTtdgiASiswMHYmKpgE+hZBBxcdPVKRScbj43KVYNL8Uc2YVIj83A2o1D0kCNGoeZlNo7MZfn/jaqPv7+ItGPPGPXdh1qGvcbfD5RWzf34Ht+zvw3L/34PGfrMYpiwsAAOUzrHj815fgtjtfm/h/jgjyzR+9in0b7gLHsVCrOaw5tRx/enlXvJsVF2YqCuoN01RYNRmefn0P/IKIn16/BEAgTuDHK8pwx/Gl+F9DL655c3ecWxh9+j1+7OuyY47VOOI1c6YVadYc9He1T3i/Xo8b+zevR9Wi5TBZrNFoatRgABhVHIwqDjmGUGGEBKDN7sHBbgeO9LpQ1++KibOR0qmFZ0lUNBrvNjVjZW4OZpgCx+gdNy0bU1RUWiS7ZHV7SAwQCyI5Fbkd4eOLVAoBjG+YqEirDx9/5vDRvUIksjS6EDFGq9MzytrEZMhWRDc3DJBTUSxYki/31Z12D+yexBYSDhcVGbQ01EpMDuV14Fjx6wQxVZycb0GG4tz3+Bf1cWwNMRU4fSLu+fQwnl0TiD4za3j84oRK3Pt5TZxbRhCxRyAhLkEQRETYsVchCIKYOqwZ4YsHRGrh88vxZ3ycREUrllZi69pf4Znf3YJv3XAGTllRjYrSXBQXWFFSaEVudjr0Os2Y++mzefDiuwdw5rfewC33fzQhQdFwHC4/vvmrj7Ftn1yov/i8BaiqyBplK2IsbHYPvtjZEHy8dEFeHFsTX0oKZHeYxnZbHFuSfPztnQPYc6Q75DmGYbCyxIJfraqIU6tiy/qGyDNQS+csAMtOrv/2eT3Yt/kzNNUcgCgmh1sWAyDPqMGqEgtuOq4APz+pDFfOyUVllKNb0xTuBv1eEk6MhgTgpaO1wceZ6VpUlqSPuk1BjiyS6yFRUUwwqlRhn3eFiT4DQp2KvKIQ8prOYBi+OgDASbF1ESlRxEs6fH7YfIktxkhG0hTxL/V91I/EgnlZcl9d1x1ekJhISBLgVTjxGrTh+0GCGIvhMaA8jdoTCYDSpWhfpx2fNYZ35CZSi7VHu7H2qDy+eXFVLkrNNGZPpD4kKSIIgogM3Z4QBJFQkKhoeqCMXFKppn4m53lnLMRbf78DpSXZE962Z8CNXYc68dJ7B3HjfR9gxbWv4N6nNuFoU39U2ub1Cbj1oXXoswVmljMMg2cevTIq+57O9PXJxUzVNB6dzcmSC7RN5FQ0IXx+EdfcsxZP/Ws3dhzshEsxa/7qeflYmGOKY+tiQ32/G4d7wwsBtAYjCitnTXrfkiSiqWYf9n6+DraeyYsx44WaY7Eg24QbFxTgzhNKcVZZJtKj4EyQrihEdlI815js7OlF1+DnxDAMrloz+jGZmS5fZ1L8WWyIFH/mdozsSxiEioo8QqioSBsh/sxBoqKIFBnkc1EzRZ/FBA0nH7PkVBQbyhWC3bruxI4+G8KncCvSk1MRMUkEYbioaPretxKJw6wMWej5j72tcWwJMdXcs+4wHN7A9TnLMHjyjLlxbhFBTA2xcKUmCIJIBehOlyCIhIJERdMDr08uGqlVU+tUNHdWEZ77/S1QqwOnQEmS0NJhx/7D3dh9qAsOlw8cy8Dh8kHwS3jojlOC237t7vex6cu2mLexq8+Fx17cgXu/eTwAoKI0CytXlOPTjUdi/t6pCMuyOOn48uDjhpaBOLYmvmSYtcHlRhIVTRib04dHXtwBACjNN+OtR9dAq+HBMgxeuHA+Fj+3EW5/cjjvjJf/HulCxZLisK/lllaiu7UZjoHJz1Z1DPRh76b/wZhuQU5JGTJzC8By8YvFnAxpGh6rSixYWWLBlx02fHi0G12uiYseCoxqcIrIs6M2+o2Oh719/ViZG+jbFs7OGXVdkyLW7pLSClSlZUCURIgAOl0ufNTaiH6vN5bNTXkixZ+FcypSRp9JkhQiKmJYBlpdhPgzEhVFJFcni4ebHSQqijZZWjVYRSQRORXFhjyj7BZb25P4TkVAIAJt6NdHoiJisgjDiphqloUbk723kPfFUpQaMUmWZKeFiNveO5J8k0GIydNi9+C3m2px7ykBZ+Zisw7XzynEX/Y2xbllBBFbBFGiOHqCIIgw0J0uQRAJBYmKpgdKUdFUxp+xLIM/PHxDMNZMkiT8/Pef4ZV3Dkbc5r7vnQDNoABpKq3sX37/IK47fzZm5JvBMAx+dvtZ+PTSJ6fs/VMBvVaNm689Ht+49kQYDXJx4p2Pp684S6uIVmrsIMHCsVDbMoB7nt6M33z3RACAScPjb+fPw+Wv74pzy6JLk82Dra0DWJJnHvEay7KoWLgMezZ8DMF/bBE79r4e2Pt60LB/NzJy8pCWmYXKgmwUWC3QqHjwLMCCCZZHJARcToaGeRiGAcPIzwWWA08EnpNfBwLxEjavgLp+Fzod0RGRMAAWZJswL8uE7W0D+KiuG33u8X8uS/Ll2CKPIKDb44lKu1KdWpsdK3MDYiJlvFk4eC50xv88S2bI42XZOXhy/2402CkecjLwDANNBFGg2zFSGKAaRUCo1evBRCiCkqgoMhkaWTxMoqLoMzdDPhe6/QI6nCRCjAVK1776JHEqUsaf6dU01EpMDnG4qOgYhkqULgukKSImy+oi+Vq5pseB9ijdNxHJw/O7mnHRzBzMH3Rm/v7iGXi9pg0DXorYJVIXQSKnIoIgiHDQnS5BEAmF1RI+5oBILXxeRfzZFIqKzlq9AIvmzQg+fvTPW0cVFAGAzydCM2hsoHQ4iDV+QcIzr+/Br75zAgCgemYutFoe7gkUqKcjajWPb1x7Aq65fCkK8tJGFCQ/2ViPzTunp2V3ZoYWrGKmTVM7Fc2Pldc/OYIV83Jx0eqAE9bygjSsKsnAuvreOLcsurxzuBMzMw0whals6AxGlM1bhJodW6LyXnpWRLanC/qOXnR31qCHYaBWq8FxHDiFAGHotx0QEzEhz42FJEkQFI4oRpaF3S+hyeGHW+Kg1uqg0emhNZpgMKeDV01MUMoywJI8MxbmmrCpuR8f1XbDNQ4Hq3nZcmxRu4vEAONFKb7SjFLINRvV4MeIv0xXa/CjuQvxfM1+7OjujFobpwu6CC5FQHinIl7xmxUROnCrixB9BpCoaDSU8XNNDormijYz02UnqIZ+6qdjAQtAzcl9Q7LEn3kU53kdORURk2S4U5HqGOLPlLsipyJispSnyee9A13J4RxHRBdRAu78+BDeumIROJaBimPxxOlzcM27qTWZiiCUiCQqIgiCCAvd6RIEkVCQU9H0wOOXi7kq1dSdii46d0lwub3LgT++PPZNsMcrwDg4jmIyTJ1TEQC8/b+juOeW5dCoObAMg2suW4pn/r5xStuQDCxeUIS//OFqmAwaqFRcRGHBx5/X4/YHPp7i1iUOC+fIsUBen4COXio2RoP7/rQZy+bkoCDbCIZh8NQ5c7D42c/hTKEYNLdfxFuHOnDV3Lywr2fmFcJlt6GpZv+k30Ov4lBpMUA7TPQhSRI8U+TYky9JcPoFHG5oDomx0+qNSLNmIc2aDZPFCpVaM8peZDiGwYmF6Vica8bH9T3Y2NQXMmt8OBUZsoiiw03F6vHiE+XvihvForwgO9TF6JPWDnAMAxYMMrVqzEozgWEYqDkO35g1F5+1t8Dm9UJEYKaiJEkQJQkiJIgShj0O/PFLEgRJgiCKgX8lCYIkgmUYcAwLjmEC7zn0BwxYJrTYpzxChsYylS5boQ5cCP1b4cw1tN3Qo+A7MIrXh55iGCg/OWZw4+FuYEOvMYo1h5rOADDwKhQbTej2uGHzhc5k97hGnnOUcRrDB24jiYrcgp8GeUdBzcriyxYn9SPRZoZRvlclUVFsmJdjCrmWr0uS+DOlqEivoaHWVMZi0qAgy4B0owY8x0Cn4QN/1Bx0Gh69dg/21vbgQEMfJnq6EsTQ+4fhDosT2pfizUlSREyWNIVgv4NciqYtezrteG5nE25ZVAQAWJhtxqoiC9Y19sS5ZQQRG8ipiCAIIjx0p0sQREKRRaKiaYHXG5/4sxOXzwwuv/e/2nFt4/LIzkDmKXQqAgCHy49Nu1uxcnEhAGDNmXNJVDQMq8WA1/5yE9SqCHErHj/Wf9GEN9fWYO362gkP7KYScyutweXmTse0/iyiicPtxy+f+wJ//OlqAIBBzeHp8+bgmjd3x7ll0WV3px1fdtgwX+Gmo6SwshpetwsdjXUT3ne+UYNCs3aEIFAUJXg8fvhFEZIoyQKLwb+GHktA8IEU/FchzpCkYesCLMdAr1NBp4hYYRgGBhWP+dkm1Pe70e4IiJncTjvcDXa0N9SCYRiYLVnILpqBjJw8sKPENw2h5VmcW27FCYXpWHu0CzvawruEFZnl2KL2MAIMIjwORfSeSsWC51n4w4j6CnLlY9cnivj1l4dCXr9sRj5uqioNHocn5eTHqMWpT4HBgM0d7fBLge/B6/EEf5tKlKKi4YI7jS78PYFTIMfGSBh4PkSgRqKi6JOrl/vphn7qp2PBMkUUaIfNDYfivjGRUU6a0Wmm7v6WmBr0Gh6Xry7HdWfPRPEYUatDdPW78NnuNmzY3YZ9db1wuH1we4WAg5AkQc1z0Gl55GToUJZvRlVRGmbkhl5na45FVKQ4r5JTETFZ9IrxOoq7mt48urkO51ZkBe/bHz5lFla8+DlSZyoVQciQqIggCCI8JCoiCCKhyCRR0bTApxh05bipG+BSK1yRamrHF0/kdMkRG1MtKgKAz3fJoqKZFdlT/v6JzsP3nD9CUOT1Cvh0SyNee+8gPvuiCZ4kKUbEmrKSjOByc4c9ji1JPT7c0ohXP6jB5WdUAgBOKsoAC6TcANvrB9qRb9LCqgvv2lY6dyEATEhYVJquQ5ZeHSIocrp86Oi0oafXCZ8Q28EcnYaHJUOPLKshGJ3FMAxK0rTgWAYtttCivCRJ6O/uQH93B3heBUteAXJnVEBvMo/5XukaHpdX5+KUYgveO9yJQz2hkS5ZinMMxZ+Nn3q7A4IogWMDUXhfWVWGNz48PGI9pVORUog0xD/rWnDU5sT9i2aHiF2IicMxLLQcB/uguCucSxEA8IxCVCSF9pjaSKIiij6LyAxjenDZJ4rocpGjQLTJ1Mj9dOMA9dOxYK6ir65NkugzYJhTkXZq3W2J2HLe8cW478YlsJi0Y6+swJqmw4UnleLCk0pj1LLRUbr6WXVqbPvqyZAkCYOaJkiQgmL7oTWHhPrS4PLQegDgFkR0u7zY1tGPlw+2oNlBfeB0QKUQtrl8qXZ3S0wEp0/Ez9bV4C/nzwMAGNU8HjxlJu7838E4t4wgos/wOFKCIAgiAImKCIJIKCj+bHrgUwxGqPipOxW5PQqBkGl8AiG7QlRkioOo6MtDXcFlQxzeP1E47ZQqPP7QJVCpOLz67x146Pcf4I7bTsPZp1UH16mp7cFDT23Cjr3tsDuo6Dicojx55mtjO4mKos2jL+0Iioo4lsHMTAP2dydHZMd48QgSXtjdgluXFEMVJmaKYRiUzVsEjlehtbZmzP3lGTUhgiJRFNHQ1I+OLjumagjH5fGjuW0Are0DyM0yoSA/DeygOKXQpAHLAE0RCsd+vw8djXXoaKyDNb8IBZXV0BnGnr2ea1DjhgUFONTjxJuHOtAzeJ4xqmWBJDkVjR+3IODQwACq0wPuFhedURlWVJSvcBbo94Y/R2zr7sON67fi1uoK5Oo1IyLKGAz9ywQjyQLrBI5/djBabOhfZWyZiKHINLmQJw1W85TOWsqYshCGF/0wWOiTMOL3EnxdUqw3/HVJGrG/oW0kxZpyO5XrhhYih/ZUbNCHxKQN4YkgkuMV/Yh/WORLJKciLycMFwAAIABJREFUVxhBGBGgUNH/tLs8KSdsTQQMCiF7HTkVxYSydPm3X5dE11FKUZFOTU5FqcLtl8/Hty+aO+J5SZLgFwPRp4IowS9I8AkifIKENJ0KWhUbMZJ7ItiOwRnGFmZiTTDuVP5r3BhUQKZWjaoMI66syofDL2B3lw1vHmnDB41dY++ASEqUMns/OXdMez6u68HbNR1YUxmY8LimLBt/3t2IQ73JIwImiPEQ47ltBEEQSQuJigiCSCi0Gh5Gg4oEASmOX5AHXafSqai7146SwkAEVI7VMK5tbHZ5lnc8nIq6+uSCxXS1LbdaDHj+/64KRuXdcNXxuOGq40PW8flFfO/+j8btQDUdycrUB5fJqSj69Ax44Pb4odUELq+fOnc21vxjG+wpNqOz3eHFK/vacPXcvIiliJLqedDqDajb9yUkKfz/X82xKFJEnvl8Ag4e7oTDFZ/zvygBLR022J1eVJVbwXGBYlC+UQNJAppto8/G7mppRHdrE7IKS1BYWQ21dmyRdJVFj+8vK8Hao13Y3joATtHHt7tp9vdE2NnTExQVza7IDLtOoUJU1DmKg0u724t7duyLbgOnCe+deaJCFCUfzy5neGGA0qnIK4YWPzW68I4QLoo/i0i+Xj7GWyn6LOqoWTakn67vo884FuSZNMHl+p7kKVKGxp/RUGsqMFxQJEkSdjf347639mF7w+j3nAXpWlx7/AycOisbM6wG8IOC9eEExMYSnF4BLX1uNPY6cXp1TvD1Y7n/X3u0C7vaB7AgZ2w3zYnCMAyMKh4r8jKwIi8DD0oSmu1ufNbSg1cOtaDRTv1jqsAqBODk3EEAwC/+dwSnFFtg1vBgGAZPnD4XZ/xzS7ybRRBRhfo7giCI8NCdLkEQCUdWhh52R3+8m0HEEK+iyM5zUzeTs7vbFlzOHaeoqN/mCS4b9VMvKhLpRgbP/P6rQUFRODxeP374y49JUDQGZqNcpGkkUVHUEUUJ/93UgAtWlgEAyjL02HzjCpz+4hdotadWBM3eTjv+c6gDF1RFjmTMKSmDMd2Cw7u+gMtuG/F6RYZe4VAkxVVQpGTA7sGBmk7MrMgCzweERQUmDSRgRBTacCRJQkdjHbqaG5FbWoH8sirwqtEjUFQsg/MqsnB2uVX+PCSJ4s8myP4++brRbFQjL8uA1s5QIYvSqajZmTyF6mQiUunTHebz5hgmpFjqFkJFRVq9fvgmAMipaDQytfJn1kQF3agzJ8MY0k83DpBTUSxI08jnzWSNP9OQU1HSc/05M0MERW6fgGv/vBlb6sZ3v9nc58ZD7x/AQ+8fCD7HsoBBzYMBwLMs7F4/vP6R4vu6h86TtzmGOUV2n4AL/7UDZg0PDcdCy7PQcKy8zLNBN8Yht0WOCbgssgwDbvD5oeey9WrMzDTg5KIMZBs0Ie/FMgyKTDp8dWYBrqzKh1sQcajXjrdr2/HvI+3knJfEKJ2KBHIqIhCYZPTrz4/iwdVVAIB8oxbfOq4YT+1siHPLCCJ6UH9HEAQRHhIVEQSRcFgzdKhtIlFRKuPzyYUjlmNHWTO6dHTJx1XmOKP2evvloozZOPWiIr129IJ0qsPzLJYuLA55ThQlsCwDQRDx8cYGPPrMFhyu74tTC5MHrUYucJBTUWx48PmtqCxKx+wyCwDApOHx4dVLcfzzG2HzptZw+qbmfuh4DmeWhXeFAQBDWjrmnrgaTYf2o63uMKTBgRmWYUKivlraBhJCUDSE3enFwcOdmFmZBX7QsajQpAEkCS12z5jbi6KAliMH0dlYh4KKmcguLgPLjn6uW6iYRd7pdtMg1gQ5arPD7Reg5TkwDIOP/no59h/pBscyyM0ywKRXQ6045nIjRGsR0UNZB3U7R4ovVIrfhCRJEBTxZyq1CqoIgjyHP3H6ikQjTaUQDztI8BJtZmfIMbJtdg88lIsQdXgWUCtcbJM1/kyrIlFRMnPO8iLc/bVFwcdun4CzHvsf6o9R5CaKgM09MWEsM8GIsnAMeKIrxmUAzLYaceoMC1aVZOK4HFOISJhhGOh4Dguy0rAgKw13La0Mec3m9eOSd7ai203n82RAearjp6lzNjGSF3e34uJZOViSF3CK/daCErx1uINE7UTK4KcJvgRBEGEhURFBEAmH1UKFnlQn1KkotNCabTWjvDQHRr0Wdqcb23bVwuuNzkBY34A8EGgyjE+sM6BwGNFppn6A2JImF4iUsXHThfvuODs4SCkIIpZd8DdIAAw6FfoG3HB7hNF3QAAA8nKMIZb7je0kKooF3f1uXP7T93DfLctx6WkVAALCohcvXIDzX90R59ZFn0/qe+AVRKypzIq4DsfxKKmeB2t+ERoO7EF/dwey9eoQl6L2zpFORvHG7vTiYE0nZlVmBaPQCs1aiBLQ5hhbWAQAPq8Hdfu+RFvdURRVzYYlryBs9AUApGvl27Iuij6bMF5RxNtNTbh0RgkAQMWzmD8z8nG5PNuCl1ctw3c37USnO7WcxOKFfhTnSZdjpDBAGX02fMhWq4/sJkmioshoFd9Bk4P6kWhTlSYfl7V9JNqKBQuyTSHnybokij9zKybNkFNR8rJ0VhYeufWEYOSTXxBx4ZMbjllQNBEkSQr+Do7FqShWSAD2dtmxt8uOx7c2IEPL48TCDKwstuCU4pEuRsOvfU1qHlfNLMDju+qmrtHEpFFOdOAT8YAk4oIE4M6PDuHdry6GmmPBsQxe/spxWP3KJoQxYCOIpIMmeREEQYSHREUEQSQcWRnh4w6I1EEpjuF5DhzH4trLT8ZNV6/G/NmhrjT9Nife/2gXXvn3Rny0fm/Q6WIy9PXLRa3xRpnZnXKxUauZ+tOmQSeLn/zT7O78gZ+eixuuOj74eNf+jqDIy5ZicVKxZtFsOabK5fGju5+KjbHC7RVw5x8+B8cyuGh1OQBgfo5pjK2Slw1NfXD6BVwyKwfcKLNXDWnpqF5+Evq7O1Hg6YS9qx2SJGHA7oY/Qd0elI5FHBsQFhWnaSFIEjqd4++D3E47anZugbE2AyXV82CyWEesY1TL5xcdz8OsUmHAR+KJifBaXQNMKhXOKsgf1/oWjRp/PmkJbvxsKwmLooBJzUOC7FAU6lQ0shirdCoSh13b6Qzh7wUESHALFH8WDjXLhjhFNJFTUdQpNMgTX+pIVBQTFuenBZfbBtxw+ZJn8oDSqUjNT50TLxE9KgvT8PTtK6EZdJoSJQk3/20rDrTFT/zOJoEzTK/bj7cPd+Ltw50AgJkWA04qysDqGRYsz08PK0Qxq6kckSwor9FUU+gyTiQ+h3qc+H8ba3H3SYExD4tWjSdOm4tvfLAnzi0jiGNHIKcigiCIsNBVPEEQCQc5FaU+XsUAsVajwpb/PoDKstyw66aZ9LjiwhW44sIVOFDTgocf/w9ef+eLSYmLnC65aKga52CvzaFwKorD4JdaYZ8vTCOnottuPgU3Xr0i+Nju9OKXj38exxYlN9UVsoiBos+mhr+/dyAoKmIAsABS9Re8o82GXpcfV83Ng2mM2flpmVk4b/Y8eNwu1NTU4MOPv5iiVk4Om8OLQ4e7MLPCCnZQWFSaroMgSeiZYGSbvb8Xezf9D9lFM1A8ax54RbyTXiWfk7yCiHMKC/BmQyPcQvIUVOONIEl47tBhvNvYjKVZmSg2GOAWBLS73GhzucAAyNXrsDgzE9XpgcK1mmPxyLL5uPZ/W+Pb+BTAPCyurNhohiCJ8Pv9+JLh4OB4OBWCIKVTkSCF9o7aCPF0TnIpiki5KT3oBuEXJbQ6x+eoRowfq1aekEBORbGh0iILCpuS7DNWioo0JJhIOrIzdPjzT1YhbTDuXJIk/OzNPVh3qDOu7UpGY5iDPQ4c7HHguV1NMKk5FJt18IkiHlo9E4tyA3G/qmT8j01TlIV1ZTwlQQDA09ubsDDXjHMrAg6xJxZkYEGWCbsS0ImYICYCORURBEGEhyTmBEEkHNYMEhWlOsMdd4YLikRRgtcnjBAOzarMx/P/90189NrdWDR/xoTfV6NWuP6MU6Bjc8gFLG0c4s+UQqJkmKkYDViWxe3fXh183NPvxs0/eQ97DnbFsVXJTXlJenCZos+mBqNOLj4yDIMTizLi2JrYU9fvwv99UY+D3SNjjpSka3nwHAuDwYDjjjsOM2efgNlzliEvfwaMBnPEeLB4MmD34NCRLoiDg+oMw6AiQw/jJONNOhrrsGfDJ3Da+oPPKWf+OgU/zCoVzsjPQ+J9GolPq8uF/zQ04Q/7D+LZQ4fxVmMTvujqxpaubvynoQn37diFtxqagutnazXI02lG2SMxHox86O8hQ6OBVauDThCRrtGgwGBEvt4As0oNs0qNdI0i3lUc7lQUPv7M6SeXokgUG83B5XaXmwbCY4BRJQtFyKkoNpSkyeMAzUn2GXv8sgiYnIqSC4OWxzN3rES+NXDukSQJf/z0CF7a3BDnlgHJ3pXbvAL2dtlxqMcJm0c+hyvdConERlSE1DJ0Z0KE4ccfHkTXoIsvwzB4dPXsOLeIII4dupciCIIID02fIQgi4cgip6KUxxPGyl6SJNQ19eOXT2zE+q3NAIB0sxrfuPI4XHB6BawZumCxeclxZVj373vw6psbcfs9L6DfNr5BZ5XC9We8oqIBuzzTOx7xZw6XYvBNNfWipnhwyooyqBUzfK/74ds4cKQnji1Kfgpy5fit5k4SFU0Fe492w+sTgm5jL1w4D49tqcejm+vj3LLYYfcK+MuXLViWn4ZzK6zQhLHIr7LIYgG7w4MBuxfmNAvMaRYAgCiKcLsccLns8Lhd8Pk8EEURoiRCEgP9tlJwKi9L43awYxgGDBNwHZIkCaIoQBAE+H1eeL1u+MPEK/XbPDhc243KsszB7RlUWgzY0TYw3o8nBLfTjr2ff4rKRcuRlZsXIhp1DhYmc3U6LLBkYGdP76TegwiPBOCFI0dxZkEeNBwHhmEwz5KG1uaOeDctqTGoePhEERou9FrFqYg+M/AqGHjV8E3hE0OvC7V6ciqaKHk6Y3C5xUkRp9FGxQK8op+u608uwUuykGuUxYbJJipyKybNjNcRl4g/Rp0Kz9yxEnNLLcHn3tvThof/ezCOrZJJpZKmUkBMoqLkQVQMm4WLsiOIAa+AhzYcxSNnzAIA5Bo0uGdFBe7feDjOLSOIyUPxZwRBEOEhURFBEAmHNUM/9kpEUrO3pht+QQTPsZAkCYfqevHAE5uwaWdLyHp9A148/KctePhPW7ByaSEe+OHJyM2SC9KXX7ACC+aU4NrvPIX9h5rHfF+l6w8/zjz4/gFZVMRzLNQ8C69/6kKMOnrkYhzPs+B5doTTU6oxrzo/5LFfkGA2qjFg90bYghgLpViTnIqmhn67F799YTvuumEpgICQ5XvLSjAv24Qb3toT59bFli0t/TjY7cCayizMzTKGvJZnkguGre0jbdFZloXeYILeYBrx2lTh9brhsA9gYKAHA33dcDgD7eztd6GuoRelJYHCk5pjUWjWomlgcgV8QfDj4NaNyDt1FYCAY58oSSGRZ4utmai12dHvIzFFNJEQcL0ZEsBcVVaMj5s7QD44k8ek4vF5Rw+q04zgGBYSAAkSmvr64BdF8KMUEL1i6HWNhuLPJkymVv7MmhwkKoo21WmmECe9hn76jGOBRSeLDht6naOsmXgo48/IqSjxUfMsTpibi7u+thDlBWnB53c39+HbL22PY8tCkVJIVuQTlWMxJE5JFvyKSRsq+t6ICPxrfzu+OicPS/ID/ellM/Pw3O5GNNspjpdITvzkVEQQBBEWEhURBJFwUPxZ6uP3i7jk1jdx9fnVeOODGmzd3T7mNp9+0YSTv/oybrpsHr5//eKga9DMinys/8+9eOyZ9/HIk2/D6YosPGlokuOzLGnjO866ekNnyep1KnhtU3djXNsyAEEQwXEBV43TTqnCfz8+MGXvHw8GhjlPvfeXyyCKErbtacPDT23Crv2dcWpZ8mIyylFczR0kKpoq/vyf/WjucODh206AUa8O/IZLM/Hh1Utw0T+3w+ZNXYFgv8ePF/e0oiRNizPLrChL14FhAIPCca21fXIuP7FGrdZCbdEiw5INAHC7nehsb0JXZws6uh3ItOhhNmkBAPlGDVrtnknPZJMkEbXbt6CnLBcWiwUuvxASdcGCwQk5WXivqSXyTohJ0epyI2MwgitPr8VjK47DrRt3xrlVyYtJpYLT78e27r6Q5+ub2lDfb0OeTos0tQoMAiJLTiHQcA1zB9NotWHfg+LPImNWKQSbJCqKOvMz5Xi5Zps7xJWGiB7Ka4TG3iRzKlI48ZJT0fhgGQbHVWRiZkk60g1qaNU8GGbwHMEG/gwtsyzAsgxUHAuOZQKTbVgWPMdAxXNQq1io+MCEJb8gQRACF1MqnpX/cGxgHzyLomwDtOrQIfEjnXZc8OSGeHwUEUmlmmaIU1ECxh0T4VGKwdTjnJhHTD8kAN95fz8++NoSmNQ8WIbBL06sws3/3R3vphHEpCCnIoIgiPCQqIggiIQjMyNQeEylARRiJPsOd+PuRz+b8HbP/XM3nn9tN/7+/87DsgV5AAC1mscdt67BZecvx9e+9QS+3NcQdluHSxYDjXccq3PYLFmjXoW+KRQVebwCDjX0oXrQkv3O752R8qKil9/Ygft+fC40irg5lmWwdH4e/vboGiy74G/weEdG6BGRUSuLNORUNKX8d1MDjjb34+m7TkXxYAxdVaYBO75+In63uQ5PbG2McwtjS32/G8/saEKBSYPblhYHnR5EUUJ7x0inokREq9WjqKQKhcWV6OluR0dnHYwGDdjBYldpuh6HexyT3j/PSPj0009xzjnnwI2RJ6dCvQGFej2anMnl2pDovNXQiCqzKeigU24yIE+nQauLZtROBrMq/NCCxxU4bltdbrS6AmIXE89jhingPClJEgRFwYphmYiiIneYaEIigI6XP3+KP4s+lWmy615tkoldkgWzmgeniNZJNqcit2/ijrjTlaJsA267eB7OWV4MvTYxhqW31Hbjymc3QUwAvaDSFS2VhsSUoiKK0UoefIrvTUNORcQotNg9eHZHE36wfAYAYHFO2ugbEEQCI6TSCZggCCKK0J0uQRAJh4pnka6IRyGI4YgicPXt7+B3z2+FXxFpNqMoC2v/+VPcdPUqcGEGc+dVFwWX3Z7xFaZEMVDwGsKosOWfKl5692BwuaosC9//xsopb8NU4vX6cc6Vf0RDc++I1/Q6FXKsFJE4EcqK0kIGp5s7Jy9+ICZHTWM/Lv3Ju9h5UHbZUnMsfnJCGTbfcDzSE6SgEkuabR4Um2WHuJa2AXh9CVC5mQAMwyDTmouKWctRUFwNozFQZLZoeRxLbUTLMXA4HNi2bdsIx5YhFmZaJv8GRFi2dffgtk1fBB8zDIP5lvQ4tih54RgGep4L+5o7jBhOx8nrDreW1+p0IecsJQ6KP4uI0vmpxUnCuGhTZJCFbrV9JCqKBcsKZDconyCiJcki5jx+ecIDR4X3iFx/zkx8+OhXcMnKsrgLiiRJQpfdg5+8tguX/ykxBEXDSaWJdr4QURGVI5IFP31vxAT457624LKaY7GqiO5hieRESKUTMEEQRBRJ/QoGQRBJSWaGDr0DNCBOjM6TL+7EK+8cwJP3n4GF1dlgGAZ6nQa/++W1eOCnV8A5WFSRIIFjWWRaTMFtWycgrBBFKTg4bNRPvajotQ9rcOOFs1FaEBCH3PGd09Db58RfX/li7I2TELWax9mnzgLHBizslcXF/Ye70NCSHO4micKC6uzgst3lm1KnLUKmZ8CDq+9Zix9dvRDXrakGO6hCyTNp8Pn1y3HWi1vRmOLfzYIcuQ9++bUdePXNLzG7KhuV5VYU5qdDpQovSkg0GIZBv12DNeeehyNHDmP37t0oNGnRMDC5AqhqUARbW1sLPjcX0I4UTubqdLBqNOjypPYxMpVkqNW4sbI85LnDA+TkNhlMEVyKAMDtHHm9pVGKioZVcbX6yMJhJ4mKwpKnM4RcK7WSU1HUydLJE16OJpmDTrKwMFcWFTX2upIudkIZf8aRC0tYbr9iAb594ZyQ5yRJgt3jh83th9snQELg3lsCIEoSREmCJAViSCQpcM7wCxL8ohRc9goiPD4RHr8AhmHAswx4jgXDAB6fCK9fgMcvwieIEMTA+o09Try3px0Ob2I74Ekp5FWkPN+TU1HyQN8bMRGabB7s6bRhblbgvv/sGVlY19gT51YRxMQZfo9KEARBBCBREUEQCUmWRY/D9X3xbgaRBHT3uXHFd9/CzZfPwx03LwsW6g16DQz68I5XkiTh/j98Pu73EAQJQ/Uvo159zG2eKF6/iFsf+gT/+u150GtVYBgGD/7sK/B4BPzj39unvD2x5A8PX4oLzp4X1mlq884W3P7Ax3FoVXIzu8oaXG5sI0FWPPF4Bfzq+a3496dHcfeNS7FsTg4AwKjm8dE1S/HV13dhW4p+R0UmDYxqWUiwbsNRdHTa0dFpx7oNR8EwQJbViLwcE3KyTLCk62AyaaDTqsBxLHieHSwQBfp4hgmIe+Q6OhPs/8dCkiT4/SIkSQLLMuB5LiRucTy43H60tNlQXV2NsrIybN+1G//49AuI4sSjGXmFGGDH9u0oP+GksOvNTDOjq6Mz7GvExDDyPO5buAB5etk9a8DrwxEbOblNBiMf+ffjdY10dVEpXDz8UuhvRmcwhN2PWxRoxmgEZhjleIkBrw8OP0XERhvlMX6E4s9iQrVV/u3XHUOkaLxw++XiE0duHiO4+ozKEEGRKEr4z64W3P/2PvQ4vXFsWWKRyoeO0vGGG28WPRF3lN+bikRFxDjY3W4PiorK0sllnEhOfJR/RhAEERYSFREEkZBkZejGXokgFDz76m58trUJz/zqbORY9RGjM3x+Eb96ciO27m4f9779ggg1AsXweNm0H6rvw60PfoI//uw0aNQcGIbBb395IexOD95euzcubYo2373lFFx83oIRz7d12vHY89vw2nsHU8oCfqooLZKLjU0d5MKRCOw92oNr7lmL+25Zjq+eVQUA0PIcXrtsIb7+9h58UJt6s/muW1AQ7Je7ehzYe6At5HVJQlBkBLROeftYloHJqEFWpgFFBemoLLOiuDAdbBiB4xBH63owo9gCjUaD45cuRr0qE4f27kFnc/2E3lt5uurq6oalowMZ2dkj1iszGfF5R2cKzVmPHxfPKA4RFHkEAXd8sTuOLUpuDBFcxnweD8Qwszx5Rv5d+cWR8WfhIJeiyBQaZBe4Zge5FEUbI8+HOM+QU1FsmKEoPNZ2JZ+oyPP/2TvvODfOOv9/pmjUt+9qm3tvcYqd6pj0QAK5BEKHQAJ35I56cL+D4ygHHL0ehHocgSNHKAmBhBASO05iO8Vpjmtct7isvb1pVWfm+f0xkuaRNNpd7WpXI+33/XrZmhmNRs9KoynP9/N8PpyoiPQS6Sxs9OPT7zovNR+Ja7j5h0/jUHd5CumnQ+ZVZznd+/Lne9KmlA5xbickFzZiMpwdM511/QqVHonSJF5ijpkEQRCzBZ3ZCYKwJbUkKiKmwKG2QVz+9ntRW+XCpg2tkEQBoiAgWbsKRVRs2dGBmJqfjamqmesXS1QEADt2d+HO/3wcP/3s1VAcEkRBwE++9Rbc9sF7sG3H0aK1q1DccsM5afOP7WjH/X89jKeePwmNRolMmdZGs9h4sptERXZB0xk++5PnMByM4s43rQMAiIKAn964Fpf/8jmcDpbXqO2rFtampnc82267IomuMwyPRDA8EsGx9n48sfM4vB4F565rxgXntqKxwZ/1mrO9o4hE4nAlHOQ2LgxAk51oXLQEHQf2YHSwf8L3dcpimgg2pus43d5mKSpySTLqXS70REg0MF021Jn746mxMD6w8yXYOwDF3uRyKorl2Fc5oyJoLCP+jERFeVPvNsUYpyn6rOCcX2fGckVVHadG6TOeCRq8phtsWwmKiuIaLyqiwjvPh9+0Fq5EYVnXGQmK8sBml8vTgq/PCqDfiN2Z73PhxkUBbGqqSS1TxhlsQRBJNBIQEmVAnOLPCIIgLCFREUEQtqS+hixSianTPxTBn7ceK9j24nHzZsJdRFERYAiLPvKNp3DXp66ALIkQRRF3f/+d2Pz6/0Ln6cGitm26uN1mMeG/792Db/x0VxFbUz7wIk0SFdmPb92zG+1dI/j6hy8DAMiigB/fsAY3/X53kVtWWBZVmfvhU08fL2JLJs9YKIand3Xg6V0dWLsygGuuWI6Gel/qecaAzlNDWLG0HgDQWuECAHgrqrD64s04fewQTh19ddz34Edv6oxBYwwD3d3QVBWShVCj0e0mUVEB4DsJRQFYUemHIonYNzSMPHXHBACfw/raKBqxjokSuYJ7plOR4nJZviaskuwrF9WK+Zl1kVNRwVlXY4qKOofDoIHLMwMfkXq8BEVFKjcAgmqoJgsb/bjh4vmp+Xue7yRB0ThkXoKUU0GegYQGdkUWgU1NNbiitRbn1FWgyeuyFBC5SFRETAKNBIREGUBORQRBENaQqIggCFtSV0NORYR9iMW11LTH5ShiSwy2PncC//rdnfjWxy+HKApwOCQ8+od/xEWv/Q6GR0qzmOTzKGgOmDFdbSeHitia8sLrMcVaJ6kT35bcv+04/vnt56KxzgsAqHCW1yX6tYtq0uzytz/bXsTWTI39h7px4HA3zj+nBddeuRwVfqOI3945kBIVOSURdR4H+kJxCIKA1mWrAAg4dfRgzu16ZLOIGksIXXRNw3B/P2oCgaz1G9wuoLT1o7bg5f4BzPMav7dmjxvfudiI3mSMoTMYwg9fbcPeweFiNrGk8OcSFYWtr0n48oKa5VRkLSqKaCQqyoXXYV6bdpFTUcFZWuFNTR+j6LMZYUGlK01seLyv9ETw6U5FRWyIzXj7NUuhJK51VE3H1x4ZX2xdyiwP+PC/t1+Eer+CVCndal+wqlO3uQiEAAAgAElEQVQKxvLMp8Qy2pnSnIrK6O8qVTY0VOK9q+dhTa0Pfoc8qe+ESuzEZNAZCQiJ0oe/riMIgiBMSGJOEIQtqaf4M8JGRGOmqMhtk2L/g0+14bv3vJyar6hwY+fDH0NNdWm6fP3Lh66GLBuXJaqmY+cLp4rcovJAcYiQuZwZciqyJ6sWVqcERQDwfFd5iRneuqYpNb3v4Bn0D5RmUZYx4KU9p/Htu57CY9sOIxpV0T8YwjAXhXNORkxa67KVqKipy7lNt8O8HePdc0YGBizXr3M6p9p8guOBzhPoi0SzlguCgIV+L76xcS3uuvhcVCn2OOfbnQqHteA6Gsp2G3EI6ZF/aoa1vDNH/FmYREU5UURTnHgmlL1fE9Oj2WsK3Y6X6PnL7myeX52aHg7H0VuCEbBRsrnLwu2UcOtrFqfm/3bgLEKx8v2cPnvjajRWuiCJohHDnohiz/onWvxLLJfKuALPCw3K96+0N+fV+/Ffr1mDnW++FD+9+hxc0lSNCsWRU1DUG0o/FseoyE5MgvT4M/q1E6UJORURBEFYQ6IigiBsSS2JiggbEYmZhSxPkePPeH78h324b+vR1HxttRfPP/oJLGipHudV9mTNysbU9LZnOnG2t/RiD+zIupX1aZ2Ep3pIVGRH3nbd8tR0RNXwuacKF99oBzY2mS5kTz3dVsSWFIa4quPJp9vwrbuewrMvdKKtvT/1XIM3W/Qzf+W6nNviowVinLhidMjarc3nkKkQUwBCqobP734Fu3r7skQtgCEuWlbpwz2vuRArK/0WWyB4KnKIryKhbAEG786lM5Y+mlmSoOQQzlH8mTVuUU4r2Jwhp6KCU8k5cZ0oUUdQu3MBd51wtLc0r1UjqjkIRRAEyCJ1t95y+SJU+YxjOmMMX364fF2KAKDBb+20N1WODYzh9Gj5HHPSnYqK1465xsWNVfje5tXYceul+Pk152JTcw3c3LVYElVnONgXxD37u/CJrYdwxT27cOHdz+KpTnOgQ5g7zhFELjRyKiLKgLhFHwFBEARB8WcEQdiUOhIVETYiHOHjz+x16vz3HzwDj0vGDZsWAQA8HgWP3f9P2HDNtzAaLJ3R6ly/AxrrvblXJPJi3Yr61HT3QCjNdYuwD8vmV6Wmt7b3I1JGo92rXDKquOPmk2UgKkoyForhob8dRFtHH/76u/cDACRRwJJqN44PhlPr+aqq4XR7EQ1buLZI1o4t4TFrYaUAAS5JQlij3/J06Y1E8e39B1MiLack4dKGerxxwXwjZg6AQxTxzY3rcMvWZ0CSFmsUUYSSo3huJSpycYWszOgztyf39f+YGp9iC8ub+T5T9KYxht4MBy4RgCwKkAQRDlGALAqQBcMNwyGKkAVjWSYsEcPDwMCYIQAz5q1JisN0ZogHdBiPGjO2oSe2oSem+XUYksXmxHM53kNAsjglZC0HzCK1kPg/Oa/qOrRpDDbmi6/HyKloRlhRazqtHi1RAXymU1GFV8bAaOk5LhUKWRLwTzevSc0fOjuKM2UuyuNdhp7vGsJXn2lLHfsAw7FDgHGsEiCAJY52yftgQTCO147EOXVvzyjKySiB8UIDksjPGCKA1y8O4JYljVhZ7UsbwJDJof4g/nqsD8+dHsL+3lGELe5Ba92mG2V/mK7FiInhnYoo6pAoVeLTuXkgCIIoY+xVGSUIgkhQU+mCIKQLDQiiWIQiZueJ22aiIk1n+Ng3t6NvMILb3rAKAOD3ufDknz+Mi67/DtQSESds23EEmy4y7PHPWdmAH/3ndfjMt7ZjYKi8O59nmpVLalPTpyj6zLb4PWZn7Ynh8Dhrlh5vW92Y6kwcDUaxe9/pIreo8Bw41INnX+jEJRsXAABW1vnSREUA4KusshQVSVxHK+9UpI4joHCIIomKCkjyUjOiadh25ix2dHfj1oULcMuC+QAMN6k3LWrF79opltMKvyP3dVE0nP47EAD4OIEGYww+h5Kab6iqQb3LEBcwTlrCAKyorEltI3lMERLCESExzZMq1ibmRU5kYrx3+jr8fCYC/3+acGXyZLYvV40lee+T+ffz7ZMSETqSIGJFRU1qvYiq4f0rFkBKCIfkRKROqcIX2qdLWNUQjGsYjasYiMbQE46iOxzDUCw2ruBoXbU/rSB2uJ+cNGeClgrT4aVknYri6eflCp9zTouK/t/bzkVTrTFQhDGGTz+wt8gtmnn4Y9ULXcN4pXu0eI2xIfyhtoRPTbbEI4t4x4oWXLegHgv9nnFj9I4NjOEvx3rx8LFeHBucWChbzYmKesbm7jGNmDz8dRU5FRGlSoycigiCICyxV2WUIAgigSSJqK5wYWCYBAVE8RnjsuS9Lsc4axYHXWf44s92weWU8JZEjFJToBJP/OnDuPLmH5SEsOgnv3waH3r/ZtRUGcXEazctxKqltfj7Tz6CY53WMUDExCxorUhNn6SObdvicJgjSOP2/7nmxeb5ZsH7xd0nS+J4NBX+8Oe9KVFRpVOGQxLSRrfJSnakk4B0YQJvsa2PEy9g5SpCFI64znBvWwcW+Xw4t9bYf69vCZCoKAe+HKIiXdcRyxIVCWmuRknnrSR1lZXwcyKjJCrTscRflbWcAAIe0+ElpGrw54iiK0UKWXR2yxLcsoR6t4LFMD8znTEMRuPoj8bQH4mjPxJDXzSGwaghNrqowYwUPjEcRpAcH2eECqe53x4q0evVTKciv7t8fov5UFvhxD/evAa3v25latmxniB2nxwuYqsIO0DxZ4Wl0aPgtlXz8JqWGgQ8znEdYV7tC2JLez8eOd6LQ3mKY/nrim4SFRGTgI82zhTVE0SpENPKs9+KIAhiuszNu1yCIEqCmioSFRH2IBgyHSM8Nu4g/tyPnkV9tRtXbpwHAFiysA6vPPGvOOc134BeAqMs3nLHL/CnX/89fF6j+N7a6MdPv3I9rrvt99DIenZKNNb7UtMnSzROotzxumQsbDLFX4f6yut7Wllnxhm+vK+riC2ZWR7Zeghf+vT18HoUCIKAcxr8eOnMSOp5kRNOJPE4pLQCAD8aTtNyh23JQu4YA6JwPN3TmxIVtXjduLE1gIdPdRe5VfYjl1NRLBKxdP7hnXP0jOc9nECGRy2Ba5hi4ZZMsXswTiF9+SIKAmpdCmpdClBpLtcZw3BMxZXNdallMU3HP22Yh7jGENV0jEZVDEVVjMU0jMU1xHWdc5EyHLVEAYl5Y7/XGDOi5JJxcMmYOS5ezso1K5cTl9Vzac9zD5kuWMmIu0zOBKOzGsO6vNaTdlw4XKKiIlVn0HSWcgip8GSLiYuFIAB1lS401nhQV+mC1+WAJAnQdQYx4WhmPBoRXpIkwqVIcMii8ZwgQBAT+7IoQJZEOGTjnyKLcCoSXA4JjbUerF1UA5mLW4rENbzrF7uK+NfPHvwvke5cs9Ep/mzarKnx4d0rW7GxsQqVipxTSKTpDM93DWNLex+2tPfj1OjU+1Xdsvl7JqciYjKonIKQxsIQpUq8nPJHCYIgCoh9K6MEQcx56qrd5FBC2ILRoNl54rGhU1ESVWP4yNefwi++cC02rgkAAGqqvXjmrx/Fxa/9bpFbNzEHj3Rj5SVfwdHn/x1ul+FUML+lEh997wX4zv+8WOTWlSbVFWZB4+TZ8hKrlAtv2LwoVXzRGcOjbX1FblHh8CsiajnL/N17yy/6LEkoHMdftxzCm//uHADAwir3hKIiHzfyV9X1tMhXputgjFkWC8ipaHbY2d2Dty1aiFqXcRz90OqliOkMW7p6itswm1HhsL4uioatIzXSiq4ZfbVurxdWqIxERblwcsX7URIVFQxREFDtdKDGae7fUU3HPC6mq1z52cun0D40e1GsVy80o3p7g1H0l3DROhLX4E24Lvk8xb1nrPA6cO2Gebj2ghZcvCYAvyfbBW6micQ1vP4HO9A9Ep319y4GmRGbRDpp8WdFa0XpcWVrDd6yrBnr6irglrPvJ5KE4hq2nxjAlvZ+bOvox1C0MNcE/H1H99jc+C0T00PjxBjjOWgRhJ0hpyKCIAhrSFREEIRtqat2F7sJBAEAGA6anSc+t31FRQAQjqq44/NbsO++d6WWzW+twX1334Fbb/9FEVs2OVqaKuBypn/Gd77rPPQOhPDrBw4WqVWli5sTwZ0ipyJbcsdNq1PTR/vHUE7pYB/euCDVkTgWiuH5l04UuUUzy30P7k2JipySiGq3A4Nhw+lOsnQqMsUAMQsnFk3TIMvZt2sOciqaFTTGcG9bOz602ohwEQUBn1i7DLVOBb+lKLQUFTmciqKhbFFCpvtKplOR22197U9ORbmRBF5URNFchYYXbY1ESLQ1E2xsNt0aXz1bmi5FSSKqjoThKjzO3MX/maS+yoX3v34V3nH1Mnhcxeny1XSGFzsH8MHfvIy+YOmKxPKHiufjQUKryaGIwBuXNOP1ixuwrMoLWcx93d8XiuHxjn5sae/HzpODiBa4CL682pMmCjk9Qk7yxMTw97USHRaJEoVERQRBENaQqIggCNtSW0WiIsIeDI+aoiI7x58lCUdVHGwbwOrFNalll25chF/+4B1474d/U8SWTcymixZnjWYSBAGf/chlGB6N4cGtx4rUstKjptIFkRtZeLLECzXlSKDGjcUtZt7K57eX1/79plWNqenHnjiCaKy8C967XjqBgaEQaqqMDvj1AT+e7BgAYO1U5OJGG6sW9tq6pgEWoiKRRnzOGtu7e+CWZbxv+VIAxvno3Uvnk6iIo0Kxvi6KhMaylkmCkHaO19kk48/IqcgSWRTTPs8xNT/RC2MMuqYZEbmZ1V7uuxIEQBDEtGWZlOtIdIn7u0bK/BxWLJbXmg5lr54dGWdN+xNVzX3EO8vuti5FwgdvWYvbX7cCbqf1cZkxhrjGENcMN0QIAsAYdABIRPIxALpurKfpibg+JCP7jG2oOoOq6YhrDKquIxLXEY5r6A9GsatjAH965TTmuhaU9DMTUJ6njClTqch498pWXDO/Di0+17jX+u1DIWxp78eW9j68fHYEM5nQc06DPzU9HFXpPEhMiiC3nzjGEcURhJ2JUfwZQRCEJfavjBIEMWepJaciwiYMcZbtdo4/49EtenKvu3IVfnXXO/GeD/1fEVo0Pooi43VXr8KnPnpt2vJITIVLkSEIAr756Stx/MQgDhzpL1IrS4vz1wVS07G4hu7B2YuyICbHZeub0+avWliLZ04NF6k1heX1S+tQz0Vt3P/QviK2ZnZgDNi9twtXbzYEKI1eM36QWXRKKRLvVJTdSS/m6ITNdHchZpZHT3dhbVUlLmqoB1C+4omp4s8RfxYJZcefuUQRfX1GxCNjDGNq3Chsw/hce7q7Ifb2puYhCBAgoC8WQkTVwBhLrM8S0wASyzJdkAQI5nYA6ExP/Q4FAaltp75PQUiIZ8zvl3FCm9RkHlYLaa/P/N1abYd777T2J9qWnNc1HZqmwSfJ2He2D6qqIq5q2NfVC6Zr0DQNTDMedV1PCIc06GpyXk08Fr7qL4jGZ5r6J4rG5ywm/w4Romg8GuuL5t/JzYsZMY8sIWZAah9IezZtPePRWBeCAIfigMPpgtPthtvnh6+yEp6KypzH2CQVDjltfxgpUJQMkU6AO1eWulNRlLObnE1328vPacIX79iI+QFf2nKdMRztDuLBPadx38un5kwMGWFX6PqVZ57PhdtWteLy5hrUuZVxry9f6R7BlvZ+PNbWh2OD1vGyM8EKTvRJLkXEZOGvlyS6byJKFHIqIgiCsIZERQRB2BZyKiLswuCw2YFSLBv5fNFyjKq49oqV+Prnb8Inv/DgLLcoN02BCmx/6KPwcgIEAPjWb1/BgY5B3P2pKwEYBaZP3nkxbvv4w8VoZsmxdlldavp07xh0GmljO7oH0juF//68VjxyrBcvlXhRTQTwzWtWpuYPHe3Bzufai9egWWTvgTMpUZEkCrhsXhWePjmULSgAIHNF87iFEDRXcSHT3YWYecKaKfrqGiOBZhJRALyydcRPNJxd9FIE4Pjx4wAM0UeE+1wVRcHLL7xgua3BaAQa7fdZVDtdGHS6AABRTcfZoeLHnDI9W+BlRwRRgNvng8dfkfjnh8fvh9vnT4mNal3mdWk4rlFxYQao9yhQuGyUfV2lLayOcBGEs3HPWFvpwmfefT5uumxh2nJdZ9j6ajc+9cd9GAjNpfixYmMe+6iMPj7CHP2E1tf58a6VrdgQqIQ/Q7jKE9N0PHtqCI+19+Hxjn50jxXnd7yI65M9PUqiImJyxDTuWDg3f+pEGUDX/QRBENaURmWUIIg5SR05FRE2YWDI7EBRHBIcsoi4au8bDI27kX/w6Q6sX1KLBY2GffW7bt2Avr4gvvnDbcVqXhpf+ffXZwmKdr3ajV/89TCicQ2PPn8S1184DwAdF/Jh6SIz/o6iz+zJ03vO4O4HD+L2m1YDMEQk71rXjJfOHi5yy6bHb9+4Hl7FFBp8+TuP52PuUdKMjEbQdWYYzU1GrN2CSjcUScRv2rI/AK6OammvLeRw0Zgrn6WdCHGRNs0eNy6sq8bzfYNFbJE98FnE8yWJhrLFV05un868ilKcTuRCKwGRSjHgIyVicz1rKE+YzhAaGUVoZBTA6dRyQUBKbCQ21CHmc0MQBAyEY+g8NQRBkiCKEmSHDKfbC4fTBVlRIDsUCKJguGExBsb0hLuSzjlsId3FiXPjSlbdjGWF+ztThXveBYt/ryLzdyvqU+0YCcfR1p8dm1hK8E5FuSLICsWbr1iMf3/3+fBz91CMMew+MYT3/++LJCYqAvz1mQ1+XrZjrl6/XjWvFm9Z2ox1df606ONMRmMqnugYwJb2Pjx1YgCjNogaa/a7UtOnRsnpjJgcvKMkHQqJUiVOgzIJgiAsIVERQRC2pa6GxAOEPejLiI3yuh0YsnmnisqNqhiLxPHerz6BP3zxWtRVGsWRj915BXr6RvGr31m7AswmTYGKtPnv/mEvfvbgQcQSHfO7j/alREUL51WhwqdgJJjdUX795kX4h3esR121B4MjYew92IO4WvgbQZ0xqKoOVdMRV3VjWtURi2vQNB2xuA5N06FpDLJsxHxIkgBJFCBKomXHSqXfCU3TEQobVtFChpaAL/yIggCnIsHhEM3CEITUayRRgNvlwNWXLUi9ZvP5LfjRJ6+AKBrbEgUBoihAFAwHKEkUIEmi8chNG+saI/rF5HTitYJgtEVIxLKIolG6Sj4ml2c+ihkxLkb9LHtZklPdQdz0ib8gFCnP2JFfPXwoJSoCgOESjlepUGTc/+Zz06zy//zIAWx/Zm64FAGAJAnY9fJJXH+VG55ElEGz34WrF9RgZ68XwZiWcJJLPzYpogDRYdyaJftha11OCBDS4s7iOoPPIaPC4YDGGPTEP40x6GCgvq+ZYUd3D26Y1wLAOMZ+6YI1YMz4vJOuLMnivcp09EZiuPtIB3b2lHdcp8+RuzshYuVUlCaUS99Znc50cXESnTFKTMmBzIuKaDRtQWAMCI0GERoN4uzYMIYSBeCesSjODM0NlzLVsxTA7NyHXz6vOjW9p2u45EUHvKhoppyKVi2owuffuwEbVzakLQ9GVXzi96/g0YPdM/K+xMTwuy8V0rOZK5+PLAJvXNKEmxYHsKzKm3auzqR7LIot7f3Y0taH504PWQ4yKCZ1XIwjxZ8Rk8VeezFBTA0rJ2mCIAiCREUEQdiYQK2n2E0gCABA/3B6B4rHJdteVBSLmzdAToeEEz1B3P61J/Gbz14Nv8codH/5M2/A0fZePPN8R/EainQB1L1bj+KuP+5Pe/7p/WdT0w5ZxH0/vgXXvft3aev87KvX44qL56dENs0BH9Ysq5/BVpce1108v9hNmBILmyvwzteuwH//6UCxmzIj3HzF4rT5H790skgtmToigE9dtgi3r2+FUzY7zo+19+ML39hSvIYVAVEUEQrH8fhTx3DFpiXw+wz3FQEM1S4Hql0Oy9c1edKveQRBwIb6Ost1Lw2Mf2xLCo0YkgIlM4woMQuNMWhMTzwmxJJMTwmUTMGSOdpe4P5Pvo/Gi5oSwiYk3teYN9ujMySET+Y8g9lWq2WMe42W3EZKQGXOx3QdcV2HqutQGYOqMwzFYjgTDhVklOHx0VH8ob0Tb15kijUFQUi4TaWXxiRIaPW68ZlzV+J/j53Ab9pK7zc9Wfw5REXxWAy6lj3CXpbMEfosQz2gKDlERdNoX7kjC+RUNJMokvn5Bm3gGFGOLK8zRch7T5d29BmQ4VSk5HYkmSxup4RL1jTC45RRU+HElee1YNO6RohcfCpjDA/tPYOP/343bG6kS8xxVO56TCwzVZFfkfGuFS24dkEd5vncEMexqmobDOHRtj481t6HPd2jthZg+DnHNYo/IybLSMYgKbcsIkwnKKLEiGt2PjoTBEEUDxIVEQRhW+prPJAlASpdyBFFRlWN6IKkYMXrti4K24k4F9XidBid2gc7BvH333wKv/q3q+BUJIiCgLu//06s2fRVqEW8yXdwNuBWtd+DHYP41d8O4z2vXQEAWDSvEr/69g14zyf+CgC464vX4spLFmS/kCgb9FIfuj4OZ/rSoz6euu1CIyoFxu+Bn9YTESr8p8FPS4IAOeEqlfZ8xmsSi7Jen0SA8V6DERV9oRiGo3GMxjQMRVQMReIYCMcR0XQsr/Fg84IaLKv2wCGlj8Lds78Lt3/49+gfyHYrKWekRJVkJBjFo9sO49x1zVi8oBZ6ngX/6cTSiIIwbjFjLhHXdRwdGUHbaBCj8ThU3RRACQIgIt0tTUDCkS01n76sLxJBncs14fsCiTjDJfPxQMdphMtU8JEr/iwWtnZ04SP/Mg/rDkcup6Ly/OwKAf87J6eiwuKU0o+jdoihKUfqueiuA2dGitiSwhDl7r9cyvS6WxVZxJZvvwFN4wy06h6J4H2/egH7u0r/sysH+GMGdWFlozFeVFT616ktXhduW9WKzS01qE+4k+Zi99kRPNbeh8fa+tBWQq53Tu7+juLPiMlyJhhFXNPhkAxn7U0tNdjS2VfsZhFEXpBTEUEQhDUkKiIIwraIooC6Gg/O9o5NvDJBzDCMc2soDVGReQPk4JxDXjjUi0/+9Dl878OXAQD8Phd++PU34wOf+F3WNibiwvPn48LzF2DlsgAaGyqgOCQIAjA4FMLQSATtnf14ec9JvHLgNIYt7LLXrW7CG29cj7WrmlLLTvUGLd/rq/fsxpqF1diQsPq/9IJW7P3b7RgejaKx3pda70R3EJquY1GTGanWMRzGYDie99+XC1E0xBuSkIgK4x5l0XCukETBiC1KuGskXTuS4hCeZp8zJUQYGgljhPus+KIr7+oQjxvxayyx7cQaxvvoDNGYilhMQ1w1ItkYQ+pR15nxjzEw3RCpqJoOXTdi3TRNT83rOoOmGe4lqdcl/jHGoGkJt5DEOuZ84rW6DqYzaNx76ppuzCfW1RLzLLG+phnb/vWP3w45se92lHGx5NX2gbR5j2P6I9sLRa1HwdKa/F0Df/7rXfjGD55CtISj3KYK7x4QjWnY9dJJHDjUDTXSj9FgFA5Z5CIE+di/5KuExHaM32oyOpCYGg5RxOqqKqyuqirK+0uigOtaA/jziTNFef+ZpkKxvh6K5BAVZQkeORw5nIq0TPURAQAp0VuSsIUzFDF16l3OtHm/IsEhCohqOgm4CkS9R4GDO2ceLAdREecU65qmU9G6JbU5BUVRVcMPth3DXU8cm9Z7EIWFd9+hc1c2ml76oqJ1tX68a2ULNgaqUKHIOa/R45qOZ08P4dG2Pmxt70dPKDu63e40+9KFUhR/RkyWuM5weGAMa+v9AIBNLdUkKiJKjkK4HRMEQZQjJCoiCMLWNNaRqIiwB7rOUsVit9P+p09eVOTMECk89EwnrjyvBX+3aSEA4MZr12D18gAOHumecLuiKOI7X7oZN79uHZQ8RuDquo5YXANjRpFVlkWIopixDsP2PdaF17im44Pf24n7vngd5jUYIiK3ywE3FyV0qjeIt39xC0ZDcey9+y2p5R989CAOD9j3OLLnfZfBKxrf0ee+8ij+/MjBIreo+FT4nSlBEQAcO1X6kRi5GIuUh/BG1xke3XYYP/3lc9i9r6vYzSkaspxdRAyOxdDR1oOzZ3smvx1JBlNeSc0vXlCDSzYajmzBSByb/2MLnA4RsiTA6TCK3YpDhCJLUCQRsiRCFIwCl5A41oowhAiSKECWRCiyCIckQpFEKA4RjsS8I/Gcwv0Gk7WxpFuWJIqGmFIU4JAESKLRFjlxnhSSYkvun5hYJiZEmKIoJNpoTgtCYllCmJl8XkgINsXEdsSEICv5GlkSE+9hbi/TPasYMMZwaqx0RqTnS674s2jY2qGML71ldtPmjD+jwqwlTklKK/bFyBajoCiSmOZSurjaFHfojCGq6YiqhsBI1RniuukkaBy9ACTc0JByPTP2+1QcZdJFMMs5MNtdMLNsPalvm01uvcx1Ns+vRtBZYQrKYYgBWCI6MxlTmRTVy4ljerKNGmOIqDqGIioGI3F0jUYQtdg/b17RkPp8g1EVnYOl72wY5QRnimN65yBJTP/WB8di6B6N4P6XT+Hup9sp6syG8PoSOnVlU6ofyRUtNXjL8macU1cBt8V1fpJgTMWTnQN4rL0PT3YOlLzD3fmNlanpcFxDXwEHaRHlz5H+UEpUtLgq/0FKBFFsyKmIIAjCGvtXRQmCmNME6rwAeovdDIKApuuQYXQOe1z2P33mcipK8uV7XsZV57fA73FAFAXc/8v3Yd3mr40bg+ZxKXj2b/+M+jpfznVyIYoiXM7xO9d/8uBBHDoxlPP5vuEIbvnMo/jaBy7CNRe0pj0Xiam489vb8Zpzm/Fv7zwvtVzTGU6M2LegW+mU4eVEX3sOlKebRb7U15r7GGMMJ7tHi9iameXWq5amzX/8Mw8hHtcgSQJEUUx7lKV0MR5fvBAEI6oxGlVTvyHHKxgAACAASURBVP+ky03qkVuZfw7ILn4oioTmQAVqazzw+5zw+5zwehT4fE74PAoURcLAUBivHu7Bcy924vHtx9B1tvRdBqaL12Pt3KKq+XXEi6KUMc9FaugMQyU44nm22fP1G+FPOAuG4ipGVdUQMyV+CwzGfp8s3ycL/KajXLJ4bqyTXNcqOjDpJMdgjGqM6TqimobHz/Tgpf7c57VSp8Jhvb9HQ9niAEUU00QwmbIJEhXlh8IdI+K6XrLFWrsSUrWcojlREOCWpXGLy6XMtRcvRCAQKNj2NJ3hQG8Qjxzvwx9f7caZoBGhc+3i2tQ6L58cLAsRRpwXFVncf00VVdNx3n9uKdj2iJmBNzGzga7Z1tjZp0gWgZsXN+GmxQEsr/bCIeb+MntDMWxp78Njbf149tQgYmXkbLGEE9N2BSn6jMiPbm6fqXLa3+mdIDKJ04ANgiAIS+xfFSUIYk7TWOctdhMIAoBRrHcm6l0et/1Pn7G4OTLOqlO7fziCr/9mN/7z/RcCACor3PjRN96Mf/h47hi0P9/z/ixB0eneMZzqC6KrL5RyIqr2O1HhdWBegw+NNR7I4/SqdvWN4cXDvfjTjnY8lcOliGdwNIoPfGs7Vs6vwhXnNWPNwhowMASqPbj/i9fDmRE18Mcj3QjbeChvs8+M12CMoePEYBFbYx/quWO/EbdWxMbMIC5FxPtvXp2af/aFTtz/0L4itoiYLrx7Gk++oiI5Q6zBx0So1ME1IW5FSgmKAOCTL+7DkRH7OtaVKpU5HAvDY9mftYcTYKRHdwKSJEHKIdAgUZE1jgxREVFYeiNR1DodkEXesY1RHOUUkEQB5wT8OCfgxycuXoiHjvTgv3Z1YhV3rfdcx8A4WygdeFHRePc/RHnCn69kOlZkwUd5201V5JNFvHNlK65bUI/5fve48WztQyE81taPR9v68Er3SNmKej1cH1IoXtquS8TsE+HPh6LNfvAEMQko/owgCMIa+1dFCYKY0wRIVETYBN75x1Ni8WdWTkUAcO/jx3Dx6gBef6kRqXPjtWuwclkAh45mx6BdcdlSrF7RmJrfvucMPveL53GyZ/wirSQKaKh2o7nOi1q/IaCJqTrGInG0dY2gf2Rqo94OnRhKuRr96OOXY8OK+qx1Hu/ox+d3HM172w0eBTcvb0CtW8GuriFs65y5QgcvKopTZ10KXrwWLePP5Y6b1sCRKKRrmo4vfINGoZcykiRAzFFE1LT89mNZThcVCVxnLIksJqa52p2aZoyhjQRFBccjSZByFN0iFqIit8SJijKey+VSBBhRSkQ2vHMCjaQtPJoOdIUimO8znRp6wzGcCUbhUyR4HBJckhE9mYz/SsacJSPNUjFn3LzpGGhGooFbZjGZgv+Wp1eey/1qAYazWzCmporqQqqt5t+YbE/K4Y3XCgiAJBifiwCkCbFkUcAtKwO4ZWW6E9KushEVmR+E4iigkxXVY0sCnStAjidKmasU7hhWGFyyiPeuasWNCwNo8jrHFY3u6R7BY+39eKytD8fKIKpxMni4Yxgf7UgQk0Ecx52UIEoBGrRBEARhjf2rogRBzGkCdZS9TNiDWJwTFbntb9/Lt9cxTjzDF375Ijad04gqn9GRdt/dd+CKm76PvgGzIOjzKPjJt96a6mjrODOKD3z7qbT3yIWmM5zpD+FM/8x1vm1c2ZA2/3zXEH6+59SUxEB1bgceeesFqExYNL9vfSv+erwXH9v6KmZioEqzz5WaDo5RnFGS+lpTUBqKqEVsyczymvObU9NP7DyOV4/0FLE1xHRx5nBtAQBNy8+pSJLSt8XXOXQaNTchzVxkg8YYyvcoUjz84+zv0XD2Od8pmfFnmXuw0+nMWj8JieiskQROVMSo03smGIyqqHWq8CZi0OrdCgbCcQxGVAyW8bXJrx/djy7heEG2pYjA5nm1ePvKZmxsqkxzfuIZCuV3jrQrUdUUEDum6VSUZuxAh8GSgBfBkjNHNnY4ncsi8LblzbhlcRPmV+R2JIprOp47PYTH2vuxtb0PZ+fgfbqXiwCN2tj5mbAnGi+ytIWMkCDyQ6U+F4IgCEtIVEQQhK0hpyLCLvBxYu4ScCri2ytLuW/iB0aj+O7v9+ILd2wEANRUebD7iX/FK/tP4WhbH2qq3Lj8kqVpkT7f+O0rkxIUzRaMu9nb1zOKdzy4d8rbuqy1OiUoSnLDknrs6R7B/+w9PeXt5qLZbxZSB4bmxqjHycDHnw0Hy7cTl4/GCAan5tpF2AefL7cwIt/4M1FMF4PyRQ/q35qY1hpTVBTJ0yWKmBwVDmuBtaaqiMeyj9sOIT1GikdxWf92yKUoN7xLlMoESLIMURIhShJEUUo8ipBkCYIoQZIkCKIISbJYTxIhJL6f9O8mEVPHWCKyTgdj6SJH4zXmhLGO8TrGdDBdB9OZMUqdMeh64vnE6N/k+5nzxqOuG+sj5ZYjJCaFdDeJjMYknxMSz+mahlgkgkhoDJqa/7HgRDCM5ZU+SKLxvstrvNjXO0qRCJMkpgNbO/uxtbMfigj8y4VL8LaVTVniosc+dDke3NeFH21vw9HeYJFaO334wrvDMV1REe/yQJQCmY5dRDoSJ7Sa7dP73y0O4K3Lm7GsyptTSDQW1/BU5wAea+/DE50DGImWr3h0MngV8xg2VsbOwcTMwF8nSSSyJEqQGDm0EQRBWGL/qihBEHOaRnIqImxChOtU8paCUxFXOFFyxJ8luffxY7h8fROuuaAVACBJIi5YPx8XrJ+fte6fdrbj0edPFrax0+TR50/iHdcuAwCsrvNhTZ0PB/qmVpBo8FpHsLx1ddPMiIo4EcLZ7tGCb79Uqa81488GRyJFbMnMsu94P9YvN6L7Xnv1CjQF/DhD+0HJUpFDVMQYQzyenzguM/6MH+BJFvIT01prXj8Ox+Z2UWim8DusuxKi4bDlclkUIIoizjnnHEQ1DXHdvE5Ze+65WLxkadZrxtQoukNjKeGJmBAiGAITAUg8CskfCJ/LBPO3whiDKIhpMYKMsUQkFTOFNCnxTHpBOCVi4RaOF5PCI2SOzrbabkabUvMWbQMAQRRxUUMzFEWBJEnY3T+C06HyPVcWAsYYwsEgxoaHEBodRWh0BKHREYSDwXGL2zGd4XQonIpBEwUB6+r9ONQfRIicG/IipgNfee447nq5E9+7ahUuaqpK/QYkUcAt61twy/oWPHrwLH64vQ17u4aL3OL8icQnjp+eLCIVYUsOXpRJ8WfZiLN8LXtlaw3evbIVa2r9OV3SwnEN2zr78eCRHjx5YgAxihNNwcesklMRkS8qFx2VKy6ZIOwMORURBEFYQ6IigiBsDTkVEXYhEi0tp6IwF8ugKLnjzwDDmvgfv70DH3nTWvzDG1bDmWP9B7a3499+tqug7SwEX71nN269YjEUhwRJFPC9a1bilj/uRjCW/4g6DxcVpzOW6hBu9OZ2IJkOfPxZ58nBGXmPUoR3KuoZtC5QlwM/+N1evOP6FRBFAS6XA296wzrc9fNnit0sYor4c4iK1Hgsy5llIhSnK20+zamIOrgmhHcq6ouWr9tZManIISqKhMYslyf3YbfbDabGIXLFhrq6Ovj8vqzX6HEFvnEiXOcyHo8nJciI0kjaCREEAR6/Hx6/P225rusIB4MJkZEhNgqPjiIejULXNTDGMBTX4I9rqHc7oes6oOtYUm04FpUnM3uOGYmpuONv++CWRXz2kqW4cUlDWvH6+tWNuH51I7Yd6cF3tx3Fvq6RGW1PISlo/FkRXV2IqcFfnlEJPRtpFlw3NzRU4vbV83BeQyWcOX6DcU3H9pODeOhoD7a295MLTw7IJZWYDrwggzSyRCnCAMR1Pe0alSAIgiBREUEQNsfllFHpd2J4lGJhiOKicgUbaZw4MbvAi4qckyjI6Yzhe/ftw72PH8NNly3EuiU1qK1wIRbXcejEIB5+thP72+0pegnFVHzz3lfw6XefD0EQsKjKg6++Zjk+suXVvMsi1VzMG9+RdnCKzkcT0cTFnx1r75+R9yhFeKeirl7rAnU50D8cwZETQ1i5sBoAsGB+dZFbREwHv99aVBSL538N43BkbIs69vOiucadmu4aK19hYjHx54g/i4Ssozz5K6fMArnHaz2IgB/lTOSGIv6mjiiK8FZUwFtRMeG6q6p8WFbpQzwex+joKKrbzuLsyBjisSiYpoMxHULSESvhoCWIIgxTLTNeznCkSrhiJWLhjOeM//hlAKxzlKxy6DKfT02yzEUA5+KVycFRGZgFLWZY1fHpHUfwH08fwb9cuARvXt4EJ+fuc9XyBly1vAFbDnXje9uO4cBZ+4uLeKcieZqiIo072ZPJQ2mgk1PRuKSLVAp3MXtZczXeuqwZ5zVUpg0Q4tEZw67Tw3joaA8eOd6LoTkebTYZeCFIIb8vYm6QLiqi4yFRejhEgQRFBEEQFpCoiCAI2xOo85CoiCg6vKhounb2s0GIExXl097uwTD++y+vzkSTZpRfPHIYV29oxcWrAwCA1y2pxw8E4DNPHZ10p2GFIuPqhbWWz/3v/q6CtTWJQxTQ4DHj1g4c6i74e5QqvFPRiTKPA3PIZifbYBm7Ms0FXE5rkYWaZ/QZAChKuqiIOvbzg3cqOjFmLXIhpkeFkiP+zEJUpIhiWtSXjnSxkMeTQ1TESFRkhZzxecZJaTgrvDoURKPHBb/DgZqaGrzG7cPjneUnCJf2nwRisxenl4xF+9pzx/Gh8xfgtjWt8DhMYcC1KwO4dmUAjx48i+89cQyv2vi6kHcqkqc5CEXj7j2pHFsayOLMiGbKhfT4s6mjiMCbljbjhkUNWFblHbfou6d7BA8e7cHDx3rRPUbOlfkg8W5pRWwHUZqQqIgodercysQrEQRBzEFIVEQQhO1prPPiiE0dUoi5g6aZN8XTHXk6G4Q5IY1cAiKoQvCeLz+B535yC6oTbiGvXVyPC5uq8LNXTuI3B7oQUnMXJz2yiP+5YS2aLOKLzo5F8Vh7X8Hb2+h1pjpYGGPYf/BMwd+jFBFFAbXVpiCg/bT9R6ZPBzcnRBkaJlFRKePMEY2pTcFFRHakd2LxMShxijoaF0UWEag0nYoOD9m3AF3K5HIqioazj2O8c4Dh1GI+J8sOKE7rTltyKrLGJaU7McToc5o1OkdDWFtjuBrVuBxo8CrooUJ1QdABfP/lTnz/5U7807nz8b518+DmxEXJWLSth3vw4x3H8dKJoeI1NgcR7l5DmubodlXjnYqoIFsK8JF3FEuZDS9MyXePDrgVvHNlC65orUMTdw9txZGBMTx0pAcPHetB5/DsCSTLjZlyliLmBrzgvQSM3gkii3oPiYoIgiCsIFERQRC2J1BnPXqZIGaTaMwsCjuViePEig3vVCTPkRBzVddx4ycfxl++dgNqKlwAgBq3A5+6ZDHes64Fn9t+FE+cGMh6nc8h4WevW4PzGq2jL+4/1J020qpQNHNRSbrOMBaOF/w9SpG6Gg8krlP+iA2LRoWEcV3sHhoNVdIoDutzg6blH7Egienb4kVFfKGRyKal2hQUMcZweJRERYXGIQpQclxbWMWf8SIYPWO8uzdH9BlATkW5cEpmN05cy/xEs1F1BpUxqLqeeEz+06ExhrjOuO9FSP0vwIhdEiDASPQSIMIsDDN+PRgri4nXSIlipCQIxusEQExsRxQEiIKQ9h4iBCDxmKtWzJhxzuRrm5l/e2bh05GIHysUJ4JhLK3wwiVLEAQBFzRU4JEZEJ7PdX70ygn86JUT+Mj5C/Deta1wccLEa1Y04JoVDXi+cwA/3dmObUd6siIVi0VULVxctkYOZCUHP/AoTtdqWaSnOk78+1hX68c7V7RgY2MVKhV53Nfs6xnF4x39eLStD4f6yzc6ezbhL/PoeETkCz8wgJyKiFKkgURFBEEQlpCoiCAI2xOo80y8EkHMMCFO8OF22f/0yYug5tJNfPdgBJd98E/4/kc34ZoLWlKdj00+J/77hrXYeWoQ397Vjn29QQCAX5HwixvWpQmK+ocjqK10peb/cqxnRtrKuyKFIyQoStJQ50tNM8bQX+YjTLt6x9BSb/zNr79+Fb730x1Qx3HVIuxLLqciXc/fqUiS0rclco4HK5or8NW3nQsGBp0ZokSGRME9o7LaNxrF3U8eQyg2d/apllrzulFnAP2cCo9fzn0dZOVUpIh8oVVHkIsEdDsk9EayhUg6GJ7vNRz8kpcxhqgk4XYEXmCSnDcQUo9C6vU6YynBiZAQsAiJ6eT2k3IaQTA2Zv6aGPe/2ZbJwdJfl/5U6lm+TVlt4ecBbKxrBCqN5X2RGO49dtoUCzEdms4QT8xrdlFbTIGkgGk6f4EAI6ov4HaiweVEjUtBnUtBlSJP6fpYZQyvDo3ivLoqAIAvRwwgURiSzkX/vGEh3r26JU1cdOGCGly4oAZtfWP45XMduO+V0wjF8j/fFpJIvHD3XzpXxJ87d3KlTukeb2eDidxuRACvW9iAW5Y0YlWNL+33nklU0/HsqSFsbe/Dts4BnAlGC9xaIs2pqIjtIEqTeJrbXhEbQhBTpNZFoiKCIAgrqAeEIAjbQ05FhB0YC5miD0+OwrGd4Dui51pPdEzVcee3t2NZayW+/oGLcM6S2pS4aFNrNTa1VmNvzygGInGcH6hABfd9tp8ZwZn+EC6tbDTmh0I4Ophd7CwEzT5TuDQ8Ut7CmXwIBPyp6fgcUAN89ze78X9fuh6CIGDRghr85mfvwLvvvDdNGEiUBkoOF7upOBWJGfFGvIJBFAS89dKFk97WLRvn4ZovP553G0qV1hpTVBSeQvQcMTE+h/V1EGMMsUj2+czBDXePMQ0R7nthigOj8ez4qJAWx/HR8naqmyoXNTSlpnsiUZwOlec1RCGuABiA4ZiK4ZiKI8Ome4UkANVOBbVOBbUuB+pcxnS10zGhGKQ7bBavBUGAT5EQpHP2jPLdFzvw3Rc7cOe58/DeNfPSrt0X13nxxdevwT9ftQy/eLYDv9rViZFI/ufdQhDTeGeG6W0rTYAxx+7lShU+8UycI07B+WDVPSGLwNuWN+OmRY1YWOGBNM7nNhCOY1tHP7Z29GPnyUGMxem4O5Pw30TmoAWCmAje6XsuDXIkygc/DRwgCIKwhI6OBEHYnkZyKiJsQDDEjaovAaciyr0Hjp4axhs/+xiuuaAFX7/zYlRxzkDnNPiz1j98Ygi3fvYx7P7FrallDxyZGZciAGjm2tNHNu0pWpsqU9NjRSoKzSbPH+hBx5lRLGo23LIuumA+br5xLX73wJ4it4zIF2eOjidtCsKWTKeivoExrJhSq4D5c0ycPa/W/HtH4uQCNxPkEhXFolEwi8gymXMqyozQcLrdmasDAEJq+R//p0qN0/zM1tdW4isbV0JjDBozrv+0hCuTphuOT1rCschYbrgjJaf15COSr2HQAHM68TqVMcQ0HRFNR1jTEFY1jMU1BFUVwbiKUkv60Zjh8tQXiQHD5nIBgFuW4JZEiIKQiG8zdZ2yKGBphRevnRdIveZQfxAhVYcowPyMmemOlfx8je0LkJJRcoloOSHxxnwUHF9/s7qk59tkBf963rEr+Tea09mFvoiNBd0/eeUkfvLKSdy6PIAPnb8Q9W4lNXCg2qPgE1cvxz9cthj/+3wn/ueZDgyEsgWLM0mcU5VMJt5pPDRyKio5eOHFNNPvyhK+f6LG5cCvrz8XK6p84wqJjg+GsLW9H4939OOls8OgFK7Zgz+E0edO5EuaqKiI7SCIqeLJEW1PEAQx17F/VZQgiDlPoHZuFcMIexIc45yKSkBUlNYRPcc7Nbe+dBoX/P39+NAta/CBv1uT5TTFGMPOfWdwx9efxH99+DLIktHtEdd0/PHw2RlrV4vfFBWdPjM8zppzi9ZmU1Q0UObRZ0ne9um/4dm735waxfepj16J518+ifbOgSK3jMgHr8faIjtfpyJJFLOKkR0nh+BwnEhsj0FIFLqTj6KQXoQ+f31ranqunQN4p6KeMMVhzATeHPFnMYvoMwCQuJK4miE6crldmasDAMIlJioSAFQ7XahzeVCjuFDldKLS4YTPocAjO+CWZThFCbIoQhIEiIJgKR5Jinv0ZMQbY9ATMW/JuLdaV7oQa1Nj7az+rVYE4yqGY3EMRuMYjMUxEImjNxJFXySGnnAUZ8NRnA1Fodpc9M4AhFQNITW3GJT/vCOqhp/vOzULLSN47jvSjfuOdGNDYyU+eeFirK71pc6bfpeMD25egtsvXoDfvHgSP3u6HT2js3MuiKm8qGh628oUYBL2h4+blMmpKAt+j5ZFEatrsgf5aDrDS2eHU0KitiHr6wpi5kmLP7P5uZuwH2pafyQdD4nSw5/DhZogCGKuY/+qKEEQc54AORURNmCI64x2Ox1FbMnkYGkd0XQTDwB3PXAAdz1wALdcvhDXXGAU3NvPjuJPO9px7PQILlxVj9ddND+1/p+P9uDs2MyNcG7i4s+Od5B4JMm8lqrUdFdvsIgtmT36hyP4l+/txLc/tgmCIKCm2oNvfuFG3PreXxe7aUQe5BIVxWP5FTMl2focc7StH9/78Xb09E3sbLbhvFbc/8vbEnNz6xzAOzOdHKNi1Ezgla07Wa2iz4D0GCBVTxcV5XIqCmv2dZlyCCJavH7M91WgxeNDs8eHBrcHDnHudj77HDJ8DhktXuvvEzAK7mdCEZwIhtExGkLHaBjtoyF0BEOIavZ1x8lkVZUvNX2of25cp9iVF88O480P7sY8nwtfunw5NjZWpoqXHkXG+y9dhHdfuAD/98IJ/HD7cfTP4HU9AMQKaNnFSFRUcqgaiYqmQlzTsfPUIB4+1ottHf0YnANOtaWAzAlBSORI5ItKgxyJEieXMy9BEMRch46OBEHYnpoqNxSHiFi8dDqbifJjcMQslHnc9j998kU7uodP54EdHXhgR0fW8h9/fHOqEDEYieObu9pntB18/NmhI90z+l6lBC8q6jgzWsSWzC4Pbm/Hay9ZgOsuNoRtG8+bB8UhIRbPPzqLmH1kWYTbbS0GisfzK2I6HM6czwUnWRC1irSZK/CiorZRKvjPBJ5cTkXRiQV0WsZod6fL2qnITvFnsiBisb8SyyprsMRfhVavPy3SrZgcHhrCmBo3nI/4fxAS8V3GCHFJMI4KomAEbgmJ6C0RGVFcgrnMXB8W2zfIZ/S5JAho9brR6nXj0kBNarnGGE4Fwzg6MoYjw2M4MhTE4eEgxsZxCyoma6pNd42Xu0eK2BIiyclgBO99ZC8aPAq+eNkybGqtSblsOGURd1yyEG89vxW/fuEEfv50O/pmSFwUL6A4jor4pQf/nUlURc+ibTCUNv9K9wjuP9SNh4/1kJDIhji4DL8YHY+IPImn9UfS8ZAoPXzkVEQQBGGJ/auiBEEQABpqPTh1lgpDRPEY4mKYfDkKx3YiGjMLMdSnOTHzGryo4kQ+X3r6OPrDM+eSUOWU0zK69xyYuZi1UoOPPzs0xxycZNksUgfHoojbtKBKZFPhtxZGAEAsll+Mn5zDqUjXGUKTPC6J3Ah5NociC/wuGdVe0zHq4NDcESbOJv4cIzetnIpkQUgTnmQ5FeUQFUXyjA0sND7ZgbXV9VhTXYdlFdVQpMl1LGuMIappCMbjGInHMBKLYTgew2gsjqCqIqqpiGk6VKZDS8ScJREFAbIoQBbEhHgHECFCEpNCHxEiAEk0yjPP9fRgIE8ntEJTpSioc7pR63Si1uVCrcuJasWJKsUJv8MBjyxDkaSUUMkKSRCwwO/BAr8H17TUp5a3j4awb2AE+wZGsHdgBGdCxY8zXFLhQYPbuF5kjOFPx0gUbid6QjHcueUAqhQZX9i0DFfNr4OUOB96nTLu3LQY77lwAf7vxRP46c529AYLu0+lx58JcEjilIVGJCoqPfjzm8MmwlM7sf3kID6+5VU0+13Y0t6HIwOhiV9EFA3eec0p0f5M5Ad/DqPuSKIUEakjnSAIwhISFREEURIE6rwkKiKKysCwGaGiOCQ4ZBFx1b7uWbyoiJiYC1cGUtNjcQ0PHu2Z0ffjXYoYYzh5emhG369U8PucqKo0o1N2H+4rYmtmn/NXmMXUe+9/BXNIC1LyVPhzuwvF8xQVKc4czi2hyTsr8AK1uURLjRmZyxhDR5AKVjNBLjv4aDj783ZzYhyWIaIRRAEOxTo2sBiiIpckYX1NA86rDWBpRfW4ncmMMYQ1DT3hMNqDIzg8NIQDQ4MYs5HD0mwwFIthKBbDsQn0e4ooYnlFJZZVVmKBz49GtweVigJFFHOKjRb5PVjk9+CmBY0AgP5IDHs5kdHxkTEUMG1qUqyqMl2KwqqOY0N0jLEjQzEVH932KnwOEV/bvBJXzK9N/Z7dimTEom2cj9++fAo/2dGGMyP5nadzkSkg8rplDAWn5oqkaukCJcL+UPzZxDxwZGbvsYnCEeYGt/CDoQhiMri4qGQG6tQgSo+ZHGRKEARRypCoiCCIkqCRi7IgiGIwMJw+ktXllBFXZ8Y6vxDwkUmCIECRxbTRs0Q61X6zqNmfR+F+qjRzriYUb2Uyr8V0KWKM4ciJuSW28ntMh5ondh4vYkuIfKmssBYCqWocmp7fsVdRrLc1nEfRU+ZGFM8ls4PGKlOUmBmzRRQGAYBXti4uWYmKXJyoSM34TlweT+bqKSLa7J0bF/krcWlDC86pqYdDtP7bGGMYjcdxbGQYL/b14sXeXqhUJJk0MV3H/qFB7B8aTFsuAlhTXYO11TVY7K9AwO2GV5YtRRS1LgVXNtfhyuY6AEBI1XBwcBR7+g2R0cGhUUQLGD9lhYfb98PkJmh7gnEdH3r8IGpdMr60aQU2z+Ni0RwS3nPRArz9gnm475VT+MmOdpwYnJ5ILJax/3lcUxcVhTMGiNT5FPRNcVvE7KDy8WckKiJKnCB3DPJTDBCRJ03cgJuZvjYjiJmgc4QGDhAEQVhBoiKCIEqCQ6fU5gAAIABJREFUAImKiCIzNJpezHU7JYyOFakxkyCS0RHt9yjoL9Ao3HJE4UbfzUYhmncqGhujAkGSeS1VqWk7O4HNFHwRVaRiREnh9Vi7rcSmEE2US1Q0MpqHqMhhiormUvxZEycqmk1RylzCk0NQBFjHnymcwC1TYOdyuTNXTxFSZ3Z0qEMQcX5dAJc3zkOzx2e5jsYYTo8F8WxPN54404VYngJBYmJ0APsGB7BvMD3udE1VNTbWNWBZZSXqXS7IFlFCHlnChvoqbKg3rh3iuo7DQ0HsTTgZ7RsYxWi8sM5Rp8fMfbza5YDPISIYp/3C7vRHVPzTViMW7YubluPK+bUp0Ycii3jHhvl46/nz8NC+M/jRjuM40jM1h+RMUZHXOfUu15EMAdG8ajeJimwO//275qhjJFE+dI+Z9zALKnNfrxGEFStrzT78vjCdu4jS41QefS8EQRBzCRIVEQRREgTqco9kJojZYCykgjGWKvq7p9FJPBtkxp/5vQ4SFY2Dg+v4VWfB1oMXFfVPc1R0OTG/1RQVjcxBsVUkpsLjMtyKrnnNMux4tr3ILSImi5IjFkCfQoSTolhHqeXjVOTghB/6HBIVNVebRY9RcoGbEbxy7usfK1GRgxODqCy94O50WwvoYro2YwJfn+zAZYFWXBZogc+RLQbUGcPpsTE83nUa27vPzEgbiIk5MDSIA5yrUaPbjUsbAlhdXYNmtwdOScpyM3KIItbWVGBtTQXekVjWNjKGPQMj2JtwM+qNTO/a4uW+YUQ1DU5JgigI+Mwly/Cp7YentU1i9hiKqfjItoPwOUR84bLluG5hfUpcJIkCbl7fjJvXN2PLq9347cun8NTR3rzuCzJdYT1OR441Jyau6RgOxlDpM45TS+p92H1yeMrbI2aeM0NmXHrAmzsWlyBKga3t/Xj7mmYAwMo6L6pcMoYicyvilZg66xpMwf5R6u8iSpAXzg4jFNco/pEgCCIDe1dECYIgEpBTEWE3Sk5U5LZ3e4uN3212+s+GPTMff3a2e2TG369UmN9SnZruHQyPs2Z50jMYxsImY19sCviL3BoiH3I5S03FJUi0cOQAgHBk8s4tssw7FeXdhJJlPne92BvJ3yWKmBi3lENAp+uIx7IFGw5O+KFlFOedLmtRUXgKYryJaHJ7sblxHi6oa7R0vQnG49jZfRZ/6mwnRyIbcjYcxh87O/DHzg4AgEeWcUlDAOfW1GG+zwdfjsi0xRVeLK7w4paFTQCAM6GI4WSUEBl1BvO71ghrGv56sie1vdctqsfndh5GjHaZkiIY1/GJJw/BLR/BZy5eitcvaYCDc1W7dlUA164KYGAshr/sP4PHD/fgxRODGIuNL1bVmXGcSwqV3K7p3X+dHQilREXL6brQ9rT1mTbGLX4SFRGlzbbOAeiMQRQEiIKAjc2V2NLWX+xmESWAIglYH6hIze84SfsNUXoMROK46YEX8ZNr12JpNdWkCIIgklCFkSCIkoCcigg7wBiQrFfYXVSk6QyqpkNOdJD73NbRPIRBoMZ0txgIz2zkCpDuVNR5amjG369U4J2KTnZPLXqiVLl4bQDzuYLRXBKClANCDlGRzqZQabYojBvbmvxOIXPF0bnkVLSQGxXbGaRRsTNBrkgXLW597uQFdxrS90Ulh6goUiBRkQBgZWUtNjfNw4rKmqznGWM4HRrDH9rbsuK3CHsTUlU83nUaj3edBgDIELChvh4b6uqxyF+BSkWBaHEsbfK40ORx4frWBgDAUCyOfZzI6Mjw2IQuWb873oWbFjRCEgQ4JBEfu2ARvvECOQuWImFVx7/vPILPP3ME/2/jErxlRSOcnNNfjVfBbRctwG0XLYCq6TjeN4ajPUG09Y8hFNMQiWuIqjoYd2zTGYMEY9+75fKF2LiqHi6HBKciweng/4mQZRGiIECWREiSAFkUIMsiZEmE0yFhXoNZxFpSbx3TSNiH/V2mk1TA64QoGEIzgihVesZiaEz0W5wXqCBRETEpFlS6U/cLjDE83N5b5BYRxNQ4MxbFfzxzFPfceG6xm0IQBGEb7F0RJQiCSBCoJVU4UXw0naWKY9MdeTobRGMaZLdxM+/3TN1+fy7Afz7D0Zm39eZFRUePUydLkvnzTFHR0ZNTE1vVVDjx2ksXoLneOG+8eLAHT750uiDtmylkWcR/f+bq1PFF03T8/NfPF7lVRD5IOdyFpqIOEwXrbbE8KlO8kGMOaYqwsN68Xjw6MreEibNFrvgzq+gzAOBlHZnOXQ7FWvAc1aYXXecQRWyoa8TmxnkIuLPvIXTGcGBwEPccP4LeHO0mSgsVDM/19uC53p7UsrVV1biwPoDllZWodTotj9NVigOXN9bi8sZaAEBY1XBgcBR7B0awp38EB4dGsxwsu0IR7DjTjyua6wAA53Kj8YnSRNWBr+46jq/vOo47z52PNy1vRKPXmeZ+JUsiVgT8WJGHY9CtVywpWBvryfnG9pwcSBczVzplDFJcFFHCHO4fS4mK1pNbGjFJvFxcFIMh4CWIUmV3zwjahkJYXEWD3QmCIAASFREEUSIEaunijSg+uq4DMAoSdncqAoBIVIU3EetV6SWnovGo8Jifz1h8esXMiVBEAQ1eszCw/9XuGX2/UkEUBbQ2m6KivUf7EsuBZBLN6y5dgI2rGzAaisPjcqDC44DH7YCm6XA7ZaxfXofaSld6BMobgVhcw5+fasNXf/kSRsay43mKzT/cvCbtmPL5rz2GF3afLGKLiEIxFT2Prlsfg7zeyRcU+d/AXNEU1fgU+F2mQHT/4PA4axNTxStbx5/FovmLcxSn9T491fixCoeCywKtuLShBV5Htpg6qml4uvssft9+nCLO5gD7hwaxf2gwNb/A68OlgUasrKpCwOWGQxSzItPcsoQN9VXYUG9cj8R1HYeHgtjTP4I9AyPYPzCCoKqhN/L/2bvv+LbO817gvzNwsDdAEuAStQcla1iybMuyk9jZbtM0SdMmadORNLlNd5umbdp0r7S5N729SZs06UjT1EkTJ3Edx/GIJS/Zloe2RIl7kwBIbODM+wdA4IAAKVIiifV8Px9bGAfgSxLEwXnf33me4mcJ0xItAUn9UQF87rURfO61EbRaBPzKwU041uGBz2yo2F5vo2iahu+dm6za1ycrMz6fgaZphddKm9VIoSJS166EE7i7O1fpsc1G80lkZZrl2JM0j8+/NoxP37Or2sMghJCaUPsrooQQAkAQOHicJkSidDYxqR5Z0bCw/GWqg1BRNCHC68q19WrzUDBvOX5Xsf3ZVDK7rl+rTVelSNM0nL88ta5fr160tdgh6M5qe/9bduDvf+tuCAYWsqJBVTUYhRtbuBMMHN597za86w1bEY5m8Kl/egGPnhpZq6HftGP7A4XLz780jK98/ZUqjobciOwSFc54bvX7ikwmDWeF272reB/nOH2louaY2g3o3sdzba3oM+N6MC4RoBAzlfed+pff4kV54xLtz9Ly6tqQtltsuDvQhf2eFvCLqtFomoaoKOLhsZFCqyzSnIaTCQwPXCtc9xqNuLOlDb0eD9otVpg4ruw1amBZ9Hoc6PU48D7kqlxdiyWx3VlsRRXNrn/bXLLxplMifv+ZPgAAzwLHOzy4LeDGLq8VLRYjDGyu/R2/6DXjMPKF1nvRtIj5lARRViEpKjKyClFW823TFCgqIKsaJEWFrKgQFQ2SrEJUVKQlBWlRRkpUcHpoDpen4xv+MyCrJ6kahPxnsKDdhEvhZJVHRMiNS1GFGXIDuCqGcAlZD98bnMW7dgRwW8B1/Y0JIaTB1f6KKCGE5LX5rRQqIlUl6yZVLHXQ/mw+Xlzg87sqL9wRwOswoU1XDW04ml7Xr6dvfaaqGjJ0BisAoKuj9AD9rgPthcsGfnUTU/FEFqPj8xAMHLZu9hVuZxgGPpcZ//DxuzGfEDE+k0A8KWIylMS3ftiPFy9OoxrFK/ShNpkmb+tSMlW5ApbRtPpAZzaTqnh7d4cbHMdAUa4fEuK4YrBiFV3T6lrArfs7apIgVTUsXkBfoC7RskzVna+8uPmUwVj5rPeMcv39IgNgj9uHu9s6scXhLrtf0zSMJZP4r4FruBS9sXaapLGFs1l8d3QY3x0dBgCYWA53trZiv9eHLpsdNp4vCxmxDFMSKAKA24JuPPKuw3h1OoqH+2fx7MQcSGORVeDJkQieHIlcd9vH33MEQVvuuOuzj1/Fl58bWufRkVqSzMoQ8hVwO6hlHalzsu7AmKWgCFkhXRfupmrDTRrbZ04P4IH7D1Z7GIQQUnW1vyJKCCF5bX4rLl4LV3sYpIlJusV+k7H2Wx1EE8VQkcfefKEih0XAp//XURza7odgYJHKyLgwGMEXH7qEU5dmAAB37WvDZ37pjsIkWVJS8MMVLBjcjKDud5HO0NntC5yOlb1GZVnFwHAY6bSEVFpCJiOB5zkoqopLfTN49oUhPPvCENR8kmJTlxu/9PN34O1v2gWLOTfJzzAM3HYj3LrJ/ne+fisURcXP/dkTePa1jWkx4bAK+N0PHsKmoKNwW2SucqCE1Lalfm8GgwCe4yGvICSxIJGo3LbLaOSxd3cAr52buO5zcKw+VNQcs7lBdzHAlZbXt41lM1vq7OOl2vbpX3+LF6S4JaoeLRcK4xkWh/1tuCfQBX+F0J6iaTgfieAr1/oQEde38iBpLBlVwROTE3hiMvcey4PBYX8LbvX70WOzwyEIJa/hrKIUKnd1O8zodpjxjm1tUDUNsykR50Nx/GAohEcHZyBSXrhpyLokr8AvjlKSRjefEuHOh4p8FmoXReqbott3UfUZslIUQCON6HwogVMTczgaLD+ZhRBCmgmFigghdSPgt1Z7CKTJSVJxwcxcB+3P4qliYMVhNVRxJBvvwDYvvvaH98Ggm8y3mgy450A77jnQXmgHtPgM9AcuTiIhru9itL5S0TxVXys4dXoEF69MY/eOVgBANJbBAw++hief7sfBfe3o7nTh3MUpPPDgGYjSyn9HQyNz+O1PPYxP/Mn3cM+xLfj933gDtmzyVtyW41h85teOIRLLYmuHE8OTcTz09ACeOj2OM2scan37sU34u187VlJRJpOV8cWvvLCmX4dsjFBk6TCY0WSBnIyt+Lni8TnIsgSeL3/fvu/ubTh/aeq6Fa143Xuf1iSligK6inwxiQKb62WpV9Pi/Wlh+5L2Z4vvW/lr08TxuLO1HXe1dsAhlFd/yMgyTk5N4lvDgxCrUXKONBwZGp6fncbzs9MAcpW29no8+NiuXnAsu2QrQJZh0Go1otVqxBu6ffir4zsQzcq4Ekng5NgcvnttCmGqUtmwKFTU3LK6z2cCR79/QkjzKalUVL1hELLm/uPiOIWKCCFNr/ZXRAkhJC/QYrv+RoSsI32QwVwH7c8U3allSy32NSKricdXfv8NJYGixSr9PJ4cDuNvXxhcz6EBKA0VzYYT6/716kU0lsFb3vMluJxmaJqGWDxTWIx+/qXhm35+RdHwxIlrePLkNRw52IWDt7SjPeCE02HCj7x5d2E7r9MMrzPXRmlT0IFf/on9+Nh7bsGH/vxJPPXyeMXn3tbphKJqGBhfWXDE6zThb37lzpJAUVaU8XMf+zrOXZy6ie+SVEssnoEiq+AqvO+YzVYkVxEq0jQNkfAUWlo7y+5zuy04fsdmPHny2rLPwepmc5skU4Q2XRvBcJZCReuFXeLjxFIBodL2Z6V/Hyv5bOIUjDje1onbW4IwcaWfvTRNw5yYxXeHh3FyemMqzJHmpQI4E4kgKctwCLkKJN/qn8TLM1Ec8Dmx3+/AVlf5STAMw8BlMuC2oBu3Bd34rcM9SMsqBqMpPD8xh+9em8G1eapS2CgkXajRZKj9yrZkbcm6FrVGChWROmfUHddIFNgmK1Ra1apJDkRJU3hqNIIrkQR2eGh9ihDSvGp/RZQQQvKoUhGptqyugo1JqP1dqKJbSeaWWgVsQH/4M4dKKkl949IUTk3Mo8dlxpt7fNjqKX0vuRxO4IFLU/jaxcmSs4vXS9BWrKYxNlG5zVEzm4+m1/X5NQ144eURvPDySOG23/j97+LUY78Mn6fyfoZhGPzZR4/id//heeze7IbLZoSiaehssePY/gCcNiM0TcPfP3AGuzZ54HOZ8MnPn0LfyHzF5/v73zoOQbfQdPL5Afzd/zu5orZWpHbNhBIItDnKbrc7PAiFVhd4mBgfgL+lo2Lo4p47N+OVM+PL/q3wXPO1P9OHiqbTVAVuvdgNlSsfyktUh9LvVxe3Q2DZygvuqqah1WzB6wLdOOhtBc+WLsxqmobxVBJf7b+KK1Haj5KNFZXEQqio02bGX7x0DY8OzwIAHAKPfT4HDvgd2O9zYLfHDgNXHqazGDjs8dmxx2fHL+zrgqSoGEtk8Mp0FN8bmMHz9PmwbmV1J3WYKVTUdMSSSkXNc/xNGpNR9xoWleY4niA3T/95v0kOQ0mT0AD8yhMX8el7dmKfv3zehxBCmkHtr4gSQkgehYpItelDRWZj7U8Sq00aKnrzbV2Fyw9emcbvnugrXP8/Lw2jx2mGVeAgKRrGE5l1b3e2WEBXqWhgeG1bapEbI8kq3v3Br+D//vU70LurreI2bV4r/uVT9y75HAzD4Fffu79w/Tt/9zb80l+fwKWhCCZDKXgcRnzud+7B/h3+ksDH1775Kj7xJ4+s3TdDqmZ0fL5iqMjl9q36uTKZNGamx9DaVl6tiOc5vOH4VnzzoXNLPp7l9JWKmmM2Vx8qGk+ubzixWbEM4DUKFe9LJ5MVb9ef2c7rPouwHAveUD4d4RCM+NGurdjm9JTdp2ka+mJR/PvVPkymqbILqY5np6bw3i1bAQCHW114z7YAvn41FxyNiTKemYjgmYkIgFylkt0eG/b7ndjvc+AWnwO2CicmGDgWPU4LepwW/Pj2ABRNw0wyizOzcTwyMIsnhkOgGhH1IaMLlViE2j9eJISQpRj54nuYpNBeiKyM/lyA5jgKJc1kLJHBT/3Pa7i704O3bW7BWze3VHtIhBCyoShURAipG21+Ki9Jqiura39mrLdKRU1ypqTNwsOqa033b+fL21UNrnMlnOvRtz+73DdbxZEQvYHhCN723i+js90Jm9UIQeBw/PbN+K2P3X1Dz2fgOXzh918PIBfwY5jKrX6uDoRuatykdlwbCOHIoa6y241GMywWG1Kp1bU7HB3pg8fbCoOhPMRx8JZ2nHxuALPhykGOkkpFTdD/jGGANlexCtxQggIn68FrNC7Z/iwxX7kym6R7/TEoPthoLobAGIaBz2hGwGKFtcLrXdE0vBYO4StX+xCTqbUdqa4fTIzhbZ1dsOerFf3GgS0YiqXx4nT530BWUfHqbAyvzuZaYLIMsMVpxX6fA/v9Duz3O9FqMZY9jmMYBGwmBGwmvLnHD03TEM5IuBCK47GhEB4ZnEVapgXeWlQSKjLW/vEiWVv6IPfi6nyE1BtB96FPaoLjCbI2OHrvIw1OQ64V2lOjEbw0FcWn7thW7SERQsiGoSNcQkjdaPVZwDBUPpVUTzojFy6b62CSOJPVhaAqVANoRHf2BgrBDVFRcSm0ukX89eYxGUpaIZy9QO2uas3oeLHlyJnzkzh7YRJ/9am3ItjmgKKomJiKIRrLwGQyIBbP4Gr/LH7ix/Yv84wAu0ylsFSaFsgbxdXBMFRVq/j79njbkEpdW9XzybKEsZE+9GzpLbuPYRjc97rt+M//frXiY3ndmcVKEywC+OzGkrOpr0Zr672/UfhNlasUKbKMdDxe8T5tiXOULTYbeJZFm9mKVrMVAlde0UNUFTwzNYWvD/ZDVClAQWrH35w7gz8+eCtYhgHPMvjLO3bifY++iqlUdtnHqRpwdT6Jq/NJfONarrpRwGrMh4yc2O93YIuzvDovwzDwmQXc3enF3Z1e/Omx7UhICgbnU3hhah4P98+gb47ClLVAVqn9VTPTh4poXZ3UO4EvnqRAoSKyUiXtz6o4DkI2wjeuTOL9u9uxxWWp9lAIIWRDNMcKIyGkIQgGDj63GbMRamlBqiOTLYaKTHVQzl4/XqPALrNl4wh4igdyoZQIpcZmMfStzzRNw9hErIqjIStx4rkB3PHmf4DbZUEymS1pg7jgmw+dx6f/+G3o7nQjGkvj+09cwdFbu9Hd6S7ZTlU1fPUbr0AQONxxZBOmZ+J47IdXN+pbIessm5UxPBpBT7e37D5/SzvGx/qhrTIZPTM9hrZgD8zm8kXm3l1taPHbMDNbHqDRVyqqtffB9dCue+/XNA1hUaziaBqXS6gcKkrGYkuGhzim/POHwLHY1d6BQ762ipUc4qKIxybG8D+jIzc3YELWyXgqiX++cgkf2rELDMPAaTTgE7duxa+dvLDq55pMZjGZnMUjw7nqlU6Bx36/EwfzlYx2um1lbYwZhoFd4LGvxYF9LQ58aF8XZFXFdFLEhXAcJ0cj+MHQLBIShfE2nH4xtQn2v6SU/nfOglJFpL45dNW5U9LGtown9Uv/kWW1x76E1BsNwN++NIDP31d+IhghhDQiChURQupKwG+jUBGpGn2lIpOx9kNFKX2oyFD7411rtTh9oW99JlYIp5DapGlAZJkKAC+8PIK77/88/D4bwpEklHyKw2Ti4XKYcfuRbridZjz/0jAu9c1s1LBJFZw5P1kxVGQ0muH3t2NmZmxVz6cBGBu5im07KlfDev2xLfivB8+U3c7xxdlcRWn8ReUOXagoSxVt1o1zidavmWTlNnwAYNIF3HiWRZvFCgtvwNZAe+mZzJqGlCzjxdkZfKWfwpak9p2ancE2pxOvC7QDAI4FPbit1YUXKrRBW42oKOPEeBgnxsMAAAvPYZ/PjgN+Jw74nej12iFw5WE9nmXRbjeh3W7CGzf58afHtiMjqxiNZ3BmNoYnhkN4ZmwO9A65vqj9VXMTdZ+5DFSpitQ5h646d0w3t0QIIaTo5FgE/35hDD+9p6PaQyGEkHVHoSJCSF0JtFhx9spstYdBmpQ+VGRcYmGtlugrFelLVzcy/UTu4rO6a0HQXgwVJZLLt8gg9UXTUFYxJpORMZWJ48H/OV+lUZGNdvbiJN7+pl0l7ccWBDs2Y3ZmbFWBR45hMBeZQjoVg9niKLt//94gnj89gmgsA0HgIBg4GAwc9uxsK2zTDO3P9JWKknQm9bpxGgwVb09XCBUZWRbtFjOsi9qvWvjcc7jduUpumqZhTsziajSKtKLg7FxkjUdNyPr5yrWrOOpvhZnPvc4/fWw3Hh+dRSQjgWcZPDc5hxdvMmSUkhWcmprHqanc8wgsgx1uG/b5HNjrtWOvz4FWi7HscQzDwGzgsN1jxXaPFe/eEcj9vWUl9EWSeGZ8Dv/TP4OZFFV2W0v6fS5PoZKmoy/KwVClIlLn7Lo5r4RIoSJCCFnK514bxtu3tMCzRLtwQghpFLW/IkoIIToBf3n7D0I2SiIlFS7XQ/uztC5UZKiwwN2IkrqFEWsNfs/tNlPhcniZyjeEkPqUycg4/eoYjh7uLrvPZLKgta0LU1PXb+nEMQx2bvfDZs0tFHd1MTh+/ABUVYOqaWAAcPlKFT/54weWfS6lCcrOd+pCRZEsLZCvl8UBoQWZVDFUZON5BMwmGDkWzBJVOhiGgclsxngyif54rKSyRyRLgVtSX/716hV8ZOduMAwDi4HDj2wuhjrfv7MDr8xE8elX+nF1fumKXqshqhrOheM4F44Xbmu1CNjrzYWM9njt2Om2wVThczDDMPCYBBwNCjgadOM3b+1BVlExFs/g1ZkYvj84g+cnomsyzmYl6UJFhgoVpUhj0wfJ1Jqsm0vIyhl172EpaqdJVkj/zkfRStIs4qKCTz7dh89RGzRCSIOjUBEhpK60+W3VHgJpYqm0LlRUB+3P9JWVDE1SqejC0Fzhst3Iw2nkEa2hUt369meT0/FltiSE1KsTzw3gyKEusBWqpXV0bUM4NAlJLu5PmPx/+ql6m00oBIoAYGRkBPPz83C5XGBXOT0bijV+SKNbFzqfSmeqOJLGxQCwcJU/+0jZLNyCAa1mE3iGWTJMBACyqiJj4PHsbOVWkHGJQmGkvrwUmkX7yDDu7+qu+No/2OLEf7zxAL56ZQwPD81gJJ4uCZ6shemUiOlUCI+PhgDkgqlbnBb05kNGezx2bHZaytpxMQwDE89hq9uKre5cNSNV0xBOS7g6l8BzE/N4uH8G01TNaMX0QV6+BqumkvVl1VV2idfQMSghN0Lfwk9sgnbKZI2UpIpoP0iax4mxCB7un8HbtrRUeyiEELJuKFRECKkrbVSpiFRRUhcqqof2Z01QnKJMelFZbhPPIlpD6+kBXfuz4dG5ZbYkhNSraCyDl8+M4fCBzrL7eN6Azu4dGOjPtcSzWQRs6fHCKHDIigoyGQnpjARFKX8DP3v2LI4fP37dr6/l3/w1AHNJEX/57cZvv7dJFzofiK9NNRBSyikYytYFGADbHDbIJgFxq6XsMbKqgmeLoeaEJGEilYTT613y68Qlacn7CKlV3x4ZwompCby1swvbHE4YWA5OQYAl3xaNYxn89K5O/PSuTkSzEj7+7CW8PLN+FYEUTUPffBJ980l8q38KQK6C5x6vHXt9duzzOrDXZ4dDKG9pyDIM/BYBfosHd7R78Ju39kBSNUwkMjg3G8cPR8N4cjgEkdaXK5JL2p81x0kdpMisq2aclumPhNQ3fTCSQkVkpZpwGpKQgv+8PEGhIkJIQ6v9FVFCCNGh9mekmhK6s3Trof2ZopvUbpYThH7sWE/hcjQrYTpZW2dWB3Xtz672h6o4EkLIenrixDXs7w3CYCjfV/hb2jE1MQRoGeza7gebD12YjDxMRh4up7nsMVlZwfefO4sZzQWfrwUacguXsqJCUTRIqorHzk7hB+cmoDbZnL/Aswi4ij+zi/OxKo6mcbWYiqFYnmGw2+VA0GoGo2k4nUyUbJtVFESyWcRGkLB9AAAgAElEQVQlCVscDnD5DyHJfIUuo7n8NQ7kQkjN0K6PNKY5UcRX+6+V3PbWji68o3tTSbjOaTTgw71d+MUnz23o+JKyghen5/Hi9DyAXChwk8OCfT479vkc2Ot1YLOzPBzIMAwEjsEmpwWbnBbcv7UVmqYhISkYiqbw8lQUjw2H8OoMVeAEcu9jC6hSUfPR/8ZV2p+ROmfQ7bvECic8EFJJUlIKl/lmmYgkBIDLyOPz91L7M0JIY6NQESGkrlCoiFRTPFEMqJiNtb8Lzeqq9nBNMqn9k/duK1x+ebK2FpYFLnfm94ILl6eqOBpCyHqKxTN48uQ1vOkNO8ruYxgGnV3bYGAmCoGi6zGwLBJZGS+99BL23nZPxccd2erFM1dmkMg0V7uNbp+10GpO0zScn1+/6h/NrMNqhpnj0Ot2wG8yFto8zUejUJTc4kFKlhHJZpHIVxsSOK4QKNI0DUkp99o0Wyp/nk/IVKWINJbvjY3g5NQEPrJzD3a73YXbbYbqH0doAAZjKQzGUvjOwDQAwCHw2Ou1o9fryLdOs1WsZsQwDOwCj71+B/b6Hfjg3k6omoa5jIT++RRenJzHI4OzGIymN/i7qr7SSkXNcfxFiqj9HWkk+pew1GxnLZAbNh4rtqJmGcDCs0hR5TbSBO7r9sFRB2sFhBByM+hdjhBSV1q8FnAsU1KBhZCNEo0X+2iZ6uBAISMWzxDiVrhwXc8EnkWru1j94IFLk1UcTbmArVjlQdM0XLgyXcXREELW2zMvDOLQ/g74vOUBip07t0BMqohEIgCAuWQWqawCq5GDycDBwLNgGaYQ3EjlQ6LpZBxTowMIdm8te06BZ/GG3jZ85/TYOn5XtadbFziXNQ00Z732djht+NCOHrgFQ+E1uWB6ehpxSUIkm0VaXtSClCtW6tIAyFrul2N12Ct+nQS1PiMNKCHL+NvzZ/CRnbtwxN8KAAila6uS5oKYKOPZyTk8O5lr0csA6LKb8wEjO3q9dmx3WUsqLy1gGQZeswCvWcCRgAsfO7gJsqohlBbRF0ng1MQ8Hh2axWSNVRFda5I+VNQEx19kaVSoiNQ7/Sc+ej2TlZpMZKGoGjg2dyy7r8WOUxN00gdpfHah9tcJCCHkZtE7HSGkrnAcixafBZMzyWoPhTShWKIYKjLwLHiOgVzDZaDT2eLiXjPMab/r7s2FxU5RUfHc+HyVR1RK3/pMUTVkmqyaCCHNRlE0PPrkFbzv3QfL7hMMHHbs3YsTJ05A0zT0TycqtskwGXKVXpK6ynPjg33wBzphEIxl2x/e7MVzfbOYjWXL7mtU3b5iqGihEg5ZG8davPiFHZvQZjaVhYkUTcNUKoWnrlzBeLLy53Kj7sOHvnqD1eGouP282NhhA9LcbHyxWmU8/17lMwn4yN5u+M0CHuyfwlPj4WoNryINwHA8jeF4Gg8PzQAAjByLHS4revMVjXZ7beiwVW5pyLMM2qxGtFmNON7pxcdv2wJRUTGVzOLcbBxPjITw5HAIYgOFQSWF2p81M0YXw6Dz4Ei903/2o/a0ZKUkVcNUMot2e27+a4+XQkWkObw2W1vV8gkhZD1QqIgQUneCLTYKFZGqiERLF2nNJgPiNXy2bSZbrFTENkEv83fctalw+fRkFOkaK1cR1FUqSqepGgMhzeDC5WmMT0TRHnSW3D4TSuKOI7vhcrkwPz+PoNuMsUiq7PEZSSm7TZEljA9dxabtveVfkAHu2xvAfz47tFbfQs3r1FWCmhPpvXUtvLM7iPdu7oSzQtsjSVEwlkphLJlERhQxMTGx5PNY+OJ0QzbfIo3leAoVkaYkqsX3c7cx97f118d24RZf7u/hzqAHf/piX6EVWa3KKirOhuM4G44DyP39OwUeuzw27PHascdjx26PHT6zUPHxAseiy2FGl8OMt21pgaZpiIsKhmMpnJ6K4gdDIZyZjW/gd7S2SioVcU1wVgcp0QSH3KSJ6F/PFCoiqzESzRRCRdvcldseE9JoXpmO4anRMO7p9FZ7KIQQsm4oVEQIqTsBPx2QkOqYi2ZKrluMfI2HipqnYoPNwuPANn/h+onRuSqOpjJ9qCgaS1dxJISQjfT4iav4mZ+8teS2rChjbDKGffv24eTJk/DbTRVDRUuZHh1EW0cPTJbyz0S7O5xo91gwvornq2edXkvh8lQ6s8yWZDk8C3xoew/e3NFW0rZsQVqWMZpMYiKVKlTViszMQJErf9YwsCzMulBRTMp9XnJ6PWCXKJ8YydLvjzSuC/Nz2O/1AQD2+RxotRgLgaIFv9jbXRIq6nFY4DcLOBeO1VxYXi8qyjg1NY9TU8UqoS1mAbs9ubZpuz027HTb4DSWBxUZhoHDyGOv34G9fgd+dm8nFE1DJC2iL5LE85PzeLh/BtOp2j3m0ittf0YJk2ajrzpJmTJS71hd5S3KFJHVGImmcXuHCwDQ7ahczZCQRvTrP7yIn9rVjg/uaYffUl5ZmhBC6h2FigghdSfYYqv2EEiTSmVkaJpWKANtMpYvutWSjFg8I5phGPAsC1mt3QWJm/HAp94INj9xn5EVPHil9s7y1rc/mwklqjgSQshGunJtFhOTUQQDpdWKrg2EcO/d29DW1obJyUnYjDwSKwyDapqKkWsXsX3f4Yr339vbhn87OXDTY68H+kpFIwkKbK6Ww8DjV3Zvxe0tHvAVwj5D8TgSkoSZTHngJzw1teTz2g3F8ICmaUhIuSpSLp+v4vZZRaFKRaShvTAzjfdt2QYAMPMcer32sm1aLEZYeA4pWcGv7+/B+3Z2AADmsxJ+59lLeHmmftqHzKRFzIyHS1q6tdtM6PXasddrx16vAzvc1orvOxzDwG8xwm8x4s4OD37r8GaIiorJZBYXQnE8NRLG40NhZGrwuEYfKmmGSrGklKoLlelboRFSj6hS0Y2xGVi4TQbYhNyym6RqSEoy5jIyMjUcEF5LI7HicUMLBStIExEVDf96fgz/cWEcr+/y4r5NPtzZ7q4YrCeEkHpEoSJCSN3paCufgCWkGqzm2j4oSC9anHZYeUTijbVg53eZ8NU/eAO26FoLfe3iJCKZ2muBE7QXJ1PGqKc8IU3lh8/0433vPlhy28xsArF4BocPH8bDDz+Mbr8No+EUFFWFomrISgqWm76PzEwgGZuH1eEqu29bwI6g24yJucYP2QTdxbNf++MU2FwpngU+3rsDd7X5Ki58n41E8PDoKMLZLN7a0VHxOaKRyJLPb9OFitJKMeTsa2uruP10uvFfq6S5peTSkxN+ad+mitv90+v34pGhmUKgCABcRgP+91178KEnz+DKXP22AR9PZDCeyODR4VkAgJFjsdNtwx6PDb1eB3Z7beiwVa5oIHAsuh1mdDvMeOvmlnxYUcHAfAovTs7jof4ZXJuvfoU+WdVXqqFQSTOjTBmpd/qXsEqZItgMLO7ocGN/mx07vVYEHSa4jQbYBA5GngXP5qKEzDJ//JqmQUNuX5GWVcSzMuYyEmaSIsbjGQxHM+iPpHAlnMB4on7n7kZ1oSKnQMuPpPnImoYfDIfwg+EQWAbY7rZij9eOXr8d79kRqPbwCCHkhtFenRBSdzoCFCoi1aOoGnguN0ngsAlVHs3ysmJpqMhlMzZMqMhhEfA3Hz2KNxxsL1QoAoBzM3H87QtD1RvYMvTtz/oHw8tsSQhpNBcuT2NyKoZAW7HVjYbce8GBfe3YuXMnLl68iJ1B3f2ahoGZBMKJ7JLPO3LtEnYdvL3ifa/f04b/eGZwzb6HWmQz8bAYi4e0A/H6XWzfSG9sb8HHdm2FcVFvFllVcWp2Ft8bHcVIMvez3Od2V3wOSRSRjMUq3sexLMy6FmrRfAUis9UGu6s8BAcAU+nqhwEIWU8qchW5TPm2gF32yuGZXR47dnnKj3ctBg6fPd6L9z/6KkKZxvg8n1VUnAnFcCYUAzABAHAbDdidDxnt8dqwx2Nfsm2aXeBxS4sDt7Q48KFbuiCrKqaTIs6H4nhqNIwfDIU2vG1cSi6GKAWe+l81G32YQKXKLqTONfPr2Wfm8c6dbbiz04XtXiv8FgEGllk2MLQSDJMLHgkcA4Fj4TTy6HCYKm6raRoUTUNGVhEXFcylRcymJEzEsxiJpTEwl0ZfJInBuTRqrf7RuC5UZKR9IWlyqgZcjiRxOZLEN69Oodthxm2BysfEhBBS6yhURAipO51UqYhUkSSr4POLcC5bbZfxzeranwGA1Vz/u/02jxl/9gtHcPyWYNnZv69Nx/DRRy8iq9TalEqOvv3Zpb6ZKo6EEFIN33nkAj7ys6UBoIHhCPbtCaC3txf9/f3IZosBIoZh0OY0LxsqikZmEJ+PwO7ylN23s92BHr8Vg7ONG7Tx6SrAaZqGySRVu1kOzwJ/dWgvet2OkkWRrKLgyclJfH9sDOFs6evNa6q80LFclSI7zxeeX9M0xKVcAMIXXPqszJEkVZkije+bQwP4qS3bSv7+EpKEvz33Gj62ey98Ff7expIJtFusYBgGPrOAPziyDb968sJGDntDzWUlPDs5h2cn5wq3ddpM2OO1Y4/Hjl6vHTvcNghc+SIlz7Jot5vQbjfhTT1+/MVdGpKSgsuRBJ4cDuNbV6cRE1fWZvRGJXXHX7SQ2nz0eQOq7EIaSaNnigI2AR/YG8Td3R5scVtg5tmbDhDdLIZhwDMMbAILm8AjsMT8o6ZpUDUgI6tISjLmMzJCKRFTCRGj8QwG51Loi6TQF05A3KCpsrF48XiCZRi4BB7z67z/JaRe9EUSFCoihNSt+l9dJIQ0nWCrDSzLlPSrJ2SjKLrAisFQ2xPFsqJBUVRw+Ul3m7m2KytdzwffvAO/94ED4NjSn3tSUvClM2P4/CsjkGr0fcFjMpQsLJy9MFnF0RBCqmFkbB4vvzaGQ/uLLW0yWRmnXxtD785W7NnTi9OnT5dUX1NW8J42PtSHnfuPVrzvLQfa8bkf9N384GtUSagIAE1VL63dYsJnj94Cu6G04sdTk5P476EhzIuVK594jZUXMBLz80t+LbfuMaJa/Nzk9JSH3wAglMkgJdNvjzS+JyYnMJFK4S2dXTCyHK7G5vHtoSHI0PDxl07hjcEO3N/VDTPPQ1RVPD01ia8NXMOHd+zC0ZZWAMCdQQ/uCnrw9MTSwb5GM5rIYDSRwffzbdMElsEOtw37fA7s9dqx1+dAq6X8vYphGNgEHre2uXBrmwu/fWQz4qKMi+EEHhsK4dvXpte8klFULLZgNlCoqOmwTVzZhTQefaRGacDX87EOF37mliBua3fBaeRXFCKSVBUTqQzGkxlMpTIIZUTMiRIiWQnzooSEJCOjqMgoCkRFgwYNHMNAYFkYORYWnoOV5+AUDPAYBXhNBviMAjwmAV6jAK9JgMdogIFd+f6DYRhwDGAVOFgFDi1WI7Z7rWXbLYSPREVFUlIQy8qYTYmYTogYi6cxOJ9GXziFK+EkUje5b5xJZqGoWuFEwJ0+K05NRG/qOQlpFH//yjCOdXjQ47RUeyiEELJqFCoihNQdwcChzWfFxAyd0Uw2nj7MJvDcMlvWhqykwLIQKjLV727/T3/uMH7y3q0lEz0ZWcHXLk7i86+MIpKRlnl09QUXV9OYjldxNISQavn+E1ewe0crzOZisOPaYBjXBsNQVRXnr8yhp8sKuzX3npGVlaWeqmA+NI1EdA42Z3mbqqDbjP2b3HhtaK7CI+tfi7NY1UNSa7NKXS047HPhjw7sBq9boJhOp/FPly+jb4kWZgtsfOXPDvFo5YUBE8fBqGt9Npsptj9web0VHzOeatxqWoQsdik6j0vRyqG8H0yM4QcTY2W3f+HKJfS6PbDlQ4Fv7PI3VahoMVHVcC4cx7lw8fN0q0XAXq8D+3wO7PHasatCNSOGYeAwGnA06MbRoBufvH0r5rMyLoTieHhgBg8PzOBmM0bzmWJAkmerW+WCbDz9b7xGz3UhZMX0GZtGyRS9basPHz7QiV1+K0zXmc9LSDIuzsXRF03gaiyJwXgKY8nMqgNWEjRkFBVY4ZQVA8Bh4OE15UJGXqMAr9FQuJwLIOWum7iVz0kuhI/MLAezgYPPImCzu3KoQdU0iIqKlKQgmpURSkmYTmYxGstgaD6NvnASV8JJJKTKO01FA8JpCS3W3ImNXXYLToFCRYQAuVa5P/HQq3jvzgB+fHsA3Y7KLZEJIaQW1e/qIiGkqXUE7BQqIlWhKMUJhFqvVAQAGVGBxZRbgLBaDNfZujb95Ydvw3tet6VwXVRUfOnMGP713DjC6doOEy1o17U+W9yWjhDSPJIpEU8+fQ1ve+OusvtYlkVn13YIhqnCbekVvl8MX72APbceq3jffXsDuDgWhbjG1RhqwSafrXA5IdF7ayXv7A7iwzt6SkK5z01P48tXryKjLP8zs3BcSdUFvUyychDIpquEpGoaUnJuP2222iAs0UptNkNt6wi5nr7oPA76/ACANmttt2CuhumUiOlUCI+PhgAABpbBdpcNh1qcONTixAG/ExZD6eIrwzBwmww41uHBsQ4P/vyuHZhMZvH8+Bz+89IELkdWH3gMZ4pV31iGgYlnkWnA/S+pTL+v1RolhUGaFqd7PddzeN/Cs/idO3vw7l1tsAlLL4VFRQmvhKI4E4nibDiGwXgK1fiuNQBRSUZUkjEQTy27rZXnChWOvEZDScUjr9FQuGwzrG4JMLf/4mDiOXjMAnqW6NRUDB+piGVlhNMiphJZjMezhUARALRY6rtqOiFrLSkp+NK5MXzp3Bi2uS349jturfaQCCFkRShURAipS10BO148Q+2DyMbTt6Kph5L2om5BeiFcVE/u3h/Au+/ZXLgeSon40CPncW62vkKF+kpFiUR2mS0JIY3u1Olh3HG4G+4KZ4b6fK1wWTSEw2EAQEpcWUuo+HwY4elxeFvby+5zWgx4x+FOfP354ZsbeA3q8BZ/huEsvbcu9qu7t+AtHW0li5wPDAzgodHRFT3evESVIgDIpCovcph1Z0yndaElm9NZcXsNwEyaQkWEXM9ud7F94HCM/mauR1I1XIjEcSESx79fHgPHMNjjseHWVhdubXVhn9deVqWCZRi020x4144A3rUjgIys4EIogQevTuHbV6dXtLg8v6h6apfXgr7p+jpuITdOX5yKIkWk3ulz5XIdlt7q9dvwh3dtweGgs9CGa7H+WBLPT0dwamYOF+biVQkR3YykrCAppzGSXP5zgZFlC0Ejn0nXbi3fgm0hfOQUVjdnWBo+MmCTq3LFlY/u78a93T7MpkTMpkWE0iJmUtnc9fxtsykxV9GJkCZzdS6FZ8cjuLO9cqtwQgipJRQqIoTUpY42e7WHQJqUojvIrYv2Z7pQkdVY++Nd7LO/fGdhMTSUEvHe75zBULT+FlKCtmKoKDxHbV4IaWaKouH7T17BT/74gbL7zGYDDhw4gMcffxwAkMysLFQEAKPXLsHtD4BlywOv+7pc6J+K4+XBxmqX06kLFU2lM8ts2Xz+8lAvDvqKpxWLioLPX76Ml0KhFT+HeYmWCqqqQhLFivfpW58tVCkCAJO1cnuFuCRCpmoOhCzrjcGOkhYnD/ZPLbM1qUTRNJwNx3E2HMeXL45CYBn0eh24tdWJw60u7PU6ytqVmXgOh9qcONTmxJ8c247hWBqPD4XwrxfGMLfE/jklq1BUrbCA7bcZKVTURPQh3tW2SCKkltXTy/nDBzrw8wc60GYVSv4mF1yci+PxiVm8MDOHsWRzHD9kVRUTqQwmUst/vwLLwGPUVTsyGeAz6tqw5VuyuVYZPgKAbW4rtrmty24Ty8qYTWcxkxIxkxIxm8pdDqVFhNISQmkR4bRIFWpJw/nCmVEKFRFC6gKFigghdakzQKEiUh2yLlRUD5WKsrqDbau5vkoOf+tP3wi7rkzyJ09erctAEQAEdKGiqel4FUdCCKkF5y5O4a6j8+hoL60lbzELaGtrQ0tLC6anp1e1IJVJJzEzPoS2zs0V73/z/iAujEWRaaBJ2HZPMagyfJ32AM2CB/D/7jiATfbipH1UFPGZ8+fRH1/d/se4RKhoqUARx7LgdaG2pFRcdDcu0fosIdVHG1NCqumtnV2Fy6em5nAhQp8lb5aoanhlNopXZqP4wvkRWA0cDre4cHvAjaNt7pLWxUCuGkOP04IP3dKFX9jXiUhGwnPjc/i3C2O4GC49YSAtK4UWO25q+dJU9Lm0OizsQsjSKhf6qRndThP+4K4tuKfbA4Ern6cTFRVPTMziW0OT6IvSSV5LEVUNU+ksptLLV4A1FMJHhkLgyLcoeLTVsXyAqBKHkYfDyGOLa/nHZmSlEDJa+C+86PrCbVmqfkTqwOnpKD778iB+9VBPtYdCCCHLolARIaQudQUd1R4CaVL6UJFgqP3KP5Ksr6xU4zNBOn/0s7filq2+wvXHB0N4fChcxRHdHP3CxNDIXBVHQgipFY8+2Yef/8CRktus+cXH3t5eTE5Nr/o5R/svw+VthclSPhFrFjjcu7cN//PK+I0NuAb5HcX31uuV/W8GFp7FF+88BJ+pGGSdTKXwN+fOYTaz+jOxl2p/Ji3Rao7XnQ2uaRpEtRhgE4zGSg9BRmmckBsh6+GAxweHUAymfOXyWBVH07iSkoKnxsN4ajx3vNFtN+NY0IPj7R7c4nOWVDFiGAZes4D7t7bi/q2tSEkKzs7G8MDlSTw6FIKoO140GWr/JBSydphF+0FC6pk+GGesENSpBR/oDeAXD3Wi02GqWJVoKpXBd4an8PDoNKIrbCtNrk9SNUyns5heJnz02dt7sd+ba398NRrDmUgULSYjfCYjnIIBVgMPM8fBwLJggIq/v6WYeA4ddg4d9sonLejFRbkQMppN5SodLbRbC6UlzKZzbdiiWZnaVpKq+sLZUQoVEUJqHoWKCCF1idqfkWoRxeIksVGot1BR7Y8XAN50pBPvv29b4fqlUAK/d+JqFUd084L24mJq38DKW88QQhpX/1AY/YMhbOkpBigtllwp+WAwCI/XBwyuLkypyBL6zr6EPYePgePKD/Vu2+rDyUsziKXrvzqM0cDCaix+jxOp5g4VtVtM+L9H98NqKP5MrsZi+Ltz55CQb2wRxbREpSJxqVBRhdZ7CwxC5WodFCoiZHk/u31H4fLV+SRemJqv4miax3A8jeEr4/jqlXE4BB63B9w4HvTgjoAHdqF0/2oxcDgadONo0A1Z1UoCSHyNLsST9UGVikgjkXUvYksNnVDnMRvwK7d24af2BmCqMMelahpenJ3Dd4amcGpmDlSnpjr0e7+BeBJf7R9acluBZdFhNaPLZkW7xYwWkwlekxEuwQCbgYfpBsNHAGAXeNgFHj3Oyq2YF0iqilBaQjiVDx2lRYQWXV4IJ0n0Bk/WSTQrwWlcfXtBQgjZKBQqIoTUJZ/bDIuJRypDZ5qQjZUVi4tfJmPtTKwspbSyUu1Pane32vDZX76zMFEQzUr4yKMXEMnU7wK4kWPh1bWeu3BpqoqjIYTUkief7i8JFSm6IOjhWw/hsdNXVv2cqUQUY/2X0b29t+w+hskFix47N3ljA64hHmtp5ZvxJq5UdMjrwp8c3F0S6nktHMbfX7wIUb3xpRTzKtuf6SsVLf6qwhLtzyhURMjSfqx7E2yG4sLCP54bqt5gmlhMlPHo8CweHZ4FxzA44HfgeLsXx9s96LCZS7bVB4oA4M9+tBd3bPbiS88O4sxYdCOHTaqA0fWIUqlSEalzGVmBIx/gdxmru4TkEDjcu9mL+7e14HiXG4YKgc1IVsT3Rmfw0PDUddt3kfXnEIqfX+LS8nP3oqpiIJ7EQHz51nQsgIDFjA6rGUGLBS1mE7xGAS5BgEMwwMJxMHIceJYBu8rwkYFlEbAaEbBWrq6qF8mImEmKmEplMZMSMZ3MYipZvDydyiLRQC3HycZ513dfwT/dtxebXcuH4AghpFooVEQIqVudAQeuDEaqPQzSZDK6ksnmKk+srIQk6Sor1dDZZZWYBBYP/vmbYeBzE0SKquHXH7+M8Xh9TwgFbcVJCU3TcOEKhYoIITmDwxEMj86hu9MNAJiaSRTua2ttQaC9C5PjI6t+3qnRQbR0bILZYiu778hWL354Yark7ON65LYVw5qapiF9E+GZevaOriA+srOn5KzdE5OT+PLVq1BuckHTuFSloiVaqelDTYsXU5euVEQnCBBSiY3n8bbO7sL109PzODFOx77VpmgaTs9EcXomis+8OoDNDgvu7vDieNCDvb7yFu08x+JH9rfjR/a3IyMpODs2j2+8PIZvvjqGJt1tNTT9GnZ9f8oiBIiLClryHZXd5o2vnLHNY8HxLjdev8mLo+3OikEiAHgtHMWDQ5N4ZioCmcJ8NaPFXJwHG0kkltly5VQA46k0xlNpAMt/JjKxLDqsFrRbzQhYzPCbjPAajXAJAuwGHiaeg5FlwTLMqqsfeUwCPCYBO73lx9oLkpKM6aSI6XzwKBc6yuZDRyJmUiIiGZGq2pESE4ks3vmdl3FH0I3NLgtuD7pxZ7u72sMihJCC2l8NJYSQJXQG7BQqIhsuk9VXKqr93WhaF4KymGp7vA/80RvhtBYXHf/3S0M4OTpXxRGtDX3rM0XRSlroEULIYz/swy/89G0AFi1GaRqCPTswPTkOVV3dmY6apmJqZAA9O/eV3WcWOOxqd+LcaH230PHp31ubdAHhd/Zux+sC/pKJ8AcGBvDQ6OiaPP/NVCpStNJ93VKhoixVKiKkondt2lI4y15SVPzVy9eqPCJSyUAshYGLKfzLxVF4TQbcEfDgU7dtr7itycDhSI8XR3q8+Ot37sNwJIlHzk/hC0/3Yz5FActG06QfTUgDSejmkhzC+s4lcQyw02fDoYADR4JOHG13omUFFWMA4JuDkzg5tbqW0WR9+U0CLLrWdJeisQ0fQ0ZVcS2ewLX49QNNPpOAbqsV7VYzWk1m+MxGuBeqH/EcjCwHA7u68KB9KuwAACAASURBVJHVwGOzi1+24oyiaohkRITSUq7Nmq7F2kw+jDSTEjGbykKhfUrTkFQNJ8YiODEWwb9fGMPZDx6v9pAIIaSgtlcXCSFkGZ0Be7WHQJpQWteGyyTUduUfAMjqQlC1XFnpbz5yFL09nsL1b/dN4x9fXZtF0WoL2ootX9J13MaNELI+BoYjuHRlGrt2tMKuC8qomgaDyYLWjk2YHOlf9fPOToygc+su8Hz5mcV7u1x1HypqcxVbzmSV5gprHva58Dv7dsCua4skKgr+8fJlvBgKrdnXMS0VKspWriCor1Sk6E67ZTkeHF/5M0iz/e4IWamdLlfh8veGZzAUa94Wj/UinJHw0OA0PrCzA5uduUXEyXAKWVHGpkBpFSOWZdDjs+F/3bMVH717C8JJEc8PhPH106N4+uravY+TjbXKYheE1LSEWJxLsq3h3JeRY7DVY8UurxV7/DbsbbGjt8UGy3Uqa6uahoFQEg+8OoafOdKNjvyxwI9taqNQUY3p1rUGVTQNoUzlExJqRSgjIpQR8XJ4+ZMaLTyLLqsVnTYLOiwWtJpN8JqMcBoMsPI8jNzqKh9xLAO/xQi/xYhdy2ynahrCaRHTKRETiQyGY2kMx9K4NpfC5UgCEpU7aliKBgzH0uh2mK+/MSGEbIDaXV0khJDroFARqYZUur7an+nbtdVqCOr2Pa145/GewvWLoQQ+efJqFUe0tvTtz+ajtCBECCn3yONXsGNbC+y69wtRzoUt2nu2Y3ZyFLK0uslYVVUQmhxFW+fmsvu2BxwQeLbwNepRm7MY2EzIzVHhocNiwu/eshNb7NaSyeqoKOIz58+jPx5f06+3VKhIXCpUpBuTpOvroy7T4sxjNGImQ/tGQhbTVwpzCjzMPIt0Hb9nNxN99bxvP9WPv/uvM+gJOvD6Q+14/aEOHNrpB69r48MwDHw2I+7fF8T9+4JQVA2T0TReHZ3Hk5dn8OiFSaSo0mldWFydiGMAjmHAsQx4lgHH5P/NX2cZBnz+foPu9oVtDSy75H0Lz8Mi9xpiGYDJXwaQv85gk8uMtnw14IXxadCgacUWbRpyFTI1AKqWq44mqRpkNfevpGiQVBWSokHM35eRVcREGfGsjLioICZKiGVkxLIykvRe1RBSku4EtesEfhbjGKDdbkK3y4xupwk9Lgt6XGZscZvR5TCDY1cWukhLCi5NxfCtsxP4r1fGsPDSSooK/uLtewAAB30uvL2rFePJDKKihHBWRFRsjmODWuU1FSuUNlJV0pSs4nI0jsvRpY+5WABBixmb7FZ0Wi1oM+cqH7kEA+y8ASaeA7/KlmssUwwf9fpK10IkRcWVSBIvT0fx/OQcTk9F6fNig/nRB0/j0/fswn3dvmoPhRBCKFRECKlfnYvO9iNkIyTTukpFdRAqSusrFa1zyeob9YmfOlA4oA6lRPzi9y8g00AHwfr2ZzOhteklTwhpLKFIEi+8PII7DncVbkvl3795g4DNu/aj7+yLq37eyPRExVARzzHY3GLD5YmNL0W/VvSViuayjV0FbrPNgl/dsw07nLayCeiXQyH8y9WrmF+iJdnN4JaY7FaXWBzQVyoS1dL9uCSKFVugeYwra21BSLMZSSaxJ/83c0+HD1++14yfe/w1WiiqA6ouWcLlw0ODEzF8aSKGLz10CU6bgOP7g3j9oQ7cczAIu6X0vZFjGXS4LehwW3D/viA07RZkZRUz8QyGQilcnorh3HgUr43OY3SuNkOZLAsILAuOZWHgAQPLQuBYsCwDA89CYFmwLGDkWRg4FmYDB6OBhZHn8rflrgscAyPPQeBzjzdwbO7xHFO4bDFwsJsMSEsyDFwuhMMyueANy+YWY9nFlxdCOPl/2Xywh2VyVaT025Ruy4DJ38boQjy5f1Gyj/7EHZvxiTvKP4M1Ay3/N5ALK+X+JhRNg6oBcj6sJKsaxHxYSVTU3GVFhahqyMq527KKiqysIi0ryMgqMvnLKUlBTFQwn5Ewl5EQSUsIpUQKM62xjK6apFEfhATgsxgQsBnRZjMikP9v4XLQbkTQZoRB95iV0DQNKUnBYDiJp/vD+Pqr4xiMpCpu+58vj+EP3rSzEHb67X1bS+5/cGgS/+f8wKq+Plk7HmNxv5aWGydUtBIqgLFUGmOp5ffPToFHl9WKDqsFbWYTWkwmuIwCnEKu6pGJW1nLNQPHotdvR6/fjp/p7YCkqHhxKopHB2fx+HCIAnYNQFI1fPfaNIWKCCE1oTZXFwkhZAWoUhGphpQuVGQ21mblH72s7gDSWKOVirZ1OAuXv/jaKCYTlSsg1Ct9+7PR8fpuN0QIWT9PnryGT/7GGwrXY7r9jaclgEDXllW3QYvNhyGJWRiE8uBGT52HioLuYqhoNtNY+40Fh7wu/NKuLQhaTGUTyjPpNL7a34+Xw+vX7kFF7mzbxSq1MmPy1RYWiGrpAkJochKB7u6yx/lMprLbCCHA5y9fwKcPH4U5//e2zWXF+3Z04J8vjFR5ZORmRRMiHnpmCA89MwQDz+LwrhbcfSCIY7cEsKPLXbY9wzAwGTh0eazo8lhxfLu/cJ+maVDUXPUYUc4FMLJy7rKsqlBUrdCOkmUY8BwDnmUh8AwEjoPAFwM0jC5kszgow6A0QIN8oKaS1VRfII1p4TWw8FrhwKC8Ge/aWwgzqbogUy7EpOVDTLkqS1k5F1jKyCrMBhaSomI4mkFKVpCWVKQkBQlJRkpSEBeVQjWmuCgjlpUQzTRONSYWQMBuRLvdhPZ8MMhvEeCzCLhvk7ew3es2efCtd+1Hq82IVqsAYZWBocU0LVftajqewaWpOE70h/C9i9OIZVYegPj3F0fwi3f2VLzvxzYF8MxUBKdDNP9SDfpQUUKiUEslUVHGOTGKc3PRZbez8Tx68lWP2i0WdNjM8JtMcAkCTBxbts81cCzubHfjznY3/uD2rTgxFsF3r03jqdEwFOqSVrdOjIbRP5/EFpe14v2iomI8kUFPvv0uIYSsFwoVEULqVmebHQxTXmKakPWUTBUrAdRDpSJvvpKDpmmQldqc+NJQ/COeTDbewvBCuXkAGByOVHEkhJBalkyJJfuVuUXvh51bdyMyM4lspvIZu0uZC02jJdhVdnu7p74nnDb5bYXLQ/FkFUey9o61ePGhHT1oNRvLJorjkoSHRkbw2Pg4pHX+EJyUZTgN5cuAFput7LbFZfzTi6oZRWZnK4aKnIIABgB9nCekVEqW8ZsvPIc/OngYLebc5/l7O30UKqoDvK6tT1ZavkKDJKt47twUnjs3BQDwOk04sqsFB3f6cWC7H7s3uSEs03aIWQgKcSws5cXgSB3QdPtyLf+/QjsyrdiqTM1fV1UNqqYVri9sU3xc8TlbdFUdAeD7F6byFZZyIbIFhbAYcpWyCu3aWKZQ/Unfto3ncpWjzAYWJgMH0ypbY62Xhc8h3A0EmQ60Oa+/kY6+GpOaDy9JigZRzQX7MnIunJTM/xcXZSQlpSTQlJVzIafc82iF352m5YLdC7erWq56pIHL//yZ3O+Fz//9G1gWBjZ3mWMYCGzud2M1cLAYOJgNLMw8BxPPwcyzMHIsDPlt9T+367k1uLqfEQDIqopkVsFsMovRuTQuT8fxwtAcnhuMlFW1XK2/fLwPKUnG+2/tgsPE51+fxbDT7+3fhn+4OIgnJ0I39XXI6rVbiicNRMTGm+PbSAlZxrm5yuEjgWVxm9+D2/w+7HI54DYKJX/PBo7Fvd0+3Nvtw2Qig/+6PIn/7pvEfJaCXvVG0YAPPHwG929twSaHBQ8PzGAmJeItPX4kJRlPjUYwmczio/u78LEDm6o9XEJIA6v91VBCCFmCIHBo9VkxNdtYC0mktsVTuvZnNdhOjGMZmIwcjAIPk8Bhc3uuTSCTn3iqRbGkVPhZHutw43v9jTXp4zMXZ/iHx+aqOBJCSM3TzekvblnJsixaO3swcvXCqp4yGZsDKoSK2pz1WyGGY5mSSkVXYvEqjmbtvHtTEO/u6YRTKF8Gi2SzeHRsDE9MTiKzRPuxtRYVxYqhIk9rK4auXCm5Tb+Ik1sQK40JRUOVKyoxYGAzGBCXGruFHSE3IqOq+N7oCD64fQcAwGPaiFof5Gbp2wSlV7lwF45m8MipETxyKhce4zkGWzuc2NntxrZOFzYHHdgUsKPdb4PFVHvHojdKlBXIcu4kmNx/+cuyCil/m5JvjyXLufslRcWxfYGS53nw+WEoqgpVBZR8+GbhXzVftUnV367mAhuKmv96qgZFUfPXNSjqwm25ll2FMeTvkxbGqRTHLhhY2EwGyIoKUcpXjsqHSUQp9/2IkoyMnBvnevrax+/BbfnKVt94ZQy//a1z6/J1GCbXys7IczDxLIyGXBs7E58LHRnz/y5cL7nNwMKYb28n8MUWeAvXBf1lLret0ZBrmWcxcDBWKdCkr8bEMgx4FmigP8kV0bRc9adkVsFcWkIokcXofBpD4RQuz8Tx4sjcqioP3YjPnhjAZ08U25x98EgX/ugtuwAAXpOATx3cgSN+F/7qzLV1HQcp1W0vHqf1x2jOfr2Iqoqnp0N4ejo3h8qzwH3BAN7Y3oYumxWsLmAUsJnw67f24CP7u/DNvin889lRzKbXvn02WT9RUcZ/XJwoue2fz42WXP/imVH8yJZWdDlKQ8WEELJWmuzjLiGk0XQF7BQqIhsqnigedLnsAt75hq3gWAZs/sw9jmPAsWzhNgPPQjBwMPBs4T7BkJsUQ+HMsMol5sEAHMvCKHD5x3CFy0aBg8BzEAz623gY+KWDQ7VaBeCx06N4333bAQDv3NGGb1yexqvT9duSR88mcLDrKo9cujxTxdEQQmrdU8/04x1v6wUA9PiteHWotLqZr61j1aGiVKJy4MYkcLCZeCTWebJ/PbQ6TeB1i7aX5hNVHM3NEVgWH9qxCW9qb4WRK18Ym0il8J3hYZyanYWyweU5p9NpdFnLS6y7fD6YbTakE8Wfu0EfKqrwXJl0CqqqgmXLP6fYeAoVEbKUmFQ89rAZeHAMs+HvBWR1BN37XCJ9c+9tsqLh8vA8Lg+Xt/Bx241o9Zjhc5rhsAmwWwywmQwwm3gYDbnjQy5fZQbIVbiRFRWSrCIrKkhlZaSzMmQ5F5BZCNKo6kJoJv9fPjSjqsVgjarlgjaKquZaTRUCO2r+3+JtuZCPptsut42me9yN+uLvvg6vO9gOAHj4pVH85pdevOHnakSSrkXXep5gpGlARlKRkVQs38hn7XEsk6vGI/x/9s47zo2zzv+f6epabe/Nvdux45IOSSAFQgiEGn6hQzgghBAIx3GQA46jc3TuIPRylLsE7kIglSSOndiJ497t7b1qVUdTfn+MVhqtpLV3La002u/7ZVnTNHo0K8088zyf5/Ph4BA5OEXemI4LlqZFTPa4qMkucgmB09t3tKbs6/nOceM1/LToyZg2hE/F4caULzRdhz+iYCIcw0Q4hsn4s1vi4ZQ4TIRiGA3K6BgP4cRgAIcH/RgOFJ8g4afPd+GKJZV42bLKhPDr+qYa7Bwcw9MD5Bq9UNTak4NXjk+WRtueFVA04C89/fhLTz94FnhNUyNe0ViHKlvS/dbOc7htdQNet7wWPz3Ug/sPdiNUInGOBKDoOn5+uAf/tGNZoYtCEESJQqIigiAsTVOdG88fGCh0MYhFhN/UcOJyiPjyRy4rYGnmRkReGGeDufLV3x7AG1+2FDzPgmcZ/PxV6/DNvZ346YEey2d+Ly1Lxgvpuo5jp4YLWBqCIIqd3/7P/oSoSBI4lLtEjJmuO6Jkg8vjQ8B//q5n4SyiIgDwOUVLiorM0W2ariOgWO8z+EQBH169FNuqyhMdvmY6pqbwf93d2D08XDBRcG8ohIuzrKtpbETHsWOJebOoKKPgQdehqWpGURGf4fMTBGFw0j8JXdfBMAxEjsXHLmrHV148jQvQYRB5xuxUdKGiotkYn4pifCoKIF1wtFgwu+KdZ4LTomWmg2CpoGo6pqIKpuYR53Ppkgosq3YDAH6w8yz+7dETWbdlAIh8UmQ0/WwXODhFDi6Jh1Pk4ZJ4uCRD3OSUOLjE6eUcJJ6DyBkO0kLcfYllEB9cZhpwNv2epoFnqtlVy+S2pWhJAWBiWtcRjqkIy0b0WkhWEJRVhGQVk+EY/JEYJiNKfFrBZMRYVirXlXf+5kVcuaQCP33r5sRx3VDuJVHRAsEzTErdfiJafOKzxYCiAX/s7MEfO3vQ5nLinSvasbrMm3AvsvMc7tjYgtcvr8U3X+jAA6cGC1xiIlf84cQA3rWuCXUu6zpTEwRRvJCoiCAIS9NU5yl0EYhFxtHTo4mGfasRjRWnqMgfkvGZn+zB59+9FQzDwC5w+OSOdty2ph47e8bRMRnG6fEQ9gxMIlCkwqhsrK50JaZDIXJhIAhidnbv7URn9zhamnxgGAYbmsvxxJFU8bTT452TqEhRZGiaCpZNH2HtKMIYz/NhSU3y3LpQUWC5ot3lwIdWL8WqMnfGusT+sTH8X3c3jkwUvpN4LBpFWFVhz+CgxPGp3x3B9FnULHkuWpblDKxXpyKIhSKoKBgMh1HrMMSUty6rx7IyJ+7deQwjEeqoK0bMIstI1FrXKMthEkFY8f6cKCxml6xzCZx1AFHFiLObjOS5YMS8cYosPnXtStyyoT7lnED69YVDmuGKNhWz3uCPUuNsIIhPv3AQTp7HB1YtxfbqyoS4qMoh4QuXr8BNS2vwT88cR18gWuDSEhdKTNPxg/1duO/S5YUuCkEQJYg1W5EJgiDiNNW5C10EYpHROxjAz//nMG6+dhlYloGuG9btuq4nbN2T04YtfEzRoCiaMa8YlvMxVUu8DgCgGw1V5v3pAFRVR1RWEJVVRKIKolEV4aiCcERBKBJDODI9rWAqEMVUMAZ/IAp/QIY/KOPe927F7bcYrhf2Iu48/u3jp1Ff6cQdr1kDNt7i0+Sx4U2r6xLb+KMK7n7sGJ7oss4Is4tqk8LHrt7zFwEQBLE40XXgdw/sxz0fugqAEfPFMMbyaeyOudd9lFgMopQuDLGJ1oxyaK1KiopGLTL69eLKMrxvZTsaHfa0jk9F0/Ds0BAe6ulBT7C4Yn1jmpZRVBQNh1PmzZ3osSxuCLwgZFyu6GS5TxCz8bVD+/H5zVsTEYkbq7z4/Q2b8Wj3MB44PYDDY9aNgCxFBFPvdVimztR8Yr7akGYgHdJZzU44lqx/OCxaJyaS3HFpG+5++VLwGVwxH+klx+iFYqaoyIqOsqVKUFHwlYPHUCYK+Pj6VVjp9STuS7fVleGBmzfjC7tP40FyLbI8D5wcxNtWN2CpLz3KnCAI4kIo3t5FgiCI86C5npyKiIXn89/bjc9/b3ehi3FehCJJd5xi7zz++u8O4PdPnsb9n7gKbXWetE5Xj8TjB9etwVv+tB8vDFgjl317Q1li+tk9nQUsCUEQVuH3fzqAj37gCnAcC5ZlsLLOg6N9yXPeTIeY80FVYoCUbn9tE4r7upCNGm/ys4xFi9sF7sbGGty2tAXlkpi2LqQoeLy/H3/t6cG4XJziKGeW79tMUZG5A0fW0p05BMmWMfoMAMIKOXkQxGyMRqP4xPO78alNF6HKZgcAuEUer11Sh9e01+ILe07iwTPUAVQsCKYO1ViROsWWCmZnvExRoosd1nQ/rZVo/NmFEDBFpnkk6iKxMuvqPPj41cvS2pBkVcOXD5zC0QkS3y4UM0VFQRIVFR0Tcgz/uPcAlnvc+MSGVSiXJACAU+Dxr5evwMZqD76w6xQUum5YFkXX8fPDvfiXy8itiCCI3EI1ZoIgLE1TLTkVEcRsBILWERUBQPdQENfe/X/Y0F6Bt1y7FGvaylHjs6PcY3QgcyyD92xoxAsDRwpc0nOzvtqNWqdxc67rOn71u30FLhFBEFZgcCiAJ3eextVXLAMALEsTFWV2e5kNVc3cmCtw1uyAq/IkRUUjkeKzaGcB3L6sBTc118GRQZQzFo3i4Z4ePNHfj3ARx7fZOA5cFpuDSCiUMm/eTlHTnYdsDnvW9wlRZwNBnBO/EsMn9jyHdy1fiUuqaxIdpyzD4JNblmLfsB9dU+Fz7IXINzMvq2GLRTdbDVVNdniSqCgdljWLigpYkCJlIpxsK3GSqMjSfOSqJSmCov/tGsSuwTEcnwxgmKJCFxTJNIhAJ1FKUXPCP4V3Pf083rN8Ca5vqkv8ht6wog7VDhF3PXEEskp/Q6tyrlhPgiCI+UA1ZoIgLE2Fzw6nXUAwXNyj1AmiUARCyd+GZAFR0TT7z4xi/w9HE/Pf+OAluOnSVgCGWMcKvHFVbWJ6KhDF6Y7RWbYmCIJI8l//sz8hKnJKPFw2HoGIIbzQ5xEVxbKZz/9WHbVea3IqGghHCliSVNw8jw+sasfltZUpcWDTdAeDeKi7G88ODUG1wLHP5lIEANFI8rgzDJMiKopl+I7a7I6M+1F1HdEMzkYEQWTmxyeO4b87zuCm5lZcXlsHlmHAsyyuaqjAz4/1FLp4i56ZQsyoTPGO+UQ1KWV4LrMb3mLG3J9o1TpfPgmanIocFnXvJAxWmNqI/ni2D986fLaApVncsJS7aDn+88RpPNE/iH/ZvA72+P3fVU0V+O7Va3Hn44cRUqguY0Ua3elO1QRBEBcK3XERBGF5GsmtiCCyEgglR2VZwakoG1FTdMCIBUSEPhuP1yyrTsz/+eHid1YiCKJ4eOypU/BPGQ48DMNgY0t5Yt18RnzOjAKYJmbRkYe1ZUnXm46p0CxbLgwtTju+evE6/O7l2/Dy+uo0QdHRiQl89eBB/OPevXh6cNASgiIgu6hIU1XIJlGRwDCJ75iu6xndlyR75kbNkFL813SCKDbGZRk/O3UCI6bfoZM6xIuCbNdbIj+YRUUsjchPwxzFp1i0zpdPzE5iEk9dJFbGLOickKluWUjoTGNNTk0F8O5nnsOYyQX4kgYf7r9uPcrIyc1yOAUOr1laU+hiEARRglCNmSAIy9NcT6IigshGIGh9URHPsnj1JS2J+SMjgQKW5vx429oG2HjjeGuaji9+8/ECl4ggCCuhKBpe2N+dmK/3JUU02jzislgu8/k/U0xVseN1CHCYGjZPTxXumrC10ocfXXoRfnjpRVhX7k0ZmavpOp4fHsY/v/givrB/P14aG7NcI7tTyBy1Fw2nRixJM75fmYRvNkdmp6JAjKLPCGK+eEUxMd0fLL4oyMWIPOO66nJQR1w+MWu4KGYnHXMknEL5Z2nwprzCGB0fS1PuTNZZh8IUd1ZI6FxsXUKKhjue3YshkxPwuioPfn7DRtQ6pQKWjJgrn9i6BBV28dwbEgRBzBESFREEYXma6z2FLgJBFC3+FFERDysOnr3vXVtgE5MN8r863FfA0pybCruAd65vSMzv2tuJqQA1bBEEMTf2HUie63iORVuVCwCgzSMqKlv8mRVHrdeZXIp0XUdvaOHjz25pqcdvr9qKz21egyaXI8WZIqKq+FtvLz72/PP41pEjODM1teDlyxWuLE5FkRmiIptJVKRk6Uiw2e0Zl4cUEhURxHwxu6J1B8KzbEksFDqAqElY5HFQh04+SRHzkigkDS7Fqch6QvJ8I/Gm+osF68REEvP1sCdI18NCQr8kayNrGu7YuQcdpoE7S8oc+OUNG9DmzXw/RxQXb1hRh9ctry10MQiCKFFIVEQQhOVpIVERQWTFP0PMIvLWcyu6YVtzYvrBE4M4OFzcTkUf3tICV1wEpWk67vnn/y1wiQiCsCLjE2EMmc53qxu8AABNm3unEMNmvu2LWbCDyRx9tpAxYiLL4h9WtePBa3bgfSvb4ZNSO4onolH815kzuHP3bvz81CkMRRZe7JRrssWfzXQqEk2iIjmL6E3KIioKUvwZQcwbxXQ9aHBmjhgkFp6oyVHQ5cjs+EbkhhSnosIVo2ghp6LZEc1ORRasExMGTpFNiT+8oakGdQ4JFhxPRxBFgQbgruf24eDYRGJZncuGX9ywEWsrXYUrGHFOmj023Lt1SaGLQRBECUM+vARBWJ7mBhIVEUQ2/IHUKASbyCEam7vLRSFxmxrjH+scLWBJzk2b1443rqpLzD/82DH09vsLWCKCIKwKz7M43TGK6rhDkcchQOI56PMQFbFZREWqBTuYzE5FkXlEwc35/ewS7li5BFsqfSmdc9N0BwJ4qKcHu4aGsrr0WJVs8WezORVFlCyioizxZ0FyKiKIeTMciaDB6QQA3LykFv/bMQgLntZLDrNTkctOoiKicHAm1ZUV63z5JsXJiY6PpdF1PeEcemNzDW5sroFfjuFPXYO4/3gnyIhq4Six26FFzT+/eBB3r12JS2sqwTAMfDYB91+3Hh967Aie65849w6IBefd65oh8eQjQhBE/qAzDEEQloeciggiOxOTqU4JNtF6TkWykmyYv3VlLXy24tVE37O9DXy80zkWU3H3P/25wCUiCMKqCDyLrp4JyHEhKMMwWN9SNi+nouzxZ9YblW12KpqK5U+Qck1dFe6/bDN+cvkWbKsuTxMUHRwbw5cOHMAnX3gBTw8OlpygCMgef2Z2KmIZBryp0zKsZvibMAwkW2YXFXIqIoj580hvT2J6faUHd6xrLVxhiARm8QbPUbNrPmHIi2RWzO4tC+nuaBUEOj4lQVDWcDKDm7VHFHDb0kbcuZZcOxYS+iWVFl87dAwPdfdBj58jnQKPH1y7Fq9oqSxwyYiZVNoFvHpJdaGLQRBEiUN3twRBWJ76ahdEgU5nBJGJiKwlbv4AwC4VryAnG4+9kOwwubypHI+++WJ84KJmOIps9MXmWg9e0Za8sf7pb/YiFCEHBoIg5ock8li7qgZmLUuDzwEtk2hjFrIJigBrjsqu8yVFRePR3ApS3DyPj65Zhgev3oF71q9Ag9OeGPUMGFFDTw0M4JN79+JLBw/i4Ph4Tt+/mGAA2LOJikKhxDTPsoljpOs6whmchyR76nE0EyKnfOa4YgAAIABJREFUIoKYN08N9mPUFLX4jtVN2FHrK2CJCGBG5JQFxbtWguPMx9p6dZp8w5quvZoF63z5xvxbJScna/OK7z+LO/5rH545M5L2t3xNSy2uaagqUMkWHzrJikqOH504g1+f7ky0LYsci6+9bBVuXV5b4JIRZq5vq4ZIYnaCIPKM9XoWCYIgZsCyDBpr3TjTPVnoohBE0SNZ0Knonu/vwrZVNajwGi4HXknAR7e24g2ravHJJ09gV29x2O7eu709MR0Myfj81x4rYGkIgrA627Y0Y83K1IY6WVGhaXOL/GKyRJ8B1uyAayxPxmgNhCOzbHn+XFThxTuXtWGpx5lR/DIpy/j7wAD+1tuLCVnOyXsWO3aOyzoCyRx/xs/4fmX6Rtns9gxLDQJ5dJsiiMXA5/a9gK9s2wEh/lv8523L8PqHXkDQYnHHpYSdT95vjftzc50iMmO+ZGvkNJOG+RJtwSpf3uEp/qyk+MuxIfzl2BAAoMVnx0PvvwRO0ej6umf9EnQHwjg+me5oROQW+iWVJn/o6MakLOOOVcvAMAxYhsFnL10On03AfxzoLnTxCADb68oKXQSCIBYBJCoiCKIkaKn3kKiIILKg68kGV0mwnqgoImu44sMP4BsfvBTXbmlMdPg2um342avW4RvPd+D7+wp7E/vKtkpsqk1GMX7p358oYGkIgigFyn1J8Yyu6xiZiuLJI4NQ5+jswmdxmwGAqGK9TufmiuRxORsIzns/PAvcvqQV1zXWwCMKGbc5PjmJR3t7sWdkpCTjzWYjm0sRAMgmZxRz9Fm2IyRlERXFNA2KTi4eBHEh+JUYfnD0CD64eg0YhkGVXcLtqxrxvQOdhS4aAYB0CkQhMQulrSC6EjgGlS4JlU4RPocIj42HU+JhFzgIHAuOZcAyiHdoG05Dug7EVA2RmIapaAxjwRjGgjJGQzLGgjIC0ez1Zp6cikqWzvEwbv/lXvzuHdvAMgxsHIc717bhAzsPFrpoJY8FTjXEPHmkbxATcgz3blidcMK7c3Mbyu0ivvTcaRKUFZgqh1joIhAEsQggURFBECVBS4Pn3BsRxCLFPILTqhb8EVnDHV9/Gk3VTnzjg5dg49LKxOiYu7e1odwu4AvPnilI2QSWwT3b2xLzQ8MB/Oy3LxSkLARBFIalbRW48tJ26DogyyrkmIJYTIWi6tA03bAK140OHV2fXhbv4NHj05oOHcl1NVWuxP4nQzIeOdgPAHMWFbHcLKKimLWuCSLPorYsKVA5NjH30cZL3E68d0Ub1pV7wWVwJQorCnYODuLR/n70BOcvWrI6di6zCFnTNMjRaGLe7FSUrcNSsttR73DAxQvoCQUQiovZgkpu4+tKFSfPY3t1DeodDmi6DlXToQHQdA06jI7QkKIgoqpGhysADUZcn6LpUHTjOaapiOkaZFVDSFEQVhQElBisdRYgMrFvbARHJyewusyIPnv90jr8+HA3ohat91sdszhBtOCADqJ0MEeeZarzFAKXxKPcKaLCIcLnFFARFxCVO0R47LnvpogqGsaChsBoNChjLGQ8D/mjEDiKKixl9nZP4gfPnMUHLjccpVd43WBATjr5xhx/li3+mLAue0bG8Km9+/G5zesT94FvW92AcknAp545jhgJNAuGWShLEASRL0hURBBESdBcT6IigjgfrH6P0T0UxOv/+RG8akcLvvqBHRB44yb2Hesb8VzfJB7tGF3wMr1pVR1avUYnt67r+MR9/7fgZSAIonBUlDvw4K/eDpdTytt7OKWkk46qzk1UxM0qKrKWU1GDzw42fiHTdR3HJqfO+7W3tNTjltYGVEpixgbu7kAAj/b1YefQECKqtY5LPsjmVBSbEf8mmI6lmkVU1FpejmUeLxiGQZ3DgYASw2m/H/2hUO4KXIK8sqERr25uhZ3j8t4po59jWLluftb1lHldN0ROqqZB1XUouh4XmOkprwWMDm4Vxnp1+qGZpvX4PuL7UuOiS3MXlayp8MsxTMhRnJmaQm9o8Yr/zPznsaP4+rYdYBgGHlHAxTVleKZvrNDFWpSYz4XT9yoEUQjMAjeey911ROJZuCQeNoEFx7LQNB2RmApZ1SByLJwSD59DgNduPMrsAnwOEWUOAdIC/yYknkWd14a6eJS6mRZTpO5ic6RcLDx5aiQhKuJZhkRFCwD9lEqfY5NTuGv3i/jKtk2wxQei3LikGmU2Hh95/AhCCok0C0GYjjtBEAsAiYoIgigJWhu9hS4CQRQtiqJBiI+SrfTaAYwXtkA54H93dWL/6RE88rVXJxrrX9ZSvuCiIpfA4UNbmhPzp86O4vGnTy9oGQiCKCxbNzXlVVAEGPEO08xZVMRnjvbSdUCx2EjCpkpnYlrTAVmbveGsyibifSvasb26HAKb3omlaBqeHx7Go319OOH357y8VsYlZP7emKPPAEA0HVeRZbHEbQj9zaKTdl95QhTDMAzcgoiNFZVY4yvH5bW1kFUNEU2FjePAMQzkuFuAwLIQORYiy4FlDCckIzLNEKVMC1NSBCqJeS0eO6RD0w3hiw4klukAFF0zCVoMNx9DFGMsj8WfdST3m3xPQEPy9Up8e1lTEdMMN6CoqkLW1Dk5AVXZbLimvhFX1tZBzOIWlQ/OJVpKWZtt2wUsrxlN19EbCuLpgQE83tezaJ2XJmMyxuUoyiWj43xLtZdERQXCLCqyYvQ0UTqopnpSpnrQuRA5Fi0VDjSW2VHntaHCKcJrF+AQS+N7LXLJY7K+3oub19Xhuc5x9Psjs7yKsBKNZUkxmV8md0aCyBU9oTDu2LkH39q+Ge54lPilDeW4/7r1eP8jhzAxS/QkkR9OjQexsZoG3RMEkV9IVEQQREnQSvFnBJGVSFRJiIqqytJH6FmV7qEgHnuhB9dtM0Q9025BC8n7NjWh3G7kVuu6jg994n8WvAwEQRSWpoayxLSq6ZgMyeBYBhzLgGGYRGf8dD88Awbxf9MLktsgsVEipkLTdZwcSDryzDX+jMviOGM1lyIAaK5IiopCs4irrq6rwpvbm9DotGcUS4xEInisrw9/HxiAP0YRXJnwZhEVhQOpkXM20/eLYZiM8Sp2e+brs8CyaHS6Mq4rJbK5AE0vNR+xc4l7jk/6wYIBywBsfFuOYWDjOPAsmxBPAQAf/3uwrPE8/WBLLIqCZRg0OV14y5KleFP7EvSFgni0txdPDfYXumgLTncwmBAVNbkWvl5MGJjdYUhURMyXaq8N7bVuNFY6UeGW4LILEOIiGD0hdJ2OzzWWqfEI3en1lZ7kvf/qOjfefWlriouIkc4bfw2mY3oNRxevXUCVS8I8tEiWwXw9ZABsbfFha4sPXeNh7O4Yw6F+v+UE+EQqb9jUmJgOKta797EiM38x07G8ROkxIcfw3meex7d2bEaV3bjerKvy4Bc3bMR7/3YQ/cHoOfZA5JLj4+TeShBE/iFREUEQJUF9tQsCzyJGVo8EkcZUKAa3y3DRqCorrQ4GtyPZ6TkWXtiO4TqXhHesb0jM797bhaMnhhe0DARBFB6zqOhEvx83fumJC95nlUfCndevzLhuzqKiLO4hEQuKihpMMRWTcuo5v0zk8Z4VbbispjJhw25G03UcHB/Ho319eGl0lKIPzoE7i6goFExtrDyfvkaXyxAOnZycgqJraHI6sjohlSLZhELzkfZMRGX824GjF1QelgFEloMUd4JiYHSs8vFy6vGysXEBklmMxMYFj+Z1LMNAZFlIHJt45hg27TMyDMAzrLE/lkmInniWARdfzscFUDzDgGNZsECaOFNgWTh5Hl5RSPuesgyDRqcLb1++Am9bugynpvx4ZqAfe0aGz+lsVgr4TfGEXoma+wqFOUaJ4s+IueCUeGxZVomLllSgwnPhLpjmqDG3jUe7yfGRSDXe00y/22afHc2+Bty4phZ7u8bxfOc4xhe4rYG4cNbVebCtxZeYPzhGrqQLwUwxPYmKSpuIpuH9O/fga9s2odVt3PO1lznwyxsNYdHpCYq7XihOkqiIIIgFgFoZCIIoCTiORVOdG2e6JwtdFIIoOiYmI6ivNm7uSk1UVGlyJxpY4FEwH9vaChtvdFyrqoYP3EMuRQSxGGmsT0aw9ozlptFM5LM7G6jK3Do1ssWfyRYUYjdWJEVFQ2Gj8/zymkrctqQJLS5HRvHGVCyGvw8M4PG+PgxFKM7ifPGIYsblZqciJ8+nHPP+UBi6yX+HAwOGBbpjKiYHhzEVMwRxXYEQnAKPkXAEHGsIUWwch7CqQtE0SBwHwIgUCykqIqoKRdfBJxx5UoUuPJsqfpl+MEgKUhLPMIQnDAOwSO6Dm7HPFCFN/PVs/DUMY7iKTbsFsWBSIgovlElZxkujE3igswd9oTC+sGU9lnrcAICtVRW4tqEGj/QOznv/mg5EVOO4wuJ9pB5BwMVV5dhRXYn15WUp8T4cy2KFtwwrvGV45/KV0HBu1yiYvsEzYUz/z3z19G7NrzW+d7O/MlMZUoRYiYn4lK6nbW+GN33+iGq9c3ypYHY2kUokJorILyLP4mXr67BjZTV4Lj9ucllOf0WJqiqIhkOQw2HIcgRKLAZViUGPi0N1XYeua9A13XD35HjwogTJZofN4YRkd4I/D/GyuQ6jZThATpHDlUsr4XOI+O2LPbn7gMSCcP2qmpS/8X8e6yxgaRYPab8kUhWVPBqAu57bh89uWosNFYaQr9Yp4Rc3bMAHHj2Ml4ZI0LcQ2GdpQyIIgsgVJCoiCKJkaG3wkqiIIDIwPB5OTJdS/BkAVHqTn2c4JM+yZW5ZV+XCa5bXJOb/+OeDGBunETgEsRgxOxWdNsWUXQg2IbOzga7r0LS5OQxxXJb4MyuKikxORc1OOx64ejvsWeLdjk9O4vG+Pjw/PIyYlXrSigCJZSFlyTsxi4ocpmMfVTWMRdOvw3anEz3hdDFXMKbgz919GV9jVaaFSHyKEw+bJoKaFjSxDOKRNcnYmUBMwUg0VST9uX2H8bVtm1Bpk8AwDN66pPWCREWlhD8Ww2N9g3isbxAOnsO2qgpcWVuNdeVlqbE2DAPOmChYWXPCHMofppiXghEzi4rIqYg4BysaPLh5Rwvc9sXj4AcASiyGaDiIaDiESMj8HEQkdOFuC7wowmZ3GiIjhxM2e/zZ4YQYj4k064Fnqyo+1zF2weUhFp71DZ7E9N7hCQxFMtc5V5a5cM/6pRAYBr863YO/9pD79IWQHn9GqqLFwmf3HcJH1izHFbXVYBgGXknAj165Dh994iie6qHzaD7xSQI+srm10MUgCGIRQKIigiBKhhbTDSNBEEnG/cnOPI8js/OAFXGIPMpNtvBHRhbO6vWTO9pT5k+dHcF7/t9Ww7mAYxKOBly8UzYaUxAMxTAxEcLwaAi9/ZPoG5jEIkjiIIiSx+xUdKQ3N+JmScg8ykxV5xZ9BgBcFtFN1ILxZxtMEQaV9vRYkKCi4JmBATzR34+eEAk950u26DMACJviz2xmUVEWsZvdmT1qxS9b3CZnBqquQ9V1yACQw5+XPxbDb0534kNrlgMAXFncxxY7IUXFE/1DeKJ/CBWSiMtrq7G1qhxLPe4UB6PFQv8CO3gSScyOJ0yeXGcI68MwwCs2NeDyNTXn3jhH77eQKDEZ0XAYcjQMORI2nIciYURCQUTCQShyfkXFiiwjIMsITI6nreNFES6vD6vt67BiSRvsdju0LKKioakozubIiZRYWAankt+xJR4HXDyHwAzBrcSyuO+iFah1GEKzf9y4HD5RxG/P9C5oWUuJmQK9xVcDW9x88/AJjEVl3NzSCIZhYOc5fPvqNfjMzhN44BQNisgHdU4J91+3Hs2e0komIAiiOCFREUEQJUNro/fcGxHEIiQQSDamOGy5ufQLHAuBZyEKxrPAsxB5DiKfnDfWc8YzlzpvbJ/cjueMkfw8z4JjWQg8A45lwXOMsY5jwfMMeDY+zTG4cmN9ojzhmIo9/QvjVHZ5ow9b68tSlv3jXVfPeT+G44iOSFTB+EQIPX2TOHV2FIeODOD5F7txumM0V0UmCCJPeNw22E0jyw92pXdczAdHlriUuUafAbOJiqyhanRKPO559Wq8dmtT1m1O+f14vK8Pu4eHIZNa84LJFn2mKAqipgg50STUiKqZVTQ2pyvj8qCiQCEHqfPGH0v+9rWsAV3ENKNRGQ909uCBzh7wDINahx3lUvr32hyJx8Yj8mYj25Fn45F40y5UgCEy0+KPaSeqmfFoQDJ+Z3recK+afo2xJDUabTqCz/QZ4mX/9Ka1if0fGs2Ncx5xYbDn/FYRF4L5kp/LGMp8w3MM3nR5O1Y25bkNKyXea/67iUUjmJoYR2hqEpFQwBAJRcJQYjI0TQPLsuB5AQzLQlVVaKoCVZm7EH6hUGQZE8ODeGFvFEcOvITGxkbI7loA6R2yu8mlyLJ888lTuGV9HRiGgU8Scff6pbjvxeMp21zTUJUQFE3znpUteGlsEscmAiDmzswoQY5lQaPpFhc/P9WB8aiMdyxvBxOPqv7C5StQaRfxo4PdhS5eSbGmwoVvXb0Gtc70AVcEQRD5gERFBEGUDORURBCZCUWSDXqbllXis+/YgnK3BLdDgE3kIQkcdBgCF4ZhUgQ/Is/NEAkZy4qNv3ePIaouTEPFUlP8zoXAMAw4joHTIcLpENFYX4btW1oS6zVNRygkY3AkgNNnR3HwcD+e3dOJFw/0UJsMQRQJNdVJwYSu6+gcyc1IZruY+TZtPqO6uSyuJtEij8a5dEUVPvaq1VjXnBpjNE1EVfHM4CAe7+tDV3DhnOoWA54sTkXm6DPAiPuaJts12OHKLCoqNZeifMObOst5hoGNZRGhysB5oeg6eoIh9ARL22lihdedMv/cQG5ErsTcUUzqDYG3jtDFisimuoxokag5lgHecuUSLD+P9itN0xDwjyMwOY5IKAA1LuBlGIBhWCAuKExMM4AhPDQeB+0TsElGnfLUwBR6xkIpQqPp7Y1pJrE/XdehxGREwkGEpvyIBGcXV6iaVtQiomywMI5xV1cXOsePwa8JqGluR2VdE3hBQFTRsK9nYQYuEbmneyKM57vGsa2lHABweW05OAZQ46doB8/hHSvSBy3wLIMfXrYBf+8fwRdfOonwArUzlQrqDFGRYCHBJ5E7/tzdh3FZxl1rVybu5e/a0oYqh4h/e+40DZG4QHiGwZtX1eOjW9ogctao/xAEURqQqIggiJKhlURFBJHg0ovq8ZabVmHz2lpUlKWOuHvbK5YXqFT5408nhxbsvf77+CC21XmxqtLoKJ3uN5geR67rSI5Ij68TOAYSx8IpcHAIXMYO8pmwLAOXS4LLJWFJawVe8bLluBtGI28kqmBkNIiunnEcPTGMfQd68OyeLoyNl3aHGUEUGzVVScGEeiFDwGcgCZkbhpR5dNgIYuZRa8FI8XX+2HgWH33VKrxuWwt8ztnjOj+4axciWdxxiAvDJ2X+zphFRTNdXbI7FWWOP5uMkahoLgyFkw5RDMPgZ1fuwOdeOoRD49TZSRjMvAaFilw4WsqYXdiEIhyMUUooSrKzX7CIqOhVFzedU1AkRyMY6D6Dob4uKLH5x4Qd4cYTx6VjNIihKYpFTMFUkdE1o57TceQAuo4fRmV9E3q5qgUbuETkh+89fSYhKmIZBroOLHE7cE1DFa5pqEKVzajz6rqOjrEQ2iqS9dYr6yrhlxV89eDpgpTdqqSLiqxxbiZyzzODIxiPHsRnL1oLPv49uG11AyrsAj751HHEcth+kiskjkW5TSjqGOGXNVfgE1vb0eSmuDOCIBYeEhURBFEyNNS4IYkcojI1oBKLkyXNXtz7vm3YsakBUpbonHyimxoPjOgGI6JD1xGPf0hGQai6DlWPj2rUEJ83PTQdimY8q7qOWHxe0Y3nq5srEsKciUgMT3YtnC35ZFTB+/96ZN6vZwB4JB7lNgFVDhENbhtavDa0eOxo8drR6rXDI2WvojEMA7tNQFNDGZoaynDptjYAWwEAqqphKhDF4HAAHV1jOHJ8ELv3dmHvSz0pje4EQeSGmqqkM0Qklrv6B5dFeKhrc38Pls18PSimzrdNrT7c+5q1uKitPGN8SVhWIfEs2Pi6k34/CYryiC9L/FlwKhmnZOe4RGyTrutZY+fIqSg3nJkKYs/wKC6uqgAAiByL+y5ah7t2v4iuEnfgIbJjY1nUO+3oC4bTfoM2jkNMKz7x6GIgxakoi0iYyA3m/kgreGGsa/Fh64qqrOt1XUd/9xn0nDkGjeo5ecf8nTFHi2qqiqHuDuwFAyCzeyNhDWxC8j6IYxh8fMNSXN9Uk7bdoX4/Xv2fu/GhK9rx4SuWQIg7f7yysRr3n+gCALyxvQEry1wYjcjYOTiGJ/tH0wQ0RLqoSCRR0aLm8MQk7tr9Ir6ydRNscaH19W3VKLeJ+PBjhxHIYRvKhVDjEHHb6gbcuqIObpHHL4/04ovPFZegkGOAT+9YhltX1BW6KARBLGJIVEQQREnRXO/ByQ6yeicWFy/f0Yx737cNrQ2eRAffTDRdR1TV4I8qGIvEMB6JYUKOIayoCMfFJgLDQIMRYRJRVERVDVFVQ1hREVE1RBUNYUVDSFEQiWkIxdcFZQURTcNCaVa+eOnyFKefH+/vgaxapzFHhyFMmowqODsZBvrTXQbKbQLay+xY6nNiic+OpT4HlpQ5UO+2zbpvjmNR5rWjzGvHiqVVeOXLVxjvqeuQYyrGJ8Lo7Z/EydPDeOlgP555rgPdvRP5+JgEsSgwOxUFcuj8k+1crs/DKDzbvjz2wnaSiDyLD123Am/a0Ypyl5ixnMcHp/DrPd34n5d68R9vvQjb2wxBxUgkkrYtkRtYAJ5soiK/PzEt8cmmBCUuHJ4JwzCwOTJHhk6QqGjOfPXgMbx9WRuub6oHYIy4/9TGNXjfzj0FLhmxkFSIIu5YvQwrvR44eEPcp8/owFM0DWESJBQMxSTwkgRyKiIM7CKHV29Lj1qaRonJOHnoBUyODefsPc/DHHdxYz4+M+oxId6J4QgJiqxO93g4ZT6ToGg8JOPdv3kRAPDtp87g/t0dOHjvNWAZBiLH4vrGatzSVo9KW7J+fHVDFW6dmMLHniseUUSxQPFnxEx6QmG8/9nn8e/bN8Mbv8/cVleGn12/Ae975BBGwvN35LtQVpY7cfuaRlzfXpXiqnXb6gY8fHYY+4b8s7x6YfnHbUtJUEQQRMEhURFBECVFU62bREXEouGSi+rxxY9dgboqZ8bO2BPjQTzdO4bd/RPYP+xPiIesyrvWNOJtqxtQYU825pwaC+InB3sLWKr8MBaJYWwghr0DqTewDp5Fu8+BpWUOLPU50FpmR5vXgVavHdIsriMMw0ASedRWu1Fb7cbmDY140y2bAACapiMUljE6FkJP/yROnhrGS4f7sHtPF/oHp7LukyAIoKY66VQ0FsidRXa2TiBmHuPwNT3zuV8u0DVhc3s57nnVamxur8joShRVNDx0qB+/2tONvZ3JOl2NJymqJFFR/vCIIrJdTcxORTZTo6ucJRrE7nSC5TJ3qE/KhWs8tiqypuE/jp9GXyiMd61YAgCoskmotIkYidDxXAy8prkB/29ZW1qM7sz7gL92Dqe45RALi/nYi0XkCljyFLmC5oq1tXBkcaONyVEc3bcLoUD+Oi/JUCUdc716Zk2mG76FLQyRF44MTkHRtET00jSRmIqnTo/gd/t68eiJVCFfUNZwZjSIpfG4+/euas2471VlbtzUXItfny699qgLYWYcq5jFNZdYXEzKCt7/zB58Y/tFqHUYsV0rK1z41Y0b8d6/HUSnP3yOPeSWyxp8ePvaRuyoz36u/4dNLXj3Xw8uYKmyU2UX8XoSFBEEUQSQqIggiJKirtp57o0IwuKUeUT86AvXYf3KqrROhKFQFP99chAPnh5ET6A0Ol0/vqUNb1xRD5FLbQgaDct478OHEbG4WGouhBQNh4YDODQcSFnOAKhzSWgvc6DNa0db2fTDgXqXlNb5ZIZlGbicElxOCS1NPly6tTWxTtN0hEIyRsaC6OmbxPHTwzhwqB+79nRicEYZCGIxUl2ZdCoa9udOVFThkjIu17JETM0Gy2Tu0JwILZwIwcaz+PD1K3HrjhaUOzO7Ep0dCeLXe7rxh309GA+lu9iUO5KCUhIV5Y+yLC5FmqYhHEie980jObNGn7k9Wd+HnIrmz0M9fQlREcMwWOX14OnISIFLReSbLZXluH1ZW1b3OQCIKCoeODOA7+zvWLiCEWmYRUU8R6KifDLTpatYEXkWW5dVZlynaRpOHNyTV0ERkGbEQ2CGUZHpu6SyPE5G7AtfICIv3P3AIXz5prWQeBaapuOp0yN4729fylp/BYAHD/bj7pctS1s+HIii3CEmBkY0Oul7MhMNhlvRdJy3gydREWEQ0TT8w7N78W8Xb8QyrzE4q9Ftw69v3Ih7/n4Mz/bld5C4wDK4sb0at69txHJfev+Rqunwx2LwScb98I56H9ZUuHB4tPBtn+1lDvDk+kUQRBFAoiKCIEqK+mrXuTciCAtz6/XLcd+dl0KYcWN+aiKIHx/sxsOdIyUzMpkF8MsbNmJdpTtt3fN9k7j78WPoz6EziJXRAfQFougLRPFMT+qNuMSxaPXa0R4XGbXHBUftXgfcWUbLTsOyDFwuCS6XhNbmcly2vS2xLiE4Gg+ip3cSJ8+MYD85HBGLDHP8We94KGf7XVKTft4DADk69xF8HJ/5dz4Vzl1cWzYubq/APa9ejU1t5RldiWRFw8NHBvCbPd3Y3TE26yh6h5i87o1E6dyfL3xSZkFbOBBIEbWZR3zHsnTKOL2ZRUWTciwtGoE4f2Y6ltmos2ZR8K7l7QlBUURR8evjvXiqbwynJoKodkhwCxzO+sMIKRTDUmgU0/mNI1HRglHMXW1bllZCEjOfq/s6T2JqYmyBS0SkYaqWDHE+aEX9jSLmwoMH+/GN8LWDAAAgAElEQVTgwX44eBah8xyQ9t2nzuB9l7TBNaO95Ic7z+ItW5rQXmEIEkgkn06ZKCQERQDQG1pYBxqiuNEAfHzPS/jk+tXYWm1Em5fZBPzwFWvx44Pd+O6+TsRy3KbtFXncuqIOt62uR5Uj/V43oqh4uHcAPzl5FooG/OHl22GPt6HcvqYRH3/qWE7LMx86JkNQNT1jm0o2QjEVh0amMCkrqLaLWF3pShkYRBAEMR9IVEQQRElBoiKilPnefdfgmktaUkYo9wYi+Na+Dvzl7HDJjT78xfUbUgRFmq7jyc4x/PpIP/7eNVZynzdfRFUNx8eCOD4WTFtXaRfQ6rWjxWtHa/wxPe0QZu+kTBEcNWUQHE1HqvVN4NSZURw40o+dz3WQ4IgoKczxZ90j6b+x+cAwgMBnbiwKB+f++xEkW8blYTk/oiIbz+IjN67Crdtb4HNmdr05MxLEb/Z044/7ejF2Ho5JLIuUkXnkVJQ/fFmcioL+VAcFc2dBtpHezixORWNRiuq6EFRdR2cgiBaX0aF125I2PN0/jMg8nMwI61BlT57LP7/nJB7uTMa1dE1Rh10xYY5+ESj+LK+Y9anFnH62sb0843I5GkFfx8kFLg2RCX26dYEBjkezOy0S1uV8BUWAIXx4/Y+fw5/etyPhmK3pOv7wUi9uu7gpsV2pDOjLJU3OZH1F13UMR2gwCJHOFw8cwbuWt+PGpnowDAOWYfCe9c24orEcn9l5EgdHLrzdsMFlw9vWNOB1y2oztm+OR2X819lu/LmrP2X5X3sHcXNLAwDgurYqfGdfB7qmCtv+MBiS8d2XOnHHhmYIMwTrk9EYDgxPYf+QHycnghiLxDAQjGIwGIVqOkV5RR53bm7FG1fWL3DpCYIoJUhURBBESVFHoiKiBHHYeDzw/ZvR1lSWWKZqOn56pAc/2N+FiFp6nUh3b27D+qpkY96RkQA++tgxnMqhEwgBjIRjGAnHsHcg3W6/2iGmCY2aPTa0nK/gyBypti0pOJr0h9HZPYHOnnF0do+jq2ci/hhH/+AUNGqYIywCxzGoNYmKjvTmJrYiW/QZAAT8E3PaF8cL4Hkh4zp/OLcja3csq8THXrUaG1p8YDOMoIsqGh4+PIDf7O3G7rNzG5G/usadIqglUVH+yBZ/FpxKbdg1/4Wzx59ldtwal6lz4UJ5oLMHd65ZAQDwiAJ+duUOfPbFAzg6ScLdUqTRYU8R8u0bnixgaYhzoZuGPhSxzqXkmC3uuZA4JR71FY6M6wZ7O+YVbXu+mA9JKRgEMixr/KYYBgzDgmGMz6UquavTTvFe+GPkAEgAx4YDeNm3nsbnblwNh8jhu0+fwURESXH60GmoWxorypLt8mGV3BOJ7Pz4xBkcnfDjI2tXJH5XK8pd+PWrNuKBk4P4zr4ODM4jsn1VhQvvXNuIV7RWpUWG6bqOnmAYPz5xFntGMset/eT4WdzYVAeBZcGxDN6yugH/9tzpuX/AHPPD/V34yaFuVNhE8CwDRdMRiqmYPM/BYpOygn/ZdQq7+ybwlatWUZwaQRDzgkRFBEGUFA01JCoiSov2Ji/+8O2b4DZ1Mg8Eo7jnqWN4aTg3HdjFyBuX1yWmj40G8JYH9yMQowaJhWQoJGMoJOP5/vSOq2nBkSE2sqHFY0fzeTgcyaoGr8eO9WvsWL+mLm19LKait38SXb2G0Kizaxwd3eM40zGKM51jJDgiioraajd4kwPB/s7cRFfUeDM7C2mahnBgboIBuzOzqAMARgMX7hZz6YoqvO3yNuxYVgW3PbN46fRwAL/e043/fqkX46H5dfqsb0yKaqdiMUTJkSUvsAA85+FUJHJcishLziBuZhgGDlfmejk5FV04T/YPYWtVBXZUVwIARI7F57dswKf27scxEhaVHMu9yXO5X47Nq4OFWDhS4iFLcPBHMSGZ7juiRXqv2FTlzLpuZKAnz++evFbrFlAViTY7bHYHJLsTksMJh8sNye6EKEngBBFsltgWTVURjYQRDQURCQcRCQUQCQURDQURDYeyC7fMoqv48xnVm9sPRViaXn8E7/zNiynLyhzJe56pWP7jpK3GpTVJZ7buIA0KJGbn2aERHHpqAv+yZX3ChZVlGNyyvBY3tlfj9yf68dNDPegPnntQyiX1PrxzXSN21PvS1mm6jsPjfnzv6Cl0BWd3+FQAPDM4gpfVVQMAblpSja/vPQNZLfx1VFb18zoWs/G3zhF4d53EZy9dnqNSEQSxmCBREUEQJUV1hQM8x0ApgooeQVwoV21rwvfvuzal0/rFoUnc9eRRjEVKN7u9ziHCZvrMH3/8OAmKiozZBEdV04KjuKtRq9eO65dUAUDCOjwbgsChtbkcrc3pEQGhsIzjp4Zx6swoOrvH0dM3gcHhAEbGQpj0hxEMyggEqZOt2GFZBjaJhyTxEAQOPMeC49gUZxtN06FpGhRVg6JoUFUdqmrMq4rxXAwCs8b6VPc4fzg3jco1ZfaMy6PhIDRtbudCl6cs4/JoTMPUHJ2K6n12XLmqBpcsr8S6Zh/qfXbwWX7T0ZiKh+KuRM93ZB4BOBe2NCcbBgfDFPOTLzyiiGxnabNTkZ1LduKqmgY1Q0el3eUCy2UWmY6TqCgnfP3gMbw9HhsAGA3wn960Fm99cleBS0bkGrMrqciyYBmgCC6DRBbM474toOOwNI3VScHOiL84XQxrfZnrdZFwCNFwfjvcU76LeX2n84PjeYg2OyS7AzaHE7a4eMhmd0KyO7LWG84Fy3GwO12wO9PFzLquQ46EEQkHEfRPYrS/B8EMzp+6DsR4CR1hqaij9IjCYz6v39RSiyf6RjFKdVsAgFvgsaEiKcx7rHeggKUhrIJfUfCR3S/ihsY63L6sPdFuKPEsblvdgDevrMcT3aP47xMD2Nk7DsX0I+QZBq9sq8I71zZiZUX6NUDRNOwcGsH3j5zBlHL+7TU/Pn4WV9VWgWEYeCUBVzSW49HO0Qv/sEXC708MYGO1Bzcvqy10UQiCsBgkKiIIoqRgWQY1lU70DgYKXRSCuCBuv2UNPnXH9hQngAdPDeK+3ScRK/FehEvqfYnPPRmN4chosMAlIubCcEjGcEjGHpPg6DsMcF27ISzqHg/hyVMjWFrpRIPXDp9DhEPkwJ3DetdhF7FpXQM2rWvIuo2iaJj0RzA+GcbERAjjk2H4p6IIBKOYCkQRCMoIBKbnZQSCUQQCUUwF49NBGdFo6Y42dDlEOJ0i3G4JbqcEh0OEyynC4RDgdEhw2AQ4HALstvjDLkASedhshghIEnlIEgdB4CEKHESBgyCw4PmkOIjjmIRIiGMZsCwDhmESoiEmh630SlxgpMbFR5qmQdMMG3pN06FrOjRdj4uUdOjT07oOTQOg69B1Y3tdNzoddB1xwVLqMl03zO2n56HruGhDY6IsHMvgJ3fsiO/fGAk3/TrANI/0fWrm9wHQVuVEmdNwi5kuH3SgryeEicp4Q5me+A8aDMGeKLCmdcbTlouWorm1Nt74rcc7oXUEIgq++86LoWk61PjxUDUdqqaBZRg4JB4+p4hKt4RKjw0eOw8uy+hwMyeHAvhN3JVoIofxaitqki4dXQGq4+ULXxaXIsMlK3ncbaZOv2zRZ84s0WcAMCGXrjB6IVF0HT86fhrBmII3tDcDABw8jzq7Df3h4uxcJ+bH8YmkU5iN5+ARBUxE6XdUrERNIjCbSDFK+aK+0okNyyoT808fGSxgabJTncWBMhRY2BjDXDoV2ZwuSDYHJLsdvCBCVRSoqgJd08CyHFieA8fxECUbbA4XRJsNos3YdqFhGAaS3QHJ7oC3vAr1rUsRmBjDYHcHeC7pYqQD6GN8Ob1XIUqTvx4bwus2GILuFpcDP7piAz6y6xA6AzTw4er6ykRcq6breKyvOM/LRHHyUE8//tbXjw+tWoHLaqsSsaYcy+Calkpc01KJ8UgMj3WNYO/AJOqcEt6wog51rvTrbFhR8XBPP356ogPzaeEbl2MYikRRYzf2/fLmypISFQHAF3afwkU1XjR7MoufCYIgMkGiIoIgSo76aheJighL8+VPXImbr1maaNDSdB3fePEsfnq4t8AlWxgq7cnGxtEcdkoThaPKkfybPnNmFJ9+6GjaNh4bj81NZVhf78GyKjfayh2ocUvw2AQIHHNeDbw8z6Ki3IGKcgeAinmVNRZTEwIjsxBpKphdlBQMy6itdmNkNIihkQCGR4IYHQ9BUTJ3trscIioqnKitdqOuxo2KcicEgYXIcxBEDpLIwSYJCTGP3SbAYTeEPjabAFvc5Wfa6YfnjUdSzGM8MywSDTGl2EA+/bmLhStX1eR1/6EhJWs0WjaWNteiPIvz0Yr63MQ7HBuYwuPHh/DwkUEc6M1PB1m1OxkBOhghsUS+KJOkjMvDgUBKdIiUIirK3Enp8HgyLp+UYxmdjYj5YeM4XFyVdPdTNI0ERSXI1upknUbTdYQVcvAsZsx/H6ctczQoceF87K0bE46JiqrhwV2dBS5RZspcWa6twbm3WfGCAJ4X44JzPSl6N9TyCeG7IZjXwZidQOdRdo4XINoMYZDD7YHL64O7rAK8YO3vtausHK6ycrx2bRXOnj2LkydPQh8K4ng0c2wrQZi5+4GD2NbiQ2P8HqtcEvHJjcvw/mcOFLhkhWdrVdJd9uxUYF7nHWJxo2jANw4fx38cP433r1yK7dUVKbGyPpuA1y+vw+uX12V8/URUxu/O9uDBrr4LLsuuoVHc3GIMarykPrMDtJUJKRr+9blT+MG16wpdFIIgLASJigiCKDnqqqkhgLAmIs/id9++CWtMIy6jqoZ7nz6GR7tKa0TEbLjEZPUkTLFnJUGVSSjWM5F5BJ8/ouCJkyN44uRI2royG49rV9Zga4sPyyqdqPHY4LHxsPEsWOb8BEfniyBw8JU54CtzXPC+so0ILkWBz4ViPlZ0fDIzMZEe1TAbDMPA682NcGiaqYiC44NTONg3iRe7JrD77BiGA9GcvkcmPPbkdWGI4s/yRjanoqDfnzIvmBp25SyRfE53ZlHRWDT/35fFglvg8dWtm1BtT4oND48vrPMFkX/uWrMCl9dWJebPToZSnHCI4sMcVyeJxSN+LiU2La/ETZe1JeYffK4LWbT8BccpZW56lyNzr89s3HH1nNx+3nRFe2KAwd+ODmJ4yhCdptyjxEVISDhs6gAYsBwH9jxcKq2MzWbD6tWrsWrVKhz884uI7Eu/DyWITFz17afwrddtwA2rjeigVWVubKrwYt/o4q6HrfYl2+OfG148bZhE7gkqCr526Bh4ALe0NeFVTQ1wi5kFrbquoz8UwY9PnsXuobGcleGh7v6EqKjKIaHZbUPXVGkN3ni6ZxyPdAzj2taqc29MEAQBEhURBFGCNNSQqIiwHq0NHvz+2zehzJPsGBoOybjzySM4ODJVwJItPLxpRKVCbgYlQYXJqejsWGjOr5+IKPj9S734/UuZ3bqcIotqlw2NZXY0lNlQ57ah2i2hwinCLfFwSjwcIgeHwEHiOUg8C4Ez4rm4HDj5KIoKnk+Ptyh2cYyqaohEFciygmhUQTSmIhqfl2UVkWjMeJZN28hqyvbT0/L0dHy9LKuQY8b8ne+9HJdsNTp+xsMx3PJfL8IfVRFWFEQULWMnEAvAxrPgWRYSz8LGM0bEV/whcSx4loHIG/O2+N+TZRhwLMDA+NsaywCOZcExhnU2CyMulWOMdQwYMAyMB4y/G8cYy1iGiS+LrzNtyzKAzybCLrDwRxXj/ab3aXqefn3qvpiU5+ly2HgW9W4J01+d6W8QAwZdA8MIygpSvlUM4BRSb+mGpqJgALjcbnSOh03vFX8Jw+DsSBCyqiWOmXE8jOOj6UAkpsIfUTASiKJ3IoyzI0EcHwqgf7IwjWgil+zUGianorxRlk1UNJVaD+FM5zY5i7jBkSX+bFyW51k6Yiavbm5IERTpuo7vHD1RwBIRucTJ8/j6tlTRmKrp+Nb+swUsFXE+mN3Y2CKvC1qVD74+Oao+HFXwiZ/uKWBpZkcSMkfgqercHHmlecSHmb99iqol7k2K/R5loWEYBgdGaTATcf4oGvCB3+/HvnvK4Yu3dbx5ScOiFhW1uuzwSdMR3jqe6h8ucImIUmCJ141GpxP2DO1tuq6jOxjC1w6ewKmpYM7fuzcUQUzTEgNqVle6S05UBACf23UKm2q8KakBBEEQ2SBREUEQJUd9tbPQRSCIOfHKy1rxzX96eUqMz9GxAD70+GEMhhZf59tEJNnA6pWsba1OAE6Bg9PUmH5mOPc3+0FZw9mx0LwES9OUOwRUuyXUuAwxUoVTRIVDhNcuwG0T4JF4uCQeTskQJ9kEQ5zksQkZBUXny6Q/Av9UBKqqQVE1KIqGWExFLGaIciLR+CMSQzgcQygcQyQaQySiJNYbYh9DyDM9HY0qM8RA00Kh6WkFqrowor3b37glMX14OIDT4+cema3BsGMGNGARnQa3Nnjx2pXpMWpKLIa9ZwcyvubiBm+i0/LUcABjQeOAVQhl2H02faSepgGf+b8jULPEVhUbZXY+pfPLT6KUvCCybHZR0QynInNXZCzD94hhGDhcmUX+Y1H6++WKFlfqPc+vT3diJELHtxSosdnwje2bYOeTTXZjERn3PXcCO/vHC1gy4nwwX19ZlsQbuaa23IHLN9Qn5r/9v0ehFalLEQDwXObvgDbHQrPc3O43eDbVzTWbCLgYCcsqRkMyRgMyhgNRjAdjCMgKZEWDpuvxB6BpOniOQZldRLnTeFQ4RFS4RJTZBcymnbILXMrxOT2S+3tUovT53jNn8KlXrAQAbKv2YZnHiZP+xfldanEnnZ5jmk6R1cS8YRng8poq3NjUgGXe9IEqmq7jhZFxfOfIKYzk+d5yIiqjKi7wX+K9cDfzYmQ0EsPHnjyKH71yfcogX4IgiEyQqIggiJKjqrw0K3lEaXLPey7Ge96wPqVB6y9nh/GZXScQLlYP9zzT4U8KDmqdIlgGyHXft8gCt61tAM8y6PFH0D0VwZnxEIKL9Jjnk1pnspNa13WcGg0UsDTZGQvFMBaK4djg3Mp38p+uhRB3Ubnt/b/Es893wOkU4bCLkCQeAs8mft+KokFRDGFPMCQjEIxiMZhxtbcmIx2PjRTn379YqHFKGZeHA/6MyzmWSRF4hOTkKGtHlvip4UDUMoIiANjSUp6YVjSNnG7yxMby8qzrpiaTo655lk3tpMwQf2Z3ubJ2fo6TqChnKKbf8ZGJSfyho7uApSFyRbPTgS9v3QjJ9Bt6fnACn951DKORuTmbEIVBA4mK8skl62sTx1VRNfzgL8cKXKLZEbjMEWKaOjdnHJadm6jI50qtU0ZixXOfq2nARFjGeCiG0aCMsaCMsVDyea5l7Z1IFy9wLIMyu5AYLLK6zoMlVUkxrs+RHLykqBrGw1Q/IebOf+7qxF1XLYVDNLrYbm2vx7++dLLApSoMPlM0VWSO5zeCAACBZXBFbTVubmlEozO9b0fVdOwcGsG/HzqJyAKpiYcjSVFRg9t2jq2ty56BSdz71DF86YqV4KjuShDELJCoiCCIkqOy3F7oIhDEOWFZ4GdfvgHbNyZHWaqajn/f14GfHO4pYMkKz+7+Cei6DoZhYOM5LPU5cOICHGgy8cibt2a8IdR1HRMRBW/9036cGM/tey5W6lym2A5dzxh1ZWXMN9z+qYgRAzYRxvjEud14FgMsy6DNJArZ07t4LeHPhzp3ZlFRyJ/5uJVJSRcfTdMRNXXCONzejK8Z8Ftr1Oj6huTnGI5EYB05lLVY4sksQotGIggHkmJAu0nooOl6irBlGmeW6DMdFH+WS84GArikxhBtLnFT/HOp8JmL1qYIiv54qh9ffuEUFshckMg19HfLOe31yetV72hx368xDMBlcSpSVWVO+5qrU1GVN3kPFpIVaDkeyaDrwFRUQSCqQIhHEzOMUTeIxDTENA1hWcV4KIaxoIzJcAyTkRgmQsZzvgdWqJqO0aCM0biD566zY6h0itjWVo7NzT5UmkRXPZORnA9iIqwFzwIukYdT5GEXOdiF6QcLW9yl2MYZ0yLPJFyLJZ5FUFYToqKr6irwpf0nF+U1O2pyQyO3E2IueAQB1zXW4frGOpRJ6c65gZiCh3sG8IvTHQvenjgajSamy22l7aT/l7PDmJIVfP6y5ahyZG6XIgiCIFERQRAlBzkVEcVORZkND3z/tag1jZTzywo+/tQx7OyjSINJWUFU1WCLR0q9d2MTPvb48Zzt/77Ll2YdYcIwDHx2Afdsb8N7/nI4Z++5mKkzNdiG5dIbsWZuLgsuwrjCc9FUXwYp3siq6zp2dk0UuETFTa0rc/xUaCqzU5HHlrydC8dU6KbeS4crs0jEaqKi5dVJscQw2ejnhWqbLUUsZGaoJ1XobDNtF9O0jP3ljiwCJb8co067HHJ0PHleENjMThiE9XALqR0W9x/pWpSdk1Ym1UOQyDWVZclBZCNFXqfJ5lIEzN2piOPm1oTvNbnFTkXmJmD6/+ydd5gkZbn276rOaXLOaXNedtllEZCkxCWIguI5BvToMWLCiJgVOXpAPxCUpEdEj4gIiEfJsLABNofZ3ZnZyTn3dA5V3x8z2/XWdNXs9KSqrnl+1wXbed4OVfXW+9zPfU9GEIChQAS93hA6R0NoHfSjfTioKCzWMwP+CP5+pAfP1/fhyU9sTdze2E9OqnrGaebxrXcvx9rSDJh4DmaOh8nEwcRxMPGn/wX4ies8x4HnMPEvB44bX+fhuXGhH4eJ25i/wU2VlZcCNpMJRU47Ov363jfNB0MRyU2R5qXEdChy2LG9ohQXlRTKBPXA+NpRTzCER0+2YkffgEYjBEaZ37XHavxS+o7OYVzz1F58eFUZ3rusGNkGF1IRBJE6xt8TEgSx6MjLJqciQr+ctaoQj/70ctht0iG4eTSAz718TBb7tdh5rrkf1y8pAgBcu7QQfzjWjX09ykX1VMi1m/H+lcWJ695QFDzHwW2TT4ne7CBx11zBxp+NznJBW++Ew8Z+fzOhtjo3cTkuivBG6DNSI9NmhsOsLOwI+JSdilwW6fGsaM9ktsDmUBZZd4+m1yJ3Rbb0PvpIVDQvrMzKUrxdEAR0nDolu83KLPhGVGznM3NyFW8fYjo9idkTYFwuSMJgHOpHRrE2Jztx/cGL1+GD/9yPUTp+piXpJblID+xW6Tjk1/m5hc2i7i4kKMSHTsVUTkX3PH0sIaLgJkQUqyqkY/vhzlE8+EaLdKzgTv8jiStOiy94joMgiojGRYSicfjCMXhDxhIFR+ICyhhx2r4OanrQMz/Zvhrb1xSf+YE6IZ1ipglCC2o9blxXVYatBXkwTRL0iaKIdn8AvznRjH2D2u+bg4wDl30KobCRGA3HcM++Ftx3oBUbCzOxsSADlZkObCnOQgE5GBHEoodERQRBGA6rxYSsDBtGvFS4IPTFzdtX4Nuf2QaesQJ+o2sYt712nArtk/j+7gZcUZ2fcCu6851L8YGnD6F/lk4w25cUgJ84aQ1E4rj81zuR67TiyY+eDfNEN1XLSACPHO6a3RsgErBORYN+Y+2X7WZe1tUYpu04idrqvMRlo4vKZkuRW32BJqjiVGQzSwtb/qhUnHJ6lJ1igPRzKsrzSMJEciqae3gAFW7l6Kz+zk5Z9Bkg7zyOKoiKOI5DRq6yqKgvZKxjgNaYucWxsL3Y+P6+I/ivLRtR6Rl3NC122XHPBavwq0Ot2NM7QiKVNIBEfvMLW3+c60ivucZmUd9Px2KpzYvVnIq8gSj6FQTjRYwo+2DnKE4N+FP6e0bHwYjTGsipSNesLVU/r5lPTsf8xkQRMUFAVBARF0VEBQExUURUGL//9PVIXMDLXQPoCS7O+S67t9P5rpnQiPU5Wbiuqhxrc5IbWgRRxMHBUfzqeCM6A/o55zczk47YIvthRwURu7tHsLt7XNxl4oC7LliBd1fnazwygiC0hERFBEEYkrxsB4mKCF1xx2fOwc3XrJQJEB492oG79zVTpIECMQH44e4mfG/bEnAch+osJ/54zTrc/loDGocDGAxGZvS5lWdIHYkNAz4M+iP43c1nJQRFMUHEzU8fmqu3QQAodElCie40EzOcCY9dPpUOkmgmidoqSVTU7aPj8lQUe5RFReFgALFoVPE+trMvOA1RUTAShzfNfqcZjOX2AImK5pwCh0O2WMrS2dycdBv72KjCgdidlQWzWXmZoTtAjoxzSZVHitENpRijQ+iXGIBbd+/Ddzasxrrcccei1bkZuPfCNegPhvHHk114pWMQbWNBEhjpFBvTyR6O0rY516RTvNyUTkWpiopUjq0hlXjpHGZeebxnLKW/tRhgRdJDAeV5NqEPeGbueWjIiyND3gmhz7jIJ54Q/wjSbafFQIwwKC4IiItICIRYcVB04rbT98VEgdbpUiR99szEQsJzwLkF+biuqgzVnuRGlqgg4NXufjxwogmBmLILrpaY0kjIPN/EReAHuxpxcWUezDxt8QSxWCFREUEQhiQ/x4nGVu1tMgkCAB796eU4d2Np4nokLuA7OxvwzKk+DUelf55q6sUV1fk4p2S8oFKZ6cDvrl4LAPBFYtjRPozfHOzAwb7pL5IWMlFcA74Ivn7JUtTmjhflRFHED99sQu8s3ZAIOQVO6TNvGzZWQTlzUr44ORUlU8fEnzUNBTQcif5RcyoKeJWjzxwWk0yoysafOd2Zis9JR2Ef68ZETkVzT7FTOSYvFo1idHAw6Xa2sBMRkxd+s/KUOxfjokjxdXMM2xFu5sm1yGj8YP8R3H3OWSh1SdtovsOGz66rxmfXVWM0HMVTp3rw++OdGA5TQVxPONlo0jQT8qYbeq/vqYmKRFFEPD43TkVKwrUMp1lW8CMnnmRYPfWgn87/9QzbRLGzdwh/aOrUcDSEKipNCsTixG7icXFJEbZXlKLAYU+6PxiL4dn2Hm6BBtsAACAASURBVPy+oQV6nimx6y1xvU86FoChUBT7+0axuUg5Pp0gCONDoiKCIAxJfrbjzA8iiHnGaTfj6QeuQ2WpVNwdDkXx+VeOYX+fcpQNIec/XjiC/3fRSlxQJo9ScVvNuKw2H5fV5uOB/W14q3sUNpMJNhMHh4WH1WSC3cTDbubhMPOwm02wmXlcykQxrS724OKlUvEzLgJPHu9ZsPe2WGCdik4NGst232OTT6XDYT0vh2hDDeNUdJC6pKekyG1VvD2gEn2WzThlReMConFJ4OFScSrqTTMXxyyHWbaQNxROr/GnA3k2ZTHbcH8/RIWFU7ZcEFFwxymurFR8vZ5gEAKtw84pHYzzk4Xn8YutG/HlPQcQUYilI9KPGIDP7NyLq8pLcEN1OTIsFtn+MNNmwYdWlON9S0rwq0Mt+MNJiu7VCw6zJCTxk6hoUWNXERWlKigCAJPZoni7kqhoy9KCxP4iEhPQbrDGjtmSYZfPL/3UGKJrWEE7zSX1C3uOIJKX4qIl22rBFeUluKysGG5L8nFrJBzB46fa8Wx7twajSx12/0OaonHqB30kKiKIRQyJigiCMCR5Ocpd1wSxUJQWuvG3+69DJmM73uIN4FMvHkX7GHXqp8JnXjqGj6wqxS2ry5FhlS8AAsAnNlTgExtSf91Cj7xbxsxz+MM163DNX/bPZrgEg9XEIcchLSSc7DNWl6yDKRTE4wIEWuWUkeGxoSBPsrje2TGs4Wj0Dc8BeU41UZGy86LbKp3KBSZFXzjcyqKinjRzKtpUmZO4HBMEeCPUST7XZKuIipRciuwmuTtWdNI+L7eoCE6PR/H12n3kVDbXHB0exYHBYayfiMgqd7twz9aN+PSbb4NkRcbh2fYuPNvehRqPCx9ZWoOlGRmwMvFaDrMJX9xYi2y7FfceatFuoEQCB/P9BELkIjXXmJgskrjO595Wi7KLXKrRZ8BUTkXJe/yV5VJTU+dIUPef00KT6ZjkNqvwGRL6gTVjJKcQ/UJpSIubCpcT2ytLcX5RgSxeEhh35+sOhvDwyWbs7BvSaIQzg30ntPsZp4/c/QliUUOiIoIgDElOVrK1JkEsFGevLcIjd14OKyM4eLtnFLe+egyj5GQyIx452olHjo7bXOfZLfiPtRV4//KSOf875RnkcjaXFDjlxerjBnOqMTErZyQoSqaOcQYTRRFH+43lVDWX5DutMmt/lqBPWYznYApVrKjI7nTBZFY+zUu3+LONTFGsPxQiocQcY+I4uFR+K4Gx5P21wyTNa2KCkFTYqV29RvVvNY/R9j8f3H30BL65bhWWZI6LuYqcDnxsWS1+faJJ45ERc82pMT9u33sYAJBrteKTK5dgY252ooP635aX4tH6dvgVXEuIhYWNP/MFSFQ019it0ucbjur73NpqVhYVzcSpiDcpux6FFLb5omypya7fRy6Pk8m0y+c+oRjtN/WM3KmIzrkJQk+sy8nCNZVl2DDR5MAiiiKavH7cd7wJJ0bTcy2QFUhFyQ0WAAkICWKxQ6IigiAMSXYGiYoIbbjxymX43uffAZ6ZZT/T1Is7djYkdfQTM2MgFMWP9jTh8up8ZNmkLkNfODYRASQiKgiIxUVE4sL4f7Hxf8MxAeG4gJcbBrCjeRAf2FiGT26rTrxGjE4S55QCl+S8IggiAjFjfb5ZTJdriASDSdQyoqIAdQBPSb5L2aVIEAQE/coLcOwCV5ApKKm5FIki0Jdm8WfLi6T30h2k6I65xmOxQG1NMKAgZrMxBc3JEVuujAxVl6IWnx+jUSqszwejkSi+tfcQ7tiwGiuzx0V4FxYXkqjI4AxGIvjhgaO4rLQYn1hRBwAw8zzcFjOJinQAG3/mC1I391zDNu6EdD6/NKlU3pTiRc/4Wiqiolg8+TNgHZLCBjv/mgsymHO4uCAiEqd1Gj3DbkbkVKRfONWzCsJomDkO5xXlY3tFGao8rqT746KIvQPDuK++Ef2h9J4HmXl1l97Fyopc95kfRBCEYSFREUEQhiQ7UznKgSDmk29+ais+dN0qWTTIvQdacf+hNg1HZVwC0XhCVPTzVxrxi9dPpfwaP3mxAW3DQfzoypUAkBStRsyOfIcklIgoLHinOy6btLgfpHiLJFinogGySJ6SbLtF8fZwwA9RRezILrAHGacip1tZ2DEUiKTddljJxNn2kqhozsmwKP/uBEFAKJAcV2ZlRUWTCnDuzCzVv/N2f3rZ3KcbEUHAgyeb8PMtGwEAdrMJX12zAncertd4ZMR8c2NNReJy+1gQvYH0Eo4aFbdFWmodSjMxbzrACnWiOhfM8CrnlmpzuylReS2laDMHE5Gr5GS02Mlk5t1B+nx0D7sdkahIv9BSmvFxmk14V2kxriovQa49ue4SjsfxQlcfHj7RjJBBGjat5FQkw2nmcUFZrtbDIAhCQ0hURBCEIcnJpAgjYmF59KeX49yNpYnr0biAb795Es8292s4KmPjZhZLB/0zFyyMMQ4zdpOyRT0xM9h4pnQTM0wHNt4iSgvSSbBORS0jJAiZimyHiqgoqBwZ5bKaZCLI6TgV9aZhYTPPLS1WGlFUZAZwUUkJ3CriHpbZil6VXBEK7HaUupK7S/0+H3Ksye5ZDplTkXyf53QrdywOhMMYCKffby/daB7z4+2BIWzKywEAbC3Mw6VDhXi+s1fjkRHzxcbcbGTZpO30lwebNRwNweJi5ocDo+kVO5oOsMdDJUGNnlA7ds9k1BynfJ6qpLFw2khUNBUZJCpKKzgSFaUF7N6OviZjkWez4eqKElxaWgSHQnT2SDiCP7d04KnWLg1GN7/I4s/I1Q7X1BXK1kEJglh8kKiIIAhDQk5FxELhcprx9P3Xo6JEKuKOhKP4wiv1eLt3VMORGR8XEy3QNgvBQo9XWuy3mUlUNJc4me8opvNF/5lQ6JGiNke9xhM8zJYljKjoWH9ylBIhkasqKlL+XbmtjKAtLkBgVm4dLmVxR683/QqbTuZ9DoTSb/xn4pfnnAOPgnhHazq9XuTZp44SnhwXalcQJwHj8VzEwvDr441YcvZ6ZE78pj5cV4M9/YMYjVA8pxG5orwkcblhxI+XOgY1HA3BwjoVDZKoaM4hN4zJJJ9jUfzZ1Hgc0jZKn4/+Yd1ZSayiXyj+zHhUe1y4pqIM7yjMT4rzFEURnYEgHjrRjD0DwxqNcP4xc6xT0eLeAdlMPG5ZU671MAiC0BgSFREEYUg8Lv0VaAjjUVWagSfvvQYexkmhxRvAp188irYxWkCeT+oynbKT2uZBZTeP6dAzJjkocAAyrGZ4qQA3J+Q5pX2xL2y8z7Q4Uyq6DwzN/DdoRCxmHpXlOYnruztHNByN/inxKAs4omHlY4mddYyZVAyxOZyTHw4AGPClVwQdzwNmZj9vNFFRudOpS0ERAIyNjZ3xMZNLcA4VpyISFS0c/aEwHjjehNvWrgAAOC1mPHzeVvzvqVb8qbld49ERc00u41J0sN+r4UgIFgvPwcY4n/YOJ0dJErODLWsKi6nAp6qmSC7ks+fJ5OySjItxPCanovRCmJHPF7EQsIJP+pbSm/U5Wbi2sgzrcrOT7hNFEcdGvLivvgktPuPPceS/68X9y37fsmIUu6duPCIIwviQqIggCENCoiJivtm6vgQP//jdsDC2n2/1jODWV+pJkLIA3LisOHG52xtCxyy6gLtGQwjH4rCZx+OELqnOxZMnKC5kLihgREVDs4io0yuFjKCwf4CceFgqy3NgnnD+EkURu9pJVDQVrPMQSziovFBnNSvbcPM8D7NFeQ40EkyvbXBpvlsWdzBosAitNTk5suudfv80lilnupDJMf+fuIUDPGYLeI5LetWeoSGE4/Iim5njYGLs3wMx+VxHLf5sNJJev7t0Z1ffAPb0D+Ls/FwAAM9xuLGmEi9292IgRN+FkegNhlDlGd/uqjIo+lsvsC5FANA3RE6Wcw3PCGYEnQtmlKJHASUZ0DReS2UOoOTcJBMVLSbh1TRhnTApHk7/sA449HPWL5N8bDQaBTFTzByH84rycU1lGSrdyQ60MUHArr5B3FvfBG908ax5s8Jc0yK3Slyb79F6CARB6AASFREEYUjsNjMsZh5RsjIm5oGbt6/Atz+zTbag+VRjD767q9GQEU965PLq/MTlHadmF/cQF0Uc7vZiU/l4F84VtXkkKpojChiBZ++YsQQBAJDDiKb6Z+GWZUTqmOizqCAiQMdjVcy8+uKUmqjIbpaeE4lJxRCLVT3+Nd3cwtaVZiUu+2MxBOPGKvrUeqRFufqRYdx1+OCC/n0Tx+Hm2iWK9x3o7MSQT+5W5DCbUT4RrSeKosz+3WqzwWxRjvAjp6KFRQTws8PH8f6aSlxbVQYA4DgOyzMzsCM0oO3giDnl2MgothSMH2vLPSQq0gtOpuFEFEX0jxjLZU8PsIJjvYuKOI0KkDz7GdEUPAlWVETxZ/pH5hSi821+MbO45Rbpi9NswrtKi3FVeQly7clrCcFYHP/X0YNHG5uxGHeXAomKCIIgZJCoiCAIw+JyWjDiNV4Rm9CWH37xHXjv5ctkC4R372vGQ0c6NBzV4uIdJdnItEnFy8f3z/6z33FqKCEqOrs46wyPJqYL61TUOQs3Kb2S6ZCm0uRUJKeWERWNhEhUMBUui7JLEQDEIsrzGDPjGBOOS6t7dpeyWwwAjATT63tYUSyJbvqDxnN6KHVJHaCdgYUXJXpUREAAEPQnj8fK/OYm66fVos8AYIScihaciCDgt43NuLCkAJkTEXs31VRiRy+JiowKu30S2uI0qx/TibmBFczE4/oWGKjVH2cijOA45e1cKQKO4s+mxmEhUVE6wW5HOt/kiQnoa9I/uTYrrq4oxaWlRXCak0vEw+EI/tTcjmfaujUYnX5gRUX8FM1gi4FD/WO4oqZA62EQBKExtPJAEIRhcTvViyUEkSo8D/zvL7bjfVcsTwiKwnEBt712nARFC8yXNlUnLtf3jmFfx+isX/Pv9T2Jy06LCdcvK5z1axJAPiMqah0yXt6608qIigZJVMRSV52buNxJAt8psZvVT8miKoIMtkuOjT+z2JQz7n3hmOxx6UBNniS66Q8ZT5SYY5M6QbsCC79/VBMVCYKAoILIycKIFmKTCpQOV7JFPgCEBQGhOBXrtOKFTsl1sdTlxO8vOAflLqeGIyLmCh7AjTWViettPuMJL9MVVlSkdxeddMWURvFnJpUCpCCmfmxUcz1S+gxMJuaYTcfhJOyMqCgUM5YTphFhf/lqMYAEQUyPKrcLn1+1FPefuxnXVJbJBEWiKKLDH8B39x3FB1/ds+gFRcDk+DMNB6IDfn+sE0+e7DnzAwmCMDTkVEQQhGFxM8VsgpgNOZl2PP3r61CYKxXNBoMRfP7lYzg4MDbFM4m5ptRlQ22mVBB7dE/bnLxuQ78fb7cPJ9yKvrq1miLQZgnPAXkOaT/caEAnH1YMQvFnctj4sxMD9NlMxVTxZ0JcObKMfUacybUwmYxzeleWLcX59BlQVOQwSQWtLgVnoPnGY1GeJ4cCAUChQGnhpfHGJmWpOFQcsrwUfaYpu/oH8J7q8sR1l8WMH29ahw++ulPDURFzwbc3rJYVgR451q7haAgW1n0wTrHY8wJr2BPTuWCaV7cqSvm1OBVHMqXfmYWpfEZIVJSElRFd0Xaqf1hBHTlvEcTMWJuThWsry7AhNzvpPlEUUT8yhvvqG9HsM14z4GyQORUt8vgzEcC33ziJbn8Y/7m+YtF/HgSxWDHOqjNBEMQkPC4SFRGzZ83SXDz286vhsEuHzIZhPz790lF0+8l9Y6H53raliUWloUAETx2Zu86ZX73RgoduGj/BznVY8aWzq/CzPS1z9vqLjWy7Rdade7LfeKIi9v1R/Jmcupr8xOX9PV4NR6J/1DrPAah7x3PKD1ErONnTMI4lzyU5+fQaLP6s3OmUfe96cipSij4DAAuzvwvF5V39dhWnIhIVaUuj14f76xuxvbIUJc5xkZ7LYsadm9fhq28d1Hh0xEzJtVqxNkeK6n2hrR87uoY0HBHBwjoVxWJU/J4P2CKW3p2K1KJSZjJqtdmi0kdgZkQzEZ0Lr7RG5z8hApOciuj7IohpY+I4bCvIw7VVZajxJDeBxAURu/oHcV99I0Yiys1Mix5OZeFlkSICuO9AK55u7MXqfA88VjMicQHRuICzCjNx04oSrYdIEMQ8Q6IigiAMC8WfEbPlmkvqcOdXzpfZh7/aMYjbXjuBANlkLzjnlWZjc1Fm4vpjezsQjs1d5+WLDf3Y1TKErVU5AIBPbCjHv5oHcNiAYpiFgI0+E0UR/T7lGKd0pdBtlYkCKP5MojDfDY9bEoTsaKNi51RMVRDjeA5QOtyISKywc8xSu6gSp2FOQ69up00qzBrNqWh1Tk7i8mgkAl9s4cU3qYqKrIxTUa7dhhzb+D5eBPDuumrk5UnuZKcXXC8qFvGxZbWqURUi81gx6f/Sg0TZVeYxsufKIzFO39/uD+B7+w5jsS6T/7OzG//s7MZPNq3DsqwMAMDSzAxsLcjFrr5BjUdHzIQryksS84/RcBTff6tB4xERLKyoKErni/OCLP5M5y4zavFnojCDc9gU4s9YUVGUnIqSoBpx+kK/ZoI4M3YTj0tKinB1RSkKHMnx6KF4HM939uDBk82YwyVVQyKPXyRO0+ELocMnX6N5rrkfnb4QvrS5RqNREQSxEJCoiCAIw+ImpyJiFnz1P87GLe9dIxMN/O5YB362txk6X7s0JGvyPPjlhasS30ffWBgPvNk853/nm88dw98/fg7sFhN4jsMfr1mP6/6yDyeHZ+YiUe6xo9RjQ4ZNmnL5IjG82Tk6V0PWLQWMqChmwI1maYEncTkeFzA8YiwnldlQy0SfxQUR7V5ydZuKqWyjRbVtR1YMkR7DccpORUP+9BL1Oa08TKxoz2BORXUeaf/RFdAmHpCNTmJREhVxHJf0Oz19POYAZHo8su/r9O/TpOqrsHBk2az40NIaPHTylNZD0ZQfHDiKh8/fAsuEm9lta1bga28dxEkvxfimGyUuKRry8OAY/FESrugJp4UVFVGlbj5gz8/1fo6hNsebiaiI55VdJ5Ui4Nho3Qj9DpOwMKKrGImudA+7GendnYwgtCTTasFV5SW4rKwYboUGktFIFE80t+PJ1i4NRpeeyEVFtP85E7872omblpeg1JMsZiMIwhiQqIggCMNCTkXETHnox5fh/M1lietRQcCPdjfhiYYeDUe1uLn3olWJTk9BFHH7P+rhi8x9EaVpMIDb/1GPu7avBgDYzDyefu9G3PLcEbzRMZLSaz1/0yZUZzkV7xNFET/f0wKXxQSPzQyn2YSXWwfx3KmBWb8HvcCKioIGLHitLs5IXO7u9eq+U3ohqWNERfOxnRoNs0oXOwDE48r+Kuwz2LqUyaRccBoLpZdPy+qSzETRUBBFDIaNJUwrZeLCtIg+A9RFRREFVyhRFBGKxWBXeI7FYoHdru9FQ5fKe11M+GIx/K6hGbcsqwUwXpT/2LJa/KWlDQcHRxCaiWsGoQmsy9hImCIG9YaLcSoK0RxoXpgqNVZvqDlFCjMSFSkLx+MKr8U6JJFTUTIW5nuJ0jmc7pG5smo4DoLQKyVOB7ZXlOLC4kJYTfJjhSiK6A6G8MjJFrxJLqWzgjSNZyYmivhHcx8+trZC66EQBDFP0OoaQRCGxUNORUSKOO1mPP3AdagslSK2vOEovvjqcezuSU1QQswdZxdlItsuFVC+/Y/j+OeJPgAAzwF5LhvslvET5+FAFGPh2RXP/3ywC2VZDnz+/PHCm5nn8ciVa3DnrmY8dLBjWq/htvKqgiJgvJj3pS3VstuuXVqA2L+O4V/NxjjRL3RJ8VfpJmiYDkvypUz69k7aP7CwoqJev7HEIPPBbGtjso5d1WiMWf6RBWZNiXQcHo1EEDPYCl6OTdo/dmrgVGTmOFmcGUtYxRWq3e+H3WySFXYAwJOZgUND0nGLvffN3h6EBUHmapT4lxt/pcRtHCe/Hxw4jn0Ol/h5q91/+k4OwHuqahLCqU6/NsItvfFsexe2FeZhRdb49rUk04OvrVsFcWL78kVj+OpbB9AdNFbcoNFwMyI5u4kHz6XfPt7IsE5FJCqaH+KMM89Uwmw9oBp/phJXOxWcyhxPyanIxIpmFO5f7JhlTkX0+egd9qcfpwMeQSRYmuHBtVVl2JKfm+SMJ4oiGrw+/Kq+CSe9Po1GaCzSSdSsJc80kaiIIIwMiYoIgjAsLieJiojpU1niwZP3XYsMt1Toa/MG8ZmXjqLZa6zYlXSjxCV3QPjI2RW4bk0xCtw2FGXYZPblAOANRfFy4wCePtKDVxoHEJ9BMfq/X23CWDiGb126DMC4df3XtlZjXb4Hn3uh/ozPD0QEiKIoW/z1hWNw29SnXhzH4aKKHMOIigoYYedQIL2il6ZDVY4UP9LeRaIiFjb+7NQMowMXExa1Lvb49IqR7Nq6Whd7ukUF1ORJTj5GcykCAAfjKKVF/JnTrO7mGQooz3lEiAjGkgWidpMZQwrfkQhgz0C/Jh3lHID319QlrreSqCjBnv7BhKjoNKfnKh6rBfeduxkfeW0XRiLkgKNX+sNhVHrG95GXVOSjOsOJuw80Y2fPsMYjIwDAwTgVBWfZ6EAow85pTCbleY9eMKuMbyZORZyKGFhJZGFm5oNhij9LwsI6OZFTn+5hz5RmsrZDEEaCB3B2fi6urijFyuzMpPsFUcTegWH8v2ONGAgbbx1uoWH3OJObawhlGkcCODIwhtV5njM/mCCItINERQRBGBa3i+LPiOlx3qZSPPD9d8HCdJbu7R3Fra8cwwgtBmvO/7X24zvblsA0UfSqZYrNSmTYLbhmdTGuWV2MrtEQHt7Tiv95qx3hFK3fH9zVim5vCD/bvhp2iwkcx+GKunwsyXHiur/sR2iK1xMwfvJ5+pTz+kd2Y1/HKC5eko+vXbwEGXYzApE4gtE4yrOd8EyIjXidd9umQjHjVNQ7ZjxRQAGTEd6eYjSe0WGdig71jmk4kvTApOYuNM0iB1tcUys4pVv0RXm2JNpTEqykM6VOp0xw2qWB4EUtDkwURYRDqQmpbU6H4u3BWEyziIpMq1VWUG300n7oNEeGR8/4mEfO34p9A0P4/oGjCzAiIlUePtGEDbnZ0rw4y4VfvnM1/nv/KTx2olPj0RF2RkQSJqeieYGNFIvrfH6j6lQ0h/FnMYo/SxlW7EVOTmkA61REoiJikWI3mXBJSSGuLC9BkcL5V1QQ8HJXPx443kSxxnOIXFRETJeX2gZJVEQQBkXfLR0EQRCzgOLPiOnw0RtW46EfXyYTFP2tsRcff/4wCYp0Qigm4KuvHUcwpr4wL4piIr6DpSTTjm9dugwvffpcXLQkT+GZU/P3Y7244dE96PZKUSBLclzY/aGtOK8se8rnsguUORPOaS829OPS+9/Elrtfw4X3vYErfrMLBzqlAp+ROl8qMqWFjoZ+49ktZzsk4So5FUk4HRaUFksdc7s6zlzAXuzMNhqD3fdNtj0/TbpFBZRmSfuPgZCxopjW5uQkLo9GIvDFFt4Rxm1RFt5Hw+GUC512p3LUZ0DB1WihYOPlRFEk1x2GRq8Pf21pRzgeR1QQ8ERzG36oIB7amJeDm2urFn6AxBnpDobwld370RcMyfb/n11XhVU57imeSSwEVkasQPFn8wMrCAnq/DM2q7hRziT+TE1UFFcQxbCNKhFyKkqCjc1TEmUR+oJdI0k391WCmC15Nhs+VFeNB887G7csq00SFPljMfyxqQ3Xv/Am7jnWQIKiOcbE7H9I1Dg93BYTSt32Mz+QIIi0hJyKCIIwLG4nORURU3PnbefjukuXyBwD7t7XjIeOdGg4KkKJf7YO4J+tA7i0Ihercj3ItJnR6QuhYSSAQ/1eDIdj4AFUZDhwbW0hrqopQCHjlFOa6cDDN23EH/d34Bt/P4ZU6utHesaw/aFd+PV712NDWRYAwGU14+ErV+Oxo914trEPLosJTosJDosJLosJDjMPm1la+M2ZIo6RLQipiQvSBR6Aw8yjyG1DXbZUaGaFU0bBwQgR2zspcuQ0bPSZKIrY12W8756Yf/KYKNLeoLEiSOs8UseeFtFnAJChIioK+lMfj82uvGDo10AsdZocmzSmCC2sJ/G7xhb8oakVFp5HcCJm8WOv78aD522RPa7GM7UzJKEdzT4/PvHGW9hWkIcvrlkOE8fBzPO454LV+OXBZvyjpQ+RNBOTGgWbzKmIGlTmA4s5faK9TGqxtDOJP+NUREUK2zorMienomTY6GESXekfij9bfCzJ8ODGmgosyfDAG43i5a5ePN3Widgi+v6r3C5cX1WGbQX5SeuEoiiiPxTGH5ra8HxXn0YjXBzw5JQ2LSw8h89trMKVk9biCYIwHiQqIgjCsGS4aRJDKGM28/jT3Vdj7fL8xG2hWBzf2HESz7cNaDgy4kw83zaI59sGFe8TALR4g7h7fwvu3t+C/37nClxSIXcnumlDGUaDMfz4xZMp/d1+XwQ3/e5tfP+KFXjf+lIAAMdx+ODqEnxwdckZn587hcgxGJU6bK+uy0cR47IWFUREBQGxuIhIfOKyICLTZobLaoKF52HmOVj48WISz40vIvPc+Pj4iXHy3PhiHM9zME38m3jcJHckE8/BlHgd6bmnmXwazd7Hqbik7GkdmvLzSTcy7GZZB3AHCWcSsNFnoZgAWqY/M3MqJVTZBtNt+cthlUR7A0aLP3NJQo2uwMJHnwGAx6osdA34UneVszmU48/8OnEqmsrlcDETE0XE4tJnU6TwPb7S3buQQyJmwJt9A8g+cQq3LKsBx3HIsllw+9lL8Z9rqvDLg834ewsVmhYah1k6fgXI9XZeYDU0KkZAumG2bpQsnJpTkZKoiHkoiYqSYSNSIxR/pn+oqL+o2JSXg9vWroBlYjvNsFrwO7yi8QAAIABJREFUb0uqUeVx4+dHjms8uvlnVVYmrq8qw8a8nKT7RFFEg9eHB46fwvFRindeCMyMoDdGgn1VPrexCh9dU671MAiCWABIVEQQhGHJ9JCoiEgmN8uOZ359PfJzJBeV/kAEn335KI4OGi+iaTGj1rn6iW1VeKWxHztbU3OXCccF3PbMUbx4sh93bV+FDPv03dAiUyzm9o5JBXOO43B2SVZK41poUl27F0URw0FjFVXWFGckLsfjAnr6vBqORl+wTkWDQYocmg5qYjws4kVzC1OEG41ENBzJ3MMKXvTmVDQTUZGLcV6SvZaGoqJcxqloNEr7oenwkaU1suuBWAyv95LQPh34e0cXCp02XFVemjie5Dms+O7WZVid68Gde5s0HuHiwsWIikZ8xjp+6YUYc45nZZxD9YiaqGgmTkVq8WcxhfNMdm4ZpSJoEuz3QqIr/cNuRfRzNja5NituXbUsIShiOa8oH//q7MaRYWM2dG3Ky8H1VWVYkZWZdF9MELC7fwi/qm/CMMU6Lyis8x/tf9TZXluo9RAIglgglM9ICIIgDEAWiYqISaxZmouXH7tJJig6PuTD+5/bT4IiA5Jtk4qm9cNDiAhSR/6n31Gj9JRp8c8TfbjqwV14s3kIwkTRPxwTMBaOYdAfQbc3hJahAE72+3Ck24snDnbi8X2dqq+3z4DRYCx6jyWYCSuLpCJ6T98Y4tThmqCuOjdxuW3UWLFVekJNiKR2u5BGAqXlhR7Z++gLhTQczdzjMEkF0E6NREUei7JTUarxZzxvUnUq0lIMls0It4YM5nQ1H7jNZtRmuBPXRVHErbv2aTgiIlUePtmMr711EJ3+gCxW971LSlDqVo4oJOYHJyNyGfXR/mc+YJ15rDq3KlJ1KkpRVKTmUgQoz/FkIgyqgibBxp+RqCi9IKciY3PLslq4LOMeCKIo4u8NfTJ3mA8vqZ5bl1+NMXEcLigqwN1bN+Kb61clCYpC8Tj+2tKJ97zwJn508DgJijSAPY7T/kcZEwfkOZXXFwiCMB7kVEQQhGHJyaQFVELimkvqcOdXzofJJC3IvdI+iNteP46gAUUPBFCbJYnHWv1jODoyiBuqlwAA3lGTiyX5LjT0z6yg2zYcxAd+/zbMPDdrC9xnjvTAbTVjfWlGwphExHh2t5nnYTZxsJrGY87MPAeLiYcvHMNYOIZIfDwaLRoXEBVECKKIuCBCEMFcll+Pnf4vLiAuji80CxBh4jgIIhCOxRGOCfL/4nFE4yKsJh6cQhxaJC4gOjGOSFzA58+rxQc3jVvf9owZSxAAAHX5UvG1s9vYorBUYePP6vtJrDkbFuua1dZqyep9NBLR1PFmril3OmWCqW4N4s8cJjNMKuKzYIpORQ63S1XI5o1qJypi3aB6A8Y7Bs01sUk7GxFAf4jEEOnGSe8YPrNzL95ZXIDPr1qWuL3K40Cnj7aDheJ0MRQAhry0Hc0HVrN0Ph+K6vs8Xj3+LLVJnqqrJYCYQnMD+2gqgiYjdyqizyedSKdGCWJ8TavY4YA3GsVYdOpzuiq3C+cUSGsJfzrWg9tePIkbVw7hrkuWAwBqMzy4trIMf23tUHwNG8/j0tIiXFhSCIfJhN5gCE80t+PoiL7WbE6P8+qKUhQ4kmsXY9Eo/tLciT+3KL9PYuFgJb1KcaMEEBeBw/1erMnPOPODCYJIe0hURBCEYbFaTXC7LPD5Scm/2PnKxzfj4+9bK1uM++3RDvx8XzPZlxqUNXkeFDCdEqfGRnFoaBDbK2pgnXCJ+OBZ5bjj/2aXyT4XmdpxUcTv97bj93tn/VK6IdMhTTG7Ro1XyKrIkpw5unr0tUClJTzPobpScip6u4s+m+kw225L+V5IrXg1yz+ygKwtlTo0e4LGcrtanSMJpsaiEYxpEM3lNKtHxYQCqX3eDrdb8XYRInwaxo6x8Wft/oUXbqUb11WWya5zGF8oMo6cb/HwpdXLcW5hnuy2dhIULShuZh87ZMA5sB6wMKKiYFjfeypeVVSUolMRN4VTkdL5KLPuoSQ6WuyYGOenqWLKCf0xWQhNLCy5NivW5mTAZTGhyx9C/YgPwXgcWVYLLi7NTzzOaTbjy2uWY0VWRkLs3+EP4NXuPrzY1aPouHNVRUnicjAax9dePAkA+NOxXnx2cyUqMsfXYP59STWigoBn27tkz1+fk4VPrliCQkakU+x0YE12Fh5pOIW/T3q8FmRbLbisrASXlxXDY02Oox4KR/A/ja34V2evBqMjlDAzx3Ha/6jzwKF2/Pc7V8BiomAkgjA6JCoiCMLQFOW60Ogf0XoYhIb85ofvwju3VCSuRwUBP9rdhCcaejQcFTHf3HvRyoSIbCQSxrHhIQDA0eEhbMgbX+z40OYK/OtEH95oHtJsnEalnHGJah7UJt5nPinMkBaqunq8Go5EX5SXZMFmlezKX2+l4+90UG8+V160mkqENEUje9pQm+9KXNbCyWc+qfNI0YmdGold7CblJQBBEBCNpOaq4XC5FG/3RWMqv975x8xxyLRKouLmMXJMOxPLs+RdpU80t5OgKA25ff0qbMzLkd32+IlOtI0ZS5ypZ3gOcFulfWzPsLGOYXrBykTMBSLxKR6pPWbV+LO5cypSck6QxZ9RETQJNjWP4s/0D/v7J6cQ7biyvBBfWFMDyyRR3nAkikKHLenx5xbmy66XuZy4ua4KN9ZUYE//IP7W2omT3jEAQI3HjfOLChKP/XN9D9gt8/1/PYTX/v3shMvYLctqsSIrE3861Qp/LIZbVy/D6uwsxXGbeA4fW1aLGo8bDxxvRCTF+Mm5oNbjxlUVJTi3MF/2+QHj6yZdgRAePHEKewaGF3xsxNSwDr8xDX476cLLbYO47C9v4fLqfKzKc6PYZUdVhgNZ9mTxHEEQ6Q2JigiCMDRF+S40tlFRczFit/L42wPXo6ZcOrH0RmL44iv12N1Dvwkj86uLVyHbLhUUn2o5legoeazpONbk5MI8cSL/lQuX4I3m3ZqM08iUMvGTx/uMV9DNdkgnxhR/JlHLRJ/FRRHeCJWl9UI6rb+XZEpOYEZzKiplRDhdAW0Elw4Vp6JIOPWYHptdOWpYS5eibCb6TBRFNI8ZT9g61xwcGsbaHGm+bARx4mLj0pJCbMjNTlwfDkXx4NE2/KlB+678xcRkJ7juARIVzQesU1FI76IilY59QUht3Dyv3vmvKCpi9uMRinpPgo0/I6cifWOe9NMnkZw21Hic+NLa2qQIZauJVxQUTYWZ57GtMB/bCvPRPOZDfyiM9TnZCbFNTBDxgx2nZM9p94bw7387jN9esyYh1txWmIdtk9wZgfH5/9F+H1pHg7isNj+xvV9UUoiz8nKwd2AIO/sGsG9waF7PkXkO2Jqfh6sqSrAiKzPpflEU0ej14f8da0Qjna/oFrmoiPY/U9HjD+ORI1JkH88B20qy8ZXNNajLVm5GIggi/SBREUEQhqaiJAPY26n1MIgFprTQjb/dfx0yPdLJbftYEJ9+8SiavcYqUBJyvrdtCd5RKnVpHx4axK5+yZXKF4vh943H8eGlKwEA60szsaLQjfpe4wlftMLCc8h3S9vecQN+tg6mQ7q3b0zDkeiLJTXSot5IiARF02Xy4uxpRJVF88lRGkZbW89kRHs9BnMqyrAw7y2ozXtzqjgVRWcgKrKqiIqCce22/xwm+kwEEKKO0jPyz44eXFpShCLnuKDv2soyPNbUqvGoiFT46NLahJNDhy+IW144iMEQRYAvNB6rfP/aO0TnnfOBXFSk7/mmuqgotWMTz6tHl57JaSdC8WdJ8MzcO0qfj66xTVIV0dc1f3gsZpS77Oj0hzAale9br6sqTpyziqIIfzQOl8WU5CLlDccQiQvo84cxGo6jcTiARw50oMhjw2c2VeKcsiyZg1u1x41qjxSnLIoifvrmKYQUxJCvtw/jisffxhM3bECGTfl8ZiQUxbdeacDTJ/sBAEtzWvHX926AZ+LxmVYLLiopxEUlhWge8+Fnh4+jM8X45zPhNptxSWkhrigvQb7CuVJcFLF/YBj31TeiNxSZ079NzD3sUg1pilJDEIEdncPY33cAv3nXGqwryDjzkwiC0D0kKiIIwtCUFrrP/CDCUGxdX4KHfvxumS36vr5RfP7lYxgJ63vRkZgdXz6rGtfWFiauD4SC+J/G40mP29Xfi/fXLoPNNP4bOa8mj0RFc0iBR96pdqzHeE4+7FoCOTpI1DFORd1jqQsUFismlWgMIa7cxT5ZhMSKj3iTctEpnibCCquZh4XJpDCaU5HDLJ1+D81AxDMXZFqVu4lDMxBwWW3KrxWMaTffymXGFCb3gWnhj8XwwwNHcc85Z4HnOJh5HleUFeO5jm6th0ZMg6+sWQ4745Bzx66TJCjSCLdF2seLoogY7YPmBVYQEte5stoy2WZlgpSdilTmdwAQPYMTEcV7JcMK9Onz0TeTo6L0vs2nK9sKsnH7xmVwmk0QRBF/a+3BL46cSkSQsW5EL7cM4cPPHIGVBy6vy0dlpgMHe8fwapt6dFfzaAg7Ow7BzANf2FKFD68tTQh9TiOIIv5wpAv37+tQeRXg+GAA63/zBm4/rxY3rSxONHuJoognj/fiC8+fkD3+5FAAZz20E39+zzqsLfDIRFDVHjd+vmUjnm7rwDNtXfDO0mm1zOnA9spSnF9UkFhrZAnEYvhnRy9+19iqSQQbQWiFPxrHp184iocvX4ul5FhEEGkPiYoIgjA0q5YkW6ESxuX9Vy3Hdz53rmyR6NlTffj2mycRpZYCw2Lnedx78SpsLspMLBKMRMK4++gBeKPKnT8dfh9qM8YtiNeVULfEXFLkkbqxBFGEP2K8BRPWdt1iUV/kX2yw8WcNQ2ThPV2sKUZjTBYhsR27ap3s6dKFvakiK7EfF0QRvaGQxiOaW8zMQrZWoiKXRXkJwO9N3XVNVVSkIohbCHKYMfk1FDelGx2BIE6MehPxDB9ZWoPdfYMYjFAHtZ65ubYS5xRIx94X2wdwcMCr4YgWNx5m/yrQuee8IXMN0PlphjlF4bgaXArxZ2YessJ5TO8fkgaw3wrF2eibyU5FFH82PdwWE84vysWq7Az4ozE0eP04PORFTzD5/MPCc/j6+iWJCE+e43BdVTG6/CH8b/N4jCorgnFOrH9EBOBvE45A0yUmAHftbMFdO1twSXUO/m1NCcw8j+aRAO7Z04b+wJnnnTEBuOPVJtzxahMur81DnsOCv53sV41eD8UEXP2n/Vie68RNq4px5ZJ8FLrGzxesJh43VFdge0UZ/tXZjb+3d2EoHIHDbEJMEKd1LpFns+EDdZW4oKhAJnoFxsVOvaEwHm9swwvdfWd8LULfUD/hzBkOR/GBZ/fjcxurcNPyEtU1MIIg9A+JigiCMDSVpSQWWCx881Nb8aHrVskW0O490Ir7D7VpOCpivrmoPAc/OW85HEyHti8axT1HDmBgimL0aERaTLGqdJASM6MoQyroRs7QOZuusAWCEDmgJWCdivZ3U1FzuqRacJr8eJlTkaqoKD22xbMqshOXB0IhRA1UCMuxWmVzlKGwNoIptfizcCh1VyiHS7nTMKRh/Fk2E382SoKYlHissRU/2LQWAGDmeXxiRR3uq2/ASIRcb/TKtZVlif1KXyCMu/Y2aTyixY2bEZrH0kTMm5bIokj0+zlzHGAyKc/xxBTnN6YU4s/sk2L4IjH9fkZawU+KbCL0y+QIQXIqmhoewI21pfjw0nLYFdxyeoNh/LWlG39s6ky4L6/OzkCG1ZL02I8vr8T+wVE0eP2wM99DiUe5qSBVXmgewgvNQ7N6jX80DUz7sccHA/jOa034zmtN+PLWKnx6U0WiWcdq4nFVRSmuqiiVPWffwBDuPFSv6CzkNJnwnupyXFVemiSQEEQR9SNe3H/8FE6NUbNVOkO7nLkjGBNw555T6A9E8KXNNVoPhyCIGUKiIoIgDE1JgRtWC49I1DhFKSKZB3/0blxwdnnieiQu4PY3T+K55tS6Zoj04ltn1+J9y4plRdrBUBAPHD+C7uDUMS4csxptpvyqOaWIWWTyGVRwwy4a9Q9QdB4AZGc5kJPtTFzfMYX9OSHHoiYqUik4sfFnk50QOJWOr3RxKqrLl0QqAxo5+cwXtRmS0D0qCLO22J8pTrOKqCjFqDmb0wmTymtpKeZh48/6Q8b6Dc03R0dG0RUIosTpAABszs/FI/m5aPX5ceuufRqPjlCCPR78fP8pDIRISKclHkbMEYlp59hmdNjzOD1X+yxTdOHHU4w/U3MqEgQx6SNw2eXH5nQRli8ozE+IREX6hpyKpg8H4IebV2BbYY7qYwodNnxyRRUqXA7ceagRALAhNzNxfyAah83Ew8RzsJp43HvuWnT6g6jJkM7RRg2wxvNfu1rw6MEO3PPuldhWlqUaR74xLwdfWL0MPz1UnxBhWXgOl5UV44aqiiQxVlQQ8GJXHx46eQoBgzbYLTbYPY7Kz4SYJtk2C760uRrXLSnSeigEQcwCEhURBGFoeJ5DZWkmGlqouGlE7FYeT91/PWorshK3jYSj+PzLx7Cvj1wyjAoP4NHL1mJDQabs9td7uvBESyPC07CT7wr4sAH5AICVRZ75GOaihY0/Gw4Yz93g3OocmZCtqWX63XFGhnUpEkQRTcOpu54sVtSKTmpOReyipwBx0n3KnezxNHH8KWeEaVO5zaUjhQ5H4vKIRoIpu8mUZMt/mpRFRXaH6n1aCaYAefxZd4D2Q6lyZGgkISo6TaXbhfML8/FaL4n19UZEEGCbcCJQc70jFg43E39GTU3zhyz+TMf6ArOKSxGQulMRr+A4AiiLxp02EhWdCXbmTc43+mayqzR9X+pcVJInExQJooj20RA4Dih222TnnFdUFOKFrn7sHRhFTYZ0/nWodwwvtQzi6+fWgOM42Ey8TFAkiCLueLVxYd7QPDMQjOHmpw7BY+Vx1yXLcVFVDuzm5H3t1oI8vKe6HE+2tOPC4kLcWFOBfLtd9hhBFPFSVx9+ebQB6S+5IlhYIaPaeTQxNWaOwwdWlOCT6yuQaUt2RSMIIr0gURFBEIZn3fJ8EhUZkKJ8J5554HpkZUgnc23eID714lG0jlERyajk2M3481UbUeCUioZj0QgePVmPoyPTt07eN9iPKyuqAQCFHju+cEEt7nmtSdcL0+kCG3/W5zOeS8SWSmmhrqVtCN4x473HmbCkJj9xORCl7vxUUI8/U16SZNfWJ9ekOBVRUSRNnIoKmWO60URFVsZlICpqU+BTcykCgFAwtc/b7rAr3h4TBE1j63KY+LMO/9SuhUQyjzW1YmlmBqo88mi7SrcLIFGR7hiNRFHgGN/vbyvOxv+10nekJWz8WdAATg56hUsTlxnLFBHbasJxNUxqoiIFJwyHVf7YdHGrXEjYBhGjxnUbBQs/WVSk0UDSgBuqSxKXfZEY3v3Y22hn1io2FWfgsevWwjEhnLmgOA+NXj+2Fkjx00f6fbh/XwcqMu24eXWJbFsJxeL44r+O422DxZyPRQR88rljAIC1BW4AQLcvghdu3oRsx7gA4ubaKtxcW5X0XFEUcXBoFHceOg5vlI77RoSdZpCAP3XW5HnwvXcsxdJs5dh0giDSD/UzHIIgCIOwbkWB1kMg5pgNKwvwwm9vlAmK9veN4oP/OEiCIgOzOteNf15/tkxQ1On34ScH96YkKAKAzoAfXiae5fPn1+Jvt2zF2uKMKZ5FTIcCN/P9jBpve1xe6E5cbm4b1HAk+qKWcSrq81P8SiqkGn/GdshNjgBQ62SPpYlTUbZT6lzrTdE5R++wMUVadVm7zcqdgUI8jmg4NVGRzaHsVBRQEcMtBHaTSSacavRSPGWqeKNRfPWtA/j1cXkXul1l30Joy5t9klviRWV5cCl02BMLh4sRFQVIVDRvmBiRgZ6dGOcy/oxXEY0ruRBNjj+LkFNREqwwLUSiIl1jM8vPkyj+TJ0Sl7Q+euebzTJBEQC83e3FPxuleUNdhguXluYnhFtxQcR/7WwGAHzj5UZc/Pu38djhLjzb0Ifvv96ElffvwLONxnZpPtTnw6E+H/oDEVzx+NuqTm+iKKLJ68N/vrkP39x7hARFBibGNAOpxeQRyry7Kg+/u2IdCYoIwmCQqIggCMOzdlnemR9EpA1XXliDx+++GjamA+8fzf342L8OYzhsvKglYpzr6wrx2BXrZXbEh4YGcNfhfRhMsRB6mvvqD8kWotcUZ+CJj5yNG9eXznq8i5lspzVxucdrPBefqhzJHry5NTUxm5Gpq85NXG6m6LOUUCs6qUVjmKYSFfHKrxWNpccCvIMpyPYZzKloKjHYQuGxKIuKgoHUHX3UREV+DRfV2egzURTJqWiGRAQB/+joxo4eyfVmWRaJrvXIn5paIU7sT+xmEy4qp/NeLWHjzwJBKjAuBDo2KppSVJSqU5Fq/JmCIMbtkI71YRLMKMKWhcMxcljVM2ZmO4qLInS8yWsOKyxuVWnuerlFWr9Yle3BZ1fVJK6fGPIjwOwzGocD+PrLDfjUP+rxm/0dWGy7k05fJBH1xrqwdgeC+MqeQ/jcrgNo99O6h9FhT9tNFH82LWwmHt/YUoufX7gS1inmQgRBpCe0VRMEYXiWVufAaae0RyPw0RtW47+/caGsO+DXh9rw1dePI6LnFUViVty8vATfOWeJrCD7fGcbflV/GKEUF2RZWnxj+M7+3egPSQsBVhOPO69ehW9cshR0ujgzspmF7G6vsUQBgFw01ds/puFI9AXrVHSkjz6XVEg1/ozdF07WpqgWnXTcyX+a8myHzGLfyE5FWjVZZ1itireH/P6UX8vudCreHohpV0jPZaLP4qII/f/q9c3RkdHE5Uq38vdNaEtIENDOiOduqCuGjVm8L3PbcXllPi4ozVV1xSPmDtapyBekZpeFQM8/6ynjz+bKqUihyu+0SmtfFO11Zkh4pW/YYxq5FKnDQR4V54so72P+erJP0X1HFEV8+5VGhWcsbn5/pBuvtQ4lPtvhcAQf27EX9aO03rEYoV3QmVmV68aft2/AzSupWZcgjApV2QmCMDxmE4+1y/Ox60C31kMhZsFXPr4ZH3/f2kTBMSaI+P6uBjzZ2KvxyIj5hAfw5U3VzPcu4A9NJ/BmX8+cvH5/KITb9+7CRcVluKG6LlGs/49zqpDrsuIrTx/RdQesHsliREVdBos/M/NArksqytef7NNwNPrBZjWhojQ7cX1354iGo0k/VOPPVESTbLNXslORSvxZXP87sm2M21UwFoM3aqyCrFkHTkVq8WcBX+oxYQ6Xso25L6bd98Y6Fc1GdEyMs3dA6mY38zw+vKQajzY0azgiQoknmtvwxTUrAACrcj3417VbcGhgDPkOK+qypO201RvAbW/Uo2mUHLzmCwfjEuEPGesYRqSOmqhIEARVN0o11OZ3StFmDpt5yvsXOy6rSSZiD0XpM9IzrOMXB+CS0vzEZR4Ax3EJcaGJ48BzHDjmMs+NN2Swj+Uw/q8gAkPhCBpG/Wga8yOaxgs/1R65+LvXp+4Y/b3Xm/C9C+oS24EoivjN/g7s6RpVfc5i5pmGfpxfmQMA8FiolEoQSpg5Dp/eUIlb1pRTTBxBGBw6EhIEsSg4a1UhiYrSmDs+cw5uvmZl4qQ3EI3jS6/WY0fXsMYjI+abpdkumJmOq/vqD+PYyNxHTr3U3YFG7yi+vGYDrBNOH+9ZW4JQNI5vPlc/53/PqHhsZtnCX5vBYrA2VWQnhGeCIGLPvlaNR6QPaqpywfPSouSeDlqQTAW1eAxBpeAkj9GadF8aOxWtL89KXO6eQRyX3mELWIJG4Q1Os/Lpf2gGn7eaqGhMQzEY61Q0pmEMm1HoD4Wxu28AWwrGnei2V5SiLxjCcx10TqUnXu8dwL/VhZDvGP/9uyxmnFOcnfS4ygwnHrx4HT78/AG0jhlrfqYXZKIicipaEDgdR5GkGm87FWrzu5iCaMjJxMSTU1Eybpt8LkTCK33DNl+YeR63b1g6L38nEItjd98wdvQMYmffMPxpEovHA7iwJA+fWlmduC0miOgcUxcV/fZQF95oH8F3L6hDIBrDwwc7sZPO31V5pVUusn/kvE0YiURh5jh4ozH8paUD+waTm6oK7VbwHI/uoPHcuwmCpdxjx8/euQKr8jxaD4UgiAWAREUEQSwKLt5WiXsfO6D1MIgZ8OMvn4cbLlsmu+3x412wmTicW5KFSFyEiRtfUIwJIkJxAdG4AAEiBGG8cCeIEzEY4niR1mY2wWM1I9Nqhttqgscy/i8wXqAVISZsTZWalU47DIgAQjEBzzX3IkJrUfPCuvyMxGVfNDovgqLTtPnHcPu+Xfj2+rPhsoy7Odx8Vjn6fRHc/VrTvP1dI8G6+IiiiPYRYwkDCj1SwdrrC8Hnj2g4Gv3ARp9F4iLFUaZIyk5FKo43HM+rFteiaeBUVJUrddj2hoy3+MqWFrWyTrerFCUjYfXCgxIWqw1mi7Lr0VhUu/0i61Q0HKb981zwu8YWbMjNgdU0vn/5+PI6/PuSagyHI/ifxha82Teg9RAJAJ/buRffO2st6jLcSceBuCAmOoY9VjO+tqkO//nyYS2GaXgcjDON10+iooUgruM5J68yJxPFGYiKeGWBUlxhfmdnREVKMUeLHeskByklYRahH9oXyPnYaTbhwpI8XFiSh6ggYN/AKF7rGcSOniGMRPS5P99SkI3PrqxGudshu/2RAx1njABuHA7g5qcOzd/gDESvP4I32odxbvm4YLvAYUeBQ1oXWpeTiSavH1/YfQACgHeVFuLDS6qQaR0/VxJEEcdHxnD73iMIpUGjD0GkwiWVufjhO5bBbSWZAUEsFmhrJwhiUbBmWT4qij1o66bc43Tiv756AbZfUpd0+y1ryjUYjTrf2lqHbY+/QcKieaAmU1ogGQzP/4LSaCSCO/btwg/OOgf2CUeHWy9LuOYmAAAgAElEQVSoRedoEH8+2DXvfz/dyWdERYIIGK05tp/p+PO4bOA4ylUHgDpGVDREnfkpYzGpiIoEZVERW6NiRUVq0RhAehRMijKkxdkBA4qK2EK/qIFTkYnjYFMRFYVT/LxtDofqfVo6FeUwTkW91BU8J3QFgvjlsZP43KqlsEwUtW0mE4qcDnx5zXIcHh5BJC7g/zq6sXeQHES1IiQIuO2tA3CaeVxVXoolmRkYCoWxs28AB4ZG8NGl1bi6ogwAsLkwCwUOK/qCJLybaxzMPtZHn++8wE8SYqu5OuoBFR0QxJmcPKgIlJREVSbGISmmY9GVVtgmi4roM9I1R7rH8NShLly4JF8m1OM4ptlPHG/4E8Xx5kBBFBPXhdPXmX9FjF82cRxyXVY4J0XiWXgeWwqysaUgG19YLaIvGEZMFBE//Z8gosUXwD1HTmnmaLQm24MfbVoBM7NPFEUR+3q8+P6OU5qMycj8dGcz/lKaJfu8T8NxHOoy3XjsnVswFo2hxGmX/Z54jsPK7Azcu20jbtnx9kIOm5hj6Ggh54alRbhj2xJVETVBEMaEREUEQSwa8nKcJCpKI7740bOw/ZI6XVuan8Zm4nFNbRH+3NCj9VAMBxt9tlDxPb5YDD848Bbu2LglUUC78+pVyHfbcN8bzQsyhnQlzy25RBjRSr5nTCpSm0w8XE4ruRVBLipq91IhP1VMKsc5NacidtGGbXZX62IH0sOpKNspOd8Mpuickw5wU8TWLQQulegzAAgHUhPtWhlHIBYRQFjld7sQ5DLj6krxPRHq7OjtR18whG+uX4UMq7SdchyHtTnjXdtn5eVgZ98A7jp8XKthEgACMQH/29yedPvDJ5txeVlJYl69Pj8T/2rrX+jhGR6nRRIVjfpofjgfTK7nRmP6nd+oOxWlPma1NRFB4bXMjFhdIMFMEpOdivTsdkWMc+tf59ddL8NuxsfPqcKVq4pQleOUbbtmnkOJy570nGVZbjSPBfB4U+e8jk0JK8/h9o3LEgIXURTRMRbC7S834qXW+XP2Xszs7xnDdX/ej+1LC7A0x4luXxihmICLq3NRPtEYk2G1yObJkyly2vGJZdV44AStKRLpz3uXFuE7585PHCVBEPqGREUEQSwaGlqoezZd+LdrVuKT718vWzzrGhkvDllMHCwmPvGfmecSnUgmjkvqXpyKSExAKBof/y8mQBRFcByH06+gtHbHjqnAY4NlohMw16F+8kjMHPY7WEhHmIFwCHcfOYAvrdkAnuPAcxxuu2gJanKd+OozxxAnexpFWKeiYES7wvJ80TEsF8xkZjhIVASgtkoSFZ0Y8Gk4kvTEYlIWA6l13/OqTkXqoqKYjjv5T+OySaem/QZ0KjJr7FTkMivPU0RRRCiYWlSl1Z5cXAGAUDymWQcnByCbERW1+PwajcSYnPSO4Tv7D+PWVctQ4XYl3c9xHM4pyMPWglzs6hvUYITEmWDr5jaV4w4xO5xmSVQ05DWeOFYPTBbq6NllRm1dYibxZ9IKhRwl0RA7r6Rz1mQm7//0/BsiFgZvKIafvdyIn73cCCvP44Oby3DD+lIsK/Ak4kOVyNQo7mdTfjYKHeNzXlEU8f3Xm/DggYUXNy02DvaO4WCvvFH5zjeb8T/XrsGm4kzZ7W2jQXz9pQacHPLjvstXYnPJ+P1XlpfgoYZmmaO3ledxx4aVKHc5ERcFvNozgEcbWub77RDEjDm7KBPfPCc5VYIgiMUBiYoIglgUtHV5MUaF37Tg0ndU4vbPnJMQ73iDUbz/N7twtNs7reebeA4mjkuIUfiJyxxzOS6ICEbjs3YK+Nunz8W6siwAQAblB88LWvpUNY2N4r76Q/jk8jWJzu4b1pXCZTXj1r8eRtiATjyzJc8tiYrGwjENRzI/RAQBgigmCholRRno7B7VeFTawnFAbVVu4vreae6rCQmLWtFJJf6MLaixj+BVoq0AIKZzpyIzD5mdvBFFRbLvTYMin8uiPE+JhMMQUxSdOVxOxdsDMe32+5lWq8zdsNFL7qRzTfOYH5/ftQ8OkwnvLivCh5bUID4RHwKMC4tuW7MCh4dHcMe+IxqPljhNrtWKH21eBytTSD82RNvHfOBm9rP9I+SWNh8kx5/pd36j7lQ0gxdTey2F29j5FLnwJGNm9oWnm9MI4jQRQcDDu9vw8O428AAuWpqPmjwXrDwPkwn40OZK5Ew0Umml2TunIDtxucsXJkGRhvijcdz4l4O4ZlkBrqzLhwhgd+cIHj/SDe9Ek90Xnz+O1z+0BcD4evWmvBzs6pMcpX517kYUOaSGjfdWl+Hcwlx8cddBjGl4bkUQSmwuysQvLl6VcPUnCGLxQRVQgiAWBUcbBrQeAjENVtbl4pe3X5wQFIWicdzyu7emLSgCxhfO4gu0NBQIS+VcN4mK5gWZU5EGf//I8BC+u383vr5uE5wTLg+XryhErsuKT/zvAQwHoxqMSr/kuySXiEGDCjnDUQEO67h4o7gwQ+PRaE9JUSacTklM9noruQKmiqpTkUqMFFtWEpliEW9SPw7pPY5wbVmmzAlwwICiIrPWoiIVp6JQIDWXIgCwO5VFRb6odsfEHMalSBRFjETo+DxfBONxPNXaib+3dyEuitiYm4Nvrl8FQIpEu6i4EC9192o8UgIA7j5nI9wWaft/vXMQTaOpb/fE1LjMJpmjRc8guaXNB5NFRVEdz29UDU7mPf6McSoiUVESbPwZuRQRUyEAeOFkP3BSigu9alVxQlSkFVUeaR6+q2NEw5EQABAVRDxR34sn6pXnvT2T4lDz7dI5y/WVJTJB0WlKnA789oLNuH3vERwdISG4lqgcfhclZxVm4leXrobDrN7MRhCE8SFJIUEQi4IjJCrSPTmZdvzx7qthmlgEiwsiPvP4Pryl49g6f0TqGnGrOAAQs0Nu9a7Nol9/KIRv7d0Fb0RaDDi7IhtPfuRslGc5NBmTXsl3SwskA35jxj74mO2+qIBERXXVUvRZXBDRHzCmmGw+UXMqiquIitjOd1n82RRORXouugHA+tKsxOWRSASRNIhrSxWZU5EGRSyXWXmeEg6m7qZhcygf+/wadtPm2KQFeSP+fvRIVBAhiMDbA0P4xdETsvuurSzVaFQEy6WlhTJB0YH+UXx3T4OGIzIuGTb5PrZrgERF88Fk9x89OxWpCYFmFH+mJipSeP82izQf1LuoXAusJmYerePfD6FPtF+dAvLtkqjp5CCJhPXOB1YXJy6Looh9A9Ia95b8XNljG4akuYPNZMKdm9fiY0ur5n2MhDrsmrS4iCNFzyrMxP0kKCIIAiQqIoj/z955h8dS1u3/nrJ9s+m9JyfJ6Y1T4ZxDR4pUBRTl1VcRkaYoWFB/CvYGovjyoiCvhSaCgiggVXo5vefUnCQnvWf77sz8/thkZzaZSbI52Z3Z3e/nus51diazu99MpjzzPPdz30SGsOdAv94lENPw9/sugc0qd8Z+9x978NK+Hh0rmh6PIt7JQQ3rhKC3U9E43nAYt295B90++SG/Nt+Bp/57DZqKnDpWZixKsmRR0fGh9HMaAWLFUkpBTaai3AcjaRh5l2i0BEXAFE5Fircox0JYVv0+JIo44bjPRLOoTBbo9cxC5JIKcEoxmA53NNscioq0nIo8YX3cgcwsi+sXLIoue8Pq5w6ROF7t7EHLqNxGqnQ68LUlC3SsiACAaocj+vrYiBfXvrITQwFy8UoE2WZZvCVJEvxBEnMkgslORcZt4EysdZw5jT9T+SylqMjoonI9sPIkuiLmBr2uPsqIQ3JRMT6fXlYWfX141IPjXrmfrDZLbqf95O2jOOfhzXhgW3t0HcMwuLSmAv/dUJOUWonJcDq7DRuBTRV5uP+cxbCbaNyDIAgSFREEkSHsPURORUbm9z8+F6UKYcaDbx7Bn949pmNFM8MblAetbCa6pSYavZ/fwqKI72x9H/sG5fzzQqcFf/j4SpS5JlsWZyJVubJ7xd7u9LRp3t0p/15LFpZOsWVmUK8QFXW609OdKpFoRZ8BM4s/m4lTUSoMmMwrlNsAXZkgKtLhhmbTiMcL+uM/by1W9XueJ6SPsPCU4pKY5RGKPtOFN7piJwOsKy7AxVXkWKQnSoGdw8Tr3pZOZ7IUUdiCgYUuqc5EnU4obNw2Dq8lKhLjF76yrHp7MazizGdR9EsE6VichDVGdEX7h4iTGKsifY6fY6Pys9KqUnJONjJLi5yozZEnY+waGMYlVWW4pLoMv1izFA6F4/1bbYMQJODONw7jhuf2xkzY+khNOaoc5JKuBzETXTPwlrGpIg+/PnMRORQRBBGFRkAJgsgItOyiCf255ool2HCSPODw+oFe/PC5/TpWNHOUM/94jY4+4sQw4pl7z94deKOrI2p9W+Ky4o+fWIlCh3mad6Y32VYeLqs8S3tLm3GjC0+E91pkURk5FQH1NbJl95EBsl+Pl7l0KuJSWFRUpoiS7PSm53GkbCfoIypSPz4C/vhc5TiTCZyG65FXp/gzJ2+KWX7heKcudWQ6Tx1rxw+274lZd1ppsU7VEADwn66eaHu1wGZGQ45jmncQsyWL3GGSwkT3H8HAcZe8hnB8NvEpWqIiNQGb0qkoECLnvolYFaIrOleJeImJQtKphoMjsjNkQx7d143M6rLsmOVLa8rxufl1+FxTHebnyIKwPb1u7FBMyvvHwV5c/uT26DLDMGjKzkp8wcQkYiZ06eqfn3zOry3EPWcs1BRJEwSRmdAIKEEQGUFJIT1oGZGlTYW47Zo1UdHXsX4Pbnx0KwSj57SMoayTJ+FaRvHw4Wa839sdXZ5X4MQjV69Crs00xbvSm6pceQaWJEk40p+ewoDtx4ejr202E4oLMzv+Tikq2tWTnu5UicTCT+FUJKoLNGI6s2fgVJQKAyZKQWJnmjoVFSjcfQaDyXX1YhAb96EkGIhPVKTlUgQAPkEfUZGyg9cXDuO5dhIV6UVowgD/oRG6L+jJca8PAcXfZEFeZrdZEolT4TYQJCFHwpgoKlJz6jEKHKfePyDMwqmI0Yi4Dav0m8SIigzs5KQXNsX+Udt/BDEVMa4lOtVwWCEqKnZm9sQ2o7O3zzPtNp6ggC/9e/+k46k8S37mkiQJ7/QMgEg+sX0vOhaSZK5oKsVPTp0P8xTO2gRBZCZ0VSAIIiMoLSJRkdHIy7biz3ddEO0YDIQEfOHhrRjx6zMgNRuUdtkcKfcTgpH36kMH92HfkPxg31DoxANXroB1CpFAOlOWLXd6pIIzymw51OeJEXLYrJkrJHPYzSgplmfYvds+pGM1qcmJOxXNRFRk7N4vngXMioG3njQVFeWY5U7/457pO5jnEgvHxXSIKok3/sw8lagorM9AuvI88OjklkREME9w07i/+aBOlRDj9Pnkc7zOZZ9iS+JEUMaf+YMkKkoU7ISJPGEDi2a0Im7nMv5MLf4tNv7MuPtHLyzkKkakOK1u+VnJQgP+huad9iHc9lIz/GPPSAO+ENpG/Ggd9uFAvwcPbmvHeY9uQXN/7LMhA+CWtdXR5cFgCG56xtEHAwgJk82nFpXjOyc3TGpzEQRBAIC6bzlBEESaUVJAoiIjwbLAM/dfCptFvg196+nd2Ns5omNV8aO0W9eYiEicIMroQsmAj3D37NmBryxegYbsHADASZU5+M1HluFzf9mGTJv4WOaSB5rdgcwZTDGZMjdbvE7hUiRJEnZ0kSNFvGgNOAGAoCEqitlGcZ1hNWaxG33AZHlFbsy1vjsNRUUsYsUWHUmOeLNx2o/98ToVmS0W9c8RBd0s4ZWzRrXEU0TyEUQJBh7vzxgGggFUICImKrarn7/EieNQtAdJVJQ4JomKDHyN0Zp0JM7CXYllNOLPVD6LnIqmRhnjkioO2YRxUJ7VermW5Foyd1JTKvL43i78vbkHDAP4Z3hNvripCEuK5LizB5uPAIgM5F6/cB7WF+WDZxkIkoQ3uvrwm32HE1E6gYnnfPrfM86uLsBX19TrXQZBEAaG5MwEQWQEpUVk9W4k/vTzC1CsEHo98OYRPLGlXceKZofSLpsjBX/G8ovd29DplWcWndlYiNtOb9CxIn0oVYiKBr1BHStJLpksKlJGn/nDImjYIn7MGopUURQhaQw6xXRsiUqnInXhSNDgA0qra3Kjr/v8/pionnRhnssVI5zq8iVXVKSM5VEiiiKCgficirTiz/RyKQIiTkzjTIzfIpJLvUt+5uJYBktzs3WshgCATq8sHKzKsk25LcsAZ1YW4HOLqvDZhZW4tL4Ei/KcMYPwhDp2RcSkL0BuAokileLPtITjsxEVMRpORWEVN0qL4lgMUBTfJGJERRkwQEykDxwDXFJdgjtOaoquoyM4NQgI4owFRSwDfO3k2uhynz+A17r6sCQ3G4+fuR4fqiiBy2yCneeRZTLh/MpSXFVXmajSM56YvhfdqkgOF9QV4ocbm6bfkCCIjIacigiCyAhKC8mpyCh86/p1WLO0NLr8WnMPfvTcfh0rmj3KiW2kKUoMqbJbv7ftffxw9cnIMUdmgH/+5Bo8u7cLezLIuUXpVNQ9Gt8gdSqTCbOVtKivKYi+HvCFdKwkddESpGpFn03aTvFaO/7MuANuALCkTI7QS0eXIgBYmBsrnPLP8O87Vzh49RnNfq837mnWJg2nIp+g3yC6nZe7NXxJ3rdELMc9sefw15ctwlWvva1TNQQA7BsaxocqIs9ejblOXLu4Cn873IVeX6wA3GXm8bMNC3FS0WQhmDck4J8t3XhgTyv6/XS/V8NuIlFRMpjo/mNgTdEkAdQ4WqLxqT9LvY0XVmnjmXj5e8mpaDLKY4iMioh4YWKikJJ3AJXYLPjR6gWoc8l925Ik4d4PWpNWA5EcVpdlozwr0rcmSRJ+tqsZV9dX4cq6yphJKkpOLS3EI0fakllmxhBzzqfxPeOaJZW4ZVXt9BsSBJHxkKiIIIiMgERFxuDSs+fhvy5dFF0+1OPGTY9uS1nbaaWYgOI2Eo+RH+BEAN/f9j5+vPoU8CwLlmFw/oLijBIVKZ2K2oaS68KhJ6KBrl852TasXFqOFUsqsKCxCCXFLricVrAsA2asA10URAiiBEEQIUkAxzHgORYsx4JjmUhcTUhAWBARDosICyJExYAFwzKwWnhYzDxqq2WnouMj8UUoERG0ojFmesFTbqaVeW/0e2xNvtxG60xTUVGdU3Zv6Uxy9BkAOEzqoqLALPa3zaHepvaG9RtEtylERV4dHZMI4O2ePlwwNIKmnIhY0MZzeOS09bhrdzM29w3oXF1m8p+uXlw7f15UfHft4mpcu7gae/pH0esLYDgYOXdXF+egzKHuRGY3cbi8oQxnVxXi1jf3YntvakVWJwMbR6KiZKAU6hhd2K/l8DUbURGj8VlhlTaeSeFUFDS4sFwPlIJ+Iz3HEakBi+SL0uw8hx+vWYjaLHt0nSRJ+P6bR/C7bann+E5MzSkVOdHXDMPg9mXzkW02x2zz7MEenFSajVJnZLIH9UcnEkW7Q8cqEsnNK2vw+WVVepdBEESKQKIigiAyghISFenOonn5+NGtm6IzKwa9QXz2jx9gNIU7XUWlqIie4RJCKu1WdziMwyPDaMqJOFJU5U4dMZFuKEVFh/s8U2yZXggqsQPJorjQidrqfKxeUYWPXLgU82oLpn9TghhJ4Wu5nmgJgSRppoNA01vmGb3zq0Rx7ejSQXCTDErt8iBAhzf510ebhovVbERFVsXvosQd0s+9JKhwJ9L6XYnkIEgSvr55B366ejkasrMARERf31i2ENe/tRndfhKg6sGPduzFHSuXxNxzFuVnAchS3d4vCBgJhpBl4mHluOjzW47FhB+un49Lnv0AQRqMj0EpVNCzbZju8BqxsUaE06h1NmIohtGKUpv8WUrBulo8WqbDKWLpRIML0wjjoXzcStbx8/Vl82IERUcGvbjh+b3Y05s5fS6ZxEgwdoKEUlDkDQm47aVm/ONgL97577XR9QdHMmcyY7KJjT9Lr3uGhWNx+7p6fLSxdPqNCYIgxiBREUEQGUFxgQMMY2ynk3Qmx2XGI3d/ONqBExJEXP/wVhzrT+3BQ2UfHptS8pfUJBVO37BCCJBJs4U4hkGJS47E+eY583HTpnp4gwLCogRRjDx+Kx/CpQlaCBZMxFEHstBifHtJmvz3t/AszBwLhonsawlSdDtJkiBKkTx6k8KBR5Iwtj2ivQOSNP75kfdIkjT5XjHhT6m0nf75nRfB6wtG1zETtlF2PE5ap3gPyzLgWBYsF/mf4xiwY/+rrbdaeeS4jCNce62FHCjmkpm2V2LPI40oNYM3frKs8iNpV5o6FeUqOoNrsrJwVd08MAwTuVaNXbtESYIQ/SciLEkQx/6FJSlmEFJCZPuwKCIkRrYNjb8Wxehnjl/Xim022Hk++hkSxq474TDMY5Eq49dQEdKUx4zFpn7d8ejoVKQ89tOtszdV+cH2PfjS4iYsz48IrVmGwecX1OPObXt0riwz2T04jBvf3owbFzWi0ZUFnlUXKEiShF2DQ/jO1t3RdU6exw0LGrCuOCJcLrJbcHpFAV5o7U1K7amCMv7MTZGwCUMrUsyIaJ9ns4k/U/8sNdFQjKiIxH+TMHO0f4jU4cNVxTi1VJ44tLljGJf9dbuOFRGJ5u/7u/HV9bWw8rHX/V09o7j5hX04POhDfa4tGpEGAI9T9FlSMHi3Slw4TBx+d84SLCtyTb8xQRCEAhIVEQSREZhNHPJzbOgbTM/BKqPz9P9eBrtNjt747jN78M6Rfh0rmhvCCjtxjX4+YhbUuGy4uL4Y8/McWFOisP7VsaaZElLY2Zv5zDko6gsckxxXXFYTXFb1yJ10YtXySr1LiEEUJfQP+3GwbRCH20fQO+BDWBAhjPWA8GNxZ/xYJFpoLOIsFJIgSiI4LiLWMptY8DwHs4kFGzM7WoLXHwbPMfj8R5ZE177akvrXdD3QHhubYfyZ4rW2qCiukpKKmWdj4kG601RUZFG45zRl56ApO2eKrZMH19qGYJa6U4kkxcpzxpdPq6wCp2j0jAuU1hcVI6wQOI0LngJiZLYty0REo35BgDAmkhLHPmCiECgsSRDGPissRq5fIVG+jk3k9NKy6OseXyDu/UDMPcOhEO7YthtfmD8P51REZr/WKGIAieTT6fPjm5t3AgA2FhdgUW4O8i1m2E08GADDgRCebevAnqHhmPe5w2H8ZNc+PJS7FjljAskSu2Xix2c8dkXk1Ig3qGMl6Y1mbKwB0RJAibOKP9NwKlK5Lyq/1+gRuHpgVjgVhcjJiYiTZB4xDS4HblpUG10e9IXwURIUpT19vhC++MI+fGZ5OfxhEQcHvHjt2ADeahvE+CVrfbn8LBkQBLR60vMZmkgMlVlW/OzU+VhSSIIigiDih0RFBEFkDKVFDhIV6cCffn4+yorkQYT/e7sFD7/fqmNFc0dI0UnHUf7ZCfOZRRX41KJy5FpMqoPjxRruCEYiKMpWxRNnFqUzVbnW6TciEoIoSnD7QjjcPoxfProdb23vTMr3rltcHBUViZKEthEayJ8N2vFnMxQVTbT8OoHP0oPGQkfM9X4gkH7HUbXDoSn40puBAW2HMYaZ4LfHMLBYLLCatMWiFgNEj7V5KArCSGzpH4iKirLNJvAsEI5/PJ2YY97o7sMb3X0z3r7W6UDWFOc+EZnxPc7wKImKEgWXQjN5tKLaRFFQXT8VWvFnyklO4yiFVyGVn2c6VsW56g/H/7cgiHES2bwvsJrxw9ULYB1rW4uShKv+vgN0RmcGzx3uw3OHtdtpG6pyo6/bSVCUUAz6GD9rKrOsePzCFci2ULueIIjZQaIigiAyhpICB3Y1z7zzlDhxvnvzKVi3XJ49/vrBXnzvn3t1rGhuUXbSkaho9pQ7rfjDh5ai2DH1rGcLZ/xmi7JjMs9unmLL9KLIGSsq+tR3XkRpgQM5WRaY+LH4LkUHt9rZIojSWESZFJ1Vy2BsYHvsDcrTzOsPw+sPI6QYneRYBhwbiVFjxyLPvP4wgiEBFhMHhom4tojieJQQA5YFeI4dix+T3z9Rh6EUZlgtHJqqc2EaE46N/ygaLSQp3xf7MxHq24qiGNkHgoSwICIsjDl1CBKEcOT/yHox+vMt+3pw5PiIyt5MPLXl2dHX7iB1yM8WrQn30hSz2LUEKlqRi0aepD6/RJ4d5wmFEJjF7H2jszhX7vQVRAH9AW/UWSASxSjHPrJgwDBM1NWHZVj5Ojjhc5kJ20a2mVnw5vgxNDw8HHNtm0785HA4ZvDp+iBKEliGwb4hfa6JhDrNQ6MQJAnc2LH6q3WrcP3bm/Uui4gDM8vi+6uWxjzrfNAzpGNFxsRpkp9T+kf8OlaS3ihvUwbWTAOIPF+oMRuxt1b8mZoTkVLMFCRR0SScFvlc9YfoGYaIE+V8jgR5aTdmO/CDVQtQZIv0j0mShJ+8dRR7ekk4T0SeHzcqREXv9ZBjNDEzShwW3H/OEhIUEQRxQhh/dI4gCGKOKC0ky/1k8unLFuOqC+dHlw/3unHjI1vTyoJbKWbgU8iK3UjUuGx48sKVMTbkANA94seOtiGcs6hEp8pmR/PIIDaVlgMAGoucsHAsAhnQmVvqkgVhh9qG8NaO5LjlEPpRVyGLQXo86ecukyzmtDM6BZ2K6gtkkcpAMD2dHepd8rnS7hnC40e3JvX7K+w5WJhbOml9MBDAoYGumHUsIsIPpcApQuRIdVqLcGx03N1oPPgMECFiR/9xcCwDE8vDxHDgWRYWjoeF5SFBgjgWn2bl+DEh1JgoSuUc4BgWLMOAZyPxixzDRNdNxMRwyLbYwDIMJEnC7gESOxiJ4VAI73T3YUNJIQCg1G7DGaVFeKWzR+fKiJny2cY62Hm56/C+nS3YO+DWsSJjoow/GxyldlGi0IoUMyJa/QNTCcfV0BIUAUBYJb5L6VQUJGu4SdjM8rnqC9H+IeIj0TbM/NoAACAASURBVE9VDS4Hfn3ykqhDEQA8e7AX921tS/A3E6lCgd2ELLPcLnupg9rUxPS4zDzuP3sxql3GTwAgCMLYkKiIIIiMobTIuLOr040z1lXi9i+sjQ5G9bkD+PRD72PEH9a5srnFo3DnMKWQFbtRsLIs/nLBihhB0btH+nHPywfx7tF+SBJw+UkV+NlHlwFQd7cxGjsG+iFJEhiGgZljsbAkC9uOD+tdVsKpzrVHX3f1e3WshEgWdWWyU9FRihadNVrGMFod1hM3V24X72cZgZp8uW02mIbRZwBQbpevj32B5M8wtvHqrnke92RRgDgm/tE8aOwWDAYnX+OHgl4cGNGnQ7spuxgXVy8FEImlTa+WZnpw376DqHTaUe2MnO/XL2jEwtxsPHLoWNqKCdOJ5fnybPh/t/biwb00sKmGTRF7POxOz/uZEdCKjTUiWk5F8cafMax2tKha/Bmv6Jcgp6LJ2Ezy/vGRUxFxAiTicnTz4rqooEiSJDx/uA83PL9v7r+ISFlGAgKCghjtR/3x6iX4R2sHXuvso3Y1oYqVY3Hf2YsxL5fGxQiCOHFIVEQQRMZQUkiNp2TQWJuL39xxdlRQ5A8J+NwfN6MtDQedh32h6GtTCs2aNArfXj8PNpPcSfrrVw7irpcOqEZHAamRZR0WRfgFAbaxGd1nNhZmhKioLFuOPyNRUWagdCra3TOqYyVpipa70CyugwY2KkJ1niy46fGnZ1xMrkV2cuv36yEqUrc393niv1Y7s9RdP90h/QbQ8yzyMTQaCk2xJaEXXkHAg82HcedJEfEXxzI4s6wEp5YU4cvvbUPbLI5FInmYFQKFc6oK4Q8L8Icj7V2/ICIQFuEXIsu+sAhfWIA3LGAoEMJwIIzhYAihNHKqVYMBYFU4FQ17aFAvUSidiox+VHEa/QPiXDoVqZxbyn0UICeeSdgUUYUkKiLiRVJceea6e+qU4jwszZOfsX+zuRU/fadljr+FSHUCgojnDvXh4qYiAECRzYrPNtXhM4218ITD+NOhVjzbRs7hRAQGwPc2NGJ5kWvabQmCIGYCiYoIgsgYSFSUeHJcZjzxq4uis/JEUcIXH9+ObW3pGUWhtBNPBcGL0Ti1Ii/6+untx/GLFw9M2kaQlJ02qbGTm4cHsTw/EvNxyeJS3PXaIaT5WAoKHfKgeTeJitIei5lDuSJS9L329BfOGYWpr4IaMRuJKGSOKFREJ/b60k98DAA2RXxBXyD5kUFWbu5ERQ5Xlup6d1i/AfQ8i9y+701TYVo6sGtwGG939+Hk4oLoOp5lcc+6lQgIIh47cgxPtx7XsUJCi6FgENlmU3TCyEV18UcTu0PhqMio1xdApyeALm8Ax91+tI760Ob2pbTwSBl9BgADw3QtShQxOh0jq6YBmHh1MdDcxp9N/qyY+DNyKpqEhSenImL2JPKyc3VDRfR1nzdIgiJCkzvfOISFhQ405MnPQQzDwGky4QsL6nFBZQm+uXkPORfNMcZudUyGZYBvr2/A+XVFepdCEEQaQaIigiAyhlISFSUUlgWe/e1HYLfJg1c/+Nc+vLCnS8eqEosgpp7gxUgoc8Af+0A9SiF2H6cG/2g9imV5BWAYBhU5NpzRUIiXDvTqXVZCcVnlv2VPGrqSEbHUlGZFZ0FLkoTNHSQqmi1xx3hM2N7g42nT4rLKbYbuNBSElNvt0YF4QB+nIiun/sjv88YnKmIZFharVfVnXh1FRbkKpyJyvDE2d+/ej31DpVhTmI8leTkAIgMgVp7DpxpqsWdwGIdGky+8I6bmpY4uXNM074Q+w2ni4TTxqHACwGRxYlgUcXTEh+ZBN5oH3Tgw5EHzoBvuFBnwVz7TAEBHX/Kv9ZlCJjoVMVOKiibvBWW7I0SiokmYFaKiQJj2DzF75rIP8OTiPCzIke+P33v98Jx9NpF+9HpDOO/RLbiwoQgXNRZhZakL2Ra5LVLldOChTavwrS17sGuQ+moyESvH4qenzseZ1QXTb0wQBBEHJCoiCCJjKMp3gGUZiCk8C9LIPHr3hSgukIVbf3inBQ++dVS/gpKAmt04MTOsPBvTBdMxrC5EUc6+ZFLEDuq414PBYAB5lsjg65UrytNeVKSMseslUVHaU1eeHX0dFCQE6Vo4aziNy5ooqg+kchOWlXte6xopGVR5xLKAWbEDetLQqWhJbm70tScchE9IbjyXmeU0nYr8vvhEXBabVdMtwaenU5FZFhUdHKEoRiMTliQ829aBf7Z14OP11bi4qgLmMXdThmFwZlkxDjWTqMho7ByIHYza3DkMC8fCwrOwcCzMHAMTy8I09j/HMOBYBhwz87Y7z7JoyHGgIceBD9cWR9e3u31oHvRgV98IdvWPYv+gGwEDiiRcClGRJEnwB41XY7qQShN5tERFkhSnqIjRFhUJ0wiUDNoE1BWTou3pTxHhIpG+cAxwdnkRvrKkPrpu0BfC3w706FgVkQoEBQlP7u/Gk/u7wQBYU56NOzbNw8IxR2meZfG9kxbh6tfex2g4rG+xRFIpd1px9+kLsKhA3WWYIAjiRCBREUEQGYOJZ1GQa0MPRfPMOd+/ZQNWLpI7gF9t7sGdz+7VsaLkoOzESxG9i2G4ekF5dKAhJIjoHFIf3ExFpyIAeL2zA5fU1AEAzm4swlmN6e1WpJzxSaKi9KeuQs5jH/QnVySRbpg49YEiUVAf5OAnqJCUQmmWmyg5ihA06Czs+cVZMQPO6Rhd1eCSz5V+f/LFEk6TurMQAIwMxRdNa7Fpf5Zf0Kej2saZYOVl0dTuAZqJmwpIAB45fAyvdHTjvlNWR9f7NK57hL70BwIxy199tRltozO7XudYeFS5bKh0WVDqtKLcaUGly4pSpxX5VhOyLDxMLKMpPqpw2lDhtOHMysgs67Ao4sCQB7v7RrGrfwS7+0fR5tb/3qF0KhJIaE2MwWqJiuI8RhiNzwG0jjdF23CK92YqPEdORcTsUbrMCjNU7eVZTFiUm4W6LEfknodIbGaexYwVBdnINsttWUmScMfrh+a6bCLNkQC8d3wYH358K25eXY0vra0GAJhYFnevW4Zr3tyib4EpTKrdRU+rzMOPNs6Hy0LD/gRBJAa6uhAEkVGUFjpIVDTHXH3xQlxxflN0eX/XCG56dFtGdKhmwu+YKD61sDz6+rXmHgQ1Zh0r3aBSSbj17+PHcF5lNSxjg/x3XbwYVz+8BTs6RnSubO6Z6DrVr+E6RaQPSqei9hH9B/NSGVOc0RjcFPFnWqKikEo0hhE4qUp28RkJBtNSUFBml110+nSIPnOaLKrr/T4/AnGKuKw2m+p6QRIhxOm6MFcoo88kSUJnnO5LhH4wAK5f0BBdliQJz7Z26FcQoYlpgkuKhhZWlaFAGEO9o9jZq+0iZuVYbKzMxabKXCwuzEKlywqXmVcVGvEsi4V5WViYl4UrUDb2HSHsG3Bj38Ao9gyMYk+/G33+5LqnOU1y12rYgE5KhD5oRdzOpVORmqaBpfizKeEVbW+tPgiC0EJ5WkszCGG8qKoENy2qjTozToUoSfjGKwfwVDO5FBGzIyxKuOu9Flh5FtedVAkAKLXbcPfaZbjlvR06V5f6GNUBepyPzS/FN9fN02x/EARBzAUkKiIIIqMoKXRgx/70dQtJNuuWl+FbN6yPdvr2jgZwzR82wx3IDGvVVHXR0Zs71jcg2yLPxvr9Wy2a28bu49TZyyKA3+7fjRsXLgXDMHBZTXjyv9fgvrda8Os3DiNo0EH+2dBQ6IgZ+OkeIFFRulNXLruvNPclXyiRTsTrVMQp4qdESYrpzOZYdVFReJpoDL1YWCIfRz1p6FIEAHlW2d2nP6CDUxFvVl3vHolf4OrKyVFd79Ux+kwpKjJiJBKhzSXVFViSJx9Tb3T1YiCo37FEaLM4TxYSi5KEluG5vV77BREvtvTjxZb+mPWrSlw4vToPq0qyUZ9r1xQa5VhMWF+ai/WlslC12xvA3oHRMUejUewdGIU/gdeILLN8/w2G6FpERNCOP4vTqWiKwUG1SU7K7SneazLKwVaKsyfiRXn6Ttc/tTzfhS8tqZs0KWTyZ0ro9QZx8wv78HY7uW4SJ87P3jmKZcVZWF8RaWs3Zmfh9mXz8cMd+3WujEgUVy8sx9fX1k+/IUEQxAlCoiKCIDKK0kKH3iWkDSWFdjz4ow9FLbUDIQGf//NmtA9ljqCAOqHi58zKPFw6T47K+8+BHrxzpF9z+1Tex3uGBvDC8VZ8qLwKDMOAZ1nctLEOly0txZ83t+H377emheV601hmOwAMjQYQCFLndbqjdCra0kkdnyeCplORRpwUr9hcnDAolWpORTX5siAkHaPPAMCm+JsYyanIPaLtGqJFTl6u6np3KKC6PhnkWeR2/XCIohhThWyTCVfVV0eX+/wB3L2nWceKCC2yTSZ8or4mutyWRHfCzV0j2NwlCyDNLHBGdQHOqs3HsqIslDmtms4PxXYLiu0WnF4xHpsm4fCwB7sUsWmto74ZeEzMDKVTUZBEHMQYWjoCKU6xNzuFU5GaqEjZtPTRc9kklH8Wo7tOEMZD+fw1nVjo4urSmG263AG4gwIYBvCGBIwEwtjT68b9W9vR6yVhNTF3hEQJ1zy7G49/ZBkWF2YBAE4uysfFVWV4mpxB40IpHjTiHYMBcPPKGly7rErvUgiCyBBIVEQQREZRXECiormA51n8/b5LYTbJg2W3/nUHtrYO6VhV8qH4s/gosJrw000LorMnBzxBfO3JXVO+J9XdoP5+7AjcoSAura6POoyUZ9vwtTMbccXycvzPW0fx7N5u+FJ4AKIuX76u9gxQvGS6U5Jvh8MmO4291TqoYzWpj4nTEhVpORUpOrUmjEmxnPqjnVGjL4pdsuClLw1FRaU2W8xs+H5/8p2KHLy6qMgzGr+oKCvbpbp+OKifmDxP4VTU7cscUXuqU5PlAK9wXfvJjr06VkNocXJRAf67sQ4F1sh1RJIk3P3BUd3qCYrA80f78PzRvui6UqcZF9QXYV1ZNprynCiwm2OijcbhWQZNuU405Trx0YZSAIA7GI7EpY1Fpu3pH511bJpSVEQijsTCaoixjYaZ1xYCaUXcaqKpTlL/XqVT0Yg/Mxyk40F5DBlVeE8Yl3jizxy83F+6pXMYlz6xPVFlEcQkRoMCPvX0Ljx9xUpUuKxgGAbXNNXi9a5eDAZpMsZsMJoO1cqx+MHGJpxbW6h3KQRBZBAkKiIIIqMoLXJOvxExLY/fcyHyc2zR5XtePoh/7OzUsSJ9SGUXHT14+Pzl0RnFoijhlr9sR9c0M55jhFspmgv9Ukc73uvpxs2LlqHC4Yx29NbmO/Czixbju+fOx5a2IQz7Q3AHBIz4w+hx+9Hc48a+bjcGfUE4zDw8wTCMeMhV5MiDuj2DNKib7ihdigRRQqebZlWeCCY2vvgz5WCpMNGpSOOzjCoqyrXL0VwDAf3cbhLFklzZ2ccbDsIrJLfz1sxyMGlE4sXrVGQ2W2C2qAuURg3iVNQySlGMqcJAIPa+8a0Vi/DHgy14pbNbp4oIJTlmEz7XNA8nFxfErH/n+BD+ebhP41360OkO4oEd7XhgR3t0XWOuHefXF2JtWQ7m5dqRbVGPTXOaeawtycXaEvla3eMNYP+gGweGPDgy7MXhYQ+OjfqmfeazKQQk5NiZWEwKy8aJjo1GIj9L/Z4JAOFQfG1nTkM0HlRp35UrXCABYNhHA8cTUQr0/WngGkwkFxbKa9DU246EZFGfmuCVIBJNrzeE6/61B09evgIWjgXLMPjiogZ8dxsJ+mdKrJDQOFg5FveetQjry9TdhAmCIBIFiYoIgsgoKP7sxPn+LRuwtElWwT+/uwu/fPmAjhXpR4yLDsOABUDdUur8ZGMTypzW6PK9rx3Cfw70Tvs+ZWdxKnfDjIZD+MGOzSi3O/BfDQtQpRAXOcw8NtUXTPMJkePtcL8Hz+7pwsNb2tF/AhbZn11ThY8sKwPLMJAw2fpdkiIPzOOz78Z/zLORGDeeY8ZeM8h3yMKAbnIqSnvqymW3EneQZj+fKJpORRqz2JXON6kef+Ywy4+i/WkoKprnks+Vfh2iz7RcioD4RUVOV5bmzzxhff52tVn5KLTKkwWah+N3XyL0oc3jxfPtnTi3IuIYk20246ZFjTi3ohRf/YBm8evJ/GwXvr5sIbLNsiOhJEl4uaUfX/h3agxAHRj04sDmYwCOAQB4Fji9Kh9n1xRgefF4bBqjKjQqsltQZLdgU3l+dJ0oSej1BdHl8aPTG0CnJ4ChQAiCJEEQJQiShIYcuY9BMKiQN10wKZw/DKwpQkmuTXW9IIQR8Mf3vGQym1XX+1UEbDXF8n0xGBYxGqC2+kSUbW8SXRHxwk4xwWMiewdHcXZ5pO90YYETVp4lIRuRdHb2uPHAtnbcsCoSj7U8P0fnilKLmPgzgzQ8WAa454yFJCgiCEIXSFREEERGUUKiohPiivOacMX5TdHlfZ0j+PIT2w3doZdIJro/mKmTQJULagtxXo0sRHv7cB9++dLMhGjpdmgd93rwox2bsSQ3H5dW16HU7lAd1FCDYxk0Fjrx5dPm4epVlbjxyZ14bxbRUyvKs/Gtc5pm/L3x0DNATkXpTl2F7FTU5U4/IUiy4TTOQ0lUdzqImSk34QLJaDgVheON2UgSykGdRDkVmVkWLpMJXkGAPxxOqvC3wiG3OfsCOkSfmdQHIYOBAILB+Pa3lqgoJAoIahyriWZj8byY5d0DmRXBm+o82HwYS/NyUGaXB97nuZyodTpw1E2uU3pwWU0FrqqvibkvDQdCuPnfe/F2x7COlZ0YYRF4saUfL7b0R9cV2sw4v74AGypy0ZTvRKFGbBoQEfMW2y0otluwbAbfZ2T3nHSAV7QdRCNauI5RNsExaBy/xx33oKTZqi5QGvVOFsRUKmKpB05gAkq6YuXZmGtcn4eeZYj4UN4qprvev909gJsW1YJlGJg4Fr+7YBGufnpXgiskiMk8urszKioysSwurirD060dOleVehil1XH1wnJsqMjTuwyCIDIUEhURBJFRFOXbwbKMoTugjEpNuQt3fumUqBChzx3ANX/cDG8GW7wLE44jG0eioomUO634/imN0eOmZ8SPLz62fcYxXunaL79rsB+7BvthZTmcVV6JUrsDNo6HleNg43lkmcxw8OpxDQBQ6LTgz588CTc+uRMvNPfE9d2+BJ6zr25un34jIqVROhUdHSIRWSpgxOtobb495vrW6586CnM2XFBRgY/V1cV8z/hAnqRYFhEZFJAkCcLYa0EUIUgSwlLEhSIsipF/koSQKEb/Bcf/FwQEBAH+sXUBQUCRVXbnM5JTkXs0foGTI0tdVOTWMfrMooiD8YUFjITJjSGVCEsSvrV5Jz5SW4kLKssARFw/f7JmOb72/nYSFiWZ9UUFuHpebXRZkiT860gvvvzS/rR0Ye31BfGH3R34w255QK0x145zaguwqjQbNdk2FNjMmo5GU6Em9CDmDqVTkZEFXNWFTtX1Xk/8rnp2h/o9eEBF3F9RoBAVeUhUNJHzFpVEz+lAWMQxctkl4oRhZh5/1uUL4B+t3bi4ugQAsKkqFwvyHdjXT20cIrm0jvjxRusgNlZFnG0ur60gUdEMUbYC9W522HgW1y2rwjVLq/QthCCIjIZERQRBZBQ8x6Ioz4auPuo8iAeWBR775YXguIgLQkgQ8YWHt+B4hg8oT3QqsnLqLhGZCgvg4fOWgR9zzxBECTc/tg29cbibGMVeNlH4RQHPtrVo/rzAYkW22YLRUBBFNhvOKa9CgysHzNhst3s/shSX/v497O6aeQf1/l43PmgbxJqq2JktDz0zFmvBRCx+x/vLxjvOGEQcT0JhEaHQ2P9hEaGwgJAgYcveHuw9OhDPr0+kIHXlslPRzm6KGyJmx/IK2XbdFw7DkwBByNnl5ZMGg5XXs7EVUA+Nm1v6AnqIitSdijyj8Z+3Wk5FekWfTeSJo616l0DMgsFgEA80H8ZxjxfXzo84T5lYFt9ZuRiffv09navLLDaVyI6iYVHCnW8ewqP7OnWsKPkcGPTiwGDstcTOs1halIVFBVmYl2tDlcuGYocFVp4Fy0RcjFiGgcvMgxuzr9hxsE+P8jOGGKciAz8mFuVouAsN9auunwqb06W6vnd4siC7wCULmsmpaDIXLyuLvt7dOYygQSOCCeMSj1MRAPx2XwvOrSiChWPBMAw+uqAY33vzSAIrJAh17t/aFhUV5ZhNKLZa0O03xrOcoVE6RetXBapdNtx12gLMz1cXLRMEQSQLEhURBJFxlBQ6SFQUJ/fdcTbyc+WOsR8/vx8ftMQfu5RuTHQqMpOoKIY/nbcM+TZ5UPNnL+zHu3GKTow8AzUZ9AX86AtEOox7/D7sHhzA+qIS/Ne8+VFh0bXra3Dz3+Kz0f7YHzbj/VtORYFTdrJ4d1cXXv6AnIYIbexWHmWKGNF321M3DoXQlwWl8gBZXwJcioCIOMEIiJKEPr8e8WfqTkWekVmIirScisI0YEmcOM+1d+KjtZXIs0SOWZfJpHNFmQevuF6OBEIZJyjSwhsW8W7HMN6dJv7ttavWoDwrIuYYIXeYhMKyk90HjUaOwxwjflLiGY2v7cyyLKw2h+rPOgcn92k5rHI3vz+Ujj5jJ8ZyRYzzSZW5uP3sRgiihJAoQRAlhEUJ/pCAl5p7cUxl/xIEo1AYiDOQGLjDAlrdXjRkR4QAxrxqEZnAm22D6PUGUWg3RwRutRX4zb7DepdleGKdivQ5g0+vzMNPT10AuykZ06EIgiCmhkRFBEFkHCWFTmBfr95lpAyXn9eI09fJ1pov7evGg28e1bEi4xCeICqy8MYYwNSbMyvz8P/WNyDPKguK/r2nC//7evwzspR7OL7wgfTlnZ4u1Dpd2FRaDgA4p6kIDOLroBIBXPzge3j1xg1RMdwvbtmAy277F44cH5nzmon0oLZMFoJIkoSt0wyyEYklla+JdYp4jr5AYmZIsgqXotc6D2D/UDc4hgXPspH/GRbc2Gut9eOvTWPbTN6eAc9w4BgGHMsp3suAY1iIkoTNfa3wJll8w4KBjVMXZsQbf8bzPKx2dccFj47xZ0R6oeyjZxgGPAAKtEser3f2YFVBxMEyz2bGj05twDf+c1DnqlIH5cQSXyBzo8GTARcjKtKxkCnId6mLegHA543vHmxzujQj+HqGJouyKxXi/0x3lVYjyxrbNrr25FrV7W7YWId1d71GTkbEJATFhWeey4FNJfmycx0ibRgWkWVmbP24oAgArNRnSOiEKAEvHenHxxeXAgA2lhSQqGgGKIWEetwRLplXjDtPaYxp/xAEQegJiYoIgsg4SgrVZ3oRk6kszcKdX9oQ7cg6PuTDrX/doXNVxmGiqMhsEFeEZFOdZcX5tYVYW5qLhhw7XJbYzrp9nSOzPm5EI/va60i3/8RnTh4f8eO6J7bjwStXgGEYOO1m3PeN0/GRr/4Lbm9oDqok0o0ahagoIIig+c8njqAxIsZo3E+Ul0RmQseSJEpQy/IyGdBFr1LhftibIKcipajIGw5iJJSY7zEido3oMyD++DOHhksRoG/8GcfIx7Ug0dUo1RkIBJFvlQfiL6+rwqNHKNYuWbzZ3YvTSouwckxYdEljMb79xkGE6dSaESbF/dgXIDlcIlE6FRnV0dZlUxf1hoIBiEJ8orOs7DzV9cGwiAGVSPEsxXf3jJLwdyL+sACHefqhkDy7GV8/qwlP7ezA7k6acEPIKN3Kz6ssxnmVxXG9f2EBRRcR+vHEvq6oqMjJ81iQnYV9wxRpP1OSKesxcwxOq8jHDzY2JfFbCYIgpodERQRBZBylJCqaMY/98kLwY4ORYUHETY9uwxCJDaJMjD+zculvRbqqKBubKnKxpMCFapcVuVZTTGTCRN4/OoAbHtmKEf/sOtiN2VWsL2aWxYcr5VmVzb3uWe+nVw724b63juL6DXUAgPqKbPziSxtw3Y9eNezsX0I/qktlccHQLM9pIpaJ95FxtEVF8vYTJ6uJogBg8kCWEWe1FWXJ4oFuX2Jm0iv3oJZ4K13REhWJogifJz5RqiNLffBDkET4BX2uAzzDwmW2RpcPj3h0qYOYOx48cBg/Xr08ulyncdwRiUECcP/+Q7h/wxoAkTi0yxqL8Zf93foWliLwJCpKGqngVGTTEK2EgvGLfOwOdWHvsR636u9vt8jfPeSlKL6JfPL37+MrZzciy8JHHCdZBhwbOa54lkVVnj267WfWVeMz66rxyJY2fPuf+zKuLUmoM+IPAVB38JwJjfn26TciiASxpXMER4e8qM2xg2EYXNNUi6+8v1PvsgyNpOxtTXC3CgNgeZELX11Th6WFrmm3JwiC0AMSFREEkXGQqGhm/O+dZ6NI8cD78383Y2vroI4VGZOQIEZdICz87J4wCm1mnFGZj2qXFVaeg8MU+WdhWZg5FjzLwMyxkCQgJIoIiRI8IQE7e0fwxMFODCRocL8u24YzKvOxuiQHjbkO5FlNMc4PU7G/awR3vXgA/957YoMR1HcXCw8W3125FjZebsL97p2WE/rMn756CCdV5mBtdWQm7JlrKnHzlctwz2PkSkbEUlksD2x0qcyOJuInpCEqYjVEqkqHvInXY63Z72YD2uw7FYNeCRMVKfZPpjnZaImKfB5vbMfoDHA41cUdyY50U5JrkdunkiSheYiiGFOdgBB7jh4dJaFYsrmkuiJmOcus7rZCTEZ5vwkLmXW/STaxoiJjPihynPrzcrwuRQBgslhV1/eNqLsvWkxy+3HIR5PBJrKtfRiffOgDzZ+/dssm1OTH9hdedVIlrDyHL/99V6LLI1KAb/1zLx78+Eo4zDxEKdKqlqL/j/dfRZZFKfKzXLvcLneYePAsyAmQ0AUJwB93duA7m+YBABqzs2DnWXjpgNQkWS2NIrsZvz5jERYXarsEEwRBGAESFREEIHwoQwAAIABJREFUkXFQ/Nn0/NelC3HG+qro8mvNPbj/jSM6VmRcwoKE8b470wziz8odFpxTU4DVxTloyLWjwGae0ulnKjZV5OGG5dXwhUW0jvrwQdcQnj3cg72DUw/EsIi43Zh5FhYuIlzKs5qwpjgbJ5floj7HjhyLKS53i97RALa3DWJb6xDeaxnAlmNzI0DTcvHIRFgA31m5BnmKzuWndnbg2RMUbgHAx/+4Ge/dcioKnRH3kJs+tgwH24bx8gdtYBCJGmAZBgwLcCwLlgEYhgHLRhLGe4d8JADLAKpKZHFBy1BihCCZRlBj8JHj1B/TwoJ8onETREVCWH3wyGYylouelWdjXB0SJSpS7h2jRqQkiiyTRXW9x+2O+7O0nIo8OoqK8hSiopAogXxBUp/1RQUxy7sHh3SqJDO5sq4K51WWRZc9wTD+tLtdx4pSC+U9xsQb656bbsTGn+lYyBQkwx9SENR/eaWQnERF8fOJ37+PX125HPUFDrhs8oSqy5aVoccdwI9fOqBzhYTebG0fxoqfvRrXe3JsJmy59fQxZywGp1Xn4aWjAwmqkCCm5q/7uvHV9bWwmTiwDIPPNtbh13sP6V1WSsAk6A7PMsD/nbcM1a7Zu6ARBEEkCxIVEQSRcZQWkp3+VCycl49vfmE9mLEOlPZBL275y3YSDGgQFkUAkc5jCxcrDso28zizKh9rS3OwuCALJXYLzNzcOkYwDAO7icP8PCfm5zlx9cIKSJKEoCCBYSKDzuN9r8wMXYamo6Xfg70dI9jfNYJ9naPY1zmC9gQJDCL7lwCAry9bhUKb/JD56sFefO0fe+bks0UAFz3wLv5z48ZoZ/Svbts04/cf73Hjym88j67++GJ1iNRC6VS0vzd+cQIxmYDGrECOV3eICCquiSzLgGGY6Ez9sIaoyGowp6Il5dkx96Nev/ps+xNF+R1Cht1Lss3qHZKe0dG4P8tuSKcieYKAW+O4J1IL3wQHjztOWgoA2Dc0jN/uP4QWN7UvEsXyvBx8rK46uuwJhnHuXzYjmFmXzRNC+YRFEyISC6eYjGNUwbDWM3e8ToGRz1Jfr/VJyklBwyQqipvjw3585LfvAgCyrDze/MppyLZF2uTXnVKLqlwb7n7tEA72kpseMXOGfCEc6fegYawvemNVLomKCN0YDoTxt+ZuXLU4IiY/taSQREVTkeD0sw/VFOBLJ9WiigRFBEGkCCQqIggi4yjMs4FjGerwU8FqZvHnX1wQnQEYCAu4/pGtGPRSh5QWyiiaTy+qwCcWlKHEYUG+1QzT2IDvTBjxh9DS54E/JMIXCsMbFOAPiQiGRYQEMepmYeYiDkMFTgtWVefCZZs88MwwzKyj2CbSOxrAno5hbG8bivxrH8JQEo+HkMYszEzjytoGVDllQcfbRwdw3V93aEYnzYbO0QCu/cs2PPTxlXEL0MqLnFi/tAR/e5UczdIVE8+iOE/u6NjZE784gZiMT0NUxJvURUUTRUg8y0Svk0JI/dpstxjrkW9peXb09WAggHCCBgWVUqpMij/jGEYz/myoP/4BDLtT3eFTT1FRnll2Kur1UxRjOvCvtg6cXFSAhuxYy/8FOdn4xdqV+ObmHdg/TPedRPDxellQFBREXPjXrejy6Hd+pyIUf5Y82BSIP5tbNKLUZvAM6AvGH7dGyIz6wzj/3jfx8pc2wTrm+nn+whKcv7AEv337KO5+7TB8IdrHxMxo7h6Niooacsk9n9CXP+zsiIqKbDyHs0qL8FJnj85VGRPl3XaO5ulG+cziCnxldd3cfihBEESCMVYPM0EQRBLgOBaF+XZ00eyiSTx2z0XIcsgDUXf8Yy92tg/rWJHxUUbRLC6YWfbxoDeIXe3D2HU88m93xzDaB+N3+mEZYGGpCyuqcrGyKhera3JRkWuf/o0a9I4GsLtjGFtbB7H7+Aj2dAyjZ1TfwTql+I9hGLCIuOpkElaWxaZSOZJiV+cIrnl8m6bDyYnw2uF+3P2fw7jl1Pq4hUXDbhqASmdK8u3gxpzWJEnC9q4RnStKD/xaTkUmdVFIWJQgSVL0/OQ5BuPjGaGg+jmYbTXWI19Dkex8kyiXIiDWKcCobgaJwKYhKAKA4YH4IqUsFgtMGgI3fZ2K5LZOu4ccbNKBoCji9s07cGZZCS6rqUCRTY56ZRkGP1y1DMPBEJ5sacOzbR06Vppe8AyDxmxXdPkHbx9G22jirsvpirLJHE5A+5yQUcanGnWSmKa7UILbIiwb2/YJkMDthDk+7MeZ97yOf92wIepYBADXnlyLs5uKcMVD76OXRJjEDFBerthkZCQSxBTs6/Pg/ePDWDM22efqhmoSFSURp4nD9zc04uyaQr1LIQiCiBtj9TATBEEkidJCB4mKJnD7F9ZiUUNBdPmvW9rwyPutOlaUGgx4gijMsmj+3BcUsLdzBLuOR8Q629uG0DowNwNgogTs7hjB7o4R/OndYwCAfIcZ1fl2FGZZEQyLcAdCcPvD8ASF6IxGCZFYMUGUEBYlCIKEoCAmRKRyooQmdIaaWRb+DIuxuaxmHjgmIuYICiJueHIHvAmcFfmrN47gofdaUZ5rBcTIjOCTKrIREiT4wgKCYRG+kICgIOLhT66Kdl63dpKDQDpTXijPqBQlwE25KHOC1rlsMmvfV5RYOBY+RD4j4FNv1+Q7Z/ZZyaImXxaE9AeSI1wNZ5BTkY1TFwGJogifL772R05+nubPPAYRFR0eoSjGdCEsSXjheCde6ujC5bWVuKS6AhYu4g7BMAxyLGZ8pjEym5eERXNDtjn2evHMoW6dKkltYpyKDCp0SRd4RaSrUUVFrLaqKO7PYlj1CFs1sbTdHNvFHzTgs30qcnzIj7U/eQX3fmwFzmgsjLpl1eY78I2zm/Dlv+/SuULC6OTZTThN0dd6ZIgE8YT+/GHn8aioqMBqwQUVJfhne5fOVRmbudADOk0cHvjQEiwpdE2/MUEQhAEhURFBEBlJSSHZzSo5Y10lPn3Z4ujy3o5hfOvp3TpWlDr86Pl9uO2cJgARp58+dwDHh3w42O3G3s4RtPR7kMz+zn5PEP1pNFtukqiI4+EX0+f3mwmrCouir/+2swOts3C1ipfRYBj7u90oz7biPzduAK/Roa2krYcGdtOZMoW7jC9MVv9zxWggrLqeN5nA8TyE8OSfhyUJprEBK4uJA3yR2DO/V11UlGc3gWFmNZaVEIpdsgNJXyKdihSvxUwSFWk4Ffm98Q9gZOfmqq73CSGERH2uA1aOj4l32zNIjprphiBJeOxIKx470opLqytwVX11tB3CMAwuqa4gUdEc4Z/Qzl5ckIV3O+icOhHEDJv8kGx4zviiIq1Rx9lUqzWAOZM2nVHafemAPyzimj9vQanLiievXYeynEgk9GXLyvDE9uN4pyX+eFkivVlZkY15hU4UOMy4cHEpXNaIiFeSJPzmA5q8SejP84f7cKDfg8b8yPjIJ+ZVk6hIBWlWd291iuxmPPChpajPmX3CAEEQhN6QqIggiIyktNA5/UYZQmGeDb/+zllRt5ERXwjXPbwV/hB1iM6E15p78Vpzr95lpC3eYOygZZbJhJFQ5oiK1heVwM7Ls8gf3348qd9/2ZKyGQmK2nvcCARJaJLOlBXIYtxhv7oQhoifQX9I82dWuxOekclxVSFBhGnsvLQpZuz7verCPo5lkGMzYdCr/V3JJN8uC0ISGX+mRMigkTUtpyLvLGLC7Fnq7eXhYOLFrVrkmuVOWEmS0ErxZ2nN346149DIKO48aWl0HQlb5w5POIxevx+F1ojY886NDTjn8c06V0UQ2pgU7Z6wQeO95tKpSCtLTS1KbaKgjSKW5p7OET823fUa9n3nQzCNCdz+7xMrcf0TO/DyAeoTIoBsqwm//dhyrK1Wd/t87nAfjlNsPGEAQqKEO14/jIcvjbSxs80mfLiyFM+2depcmXFhtO7vM2BBvhO/PH0hKrKs029MEARhYKYfJSIIgkhDSsmpKMoTv74IZhMXXb7lL9vnLJ6LIE6UQFiMxrYBgNOkPliajrhMZlxV3xRd3n58GFvbkzt7/OGtbQhPM+Pa7Q3iV4/tSFJFhF6UKkRFvV7qCJ0rhv1hzagUq0O9reILydtbzfL9W8upCADyHcaJQLMrak6eqMiYA4+JQEtU5JuFU5HNZlNd79Ux+izPIp8XQXIEyQhyLbHuWw8fadGnkDTlyaPt0de1OXZ8anGZjtUQxNTEioqMKRjWEvOoCYGmQ2sAU63pODHtjCVVUUIIi8AvXz4Y/XtaeA73fnQZFpdSlA0BfPtDTZqCogP9Hlz/r71JroggtHmjbRCbFQ6Vn6iv0rGa9KTAZsY319Xj0QuWk6CIIIi0gERFBEFkJBR/FuHub56O8uKs6PJvXj2El/f36FgRQUxGOeDOncDMkFSCB4tvL18ddSMBgB+/fCDpdQx4Q/jqM3tiOsHf39ONhZf/GQs/+mcsufIRrLr6cTz1yuGk10Ykl5J82R2kczSgYyXphQRgwKfuIGSxq7vEeEOyU5SFlwU6oiAg6Fd3kCl2GUNUZOVZcIpBrkSJiljEDsSJmeRUxKuLivze+N2FbA51a3afjqKiXItc03DQGO5bRGJpGY0VTK4rzNepkvTkpY4uHB2Vne6+sb4ei/LpWXm2ZNDtRhd4Tr63C4YVFWmGlsX9WYxGAJpau4af0MMvGjUeLg34zetH8P+e3Rt9RraZOPzuYyti3DiJzGRDndxGEUQJnaMB7OgewddebsZZD28GyeEJo/Hzd1uir11mEzYVF+hXjAFR3m7j6Y1mGeDTiyvw/EdX46oF5VF3O4IgiFSHrmYEQWQk5FQEXHr2PFxwWl10+e3DfbjrpeSLFghiOpSdphyTGU2X25atQJZZ7pQ80OvG8WF/XA+xc8VTuzrxksLOfc2iYtxw+VIEwyJ8gbBhZwkTc0uxQlR0bFi/6KN0pN+nLtDQcioaVUQNWng2ZvDK6x5VfU9ZtjFmxS0pz44R+/QnSFQ0scM+M+SoEey8+oCW163tZKUGx3GwWNWPG5+gXwRinkJU1JMkpytCX1o9XrzRJbdDlufn6lhN+iFIEu7dexChMecvjmXwxKUr8D/nLMTLH1+NnZ85BVs/fTIubSzSuVKCAHjFoNx0bqp6MZfpZ9rxZ7HLqxvy8dfbz4xZFzRoPFy68Kf3WvHD55ujwqJSlxXfOLtR56oIvVGemvdtacXah97FhY9vw6N7unSriSCm4u32IWzvGoku/1dDtY7VGJuZznHNtZjw+3OX4rbVdbApJoERBEGkA7zeBRAEQehBpjsVVZZm4Ye3booO7PWM+PHFx7ZDoNlshAERMsypaHVBEaocWTHrGgudeOOmjfCFBLQMeOEPCRAkCaIUmYUqSpFBIUmSsKV9CP/7VgsC03Qkf3ZtNa5YXg6bKSJK4FkG3Pg/hgHLRtaxDAPLhKmvN1yxFFv29eD1bR1z/vsTxqQoT45BOkwRmXNKv1fdbcWq4VTkDoYhSVL0Hm41sfCOCY28o8PIKZg88FvgNIZT0ZIyORpiKBBAKIGWDsp9xLGZIUi1sLym+Nbjdquu18JmV3cpAvR2KpLb8K2jdC3KFLb2D2BjSSEAwMxS5/xcc2TUjd8fOILPz58HADBxLM6ujZ2p/pPTmmDjOTyyt1OPEg1N+j+dGBOjukJpRZZJs4hi1fQ8GvvlL15biVsvW4KyPHvM93qDYbgD+gmAM4XfvXUU62rzcOb8SNv7oiWl+OY/9yIwMYuOyBh2dQyj1BUR5X9icRl++k6LrvUQxEx4cPtx/PrcyHN6ic2KJbnZ2DU4PM27MgNJIRWcSXuv0GbGbz+0BI25mT3uRBBE+kKiIoIgMpLCPDt4jslIhw2WBf7yq4uis/zCgoibHtuGXjfF2RDGRFA6FbHp322/saRMszPaZuKwoDhL9WfjbKovQNuQD0/t1B70ybeb8e1zmk6ozp998RRceMuz6Bkk15p0x2xikeeSHUsODcTneEJMTb9G/JnNqX6uS1JkFuz4VcLKc1FRkd+rLhzJdxgjjqG+UBZK9QWS1+5gM8TlzmHS/jvHLSrScMoCAL+OTkXK+LMDIyNTbEmkE05e7roKiMIUWxKz5fn2Tth5DlfPq1X9OcMwuG1tLYmKpsGoQpd0Qbl7jTrXRDP+bDYHh8ZnXbS2Cvdetx7ZKu27fk8Qd/xzL0IZ2NelB7c/vRvvzT8DAGDmWLgsPHp1FF8T+vLQe604Z34xACDXZsLGyly80Taoc1UEMTXPHuzBbetrUJVtA8Mw+Oby+fjkf94D6SNj3fLD00zEXpDvxK/PWIhSpzFcogmCIBJBZvSuEgRBTIBlGdisJr3L0IX/+8n5KMiVHSd+/u9mvHd0QMeKCGJqRKVTUQbMBa5xumKW+4f9CMdpX1+XP/WsmNFACCN+dSGDFqIowa1wVMnPseGuL28EmwFCr0ynUHHPAIB9vSQqmku6NES9JrMFZqtN9WfKDi2rSX6k83vUhSN2MwebSX93j6o8WRCSqOgzNTLB5Q7Qjj4L+P0Ih+K75juy1J2yfEIoZsZmMnGaLDEuNbsHaAZtpmBXiIpEUm0kjKda2vHtLTvxQW8/2txebO4bwGud3dGfO808Tq2k+LmpoOMzsSgFO0bd13OrKZI/jGcZrGksxJUbanH5htpJgqKWfg++9cwenPLzV/HMFJNLiLmlKCt28HiUHKIymndaBrCvW46j/tyKch2rIYiZIUjAT985Gl3OMplw77qVMQPHZpbFguypJzimI8qJrUENURED4Isra/D4h1eQoIggiLSHnIoIgshIDh0bxKgn82YP3fjJ5Vi3vDS6/OLebtz/xhEdKyKI6YmNP0tvPfS8rGyYOXnA9KwvPoOWzkinVJ7LjA1Ly7CgJhcWEwuWZcGxkZgyjgXOWVMF11jnMj+F0IdBRJDw1x0d+MzaSF66KEq486EPEAqJCAoiwmERwfD4/wJGPCHsONQPAPjZDetx6al1AIB1S0pw4xVL8avHdiRidxAGoTBHFraIkgQvTVmbU7RERUDErSjon+wGFgiLMI85DloVYiGfV1vwle80o11nZ7ESlxzDlminIqWbU7rfO8ZxaIiKPO74hYBaoiJvSD9nyzyzLEoTJQn9wcxry2cqHV752pVrNsPMsgiKdC9KBLsHh7F7QuRFXZYTVc6IYP2smnz8h1wXYlCKSIwqdEkXlIN7mZLcbjfzWN1YgNI8u6oL0ra2Idz/xhH8e193xuwTIzEhJRzXnlyLv24/jo6R5InnCWPxyoHeqLt0U4F6e5ogjMYzB3pxbn0PPtwQiXOsdNrxyGlrcdfuA1hZkIMPV0Yc1T2hMK57aysGMuQ5jFfcd0Mqkz1rs22454yFqM+huDOCIDIDEhURBJGR7DnYr3cJSWftshLc/KmTorPdjvZ58JUntpNFO2F4lJ3z6e6Kc1Z5ZfT1ofbhqKAIAAZGgnjmzRY882aL6nsX1+ZHRUXXnVyLj6+oAMcy0X88y2ja8bMsA7vFhN++sHfaGm/7zTtYs7AI5WMxRjdesRTbm3vx+raOmf6aRIqhdLejKIW5xx8WMRoMI8s8+dHMandiGD2T1vvCArIske2VoqJQwA8hHAbHT/6sQofFAKIieeZeb4KdipRHqmYUSZqh5VTkGR1VXT8VDqf6IIhHx0gPZfSZL0wRWJnE5r4BBAQBFo4DwzC4sLIMTx5r17usjMGrON/G7z2EEvkeI5HWLaEob+eSQTsytMqKtylit/A4fUkp6iqLVaOxX9zXjd++eRQfHCORn54c6YsVbn/59Hm4+dQ6PLWjAz9/5RB6ppg8QKQnSkdPEpoSqcRXXmxGidOCVaXZAIAsswnfWbkoZhuHicetSxpx+5bdepSYdJT9CCGFctfOs7hlVS0+Nr8sY/oaCIIgAIo/IwgiQ/HFGfuT6uS4zHjgh+dGO6O8wTA+/+fNGPGTNTNhfJSTQdI9/qwpW46UePGDtrje651gtZ5tM8Fp4WEzcTBz7LQPupsULmbTccW3XkBobICJZRn84paNKC+imTnpitKpiAbyE0OfV71dYnVoucXIfwdl/BkA+L3qEWj5TnXBSTKxmWUBVKfXm9DvUl7xMqU/X0tU5J2NU5GGqMiro6gozyLfZ4YyZHYsEcEvCDg6Kh/H1VnU5kgWLIAqpyzo29o1ol8xKQANICcWhkl/p6JcpxlLa3KxqCoHuU5zzO8siBIO97px61M78bmHt5KgSGcsPIvffHzFpPU8y+KKFRV444sb8adPnoRbz5iHGkUEMJHenFpfEH19sJ9iw4nUwRcWcfXfd+G5Q71Tblfnypx2uLJPYbyNt640B09efBKuWlBOgiKCIDIOEhURBJGROOwmvUtIKk/dewmsilmlX3tyJw50qw86EoTREBSd8xybvk2XCocTNoW7yPPvtsb1/l//dScEFTvemSCKEv70woEZb9896MeX7nkrOkM412XBvV89FWZT+v59Mpn8bNldZjRAYtRE0O9VF0hoiYpGFH8HnmXBc3Jnll8jAi3foa+oiGcBTtHpNpDg+LNY0nTkcQI2Tr196/XEN6DBcRysdpvqz4ziVNTpo1iRTEPZHgzMsr1DxE+5ww67on1a6rBMsXVmojbgRCSGlHAq0mpzTDPwWJxjw4q6fDSUZcNq5mPERMGwgD0dw3h6RwfeaxlAxxDdA43ArWc1YoNCQALERrdbeA4b6wtw48Z6PH/dyTFiEyK94BgGN2+qx3tfPhVLyrKj619uGdCxKoKIH09IwOf/tRc3PLcXBwciz5ATY7+cPA9rGvfNKlE+f5Q6Lfjppvl48NylqHKpPysTBEGkO+RbTBBERlJWlKV3CUnj/u+djcoyV3T5gTeP4B87O3WsiCDiQ9kxx6XxLJBNxWXR163do9hzNL6Zp2/s6MLJn/8bTl1RBgkSQiERIUFEKCQgEBYhCCLCggRJigx4iGP79f+zd95xkpR1/v9U6twz0z05z+zs7uxsTrCBjAQBCQKCooAIKuJ5HuopAuqpZ4ATxQCCeHd6KvwMiAqIoOSw4MIuLJvD7OzO7OTcuSv9/qgO1T3dEzv39/3a2a56KvTT1dVVTz3fz/P5KoqKQz3j8AfnFqB7+o1uPPz3Q/jweUsBAKsWV+BrH9+EO+7fNqf9ELlPRVlUVDRODndpIalTkSXxKECfqEBV1UjAycRzcMvad+Pz5KZT0eJKe0yAbCyDTjO5GXZMLWZOAMsk7txN5FTEgIHDaIaB5aFCuzeoqhYKLSktQZPNoZVBjQRuFQCrHXUIqrJ2H4n8KZARO6+oKuTwssirNi3HlSm6svB8Ipw6UVGXi0Z+FxtuMXqdXO0sy2JNiguvJEFW1Ugb/Ka1jSg3G/DFFw5kuWa5iVKo9jk5gt4RIEc1RXOqF8MwcNoMaK6ygeem3sM9AQlHj4/hyJAbku7cKuBH4rzi0jVRp98xVwBbb3kMLAt8+xOb8L4tLeB0qdtNAof//fB6/Gp7N77//GFMFJl7eqFz+3lLcePmlpiygKTgN7spRTyRnzx+aAiPHxpChVmAR5QhKSoO3HIaeJYBwzBY4yzDG8OFL5rTP5fesLIxizUhCILIDUhURBBEUVJfnXjkf6Hx6Q+vxVmbmyLzb3SO4LtP7c9ijQhi7hSLqGhxaTRA9saegXntY2TSjz++2JmqKs3I136+HRuXVaG9Sav71ectwc4DQ/jDs4czVgci/VTo0p+N+CjlUDpIdlyNFisYhkk4Gl9RgbBBkUng4A65FwWSOBVVZtldYlV9VODslST4ZUqll0qsSVKfqaoKj8s1pdzGG2DlE58TNc6KmFRjeqrNmRHmy0qs4EgFYBOi9T0wQSmYio03hkawqUpzeagym3BqdQVeGRjOcq0Kn5FAEH851oP3t0QDKZctrcLP3+nGwbH0prHMFwr48STn0B/rXHWFSlYtRudpxbIMKktMqHaYYRK4Ket6AxL6JgPw7x2ApaR0ynI65XIDvYZQ4DVRmD+o4HM/2Yav/s92XHtuO05dXYNNHVVgGAYsw+D6k5vwvhU1eGxXLxRVxfExHx5+q7tg0/kVA61OyxRB0ZhPxEf/8i4kMlYk8pxhX1QAeWjUg44KLZ6yqcpZdKIigiAIgtKfEQRRpFSVWwo+Tc+yRQ782w0bY1wBPv3IjpgRbgSRDyhFIioqN0bdYN4+lD9BsqvufBoeXUfD1z+5CSsWObNYIyLVlOucivpdJCpKB0OexMeVZVkYzYnFHaLu2mjio20anzexU5FRYGEzZm9MybLqqBhlyJ/ZtB3F0BloSSIq8vt8kBMIuAzc1CBmGJst++J7jmVh4HiYeAFWwRgjKFJVFXvHx7NYOyIbvNQ/hF6vLzK/qZLSyGSKXx/uwk/2RtPkMgyDH57bkcUa5S4yPWunFSYPnIqSPa6qUCHwLBrKrVjb6kRzlW2KoEiSFewfcGF33yRGPIGkqdRy9KMXHb5gtH1lMwv4jxs2RubdXgk//fMefPibz+Lz972GgBhdt9xqwE1bWvCJra34z4uW40PrGzJabyK1fHBD9PuTFBXv+39vYc1Dr2HnwFRRP0HkM92T0Wd4hzG7LsiZYGtVOWqSpAQnCIIoVgo7ok4QBJEElmVQU5n9gEm6MBlYPPyDi6eW88kDSASRq+hzWLMFKipiARh0Ocn3deVPsNTjl3DdN5+NiL+MBg4//uIZKLEWfidDsVBRGu1IOeHKrBikWBj1JU+BYLImFhUFdENf9UEpfxJREaAFMbJFg87xaiwQSPv76e8WyYJyhYSZFxKWJ0p9BgAcEz1nZEWBSwzAIwbglURwFhNcQT9cYgBuMQCPGIRXCsIdDGDY78ZowIvxgA8TQR9cQT/cYgBeKQifFIRfFhGQJQRlCaIiQ1JkyIoSSYmmxv3Nh4CswEtDv4sOWVVxeDIaoLMJZLydKRQAz/YO4GeGqaorAAAgAElEQVT7o06UbWUWOE30HcRDoqL0on8UnO89JN3oU16FKbUYsKbZgTUtTtSVWxKmOgM0wfikrk3IJHn2pTR72eeS1bVorYhto29sr0y47p9fPYaNNz2K53eeSHjetpYnbusTuQ/HMLhoeU1k/ukjQ9g1mPxZjCDymTZHNBX1gM83zZr5jcAyuGPNMtyxlgT0BEEQ8VAPAEEQRUtjjR3HewszdcJvf3gJ7AkCh6cvrcTD/zyehRoRxPwphvRnTTZ7TKfxkRMTWazN3Hnn8Aju+s0O3PaR9WAYBk01dtz9r6fg5u88n+2qESmgQudUdHyicDuPsomoqJgISChN4CRkstqAoakpEb2ijNJQQNekc1+UgkFIYhC8MLUdUG414NhodtLVVJdEz6OxYGYdr3I07phSzEmcinyexN83rxOyToqaMCjMKCNBnZzqmHfUNYL9E4MLrGksmqiWh8ByMLAceJaDwLEQWA4Cw4FntemTKppQZdHcro64KFhTrJh1DltLS+1goQleiMzw9xP9+HBbC6wCD4ZhcMv6Zvzna0eyXa2so386kWU6I9OJ/t6VqwIu/SCYqjIzOhpKUV9uRVdXF44d0DstqfD6JXgDEirLkjghJHn2zc1PXjy0lFvw3ctWTil/+p/dSbfxBiXcdPeLWNHiwK1XrcZZ6+ojy4rBUbNQuf7kpsjACVVV8ZM3qb+VKFwcpugglqOuwkyBW2Uy4o61HVhcUrgD0QmCIBYCORURBFG01FUXZgPx327YgOVLEqcDOH9FdYZrQxALR99hXKhORc22aFqg0Uk/PH4pi7WZH//9+H689m5/ZP6cTY246bIVWawRkQoMAhsjUj0yRqKidDHsTSy0MVkTt1fcweh1It6J0O9JLLqotBkTlmcCp+48yoRTkZ5icCqycIlFRV7PVKciFgw4JtoVEJBj7znmJO5YHin1YjAFgF+R4JICGAl6MeB3occzgaOuURycHMLe8QG8M9oLrxx1bhjN8PlD5A7tpSWRaQvP48dbN2SxNsWHpKp4Y2gkMn/tyjq8b3FiZ45iJVeFLoWCoEv3GsxBxzoDz6Kt1o5VLU68d30DzllTh/o4FxpVVTHuCmDX4RHsPTqKgK49F/+ky0wpCe8j1TUn5sLla+thMUQHAuw/NoYf/3E37vndrhm33dM1hpvufhGHeqKDiOiykZ80lJnxpXOWROaPjvuwZyixQyhBFAJ6AeSmSicA4OZlrfjd2Zvxh7O34KNLWrJUs9RQYzbh7pNXk6CIIAhiGsipiCCIoqWhpvAaieee2oxbrlkbmT/m9uDZ3gF8bOkiAMApbRWosBkw7M6sQwBBLARJ18vGF6ioqNQQDfQPj+dveqkbvv0ctj14BcpLNUeSL1y7Du8cHML2val1tiAyR0XcyOnDI9RRmi5GvCLaHFPLTZbE7RVXIBqEYlkGBp6NBNj8Pg9sZc4p25Tbspf+TJ96bTjDopBiGAGeLP1ZIqciXicoUlUVoiJH5lmOg8lsmrINAHil5Gn60o1N57w17CdRUbEyEgigxBA91+ssFnygtRG/P5rcHYJILc/3DeDsOm2gCssw+P7Zy/CRFXX44J/fyXLNcoMiuN1kFV4nKhIleZo1MwPHMljd4sCWjipsXVaF9W0VMBkSp5yXZQWDY15097tj2yXTnDPJRNEF+kicN+gdQl3eIC667ak570NnukVixDzl9nOXwhga2CErKm58YneWa0QQ6WV77wQuCInJN1WV44lzT4lxXL+ypR4Og4BHu3pw3JNfg9HWOEtx+5oOSq9MEAQxA+RURBBE0VJfbZ95pTxi89o6/Pgr74k06L2ShO/u2oc/HzsBOdRpxXMsLllTl81qEsSciXUqKsymi8DqO8hzb9TtbFEU4Ko7n4YUSv3Acyzu/cLpEZERkX/oU58pqgpvHp+fuU5SpyJLYtcYUVGh6oJSRl2gzZfEqag8QWrUTGHWBdn6vJm1Sy90pyKBYWOch/R4vVOFgByb/F5qSeJSBADeNDgVzRazzolpJEDi+GLlO+/sxfO9sekgP7ioGadWJ3ZpJVLP7rEJ/LbzWGSeYRhsqCnFj8/tyGKtcgeFxAFpJdtORQwDdDSW4sZzl+DnnzkFO354KR69/T34wvtXYWtHdUJBUSAo4Z2DQ3hq23Ec63NNETrTGZN/tOrcp6ZrU02HXhdW6O3UQuTC5dW4cHlNZP73+/rJ0ZcoeL73ehdcene9OIUrwzA4p74aPz1lAx45cxMarUlSe+YQDICbly3Cf25YSYIigiCIWVCYkTmCIIhZUF9ATkXrllfhF3e9FxynXdZlVcX33j2AHo8PCoCDE67Iuu9f15ClWhLE/AgLVACAn2enXa7jNESFG2Pu/HZgODbgxu0PvBERO1Q7Lbj386eBZWlIbT6idyqSZOrwTifJREUGswVMkmuf/ivRp0ALJBCSANkTFTU6zDHpKwd8me10L3TnCDOf/HudyakoPrhptloS7keFCr+cPaciIxc9v0fIqahoGfIH8KO9B3HnW9EUMyzD4POrOvDoe07FHWsp7Wom+H+dx/G1He+i1xu9lp/fWoEyIwVjCvx2k3UMelGRmBlR0aIaOz5yZhvuu3kLtn//Ejz5tfNwx9VrcfaaOtjNU10CVVWFPyjhxJAbL+08gT++0Im9XWPze/MkDRh6qsoel62pw7kd1ZH5Qz3j89xT9Fss9HZqIXLdSU2R6YmAhNuePZjF2hBEZjg06sVFj+zA812jkTJFVbFv2A1Rjr0nlxgEfH/TGlj43O3DNbIsPtXRhoub6mL6KgiCIIjk0BM/QRBFS0NNYTgVrVpajl/fc1FEUAQA9+87hO3D0Ub+749246vrtE72VfWlWFJlw6HBxC4GBJFr6NOfcQX6oFduioqKegrgt/nHFztxxro6XLS1GQCwZXUtPvvBNfjBw29nuWbEXKnQuUz5yKUorYz4Egs2WJaFyWKFz+2askxSFPCsJrYwCVHRhc+b+Dpi4FmUmHhM+qWEy9PFppZoKjafJGFSTL84RT9yUinwMK9NMCYsl0QJAf/UlJr6UfXxx8ZsSSwq8slSVo+i3omJnIqIPWMTeK43moYL0MRFGyuc+NKqDtz17r4s1q442DU6jjvefAcPnHISjBwHhmFw87pGfPf1o9muWlYhp6L0wnPpdyqqL7dg67IqbOmowpZlVagum95pQVVVuLwidh8Zwd+2HYM/IGPdssqpK6byObYwH4lzHpuRxx0XLIvM+wISbvnBywveL1018osNjWXYrHu2+fYrR0BPyUSx0DXhw/V/eReLysxwmgV0jvsw6hPR5jDjX09qxunNDpSbtQEvFp7HA1s34LqXtme51lPZXOnEx9sXocZCruoEQRBzgURFBEEULVVOCwSezetUQxee0Yp7bj8rpnPtvn2H8MyJ2LQA24dH4ZdlmEKjvC9fV4+7nj6Q0boSxHyRi0BUZOGjTbKhArHN/uy9r2D90grUVmj28J++ajWuPGcxVEWFogKyokBVteCLHErjFJ3WliuKtlyUFUiyAllWIUratPanQgrNi5ICWdHmRVmJlGvLVG06bllQVODxiRh3BzDhDsLtFeH1S/AF5ia4YBgtmMmxDBiW0U1rwfuZztrZntZBUYE3IE0JWLEsA4FnYRBYCDwHo8DCwHOhMi5mmfaqlRtC6+nLBJ4Fz7EQQmVrl0ZTylgNLF746MmR0bRhq/7oPGLScc0VhmHAhI4HAyZyXJi4ZfFliGyjLYlOx5WHN4xsH/v++s8xhemWQRfbYWLLmEQLpsEisKHzX4WkqpAUFaKswthTgxM9MmRVhVeUMeGXIKtAUFZhCl0+LAYuIqQJeBI7FQGA02rIuKhoZV1JZDoTLkXx4yFj0sSxPOwGEyaDPgQVOe11yQSWJE5FHtdUIRoACExUgCYqse3gZE5FPil7LkUWjo8RiY0EyKmIAH689yC2D43gmrYWNNqi5+2mqnJUm0wYSCCoI1LLeFBEr9eHVrvmAOwwTXVtKTYW0g4iZkaf/iwgpuYeXl1mwuZlVdjSromIGiuTpwEFtO/Y65dw4Ng4/rG9G7/7+yGMu6Ni1wtPaU64XXyamMTrxL9XkvVIVZQVLl5Vi0qbJuRWVRXXfutZ9I/Or12rv1YI5OibN1y5pg7fvGh5ZF5WVDy6rz+LNSKI7NA57kPnePT6d2TMh88+sx8A8L1z2nFVKD1gucmIa9ua8Ksjx7NSz3iMLIsb21txUWNttqtCEASRl5CoiCCIooVlGdRWWnG8L3HAJdf51udOxQcuaI/pnPrloaP4W0/iB9odw2PYWq0Fhy9dW4+7nzlANstEXlAMTkX6tC6T3uwFblPNhDsQERUBWiq0fECWFfiCstaTrxOzsAyjCVkYLTDAMohxicsU/oCEoKRA4NmICCgT8CyLRY78+A4LjdbqCvhHh6Zdp9Qs4KRmR2T+yjU1MBiiYhNF1QR7l6+thxQS8IX/JEWFrIamZSW2PLRM0pfJSsy8MmW5CklRIttetykaYGux2/FvK1ZAVrXtwn+R+VBdY8pC5XKi9RNsF/+LOLtuKay8EQ6jJSLAcYsB/M/BbVlN6ZUqrMlERe7EjlVhdysACMqxAjOrPbGTp0/OnjtQtSUqSpMVFePkVESEeH1oBK8PjaDOYsY9m9bBFHLM+WTHYnxj5+5sV68oqDJHR3jvGszP5+qFon8ep+fr9MJx0WMtyfMbHFZuN2JTeyW2LqvC5mVVWDQLB2t/QMLhngk8/2YPfvuPw+gfmZpaNMIcz4HpV0+S/qwwH4lznqs3NkSmD3ZPYOehkXnvS9TlMOZIVJTzlJh4/NclK3G+LvWdqqr43utHEczfcaoEkRZue+4g2hwWbKjVnuGubG3AE919OLu2En5ZwdO9/cjG+O72Uju+uLodNWZyJyIIgpgvJCoiCKKoqa+x552oiGWBX/3XRTh5TVRVL6sqHjpwBE929yXd7teHu7ClqhwMw6CuzIwzllbihQPTBygJIhfQdxjr058UEkYu2iQbnSyckfUMm5/fF8exsJlzt+4mIw9T4mxHRIFiTyL0mA6PxxMjKmJDtk2cTlCSLTZWVMy8UgpZWlo9pcwmGNFic2L/xECCLfKLpE5FCURFDBjwumtzQIkVFdlCjiPxuMXsCXkqTdE6jQWDlGKCmEKv14cX+wZxfoP2fNRqm95phEgNS0vssOrcNp89Nv8Ae6GgkKoorbA6NY2kzO5Yl1gEbFpaqaUza69Ce0PpjNsERRldfZN4aWcv/t8zh9A1hz6jTLhVkQQl83zuPUuwtqEsMv9Lcv4uGjY2luGR60+CoBvIo6oqvvVKJ362syeLNSOI3ERSVHzp2QN45sMbwTLas+evz9wUWX5T+yJ8Zcdu7B6bzFidLmqsxcfbWyHkaR8lQRBErkCiIoIgipr66sSBk1yluc6O3/7wEpQ7zJGysUAQ3999AG+Pjk+7bbfXh7FgEE6jFom+8ZRWEhUReYGsFr5TkUH3YDswTwv1XOS2+7fh0W+/F6xu9OU9z+yHKyCDYxiwrOZ+w7Ga6w/PMmBZVntltFGbPMfCwDEQOA5CKM0XzzEQOG298CvPaSnH+ND2XKI/hgEbfg2lKAtvF06nVSjoAxqqqqUqU9Swk0so7Vwo5ZzetUYMOdBIIaeZZTUlkdGzzx4bwYFRTzS1GHTpxRgmWoY5D9LW6hmqrKKGUqmFPocamdemFd3ni18W2Ua/TFUj9QkfC1X3HuF66191HymSYmKm00OfFi4mJVzc8ulYXWVHW5kZQug85lkGAstgQuEw7hdRNofUMh6PBw6HY+YVi5gSQ2GMUkwmKvK6pqbB45nYgEhQjqaPYVgWJktiNzKPmL2UY05jVCAy4qfUZ8RUWACLdII4v1wYqQ1zGZYBPtmxODLvl2T0e+YmPvxQRy0uaKtAudmAH715DE8fHU51NdPO1HSbWalG0aAXFcWnAw5jNfI4aWkFtoSciFY0lsU8iyRCkhQcH3DhtV39+N0/DmHv0bGU1huY5jkj5mPErpNMoFRIzyz5QFuFFf9yRltkftITxG+fO7KgfdI3mB+wDPDg1etiBEVjPhHX/eVdvDOQXwNUCSKTHBz14o0TE9iiE2OGMXAsvr5+Ba54dlva61FjNuLmZW04qdKZ9vciCIIoBkhURBBEUdMwC6vrXOETV6/G5z62MSbVTo/Hi6/v3IN+3+ycTf5wtAefWKZ1hpy2pBKNDjO6xwpHwEAUJrKuw5gtwA5UG8/HfK7uwcTpavKRdztH8Y3/3Y6vfeykSOf3me3V+NBDryM4z5QF6aTMwqPKboLTaoDTogXpVegEOGpIlBJKvSRG0kQhNB0S5ITTQEkKpFBKqZlQZjgcLKsFSZwWAQ6rEVYDB58owxuU4QtK8ARleAISPEEJ3qCCYIr8pA9+84KIqOj3+/vw3PHRlOyXSMwJtx/ntUx18fG6JBwa82JRmQXlZk1Y5JUkdLm19BssNCEeoxN3GXoHUC+YI0KvcOq+424f9o5NRgR4AsuCYxAVMjEMeCY8HS3ThH8seEYT5vF6gR4TFe6F/1hGE4Ky0OatPIfRYBADvkB0G922LLT1mQTbs6F5NpSOMDIPJpqaEGGRm1amfQ4GHklGj8eH4x4fDk26cUVLHeosmjjbLqROVPShRRvRYC0DwzAJg4DqlP9jFiRFhV4UF7u9Ck0dF3YeUqMbAQB6YIBqLg2vCUCNiOQSVcBssYBNMnrTI2XPqahMJ/4aCZCoiJjK+5rqsaQ0+lz3xPHeLNamODijpipGyHXfW8dntZ2JY3FVRw0+vb4JTnNUEPnjcztw/47juPfNYymvazrh4y6Z6kwXdWJB6MVB4YEnJgOHjYvLsbm9CluWVWFVi2PG1MCyrODEkAdv7BnAH549jLf2p26w1SwNlCJMK0RLJiqa21sQC+QD6xsi554oKbjgi0+mdP901chdVFV7ztez7qHXyDWTIGbBf7/dk1BUBAAmjsOG8jK8NTL9AOn5wgK4pLkO1y1uhpHLvlMzQRBEoUCiIoIgipp8cCpqrLXjoW+dj7am2Ib464MjuHfPAXik2Y/Efby7Fzcsjdp9XrmhAT/4x6GU1pcgUo0+jUAhiopa7VEL/qAko2/Ym8XapJ5fP30IG9qrcPGpLQCADc0OfP2SFfjyY+9mt2IJGPdKGPfmrqhr2B1EpjOL8Fz0NzfsEzP75kVIMrFdWCxk0H0fAVmBpFeRqKHXEC5Rwlhw6nd21OXBK4PFKw47pbo8Iioyc7N3fpoOHmxEUAQkdhBgdP8nWJAWPC5XTKqzeOKD39Ykqc9UAF4pe79/m078NRzInriJyD1MHIcrWhpwWXNDpGzA58eTPSQqSidWnsc1bS2R+eOTPjzwdve025QZefzXWe04vcmZsD3PMAxuWd+EB3Z2w5+DwvNksHGpmZO55xCpQS8quvikJpzSUY21i8phiFd3xaEoKvpGvHhz7wAeff4IXtvVn7Y6JnUXSuENvwAfiXOSZqcFdWUmnLE0Kvh/4e1e9KfCWZi+w7xABfDNp/fjvg+sjZStqbZjJ7kUEcSMPNM5gi8/dxBXLa+BOyjjx9uP4btnL8Uih+aMu6zUnhZR0WK7FZ9duRSL7JQOmSAIItWQqIggiKKmPoedikwGFt/5whm48MxFMZ1noqLg/w534U/HTsxrv++MjmNjhWb7ecX6Btz77CGyaSdyGn1cYQbn+rxEH9RVlVgRVaFw649exfJWB9rqNQHVh05uwu4TE/jNP2c3qp3IDhYDGxP4G/FRMD/dmJMExSRRE3SYdCPvfTMEXTk+sWBGLPKAp/4Ip+p6K7BszqUi8Xq9EMXphUDxp4LFmrjj1SeLWXXfsOjOZUp/RoThGQb/uWE12kqiYjhFVfH1HbknWi4keIbBv61sR4VJS6mtqipuf/HgtNtcsrgS3zmzHYYZ3GMYhoFFYPNKVMTFXfpncp4kFob+WXBxXUnS9RRVxdCYDzv2D+FPL3bi2e09GajdfEl+f022JLdaHIWH3cjjm5eswGVr6qYse2VXX0reQ/+MVYCP/wXFk3sH8B2/iJJQGurGUhOJighilvxmdx9+szt63exzByKiopOryvGbzulF6XOh2mzE+5vrcWFDbcRtmyAIgkgtJCoiCKKoyUWnIp5ncectW3DVBUshCLEWnZ0uN36w+0Ak3cl8+NXhLmwod4BhGDQ4LNjcWo5tnRm2viCIOVDoTkWTOicRo4GD2cjBF5i9A1m+cPmX/4bXHrwc1lDqpv+4ZAUODrqwvWssyzUjktFWGSu8Jaei9JPMmluWRLAMIOhFRTM4FQqGxKKiQB4Fa9MBp7uPKGkSynznnR3wS1JMmjeWYcCxbCQQqKWlYxD6l5SwYIkFQq+hlG/QUsW12UtQbTFrad8i+2YwNDCAIb8v8j7h1HAOozGy74Ac+5tO5lTkzWLqMwAwctFuC0p/RoRZ6SiNERQBwL2796Nvlmmhiflx9aKmyAAVAHipexRv9E4kXJcF8NPzV+CsZmeM8FJUFOwZm8DL/UPYUOHA1upKAJpAadwvpbX+qYaLc4MrxMEBuUSyZ0FVVTEy4cc7h4bx+MtH8bfXuyGlKBXwXEmq3U5Wd/0q8cuSnU8F+EycKxg4Fr+4fiM2NDmmLFNVFU9sS02KRv2lg64buY87IEVERQ5TapxOCaIYefn4GE5p1K6vbXYrWmyWBcU4AGBLVTkuaKjB2vKymGd9giAIIvWQqIggiKKmutwCgWchZqnDSY/FxOPOT2/GpecsgSFOTOSTZDzSeQx/Od4LeYEdDp0uDyaCIsqMBgDABzY2kKiIyGlkXc9sKm3jc4UejwuqqkaCLa21JdhbgEIbj1/Ch772dzz23feCY1kIHIv7r9mAi3/yCvonKQCYiyyqiLqWuINS0YtRMoEQb3kQQpYkGHWCIlVV4ZOnFxVxfOJHvYBSeKLFucDFjAxPTRCHiQsqD/l8cGcoXZglyffcMzSI8QQCnFKDIRKU9cuxwXt7aemU9QHAI2ZXyMPr0guN+MkxjdA44fVBUdXI+ayqKg5P5m4K00JhS1VFzPyIT4TNwMIdjG0jrKmy4+cXrESZLviqqCqe6O7FH492Q2BZ3LluBZpt0bbGO4Mu5FtLI95gMFX3FSIxjM55wOMT8db+Ifz11S785aWjCOZAn850UJwzP/jA+vqEgiIA2HFwCOPu1LRD9AI5uchdRPMBbzD6/OQkURFBzJtH9w/gi1tbwTLaAJk1zrJ5iYoYAFury3F5cz2WlSV3LiQIgiBSC4mKCIIoajiORU2lFd192bOuXbW0HF/8xCactHqqPaesqni2dwC/OXIMo4HUBVGe7xvE+1saAAAXrKjF14x74Ark16hQonjQd7IVolORAm3EtiHkULJpRXVBiooAYG/XGO782Rv49ic3g2EYVNqNePDaDbjqwW0I5HggoBhpcloi0+RSlBn4ZKPYFQWGuMjlTL8Ylkv8qFf06c/0TkWpEhWlZC/zwy4kDmx43VPFFRwTm9IwECcqSuZU5MqiqMjA8jEOJ+RURIQZ8gfwy0NHccPSRQA0J69/X92Bz72xM8s1K2yCcfm9Lm+vwaVLqvFKzxj+dGgAFp7FNcvrsLzCFvPbHfYHcO+eA9gzNoFKkxHf3LAa1WZTZLk7KOGjT+zK2OdIFRwTd28u8ntsutF3l3z/4Z345ZMHsleZZMy1baFb3cCzWFYTdQo9dVE5KquqpmyyrrEMnzy1NeGuPAEJD7zcibeOj8+tHgQ4lsFNp0SPa++IB9d/6zl89IJ27Dg0jD+93JWy92LS0B4l0odbJyoqNVE4jSDmQ7XVgD9cuTbmeXTPWGK3y2SwAE6tqcCVLQ1THEsJgiCI9EOtIIIgip76alvGRUUt9SW4+UNr8Z6tTSi1G2M6FABNTPRS/xB+13kcPV5fyt//4SPHcGlzPViGgdnA4cJVtfjtm6nLY0wQqSQ2/VkWK5JGuj1utJVoDhHnndyI/31yf5ZrlD5+/1wnTlpWhcvPbAMArGkow7cuW4kv/CH/AkmFTn2ZOTI94iN3kEzAJ7nIKYoMo84NZzauhWyce85cti1k9MdYTlH6s3gXvUwFh1gwsPKzFxUJcW5XshoVBwgGAwy61Gh6PFlMf1ZhssbMj6VQZE/kP3/t7o2IigCgyWadZm0iFTx85Bg+1bEEzpDrLaAF4s9ocuKMJmfCbV4fHMb9+w7BJWpCxs8sXxojKNo77MKHH38HnjwUmMfftov7Dpt+mBi3wSxWZBqS68oSt/G4OJfKEp0LSoXNgOoSU/wmCcv0tFXacPa9L027DjGV6zc1ozXk1KqqKv79vm3o7HPhq//zZsrfK1bknvLdEymk1CSgVTfYptRI4TSCmA9fP2MxmkujfUzH3B4cdnlmtS0D4D11VbiqtRH1VvOM6xMEQRDpgVpBBEEUPQ01dgB9aX2PEpsBl75nMd57eiuWLymH1SxMERIBmlvJ832DeLSrB71pEBOF8SsKjrk9aA2NSP/AhgYSFRE5S6GnPwOAbYN9EVHR8lYHGCZ3O8pTwRfvfx0rFpWjvakMAHDlhkbs7p3EL17rym7FiBhqSqMBi2ESFWWE5KKiWKcieRbXB5YjUVEiWOgDkqk5FgIbm7Y2VWKlmbAbhKR3RV8CUZFB56jBMAwarGWhmqpwlldgpaM2Mh95VYEmWxlkVTteClQoqgJFVSGr2rT2qomUZFWBpCiQVBmiouDA+CD6fJPz/owG3bHV9lvc5y8Ryxm1cQ4edHqknTeHR3HTy2+g1W7DefU1OKu2GoYk95vRQAC/OtyFF/oGI2Xryx1Y5SyLzP/96DBueWZv2uudLuL1u5TGKL3o73m5eqSTtS0S9f8AgJIGLV2VPbFImEjOphYnbn9ve2T+WL8Lr+8bnGaLhaHovvhCdGPOd27c3Iwr19ajobncMOIAACAASURBVMwMe5yIKH6eIIiZMfMszm0tj8y/MzKOO9/aPattSw0CvriqHWvLy2ZemSAIgkgr1AoiCKLoqa9OrV3mkmYHzt7ShPUrqrC42YGqcguMBi5pJxIA9Ht9eObEAJ450Y8JMTMpZh492o0vrO4AAGxscaLSZsSQm1JKELlHoac/A4B3x0Yi01aTgBqnBX0jc88rnk9ccftTeO3BK1Bi1Ua633lhBw70u7Ctc2SGLYlMoQ9IDHlJVJQJkomKVFmBURe0jU8/kwgmTugSRirygKc+1azeqWchxKety1RQuVQwJCxXFAU+79R7iBAX+GeYsFSXQVlJCQQu8TljSuKGNBu2VLXgkSM70OUendf2gi5in01B0aZKJ86oqYaoKBBVBQFJQUCREZBlBBQFfkmBX5Hhl2X4JRk+WYZXkuGTJXglCX5JmTFlITEz1WYTNlQ4wTGAT5Lx6eVLY5b3JjjvidSjAuh0ufHA/sP4bedxvLehFidVOtFotUBRtZHnz/cN4LneAQTi7lcrHKWRaUlR81pQBAB8XPoztcjvsemG1d3Dg2JhXFXjRUiD49HBZUf7JuGRpzoy9I160Tsce72rK7fg1NW1AACbkcd9H1wLd0DCts5RPLWnn1JNT0NdqQkPXLMOfKidJCsKPvOjVzNYA7pu5BJLKq34yvnLki4/4fJnsDYEURhUWAwxz6Jf3bl7xmejcqMBl7fU47z6alh4CmMTBEHkAnQ1Jgii6KnX5ayfC7VVVpx5ciPWrajGskVO1FXZYLcaYjq6pmMkEMDrgyN4qX8I+8YnM96N8OLAMG5V1Ehw7d6r1+L/Xj+GcW8QLr8El1+EKyBh0ieSHTORVfSuGmyBOhVNBINQVTUiPqwsMxe8qMgfVPCBO5/GX793ETiOBc+xuO+a9bjkJ6+gZzx9Tm3E7HFYo4KFQRIVZQQu6Sh2GRZdeoygLM+4L0p/lhguJt1Eao5F/LHOVPqzEkNiUZHP44GaQHhmSCI0A4CSkpKU1UsPwzBoL6tagKgo1qkoG6xylOJLq5dPO0BgNoQDx2r4T1WhqIACFaqqhso0nyg1XK4rkxQVQVkTM/lC4iWvJMMry/CKEtySJmDyhcp8kgxJVSCwLAwsC4FhwLEsBJaBwLDgWRY8y2h/jDbNMawm2Alt75UkeCQJHkmGR5TgkkS4gxL8Gf4unEYDrmxpxDn1NTFCs3j2jE1ksFYEAIwFg3ik8xge6Tw2q/XDKdAATUj73xeuxLdePYLOifxs+8WbNBX3HTb98LoDLssFIpLR3VqCkoxjfa7IvOXQMEpHpt57Xni7F/9460RM2ZYV1RFREQBctFKbvnpDI758fjvuefYQ/rCjJ6/7dswChyVVNrAM4A7IGHT5MemXZt5wBr5z6Uo4LFqbSlVV3PHQP7G3a2zB+50OhtU7Z6b1rYg50uywTClTVRVBWcW+YTfu2Ta7+x1BEFFcwdhrdZlgwHCStNYMgA+3NeHK1oZp2/0EQRBE5iFREUEQRU/DDE5FS5odOP3kBqxqr0BbUxlqKqywWw3gkti8JyMgy9g7Poldo+PYOTKOTpc7652OI4EAqsxaeptTFlfglMUVCddz+UUMu4MY9wYx6g1i2BXEkDuAYXcAw64Aeif86JvwoX/STx0iRMqJSX9WmJoiAFqgP+x24SgpDsv6Iycm8e/3bcM9n9kKhmHgtBrw4LUbcMUDr8FfIKOP8xmbztqdREWZYbr0Z3qnIt8sAmlsEteZTAlechX9IVZT1BIT4pwqlEylP0viVOR1uRKW6ztlfZIIlxgMHQ8GLk7Fcfd4xLmIYbQOXbcUxIDPDZZhwIHVXhkGLMOGXplQWXQZx7Cos5ZEREziLERwyeB1dRazFAm9sKFuwYIiIJr6hokWLHif2SJGIBUSQIVT4smKCklVIYVcnURZRVBRQn8yArKiOTrJCnySBH/I1ckryfBIIsYCIg5ORs/hdeUOfH7lMliF6buv3KKIR45QoC/X2TceK/w6vdGJ06524Lf7+vCVlw9nqVbzJ14MnKq0mkRiYp2K5n9vSSdJz4DZXPMXcPps3zcESVLA81P7qapLTLj7/atw49YWfPtv+/HioeH5v1GGOanZgYtX1WJ5bQlW1ZXAKMS2b48MufH3fYP49T+Pz2tgSluFFWcsrYzM//b5I/j9C50LrvdM6M+GfBZ6FSIWQ7S94ZNkvPc3b+LoBLkTEcRCcAUkyLqBzY1Wc0JRUalBwGdXLMGmSmemq0gQBEHMAhIVEQRR9ISdimwWA07dWI/Na2qxfEkFmuvtKLUZ5yweAoCxQBBHXR50uT045vag0+XGcY835zoLdo9N4OyQqGg67CYBdpMAwDrtegFRRteIF4cGXdjXp6UxevfEOEQ5xz44kVcUQ/ozQEvrEm6Y2czzTzWTb/zllS5sXFaFa85bAgBYUVeKuy5fjc/+9u0s14ww6zrtSVSUGfgkI/FYVYlZ5ptBpMEyTFIRRDZTSOUCDFLvVMQx0d+KnEEHlxIh8b3C63YnLDfoziGXGIRPiv6uAwYeg76p2x2cHMGBiaE51+0zy7egwqS1GwPK/F0EBN2xlVKUrm6uNNiiI9Yng164JX9IPMWFnH10fywbElgV9qjaGIEUA3ApdpIcDwRxw8tvwGEw4POrlsGqS3mgqJqzE6c7n//34BH85XhvSutApIcDEy7cu3s/bmpvgy10DWMYBld31MIdlHHXG0ezXMO5ES8qylT6y2KF17k2SjnaxzBXYZn+DFrIJ5IUBed94QncctkK2K0GGHkWTdV2tNbaI9fs9mo7fnn9SfjzO734yuN7UuLyk0raKqyQFBXHRr0oMfH49qUr8b5VtdNvU2lDW6UN121uwo2/egvbjs7NGfHcjurItD8o4Y6H/jmvus8VfTs9VSJ3IjVYDdG2p19USFBEECnAaRZirnTx/R4MgPfUVeH6JS1wGhMPnCEIgiCyD4mKCIIoeuqqbNj7t4+B55IH4JLhESV0e7w47vGiy+XBMY8X3W4PxoJimmqbWn667zAElkV7qR1mjoOB01IhsMC8RmQbBQ7tNXa019jxvtVamV+UsatnAu+eGMc7PRN498QEukY85GhEzJqicSpSFCDkLGI1FVcT7as//ydWL3Zi5aJyAMCla+uxu3cSD72c/lGiRHI43WjwQU8gizUpHrgkTkVGXZ+bqqrwz+BUxExjE16s6c94FmiwWGDXuZ0wKRJC6DtFM3l8k6U/SyQqElg20rZTVRUBObatarUlFo67xfn99vVpy/zS/NvFPKsXbGXn3C3XdWzvGj2KAxM9M27DACE3J73gaKoIidW9sox2TjIMo70CkWk2JGISWA48y0FgeW2aiU4LLA+OYcGH3id87MIiHAVK6DU0r6pQQw5D+jIA4FgWPMOCYzgtTRrDpcStabaUGQ24fnELLm5uiIg2VFXFqwPDeGD/YQQUCTcuaUODzYLnewfwXN9gxupGLJwX+4ewf8KFz61sx9JSLfUiwzC4YXUDfvzWMXil/HGrjHcYLNJbbMaIcSrKo/NkepJfW5OJTZJdj48NuPGlB9+IKVu7uBw/+JetaKyyRba7dE0d1jWW4aP/9yY6hz3zrHdq4FgG157chBtPaUFjKO3UU3v6UVdqwpqGsinrq6qWIpRhYo+DxcDjqxd24IL7Xp3T+5/dHnUpeufwyDw/xcKg60ZuYdGJioKFkmaRILLMB1fURtpMiqpi52g0xWSzzYJ/6ViM5Y70pOMmCIIgUkdxRawIgiCSICSwiNYzFgiix+NFt8eHHo8XPV4vut3epPl/8wW/ouDud/cnXMYCKDcZUGE0ospsQrXZBKfRAKfRgDKDAaUCD6vAw8RxEFg2qYOMSeBwcqsTJ7dGrUsn/SJ29Uxge9codhwfwzvd4zk3So7IHfROEmyKR8LnEvq+RDaJsKCQuerOZ/Dazy5HmU1L/Xbbe5dhf/8kXs4je/5Cor7MFNNRP0RORRmBT3IvNcSk7Jp5JHuy1GcAIBWhi8KmCge+saFjSlulxDCzW+Ns4JjMi4pMHAcjm/h79iRIfybErau/t5osFnB84q4BtzS/375B934+ef6iIn29s+GyxUI71mHGAolTy8WjApBVBXKW3JXSQVgIpYmWOPBxAiY+JEDShEih8rgyPiSu4hPsx8DyMHBR963LWhpj3v+NwRHcszv63PLggSMZ++xE6rALPK5qbcL5DbUxKRkBTVxwVrMTTx7Jn7ZfvBhYKcJ7bCbRi3glKTfTn+Uabx8ewVn/9jgu3NyI73xic8QRt8lpwe9u2oTrf/km9vRNZqVuLeUW3PuBNVgbJx66YEVNzLzbJ+K5HSfw+t4B/PmVo/AHtXvryR2V+Nr1G7Gs2QEA6KgtwVcuWIbf7ziB/QMz36/bKq04uSXaT/X7F+i+QsSKigIkKiKIlFChc2Pv9/khKYCF53B5cz2ubG2Y0iYkCIIgchMSFREEQegQFQU9Hh+OubXUZZ0uN7pc+eM8lEoUAEP+IIb8QeybmLlDpszAY0VZGTrK7GgrsaPVZoWFTzyqucQk4NTFFTh1cUWk7OiwB7t6xrG/34Wjwx6MeAKY8ImY8IkY94oIpHAkIsNoVvUcq438ZhmtQ5hlwyPBGbAsdNO6dZjQOvFlbNTvgImMNA/NQ5cmgtHmw9sxDAMu9F7hurCMri5s3L5C60RHr4fce8IrhEbuqQiN4tOKIvOhVSApKkRZgSgrCMoKREmBKKvReVlBMFQWnpd0yzMZ15NinIoKV2wTY31fhMMVg5KCK+94Gn/7/vvAcyw4lsGPP7gOl9z3Ko6PerNdvaKjvSY6SiwoKxgLkPAzE7SUmrDUYdXELwwizoED41YcmdDWmU3KLmaa1EvF6FR0RWtdQvFziZAiUZEuqKxkKIVFiZDcFj6RqMigS+cbX8dkLkUA4BHnKSri9KKi+V8/9AFkMYOp5cKscJTGODyNBhKnlisGwiKp4ALS2U3HKmcLTq5sT7jMLYr4yb5DaXlfInNc0dKIK1oaYE4iYpQVFfuy7JoyV+LvLcV3h80s+exUlOwpNlOPt399vRvP/PMEfv6l03HqqlowDIMKmxGPfmIz/qAT4Rg4FgwDHBp045Ujw0iXTu7ytXX4xsUrYDNOH5o42D2Oi277KxI1Af65bwi33vcanrr7okjZjae04rrNzXhkezf+2TWK7cfGMOCa6rrY4DDjtvOi9xx/UMJjL3fN+/MshALu4shLrIboOenLs+sMQeQq+t+V02hAe6kNt61ehipzap7HCYIgiMxAoiKCIAgAL/QN4pHO4xjw+Ysy2JYKxoMSXh0cxquD0ZGlJpbF6bWVWF/uxCK7FRUmI3gmcZq51gorWiusuDTJ/gOijAmfCHdQihG0xAuE+JA4KPzKhcqY0DrJUssQc0OSp4qQRFmFKCkISDKCsoKAqCAQmtdetfXCIieoKnyijO4xH7pGPDg86EbfhD8mvYnAaZ2dYcwcj9Or6yLz4cCoGvlPC7gHVRl+SYZfltHn88ArzRwAW+uswPIyJwyc5rzFgAEbEnRFhV0hIVdoG31ZdD5aElqs60SOrrt3bARP93ZHlnC634XXX5wjb7v6XLj1h6/gR7eeBoZhUGYx4MGPbMAVD7wGb7A4j0m2WFwZFRmQS1FmWOqw4OLF1QmX9crR81+eRTOF5UhUNBMeMYC3ho+nZF88dIKdDB1fmyAkLBeDQUjBqb9Zg05oJsVF5ix2W8J9BRQJ0jycdjiGiXFv8s3T7QgA+Cy4QOlZV+6ITE+KXkgq3YvSRYVxasqDbrcHvzrche3Do1moETFf7AKPZpsV9RYLyk0GCCyLFWWlWFJqj1lPVVW4gjIYBuh3B3DHSwfROeHLUq3nBx/3aElORelF7zAt5aiDSCZuVfPt0ZAUBR/9zgv42kc34NrzloJhGJgEDh/Z1JRw/Te6RnHTr96CK4WDC1gG+PL5y/DxU1tjyrv6Xfjur3fg7lu2oMRigKqqeH3vAD767RcSCorCHOyeQGfvBBbVlUbKBI7FdZubcd3mZgQlBXc9cwD//VoXKm1G3HxaKy5eXYsqe2wg++nt3fG7TivUHM8MRp5FW7kVLeUWNJaZUVtqQpXNCKfFgBITD4uBh5FnwbMMRFnrs2otjz4Ht5db8bsr1kBRtXM33GcTlBWISrg/TNX6niQFPkmBV5ThFWV4Qn8BSUFAVuDXvWp/oW1EGT5J2x9BFCrV1uiAGBPH4RvrV8ImUGiaIAgi36ArN0EQBIDDk270evOrAzMf8CsKnjkxgGdODETKHAYBp1ZX4qRKTWhkF4SkqdP0GAUOVQKHqnRWmJg1PMeC5wAzkqfYmQ+KomLCL0KSFRgFDiWm2KCpTRBwzeLEo9in3a+qQlQUeCQR44EABv1edE5Owi9LOL2mHi32khg3hEzQXuaADOAfIWGR3u53wlO8Io6nXu/GL586gI9euAyAZmP/X1euwacf3pHlmhUXLbrO1EESFWWEVZX2pMsUXTTFJc7snshOcz2Ti7DDWt/O2Dfej8ePv5vS/TO6452pIJE9iajI50ns8iHonIPiRUU2+1QxBwC45+lSFJ9qzSfN3/GTy7JT0dLS6LEpZpeiTOAwxl4DfZKMf32d7v25zhpnGd7XWId6qwUWnoOB5WDmp38+UFQVLx0fxa3P7YM7mJvCkNmiF1CSoCi9xHcZBMQiEHkmO6UWOE7q6794C0Pjftz6gdXTpt3e1OLELWcswl3PHJzX+7CMlmatttSEEpPW73P52jqc2xEV0auqioee2Ie7Hn4bALDuxj9g7eJyHB9wYdQ1u3bIuZ9/Eu8/rQXnbmzEORvqwenE9QaexVcu7MA1JzWiusSU0BnJ4xdx58+2z+szErkDxzDoqLFjY2MZ1taXYlVdCVqc1gUPLNxcXzbzSilAVlQEQoP2giHxUTDkHB4MiZfCywMhAVR4OrxeQLdt+M8XEi/pp32iAr8sa68hsRNBpIsyE4+tcWkuSVBEEASRn9DVmyAIAkCFKXkKCSK1jAVFPN7di8e7eyNlqx2lOLnSiRWOUiwuSR5UzRbTpaJSk0wn6gBUdYXhqfCuVURTlennoSJmq/gyNXZJrEMOok454Zd4Z4OgLOvSqMW68ACZTzfGsgwclsS/R1FSYkanzmm/DAMjx8HIcXAaTVhUUorNVbULqWpKWFdeGREV6YPefSP5lfoh1fznL97C2iUVWLtES5F40apa7DmjDfe/eCTLNSseGhyWyPSAZ2rKACL16N3KFFXFRFCMpK4c8/nhEiV4RQmDgZkDLCybPKBbjE5F5cbofWUy6E/5/ssM5si0exair1RgT5L+zOtOLHzRC1eDSmwg1mJPnP7MNd/UZ3Hnn0eevzBRH7DvKCudZs30UGuJOhmMBmZOB0zMDwYMSgyWmLIf7tmfpdoQs+XkynJ8aXXHrAaIhPGKMi599C10TaT+WpwN9BpelZKfpRU+zoVRorREC+L+P+3Boy8ewa1XrcGmjmrYLQIURYWsqCixCjCFUtVsbi2f1/6dFgN+//FNaKtM7IYIAIGgjGu/9SzeOjgcU/724ZE5v99jL3fhsZe7UFduwT2f3oLW2hJUlJoi/RmJ6iHJCnYdGcEtP3gZ3mBmUz1TyrOFY+AYrK4rxeYWJ05udmB9Q9mM6fRyGY5lYGE5WITUDtybLWGHJa+oCY84lkFQ1tyXfKIcI0qKCprUKQKn8Ho+Me5VV+6XZARmY79L5DUCy+CiJZX4+umLIUzjpEwQBEHkD/nb0iIIgkghTqNx5pWItLFrbAK7xibAMsCfzzktUv6vr7+NEx4/qs1GVJqMqDQZYBP4KS4AsqpAVrUR7LKqQgq50sgKIKoKZEWFpCpQ1PA8oKgKJEWFqKpQVBWSokAKra+oCM0ryGzXUvr53kmrsMqpBeWe7+vHT/dPP+qQBWDiWBg4HkaWhYnjYORYGDkWBpaLvrIsDFz4NbrMyHIwcCwEloHAsuAZNqYDzcLxKDMaYOH4aUeQqaoKjyxBlkLiqbhVNTEUE1nGMyyEUF3mwlGXGy5RhAIVqqoF9sNB/RghV/w8ouKzqeXaXHi+yWZFi03r1Aw7TZQbTDECrqExck774Ff+jm0/ez8cJVpA9wvntWNv/yReODCU5ZoVB1Ul0fviADkVZQT9SHFRUfDqYDTdz97xSYy5vbPf1zTXPqkIRUVlhqigdjw4++M4W8qNUVHOSCAzgfI5ORUxDHjdPSYox7ZuLNbEoiLPPNOW6Z2K1FAba76Yuejn9M0ilWmqKdUd59HAZMbfv1iwC+aIgExVVVz74jZ4pCJwIcljDCyLf+lYklRQpKgq3EEZY34RflmBV5Swo38S924/Bn8BOSLo77ZZMFMrKuKfFYNinh3wJL+VbDbLBsb8uO3BN6aUf/bKVfjXK1YBANY1luHaTU34/Y4e+OdwzM/tqJpWUDQy4cd7//2JWbsRzZbeES8+9I1nAQDLWxz4v9vPhsMefa5RVRXPbO/BXQ/vxLGB7DkQ6k/nYnQRnQ8MgOU1dpzWVoGtrU6c1OSAeRYCHFVVEVRUTAYkjPqDGPYFMeQNYtQvYjwgwSvKEBUFRo6FRdDc9uptRkiKiqCsgmW1wR+SokZ+rwLHwMCxMLIsjLzWP2YKv3JaP5SRYzWHb4YBy2iDyDiGAcPoBgHmkLrMImRW0KSoasQxKZwiLvx6YMSLb7x0GJNBagvmG06zgI+tqcfZrU7U2owoN9MgboIgiEKCREUEQRCIdQcgskd8X4qBZeGWJLhdEo64itu5JVXog8n8LM57BYBXVuBdgMvAbLHxPJqtVlSYjOBYBgFZwYDPj0GfD5PzDCSyDOAwaKK0KpMJVWYTqk1m1FhMaLJaYeZ5HJiYwOtDw3hjcBjDgfQ7spxfX4cbly4GAFh4LVhZYY46IciKUtTpz8JIioLLb/8bnrn3Egg8C5Zl8KOr1+GS+15B10jqRQFELGW6zp9BLzkVZQJumkuyMsfgOkNORTGYdam/xoOpF22W6pyKhv2ZEhUl7qD1uae2lwSGjQQtVFWFX46eTwzLwmSxTNkGWIioKHUjUc18VNQzEcyMC1SYcoMhJv3aqJ+citJFqSEqbJNVlQRFecAp1RWwhwSbqqriySNDeK1nDF5Jxr5hDzonikMgz8Wkvyy++2smiRcViTnqVFQI58Hxgdj73TcvXoFPnrYIj719AocG3Tg44EbnsAfBaQSCVkNsyMEXkMCyDAKijOd3nMAXf/rGgkTHs2Fv1xg23/wY7v7UJqxfWonuQTe+8j/b0dWX/fs5ozufSVSUGAbAonIrTmp2YEuLE6cscqLCOv2AUFVV4ZVkHJ3w4e3BSbzcM4rt/ePI1UybFp6Fw2RAqZFDiYGHhedgFjhYBQ4mjoWZ52DiOZj1wiWdkEkbwBcaxMeFBvKxDASWAR+a5llNzBQWNuWKoIllGFgNHKyY+ty6proEDhOPG5/Yk4WaEfPlymXVuP3URahI4j5PEARB5D8kKiIIgkDsCHYiu4iKEglGGVIYlCI0JF2HVa6J6dyShD0TE8BE6vapqMBIIICRQAD7J2IdBhhoHRmZDrAP+KJBFjOvNcVKDdHOsUmPmNURq7lE96AHn/3BK7jvC6eBYRiUmAU8dO1GXHb/q/DQqLW0YjdFHxMGSOSWEXhdcCH+EqCqc+sJT+ZUpBThxYVnY0eDpyP9mZWPdpwOB9IfSDewbNI2ktczddT9VNe+6HlgspjBJtvXPEVF+pRlC6XeEk15FsywDcjJVdGUL0FZhFsqjHRNuYjDGHWz8GTBkYqYO+vKnZHpw2Ne3Ppscaar0wuCi/AWm1G4uHtZQCz8Z4FkKfXSLQb486td+NRlK7CotiTyXg1lZnzmzMWRdSRZwbFRL44MedA16sHAZAB9E370jPtweCi2LTI45sOWWx5La52TISkKPnfftqy893To+2KKUfAfj5Fn0eywYGmVDStq7FhZW4JVdaUoM0/fV6uqKiaDEvaPevBC9wj+cngQExlOZbcQvJICr9uPE1kwzTLxLEoNPEqNPMqMAuwGDqVGASUGHlaBg6ioMHIsrCGRkzUkeDLzISETx8IQFjCF3Ml5hgEXEjLxLAuO0a5X4av3XK5d5y6qwI1r6/Hfb59IzwEgUkadzYhvnbUE75lnukyCIAgifyBREUEQBIBWuxVcFsQFxFRkVUW422CuqauImZF0gelcExVlGhXZ6cA74Y267HAMAzsvwKpzYgiQWCaGZ7Z34+eP78PHL1kOAFhSbcf3r1qLm3/zFgVv0oiRj15/hyj9WUaIcXeJO7eVOaaKSSYSKcaR0Its1pgObJeYemGIkYs+Vo9kwKnIwicPsPi9U53c9OdWvLAsWeozAPCI83MG0qdDWugZp99+NJDZa9HysqigaTSQvRQpxUCVKXqs+7zF4XCT7zRYow5tb/WncERAnqFPXVqMwt1MEu9UJOWoU9Hcyb3zRlGA8z7/JLasqMbtH1mPjuayKWIAnmPRVmlLmOJMVtSY74udJs15saI/nvnaPhdYBpU2I8rMAqxGDgLHgmUYmAUWZoGHxaCl0zKHXi0GTZRiEUJuPEYODrMBFTYDKm3TOxCFCTsR7Rvx4O/HhvHYoX54C+ZakFn8kgK/FMxoqnMTy6LUxMNhFFBi1ARNFoGDmQudFzyLDy2rQ5lJe9b58imLsL13ErsGs+8uRiTm1MYy/PTCFSg1UpiZIAiiGKCrPUEQBAALz2NxiQ0HJuhBJdtIioqw+y05FaUefYcVR8c3Kwz7A/DLMkyhdDwrHE6MB6JB6BIrWQXHc9evd2L90gpsWFYFADh/RQ0+c9Zi/Oi5w1muWeGiDwQM+UhUlAn45JoiKMrcxIZskvRnxSiebiuJBrt8UjBGXJsq9M48mUh/ZuUTP8YrioJAgvfndfVT4s4uiy2xqMgnS1PWnS2xNp1o5QAAIABJREFUTkULO+f0AqVy4+wCTqmiRXdsRgP0jJBOqsxlkel3RsezWBNitugdpcrNxdt25QpAGJAvcHF5YgNibgoJkjW1okmH8odtewZw8ZefwpYV1fjUpcvRUmNHeakJRoGb1nEkXgCWf588/cQKErNYkVlSX2rChkYH1tSXoL3KjrYKK6rtxph2Wjo5Ou7F8z0jeGRfL/rIRTdv8SsK/N7phUx/7RzCny7bAI5lYOBY3H9BBy545C24aPBdznFWsxM/vXA5LELy1OsEQRBEYUGiIoIgiBBtdhIV5QL6gCeJilIPORVlHxVAj8eDxSUlAIBlZQ4819sTWW4x8TAILII52lGeLT78H8/i1Qffj/JSEwDgc+e2Y2/fJP6xbzDLNSs86stMMYGCYXIqygj8NPc8ZY5pn5KlPytGUdHSkqgwZDINLkUlQuzvZTQQSPl7xGMXEjsVBf3+hNFM/bklxZ1LJrMl4b7mm/oMiG1fLPSU0wervHJm01mUm6JCCRIVpQ+7YIaZjwrGXuyj+3o+cHjSjZUOTQy2oaYky7XJHrHXu+K7x2aSQnUqms9Zk+mn+G17BrBtz0Bk3mRgsXVlDTa2V2J5iwN15VaUWA2wW4SEgqMX3u7NcI1zn1y/XnAMg00tDpy3rApnLq5EizNxezGVqKqKoKxg2BNEjd0YGQS3vX8cN/zt3bS/P5EbHJ304e7tnbjt5EVgGAZNpWZ89+yl+PTf9mW7aoSOT29swpe2tma7GgRBEESGIVERQRBEiBqLKdtVIBArejGQTXbKkXSdVyQqyh5HXe6IqKjZVoJJMTZ4+/L974fLF4Q/IMMXkOD1S/D4RXh8EgbGvOjqdWHnoWEcOTGZjepnBUlRcNmXn8JzP7oEAq+NhPrBVWtx2f2v4cgQpaVJJUuro8HBoKxgPJDZQH6xIsSkjIoNNMw1/RmTxKlIyvEARjposUeDICN+T8r3X2WyR6ZFRYFbml/KsLlgFxK7gng9iT+f/tyKd2oyW8zxqwPQnIrmC687/+brdhSm2z2GRpsDgHY9yhQsEHEUBEhUlE6qdS5FoqKgz5d+ty9i4bw5NIrLmhsAAA6TgNWVduwaKr7fiV7Dq+SD3UgeE++ym8l7QqaIfzpPJjzJ9mO8P6jguR29eG7HVLEQz7LYvKIKTTVa++ho72SMIImYSi51e7VX2XD1ugZcsqoGFdbZpyRTVO01nGJeUlRIsoKgrCIoKfDLCgKSAp8owyfK8ARluAMSRrxBHB/3Yf+QG7t6XQiGxO87P3s6nBatvbutlxwMi43f7OvFWY1ObK7TngEuXlqFbT3j+PXuvizXjCgz8bjnnHacu6gi21UhCIIgsgCJigiCIEKUJBn1TWQWSdcZKyQJihLzR398SVSUPTpdURFMhckEgYntJC8vNUUceaZDlhUc63fh0Rc78b9P7EewQEbsJqNv2ItP/ddLeOi2M8EwDOwmAQ9dtwGX3fcqJv0kfEkVreVREcaoL/0CCUKD55LnP1PnnP6MnIrCOI1RAc540Jfy/Zebok5I48H0uxQByZ2KfO7EAktBJ44JyrHnktmaeOS5X57/b1/vjLTQkfgTQT8aQ9OlBgFn1lZBUVUEZAU+WYZblNDj8UaCUIlwGLTjFVRUiIoCUUksdWIBgNFS1HSU2mOcFsYDJF5NF1WmqKhoKAPpA4nUsG98Av1eH2osZjAMg1tPasYNf92d7WplnBinoizWoxgoVKeiGArg8VxSFLzybj/wbn+2q5LT6NtHuZAa78zFFbj5lFZsbnEmXUeUFfRO+rFv0I23+yaw88Qk9vS74Aqm/jncZoyGrA6Mpn5QAJH73PyP3Xjx6s0oNWrt+K+evhhv9k1i/widD9liY20J7r9gOWpsmU1JTRAEQeQOJCoiCIIIYRfokpgLxKQ/47LfuVJoiHpRUS4NiSsy9o5PRKYFlkOt1TrN2snhOBaL6kvx79esw61Xr8GLb/fi7l/vLGgHoxd29uKBx/bgU5evBAAsqrDhRx9ch4/9cjtogHhqqNEJ2kb9JCrKFAKbPDA59/RniUW5chH+SGx8tH3nkVIv+qnQiYomAplJFWhLIiryJhAVcQwbE/T2xzkQWWy2hPvyiAsQFemEsgt1KtILlJpsVnx2RXvSdWVVhRL6C08nO1aiokBSFIghoZGF52DmEz8LuIJeiOrchH3E7KnSORUdGC8+p5tchWMYmDkOZp6LvJo4Dv+fvfOOc+Os8/9nqupKu9red70u6xrHKU5zikPi9F8aoeQ4AoEDAgkchDvKcUfu4KjJBTgI5WihhhASAqSQkJBGiGM7cbfXXnu99vauLk37/TFaabSStkorjfb7fr0SazUj6dHMaOaZ5/t5Ph8Hz8MlCigReNQYnM5aSnMfjVOIGO+nyKkot7CsOaLmMrVsaiTYjC8gihrjbs/nXK8NdS589rJV2JxGTKRpGoYDUbxwbAQP7jqJ3X2Ld4029l39Ek0eWorIKvCep/bgt9dtAsswsPIsvnvVGlzz0C74o9QvX0xYBrjrrGbcdXYzeBpHJgiCWNJQBZ0gCCJGplnfxOJiLHjyTHqnBWL+GGNPyKkof/SFQhiNROCx6DN8zq2sSVr+5ScOwiZwcFg42EUedgsPh6g/rigRUeOywm1Pjr/hORaXntGArZvqsadzBB/86gsYGi/OGf/3/no3Nq6owLnr9e128aoq3H35Knz16cN5bllxUOZIHFveHMw8JdLDTycqUuY2cJqpcLUUnYqMEVY+KfuioiprIi6wL5T7mbMMMouKQmnizwQuuQgrG1yveEGAaEk/0zQgz18gJRiEQOoCj7m5tINjmFn3bQSWhcCySB/+lswIRZ/lDIHhUGZJRAi+Ojicx9aYGzvHwSnwsHAcrBwb+1f/z8Kx8cc2joOV19exxZ6z83xcPDS5nsjN7T6MX6L3FXQ/tXiwJilkLkTwVAiONcQiYThM8nEaKbMJ+NRlK/G20xtSlgWjCp7uGMTXX+zEqYn8jyeQXnPp0jEWxP07u/DPZ7SAYRgsK7PjwAcvwK/39+Fzfz2KSBHGYBYaNp7Ft69cg7e0lue7KQRBEEQBQKIigiCIGORUVBjImjH+jAbVsg3FnxUO+8bGcWFNNQCgzZWYpR+WFHzvr50zvr7KZcF5bRW4akMtLm6vghAr/jAMg9OWV+ClB27AN36zBw88uj83XyDPvPuLf8FL37kB1R59ZvwdFy/Hvp4JPLGPrPYXilVIiDAixRgtUaDwSREqiXO1miGqaTq4TE5FS1BUZOxL+HMgKjLuHT5D7Fw2cfAC2AxFx5A/jaiISRwLU/e+3ZnZJW8hoqIkp6IFHnN/OdWBKlsJKix2vdgaiydjmdh/YDK7P2SJMYo+yxkVNjfY2P7TNA07h0fz3KLCw85z8FgsKBNFeCwiyiyxf6f8bclw3l8sXj61NPed0alIVpbeNXYxWZIuuxmuobm+7hG5J8mpaJHFZNevr8W/X9EOz5RJSqPBKL72Qid++WbPoraHIKbjR/tO4eJGDzZVu+PPvX1tLfYN+fHgnt48tqz4qbKL+PF167C+qmTmlQmCIIglAVXQCYIgYrjIqaggUAxOOpZFKM4tNSRDhA45QeWX/QZRkdF1wipwqCu1oncGl6FBbwSPvdGDx97oQZXLgnef14qbz2xAlUuPruI5Fp94x0a85+p2vP/Lf8XuoyO5+zJ5QFWB6z/1JP767ethiYlgvv7W09A5FMDhAXKVWAhGweFSFKHkC97oCmHY7Noco88AgMlw/ZSX2P4sF8WkwptPyv5s657AGKpt+kDrWRVV+PvgAA6Oj2X9cyZxiSI0IKX8pGkagumciqZxDbJliN5UNC0lJm0uGMVVxn7dfJCh4mdHXs+43MryKLXYwLMsWOjuQ7rgiI05F7GIqgpO+EYhcjwsLAeB091cBFb/W2Q5MAyD/pAXiqpBg4b3rNwcP3ZGyakoZ1Qbos+8koSlJGO1chzKLSI8Fgs8MWHQVNFQWQGIhQD9/KJBd5SVVQ0CxyT9zvsDEfzXKzML4osRoyB4rlGlxNwwi1MRQRQqHruAL12zFttWVyc9H5YV3PfiMXzvtRN5atn00E+fuO3JPXj2lrNRZU84rP7T6Q34/eFBTETIWTkXbFtWji9eshJVDnHmlQmCIIglA4mKCIIgYjgEHgwo0j7fSAYnHWGOtvvEzBi3L0szHPPKvvGJ+GOWYaBpWryAuanZg97x2c+6GvRG8LWnDuGbz3bgQ5csx4cuWQ6R138/HpcVD39hGz73/dfw0HPFVfAZGg/j/V/+K376b1vBMAzsIo/vv+sMXPftVzARkvLdPNNidDTjaRR30eDTa4rmHH0GAGwmp6Illh+w3JUQzSiauiD3nUy80t+JjeWNYBm9yP5Pq9bgsztfQ1DOzQB3qSimnc8eCYWgphECGftS8pSCt8PpTPsZQWVh50+eTRx/C3UqmomwKqM/NDvRT1id3T5x8slitJGId15tI2amypoQFZ3wB/PYkuzBAnCLIsqtumCoPCYSKo+Jh8qt+r92PjfDcZMCIFXTf3+yqkHWNEiKioiiIqyoiMgqApKCoKwgIMnwRmR4JRljYQnjERnjEQljYQkjoShGwlFEDacOj5XHMzdtjv/d54/g5kffQHCJOhsa+0lL7Rq72JjFqSjjZS9D8+moIRaDc1s8uP/G9aguscaf0zQNT3cM4c7H9iFaYKJIzSChp3ErQgWw9Tfb8U8bGnHXphYAQJPbhp/9v/W4/uE3KCIvizgEDl/augLXr6qeeWWCIAhiyUGiIoIgiBgcw8DB8/DnqAhEzA5jwUskp6KsI6mJ4jRPgzN5ZSgcxmAojCqbNWXZmS1l+OPuuVs5R2QV9z/Tgaf29uELN67HGS0eAPrM3i98YDOuvaAFd93/Eka92S+s54u/7e3H/Q/twcfetgEMw6C53IFvvf103PaT7TS4NE+Chtl+DiH/Dgn5gmWwqMcQZ3CPM36sNg+nF3Iq0mly2uKPAzmIPgOAkCrjyZP7cVXjWjAMA4cg4LyqGjzbeyonn9fgyCAE8qeP6BINx5WkJQvU7CXp3ysgLewawSe5nRVWkWo2tLrK448lVYZPCuWxNcVNiWiPP+5OE99XiLhFAbU2G2rsVtTabCiziHAJPEpjwqEyUcy6+EHTNKgaEFYUBCQFExEZw6Eo+oMR9PjCOOYNoXM8gK6JUE7dnlgAD1+zCWJMrKhqGj7x3CEMBounXzlXkpzZqOOZU4xORUt9S9NdfHGRy2EZlgE+vGUZPnbR8qRr01goitsf3o2dPRPTvDqPGH7kJCoiJvn+npM4p7YUZ9fqovSNNS68c20tfr6vL88tKw6q7CJ+deMGrPBkjsgmCIIgljYkKiIIgjBQIpKoKN8YC54CiYqyjmSoNJhltmcxs398HFW2GgBIckW4bG0N/vPx/fMWNBzq9+Hm7/wNbz+7Cfdcvw4iz4JhGJyzrgavfv8m/GXHKXzz4b04dGI8G18j73z7d/twRnslLtxYBwC4cGUl/viRC/DrHSf1bahp8VnD+p9a7N/E3wzDgGX0QUuOZSDyLESOhcAxEHlO/5djwbFMfF3jaxgkih1a7PMSn6F/OMcwYFn9/XlWdzUReAYCy6YMJsc/A4nPEjgGAsfq//FM/HMnUTQNkqzFxZlRWXcj8IUljAYkBKIyBr1hvHpsBAf6vJCU9AfYkD8hvnBZ9NsFK8fispYKXNrsQbPbBgvHggGTdhCcZxlYYgVHhgFYMInYlJhrgqppMWcXBjzDgGUTDkkMEt+LYQAhtq0mT1mT23VyORfbNhzDQIltey62HyOyCm9UBsfo5zxjtNvkt5/cR5P7DABEjo0LqqKKiqiiQlI1/bGqOz4oSftZg6JpUFQNSswdQtFij1UNauz91dhzkwViRUvMw71yWWW8bW5RwCU1FWAZBoFAAOMup/450CCpKhR18jto8TZPui2qmoblLiea3E79M6E3UgXgFniUCDzU2Oer0OKPZVX/TonnY8fu5HecfC62nGeY+HeQNRVK7LG+XTTU2Ky6S0Z8W+j7XtH09ivQ4gXY+OfFduzkNg0pKsalKOZrgFFrEG3mwqVokv3jfdhU0YhauxsA0OwsycnnWDkOlVZb2mUBX3q3HtHgWhWZ4mTkcKYfMPYvcFsZBXK5dirKBQ32hHvORLQ43HMKEZdgR6mYOAb3jeW3TyKwDMotFrhFAaWiiFJRgDv2b6lFRLXNilqbFbYsOgxpsWtCJCYWGo/IGA7qYqGTvhBOeEPoGAvgpC9cENFwD7xlXVL0yA/ePInX+wq0IL1IGJ2KVBIV5ZQkYcES2dQZTY9IZGF6FqN7VOW04H9uWI/zlyXE0pqm4anDg7jj0b0FcV3JhHHzcHS4Ewbe9/Re/OWWs1EZ6498bksbbAKH3QM+7OybQIYhDmIGSkQOP7p2HQmKCIIgiGkhURFBEIQBlyCgD+F8N2NJY3QqEkj0knWMTkUcDUbmnQPjE7ikVhcVqZoGBvogcV2pDR++dAW+9eyRBb3/r7d3o3PQj2/eugk1br24zrEsLj+7CZed1Yje4SD+vL0bP3niMHqGzOEQkIn3/vfzeOmB61Fbrg+CrKlz4z+vc+e5VYVLVFbROeTHgT4vjgz4cHTIj86hAEb8EfjCCeHBijIHvvWW1djS4IHdBK5FU2eyWngWlby4oPcUOTbuyrCYOAT9Vo2xiEmfb80QbWakzipiuSudC00JttRUZKuJi8akEBCIFRmmDBZPiquMIj4AsBi2Va3djXcsOxOALmKadNBhwMRFZao2KaxSoWhqXBCjarowrNzigMjyUDU1LsiabFu1LSEkylWsUYPDmdGdoP/kyZTnOIZN+k1MFRXZM8SfLdipyOjcYUJRUY3dFX88FpldtBoxd1a66+OPFU3DzqHRnH6eleNQYRFRabOiympBlc2KSqsFVVYrKm0WeCyWmd9kDmiahqiqISQpmIhKGAlJ6A9G0O0N4fhEEB1jQRybCBZ0UdfIjcurcW5tQnD3/IkR3Pd6V/4aVCAYuwfkVJRbinVCDB01RC64fFUVvnzdWnjsifsgWVHxiT/tx2P7B/LYstlh/F2QiI4wogL4wDP78NvrNoFlGNgEDp/b0gYA2Dvow/W/eQMSXY/nhMcm4EfXrsOG6txMjCEIgiCKBxIVEQRBGCgR6LSYb4w3f+RUlH2ihu1LoqL8s98wK59lGPilKJyCPvD38ctXYcuKCrx8ZBh7Tk1g36lxDPvnXuh9vWsUl339r/jw1uW47YJWWGPCEIZhUF/pwHuuXo3brmqHrGjwhyT4AlFo0F13eDbhrOMLSbj7W3/D7qMjWfnuueD6f30KL37neljEwhe/5BuRZ7G61oXVta4Z193WWjnjOkTu4OchUJHz7Lo46USVLZgprlypyprZfVajsyxLLZqeXLnzVNvSuxT5JybgHU0VZAiGaremaUnCbV4QIGYQUSzU1cnoVCSryjRrFialYmI7j5CoKGfU2j3xx2+MjGG+Zy2B1SOsPRYLyi0iPBYLKqz6vx6LiAqr/m82xX6qpiEsqxiPSBgKRTEaljAciuL4RBBHx4M4NOrHWKR43G9FFvjM5uXxwu5JbwifeO4QxcxCd2OcxIQaSlORHH9WuBs703HAUGgZkYFsHhkuC49/v6IdN2+sT3q+zxvGTT/bgR6vOSZRGn9H5FRETKVjLIivv34MnzxrWZLobH1VCT5+Tgu+8rfjeWyduah2iPjNTaehtdQ+88oEQRDEkoeq5wRBEAbc4sLcDIiFI2kGpyKGREXZxlhQJFFR/hmORDAQCsULxYfGx3B6RVV835zVWo6zWhN25a8fH8GvXuvGH3f3ZoyuSoc/IuMrTx7Cz17twrvObcG1G+tRX5YomjIMA4FnUFZiQVlJ+iJzRakN3/r4Flx4x2Pz+KaLw4g3jFs//wx+cc9lsBhcdbyBqCFaS2fy8DcO8KvxWDQNsqLqcV2yClnR464mn9MmI60mXUpisVbGSC4GeqQXAyb+oaqqxz2pqh4DFZVUSLKCqKzGZ7drhhHUyTgo/fNURCQVEUlBVFIRlfXXAomZnDzLwCryEAU9Ts0q8LBZeZQ5LSgrEeGw8KivdMBpE2Y14zMkK7Dxie2oaRq6xkJ44dgwxkKS7gozGa9lWEfRgGBU0b+rlog6E+JxciwEhkVUVSEpKiRF3x5Wnk3Eck3GYGlARNFj3GRVi8WpTW5nBpqmIRxbHpVViDwLjmEQje2vUpuACocFUUXFvdesjbfzRwe7cWQsqO+r2C5ikZgJG1U0DIYj4ADYBA5WjoOVY2HjWVhijwU9lw4sYrF5SXFusb8ZPSJOXx6LyotF23EMAzYWb6dqgJVjUO+0IaqoCMgKGCAeJTYUiqDSlvhtRhR9+6fbjywDBCIhhGXJEE+nH+m6c4Ycex0Td0eb/Gvy2E28CpiacZf6iUx8GwJ6LJ9RUBRV5FhU3+S2KP5ru3eBTj+ZyBR9NjKQfsa5aBBnT71iOF2ZZ6IuVFTEM+Z2KrJyiWGSkbA3jy0pXgSWR4U14Sb4fG/qMSyyLBocdjQ77fBYLCgReJQIAkoEHi5RQJkooswiZnUSwqTzmKRqCMt6JNlERMZIOIpubwj7RvzYNehFj98cRdls8f71TfFYU1XTcPdzh+GLmk8wmHvMd74zE0lORQW9qefYuIL+LkSuMN7zZcuJZ+uKSvz3NWtQ40rE/2qaht/t68PH/3ggK5+xWBiFg9mcqEAUDw8e6EVE0fCR05tRZhXiz7/3tHr8dE8P+ucxIW+p4RI5/PKGDSQoIgiCIGYNiYoIgiBiyKqKbr+543+KAdkw5ZUvUovzfBIhUVHBsX9sIi4qanQ6cf/eN/CB1evhFISUdSdFRp/Y1o7//csR/Hp795w+q3c8jK88eQhfe+oQLl9bgys31OK8tgpUZBASTcVmAgegN4+O4CP3voQffOri+HOhiIzz7vx9/hpVYNhFHhdtrMX566qxpsWD+goH3A4RPMckDWpPCop8EQk/eK0bP3z9BPxRswS1pPLVq9bEC1Kv9I1h70hhOZDU2i14d3tD2mXDUQWVBj3JcDgw7Sx96/ggbN7UIn1QjuLVwc4Ft3U6bltxHsosegzha0Od+HuGz2OmiJESz8eWxkRYAsNBYHmILBcTQDEpzkWTQiaWSXhGTK7hEqwoEWwQWC7+MSwYcAwb24Ia4mIo6O/BsUw8OowBUGEtgcAmbp1f7O8FFxOSxQVT0ItC3mgUf+juWsgmTIuN4+DkU68LADCRxqUISHZ8VLTk325ZRfoYPElVEVYW5rBiLPxO/dxCp87uTjoPjprEqUhgOJRZ9Dg7FboYcfJfDZOi2djzhvg+NRbzN5PrB8ewsd8EC0VToWjKghy5amxlSUVCC8fixuYGVFgtqLZZUWe3ocpmzXohURe+aghICsYjEgYCUXT7Qjg6HsSBER8OjgQQVs11zC4G1y+viT9++tgwdg2Q2I5YfIzng+LS4UzzbTKcZ+k23vwYRUULHfaqdIj49yvace262qTnA1EZH/jdHrx0PLfxorkg2amIDngiPQ8d7sNDh/uwzG3DY9efEY9Du3FVNb6zMzUamkhQYRPwk+vWY4XHke+mEARBECaCREUEQRAADk94cd++DvQGQ/luypLH6KQjUvxZ1pGSREW0fQuBA+Pj2FqnF2vKLTYc8U3g7u0v45LaBmz0VKDW7oBTEJIG0uvLbPjSzRtwcXsVPvarXQhLcyuAqRrw1L5+PLWvHwwDNHnsWFFdgrpSG8qdIjQNkBUVkqrhgxe3odSuu7gFTRLl8fyuHnzrt3tx583rAQDVHjt++MmLcPvXXshzywqDYFTGk9tP4sntyQNtIs+ittyOcFTG41+8EhVufZbrN18+ju/PUcBGzJ3oNIVsweCkqM1CABANR9I+L7KLIQycnZOALnCYZsXYUxHIANJ/n8Xiopp2bCxvAgAc83rx86Mdi96GigwuRQAwPpw+llIw7G9lyvFV19yY9jWj0eA8WpcMx2QWMxU6DY6Ee05ACiOqFv51T2QF3NhyHhyCdeaVp2FSYKRCA4uZ3cVUTYOsKZBUGZKqQFZlyKoKVVOhxIRLbEywxzEseJaHwHIQWQE2Ptkd9q61qxbUdkA/N0qqhqCswBuRMRKKoj8YwSl/GJ3jQXSMBdA5HoS5jsj84xZ5VNsT++vRjvTOaARBLBySTiwdjPGR8xXQcgyDW89sxN1bl8NlcGrRNA0vHR/F7Q/vnvb+wiyQpoiYiWMTIewf9mN9pe7Eur4qsyMrAbSXO/B/16xFkzvz/SVBEARBpINERQRBLGkUVcOvjp3Aw10nk27qifwha+RUlEsiCm3fQqPDm5jtzbMsykUrRqJhPN93Cs/3nYovO7uyGlc1NqPaao+7KGxbV4OPXbYKX37i4Lw/X9OAEyNBnBhJX0iucIp434VtAAB/qPCLq5N86+G92NBWjotOrwMAXHRaLd53dTv+70+H8tyywiUqqzgx4AcA9I8G46KiFk8R2mEX4DU/IGWOkrFarABm//uLRNKLcHiWAwsmKbIu2xivLDOJn8yC0blmIe4sCyFT9FnQ74cUzSQiS4hBolri+CqvqoTT5Ur7mpFwlkVFJitmucXEdg4r5ohNqLS6FywoAnTx0Fy6hizDQGR4iGzuhpUmIy7HIxL8UQXeqIzxiIThYBQn/WGc8IbQGwhjOBTFaNg8fRQz8d51DfFzoD8q45VTY3luEbFUMUufImM3IZMywhxfi8gyHJc4HuR5DEae01yG/7hiNVbXJIsn/BEZd/1+H/7SObzgNuYTo5MTORURs2F733hcVLStrQKbalzY1T+zs2KFTcDmejdWlTvhEDkMB6MYDOj/TURkcCxg5Tn4IjIiihqPg40qKkZCEkZCUtL7sQzgsQpYVmaH28rDF5FBLl78AAAgAElEQVShARA5FhNhGe0VDpxV60KVw4KQrGAwEIXLwmM0JOHERAgDgSiiiorhoISO0QBUTUNUyd6F4qxaF3503Xq4LVQWJgiCIOYOXT0IgliynAoEce++wzjq9ee7KYQB44AKDR5kH6NT0WSsC41j5pf+UBg+SUJJLO7szIpKPN2batW8fWgA24cG0OIswUfXboSN17txN53RgK89dQhKjpSRbltidro3YI4CK6AX/j/+zVfw2FeuRGOVEwzD4F/fvhE7Dg/hzaPpXT2IBN0DPqxr9QAAmktpBttiEFbUWBBXKqLFCkiz769kcioCAIHjEFlgvNV0FIIAJ9sY+yO5FGRNR6U1vWgkU/QZkBx/FlUSoqKKmuq066vQ0BNceKyRcXvJJnMq8lgSIkqfZA4HU2Pc3GTcWbrzCFPA/eqAJCMgKRgJSegPRHBo1I8dgxN4c3ACJk7dNB0VVgEryhzgGAZ7h32YiMq4ti1xvnj+xCiiNBOHyBPMUvDxWQJfkdDhjX00efYXujqXFZ+5bCWumRJ1pmkaHj/Qj489vr8oHPmMV5psR6ESxcn39nTjtnUN4FgGPMvg1nW12NXvhYVj4bJwqHVa4LYIKLXycIgcquwiLmzy4Mw614KOsdGQhKFgFHaBg11gUW4TZ37RHAlKCg4M+/Fmvw+HRwI4NhbEmwM+SHPokzEA3rG2FvdcvDwujCIIgiCIuUKiIoIgliR/6O7BT490IWKy2dNLAaPohZx0ss9U+2uWYaAUSdHXzBz1+nB6uS7gWFXqSSsqmqTL78NX9uzE5zdtBgBUlFhQ47KiZzw3xc9Se8JKfcKf3wiiuTIRiOLDX38Rv/nC5bCKPFiWwc8+vRXn3vko/EFyNJiOo70JYUGde+EOGIVGoZ71gpICh5AaUWa1WeYkKoqEwxmXWTkhp6Ii4xBlsYiKWEOVLx/XTJ5hUT5HURHHskkD5GHDPi+NXW+mMhDyJ603X4xxWWYTFTl5S/xxQM78OyokWMOvLiwpWPPpJzKuK/IsRJ6FTWBhFXjYBA4iz8IisLAKHCwCC4Floah6lJisqJAUDd5QFL6wjFBUgU3k4LYJcNkEeBwiSh0iyuwiSu2C/p4iC4vAgWcZSIoGSVEQkTX4QhImQlGM+KO45ewmbGpJHId/7xvHC6dG8deToxiL6DO+eYbBZc2VWF9RApfIw8KzUDUNL/eM4c8nhhFRzHVsFQJ2nsVHT29BtcMCb1TGcCgKK8/i8qZKVNrFlKKapmlJYrRHj1D02VSo1k0slOl6FVqGPkchi0SJ2cEbnIqis7ieWXkWHzi/FR88vxW2KfcKXaNBvP+R3egYDmS9nfnCeOhzdLgTsyAoq9g/7MOGKt2N9a1ranBpazk8NmGGVy4Mj03I+WfYBQ5n1rpxZm0iptkflfHMsRE8cmgAL58cy5i+YOVZ3LquFu/eUI8WmixGEARBLBASFREEsaQYCUdw//4OvDk6nu+mEBmQk2yOafZEtokoyfE6PImKCoJOX0JUVO9wzLi+g08etBgJ5E7s4zYMkIx4zSUqAoADXWP43A+242sfPg8AYLfy+N09l+PyT2YuuhLAkZ6J+OPakuITFRUqATmDqMhqA+ZgICNJEmRJBi+k3u65BBsmorlzYGEKwNUn2xgL7ZkKfLmk0elMEjYZGR9OH29hjD7TNC0eQ8awLEpKS9O+ZjCUnWIUZ2K3KoFL/P4iijTNmoUDk3R8Tr9uVFYRlVX4wwAwT/fBANAztrBzSH2pLUlUdGlTBS5tqgAADAYjOOkLY11FSdqZ1Fe1VuH96xvx0ecP4LjXHG5ShcKfbzobbsvsC1/GY6tzLIiXT1L02XSY7HRnOopNR6NqmFPkJFFczPZ8wQC4YUMd7t66HHXuZEFAICrj888cxm/29GW/gXnG2H/k6IdCxGAAlFoEsAxQ67RgfUUJlrntWF7mQL3Tgjpn8rhFrsU++cQp8rihvRo3tFejzx/Bc8dH8PuOQezq9yKqaOBZBresrsFdZzehjsZzCIIgiCxBoiKCIJYML/QP4rsHO+GXyZ2ikDE6FVH8WfaZ6s7FsQyKwh/b5Bz1+uKPS4SZ7ZKbnCXxx4PeMMJS7nai2+BUNJwjN6Rc8+gLx7FxeQVu3bYSANBW58ZXP7AZ//K91/LcssLl0ImE+NYmcHBZeHgjdP3MNX5JRlUay3TRYkmz9vRMjI2hvKoy5Xm3aMPJHE5kNsaTmE1QkgnG4ASTDyHuCpc77fPhUAgBb3q1mTH6zNhid1kpOC5VuAYA41kSmxlF4fIUMXOhkyyIMkcHiU36zeWxIXPgvqcP4+LV1VjX4E5x3KiyW1Bln/6c1+q245HrNuGp40N4smsIr/aOJ01MIFK5ZlnlrARFsqpB0zQIBkGXLyLj3186UiQy0eyyJCK5CgQzuPM4rDwqS63wuKywiLr7m1XkIfAstu9NdpwkncTSZjbxXluWleNTb1mJtbWupOdVTcNv9/ThX584ULRDOclORfRjWYrYeBZtpXacUe1Gu8eBdo8TLS5bUv+E0Kl1WnDr+jrcur4OYVnFoWE/ap0WVDvnPoZAEARBENNBoiKCIIoevyThgUOdeLF/KN9NIWZB0owkGjvIOlOjIvTCn7kKfsVIp0FUxDIMmhxOdAcyRx3V2uzxx33juY1nKbUnBA4Do+YUFQHAF3+6E2tbPdi4UndCuHFLK/62bwCPvdKV34YVKF0DvqTYE49dIFHRIhCQ0p+PbXYH5vrrGxsZTSsqKhVza3vO5NnVJxeweXRfcvICqqzp99lgT0/G1xlFRYpBHJMp+kzWVPik7LjRGWeUmy3+LDnqzhxtN+tv7rr7X8SmljJsXV2Nt6ytwfLqkrRuBN6QhIO9E4jIKlornWj06H0ggWVxbVs1rm2rRq8/jJ8e6MHvOwcynkeXOpc0lif9vb13HKVWAQyAgyMB/PHoIPYO+TAa1h26ahyWeCTakdEA/LRdZ8REPz9TYoyLyve5jmMZNFQ50VxbgmqPHeVuK8pLrbCKHCrLbGipSUwAUTUNpwYDEDIMbhi/S6p2IlP82UK/AVFITN2fmxrcuHvrCpzXmnze1jQNb/Z68aFHd6PPN0+3QZNg7G9nEl0RxUWD04qza904t64M6ytK0EDuOvPCyrPYWOOaeUWCIAiCmAckKiIIoqh5Y2QM39jfgZFIcd9wFxPGGdY0dJB9pCmiIp4GaAqCCUnCUDiMSqs+cLKpomp6UZE9EZF2YjSHliNIjj8bGA3m9LNySVRW8ZH7XsRjX74SFaU2MAyDr3xgM948OoyugczbeqmiqnpxbPIUUW4X0bXAuJt8Y4bT3WgkfdxSSWnZnEVF4yOjaZ+3cAIsHI+IkhuRmHEzq0Uyf9pYzFAW2QqmtaQk47Lerq6MywQ24UakqEZRUXm61TEWCWVNLpXkVGQSYc4krAmj24y/OXO0OMGurjHs6hrD1588BAA4rcmNs5dVYHWtCwLP4uWOITz0WnfSaz55VTv+6eLl4A0z1eucVnz67Da8e009/vGp3RgI0r3fdPT7I7jzmYNxAVE6ev0R9PrNF3tLFC8cZ4z1zE8bXA4R566vwZmrq2C1pHf9M6KoGg6fGEcgLGXsiCZ/FRN0VomswBpEtJNjNOtrXfjni5dj68rUSQE9EyF87PF92H5qImVZMaKSU9GSoKnEigsbPbhxeQ1Wehwzv4AgCIIgiLxCoiKCIIqSiKLgJ0e68KeTvaYbXF/qaDDO1KPBg2yTEn9G27hg6PT64qKiFa7Sadc1xp91DuZOEGPhWViFxIB5z3BuBUy5pn80hI/e/zJ++rlLwXMseI7Fb++5HOfc8Rhk1VyF78VAVlSIMWGCy1pctw1agfYOBoPpC7hWux12ux3B4OyFfeOjYxmXVVpLcCqQeflCYEwoypgJPo8imUaHM+3z3rGxjNFnACAanIqimu4wwjAMPGncqwBgNEvRZ0By38Js59YkAZlJBFFmdSpKx+7uCezunr5g+rUnDuFbf+7A3VetxtUb61Dtssa3QZ3TijtPb8G/vdKxGM01FU8dH8Llzfrvv8ZpwZO3nImnjg0hJKuocYqoc1oRkhX86egQHj7UX6BXycKDIqwWD5FPXNfURRb42iw8LtpUh3PW1YCbyU5ZS/xz5OSELigCEI2mv6Zo85hURYed+TEeRmc1leGyVVW4ZEVqH208JOHzzxzGo/v7F7F1+UdLcjCnI75YYAC0um24tKkCVy2rxIoyEhIRBEEQhJkoruoAQRAEgCNeH+7bdxinAuZ2VCCIXKACSZFGNEBTOBz1+XBOrNhbY4g3m8p7VqyGhUsIfZ49MJCzNhmjzwDg1JD5HX1eOzCIr/3iDXz6H88AAJSVWPDoFy7HtZ95Ks8tKzwkRYUYE5WVWOi2YTHoCWSOM6yoqEB3d3fG5VOJRiLwjk/AVepOWZZLUVFyfFRxlKU5g0BHXsRCpoXl4LGkt/7vn+FYMMafRRVdVOQu90AQhLTrj4Sz50SX5FSkmisyKVkUZxJREYxtzmNDFpGwrOILj+/HFx7fj9ObyvD9956FilhMxopSKlCl45nuEXSOB9AW2z4em4B3rq1LWe+8+jJsaSzDR589uGSOp2xRqILlYsHlSNyXROXFOz+fu74GW89smJUzkZG+4QB8Btc0WclwPTQeNlNuzTN1o2jylfkx7sMbNqSeiwNRGd94+Ti+99qJxWxWwaAYnYrYzOsRhU+d04LTKl24qMGDLQ1lcFvS34sQBEEQBFH4UHWAIIiiQdE0PHz8JH59rLtoilhLEeO+o+z03MPR9NqCodPriz+28zxYIB4c1OIswRkVVTizogplhgLzy0eGcKA3s1PFQim1JwZ8NE2DP5ibuKTF5od/PITbrmpHbYVeWFvTXIYvvf9sfPoH2/PcssJCMhRs7MLcCinE/AgrKkYjEjxpBlsrKyvnJCoCgIGe3rSiojLRDp5hc+66YxZRxkwkOe8s4neqsKYXFAHAUF9fxmUCyyb1ocKxqLuahvq068uairFI9sT4yW4/5uqTJ4vizHH8FpNT0Xx4o3sM/RPhuKjopI8mlmTi+sd34d6L2nFZU8W0ooQrllXizjOC+MaOpVnMJgoTu8E1U5JzL1gtK7Hgxq1taKnNHEOaCUlW0TecLNbVMvgLqUan5jl/EmE27BYet1zSliSSMxKMyvjeaydw/8vHF7llhYVG44Kmpc5pwZZ6D06vcuHMGjdqHJZ8N4kgCIIgiCxBoiKCIIqC3mAI9+07jMMTvplXJgoaowMATUjKPeRUVDgc8/mhahpYhgHDMGgvLUOj3YnLG5rhSOMs0T8Rxmce2ZvTNrltic9d7JiBXPKdu7fEBUWTvPWiZXjitW68tGdpWctPh2LY5xaezsiLRY8/nFFUNFf6e3qxYu3qlOcZhkG1zYWe4Pi82jgdxRh/xhqcd5RFPBdW2Wxpnw8HgwhPE4UnGtzsNE2DoqpgOQ51TY1p1x8OB5KKmgvF2LeQTO1UZI7jN9mpyBxtzjb1ZQmHx30jdD84HZ944RCWuW347NnLUeO0IKqoGA5G0R+M4JLG8riDwB2bmvBC9yjeHKTtOVt4stPIKZWliWuiLyjl9LNa61x457aVc3YnAnTjob5hH/y+CYTDQURCQUTCQYwMD2Z+QYwksR8DsCwDUeDAsQwmFzFgUF9hx/J6F3iOBccyUDUNiqJBVjUoigpZ0eL3bmxsEpEGTXc+0vRrharpf2uaBlXTY49lRYUsa5AUNdYegGdZcBwDjmWgqFpsvaV5rVkIFW4r3r1tJd552QqUOlNFFmOhKL732gk88CqJOYHkvs0S7dqYCjvP4ZZVNbimrQrtnvTRzQRBEARBmB8SFREEYXqeONmHH3UcQ0Q1x2xiYnrIqWhx4Rka/C4UQoqC3mAQDQ5d7HLH6g3g2fT753C/F3f8bCdOjmYvriYdboNT0eTgspmxizwe/coVaKtPdW5hGAbf+/iF2HLX7zHijeShdYUHDeDmh55AGOvLk2fFswzg8XjA8zwkafaFNN+EFwG/Hw5n6uBurd2dG1GR4XE2hSr5JF/uNRXW9KKi8ZGRaV8nsoki6GS/qrq+DoKYflZ8TzC7ooEkEZZJ3H4mYUzoVMQmCaHy2JA8MhaIoCzm+vCu1fW4eUUtfFEZz58cwc8O9iC0iFFJZuDYRAi3P5MqTK+wduHpm86GyOluZ587fzlufvSNIjmT5562ejd+9NmtODXox8BoCAOjQQRCEgJhCeGoAlnRYkJPDRyrizR4Thds8BwLgWch8uyc+l8Mo/9P/0cXnhgfw/CYjS+PLZt6q60l+n6TUW6Tf7MMA4ZNvMfkeSf5dj32/kziXKr/rT9WVV3IMvmvouqPJwUw6ZzWJFlFOKogIim4+vzm+PNDY7lzJDtrTRWuuaAlLsaZjlqPFQ4+DL9vAqGgH8GgHwPDAYTDYTAMAzvDwMEBcAKlLOBwVCVebNhXRs5YVRnfbudubkRb27K0n/3Pt5y2gG85M6qqTbsNorICWdZFRoqqTRv/t+/YKP75f/+GcX804zrFyspGN95zZTv+3/ktsIjpRWr93jA2f/vlRW6ZeaBoycJmS30ZvnzhKoo1IwiCIIglAImKCIIwLaORKL55oAM7h8fy3RQiiySLivLYkCJGQ2IMmeLPCoujXl9cVDRVUHRyNIg3usfwxzd78ezBgUURfJTaEgXoqDS3ghzPsrBa9eKIwLFgORYix4Ln9aIJxzKwijycNgEOGw+rqHdLWUY/LlmOBc8xsIocZEVDMCQhGJEhTxE38RwLi8DBauEg8hwEQX9/IVacEXgOAq+/17Xnt8BhSx7s+vHLx/GeC1oBABaBw2Nf2IYtdz0+n81VdBjPD9Eim5G8mG4zc6XHH055jmMYsCyLuro6nDgxtxnMfSd7sHz1qpTn3aIdNk5ASMntbP9iwFjwW6w4LwZAuSV9XMDEyOi0rxW5VFFPbQaXIklV0Z91UZEhLs5kon9jbVfWzOGylORUVMDntlzyhzd68dFt+nmuyp743ayrKIFT5HHfzqUdIzNbhsMSvr7jGD6zeTkAYENVCW5ZXYOHDpKLYyaCUvJ54sKNdXlqydKiZzCQ9ffkWAZXnd+Ms9dWz7huJBKC4uvFwJg3rdh78r4m6f05FpqmguOmdz8yCnlkOX/R0zOJqkSeQ5qvmZYLT6vDOy5djgd+fyALLSt8GAa4aGMd3ntlO85fX5OyXNN0mcxkf6nCKcJl5eENF0fUeFagYaqCpNllw5b6MqyrKEG5TUCTy4Z6Z+a4ZoIgCIIgigsSFREEYUr+NjCMbx88Aq9EN93FhrFYN3XWHpEdjOUmij8rLDp9PlxcmzzwuL9nAvf8fj9e75q+iJwLSg1ORS6HiK986Bw8+uIx/H1/wr7/0jPqcddb12N1qydp7K/Qf7/7eybwwQd34NRYCKGogju26gW0unIHvvfxC/GB+17Mcwvzj2CIPAtL5iiuT4fxiCxkjdRQOIqArMDBJ4pOk0WHxsZGdM1RVNRzojutqAgA6uyl6PQNzb+xaTBu2sI+C8ye5HipxfnMUtGS0U1wYnQmp6LE66KqAoZh4KkoT7vuqeBE1h2ljH0LBSYTFZneqaiAT2455P4/H8Z1m+rRWpnqynZBXRmJiubArw734ba1DaiLFQk/ubkVT3QOwRc1fz8gF5zw5s4xh8jMm0ey23dxOUS8c9tK1Fc5pl1PliX0dnei/9QxtNWXwFKSXvybDo7jEI1GYcsQbZqOTO6URlcn44ShSQrxPqylpmTmlUyOzcLhxguX4bYrVmFZnStluaJqeOngAP7t12+C51j8+d/eApFnwbMs7r16Dd7/yJ48tLowMR7BS7NnU1hc2FCGf1zTgHPqSvPdFIIgCIIg8giJigiCMBVBWcZ3D3Xi+b4MefSE6ZEN1Tq2aMqRBYZh5JFERYXFKldyLNcLhwfxwQd3IDxHl6BsIfLJBe2bLmnDTZe06UVLLTnSwEw8tL0b//HYPkRicSj3Pn0IGxrcuGBlJQDg0k11uO2KlfjJUx35bGbeMe7/iUhxiXgLvfDeMR7A6RWJYsSkaKC+vh5shljETAR8foyPjKK03JOyrN5Rhi7/cM7cd4rlOp4P0Ua5Nf2sX1VR4Pd6p32tMf4sosgoKSsFx6e/9e8JTP9e84Ezxp+ZzanI8FhRzSGiMG5vqZAVkzlm65efw7vOa8G6RjdOb/ZgRbVewHYI07uCEKnc+fx+/PaaTWAYBm6LgGuXV+GXB/ry3ayCZGo/+NnXulFdbkdFqQ0OqwBB0N0y2Vgu2aRwUQOAmFuJpmnQtEQ82Hwwvkx/HAsM0hIF+UkhSiLizPAHw6QRpiS/Z7zNWuzdje8TX3Hyby35c6C7kTLQY9T0fxn9OYbJ4FDMgGUBjtW3IWdw4Xt2+6nMG2OOLKt34W2XrYDdOv0Q+cTYEI4efBNSVHeUNHbHIpICX1CKOWEmIt3U2D5WVQ2KokBjeDDaBDRoUCfj5mLrCBwLMPp+UmPHg5/vw9EJJ2RFhazo761pwNFeL37y9PT3KSLPQlUTjoEsC7BgwbK6oyzDIhbBx0CIucnaRA4WkYfNwkFgWYQlBVFZRSQqQ1I0iDwLq8jBInKwibz+WGDBc+n7ph+/eQPqK3ShVok9fQRrMVDrseNd21bi7VuXw+1M/Z6hqIzfvdaNLz26F8Fool/0+I6TuPkcPdZvQ22qCGkpk3RKWLpdm7zCALi40YP3bWjEaZV0fBIEQRAEQaIigiBMxJ7Rcdy/vwND4Ui+m0LkEOOscBNqFUyBZlAVkaiocFhb6sb51ZXxv48P+XHnL3blTVAEAM8dHMD7L1wG95RB4MnCSDaISAoisgpJSXhl6IPw+mxOWVXBMgwsPAsLz6YVMUUVFZKsQlY1fdBd1WKv1aAo+nsoqgZ/RMbvdp3Cn3YnF8ZUDbjrl7vwh49uQX2ZHQzD4LO3bsLOjiHsPbZ0IzaNTkUjgWgeW5J9Cn1sumPMP0VUpP8riiJqaqpx6ujcnMtOnehOKyoSWA619lKcCuToOC+Sa4zxW2Tb1ScT5Zb0oiLv+Di0aYQ6PMsmiaDCiox6T+q+B3R3yPFobl02FisuLheYxanIKCqKKuZoc6742d+6AAC3X7QM/3bdOgBApU1EqYXHeJGJY3NJx1gQB0f9WFOuC7NIVJQZ471UICThg198Po+tKV62bKrDjz9/GQBAVlQMjmXn2rVlYy0u29w0Y3el79RxnOjcn6TeYgznXm8giq7+maNEo5oGkZn9uSgUBUJpzl1T46DTfpacvI6qAipUQAWii+QieMVZjXFRUZF0CZPY0FaO269qxxWbG1OEVZqmYdAbxgNPd+DBF4+lff3h3oSwO1XWR0xi3p6kebmowYM7NzWj3ZPqAEkQBEEQxNKFREUEQRQ8UUXFg0e78Hh3D91MLgGS4s9oYCUnGH9HfDGO7pkQO8fiUxvWxQUzgYiMDzy4A75wfgtgB/t8uOSrz+O8FRXY3FqOc9rK4zP/jezvmcCvt3fj5SPDYBldDCRNinsUDYqmi3zU+L+6cEherByhWTAWlPChn+3Ewx86DxaBA8sy+MVnL8W5H34MgTzvh3xQ7rIkCbj6fcUl6C10p6JufwgRRYUlXqBI7Ium5mbsOHpwTu/Xe+IkVq1fC0EQUpY1OTw5ExWpJhFlzITAJm6bF+vYcYvpZ/T7xqbfV4LBpUjTNCiqilJPWdp1x6OhrPetp7pTFfpvbTo0k7Q9yalILo7f3EL59avd+My1a8EyugPHF85fiU+8cAiRJS66momrWyvxzvY6LHPb4RQT573W0tnHNS01jKIik5wyTMnyhkTkzvB4COoC7yFEgcVNl7RhzbL0ottJVFVF19F9GOxNjZ41uivN9lqnauqcJmY4StJHDXmD6WPRCg01aWynOGAZBm85sx63X9WOM9urUpZrmoYDpybwX4/swfaj08fVJvUzimUDEabGxrP43DnLcd3y6nw3hSAIgiCIAoRERQRBFDTHfH7cu/cwugPBfDeFWCRkw8BKeht0YqEYx2BZEhUVBJ8/fSMsXKIQ/K+/3Y0jA/48tijBWFDCn3b3xd19yuwCmmMzThVVw6nRIMZMMrA9E3tPTeDfH9uHr7z1NACAwyrg4c9fhqs+9WSeW7b4nLkqMUgekVUMBYpNVJTvFkyPogFHJ4JYG5sdajxVNzY2guM5KPLso5lkWUZ353G0ta9MWWbjRVRZSzAYnnmG/WwwXlWKocAqsjzsfELg45cW53yXSVQU8E2/n0RD5ykWfgN3BlHRaCT7LkVTuxWmFhXluwGzxCgANbMzVDYJRGW8dHgQF7XrRbGLGsrxw8vX431/3oswCYvS8tNtG3B6lSutI+Su/uzHJBYLxvtVswgRzUh9tSP+eGgsvKD3qvbY8I5tK1HuTu8IOEk0EsaRAzvhm0jvDskkRaOmLMzQCZr9vbdotcHpSi8q6h02yfiYUTNj8sEdh5XHWy9uw7uvWIWm6lT3FllR8dy+ftzz8G70jc/uGKVTRmamxi8SuUdgGfzkig1YW5E6iYwgCIIgCAIgURFBEAWKqml4pOsUftl5IklkQhQ/ilp8s9kKDc0wukfxZ/nn6oZ6tJQkBiZ/+srxlHiuQmIsKGGsezzfzcgZv3n9JDY2leIdm5sBAKsaS/HF28/CZ3/4ep5btrisb02IEE6OhwpehDNXNBPIBQ6O+RKiIsPzgiCgpr4OPSdOzun9ThzpRMuKNnAGAeMkTc7yrImKjK1drKiwXFLCJ7t27R+bW/TcfLBwHCxs6n4CZhYVGZ2KFE2DYLHA7kwfXZCL6LOpLpPqIkWsZAvjvjbDeQJIdodaqHtHMfG+H76Gv33uclS6dOHAaZUu3LGxGfftPJ7nlhUeD27bgNOr3WmXvd43gc+/fHSRW2QeWHIqWhRKnZb44ysejxwAACAASURBVIkFRPKuai7FLW9ZAVFgp13POzGKI/t3QoqmF4eU2EXYrYYh9an7PsPBMP2nJtO4bHVakR8AdPZOzOGd8ofxOmpWF+racjvevW0l3n7pcpTYUwXfvpCEX71yHPf98WBK5NxcMOfWWRzM0h8zKxwDbKh04QOnNZKgiCAIgiCIaSFREUEQBUd/MIT/2d+BA+M0I3IpIlP8Wc4xjnGSqCi/lIki/qGtNf73oT4v/vuPc4s1IrLP5x/bjzW1bpzWpM8OftslbXh1/wD++PfuPLds8WipSQwonvJmX3iQb8xQdz82EURQVmDnuWT3HwD1zU1zFhWFw2H0dZ9CQ2tzyjK3aINbtGEiCyKTZKciE2zoGZCnRLj55Nw7FbmF9C5FABDwzuRUZIjCUlWUuF0Z1x0jp6JpMcvxm+RUZIaT2yIhq8DFX3oWT959CZrKdZeTW9vr8N3d3QjOwemt2HnHqlpsrEqcJ46PB/HLA33YM+jDkbEAfFHaVtPBmlCIaEYEPnFtk+cp3Dj/tFpsO6cp5To1lb5Tx9HdeQBahgjX2nI76quSxbryLB3QeFaDBgbMDMdKZW0TKmsa0i7rHw1hzD9/YdVioho2i9mGHdYv8+D2q9tx5eYm8FyyHEzTNPSOBnH/E4fwyGvZuT+ks8dUTHbAmIwSkcMF9R5c1ODBefVl8FhTI7IJgiAIgiCmQqIigiAKij/39OP/Dh9DSKHBy6WKbBh5MtvAk1kwDnhT/Fl+uWfTaeBiBWBZUXH3b95ElGI58k5UUXHHz3fgDx+9EB6HCIZhcO8d52J35whODgXy3bxFoa4iETPR5zV/9JnIskmFd0kt/N+ZCuDAqB9nVrmTr4caUF5VCZvdjlBwbvEXx48cTSsqAoDlJVXYOXJi/g2OkRRXUAQlEmVKUbHe7sAxX26F75miz6KRCKTo9L9H3iAqklUFzpL0LkVRVUFEzX5/O0UQbqJDwLjtAPMIoozbnERFyQSjKq697wXs/uJVAACRY9HgtKBj3CTRQYvAx89ojV8fO8eCeOtjb5CQaA7wLDmFFTocy+DaC1txRnvltOspsoxjHbsxMtibcZ3lDW6UliQ7GAbCEoa9s4u7YqFC0ngIjJxxnbrmFWhc1p5x+asHB2b1WYWGGYYdWIbBW86ox3uvbsdZ7VUpyzVNw54T4/jP3+7GG11jeWjh0mHqhApi4dh4FhfUe3DzyhqcU1sKzuSRhARBEARBLD4kKiIIoiAYi0TxvwePYPtQ7iMliMJGoviznENORYXBR9pXocZmi//9zb8cwf4ecmgrFHrHw7jrF7vw0/dtBscy4DkWj/zn5Tjnw4/CBHqUBVPhtsYf986yUFLI2MVksYBsksLfnhGvLiqackVkGAYty5fh4J59c3o/34QXQ/0DqKypTllWarGj2VmOE/6RBbXZiFlEGdMRliVomhYvIN65dj2+uW8PjvuzFReXSiZRUXCG6DMAEAzCmIiqoLokfYyBT1ocsaCZIvBENnl4xCzRbcbidjH85rKNNyxDktW400mL206iohj1TiusfCIy8VN/PUyCojliNDAhUVHuiEqJ45LnZx8iZrfyeMe2lWipnT7SJxT0o2P/DoQC6a+zPMdiTWsZLGLiOqGqGrr6fRiZYz9Z1diUgQ7RakNZeTWq61tgd2Z2GByaCOONI9nrp+Uao8OUtIBosFxjt/C4+eJluO3KVWiuTj1WZEXFs3v78B+/2Y2hLE62oKGY2UFdm/nDswyuWVaFa9uqsKnKBYGbSwgjQRAEQRBEMiQqIggi77zUP4TvHjoKr5R5thaxdJgaM0JkH6NzBImK8sPNLU3YUpOY/bijaxTfee5oHltEpOOVo8O49+lD+JcrVwMAyl1W/PwzW/HOLzyX55blHrcjIWooBlGRQ0y+7TGDUxEADIaiGAxFsaLUYXhWP4c3LGvB0YOHIUlzi+M63nE0ragIANpKKjEaCcAnLWSfF5fAQYaKg+O9WF1aB4Zh4OAF/PP6jXjg4D4cHM/NLHW3aEn7fGAGUZHAskkOhGFFgjOjqCg30SlTexVmcqsSmORCi2KS45clp6IZGfCF0VBmBwBc3VqJP58YznOLCoOLGzzxx2NhCW8O5k4sWazwSaK+PDakyIkaBCniLEVFlWU2vOvKVShzpb+mTjIy1IfOQ29CVdKPR5U4RKxsLAVrcPWISAqO9ngRDM++DyaIFlhsDrCqDXWVJbDaHLDZHbDanOD4mYfnVU3Doy93mapvJRpEi4UoKqott+Mft63E2y5ZDrczVdDtD0n45SvH8fXH9yPnzTfPbl0caJhqwVg4Fv976RqcW1eW76YQBEEQBFEkkKiIIIi84Y1KeODQUbw8QIO6RAKzuEeYGeMmpvizxecj7auwpaYq7iww4A3jzl/sokJggfLA8504rbEM29bVAAA2r67GR29ah288MjeHGLNhExNFgGIQFfFc8rnOTD+3N4YmcEFtYjB4sumCIKBxWQuOHT4yp/cbHhjE6NAwPJUVKcsYhsG6sjq8NnR83kWr5LgCE23oaXimdz8iioyN5U1gGAZWjsOda9bjhx0HsXN4KOufl8mpaCZRkcgmfreapkFVNThd6R0P/HJunIqYKf0KE9U+k7YfAKgmEbobtzn1JdLzzL4+vGdLGwBga1MF/uu8Fbjn1aOQzXSA5gCX4Vo/GpqbQJXQMd5LkVNR7ogaHLSEWYiKVjS68bbLVsAictOud6qrA6e6DmdcXl/lRG25Pek86w1K6OydgJxBZVJSWg670wWrzQGrzQGLzQ6L1QaO04fgTwz40JDGDWcmntx+Et2D/jm/Lp8Y91W0gERFm1ZU4LarVmHbWY3gpzi3aJqGvrEQvvnkIfzm1YXHAhPzg0apZke1XcSFDR6cV1eG9nIH3BYBQUnBWFhCpV1EhS39PQVBEARBEMR8IFERQRB5YfvQCL514AjGozR4SSRjdI9gGAYsYJLwCfOgklNRXlheUoJPrl+DMktitmwgIuN9P34d/RPmF20UM3c/9CZWVF+AZZVOAMCdN6zD9kODeHX/YJ5blhusIps0G7unCERFFs6cDiQAsGfEl1Fw27K8DV1HOqHO0Xlp9/aduODyrRAEIWWZnbdgpasahyb659XeYuXFgcMIyhGcV70CDMOAZ1m8f9Ua2LgOvDzQl7XP4RkGdi79bXrAO4NTkeE4VzUNvCDAYrOmXdefM6ei5H6FYhJhDgDwKaIic5wnjFvcTOe2xeTrTxzEree2xF0zrl9eA7dFwEefP1Ak0sf54TUINezC9OILIj08W1zufIWKUZAyVQQylXPW1eCq85unjZZSFAXHDu/GyGBP2uUMw2BVcxlK7Mn9pL6RIE4NB1IUswzLobF1FWoaW8GyM/2W5n7//czOHrx6wHz3HRxbOKI7gWNxxeZGvOfKdpy2vDxluaZp2Nc9jv98ZA92HhtdlDZNFWIT6SmWSQrZwsKxuLy5AjeurMZZNaUpy10ijxrH9A5tBEEQBEEQ84FERQRBLCoBScYPDnfiL33mGxAhFoepM4YtLIuQSWJqzIJxPM840EdkHyvL4qrGerylrhblFkvSwOGgN4zbf/w69vVM5LGFxGzwR2R88MEdePQjF8Bh4cEwDP7v7otx/p2PYdyfm8J8PlndXJZ0rPZ7c+NosphMdSoyU+Fd0TT0BiPYGPvb2HKr3Ybaxnr0nDg5p/cMBYPYv2s3Nm4+M+3yekcZgnIU3YG5F1U0JMplUwUmZmfHSBdCioRL69bowmeGwT+uWAUHz+Ppnrntg0w4hcwzioP+6R0KRDZRaJU1FY4M0WcA4JNy87ueKlaWTdSHEwzbT9M00xSxGENsW76LtoVKMKrihm+8hF9/+HyUWHWRwCWN5bhlVS0eOpw9UaDZMAqJzPRbJZYexnMbm0FTxLIMrrmgBWetqUq/QoxoJIyO/Tvg96aPMLWIHNa0eMAbXHYUVcXxPh/GfKnXTsFixcp1Z6HEPbuIIY6bfd8oHFXw2Ctd2NeVm7jVXGOcpJAvJ72yEgvevrUN/3D5StR47CnLJUXFX/b24Z6H92AgjxN9zNLnWAx4FvDYyWFnKgyAa5ZV4aNntJBoiCAIgiCIvECiIoIgFo03R8bwzQNHMBQ2f3GSyB1TB7StPIdQlAa5s4lxFi3PzGwfT8wNFsA1jQ24vL4WlVZr2hmIrxwZxr88/CZ6x83vALNUODLgx78+vBv/+w9nAACsIocHP30Jrvvs03luWfZZ2+KJPx4KRBBRzH8OFtip8WfmGrjvDxjPFcltb125Ys6iIgDo7T6Jqtpq1DU1pl2+wl2NiCJjIOyd83tPUowFkv3jPQgqEVzTeHo89uam1jbYeQGPnji24Pd3pXGPAgBVURAOBad9rcAmCwQcJc6068mairAiz7+R0zA1VjVqIqGCcfuZyWHJuM0LKV6m0DjQ68V5//UM/vrpS1Hu1Itx/3LmMhwbD+L1gQlYORYXNnjgEDi81DOK4SUQB9ZcknAy6w8Un0h6MTBe5YpLRltYaDP022wWHm+/bAWWNaSP/Jwk4J/A4b2vIxoJpV1e5rKgrd6ddP8Wisg40jOBiMHZaxJHSSlWrj8LFqttFt9Cx27hIcnqtDFuqqZh7/ExPP36SXiD5j0XGbvfM+3DbLOiwY3brliF67e0wCqmlj8mglH8/MXj+MYTB0CXzsKh1MrjxQ+en/Qc6aUBj1XAf29ZiQvqPTOvTBAEQRAEkSNIVEQQRM4JKwp+3HEcT57qK8LSEpFtpCkjBlaOA2DegbRCxFhMn1r8I+bPWRXluLG5Ca0lzozbtWcshG8804GHd2TH0YJYXP60pw+nv3QMt29ZBkAX37z3ylX40ZOH89yy7NJWlyjI9BWBSxGQHAsFAIrJOiTJLn7J5xdXqRvlVZUYGRya8/vu37UbZRXlsNlTZ24DwJqyOkRHZIxFpxezGDG2zmSbedYc9w3jkeOv48bWM8HFxLlXNjbBJQr4+dGOBTlhlWRwKgoFgylxK1MxOhVFVQVlGZyKchV9BiC+PSZRTRRia4w/M5PwkDX86iSzndwWGX9Yxq3f/Rue+MTFYBkGIsfiB5etx9/7x9Hmtsdn/gclBR/8yz68MTh/UaUZ8EkJkUSJSPFn8yHpXEG3VYvCVBfEcrcV77pqFcrd6eM+Jxkd7sfRA7ugqqniIACor3KittyeJCga8YbR1e9PGzNbWduElpXrwGWILM1EqVPE4FgYNZ5kIZKmAQPjIew7PopdR4ZNLSaaxLgtF8NJj2GACzfU4j1XtWPLhtqU5Zqm4cRQAPf+4QD+9Eb66Dsivzz27rPhtiUE9hFFxa6BpevsXGYR8ImzWnFla2VKnDdBEARBEMRiQ6IigiByyoGxCdy/vwN9IXLjIGaHNGXAzs7TAHe2MdabeBIVLZi1pW7csXoVKq3pB7KDURkvHh7C73aewnOHBvNm/U5kh68+eQhbVlRiZY1erP/UOzbi6ddPomd49qKLQqe5OuFu0ustjus3bxBbmEksMElfICHu4tPkfrSuXD4vUZEkSdj92g6cfdEFYNO8L8swOM3TiB0jXfDPKy7LfNt6tvSGxvGrzr/j7cs2x8Uo51fXotlZgvv37YF3nsKdEjG9U1EoEJj2dQzDJB0bEUWG3elIu65fzp2oyCiqXWxXgoVidG80kxiKNbRbUtIXy4kEh/t8+Pzv9uKeG9eDYRhwLIPz65Jji+wCh/86byVueHxnyoSHYmL3kBf/sLoeANBe7sTNq2rw28P9eW6VuUjSFNF9Vc5QM2ir2+pdePvlK2G1TD9m0NN9FCePHcy4fEVjKdxOMb4PNU3DqaEA+kdT+/cMy6J15XpU1TXP6TtMIskquof8GJoIYcQbwfBEGEMTYQyMBSEXmTDU6FSUy1OpzcLhhi2tuO2KVWird6csV1UNrx0dxj0P70ZHny93DSEWxOl1LrSUJcR2z54Yxjd2deH4RHpnsWKHZxj8cNt6rPSk788TBEEQBEEsNiQqIggiJ0iqip8d7cLvT/SYaEieKASmzu63TmMLTswPY0GdY2nwe75YWRaf3LAW60pLU4oIsqLir4cH8ciOU3j+0CAi5KleNERlFZ946E088uHzIfL/n70zj2/jrtP/M4duWZLvOz5jx3GcxLmaNqRJSw9ogZYtUM6lQBdYFrpsgRb4cSzLUpZjS7fcBQqlLCyFUu7eR5I2zd0kTuzYseMzvm8d1jHH7w/J0siW5EuyNPLn/Xr5ZWlmNPpopJn5znyf7/Ow4DgWv/zctXj9p/6a7NLiRkFWyLXmcpqIijScYqS0yoQOANA66Qg+ZsGAZ1gIinimvMICZGZnYWJsfMnrHh8dQ9OJU9iya0fE+RzLYlt2GVom+zHidkRcJhoq3NRLYszjwCMXX8F7q6+EjvOLgUpMZrx/fS1+0HJuWY5FGVHiz1yO2NtepxAUybIcEBVFjj9zJlBUpOZWhUatTkXK+LM065BOFI8e7oJXlPDV2zbPc7KbpcxiwO5CGw5dnljl6laPZ7pG8dWrROgDgzi+vr8GjfkZ+Mor7fRbWiQUf7Y6KEWqs4e8XRvzcPPrysHGuJ6VJBGX2powOhjZJZZjGWysyIJeF7o9LogSLvVPYypCJKBWb0DNpp0wW2wL1ixIMs52jGF0yo0Jhwfjdi8m7B64PImJH01FwpyKEnBeLcgy4B9vrMU7r62G1Tzf6dHtFfHH4z342h/OwbmGtrta+eLra4K/mV77DO5+qWVNRp9ZdTxurc7HLdX5qMkkQRFBEARBEKkDiYoIgog7HdMO3H+uFT3O9HFtIFYPGX5hERe4maBhSFQUb8JERTSidllYeB4PXrkLRj68KdXSP43/PdKNJ5sGMB7hRjSRHpy7PIX7n2nFZ2+qAwCUF2TgQ2/cgJ89eSHJlcWHLIsu+HggXURFig4nNfaTXppywekTYNLwYBgGGRr9vEiyTdsbcfj5lyAuw6nkcncv9EYjajdtjDhfw3LYnFWKftck2qYGlyCWUeHGXiIOwY2H2w7hn+uuDU5ryMrGXfWb8aOW85gRl9aJFTX+zBHbqUjLhQQxs1vdaIrcEeFMYPyZmp06lNtQlNUjBlZGAYlqPMAlid8e7cFfX+vHR66pwu7qHEw4vegdd+FD+6qCyxg16e2YKgH48LNN+MUbtgTFae+oK4RNr8Fdzzar8nyZTFR8+Et5lGbGLMPg5j3l2N2QH/M1Pq8HbedPwD4VWXCt1/GoK88ErxAWur0iLl6egjuCAMWalYfqjY3QaHXz5ikZmpzBz59qg2NG/fFlKyVR7oUbyzPxoZs34ObdZdDMGYQmyzKGp9340TNteOTApbi9J5FYSq16bFO4TP3fhYE1KSi6uiQTX91Tg2xD5OsBgiAIgiCIZEKiIoIg4oYoyfhdVy9+e6kHgopG9xKph6QQFZHoJf6IJCpaEVqWxX9fsSNMUDQwOYNvPHkBfz59Oe2dOQg/Pz14CTdtLsTmEv9I5c+8cwt+e6AdDpf6R8FmGEJOKeniVGTShvZXr6gescAsEgB7QFQEAFwEwW2G1YLahno0nz67rPfoaGmF3qBHWVVl1GWKjDZk6Uy4MDmAMU9skQuwFiRFfrySgG7HKMrMOcFpdbZM3LulEd8934Qxz+L2I45hYOQiX6Iv5FSkZcMFMTqDHrwm8rrIqSgyyv1KTaIiJdQGWRpOr4D7n24Fnm7F/7xnGz54dej45xMlnBicSmJ1q8NrI3Z89LlzeGD/xqCI6oaKHDz65i24+/kLGHQuJ/py7RAulFDzETC1kRSqokyLbkFBkcsxjQtNx+D1RI5NsmXoUF1iDRPCTrt86Lg8BSFCO7GofD1KKzYsKJw93TGGP77SlXYxZstF2Vxd6fmJYYB9W4tw580bcGV9wbz5sizjfO8U7nuiCUcujq7szYhV56dv2xLcvybdPjzetraiOAuMWnx4yzq8o7Yw2aUQBEEQBEFEhURFBEHEhT6nC/efa8XF6aXFYhBEJERZxmyXtjZKJAGxfAQSFa2IuzfVwaoNjRx74mQfvvTHc3CQpfqaQpRkfO73Z/Hnu/aCYxloeBY//rer8Z6vvZDs0laMTuHMkC5ORcpTiZpijZQo3UjkKHKd8vVVGB4YxOjQ8LLe4/ypM9BqdSgsLY66jJ7TYGv2OgzNTKNtahBeaenOSOkIG0HoVWQ04XNbtuFHF86jfXphcUK06DMAmHEu4FSkiD/zSRIMUVyKgASLilTcrgiPP1OPqEi5yaMdG4joFNn0+MNdVyPfqg9OEyUZ9x3rwJh7bTiNvDowiX2/PYInb9uJnIA7ws5CK/729u34+qsd+HvHCFwU5RsRkhStDpJiS+sWcBCbGBvCxeZTkKI4BRblmlGUYww7X41MutE9ZJ/npsPyPKo3bkNWznwRS1h9soy/HenF0QvLa3+lK8p9Yrntb62GxVv3VuCDN21AtcLJZhZBlPDCuUF8+bEzGJpKj+uWtcZDt23GhryM4PNftfTD4Vs71xe3VufjC7urglGkBEEQBEEQqQqJigiCWDF/6r6MR9u74JHoRiMRHwRJAgIRFHqWREXxRnlDj6d4uSVRZjKhMSsr+PzJpgF8+rHTa9KamwCa+6fxyCud+OBev7PBFXV52Le5AAfOqndkZa5NH9bJcjlNbs4rHUjUurvyigi3ySgj7wFg887tePnZF+D1LM9d4syxE+A1PHILYrsA5BssyNaZ0D49jMuuyYjLxDPqItVR/sZ8kgAN67/Utmi1uHvTFvy64yJeHhqIuY5o0WeSJGHGFVtUpFEo57yiCFMUUZFPkuBLYJudVXG3ujJyV1TRdQ0LxW9PhU5syebxu/aGCYrGZrz4/CutONwf+biWrrglCW9+4jgee/M2lGYYAAAWHY+v76/F1/fXYtTlxf+e78f3TvUkudLUYg2d5pKK1RQ7cmyW/t4O9HQ0R51fXWqDzawNtnVlWUbviBND4655y2r1BmzYfAWMZkvM95x2+fB/L3agZ5gG2M0lPP5saa/NturxnuvW473Xr0e24hg9i8sj4LeHu/CNP52Hl0SPquVdW4pww/rc4PPmMQd+fq4viRWtHpVWAz62tQxvqMhdeGGCIAiCIIgUgERFBEEsm5EZNx4434azE+lvC0+sLj6FQkNDTkVxRxl/xqrYUSAZ3LG+KngTetzpxed+f5YERWuc7zzThps2F6HA6hfj/M8n9mDbRx6Hivqjw2ioCInmvKKEEWfiHE1WE+WhTq1ORcrjdf/MBGxaI3TcfGcbvUGPhu1bcfLw0WW9jyRJOPHyq1i/cQMqN9SAjSHu5VkOG2yFKDZlom1qCJPe8E45UaXbejkoRbpN473QchrU24rBMAx4lsU/rq9FicmE33V2RN0u0ZyK3C5X7N44JlwQ45UE5GWYIy6aSJciQOVORYroOTXFnym3OUXuLI0NhRnIt4Q6q48OTOLeQxfWjEPRXByChJueOIEv7a7G29YXhP22coxa/OvOchzoHUfTCIkniNXj6m3FaNwQ6nSPdJqRJAmdF5swMhBZ9MYyDDZWZsGgUxznJQkd/XZMOeaLsM3WLNQ27IRGG1vM1Dlox29f7IDDTY61kVAeQxbb/i7LN+PDb96It+6tgE4b7twiyzJGpt34/tOtePRgZ1xrTQYqbjLFjXc3lgR/Jy6fiI89dw6eNBdIFxi1uGtbOd5SHXsAB0EQBEEQRKpBoiKCIJbF8/1DeKi1Ay5h7VjSEquHsrNNR05FcUdQqGCUzhfEwlRZQrbcDx+6hKmZtdnpRIRweAR86YkmPHTHTgBAhlGL//qnK3DPj5cn6Eg29eWZwccD027VuvrMhQuLB1InyrhKnyTi/EQ/tuWURVw2v7gIpRXl6O3sWtZ7ybKMtvMtGBkcwuZd22EyRxaozJKh0WN7ThlG3Paw6RLSu1NASbhTkYhXhi9iaGYK1xRuDArCri0qQaHRhB+0nINHnN+GjuZUNOOI3YGvYdgw1wW3KMAY5TtLuKgooWtPLEphmKpERYqtTk5FS2NvbV5w37F7BXz4uSYSiwP4jyPt+MPFQfz3vjoUmnRhwoCf3tSAo5cng+dSZeReNM2AcpvOLq9cdvaxDBmSLEOQZIiSP7J5wOHBI+f6QEYkaw8Nz+K211ejviprTuMt/Ezj83nRdv4E7JNjEdej03DYWJkFXjFYyeMTcbFvCjMR4qtzCktRWbsZLBs7iuhQ0yCeOdlHblUxCBPNLLCdygsy8PF/2IS37CkDN+cekCzLaBuYxn8+3oRXWkfiX2gKsFZ/R8pzyPM9oxhN4/srHAP80+Z1+FBDCQwUdUYQBEEQhAohURFBEEti0uvF95vbcWQk8g0bgogHgsLiQ09ORXFHKdriaHjcosnX66HnQjd/nmseSmI1RCrxbPMQ/namHzdvKQIAvHVvBX7wx/PoGlLfSP7SvJAQoX96efFZqchK4hdSBaUwSpRkTHhd6HGMYZ05O+LyG7c2YHpyElMTy4/wmRgbxyvPvojahnqsq6pY0IUmV5+xrFHp6YBW4XIzI/qFO82TlzHinsZt5TuDcWh1tkx8Yet2PHDuLMY84fGCRj7y5blrIVERO38kvzFK/JlTSGxnTdi+ltB3ij8aRSempCJREUtORctmTOFQomEZGHgOTh8NmgGAc2MO3PiH49CywIF3XAmz1n98ytJr8Maq1Y1qed+mIuz/9bFVfU8iuei1HN73pg1YV+Af0KE8silbIjMuBy40HYNnJnJEqNWsQ3WpNew4aZ/xof3yFIQISrXSqjoUl62PWZtXkPD4wU6c755Y9Ochokfi5mca8K9va8Bt+yrDhF+Av717uHUYX3rsDLpHYsfAqhFG1VLs+OBR7Ie+NG7DXFVkw780lmFLbuw4RYIgCIIgiFSGemoJglg0rw6P4uOHT5GgiEg4guKG09yOMmLlkKhoeezKD5C4qAAAIABJREFUzQk+HnN40Dpoj7E0sdb46l+a4QiMdmYZBj/5zL4kV7Q8shUxMBMz6RF9BswVOqjzhjWncJYTAw5A7dMjcPjckZfneWzfcyUMRuOK3lcQBJx/7QxefeEg7FOxI2/ndo5kalf23mpCx4YEQS6FG9CI245ftB3EjGJavsGILzbuwLbs8I55HRe5zeNxxxb4KaNipcDv22COIiryJVYsqOZWBadoc6rLqSiEQDY7S+Lps4PBjm49z+HDDaVJrij18ErA0cHli1PjQZE5dgRVMqFLqfij13L4wC0bg4KiaEyOj+DcqZejCooKc4xYP0dQNDrlRmvv5DxBEctxqGnYuaCgaGzagx/+uZkERXHAoOPwybc14PnvvBm3X1sdJijyCRJ+f6QbWz/zV7z/+4fTUlBE+El3F+0KqwEPXFOHh25oIEERQRAEQRCqh5yKCIJYEKdPwI9bO/DiwHCySyHWCD7FjQVtGt5YSDZKURFLd8IXzQZr6CZQy8B0EishUpGhaTe+80wrvvjmegBAZaEF7359FX79fEeSK1saJn3o8sDhTR+3Bl5h8yOq1D2HVxyvxYCjnwwZ5yb6sSu3IuLxXG/QY+feq/DqCwfg863MoWZyfByvPPcSKmqqUV1XCy6Cq87cU/YGWxEytAZcnBqEV0qf31MklFEdXik8TsUtCfhF+0G8p3IPLFoDAL8r0Ufr6vHc5T483tUBUZajnpOlBbadVhnbJUngeA4ajSbisi4xsU5FSsemaK4EqQrPqjP+jFV8/16Kpl4STq+A13omsK0sCwDwwU2lOD/mwDPdo0muLLW4+6UW/M81G7G/NOSM99L5QUiSHOZOF+kQFjY/bPr8aSzLgGEY8CwDg5bHpnW2OH2CxJEOouVUQsuz+Mc31aEoN7IwFgDAAAN9nejuOB/VfrKqxIrMjPDovt4RJwbH5otTtDoDajfvhCkj9u/t0oAdv3mxHTMeOs4uB+V3cdPudfj8extRmB3+PftECY8d7sJXH2+ClzIP1wRKl8h0EEY35llwZ0MJdhbYYNTQAEmCIAiCINILEhURBBGTM2OT+J/mNowsMEKaIOKJoOjI0bJkqhdvlDdryKlo8RQaDcHHbeRSRETgkVe6cNv2EmwssgIAPvvuRtWJilhWGaOTPjfz9Xzopq5ab1jzUaKZnIIH7dNDqLEWRHyd2ZKB7Xt24/ihwxDFlXWESZKEjgttGOi7jA0Nm1BQUhT7BbKMfL0F2TozWqcGMTQT2+lIzXBzhD1zESQJj7Qfwt78WmzJWhfsXLuuuARVFgseutAc3eVnAXGOVuFw5JMkMEz0tpMQobZ4Yua1ofdSkTAHAHhGraKi0C/Hl0bH7dXiE788gZe/cH1wn3z9umwSFc1Bgj8ebpbzvZP44A8OJ/Q91+WY8NJXbkzoe8QDpZg2wYfXtIdhgNtvrEFpgXnevFmRqs/nwysvH0J3+7ko62CwsSILRoVIXpRkXBqYxqR9/j0tsyUTNQ07odXp581Tcrx1BH95tWdNxbrGgzBxMQOU5Jrw1Q/txNVbwtuPkiTjr6f68NlfnYJ7DYmJlL+ntXpbRssr2jAqvUYD/C5Ln7+iCu+oLUx2KQRBEARBEAmDemoJgoiIRxTx4wsd+OKpJhIUEauOssNXGelBxAdlJx+JihaPVRvqKO0ZcyWxEiJVESUZ//7H88HnJr0GX37/9iRWtHSUN//5NBJ16jh1j4Kd+00Iczq1ep0TGHRFF+xk5eZg6xU7wkaJrwSXw4lTrx7FkRcPYnJsXFFn+Ppnq+QZFvW2ItTZiuYtkw7MjX2L5YZ1aKgVf+w5CUHhPlSRYcH/27odufrInZoL9WEqBdgeSYjb97wcTJrQudIrCjGWTD3CnIpU5Kyl/P151lBnbLzon3TD7g79Vqe96vrdrhaNedbg42fO9Cf8/cI721P3vKG8liLBycq4fvc61JRFdwtyOp14+umn0dfXG3G+VsNh6/qcMEGRxyfiQs9kREFRdn4x6hqvjCkokmXg70d78afD3fT9LgPlJnvfDTX4+zdvChMUybKMU5fGcOUXnsQnf3FiTQmKAL+YapZUPs4lkjxTKN5ywpNYN81EYeQ5PHT9JhIUEQRBEASR9qRPTwFBEHGjdWoanzzyGv7a208G3kRSUHbGaWKMtieWB8WfLQ+9wgni8uRMEishUpnjXeN4qmkg+Pw9161HQZYhxitSC6eiY9WoTR/Ldh0fOpeocRSsdo7AVoggeGieHMCEJ7rgMb+4CJu2bY1rXeOjYzj8wgG8duQ4XE7nvA6RuVu60GDFtpxyaNn0Msydey4V5NiClD7nOH7WdgATHkdwmlmjwZV5BSg2zY98iRWpwzFsmBjGLQgxh7snOp7Hpg11zs4kOGot3iidihb6DlOJMKeiNdYhGy8yFCKEVy5PJLGS1KQ+2xwW47LaoiIgdW9eKvc/SYXti1ShstiCvY3R3Q9dTgeeeeYZTE5OzhPyAoDFpEVDVTZ4RXvPMeNDc/cEXO7556KSyg1YX78dHBe9PeLxiXj0uYs43Dy0xE9DzKLcj3UaDiZ9KJp13OHBe7/7Mt52/0GMTK/NgYzK7ZOqx7hEwgLIzwiJiprHHNEXTmE+v7sKuwpTP66TIAiCIAhipazFNitBEFEQJAmPtnfhnuNn0OeiDnMiefgU3vEajkQv8UYpKiKnosWj7DRQjmgniLnc97cWuH3+DmmOZfCDT+5NckWLRzmSO8ugibGkuggXFamv073WFh4FMhlBPCRDxtnxXjiF6B0zpZXlqG2oj3t9A719OPTM8+hovRgedREBi0aPnTkVyNDEjhpRE/NFRQv/xrySgF91HEbTeG9wmzEMgyqLFbU2W/g6Y2xTpeBMlmX4JDFmhEaijRby9KHf6qjbmdg3izNhoiIVHSeUYj411Z2q3NlQCgNPt8qUfKC+JPi4a8SB1v7phL/n3J9yqn4l7OIO1UQM9FoOt11XHXW+xz2Do68ehNMZ+ZxSnGdGzTpbWITv2LQbF3onIcwRWrIch/WbdqCkvCZmTRN2D3781xa09aVvbOtqUJwzXygtyTIeeakDOz77d7zatrajJnlOGbu69g4g79teEmzvipKM44OTSa5o6XyooQS3VucnuwyCIAiCIIhVIUUvywmCWG26HU58+thpPNbZCxpgRyQbZTSNNo3id1IF5fYlp6LFo/wlzlA0BhGD3nEXfvBie/D55sosbKnMSmJFi6dnONRhU2DRxVhSXSgFqmq8ab9DETsDAPuKaiMuJ8gSTo/1whPDIaZqQw3qt20BG+fzqyiIaDnThKeeegoTE7GdPnQcj+3Z5cjVZ8S1hmQx91xq1Rhg1Rph5nUw8loYWC20LA82wuX3S4MteOZyEySFECnfYERjdg6MvN9BIZZQS6P4HmeXihWhkWinonxDSFTU61CX4wvHqtOpSOna4RPVd3xLBV7rCf1Wt+Ra8P1r68FTGznIboUDw2q4FAHznYrSKZKVCOdt11XDYtJGnCf4vGhpOgr3jGLQm2LX3FCehaIcU9h5r2/UiUv905Dn3NjS6PTY2LgH2XnRHZEAoGvIjh/+pQXDk+6lfxgCgH9QxWfesRk2c/i1xPCUGzfd9zy+8vuzSaostdAoRUVr8EbsHdtLg4+PDEzC7lVH26sm04iPbV2Hr+5Zj49sXpfscgiCIAiCIFaN9PKdJwhiyUiyjD91X8ajHV2qjAMh0hPlCH+e4s/ijlJURE5Fi0PPsmE3q8cc3iRWQ6iBnx64hPfsLkO+RQ+GYfCtj+7GDff8PdllLci5zrHg41KrATzLhB0z1Iqyo12Nx72WifA4gM1ZJdhgLUDL5AAOD7XDLYWEjm7Rh9fGerEjpww8GznCrqyqErasLJw5egIOuz1udcoAxsbG8OSTT6K+vh5scWa4jYMClmHQkFmClskBDMyob2SyEm6OWOiWsu1Rl3UJHjzSfijMUaZtehAjbjveWbk7+J2ZNBo0Zueg3T6FlhjvrRRfi4H2UywRUqTYmHhh5DUw8CGHs0v28YS9VyLgGGXnnjo6toCw/nWKX1omt3/vZTxzz7WoyPWL4nYW2PDGilz85dJwkitLPqUZeli0oVuHz5xOjqioJEOPKY8QdBuMdiRTvkq5O8w+lhA4TgYOwc4VRgYq30+FzYuk8/pdpagtz4w4T5ZlXLzwGtwuB6x6Y9g8hmHQUJ0NnSKWT5RkdA7aMTE9XwxkyrChpmEndPrYkcSnLo7iT4e716TAI15kmrV48ON7cFV9yL1FlCT86XgfPv3oySRWRqQSxRY9KrJC+/WfO1I/ZpBlgA9uKsHHG8vBR7m+IQiCIAiCSGdIVEQQa5hB1wweON+G85OJty8niKWgvImnoYv1uBMm2qLtuyjKM8Kjh0bs0eOFiPRHy7HYW5MDm1ELDceCYxloOAYcy4DnWGhYBgzD4KULw7h9l3/0YmWRBVurs3G6fWyBtSeXIxeGIcsyGIaBhmNRajOgc3x+1JbaUEaeqVFUdHhwAl880orP76iGgfd3oGk5HluyS1GfWYwfX3gRXsVndAoenBnvQ2N2Kdgo4lxrpg17rtuPC03n0d1+KS51zm5ZSZLQ1NQEZyuw7apd0Bujd+LV2QoBQNXCosXEnc1i5HXYYCnCucm+sOkTXidOjXWj3lYMk8Y/sp9jWdRaM9FpsWKAYSKKhTQK4disUEkSo9eTyN9/ljb0PcuyjAmvuo4dym2zlO802ShFz9QRvjwECbjumy/gyBdvQK7FH8343roiEhUB+GB9SfA3NjzlxmtdqyMWnLsL/u0dOxLyPk6vgBt/ewJDruUNGFCh+WHKUFaYgX3bi6POH7zchanxEQDhLnsMME9Q5PIIaL88BU8Ep5OsvCJU1W0Fx0W/BS7LwNMn+vDyucFlfBJilpoSKx66ey9Kc0PXzh6fiH/52TG8QNuWUHD33srguWXC7cOz3akdhZeh5XDf62pxzbrsZJdCEARBEASRNEhURBBrlKf6BvBwWydmRPWMwiXWDj7F3Vmyuo8/HlEp2qLtuxjWWyzBx0PTbnhjdNgS6c9//kMD3r6zdMHllJ27DMPgax/ahZs/92QiS1sxDpcAUZLBB+LCKrOM6SEqEpXnFfWJigDg6d4RnBmbxt1bK7G/OHRDm2dZVFvy0Tw5ELb8pNeFponL2JIV/bfK8TzqG7cgtyAf506eDo8XWQZzXXCmJifxyvMvYftVV8CWHT0CsM5WCBkyBmemVvT+ycIrCTg12oXNWaVR3aGUjLijuUPJ6HQMI1dvQZ7eEuxsydRqUWoyY8DlDBPIAeHncV/AXYeJcW6XEhh/lqVwkvCpyOlnFqUAT1Rp/BmJipaPJAFf+kMTfnjHTgDAxuwM2HQ8Jj1rO/J2X0no2H2kbWTVRDRu3+rsgyYtjzsaivGNo53Lej3tcctDp+Xwtuuqo7o7uZx29HRG9unTasLPs9NOL9ovT0OU5l+fFZfXoKSiNmYsqFeQ8NuXOtDaq842SKpwdUMBHvzEHmQYQo6Fl8ecuPVbL5HLLzGPPeWhc8vTXSPwpnB8q0nD4eEbN6Mu27zwwgRBEARBEGkMiYoIYo0x7vHiu81tODE6kexSCCIqykgQXoWOEqmOcvS9Gh07kkG52RR83DXqTGIlRCpwRWV0cYQSbo54ZcM6G17XkI+XmxJn7964PhsWgwaiBAiiBEGSIUoSJFGGIMmQZf8xVpLk4J8oyZBkGeX5GXj/G2rD3FDWZxvxfHvCyl01lN9E6t6yXphBlwf3HG7BxkwzfnHd1uD0aJ9p1O3AmfFeNGQWR3UsAoC8wgLsvfH1aDvXvDLXonmnFBketwdHDryMzTsaUbQuusBpo60IgiRi1OOIukwqc2ioDYeG2sDAL05hGQYsw4ABg8qMXFxfvAkAIMkShtyROy51rP/yfMQ9DbvPjQpzLjiWhcfjgY7jsM6cgeGZGdh9oc45pajIExDysLFERQlUBGTpQqKiGdGXsPdJFKzSqShC57QaSKRobC3wVNMAJEkGGzh/12WZ8eqAel3U4oFVFxIIKMUCicbpEfDogQ68e2/lvPZUPJFlGc93x8dFki6rFs+b9lbAlqGLOE8QfGhrPglZcRyOduqadHrQfnka8hxBJcNyqKrbgpz8kph1TDq9+NWzFzE4sTJR9Vrntr0VuO9DO8Fz/vaHLMt48fwQ7vzRq0mujEhVckza4ONX+1P3PKthGdy3t4YERQRBEARBECBREUGsKV4eHMEPLrTD7lvboy2J1EeQ1e8okcooR7Gz83uAiQiUmUM3kTqG1dnhTcQP5WhnWZZh9/kgw99ZL8kyDDwPIx+5mf3IZ6+F0+2D1ydBlmVIMiBKEk62juAT3z28orqe/fbNqCy0LLzgEnjjhnz86GhPXNeZDGadl4DEiipWi+YJB5w+ASaN/3fmi+E8Oep24ORoN7Zkl0LLRr/802g0qG/cguJ1pWg6+RrsU0uPx412RpFECaePnoTD7kBNfV3U12/MLMaxkUtwq1CQMosMQJQlKAdccwpBl1eM3A7nGBacQgzkFr24MNWPyoxcuFx+tzCWYVBgNMLk02BkZgYMEy6EcQfWrdNH7qgFMM/pKJ5kKuLPpr3uhL1Poghz/FGRUxERXzyCCIPWf6zM0NItM58kQRsQCkzPrK7byJcfO4Ov/aEJWp4Fw/hjZjmGCUZhzT2dK0U9yv05OD3w/9GPvw61xVYAwIDTgxODK4iDT4M2xWpTX5mFrbU5Ued3XDgNt2vh6y37jC+ioEirN2B9/Q5kWDNjvr5n2IFfP98Oh5vuj62EO26owRffty34XJZlfPfJC3jg7xeSWBWR6ijv83VNp6aoL1Onwfev24jNufG9viYIgiAIglArdIeEINYADp8PP7zQgYODI8kuhSAWRbhTEcVzxRtRcfObpSG1iyJX0UF7vp+s8dc6Oj50XHpxoB+/bA+38ikxGvHV7TuiRi2Y9BqY9OHTbtpdhqu3FKG1dzLoHhT2JwYchyTZ7zQUcB6SZEAQREy7fHEXFAHA1iIrHrxlEyADMvxORzIQ+B/q1JOBCMvIimX9C0hy6LXKdSHm6xB0T5p9HylCLXLEdfvX9cbavOBnsuk0eHdNMSY9PjzXOwKvSuOCZjt5gYWjpqZ9bhwdvoQ6WxFy9LFH2tqys7DnumvQ2daO9uYLEJcUlRv+m5/b19re3ApREFG3ZVPEV/MMi4bMEpwY7Qr+vtIB5bEgmpOMnpvvACJDRod9GENT42BlObieDI0GJp6HZ853w4IBy3Iwm0zQcbx/Gyr2I1GWwDEs9BwDSZaD+0rw8Qo/p54L3V5wCuqLOlEespWujqmOUjxB+oaVo1EcW+1eEhso3dBOdY6v+vt7BQleIX7747ocE9Yr2ks/O9MXt3UTC5Nh0uCW/ZVR5w/1d2NibL6j59xDmyBK6OifLyiyZuWhemMjNNro4loAON0xhj++0gUhhSOX1MA/3bQBn31XyDlTlGR86pHj+PPJy0msSj0o3WFjRfSlG/qAUHQWZ4RzLccADTkZ6JyewVQSYkiNPIcf37AJG8mhiCAIgiAIIgiJiggizTk5Oo4Hmy9i3KO+G/vE2kVQ3Bwkp6L4Iyo6ymjzLgzPAnqOCz5vvryC0cxEWtA2aEeexa8K2p6TO09U1Ody4Q9dndhXWAQG/o6QHL1+/ormYDZosL0mN251irIcl4jDWzYWxKGa1CHPoMMnt1QAAOqzzPjWayuI+0oSDMI7en3SwjfbvZKIM+O9KDbaUGPNjxmHxrIsqjbUoLC0GG3nWtDf07u4uhbxc+tsawfLMqhtqI84P0OjR6kpCz3O+MTRpAJKp6Jooo9oLlKyLGNoegwahkO2zhz83liGgWGOI1qxyd9RXpNfgoasyPvttpzimLXOOq7JmP3vr0GUZUiyFPgvQ5QlSLIMQZYw6Z1Bv9OOKksoGnIhoVsqohTnSCoRFTFgwhyuJp3qdflKBSx6Pixqa9DpSWI1yefBazaGCViPXRxNYjXx4dNvqQ/G23lFCb8815/kitYWt72+GgZ95PPdjMuB7o7miPPm3hPoGrTD5ws/z2Tnl6CqbmvMCFAAePbkZRw4O7CEqolIfPjmDbj3nSFBkSBKeO93X8ax9vRpvyUapSZuLd2WmRcxO+cCosxiwDevrkV9TgamPD7c8PvjcPpWr11p0fL43us3kqCIIAiCIAhiDiQqIog0xS2K+FnbJTzVN5jsUghiySjjz+LRIU6EoxyQSU5FC7MlMys4kk4QJbQMkKhorfOTg5fwuoD4x6rVYldODo6Nhne0/aW3F3/pDQkxPrFxI7bnhARDDzV3Y8rjw2caq+NenyDJeMNfj8AlhG6++tO/GLCMvxPa/98/Ktb/3/9ckGQYNRz+ctMVca8rFdmQqc6bxZo5nWveJQg4LrsmMeFxoT6rCBaNIeayRpMJW6/YgfLqSlw4ew7jo7E7ipRVyTEsUzouXATDslGj0MozcjA4M7mkz5XKaNiQMFWIEqul4yJfmnvcHkAGfLKIwZkpZGpN0HOamCPajUbjsmtlGWbJbYMSkxWbMsNFTImMWUsUyk+tlphEv9tUyMVKpyGHz5Vww6bC4Lb0iBJ67KkZybIavK+uCPtLQkLBiwPTaFN5G3h/fT7etL0k+PyJtvmOOETi2L25AFUl1ojzJElCx4XTkKKc930KtypBlDBhDxf8ZeYULCgo8gkSfnfwEpq7J5dRPaHkA2+oCRMU+QQJ7/jOQZzpnkhiVepD6RG5lm7LzDWfU6RU463V+fjcFVUwavxtZ6tOgx35VhzoWx2nvEqrAQ9csxGVtuW3pQmCIAiCINIVEhURRBrSPDmFB861YWDGnexSCGJZhNlAJ7GOdEUp2mJpCy9IrTUUkdA16oQnjhEMhDo52DaCc5ensKnY3zFye2XVPFHRXH7e1obG7JxgZ72OY/FE5yCe7RvBm8sLUGTUgWUYcAwDjmX8MUaMX1jp7+SP9piBhmWg41jI8I+6/3PXUJigCJgVE8rB/7GYESU4fQJMGv+lQseEE4MuDxiEC5CAkCgJwemhZeZOQ+B1bNhrIrx+9rUI/z93eTaw0tj1hDDyHHiOCTi8+G9UqzT5LMylCAC8i3AqUuISvTg+0oV1pixUWnLDnHQiYcvOwu5rrsbQ5X60nGmCy+lacs1zaW9uhcVqRUFJ0bx5PMOiMiMPF6bSw0lA6UI0b3R2AF2E+DMAcM+EixomvE5wYGDU6GHmdWHiotn2k8FgCBOaJAOvqO7YKDXF7/kkAdrA76c6PwNHOsglYrncsj3k5NU8ZsdaTUZabzPiUzsqg8eQ/gkX/vknR1Qdr1eabcTDH9sTNs0jSPjUrnK4fCK8ogy3IMIjSnCLEtw+ER5Rxowgwif5Hdp8kgyf6Hds84l+Bzerjm6rLobcTANuvLIs6vz+nnY47NHFPrGOyVq9AVUbG2MKiqZdPjz63EUMjK28/bLWedc1VfjCe7YFn/sECbf990s410sR4UtFDnMqWlv3ZZTtVJZhYNHy+NKV1XhDxXzXXpOGmzct3lRYDfiXrWW4oTyHBt4RBEEQBEFEga5+CSKN8EkS/rejG0909YG6vIm0ga7n444oUfzZUigwhJw8+ibW7oh1IpwfvNCOH7xvOwAgS6dDvS0T5yejj851CAKaxsexJTsbAHBbZSF+1doHh0/Eby5eXpWal0KPYwZ1mRkAgJND0/jyKxeTXFH8+Mqearxjg1/IEstNJ5XRcXNERcsUcPQ4xzHstmODtQDZ+oVdm/KLi5Cdl4eL51vQebF93nxlh8hituy5U6eRnZ8LjWa+oKbIaEOfcxwOQf3xQ1qFU1G0qDpdlPizuaIiABAhw+6bgZnXBaeNup2YEfxxx5fcU5geCx1XZsV6fY4JdNjHwDKsQpjIBgSNrF+wCBYsy4AFGyZe5FgWPMNCw3LgGAY8y4FjWOg4HvmGDOToTNBxPBiGgSzLOD+hbrdUtTgVAcCox44io99R5radpfjV4a7kFqRStDyLK6tzgs+35Frws+sbghGAMgLHNTngEAV/h7B/urwowc3cfsq5ncg8w0DHs0FXwVlxrFIwGyghVFOgHgRrCU2brS9cEMxEdMRQ1r+jIOQm4/GJ+OiPj+DSkGPhD5jCfOX2rfOm/WND7DjIpaLhySksEhzL4O3XrwfPRb7wtE9PoK+7LeY6wsQXc1ZTvXEbeD6yMBcAuocc+L+XOmB3UTzkSnnT7nX4jzt2BJ8LooS33X+ABEXLRA5XFa1ZdhVY8dEt61BojhwXbtYmTlRUmqHHv2wtwxsrcsPiTwmCIAiCIIj5kKiIINKETrsD959rRZeDRl4R6kc93TjqRKD4syVh02qDj4ft5ABH+Hn63AA6hh2oyjODYRi8t7oanztxPOZrfn6xDd/J2g2GYWDW8HhbVSEeae1bpYqXRo89JCpan5le9u9K9xa1ulBkaEOXcbIsw71EpyIlbtGH0+O9yNdbUGPNhzZKDNcsvIZH3dYGFJYWo+nEa7BPK+NwlnZO8Xq8aG9uRd2WTRHnl5qz0TLZv6R1piK8Mv4sSrRLNKcij3txoiqfYr16Q3is3ay4YMrngSMgPEoEZl6LzVnF6HGOY8htT9j7rAbRvqdUpNs+FBQVbS61Icukxbgzcd9zuvLoR64Ep3A6YRkGuwptSawoNfja400416v+uKhss27hhVaIUR9d2LKWuXZXKQpzIrclRUFAe8trC64jmqNLUfl6WGzZUV/3yvkhPHW8V9UuW6nC6zYV4Nsf2Q02ILwQJRnvefBlNPWo//iQLCTSFAEAvrKnJuz51IwPPMfAFLjemXWYjSc5Bg0+vHkd3l5TAA1HglCCIAiCIIjFQK0mglA5oizjd529uPvoaRIUEWmDqLjrx5PoJe6EOxXR9l0IPRe6ieVwqzvOhYgfkgz88MWQU0tcn1vPAAAgAElEQVSBwYDKjIyYr5n0etE2FRrJe3t18TzHmVSh2xFyRymKMmpUrSjPK2qKOFLCJeDYPeSexqvDHeh1ji/KwcmWnYU911+DdZXlwWnhZS1u23a1d8Bpj+yAkW+wQMMmPvIg0Sjj5QQ5WvxZFKciV2SHPC3LhwnklOvVGSLvs+4ER5I5BC8OD3eiz6k+xwIe7BzBoXp8X9unB4IRiCzD4Cv/0JDkitTH9vJM7KzISnYZKcdfTvTiV4cuJbuMuPDpR0/g/17pxMHmIRxqGcKx9lGc7hpHS98kLg3Z0TPqxMDEDEan3ZhyeeHyCPAuMfLY7aHrhLmUFWZgb+P8mNNZui81w+Ne+D5WpHaJLScfpRUbor7mYNMgnjxGgqJ40FCRie/ftSfoxiVJMj7841dxnOI2V4Tyd013Zfzb48WOUWx78AAcnpC4O57ukUaewycay/C3f9iBd9cVkaCIIAiCIAhiCZBTEUGomH7XDB4414aWqemFFyYIFeERQzdweZYu8uONUrTF0u2rBVGKPlxe9TgXEInnT69dxr/dUIPiTCMYhsH7q9fjy6+divman7W14hs7d4FhGNh0GrxhXR7+1Jl6MUE99pCQwZZmI+/ZMOGAOnuaEuXOL8gS2qaG0OeYQLU1D7n62EI5lmWxaXsjMqxWNJ8+Oy+eZzHIkoyWs+ewY8/u+esHg0KDFT3O8cV/iBREKSqKJlaJ5lQUKf4MCI9UEyQpaOPA8XzEODkA8IgU/RINPR9+a0SQ1XO+90o+tE1exqasMgDATVuK8PNDl3CqK3okJxFOllkXJio73DqM/okZfwxZIHqMUUSSAYHpc+LJFnPcmyuOUD6TJBlunwhRCkWXyXLgcSDuLPh+zNzHgf+Bx2AQrD+4jsAbzo1rUwpCOZaBSadBz6gDD/ytZdHbMNW5OGDH53+9sCNOJBjGL+Zl2dk4SAYsA7Asgw9cU427bqoDAHh96hEjrgY6LYe3XVcdMW4PAMZHBzE80LOsdWt0elTXNYbtt0q6hux49mRquoGqjaoiCx7+zH6YDf62hSzLuOdXJ/Hi+aEkV6Z+pCjH4bWIT5Rw799b8Pi5AQDh2yMel2tmDYfbagpwR30Jco3ahV9AEARBEARBzINERQShUv7eO4CfX7wEt0g3roj0w6OInNCs9bsrCcCjcCpKhNtFuqFRCNucNAKZUCBIMh46cAlfudUf3bTObEahwYCBKCIAABh2u9HndKLUbAYA3F5VlJqiIoVTkZZlwLPAEgfspyycQpGjUk1RWPRHInCJXpwd74NNa8R6ax4sGkPM5cuqK2E0m9B24kxo4hK27XD/IBzTdpgt80VM2foM1YuKlALpSE5FDJgwkZAS90zk2E2eDV3KCzGiz8LWlWCnIjUz1xFLUpFTEQCcn+hCra0YGpYHyzD49Uevwo3fehHdY+Rkuxiebx6EJMnBWJ9Jpxf3PHoyyVURqYIsA4IshysAArjo2iAqb9pbAVtG5Ng5n9eDS21nl7diBqiuawSviSwM8PhE/P5gp2rbeKlEUbYRj9y7H1mB71GWZXznby34w7HeJFemfrQ8i20Kh7xEt+1TDbtHgCUwcKVz3IW3/+oERhTRrcsZqBAJI8/hbTUF+NjWdTBrqRuMIAiCIAhiJZD9A0GojDGPB18+dQ4/vNBOgiIibXGTU1FCmRFCnY98ouwu0giDIpJm2k0uD0Q4vz3Wg1G7B4DfDeCDNbULvubXHe1Bp4JyixE782wJrXE59CpERQzDYGueNYnVxBdOcdhTq1PRah27J70uHB/pQuvU4IJxULkF+dh7zb6oLjkLcbk7sluBTWtUvQA2zKlImu+AEy36DIjuVKSJIlTSR4k+A0hUFIu5zo1qOzQ4BDcODzUHn+s0HJ789DWozDUlsSr1IEnAiy0h142btpVga3lmEisiVIm6T1Vxpb4yC1trc6LO72g9A8HnjTp/Lko914baDbBm5UZd9omXuzDpWPy6ichkW3T45b37UZhlBOAXFD1yoAPfe6o1yZWpn+qCDDz+qX24ZWdpcJrTpx6HxHhwx2OncaRnAt986SL2//hwmKBoLstpkxl4Fh/bug4vvGMX7tlVSYIigiAIgiCIOEA9tQShIg4MDuPjh0/h1BhZ2RPpjUcM3VBRe0diKuISlaIiNmExOulAllYLIx9yL7g04kxiNUQq4hEk/PzlzuDzKotlwde0TE1h2hcSqL1rfXFCalsJHlHCoCvkkLKzYOHPpRaU8WcRTAdUAa/4DKvxEfqcE3h1uANjbkfM5TKzsnDddddBo9Esua6RwcgxGgyATK26hRE8EzqPeCOIirRsLFFRZKciViFUUjoV6aI4FXkkAfKq/FpUypy2kBq3Vfv0AF4b7Qg+N2j9wqIP7atMYlXq4cO/OAafYmDDng15SayGUAvqO1IkngyTBrfsj37cGervxuT48LLWbbVa0di4Ner8A2cHcI6iH1eM2aDBw5/Zh4rCUPv/Lyf78B+/b0piVenB23eX4c/3XIP60tCgEq8o4dN/PZ/Eqlafk5encPv/nsT3X+2OOD8s/mwJR1oDz+KuxjI89/Zd+NjWMhITEQRBEARBxBESFRGECrD7fPjm2Qv4dlMrHAKNMCbSH49I8VyJxOELP45oyA0qImaex307GsEEfoMeQURz/3SSqyJSkQnX0kdDP9UXig3YnZ+JKosxniXFhW57yCFlY/b8WCq1onT5IaeixeMRBZwe78WFyYGg09ZcGDDIzs7G1q3RO/yiMT05HVVAk6UzL3l9qYTSddEXQVSk5yK7Owk+AWKUtr/SWcencCrS6SM7FXnIpSgmbJq0N0+NtaNpPCR01fIsvvCWTbjwXzfjh+/fgSJbdCertc76/IywY+tai6IhVg79Yvzc9vpqGPSRO/JnXA50dzRHnBcLWZbBsiz27NkT1RGxZ9iB505dXvK6iXB0Gg4P3b0Xm8pD0VyHLgzhk784kcSq0oOiTAO+/u5G6LUhsXnriAM7HzyIo72TSawsFVnaEZVlgNvW5+PPt27Hh7esg1W3POdUgiAIgiAIIjok1yaIFOfilB3/eaYZ4x6ybybWDh4p1DlGLjrxxzmng1LLcmFCrrUOzwLvqajEDSVFYYKr77/QjukZij8jwtFrWHzsmurg86EoUUVzebKvD7eWlUPH+W8qv6O6CF8/1Z6QGpdLj30GV+T741/KrZHdT9SIUqyqVlGRXuGgFk3gkyguuybhFLzYnFUCDcuFzZvdsuvXr0fzhRYMzUwtad2jQ8MoKV83b3qGVt1CiHCnovninmjxZ9Giz+YiSMr4s8j7KkWfxUYZUQcAkkqPDQBwbKQNXlHA9tz1wWk6DYc3bC7CjQ2FcHoEXByy41TXBF7rnsDRjlGMruGoID3P4r63b8FbtpUEheSCKOFvp/qSXBmhBlR8qEgIuzcXoKokcmSuJEnouHAaUgRx7ULIsozNmzcjK8svdGHAhLmXeAUJvz/YSd/HCuE5Bg9+/CpcoXBqO9czifd/73ASq0of3D4RPlGCTtF+vuGnR5JYUerQUJCB69fnYl9lNqqzTTDrQm3jhXbr68ty8JEtpdiQpe5BCARBEARBEKkOiYoIIsV5eWiUBEXEmkPZOcakycjxVMIthAuIeNrGAIBMrRaf2FiLOpttnkPWyxdH8P3nLyapMiKVueu6GpRk+V2GZFnGbzo6FnhFiFeGBnFtkT/67PqSXHyvqQt2X+p0/Pc4QoKGHIM2iZXEFy4s/kydvU8GLiSAkJIQvjLpdeH4SCcas9fBwId+G7PnbJZlUbepHm2DvdFWEZGJ0bHIoiJe3aIi5W9O2caZRctGHk0dTVSkZfngtpZlGYKsFBVF3lZukUSxsdCy4UI9NcafKTk9fgmDMxPYml2JYlNOcDrDMDDrNWgsy0JjWciFQpJkOD0CesaceLV9FL871ou2IXsySl9V9m3Iww/fvwOGOfEoDz13EZ3DseMeCYIIJy/LgBuvLIs6v7+nHQ778txYLNZs1NfXB58zTLig629HezBu9yxr3YQfhgH+685duG5bKJa5a9iBW7/9YhKrSi/GHV58+y/N+H//0BCc9sEdpXj4xNLay+nEjmIrPnV1Fa5SOGPNRZYBLccgx6BFnkGLLIMWZg2HfKMO+9dlYUtu+sR0EwRBEARBpDIkKiKIFGdTpgV/iBwxTRBpi9I5guQu8cc9p0MzGTE6qca27Cx8etPGsIgawN/J9pODl3D/062Q1N2/SCSAAqsed15dGXzeMT2NsxPji379Y5cuYX9hEViGgZ7n8MZ1eXisoz8RpS6LPmdI0GDWps9lA6eMP1Ppjq10UVttp6JZZkQfTo51Y2dOOXSB+C5lhFRBQcG8Tr+FmJqM3NnIMgyMvBYuQZ1Ce6XwK9I5N7pTUeQ4OC0bWl6U5bCNTE5Fy0MTtk3Tw71xcGYCT/WdhEVjRK2tBDWWYuj5yAJRlmWQYdCgvsSG+hIb7txfDbdXxNm+CXzv2TYcahtd5eoTz8YiCx6+84qw45bHJ+LrTzThlwcuJbEyQrWs4UsqLc/inTfWgOcibwT79AT6utuWtW6W41Bb3xg+2IhB0L6kpWcSJ9PwGLXafOE9jXjr6yqCz4emZvCG+55HBC00sQJ+9kI77thfheLAoJQtRWtTELOjxIp791djV2nmgst+8cpqfPHK6gWXIwiCIAiCIBJL+vQOEESakqXTJbsEglh1UsU4gmMYaFgGLBgwDOCTZHiVLkoAtBwLA8dBz7HgGRb9MzOqEJ/Ishy8MTvXlWet0ZBpxb0N9WE3qgVRwl/PDuAnBzrQ3D+dxOqIVCY3QweNwjHm+y3NS3q9W5JwaXoa1VZ/TMRbKvJTS1TkCAkaOAYwa1k4vOrvWVD2d6nheB0JpS4lmR/BIwq4OD2MTZn+Ue2MokdVq9XCmpmJyfGJRa/PPjUNSZLAzhF4AkCGxrAiUREDBvkGC9hAzJXyzCfJMgRZhCCJEGQJPsn/WJLluDhBeRSCHovGOG/+UuPPlLFzwpwYGV0UUZGHnIpiohTqqdXBLBrTPheOj7ThxMhFZOstyDfYUGDIhFVrRIbGCH5OjOEsei2HXZU5+OVHctA54sC7fnAYQ9ORhW5q5NM31YUJin7/ajce+Hsz+scXFztIEABU72oWL26+ugK5mZHPP6IgoL3ltWWvu6J6E3R6U8R5TreAP77Stex1E34+fms97rixNvh8yunF9V99Dl5B/e3+VINjGWSZQwLfU5eXFhWsZhgAt24qwF17KlCZFXmfJgiCIAiCIFIXEhURRIpDDiJEMuEZBjzLgGNYaFgGHMOAZ9ngdD7wnGPCHwf/Aq9hA/PnTp+dxwLBxxzLoNaSEayBAXBHdRn0vF+4ow904Euyv9NHhn+UPgOAZ1loGAYalgXP+v9rWAZ8oP7Z2pUamtl+o9nbwVqWgZ7joOc4aLn5nZoL0T7twCeOnFZVRzXPLP1zpgtGnsdnNzeECYp+9GI7Hn65EyNkoZ/W8CyDD+6tQEWO2S8ckGXIgeNK8Pgy+1jy/5fl8K4jqyE8sqjOZsPh4eEl1fF4Vyfu3bIVAFBpMWFTVgbOjadG5Mygyw1BksCzLBiGwY58G17qXbwTU6qi7EQWVSoeYMPEoMn9DMMzdkg2CSzDhtUlA8jMyV6SqEiWZDim7bDYrPPmmeY4rKwzZWNvQQ0MnBYSAvtr4L+MwD4beM4AyDUsfyR48HgAOXCMkIKCI3H2sSxBkCR4JcH/JwqYbXAoI+IiCXl1S4w/U7rq+ZSuOgwDnT7ygARyKoqNUqglpYlT0VxkyBh1T2HUPYXzEyErXBOvh0VjhE1nRr7BhnyDDWZNuDigIteMg//vOtz24CGcS5MO0Pri8OPM5359SrXudQSRTBqqs7FtQ27U+V0d5+Fxu5a17qzcQuQWlEad//ihTjjddH5bCe+7bj3+7bZQHJfLI+CGrz0HB23XhGAxaMIiN1vWQNQoANTkmPCNm+qwrdiW7FIIgiAIgiCIZUKiIoJIcbzkNZyS8AyDigxTUAjDwN/BxwQEMmxQdDMragkIWhTT2FkRjeI1/r/AusCACzzm5vzNIgPB9563HOtf1+xzLcvCI0owafh56+NZ5ePUEpgwDIN3VUW/kZhqVFvMKDMZ0elY3o3TZCCkaefZYvho7fowd4J/+81r+ONrl5NYEbEaaDkWn7yhBv98TXxt1GutSxcVtUxNwenzwaTxiwpurShIGVGRKAP9Tg/WZfg7l7fmWdJCVKQ8j6aDqCjZH0GGjEnvDLJ0Jij9f2TIsGbOFwcthGN6OqKoyMiHi2X2FdYiS2de8vqXA8swAMMgsp/L0ojkghPNqcgzE1ncyirEwEqnIp1eHx4Po8AtUOdgLJSionSJP1ssTsENp+DGwMw4WiZ7AABWrQmlplzUWothC+xnWp7Fb/9lD/b857OYdKnf+apzxIE8iz74/G+ffz2+/NvTOHqRYpQIYrFYTFq8ZV9l1Pnjo4MYGexd1ro1Wh0q1jdEnX+sdQRtfekhckwWb76yDP/+/u3B515BxJv/6wWMTNPgmkQx4fSif9yFokD82b/fsAE3PXw0yVUlDh3H4l2Nxbh3XzWM2ni0pAmCIAiCIIhkQaIigkhxyKco9bBoeHzvyu3I1GkXXjjFkGR5jrsBkQg4lTmMrdVB2SyAnbk5weePHu4iQdEa4Nq6PPz37VthM8b3GC7LMs5NLE9w88rQEG4oKQEA7CvKxjdea4cvRXbMPudMUFS0PnN+bJMaUR6j1RpzpIxwS4XolemAqGju2S/DugxRkd0RcbrSqUjH8SsSFM13ogkFt0UT5cSLLsdI2HMNw0Vtm0VzKmIVWzpTZ4RNa4AMGVnZOajPLAg4NiHk3gQZNq0ePlnCjODDsZEejLgjb+e1Ch8Wf7a2REWRmPI6MeV14vxEN7blVGFrdhUAwKjj8buPvw7Xf/PFJFe4cu58+BiOf/lG6AOdnDWFFvzmk1fj5y+042t/OLtm28cEsRTeem0V9LrIQgH3jAsdF04ve91VtVuh0URur4/bPXjq2PLESoSf/VsK8a0PXxF8LogSbv/OIXSOOJNY1drgV4c6cc8t9QCA+vwM3P+mjbj7r0uL0VYDe8oycd8b61CeJteQBEEQBEEQax0SFRFEilNoMEDPsXCLdHM7Vdidl6NKQREwNy5l+ciKTlh59i8QCyQH4kYk5X9ZhgRFrBBkSJJ/+dmYITEQPyQG1pOt08LIc3AKApw+ER5JwowgwSP6R+QzYQ5P/lq8kgyfJMEnSfBKEnyiDK8kwSNK8EoyPKIInyQHO4tmOw4Z+NcFBpgRRDh8Aqa9AiZ9AuxeHwTZX2+GVgPDnEi0aZ+ACY8Pf33DFQnviEwUkaJY1gLXFxUGP7tPlPC9Fy4muSJiNXj/VeURBUUd09Ng4D8u+P/7O+79PxGFIx1CYVOiLGHc48HwjBuHh4dwyb48h6E/93Tj+uJiMAwDk4bHthwrjg5PLmtd8eaywx18XGYxxFhSPSh1n2p1KlIKo1LhEzh8/hHtYfGiAEwZZjAsA3kJvfPOKKIiZYRYnj48yuzAQAuYgOMiA1bh/sgE9mMGLFhM+2ZwdrwbsVrVLFjoeR56VgOOZcExoT8Ws1GvHDiWBc+w4FkOe/Jrgq/vcYxClCRoOR5algfHhmJbO6YH0ekId0HRRnEpAqKLiubCBBwuLWZz1PVlaEKOLIVGC37aeiTicmXmTBgD2zrYtpsVKUEOa/MhyvTw/3JI5KT4zzIMzLwODAN4RRFeSYAn8N8ritDzGnBggqI5CYBL8C5qeywHnlE4FaXEXpUayJBxcrQdWlaDjZnrAADV+Rl41+51+M2RniRXtzIcbgE33/8SfnbnFSjLNgXb8R+4thpFWQb868+PwyvQNTixeJg1NiRsW10uqksji4clSUJ7yymIy4zeLCguhy1LGakWflx+/GAn7Z8rYHtNDr5/1x5o+EAbRZLxoR+9ijPdi4+sJZbPowcv4e1XlqEizy+Qv62hCFdXZONrL1zEE+cHk1xdfLh9cxG+efPGZJdBEARBEARBxBESFRFEimPS8PjUplp8t7kd0z7128ynA1kKQdGsWAYyQp0rgXlBMY0sQ1QIZ/yPpeA0eVZkMyu4UfyXAQjS7OsCfwExjvKWpSjLEALzBFmGIAX+ZAmCJOOKfBsqLKbgsj843xkQ3sjwiiJ80myHjl+MM9vHOiP6RTxu0S/McYsCvGv43t2QO3pn1tzvRE2sVVHR/sL84OMjHWMYJpv3NYFRF978FSQJ9zc1oXkqeSIehyBgyuuFTeePd7q6KDtlREXdjpCoIc+ki7GkelAKbNXqRBEWhZoCwii74I44nWVZmEymqO5DkXA6Ii/LgoGe08At+sKi0LyigLMT8XMrkCDBJXjhwuIELDwTLio6ONiKCe/iR/nrOE3kOiQJHs/885KO5aOKmA2GxQn/zJrI+/KVeeW4pmj9otaRDKL91pVSdzkwIZIAaralNrv1JMgQJQleSYRFIboip6L5HBm+gHyDDdkBQd9nbtqoelERAFwaceKar7+At24vxn1v3wq9xi8uu3FrMb76Th/u/dWpJFdIpDzKw9IauqQyGzV4457yqPP7utvgsC+vLas3mlFaURdzmf4x9USNpxp162z42aeuhl7rvyaSZRl3P3Ich1qWFuFMLB+nR8CdP3oVj/3b1cjO8LfJcs06PPCWTfjAjlK85ZHjSa5w+Rg1HP5xewk+dXVVskshCIIgCIIg4gyJighCBezOy8HuvByIkowZUcS4x4vmySn8rrMXw27qBF9trJpQ50/rpBN3vLB8S+/V4paKfHxum7+TyOET8Nil/iRXlN5oWXbhhVKItRqJV2IyBR8/3zyUxEqIeLK9LBN331gLq0EDhgmNGp/9mZdlh773F/ov45ft7ckocx5nxsexr7AQAPC6wix8+3RHSnhlXJoKiSPMmsjxFmpDecRTa/yZMqopFT7BjBBJ+O6vzGTJWJKoyGWPLsjRcTzcog88o4iqSvIWmHsOFSRxSa9XfhYlXo834perdCLySRIuO11BVyaLIKBlcgp84LmWZWHkeeg5FhzLQs/592FRiiyaKTNnLan21SaamIqZ+2gpzRoOMM2ZJJKoaB4yZBwdacVNpTsBAJkmLXZVZuPYpbEkVxYfnjh5GS+2DOPZe65BToZfYPb2K8txtnsC/3uoM8nVEamMSpsRK+bmveXB6MC52KfG0d+zvPY1wzBYv6ERHBe7zblGL19XTHm+Gb+4Zz8yjCFHwv/4/Vn8+SRFgK82ncMO3PLNF/Gt923HlTUhV64tRVb8+f07VSks2lJowQ/fuhnFVv3CCxMEQRAEQRCqQ129ngSxxuFYBmYNj3VmI95QUoj7r2hErj49XAPUhE0XEhVNetThHjWjsAZXm+BFLSgjdPQL3ARNNeSU6JJeXSwaPmxfOJImnWIE8MW31OOq6hzUF1uxsciKuiIL6oos2FDo/zMoOkBSKfrq7709QReOXIMOdZnmJFfkp2M6JPBgGAabslOjrpWQDkLKLdkZwcczYuIioRaLDBkzUaKpTOa5ko3YCIIAwRc5LkXL8sjVZ2BTZknovZO8H3NzREG+JYqKov0epSjr0TAhUZFbFOESRTgEAdM+H0Z9AnqdLhh4DpUZZpSaTcjW62DSaMLaJkIU0UylJTv4WJT9sbGzf15RhFeU4BOlYNSsoPgTpVCUrfJPXuBPVCyXKjh9kZ231joDrnFMeEICwTv3VSaxmvgz6fJh/30vwD4Tur6799ZNKLClR/QnkXjU37pYHNWlVmyqyo44TxRFdLSeWfa6Sys2wJQxP1Jt7ikiDZpyq05+pgGP3HsNcgKCD1mW8b2nWvHIgUtJrmzt0j8xg/c8+DI++tARtPZPB6dvKbLiods2J7GypcEywMevKsfj79tBgiKCIAiCIIg0hpyKCELFWLUafGB9Bb7ZdCHZpawpbNpQ/NnITPI78haDXdE5x9MduISgvNGpYdW1jdUa/7MS6m22oOPBjFdE25A9yRUR8SLHrF14IfhvpB8dTh2b/yG3GzOiCCPvb57vLcpG88Ti3V0Shd0nYnjGgzyDX8S8tzQT58aSX9dKUJ4G1Xr8yzWEROWDrqkkVhLCFUVUZDAtTVQEAB6PB7xm/qVqvt6Ca4o2hglxki2MXalT0VLhFIJYrxguDhru60NJVTWKjMaorj4AMOyevw+Xmmxhz18dHsED51f3GoNngft37UCR0RicdnCgCT2OETAMAw3L+12ZwIBhGDCB/ywQ+M/+f/bOOz6Os87/75ntVVqVVe+yZbl3x04vJCEhCTUhHC3A0Y9w3BHggKMfHNyP3gmdI3AckHCEJKQASYjtuMndli2r91XXSltnfn+svEXalSV5pd2Vnvfr5Ze1U7+zOzPPzPP9PJ8vkgSyJCMhhR2cJGRkiZjSaBBaTi9rMWh0mDR6DBodATXIEVfTkh53JtHu7sdhCIlL64rsKY4m+bh9AV79jed57IPXIUsSVqOOj7xiPff/OPMcIwRLT4Y+UswLrUbi9qurEs7vbG3EMzn3EqDR2LJyKCqNL1acLipaqeW7F0q2Vc9PHriO0vzIM9kvn2/mK4+eTmFUgov8+Vg3e8+5+OX7rmJdWeh57JbVTr7z8g286+HjKY5udsw6Dd955Qauq85LdSgCgUAgEAgEgkVGiIoEggzn6sJ88owGzo2O0TPhIc9oINeoZ9jr5y/dvTTNUkJCsDCiu69SnciaK+4oUZEmwwQvmUJ0+ZXprgXpTqaW/7kcauwRl4+2QfeKLV2wHIlO8J8YHKRlfCx8dV78nRVUDrtctLnTq408PTzEtryQ/f01Rbl872RriiMK0TTiDouKNuZnfhI5+hxJdemshRLdlM/XGWex8AT9yFFPSRevN71+bkK/aPxeL8RxOEUTokwAACAASURBVMo32WeIeLzB+K5GS8X0Nj/A/EpnJfr99Pr4bqTRiVTftDJmo4ODjA4NQXHhrPs8Mzyz5GeOIfb7vjCPknXJIqDAV0+c5vM7toaPc0/BWoZ8B3B5RvCkgSvXSmfMNxH+O8ukm2XJzKWxd4zfHWjn1TvLAbhjexnfe7KRUx3pIeAUpBcrTdtyw84y8rLjO5G4x0foal+YKFOj0VK7ZktCQezZtiFeRkTMJIk+jTljNmj54b9ey+rSiAPUY0c6+fivF+4oJUg+Y5N+3vrdvfz2X66lJCckrr6tvoAfamXe+r/p+VsV2gz86DWbWVdgu/TCAoFAIBAIBIKMJ7OyngKBIC712XbuLC/h7WtqeGVlKdcWOrmrooSvXrGVt6yuEhd6khnxRSzxc43zT5Slggl/JGElut8Wh2hRSqa5QWWKOC6ZlEU5Z7QNTMyypCDT0Goi19+L/f38b0sLv53697vW0L+HW1vTTlAE8ERHZ/jvKruZcmt6lFy5MBq5RlbnzN91Jt2IEQdn6O0vOumWLsJQnxKMG5d+AaV6vV5v3Om6aSVcx/0enuw8Me/tJ5MY16QF/BaJytdpdVoMcb47KeoM9iszBUwd589fsrTjHudMl4npTy5/aOuYdRuLxYVxN18+fir8XWplDTeXbMGmS4/74UpnIhi5No36zCr3Ox8+9JsGPFHvT1eucaYwGkHGkB7N8aJRlGfmys3Fceepqkpz48IdVarrNmEwxr/PuycDPP58S8w0MVBqbug0Mt95/1VsjipXt/9cP+/54YspjEqQiL4RD/d85Vk6ByPvXjetyueJt+7CqE2vnt1VuRZ+/8YdQlAkEAgEAoFAsIJIrydSgUCQdF5RUcqbVyW2pxbMn+EoUZHDkBkjdN2BKFHRVJkIQXKJTupqM6yTc7rrw0qg0BQZYXuhP/3EJYKFE30+BzMsu9M4OoIvGLlfX12Uk8JoIpwcjJQHdJrnLxBJN9JRkDNfotvxdDkC/zRR0UXB6kKcigJ+f9zpctSRj/s9/Pjcs/R6UuseIl+mO6EnEP9YAXKd+bOuO92pCMDV1UnH2PisAqd8k5X7Vu/iTat28obaHfzT2qu5ujBScmYswfe/VOx3DfDz883hYzBpDdxcug2DnBnP3cuZ6DKHes3yfaNQFGh1RZ4PVy/DUm+CJLGCXqPuuq6aRK+5/b3tjI8NL2i7hSWV5OYXJZz/u2fOMzIeK8Bdie+v80WS4L/euYur1kfcC093jnDv155PYVSCS9E1NMlrv/ocLf0Rx8g1ThuPvGlHCqOKIAFv3l7Gw2/aQbE9vmuZQCAQCAQCgWB5IsqfCQQrgFdUlvJcbz/nRpe+jMFyJKBGEjiaDOnM8gRjk052vZZhX2rLhSw3or/hTHMqmu78sBLIMUSEEef7xmZZciYlDhM1+VbybAbybQZsRi16jczopJ/BCR+9Ix4G3T4ae8dwe9OjLNFKInrkclBJF7nF3LkwNsaa7GwArinO5b/PdV5ijcXnzFDk+UErS+QatQx4MrcNiS1jmplENzMLccdZDIJq/LJfsiZ5bibpeNyXm9hUUJkI+DBrZ4qvnEWFdEU5BhlkbVi4papqXKciRVE42NpGV4ETm06HNBWjBKzJzgrHW2ROLJJIh6/2D+0dFJmNvKQk5IqRrbdwU8kWHu84mPBcEyw+k4GIU5EkSdiNWkYzuD1IxIZSO9VOa/jzwHh89zSBINo9bjm7v26rd1ISdU1E4/N6aD1/akHbNVlslFfXJ5z/4oleGluHybbGtpEZ9rqdEv799Vt52RUV4c8dA27u+M9nUhiRYK50Dk7w2q8+xw/ecQUbyh1ASFh0R30B/3d6ZgnbpSLHpOMbd63nqqrcSy8sEAgEAoFAIFh2CFGRQLBCeG11OZ9pWFhHjyCW6ERLpnRmRZc/A8gx6IWoKMlEu11kgh27SiSxvtJERTKgjzrm092jsy6v18pcvSqPl6wr5Po1TpzzGJHXM+LhdPcox9qHaWgf5mjbEEMTqXWAWO5EX31KBiaen+nqCouK1uXYyDHoGPSm9pzpnfQSUNSwC9vqHAt7u1LrDnM5xJ4jmZkAjBayKGTeeb5QYpO36YEmCTYVg153XFFRYWkxxuMmPBOTAOg1kdd3n5I4fT0xNoY7NzfGqRIgW6+n2GKeQzzpIaD43tnzFJhMbMwJJdQKzQ6uLdrAM11HUxzZymUi4EVV1bC47U//eh16jYwnoOAa83C6a5SHD3VwoHkwxZHOj6tX5/HqHeVsrnBQlGVCN63MzF9P9KQoMkFGkS4NU5LR62ReckV5wvkt508QDM6/b0GSJFat2YIsxxcfu4YmeeKFVoAV9KSTHN5z11reePPq8OfBcS+3fu4p4miRBWlK34iH13z5WR554DrqirMA+MwtdTx6ujcl14PTqud3b9hBWbYoRysQCAQCgUCwUhGiIoFghbAzP5ePbV7LDxsv0D3hSXU4GU10AjJTbLe903qPrLrkuQYIpogWm2WAD350n3emOStdLiUWc0yJnuYE5c/qCm3cd1UVt20swmZcWMmVwiwjhVlGrl/jDE9rcbnDAqOGtmFOdY3iC4oe3nhoZQlZksIjv8PXlhQShkjSzOvNGvVbZaJP1Iuuft6hqmik0LFfVZTDH1pSNyIVQvcLbzCIVg69OmRlSOnPRETrPjPQzAqIdUrM1GNYEHHKq6UaKQltqMszRqnFMWO6LMtU1lZz5thJALRS5PnNryS+w/m88Z/1H+vsYjIQpMRsQitJaGSZDTnZqGro+VYFhn0+vnHyzOUdUBL5dMNxvrZrOyVTYqgqWyG78j3s7z+b4shWJioqk0EfZm3I8bHEERGpleWY2VKRw+t2VzI26eeTDx/ndwc7Em0qLbhnVzkfu3M9VuPsXWPXrSvkxSYXigKyDB9/1UayLXq+8dgZLvQKN+CVzEp4jbpmawkWU/xrZNDVw6BrYaK7kopVmK3xXfMCQZWHnmjEF4j/jpSMtne5cu/1NXzg1RvDn93eALd89ikmfOJ9M9PwBRS++MhJfviuPQA4THr2vfdqbn5wL8NL6BLotOj5yWu2CEGRQCAQCAQCwQpHiIoEghXErvxctuY6+GNbF79ubscdEE41CyEYIypKYSDzxBdU0GtCo26tWnH7X/FEWRVlgggqmZRbLOG/xzx+JnyxidmdVTm854ZarqlzTl81TFBR8ShBJgJBPAGFoKpg0mgwaTUYtRp0kpSws7syz0JlnoWXbykBwBsIcrprlIa2kJtRQ9sQrQMTSTjSzOY/X7ORV20ruyznr2CGDsftcI9TYbUBoRJoqRYVAUwGFSxTWqLsDBcVSWkoTJkv0aKioJqJ8rmFEe0dki6/XTLck4Z8boJTYsLplFdXhUVFGinyDcQrfRaOKUH7IwF/7Un9/WS+fPDAYb67Zyd2fcjNaX1OJYqqcsDVmOLIViZzKT1oM+n4r9duodRh5utPpt/vlGfV84t37qGuKHEZwGje/pLV3HdDLW39bgodJiyG0LvUndvL+OOhDu7/8YHFDFeQxiyHkqqzYTXp2LOpKO68YDBIa9PJBW3XbLFTXFabcP4fn22mb3Ay/FnJ0Gf6peaW7aV86s3bwp99gSB3fuEZBsZ9KYxKcDn85WQvz5zo4Yb1hQAU2Azse+/VvPLnBzi1BKLWeqeVH79mM0XzcGsWCAQCgUAgECxPRFZZIFhh6GSZV1SW8tKyIv7S3ccjrZ10TkxeekVBGIXMcyoCGPcHyNGEkjE5xpklNgQrmMw5jZNCkTkywq5/LFLipb7Izr/eWscN9QUz1lFVlX6Pjxd6B3i4rZt29+yObzJQ77Cx2ZHFxlw71TYL2Xpd3HuGQathc7mDzeURl4pBt4+jUwKjhrZhjrYPMzK5csqmOe0G7t6RuMzCXHH7M1M8+/eeXipqQ6Ki7fnZmLUaJgKpFY6Mev3kTbUdRVZDSmO5XKKvwjetKcOvqCiqSnDKrUVRVYKKSlBVUdRQkvCiS+FFNxeV0H1BCa/D1PIqCqCXJcqsxtB8IttV1ZAYxhNU8AVVPIEgPkWhaXQCm06LVasloCr4FAW/ouJTFAKKii+g4ldC0xUIl6KDzC3htjCiBDxpctjJcksY83vI1s8cAa5EORJJMWKyxNuSNfEdKQPp8qXNE5+i8IEXD/Ot3TswTB3bxtwqSix5NI50cHq4PW1EZplArsFGtb0IpzGboKow7Bunw+3CrwSwaI1YdEYMso7JoI9h7zj9nlF8ih+tpGFTbjUWXWxi8bctbQQUFafJyGq7LewqJUkS77u5jl+80MKgO/UJ7S3lDl65vYxr1uRTlmOece22jrk5MTxM48gYne4JdjvzuLOiNFwmWKeRqSm0xawjSRJ3bC/DatTy1u/sXbJjEaQPMefRMrwNXbWleEY5wIv0dFzA61lYX1LV6g3ICUpwn7owyKHTfTHTplc0zqTBXUvFFfVOvvLu3WimvtegonLvV59L6MoryBz++ScH+PbbdnHllPuxSafh/968i089eZafHV48R8DtpVn86NWbyTJl9oASgUAgEAgEAkFyEKIigWCFYtRoeGlpES8tLeLPnT384GwTHlF+Z05ElxmRM0iNMREIkjP1d5ZedAoIImTOWZwc8gwRQcTAuBeNLPHu62t5302r0GpiO7c9wSBPdvbx4Nk2xufh7qYAJ4fGODk0xn9fiExf57BxbUEeG3LslFiMmDWauAnpHIue69c4Y8qmNfePc7h1iOfPuTjQPEjn8PIVhJr1l/+IOuz1cm5sNAnRLD3PdHVyb00NkiSh18jscmbzl66BlMY04PVTPfV3mS2zR6pGX3MGjcx7NlSmLpgkUGjKotbmJKiGXNMUVBRVQVXhqsJVFJmyGA94+VXTi0wEQ4l9u87IS8s2YJS1BLkoeFLRy1oeuvAiPiU9BXk6OSKWSRcRSewdfOEx9UwMxxUVBYPzFxTKcnxRUTCDa+UN+3w8cOAwX9qxFf2UsCjXaGO3sZ5yaz7PdB1N2/M2XTDIOnY561iVVRIzvcSSyzpHxazreoN+dLIGWYp9Tjo3Msovm1pjpm3NdfDAxrXoZBmNLPHRO9fyLw81JOcg5sm1a5z847U1bKvKwZig/HPrmJsHG89zajj2maF53M3fevr4h5pKduTnzjqY5Lp1hVTlW0TyfoWTLu1SsjAZtOxYN3OwBYDf56Wz/fyCtussKsdmn1nyE8A9GeAPf7swY/p091FR/iyWdRUOvvvPV2OYus8pqsq7vr+PIy1DKY5MkAzGPAHe/O0X+LdXrOe+60MOX1pZ4jO3rOH+q6q595eHaHQlt/25viaX775iY8K2c6WgqqpwShMIBAKBQDBvZFlelu8sQlQkEAi4uaSQtdl2PttwSrgWzYFMLX82GYi8CFt14va/0lGj6p+ttPJn0Q90ZTkW/vfde2JcggDcgQA/P9/Ob5q7krrvi0Kji+hlmasLctjtzKEuy0q+yRAeET+dqnwrVflWXrW9DIDRST/HO0Y40jbEodYhjrQOLRs3o+n31k8cOhRO1Fy8A6tTjjGhHHl0EkfCpwQZ8HrJVAJAv8eD0xQSGFxfkpdyUVFXlDtXhX2m8CGT6J/wUrrIwihFVZfMzbAuu5C67MJZl8nSm3hH/bW4/V4kCczaxG5T71l7PYOecYKoU25MKuqU8EgjyRSY7Iz6PVPX4NQyhEpz2aIcTBwGCx3uwWQdJgAmTZQoOk1yt3JMOb2Fk+h0URYg+l9uTkUX6ZyY5P79B/nyzm2Yokr5lljyuLPiCp7sOMyIX5QPjYfDYOWm4i3Y9eYFrW/QxB+QMOKf+dxxeGCIp7p6eGlpMQC3bixeclHRfVdX8cHb6jHNIlL2BIP8sa2T3zS3Jbw2Oicm+eLx0+Qa9GzNzaHcakErSxxyDXJ+dIyvXrENm06HJEm85cZVfPxXqRFPCVLHcn6L2r2xEL0u/ntJZ9s5lAWIXrU6PWVVaxLO/+NzzbgnZwpEp+f0M8kxerGpLLTx4weuxTblJqOqKh//VQNPnehJcWSCZBJUVD7z2+O0udx87FUbwyXC8yx6/vSWXbz9t0d5pik574uv3VTM525dgzZBv8RKQlEUmpqaUh2GQCAQCASCDKOmpgZNgr65TEZklQUCAQClFjMf27yW9+87gleMwpgVJUZUlDmdWZ6oTj+TRnQOLCaZc1aE0GaSOi4JRAsDC7OMFGZFkuABReGhCx385Fz7ksTiUxSe7nbxdLcrPK3AqOf64ny25WZTZTOTlaBsmt2k48pVeVy5Ki887XzvGIfbhjjSOsyh1kHO942nTYmg+RCTpFdVWt3jKYwmNezv7+OO8pBzxJ6iHAwaGW8KHQXbxiOi4yJrZjsVveepk3z9xrUUmA3IkoQkhc45iZCgLTyN0P9h+aUUe38PfY5Mv/i3XiPHnMOD3smweFOa2o9GktBIMhpJCruuLAUW3dxK1+UYrbPOz4rjqBOPSls+w4qebL05JEBiStQ6VQZOnRIFRpeUAxWz1kB9djFaWRN2XVJR0UY58Ji0elbbC2lzD+AJpk5QGSPMvYz77XQHmIsElURJ28Q7kxM85wWn14/JQPo9Xu57/gVeVVHBraXF2HShJGqW3sIdFVfwl66jdE6kVoSZbmzIqWRb3io0UeeYLxikaWyQgKJQZXNg0mqRkAgoCp5gAG8wiFmrxazVxYixVVUloCjopu5b0e6P0fy5ozssKjLrtbz9uhq+/9fFT8oZtTK/v/8a1hTb487vnpjk1PAIh12DHB4YwjfH994Br48nu2Ym6E8OjXCFM/QcVpKzMMGWILORo8uRZv4tNoxeJ7N7Y1HceT6vh97utgVtt2rVenS6+KXYz7YMceJ8/Pt3YPqXu7JeXxNS4DDx0weuI9ceejZXVZWvPnqah/7ektrABIvGT/92gZPtIzxw1zq21+QCofKcP3rNZh4/28eHHzvNsGdhzo0Grcxnbq7jnk0ll15YIBAIBAKBQLDiEKIigUAQptRi5s7yEn7TcnnJdJ0ssTXXwXpHFnlGA4oKPROT/KW7j45l4ITkj+rQyiQxRnQy2qRdfirZVBPjk5I5pwUQK5RbCfQmuA91uCf51xdP0O/xLXFEsfR6fPzqQie/utAZnrbRYePawjy25TkosyZO5tcW2KgtsHH3jnIg5GZ0pG2Iw62hfw1tw4x70788TCYJNheLP7W18bKyciRJwqzVsKfAkVK3onPDEWFXliGzXyGGPAHe8OixRdn2N25cy02VEaHfg2ePcWLINcsaobyY02jGqwQZ8XmRJQkZKfT/1D9JAg0SsiQjS7A518mNxRUEVRXN1DKaqfWkqc9z5czwAHadgWLL7EKihWDTGcHgn7OY6SKllpywgEiW5ITJwxKLgyJzNs1j/bS5U3N9JMvOOFFJXSUQERXNdU8aTfxrNJPLn0UTUODXza38urmVT2zewIackNugQaPj5tJt7O87w6nhhSW8lxvb81axKbc6/FlVVRpHB/lJYwNz1T8UmayUWmxMBgI0jg6wKaeAV1etBSDXGP/abnNPcGJomPWObAAeuH0tzS43Ty6ic0aJw8Qf/vkaciyxMV0YG2dvr4u9fS66J5P7Lhr9DK2usOdpQQiNHCu6Wy7sWl+I0RC/z6C7sxl1AQoqR24BufnFcecFgip/fK4l4brCqWgmWRY9P3ngWkrzLeFpv3juAt94/GwKoxIsBQcvDHD3V57lbTfW8uG71iPLoef/l64p4JY6J39pcvHu3x/HE5j7dZpr1vHgqzextSR7ESMXCAQCgUAgEGQymZ0REAgESWdHfs6CRUUlZhM3FDm5tbQIu36mRf6rqsp4pLWTXza1ZrQbkjsQSchbMkicEz0S1yicipKOmi51WBZA5ka+MA66XLyupgp/UEWvDV0Lvzzfzg/PpW8C8tjQGMeGxoBmbi118sENq+a0nt2k49o6J9fWOQFQFJXG3rGwyOhw6xDNLvciRi5YKJOKElsCrTS1JdDODkfOE1mS2OK0caRvbJY1ViZ1OZaYz8NeT4IlI6hArydSsimoqgSn3HwS8XRXG093XfqeJUsSm3Lysev0U05AhB2DAFrGRuicCAnGKq12VtkdaGR5ykkp5KZ0UbAkhadJrLbn8EJfZ3gfsiSRozeyJa/gkjElA1VVGfFNhPdfY3eSZ7RxYqgDn7K0wslop6LLeRZI7FQU/5l5tj3JCcpVZHr5s3h8quE4b6yp4o7y0rCgbndBPXa9mX19Z1IdXkrJNdhjBEWKqvLnjib+0tM6r+10T47TPRkRlnZNRP626XQYNTKeOE56PzvXzOd3bA7dN2SJ7715B8+c6uVtP3pxAUczOw/cVs/br6+NEXg0j43z3TPnOD+6eG6HJeaIO1H/aOaWXRUsnOhzbrkIN7UaiT2b4rsUBfw+erta5r1NWdZQWbs+4fxnD3UyPDb3ayiDxnYtCka9hh984GpWl0YEII83dPKJ/1kc0bwgPXnw6fO4Rr188fVb0U718cmSxI21+TS8/1q+t7+Vrzx34ZLbcVr0/PYN2yl3CMe9S1FVVZXwOVsgEAgEAsHKRVEUmpubUx3GoiNERQKBIIb6bDvf3bON53td/Kmjm0Hv7I4dMrA518HdVWWsc2TNuqxGknhlZSnrHHY+fugEk8FE5RzSm7bxSOLPrNVg1spMzGMEUKrwBSOdnHohKlpUMm3k5DLMMc5K56SHEZ+fbEPIet8TDPJ/7Ys3cj7ZPN3VT32WjZeVF8ZMf76nB08wyJqsbJwmIzpZnuGgIcsSa4rsrCmy87orQqW1Bt2+kJtRyxCH24Y41j7MhC+19+cZJQ5WKPv6+rizIvQ7XVmY2hJoY/4AHeOTlE45Zd1ZWyBERXGIvuYGvR46JlJbuk9RVY4M9M1p2ZbxUVrGRxe8r2pbFk6TmRKLLTxtzD+J2+fBFwxMufhJkXJyof+iJDkReU5fXx8VFRXIssyof5IR38RUibqQyMkT9OEOxCYfs/QmtudVcXSwbca8xSRZiU1NgmeHYGD+9+PEoqLleW/9WVMzTWNjvG9dffh7XOeoQCdreK7nZIqjSx312WXhv4OKwv87vpcB36WFjpeie2IMVVXD97tcg4HOOC6QTWPjfPf0Od5Vv2rKcU3ixnWFfOmezXzw1w2XHQfATWsL+Pzdm8mzxboTPd/bzzdPncW/iCIPgyxTZo0kYJ9o6Fq0fQnSl+j3PmWZiIq21TuxmmcOEgPo6WpBWUA/TnF5DQZjfLfV3oEJnj3cGXdeNNH3He0K7s/QaiS+8d49bFudH552oMnFux9MvmBTkP48fKCdE+3D3HtlJfdeWYVRHxr4aNJpeP9V1bx1Rzk/2N/Kd/a2xi35adZp+Ok9W4SgaI7IsoxmCUtXCwQCgUAgEKQTQlQkEAhmUGIxc091Oa+uKuPowDBPd/eyv28gxl0oW6/jyoI8Xl5eQqE5cSmeeNRl2fnoprV88siJjBwx3TQ2jicYxKjRIEkSd9cU85OzHakO65JEJ+m1CUbDCxZOpp3KyXJWyFS+cfo0H9u0EUmSMGo0fG7bWj5x5AxdE3NLtulkiRKziXyjHoNGJqiGBIedc1z/cvArKl852cRXTjbxxR3r2JYXGqG6Mz+ftzz3fLicSbZez5VOJxtzc6iwWLDpdHHL9ORY9NxYX8CN9SGHkUBQ4UzPWFhkdLh1iPbBiRnrLSbLZaT35fJYext3lIdKoJm0GnYXOPhrCt2KDrtGwqKiq0tzUhZHOhN9he3tvXSCbDkREv1EmAz4aB13MTY2iss7PwFa97EDvHD6CLn5+eTk55KTn4c9O+uSpcYMGi1bcitpGGhhfImERbHt6cJJJEhWlOjk7dz2JWuXd/mzePy9z0WH+zCf274Z41SyZ3VWKd5ggBf7V14pGINGR4094jSyv78zKYIiAAVQUNEwu6gI4JnuXkb9ft5eVxsulfaqHWU8tL+Vwy1DC9q/WS/zodvX8optZdhMscIHbzDIry+08oe2zkV/ui00G2Ou2+dOZ45AXZA8tJooUVGmvRDGQZYlrt5aEndeMBCgu2P+o291egNFpTVx56kq/O6Zpnm3TxeFEysNSYIvvG0nN2yJ/Ebnuke55yvPpTAqQao53zPGZ357nG8+fpYP3bWOu/dUhufZDFo+cE0N/3RlFT873MGnn2oMz9PJEg++ehNrC2xxtioQCAQCgUAgEMQiREUCgSAhGklia56DrXkOFFWlwz3BuD+AVael1GK+LDeWTbnZvGNNDd8+fT7j5Ax+ReXIwBC7nXkA3FZRkBGiomBUJ6c2w5x0MoHo81gms77fZdD/PW+OD43wVFc3LykpBqDabuHBqzbzi/Md/K61K1zGQ5ag1mZldZaFCquZQpORApOBCqsJbRwniKZRN98/28JB1/CSHMf3z7bwndxNyJKEXqPhvWvr+fqp0wAM+3w82tHBox2h+5MMbMzJYWd+HqvtWeRPuRlNR6uRWV+SxfqSLN54ZSUA/WMejrYPc7RtOPR/xwijk/5FO65AVGLhUiKC5cz0Emg3lOalVFS0t2eIOytDDlnFVgPZei3DvqUtNZVJLE9PmMQEVRUpTvsnL3A0b8AfoLerm96ubgAMRgOFpSVU1FRhtSdOfuhkmU05FRx0XcC7BKXQYp+HF96gxvvuAJQFuJMlum8Gl3mD3+p28969B/jaru1YdKGujg05lQx6Rzk/2p3i6OaPVWuk2l5EsTkHm86MXtaiojLoHaNlrJezI50JheE78lajlUPXnqKqPNZxPqmxBRQFzZRTSFacstfRHHQN0jzWwJd2biVLHxI4f+uN29n96ScTrmPWy7zpqmrqiuyoqkogqBJUVbZX5lCVb0WOYxF2bHCY7585T/dkfIFTshn0+lBUNXwPePLfb+Y/fnecJ49l3rkmWDjR5c+Wg1PRhtpcsqz6uPN6u1sJBub/pZPZXAAAIABJREFU/F9SXpvQ2WPf8R66+udWillV4WLztlJFRR9+7WZecVVV+HPv8CS3f/7pFEYkSCeG3D4+/MsjPPT3Ft57ax03boiIi3UambfuKOfO+gJe9YuDtA5Ncv9V1VxZKQaKCAQCgUAgEAjmhhAVCQSCOSFLEuVWS1K3eWtpEX5F5ftnm5K63aXghV5XWFRUaDZcYun0IDpJr0lWrQ5BmOgu5IzQQETFuBKdigB+0HiecquFuqxQ6UaDRsNb6yq4b3U5Lo8PFRWbTodZO/dO6xq7hf/csY4Hz7bw0IXFdyk5P+rmqa5+bi5xAnCF00mF1crnGo4y6IstX6kADYODNAwOhqflGwzsKXCyISeHMosFq1YbNxmdbzNy09pCblobKbnW3D8eEhi1D9PQPsyprlF8SSoFOX20shZYqdKVdCqBtrdnCLc/gEUXOk8+uLOKjz5/LiWxpCuxzevKurf6g8GY9k+dErAYjcl5TvJ6vLSev0Dr+QuUVVVQt3Eden38xKdeo2FDThmHXC2L3sbFOBVdxq4SrSolEC1lwqNGKhj2+Xj//oN8c/cODFNJ7D0Fa+n3jDLim1viOtU4jdlsyauhxJwbt00u0RooseSxJruMp7uOMuaPdRPcU1BPXXZp+PO5kYG4JU8uB28wiEET6k66WE52Nga8Pn5+vpn3rl0NQGGWib9/7Cb+5aEj7GuKiGWLs4189807WV96aWeyi1wYG+f3Le280OdawJEsnDF/gGODw2zOdQBQkW/le+/YzYQ3wJPHujjaOsTTx7ppH1hat0fB0hL9Xh0MZn67f+Xm4rjTFSVId8eFeW9Pp9PjLCqPO2/CE+CZF9vnvC1FVcODd0z6lded/fbb1/C229aEP49M+HjJZ58iSa9fgmXE0dYh/vF7+9izOp83XFvNjesLwyUD860GnvrH3dzx4/28eXvZJbYkEAgEAoFAIBBEWHlvYQKBIK24o7yYIa+P37TMvTMpHeiejJQP0GaIQGciGCmfYdSI8meLycUzosRsZGd+DnkGPZ6gQpt7gv39g2EXnJSiEg40kTvCSuDjh4/y+poqXlZWGh5pLksSTtOlk+CqGho1H1RV9LIck/x6fW0ZLo+PJ7v6Fy32i/ywsZUr8h3Yp5wCisxmvnrFLr584mSMgCge/V4vj7S180hb6B4sA9vy8tiRl0dtlp08gyGuIxNAVb6VqnwrL98aSlz6AgpnekY52jZMQ9sQh9uGaXEtLIE7XVSkk+WYEo4riXQqgeZTFP7c3s8rqkOjXm+vLeDjz59bcY48c2WZm8LMYCIYiLkPXjx8jVaLyWJm0p28xHp7cyv9Pb1svmIHOXm5cZex6YxUWPNoGV/c+7AcVVJ2MQRM8b5TWJioaKU4vw35fHyq4Rif3boZWZLQyVquL9rI/7XtJ6im7x0rW29ha14tVbbCSy8M5Brt3Fmxi729p2ke68GqM7Ejf3XM+r5gkJ81HU96rJNBP3ZCz0qOBOK+6fytu5dbSopYlRVyGit2mHno3VfSN+qh1eWmxGGiKNs0p/PUF1R4vrePJzq7OT86vvADuUy+fbqRT2zZQInFHJ5mNmi5a0c5d+0o5+Ov2kiry837frifE+0jKYtTsHhEu2Zlevmz6hI7RXnmuPP6ezrw++ZfVrSorAZZjj9A4y8HOvD4gnHnxUNRVJjalF63OP0Zeq2Mqobc2Obzc8qShCxPlYKVJDSyFBKaL7DdVVWVoKKiKCqqCq++pooPvXZzeP6kL8Ctn3uacU8AvVbGqJcx6bSY9Rp0WpnG7vmVnRUsT15o7OeFxn4q8y186u5NXD1V7lyvkfnTW64Qgw0FAoFAIBAIBPNCiIoEAkHKeV1NOQdcA7SMZ84oTl+UKCRTXsMnA5EOO5NWiIqSjRrV61hoMvLZrWvZkT/TStqnKLzYP8jPz7el9JxXo1RFK70z6RdNzTzR2cUH1tVTbbPNSGapqoonGGTA66N3cpKeyUnODI/SODrKltwcrizIZ112dsy9QC/L3L+uhv39Q4z6F9djx+Xx8U/7jvORjatYkx1K1GllmX/dsJ5/O3iINvfchT0KcMDl4oArMtq/0GRkj7OAtY5sSs1mrDpd3PKXeq3MxtJsNpZm84Y9lQAMjHtpaBvmcOsQR9qGONo+zMQ8kgeC9CuB9j9NXWFRkUEj8+EraviPfZnnOLhYJBKArARGfF5iPXUi30Bufh4d7rak7s8z6WH/X59ny+4dFJbEd1aosObROznCZNAXd34ykJP2mydYO4H71ayC4ASZ0JXU2jeOjPHb5jZeUx1yess12tmRv5p9fWdSHNlM9LKO7Xm11GWXzWhfA4pC6/gITWODDHu9mLU6djtLyDWGEv9GjZ7rizdxPZtmbNcbDPC1ky8uiijXE4w822TPUVSkAJ9tOMGHNq1lbXZWeLrTbsRpN85Y3hsM0jgyRnCqxJhWlhjweDk8MMhh1xDjgdR7GA54fTxw4Ag3FhdyTaGT2mmlGSVJojLfysMfuoGnj3fzlT+e5kynEBctJ6Kv2emi+EyirMDKJ9+5i3xHRNgnSRKoKm09YzS8OH+XIo1WR0FRRdx5o+M+Dpzsndf2osvLVRRYqS22YzJoMRu0mAyaqf+1GPUaDDpNzP96nYxRr8WgkzHqNJimljXpNVhNOmxmHVaTDoMuIoAKKgpBJXT/CYmG0qcVNem1vPDZWxOKML3+IDd95ik6BzOnj02weLT0u3nTt17gE6/ZyJuurQFEH5BAIBAIBAKBYP4IUZFAIEg5Wlnm7qpyvng8/Tr5E5GJ3YWTUb7YF8tBCJJH9DlxV0X85CaExCZXFeSxMz+HTx05xUHX8OIHF4foeDUrxLlgNvo9Xj5yqAGjLFOXlUWpxYQKuANBDrkGGA8EMGhkamw2Vtvt3FhSyP3r1iR08ZGnXGXuqS7hB2dbFz3+Dvck79t3nNfVlPLG2rJw5/f7163lAy8euKxt90x6+F1rK79rjRxHfVYWO/LzqMvKosBkwqTRxO3UzrUauHFtATeuDY2KDCoqZ3tGQyKj1iEa2odpdrkvORI4E++5ySSdSqC1jk3yTIeLG0pDJUDvrS/i64ebGfelr/vHUjJNkpiiKFJDUFXxR4kXokVFJRVldLQkV1QEIdHnkb0H2HnNHnKd+TPmyxJU2fI5Nbx45ShjhFSX4VIx3zVna7pX1pmXmF+3tLIjP5dKmxWAdY4KOt0DtLsX30Vwrpi1Bu4o34VVZ4qZ7gsG+XPnBZ7rnXndPNfbxp3lq9njLE2YUJ4M+Pmv4/sYDyRfUFdjc1Bitkf2FZy7uGc8EOATh45xfVEBL68spdg80xXF7Q/wcGsHf+roTA93z0vgCSo82t7Fo+1drMmy88rKMnINevKNRiy6UJebLEm8ZGMxL9lYzNikn+8+eZbvPNGY4sgFySA6MX85bUCqeeLbL0evi99HoGcMnezHE3duYopKqtBo43c7P3eka94irOjl//0N2+YZzfzRyDLpbPA8m6ubQafh9VdX8Z+PnFzCiATpyst3lHHf9TVsKHekOhSBQCAQCAQCQQYjREUCgSAt2FOQR/45A/2e+Vtqp4LFKG+x2ExEORXpEwghBAsnUSeyL6jQOTGJWaPBaTKEO//0sswHN9TxxmcPpEQcEB2uEBVF8CgKR4eGaBwdpcpmpcZm462raymzWCi1mOM69FwkqCp0jI9h1mrJN1kAeHlFEY+199IxMd9u+PkTVFV+fr4ddyDAe+qrASgwmZAh6eWpTo+McHokMtJeL8tszc1hS24etXYbeUYjujj3GY0ssbY4i7XFWbx+dyUAIxM+jrYP09A+TMNU6TRxSsaSTiXQAL53qoVrinPQyjJaWearN6zlbY+fSFk86USswCRlYaQMX7QjStTx5zrzyc7NYXhg9pKMC0FVVQ7vPcA1t9yAwTjT7cRptHNB04cn6E/6viGJJcUSGRVFOyFFLTPbXhM9k8zWhi1X/v1IAw9euRv9lKD+msL1/L7lBSaCqX/nkJC4sXhzjKAooCjs7evgT+2zl5b8Q1sjp4f6ubdmPWatLnyeBFWFk0P9/Kb5VOz1mAT0ssybajdRY3fEnJfP9vTNazsK8HR3L89097ItL4fNuQ6MsoYBr5fmcTcNA2lSKngBnBkZ5T+OhpL4sgQ3FRfyplXVGKMGdNhMOj5453ref/taJr0BDDoNAUXlUJOLjz7UsCBnkWKHiZ6RSVZopdiUomSwO9FFCnPNCQVFAKdPn8ZhMzDmnrtIUdZoKCypjDvPPRng0On53TcAxtw+LCbdvNdbqRhn+U0FKwOjTsMX/mELd24vS3UoAoFAIBAIBIJlgBAVCQSCtEAjSbykuIBfXkj+KPbFYMQXSUxJksSWPDtHXKMpjOjSRIuKdMLqeElQVJUbH30h/Fkvy7xlTTmvqylBkiSy9Tp25Dl4vnfpxQHRwriVLioyaTRUWC3U2GxU22zU2K1xR87HQ1FVeibG+XtvB/v7uwGwaLV8YuvVyJKEUaPhk1vX8N69x5YsQfZER19YVCRJEk6TkZ7JxRU1+RSFff0u9vVHyqblGwzsKXCyISeHMosFq1YbN/meZdZzTZ2Ta+qc4Wkef2yJtJWeI5tRAq0ktSXQ2sc9/G9TN69dVQLAnmIH2wrsHOpN73ZwSYg6xTM/zTh/JgKR56Ppx79+2yb2Pv0swWDySyD6fT7OHDvJpp0znQskCYrNDi6MzT+BuZQkEqwvSLS0EhVtCZgIKPzX8VN8ZNN6JEnCqNVzbdEGHu84mPJrtMSSi9OUHf58YXSIH59rmLMY6NzYEJ9ueA6zVku5JYu+STeDvsVp7/c4S7m9bNUMh8bftrRxdmRsQdtUgYOuQQ66ki82TAcUFf7c2cORgSFuLiniqoJ8nKaI8FGnkdGZQ6XjDMA1awv566du4TP/e5Sf/W1upab+7ZUbePN1NWg1MkFF5WMPHeHXL7QswtEIEhGIEhVp09nWZhbcHj+qqobbG19QYWjST45Jx8jQIH19828/C4or0eril0Z84WgX/sD8n+6/9T/H+NQ7rwiXIVNVFVUNvY8pikogqBAIqgQCCv7wvyA+v4LXH8TnC+LxBfH6A7gnA7gn/bgnA4yMeXGNTNI/NMnAsAdFUdFPlU7TaGQURSEYVAkqCvE0ZLIEgUBo30Elslxo2vyPU5Yk9mwq5HPvvTI8zRtU+MKRc5wZGiegKEhSqAhqUFUJqioBRSWgqvz0hi04TQYgNHBDsHKpyLPwrbftZG1p9qUXFggEAoFAIBAI5oAQFQkEgrThpWVF/KalHX8GjPYb9vnpcE9QagkJD75wRT2v+fMhRn1zt/9faiZjREWZ2eGZzsQ7a2VJosRspHPKpcanKHz3VAs3FOdRZA4lFTY6slIjKlqhTkW5BgOVVguVViuVVgsVNiuFJtOlV5xCVVUmggF6J8Y5PtTP3p4uAtMkL+5AgL92t3JDcSUAVTYL/7yuhs8fO5fMQ0mIOxDEryjh63xdtoOeye4l2Xc0/V4vj7S180hbOwAysCUvl+15eayy28k3GtFKUtyEuRhZO5OYEmhFqS2BBvCjM23cXJZPjlGPJEl886Z17P7vvSmLJ11YyeXPIPb4lWnCFntWFlt27+DQ3/cvSomYztZ2qupqsWdlzZjnNNoXTVQkRR314jhZSnH/XMieVk5rH8vhwSH+1tPLdUWFABRbctmQU8WxweaUxpWtt4b/9gYDfO/s4QVtZyIQ4MzI4jxL5uqN3Ld6C/mmWLH1kNfHg41N7OtzJVhTcJF+j5f/bmrhv5taWG23cXd1OVtyc+Iuq5ElPvGaTdy5vYy/n+mja2iSZ0/10D08Uyz2jbfu5PatpTHrfvLuTUJUtMREi0YyVVR0xYYiVDVSVvPZ5gF6x33csiqPU6dOTS0191ZHkiSKSqrizvP4guw/0bugOB96vJHfPnUeh93A0KgX3wKESZnAptV5fOpdu8OfA4rCR/adYn/fpcumR7fzA+Opd+QTpIa33lDLR1+5IdVhCAQCgUAgEAiWGUJUJBAI0oZsvZ63rKrme2ebUh3KnPjflg7ev241AFkGHY+8dAfv+OsxGkfcKY4sPtEuKStJRLJUJOpmfd2qUr509HzMtJNDo2FR0ZbcbKRZ1l8sove3HM8GCSgwGamy2ai2Wqmyhf7ZdHO3zFdVlclgAJdngrbxURpHhjgz7JqTa86f2i9Qa3dQbg0lt28qcfLnzj4ODYxcYs3kcHZknPUOOwCvrKzg6e6lFxVNRwEOuQY45IokPnP0enY7nWzIcVBmsZCl18ctz7MYAoRMI91KoI37g3ztWDOf2lkHQLZRx6eurOUTfz9/iTWXO9ECk5WHPqrEjxLnbuksKmT39VdzZP9BJt3zL/FzKVrPXWDD9i0zppu0Oowa3aKUQIsWEkmX0aLOxalorltPdM9cju39XPnm6UY2OBzkGkMODtvyaumeGKTfszTtcjxM2oiLx4gv/ZK/d5avZrezNKZdVlSVxzu6eaiphYlFcB1b7jSOjvHZhpMUm03UZ9tRVZgMBqmxWXlZeQk6WUaSJLZW57K1OhcIXc/Dbh+dgxP4AgquMS/FDhPryma6Txh0Gu7ZUymERUtIIBjtVJR5d1m9Tmbn+gIURQ07AJVnmRiY8OMeH6e9vX3e28wrKEVvmFmOFGD/8R68voXfO3wBhd7ByQWvn+5Ul9h56PO3hgVqiqrymUONcxIUARiinsNG5lGuTrA80Gkk/uWOdbz9plWpDkUgEAgEAoFAsAwRoiKBQJBWvKy8mONDw7zQl7pE6Vx5uquXHXk5XFmQB4BJq+HHN27m0wfO8kR7+o3ajS5/Fi9pL7g8Emke1jlsM6b9X2svN5WESj2VW82sd9g5PrTUZYOikqAZfj5oJIkik4lqW0Q8VGm1YtbO/TFHVVU8wQAuzyQtYyOcGnJxbmzosuL69skjfHL7VRg1oTjuW13Bob3HLmubc+XXFzpZvy0kKnIYDOzKy2O/K/3uS4M+H492dPBoR0d42uosOzcWFXF1YWF4mhAVpV8JNIAnO/p5SVk+VxWFHBdeVVfEVw+1MORJX9e+xSa6uuhKPG21UsSlIdF1m52bwzU330BrUzMt55rwJLE8Y09nF+u3bY7brmXrzfRMpk5AcikSnS8LaqITbmwB21pGfOxwA9/cvRONJCFLMtcVbeTh1r34ldTcsyYDESGRSTt30fNScN+qTazJzouZdmF0nO+eOUfT2HiKolo+dE1M0jUREUbs7XOxv3+ABzbWk2MwxCwrSRIOqwGH1TB9MwC4PF4MGjksnP/Hm1YJUdES4o8euJOBTkU71xVi1GsYm/TjsIXOsdX5VqpzzBw5fCjcls/HHLO4rCbudH9A4YWjqR/okK7kO4w8/JWXoY9ybP3y0Sae6pj7O5wh6hwcW8HP4yuRPJuBb79tF9trclMdikAgEAgEAoFgmSJERQKBIO1455paDrgGM6IM2hePn+Zt3hruKC8GQuKGT+6oY6fTwecOnZuTo8lS4YkRFaUwkGXKRCB+p53bP3Mk5mHXCN5gMDyScJXduuSiokx2KpKAapuNzbkONjiyqbXZYtwxLkVQVXH7ffR7JmgdH+XMsIuWsZGkX68BFB5pOcc9NfUA1GfbqLVbOD+6+G5mL/QNcm5knFVZodIqt5aVpqWoKB6NI6MMeLwxoqJ0upemknQrgQahZMcOZxYGjQaNJPGFa+p4x59PpjSmdGFxSmFlDj4lsROBRqulum4VlatqGOx30dXWQV93Lz7v5bm1+H1+RodHyHLMdPCwaI1A8kVFiy16TCT8nW2viebJGdfiJ5d+j5cHz57n7XW1SJKEXW9mc241B/obUxLPqD/i1mVJI1GRXaunLiuSlPQEg/zqQiuPtneSAa9nGcu50TE+sP8wNxUXsjM/F4tWi8Ogn1Uk3z/p4TMNJ6ixW7l/3RoAqpxW9Fp52ZaGSjeinYo0GeZUpJEldm8KPW8fPNnLTbvKwm1OMOCnqSniID3Xts6RW4DJbI077+CpPiaE0CUuVrOWx7/1cszGSFvwg1Ot/L65Z17biRYVub3iu14p1BXbefCduynJMV96YYFAIBAIBAKBYIEIUZFAIEg7HAY9GxzZHB64PJeQy0EL1GTZaHe7mZilQ1ZR4ftnm2h3T/COuho0soQkSdxeWcANpXl883gzv70wv46gxWIy6jgyq7szM/jWyWY+u6Mes1YT7oxVVJXvn2mZsexdFQUx1uR9nqUveRHdLZzuzlVWrZZyq4Vqm5Vqm4212VkzRnHHQ1VVgqrKqM9L9+Q4TaPDnBjsZ9CXPFeMS3HA1c1dlavCbkUvKyvkqyeXpsTjU139YVFRjW2mY5Yg80i3EmgAPRNeftPUzetXlwJwVWkOdr2WUd/KTGRE301XYu49WgDT7xklqCro5MSiT1mWyStwklfgRFVVxkZGcfX2MegaYLDfRcA///NoZHAogahIH2fp5HI5rem8z5dZVhDubol5squbawqd1GeHypPWZ5dxaqgNd2Dpng0u0hflnCVLEjU2B02X6ZKYDDbmFoSv5clAgA/sP5ySZ9WVyJg/wO9bO/h9a8jBUQLqs+2sc2STpdehk2RKLSY0ksyJoWH+0NbJqN+Py+PFX6+Ey6fdd30t33syNWK5lUYg2qkow0bubKrLw24JtY2u4Ume2NvGnk2F2C0GGhsbCUQNmlHm2K4UlVbHna6qCJeiBOi1Mn/+9ivIinIj+5/zXfzk7PxLz0XjF8LCFcGrdpXz6Xs2YdKLFI9AIBAIBAKBYHERT5wCgSAtqbVbUyIq0gL/urGe3c5cZElCVVWax9186MWjeJTEnTKPdXTT6Z7gQxvrsetDo8tMWg0f3FLLP6wu5Z1/PUafJ7U17T3BiGOAJEnICPePZHLQNcKtj+2jPsvK61aVopdlftXUydGBWAeiHL2O92+IWMK7PF4OulKQQIrqF06X7u8snY5is5lis4lis4lSi4UKq2XOAqKAqjDi89LlHufc6CAnBl2MBVJ73QEcG+xjZ37IzeyWEic/O9/GoNe/6Pv9W4+Ld9VXAaCVZTY6HBwbSn2yci6kyzmZbqRjCTSA/27s4FXVRZi0GmRJ4kM7q/jo8+dSHVZqiCl/tvKEHdHXbkBRODrYysaccgyaS792SpKEPTsLe3YW1XWrUBSF5sbznD1+al4xTLjju8Hp5MV69Y0c9eX94nOpfzbHfSU499JdRLxUfPdMI1/dtR1JktDJWl5WvpMnOg4x7Ft8J8FoPEEfw95xsg0hAfBdFXV8+cS+JY0hHnZdRIDXPeERgqIUogKnhkc5NTy7o6lXUTg+OMzWvFA50vfcWseP/3JeuBUtAX4lWlSUWeXPrt5cHPN5aNSDhEQgEODMmTMx89Q5nEoWWxb27Pill042DTA8Ju4l05FlePxbL8cZ5TDzeFsfXz9+Yf7bSmZggozgXTev5oN3rkt1GAKBQCAQCASCFYIQFQkEgrSk2Gxa8n3W2qx8ZtsGrLrIrVGSJKptVv5r12beu/fwrOsfGxrh/n2HeWtdNVcV5IenF1uM/PqWbdz+6P5ZXY8Wm8C0egV6WZ5VKCVYGKdHxvn4wTMJ53/pinVopzqcg4rKZxvO4ElB+aKY8mdLmGR0Go2UWsw4jUYKTEacRiPOqf9Ns5R3mI6qqniCQdrGRzg22MfRgX48Sno6ozzc0sj2vCJkSUKvkXl9TRlfPzX/juL50u/x0TI2QaUt1En9ysqKjBAVaSWJr+++ImaauFNFSMcSaCO+AI+19fHK6iIAbq7KX7GiImmFS+Ji2xOV8YCXA/0XWOsoIcdgmde2ZFmmum7VvEVFwQTXw2IJapK12UQioejvNHZXiWVFK1HQNh86JyY55Bpke34o+W3Vmbi9bCePdxxkwDu2pLGcGm5jT8FaAJxGM5tyCjg62LukMUwn2l3MPxclgSAteKStIywqshp1HPnSy/jm42f4zhPCsWgxiblEMugRoL7KQZ4jts9l8+o8bBY9Z8+exTutHOlcnIqKy2oSznvuSNfCAl3mPPLlOygvijjKPtc9wH8cPpcUt0tRrnJ5c/9ta7j/tvpUhyEQCAQCgUAgWEGIgQwCgSAtWeqR1G+qreTLuzbHCIqiqbBaeG112SW34/L6+M9jZ/jQgaM0jkSSEiatho9srU1avAshMK0j0KgVTcBSs8FhY1VWJKn6q+Z2To8sbfLqImpUV+VinAkSUGo2c3WBkzfWVvPvmzfyo6t2883dO/nwxvW8ZXUtt5eVsiM/jwqr9ZKCIlVVmQz4aR8f5dnuNr54bD8fP/QsPzh7lP393WkrKALwKQonBvvDn28vK6DUbFySfT/Z1Rf+u8hsnmXJ9EACXlsdv2yCIMRj7W1hwcDFEmjpwB+aI6U+rXotOwuzUhhN6ljp5c80Uc9vgalMq18NcnSwjdPDXXiD87tXS5KETj+/smVjIyNxp1t1l3a9WwhSjHtQ8n/1RE/EC5F6ZFC+e9H5wvGTPNfTF76fGrV6Xlq2A4feuqRxnB3uYNQ3AYTO99dU1aNPsduJVorsf/qgBEH6cmJohBd6I8+bJr2WD965nr9+8mYq8ucn6hTMnUw1gLt6S8mMaeVFdhRF4fTp04x7AwSiBiBdSlNkMJpw5BbGndfSNUpX/9I6wWUCv/zcLdRX54Q/H+of5t9fPENQCIMFl0AIigQCgUAgEAgEqUA4FQkEgrRk3L/4pYEAbFotX9ixkXJrbEfrUx39fOdkC1/YVc+q7FBy4d7qCl7oHaDNPXHJ7Z4aHuWDLzZw/7rV3FBcAMDuwpxLrLW4+Ke5EhkyzJ59OfC2NRVhx4GeSQ8PXWhPXTDR5c+S2BueZzBwV3kZVzjzyJpnIhhC4iGvEmTM56PfM0Hr+AinhwfomhhPWoyp4FcXTrHOkYdGltHKMm9eXcFnG84u+n5zqNMWAAAgAElEQVQHvZHyb5oMyHrcVlbKbWWlMdNGfKkvYZdOpGsJtMYRNxdG3VTbQ+3pm9aX8GJPfHHHckZa4eXPosUIwWnPHT2TI/RNjlJozqbU7MCySCIfZYmdu6KF8Jfziyc6X6QE5c9m21kicVMGNANLytdOnWHU7+e20mIkScKg0XFL6Tb+0LaPicDSlOlRUHm+9yS3le0AQi5B91av56fnjy3J/uOhlaNFRcKpKJP41umQK9GeKNfc8nwrz3ziZn753AU+/uujqQptZZAhzX5FkY2ywpkCSkmC1tZWxsfHGfb4KdBG2ulLPdMUllQjJ+hfeL6h+/ICXoZ8+yPXsXNDRIR1emiMD+87jU8IOQWX4P23reF9QlAkEAgEAoFAIEgBQlQkEAjSjoCi8FTX4tv+78rL4YGN9eg1kc6viUCQrxxt4k9tIXePTx48y4+u34xBo0GWJP5j+wZe/7f9c9q+AvypozssKrJoNbOvsMhMH2lsTHE8KxGnKdIxe350HH8KOw1jyp8laZvXFxbwltW1GDSzn1tBRcETDDLu9zHonaTP46bTPU7L2AiDPk+SokkvfIrCvr4uriwMCWauL8rj1xc6ODe6uKN2K6wRdyJPMLio+0oG67KzYz5PBgLcv29viqJJX9KxBBrAc12DYVHRloKV6VQUzUpMC0WLF/3qzHuOgkrXxBBdE0NYtQYKTFnkGW2YtfMXoSbC7ljac0+Odiq6DCFZwjUXogRKvLH5b2uZ8+NzTQQUhTvLS5EkCYvOyE3FW/hj+/45lftJBt0Tg5wZbmdNdsgVtT47D70s40uRoCdaVCTKn2UWnqDC/ztxhsc6unhDbRWrs+xASJz4D9fUcOOGYt78redp7E6NU+qyJANvq1dvKY47PRBUOHUqVHJUlqQ5Nz8arQ5nYXxX5/6hSc62pH/55aXkc+/dzc27K8Kfm0fd/MsLJ5kIpP+7miC1fP51W7hnT2WqwxAIBAKBQCAQrFCETYVAIEg79vcPcmFscRPt766v5aOb18YIis4MjfGWvxwJC4oAWsYm+frx5vDnLL2eD2+c+6igaJcQSZJSquScLmAxaEQTsNREn9dXFeTxpR0beP+6WtZn25c8luiz4XLLDUrAm2qreVd9XYygSFVV/EoQl2eC44P9PNLSyGeP/J0PHfgrnzj8HF86vp8fNh7j/9qaODzQu2wFRRd5pLURf5Sw5y2rK2ZZOjlszIkk15tGRxd9f5dPbHL+P442pDCW9CVdS6C92Dcc/jvboEW/ApuZxS6Fle5o5MRORdMZD3hpGutjf38TRwcTO/cly01v0RxXkpZQnotT0Ry3lEAMswIvyTnx86Zmnu+LlI3KN2WxK3/NksZw0HUu/LckSRSbbUu6/2hE+bPM59TwKB89eBTfNMFxocPEnz56E5++Z3OKIlt+SEkSli4VzhwTdZXxnxt7e3oYGgoJgKYfyWxHVlhSiSZBKevnG7oWEOXy5cP3beful6wKf+52e3j/308y4kvfUt6C1KPXynzu3s1CUCQQCAQCgUAgSCmiX1EgEKQdZRbTom3bqtXynT3beGlpUUyS5pfnOnjH347RPj5T1PBwcw/Pdw+GP+9x5nJ3VfyReNPxTnMGqXOkLkEQnNbJKcqfLT3/2XA+pnN/Y04WLy0t5Es7N/C21ZWUmI1LFkt0p/fl5EONGg0PbFjH7VElq1RV5ZCrh881vMBHDvyNLxzdx0/PHee53g6GfUtTTiQdUYC/dLeGP+/Md7Azf/HEIDJQY4s4FR10pb5E1qWIzp3v7++j3b24AtNM5WIJtIvcUJKXwmginBwcC5falCSJl1TmX2KN5Uds+bPUxZEqtFFfQCCOU1EiPIHklTlM9L37lMVK2KWhTUWiLyENQ00XvnbyTEybs9ZRTqFp6QSbOjk2Ie8OLE0p6HhEiwMDK/FGtkxQADnONS9LEq+/ppoDX7iNTRXpIUrOZOQMa/ev3BzfpQjg/Lkz4b+V6YLCRGJVWUNhSVXceeMTfo41uuYf5DLlvfds5K0vXxvuhxrw+Lj/7ydweUSpZ0FibEYtP3rXHu69Mv51JhAIBAKBQCAQLBUioywQCNKOcquFK/Jzk77dTTlZ/OSanfx/9s47vo36/v+vG1q2bMt779iOs3dCSCAkoRB2W8r4plCgQNk0QFkppbSllJaZEFagBX5llhloKISEQIazpxMnTuzYTrxteWlLd/f7Q7J0siTbkjVO9ufJI1i3Pzrdfe5zn/fr83rnxLqC7D0WK+7ffgRrKusG7TR/at8JZ2cPRVG4tigPMezQVWiv1YYmg9E5fU1J5gi+wcixikbpK4lTUdjptdpw345KGAdYm9MUhV8U5uCNBTNxY0no3WuAAenPAnSBSFEo8OcZUzEzxXW/WjgOLx7Zg/drjo5pAZEvvm2sg1EUKLx7QmHI7sUkpdzNOepAp/RFRWKiIC4TUXa0uVz1+lOgRRoLz+N4t845/cx55dh7/dnY9n/zsOGq2fj0ihl4a9lkPHdeOVbOK8YtU3JxSVEqZqbHI1utkNSLiVpOoyhBhQnJsdDIScbo4eKWNon3I43HKBG7jKTe8rWtz2f0IOfMt1PRKDnRIeKR3fvdBgTMTi0Ny3EpUJif5nJC5QUBnSZDWI7tDTdxYIRSsBGCg9iNdP3pFrd3kOQ4JT793SK8eONskLEmgRMsN71wEBcrw7RS70L0BKUNnR0ux7Y+iw1uDqI+9pmakQuZzHsK04pDLbBxpEUPADdcWo57/2+a83rpsVjx222VaNQHz6l3oPvwUI6RBOmTECPDO3edjfllY2+gBoFAIBAIBAJBepAecgKBIEl+VpCDHe3BC4DfWFKIn+Znu3X6VWp78Yddx9FqHFr40G2x4qGKo3jt3ClgaRosTePhKRPwh32VQ267t0OLrLxsAECJRh34lwgCNl6AzNFpLBeJDQjh42BnLy5cX4HLCzIwNy0R89KTwDiuS5qicE1RLjpMFnx5ujlsZQqkK7w0Ph4PTJ4AjdzVidxjMeO5wzuhtxH79sH4sLYKvyqZ7EhvosLdE4rwj8Mng36cgeK1VJUKfX19QT9OqMhUxQy90hjm69MNuDQvDxRFOVOgbW6KvHCssrMPk5JcKR1jZAxiZAyShrGtINgThtl4ARaOh4XjYbTxMNg49Jpt6DZboTVZYbRysPICeEEAL9id+HjHP06wj67nBIATeMhoGgxNgaUoMDQFirILKyjKXvcxNIWMWAVy4pRIj1EgXsFCwdBugRlBEGATBBitPHotNnQaLWjSmXGiS49Dbb3Y19YLo83h0CT+PkE5o9GFTJQ2yR9nIGqQJ5G/6WR8xXdD9XsEK5zs83u6HWB438Jn6r3oiX1HBBPP460TtfjNeHtqmjSVBsmKOHSaQ/vsXJAxEblqV8BwT3sTIhkKpkX38UCnU0J0Ib7l1zU04YPa07hn4jjMSrE7FFEUhUtn5WLRxAzc88+d+OFom/cdEXzCi+8RidexZ03JBO3NvgoAY2l1fjZYbegzc8Nq02TmFHmdb7Zw2FXZEmBJRxdXLh2HlTfPdvZF6a023LftCGp7gyseZQf8tiaLH+JugiRQyhj84qw8XDgtG2eVEiERgUAgEAgEAkFaEFERgUCQJGUJcVAxDIzcyDpCUpVy/HXmFGTEuKdU++hk45DuRAM51q3Dx7XNuGacXSA0NUkDlgZsQ/T6Nxtco8/iZZGtdm0iG3PiVBQ5eACf1bXgs7oW5MUq8cDUEkxJigfj6Ai8bXwh4mQs/tfYCq05NHbo7k5F/m27ID0Nt48vhUw0rLm+rwdrju6NaBAsWqjs6kCdrgeFcRoAwIU56ajq7sNXp1uH2NI/9DYOnSYLkpV24VdJfBxqJS4qEovU+qyRS/0SDRh5Hh0mE1JV9ufb4uwUSYiKDmt7cQ2yA9qWouzSEjlDQS6hZxRFUZBRFGQKGvEKFjlxSkxNA5bB3tnfLwaxcDwUrEuw61PYMUpRMIxb2qQ+6/BH3w/2GBIE/54sFOX92vFXnDTs47kfJAT79352AoldSzzeLQk2NDXj+nGFULH2Nnu+Oj2koqJzMiahJMFVZ/ZZzPis/tggW4Qem8hlTEYsbEYNJo5Hq8mMlXuPYGlWmuN9QwYAiFPJ8M87zsa242247bUKGCykRT9cxKKigU4xUkLO0pg9Id3rsvL8WFTubXJON/V6GXTl5fGWnJYFpY9BALuPtBJRC4Bl8/Px1N3znYIik43D7yqO4pjI2TNYDBQVGa3kPo4mfjonFw9fMQmp8cpIF4VAIBAIBAKBQPAK6SEiEAiShKYopCoVI9rHpXlZWLtgjpugSG+1YeXOKrx4+JRfgqJ+3jrW4EwhRlMUzk71bh8uxizqmB/Y0RNuxOnPpBSwHcs06E24Z/th3LrlgDPgydI0flWSj3+fMxtPTJ+AC7LTR3w/DMR9UO3wrksKwNWF+bhnwnhnkEkQBOxsa8RqIijyi9eOHYCJc7l43D2hCFNF7i7BQMnQiBOlbYoGB6lOsyuIMdYEGYGwo93lKDA/MwlyCQR/K7XuwffP60/h3yer8Vn9KWxoPIOKtlYc1naitq8XbUYj9KNAPEZRFCiKchMUASHRl0iaWFbmNt1r8UNUNEggVuD9O5G0j/sgdHXK0OlhhoO/6c8GPZZPoyLpBrylRFV3j/NzmiohZMeZm1rmJigy2qx45vCOiLenxNfJWKvHRhMs3OsP8bvvd01tuHnrPvzY4kp3RVEUFoxPx56/X4qfzckLZ1GjGrHuVcKaIkwrS4VS4elUnKCWw9LnEhQZrRy6jPa22VBGeVm5xV6PxXECth8Kn+uuVJkzMR0vPniu8z608jwe2VmFg529ITnewMuPJ+nPooKp+Yl487az8Oz1s4igiEAgEAgEAoEgaYhTEYFAkCyKEYheLs/Lwq9LizzSnf15TzXOjCBvfZ+VQ4vBjFy1Xaj067JiTEtOBO0IKAqCAL3NBoaiwFAUWJpGlkjUxES4p1HcmTyS80sIPtU9eqw5cgp3TCx0jnJlaArz0pIwL82eOKjFYMLHdY346nRzUEOjw7ks5TSNO8vLcFaay4ZbEAR8Vl+N7a2NQSzN2MDG83jl6D7cO2k2aEdd8cfp43F3xSGcMQReR4m5LC/TKTIRBAG72juCst9QYhG705FA5pCsb2jAJbn2FGgxLIOzMhLxQ4TditqNFrQYTMiIsXeKy2kGm5rrB92GAhDDsohhWcTL5FDLZFAxrHNebP8/mQyxLAuWpt3SRvanMwP6U5vZQ+IUZQ+I84IAHvZUaU5hiWC/xHhBgIGzocNkQofJiHaTCR0mE7RmM/Q2K3hBQIpSiVSlCokKBRLlCiQqFEhRKJGqUiJZofTpTKA1G4NwRqOHgSnjeD+kEYOJXfwNilE+BNx8qJyKgta0816+wQRXPvdElCAjoqqnFzNSkgEACfLYkBxjUmI+JiUVOKf7BUUmP9IGhgzRJUcEvtGLnHV/1+MG1KXdFiuePHgcm5racdeEYqQ4BjAoZQz+cf1M3LR4HG55dTuau4PTLh2tiO8RKYuKzpqa6XV+XpoKlftqndM1Wj2cWt5B6oKExBTEqr2LLg9Ut6NPH/2i8ZFQnJuAt/98vjPdnI0X8Pju49jV1h3hkhGkwvjseLxww2yUZgZ3YBGBQCAQCAQCgRAqiKiIQCBIFjUbWBUlp2ncUFLoNiLszaoGvHfiDLgg9IvbRB2yiQo5lmZnDHvbSIuKONFofyk4WhDc+bC2CTvauvDbycWYnpzgTIfWT0aMEndNKEa8nMW7NadHdCy3DvAh1k2Uy/G7yRMxLj7OOc/G81h77ABq+kjHaKA0GnT4qLYKVxeVg6IoxMtluHdiMX63+8iI970gPQm/LnWNMq/T6WCJgtGq4uA5RwKZQ2LkeXSYTUhVulKgRVpUBACHO/ucoqJyjWbI9QXYnbT0NhvaTdILXrYYjWgxehcIMRSFtQvOdU7X9nWj1WBAna4HdbrQjESXKvQIXHAGdSryUyATrW48Pr9mEEVFETbMjBraRPe7nA5+l0lxXCbmpo13Tls4Ds8c3gGdLTQpb/2FOBWNDuS0uyuNL5feinYtDm7rwc2lBbg41y48oSgKE3I1+PHPy/DvH2vwxH8Ohby80Yr7aZVmJVuSq0GKxrsDSkfbadgcbqZagxX6Yaa+8+VSJAjA1v1NXpeNFVITlfjs2YshEzlYPr3/hCTa6ITIQ1HAb5aWYsUl5ZCRgX4EAoFAIBAIhCiCiIoIBIJkUTCe9tzDYXqyBqxIMHPXlsMe6VhGwkiEQa1G89ArhRBxFyEJLEmTep0RKyoqwQL4RXEWLsxNR55a5XZN/zQ/G+/XnA5aeozBArAF6lg8NHkSkkXp1/RWC56r3IUeizSCX9HMno4WZMWocU6mXQA0I0WDkvhYnOjVB7S/OamJuLowG9OSXSOHeUHAy1XHglLeUDNUmgWCJzva2nBpXj4A4GxHCrRIC8gqtb04P9fuapahioloWUINJwjgBMHZNlh/uhYne8em2NKXY9NwYKjgBVV8pwsLkVORW/qzUFdcwzzHvhVKQSvJaEYtSuVnE4Jbn+ar03BO5iTnNMfzeOnobskIigD3q4Q4FUUvsgEDSLhBFGIGG4dVR2uwqbkdv504Drmx9mc3Q1P41aJxuHx2Hla8tQs/HG3zuY+xivisSrWGPWuq90FQPM+j7tRJsI6CD1bfiS+fWHU8EhJTva53rK4LHWPY3SpGyWL96ssRo3Q9R16uPIX1DeG4d6R6BRL6iZEzePXWeVgwPi3SRSEQCAQCgUAgEPyGiIoIBIJkMYnT4AxBklyOJVlpmJKkwfgEd/vg6u7AgvM+EQWrTDYOVV06CLB31LIUhVgZAxsv2P8JAmw8DwsvoMNowctH6oJbFj8Rp/4YSfCPEHpsAN6vacL7NfaRnhfmpGLljDIAQJyMhUYhh9YceABqOCGi2SnJuHvCeChFAr8mfR9WVe6FLWiSJsK6hpOYm5YFBWNvli3NSsOJ3lN+7eP8rFRcXZSNwjj3NC2CIOC1Y8fRaDAErbwEaSHFFGiHO11CXiXDSELoFC7GsqvHSFoVJF2Xb/GGz+ZaAKeMtPyGh9iZUW8NXnA8WRGHRZlTQFOu1KT/qj6AVlOQ31VGiNgp05e7DUH6iB1qgeG9+1V29eL2bftxZWE2ri3KdQ7y0cTK8c87zsbe2k7c+uoOdBukI4KLNLzoPEvx9TpZo0RJnnfXyK7OFkBngCbOPnhENojAV/zdMn24FAHAln1jNy02TQP/XX0ZEuNdrlAfnWzEuycic054Un1LBpWcwW/OL8WNi4oRp5INvQGBQCAQCAQCgSBBiKiIQCBIljrd0B3sBeoYPDi5HDmxKp8j0xPkLNpNwev4PNmjR57anmpGwdCwCQLu31aJYTqFRxSxqCjSqdgI/mGwuUR2HC+gx2IN6fF+mp+La4sKndOCIOCgtg3/Pjny1FwET453azEl2T5isSQhdoi13ZmcGI+Hp5Z6zDfYbFh99CgOaruCUkaCNBmYAm2JBFKgnezRw8rzkNE0KIrClKQk7OnoiGiZwsVYdvUYiVjZ17Z8FIjRgtWa8p39LID0Zz72Rlwqh8fU5ETn5w5zcNIYqhg5lmRNA+tISSUIAt6rqcSJPuk9o1mRsMAaBfcgwTsm3uY2zQ6zLrEKAt6vPYNNze24c3wx5qYlAbDXRbOKU7Drbxfh810NePbLo2jtGbuONP2I368Dqa9DzdlTM30uaz5zCnnJrvudG+hUJMD5kOt35VMoVUhK8b7P+uY+nG7Vjai80cwnz1yM3HSXKPW7M+1Yddi/gSKE0YVayeKi6dm484Iy5Kb4945PIBAIBAKBQCBIDSIqIhAIkoQXhhZN3D+pDOdmpA7aeXegowedQRQUAcC71WewICMJcsYeLJ2dpsE3l56Fe7dW4lBn8NKshQLxYGMiKoouzs1McX4+pdMPmsJgJMhoGneML8XZ6S5LbkEQsP50Lb5vrg/JMQlAg77XKSrKjlEOsbY73oLH1T09+KK+ATW90q6TBmPsSjP8R5wCbWluKgQAG860Y1drFywRGKZsEwTU9RpRorF3no9P0IxqUZFbqqAxfOGOJJjaL7QYiMXkf9pYq9V7+1FGBZZWd0hE3zsUP/9gKUp94rMgpO03FGUJcUiUy53TDbqRp6yJZZW4MHcW4uT2lFKCIGD9mZM41CXNVFIMERWNCkw2999uYDq0oWg1mvGH/UdxVloS7hhfhDSVvX3KMjSuPKsAP5+XjzOdBvz2X7uwv0564rhwIXaEoiSm3IxRspjuI82Srq8bCsqIGJXL5VlvdXeKdnuUOC6fjOwi0D6upS37m0ZS3Kjmtd+fh8njXO/ru9u68Ze91eR9ZozC0hR+tagYv724HLEKEnohEAgEAoFAIIwOSMuWQCBIEpqikKZUoNVLMCk7RoWnZk1BokLuNr/XYsMRbS+qunSo6zOgvs+Iml590DtyjnXrsGJbJR6bVYoMR/BfxTJ4aeFkLF23XdKORRxxKopach3uWABwojc0I0AT5XL8bvJEt7QfNp7HW9WHcKxHG5JjEuykKF2/r9bsnwtVZVcfKrt6MSnRFRQoTUjA76ZMBmC/7/ssFrSaTGgxGAHYY+A0KNCUPWDACwAPAYIggBcEWHgeVp6HmeNh4TnsbO9Auyn0o9EDCp4TnCnQrLwAOUPj/NxUnJ+bCr3VhorWLmxu7ERFixZGLnwPqLo+g1NUlBMbN8Tao4cx7VQ0ko19qbECaKv4EhXFyhR+72s4uJdwBL9/EM+Br3RypIYdml+XjnMK5HosejTqAxdEMhSN4vhMzEktg4JxpTup6u7Ajy0NIy5rqHAXFY3dOi3aGfjED1TvUtGmxf7ObiwvzsPP8rPAOgQlFEUhNyUW/7l/ER7/6ADe3TI2HVnE6c8kpinCnEnpYBl7oQqy4jEuVwODyYquXjNaG5qgzI531nc8L0BrcH9+CiKrIpoCGIZFWkau12O1dxlxfIyKy564fS6WzMlzTh/v1uHRnVVhrz9J9440OLssFX+6ehoK09SRLgqBQCAQCAQCgRBUiKiIQCBIlsI4tYeo6BcFOfjluAK3NBk9FivWHq3HV/WtYeu4OdDZi+s37sfdkwtxaUEGAEDO0Li2JAdvHz8TljIEgrijiR/LdgpRSKrKFQxtD8C5YSiK49T43eSJSFK4jqO3WfHi4d3QWkhqg1AzKTHV+blBb/R7++cra/DSWVOgYj2dOBiKgkahgEahQFlCQkDlu7aoCM8dOYK9HaFNqyWuo8ayOMNfBqZA6ydWxmJpTiqW5qTCzHHY2dqNzY0d2NaiRd+A0ejBpkHnuo6TFaERc0iRsXzVjsSpyHfqL//3FZ8QP/RKIWIkTSu/Nx3k3PgUFZGA46CkKhUoVLuCgJVd9QHf03nqVCxMnwQl6z4I4nhPJ94+eWgEpQw9jEgZQZyKopcY1l3qaRmBsNjE8Xizug7fNrbisrxMLMpIRbzcLpSjaQp/unoapuYn4sF/7xtRmaMRTqLpz1iGwrzJ9jRlpfkazCxPdyxRITXBgKN7m53lFQQBp7oMsHDuNZ74UUKBQmpGLhjWezfy1gNj06Xo9isn4/8uLHNON+pNeGD7EbfU5eFi4NVH+nvCC0UB9y4bj7suHA9aagpDAoFAIBAIBAIhCBBREYFAkCx56hjsaLcHsFka+OvMKSjXuAfEK1q0+Ou+E347ewQDvY3D3/afRKJCjgWZSQCAuemJkhYV0aKuJtLFFD2UJsQiWeEa4V7dY3cq+ml+Fi7MTgdDUdBarNCazWApGrwgoNVkxv7Obuzr7Pa6T3HAcWFGGq4uzIeccQlSmvU6vHh0D2wkmBRyFmflQy1zBR03NrX7vY86nQF3VRzCJbnpyFWrkKlSIl2lcI4mHykUReGC7OyQi4oIgbOzrQ2XOFKgAfZ7XBzcUjAMzslKxjlZybDxPPa092BzYwe2NGvRFYJnaKPeJUaMlckGWXN04UvMMRZgRpAGzJeIMJAALc14T3NmsAU3HW4/oXZYCygw5dOpiAS5BuM3ZSXOa85ks+BET2NA+0lTJmBx5jQwomewIAjY3d6ET+qPBaWsoUQ8eIO0A6MXdoB/XDAkDqf1RqypqsVrx07hgux03FZeBDltTwl+5VkFKM/R4OfPbIbFNnauGxsnTaeiKaUpiFXZu3zH5Wjclh07dgy84942WjnUdRnQax76CsnILvA6X2+04eDx0Zvm1hc/W1yM+66b7nxudJktuG9bZUT6pgAvoiLiNBc2VHIG/+/uBZhRmBTpohAIBAKBQCAQCCGDiIoIBIJkKYyzp00ZF6fGX2ZORqzMVWWZOR4vV57Cx7XNkSqekyaRq4ha5j2QJRlEPU3cGA58Rhs3j893dlZ2mMw4oO3GtUU5uKGkwLmONyP6qwpzsLtdi9VHazxcv8QDUQtEo/IFQcCBzja8W3MkmF+B4IOS+EQsyylyTh/r7sOu9sBSB9TpDHipypV6ggaQplKgMC4GhepYFMXFIFEhBy8IjpRnrjA+TdmDzQxFgaEAhqYhoymUxLuuDXmQBEqDURznSpNFqij/WH/mDC7OzXPWFW9WH0O6SoW5qelIVSrdxBksTWNeeiLmpSfid4KAgx292NzYgR+aO9FuDI7wos3gqnPCce1IhbF82YpTJvl7JnyuHYjrg4/KI2SioiA5rPm97SCr+xRp+XeEMYWSpjElKdE5fbS7AZwQmDDinMzJTkGRIAhoNxnwSV0V6nQ9QSlrqBEPQrCRh3HUYhkgCAtm6mubIOC/Z1pwSqfHY9PKkeRISz4xV4OKJ5fhsqe/R6PWELTjhRM5S2NWcTJ6RKnAKNjregoUKNo+TVMUZCyN0kyxO550atkF07Kcn60ikZfVasXRY9XoM9vQrreg02DBcLQnqemZUKpivRaXsXwAACAASURBVC7bVdkCbowJWBbNysbf7jnb2b422Dg8sP0ozugj6fAbtISsBD+4eEY2nrluJhRS7wskEAgEAoFAIBBGCBEVEQgEyTIrJQnLi/NxVWGu24jZ+j4DHtt1DDW90uioFHfXauQyXFWcCRXLQEZToCkKNACapnFaZ8SXda2RKiYA9yAB6WWKHkoSXMKOzc3tYCkaVxd6kxF5Mjs1Ca8vSMC/TzZgXUMzzI4Ag7eRtIIgYF3DCWxpka7b1mhialIalo+b6HJF4Dg8W3kyaPvnAbQYzWgxmlHRFphQ6YFJ47AsN33oFYOE1mxGoiNVFi2hFBLRgMFmQ6fZhBRHCrRJiUl4/XgVPquvg5ymsTQrB/PT05GhinE7twxFYUZqAmakJuC+acWo1Pbi+8ZOfN/YgRZD4KkWO00uAcdo/yXF3484Fdnx+zT4WD8Qp6Jw/wbBcv8ZjrDK7VoLpCE32m/GEXBjabGzbrTxHKq6Twe0n3hZDBLkrsD7uvpqbG+PrnaV+L4j6XOiFxsGioqCf4yj3X24Z8cBPD59glOInqhWYNPjP8Gtr23HD0fbgn/QEPPm7fNx9vi0gLaVStO1JFeD1ERXStz65l6kOKZramqwu6FjWEIi8ffJKxiHXi/NQp4XsKsysn0c4Wb6+FS8tnKx00nQyvNYubMKx7p1ES3XwOuPOM2Fnt9eNB73XFQe6WIQCAQCgUAgEAhhgYiKCASCZFEyDK4pynOb97+GNjxz4CSMnHQ6SMSd7WkxCtw3rdjnuvMzEvHIjsilPRB3NEnnDBKGghN1CF5ZmIMF6SlQsfaRcIIg4KPaJiTKZUhRymHmebAUhfLEOKgd7l5KhsHNZYW4blweDnf1otNkRrpK6XYMK8/hjWMHUdPnPV0aIXjkxMbhF4XjkRWjdgvcPXv4JGr7pCGW7CeGdY24NNhsYT22lXSE+80OUQq0aUnJkNE0rDwPC89j/ZkGrD/TABrAeVnZWJiegZxYtYd4a1JSPCYlxePuyYWo6urDpjMd+L6xA01+Coy6LKIR/hSFJLkCWkvgIqVoYSyH38XXkr+CF9/OOtIXFbkfO/gb9z8n5DTrlk4rkHKMHc8w/5mR7EpZUtPbDBMXmLNVmsqVZsjKc1EnKALcrxPibBrFhKkZ1W6y4P5dh/DApBKck5EKAJCxNP55x9l47qujWPO/4+EpSBAoTFMHLCgCAIs1GEnmRs7Z0zPdprPS7IIvnudRefSo388qjUaDpKRU9Db3eiw7fLITOmNk0n1FgqLseLz75AVgGHtNyQsC/rSnGrvaIv8OPfAZT16lQgdLU3hq+Qz8fG7e0CsTCAQCgUAgEAijBCIqIhAIUYHJxuG5Q7X4b730RsHp/eg8nJocP/RKIUQc8As0pQMh/Gxs6sD/jctxTmfEuARBjXoTXjpyyttmWDG5CFcUZDp/dwXDYFZKosd6fRYLnq/chV5raFLDEOzMSsnAhTlFSJAr3MREHC/gH4dPYFNzRwRLNzThCCuqZTLn53pdZEf7RiPiFGhKlsWkxCTs73S/rngAG5sasbGpETSAs9MzcG5mFvJj1R6ChfLEOJQnxuHOyYU43q3D940d2NKkxalhiN90FncRWpJCSURFoxyWCr5kJYjZzyRv0jOw2EpGjiR5LOQqGpUqjYdr06BBYZ8LpX4WIgcrqv/aTYGnKVOxcudnvS06A+1ubRQiKiIMAzPH48mDx3Gqz4BfldjFzRRF4b5LJmBKfiJ+89qOCJdweCyd4i7G8erUJbj+CIIAiqLAOBxrWjojPzggLUmF4pwE53RBVjwykmMAAKdPn8bp9i6/2yrl5eVo89Es334w8unow0V6kgqfP38J5KI0V88eqMGmRmm8w/nVTiAEjFLG4JVb5uLcCeFz8yUQ/EWr1WLDhg3Yu3cvjh07hvb2dvT19YGmacTHx6OgoABTpkzBokWLMHv27IDcYQmRp6KiAjfffDNsogGAMpkMn376KUpLS8Nali+++AIPP/wweJGiVSaT4Y033sC8efPCWpbhUlFRgVtuuQVWa2jf2a688ko8+eSTIdn3BRdcgLq6Ord58+fPx7/+9a+QHI9AIBCIqIhAIEie+j4DVu48NqwgZiT4uqENCzKTkKdWwcLzMHM8LLwAjhfACwKKE1wpECL9niYO9w3H8pwgDV45WocpSfGYmBjn8bL/zRnfaQWeP1yLD2oa8dScCSiKi/HZUfD3QxUwctIYWTsamZWSgUvzSxDLyjyWNRmMeOFILfZ2RH50qzfE0sNwVF9iUZHWbArDEUcXA1OgzU5J9RAVieEBbGltwZbWFuf6S7JyUBQX5xZgB4AyjRplGjVum1iA0zojvm/swLen21HrIxUpD8Bo45yuanEyz+t/NDKm05/RgTsV+SKQ0xnuthY1AocmMTGMHOnKBMTJVJAzrCsVl83m9fk9uKbIl+tRwMUjDBMZ5epiidbUM+JUhmYJucMSRkroK4D3ak+jXmfAg5NLoWQZUBSF86dkYdPjP8Glf9sEvTm8rpf+cv6ULOfnnac6cfXrQ4uhHr9kAm48uxAAYLZE/n1q/lR3YdSs8jTnM2T/oUqc7vGvfa1SqVBQUIDWSs93zoaWPjS16wMvbBShjmGx/qXLEaN0tWdfO1KHz+taIliqwRHIILKgI2MovHzzHCIoIkiWmpoarFmzBt98842b0ERMe3s72tvbsXv3brz55psoKCjAbbfdhssvvxz0MF1RCcFjz549qKiocE5TFIVLL70U+fn5Q27b3Nzs8TtbrVZ0dXUFvZxD0dDQ4CYo6i9LU1NT2MsyXJqbm0MuKALs5yZUDBQUAUB9fX3IjkcgEAhEVEQgECTP7yqOolEv3eByq9GMmzcf9Ln84vx0PDqjBADARjiaI3YqshFVUVRx+9ZDyItV4sayPExL0UBOU/ihuRNvVZ8edLtmgxk3bN4PJU3jkvwMXJafjoIBAqNbx0/Hq8f2w0yERUFFI1fgN+XTkaqM8VjWbDDhs/pmrGtohlXC96I4MD0wTVawYSgKsayradphkm69L2V8pUAbDrs72rG7ox0AMD0pBedn56A4Ph6yAZ2LuWoVri/LxfVluajvM6CipQt72rtxuLMXfSL3PgvHO0VFSobBWEC6d3PocUt/5ueJ8FW7BEucZN9XaAi0ZqRBo0yTifHxGUhTJUBGM17FQ75HDg8qK/I6l2iKfCO+ZkdynsTXbLSeb/G9bCGioqjFBpeTDgDI6PBckdvaOrFi1yE8Pr0cGY50ywVpalT8dRl+8ewPON7kmUJLCqQlKDGrONk5/e8d0ReQiVWxmFaa6pzOTY+DzOGq09HRgT0nGmDl/HsalpWVgWEYeHuubD8wNlyK5CyNb9b8FAlqhXPehycb8U61tNJbDrzDo1TXKmmeuGoaFk3MiHQxCAQPOI7Dq6++ipdfftmnmMgXdXV1ePjhh/H+++/j6aefRmFhYYhKSfDGG2+8ge+//95tHkVRuPPOOyNUIgKBQCAQfENERQQCQfLEy1k0RvEAOJPNFWAdmFom3Ij7kkn6s+ijQW/CE/uqA9rWxPP4+FQTPj7VhHy1CqvmT0aS0p6iI1cdj2uKJuDtE4eDWdwxzfz0bFyRX+ohxKns6sVHtY2oaNMiGu5ALoyiIrGgCABuLC3Dh7U1OBSCUVY5MTG4JC8PeWo1aFCwCQI4nodNsDvM8YI9LNz/+URvL75oiI7g0nBSoA2H/doO7Nfat5ualITzs3JRHB8PxQBxUH5cDPLjYnBNSTYA4LTOiKPaPlT36JGgcI3mZsMUzIw0wRTBRBuMKP2Z/+cheNdHuO37KYjFVIN/7wxVAiYn5iI7NglqVjFkWc2cFX0WI7rMepg5K9JU8aAd5zkgp6KolbmEA7GqKPDzZOZco10VTHR2t9Ci68TMh05wXhgXi6sK85ChUtmPOPC8O57FggBwECCIns398ynKXntQoEBT9rYKQ1GgKcq+Li+AE1z/bAIPK2//Z+MF0BTlfNbbBAGCYHddYykKLE3b9wkKFAVYeQG9FissPA8Lz4Hj7YKd/nUAR0osCO4iNcfXEt9/1IBljq/r/H6cozw2UdtEvNwm8OB4+zqA/R2v/xxQjvIOvN/lYXwPre3T454dB/HY1PGYnGRPxaVWyvDVI4tx/9t7sG6PtMQYADC/zCXGsXE8vjw0PMGM+28d2Tp2zsQMMIyrDEU5rtTrO/cdQo/Zv/uZYViUlJR4XdbVa8bRU9rAChplfLXqMqQnuwaJfN3QhtWHvacfjyQDL79oeNeMJi6ekY1rzi6IdDEIBA/MZjPuuusu/PjjjyPaz8GDB3HVVVfhpZdewty5c4NUOsJQtLe3e8wb6PhDIBAIBIJUiM5eLgKBMKZIVSpQBV2kixEwJtEIX0k5FY3duOeYp15nxE+/3YV/LpqO4nh7er7JSamYmJiCI13+iw8I7vxy3ERMTUpzCyyc6NVh7bE67O3siWDJ/EcsKmJCXH8NTI+VHRuL+yZPwZ/270NtX19QjnF2Wjp+VlCAJMXQwXwxk5KSQFHA51FgI+xvCrThcFCrxUGtPXBUoI7DJbl5mJCY5NV9KFetQq5ahQsGzB8rYoYxnP3MrY3DB8mqKJjp5MIh+Bp4BBUtx+SkHBTFpSFJoR5SXG7jOeisJuhsZuhtZlh5G3ieh5GzONYQp1obpBw+FpL0Z8NjJKfJ9VsBcjo6HdrEz8ffT5vkSu/McTDzPCwcDzPPOVI+u8+3C27soh1f0xQFTE7U4JLcbLe0iYTQomDCO7ilx2LFw3sqcdeEYizLsTt7MDSN52+Yjcn5iXjyE2kNZphX4hIVnekyDns78UCdSF7ODE1hzqR0t+mMZPt7nl6vx5GTtX7vs6ioCAqF3Z1n4HNl+6HmMdHm+c/fl6EoJ8E5vbVZi6f2nZCkhHxgWztaU3BKkXklKXh6+YxIF4NA8IDjONxxxx3YunVrUPbX29uL2267DW+99RamTp0alH0SBqezszPSRRizpKSkgGVZv929/CUzM3PolQgEAiFKIKIiAoEgebotoc9vG0pMopRSke43p0cS8COMKngAN23ejy8vnIt4uV3McWleCY53a2EjLlYBc2PJZExMEo105nm8daIBH55qhISznPlEXOZQOxXpfbzI31FejprePlCUPaBh4jiYOA5GzgaOFxDDMlAyDJQsC5aiIUBwjPK313MMRSFeJsO4hIQRpeAqjU8YeiWJMJIUaENRp+vDS1VHAADj4hKwJCsLpQkaaOTyQYVaRi60HTVSYSw7FbmlP/PzPPi8cgJoq4TdqWjA8UrjMzA+IQvpMQlQ0Oyg5eEEHs2GbjToOtFl0SFfnTLk/vsZ9NT4dCoi+CJYd67RZnZ+ZiPsUBoo4uuEpij7M5ZhAMh8bUKQOFaeD7k43Bs2QcALR06itk+P28qKwNAUKIrCrxeXoCQjDjes2R72MnkjRsFg2fRs5/Tmak/XAF+IMwTSEXzZn1KaAnWM/R5VKVjMn5rpLE/VsWNo1ZkH29wr48vLvc43mTnsO9oWeGGjhNcfW4zp49Oc0wc7evDYrmNugy6khIdTEXmlDwpnlabgn7fPh0IWnUJhwujmueeeG1RQ9JOf/ASXXXYZJkyYgNTUVJjNZtTX12PLli1477330NbmWZcbDAbce++9WLduHeLj473slRBMRouoKDc3FxRFuQ0KUiqVKCgoiFyhhuCcc87BkSNHhlzvnXfewZNPPul12VdffeXT1TEc5OXloaGhwW1eWVlZhEpDIBDGAkRURCAQJI2Z41HdHb0uRYC7U1Gog/JDIe7nJCPXCDyApw6cwF9nl4OiKKQoVTgvKw8bGusiXbSo5NK8YjdBUZvRjD8dOIaqKK7D3NNyhLYDvdtiwaojRzEvLRVzUl3nMUWpcrruBPd4JhztaoeRs4GhaLA0DRlFg3KmOqFQGKdBksJ+7GgSYg5MgTY5MQn7RuhW5I2TfT04edzlvlWWkICZyakoio9HmlKFWNYuqDDZbNjbMfwAXbQhFn2cl5mHVqMBVp5zptjx+lmwp8/pnx9N15cv3NKfSfDrhKpMsYzc+TlNFY8LcqYMun6XWY8GXQca9J1o1HfBKtjF5xp5jF+iosEg6c9GxkjOk5l3DYaI1rMtCELYxHkcz6OirQk6q8WROsxO/9Fpyv48ph2f+5/PlGO6PxUaYE8Z1p86rD/oz1A0WEdKNJZ2POtpBjKaAkvR4CGABuVMm0ZRlDMdKifw4B0CZUEQoGJZqBwCZhnNOMXO3tKduaVFFEnWxOsNFF/2b0NTrlRuNEWL0qvZ16Acy/rTnDl25jwPgmsWYhj7c1hG0xERFfWzrqEZp3UGrJw23ulMec6EDHz96BJc+reNsEX4tfRnc/IRp7KXSxAEvPT9iWFvK35+R1JUNH+qfRT8uFwNZk1wOaZarVbsOVwFC+ffQzApPRNxcXHOafG1u/toKyyR/tFCzN/umY/Fs3Od0yd69Hhwx1FYJNyHIhNdf6F+bxsrjM+Kx6u3zCOCIoIkOXToEN58802vy+Lj4/H8889jwYIFbvPlcjkmTZqESZMm4brrrsNjjz2G9evXe2zf3NyM1atXY+XKlSEpO8FOb28vLBbL0CtGAVdccQWuuOKKSBcjJKjVap/LVKrg91X6w4YNGyJ6fAKBMPYgoiICgSBp1tW1uIlyohGLqPyRDi6IO5NJ+jMCAGxt0eJ4jw7jNfZO40WZedjacmbMuIoEi8K4BJyTkeecbjIYcf/OSrSZoruDQFxnhKMm3tHejh3t7fj3ueeETIRZr+vGDy0NONrVPqQzxbVFE52iomiqMgemQJuVkhoSUdFAjvf04HiPe4q/VKUSnSZTWK6fSKAc4EQyPz3bx5qDwwm8U2BkE4mP7KmDOFg5zpFCiHPNc6Qdcn52LLP6mGcTeLdge7BhaXF94a9TkS83ngDK6rPuCM73zlJpMC4+A1kxGmgUsZANkeLKxFlxRq91Con6rCb/S0fZVxB/s4BcsSLdEJUwwboreAkHnIcDQ1GgRfXaBzVV0NmsiGFYKBgWKpaBgmGhoBkoGPs/Oc1A5hDrsBQN1iHYofv/UpRTENT/bOcEHqf6evDOySMwhDjlwFjm2TmLnG25SA9u2a/twT07DuIvMyYiO9bePinLTsDWvyzDhX/ZiG5D5NrMv5if7/x8pKkXHbrhl4UT2XpG6hwXZscjIzkG2WlqN0ERAFSfOIH6Tv/TCGcUjPM6nxeAikPNAZc1Grj/uun4+RLX9z+jM+K+bZXQWblBtoo8LBWd7nhSpSQjDv+6c75TcEggSI2nnnrK67uSTCbD6tWrMW/evEG3V6vVePbZZ2GxWPDdd995LP/oo49w9913E7eiENLREfo+GgKBQCAQggkRFREIBMnSajDjzar6SBdjxEhpNJu4o5OTULkIkeXRXVX4+PzZoCkKCobF3LQsbG5uGHpDgpP/K57o7MDXWW14aPfRqBcUAQArFiKGsc4Qh2Tq+rph4mwQYK/DZBTtDF7SFCVye7GLJij0By/hsF8GzLwNbUY9Dmpb0WLUD78cVPSO+A1lCjR/aDd5F1CMFkwOl6GRBhIZigbD0FCGaSA073Dh6BcZ8c6/vGuaF8BhwDzH3/5/gmNfAgRMT0537j9OpsS1RfMhCDx42F0+eEEA79ifIAhOkZNN4KCgZdDIVU7XD97h/GHgGMQwCvRLaAQAgsCLnDgE5zZw/GUoGhSogFPRsTSNZHkcEuQqaOQxSJDHIEmhRpxMCSUjG9LBhRd4tBh70KDrRIO+E23G3mGVZbA6xtv3GaxK8nU8oinyjZvTzAj2Q0d5UFcxQCR3tLsTvdbob88QAClcmU0GE1bsPIgnZkxAucYepExLUOHrlUtwwV++Q68x/GnPi9LVmJyX6Jx+7rtqv7YXOxVFSrd1tsOlaMb4VOczihcE1Hbq8dHmPdBZ/BPDxMZrEJ/k6ZwHAIeqO9Cnj+709INx42UTcNuVk53nscNkwYptldCapf+d2Qg6ZY02CtPUePfehUiJU0S6KASCV/bv3499+/Z5XXbVVVcNKSjqh6Zp/PnPf8b27dthMBjclplMJvzwww+49NJLR1xegneampq8zjeN8j4UAoFAIEQvRFREIBAkicHGYeWuKvRJfDTYcDCLnYocge5IyXnc059FV4CcEDraTRZUavswJdneuT89OZ2IivxggiYFiQqlc3pNVS2aDKOjE0DcOR0qd5Oh+KTuGNpMwxcCBRNx13y0yTDDlQKNALxSdQQX5+ZDyTD29DoUBcaRaoah3EVu/ddUuFIL+cLuHMIglGOvU5S+bcKHS6+NgkYR49c2pYlZKE7MAeAu1JmoAc7LnOBMEWRfDoCCKLFQYL+NwWbGab0W9boO1PW1w8yH3nll0BrZZ/ozgm8G5K8KkHi563qN1HNzJMgZ9y4iHREUEYJMj9WGh3ZXYuW08ZibmgQASNeo8OGKc3DDmm1o7QlvG/qyWa4UV0Yrh03H2vzaXvxKHQmnomSNEqX5dlGUSum6f3ef6cbuqhpoe3r93mdGQbHPZdsPeg+AjgYuO7cQj/56lrMd0Gux4b5tlWgymCNcsuEhdpiNvqePdMjUqPCvO+YTQRFB0nz00Ude5zMMg9tuu82vfSUlJeH888/HF1984bGsutq70PaTTz7Bo48+6jYvOTkZW7dudTpe2mw2bNiwAR9//DGOHz+O7u5uXHPNNfj9738/ZJmOHTuG9evXY//+/aitrUVPTw8YhkFCQgJKSkowZ84cXHTRRcjNzR1yX1dffTUOHDjgNu/cc8/F66+/PuS2y5cvx549e5zTc+bMwf/7f/9vyO2uv/567Ny5E4D93fLVV1/FokWL8N577+GJJ54Ycvs33ngDb7zxhsf8P/7xj7j22muH3H4g+/fvx//+9z9UVFSgtbUVer0e8fHxKC0txZIlS/CLX/wCSqVy6B0NwmeffYZHHnnE7f1bJpPhiy++QHGxe7uipqYGV1xxhVvqN5qm8eqrr+Lcc891zmtoaMCXX36JH3/8EY2Njeju7kZcXBxKS0uxdOnSoJQ7Ulx33XXYtWuX27ybbroJDz30kHO6o6MDH374Ib777jvU1dVBJpNhzZo1mD17tnOdJUuW4MyZM277ueyyy/CPf/zD45iPPPIIPv30U7d5EydOdJu3Y8cOfP7559i/fz86OjpgNpuRkpKCSZMm4cILL8SyZcvAMP6NhGtsbMTmzZuxZcsWNDQ0QKvVoq+vD0qlEunp6SgrK8PChQtxwQUXIDY21q99EwiE8ENERQQCQXJYeR4rtlWiqksX6aIEBcuA9G2xLIu+CNn8u6c/I11NBBdvVzfg2bMmAQCyY+NQoE5Ana5niK0IAHBxnusFubZXjw2N7REsTXBhIuBUxA6Ix/BC5OQ84pRM0eZUFKkUaGORvZ0d2OvnuaUBxLAsYlkZYlgWMaw9rZCKYaFiWCgYBkrGlV5I6UgxpGBoR6ohyp5qyJFeiHEKmQAalKQETCPBFkB7SSZzSaW8fXdK9P9AVTbdZj1ajD1oMfagydCFTnNo26x217UBddBgTkU+lkXztRBqglXD58amOj/rbdEnyJGLUp8JghB1glpCdGDmeXzb2OoUFQH2VGj/uf9c/OqlbTjVFr5+ALGoaNtJ/9tJQrBszgLkrCmZTh2kuChyhkZz3Um/9ydXKJGcmeN1WV1TL5o7DF6XRTsLZ2ThmRULnc9Jk43DgxVHUNMbPd+XEY8gi67XFslAUcA/rpuJvBQS1CRIF0EQsGnTJq/LZsyYgbS0NL/3+bOf/Qzt7e3IyclBXl4e8vPzkZ+f7yEG6cebw05nZyesVisUCgWqq6vx4IMPoqqqym2d48ePD1qO48eP4+mnn8a2bds8llmtVphMJrS2tmLr1q144YUXcNFFF+HBBx9Eenq6l73ZSU5O9pj3ww8/4MyZM8jJ8f68A4ATJ064CYoAYNeuXaipqfF5Xvq36xcUAfbfq1/81NnZ6XO74eBvurTq6mo8/fTT2Lp1q8eyzs5OVFRUoKKiAm+//TZeeeUVlJSUBFy2M2fOeLyvWq1WdHR0eJyvjo4ON0ERYE8h3X9+Ojs78eKLL+KTTz7x6A/QarXYsWMHduzYgXfeeQcvv/zyiModKRobGz3mtbS0OD9/8MEHePrppz0cxE6fPu0mKhooKBq4HzHe1j1y5AgA+3l97LHHvKZCbG5uRnNzMzZs2IA1a9bg73//OyZPnuzjm7nQarV44YUX8PHHH4PjPE0DdDoddDodampqsH79ejz55JO48cYbcfPNN0etWIxAGAsQURGBQJAcLxyqRaW2L9LFCBoD05/FKyInKqKJqIjgg13t3dBZbVDL7E2DczPzUHficIRLJX1iWBZpSpcrwX/qGkdVH657+rPwfLM8tdot8N1jjdzoYHH8nY/CX9YtBVpySsRSoBE84QHobDbowtAeuHvCJExPtqcxadJ3YVtbtUOIxIChaZcoyTHNUP3/KDAUDdoxTYumKdjbFJRDwORyYqJg5CzotRpBUzRoRzpCZ1pCx2fnMWj7/lSMDCpGDoqyi/ns+wUMFhNsPO+Y349dMOVLIOPvyDlfmDkrjDYLdDYzeiwGdFn06DTp0G7qg5ELvlhksBRp3r4rcSoKLuI2cqDnScHIUByf6Zw+2h19Qs5oT99GiB68tUdykmPx0X3n4qaXt+FwQ3fIyzC1IBEFaS5XvdWbTvi9DzdNUZiFmyoFixnjXULGrh4TUpPs7yXZcitizL3QUe5uSkORnl/kdJkYyLYDzSMqr1SZPC4Zax9bAtohyrHxPH6/6xgOR1mflMzNqSj63lukwG+WlmJ+WerQKxIIEaSqqgrd3d6fkQsXLgxon/PmzRt2yrSh+PHHH3HXXXfBbPavH+fdd9/FU089Bat1eOkmeZ7HV199ha1bt+KZZ57x9Dn1tgAAIABJREFU+d2XLl2KjRs3eszfuHEjfvWrX/nc//fff+91/saNGwcVFQ3crrCwcND1Q4EgCHjrrbfw7LPPeoh3vHH69GncfPPN+Oyzz5CUlDTk+qFk8+bNePTRR4clwGpoaMCNN96Izz77DKmpo6Pu5nkeK1eu9HAUCiWVlZW45557vAqdBlJbW4vly5fj1Vdfxfz5832u19DQgF/+8pdobW0ddjl0Oh1Wr16Nb775Bi+//PKwnMgIBEL4IaIiAoEgKf5b34rPT3lXVEcrRpu7GjtBzqIxMpl8IuI6QogePqppxE3j7QKE8ZokqBgWRi4yArho4bzMfGcAQW+z4fvm6AsgDgYrCiqES4g4MPDBR1AAKQ4yM1EYaHVLgcYwJAXaGEUsDtTZzGgxSs+FrlCdioK4FI/5nT3taDMNp7wuZ6ZT+g70dbvcmvqXNBu70WLotouiKMrp6AQI4AUBNoGHledg4awwclZwEXRJ88BroNp33ejLWY04FXnnZ/m5SBA5XAUqGpuTWgaWtovaBEHA/07XBKV84YQh1wghTIhThAuC4KyfkuMUePfehbj99R3Ydjy07p9il6JeoxUHz/j/fBTXtuG+e2ZPTIOMdbVPdx9txbKzC0BRFE4cP478xBgkquQ43qEblrCIYRik5RY4p8Xfp89gxfH6ruAVXiLkZ8bhw6eXgWVc5/HJvSdQ0Rp931Uu+g4k073/jMuIw28vLo90MQiEIel3FvHGuHHjwlgST77++mv84Q9/8FtQ9Prrr+PZZ5/1uoymaSQnJ8NqtXoVU3V3d+P222/HqlWrsHjxYo/l5513HhiG8XBK+e677wISFW3atAm33nrrsLdbunSp83NpaSkKCgrAO/rj29vbYTQaPfYRExODlBT3d2OaplFWVubzuGJWrFgBrVbrNi8pKQkmk8nD+aaflpYWrF271i39VrhZvXq1hwuWRqMBz/Po7fWezrW9vR3PPfccnnrqqXAUMaT09fWFXVAEAD//+c+dnymKQkpKCmw2G7q7u732K5jNZtxzzz1Yt24dsrKyPJb39PTghhtu8CkoUqlU0Gg00Gq1XuuK6upqXHfddfj0008jLnIjEAieRF90hEAgjFrMHIcXDtVGuhhBhxPcU6AlKmSDrB06Blb4NtLRRBjAuycbnQIOGc3gkrzIdkhEA+Ual5VyRVsXrKOsB1fsoh+uAPvA41AR9NYwiEbJjU9IiFg5AqU/BVo/s1JGx+gtgn8wInEgJ3jaTksB2oeQgeOGW+8Irv8oATaBg5W3wcLbYOatMPNWdFsMaDX1otnYjSZDF84YtDit78RpvRaNhi60GnugNeugs5kjIigaLMWivzoPXw4FRC7iSXlCAq4tKnAKGnotBjT0tfm/H00eShOyndNHu9th4qNPmM24OV0Qoh43x0VpIXbzpSgK71TUOetBtVKGN+84GxfNyPax9cihKeCSma60Jxuqhj+SWoy47qbp8NWyNE1h7uQMt3k9Ogt2H22FwWBAfX09ACBeyUKjHF7/Q0pWLmRyhesYovrgwPE2n6k1o5XkBCXWvXAp5DKXw+HzB2vw7ZnoTGUtvvqiLW1zpCnJiMO/7pgPOUvCJATpc+rUKZ/LCgsLw1gSTx566KFBBUXeBjhs3rwZzz33nMf8+Ph4/OEPf8CuXbuwdetW7Ny5Ez/++CNuu+02sKy7T4LVasUDDzzg9dwkJiZi5syZHvP37dvn0/Gpq6sLBw8e9Lrs4MGDPl10vG0nFhVdcMEF+Oabb7BhwwZs2LABDz/8sNf9PPLII851+v998803+MlPfuJ1/YH0C4rUajUeeOABZ5qz/fv3Y926dZg6darX7datWzes/YeKfkGRQqHAnXfeiS1btmDnzp3YvXs3NmzYgAULFnjd7ssvv/Qqzoo2tmzZMqSgyJeb5EjRaDRu99uOHTvwww8/4Pbbb3dLL99PX1+fTyHX2rVrPVyPWJbFTTfdhG+//RYHDhzA5s2bcejQIXz99de44447EBMT47Z+c3Mznn/++eB9QQKBEDRIa5lAIEiGkz16GGzSDHaNlA6Ta8Tz1JTIBKbZAZ2clmEH6ghjBQvPY3eb66V6bloWzs8uiFyBooA4mavjvao7uizyh4M4uBgux6CBuixfYoNwsLPd9SKsZFksy8kZZG1psqPNFRyflpQMWYg6IQjSRSZy2ZKuS6Gv+9z/eofycY1H0vVsOAxWOuIwFBrULIvfT5vkPL9W3obvGvfD6of4jqFozE4pxfx0l7uBhePw3knfo8ilDEl/NroQC7M5iQnfW41mcKJ6ef/pbjy7odophpCzNFbdOAe/XFgUkuPPLE5GarwSgF2A8cJ31QHtx2R1PVfFbjehZvK4ZMTHyj3m15zuwcf/3eZ0QQAAOTu8Z0hGgWtACU0BjKj/YM8R/8WWUiZWyeJ/ay5HrMoVKPtnVQM+ro3eFG+krRAY6QlKvHXn2chOihl6ZQJBAgyWTkij0YSxJL7RaDS4//778c033+Dw4cPYu3cvPv/8c6xcudJtPb1ej8cff9xDCKnRaPDBBx9g+fLliIuLc85PT0/HihUrsHr1ao+U13q9Hn/84x+9lkcs7OnHZrNh8+bNXtf/4YcfPJyN+uF53qeL0cDtUlNTfQp4AEAu93yOA/AQTQVCeXk5Pv/8c9xyyy1ubi9lZWV45ZVX3M5rPx0dHThz5syIjz0SsrOz8dFHH+Gee+5BWlqac35eXh7WrFmD7GxPwbnVasXhw4fDWcyQM336dKxatQoVFRU4fPgwtm3bhnfeecerG9dISU9PxyeffILly5cjPj7ebf5vf/tbvPzyy16vyW+//RY1NZ7OvF9++aXHvCeeeAIPPfQQ8vPz3eYXFRXh3nvvxX//+183p7WFCxdi+fLlI/laBAIhRJD0ZwQCQTKkqRRgKMqtc3G0cKxbh6xYe6fl4uxkvFxZF/YysAOCbGYfL0iEsc0f9x7HZz+ZDSVrf0E/P7sQx7o7cVo/+gQzwUBsM99jGV7u92hCLOgJV90cKxsw6oyPXF3VoO9FdU8nShPsjlRXFxUjSWEXklGgQFF2hb49zZIj1RJFwcTZYLBxMHE2WHkeNl4AJ/BgKBoMRYGhKLA0DRltn2YpChwE9Fms0Nts0NusMHEcWJqGgmagYGjIaQagAI7nYeUF8IL9Lyc49g8BvOMvxwvgIcDGC9jb0YFL8uwv7kqWxaTEJOwnKdDGFGIhWSTvp8HwFQfjAxBB+Q6qRXP70l+rIuJUNBz+Nms6FKKAxNaWI+iy6Ia9fVZMEs5KK4dGoXbO4wQea4/vg01yvjDDw92pKJrvGcJAeIn9np1mC5oMRuTG2gP5JWlq/P2b42jtNeHpn08BTVGgaQp/umYakuMUeHF9VVCPf/4UV7qGboMVp7sCG+Hea3K1/2OU4etinT810/sCgQdr63TWQLwgoMc4tGuaJjUdKrUrwDgwFWKPzr9UNlKGZWl8veZyJDpEZQDwSW0T3jzWEMFSESIBTQEv3jgbmYmqSBeFQBg2er3e57KBbh+RYObMmXjppZfchCxyuRzl5Z7pBT/88EO0tLR4zH/kkUdQXFzs8xiLFy/GNddcg3fffddt/o4dO7B7927Mnj3bbf7SpUvx17/+1WM/mzZtwhVXXOEx35fYqJ+NGzfiyiuvHHK7xYsXR0TwOX36dKxdu9arcAgAkpOTsXDhQqxfv95jmVarRU6EBtMVFBTg7bffRkZGhtflSqUSF110EdauXeuxrKNj9PRx3X///bjlllvcrp2UlBSPlHjB4tFHHx30Nz/nnHOwfPlyvP322x7L1q1bhxUrVjinu7u7vd7TF1988aBlyMrKwltvvYU1a9bgsssuw4wZM/z4BgQCIZwQURGBQJAMqSoF5qZrsL0l+vLXD8X3jR1YnG1v/GXHKpGrVuK0zjTEVsGFHfAiYyJORQQv6Gw2XL95H95bPBMsTYOmKCzLLcbrxw5EumiSRG+zQiO3ByQnauLwffPoeZEFIiMqimFczVMbH/kQ2MamOqeoCADOz44+tyIxF+XkEVHRGMNdVCTNdEw+0xwGUAH46riNdF0yFP4KOAZb31d1TVwMXKyYOB4ZMa4gYqW2DrV9nh2g3qBAYW5aGSYmuo+0tPE8/lV9AA363qCWNZy4iYqkftMQ/GKgSEQKmGwilx+HK85/9p5Bh86CtdfPdA6KufficqTEK/D4hwc8HC0D5fwpLlHOlpOBt4s6dC5HYnVMeNKcZ6fFIis11uuykgwOxzpdz/qGbiOMtqHf+zMK3IO3o/n2//KFS5GV6hKDbjjdjucP1kawRMFBene49LlyXj7mjAtNkJZACBWDpXny5XzTz7Jly1BbO/z6Ljs7G1999dWwxUrZ2dlYu3YtYmO9P6MG8v7773vMy8rKwuWXXz7ktrfeeivee+89D5ejDz74wENUlJ2djQkTJuDo0aNu87ds2QKLxeJ23qxWK7Zu3TrosSsqKmAymaBUusSp3rbz5pAUDq666iqfgqJ+cnNzvc6PZBqxSy65xKegqB9f5TaZwhtjCRU33XQTbr311rAe01daOTHXXXedV1HR9u3b3URFFovFYx0A2LlzJxYtWjToMVJTU326jREIBOlAREUEAkFSlCSoR6WoaEtzJzpNFiQr5aAoCg9MK8a9W8ObFmFg+jMzERVFJTSAjBgl0lUKpCjliJeziGVZyGgKNOUKy/bHDQQBsAl2xxKbwLsFiOwuKxQY2u6U0h9sEAAc6OzBrNREAEBpQhKuKhqPZoMOHC/AyvMwcTaYOBvMnMuNxcpzjr98SEdD9zu90BQNAQJsPB9SwUu/+4w3anq6MDPVHpS4ICcd/znVhB6ra8SyheOj1KvAjtjfLFxZM8QuapFMfdZPna4bJ3u1GBefNPTKUUBRXBxiWBYGmzTFJYTgIxYV2fxI6xROfHoLBVC3+xQVSV0hMUjxvH2nQb8NcSoalPOzMjE/LdU53WzQYlf78FIfJSviMS9tPDJiEp3zBEFAk6EPbxzfDwMX3XWr2NmUOBVFP7wgONtSUkx/Km6/i6+974+34eevbMdHvzkLCod76vKFRUhSK7Dird2wDEMkMxglmXHIF4lK1m4JXFDS3OMKvsllDFQKFkZzaOuB2RPTvc4vyo5H06ndzulOgwWtOu/BHTExcfHQpLjvc+Azk2Gld/0EwvtPXYiSPFd6oB2tXfjL3upRV9tJvckjBeQsjZuXlES6GASC3wwmHDIajYMKerRarV/HamxshFarHbao6MYbbxy2oOjkyZNoaPB0iFuyZMmwBkJkZGRgypQpOHjwoNv8H3/8ETabzSNd09KlSz1ERQaDARUVFTj33HOd8/bs2YO+vsGd2o1GI7Zt24YlS5b43E6tVmPevHlDfo9IIZOFRwgdbKK13MOBpmnccccdYT+uWq0ecp3c3FwUFBSgrq7ObX5VVRU4jnOmI0xMTIRCoYDZ7O5wuWLFCtx888244oorvKawIxAI0QMRFREIBEkxGtMHAYCVF/D5qRb8ujwPADArVQM5DVjCqDZgaOJUFK0wFFAcH4sJiXHIU8dAToc+LNioN2FqEg+ZI73X9KR0KGgWBtvw7lFeEGDlOVh4HgIEMJSrI5qmKFHKqP51eeey/j7Q/mAWBbtgiqYoyGnaq6MFLwiw8BzMHAczz8Hi+Gt2BPeUDAsFw0BG02Apx1+HExPjKIeA/g5YwVVOivLtoOH4DoIggKIoxLAMXpg3GXs7ut2CJBaeR6/VhnaTGS0GM+p1BnRFSV3HuDkVhafOMIvSHdmvFSriKTv+c6oKl+WVIl4mF12f9oCLAMe1KthTi1CgIKPt6crs6c1o57XEC/a0ZLzg+scJ9lRmNEVDxbCQMQxklP36tC/nYRMEcI7zQvWL6hz3BUXBeZ0OR4RFURSW5eTik7pTITtfBGkhDtRaJJr6NJhCoOh1KvKNv/pKX+eNiIqA/NhY3FI2znmd6K0mbGo66FVAkyCLQX5cOrJikhHDKhDDKqBg3DuyLRyHj+uqcFDbGpbyhxpxey1cYmJC6BBf17IwvD/4Cy8WFbHu5Tt4pgc/eeFH/PfuhVAr7F2Xy6ZnQxMrx22vVaDPFLhwZ8kkl0uR0cLhcGNPwPtq0LqnodHEKUIqKopVsZhWmup1WVKMBSd67U5peosNtVrDsPaZUTBuyHVkTPSLitY8vMhNkFWp7cXKnVWwEQXOqEPO0kOKD29ePA7jMgZ38iAQpMhgAp+hREWhZty4oZ8n/QwUA/UzadKkYe+jvLzcYz+9vb2or6/3SJ+2dOlSrFq1ymMfGzdudBMVDUxhdtNNN+HTTz9Fd3e32/xNmza5iYoGbnfOOecM6RxFIIhJS0sb0mEqkpSWlnqIiqxWK1paWpxCIZlMhgULFmDjxo1u6xkMBqxatQqrVq1CUVER5s+fj7POOgtz586V9HcmEAieEFERgUCQDL0WG75vHL0pWb441YxfleWApWkwNIXbJhZg1eG6sB1/YPozC09ERVInXsbi/7P33vFx1Hf+/+szbXvRrqolWbLl3m2MjXEjGAdCCyUJhFzaN+1I4yC5QC6X3BFIuQDhCJfkfqQdENK4I+FSLgcEyGGMMbh3W5Il27J62dX2ab8/Zsts1a60Wq2kz5OH0e7slM/uznxmdt6vz+u1ptKBFRU2mKOjdEvJ/oERbKiuACEEPMtieUUl2rzDGAqPbSvLEAIDy8GQZ7PznS/X9owsByM7wUubAustYVnGUDgEt1GLUKk2GXBZdQUODHoQkLTivcAwqDQIqDQIWOrQfiwNhSM4MTKKYyOj8EvlWeQHkp2ClBLdcE8tWZSDU8JIJISnWg9PdTPyIuasxUATHGliI+ADLSvjMW4bqqqpqGgWoS8ky2XqnZbVqWgcx3/2ka1T35fkItd7LTS2LNu6Znv8mYFh8MAlq+PnNllV8JeLBxGSk5085phdWOWah3pL7kiUwVAA3zv2FkJlGis4HqhT0cxCf+nGkfIThehF+JlET52DAWz7zit44e5tqLQaAACbFlXhF3+3DR/9wesY8IbTlsmHq9fMiT8+eH5iLsmBiBIfYAAALocB3QP+MZYaPxuW14JlM/flF853xB93j4bzEgbyBgMq69KjfVMXLUOjq4L4509txNWXJyIr271+fHH38Rk10GqWn+Jh5Fl8aPt83L65Gc1VVgTCEjr6fTjYMYw/H+zC66f6k/rED2ydP3WNpVAmQFVVZmEpoDkRVVZmv35dvnw5zp8/nzZdkiRcvHhxwm1jCjhZpIoTYjQ05B83P3fu3IzTz549myYqWrx4MebOnZvmjvTyyy/j/vvvj5/HU8VB733vezE4OIjnn38+afqrr74KRVHi7zl1uamKPqNMX2JuP+WKy5XZvX14eDjJfeiuu+7C66+/njWSrr29He3t7fj5z38OlmWxYsUKbNu2DVdddRWWLFkyKW2nUCjFY5r/LKRQKDMFSVHxwL5T8ERmzk35VAbDIl69OBh/fmm1M8fcxceouzgt+wiQWY6VZ3F1QxU+sbQJG6qcUyIoAoCeYBhtXn98f+EYBoudbswxj22NOpto9QzHHZEAoMIgYFutG/Nt5qw3d10GAZtr3PjE4mbc0lSHpU5rkitQuaCPTRSpZcG0QIUmAJNULYowosgIyTL29HfF56k0GGHm6NiC2YLeeUQsU6eibLIidTz9TlbXo8JXVTZkij/L9X6oU1FGvnHJmqS+b0/vCfSHNIcSAoK51ipc23gp3tV4aU5BkaQoeLGrHd858saMEhQBycKTUomJKZNH2TsV6drHZilEDgUi2PIvL6NzMCHUWd7oxLP3bEdTVeFuDC01NqxuThRF/mN3R8HrSEXSnavcDtOE15cNgWOwYUXm6LNwKIiuC4lCcVDM73xf0zgPTJkXsSbKZ963Ch+4dnH8ebc/hLtfP4ZRcWb137OZS+a78MI/7sB9N61AczTa0GzgsKzBiTu2zMNTn92CV/7pnXj3pY0AgKX1DtRVTN6xSqFMJk1NTVlfa2/PHef505/+FC+++GLav1deeaXkgw88nswugflEMcXI5sqULb4sk9Cnv78fhw9rA8ja29uTxE7Nzc2YP39+kiNRjIGBgbhLUupyPM8nuR9RKDOBbC5pqeKhxYsX43vf+15ex7Isyzh06BAef/xxvPvd78YHPvCBrC5mFAqlPKCiIgqFUhb85EQndvdMbJTgdOC8Lxh/bCjxzTszrxMVlXTLlHwhAC6tcuJji5uw0mUvi+LfseFRnPb4koRoTTYHFjtdEKb7kNUioUDFgYFe+MVEpBnHMFhWYce2WjfqLcassVQEQJPVjGvqa/DxRU3YUFVRVkUf/XccKpEYITXqLFf8HCV/To0MxsVvsQg0yuxA71QoKeUpKsrqLTQOUQOTpQ+dzq4rBTsVZXmrZahdLRkfX7QAzbbEjc3Tngs46bkAAGiyVuM987ZgZ/061JmTR2CKioxW7xD+cvEs/vPscfzLodfxlX2v4KWLM9PtTe9UJFNR0bRH/w2Wp1NZok25+vuQpGD7w68muQo1VVnx7D3bsbyxsIE6X7hhWfxxUJTxv8cnHl0Y1gl4XA7DhNeXjSsubYDVzGd8bbC3M+m5lIcol2EY1Mydl/G1keD0iGoei9veuRB/94E18f1/OCzi7t1HMRCKjLHk9GO2/ma6/pJ6PPP5rWhw5xYZzq204NEPr8fTn92M91yW2d2EQpkOLF68OOtrra2t415vqQefKlnc8wu5Xsk2r5zl3lUmcRCAeFTTK6+8kjT9yiuvBABs2bIFBkP6+f3ll1/OuNzGjRsLEkdRKNMBUcx8bZjp2Ni+fTv+9Kc/4b3vfS+MRmPe23j77bdx++2346mnnhp3OykUyuRCq4EUCoVSQvROH6V2JTGxdORxOeMQOLx/QT2217nLSlQCACdHfHizbzhpv3EZTFjhqqbCoigqgMNDfejyjybdjLHxPNa6ndg5pwqrXHZUGrNnqps5FpurXfjIwrlYYC985PVkoBdDyWpp4gHklCJIWdbApiGSquDESCJidENV9RS2hlJK9CIBUS1TUVFWd6FxxJ9lcz0qeE2lJdd7LbRQmG1ds7XgWG824er6uvjzgZAHu3tPAAC21CzHVfVrYReSR14GJBH/fe4U/nHfq/jRqQN4oasdbw10YygydgTsdIbXi4poVPKMohyPfn2b8unub/rBbrx4vCf+vNJuxC//bisuX5w9CkbP/BorrlmbiGd4dl96BMx4CIqJY6XCln/hpBBaGhzYoott0yNLEob6LyRPy0NUVFnfCN6Qub1vnJv+A752bGjEA5/ZFL/GCIgSvrD7KM77ZmY/Xo7H+GRz4/oGfPdD6yFw+d+T2LykGh99x4JJbBWFMrmsWbMma5H+r3/967jWOTg4OPZMRSab6Mbvzz9CNNu8Npst4/R169bB7XanTY+JilIjzGIiJIvFgk2bNuW9HI0+o8xEfD5fxunZjreamho8+OCD2LVrF7773e/i1ltvRXNz85jbURQF3/jGN/DSSy9NpLkUCmWSoLkHFAqlLLi81oWnTl8Ye8Zpjqi7Oc+WWIth0kVoyeVeWZtlNFlNuLGpFoYCdgoxEoHf40Fg1INQIABZkrQiYvSOfOzGPGEIGIYFwzJgGAZEF2uhQoWqqFAUGaqsQIk5WBACQohWfCQEDMugg2Vx3GjA+ho3bCYTjEYjjEYj6gQT+sUwAjK1jweAcz4v+oIBLHa4YOK4+E1snmUw12rGXKsZflHCWV8A533BjC4AVo7DDY21OOkZxV8uDiAyhUU9/c3pUqWfpW5GK4LTTqsYHB7uwxp3LQAtAs3IsAiVqXMNpTiwhCSJA2eDU1H2+LPy7kcKbV15v5vy4rNLF8fPx2FZxF+6DkJWFaxzL8BiZ0N8PlVV4YmE8Wp3J97on/m/SzLBE+pUNKPQfYXlKDhIEhXl2at94ul9eODdK/A3G+eCEAKrkcdP7rwcn/vpXrx0uDvnsn/7zoS7Q0iU8bXnj42n2WkEIhIAbZS2zZLsJLRheQ3eu3MBFjVVoMZlhigr+ONrHfjVn0+hoztzPEsqDTVWvP+aRVmF9j0XO6Ck/BbL59OsaZyfcXpEUrCvK3MszXRh7ZIq/ODLV8SvgSKygnv3nMCpkfyL1dMO3f4xG3rvK5bV4LsfWp/VobIQghEJJoGWSCjTA0EQsGnTpjR3HAA4cuQIurq6UF9fn2HJ7Lz22mvFal7eNDZmdk7u6urCunXr8lrHxYsXM07PFhHHMAyuvPJKPPvss0nTW1tbcfjwYezfvz8+raKiAmvXro0/37FjR5p4qK2tLW05QkhWRyQKZTpz7ty5jNOdztyuoTabDddddx2uu+46AMDQ0BD27duH/fv3Y9euXTh9+nTG5b71rW/hyiuvBEMHM1MoZQW9YqZQKGXBfHvmXNaZRkROiAMKEZAUAwN1KipLNlQ5sbXOndeNfkkU0d91AX3nOzE6NDTpbcvECQCLHNYkkRoAyITAp8qIEIDleXAcD47nwHJc0tBjFYCqKFBVFaqqQlEUsCwLjufjz2OFP6JfRlWhKgpEUYQUiUCWZSiyAkIAThAgCEL8L28wQBAECEYjOJ4DwzCIhMIIhYKQRAmSKEKWJEiSBEWWochyQoRFEC9IxwRXiqJAzSLs0d5H4t3FitYvqypsvIA6uxNOqxUVFRWoqamB2+2GheewosKOhXYLWr1+nMsiLlrisKHebMKLF/vQqYtOLCVM0s3p0vQbtIg5ecQi0AysJni7trERz3V2THWzKJNIqitipExFRdnK3eNyKirHynke5OpjSaEFs6xORbMTfezZocF2+KQQjKyA1e5E7E9YlvBM2xGc8kzN9VW5wDGJ6zuJOhVNe/QucGKp1OEFoO+vC+nuv/r8UfR5Q7hn5yIQQmDgWfzg4xvxhSffxu/3ZRYdjxQBAAAgAElEQVQEzqu24uYNicij3x4onnAwpHMqMhm026zvurwJ//S3G1HpNKXN//Gbl+NjNy1DZ/corvns85Ck7Mfa2iVVuHH7fHBs5h48Eg7h4rlWpJqhjvV5Wh1OWByZi0BvdY0gnNKm6eR0N7/ejme+cTXY6P0PRVVx/9unsH9gegulcsES4Kbm2sSE8jvci84/3rqyKIIiAFRQRJl2vOc978koKlJVFY8//ji+/e1v570uWZbxH//xH0VsXX4sW7Ys4/Tjx4/jhhtuyGsdJ06cSJtmMpkwf35m0SwA7Ny5M01UBACf/vSnIUkJge727dvBsonr4ne84x0ghKT9Pr3zzjuTllu1ahWqq6krNGVmIcsyzpw5kza9pqZmTFFRKi6XCzt37sTOnTtx77334sSJE3jggQewb9++pPkuXLiA48ePY8WKFRNqO4VCKS70qplCoZQFQqlte6aInkA4/tgh8DBzDAI5biIWE72oSKJF+ymHZwiuaajGYufYOduB0VF0tZ1B/4XzULJkg5eSNq8fyypsSe4XrKrCAQYBUUS/d5QKQwD4AfQMDoIlBE6DERaOhyV6g6OlpQVOpxPLK+xY7LCiNxhGbzCM/lA4qehj4znc0jQHh4Y8eK13cAoKQonveKq+UkKNiopGLAIt5la0sbqGiopmOHzKqC6xTEVFWYVA4xEVZRnJViph5GSiFwjkejfZ3ut0FVxNBAfPJR0Hnb4+AECd2QWGJArO3z26ByORcMZ1ZKLKaMaOunkYjgTxv13txW30FKL/rKQSxZ5SJg/9IV/uv/8Kbd3jr7Si3xfGt25eCUIIOJbBox+5FCYDh9/s7kib/65rl4JlEq41//T74xNvdBS9AO8Tt6zALVe2wJ1BTKSHEILmOXY8/qXtuPOb6YXhxhorrljfgEVNuQs17acPQ5YlMExCVZSPILemqSXra7s7p2/0WVWFEb979HoIfKIQ/PDBNrx6sfTRPqViucuGe9csQIsjEZ8tyTO7/25wmzG/JnPcCoUyG7jiiivQ1NSEzs7OtNeef/55vPOd78SVV16Z17q+//3vZxTnTDarVq2C0+nEyMhI0vSXXnoJ995775jLDw0N4cCBA2nTN2/eDEEQMiyhsWnTJlgslrTotP7+/qTnqZ9fVVUVVq9ejYMHDyZNHxgYSHpOo88oM5G9e/fC6/WmTV++fHnG+SORCIaGhlBbW5vxdT1Lly7FE088gR07dqT1B+fOnaOiIgqlzKCiIgqFUhYESySsmWoODnoQlmUYWBYMIfjxO1bj//3lEEIlGAks6IoEchmOVJ1NOAQONzXXoSp1SGkKkiii8+RxdJ9tnzpFRwZkVcWpER/mWk0wcWySuMjM8ag1W9Ad8JUsLqvckVUVg6EgBhGEMeiHN+DH8ePH4Xa7MW/ePLS0tKDeYkK9xQRVVRGSFQRlGaOiBE9ERFCSsb2uEssr7Phtx0VcCIRK1nb9oGi5RMXF1O1Mp5HR0wEagTa74EiywCailGdUZbbjfHxORdnWVfCqSkuO9mV6Tzk/m6xORbOvP11ekSjIS4oMrxgAADiFRPF1VAznLSgysxy+vHoLBN3I5SarA0+cSi9qTEcEnVORSJ2KKJOMvqsaj+HIr946D39YwmO3rwVDCBiG4NsfWAeLgcXPXmmLzze/xorrL2nQLXcOkSLef7Aakm+tpgqKWgf9ePP8CHp9YSyutOC6JTXx13ZeNhf7f/l+vPr2BZzuHEZLgwMWE49KpwktjQ5YzTwICCRZgaKo4DkGDEOgKCqOHDmGQLeClprqJMcWScktoxUMRrjrGjK+1jrox3BQhJFLvn4IieV/rWgxcviff7sJZmMigu6J4514vqNnCls1uax22/Gvm1ckDdJTVRU/f23miF0BgGUItiypxral1ah3meMCwVy83TaI+TVWuKyGErSQQiktHMfhnnvuwV133ZX2mqIouPvuu/Gtb30L1157bdZ1KIqC73//+/j+978/mU3NCsuyuOWWW/DTn/40afq5c+fwpz/9KWfbAeAnP/kJ5AyDLm+//facywmCgG3btuF//ud/cs6zZcuWtOk7duxIExVlmmeihMP5D3SgUCZKJBLJKcQDgCeeeCLj9CuuuCLpuSiK+K//+i/88Ic/hMfjwVNPPYVVq1aN2Qar1Yr6+vo0UZHeLYxCoZQHVFREoVDKgt7g7Lhg9oky/tjZh1vm1wEA5tsteOWmTYgoKmKpS9pfreyjj3/q9ofx3UNteL1nfCMH9XFV5T5SdSbTZDXhhqZaGMdw5xrp78Op/W9DDJVOQFIIEUVBq1cb2eMQeNRbjPHR7QaWQ6XRjL5gYCqbWJaEZBldfh8ElkFEkTE4OIjDhw9jxYoVWLp0KRiGgYljYeJYuAzpP+puaqrDcDiCtwdGsLd/eNLdi/SFbLlE3UZq9zT7SuCTC41Am11wzHQRFWVGGUf/xmQTFZW5U1Gu1hFCwKR8SjmdirK8OBv70wrdDdKQHIk/9omJ6ysTyyNfrm1cmCQoAoAWuwsPXnIFzvm8ODTUizf7u/Jal8AwuMQ9BxzDIKJICMnav6AkIyiLCEoSQpIECaUT9+gLtaUSE1NKQ5FSgoqKouvJsvXdY/H7w93whWX8+EPr4/vvV9+zGhYDj3/780kAwAe3tcRFN2FJxtd/f2yCLU/GExQzTj894MN3/tqGF1sTLgYWgcVT+y/gx7euhi0qRrJbBNy4PXtUC5As+AOACxfO4ejRQzDw6cUWXyS3AKh67jwwWVz93oi6FHEpO0xkjHVONRzH4M8/uAlOW0JA8mzbRTx56vwUtmry+cyKeXFBkaqq6Oz34/M/24uj52dG1JvDzOOOLfPwoe3zUePI7f6l58m/tuFcvx/vXD0HGxdSURFlZnLNNddg586dePHFF9NeC4VCuPvuu/Hss8/ipptuwrp161BVVQVFUdDT04O9e/fimWeewenTp6eg5Qk+8pGP4Fe/+hUCgeR7hw8++CCWL1+OpqamjMu98cYbePLJJ9Omr127Flu3bh1zu1dddVVOUdGGDRtgsVjSpu/YsQOPPPJI1uVigwbzJZuQY6q/F8rs4s4778Rjjz0GqzVzksLPfvYz7N69O2262WzGddddF38uyzKuv/56dHR0xKd96lOfwqOPPorLLrssZxuOHTuGkydPpk1ftGhRnu+CQqGUCioqolAoZUG3vzyFE5PBvx/rwBKnFctcml0zIQQGNvdNVAKg3mrEw5cvw5Mnz+Pfj58reLt2XU58QCrPouJM59IqJ7bVuccs6l1oPYOO40enga2ChiciwhMRsdBhgZnT9jMrL8AvifCLmW+yz3YisoIuvw8MAZyCEXv3vY2Ojg5s3boVdrs957IVBgE766uxs74aIxER/93ZjV+2dyEyCY4C+nJDqQrySsp+n811hDI+aATa7ILXFQXH4/pTKrIKgcYhasgWf5bat5QfuayK0vvCYro4zWQcupv1elHdUHg0/lhgWSxzVOK4Jzm+IBPN1sxRRDzDosVegRZ7Ba5vXIizo8PYN9iNI0N9WSVB967aDCufe1QokPiuVWjnYlVVoaia6EdRVciqCllVICnRv6oCUVEgKjJERUZEURCRJUQUBWFZRliREJFlXAh4ccE/mrQtVuduRqNspz/6b7Acj369bpSZgOrplVN9eP+P3sAvPn4ZuKjA4p4blsFiYPHw748nuRT94XA3im2SPBpK/m396K52nBn0Y3fnMKotAq6c70a9w4g5diMcURedXR1D2NJcAZshf1FjjLa2NuzZsyfja76whHMjwazLshyH2qbMAqahQAQn+33afCnfxyP3bEVElLXBTyQxCIphtFFR8YFR0cUYRnudZTRnJZYlYBkCQhJ/QxEJDz+1Hy+9OXHhz3//6w2oq0wUgF8434fHDs8st55UnAKP5a5EBNi//vEEHv/zqSlsUfHgWYLPXL0Yn7hqIUxC4aWL5Q1OfHh7/oV9CmW68s1vfhOtra04e/Zsxtd3796dUQyQDZPJBIPBkOYWMlnU1NTgi1/8Ir7+9a8nTR8cHMT73vc+3HPPPbjuuuviYof+/n48++yz+OEPfwgx5V6jyWTCgw8+mNd2t2/fDp7n09YRI1t0XEtLC5qbm5NEE3oKjT5zu90Zp//ud7/Dli1biuJ6RKGMxa5du3D99dfjrrvuwtVXXw2z2QxAu9788Y9/jOeeey7jch/60IeShEgsy2LhwoVJx8fQ0BA++tGP4qabbsLNN9+MNWvWxMV0qqqivb0dv//97/Hkk0+mOY+tXLkS8+bNK/K7pVAoE4WKiigUSllwwZ/9xtdMwy/J+NyuI/j08mbc0FybZFU9FoQQfHhJI17uGsRpj3/sBXS4dVFb3ggVFZUSniG4uqEaS5yZVf8xZElC66ED6L8wPUdUtnr8WF5hj9+EdhtMCEoijUHLgaICQ+EQhsIhnPeN4mTPRaxdsxbLly6BlTfEoxJjt/VTC8JOgceHFs7F1lo3vnHwNM76iusOpd+eVKIvMrWIWY5FsOkOjUCbPaTGn5UrWSPLxuNUlEVUNK2diqL/5Tt/NjHWbOxPbXyiYB+RE9e/g2EvhsKjcBm0guz1cxfi+JGxRUUOIeF4cGz4Ikwsj/n2qqR5BJbFYmclFjsrocxXMRwO4rR3CK/3nkd/SDtPf2zRmrwERUDi+Ij/P/5FTswOXlVVHBnuwzNtR+PT2KTzPnUqmkmUY/yhXhw5XqeiGHs7hnHzD3fjv/72cgjR6K5PvXMx1s53wx11r1FVFQ//b/FFF/r38ea5YXjDEtbU2bG5yZV1maGgiN+f6IPbzGNJlRUNDhMI0WLGeJaBrKjwhCScGwnAG5HhMHBQVQWHDhxAe+tp8AwDgSNgCUFYUhCSFARFeUxn0drmFnBZ+p7dncPxc0uqU9G6pdV5fRaF8vi9V2D5e57GRLqbX3zjaiyamxB87ukdxjf2nSnzs/7E0Q8aU1UVP3xhZgiK6l1mPP7/LsWa5uzHz1isb8lcqKdQZhp2ux1PPfUUPvzhD6O9fWJCSp7n8dhjj+HNN9/ET37ykyK1cGw+8IEP4NSpU/j1r3+dNH1kZARf+9rXcP/998PlckGWZQwPD2ccWMFxHB566CEsWLAgr23abDZs3LgRu3btyvh6LjHPjh07sn4+hYqKVq5cmVHcFAgE8OlPfxomkwmVlZWaay3D4J//+Z+xadOmgrZBoeRDd3c37rvvPnzlK19BZWUlgsEgvF5v1vkXLlyIz3zmM2nT77//fpw+fRqdnZ3xaYqi4LnnnsNzzz0HQggcDgcMBgOGhoayCvt4nsdXv/rVib8xCoVSdKioiEKhlAWtBQpkpjshWcF3D7fj3493YonTCivPQVZVSIoCSVUhKioisjbiWFIVLHBY8MXVC2ATtLiaz6+ah8++dnTsDemoMSVuHs6WuLlywCFwuKm5DlXG3IWjkN+PE3v3wO+dvlblKoAOXwDzbWYQQsAxDByCEcPh2eNENlH84TB2vbkHx9pbsXz9JTBFR4gAAAMCM8+h0mCC02CEMRpfBQDzbBY8vmkVvvTWMRwfGc22+oLJv4RdPKSUYvhsdNaYbGgE2uxhokXaUpGt2K0UWGXM1V+Us1MTkLt92YRS2cj2ubHTZH8oJna9qEhJvml5ePAsrpizCgDgMpiwwFaB1tHcMcP6j7DV24dWbz9qTHY0WV1otlai0VqRND9DCNxGMzYZzdhU3YCILINnmKR9NSSLkBQFHMOAI2xabOFkQQjBEkdl0jS9UxGNS54JJL7Dcjz89T0VV4QGHuny4Nrv/R/+8LmtMEZjwTYsSOzjYUlBt3div0s4hqDWYURjhRkNFSbU2I2YX5UYOFJtFbDAnR6ZkgkVwEBAxK7OYTBE63uyaWlbz3fj7LGDut+KhYvBBYMRc+ZljpEISTL2dSV+h3pDEvwRCZZxuMQUAs8x+Jtrl+CpP6RHXuTD9760HRtW1safHxvy4itvnpgV/VdvMAxFVbUBKIRgfUsl9pwZWxxbzmxcWInHP3opKu3Gca9jwBvCvvYhXL1mzpjznu3zYV517oFfFEq5U11djWeffRZf/epX8ac//Wlc63A4HHj00UexefNm8DxfUlERoAkRbDYbfvKTn6T9JpJlGf39/VmXtdvtePjhh7F9+/aCtnnVVVdlFBUtW7YMtbW1GZbQyCYqqqqqwurVqwtqg9Vqxc0334zf/OY3GV8PBoM4fz4x6LSjo4OKiihF5yMf+QiefvppyLIMWZbR29ubc/7m5mb8+Mc/zhjf53a78fTTT+Ouu+7CgQMH0l5XVXVMJzSj0YiHH3644OOJQqGUBioqolAoZcHBgezq55lMQJKxf2BsEUnHaBD1FhM+uUzLk148huNNJip1oqKuWeQMNZXMs5lx/dwaGMZwoxrp78PJt/ZCEiMlatnk4RMlBCQZFl67xLDxAhUVjYPh/gHseellLF27BrWNWmSDAhU+UYRPFAGfFwaWxSKHK+50YOJYfPvSZbh7z1G0jRZHqKmv74w18rlYpBZTmDIcWT/doRFos4dUp4FyJZv4qVBRUS7xTbmXF5UcLWQKcLUEADXL5zYbRZoWLuHmo48/A4D20R6sjbTAIVhACMEtzUvwnSNvFLyN3qAXvUEv9vZ3oNpoQ4u9Cs02N2pNjrR9W2CT3YVkVcEv2/ZiKJxwGiTQxD08wyYJjTiGBUe0v3z0b2JayvSkv7HH2noqjYnfEam7hKA7hsIydTadSZTj0a+PpSRFOl+19vux47uv4oW/2w6LIfmWZ2+BgiJCgBqbEQ0VJjRERUS1diNSm1qMrjWTmEhRFHgH+9Hb2Y7h/p4Jb6Np6SqwXObbwLs7hxGWE+cOUVHx0f88hFtX1EFgCVQ1GsGoRs9X0eeKqupeU+PzxB5LigpZUSEpaiKuUQG+sDURwfbRdy8bl6joa5/cgHdtboo/P+sN4ItvHEdInh0ua2FZQbc/hHqrCQCwZUn1tBYVzakw4Wd3Xg6jMDEXvsf/fAp3bGkec76wKGPPmX4qKqLMCKxWKx599FHccsst+N73vofDhw/ntRzDMLj++uvxxS9+ETU1NQCA9evXw2g0IhQq3X08Qgj+/u//Hlu3bsV3vvMdHDt2bMxlGIbBtddeiy996UvxthfCjh07cP/996eJmLJFn8VYu3Yt3G43BgcH05Ybz2+t++67D21tbdi3b9+Y887G33KUyefLX/4ytm/fji9/+cvo6cl9vXn11Vfja1/7GiorK7POU1NTg2eeeQa//vWv8cQTT6C7uzvvtmzbtg333XcfWlpohCmFUq5QURGFQply3uwdps45eXB4MCG8svCF32hxGRKioosB+nlPJgTA5loXLquuGHPeC61n0HH8qHb3tcSYWBaOqPsVQxAPVyHRuC2GJH60xn5ox24aZ0NbPvGcYxg0We0Ip0QrxYNcSOLm9Hh/HiccLrSWMYQBoCZueiPdBYPoHqRuV9XNQ0BASP6REfq5VK0VEBUFIVmCXxIhFnCTWxJFHNn7FkY9HixYviztBkJYlnFkqB8NFhsaLDYQQmDhONy3eiHufP1QUUbo6gU9uQrexSQ1boXeN5kcaATa7IBnEtcL5Rz/VTSnohxFaWUauBaoauY+jxCmIEVArs+NQbI7yEzHJyWEMTbelPSaChUHB9uwva4wt6L48hl2qb7QKPpCo3ijrx1GlsNciwvNtko0W92wCenOC//XfSZJUKS1SxN/SrIyHjOSMWmxVeGm5jUZXxPYxC2isEzPCdMd/S5ajoUo/TFUTA1s10gIVzz8Cl66ZzscuoE1Z/p8OZczCyzmuS1orrSgscKEOqcJfMENG/8bkSUJAe8I/KMejA4NwjPQB0nKHAtRKO7aerjr6jO+FhRl7OoYSpv+5vkRvHk+92jy8dI66McPb1oJAGiotqKpzobO7vzdVu98z0p88Lol8f26JxDCPbuPzrqY9ws6UVFjpXmMucubT+1cNC5B0X/u6cTVq+cgIin4yi8P4P1b5mHxHMeYyxl4Fu/fPG88TaVQypatW7di69atOHPmDF544QUcOXIEZ86cwcjICILBIARBgNvtxsKFC3HppZfi2muvRV1dXdI6BEHAjTfeiGeffRYGgwFWa7rwrrm5GSzLQtZdK1qtVsyZM7ZDWC4uu+wyPPfcc3j77bfxwgsv4PDhw+jo6IDP5wPDMHA6nVi4cCE2bNiAa6+9Fo2NjePeVnV1Na677jr84Q9/iE+zWCy47rrrci7HMAw+8pGP4LHHHoMU/Z1hMplwyy23jKsdFosFTz31FJ5//nn88Y9/xMmTJ+HxeCDLMjiOg9FohN1uR1NTU5pL0dy5c2EwGBAOJ+7x8zyf1/fgdqfHRDqdTjQ1NWWYe2yqqqpACEkSaWXbJyoqKtJi31iWzev7dLvdYBgm6feu2WzOO/puPFRXV6dtE9Den9PpzLJUblpaWtDV1ZU0beHCheNqW19fX/w5IWRc67n88svx4osv4re//S3+8pe/4MSJExgeHobFYkF1dTU2btyI66+/HmvWZP4NmQrLsrjjjjtw2223Yffu3Xjttddw7NgxdHZ2wuv1QpZlOBwOOJ1OtLS0YOPGjdi6deu49z8KhVI6qKiIQqFMOT87eW6qmzAt8EYSF9uF3qpkADgNifiHC9SpaNIwsSyub6pBk9WUcz5ZktB66AD6L5zPOd9kwRCCFoelJFEoLMPAXKIoj3KEZ1iYOR4ugwkhScKoFIFfjGSNN0il49RpBHw+rLh0PVg2/UbrBf8oCIAGqx0AMN9mwXvmzcGv2rvS5i0U/e5Rquig1GI3dSqaHE57BhGRZQgsC0II3tXYiN9St6IZh951pJw1NdmK3apaaPxZLqeiMv4AoqhQMwqsYmLfAlaUFUJIee8MRaZt1IfLqqsAAJUGzTlILzBr8/ZgjXt8bkVj7VMhWcJpbx9Oe7UbvS6DBc1WN5ptbphYAbv72nB2tLxcJfTXhSIVmlImGb1gvdjOev2+CLZ+5xW8/IUrUGk1QFVV/PT1s0nzWAQWzZUWzK+0YF6lBbXjjVzSdQX5/rSKhELwe0cQGPUg4PXA7x1BKDA5kfAGkwnzVqzN+vrLbQMISaWVm754ph/9/giqLAIIIXjo77bgfff+T17LvueqBbjng2vj1w4jYRF3v34MfcHp7/pbKPrDRsn3x2UZMrfSgg9umz/mfMGIhD5PCP3eMDoH/Lgw6MeHt7fAZtLudf37Jy+b7KZSKNOChQsXjktYEOOBBx7AAw88kPX1G264ATfccMO41z8W69evx/r16ydt/TEeeeQRPPLIIwUv98lPfhKf/OQni9YOjuNw66234tZbby1oufXr1+ftSpXKHXfcgTvuuGNcy2bi9ttvx+23357XvIsWLcLRo0fHtZ3t27fjxIkT41p2vGzZsqXo2/zRj35UlPW89tprRVkPoAkKb7vtNtx2221FWyfLsnGxI4VCmRlQURGFQplS/rPtIo4M5T8ibTYTSVHE/2DbSvAMAUsIeIbE3WYYQsAg8RgAuJS7m70BGkc1GdSZDbixqRY2PvfpNeT348TePfB7x46+myyE6L5DKS1GjoOR4+A2mOCXIhgKhyHn4cTR13URB8K7sXrTRvAZcqvP+0fhMphg5rUbqjvnVBdFVKQX9ExVDXr63h4vb0RFwQnPAFa7NKvwjVU1VFQ0A9FHLZXKbWw8ZDsbqQUWyJhp7lSUjUJjgZQcYiyWEMjT+LMoFL3bDsswaecyza2oHdvrNMcMl8GEZY5KHPdkFvtM5MppKOzHUNiP/YPlO6BCH9c2m/aT2UA5XvUnOxUVv4XekIQN33oJH900D8e6PThywYPlc+yYX2nB/CoramyGomxH3+NmehfhYAB+74j2z6P9FcOlcQ5mGAYL124Ex/MZX+8ZDeONc/m5sxUTUVHxy0Nd+PzlmlPM2iVV2LxmDl4/eDHnclesr8c3P3t5XFAUkGR88Y1jOOebnYOm5lgSA5nODwZyzFne3Pvu5WPOM+AN4fp/eQV9Hu1e1s5Vdfi3j20AX2BELIVCoVAoFAqFQhkfVFREoVCmjEODHjx+5OzYM1IAABE5cdeVEIJ1VWNbOqciKQo4hsHALBzFN9msq3TgHXMqx7xhP9Lfh5Nv7YUkFvc74HgBTNRxBED8jraqqFAUGYosJ1u1kqgQjWHAMAxEVQHDMFAJgaKoUKBoy6oqZEmCLMvJ7gkkPepLX6+OhqWByVi8VOPzqyrAMAADBmr0v6SN5EFsmdjcshKLQSOJ+LYMxXRV1f6XqWRGQOKtUdTUdqVuP2Wd0amEEHCEgZFlYWC5pGIJQwhsvAEWToAnEoYnEhrTuWh4YABvvfpXrN2yGSZzur39eb8Xi52ahXGDxQieIRAnOGJVX98pVXGRS/nap4O7yHTl8FBvXFRUZUyPQOMIAUsYsFERIkcYsITEn7OEyRidSAi05QgBQ2Lzal+srKoIyzJCsgy/JGIkEoFYYMQVJX94oncqKt9jKVsxufD4s+ntVKSoasbPgiHpnm253k2uYrWV5zAUnj3XgUeGkqN7LLwRPjG5+Nzm7cZq1zw4DVYQQvDhRauxt68LkqpAVGSIigpRkRGWZXBJkYIzD73gPDWOlDIN0TvoTF0rsqIXu07WWId6hwkXPUFsnOfGjasmFssyFoqiwDMyjP6uTs19KOpCJInFiTAbDwtWr4fVkTmSW1FVPHe0O2/31GLzwz2duHlZLRqdJhBC8Jn3rcwpKlq90I3/7ytXxgXEoqLgH/acwInh3LF2MxUDy6DOnBDGvXG6fwpbM37mVVvxrrWZo/n0VNqNeOZzW/DZn+7FqYte3Pvu5VRQRKFQKBQKhUKhlBAqKqJQKFPCyeFR3LfnBKQyLnCVG8PhCIKSDBNXeM58DI5hoKoqpCK2a7bDMwTXNFRjsTM9Z1yPqqq4cGX9sYQAACAASURBVOYUOk+eKJrli9FiQW3TPFQ1NMJgyh23loqV57Cjviretj19uUeFAlpkmyiKiITCCIdCiITDECNhSKIESRQhRiLaY0mEJGr/1DQhU1R4QBiteEAIpIgIRYkAhIDRFesQc1ogRLt5TAhYlgXPC+B4DgzLQlEUSJEIxHAYkUgEYp6FUo7nwXIcWI4DwzK6yBwVqqr9YxgWDMvEhVdpRKsfMbFV7P1ojwlkWYZ3eBjDUWcwC8/DKRghMExc7MQQggqDEVZewEAogKCU++j0j/rw1qv/h0u2bobFZkt6bSSSKCJzDIO5FhPaRic2YlVfxs7l8sESAhvPw8bzEBgGPKMJSlRohXxV1epaelEDiYpRYvPJqgqGABY2+fK0wWxDUE6OYNFqCRkigpAQJ8ReVaOPSdTFLVfRSlW1ApcaFZsl2q77G30fsfUCieimbAFFRPdA3y7o1kmiDnOI/lVV7TNRo+1RdJ9jbFdLFvNEjy/dFhPti60/Kg5imKjgjYuLTQkhuHvFSrSPjoKLfn+lwidq4qLhSBj9wSAGwiGEZBq7Uwx4ncNNeTsVZYs/K9CpKFf82TS45pRUGRzS34NgNEDf5431XsLBIBRFyXjuqhCEWSUqOh8IQFQU8NHP4rb52+CJaBFD+v3OLiSLdTdUj13gnInoPxMqKZr+JEn1y9ChVC9mKaZTkYlnsW6uExvmuVBlLY4bUSqyJMHnHYbfM4L9njYcFIPweDzoGw2hbag8HGPmr1gLV232vuzltgFc8E6dg3FAlPH0gQv4h3doET3rllbDKDAIRdJ7n7VLqvCLb14DNioiUVQVX3/7NN7qH0mbd7Ywx2yMHzeqquKt1vKK08yXd1/amPe8LbU2/PxzW/DJJ/bAYqQlDQqFQqFQKBQKpZTQK3AKhVJy+oJhfOmN4/BGqLSlECKKivv2HMe75taAIZpluKSokBQFkqpCVlUoqnaDTVFVyGpCBLCxpgKr3HYANMqgmLgNPG5sroPbkNlOPoYYieD0/rcx3NtTlO0ShsG85StRN2/+uAsE49kLYiIcY4ECplKiqirESAThUAhiJAJVUaDIChiOhdFkgmA0guO4khVWFEXBYE8vujo6MNDbC79/FCBAldEEKyfE28EzDOrMVngjYQyFgzlHDIeDQbz919dwybYtsNrt8empReZ3NdTiydZzGBUL72sFhoGN55IEOHVmE8KKEnem4RiCCsGAKqMRToNQtBHwApMsnFzpqqFuCZOIJxKC26gV0xssVnQFSl8Is/I8rDyPBosFiA6mHxVF9IeCGAiF0B8KYjgcKWtRTLnCMdPDqShbn1y4U1GO+LNpsP+EZQlGNv2awmxJd6cbi6DPB4vuHBGj0mhA2+jscnXoD4YwR/cZOgRLUdYbkaf/bxmeYfHZZeshyporU7Up8dksd7qhqiqCsoyQLCIgSQjJEvySiKAkISBL9PxMmRD68xJbYMxjJua6zNg4z4WV9Q5wRVhfDEWWERj1wBeNMPN5hhH0JyLczbV22E2xvnvqzzWEIZi/Yh2q6udmnefsUACvtA2WsFWZ+e3xHvz9thbwLAOOZfCpW1fisV8eSpqnqc6Gnz94NXgucU3z3UNteLlreopoioWJ01/jAdI07Y43LHAXNL/bZsAvPr8FBn78g+0oFAqFQqFQKBRK4VBREYVCKSkBUcKX3jiOwfDUWYBPZ97u9+Dtfk/By130h+Kiogi9+V8Uljmt2NlQneQCkQnfyAhOvLUH4SIV6g0mM5ZuuAxWp3NC60l2jCm/kcvjhRACwWCAYJicUcmFwjAMqubUoWpOHcRIBO0nTuJcaxv6g0EMkRBqTBYYdLF1dsEAE8ehNxhAJIdTSyQcxr7/24V1WzfD5tCiENkUhw4rz+Lji5rwZOs5DI3R5zIEaLaaMd9mwVyLCQ6Bj05P7BurXC7MteZ25CoGqbtjOQshZgKD4WBcVGRkWbAZIwtLT8z5ar4tIYgdDIfQHwyiJxhEbzAISaXns7HgdaKiXG5jqQgMByPLw8QJ4BkWXAYHIC0eUolHRMpRl7fE68nOXvFgzKgjWGxZWVXAERYMSEopVoVaYCZLRlc5fYPLnKAcgQPpwl2zpXARzOjISEZRkVMQxtW26czvzp3HnUsWFXy90xPwgMRiIAkTd3kjhKBjdBDdwcKvycuRRkvmSOUmmwNNttxxy7FjPnasa8c24se2rKqQFQWiqkBSFIiKJl4KKzIisoJRMYz/7epAYAynRsp40V3vT2ErsqE/i4/XqcjIM1jbWIEN81yosRXn+j8U9GN0eBCjI0Pwe0cQGPVCzXHNoW/6VJ9qOI7HwrUb4KiszjqPJyTil4e6prytANDni+DltkFcvUhz0P3wjcuSREV2q4DnH70BBiEhIPn+0bP47dniDNaZzugH6TEMwTWr5+DPh8Z2Hy4nPrFjIS5bWFXwclRQRKFQKBQKhUKhlB4qKqJQKCXl6/tO44zHP9XNmHXYhUR3H5ZpEXYiWDkWVzVUYYF97AJfT2cH2g4fTI4AmwCOyiosWb8BfBEEM6m1ZQICtSxuLc9ceEHA4tWrUFlbg+P7DyAUCOJiwAcLz6PKaI4XU3iGxRyzFf3BAPxSdjFQJBzGvtd24ZItm2FzOtNGeMeEIR9eMBenPD4cGPKgO5AccWDjOaxxObCiwgYjm/vmbKnEPaklJbpXTi6eSAiyooCNRqDNtVhx1jc69oIlhiUE1UYTqo0mLK/QCta9wSB8kghJiYlTtH+SqkBSEiKX2D4Ui7FTotOUaAE8LMvJ03TLxCL6WKLFx3FM7DkDA8vCxLIwcxwsPA8rl4j/46Ofpz66Tkl5rMaK71C1GDtdPF+20qpWuNcLdrSpSpZpSx0JASpLCFa55gIpnwkBAUcYcAwLPvqvmDE0+VBncmYUfFQIZoRisVRJ7daTeOY0WFBttEP7BJOkTLi2cQ1kVQGi30PstUTcoRL//hVVhaTKkBQFsiojosiIyBIiipRRzJYQU2hCCjX6V1uXkvRafBtQ4t8loMVNEpXAwhnAMxw4woBlGDCEgalKRSd3Immbdp6HpCiIRB0rU/F7vRk/ayuf211xJvJydy/avD6sq3Slncv036aVY3FLc1P8+Z/OH8VwpDxijIpJd9ADWVXSxMjjIRH/CS2mdhzr2F43F2FZSuq/9H1djNTYUFV7En2cLGBMji5NPE6sPdFz6IVR0M2rj0NV1FgUqf5xtO+NH9OJ7eojS2Ovq4jNh/i6kl+LCi6VmFAz2i9FxZUKED+vxbenE3HF26RA618S30zKo/JBL3Yt1FioscKEDfNcWNXgHHOQx1iEgn54hwYwOjwI79AAwqHxH/dTed1qsTuxcO0GGM3Zf6eGJQVP7r8AX6R8Ymaf2NsZFxXZLQIuWVqFfSf6wXEM/vxv74bVnDhv/cfJc/jFma6pampZccEfQqvHjwUO7ft+/GMb8Itd7fin3xye4pblz85VdVPdBAqFQqFQZgW1tbV5TaNQKJRcUFERhUIpGcPhCF7rHprqZsxKbDpRUXC6+mKXAatcdmyvc8PA5i7CyJKEtsMH0Xf+XNG2PadlAZqXrcjtwlAAqTe8CUkXGlEmB3dNDS67agfOHD6Cro5O+EURAcmDOpM17lrEEIIaswWDoQA8kUjWdYnhCPa9tgvrtmxBY01N0mt6t5nFDisWO6zwihJOjozCJ0lotprRbDODybPMVKrdI9/2UIqDogIjugi0apOpLEVFqTCEoM5ceCRUqSGEaPv0FO3Wdp0rDSEEbkNxYp9KRZIAhJD4x5j8cSaecQwLjsksa+CZ4vz0VePCNRkRRUJIFjWx0oTWqZ2HTawAh5C+XzucTjApRXMLxwJRCYesIip8SoiMxHAobT0AYCjSdcR0o9PvR6d/7IENNzfNjQtl8o3MYwkDp2BChcECh2CCoBPmacI0bX+RdcKyuMAs6tqV6uAVm0eKitQS8ybPM55Yv4AUwc/PvIkFjmoIUSFhTFi4xJm4sayoKobCQXAME52PAZ/l+JooBpbemppsihEvVmz0XXxqH5cJA8dgbaMTl85zoc5uHPd2QwE/vMPFEREByS5LU2GiSAhBXfMCNCxcCibHIAFJVvDU/vPoGQ2XsHVj83aXB2eHApjn0s5/79rSjH0n+vHHx25AtStxTnz+bA9+dKJ4v69nAk8c78R3Ni0DoB3jH9zWgu3LanHl119AuRtUX7GsBie6PFjfUlj8GYVCoVAolMJ56KGH8NBDD011MygUyjSH3rmhUCglwy7wsPEcRkVqb19qrLxOVJQjUomSGafA4+qGKjRa0yNJUgn6fTi59034vcWJxCAMg4Vr1qG6cW5R1hcj1ZWIIaSgaBzKxOB5HssuWYequjocfXsfJFHExYAPDsEAl8EYL2i6jWawhMFQluIwAIgREfte24XGa94FVGjTfKKUUSRm4VhsqKrIr5FTVHtKrSlRB63JZzwRaIosQ1EUKIpW8FZVVXOS0f3Tz6PIMqCqYDkOvCDAYDKBm4WOKaWGTBuRXuZ2Fhp/RkpQNCeEgCeaEMMEAXYViCgiAlIEQTm7CDT3OrW/opL5Go1hGFisVoiBzOcClgCmqHMWoIkFnRwHG89p5wPdvPwsFRXlwxpXRZJjVljOHR1aIZjRYKlAtcmW/VgrQUKLAi1mLCY2CkoiREWGwLIACJRoDJmaImrqD46mCZkWOWriAonfdZxAh28k7t4mR8VPDNGuG7VYOAKGMHHBUexvqhAp/pcwcUe0Fa7s8UyU4sOWYdyxXhSXq331Ts2VaHWDEwJb+PtQFAUjA70Y7usuiogoFb0gqtQRsrYKN5qXroLFkTsaOyIpePrABZwdDpaoZYVx3hOMi4rcDhN++a1r0NKYeE+7uofwyKHWqWpe2fJ6zxAeOtCKz6+aHx/4NLfSggdvW4N/+OXBKW5dZv5m6zx8/bY1JdmWoqh5CRYpFAqFQqFQKBTK2FBREYVCKRksIXjP/Dr87NT5qW7KrEMbza7hF6moKF8IgPVVTmyudYHL40b8YPdFnN6/D3KOyKpCMJjMWLrhMliduW8Sj4oS3ugdxjlfMBHpEL2fHYvr4aJ/Y9h4Dtc0Jpxt/tp9Hl4xrIv8iTlsAAxhoutgYGA5GFkWRpaDkeWSikVC9DFDJr+MLamaEwNHtHZNNkomaUuGGI2YqwaTZ7uq5tRhwzu248DuNxD0+eGJhBFRZNSaLPHCptNgBMcw6A8FsrpJKZKIw7t3o3qHGZWVlRiJZN4HC4k0Sp0zn9q+IssQRRGyJEGWJBBCtPcR/Zu+ThWqomj7GsNozwmDwahjEyEE/lFfhvetQsk0/FaNxo2oavx7iUX7qYoCNRopkinKTdseA0I0MZ8WRUVAGBJvS+r7ia8nLqTJ9sno4luiM2nfbyLuSmt3VKCjqCAMAcOw8fYwhIkLJlQ1FvkS3a6iJCJj1JT3p8bitqKxT7ICSRIhidp3JEkSWiUJwxZH/Pvr9vnQNeqFLMtQZCUqDpJ1z4sjDjaYzbDa7bDaHbA6HXC4XDBOA/eh6YS+jlLO8rxsXZNSoOVDsdz8CoEQwMDyMLA8bIoRnkgAYWV8x0guca/efWKs75IhgJll0GAxQ1GBUVGEX5IQkTXxCBuP5qPEqBAEfGHF0vjz/uAoQhn6Oo4wqDM70GCpgIWbeBxtMWDAaMc60fYREyvkXiDbeqJOiTEWOtxosDryWjYmVJIVJe7IFIuiDERjKuXotZscfXxgsBu1Ziu46LkXqnZOjF2DQgVAYrFnaly4FT19gqix5yTR1+nWAWjTk5ZD9BqZxM7HJB6jptukds6NfiZE21jUdY6AqNHPCrFrAiDe80SvdWLXPLFYy+ha4p9vxtcJ4uuMvaa9r5R16iLnsm2HzdAXluJ6uVD0fR4hgFlgYeRZ2I0cKswCXBYBS2rtqHeOz5UoHAygr6sTfV2dWd3bioH+uJELFMOOF1uFG3PmL0JF9dixFf6IhKf2X8B5z+R9BhPFbU70W5etrEFVReJ68PCgF1976yTkcr6QmUJ+19GDt/pH8NVLFmGl2w4A2LGyDihDUdHPP7cZly8unaCUCoooFAqFQqFQKJTiQUVFFAqlpHx8WRP8kozftF2c6qbMKiw6pyK/RJ2i8oUAWOq0jSkoUhQFnSeOo6v1dNG27aiswpL1G8AbcheszvtD+O+OnoIdqBxC8iXAqBiBr0hiqFjRxMCyaVFWMeGNEv1LiFbkYAmJT4sVdJKWgQolKhaJKHJSQZUhBAaGhYFlITAxwZM2Sp4lWqFNUlVEZBlBWUJEliEqCkRFhhQf2R9tu64QNZFoEQCoNJjQbHNgrtUONofMymKz4dLt23Bw9xvwDo8gKEnoCoxijtkWL1JYeQEsYdAb9KcVnXmGQb3FCkmU8Je//AVXXnklOpTMhaNCbqsSaPu2JElQFAXhYAAhUYSqRB0NZBmyJGF0ZASjw8PwDg8j6PMVsIXMGFkWPTZb/HnH6EhZiyFmCj6jGRZeK+iIioKRUe+kbzMcCCAcCGCwpyc+TTAaYXe54HC5YHe5YHc6wXL0J8t40Uv5MonpyoPsPVNG8WAOmCkumnMMC7fRBr8UhjeSEPoWA7XA83xMeMAQwCHwcAiaM5isqPjYogXx+ZToeTUcjU4To/8kRY1GqWnPg5IMvyRp/0QJQVme8r7ZynFwGw2oNBjgNhhgE3hYODYuUpEUFbKqQopGwsUea3/V6DQFboMB722eC14n3LoYGEGtyR4XywgMB5fRghqTDQzKT5xRDFKFx1IBx58mSGInLR4tb1K6E+0dxFXgCdSUByQxSYVO0DjOnTwmbo45RKnQYvIAxK8tY/MoakwglBAFKfFlk9up6tYPaMc5SxhwhIBlmOi+T1BnsqIxRRC2saoCToGHGHWm0taD+LEhqyrk2DETj+BT4/GMehFTbF9htEaASWl/bFeKiZ2iH3F8OZYQsISgxW6Nt29epQX/eG1C2DdeVFXFSH8Pei90wjPYW5Jzn163MJlORYLBiIqaOlQ3NI/pTBSj1xfGU/svYDhYnN95k4HDyKHFnRAR6QVF7V4/vvTGcYRlKoPNRZc/hP9q746LikxC+V07/83WeSUVFFEoFAqFQqFQKJTiUn6/MigUyoznrlXzMc9uxiMH2yCVbYFrZmHWORUFJOpUlC8KgD9f6MMHFzZkLXmODg/jzMF9CHiLV4Cf07IAzctWjOm4sG/Ag1cvDoyr3pH6fopa+IR2Qz2Qt4BtYvukoqoIyhKCxXBPKWKXNBAOYiAcxMmRQVxaVYdKQ/b4PIPRiPXbtuLwm29hoKcHEVnBeZ8XDRZbfLS5ieNQZ7aiJ+CLFywElkkSH4miiGee/2+w9XPRuGhJwfFSkihi4GIXhnq64RsZwZApsXz76CgiUxCfSM8SpcEniXFREZfqxFRCIqEQBi5exMDFqPiYEFjtDjjcLjjcblRUVcFgHJ9jwWwkWSNQ+PcpiiKCgQAkUUrbHxhCwLAsCEPAshwYJuH2pW1bc/VgYtN0Dh3681susaNSYBGRYctD7GHhDBAYDoMhH5QC/IByaZjVAgVWLJtZ3JEp/lQT4xa0eiiqipFIBEPhMAbDEQyEQugLhSBOgksHAeAUBFTGBERGTURkyPIeY4zxMmwch8VOOyoEISn2bCQcAEMIVlTUF6H104dUIbhUoFMYJQGJOhyVk0mGiWNhLzOhgaD7gCbqcxoJBTVXogudiIRLG/Gl77uL2QVyHA+LswIOVxXslVWw2J1JfdVYHLzowe+O9yBS5hY/H17XACOX3mH3BEK45/VjGBXpoKh8SB/KU16snJtnBDeFQqFQKBQKhUIpS8rrjgKFQpk13NhciwaLCf+49wQ8EXqTaLIx6opsfioqKoi+YBhv9Y9gQ1XyaFBZknDu1El0tZ0BilR4JwyDhWvWobpxbs75JFXFCxf6cXx4dCJbS3o2Xjceytj4JBGvdp/DQnsFVriqsroWsRyH1Zs24vj+A+juPAdZVdHp96LRYouP/DewLOotNnQHfSAA6s22pOLCcFhEdzAM9cwZXDx7FpVz5qCyrh4V1dVJ0TmpBEZHcbG9Fb3nzkGOCocYAsBUmCiJMn0JSiIUVdWiXgiBSzBgcBKjQvJGVeHzjMDnGUFXezsAwO5yaeIikwm8IIBhGBCGAcuyYFgWDMOA5ThN8KI7PuIRdoxWOicMM+64LEWWIYkiIuEwwqEQwsEgQoEAwsFgPFZOUZR4bJ0WYReNztE9ZhgmKuACYvF12tvO3CfHI/hiUTdJ8YKalYQ+pk8yWzBoNIJhGIQkERdDw0nLxsRjkiRBEiVEwmFEIhGEgyEEAwGIWaIUJwxBVIjEgOM4uIxWLfJP5zTEMAwO7j+AYDAY/5xif2ORQ7GYwli32nm2A2dOnQbLsmA5DizDgGFZsCwDhon+jfaFMdENQxiAEPAcB5ZjwbIseJ6HwAvgDQYYTQaYzRYIUeFJtvhElmXAspz2l9PeW4VgxnAkUICwiECSJAwNDmJocAg+nw+hYBDhUBgHDx4CCwKj0QjBYIBqMMBkNmctMGfr84t1tmcIgctggMtgQMz3SFVVDITD6A4EtX/BICIFiqEMDIMKgwB3dN2VRgNcBiHu8lIsNla6YRf4tM+vL+hFd2DyndrKEb1TUcxdhzI9yfTdFRKBm4kKQUCFwINnGZhZNim2DUiI0hKuRkA8ui32KDpvQJIgqSrqTAmR8Hiap6oqPIN96L3QgZH+nrzF0BzDoMpmAMtozqT9o2GIE3DC0QuicsVY5sJotsBsd8Bsc8AS/WswjS8SNiwp+MPJXuzr8oxr+VKyus6OT1/WnDa9JxDC53cdRX8oUvpGTVdSrX4nkVqnEY1uC5bUO3BxOICXj/aMeUvkjdP9eO+mpsltGIVCoVAoFAqFQpk0qKiIQqFMGeuqHPjRFWvwhd1Hcd5XBoXLGYxeVBSkoqKCeb1nCAvtFlQYNIHFSH8/Wg/tR8jvL9o2jBYLlm64DBa7I+d8o6KE33X0oDcYntD2UkdO08Hok4sK4LR3GN1BPy6vroc96giTCsMwWH7JOjCEoKujE1CB875RzDFbYYxGQHEMg0aLPW3ZvmAYPbr9QpYk9J47h95z58DxHCrnNKCqvgF2lyseJ+UdGsK5Uycw1Nub35ugzFhUaMKimFuRXRDKQ1SUAe/QELxDQ0VZF2EYcByvCX+I5rSjd7tRVRWKokCRFSiKDDX6d7oQMJnQI2gxmmFZxGB44hGFRUHV+igZgBQR4cuiL/f5RhEq8Hw30D8w8fZlgONYCIIAg9EIs9kMm90Gi9U65nKKqiKoiprwjYuK3qKCt5gIjhACWZahSjKYsJwx9s036gMUBR6PB4qqIiTLYFgWVqsVVpsNVpsNJpMJJCqUyyY2mkwDMkIIqoxGVBmNWOWqAKBiKBxBTzCI/mAYw5EI1KhXksAwMLEsjCwLu8DDJRhQYRBgLkHc4coKJxyG5POwpMjoDngwFA6Me73BQAADvX3wDo9AkiQwDAue58DxPFiOA8dz0e+fA8NG9wOGARsVRjIMA4YhmgCOY+PitFIxUdEJpZxIP9Ansic5BB6bql0FueSMtb5U7CYeO5fVar9RSCJaTR+7FtUpIRQKoqO9HW2trTAGAmg2AGhwxkUVJP6/2HMC/SQm5YfQHIcJb3eO/7oiScuRRx9rslphsVfA4nDCYnfCbHMU7C6ajaM9o/jDyV54w+U/cGtlrQ1Pv28NTHyyCLbbH8L/z96Zx0dSFnj/99TV95V0jslkMpO5mBmGgYHhdLncBVRWcD++ii4vgheCiOsJrsqysuoo7Lvrq8iysoKi7iK4qyL4qiyuIIrKcA7HADOTzJFM7qTv7jqe5/2jqqurrySddNKd5PlqmO7qp556qurpqup6fvX7Xf/EXhxLz+/37kpjoTVFl+7qxocvOg6bVpX/Dn34maO4/u6npp3/wT1H8IE/34ht3ZWj+yaSOXzgzifxX586rx7N5XA4HA6Hw+FwOHWGi4o4HE5DWe1z49vnnYR/fP4AfnVktNHNWba4uKhoXhiM4ZdHR/C/etrR/9KLGDrUV9f6Wzq7sPnkU2a8mXwklcWD/UPI1CGCqnRIwKghnoUzdxKaikcHD+Gsji50uH0VyxBCsPXknQAhGOjrBwAMppNo9/jgk6SKAzrDmSyGM9Wf5NU1HUOH+jF0qB+EmK5Ihq7XOLi8OKoiPqTZOJolAm0xYZRCU5fvoNV842QWg+n8UIQ6u9PMB103oOsZpNMZTE5MAgDcHhc6O1ehNdpa1WZDIAQyFZBRVWgzGC6IRIBfrhzvxxgt25vUMBCPxRCPmW4UgiDAHwggFA6jp7e3cj3TN6HOFNyMUHkMsSF0eIq38VA6hrFsIVq0FiilGD02hMMH+zA2PFKvJtoQUhAaCaIlPLLEaKYLV96dTbTcuMxyiksBY/mYQsEWKlUUNVnzQHEjLactcZNguq0toqiJUz8qdeX5iMaCcrmrV72RRdM9qBqMMRw7dgz79+/H0aNHbfGlIs2/jwoCgUsSkavD72TnphcEAd5A0OFAZAqIxAUQTx6aTONXr4+ib3Jxo9/myomrgvjeO09CyF38+3fQEhQNcUFRzSzkNd+GjgD++apT7fcGZRAd4ryLT+7Gs30TuPt/DlScvyfqw1t2rq4qKAKAj393D57rn8Txn3gQL/3TJfVrPIfD4XA4HA6Hw6kLXFTE4XAajk+WcPOu43B8JIDbX+yDRpf3AGYjUBwDAvUQpKxEjqay+PVTz8A7OlC/SgnBum3b0b1x04xFnx6L4bHBsbpJfxZ6YIBTHZ1RPDE0gFOinVjnL3/SEzD3z7aTd0IQBBw5YEY+jWRS6PD64JOKb76PZHLTCopKYcwUGc1EaQ9ZtCMz75sNo2kj0DhzpyjOqIHtmAmGiopCxaUgnW7eAdJsv1NUcwAAIABJREFUJof+vn6MjY6id8N6KK7KA+KKIEGlOox52AJSyiDOcHyklNoiI1XToKoqOru6EIpEEAgEIMnyshcKzgbm6G9j2SSGM7XHyWbTGRzp78fRvkPIZhaujzJGYRgwo0kXKI0wj1uUsNcdsJbLcChpidVEwXZxczorEUKsyEDJFjjZwiVJgiRJZiSg5bokSpIdTSiIQsE9hhTsZZzXp3Z8pBXnmC9LiuxonLGQsJxtSLFYMd/nrQjFvDsYZ/aUHjXGsjkYjIExUxhq/lv4A2OgVoSe/cfMfiUJBOsClYX1TnK5HFKpFBKJBGKxGPr6+pBIzCf6eQbm2SU8Hg9aWlqQCwGtoge+YBgur2/BhXmvjSXxRP8E9o/P3WVtsdnZFcS979yJoKv4lnRfPI1P/v6leTvyrlSch7V6nOl72/248tz1WNvmx7nbOoo+E0ttjwFc/+Yt+I/f9SOjmvebdqyN4K9OW4Nzt3ZgXfv0zo73/a4fv33FFOZmVAPn3PxLPPyZNyLAo7g5HA6Hw+FwOJymgYuKOBxO0/C/NnRhe0sA9752FC+OxzGeW+A75ysIyXEzM6tzR5q58oo3gp3yKISZrAZmgexyYcuu0xGKRqctpzOGXx0dxcuT9b2JXuZ2UNfaOTNBwfDU2DGkDQ3bQq1Vy2056USAEBzZfwCKKMIrFl+6zeRQVE/4MPTyZylFoHFmx1IZNqdgECq01uv1YWoy1oAW1UYymcIrL72MTcdthtdXYbCcAB5RRlKf+0ApYxQgYr662cyAoYEBDA0UxNAutxuCy4WxnGbGC1luN5KsQJJlM55LlGxBiGAJQGRZhuJ2w+XxQBDFaRbaGDLJJJKxGJKxGDKpFAzd/A1hrp8ZISZIeVcfEX8cGUaLxw3Jcv8bTU8AltgkL4zJl3WKZABgbHgEhw8cxMjg0LQuW0sR4gjIcq4ZNSgACqP505RmDXG4PxFBsMW0RBBM4R1joJTZ+zj/OQip6PhDiiLshEK8oVUnEQgM3dyAeYGWQARL6GS6AjJLeUMZtV2nysRPpPzBAEPXYRgGDM361zAQVlx4zRuwnawEQcBQNoejmZzZ7x2/DW3nK0Es2S6iLYiR3C6EE1NgjEEzDDw+NA6A2dsqLy4yX1u9J79OKPmMMcgANgR8kEGhqRoyuRximQxyqgpNNQWRuvU9LgiVHM52rPi3C3O8ygucHFMAAPZzS47P1wW8zk07ayRZgS8Yhj8Yhi8UwdvO245gwBRNCAfHcTS+sNdOw8kcXhxK4LljMYynl9Y9k1NWh3DvO06Cv0RQ9NxYDJ/5w8tIaPwBqLlS1IfneXr6+MVbcf2bt9Q0T8irYMfaCDSd4hN/uQ1nHdc263kfevpo0fuj42lc/a0/4DsfPgsuufmuOzgcDofD4XA4nJUIFxVxOJymYkskgC+fvhUA8NjgGP7p+YMYyy7OgPlyRnHEn2W5U9Gc0QQRR9vXoGegsq33bAm2tGLLqadDcVeOOMmT0HT8pH9oQZ7WLL3PyMMtGsNLk2PQKcWOSPWbrltO3AFREIBjI/ZAEmMMg+lsXcSXAgHCioycQZGaJvahze0GY4WnYPMDSPkn0YHCk+j5IRxW8ll+Pud4GCn53FXyRLdPkiveF680+GM6GFSul1QoU8mPiVqNLLTbMSiWfyK/QosIHO4J1Sg2VyjUYrlmFNpo/kvzA4z5JTJLfEGIoy2OMqyk3jmwEiPQOI3HoAYEsfynaSgcwuDAYANaVDu6buC1fa9hy7atcHvKz++iIEISROi0+nG22jFkLt9BUsEdI5fNQk2nEc/N/dpaVhS4PB54A0H4Q0H4QiEEQuEZr2nqAaUU6XgcidiUKSKamkIqHoeu1XYuPCYIWB/w2+fUhJZFTJ3ZbYgQwRR3LVNWknkPowwG1ZeVUMqJISuAu9i5ZiSbw3BmbmKXY4qMUZ8pwDEow6ux+T/s8Pq8a5gfs5UpECLAH4rAH4rAFwrDH4zA7S0Wj3q9DnHSAnyP4lkNh6YyODCexuvjKUxmlpaQKM+u1SF8750nwasUn+8fPTqKLz79GlTuWD0vnILDuYheT93Qive9cSMuOrFrzm34t2vOhM9V+1DD9z/6Z3jrV36NUzdG0Rpw4cBQAv+99xiu+/afcOcHT4ck8rsVHA6Hw+FwOBxOo+GiIg6H07Sc2xXF8ZEAPvvHfXipzi4tKw2vVLhtOsUdoObFoOJHWzgKz9TYnOZfvWET1m47fkYr/L5EGg8fHkbWWJjBK1oyQClCAPcragyvxiZAGcNJLe1Vy7ztnPNw4KWX8dJLLwEwbxq3uhW0uk3xR1HKR8m8rMJU5pjkkUT7qXuNUuSsPuc8bgBASFFmv1J1pN0zc0QGp5yZRAi0RKzkdGPIQwjBpmAIOqXl/apEeJV/8r/6tOKYFAoG6nhfiVIBW2E+8y8fcUOt6YwxGFwAtSTRGUWlgAuvzwef34dUMrXobZoLhmGgv68PW7ZuqTiyrBAJOmoXd1NafH6eTS+vFu8036+IpqrQVBXJWAwjDmMBrz+AUGsrQtEowtEo3I5B9jktJ5dDKpFAMi8gisWQisXrIurJUYqkriMgm73OIyqIYWZR0XIWFAHForbl5sLEwbwUxyupNxAiIBBuQSDSimBLFP5QBGIF0etCwBjDeFrDYCKLoUQOg3Hz33hu6avfTl8Txr3vOAnuEteZ/3h9AN98sW9F9bGFQnKc9+kMAi1JIDh5fQtO6Ilgy+oQNq8K4ISeyLzbMBdBUZ6ffeaNRe8nUyq+9F97ccP3n8E/Xblrvk3jcDgcDofD4XA484SLijgcTlMT9bjwjbNPwGf+8DL+NDLV6OYsSdyiAJfjya6RBXC9WWnsC3XipGQMRJ+9QEuUJGzaeQqiXaunLccAPDk8gd8PT86zldNTJioSCNcUNZDX45NgAHZWEBZ1en0IyAp27twJQRCwd+9eAIB7ASJoZEGAPIPgjbM0qCYoyCMSMuun9KUl1idmElSVflp6PCwtM5PpgEBIWR0EMEUljunFcSyO1w6Blr0sa/9VWnbenaq0nkq4HMcJtySjTQiiIPOCIwaGTbPO07WlIPYCTKEXtYUXpFCmpF5mz5uPyiEQiVC2QgwM3atX47VXX5vV+jYDqWQKExMTaGktj7aUBQHTaYqqfW3n4lRUTby8UNswnUwgnUzg2KF+AIDb60U4GkUg0oJAJAJ/KFTUJsYYdE0zRUrZLNLJJJLxGNLxBFKJONTswsYHjWSy8FvxZ5IgQBEkqHTpD9zPh3pG53Aay4LuvmXiaJXfRoIgIBqNosfdCdEXXjQREWUMw4kcBuJZDMazGIhnMZzMQTWW35fv7cd34ra3bDN/b1pQxvCNvX24/8DScCNcCkgl27cSbUEX3nf+RrzzrHWI+BrzwMhsifgU/OMVp+Cxl4fx9w88j79/x4mNbhKHw+FwOBwOh7Oi4aIiDofT9LhEAV85YyuuffwFvDq1NJ5UbyaCJfbih1MLO0izEsgJIobaurHqWN+synuDQWw99Qx4/P5py2UNiocOD6M/kZ62XD0ovV/tvMnLaQz745NgjOHk1o6i6Wv9IVsgcuKJJ0KSJDz77LOL1i7T/YXCYOWxXwQEhBS7G5CiTwsTq/WwvLCh2JUm/wmB2TWrSisq1uX8tCxqbAb/BVLyX0IqfYKqsWDVotoqeEUV1VlZekKKlseZHTNtq9JPhTps26p1NNl+k4X6ixEXGk9rGzJdKQwPD9vTGhXJV7rU8gBFk8nRcaxq60T5N5shTLwwGC1y4Mofl0yxn4DCFKuMQWvuSiKpHMkowHQzcEZS5lvodBubL9l0GkOHD2Po8GEAVvSkJSoihIAaxoLtRwGF76TBKh/zc5SCMgbRKueRZKjqyhYVOVl+sgbOchED1QNZlrGqZy3+4uQdiEajkCQJ2t5BxNLzd/St9N3RDIpjiRyGElkMxHM4Fs9iKJmDvgLivm7+8014366eomlTOQ237HkVf+QPjdUV0XGhYDj6lkcRccmuNbhkVzdO3xiFsMR+95+7rQPb14Tx1P4xnLox2ujmcDgcDofD4XA4KxYuKuJwOEsClyjiEyduwIcee6HRTVlyBOTCoZ4xBpVyO5p6cMgdRGswAiU+jaMQIejeuAlrNm+BKE1/yh1K5/DTQ0NIaIszoCWV3Ew0VsBN7aXAgcQUKBh2tXYCAFb7/EVihfFsCi29q7FFAp7b8zTUnOU85hDezHSbmABlA806NSA5xAaEAAIEaMxAXM3wwcUmIb/vnL4v+e5RKuay97FD0CULIiIuM06OMYaYmrXnkSQRkixBlmTIsoyoLwBRFCFJEpK6gTRjEAQRoiRCEETIkvlaFESIRIAgmMsUBAGEEIiiAEkolJFEEYQQMzYpHkMiHkc8FkN8KgZiiycK68JKJpD8+hMCAVxktdJYu3YtcrkcpqbMAchG7f/ZHF8BIJNKg+o6lAqxkbJQ+09wolGIpHCMFgiBR3Qes8tbFnK7EXZVdiHogKfqsvLOWbTEZYvlP7OdqVD2OmsYiGkqtArXFIwxMKP26LfZ4pcktLtdtjuXc5uUipdshxJHmYDshkgIqEPkxayoRWa/z3/GCuXy8YuOiMelStE2a2A7OPOnUj9scymglFlicCB/DWGLl63/FOSIhavFsKtSQOXSI9TSis51vYh2dUGRZHR2FoT8lUSYcyGtGnhtNInBRBaD8RyGEjmMp9UV953ySAJ+dPkp2N4ZLJr+4kQcN/1pH0YyaoNatnxxRlfrBoNAgCvOWY+PvmXrgrgS5TQDAxNprO8I1L3uUloDLrQGXAu+HA6Hw+FwOBwOh1MdLiricDhLhu0tQZzUGsRz4/FGN2VJ4XOKihrYjuXIK+FO7EjGQWj5IJkvGMKmnafAHw7PWM+z4zH8ZnCszD1oIXGVxKKka4hy4ywsfYkYGAN2RTvR4fHZ02NqBgNpU8SmtIVw4vln4eCrr+PIwX7oiyRGmw7F5UK4JYJQJAyPzwfREpGYg9DUHozOQ4jlXEEEczCWUhBBgEAEEMGMjaKUgVKjbHCYCEJlBw6BAISUDbDn3+cFLxUtP6wYJmoJLxkz28QYytaBUXMI2XRqKtSXX6eqkMIwHQOzl8lYoe0CEUAIYFBqbwNGqRkpZbWFWKOAZtn8OqPwOj8c6GyXIMAvu7EuaD6RL0oSXo6PQpQlSFYEkJPtkU64rPiPgVQaeydjZatDrb+ajh4uD9DmAdo64Qfg0XUkY1OIj08gPjmB+MREzbFHAiH2YKhguVsJ1r5xrpXT9Eqw90Xxk93mNFLURWxHGWc9Vh0dHrddLq3noFPDFiOUUtQeUjqAWe6pNTOVQsrKKRKhlZYjsx9GrebSQ0DgkQqDVYwx5JzikRKnMoaCQIw42lS2vxw7gRCCzZs349ChQ0WORc1MIpFAa4UItLlAKwjCZxJWVYs/m4n8fpiLg1cQMtrcLsRUDeO5HHKLIGT3ihK6vB7IQvmxP0/ZOaFaXVJ9BiwZKxYZ2YIs57/5T5xlzJmLyuXFXYW5nHUV6qm3oInLNpcfhBB0et0zF1xmSJKEjp616FzXC1+wIHCpx/clkdNxdDJTVNf9Lwzi1wfH5133UuaCjVHc8bYToIjF56H79g/gX17sh94gt8HlTpev8P2OZzT88OPn4JT19bkOqcSnvvc0vvSukxasfg6Hw+FwOBwOh9NccFERh8NZUvz15m489+TLjW7GksL5xJrBb+DVlYyoYLS9G+1Dh+xpRBDQc9xWrN64acYBPZ0y/PLoCF6ZSi50U8twOhUxxsD9q5qL/mQMAgjObO+yp03miuMfXW43tp54AjZu24LDB/pw+EAfMun6Rud5/T6s7lkDWVFABEvwIggQBGK71oiSBI/XA4/XW9dlc+pPq8uHTl8EAKBRA269+rFnKpdBh9d88rjd7YZAYlgIQzNRkhBqjSLUWogzyKbTSExOID4xidj4GBJTU8A05y/bUYUBxiLKZ0tFRSktB50tnBNLM5MzNIQtFyzKGAYzczuviYQgorjLFA35t62ru+AOBTA6PILY1JQltqkt7q6WssValPKaCAFEUjjXO6Ns4skUApFImXSMwXQHJKTgEuIUqlWKPKwkKpqJuYqK5gshBGGXgrBLQULTMJbNIbMADkVuUUCX1wtXXizaROQFc41Q5hSJlhzOSvlo0eLPzf6ad5vyO0RVkiCg1e0pcqgyHZoKwXzUEroa1nTK6IKcJzi1oy2gK1huAeuuJ8FIBKt61yPatXpGx1hg5rTSnE5xZDKNo5MZDExmcGQyjXjWFPXf9Jfb7HIrWTCzJuTGt/5qB7a2+4uOy0PpLL709Ot4ZqxcoM6pH90OUdGW1aEFX94p61sR9NbfAYnD4XA4HA6Hw+E0J1xUxOFwlhSnt4dxYmsQz3O3olnjdjwhyCOu6s8BdwgRXxByKo5gSys2nnQyvIGZLcAncxp+0j+E8VxjrN9LnTk4zUdAUewb8pQxJPVcxXKyLGPDls1Yf9wmxCYmcezoAIaODs5LYBRpbcH64zahvWtV0w3WcuaO4ohd0mcQKQxlEmj3mINCsiig1eXCaLZyH6w3bq8Xbq8Xbau7AQBqNouxY8cQGx9DcmoK2XQatAkHNRkYRFGEy+2GJEsQRdF2vyo4X1mD8vY0cyC+IEIouEtVXIZlT5IXBNjvWV4gwKbTX00LIQSyLENxKZBdClwuFzw+H7w+L7w+LwRH3JbTSYwaFH7JjagrAEopNMOAZ2rULGY5bTmbxCiFYRighmH+S6npxkVNRzC3KCGsuC0hjbn9qEGhGzoYZfAHAmjv7ISuG0jG40imklBzOag5DbquQdd1cx6rXiP/2qAwWI3iHFb1DQBAYIDouM5SaUHWNplKIqSV+3gxBhzLVHbjCsgyArIV32X91+31AF4fZI8XVM3BMIxp42zzy88YBkRNdUQJmp+kdAMZXS+KFez0eOG2Bt1zho6kljFFpFZdefeuIncph/MaYDqnKYJYdM4w10euq7jIJQjo8nrgFsWy85NGDcTVHHJUt/c1AbHFWoX1EMwYRRC4JQk+h9NW1tDtbS/YcYtAcchkMc10niw4fs1f1BSQ5+bcVDluziFsskRIVecveuFwcapSLu+sZf7OmfkASPOxdUXRdgWvmbwTYb7u0uWxCsdZgRAYjNqiK6czFXXUbRkxLrj8VaUUY9k0om5v2fSCDrfQkIIPVuFw4dya+XXWKMVwZnGuBeaCKEno6F6Dzt5e+EPTu8WWue+VfF9yOsXBsRT6rL/BWKbq+dUp4dQX03q2SfBKAv7PX27Dmza3l7nc/eLwCP75hQNIas133backAjBidGFFxLlec/tv+MuRRwOh8PhcDgczgqDi4o4HM6SQhIEfP3PTsA3X+zDAwcGeZzXLHDajnOnovpDCMFrratx8fperO5dP6uBpVenkvjl0RGoDRR5OZ2KOM3J+kDhxnDW0KYdgAMsd4jWFoRbW7Blx3ZMjo1j8PARjBwbRjaTmdUyI60tWLdpI1atWT2vtnOaE1koiELUCrGNTnRGoVEDihWB1ulxL5qoqBTF7UZXby+6ensL7dN1aNlssXjEEqpQaoDqhi3myY8COiPkGKNglEFTc7awB3mRT8m2EUQRRBAgiiIEQYQgmo5diiThjNWr4PF44PF4MKjFICjN8/PKjsoDbNGRHemXHzy2to8omSKoudLiCqDTaw7g5gwdifHgDHNMT1hxIeLyzKuOauT7jLPvMMqgUwO6aoqSVDWHnKpCzWaRSqaQSqVw8PXXC5XkY/RA4JVke/tOZnNm/6MUwVAYW7efAN3QQQ1qi6gMakCLJS0hldUGRiEIIqI+LyIeFzweL0KRCFqjUXh9PgwNDgLUgF+SkE6nEY/HMTQxgWQiAaOKUIcRAlrhOoMyZgpuqpxSdKojR+cWqUkABGUPvJJrGnFRFhmjduclxRITeSqIiXRKMaVmkNI1lK8YmzZeVmeGLSpijOFYOlmzMC8vahEFYkcvCoTApShghnlsyZchBBAgOFyqCnGLxCF+Mt8XxyRWunJrJkFTnspxc4vg3DT3Q1hDqBSTWdf6S96P51QMpGuLF10qBMJhrFrXi7buNbNyJaqEplO8MpSYlYioFGeX11bQQzySAHz+/M24fOfqsqizgWQG//zCQTw5PNmg1q0MRAJ0et34mx3rF22Zv391BH/aP4Y1Ud/MhTkcDofD4XA4HM6yoXnuenM4HM4skQSCv9mxHheuacMX9ryKI8nleXO0XsgCFxUtNAlRQZ83gu4ZBnZyBsVvjo1h70RikVpWHe5U1PxElIKF/UgmgYyuwiPNzmKeEIKWtiha2sxIqXQqhcRUDMmE6ehBKYUoipAkCbKiwOPzIhQJw+V2z1AzZylTJCoyZhYNTKoZdHjyEWguCARNE20jSRIkv7+hbVAEARu7Ouz3Y1PZpoo/cw7sm1FbBFigSKx6Cxum1BwEQhBS6n9MEgRhTtFgkiRh6NhgcV0g8MuF4zLJqbZgyx8I4Ljjj69YVyiWhFbBaWiV140WV/lx3nTmMvehz+eD1+uFt6UFjDFkMxnE43FMTUwg7XCoq7ZPWCU1UZ12HwMQ0zKIaRkEZDd8krvItcIpLhrJZJGbRaybLBCs9nqrioliWhZJTcVcvV+c+4EQUxRUa4wig3mNbRgMkiyja20Putf3wmc5VxqGAUPXC8JHy6HLMAzbpYtSwxY1UoNC13Xouma7fZmOXUZBEJd/bRgApdYfAyxnLzAKURDBqAEw00mFCKbPlIC8uKlYvCQJQtH+yuoaYAudHLFuRe+bU9i0FFjo7VZau0dsTCTiQiFKEtq712DVunXwhyPzru87vz+Epw/PVQBTHCu93FEEATf/xSa884QuKFJxv0prOr7z6hHcf2BwRQmsFpvtLQFcddwa7IyG4JYWV1F51nHt+D/vOWVRl8nhcDgcDofD4XAaDxcVcTicJcvWSADfPu8k/N+9fXj40HCjm9O0yMR5k7OBDVnmPDUyieNCfrR7Kos+Xo+l8OjAKJJ6cww4S85+0cB2cKqTc7iluEQJfxw9iLX+KNb6WyCQ2gaGvD4fvD4fOmYuylnGOEVF2VmIio6lE2h35yPQRCiCiKPpNHRqOp3o1Ix1obAiXgCAmdEylDFQZjoeGYzBoAwCIQjKMlrcCloUpSwiY8lR0ny6go+mziNSvQZUJ3JZqAZFq9vTFH3FXaPoUlWrx5tWWx9SRd1jVBHfEELg8Xrh8XrR0dmJbCaDqclJJOJxSDW4dSzE1k1oWSS0LPyyG/4K4iK/JGFSVTGWzUGv0GckYoqJvFK5mMigFHEti4SmVhZJ1YBHku3XjLE5C/BDLRF0r+9Fx+rVZU4poijOywlsPuTjAyk1ikRNzuhBU9zE0OsLwCtKMAwDY+kkjianioRO1HJ4M924WKEey4mLUQqWFzvppkOXYAmRBOKMojPfAyiyeKnoxISS74UVRZefIgBwW/uQMYa0Fe1nU5ZxZYqpiL1oYvfNQtxf8WyspG2lQiqBFAtKmlVkJSzIN31xUVxuBFsiaOnoRFt3N0TH93fWMKAvmcLeiTguXtPpnDxnnFt2OT/EE3ZLuOmNm3Hptg7IJSI1gzH8rH8I337lMCZy5dGfnPrQ4XHhr3o7cfnm7oZeG118cnfDls3hcDgcDofD4XAaAxcVcTicJY1PlvDZkzfhlGgItz23f05xCssd572m+Q68cKpDAfzi6Aiu2NRddGM5rRv474FRvBZLNappFWnWAQ9OgddiEzglag52tHsC8IgKDiZGcSQ1gTW+FqzxRSAJzZf1kTM0xNUsclQHAwNBwcmgdJyPMWYP1gmEWAIVM0aIOCJkgApRThWWbU5ndv1AYXAw/5n5unze4igaRwSNNRBa5MpglSm0o3iZlXAKLZwDlPk68/F2DOaxWihph9MRIr9cBmatC7PX0dkOeysxc9r2SCHW7uXYMI4kYzCYGfukMQqDUuiMQqemEIiBYX2gBUHLLUZnFA/0HZlmLWePAKDV7UKHx40OjxudHjeC8hwGBxtIqbRvJbgTVGdhhKpJXUUupaPF7YF3LoPHdURWZucUl0fXqg+qVhUVVTk1s1k4+gCA2+NBp8eDzq4uXHDxxSCEIBGLIZVKIZVMIpPJYDyTRkrVwGCJQjQdXo8HgmFA1/W6XykmtSySWrbMuYgQghaXCyFFwXg2h4lcDhTm96rL50VAksquVSijiKs5JPRc1UhQQgh8fj8EUXSIXgoiGup0JgJBSC6IxSq5R02HJMtoX92FNevXIxgJ1zTvYlFw5pr51k9vJIqg4gIAjGZScCXnF1vEGIOh512adOi6AWroZj9zOJjk4wOd7wGz39v72VHGGWupCBI2BlsAmAKqZ8ZHi37vkKJjE7MFVkWuUMyKhbSiCAFibjNSiKZjlBViJB1tDSsK1vgCYIxB1XXsj42bfcyK32T5GE7KIIhmndRylWKUWuduWjjPE8E8t1uCL7v59mZgjosY80NREiGJovmvJFtRnWb8YYvihsjMbSNqGhTVgOEQFbOS78RiIgiCFS0qQZIlSIoCSZIhKbK5HrIMl9cLt9cLt9cHt9cLYR7ivJSm48XJOF6cjFd8yKNePk7L0Zznok1RfPQNvTi+PVDhuMzw64Ex3L3vMA4lZhe3zKmds1e14EPb1qI32HyRY80spuRwOBwOh8PhcDj1g4uKOBzOsuCinnZsbQngxidfxuEkv5nlhCzQQB+nnJFMDk+NTuG0NnNg6cXJBH4zOIZsE4rdmsH1gTM9z46N4LL1WyEQApEIOCW6Fo8NvQaNGjiYGMWh5Bg6PWGs9oURkBc2tixraIirGVBLaEItUYvBTOeCnKEjY2hIaTnk6MwOOJzFxy+5ir73z40dQ3YW++rlqRGc0d4DADi9rRV3kP11eQqfAhjN5jCazeHFyRgAwCNXsOBhAAAgAElEQVSKaPe4bJFRp8fT5FGNxW3jwt2FQWMUw5kUZEFAUHbBJ8kQFyjGbTokubafztQSE1QaaBOqdOtqTkWU1u5yKIkiPF4v/CUxgUOZNBIlgqdTom3wWaK+oeQkjiXHYRgGdE2HpmnIZbLIZjLIZrJIJZOIT8WQSdd2vZ13LgrKHvgkl71dRELQ7nGj3eO2xRqzFROJoohAKIRgOIRAOIRAKIRAKFjmFFRUl+XcYxg6IpIHXR6/ua66jpfHRxDN5SwRkm6Vy0eVWc47ogCX220uNxKZU5Res1Is/J3/8YwQYopFavzu1IJXkrElYvowMsYwNhxasGVVot3twZawKWrSqIHQ+NCiLn8menwhdHrNY0AspyEwMl6xHHU4V5niO1NwxahhReARS2RliQKF4mn5ryzJO2k6y1qOUOZrc55F+94woD+Zxt7JGPoS6Wl7dY0moCUzF15WEzwuNTa0ePG58zfirLUt8MjlYi6DMfzqyCjuffUIv/+ywHR5Xfjy6Vub9vc7FxRxOBwOh8PhcDgrAy4q4nA4y4YevwffOvdE3PzUPvxxZKrRzeGsUH43NIEOjwtPjUyiv4lvsC6fIbDliw6KvROjOLG1HQBwQks3/jBy0BbtGIxhID2JgfQkPKKMdk8QHZ5gXQVGMTWN12MjiGnN25c5s8PZLxhjsxIUAcDvhvtxetsaEEIQkGXsaAnj2fH5uVdUI2MYOJRM41AyDcCMP+r2ebHW78UqrwdhRWmq8JZqwpDlgsEoVKojq2vIGio0ahQ5gBFCIFjRQT5H/1INAwOpRMHdq8SlTLQcyEQi2K/zsUiFbVpw5soLyzRKMZ7LYCKXgSKIcIkiFEGCLAgQBbO+hRxwqzV2Eqj+9H61VlZrPp2D9QWpMmhfqaai/SOKUFyuGetXVRVT4xMYHx3DxOg44pNTsxpMj2sZJLQMIooPLlEu2j6VHDASWg5xLQtJURBpiyIYDiMQDiEYDsPr99UsTsg790iyhHXhdjv+LK1pcDENbTXVtrxwbv/lIYvgTJcE50QQxXm5ADUbad2wXYkSWvXrHcqYfd4Q63RSX8qaot6IBx8+Yx3euCGKVq9c8fyV1nT84sgofrh/AEdT2Qa0cmWhCAI+f8rmphUUcTgczkpldHQUv/nNb/D73/8er732GiYmJpBIJBAIBNDS0oLe3l6cc845OO+889De3j6nZWSzWfziF7/Af//3f+Pll1/G2NgYCCGIRqM4/vjjcdFFF+GCCy6AUqOjbinxeBw/+9nP8Nhjj2Hfvn2YnJyEJElob2/Hjh07cPHFF+Occ85ZVg9TcDgcDmducFERh8NZVgQUCV85Yxs+8tu9eGky0ZA2nNASwNXb1mFTyAevLKIvnsafRibx1MgUnh2LQVtkT3R+/2lxMRjDAwcHG92MGSkeOFrCd7+XOfcf3IcdLW0ghEAWRBwX6sQLk0fLymUMDYeS4ziUHIdPcqHTE0SbOwCfPPPAcCmUUYxlkziWiWEsm6zHanCaAKeoSGezd09L6iqSmoqAFYnzhvbogomKStEZQ38yhf6kGR8pECAgyfBIIrySCLcoWuKUwp8kEEhEsP61Q+ZAiCmmzAtcBEIgCwSKIEKwIu4EAkvYUi5s0Ckzo+IYhWG99jncUBhjeDU2iJyhIWvo0KkOg7Hi2DxLPFMp1g4ohOjNNCDpnIc43B+ckXrmZ84YQOtze9ko/JeY5y6DGjAYhUYN6NQAreHcEHUHsdZvyjFShoY/jtb3PEgAiESw9iMp2aaFdRYASESAKAgQrHkEq0/k+4pg9wHBnkcQBIggEAUB2yJRexs591VSV5HRrcFpa9OIAoFfLtzEzehGIfaRAElVg2zFeDn7n0YZdGswO39rlqG4r6mUImdQpHUdB6YSiKkqAjU4vlRzc5p5r85uvyuKgvZVnWhfZcZ0GrqOyfEJTIyOY3J8ArHJSWhVBvMZgAk1BRECWtx+yI4oT1mWEQgGQbxu5BQJnUEf/MEgXJ76OvK5RdkWFAFAX5I/kFAkQFkiyohq7l4ci6LNszT26Xw4nEzjhYk4+hIpzOZKx7lF/nxLO9a2eEGZFd3HTEEnA4OZWGf+YqLWMZpaSXTMIUwCls53BwD8ioB3ntCFNx/Xjm0dAfhksarrzCuTCTzUP4xfHR1FukJ8HKc+yAKBT5KwozWIi9d24ORoEN4FdHubL7t//CL+9q+2N7oZHA6Hs2iMjIzgzjvvxAMPPABVVcs+n5iYwMTEBPbv349HHnkEiqLg8ssvx7XXXotQaPaOmj//+c+xe/dujIyMlH129OhRHD16FL/85S/R09ODv/u7v8PZZ589p/X5/ve/j69//euIxWJF01VVRX9/P/r7+/Hggw9i69atuOWWW7Bjx46al/H888/j3nvvxQsvvIDh4WFEo1Fs374d73nPe7Br166a6lJVFVdccQWee+453HXXXTjnnHNqbg+Hw+Fw5k7z/jLhcDicOaKIAr58xla879fPYjynzTxDHen2ufG1N2yHWyoMjmwM+bAx5MNfb+rGZE7DAwcG8bP+IUwsUttkx6CSvsiCJk7zUvQwLu8WTUuG6hhMJ7HaFwAA9PhbKoqKnKT0HA4kRnEgMQpZEBFSPAhIbnglBS5RhiQIICCgjJoCCUahWvFlCS2LmJquS7wVp7kIu7z264xe2/nnldgwTmsrRKD9y776RKDVCmVATNMQ0xb33F6Nbq8H796w1n4/nImVlWFAwbZgGX+tFnpAlcESwy3CNlQEwY4LcpLQNaRKvjsyLRbuxDSt6LvRl0hBqhDF9dCRY+i3HLlM8ZLZvy/p6UKPz1NWXne4RAHmZhjLZR2OTUKZtKKqU9ECfXdFSUK0ox3RjnZ7OalEErGpKaSTKegOQVbewUlxKZBlGRtauhDyBeD3++Hz+bB34hjUOUS+1YLz+pgxhlSdjysZQ8dQJoXhdAoGo5AEU9jmFLiJlpOX6HD9yrt4SQ4xXH5a4XXh33qKapZiZDJ3V5o9y3X7ZHQDL03GsXcyjvg0rkQVYbCFVx88e0Nd2tPMD/RsaPHi4i3tOLe3FZujPgRc0rTRVWNZFQ/1D+FXR0dxKMFdS+uFRxSwqz2MqFtBi0uBSxTQ5XNjfdCLbn+zR/8WwwVFHA5nJfHEE0/gU5/6FCYnCw9ZrV+/Hueeey56e3sRiUSQSCRw4MABPProo+jv74eqqrjnnnvwm9/8Bt/97nfR0dEx43K++tWv4u6777bfb968GW9+85vR09MDwzDQ19eHhx56CEeOHMHhw4dx9dVX48Ybb8RVV10163XRdR033HADHn74YXvaSSedhAsuuABdXV3IZrN4/fXX8bOf/Qyjo6N45ZVXcPnll+OrX/0q3vKWt8xqGYwxfO1rX8Odd95ZNH1gYAADAwP45S9/ife973349Kc/PWsXpK9//et47rnncOmll3JBEYfD4TQALiricDjLkqhbwS2nbcFHn9gLY553UKNuBVsifpzYGoRqUPxheBJ7Jyq7IF153JoiQVEpEZeMq7etxfu39uCZ0RjuPzCA3w8trOOD4lCPcKEAJw+3UF86vDw1bouKOjzBmubVqIGxbBJj4I5DKx2/VHCtSurlT9RNx2+H+nFq1IxACyoyToiE8NwEd/Xgx9ECRWKEJX6pUa35lQZeZxz4q7IxhBIhRL5YtfooLffcoIwha+jIGjoEQmxxkSyIpktTlSijii1agK5MCIE/GIA/GJixbIsnjKjbLJfS1AUXFAFARtdtcRMhBDtbO/BqbAIJrbbjYynDmRQOJKYwlE4uiogj7+JlRgCa4iRRMKMFdWqKh/2SAkUULSGTYAuaSgVL2yJRu96UpmI0my6ImCyHsPw8Aky3r3w9nOZkue6Z8ayKw6k0jiQzOJRKY67PzSR1HSFFnrlgDXQHPXhxuDHX3UG3hE0tPvREPNjY4sWmqA89YQ+6gm4EXNKsvqujmRweHxzHY8fG8dxYnN8/qCPbWwJ4+/pVOHtVKzzT3DPicDgcTvMxPDyMa665Bpr1IMKOHTvwyU9+EmeccUbF8p/61Kfw4x//GF/4wheQy+XQ19eHK6+8Ej/96U/hmiZq+o477rAFRbIs42//9m9x+eWXl5W7/vrrcccdd+Cb3/wmKKXYvXs3wuEw3va2t81qfW6++WZbUOT3+7F7925ceOGFZeU+9rGP4Utf+hJ++MMfQlVV3HDDDYhEIjjzzDNnXMZdd91lC4rWrVuHyy67DN3d3RgcHMR9992Hvr4+3H333fD5fPjIRz4yY3179uzBt7/9baxatQo33XTTrNaTw+FwOPWFi4o4HM6y5aRoCB/cthZ3vnTInhaQRZzR0YIdrUH4ZRGDqSz+ODKFqZyGDo8LPQEPegNerPK50eZW0OVzl93wuWpLD54cmsBdrxzCq1Mpe/qfrWrBm3pml5MsEoJT28M4tT2MR46M4svPvA61woBRPeBORZxKOJ8B4b2iuXk1No4LVq8DAAQVD0QiwKghvmol4pddcIsyj29z4BYLg2a1OhUldRVJXUXAitM7qz3KRUWYhaBkBbGcIjWrOflUEhVFXI5YQUrLBl9ZlWu7aj1HqPIBo3RacQBlDBldR95HQhQEHMukoYgiZEEw/yzhSL6d+Si5smVNs5yForgVi9MCnRkYySbR4THFTLIo4vhIFPvjkxjL1ubIkTY0DKQSOBifQrLG4+t8ybt4TZdGlNZn597yF6vXIQTzOD+QjuPJkcOzms8WNuVFS4LltkQESIJgOS8VPs87JubnBfLuLs5oR2dkZH6aYx5rWqvLC6DNbstAKlUU/Vjcn0iRoMqOQ7RFU6bgj1kxV4wx0Hxb7BhNUuREUxprnReqNQ/N1JaZoZQhZ0U/5qiBjE4R1zTEVd10KlTN17k6/W7+1319+OsNa+CxRJj5Y3Ah+tIZs+mIErXKEhCAmA53eW65YDOuPWMtDCsWLR+Zmo9ezQsARcGKbBXM14wBogDL1azQDmd0prO3SSXzSwKZU9/L6gaeG4/j6dEpPDUyhf2x1BI/izcXskBwZkcL3rWxCydGZx97w+FwOJzmoqOjA7t378ZnPvMZvP/978ff/M3fVH2IAzDjtd/+9rcjEong2muvBQD09fXhvvvuw5VXXllxnueffx633367/f4LX/gC3v72t1csK4oirr/+ehBC8I1vfMMuv2vXLnR3d0+7Lr/4xS/wox/9yK7nG9/4Bs4666yKZV0uF2655RZomob/+q//gqZpuPHGG/Hwww8jEKj+8MiRI0fsdu3cuRP33HMPPJ6CI++73vUuvP/978eePXtw55134pJLLkFPT0/V+pLJJG644QYwxrB79+5pl83hcDichYOLijgczrLmis1rsMbnwWOD49jWEsAl6zrgEstFQrVyZmcLTu+I4Pa9fXjo0DD+etNq/O/N3XN6UveCNW1Y5XPhusf3Ql+AJwFlxwjVQtTPWZpIjn6x1AeAlzuHE4miQaoWlxejXCxTEbco413rT0XE5QMAPDrwyoxxcSsFl1i47M8YtQ9675sawaltawAAZ7RHceer++fsDLBc4O4clVnq3WI2TkVuUUSHxweRFAaSp9Ty71UlhyEACFZxxpjOqajYDWr6rcyIgJSuI1VBTPL/jh7GeC4LwBwwVwQRW8JheCWzTSOZOF6ZGrDEFyJkQYRLlOESJXhEBW6pvq4eZW2fwzw6pYhrOcTULOJaFjE1i7Su2S48eTGLHTsmCBBAsHdiCG/s2ogefxiAuY83BCN4zXIssucVCvNTxqBRA0lNQ0JTMZZNIz5Pd6NmYa5HNFvYxADAABbeaMpmrT+MszvX2e8fGxpYvIUDOK2tAye0tAIAVMPAg4dfBYAikVLe5YkyBgZmv8+LTMx+BQAM1Ppu512gnOQFLqVQxsw4W5qPtWV2+bet3YJ2j3lNNJzJ4nv7D0NyHLcEAkvwZR5/JGK+dopfANNNjYLB+r+1LoWIT2qVYWBF7msMzJpe/N5gptCGMrPvZA1TSLTYrjiPDI7ikcHRedfz4F+cYT+I1BFwoyPgnmGOxjGZ0/DiRBwvjMfx/Fgcr04l+T2CBaDVJeP9W9figu4ovDK/9c7hcDjLgbe+9a04++yzEQ6HZz3PG9/4Rhx//PF46aWXAAC//vWvq4qKdu/eDcMwL6TPP//8qoIiJ9dddx0eeeQR7Nu3D+l0Gl/72tfwj//4j1XLq6qKW2+91X7/7ne/u6qgyMnNN9+Mxx9/HGNjYxgeHsa//du/4eMf/3jV8j/96U+hqioEQcDu3buLBEUA4Ha78eUvfxlvetOboGkaHnzwwWndir74xS9iYGAAV1111axckjgcDoezMPBfNhwOZ9lz3uoozlsdnblgjQiE4KM71uOjO9bPu67tLUFcuKYNPz88UoeWFSM5npzk9uWcPHwwfOmgwxwkkok5WBFSuKioGtduPa/o/eZwBxcVWbgcTkWpGuPPAOCJoT7sinaDEIKQImN7OIwXJle2WxF3KqrMUr/UqHatJFoDxm5RxCqPv2hwX6MUo9lc2TypRByukhuoANDhrmx5X61PMUqL3FFm2sRCNcsjwBYt5OvJUaOovoyhYjQbrzq/SAT4ZTdCihdhxYug7IEoCFXLz4YiwdQMZXOGjpiaQ0zLIq5mEdNMAVFF8iKXabjn9T04rW0NLlq92RZ4nLuqB3//zBM1rcNyoJb90Cw4BbON+J1TrefnBTiN/O1li34sDAZM5BbXSYvTGBKqjsmcioFUFsfSORxOZnAwnsLBeBqTvA/UDQLTFfq09jCiHgWdHhda3Qo6vW5sbwlAEed3buRwOBxO81GLoChPd3e3LSoaGhqqWOapp57Cs88+a7//8Ic/PKu6CSG45ppr8LGPfQwA8PDDD+MTn/gEurq6Kpb/+c9/joEBU4QvSRKuvvrqWS3H7Xbjve99L2677TYAwPe//31ce+21cLsrC6kfe+wxAKZLUW9vb8Uya9euxcknn4w9e/bgscceqyoq+tWvfoUf//jH2LhxIz7xiU/Mqr0cDofDWRi4qIjD4XCahN6gd0HqdQ5QGSvdVoJj4+wXS30AeCWQNQzIgjmgHZCb9+nnRuJ88j5Pm4tbIudxOwZeqw7AT0NcV5HSVfitCLQ3dERXvKhIqEHksdwpFiMs7a2RNSpHRbk95nVaZ4mgKKXpGEhnKooHEhOTaGnvKJu+ylsuNAKmdyqqBUGobsVP53nSNxhFTE0jpqZxGOagql92I6z4EFK8CCoe+3w1W4pW22qeTikSWg4JXUVCzSKh5RDXclBp/W1w/jR6BAal+MuerQAAv6zg0p5N+Onh1+u+rGbGuR/oUolZbfBFbHH0Y3PT7O1byjiP3XvH49gfS9nfp7xDWt7hiTIGnTLojMGgDBqlMBggEjOqXKUU1OEMRa35GMtHsJn7UqUUOZ0iYxjI6hRTqobJnIapnMadhxaYkCLhA1vX4k097fBKtZ3vOBwOh7OyYIzh1Vdftd8Hg8GK5X7yk5/Yr7u6urBjx45ZL+P888+Hy+VCLpcDpRQPPvggrrnmmhmXs3PnTnR0lP9WrcZFF11ki4qSySQeeeQRvPWtb61Y9tixYwCArVu3Tlvnli1bsGfPHrt8KSMjI7jpppsgyzJuu+02uFyVH87hcDgczuLARUUcDofTJPQnMgtSr/MBOe5UxMnD/TWWFmldQ0BWAAA+SWlwa5qTLl/5E2NHUhMNaElz4nY4FcXV7Jzq2Bcbxa5oNwDgjPZW/OsKj0Djjm8FltOWyFQR3QXCIYRkV9F+H0xlMKFWd/5KTFY+BvkkEWFFLotMq9anWEn82UyQ6ZyK6iwtYAASWhYJLYsjqXEAgEuQEFA8CMhuuAQZiihBstz2QAr9RaMGdGogovgQse4PT2lZPDp4YE4xjfPh6fEBbAm3Y2PQjLJ6Q2c3/ufYoWUTbTYbnHF+S+U3g1P61IjjkFLkCNt8QqzldGxuZpyH7rv3HcKfRmKNawxnQVjldeG09ghO74jg3K7WRjeHw+FwOEuE++67D/39/fb7atFdjz/+uP36DW94Q03LcLvd2LVrF373u98BMF2CKomKMpkM9uzZM+flrFmzBuvWrbPX57HHHqsqKpqaMh9ACwSmf9DP7/cXlS/ls5/9LKampvDxj38c27Ztq6m9HA6Hw6k/XFTE4XA4TYJIgNPawxAIsZ9AzD/JSBkDhXmDXzMosgZFRjeQNSiyhgFtmlFdhcefcSrAe8LSIqMXnDOc4hBOgdPbyqMom3GAr1E4I2ISWnlM02z47VA/TmldDUIIwoqC48Mh7J1cuQNnYiV7lZXKMnJtiqmVvx+yoqAjHIZuxZwlNG1aQREAxMbHQSmFUCEebLXXUyYqWgynosW4FsxRHblsAmPZxKzKr/JG7NeqoS+6oCjPz4/sw7Vbz4AsiBAIwf/eeDzueOXZmWdcJji731L5zcAa3E65yX9nOZ2U5utSxqmOUxCq80vPZYFfFnFKWxintoVxZmcEnV7uFMvhcDic2WMYBr73ve/h1ltvtaeFQiFcccUVZWUHBgYwMjJiv9+4cWPNy9uwYYMtKtq7dy9UVYWiFD+QuHfvXmha4XfWpk2b5rScvKjomWeeqVouFAphbGwMqVRq2vrS6TSAyrFyP/jBD/Db3/4WO3fuxAc/+MGa28rhcDic+sNFRRwOh9Mk3Liz9ot5J6pBoVNqjggwBoEQSAKB5LjZze8lc/LwrrC0yDjieJziEI5JpyeEbl+kbPqkmm5Aa5oPAgLB4UBRLd5pJuJaFildg99yzTqrPbqiRUXCEoq9WWiK4s+W+MXGVBVREQC0t7Vh8MhRAEBanzmGS9c1JKemEGxpKftsldeNl6biRdOmcyqqhWmdippw/xRHSDWufZNqBr8fPoRzV5ki1d5AGCFFQWwG8dhyQYBTgLI0lBGNNoyzHbjQpN8tx+vma93yoShufIl8dziVObUtjMs2duHU9nDRfRQOh8PhcKaDUoqpqSkMDAzgySefxH/+538WORQFAgHcfvvtaGtrK5v34MGDRe97e3trXv66devs15qmYWBgoKye0uU455kta9eutV8PDg5WFC8BQGdnJ8bGxoqi3yqxb98+ACiLYTt48CBuvfVWeL1e3HrrrRBFHjfK4XA4zQAfleJwOJxlgiIKUMTpb3ylZjEAxlkZiHwwfEmRc4hAZIFfvpWis8rHtv2xkYrTVxql7icqnfu54PXYGHZGuwAAZ7RH8a1XD6zYY0iRAGSlboQKLPVNoTOKhKbakZNO2trabVHRbKP/4hMTFUVFHZ5y14PpnIqcgoWZdBTTORU1p/DBKUprYEMAPDlyCKe1rYFHkkEIwZ91rMHDRw40tlGLRDPth9niFMw2osnMISBpxqgxAu5UtNCU7neDa4qWJC0uGVdvW4u3rutsdFM4HA6nqcnlcsjl5uZ8vJC4XC64XK5FXeYXvvAF/Pu///uM5U477TTcdNNN2Lx5c8XPBwcHi95HIuUPzM1E6TyVREWly2mp8Bt1JpzzMMYqLgcAzj77bLz44ovYs2cPBgYGsHr16rIyR48exdNPPw0AOOecc+zpuq7j05/+NLLZLG655Rb09PTU3E4Oh8PhLAx8VIrD4XCaBMoYDMbsm/jE+g+BdUPYfm19XuOjuapBcc9rh+vXYM6SRmoSVwDObOH7azpyVZx33tCxET89/Nwit6b5EEmx4DRnzF1U9NvhPpzUugqEELS4FGwJBfFKLD7zjMsQkR9HbZaTUxEAjGczFUVFHe3t9uvZrmd8YhxAuYV9WJEhC6QowlascmlHaxQCCkvNqcjxutHfpRw1cDAxgeMj5tOy6wPlVvwrgUbvh9kiNvjYozmWWc1prKFw7euCU7rbDb6llxzv2NCFD21bC4/EXRA4HA5nJr71rW/h9ttvb3QzyvjIRz6C66+/flGXmc1mp/08HA7j61//Ok4//fRpyyUSxZHRHo+n5raUzpNMJmdcjttde7TnbJYDAJdeeinuuusu6LqOz372s7jrrruKHI1UVcXnPvc5GIYBSZJwySWX2J/dfvvtePHFF3HeeefhsssuA2Be5z/++OP4n//5Hxw5cgR+vx8bN27EO97xDnR2ckEwh8PhLBZcVMThcDhNwl//+mkMpKb/QeLELQgIKRICigyfLMIrilBEAYwxEEKgUwbVMJAyKFKajiPJDPiDk5w8srC8BoCXO26H1a82D0HIciWkVL7psj7YhqDsRlyb/bF1OVI60KmzucWfAWY8UMbQ4JWsCLSO6IoVFU2j21hxOLvYcrjWGM9lsC4QKpseiUSgKApUVQWd5cBxYmqy4nQCoMWlYDhTeNK3evwZq8kFhUwT2WI04TmfNJl74lAmYYuKwov8xHMjWYrma42OodQd0YSlAl7OykAoOTobs7Wx4zScS9d14voTermYiMPhLEk8Pe9uyHJv/fRZDVluM3L11VfjwgsvtN9ns1mMjo7imWeeweOPP46pqSlce+21uPjii3HNNddUdOsBUOb8NBexT+k8ldyk6rGcUjeoaq5Vvb29+NCHPoRvfvOb+MMf/oBLL70Ul112Gbq6ujA4OIj7778fBw6YbrBXX3217Xb07LPP4lvf+hYikQi++MUvAgCGh4dx3XXXYe/evWXL+dd//Vd87GMfwwc+8IGa14XD4XA4tcNFRRwOh9MkaDV6pWcpRTarYjirLlCLOMsZ0TEazu99Nz8eqXDJlqNzF4QsVyZyqaqf8UG+8m2Q1ecn+3g9No4TW1cBAM5qj+Lu1w4umQHoesJjJAs4I4gMuvRlRaPZyscUgRC0tbVhYGBg1vs8m05D1zRIslz2WVCWbVGRgOrxSYxSFPWyGRxRhCqiIobm7KtFTkVNIHpKaoVra2WaKDkOR3PEnzWlU5GD5m7d0qV0t+v8h1XTIxGCm3Ztxl90tzW6KRwOh8NZwvT29iAvSNsAACAASURBVFaM/nrPe96DZDKJf/mXf8E999yD+++/Hw899BC+9KUv4S1veUtZebnkd6Kq1n6fv3QepytQHkkqHgpWVbVmYdFslpPnuuuuQyKRwL333ouDBw9i9+7dZWWuuOIKfOQjHwEApFIp3HDDDTAMA7fccgva2towNTWFd73rXRgcHMSaNWtw8803Y9euXZicnMR3vvMdfPe738Vtt90GVVXx4Q9/uKZ14XA4HE7tcFERh8PhNAETORWjXBzEWUQkxwDwUom4WMm4hMIlm1ol6msl45cqO0kYlGJSTS9ya5oPp6iIMQY6Ty+ZJ4b7sKOlE4QQRN0ubAoG8Fo8MfOMywyhJLRpJeMUWBls6YuK0rqOjK4XCToBAASIRqMYGBgArWHgOJfJVBQV+RzuCNMJEiilkIpyjKZfdjVRUbXoM+dk0gDpQVF83qIvvRxnH641bni50AziriVBk28m525sdtHTUqXMqYh/d5qW3oAXF6/twLs3VXaK4HA4nKUEadDDU1dffTWuvPLKhix7OkoddBqN3+/Hpz/9aRx33HG48cYbkU6n8clPfhKEELz5zW8uKuv1eovep9O138Mqnae0TgDw+Xxl89QqKspkMtPW6UQURXzuc5/DhRdeiB/84Ad44YUXMDo6img0iu3bt+Pyyy/HGWecYZf/8pe/jMOHD+Ntb3ub7QD1la98BYODgwiHw/je976HVavMh9s8Hg8++9nPQhRF3H333bjjjjtw4YUXYuPG8thxDofD4dQPLiricDicJuCn/UPNfk+as8woctjgna/pKY4W4jusFL9c+UaIKAjwigrSxsoWbYrTRCHNhbFcGllDh0cyRRJndURXpKiIOxUVcArX9GVyUhnPZdAtBYqmERBEIhEAte1zrYotvDPaUpxWVGTUJPURxMruOtXOH04BSSNi/Yriz5qg/zjFV40QWXGWJs3YU5wPDjRj+5YDpYfuauJNTmN567oOfOrEjZB4di2Hw1kmEDRGVORyuZpOwNPMXHLJJfjTn/6EBx54AJRSfP7zn8eZZ56JcDhsl+ns7CyaZ2pqqubllM6TF9846ejoKJunpaVlXsspbXslTj31VJx66qnTlnn00Ufxox/9CF1dXbjpppsAACMjI/jJT34CwBSzVVqn66+/Hj/+8Y8xOTmJ7373u/iHf/iH2a4Kh8PhcOYAz4PgcDicBjOWzeE/9h9tdDM4KwyRi1SWFM44IZlHsZQx3SD0aW3ldtQrjYVwJziQGLdfn9UerXv9S4Gi7brCD6NF8WfLwKkIAOJquRCIAPbTnLWspaFXdpiTHIK/6b6njLIiRcBM3a2au041Bw3ndUBQ9iKi+BCQZvfUakTxodUVcPz50aL4EVF8CCteBGUPApIbPskFt6BAESRIEKz/mTcknIKqZrgmKRYVrRyWoveas52N2FdLye1zJfXlxaTUqWh5nAGXFxd0t+EzOzdxQRGHw+FwGsL73vc++3UymbSFMnnWrl1b9P7QoUM1L+Pw4cP2a0EQsGbNmrIy69atq+ty2trapnUqmi1jY2P4/Oc/D0IIvvKVr8Dv9wMAHnnkEfte3yWXXFJxXq/Xa7saPfroo6DLIIqdw+FwmhnuVMThcDgN5ocHBpEx+EUvZ3EpHnBcOgMiK5UpNYcun+mYEZI9DW5N86HS6pFwq32RRWxJcyIugDX6E0P9OD7cAUIIOjxubAz4sT+RrPtymplip6KVfRx1DqoaNcSCNTNalRuSouUCVIujDqVGxemSow9NN9hpOhXNfjCU1Bh/JjvKbwx1YmPIfOKUMYaD8WE8OvAidMdQuQABb+jYjG2R7ro7oTVDdFBx/FkDG7LoLMWVbWx/IU3uWOcUKy4XF7lmo/TQrfPBrKYhrMj4wNYe/NX6cmcDDofDWeo0Kv6MUzu9vb1wuVzIWe61zz77LK666ir78w0bNiAQCCCRMN2f9+/fX/MyDh48aL/eunUrPJ7y+4Y7duwoer9//36cf/75c17Ozp07a2xlZT7/+c9jYmIC733ve3H66afb0/ft2wcA6OrqQltbW9X5d+zYgR/+8IcYHx/H2NgY2tvb69IuDofD4ZTDRUUcDofTYJ4Zq93WlMOZL84b4Mtk/HdZM5hOYlvEdIPp8AQhElI08BpRvFjlDSHqDsAnueASzUs81dAR1zIYyyZxJDWJlF45gmepk5xmvabU2vPolxsLEdM1nE0iR3W4xUIE2koTFQlFzjEr/EDqdJpZJgPX1ZyD8k8/1uKoU+2mv3OQX5ou/syoLEqqhlgt/qzKvvFaUYalEEKwIdSJ9cEOxP4/e/cd3ch53ov/+84MemXvZcnl9iKtVl1W8cqxlLgXWXLLTRzfGzvWTaxct/j42E7sGzuOf7GT2JIVOXaiyFWJbUU/W5bkomr1Xa1Wu8vlcpfLXkGityn3D5DgDAiAAAlgBuDzOYeHKIOZF+BgAOL94nkSEYTFOByCBW6zvSwV0ABtZT69JFQhsHKEMkntMKn2D9mAVdo0rSnpDX9ZZB4L6XE2hna7Bd+89gCabNSihxBSmyhUVD0YY3A6nelQ0Up4aAXHcbjiiivwyCOPAACeeuqpotafTCbx/PPPp89fffXVWZerr6/Hnj17cPLkyfR2PvjBDxa8ndnZWQwNDa27nWL84Ac/wG9+8xsMDAzgjjvu0Fw3NzcHAHkDRZnXU6iIEELKi0JFhBCio3BSxHAgrPcwyBZUjpABKZ9n5yZxpL0HjDE4TBa8oesgQmIc9RYH6i0O2AXzuutQFAXng/P4zdRpBJKxCoy6cuJS7kpFtdKKaTM4zQeOpXvGnwv6sMfbAiDVAu3fz46UbN3VQHMc3eIHUu0eVhsPhimjAg8HBsYYkskkgOICuZyQPeSjDodmbk+znCQBOYJC2eQKFeWqvhSXRDhN2YNFQOqDcK/FAa9l8+Xt85EVBYP+ubJuoxDzsdX35hxjuK61C49Nj+k4ogqpwqCk3qNUV+oyQpWtTJoqcgYcXy3IDBUl6XHWnV3g8eUr91CgiBBS03K1OybGEwwGsbi4mD5fV7e2mvab3vSmdKhodHQUp06dwu7duwta/9NPP41wePX/l7e85S05l33Tm96UDhW98MILWFhYQENDQ0HbefTRR9OnzWYzbr755oJul8uFCxfw5S9/GSaTCV/5yldgNms/15SWv1iT63/bFYKwOsUt5mg7TgghpDQoVEQIITp6ZGIOEn3uSHTAaSbDaSc0uoV4DJOREDqWW6D1ufN/Uycbxhj63E1osblx79nfISolSz1M3XB5WrZExEQFR2JMXJnCL09Oj6RDRW12G7Y5HTgf2jpBWY7an6nUXqWizOo9MhQoipL+hmmebmVrCDkqASVUIZ+87c/E4kJFHJ/93/xcbXmSqoTUUzMjeGz6HJyCBVe39OCi+vasLc5kRcaJxRk8MX0evkQ0fTkD0q3aGEudWvnNMZYOZ2XeWwsvICnLWFKtSy8hMYHhwAL63akP2G/u6sfvZic0f6+aVyVPY83hRoe5Nd7gVdrUr1MUKioPPmNS1wjV1raygw1ufPPaA+svSAghVY8qFVVSIpHA3XffjTe/+c3o6uoq6rY///nP09VuAeDQoUNrljly5Ah6e3sxMjICAPjGN76Bf/7nfy5o/ffcc0/69A033ID+/v6cy77jHe/AnXfeCb/fj2Qyibvvvhuf+tSn1t2GJEn4zne+kz5/yy23wOPxFDS+bERRxMc+9jFEIhHccccdWQNUK2GnpaX8HR7U1xcakCKEELIx9O6DEEJ0MhmO4V8HR/UeBtmiaDK8+nzr9LGcE8IAkJQlzMUiOOP34djCDI4uzGDI78NCLKqp1uMwWbC/vrMSQ66YBmvu6hkLsa3VkisbdfuTUj7fp6JBTZWozx/ahybr+lWzakW52j9VI1aDrylu09p9WcFquXprESEfwZz9eZGUVo/Nthzrk0Sx6MeUL6AyUi6SIiMpy1hMRPHg2Gn8/YnH8V8jJ/DM7Che9k3hmdlR/GTkBL564gn85MKrmI9HICtK+kdSFIiKDFGRkZQlJGQJcUlETBIREZMIiQkEk3EEMn7mYmFDBIpW/GZqOB0SETgOt/bt0XlEZF06HHoEzeur8ahfpowYeqoFme8EJMoU6eamrmb882v26z0MQgghNWZubg7vfe978U//9E+49dZb8corrxR827GxMXzta19Ln3e5XHjDG96wZjme5/Hxj388ff6RRx7Bz372s3XX/8Mf/hDPPfccAMBkMuEv//Iv8y7vcrnwkY98JH3+vvvuwzPPPLPudr7+9a9jdDQ1h+H1evGhD31o3dvkc9ddd+Hll1/GoUOHcrZgWwlvjY6OIhKJ5FzX6dOnAQBWq3XdVmmEEEI2h0JFhBBSRs/OLuKWR5/HqUVtv+Qhfwi3P3Uci/HaqRRCqov6DUAxLVyIfkJiEn/78jM44/dhKR7DZDiIl+Zn8NMLZ/DFY0/jE88/hr99+RncdfoY/v3sq7j37Ku48/QxfPHl3+Fjz/0WwcRqxR63yarjPSk9E5e7+GadxV7BkRiTupJTqZ/u6jZBHrMZ37r6Mryzt7hv7lUrqvi2Sj2pWgvVMEwcB69l7XEyIUnpUFGuEFA2Vnv241BIVZ693pI9eBSPFh+04YXsx8SN/G1ikohXFqfxy4kz+OmFV/HLiTM4vjiNiFjb72EnIgG8OD+ePr+/vgl9ro1/G7fqUGayIDxn7EpF6ppgBhxeTcjMF8ugVJEe+tx2fOLi7RT4JoRsGYxxuvxsRQsLCxgbS7VCnp+fx2233YavfvWrmpZj2Tz++ON4z3veA5/Pl77s05/+dM4KP0eOHMFtt92mWfb73/9+zvXfd999+Ju/+Zv0+Y9//OMYGBhY9/68733vw3XXXQcASCaT+MhHPoKHH34467KSJOEf//EfcffddwMAOI7DF7/4RTQ2Nq67nVyOHz+OO++8E3a7HX/3d38HLkcb8Ne+9rUAUlWNfvWrX2VdRlGU9NivueaaNS3UCCGElBa1PyOEkDJJyjL+7tgQZmMJfOSp4/iD7lZsc9kx5A/hl+OzSFCSg+hI0y2CPnutGouJGO46fWxDt7WqKlf4DVQNohSCydz3p9vZAMycreBojEdTqajEs4o/HzuND+66XLUthvdu78W1rU341AvHNaGJWsOz8oW1qg0rU4s9vbTYslc/C4sJzM7OAgDsOaoBZbLa7Dk/KPUnVoM5DVZL9m0GAwVtR7tNW9bLY5KU9XJ6H5DdY9PncaC+DRZeAGMMt/TtxpdeXv+bvFWrCp+7eu+62pC+8R5A9eMjV+MfuApR97PKO9Dgxp3U8owQssVs1YCPHnbt2oX7778ff/Znf4ZTp06l24bde++9uPrqq3Ho0CE0NDTA6XQiEAjg7NmzeOKJJ3DmzJn0OlYqEb31rW/Nu63PfOYzCAaDePDBB5FMJvG5z30O3/ve93DzzTeju7sbiqJgdHQUDz30kGb9H/7wh/H+97+/oPvDGMPXv/51/Omf/imeeeYZBINB3H777bj44otx4403or29HYlEAufPn8eDDz6I8fHx9H343Oc+hxtvvHEDj2JKNBrFxz72MYiiiM9+9rN5W8nt3r0b+/btw4kTJ/DNb34TN954I2wZ/+fef//96ZZx73znOzc8LkIIIYWhUBEhhJTJw+NzmI2lKoMkZAU/GZnSeUSErFJPfHC6T8mQctvproOJW50AHwrM6jia0mN59uEWmxsc2JaeTOPKGH6ZjAYRSsbhNGkDEd1OB7577eX42olBPDk7X7LtvaOnEwcb6hCXJMQlGRFJRESUEBFTvxOyhKSsQJRlJBUFCUlOnZZlJGQFYVFERBIRTojYbNxJVaCCKhWpTtdC+7N2uzPr5RO+hXSlIgtXYKjIkbs9YyCZChUJjKHDnr2CXDiwgVBRjm2GkutXF9riu7JGWEzgofFBvLlnLwCgwWLDLk89Tvt969yyStHbwaJxZWovWipM8zql3zhqWeZ70NqNUhvTNa31+PylO/UeBiGEVByjBiQV1dHRgR//+Me4//77cdddd2F6ehrRaBSPPvooHn300by3PXz4MD7xiU/gwIH1A7A8z+OrX/0qDh06hK9//evw+/04c+aMJkCk1trair/6q7/C61//+qLuj81mw7e//W3ceeeduOeeexCLxXD06FEcPXo06/J9fX34/Oc/j8suu6yo7WT60pe+hJGREdxwww245ZZb1l3+r//6r3HLLbfg3Llz+PCHP4wvfvGLaG9vhyRJeOCBB/CFL3wBAHDjjTfi+uuv39TYCCGErI9CRYQQUgayouC+oTG9h0FITuoWKDSHVPtuaO9Jn56LBrGUyN2PvBrFpNwT5TExuaUDRUDGpGcZZhWfnRvDkfbtay43cRz+z/5dOLKwiC8efxXiJr+9f2NbC943sG1zK1FRlNQUsKQoCCaTeGxqFt89O1Lw7bWVirb2PqaeVK2FQoxN1uyhnPGJ1XZYXIEvni5vXdbLo1IqAAcABxu8OduphRYXARTxWs0YHM7soahQjbcsK4eXfdO4uqUXjVYHGGO4tX8PPvfSk3oPqyw04cBqeR7r/CZW3f7MmOFSqqhXboW+FpDSG/A48OUr9+g9DEIIIVuEyWTCbbfdhre//e147rnn8OSTT+Lo0aOYm5uDz+dDIpGA1WpFU1MTent7cfDgQdx4443YsWNH0dt6z3vegze+8Y148MEH8dvf/hanT5/G4uIiGGNobGzE3r17ceTIEdx0002wWrN/OWU9giDg9ttvx6233ooHHngATzzxBIaGhuD3+yEIApqbm7F//37cdNNNuOGGGyDkaLFdqMceeww/+MEPUF9fnw4DrWfv3r34xje+gY9+9KN4+umnceTIEbS2tiIYDKa/7HPttdfiK1/5yqbGRgghpDAUKiKEkDI4Ou/HWDim9zAIyUkTKqK+JzWNA9Dn8qbPD/qn9RtMmcSk3N8Ln4gsVXAkxiSoQkVSGaYVn5wZwXWtfRCytHhijOFQYz3uu+4q/PTCOH54bhQbzRbtq/dsbqBZxsaQquRUb7Hgrb1d+IOuDoiKDEVJtYrR/FaU1A9Spx2qD9XcZjte07obwEpYSVEtr2SdbFaWL1+5Xr3syu1XqkwlZAlxKYmEJCIuJxFIRA0VZNKEijb8FzYGj8kCS46Az8zkFEzLp1f2n/X+Ct6mxqyXz0bjAAALx+GShuzBI1EUsbRQXKUvu9MJPscHvkvxeFHrIqnn6a8mz+JdfQcBAE6TGb1OD0ZCfp1HVnracKBxji/5mHRu/aE+UhjxyFdrVeQIWfHm3lZ8/OK1gXZCCNkqqP2ZfsxmM6655hpcc801Zd2O2+3Gu9/9brz73e8u63aamprwgQ98AB/4wAfKup1/+Id/gMlkwhe+8AU0Nmb/Hzmb66+/Hg8++CDuvfdePPHEE5iYmIDdbsfll1+Od73rXbjpppvA5/j/nRBCSGlRqIgQQsrgvrPj6y9EiI7ytYsiteX3Oralwx6yotRkqKjBkru9UFKmRhSa9mdlmige9M9ib10rAECSRZzxv4w+915Y+NS35qw8j1v7evD23i48PTOPuweHERKL+9uo200lpBhCYgA848ExYfk3Dwa2fH851WmmqdaUj5nnYN5gKfm9dV0but1GJGUR05ElnPFPYjgwo381rhpqsdNgtWW9XJIkzMzOotO2WgXIxHFIyLmjBIxx8DRk/8B0KpoKn++v98Cco9TF1PnzkIp8nrg82cN3MhQEkomi1kVSTvvn4ItHUG+xAwAub26vzVCR+nms9zElC54xtNic6LC70e5wo8PuRpvdpeuY1MF8IwaxqP1Z+an/pzJmtarawjPgjoP9eMu2Nr2HQgghuqJQEak2P/3pTzd8246ODnzyk5/EJz/5yRKOiBBCSLEoVEQIISX29LQPz89RZQxibLzBJ0FI6VzV0pE+PRyYRSBZe1XU8gUqonlao20VvOoDx3I93x8cPY093hYwxsBzAqyCHS/NP4Ztrj1ota+GbUwch+vamvGa1iYM+gO4e3AY54LhgrZh5lfvhz/hw2n/0aLGyJbDRQwceCaA5wQITICJM6PV1o16a3NR69OTiRPQ5WxEl7MRlzfHcMI3ipNL40joFKKrpWoYHrMl6+WBxUUkRFFTQcprMaUrDmXjbWzMWTVoPJxqQ7nX6856fTKRwOiZwWKGDgBw19dnvTyYTGqqFJLiDAcWUN+UChX1OLP/zWqJ3uEIDgzNNgfa7W50ONxot7vQanNlrYi3Qo/9mzN4G0xtFTlSDlTwtXI6HFb86PcO6z0MQggxBAoVEUIIIaTSKFRECCElRoEiUg04g38bnZRGg9kKh2BKnz/mG9NxNOVj5805r7u4oRsLsRBOLE5u2X2d49STiuV5DGKyiNHwEnqcqTZO7fZtmAiPYChwHNPRMXQ6+tBgaUlXdeAYw26vB//fZRdjKZHEIxPT+OHIBYh5Zj2FTU7eKlAgKRIACaKS1MywLsRn4BBcsAsurEzDMpaqdpRqc8XAwK2eZgw9zh2a9V9YrlySWhLgGAeOMXAse5tJtrLs8jJIbQGMYXkbqdZaDKlgGM9Sy6bGtro+p8mKK1p24GBDL16YH8apxfGKVy7Stk2q6KZLzmXKfjwJ+lN/35gkwr58XG20WBBIiIhJUtbbNLS2Zr08LsuYicbRarPCZcoROjo7BHEDlYW8DQ1ZL5+PRYteF1nlT6wGcs1cbZbX14YDK7vdRqsDHaoAUZvdBVORj7MvXvnQNKepUlPxzRdF76BYraJMUWXs9Drwtav36z0MQggxDKo+TgghhJBKo1ARIYSUWIPVtP5ChOiM10zOk1p1fVt3OnwQFuMYDy/qPKLyaLHlrxpxY8cedDjq8ND4iQqNyFg0lYrKmPj4xdgg/teuy8EYg4W3osXWgenoGILJRZxaehFW3o52ey9abV3gudS/IYwx1FnMuKWvG+/Y1oVBfwDfHjyHoWBo7f3g1Met0tdcCItBhMVgwcubmBntjl4AwGgogK+/+mLJx5SNXRBwuLEVV7d0otFiSz/HbYIZr2ndjQP13Xh29izOBWcqMh4gs8VOdb+qOITsoaJwILVvzMci6HK4wZZDXj1OO0ZCYcSltftkXXNL1nWNhiJQAGx3O7NeL4kiJs+d01xWSODDarfD5fVmvW4uVntV6ipJ85jX7BxOZd4bCoxDl9ODHocXXU4Puhwe2ITC/n9SFAVJRUIgEcVM1A+HYEGvqwkAEJezh/vKiVVRpSLjjY6QwtzS344P7+uFKU+lMkIIIYQQQggh5UWhIkIIKTGvmUJFxPio/dnWcKBhtZ3TucC8jiMpL4cpe7sitZ2eVjw88eqW3N/VlRTKWcFmJhbCfCyMJlsqKNHl3I6Z6Hh6ojUmRXAueBKjoTNotXejzdYDq2BfHedy9aKvXHYRFuIJ/Pj8GB6amEpfLxjsuKUuOS8plWssExFFPD49jsenx9Fmc+Ad23ai1+lJT257zA78XudBzEb9eHVxDHEpCVlRIEOGpCiQFRmSIkOSZYiKnD4vKwoUKKnfilLkvlI7E9dmPnt1lOhyuzJRUbAYj6HOYgVjDCaOQ7fDgbOBkCZUYDKbYXe5sq5rJJRaV4fdmvX6helpiGJG68YCgiwd27ZlrYoFAJPhwtoMkuzsqtBLIkdlqmqn3XNK90wWGIdupxfbXHXY5qpDh92dt41ZegSKAlGREUxGMRsNYCQ0h/OBOYiqUOl1LbtUy5dsyAUzfL7M8AOsfrmOuWTzXCYef3GgHzd1V097WkIIqRRqf0YIIYSQSqNQESGElJhogIlOQtbDsepp10A2xiEIcKomQQf9U3mWrm4uU/aJebXFeNgQQRQ9aCoVlfkx+O+xU/ijgcNgjMHK29Fq68ZU9IJmGVERMR4+h/HwOXjNjWi1daHB2gpueZyMMTRaLfjQ7u344x3b8OTMHP71zHkIqvuhVDDEkwunCRXps29NRcP4p5Mvoc3mwPu270OLzZ6e4Gy2edBs82xq/SthI1mRoSirkRkFqeDRSkjJqXoO/kH3dmz31C2HlhSIy+ElUU6Fl5JyKtykvly7jLLm8pXlk7IEUVEgyXJZqpKkWs1lnyCWRDF9eikZh4nn4BTMy5W5OHjNJiwmVtuV2ZzZqxABwPhyQKnOkr0qkm9muuixc7yA9t7erNfNx2OISGLW6wBqn1AIpyq8GtpAW7pqs9lDmstkxm5vM3Z7m9Dj9K7byix1PJERTMYwGwtgNDSPc8E5JOTc+y2gf6UgTZW2im99fepn9lZ9D1RudPQsjxs7G/GXB/vhpi9sEUJIVhQqIoQQQkilUaiIEEJK7OWFgN5DIGRdqi5CZa1cQvRzZXNHerItLiUxHl7SeUTl4yygUtG54FwFRmJMXAUr/IyF/ZiLhdG8XK2o27kdM7FxyEr2AMhSYh5LiXmYAmY02zrRbtdWL7LwPI60t+K1bS2a4I4R2sxwWP0gNynrG3Kaiobxd688i12eeryrbxc85vWDdoXgGQeeAUD+QECmnZ6Gkmw/n8V4DCeX5rAYjyEpy8s/Uvp3QpYhLp9PpC+TIMqledWbi0VhcQgws9Rj4xAETaiI57P/q60ACIsSbDyvqb6lFvIXf7zu3t4PsyX7sfBcsPD3pvo/s4zJqWqL50/UfqhoI6y8gP11LTjY0IYeZ/Y2fCsURUFMSmI+FsRoeB6n/VOIiMU/rkzz+lb0zTdN8ww2+JPH4MOrWhQqKg0GwGsxIZwU8aG9vbhle4feQyKEEEOjUBEhhBBCKo1CRYQQUkKnl4L4zeTWnbgm1YPXVCqiaYZatLeuMX16LLxoiBBGuQSTMTRZs7cZWuFPRCs0GuNRV9SpRIjwpxdexQd3XgbGGMy8FV2OflwIncl7m6SSwETkHCYi51BvaUGHvRdey+o+zBjLCGDovz+rP8gVjgOavAAAIABJREFUy1A1ZyNO+334/NGncWVTO65r64bbbAbPGNhKLRqW+q1+JKu1dUudxYqrW7o2dNukLEFOV1pK/YjLVZRS4ZHU/qXey2acbtijcc16zKrqK3yBn+uvrNMh5A5qxaOxNZfl+yuZzBb07NiR9bqkIuNcgALvm+VShVd98dp8PVHv78UcFnqcXlzW1Ind3qacFYkURUFUSmA2GsBQYBpn/DOQsfkwpv7tfPWtlLQeTahYj9TVFpCruh0p3JUtdfjzA33octr0HgohhBBCCCGEkBwoVEQIISUgKQp+OzmPr70yDIk+ryVVQP9JGFJuDZbVD+Yna7hKEQAsxELoczXlvF5RFAwHtm7gU/18FytQUWcqGsRY2I/u5UoVnY4+TEfHEJcKm4j3xWfgi8/ALjjRZutBs60DAqdtf2GE45a6UpFe7c9y+d3cJH43N1nQsmaOg4njIHAcBMbBzPHp8ybGQeB4CFzq3nKMpX94xlLLcDxu7uxLT14fXVhATBQhcFx63SaOA89Y6jfHwDMOwvI6ONVvbjn0xDEGVsYA1HqtmLKxCSZYclQfAopvISZwuZeX87QqA9aGF1q7OiGYsreIGfQvQTRAu8Bqpw4VzcdqM1SkjhWttz8LjMOB+lZc2dyFVnv2UK+syJiPBXFqaRInFycgliBElInpHOoxep5E/fhIBgw91QKj7wNG9+beVvyfi/o1AThCCCGFoEpFhBBCCKksChURQsgGzUXjeHRiDoP+EI7O++GLJ/UeEiEFU39wa8RvVpPNs6gmzf3JWp0ATZHWmTCXFHlL7+c8U4dfKhMu+PH54/jovtcsB0V49Lv24uTSC0WtIyKGMBx8FSOh02iydqDN3g2nyQNZkbGYmC3TyIugbiNZxbtXYrk92Gbc3NmXPv3g6AUMB4ObHVZWZo6DlePQ7nDgte3t6HY4YeH5dMAptb8BHFYDSkBlqjEVu4V8oQ0lyw6lvg+ZGTYuT9jp5KKvqHFd39aHXmddqoITVio5pY6hK9WdFAXp8zKUdBZFgQJRlhGXJYiyBElRICnymhBgrnt+NriApcTaKk164xkHm7Aa2pqOhnQcTfkUchgzczwuberE1S3dmqBVeh2KgrlYEEcXRnAmMF36QWZgOofkBWbccCmgfb9vxPHVgmIDpWTVW3pb8bGLt+s9DEIIqUrU/owQQgghlUahIkII2aDPvjiIV3zUToJUJ22lIh0HQspGgoKVKdBsE3+1JCIm8l4vcDwubdqGx6fzt+CqVbwOk54hMYEX58dxaVOqPVWDtQWNllbMx4ufZJYUCdPRUUxHR2HjHVAgI1Zg1aNy0rtChpGop1TL+ZqyEoAK+P047fcXfDsOgFMQ4DCZ4TKZYOX55QpKDPxyJSUz42ATBBxqaACQWX2CYS4ahS8eXz6X4jSZYOK4LMvnbi26GnQqePia22W9LseVvkS8oMCYXdB+LNDrqitiZKWjKAq+O/QiRg1WXc9lMmvOz0TDOo2kzFS7bGbVEA4Mh5s6cEPbNjizvKeIigmcXJrAc7PDZalIlAsHfd/PqqueGaUNppp6ulGigmXEQHZ5nfjowX69h0EIIVWLQkWEEEIIqTQKFRFCyAb54vknsQkxMhOvaodEbVFq0nwsik5HqiXJ5U19GArMIpSM6zyq8vDF15/gvbihCzPRAAb95a+cYDTaSgWVe77/fHwQ++pa0xU++t17sTS/AFHZeGW/qGTMyfxcAZKtSDZgwEoGEBBFBEQRU3nyaAyA12LOet1UNAJ/lrZXdRY9QpuFPcZSgRWooqIIZ472aZXEGMNF9e2GCxWpQzSKomy6spdRqcOR6teNHe4G3NS1A01Wh3Z5RYEvHsZTM4O4EF6o2DjVNJWKdDj2qKfzjBjS17uS01ZAXbs25pOHBvK2ASWEEEIIIYQQYiwUKiKEkA1aiFGoiFQvM7c6DSLW6OTYVvdf58/g9r2HwBiDTTDj7b2X4NGJk5iIGGuythRmY+u3WuIYh9/v2o8eZz0enjhZgVEZh6ZSUYWf7z86fxzv357aD828Fdvd+3Daf7SiYygXbaUisoJa7GxetspXTHN95pXZJ2YL/ktk3Pzk4kSqfRxj4LD6OxU0WWktx8CY9nnAGMAzHgLjwDMGxjhwyN5+Tj02l8m63l3RlUtYDRXVchBbHToRGIdGix03d+3ADk+jZjlFUTAT9ePXkyexkNC3FZy6UpEe4U5NW0KDvxIYfXxk62iwmDDgcay/ICGEkJwYqFIRIYQQQiqLQkWEELIBk+EYYlRDnlQxnr65XPNGwn48OzeJK5o7AAD1Fgdu6bsUM9EATvgmMBiYRlwSdR5laRQTlNlb14FgMo7n5s5XtGqPnnh1iLDC93kktIhB/xx2eZsBAE22dvjis5iNTVR0HOXAdKoAZXTV/JpSNSMvcKCF3h91jufpmSE8P3++2BFtytt7D6PTUQ/AmPuPU9X+LCEZr8VVqagf+dd1bIeJ4yGoXj8URcFSIoxfjB/HQlzfMNEKdQhNj33HgBk4Q3CbBPS7HOh12WHhOcQlGTFJRlSUEJEkxEQJkqJAVhTISFXGMjEGgWMQOA5mjkFgHBgDkrICnjGYOQYzz8HMpX5S4UYsByBTf4ukrGAuFsdwIIwLoUhFGvHRPlCc69sbcPv+bXoPgxBCqh61PyOEEEJIpVGoiBBCNuDF+dqr9EG2Fr0nYUhl/Oj8IOotNuzw1Kcva7G50dLhxnVtO3DGP4PzwXlMRBYRFrdO9bUrmvtgF8z41eQpvYdSEepKDpIO/Vl+eP44PnHgOlj5VHul7e59CCaXDNvKrHDqcKaOwzCYrdQKTl35gxU4tbzRCWj1o1rqaj56V93iYOygs0vV/ixSI2HcbNRByZW2lStiUhK/nnwVw8HZSg8rL733XfVz0Xh7buV0OmzY7XFij9eN3V4X+t36V6EJJ0Wc8gcxHAjjfDCC86EwxkJRJEt8jNF7H6wGDKkw0Xt2dGJ3nUvv4RBCSE3IVgmUEEIIIaScKFRECCEb8OIchYpIddO0i6CPwGvaXaeP4TUtnXh95zbYVZOEAsdjT1079tS1AwAiYgKL8TAWExHMRYMYjyxiPmaMSgTrERUZoWQMTlULnfXsq2vHGf8MxsK+Mo7MGDTtz3SqqPMfZ4/iAzsuBWMMPCdgT90lOLrwFGSleqt+MIMHIfRSqwGrrB/c57mv5Q1XZYwlx7YK/f6ytrWaDn9AdfXEitQWKY5TFSoKJ2szgOsxW+DICBIBgKzIOLpwAU/PDukwqvXpfRxmOrdf04Od57HT68Qerwt7vC7s8rjgNq/dd/TmMAk43FiHw4116cuSsoyhQAiv+AI4EwhhPBzFRDiG+CZaw9Kcbn7XtNXjf+zsojARIYSUGFUqIoQQQkilUaiIEEKKlJRlPE+hIlLleE3bHh0HQiriiZlxPDEzjv11jXhdxza0253gMmZB7IIZdsGMDkcdsDz/EpOSmAgvYTg4i+HAHGJSUofRF2Yq4seAp/BQEcc4vLnnIjw6cRKn/dNlHJn+1O3PkjqFeCYiATwxfR7XtvUBAOyCCzvcB3Daf1SX8ZSCejK50m3ljIZpQiG1+aKSLVSkqR605sr8j0O+AATP85Ay2mzJmqpIWpnLptfDFTbZwLSpoorjDF71y6Vqf+ZP1F6o6FBjK97aMwAASEoSTDwPAJiOLOG/R48iJhv3tV/vSkE6P3XWxWne729shPUWEy5trMMerwu7vS70OO1r3kNmoygKYpKIuCSC5zgIjAPPGDjGaW7PsPLYKVCUVLBRweoxkmMMSrpVmrLaNk1J3yp9uBU4DnbBtNw6be0YTRyHPV439njd6ctkRcG5YBjHfQG8uhjARCSG8XC04KARZYqya7FZ8KlDA7i02av3UAghhBBCCCGElACFigghpEi/HJtFIFm7rQ/I1qCdhDHiNAgph1cW5/HK4jzMHIebOvuwv64JdRZrzskhK29Cv7sJ/e4myO0yRkM+HPeNYzg4V+GRr28svIgBT0tRtzFxPG7u2o86iwPPzZ3XrYpPualDhOImvo2/Wb+ZPodtrnp0OVMTTE22doTFIMbCZ3Ub02aoJyy3SoWKbDJjK1VftUlB2WeJGYBknvQM43ggMyikWjxzslzJsa7Cv79soBZSBtx/7II6VBTTcSSlZeF4vH3bThxqbE1fZuJ5JGUJj06cwNngjI6jK54e+472qWi8fVcdfi3mSwR2nse1rQ34/a5W7PauX2FGURRIioylRAxjYT9eXZzBUGBhI0MuCYdgxsH6Vmxz1aPJ6oDTZM4ZNOIYw3a3E9vdTryttz19+Ww0jrFwFKOhCM4FwzgfiuBCKIKYJK+5PVnFM+APelpw+75tsJvoI2dCCCkXVsQ7fUIIIYSQUqD/8AghpEj3n5/UewiEbJrmm9XGmwMhZZaQZTwwehYPjKbCHC1WO3Z669Fpd6HV5kCTzQEzp5184RiHXlcjel2NmIos4eGJk/DFw3rdhTUWNzGWK5r7sMPTgsGlaTDG4E9EMeif2vC3+o1G3f4sIesbiv3u0Ev4y/3XpCfpe107ERaD8MWra/IayKxUVBv7ykZwGR9oV3uoKGemqIQTxwz5HyeOy18VKZMsZ69UtJHJbj2Cxtrgg/H2Hxu/2topUCPtz1psDvzhwD402xzpyxRFwcmlCfx66qSOIysO071OjL6BvPWoDwGFBKd5xvCm7la8t78rb0szRVEQEZOYiYYwHFzA8YUpBETjPDfCYgJPz47i6dnR9GUCOOyua8JebwvaHW44BBP4HEEjAGi2WdBss+CSxtVKO5KiYDISw0gwjAuhKIaDYTgFPn29EfeBStrldeKvDg2g3+NYf2FCCCGbQu3PCCGEEFJpFCoihJAijYWieg+BkE1TTzRSpSIyE4tgZjqiucwlmHF5cxsuqm9Ga0a7tDa7F7f1XYb/HHkJ01F/pYeb1WZbs9VbHLiypT99vs/ViAfHjm92WIagDhUldaxUBAAyZPzL4HP4yJ6r0uPa6bkIL/ueRkQM6jq2YjFNW5narHJViMwOW9X+ipIzh1PCsIuM/OEZjuPXXKYuRpQ5xJyVigoMFeldaEM9TtmAzyWXyZI+PR+N5Fky9bexCQLsvAkmjsNsLGK4oNQebyPevX0PrPzqx0FxKYmfXXgJMzFjvKZvhO7tz4z1ZwaQ2Vow/wB3e5z4873b0e9eGwiRFBm+WASjYT9OLc1iOLAA4z1T8xMh45XFGbyyuBpi5gAMeBqxv64V3U4PHII5b9CIZwxdDhu6HDa8JtsCBtwHKqHPbcf/2NmFI51Neg+FEEK2DAoVEUIIIaTSKFRECCFFkBQFiTztKgipFkZvNUL0FxQTeHTyAh6dvAAOwFUtnTjS3gOPOTW5auYFvLXnYvzo/AtYiIf0HSyAhXgYCUmEmS/N29sBTwvsk2ZEJON8836jjBQqAoClRAw/PHcct/UdBGMMAidgb92lOLbwJJJy9Tze6pLzRgsN6KlWHwk5y3NH20o047rMtFXm+vLsMyxLpaJ8j2yuIE7BoaICt1Mu6mozss57EAODTRBg402wCya02JwQVH/LDocL7Q4XHIIpFR4STMunTbALAqy8oHncRVlGVMpeIS7b+y/GtLV3ZCUV/VYUBTIUKEpqv2Mrj5rqtPq2bOXeMO15M8eBV90fRVEwGVnETy+8UHUhEaDsnQrX377R259p9sXsy1h5Dn800IO39LRpv3SgKJiNhfDY1Hm8ujRb7qHqQgYw6J/HoH8+fRkHoNPhQa+rDu02N5psDrhNFpg4PmfYaMVW/KLGkY5GfObwDpjWec0jhBBCCCGEEFLdKFRECCFFSErV+HE7IWtZOGOFDIixyQCenBnHkzPj+P3OPhxp7wFjDFbBhDd2H8S/DT2l+zSKpMgYDfuw3d1csnXWyuSQepIwmaNNUqUNBebx2PQ5XNfal9qXeBt2ey/BK75noVTJ1Lam/dkWPo7yGe3PqjmoWmxAgWlaH2nvd67J55U9RcrzMGX75rF68bWVinKEigq+R+pqJgXepITUx6idnub0+xJZUVI/kCGtnF7+4RgDz1g6NCkvh25WqEM1HFg6cLPy22mywGWywC6YYOeXQ0G8CVYhd8snAHhd57ai7pvAcXBx5qJuUymKouC5uWE8N39O76GUhN6v2UY88mkCallGeFG9B3fs2442u1Vz+VwsjO8Pv4yFeP7KXLVIBjAa9mM0rK3axQHodzWg112HDpsb9VY7HIJZEzqM5Upu1ag397bi4xdv13sYhBCyJTFQmJMQQgghlUWhIkIIKUIwmf2bxoRUG/W3SeMGCRmQ6vDz8XPgGMNr23sAAHUWOzod9RgL+3QeGfDq4mTJQkVn/DOIbrKlmlEYrVLRisemz6PF5sJub+pv5jHXY4fnAAb9x3QeWWE0FSAM2LKpUmqp/VneCE6J71i+ijzZKhXly2rlCnLxWSseraVeTI/2Y+pRttldaLO7Kj6GUlv5m6xX2UQvoizhofGXcT40v/7CVYLpXrfIeLRtOlePE3aexwd39eINXa2a5UVZxkPjg3h+fqJiY6wWMoCh4AKGgguay69v2YYbOlLtc5cStfG+cT03tDfgPTs6sbuu+o/VhBBStaj9GSGEEEIqjEJFhBBShCemF9ZfiJAqoJ5olLbwZDjZmAfHhnFZUxucplT1hTa7xxChonPBuZK1QEvItRMiVVcBkQwWIvzR+eP4yO4r0WB1AACabR2IiiGMhs/qPLL1qb8dupUrFXEZ35LN19bL6PKOPEteQdFUxtEukK1dGoD0o5W3/VnWSkWKeoGCtlUoTlOpSIf2ZwYM3ijLbccyW8hFxDiSsoS4JCImJRCTRETEOMJiHOFkHCExBn8iipAYg5kT0Ots1LQbW7X2PjOs7INKOkXGGAcODBxLVVviGEu1RFNSy6Xaoy23SFPdNtUybXW/UZZbp0lQEBPjmIr612y/GlXv0aYy1HuevFyG7ECdGx87MIBW22p1IkVRMBb24z/OHkO8ht7/VEJSVV1xK+yP793RiQ/t7dV7GIQQsuVl+3+BEEIIIaScKFRECCEFmorE8C+nL+g9DEJKQtCEDLbCR+Ck1Bbi0XSoyGu26zyaVScWJ3CosWfT67FwtfM2mVNXKjJgiPCuwWdxx97XwLbcdqjHtRMxKYrZmLErJaiDEFu5PWrWvESVWgliZMu4cDy/dvncOR8oeZ5rHMtfeWi9kM2aa3OsrND2Z+rt5augVC7qQFY4mURMllOtypAK9XDLY2Sq00q6NdrKOtY+bivVghSshoRWLo9JEpYSCfiXf3yJBBbjcczH45iNRrGYSAAA3tjVhXf19QEAQskYvjP0eMH3KyGLOBOYLvbhIFXKeNE47XOL4xj+185evK23fU1b1J9dOIlXFmf0GGLVU//da/k/KrdZwJeu2I2DDR69h0IIIQTGDOUTQgghpLbVzmwJIYSU0Ugwgk89dxKhpLEqPBCyUYKqUtFWbttDNs4fjwPO1Gkbb9J3MCqlqrJRK63P2HKFixVGrMAkyjLuOv0sbt9zFYTlhMqA5wDiUhT+pP4VsHJRVyqSsHWPo5kVenK14qoWcUmCVVgbIOKypKfUf/U1lYryBM14xjStiDJlbX+Wc+ncx71C5xo01Uz0aH+mGuiPR0bw6ORkxceQi8dsTp+O1cjrQq2iqbW11M+tPx7ogcO0+hGgoigYCS7iP84eg7iFX8M2S7PfVfnrXy6XNnnxN5ftgstMHyETQgghhBBCyFZF/xESQkgeY6Eofjk+i++fnUBiC7c2IbVHUFcuoX2bbIC64k1mexi9WHkTDjf1lmRdxrhHm8dn/G2M+nwPJGO49+xL+MOBS1KVSRiHPXWH8fLC04hIIb2Hl5W20oMxH9dK4DPDNDqNo1RyfeuX47JVKlK1P8u82TqTy3krFRV7BMoVKtpIpSI92p+pThutfZ5NVaEqIRkvlLnV6V1ly+jUzy11oEiUZfxs9CSO+6iS1map98Fa3AN3eBz40hW7s4ZtCSGE6IehhsrFEkIIIaQqUKiIEEKyeGrahy+8NIiQSJWJSG2iSkVksxzCanWifBU3KmmHp6Vk6zLGPdo8nmk/bIxLxn1dGw0v4f8fPYU3dO8GYwwCZ8Le+ktxbOFpJOW43sNbQx3Y2NLtzwwSKiyV3B/PF3lUyPG4KABEWcm/tiy3zXeYzVUdqtC/jN6hHvVzyWihIodp9bUubsBKb1uddt/VbRiG1Oeqg4XXfuSnKAqmIkH829BLiNH+XCK1Gyoa8DjwpSv2UKCIEEIMiDEKFRFCCCGksihURAghWfxibIYCRaSmaUJFW7jCBtm4Jqs9fXohboxKMt2O+pKtKynXxmsAn9GyyeiVNl7yTcJrseGall4wxmDl7dhbdymO+34HWTHW30T9QW5yC4czM0NFRgkZ6i7P42DmOMTlVF2VbMGfbNWS8j2q+VrOsXVum7k9XUJFqu0bbf9xq0JFYdF44catTn380b/1ojECliaOw+91bMdVLV2ay5OyhP8ePY2XfVM6jaw2qf/quu+CJdLhsOJfrj8Ij9k47Y0JIYRkqLEvdhBCCCHE+ChURAghGZKyjBfnl/QeBiFlpXdVAlL91HU29J/IS6mzOEq2rkAiWrJ16SmzUlE1tPL89dQwGq127PamKk+5TB7s8lyMk0svwih1ADLbSok1EkLbCFNGcK3qX1OK+XxeM5u8sZsUGirKX6oo3/YY1qmLpH1PoMNzzMjvSbxmc/q0PxHRcSQkG02VKx32XYPtruiwu/DObXvRZFt9P6QoCmZjIdx96nmIVd+g0ni4jbwQGFib3UKBIkIIIYQQQggha1CoiBBCMvxybBah5NadHCSEkEL4E3E0LlcrKmWYZzNcJktJ1hOTkhgKzJRkXXrLrOIgV8mE4o/Ov4L/udOGNrsbANBgbUG/ey+GAyd0HllKZqgoWQVhrXIRmLYtitFCIaWyXnhyI/c6V9MCOcv+lDVotHIdl/u69QJFQGaop/L7MmfgSkX1ltXXFV/MGFX5CMnEM4br23pxXVuvJkyclCX8ZORVvLo0q+PoapzqAGqso1fxBjwO/P1VeylQRAgh1YC6nxFCCCGkwihURAghKglJxncGR/UeBiEVlTk5TkghJsIh9LvrAABes03n0aTMx0LocNStuTwpSxgJzsPMC+hxNmS9raIoCCSjWIxH8MTMEMJiotzDrQiuip/f9ww+hz/few3cZisAoN3eg6gYwmRkRN+BQdv6DADELdz+jOe0rbOqfVK1GBt9dinIPw+gZNmf8nU4yBU4UlDgJLfe7c9gzFCRnechqCpxLSapUpGRGWjXqaguhxtv7d2NFpszfZmiKJiMBPBvQ0cRl43d9rTa1Ur7s/+5pwe3bu+AhadZakIIqQrU/owQQgghFUahIkIIUfn+8DhmY7UxkUxIPlX8mTcxiPn4answh1CaCkGbdcw3pgkVSbKM4eAsnpoZxtJy25pmqwv97ibEJQmTkUXEJBEJWYSJS1Vb4RkHBoZGqxOKokBSFIiyhIQsIlGFLa4y259VExnAnaeewUf3XQMzn/q3pc+1B1ExjMXEnK5jy/wIdyuHitShi1qoUpTr4/mi2zzm+aC/5NGrnKGiwrajd/sxdShKMlDVL5ug/bgkmIjpNBKSi97BeD3n88wcj9d19OOK5s6Mal8yHho/g+fmxvUb3Jaiqgip4yg2qttpw7euOwi3mT4eJoSQqkKhIkIIIYRUGP3XSAghy874Q/ju4JjewyCk4uizCLIRM5Fw+rRNMIOBlX6ivEhn/DMQ5aPodNTDFw9jODALE8ejzuJAr7MBXrMdTpMFLpMVDpMFV/P9EDh+/RUvkxQZMTGJsBhHKBlHIBnFUiKCpUQU/uUfyWDhEq7Kn+AxWcQ9Z57Hn+66HBzjwBjDLu/FeNn3NCKifq2IWEadGUmuxqnE0hBUwTUjVZkhG6NHi0R1MEQ00D5k4VdfH6qpfeSWomk9pW+VrUoG8jwmC94/cBFa7U7N5TPRIO4dOopgjVRbrAbaSkXGOX4V4qIGNz5/6U4KFBFCCCGEEEIIWRf950gIIcv+4fiwoSYyCCkn2tXJZk1Gg+nTHGOwCybdW4Y5BAsElpoE3u1tw3WtO9IVbkqBZxwcJgscJguas3R8kxUFS4kIZqNBTEWWMBFZwlwsuHbBCuJUgY9qfdrPxcL48fkTuGXbfjDGIHAm7K27FMcWnkJS1mefy2w3VY1VrEql1ioVFSPvvc3zWKSCCMZ5rPSuVKQOP4oGqlTkVFUqMs5fi6jp3XqKV7cOrNBeUm+x4QM7D8G73BoUSD1vHhofxPPzExUZA1mlPn5Vy3HCzDH87RV7cEXL2pbBhBBCqkT1FiQmhBBCSJWiUBEhhAB4cW4JJxb1nfglhJBqEhZFKIqSDldY+MqHijxmGzrsXnQ46tBhr0Odxb6p9eX6hnlmgCQXjjHUWxyotziwy9sKAIhJSYyFfBgJLeBccA6RCj9GfJVXKlpx2j+Lx6bP47rWbWCMwcrbscd7GMd9z0DRo7JKRls5IwUhKs2kChXVQjg7V9Epjlv7yb367nIs87rcjwXH8k8+F93SKdexawOtofQOFRkpnucxm9OnZYNVoSMr9A10qPfdSjx3zByP924/oAkUTYT9+O7Qi0hs4dchXakOs9VQtLDDYcVXrtyDHtfm3jMTQgjRl1Ij/+cTQgghpHpQqIgQQgB8e3BU7yEQQkjVUbA6l+IQzPDFw/kW37QGiyMdIOp0eOE0Wde/EVITfVFJRDARx1IiDl8sioV4FHOxKALJOAKJOALJ3GEfM8fBY7ai3pL6abTa0Gixo8Fqg8tkhpUXwDGWNXxk5U0Y8LRgwNMCAJgML+G0fxpn/NOISsmNPRBF0LY/q4LZrjwemz6HVpsTu7zNAAC3uQ47PAcw6D9W8bEHrUZ3AAAgAElEQVRwqq+GptoibV2COhBSA5PauYIBLGuoKPdzSs7zWHCM5Q8VZdlWvsnqXNtiyz/FPPMrHZ7JPGoaaR9qsq6+xiRkUceRkFy0+4++gbhKhIre1rsbLbbVlmev+KZw/8irZd8uyU0b3jT2+6xrWuvx5Sv36D0MQgghpUCZIkIIIYRUGIWKCCFb3snFIF7xBfQeBiGEVJ2ELMG63F7MIVhKvv4GixPdzjp0OurRYffCJpjXvY2kKPDHYxgPBzEU8OGEbx7BTVYHSsgy5mIRzMUiOZcRwKHf48VOTz36XF402Rwwc9yaoFG7w4t2hxfXt+3A+eACXvGNYyQ0X7ZpKPX2a6CIDH54/jj+bPeVaLQ6AADNtg5ExBDGwmcrOo5Cq1dtBSaOT5+WamAnyxUMyFqpSHU6c49Q8oRzViqIycjeuYBllj1KrTDn+vJXRWJF/V0qXako87lkpGpX9ZbV17VKV5kjxdOlUhHUoaLyBuKuaenG/vqW9PmxkJ8CRQagbR+p2zDycpsFfP7wTlxG7c4IIaR2ZPt/gRBCCCGkjChURAjZ8vrdDjRYzFiI02QBIYQUQz2RzZUgZOE129HlqEOXsx5djnrYCwgRibKMhVgUw4FFvDg/gwth/6bHsREiZAz6fRj0+9KXuQQzrmxpx766JrTYnZpWZBzj0O9uQr+7CYFEFK8sTuCEbwIRqbSvRbyqTZdi8G/QF+pbg8/ijr2vgU0wAQB6XTsRFUOYj09XbAwsaxRka6q59mc5nifZgmTq51Tm9bKUv1IRsHwM1TmgJkBbZS3X/S+XzBZtRqpUpG5/FqVQEcmC4ypTqWibqw6v79yePh8RE/jXM8+XbXukcOr3v0Z8BbTxHP7+yr3YW+/SeyiEEEIIIYQQQqoYhYoIIVuehefwF/v78NkXTm/p9iVk66LvN5GNUle/MHPFv610maypEJGjHl3OerjWaWemKAqSsozZWARn/D68ODeFmTzVg/QWFBN4eGIED0+MAAAurm/Ga9q60Olwayah3GYbrm7Zjiua+nAmMIOX5i9gNhYsyRi0oaLaIMoy7h58Fh/ZfRX45UDLDu9FiC38DiGxMqEyZvBJxEoSVPuYVOHWWeWQ6+9ZjupUOdeZbRB5tp8ZzNGsap0d1CrwmvOVDvWsCRVVdOv5qUNFYTGu40hILqzC7ccyqYsElCuQ5zZZcGvfvvT7BlmRcc/p5+n/VgMyWnj7UKMHn710Jxqt64f0CSGEVBmqnEsIIYSQCqNQESGEALi+vRFfuWIv/u/RM1iIJ/UeDiFlJ6omDdWtawgpRlhMwmlKTVQ029zrLm/jTeh2NqSDRF6LPe/yKyGi6WgIJxfn8dzcFALJ6q0WcdQ3i6O+WXAArm/vwdUtHXCbLOlJUZ7jsNvbht3eNoyFfHhh/gJGQvOb2qY6VKTHhGu5LCVi+N65Y3hv/8VgjIFnPPbUHcaxhaeQkGNl3z5HlYrSeFWlIsmovV+KkOvj+XwtxrKup4AP+ku1rXzp4PUmuVdaWK4QKxwMy+zcYKhKRSZT+nQwGdVxJKQQerc/K0f7R54x3Nq/L/1eS1EU/OTCSSwkaH80CnUw0ihvs0wcw/Xtjfj0JQOaaoKEEEJqCGWKCCGEEFJhFCoihJBllzXX4Z7rLsInnz2FQX9I7+EQUl46tjohteNCyI8WmwMAsNvbhmMLo2sq7LhNVuzwtGK7uxmtNve6E+1JWcJsNILTSwt4ZnYSi4nyB0QqTQbw68kL+PXkBbTZHHhzzwD63HWa6kVdzlT1pploAM/OnsNwcG5D21K3XCs6qGBw54I+PDIxhNd1DIAxBgtvxd66w3jZ9zvISnnrnVClolUCV95J9crLfoxa964VcddXnovFzAXkWzbfcXW9YVn5jEpFFQ4VZVYqEg0UKnKqQkWBZO29FtUCbaBDj0pF5d3+zZ0D6HF60+eP+aZw3Fe5Vp9kfawC1aoKxQF4745OvHugEy4zfdxLCCE1LTOZTwghhBBSZvRfJiGEqDRaLbjzNQfw3xem8fjUAs74wwgmRb2HRUjJmVQfQCQl40zgkeryXyNncKihFQLHgWMMb+g+iO8NP4ukLGGnpwV76zrQ6ajLuw5RlrEQi2LQv4BnZyd1a2dm5ngkZQkKUkGcZpsDDsGEsJjEdCRUtmmiqWgYd50+BgEcfr+7D5c3t8OiqhzSYnPjTT0XYTrix9Ozw7gQWihq/Zy6UlENxl9+NzeKFpsLBxvaAABOkwc7PRfh1NKLZd0uU1cqqokgzcaZ2GooRdxyj0WelmSbaEmQLZyQb3Wb2ZYlo1JRxUNFGWM3yrtuBm2oKEShIkNS7z56HH1YGSsVHaxvxZUtXenz87EwfnrhZEm3QTZPXa1K77dZHz3Yj7f1tek7CEIIIYQQQgghNYlCRYQQksHEcXjbtna8bVs7AGAkGMEvxmbwn+enEKfwBakR6lL4Sbm8FT1I7UrIMn4+Now3dm8HYwwesw0f2n09YlISVt6U9TayosAXj+JsYBHPzk5iLBzMulwp2QUTLByPpURszXxPn8uLmzr70Of2IiImsRiPodlm17QFDCTiOBtYxGQkhNloGLOxCA43tmGbywMLLyCQiGMsHMDppYUN3x8RMh4YPYsHRs/iiqZ2vL6zDy6zOX19q92Dt/UewmjIhydnhjATDRS0XnWlolpqf6b209FX0WxzoM2easHXaG1Fr3MnRkKDZdumpjpG2bZSHXhNpSJ6n1SovDGgEj1XC1mLlVe3r6v834/LeCSM0v7MyvOa46ef2p8ZXi29xLXZnHhr7670+YQs4V9OP6/jiEgh9Dx6fWBXNwWKCCFkK9nElwoIIYQQQjaCQkWEELKOXpcdH9qzDTd3teDTz5/CaIgmFUgNqKGJF6Kv306P4bKmNrTanenLMgNFoizjQsiPp2cm8LJvtuxjqrdY0e30YI+3Ad1ON+otNnCMISqKWEzEMBryYyTox4CnHpc0tqZvZxdMsAtrw1BuswWHGltxKNcGHS7sqWvE6zv74E/EsRCLYjERw2I8Bl88CjPHYyISxPmgv6DxPzM3iWfmJnGwvhlv7hmA22xJX9ftrMe7nZdjyD+Dp2bOYjGRv7ITr6pUVEsTrpnuGXwOH913LZymVBCry7kdETGE2dhEWbbH1I/rFj+gCkwdSqmFxyL7fSj15/b5Vlf0PpVjcIWsxyqsBih1CYVlDN0ooSKHoP2oJFiDrThrgbZ9XuWPP+rnGFeig4SVF3Bb//50uFlRFNw79BJislHqeBE1TTtUnV4CL2704I93d+uzcUIIIfqgTBEhhBBCKoxCRYQQUqBelx3fvOYA/uSxY5iOxvUeDiGbklRNHJp5Ps+ShOR2uLEVb+jq14Re1KYjYfx26gJemJ+uyHisPI+39u7UBIXUbIIAm+BEu92JK5o7yjIGj9kCT47H40LIj6emx3FsYbagVmQv+2bxsm8Whxtb8cbuAThUrXgGPC3odzfhuG8CT8+eRVzKPtnI13j7sxUygG+dfgb/e+/V6YnYAc9+RKUwgsmlkm9PXV2llsNahVDvY6Vu/1PL8rYsy/Iw5ps3YDmuLeTPYeb0DRWtqVRU8RFkZ1eFihRFgaxrDRKSi3rv0eMvpH6KlWJujwF457Y9aLDaU+tXFDwyeRaj4cJCyaTytJULK/8a2Gg14zOX7Kj4dgkhhOiMo1QRIYQQQiqLQkWEEFIEj9mEP97Zjf97bEjvoRCyKepqEjyVTSZF2uttxC3bdmnac2WzlIiVPFDU7XRjm9MDGUBMFDEZCcFhMuFgfTMONbZo2pYZTY/Tg57tHhzp6MV9Z1/FZCRU0O1emJ/GC/PTeG17D25s700HATnG4aKGLuzwtOCJ6SGcXJpcc1vtN+hrO/AREhO49+xL+KOBw2CMgWM89ngvwdGFp5CQS1tlhCoVrVK/hlCoqProHSrKDFeJRqlUpApx0l5tXEzvFp+qTeYK9xXjte192OVtSp8fDvjw1MyFTa+XlI/6EFbpXbDHZcN3brgIFvqCCCGEbD30MR4hhBBCKoxCRYQQUqRr2hoAChWRKmfiVifEEwaZwCPG12Zz4P0D+9Bsta+ZCJ6KBHFsYQpXNHehzmIDAOzyNuCWvl340bnTG95mi82Ba1u7sMNTD4dgqonKWi02B+7YfxkeHj+PhyfOF3y7X09ewG8nL+AN3dtxVUsnhOXnsV0w4/Wde7HL24pHJk4imFwN0KgnOWu5UtGKsbAfvxgfxM2dO8EYg5m3Yrf3EI77noFSwjoWmse19h/WvLZ2qEiTKNBek+exYIwVHUbbyCNbSGZYUL0f0COUkRnEMMo7knpVaFZSjFI/ieSjx9GnlKHSPd4mvLZ9W/p8MBnHfcNHS7Z+Uh7aBnyV2QsZgD/d24v37uisyPYIIYQQQgghhBAKFRFCSJFcJjp0kupn4VcnEWNi9rZJhKywcgLet30Pdnkb1oSJxsJ+PDZ1HoP+eQDAK4vT+OMdl6DR6gAAXNrYhlAyiZ+PDRe93de29+D1nds07ZVqye91boOkyPjVZOFVCGQAD4yexUPj5/C+7fs0f5MeZwPet/0K/HryNM4GZtFq92CHpzl923qLHX+x9xqIsgxRkZCU5Zynk7IEcfn3yvmkIkFRUtVM0ssoqdtJigxJUSDK0vKysj5VIwA8Pz+OdrsbFzW0AwDc5jr0u/fgbOBEybZBlYpWcXpXCimxXHchW7syJXemKH+oKM92cm0rHyVHhaFCKqdoJ8QrT1vlwzj7T7PNlj4dE5M6joQUzED7T7HqLTa8vXdP+rwoy/jWqWcNE7IjuXGaipAV2B6AvzjQh7f3t5d/Y4QQQgxLoYrjhBBCCKkwmhknhJAixSX6eJdUP0HVf13Uod0JqR5v7OrHta1d4DltsGc+FsbDE2dxamlOc3kwmcC/Dx3Dn+w8DLfZAsYYbmjrxnBgEYN+X8HbvaalE7/f1V+S+2BkN3f1w8zz+MXYuaJul5BlfPvMcXQ5XPijHQfgNlsAABbehJu79ue8ncds3dR4iyErMhKShMRy+EhRUgGcVHhpNXQkKwqk5fOikrpOkmXN5el1Lt8+KUuQlq+XFAVyOtQkIyFLOO6bwk5PE2xCqoVRm70H/sQi5mITJblv2kpF1TuRXQq1FirKVdGLcWvDjfnuba6gD5B6zPI+UusEmNZel2PM+baxjNe5RWIpWkaVQ5N19VgZEkvbPpGUjnr/qdajj8A43Nq3D1Yh9fGcoij43vAxBMWEziMjxSr3PmjiGD59aAde19W0/sKEEEJqG2fM99CEEEIIqV0UKiKEkCKdXgrqPQRCNi0myekWaDae3g6QtS6ub8Y7tu1MhzJWRMQEfj15Hs/PjeecfF9MRPFvQy/hT3Yehk0wgTGG9w/sw2deeLygb90fqG/CG7q3l+BeVIcj7b0Y8i/ibGCx6NuOhYP466NP4e29O3FFc3vRFU7KiWMcrAIHK0zrL1wBOz0HIClJ+OKzm14Xp6pU5DSZ8ZmLrkpXdZIUBQoUTYgqKctIyPJyJadUKCqR8VtSFCQlGRJkiLKChCQhLouIS9LybZerQiH12yhx0K3d/mxjVsI7CrIHf7JWRSpgfdmwdW6rCRXpEMvgDHTMUnOaVo9bEQp3kBwY23yo6eauAXQ43Onzv5sdxXCw8BA20VelQsYHG9z4+6v2wi5UfxtgQgghJWDMt9CEEEIIqWE0i0gIIUWIiCL+6cR5vYdByKbFRCndys9uMsaEPzGGNpsDfziwD01Wu2ayTFJkPDs7jt9OnUNUWr9l3mwsjJ+MnMS7tx8EAFh4Ae/q34PvD5/MeRunYMJbe3fgYEPL5u9IlfnAzgP47dQoHp8aK+jxzfSfI4N4YW4aH9x9ENaMoOBYyI/HpsYhcAxmnoeFE2DleZg4Dhaeh4njYeZ4mDkOJi51ubDywzjwjAPPseXwQWr6jGMMHNPWGDFSoCkbxjjs9FyElxaeQFyKbm5dGZ/i1lkqVwFKTR0mUZbPy8uBJll9GkoqzLRcOSq1vLJcDSr1e+W0pChIyBLikoSYJCIqienQk5hukycjkhQREhMw86sTnLVQ+S5X5ZxswZ18e3whz4diQkXrrmiDeJ0rTRm1UpFDWD2ORiVqf1YN9Ig0ctC+TyrW/rrm/8fefcc3dtd5o/+cKh11y3Lv3TN2pmRmMpNJJdkktIQSYGGBdLLLsmGXsrt5Xgu57HO5uyzhdRcI5C5JCLtsgcDDQwl5QggLA+nTZ5JpLjOu415kdemU+4eKJVuyJVu2ZOn7fmVi6eiUn2VZlvT7nO8XB8prY9cnfC68MNqblbGRzbEZz2B/0laDT3Y15m0IkxBCCCGEEEJI4aNQESGEpMETknFs2ol/OTuAYc/6JiIJyQc+RYldNlClIgLAwPP4WEsXOqz2ZRPaF5zT+NVwD6YD3oz2ec45hdOz49hhrwQA7C6twI8vnYesLk68cQyDJrMNXSUO7HFUwsAXZ8hNYDncUtOEayvq8NvLA3hpfCTjgMagx4kvHX8Zf75tN2oMZox4XPj22WObWtFGz/Iw8DwknoeBE2AQBJgEEQLDAgzAMwwEloOO48KTsQwDPhJQioaYRJYFx7LgGAYcwyZM2MWvFw02sQwDhmHAIhx8ioadmLivUTwrYJttD07PvIr11PqJr1SUS/HfGxNegFzWMLi+sgr7HGXQgFhQKdzWToM7FIJXkaFqACJhp2gFp5AabXsXDjXJsXZ2iVWf4oWXxa4hstvYsuj6qrYYoEoc1+Ly6HVF01AhSTDyPORIiCp6Dxs4Dvq4AJXAJl5fLvXkb2yMmpa01VnSTeMCP0tvXqnCEMswK1aQYnJcqShfp8htohi77A5R+7OtIBePpfjOI1ZRh9pIxSFNS/xtiq4W/X1jANh1Ej7U3B1bJ6goeOrCkY0dMMm6+OfQjXi99c76cnyqu2kD9kwIIWRLo6ApIYQQQjYZzSISQkgKb80u4IWRSbw568KlBU/etBkhJBv8yuIjWlxxUpQUOhbAnU0d2F9WvewM6EmfG8+P9KJvYWbN+39hpBddJeXgIiGQd9a14OTMBJrNNpTrDdhe4oBJEFffUZGQeB7vqm/FNZW1ODs3jZCq4qXxYcwHA2ltL6sqvnnm2AaPMjW/KsMflIE86xb0voZ2XFMZrgZhFqzosO3Cufnja94fyyw+b/rlIN6aG4hUeeJjE4wsImEnhgHHcOAYFjzDgWNZsNEKUEz4MhsJRUXDUWzc8q1G4pO/xXToc1PNKVtCFis4kznl7UtzOytVG9KWfF0qWfWeFeM+q7Q/W0li+7PNlxCMYxh8vrs7FgADsCwYGBUf2giHFcPV1RgAshZuH6gBsZDhsrBh3GUuFkxcrMJWIUmxY036nNn/xotchd6K22qvgI4TwIABw4Qf94s/l8TfgvjHQ7xcV8iLf44+UF6HA+V1a9qPpmn4j74TCKr0jnMry3axt71lVnxuZ0t2d0oIIaQwsFvvfSIhhBBCtjYKFRFCyBI+WcHjZy/hZwPjuR4KIRsmGBcq0rH0cqBY3VBZh3fUNi8LlnnlIP778kUcnRqFus5p5oVQAG/NTmBnaRUA4PrKOlxfubZJt2JiE/U4WBEOwdxQVY+35qbw28uDGHIv5HhkW9NPB3vQbLahymgCADj0VWiz7EDvwuk17S8cPwjzKUG8ObcxrVHDYQg2UrFpsSoTsySAxMXa1EWCSwwLjuFi63MMGws9CXHP+fFBJiYSYorui2c58Ey4PV54HTYWkmLBgGe5vKnYlA8yea6MtlLTUvQ/yzQokaw1W9zesFJcKD4UsfJ+Nga75A7YVVq66WNYzUzAneshFJy31+6ARZRWXzEind+IQFwVzs0iZykE9NrkEAY981nZF9lc8c9h11bZs7LPZosB/3NfJ5oshqzsjxBCSAGiTBEhhBBCNhnNIhJCSERQUfG/B8bwo/5RTPnzrMQCIVkWSKhURJPCxWab1Y4PN2+HWUysECSrKl6fHMLvxwfgV+SsHe/VyaFYqIisTXdJGTqsdjx1/hT6XTTxuBbfOHsUX9h1MFYZq9JQB5Zh0eM8lXHbp/gwjapt3ES2BkDRVCgZtsLbLBzD4h11V6FMbwUAjHmdeHViIFz5BSw4FmDBQuQ4mHgdDLwYqUQCMAwLgWVjgadooCkaWuISAlTLj72k8duSz9WZ6H+x2xbbDkWrokSvRb4yiyEuQEteLUjTlgV+ou3TpvyBZeumEt0Hl+IMYzVJUCFZ1ZbYbWzqv+OrPbbjKxWpOQgVuWR/0vs1nxh5PdxyetXiSHrELLfevez14NjMZFb3mY6fDPTh7rbtEJb8Di6tMhf/fLD0t2zANYcXRns3aohkgy39WRt4Dl557a8LGswSvnntFSjRFWc7YEIIIYQQQggh+YlCRYSQohVSVQy4vJjyBXFq1onfjExhksJEpAglmzglhalCb8Bdbd2olIzLJnBPz47jxdE+zAf9WT9uqY7OtM4GgeXw8bZu/HywF7VGMyyCDio0zPh9ODEzgSm/N9dDzGuyquKrp1/H/9h5NSQ+PFlXLtVAx+lxbu44Qlr6rwHi259lq1LFVqRoKmR1cfJ0wufGBefmT+xn0/WVLTDyy1sy9rmmMeKZh0nQoSTynBZSVVxwulLsaYXqQAh3LEgVBVKShDrZFVoccCnamIZDaRmEinLQ7NcrB/Hs0Am0WirCFbki1bDihb+F+O8jMWimalosfKdpGjiWAx8J/mnQYttriKsSFXddhRZrpxZuvaZhr6Mptv9dpQ14YXRtVc1IcvEhm1cnxnB2fhZK5OcYUlQEVRUhTYWiquBZFjzDhn/OkZ9VtEVeUFUQVFS4QsGctO87PjON4zN/SFjWbrXhs927Y9f/tfcYLrnmNntoZJMMeubRYSuLXTcL/JpDRUaew/97sIsCRYQQQlaXx4F8QgghhBQmChURQorWV0724tcjU7keRl4QWaDTZka71YRSvQ5SpHKNX1WxEAxh1h/EjD+IYY8P4z4KXhWC+EnGpZN3pPDoWR4fb92OTlvpsjDRoHsevxruwYh349pq3dnUtWH7LjYmQcRHW5ffnzdVN+Dngz14bfJyDka1dXhlGf906nX8zc4DMESCRVaxFLsd1+LC/Ek4Q7Np7Se+UlG+VhHaLPGhlEK4L1JV9sk0gLtapSJhhdZxapIJ6ZUqFbEpQkXp/Dx4Nr7qVi5iGcAl9zQuuadzcuxUOIbF7tIGAECzuWyVtUmm4n/PBt0uHJ3O3zCiTRRxY1Utms1WGPnkH6FFw3ACw6BUv9jWzSsHKVBU4F6bGMStNW2x65lWPoyyiTz+elcrKg36bA2NEEJIIaPP8QghhBCyyShURAgpSkFFxW9H82vyYrM0mCS8s74CO+wW1Br1MAo8+EiLkXRomgZF0+CVFcwEghh1+9G74Magy4fz826MerNf5YRkXzCusoa4QtsUsvXdUd+K6ypqwS35Oc/4vfj1aC/Ozm9cuLJElBBSFRydGsX+8roNOw4JBwPubOrENpsDPx3owdwGVJwqFG45hC+feAWfveIqOPThijM6TsIV9gMY9vRj0N2DlarMAImVigohSLMe8WEbtQDui1S5GjbDv5WqkrpShcgy8K3wuitZ+7OEAPCSQaaqVLRalaKl+81NpCg/vTk7HAsV8SyHbbZqnJun0GYxYQDcVF2H99Q3QUzxO7aa4zP0mCl07JKac5lmMyWOxed2teAd9RVZHBUhhJCCRx/jEUIIIWSTUaiIEFKULrm8kHN0NnYuXF9pxweba7CtxATdGj8Uj2IYBjzDwCKysIgCmsxGXFtVGrtd0zQEVQ0LwRAmfUFcdHlwccGL/gUPep0euOXlLT3I5osvy6/n6OVAIbrKUYX3NrYt+/l65RAOjV3E4amRtCac16LaYMa76ztRZ7QCAC660qv+QtZve4kDZXoDvn7mCAIrhBqKXVBV8ZVTr+Putm50l5SBiYRr602tsImluOA8Cb+Sup1c/CSiohX5/RzfPkvd+q+t5BTBKF4IV7ZKqBi0wrerKApURUlaRUjieLiZ1I8bLckY1lapaPWfhxL3M2OpHWrMXNCLUc8caowlAID9jhYKFRWROqMJf9zchlaLbc37CKkKDo1dzOKoSD5aWnQuk7+CPMPg0YNd2O2wZnVMhBBCigBVKiKEEELIJqNZREJIUTo148z1EDbcNqsJf7a9EVeUWiCkeXb9XCCIhVAQfkUFg3AFG4nnYOB5GHg+ocVJKgzDQMcxKJN0KJN06LKbE25XNQ0BRYVHVuAKhjAXCMEZCmHGH8SkL4ApfxDzgRDGvAHMBYPwylu/6kE+coUWw11SpAUQKQz1RjM+3tqd0H4DCFdTeWNyBIfGLsKnbFy4r1xvxAMdeyGwi5PczWb7hh2PLFcmGfD/7L0B33jrCIY9rlwPJ6/9W+9buLK0Ah9q3hZrA2URS3Bl6XUYcF/AZe9A0u3i25+lCqEUi/hXBoVwT8hq8rCPIEb/VsZX9ll5+jjo90NvNC5bbhQ4zAZXqFSkJAsVpV4/VbXJdNqZ6Thq5ZfKydmhWKjIJOhRa7RjxEMh2WzLpzkxHcfhfQ3NuL6yJqGKl6pp6HNOY8znWgwTMotfVE2DoqmQVQ0aNKjQcHpmHKEkVcdIYVleqSj9WNGfdzdSoIgQQgghhBBCyJZAoSJCSFEa8RRuW5iry0vwmR0tqJR0KSeZZgIB9DgX0LfgwqjXiwmfH+M+H0KrVBgw8TxKdCIcOh0qJAnVBgk1RgMcOh0cel1aVZBYhoHEc5B4Dg69iKY0vqdkH86qCH+Ar2nhM0JVTYt8oB/+J2saFFWDrGoIaSpCiga/oiKoqPArCvyKAq+iwhuS4VMUGDgOE/4AnAEZXkWBV1bgDcnwyArcIRnOoFwQk6VR84FQ7LKBQkUFwcyLuLu9G00m67Lf/XPzk3hhpPH6/oQAACAASURBVA8zgdSVV9bKIuhgFnSY8LkhaypuqGpKCBSR3PlE5y48duYYpvzZ/7kXkuMzE+h1zuFTXVfG2qFxLI8WSxfKpVpcXDiDhdBcwjbx7c9ShVCKBZNByGYrCKQIXer0egCJAYjVvtuA35c0VGQRBLDwpdwuaaWiFY6bqjVbOqGi+NcAqb73YtW3MIHZgAd2nREMw+C6ig784OJruR5WQYh/aNpEHaokA1iGAcsw4CJf4y+HT2wIP9swzOLzDpdkvfh1wSzGAKPbRLePfpVVFSFVRalej6vLK2EVdQljdQZ9+Lee45gJpv6dJcVr6bvtdN4vMgD+bk873lFfvgEjIoQQUhTyKJRNCCGEkOJAoSJCSFEyCYU34d1klvD3ezrRaDYkDRP1Lbjw6uQUjk7P4LJ3bR+Ku2UZblnGsMcLYG7Z7SaeR4WkjwWOqiQJVQYJDr0Odp1u+Q7TlOz74YC0Kidlk6ZpkQATYgGmkBo+KzmkqgiqGoKRiYmgoiGoqAioCgKKCn8kzORTVPhlBT5ZgSfy1RsJLnlkBZ6QDJcsb3iFpml/MHZZovZnWxoL4EPNndjrqEo4qx4AxrwuPD/Sg0uu5b+v69VgsuGm6uaEKkRHpkbQVUITJPnCwAt4sHMXvnX2GJzBQK6Hk9dcchBfOfU63l3fghsq62N/d8yCFTtLD2LGP44Bdw+8crjyU0KlIrW4gxjxf6MzqdCQr/wpgjV6SVq+cJVv1+fxwFrqWLa8VCemDH4Da7gfU+wrnb0kVmMppPh0dpyYGcTN1dsBAKU6E6yCBGeIwiXrFf9Ye3ttA95e25DD0SQnqyp+N9aPlycGcz0UkseWZjpXe/o28hy+drALO0otGzcoQgghBU9jKVVECCGEkM1Fs4iEkKLUbF5+1vhWJbIsvrSnA9dW2pdNUE34/PjN5TH8YXwSM4GNn1B2yzLcLjf6Xe5lt7EMUKrTwaHToUzSwyaKsIkiSkQRJoGHWRBgEQQYeR56ntv0wFA6GCZ8jjMbPfUZgISNCajFTyiqkeuqhlglJkULV2EKn10dDjWFIqEmOa5CkxxZFlRU+BQFfkWFT1bQYDLE9i/xPBpNVvjkEHyKDK8iQ6Z2DRljAeh5HhLLQ+Q4SDwPkeWg43joWA4ix4FnWIgcC4FlITBc+CvLgmc5CCwDjmHBsyx4hg2fbc+y4GNn37OJZ/CDAcMwEFl22e++KxTAi6N9ODkzlvW6IeV6Iz7SsgMO/fLn0X1ltVk+GlmvEp0eD3buwrfPHoNXLu7wSzp+OdSPNybHcH/HjljVIgAo1VeiVF+JGf84hj0XwcVVKgoVeaio0ARS/Dx1kj7jfXkXkrcftIrCiicXJ5uUXmn9VK3RMg8nZbZ6MTg/fxlXl7fCwIeDYNdVduCXwydzPawtT8njqmaapmHANYf/vHiS2peRVTFL25+t8tj++30dFCgihBCyfnn4mSkhhBBCChuFigghRemPasswFwxhyO1Fj9ODs3PJJ33y3a01ZfibXa3L2o5d9nrxzKVBvDYxlTctu1QNmPIHMOUP4JxzYcV1GQASx0HHhUMXbKQ9gQYNDBjoOQ46joWO48AyAM9EQhosEw5oMIuXo/9ENhzmCIc7WOhYFiLHQceyaLGYE44fUGQILLes6stmig+JcOEFG3q8T3ftSbgenYjUov80DRrC7eZUaAnt5hYvq5G2c2rssqyq4X+aGmsvEVKV8HqaBlVTY/tQ4vYTC0+pKlSEW9kpmhqpBKVAYDmIsZ8vl/CVjyznGBYCw4LnoiGdcECHZyOBHYYFxyaGdTiGAYNo2w2ABQuGQawNBxtplxEN9MT/VFaqOrFZgqqCV8YH8fLEIIJZbsnEALipugU3VqXTtJDkkwrJiPvad+KJ8ycQpAnSVU35vfjKqddxsKIG76prgS6umls0XBQvSKGiguKTQ0mXSwYDWJZDJskbn2d5yBoAzAK/8l4yDAOl+vOTzl7yN9qRH2RNxZm5EewrawYANJgcYJFeiyOS2nzAA5u4GNyMD8DFPyY1hPsca4lL4rYLL4m+Rl38mri3hMd5bJuw6GtARdMw4nHixdGNaRdLCtPS5pPJnlM5BlA04D2Nlbi60p5kDUIIIYQQQgghJL9RqIgQUrQ+2Fwdu/zc0AQePdUHZYu07RBZFv98dReusFsSggzuUAg/vjSEF0YvQ94i30syGgCvosCrZDcUkcqP3nZdLED0nXOHMeINh55YhAMoPMtCZDmILBcOs3Bc7LrIchA4DjqWA8+GK9FEtxGYcAWaxcuLVWiEyPLo+gKbXy35oo8rZnFBzsZC0nNqZgy/Hu3DQij7VckYAHc2dmFnaVXW9002R6PZirvarsDTPaehbuG/D5vp1YlRvDoxinfWteC6ytqUz9OeDfid26ryIVy5Xh45+c+TYRgYLSYw3mDS25PxezxJl3MMA6OwwlvxDO/HVL/S6e1lceNUFY+2Kgbhn9t6n/NOzQ5jj6MRLMOCZVjsdTTj8PTF7AyySMVXBOtfmMH3+07kcDSErN3SZ834gNyN1aX4yx3NKJd0ODfnwrYSMwghhJCsKKyX7YQQQgjZAihURAghAN5VXwG7TsAjR8/Dr+T3ucc77GZ87UA3JD5xcvM3l8fwX/0DWAglP8OepCnujbkKDUFVQVBV4MXG3q8MkND6Kho6EmLBIy6uChOXEFyKv87FVeSJVuCJLo9V8WHito8LQpHsC6kKZDVaeUmNXA5flzUVSlwVp6XrhG/X4i5HKkHFbadoKnyyjCm/Z0PCRED4sfmJzn2oM1o3ZP9k83TaSvHh5m34Qf9Zqk6Sgf8z3I9fDffjj2oacV1lHSReAAAomgJoDIY9UzkeYW7FT6AWQijFK4egalrSaoVGkwk+72zs+mptbvze1NVOzCuEipJlilY6UqpxpBPyis/bbP2fXli1wYYuWw3arZWQNRV/GLuAKf8CFE1Lel9FKxFGXzexkRakbOQ1VXRZ1E57A4WKsohyrmQrY9ml7c+AdqsRn97RjN2OxdfOFCgihBCSVWyhvHInhBBCyFZBoSJCCIm4usKOL+/bhs+/fibXQ0np4Z1teGd9ecIk0bjPh8fP9eDsvDOHIyscuZoQ1RBusSHnKNTGAAmBIyGhwhIHnmUWW4jFwktMLATFseyS25mEkFT4diZhewbhiTwmMpm3eDlx+eJXxCb34tukRVuoKXHBnGVfI+EcNdntcUGf6O0Jrd2gJbRwi31VlXA4KNLOLfx1cZ2tUvlsJSwY/HHzFRQoKiBXOiox5ffixdGBXA9lS1EB/Hp0AL8eHcC9bVegy14GjuHgDHmgUiOkguNTQjDy4rLlksEAPxMfKlqZLIcQCgYhiMv3ZeJXChVl+Fokxd+bdPYSfyx1C8cNrYKEbbZqdNqqYI1rq8WDw6213Vk9lp4X0G2rxVvzI1ndLyEkP4ksh6CqoMFkQ63RilKdAYPueRh4AV228oR1H97dhhuqS3PaRpsQQkgRoL8zhBBCCNlkFCoihJA4+8tL0GE14YLTneuhJNhfbsOX9nTCtOSs9t9cHsO/9vbnfXWlraRY35ZrAEKqihBUYHO6zq0Jg3DwaytPfG4lN9e0YHtJ+eorki3lttpm/PfoIP0erZFXWaxc503RKquYJIRStMJ4PeKVg8lDRUYD5jLcl9/rTR4qWqn9WZJXIytVFNLWEWLl4n5+69lPLggshzZLBbbZqlFrtG/qsfc4mihUlCU0J5Z9beZSfKhlB3iGxUzAi18MnsWQp/hOQBFZLnbiQFSd0Yp2qwN6joesqrjomo0FhRRNRblkgsBy4BgGdp0hZeW6PY6apMd8W41jw74fQgghJIZePxFCCCFkk1GoiBBClqgy6PImVCSyLL5y1TbsLbMlTNp5ZRnfOd+LVyaLu+UKKT4aVm83Q7KjXG/ENRX1uR4G2SD3tF+BlydGUCLqwTKAOxRC38IcfIqc66HlPZ5ZbD+qFEiIZj3iK/wVSlDNKydveSoZjRnvK+D1wmyzLVtuFoSU2ySrVLRi+7MUYaB0KmUkbrk1ZidKdSZcUVKLTlsVdNzy+1HTNPiVENyhIMyiDjo2/Y89tMj/NYSDXBo0aFr4uo5b3I9Z0KNENGIu6Fnvt1OUCq1tYj6pN1rxJ627Yr//ZXoj7m3fi78/8d85Htn6sGBgFERIHA+PHIJHDkLHcgipKlRosIl67HHUoNZohZ7jYeJ1sIg6AMB80I+QqsAq6iGyiS3ED1Y0rHxcSr0RQgghhBBCCCEUKiKEkKXGvPlRdeDGKgf+bncb9HziB59vTE3juz19mA0EczSywhM/oZZxyxFCCtS76zvBMWyuh0E2yPYSB7aXJJ5N75NlHJ8Zx6HLQ5gL+nM0svzHFWBlnvWI/6u5xQrdpORTkr/GkgyGpMtXEvB5ky7Xc6mfXzNvf5ZiP2lsqsaHO/L8JVCd0Y59jmbUmZJXJZJVFQPuWfxhrA/jPlfWj8+Cwae6roNZ0IFhGFxX0Y5fDJ/I+nGKQXxAnEIb2dNsLsHHWnYvu09ZhoGB5+GV8z84LHEC7DoJIscBGmDgBbRaHOgqKU8I9kVF2xYLS8JC8WyifiOHTAghhGw+ll4/EUIIIWRzUaiIEELiTPsD6FvI7RnHIgv80/5u7HFYEyaVZgMBPHmhD0emZ3I4OkJIMbitpg1N5pJcD4NsMonncU1FLfY5qvDDi2dxepaq4SWzldtFbbRCqSTnSzHxLhkkZFrNJxhIHlY38KnfijNJJwlS37epwm3phJPiQ0Us8jNIKrAcbqu5Ai2W5e04NU3DlN+DNyYH8Obc2IaOQ4WGkzMjuK6yBQBQZyoFC4CihZlTqVJRVgksiw80dqPDWpa80pmm5XWgyCbqsc1Wjg6rAw2mkoyCZhzDgqOHECGEkGJDoSJCCCGEbDIKFRFCSJxvvnUJSg4nCK+vtOMLV3ZAWlKd6DeXx/D93ovwKkqORlY86G05KXZtllJcW7lyKwhS2ESOw0datsOvvIke52yuh5N3eHYxeEHtzwqTX0ne/ozjefBxYaB0XjEGfL6ky6UVKhVtpnyvVMQxLN5TfyVqjIlB15Cq4NzcBH57+QK8m9i28cTMKK6paALLsGAZFnsdzTg8fXHTjl8oqFJRduhZHrfUtGJ3aTU4NvE5ZdQzixpjuKpXLt/fJlMhmXB9ZSNazKWQ+NStIAkhhBCSnEYvnwghhBCyyShURAghEX1OD353eTonx2YBfHnfNlxbaU84u3TS58e/nO/B6bn5nIyrONE7c1K8zIKIOxu7cj0MkgcElsNdbd345zePYCaQPBRRrAQKFSUqwD+bgRVCKgZJguaPtEdLY57e53ZnfHxNXb7jlQ7FpmhVmU4lrfjHcKr9bBYmMgaWYcCAgUXQ4/rKjoRAkV8O4Q/j/Tg6PZyTMbpDAfQ6p9BhqwAAXGGvo1DRGsSH2WqMFtxe15lw+9JqOwyYZaG38OOFAQsGDMPELkcfPyzDQIMGTQuHmFRNgxr5qkUuR4fBMtFjRPeH2H6jx2YiNZWiY4tfHrYYlYoeM7w0vECLWyt63Oj3FN0HE1kY3WPsSHHr8SwLEy9C4gVwDLPsvvIrIfz28lnoOT4WKgqp4RNTWDCQeB56LhzkqTaYYRMlcCyLCr0JDSYbJF7ApN+N49OXIasKSnQS/IqMM3OTmAuu7/UAxzC4qaoFBysaKExGCCGEEEIIIYRsIRQqIoSQiFarEd88eAX+v7OXcG4+8wmgtdpeYsaj+7fDIiaepfnbsXH8a08/VScihGwKBsAHmrphFMRcD4XkCT3H4/2N7XjywqlcDyWvUKWiRFxcECU6cb3V+VcKFRmN8ERDRWnwLDihqipYNv3AjhxKXikpFTZF1aN0qpPEhzvMvA477fWwCHoYBV3CzxYI/6x5hgXHcuAZFjwbrtbDgQl/ZdgU1Y7iAhPRJZHgBBMXCFnNrN+Dfzn/6qrrbbRj0yOxUJHEiaiWbLjsoxMAMhEf3GMZBnvLanM4msKgairOzI3i9ak++JUQ9jmaY7dJvICPtexCo7kEAsutsJewSsmMd9Z1JCy7qboFPxs8i9Oz42san4ET8MfNO9BI7XUJIYSQ9aP2Z4QQQgjZZBQqIoSQOLsdVjxx/S4cujyN714YwoDLu6HH++udrbi9viLhDNPZQACPn+vBydm5DT02SSW/2gMQsll2l1aj2WzP9TBInumwlaLFYkP/Ak2YR8UHLShUBHDM4gR1sECC0Bo0+JQQJG55Wx6LxQLPzFxkvdUpigL3/Dws9vSeX2VZhixnFiriU4RBZTX547NU1GGvoxxddjtaLNbY8jLJghslS0bH3izzQR+eOP96rocBABhwz2LG70Gp3giGYXCwog3/a+BIroe1pUz5XbkeQsEIqQp6neM4NnMJ88Hwe9cKvQUHylsT1muzOtZ1HI5hcWdjN26pbsPrU0N4dWJw1efAq8vrsc1WDj3Ho0Iyrev4hBBCCIlDFf8IIYQQsskoVEQIIUncWO3AtZWl+K++ETx9YSitM70zUW/U4+vXXIEyvS5h+WuTU3jiQi9codRnyBNCSLYxAK6vbMz1MEieuqW6Cf0LJ3I9jLyRWKmoMEI061GIlYoAwCMHk4aKrDYrxiKX0311ODsxnnaoyOdKHrZYadpAt+T1ZBTHMPi/91wFPcdhPhiEgedRIuoSHsP5TlFVnJ69jOdHzuV6KAlOzIzgj2rClVwqJRt4lk0Z4iLLXXRN4MjUxYTWdotvt+LahsVJWBr5Em5hFm4tttjSTIu1O1tWESvW0gyx1mbRRmWapqHRXLau7+vM3Ejs8mLLNiZpla747y++VWH0+9QiVzTE36ZBVlX4lCDmg17M+N2YD3pj6zSby3FVWTPK9BsXDrSIOtxa0waHzoDnhi9AThKuZcHg3fWd2OOo2bBxEEIIIUWNKhURQgghZJNRqIgQQlLgWQZ3tdehq8SMv3njDIJqdoJF93fU4672uoQ2D56QjKd6+vDSxGRWjkHWjuoUkWK0016FUr0h18MgearRbF19pSLCxf39pkpFidPlhXR/uEMBOHTGZctLHZlX+xgfHER9R+eqLdBkWcbYwKUUt6aeONAbl4+zRKfDvrJySHz4Lb9VTB48itK0cAgjoMrwhoJwyQHIqpoQZ1A1DSFFQVBTEFQUhNTwP1lVoGgaQqoKBUuCZYkZkMWvmgo1EgJR1XAIJKSqkDUVqqoipIUve+X0W81tptOzl3FDVSsElgPDMLimrB2/nzif62FtGRqA16f6gKlcj2SRTTSsO1TkCvnR4xyDM+TL0qhWJ7I8GkwO7HE0bmiYaKkrHTXYYa/CdMCD+YAfjeYSKKqK+aAfpXoD9Bx93EgIIYQQQgghhBQKepdPCCGr2FNmw0fb6vC9C0Pr2o9dFPDYNVeg3pw4cf/m7By+da4HM4HAuvZPCCFr0WCy4c6mrlwPg+QxnmVh4Hl4ZaqiByxpf0aVSRIq76tZruyYS/PB5KEAi8UCURQRDKYfdgn4fTj18h8g6vQAIpVKIgEjhmGgKgp8Hg88TmdCVZJ0Gc1mAEC5JKHKYIBZEBPC68l45SDGvAsYds9h0D2HMe8CVIpWp82vyDg7N46dpeFKLB22KgoVbXFNpvUFigDgQHkrDpS3Ytrvwv8ZOQVncGNaaVdKVnRYq1AhWVGmN4NlclN9jGdZVEpmVErh5yBwgDFFO0ZCCCGEZNHWKTxKCCGEkAJBoSJCCEnDB5qq8P2e4TW3QXt/YxUe6m5KaDcRUBT8Z/8lPD9ymaZwCCE5856GbbkeAtkCPrV9Dx49/Uauh5EX2IQQDYWK4isVFVSoKJA8VMQwDKqqqjA4OJjR/hZmZ7MxrGVjcRiNuKahAcZVgkQ9zkm4QgEMuedw2euEM+jP+niKzYmZkVioSMcJKNWZMBNw53hUZK1OzQ2h3VqFcmn91X4cejN22xtwaDy7bfsEhsN1lR3oKqnN6n4JIYQQssWscgIBIYQQQki2UaiIEELSYBEFtFuNODef2USBiefx9YPdaLcawcS94etfcOGbZ89j1Lt5pfEJIWSpZnMJyvTL2+YQslSFZKRqRRFs3GmhVNkFCa9vlAK6P3xKCF4lBAMnLLuttrY241DResVPG7AMg0azBTzDoL6+HuYUrc0mvC6cmR/D0alhyBSAy7rL3gU4gz5YRQkAsM1WjZcnenI8KrJWqqbhmUuvo8ZQgvc27Fl39Z9st4M0C3rcXnclSvWmrO6XEEIIIVsQS6EiQgghhGwuChURQkiarq0szShU9PbaMvz1zjaIXHybFA0/GRzCTwaG1lz1iBBCskHP8bizsTvXwyBbCAWKwuKrwVCloiWVigqsHdyUz40GU8my5XV1dRAEAQht3u8EHzdxwDJM7HFYX18fW65pGtxyEM6gDxM+F14YoXZcG23YPQ+rPRwqqjOW5ng0JBtGvXP49rnf4MNNB1C2xqpFfiWEt+aGszYmu86E99bvgVFIHiAkhBBCSHHRqFIRIYQQQjYZhYoIISRNf9Jai+PT8zg27VxxPT3L4msHurCj1JJw9v6Ix4vHzp5Hv4vaIuQzjcJepEjscVTDkqK6BSHJdJc48NbcdK6HkXPxJ4VmuxLFVhQfstIKqFIRAEz6XUlDRTzPo7m5GQtnzsLM81ARfv2gQEP8XRC9qGnh+0aLWx5+ubHyPcaAgYnnYNOJsIrLKybpdDrU1tXCGfTBGfDDGfJBjgS7Rj0rv14l2THkmUO3vQoAYBMNOR4NyaY3pvrx7vrdGW/3h/Hz6FuYgEcOZGUcNYYSvKtuF3RJqqYRQgghhBBCCCGEbAYKFRFCSJp4lsE/7d+OvztyHm9MziVd5/pKO764pwN6jostUzUNzw2P4gcXBxAssDP4CSFbFws6s41k5sMt2/HtM8cw5vPkeig5xSRUKiqsEM16FVoVxmm/B34lBH2Syfyuri709vaigeeSbJkZTQuHizSEH1OKpoEBILBsQmgrStU0eOQgytqbcNY5mfRxOO5dWPe4yOqG3YvvCTiGhYXXY0H253BEJFsuuacw4XOiQrKmvc2PLr2BCV/2An3VhhLcUX8leHb9zzOEEEIIKSDr69JKsmB+fh6/+tWv8Oqrr+LChQuYnJxEKBSC3W5HeXk5Dhw4gJtvvhm7d2ceUgeAnp4e/PSnP8WRI0cwNDQEj8cDk8mExsZG7N+/H+973/vQ1NS07u/jxIkT+MUvfoHjx49jdHQUfr8fZrMZra2tOHjwIN7//vejoqJi3cchhBCy9VGoiBBCMqDjOHzlqm340rEL+P3YTGw5D+Af93dhf7ktYbJxwufDt8/14Ow8nS2ezyhaQYqNjuVwa21brodBthg9x+P+jp34l3MnMB3w5Xo4ORMfyCv29mfMkr+ghVi5acTjRKvFEbvuV8ItzwwGA7Zt24YzZ86s+xgMs3hPcgyDVPVINE2DVw5iNuCFyWpBaUNt0kCRTwlhOlDc4b/NMhPwwhMKwiiIYBgG20pq8MZUf66HRbLk8FQ/bq+/Mu31u2w1WQsVmQU93lW3iwJFhBBCCFmOpU8yc8XpdOKxxx7DM888g2AwuOz2iYkJTExM4M0338STTz6J6667Dl/4whfQ2NiY1v5nZ2fx5S9/Gc8999yy2+bn53Hy5EmcPHkSTz75JD7wgQ/g4YcfhtFozPj7GB4expe+9CW8/PLLScdw+PBhHD58GI8//jjuvfdePPTQQ+EW4IQQQooWhYoIISRDPMvi/9rTgb945U2cnXNhn8OKL1+1DQY+8Sn116OX8f2+S/ArSo5GSgghy4ksh/s79uZ6GGSLsun0eKhrL7574RSGPMVZCSW+cEzRh4qWfJZdaJWKAGDQPYtmc2msYtCEzwWToIORF7G9uwvDIyNwzs+n3J5JUmkoE1qkcpFXDsIZDIf5eEHArv1XgeOShw0GXLPrOibJzLBnDp228Nm7DSYHhYoKyIB7GuM+JyrTrFaUzQDQ26q2J62SRgghhBCy7I0Y2RQnT57Epz/9aUxMTMSWdXR04JZbbkFdXR30ej2Gh4dx6NAhHD16FADw0ksv4UMf+hD+/d//HR0dHSvuv7+/H/fffz/GxsYAAJIk4dZbb8Xu3btht9sxPT2N1157DYcOHUIoFMKPfvQjHD9+HN/73vdQXl6e9vdx9OhR/Pmf/zmcznAY3mKx4J3vfCe6u7thNpsxMTGB3//+93jttdcQDAbxne98B8eOHcMTTzyxpgATIYSQwkChIkIIWQOBZfFX3c2Y8AVwQ1VpwoTRjD+Ax8/34NRs8hZphBCymayiHnfUd6LJXAIGDHiW6mST9TEKAj7RuRPfeOtoUVYsiq/OU4ghmkywS+ruqwXY5jWoKhjyzKHRZI8t61+Yjl22d7eh53e/RyjJWarxotWIGDBA5DIbviG2nGEYcAwDlmEBTYOsqfApIWhxjzOO57HnmqthspiTHsenhDDkptegm2nYvRgqsuvoQ/ZCc3iqH3ekWa2o3VKJo9MXMbvOSmGVkhUNJsfqKxJCCCGEkE1x7Ngx3H///fD5wp+B1NXV4R/+4R9w1VVXLVv3E5/4BF599VV8/vOfx8zMDJxOJ+677z48++yzsNvty9YHgKmpKdx3330YHx8HAOzevRv//M//jKqqqoT1PvrRj6K3txd/+Zd/if7+fvT19eH+++/Hj370I0iStOr30dfXhz/90z+F2+0GANx00034yle+Aqs1MUR/99134+jRo/jMZz6DyclJHD16FA899BCeeuopsPS5IiGEFCV69ieEkDXaVmLGjdWOhEDR78cm8NnDxyhQtIUV9/QwKTQGXsD97XvQbnVAYDkKFJGskXgBD3TuQomoz/VQNl38OaEqCi9Ekwl2yRmyoQKt3NS3MI2gmrzypNFswt7rroGg0624D03ToGoaFE2FoiqQVQVBVUFQkRFQZPiVEHxyLCEScwAAIABJREFUEO5QAAtBHxZCfnjlYEKgSDIasf/G61HiKE15nB7nJFR6NbOpBj2Lr/t5hoOBF3M4GpJtg+5pjHrSq/7FMAy6S+rWfcwWS8W690EIIYSQAsYyuflXpGRZxkMPPRQLFO3duxc///nPkwaKog4ePIinn3461jJsenoaTz31VMr1v/CFL8QCRW1tbfjud7+7LFAU1dbWllCdqKenB48++mha38fnP//5WKDowIEDeOyxx5YFiqL27t2L7373uzAYDACAV155Bd/73vdWPQ4hhJDCRDNLhBCSBc5gEF89fQaPnbsAjyznejiEEAKLoMODHftQolv9TKVs+MXgOfyw//SmHIvkB4dewsfbuqDnCr/4KQvAoZPQZikBFx/OK/LsBoPED5aVAg0VhVQFF5wTKW+3lthw8OYbVwz7rAfDsmhsb8U1f3QTLLbUbZjGfQu47C3OtoS5NOVzwyeHAIRDJV222hyPiGTbi5ffgl8JpbXuTns9agwl6zpeud6yru0JIYQQUuCYHP0rUjzP4xvf+AZ27dqF+vp6PPbYY2m1Aevs7MTb3/722PXnn38+6Xovv/wyDh06FLv+j//4j6vuv6KiAl/84hdj13/4wx/i4sWLK27zk5/8BOfOnQMAiKKIr371q+D5lT/PaW9vx6c//enY9ccffxzzK7T/JoQQUrgKfwaAEEI2wcNHT2DKH8j1MAghBAAgMCw+1roLpXrDphwvpCo4Mj0KFgxkVaWKSEWk3mTFX3Xvxfd6TmPC5831cFbFArCJeth1Emw6HWyiDmZBB7MgwigIkDgeeo6HyHHh6l4MA5ZhEqoSxuOK/LG+9H7RCjRUBAAjHifK9GZUSsnbjkkGA6664TpcHhrGxfM98Lhc6z6myWJBZV0NahsboZdWrgrmkYM4PTu27mOSzGkAhtyz6Ii0QGsyl+HI9Mof6JOtxRXy49DYWby9dmda67+/cR9+OXQCl9xTazqeQ5/8eYYQQgghBAC0Iq4alCv79u3DM888A1mWVw3ixNuxYweeffZZAMDly5fhdrthMpkS1nniiSdil6+//npcccUVae37lltuQVtbG3p7e6EoCp5++ml8+ctfTrqupml48sknY9fvvPNOVFSkVx3zIx/5CL7zne9gbm4ObrcbP/jBD/DJT34yrW0JIYQUDgoVEUJIFtxUVYlnLg3mehiEkALFAPhIyw60Wx3gGBauUAAvjw/i1cmhZetWSibcXt+JKsPmTUhFq5VYRT0FioqQQ2/AX+84gKcvnMbZ+ekNOUalZMQnt10JHcfBr8jwhEJwy0F4ZRmKGg6yMAzAMSxEjguHg3geEsdDYFlwDAsuEoBJFRBai3QrVxSqpfekXOCVm07PXoaxvBFmIXmrM4ZhUNNQj5qGejhn5zA9MQmX0wmf1wdFiVSy1MIf6Mb/YxhAEEToJD2MZhMsNhvsDgf0hvQqzfmUEI5MDRVspaitYNA9FwsV2XWrn7VMtp7ehQl0uKbQZC5La/131+/GY2d/nfFxJE6EnhMy3o4QQgghRYRCRTmTSaAo2foejychVDQ2NobDhw/HrsdXNloNwzC49dZb0dvbCyBcCemLX/widElacx87dgzDw8NrOo5er8cNN9yAn/3sZwCAn/3sZxQqIoSQIkShIkIIyYJ31Fbjp4PDCKo0mUMIyb5KyYxttvLYdbOgwzvq2vGOunY8duY1TPo9AIAagwX3d+yBwHKr7lPRVIx4FtBgsq1rbH5Fxo8vvgkAKNukykgkP93XsQNfO/0Gxn2erO/79vpWGIXwJKuJFWESRFRg8yfuVU1FUJERUEMYcI1j2u/c9DHkk6UBLbXAXwcpmoojU0O4qrweJj55sCjKai+B1b6+Fkjp8MhBHJkagq/IA265NuSei13mGQ4iyyOoUkvkQvPC6Gm8t2EvKqXUbQjjddlqcGZ+NKNjUDibEEIIIaRwxLckYxgGFktim9uXXnoJmrZ4ds61116b0f6vvfZafPvb3wYAuN1uHDt2DAcPHly23ksvvRS7LEkS9uzZk/FxoqGigYEBDA4OoqGhIaN9EEII2dooVEQIIVlgEgTsKbXjtamNqdBANo+GAi+zQLYkA5/6jPWHuq7Gi6N96HXO4EB53aqBIlcogF8OXUCPcxqypuJgeT3eUde+pnGNeJz4r/5TcIWCAIBSPVVnKHYfaOrE4+eOQ9Wy+1yq57L7tkXVNATVEAJK3D81iIAiI6AEI9eX3h5CiEICCZgltYpkFHaoCAACqow3Jgex11EHq5heJaGNMuV349TsKEIFHubaCqb8HsiqAp7lwDAMms1lOO+kdnSFJqQq+OXQCdzVei3ENP4uXVPRnnGoyBXywxXywyys3PKQEEIIIUUsi9V3ycZRFAUvvvhi7HpbWxskKfE95IkTJ2KXLRZL2i3JolpbWxOuHz9+PGmo6Pjx47HLDQ0NEITMKmMmOw6FigghpLhQqIgQQrLkhqoKChURQrKOBYM/qmlZcZ1balpxS03riusAQN/CDJ65+Cb8ymIw4sTMGK6pqIdFzGzy6vDUCJ4f7oEc127HuEL4iRSHRrMVt9U04fmRi6uvnAF1SeDzrdkBSLwIgeXBxn2gqmgqZFVFKBII8kUDQrGQUPg6VRDJjqWhomIRVBW8PjWITms5Gkz2TT++rKnocU5iMK46DsktDRomfG7UGMMVbOqMpRQq2qJMvA6Vkg2zQTdmA8sr7/mUIN6cG8YeR9Oq+9KtsY3Z4al+3FzdtaZtCSGEEFIEqLDhlvDDH/4Q4+Pjseu33377snXiKxmtJaRjsVhQUlKCubnwe8NLly4lXS9+eWNjY8bHWTq2VMchhBBSuChURAghWbLNml4ZfEIIycTO0krUGtf3/DLhc+P1yWEcmx5dVovLp4Tw730n8antB1bdz7TfA3coiNcnh3FmfnJdYyKF6+aaRvgVBb8bG8zaPuMrH/U6R3Fk+kLW9k3WLr79mZbl6lT5TtU0nJ2fwITPhe0llau2Q8sGWVMx7J5Dv2sGIVXZ8OOR9Bl5EaVxLUCNm/B4INnVYHJgr6MJ1YbFtoUeOYDfXT6LS+6phHWPTF9Eh7UKpg2qJnR2fhQOnQk7S5dPLE36FlAuWZJsRQghhJCikaNKRYFAAIFAICfHXolOp4NOl1+vvy9evIivfe1rsesVFRX42Mc+tmy90dHFqpZ2+9pOWLHb7bFQUfz+ooLBIKamphLWz5TBYIBer4ff7095HEIIIYWNQkWEEJIlRoGHTRQxHwzmeihkPYprTpRsAd0lmZU+XiqoKnhpfACnZsdTrjPuc+Pc/BS22cqW3TYf8OEXQ+fRuzCz6rFcofz7cInkxrvqW2ASBDw71JeV/eni2vrJGoUp8kVx1ilKNBPw4qXxi6iSLKgz2WDXGbN6v2jQMBvwYczrxJh3IaE6HMkNBoBDb0Kt0YZaoxU1RhvsOkPCOoVYDY1lGFRKNlQbbNA04PTcUMGE24y8Du+u2wWWYZcvr9+NYfcMnh0+ASXy+xdSFRybvoQbqratuN/DU/1rHtMfJi7gsm8e+8taYOL1mA648NL4BfiUIO5pu37N+yWEEEIIWasnnngC3/rWt3I9jGX+4i/+Ag899FCuhxEzOzuLP/uzP4PX6wUAcByHr371qzAYDMvWdbvdsct6/doC6/Hbxe8v1bL1HCcaKkp2HEIIIYWNQkWEEJJFO+0l+P34RK6HQQgpILK6fAL5+eELeEddR1rbiyyH9zRsw7n5KQRXmPz71UgPagwWWMTFs7vcoSCeG74Am6jH/rJaDLjnMeFL/cHBlN+b1phIcbihqh46jsdPLp1fd17TJIixy16Zwmv5gsnRGbL5aMy3gDHfAnQcj0rJjBKdAWZBB4kTwDHp9SfQoMGnyPCEAnCFApgNeDEX8BZ8kMgq6nFb7Tb45CCeHz6Xd9+vjuVRbbSg1mhDjcGGGqMVOi71RykhVcbvLp/bxBFuDJ5hUSnZUGMsQbWhBJWSFXxcwFPiRbw8URhV40KqsmI7xzpTKT7R8Tb0LYwjpCoQWA5N5vJV9xtUZdh1Rhwoa0W1oQQXnGN4KYP7rG9hAn0L4feWPMOhq6QGO+31aW9PCCGEkALF0vuwfLWwsIAHHngAg4OLlZsfeeQRHDiQvDp4fOWnbISKklWSWrpso45DCCGksFGoiBBCsuiDTfV4Y2oafqUwztotSvS+nOSZQ2OX0GothRg3kZduoChKYDnUGq246JpNuc5swIdvnX0dB8prUWu0hifDeQEfbd2VsJ5HDmLW78NCKID5oA9jXhdGPAuYCXhx2bsAVdPAUtCARBwor0aJTo/vXjiV0MIsU3p+8W2LV/ZnY2gkC1aahC9WAUXGoHsOg+652DIGDLjI8yLDhO+12NfIfRhSlbwL02yWO+q7UWcKt5y67F3AsenhnI7HJkqxKkS1RhvK9Ka0AnSqpmHG78Ivh0/Cp269yqUCw6HSYEONoQQ1xhJUSNYVA3HN5rKCCRUFVRljvvmE1mdLCSyHbbaajPZbprfg6rI2cGz4ftxV2oAaQwnemh/B+fmxtCvv6TkB72vYC4fenNHxCSGEEFKgKFSUl+bm5vDAAw/gzJkzsWWf/exn8eEPfzjlNjzPIxjpehBcY/eD+O1EUVx2O88nTgNv1HEIIYQUNgoVEUJIFlVKEj7R0YrHzhbGB+zFiCZISb4Z87nwxPkjuK6iAQ69EXNBH16bGMKHW3bALKTfM77aYF4xVAQAPiWEQ2OXcG1FA26uaUk6mWjkRRhNyz88GPO68OJoHy655tBiWVsfeFKYOqx2fGHXQXzn/ElM+Dxr2kd8qM4TolBRvqC/mOnRoEGOhuqozWqCVosjFigCgO22ik0NFXEMiyqDGTUGWyxIZEzjb6umaZA1FfMBD0a9c+hxjmPC79yEEWePwHCxKkQ1RjvK9eZl7b9WYhUNsAgSFkK+DRzl5hlyz6wYKlqLDmvVsmVlkgVvk7bjbVXb8YP+1zAdcK24D5Hl8d6GPRQoIoQQQkiMlqMTuR588EHcfffdOTn2SnS69D8b2yiTk5O477770NvbG1v2uc99Dg8++OCK2xkMhlhYx+db2+vq+O2StVhbumyjjkMIIaSwUaiIEEKy7IbKCkz7A/jBxYFcD4UQUiAmfG78r4EzCcsyCRQB4VDRaiROwAebutBmdWS0bwCoMphxV9vujLcjxcEi6vCZ7n341chF/H5sKKNcBYvE8Aq1P8sflI8h68EAuLGqNWGZQ28Cg417bBl5MRIeCrcxq5IssSoyK9E0DT4liGm/CwPuafTMj2/JakRRVtGADzZeBYlf3xnGNcYSLMwXRqio3zWBA+Wtq6+YRXc27sNPBo6kDBaxYPDOup0o01s2dVyEEEIIyXPp58CzSqfT5UWAJ9+MjY3hnnvuwcDAAACAZVk88sgj+MhHPrLqtpWVlZifnweA2NdMxW9XVbU81G40GmE2m+FyudZ8HL/fD79/8QSvZMchhBBS2ChURAghG+DOxnosBEN4bmQ010MhhBSoAdccGs3pn1HPrzJpatdJuKt1N0r1dLYR2Rg8y+Ld9a3oKnHgmf5zmA6kNxFdIRkTWg95qP1Z3qBKRWQ9WiwOlEuJgVeJF1AumTHhW7l6y0pKdUY0mErQYCpBo7kUEi/g/PwEKiQzSnTp/Y1TVBULIR/GfPPoc05g0DO95vHko3pj6boDRQBQa7Dj3PzlLIwo99bTonOtRC5chejnQ8cw5V/+mN9ZWo86Y+mmj4sQQgghhKRneHgYd999N0ZHw3MAoijia1/7Gm677ba0tm9oaMD58+cBIBZKyoTH48H09OJ7lYaGhpTHeeutt9Z8nKGhIWhxr5dTHYcQQkjholARIYRskLtam3HBuYA+19onRcjmowlSslU8N3wBn9p+IO31e50zKW+rNpjx8dbdMAnUE51svCazDZ+94ir8auQiXp4YWXUit8a4GDoIKiHImrLRQyRp0qhWEVmHVAGfelNJRqEiu84QCRHZUW8qgSlJJb9OW0XK7TVNQ1CVMeN3Y9gzgwvOMTgLpKVXKrMBd1b2U2ssjHanBl7E/rKWnBxb4kXc2XgVjk5fxMmZoYS/ca3m1I9bQgghhBSxHLU/I4kuXbqEe+65B+Pj4wAAi8WCxx9/HPv27Ut7H7t27cILL7wAIFxBaGZmBqWl6YfKL168mHB99+7kFcR37dqVECpSFAUcxyVddz3HIYQQUrgoVEQIIRuEYxl8als7Pnv4GE25EUKybtznxmNnXsNDXVevuq47FMCR6eSV01rMdnykZQd0HL0sJJtH5Djc0dCGvWVV+OnABVxyOVOuWy4ZY5epSlF+odc3ZD3mU1QrqzPacGRqKOV2JaIUCxA1mO0ZtwNVNRXuUACT/gVcXJhE/8IEZKgZ7WOrG/c5oWgqOGZ9vTNMgh420YD5oHdN2+tYHgZehArAucZ9rAfHsNjjaMJuewPEHL4OElgOV5e3odNajZ8NHoM78rdOn4VqUoQQQggpQCyFinKtt7cX99xzT6xKUGVlJZ566im0tbVltJ+DBw8mXH/55Zfxnve8J+3tX3vttdhlURRTBpoOHjyI//iP/wAQrm504sQJ7N27N+3jvPrqq7HL5eXlaG9vT3tbQgghhYFmjwghZAPVmYxotZjRu0DVivJZ/KQoQ2f7kC1k0u/BV0//AR9v3Y0qgznleh45BJHlEFQTK7w0m0vw0dadENj0z04iJJuqDSZ8avseHJ0aw3PD/XCFgsvWceik2GUKFRGysfQcj5CqQNmEVlAzAU/S5bVGW8J1myihwVQSDhGZ7LCI+jUd78TMAHqd45jwL6xp+0KiaComfE5UG9Jvo5pKrdEeCxUJLAeJE2HgxcWvkctS/DJOhJ4XEkJNZ+ZG8Nuxs+seT7qMvA631+9Gmd6yacdcTYnOiBuqOvHc8EkAgInPLDBHCCGEkCJBoaKcOnv2LO677z7Mzc0BANrb2/Hkk0+isrIy4311dnaivb0dPT09AIAXXngho1DRiy++GLt88803w2xO/tngddddB5vNhvn5+dhx0g0VybKMQ4cOxa7fcccd9Pk5IYQUIQoVEULIBquUJAoVEUKSqjaYscNeiVKdAVN+D+aDfpTpjSiXjCjTG+EM+vFvvSfgV+SU+3CFgvjPvpN4qOvqlNWGKiQTPrV9P77fexIzgfDEX5Vkxp+0UKCI5Ie9ZVXoKinDr0b68erEaELY0yQIscs+eXnoiOQOS01Dtzw9x+NAeSOqDRaU6c0wCiLcoQD+rfcwnMGNDfHNBXyQVRU8m1gtxyTosL+sAWWSCQ2mElhFKcUeVueTg7jknsLL4xcQUFP/LS1Go565rISKDpS1Yq+jCRIngl/Ha4rtthq8MtGzKT+n7bYaXFvRDh0nrL7yJms2l6Ncb8GUf4EmawghhBBC8sypU6fwwAMPYGEhfKLCvn378Pjjj8NiWXtQ/f7778ff/u3fAgB++9vf4vz58+js7Fx1u8OHD+P06dOx6w888EDKdUVRxF133YVvfvObAIAf//jHePDBB1FWVrbqcZ599llMTEwAAHQ6He66665VtyGEEFJ41lfrmhBCyKpY+jB4S6GfFtkoAsPiluoWfK77Gnym+yAe2f02fHLbflxT0YBOWxmuq2zE7fWdOFBeh+ZIO5daoxV/1X1w1Yl7VyiInw6cRWCF8JFdZ8BDXQdwY2UTAOADTV3U8ozkFYnn8b7GDvxl9z40ma2x5fGP0xCFAvIKu87WSST33lXXhYMVTWg0l8IohFstmQQdukqqNvzYLMNgIZQ8uHRzTTt22KvXFSjqX5jAUz2H8N+Xz1CgKIlR71xW9iPxIsyCtK5AERCuFlppsK2+4jroOQF31F+Jm6u78jJQFPW2qu3QAAy6pnM9FEIIIYTkIyZH/4rc0aNHce+998YCRbfddhuefvrpdQWKgHDln+7ubgCApml4+OGH4fWu3BrY7XbjkUceiV2//fbbY/tI5Z577kF1dTUAwOfz4eGHH4aiKCtuMz4+jkcffTR2/d5770VFRcWK2xBCCClM9CkwIYRssNlAINdDIBmhd8kk+8KVgg7g+qom2HQS7DpD2hWCjLyIFos95e0GTsAnOvfiwy07EFJV9DpnIKtq0nU5hsXNNS24vrIR5ZJpTd8LIRut1mjGp7bvwQMdO1FjMEPkFn9XghQMyCuqlvy5hmwdNl3y0I5DZ8zqcSyCHq0WB66paML7GnfgTzsP4q933AS7zpDV48RT6PG5onHvfN79DpfqNu61iVnQ44ONV6HB5NiwY2RLuRSuHHbeOZbroRBCCCEkD2ksk5N/xeyVV17BAw88AI8n3ML5jjvuwNe//nWIorjufbMsi0f/f/buPLjR+7wT/Pc9ALy4b5AACN59kOxWH7otS7Ysy15JtuU4p+PxZD3JzGQ3Se3MJJnaTZUrm9rdqZpx7SY1OzUzyW7iSdVWxZlUDtuxJ/EZqWXJkq3LUrPVd7NJELxA3Dfe990/2M0mRYIngBcAv58qlkTwxe99GmQ3X7zv932eL31pfXTZpUuX8Mu//MtIJLY/FkwkEviVX/kV3Lx5EwAQi8XwxS9+cdf92O12fOlLX4LpTjfol156Cb/xG7+xPhLt/a5cuYIvfOELSCaTAIAzZ87g137t1/b95yMiot7A29OJiFqoWK/j6p27F6iD6WCWqAXMooTj7gAmPEFIgoC/m7uKdItHqXSicZcPnx09sykYsV//+Ng5LJby+NOrbyJXWwsqCgCe6B/GY31DsMprJwQcJjOuZFbwnflr+GcnH4TUoIvIB/oGD1wLUbuc9Phx0uPf9Bg7FXWWmr75rka/xbY+YpGax2O24qw/ij6rE0HFgZqm4q9nfoKlUv7Qa6cqRfRZnVse9ykHC/sIEBBQbOizutBnda5/3P091U6NAra0pqarWCplW94daK90XcdKuTUjo50mBT89/CCcpoN3vmo3SRBxM7+EUr0Kq3z4i1VERETUQ9gVv63K5TJ+/dd/HaVSaf2xr33ta/ja176277X+4A/+AM8888yWx0dHR/FHf/RH+NVf/VVkMhm88cYbeOaZZ/Cxj30M58+fh8/nQzKZxJtvvolvfetb67VEo1F8+ctfhtvt3rLmdh544AH8/u//Pn7zN38TlUoF3/3ud/H000/j2WefxalTp+ByubC8vIxXXnkFL7zwAmq1GgBgcnISf/iHf9iUEBUREXUnhoqIiFrov83No6zygkY34dvyw7GIEk54gpjyhHDM7d/UjaesqvibmWkDq2s/n8WKXxi971CBorv6rA58LDqOv7x1EQDwZHgUT0ZGt2x3zO3HD5dn8dLCDD4UHtl2LfMhR5QQGUWReAKrkxRqZZTqFVhlCwRBwOePPYh//+4FaOCxTzP9/Og5+JXNnYMeCQ7ja7ffPfTajUJg/j10KrJKJoSsDoQ2hIe2CygZZdIbxaVMHPPF7e+8PeqiNi8k0djm1bquI1nJI15YxdXsIhKl5n+vZEHCJ2PnuypQBKzd86DpOq7nlnDKO2B0OURERERH1srKyq7jyPZqYzDp/c6fP4+/+qu/wu/+7u/ipZdeQqlUwle/+lV89atf3bKtIAh47rnn8MUvfhEez/5uEnj66afx53/+5/jiF7+Id955B9lsFl/5yle23VaWZXz2s5/Fb/3Wb0FRlH3th4iIegtDRURELVJWVfzlrdtGl0F7sqFVEVNF+6ZIMk66g5jyhjDu8kNucIHKZbK0uTJjSYKAz47eB4vUvMOt+3z9eGXpNuaLOQQadJHw3RllM1vINFwnW63AZbbseQQbkdFUXYMkiDjtG4FdVnA1G8d8MWl0WUeeDh1vr97AI6EJAIBNNuOXjj+IL195ddN2nxycwgl3CNlaGYulHBaKOVzPrmClUtjX/vqtTpwLDEASRNQ1DXOFNC6mEtDvfP2cP4ohhw86dKi6juvZFVxKL64/P2xz4enoCSiSjIqq4nJmET9cmtm0DwECHg0Nwa/YUahXka9VcSWzhHS18cnfVnOatp68bdYIy9Xy9t8DiyTDYbIgX6tAAOAx29BndaDP6lwPEbnMnX9SecQRYqhoA7tswYQngglPFB5z60bPNaLpOpbLWcSLKcwXUpgvplBpcQe6R0Lj8CvtHfmarZYgixIUSYbYoGvkbj4z9ABeXb6OxVKGoSIiIiLa7IiPIms3m80Gs9mMarV66LUcjp2PSwcGBvDHf/zHeOutt/D1r38dr7/+OmZnZ1Eul2G32zE0NIQHH3wQn/70p3H8+PED1zExMYG/+Iu/wMsvv4xvfOMbePvttzE/P49qtQqn04mxsTE8+uijeP755xGLxQ68HyIi6h0MFRERtYgiSVB1ffcNyXAbv0t8W743VsmECc9akGjU6WsYJNJ1HcKdtszSETvp8VRkDP225nZsEAUBH48ew5evvrH+ur5fQLHjY9FxnPb1N1xHEkXMF3MYcnTGyBOi3Wwc5TfqCmPUFUauVsK1bByJ4ipWK1kIEHDGNwpRELFaySFZySJdyUMDfxe30qX0bfRZvRhxrv2bE7a58FBwEK8trwWrHSYLTvsiAICA5EBAcWDKG8ZHIsfw4sJ1THr6oUHHUimHqqpiOr2AVKWEfL2yZV8/PXIGbvO9biPnAwOoaSouZ5YQtbnxTGxy0/b3+SJYuvQyknfCS0/0j2HAfu/fvajdjevZFSxvCNZMefvx4cixTes8GR7Hf5i+gEL98CeRDyJV3TqizGexQQAO/dO907i6Z2OTsEkmBK2Org2hDth9RpdgOBEChp0BTHoGMOQIQGzjuAxV17BYymC+mEK8kEKilEZNU3d/YpOEFBfO+No/8lXHWuhe1fUDX/OTRQmP9R38QhERERH1sKN1es1wPp8P77zzTlv3efbsWZw9e7al+xAEAY899hgee+yxlu6HiIh6A0NFREQz1S5yAAAgAElEQVQtpDNU1IX4zrwRm7wWJDrl7cOI07vpIv9Guq5joVTCy4sLCChWfCgcBoCG2/eiIYcHj/UNtWTtUZcPww4vKmrji3KP9w/vuIbHrMDTBR0miHbiNFlxzj+Oc/7G22i6hnS1gNVKFulKAalqHulqHvmacV1netGFhXfgNtvhs6wFXz4UHl8PFZXqNdQ1FfL7QimCIOBD4fH1z++GZu4P3rsL8mYuiVytguVSHoul3KZA0V1hmwuXM0vbfg0A3GZlPVRkk7eOzzOLm98SO7fpqieJIqJ2N65klrfdx/v1WZ14fugUAooDl9NL+JuZd6DqBx8Jt1rZGiqSRQlus/XAHZREQYDfYkNQaTzmbNwVONDanaRbw1DN4DHbMOmJ4qQnArvcnm6RdU3Fwt0QUTGFhWIa9UP87B+GWZTxdPRUW0NUd93992hjoKhQq8B+xLp2EhERUWsYPMGWiIiIjiCGioiIWiRbrcGYU+h0GIwUbeaQzXc6Eq0FiRpdmNF0HYliES8tLuC78/Ooams//b8wMrq+jWTARR2jfGrwZEsvYj0VGcWry7O4PxBp2T6IeoEoiPBZnOthl7tqWh2ZagHpSh7p6lrYaLWSRXGb7jidaMIziD6rF68uvYeSanzNqq7hpYV38amhRwGsBTlOuEO4nFmCqq+NKRt27pD+amBkD8/xW+wIKPaGHfM22u730N2uKYokQwca/ttd1/Z+VPfBvhEE7oxbOuEJ4ZP6FP5m5uB3tjYaURZQ7HsKFXnNNgStdgQVx/qHT7H1dNhX0zUslrJ4eemq0aW0lSxIGHf1YcobRcTmbfn+qmodiVIa8TujzBbLGWgdcFOFAODj0dPwWdo79mwnc8VVvL5yE7849gGjSyEiIqIud4ROrxEREVGHYKiIiKhFEqXG4ySIOpnTZMakpw9T3hCGHJ4dg0TxQgEXFhbwnfn4tiG62oa70+Uevni50YjTi5C1tRexhp1evLhwC4ulPPpavC+iXmQSZQQUNwKKe9PjN7IJvLI0japWN6iy3U14BvFIaAIAELMHcTUbx7urt5CvG9t9KVnJYrmURtC6Nl7srD+Ky5klAMBSKX+gUNFenPCEcMIT2tO224VodACfH38QsV3GQe5nZNPdQNFdk95+vLo8g0Qxu+c1Nlou57d93GexA1hZ/9wsSggqDvRZnQhZnQhZHQgpDpil3n/bb/SYLaP1KS5Megdw3NXf0u93Wa1hvrDWhWi+mMJyOQe9A0dMPhQcw7AzaHQZm4w6Q8gesLMYEREREREREZGRev/sIhGRQWYLDBVR93CZLJjyhjDl7cPQDhdWNV3HbCGPFxML+H5iftduXFX13ha93BFhowGbqy37eTI8ij+/8Q7+6YkHYJVNbdknUa8bdYURcwSRLGeRr5dRVquoqFVU1BrKag0VtYqyWkNJraCi1gyp8aT73ngwWZQw4RnECfcAbmQT+MnqTWRq23e12S+zKMNltiNbLew5ZDVXXFkPFUVsLjwaGsYpbxhBA8OPz8YmsVzOY7VS3Hb82ajTv2ugCABq++hUlKqW4H/fWLExZ2BLqMgqmaBDR1nd+vqOuwJ4vH8MoiBsGX22vqbLD7MorYWHrE74LLY919jtVE3DQimNeAeM2TKKIplwwh3GpCeKgLL9z8hhFeqVTSGiZGX7gFsnGXEE8VBwzOgytjCJEh4Mju6+IREREdEu2KmIiIiI2o2hIiKiFrmdb85FPWqvo/TG3GNW1oJEnj7EHO6G26m6jtv5PL4/P4+XFhf2NdZvY6ciSez9F9ciSngwONCWfcUcblhECX91axqfGz/Tln0SHQUmUUa/zbfrdpqurQWM6hWU1SpK9QpKdwJIFa2GilpDXVMhCIBZNCFRTKKkVg9VW0Bxw7PNOB9REDHujmLMFcGt/CKuZ+dRUquoqmt1VLX6rt1ERAgIWj2I2PyI2PwIKG6IgoBstYCv3f4hansIFi2XMuv/b5XNeDJybP9/yCZzmRW4zAoaRQyeih7f0zraIYfaPhCMQRJF+Cw2+Cy2TUGh/3LlNcwX7712o04/fm703K5rjjj9exoR1wvqmopEKYP5wupaiKiUgXrEQkR3xex+THmiGHWGIO1h7N9+ZKultW5Pd0JE6Wp33SQRUlz4WPS00WUQERERtZRwlE5eEhERUUdgqIiIqEUWSmWjS6A92nyZtbffmPssVkx51joSRe2NO+qomoZb+Ty+l5jHDxYXD7y/inpv9Eivjz8TIeD5oQl4Lda27dNptuBSehmvLc/hoTaFmYhojSiIsMkW2GTLnrZPV/L465kfHGqf467Ijl8XBAEjzn6MOPu3fK16p7PSrfziWthIq6Oq1mASZfRZPei3+WASt749dJntGHX243Jmbtt9ioKAAVsQY64wYva9jSHrRsI+jg90fWuAyyab8VjfyLbbn/aGMV/MwGmyIKQ48fNjuweKjgpN1/DXM69joZSGts3relQ4TQomPFFMuCNwmZt7nFFRa7icSWA6HcdyOdfUtdvJZbLik4Pnj8S4PyIiIjramCkiIiKiduPZFiKiFtmtIwB1pl58Xx6w2DDl7cOUN4SwrfF4jLqm4WYuh+/Ox/HD5eWm7Hvj+DO5yXfTd5qfGp7Ead/WC/mt8vpKHO+l175P34lfx5DDgz4DRwwR0c48FgckQTxwdxVREDDqDB94/2ZpbUzicff+A4ijzvCWUFFI8WDMFcGIsx8WqfdHMH5u/H4slfJYLOWwVMphqZTHSiW/7Vi0/R4DTvn6Ment5yjLbYiCiLqmHslA0drf+RAmPVEM2v1NvyN9rrCK6XQc17OLXT86ThJEPDNwZtsRh0REREREREREdDgMFRERtchT4X78ZDUN9QheBOk6G75FvRIqCin29SDRTkGTmqbhRjaLb83H8frKStPrKGv3OhVJPdypKGZ346z/4Bf79+Pd1CJ+sDCDuWJ2/bGSWsN/uvQqQooDJ9wBPBVtNOiHiIzUZ/ViqZRGXVd33/h9hh3GhXf6bT7YZQWyIGHMFcaoKwynyWZILUZRJBMGHV4MOrzrj+m6jlS1hOVyHiulPFYqBayUCxD3+ftOOQKhrMOI2X1YKmd337BH+CwOTHqiOOkOw9rkkEy+VsZ7mXlMp+LI1EpNXdtIT/SfRMjauAMnERERUS9hpyIiIiJqN4aKiIha5JFQEP+HouAPLl7iKLQOt7GjwH4vBHaSfqsDU94Qpjx9CFrtDberqiquZbP4VnwOb62utrSmiPXeRede7TIwYHPhl461flTNfDGL78Sv42o2ue3XVV1HQLHhQ+Htx+sQkfE+PvAAgLURkxWthopaQ0Wtbvj/tY+qVkNZraGq1uAwWTHmiiBs8xla+3Oxh2E3KYbW0GkEQYDPYoPPYsMJd++OfjPagN2P15O3DvRcURDgtzhQqFVQVKvNLayJTKKE465+THoH0G91N3VtTddwK7+Ci6k4ZvIrPddNNWb34ZSXI2CJiIjo6OjiU5dERETUpRgqIiJqoXGXE//uwfP4v969hLdWU0aXQw1svLQidtndPhGbE1OeEKa8ffArjbtGVFQVVzMZ/F18Du+m2vezOOS41yUpXuy9LgOSIOD5oQlYpNYdUi2W8nh9ZR6vLs1C2+FC4KOhGJ6NnWhZHUTUPJIowiZaYJMtRpeyZwwUkVEiNs+eRwdKgoh+qxtRuw9Rmxf9VjdkUUJVq+PPrr+CbId15wlbPZj0RnHM1Q+TKDV17VSlgOl0HO9l5lGsd26g6jAkQcSH+ieMLoOIiIiordipiIiIiNqNoSIiohazyTL+9ekp/OsfvYG5YtHocmgbGxvodEOnogGba60jkbcPXou14XZlVcWVdBrfnJvFe5lMGyu8R5HuXSAr1muG1NBsfYodfsWG2/kMTvv60W9ztnR/bycTeGXp9o7bfCQ8iicjoy2tg4iIyAiyKCFs9WCuuLW7oixICNvciNi8GLD70Ke4IYlbj+XMoozj7n78eOVmO0rekU0y46QngklPFF5L486SB1HTVFzLLmI6Hcd8sfdvaDjrG2z6a0hERETU6brthkgiIiLqfgwVERG1gVkS8Ytjw/h370wbXQptY2P3F6kDb/cRAMTsbkx5+zDpDcFjbtwtolyv41I6jW/OzuJqzvjOQPKGC3t1bfcOA53MJIj41NAEzvrDbd3vqMuHC4szDb/+cHCAgSIiIuppMYcPc8VVmAQJYZsHUbsXUZsPIasL0h4D4SHF1eIqGxMgYMgRwJQnimFnoOkh9sVSBtPpOK5kFlDV6k1du1OZRAnn/MNGl0FERERERERE1PMYKiIiapPzfh8USUJZVY0uhXYgoDNCRQKAIYdnLUjkCcFl3n5Ejq7rKKkqplMpfHNuFjdyufYWuouNr2bjwV2dT4SAz42fwZjL3/Z9LxQbf0+PuwMceUZERD3vpDuCAbsfIcV54ECOEcchbrMNk54ITrojcDR5hGBZreFyeh7T6ThWKvmmrt0NzvmGYJXNRpdBRERE1HYdeD8kERER9TiGioiI2kQWRQw77HgvY3z3GNpsY3eimmZc6EuEgCGnB1OeECa9IThNjYNExXod76ZS+MbsbdwuFNpc6dHzkcioIYEiAHhrdWHbxwMWG35u5BREnk0iIqIe5zAphw7ltGscmCyIGHf1YdITRdTua/r6s4UkLqbiuJFbgqp3dxfIgzKLMs76h4wug4iIiMgQPA1ERERE7cZQERFRGwUVhaGiDmTeMKIrW6u0dd8iBIw4vZjyhjDpCcFu2v6Oa13XUajX8ZPVVXxj9jbixWJb62yO7uxVJAsiHusz5sLVGyvzWCxt7T4gAPiZkVOwSDyUI6LuomkaarUaLJbtg7NEzVRRa5gvpnEzt4Tp9HxL9xVSXJj0RHHc3Q+LZGrq2vlaGdPpOC6l55GtlZq6djc64xts+mtMRERE1C0EpoqIiIiozXglioiojSzSwcY1UOscczo3vRlfKbc+rCMJAkadPkx5+zDhCcImb39RRNd15Go1vL26ir+9PYPFcrnltdFWiiRDFtv/d7ei1vHt+LVtvxa1uRC1u9pcERHRwei6jmKxiFwuh1wuB0mSMDIywpPh1HTFegXxYgrzhRTmiykkK/mWRpoVyYQT7jAmPVEEFGdT11Z1Dbdyy7iYjuN2fqVLo9nNZ5PNOO8fNroMIiIiIiIiIqIjg6EiIqI2qmpHc0RBJ3sy0rf+/6uVIkpqrSX7kQURYy4fTnn7cMIdgHWHIFG2VsNbySS+dnsGyUp7Oye1VndePM7Xq1gpFxBQ7AdeY7aQwd/PXcUvjt0Hm7x9N6r3+8HibeTr1fXPY3Y3hhweLJUL0HVeWiSizqbrOiqVCnK5HLLZLFT13njRer2OYrEIu/3g/64SAUCuVkL8ToAoXkwhXW1PJ8eY3Y8pTxSjzhCkJgePU5UCLqbn8F46gZJa3f0JbSZCgMtsxVnfWhfHV5evt7XOR4LjMLNTIxERER1hAu9ZJSIiojbjmRgiojZaLLLTTKc54/Ou//+NXKqpa8uCiGNuP6Y8IZzwBKE0uACi6zoy1SreSK7g67dvI1XtvAtIB7Ux+tKdkaI1h4nwrFaK+JPLr6Oua/j3F1/BeX8EZ/1hOEwW1DUNLvPWEUAVtY4fLs0CWHvdno2dwCOh2PrXUxWOPiGizlSr1daDRNUdfp9ls1mGimjf0pUC4ncCRPPFFHK19h1bO00KJjxRTLgjcJmtTV27pqm4ml3AdCqORCnd1LWbJWLz4pR3ACfc4U2PH3P347/efBWZNgS6gooTk55oy/dDRERE1MnY8JWIiIjajaEiIqI2WSlXcC2XM7oM2sAlywgpyvrn1zLJQ69pEkUcdwUw5Q3huDsAyw5BolS1itdXlvG3s7PI9FCQaKONHXW69aSH02SG26zsvmEDdtkMp8kCt9mCx/uHMeL0wiRKDbcvq3X85c1317tmfWLwJB4KDmzaxmtp7sVMIqLDUFUV+Xwe2WwWpdLeQo/5fB6qqkKSGv97SPR+/7DwHmYLhz9e2ytREDDmDGHSE0XM7m/6yL6FUgbTqTlcyS6gpqm7P6GNzKKMYUcAgw4/RpwhKNLmLptltQZFMkGRTPjM0AP4q5kftzxYNOUZ4NhEIiIiOvJ4OERERETtxlAREVGb/NebM1A5sqijfOHE+PqFibJax5XsyoHWUSQZJ9wBTHpCGHf7YW4QGNF1HauVCl5bXsY3Zm8jX68fuPZusblTUXee9XggMNDwe7oXFknGP594EIokQ9qlR/Xl9DL+7MZP1v+teDgY2xIoIiLqBLquo1AoIJvNolDY/1hGXdeRy+Xg8XhaVCH1ogG7ty2hIr/FgUlPFCfcYVj3OLZ0r0r1Kt7LJDCdjmO1km/q2s0gAHgkNI6zviHIOxz/bAwZOUwKPjP0AL5y44ctG4WmSCYcd/e3ZG0iIiIiIiIiImqMoSIioja4lM7g+4kFo8ugDRyyjA+Eguufv5VMoKZp+3i+GROeICY8IYy6vA3DIrquY6VSxqtLS/i7ubkjESTaqBfGn9lk0+4b7cK+xwuSJzxBDDu8uJ5bRdTmwjOxY4feNxFRs+i6jnK5jGw2i1wuB20fvze3k8lkGCqifYnafC1b2yzKOO7ux6Qnij6ru6lra7qO2/kVTKfncTO3BO1Qg1Vb68PhSZzy7j/Q7DApOO7ux9urt1tQFXDKOwCLdPhjMiIiIqJux05FRERE1G4MFRERtZim6/h/L1/r4EsHR9PvnDkF6c678Lqm4aXFmV2fE7DYcNwdwKQ3hJjdDbHBu3hd17FULuOHS0v4u9nbKB3yoms322/nik50MbWIR0Kxtu1vyhvCfDGLz47dt2tnIyKidqhWq+tBolqt1rR1K5UKKpUKLBZL09ak3hayuiALIup6846tIjYvpjxRjLn6dhxPehCZahHT6TgupedRqFeaunYrPBgYPVCg6K4n+k/CISt4beV608e5nXRHmroeERERUbcSGSoiIiKiNmOoiIioxX6wuIyZQsHoMmiDp8J9OOZyrn/+8tJtZKrlLduZBBHDTi+OuwM47vbDZ7E1XFPTdSyUinhlcRF/H4+jeoSDRI0IXXor1a18GoliDmGbc/eNmyCo2PF0dBxus9KW/RERbaderyOXyyGbzaJSaV0YIpvNIhgM7r4hEQBJENFv9WCuuHqoddZGaYVx2jsAn8XRpOrW1DUV17KLmE7HES+mmrp2q7hMVnwgdAzHmjBe7HxgGKe8A7hdSOLFhfeaEqZymazwWuyHXoeIiIioF3Tp6TUiIiLqYgwVERG1UKFWx59eu2F0GbTBkN2Of3by+HrAJVku4h/m732PvGbreohoxOnd8Y51Vdcxm8/jwsICvp+YB2NEvckqmdBnbe4Fx53oAM74wm3bHxHRXZqmIZ/PI5vNolgstmWf2WwWgUCga4On1H4Ru/dAoSIBwIDdjylPFKPOECSxud0AF0sZTKfjuJJZQFXrjnG3AYsTH+g7hiFHoKnrmiUZ464+2GQz/vLWjw69Xr3JXY+IiIiIuhnfOhEREVG7MVRERNRCX5+dQ7paNboMuqNPUfBvHji7PvZM1TX89cw0Yg43TriDOO72I6DsfBd0VVVxK5/H9+bj+OHycjvK7mo2+d6hRlntjgts7+c2WxqOumsFWRB5goiI2kbXdRSLRWSzWeTz+baPrVRVFYVCAQ5H+8Kb1N0iNu++tneaFEx6ojjpjsBltja1llK9isuZBKbTcSQr+aau3UqDdj9O+2IYcQRbGuiL2LwIWJxYqeQOtU5R5fspIiIiIiIiIiKjMFRERNRCs4X23OVPuzvmdOL3zp+BWbp3V7okiPjFsTOwyaaGz9N1HelqFRdTKXw7HsdMoXsuGHUCacOFqnqXjoRTpMY/H60gCgKK9Rrc5sZdsoiIDqtcLiObzSKXy0FVje0Ckk6nGSqiPQtb3RAhQEPjAJwkiBh1hjDliSLm8Dd1/7qu43YhielUHDfyS9DaHMQ7DJfJig/1n8Sws30jBx0my6FDRQN2X5OqISIiIup+gsg70YiIiKi9GCoiImohh8x/Zo0mAvilY2N4diCy7Z3Y2wWKapqG2XweP1xawj8sJFDt0jAMNceoc38dEQ7Lr9i6tqsTEXU2XddRKpWQTCZRKpWMLmddsVhEpVKBxWIxuhTqArIoIWR1YaGU2fK1oOLEpCeK4+5w00PBmWoJl9JxXErHka9Xmrp2Oxxz9eMj4UmYpfa+P8nXyode47Q31oRKiIiIiHoDu1sTERFRu/FqNxFRC31qcAA/WkkiW6sZXcqR9NODMXx2fGTX7XRdR7ZWw3Q6he/G47iWO9zd1NRbhhyetu5PkWQobb7gR0S97e6Is2QyiXL58Bf4WyGVSqG/v9/oMqhLRGze9VCRRZRxwh3GpCeKoNXV1P3UNRXXc0uYTsUxV1xt6trtYpXM+GDfcZz0RNq+b1XXsFopHGoNu2zBqDPUpIqIiIiIuh9DRURERNRuvGJFRNRCUbsN//bBc/gvV6/j1eWk0eUcCRNuN54fHMBpnwcWqfH4KF3XkaxU8PrKCr45N4tMtdrGKqmbdM9QEyKizXRdR6FQQDKZRKXS2Z1VcrkcAoEA5B26POq6Dl3XIYpiw23oaBiw+7BczmLSE8WYsw9Sk38mFksZXErP40omgYrWnd0DRQh4ODSGM74hmERjRqpmqsUdx9TtxYQnApFXzoiIiIiIiIiIDMNQERFRiwUVBb99egqXMxm8sLCEt5IpLHVol4BuZJdlfDwaxsPBAGJ2O8zSzheV5osFvLK4hG/H51DmWDPag5qmGl0CEdG+6LqOfD6P1dXVjg8T3aXrOhYXF6Eoyvq4UkEQoOs6qtUqKpUKqncCwDabDU6nE3a7HdIOAWLqXUOOAIYcgaauWVZruJyex3Q6jpVKvqlrt5ssiHgudhaDTX6N9qsZx1DsUkRERES0GfPWRERE1G4MFRERtckJtxsn3G4AwFKpjB+vJPH9xCJu5rv7ooUR+hQFnx4awP1+P7wW8/rFx51cTqfxb3/yNhgjov1QJBlus2J0GUREe6LrOnK5HFZXV9cDON2kUCigUNh9VNLG7cLhMJxOZ6tLox42W1jFdGoO13NLUPXuP1IMWz14KjIFr8VudCnQ9cN1KZIFEUGluSPtiIiIiLqdyFARERERtRlDRUREBghZFTwbi+LZWBTvpTP4zvwCXl1eQUllR5RGjrud+FRsAKe8Hthleccg0c1sAS8kkvjcsQGY7ozDOO52448ff2LTdnc7IPz93By+cvNGS+un7nPeH8EnBk8YNjKEiGi/lpeXkU6njS6jrQqFAkNFtG/5WhnvZeYxnYojUysZXU5TmAQJD4XGcNY31DHjwi5l5mGVzACAkrr/oKNdtnTMn4WIiIioU/DwiIiIiNqNoSIiIoOd9Lhx0uPGf18bxbfnE/jm7DxSXdhdoBXu9/vwiVgUx90uWHYYb1Ks1/H6cgavLafwo+U04oW18XL3+V04H/AAQMMQkiAI+HAkwlARbeIxK/jk4EnI4s7j9IiIyFhljpSlPdJ0DbfyK7iYimMmvwIdh+ui00n6rG58LHIKng7oTgQAqqbhpcXLSJbz+Pz4Y7BIJlzPLuKVpWtIVXfvRnZX73yHiIiIiJpH4KkqIiIiajOGioiIOoTDZMJPDQ3imYEo/vTqDXx7PmF0SYZ4vC+Ij0cjGHM517sMbSdZruLCQhIXEkm8mcygpm297PC9+Mp6qGgnEm/xofd5NnacgSIi6jp7GQfaa6rVKlRVhbRD+JiOtnSlgOl0HJcy8yjWey+4f79/GI+ExiF2yNWlilrD386+hYViGr8w+igskgkAMObqw4gzhEvpOF5dvo5CvbLrWh6zrdXlEhERERERERHRLhgqIiLqMIok4Z+fPIZr2Sxu5vd+J2+3kgA8PRDBR/r7MOR07Bjwmc2X8GIiiQsLSUyncrvevfzVmQW8tpyC22yCqunQoEPVdKg6cMrnxO+cOw4AOHqXYI3RLa/zkMODCU/I6DKIiPZNPKJhyFKpBIfDYXQZ1EHqmopr2UVcTMcxX0wZXU5LmAQJvzrxlNFlbJKvlfG3s29iuZzDfb5B+JXNfy9FQcCUdwAn3GG8tTqD11duoarVt6xjly14LnYWfVZ3u0onIiIi6hpH8F4SIiIiMhhDRUREHerpaAR/dPmq0WW0hCKK+MTgAB7vCyFss0Lc4d3w5XQeLyRW8GIiiZl8ad/7ShQrSBS33gkdtJrX/5/vxVtnU/CrC15op8mMj0bGjC6DiOhAjmKnImBtBBpDRQQAS6UsptNxXM4ktg2r9AIBAs75h/BY33GjS9nkenYR30tMo6zWoEgmPBxsfDwlixIeCIzilDeGHy/fwE9Ss1B1bf3rT0dPM1BERERE1MBRfd9HRERExmGoiIioQw05eqvdv8dsxqcHB/BwKICAxdLwDbCm63h3NYsXE0m8kEhiobT7aISD0PQNcRe+GScADwUH8MwAx54RUfc6qieXS6X9h46pd1TUGi5nEphOx7FczhldTkuZRRnPxs4gZvcbXcomLy1cxpurM+ufjzn7oNwZe7YTRTLhg/0ncMY/iH9IvIdb+WUcd/UjZve1slwiIiKirnZE3/YRERGRgRgqIiLqUJlqzegSDi1qs+LTgzGcD/jgMpkaXuysaxreWMnghUQSLy0ksVpp/Z99U3ckfbdBanRQm77jHfwyn/OH8cnBk0aXQUR0KL0eKnI4HHC73RBFEYIgrH8c1bFvBKQqBXzlxiuob+hy06tOuiN4OnrK6DI2KdYruLBwGVeyC5sen/RE9rWO02TFJwfP4T9f+m7HdWAiIiIiIiIiIjrqGCoiIupQN3N5o0s4kBNuJz4Vi+GU1wObLDW8wFmqq3h1KYULC0m8vLiKfE1ta53yhro6OOvS9STx3uusdugFvz6rA/GbHioAACAASURBVM8PTRhdBhHRoSmKAq/XCwDQ7wRmN/63Wq2iXC4bVt9hDA4OQlEUo8ugDuM2W9eONXv4YM4syvhA6BhO+2JGl7LJN2bfxI3c8pbHB+1+9Ns8B1rzw+EJOEz8e05ERES0kx6/l4SIiIg6EENFREQd6ieptNEl7NmDAR+eHYjiuNsFiyQ13C5TreHlhVW8uJDEa0tpVDXjQiYbR1z18HUow0nCvddZ7cCOUIok4zPDk5vqJCLqVoqi7Bq8qVQqyGQyyGaz0Az8PbwfFouFgSLaliiIiNq8uJVfMbqUlnCbbfhk7By8FrvRpWxhFreeTrKIMp6KTB14zePu8GFKIiIiIjoSGCoiIiKidmOoiIioAy2USriayRpdRkMigCfDffhoJIwRp2NTQOf9lkoVXEgk8eJCEm8nM1A7JFcib+igo3dg2KVXbBwz12mhIoso4Z8cvx9hm9PoUoiI2sZisSAUCiEQCCCXy2FxcdHoknZltVqNLoE62IDd35Ohogl3BE/0n4RZ6szTNtna1q5nh+00JPIKGREREdGuRB4yERERUZt15tkpIqIj7ltzCXRa7wCLKOLZWBSP94UwYLfteNJ/JlfEhYUkXkgk8V66M8e4SRvq77TXupdsjJt1SnjLY1ZwfyCCD4dHjS6FiMgwoijC7XajVqthdXXV6HJ2xFAR7SRm9xldQlMJAJ6NncWoM2R0KQ2pmoalUmbTY8dc/ew0RERERERERETUgxgqIiLqMNlqDd+ZTxhdBgDAJct4fiiGR0IBhBQFwg5BokupHC4sJPFiIomZfKmNVR7Mprt6OiTs0os2vbIdcCfVmNOHXxw7A/MOY/qIiI4Sv9+PYrGIcnlr15FOwVAR7SSgOGGVzCipVaNLaYoJT7SjA0UAcDW7gLp+L5Zvly34cHjCwIqIiIiIjg52KiIiIqJ2Y6iIiKjD/D+Xr6Koqobtv09R8OmhGB4I+OAxmxsGieqajreTGVxYSOJCIomlcnddyBE3JFwYKWqdja+t0ec8RhxefP7YWUhC43F9RERHjSAICIfDmJmZgaZ1Xu8+WZYhy3zbSjsbsHtxNduZo/z6rW48FByDx2xDsV5FoV5BqV5FRashWy0jUUpjtXKvs+dAh3deqmp1/HD52qbHnopMQZFMBlVEREREdLSIAs9kEhERUXvx7CwRUQf5y1u38cryStv3O+qw4/mhGM74vLDLcsMgUUVV8dpSGhcWkvjBwiqytXqbK22ejePb+Fa8dTaOPBMMjBXZZBN+dvQUA0VERNswmUzw+/1YXl42upQtFEUxugTqAgN2f8eFigbsPpzxDmLUda/rkNts23bbVKWAn6zexs38cseMi23k2/F3kKvd62x22hvDkCNgYEVERERERws7FREREVG7MVRERNQh3lhZxVdu3Grb/u7zevDJwQFMuN1Q5MajoPK1Ol5eXMWFRBKvLqVQUjuvi8FBSHwD3nY7TM9ruediJ+A0WYwrgIiow7lcLqysrHRcoEGSJGSzWbhcLqNLoQ7WSd19LKKMpyJTGHP17fk5XosdHwpP4EPo7BFiF1NzuJG7Fz6M2X14vP+EgRURERERHT28XY6IiIjajaEiIqIOMF8s4g8uXmp5x5wPhoL4+EAE404nTFLjt6DJcnV9rNkbKxnUO+wCYzNs6lTUg3++TiFteJ1Vrf2vswgBHx84hvt8/W3fNxFRN5EkCQ6HA7lczuhSNslkMsjlcgwV0Y48ZhucJmVTBx2jfGLwHCI2r9FltMRsYXX9/0OKC8/GOFaWiIiIiIiIiKjXMVRERGSwYr2O//OdSyiqatPXlgB8NBLGRyL9GHY4IO3QH3e+UMYLiRVcWEji4moOvdGPqLGNXXMYKWodSbx3oamut/enShIEfGpwAucDkbbul4ioW7nd7o4LFQGApmnQdb3heFYiADjuCuP15E1D9m0WZfgtDkx4Ij0bKCrVq7h1p0uR12zDpwbPwyzylBIRERFRu4kCz2QSERFRe/EMEBGRwf6/azcxUyg0bT2LKOLZWBRP9IcQtdk2deR5v2uZAl5cSOLFRBLXs82roRtI7FTUFhvvXVfbGCp6JBjDh8MjsJvMbdsnEVG3s1qtMJlMqNVqRpeyThAEhMNhBopoVw8ERzCdjqOkVtuyP7MoY8ITwbirD/1Wz47H3L3ghYVLqOkq7LIFnxq8H1aZx1hERERERtjhnlEiIiKilmCoiIjIQMvlMr6bWDj0Og5ZxvODA/hAXxAhRWl44U3TdVxM5fBiYi1INF80fkSEUURsCBUZWMfR0vqzHgKAzwxP4aw/3PJ9ERH1GkEQ4Ha7sbKyYnQpAABRFBGJRGCz2YwuhbqAWZTxaGgc30tMt3xfE+4IHu8/AYtkavm+jFbXVHw/cQlXs4tQJBOeH7wfLrPV6LKIiIiIjiwOnyUiIqJ2Y6iIiMhA344noB6wS05QseD5wRgeDPjhs5gbBonqmoY3VjJ4MZHESwtJJCud033ASBvvJtfYqahlNr6yrb6TyixKeC52goEiIqJDcLlcHREqkiQJ0WgUiqI03EbXdWiaBkmS2lgZdbIJTxQ/WrmBXK01wXmLKOODfScw6Y22ZP1OkqmWcD23iLeTM8jXKxAg4FOD5+FXHIde+4dL1/BIaLwJVRIRERERERERUasxVEREZKAXF5f2tf2o04HnBwdwn88Lhyw3DBJVVBWvLaXxQiKJlxdXkavVm1FuT5FEdipqh82vbetSRRGbEz8zcgpBxd6yfRARHQWyLMPhcCCfzxtaRzgc3jFQpKoq5ubmIAgCBgcH21gZdTJREPBTQw/gz268gpqmNnXtAbsPH4ucht1kaeq6neiFxCX8JDW7/vmoM4jnYueasvZsYRWvJ29i0hNlxyMiIiKiA+D4MyIiImo3hoqIiAwyk89jpVzZdbsHAj48E43ghMcNZYc78fO1Ol5eXMWFRBKvLqVQUrVmlttzpA1vwD1mM/7k8SeQr9Xwe2++gWRl9+8L7d+Qw42ZnAtzxWxT1z3t7cNnhqcgi2wATUTUDG6329BQkd/v33Hkma7rSCQSqFQqMJlM0HW9YdCajh632YZHg+N4cfFy09YMKS58MnYOstj7XbEupec3BYoe6zuO8/7hpq3/6tI1aLqOd1KzeKzveNPWJSIiIjoqBIG3RxIREVF7MVRERGSQC4vL2z4uAngq3I+PRPox4nTsGJRYrVTxg4VVvJBI4o2VNGoa31QehCAIEAC4zGb87MgI/vN77xldUs/QN4yWm/CEMOEJ4VtzV3FhcebQa8uCiA/0DeLJ8CgDRURETWSz2SDLMur19nc6tNls8Pl8Db+uqioSiQSKxSIAoFarYXV1FX6/v10lUhc45R3Aj1duoqhWD73WaW8Mj/efgCT09rFGRa3hteUbeGv13jHaI8HxpgaKrmQSSFUL+PTQ/YjZ+XeWiIiI6CDYqYiIiIjajaEiIiKDXEylN30+7LDjH42N4JTXs2NAYq5QwoVEEhcWkri4mgP7ER3Mq0tpfOG4CkXefMe5Teavxma6mErhiXB402PH3YFDh4oG7C58ZniK486IiFpAEAS43W4kk8m279vj8TTsOlStVhGPx1Gr1TY9nkwmYTab4XQ621EiHUK9XoeqqmuB7jsfcguOvSRRwrnAMH6weOXAa/RZ3fhg33FEbN4mVtZ5stUSLixexmw+iZq+NjLOIsp4ov8kTnoiTdvP1ewCvh1/F58eegBRe2+/pkRERESt1NtRdyIiIupEvHJKRNRmd0d0KJIECcDPDA/ho9F+eMzmhhfR3kvn8GIiiQsLq7iVK7a34B51PVvAz37nR4g5bPjlE4O4P+gBAKz1LKJm+ZOrVzBTyOMfjY2v/3yX1Nouz2pMEgR8YvAkHghEm1UiERFtw+VyGRIq2qk70tLS0pZA0V2Li4uwWq0tCahQc2iahtnZ2S3fw5GREZhMpvVt8vk8CoUCHA4HJEmCIAiwWq373t9pbwxvJm+hWN9ftyKHrODD4QmMOIP73mc3+oubr27q6GSTzfjM0IPwWpob3H5p4QpO+2IMFBERERERERERdRmecSUiarO7wYrfPXdfw21UXcdbKxm8mEjipYUklsqHH91AW6WrdaRXs0hXDx5yod19d34eDwWCOOFZC27VNA0PB2M47euD12yFIsmQRRGarqNQr+JyZgXfmruKiqZuWiek2PGPj52D26wY8ccgIjpSTCYTbDbb+pixdmkUGqpWqzvWomkaFhcXEYlEGoa0yVjLy8vbfn/n5uYgiiJ0XUetVlsfnZrL5da32Rg82iuTKOGBwCheXNj7WNt+qxufiJ2DVTbva1/d6q3kzKZAkd/iwHOxs3CbbU3dT65WQsjqwuN9J5q6LhEREdFRJAq60SUQERHREcNQERFRB0kUy/jG7UV88/Yilhkkahud78VbzrRhpN99vn7c5+vfso0oCHCbFTwUHMCww4PXludwI7eK5XIRsiDi8wwUERG1ldvtbnuoqFGnokqlsutzC4UC8vk8x6B1oEKhgEwms+3XGgXJNspms/D7/fve7ynvAN5M3kKuVt7ytYDFgajdB0UyQRJEWGUzTrjDkITeHyih6RreTc3hB0tr4+FECHgkNI5z/mGILQjlLZayeDI8ycAfERERUROIPKQiIiKiNmOoiIioQ/yrV97Fj5fTYL6l/czSvYtHdV0zsJLeZZakfW0fsjrwicGTAIDZfAbvphbhYaCIiKit7o6fUlV1942bZKdORXvB0EJnOuwovWw2C5/Pt+/vrySIeDAwiu8lptcfEyHg6egpHHeHD1VTN/uTKy+idKdDkVmU8VzsLAbsvpbsq6apUCQTbEek+xMRERFRq/V+BJ6IiIg6DY8/iIg6QEVVMV8sM1BkENOGW3yqKkNFzeYymRCxHXyMRszhxjOx402siIiI9kIQBLhcrrbu8zCdigBAURhA7TS6rh86mFar1VAub+02tBcTngg8G8Z5nfMPH+lAUaKYXg8URWwefHb00ZYFigCgrNZauj4REREREREREbUWQ0VERB3AIkn47fvGjS7jyJI23PWuMdrVNJIg4GeGR/Clhx5uySgNIiJqPbfb3db9NepEs5dORbIsQ5bZjLfTLC8v72nE2W7S6fSBnicKIj45eB4ukxUmUcL9geFD19LNqtpacG/YEcRPDT0Al9na0v05TQz6ERERETWTKBjzQUREREcXQ0VERB3i/qAHnxjsM7qMI2nj9UuNmaKmMIsifmNyCp8YHIRln6PPiIioc5jNZlitrQ0dbBQMBrc8puv6nkJFFoulFSXRPpXLZaysrEDXdWSz2QOHgd4vl8s17GS1G4/Zhl869jgeDY7DIpmaUk+38lscEADcHxiGKPCUEBEREVG3EQXdkA8iIiI6ungbJxFRB/mNUyN4fSWNRHFvIz6oOURs6FSk803yYXnMZvyrU6cx6HAYXQoRETWB2+1GqVRq+X4cDgcc2/zu2EugCODos05Rq9WQSqVQLpeb/nOTTqcRCAQO/Pwz/qEmVtOdHCYF/VYPTCJD30RERETdiF2DiIiIqN14WxoRUQexyTL+1/tPQuKbw7baNP6MoaJDMYki/sXUKQaKiIh6iMPhgCi27q2jIAhwOp0IhULbfr1S2VvYemOoqFarYWFhAVevXsW1a9cwOzuLTCYDVVWbUjM15nQ6MTg4iFqtBr3Jx1WZTAaapjV1zaMoZvdBFhgqIiIiIiIiIiKi3bFTERFRh5n0OvGzo1F85Xrc6FKODHHT+DNeqDqMz42NYdjpNLoMIiJqIlEUYbVaUSgUmrquIAgIBAJwuVyQdhiVud9ORcViEfF4fD3Qous6SqUSSqUSlpaW4Pf74fV6IQhMcbeKxWJBMBjE/Px8U9dVVRW5XA5ut7up6x41D4fGjS6BiIiIiA6InQKIiIio3Xj8QUTUgf7JiUE4ZN493C4bLyqqbFR0YEFFwRP9YaPLICKiFjCbzU1f0+Vywev17hgoAvbWqUiSJEiShHK5vClQ9H66rmNlZQW3b9/ecwckOph8Pt+SddPpdNM7IBERERERdQtR0A35ICIioqOLoSIiog5klSUMOqxGl3FkbBx/poNvkg/qtNcHkV0fiIh6UitCRR6PZ0/b7aVT0d3xbNVqdU+Bk0qlwmBKk+i6jkKhgHq9vv6YpmktCxVVKhWUSqWWrE1ERERE1OlEwZgPIiIiOro4/oyIqAP97cwCptOtuRBDO+P1xYOTGCgiIupZFoulqespirKnNTVNQ61W2/O6d8NFu7HZbOvj0uhgKpUK0uk0crkcNE2Dy+VCf38/AKBQKEDTWjdSNp1Ow2aztWx9IiIiIqJOxYAPERERtRtDRUREHUTTdfzHizfx5zfmjS7lSNn4XpyZooNjpoiIqHc1u1NRM7sUAfdGme41VOT3+/e0HW2l6zpSqRRWVlY2PZ7L5RAMBiFJEgqFQktryOfzqNVqMJlMLd0PERERERERERHRUcfxZ0REHaJYr+N/eW2agSIDbAzDcBTKwdlkZpWJiHqVKIpNCxZJkgSHw7GnbfcaKrprL6Eiv98Pq5VjZg+iVqthbm5uS6AIWDuGyuVyAPYeGjuMdDrd8n0QEREREXUa0aAPIiIiOrp49Y+IqAMkimX8z69O40auaHQpRx4jRQfjNJnw0UjU6DKIiKiFLBbLvkM+23G5XHvuKFSpVPa03X46Fbnd7j2tSffouo5sNoulpaUdA9jpdBputxuKosDn82F1dbXptZhMJpjNZkiS1PS1iYiIiIg6nSjw7CURERG1F0NFREQGe2c1i9957RLS1ZrRpRDtm1WSEFSs+BenTsHBESRERD3NYrGsd6I5jP10sWn2+DOr1QqZnfX2pV6vY3FxcU8jzarVKkqlEmw2Gzwez6FCRXfDQxaLBWazef1jr4E0ap9Xl65h2BlEn5WBPSIiIqJWE4XdtyEiIiJqJp5NJSIy0H+bXcSX3r6GmsY7TKh7PBwM4rnYIAb3OLqGiIh6g8ViOfQaTqcTpn2EUPfaqeiu3QInex27RmsKhQIWFhagquqen1Mul2Gz2fb8HFEUYbPZ1kNDFosFJpOJ4aEukKkW8dLiFWi6hodD40aXQ0RERERERERELcBQERGRQb49t4R/8+ZVo8sg2pdfGB3DfzcwYHQZRERkgGaEivbTpUjTNNTr9T1te7dT0d3/NnK385Gmacjn8+vjvKLRKGw2255r63W6riOZTB6o09DdMFG5XN51W1mWEY1Gm/KzRe11MTWHf0hcAgB8duxRg6shIiIiOjoYvSciIqJ2Y6iIiMggU14X3GYZmereLpZR6whg3+C9eGZggIEiIqIjTJIkSJK0r641G5nNZlit1j1vLwgCBEGAru+9o6MgCBBFEZqmbfv1bDaLcrmMWq22aZv5+XkMDw9zNBrWxp0tLCygWCwe6Pl3A0K7hYpMJhMGBgb21bmKOsPF1By+l5gGAJz2xuCzsAMYERERUbtw/BkRERG1G0PNREQGidgV/N79JyHxjaDhNn4L9nPh8igZcTrx08MjRpdBREQGEgThUB1l7Hb7vvdnNpv3vO1dfX19GBkZwcjIyJYRWrquo1KpbAkdaZqG+fl51Gq1fdXYa0qlEmZmZg4cKJJlGQ6HA7quo1QqNdxOURQMDg4yUNRlMtUS/m7uJ+uBIlmQ8FBwzOCqiIiIiI4WQdAN+SAiIqKji7dhEhEZ6P6gB//j5Aj+74s3jS7lSNs4KUUD3yS/X8Biwb+cOgVZZBaZiOios1gsBw6c7DdUBKx1N6pUKrtutzFU5HQ6AawFiGRZXh95tptyuYyZmRn09fWtr3FU6LqOVCqFlZWVA68hSRIGBgYgiiJWVlYavu42mw2RSGRL4Is6V7yQwsX0HK5mF6BtCOCf8cVgk/cW/CMiIiKi5mCnIiIiImo3hoqIiAz2c2NRXMkU8PdzS0aXcmSJGy5EaswUbaJIEv7lqdNw7bFTBBER9baDjgcTBGFfo8/u2munovd3HtJ1Hclkcs+Boo3rJBIJ6LoOl8u1r+d2K1VVsbi4iHw+f+A1RFFENBqF2WxGNpvF6urqttvZ7XaEw2EGirrA12+/gbnCKgRBQE3bOvJQFiScD7CLJRERERERERFRr2OoiIioA/z2mXHczhdxKX3wizkHZRIFPN7vx8MhL8yiiOVyBdlqHW+vZvHOarbt9Rhh0/gzw6roTP/DyQlED9BZgoiIepMkSQd6ns1m29RNaK/2GiqqVCrQdR2CIKBSqSAej0MUxfUASyKR2BI82snCwgKsVmvPj+eq1+uYm5vbd/hqI0EQEIlEoCgK8vk8FhcXt93O6XSiv7//QD8H1H7xYgp1XWt4cPxQcBSK1Nt/P4iIiIg6EeP5RERE1G4MFRERdQCLJOJ/f3AC//TFt7BaqbVln06TjKeiAXz+WAwhq2XbbeYKJfzZtTi+PrPQ02GbjX82Iy5z2WUZnxsbx2mfDzVNw7upVbyXTuPlpSXYZRllVYWqt/878GAggDN+f9v3S0REneugnYrujj6rVquIx+NwOBzwer27rqcoCmRZRr1e33E7TdNQr9dhMplgsVgwNDQEURTXAywWiwWlUmnXOiVJgtPphM1mO/CftVuoqop4PN6UQJHNZkMul0Mikdh2O7fbjVAoxEBRF7nPG8PryVvbfs1nceCcf7it9RARERHRGlHo5bO0RERE1Il6+ywpEVEXCVkt+N8eOIn/6eV3UW9hgGTEacOTkQB+fiwKm7xzt4EBuxW/fWYcH40G8R+nb+I9AzoptYO24fVu91xySRDwm6dPY9R5b8TKE/1hPNEfxheOn4BJFFGs1/HlK5dxK59HsV5HWVXhNJngNVuwWikjU2t+EM0iivjMMEdaEBHRZgcN2thsNgBANptFrVZDKpVCOp2G2+2Gz+druK7JZMLQ0BAWFhZQKBR23EelUlnvLLSxo5L+/7N350GS3eWZ759zct8zK2tfe1dLakmtBQQSi4GRjGAQwuJehoEwYDHsDYFNhOFeC9sTeIStmItvGBQhYVDciOuxLwxGBmSzGBAgJEZLa0UtpF5r7dor9z3P/aOopKpry6wlM6vr+yEqVJl5zu/3VncJ5fKc97Us5XK5dWs0TVN9fX3LuiPl83lls9llx9rtdtntdtlsth0XlimXyxoZGanqz2U1NptNPT09crlcmpub08TEyqN8I5GIWltbd9yf0W53Sah71VDR0Zb+JeODAQAAUD/1fu8SAACAUBEANJEroyF96op9+u/PntrytQ+FfPrUkX26Mhqq+dyrW0P66uuO6hdj03rg7Jiem0noYMgn0zAUzxeULJYUzxeULZUrQaV0sVT1+mGnQzf1tulN3a0aCHiVLpZ0Kp7SE5NzenIqJp/dpnPJtGL5tbsUbFR5UYbLZtS3ifCNHR1LAkWLOcz5Wrx2uz5+2eWrrnEumdC/nDun49PTW1bX67u61PXbD4ABAFiwkVCRw+GQ0+mUZVlKJBKV+y3L0tzcnGKxmMLh8Kqdi2w2m7q7uxWLxTQ5OSlrlfD1ah13stlsVaPPLMtadly5XNbo6Oia3XwMw5Db7ZbX65XH45Hb7ZZpVv98YmFsW70sBIouDErVwuFwqKenR6ZpanR0dNXAV0tLi6LRKIGiHSjq9stl2pUrL33+bTdsOhDsaFBVAAAAAAAAqDdCRQDQZG7b06WXYyl959z5LVnvFW1hvedAr65tC296rdd2RfXartXHYRXLZdkXfYiWK5V0MpbSN0+P6sejU8uOf3V7RB+4pF+XRgJL7vc77Gr3uPTqjpYl94+kMvrNXFKzuYIeGpvWi3MJZUvrf0i4nsWjxWx1/tCr1+vb9BoD/oA+efkR/dXTT+nleLyybofHozPJhGZq7EIQdjp1a//ApusCAFx8FkaKrRbsWclCl6JsNqvCCt31LMuqdC4Kh8NqaWlZ0mlImg/uhMNheTwejY2NrRjyufCcBet1OFpcx+joqAYGBiprTUxMrDsezLIsZTKZyng1wzDk9/sr9a4lk8no/PnzVY+D2yzLsjQ2NlbVKLjVuFwudXd3K51Oa3JyctXAVmtrq1paWlZ8DDuDy+ZYFiraF2iTy+ZoUEUAAACgU1HjjY2N6b777tP3vvc9xeNxHTx4UN/73vc2tNZLL72kb3/723r88cc1ODioVColv9+vPXv26Prrr9c73vEO7d27+W7yTz31lL7zne/o+PHjlYtMAoGADhw4oBtuuEF/8Ad/oI4OLh4AAKyMUBEANKFPX7FPZxJpPTcT3/AaNsPQp47s0zv2dm1hZWuzX3BVvstm0+UtQV3eEpT9+G/0g+HJymNv6WvX564+VNP6PT6PenzzH87dvq9bkpTIFzWXLyjqdmgsndOj4zP66eiUTsXTS8JCa1l8nL3Or8yrrbEa17a26eV4XO8Y2KO3D/wuFDSSSunh8XE9MjGueD6vxTs6TVP7AgH1+fwKO53q8np1NBplpAUAYFV2u33FcNBqfL75AG08vvbzmoVwUTqdVn9//4rdbVwul/r7+zU5OalYLLbssZWk0+mqay0WixodHVVvb68SicS6Na9koSNTIpFYtVNPPp/X1NSUksn50bKLQ1XbFS5aCBRVG7JaSTAYVCQS0fj4+Jp/ru3t7QqHNx9oR2OVV3ie2u6pvespAAAAts7Kl1KgHkZGRnTvvffqn//5n5e8Jq7lNeeCmZkZfeELX9CDDz647LG5uTk9/fTTevrpp/XVr35V73znO/XZz3628tq6FkNDQ/qLv/gLPfzwwyvW8Nhjj+mxxx7TPffcow984AM6duxYZaw4AAALCBUBQBOym6b+4tpLdPuPHt/Q+Tf1tOm/XDqgLq97iyvbuGvbwpVQ0dsGOvSZKw9syboBp10B5/x/zvYH7dof9Om9B/tUsiydTaT1wmxCJ2YTemJqTmPplTv2ZBaNauvwc/vs0QAAIABJREFU1Hfk18HQ1n0w0+nx6LNXXqXDF3yI1+Pz6V379uld+/apWC4rXy4rXSwqVyqpw+NZFgYDAGAttYaKvF7vstFna8nlciqXy6t2HjJNUx0dHfJ6vRofH1e5XJbL5ZLL5VKxWFQymVQoFJJhGCqVSjWP+cpkMpqYmJDX65VpmlWNTlvNzMyMTNNc0rEnm81qaGhoWbenajo2bUYul6uEmGrldDrV3t6uXC6nwcHBNTtVdXZ2KhhcebQrdo6yVVamtLxLl8vkbSQAAIBGMo2tu0AR1RkeHta9996rb3/72zW9Fl7NqVOndMcdd2hsbEyS5PF4dPPNN+vqq69WS0uLpqam9Oijj+qhhx5SoVDQN77xDR0/flz333+/2tvbq97niSee0Mc+9rHKBTnBYFBvectbdOTIEQUCAY2Pj+tnP/uZHn30UeXzed1777168skndd99920owAQAuHjxbhAANKlieWMvEN9zoFcfuWzP1hazBcZ/G+ipV302w9D+oE/7gz69baBTkvRSLKkXZ5N6OZ7UC7MJDaeyCjntemV7pHLe5ZGI/vP+/fofp05te42S1LXOWJRaHI2uPppugd00ZTdNebd5vAoA4OJVS9DF4/HINM1KUKja9c0qAq+BQEBut1uxWEzhcFiGYahYLGpiYkLFYlEtLS2anZ2tutbFYrGYnE6n9u3bp3Pnzm3qjePp6WkFg8FK96FcLrdmKGchXJRMJtXf369yuax8Pl/Vm7qFQkFzc3PyeDyVUNSCjYSjDMNQNBqVz+fTxMTEmmPTDMNQV1eX/H5/zfug+QynZlSylv/OTGTjukw9DagIAAAAqL+hoSHdcsstS14Tut1ulUqlDb1OnJyc1B/90R/p/PnzkqSrr75aX/rSl9TVtXTawHve8x69/PLL+tSnPqVTp07p5MmTuuOOO/SNb3xj3THbknTy5El9+MMfrlxY8sY3vlFf/OIXFbrgAtf3ve99euKJJ/TpT39aExMTeuKJJ3Ts2DH9/d//fVWvywEAuwOfKAJAkzqXrK1taiPGndXitV1RXRUN6erWxo1MOBTy61Bo/Q+6bu7p1c/Pn9fwJsaDVMtHO1kAwA5Ty2iuhSBMLW+2+v3+FUefrcThcKi1tbVy2+VyyWazaXZ2VjMzM1XvuZLJyUnZbDZ1d3fr3LlzG17HsiylUqnKm7fBYFCFQkHpdHrNLkqFQkHZbFbxeFzJZFI9PT3yelfuqGhZlmKxmKamplQulzU7OyvDMOTz+RQKheTz+eT1ehUIBKruGOX3+9Xa2qpkMrludyLTNNXT01PVm9vYWtlSQU9MntZ4Ni7LsmQYht7YdZkiro1fWZwp5vXQ2Am1uQN6dftBRZw+nZgb0RNTZ/Sb2Jhe1X5AbhvPYQEAABrBrO6lErZIMplUoVCQYRi69tprddttt+mWW27RRz/6UT322GM1r/dnf/ZnlUDRwYMH9bWvfW3VC0gOHjyo+++/X+985zs1MTGhl156SXfffbc+//nPr7lHsVjUZz7zmUqg6FWvepX+7u/+btXX8tddd52+9rWv6V3vepfS6bR++ctf6v7779cdd9xR888HALg4ESoCgCZ1Lrn6leAX8ttt+qtXXqprWsPrH9wg+4M7q2XqF669TvnS/Fi0p6andf/LLylbKslhmrqhvV2dHq+enZ3Ribm5De9xfVvbVpULAEDd1BIqWgjB5PPLxyitJhAI1FzTAsMwtHfvXlmWpaGhoZr2XUkikVAwGFQ4HNbcJv6b73b/biStYRiVIFQqldL09PSq4aJMJiOPx6NEIqHR0VH19vYuWUua/7MdHx9f1kXIsiwlk0mlUin19fXJ7Xarvb1dmUxGxWJxxf1cLpcCgYD8fr8sy9LY2JhyuZXHxy6w2Wzq7e2Vy+Va988Bm1cslzSYmlYsn9ZEJq4ziUkVrN+N8o04fZsKFCULWX138Lha3QH9fu+VshnzVydf335AewJtOj51Vv9r8pRe33l40z8LAAAAakeoqL66urr0x3/8x3rLW96ivr6+Ta318MMP66GHHqrcvuuuu9btSNvR0aE777xTx44dkyT90z/9k9773vdq3759q57zrW99SydOnJA0P8r6b/7mb9Z9HX/o0CF98pOf1Be/+EVJ0j333KPbb79d4XDzft4AAKgfQkUA0KQGE9V1KjoQ9Om/XndYfX6uDN9qzt+Od7m+vV1Fq6yvv/SSPnflVdoXDEqSbvntC8n/84nHNZKurbPU4VBI/+USPowBAOw81Y4/s9lslaBJteEeh8Ox6W43Cy3ae3t7NTw8vKlgUSaTUaFQUEtLi+Lx+IZGiLW2tq4auPH5fPL5fEqn05qZmVH6gucTqVRKPT09mpiYULlc1vDwsPr6+irrlUolnTt3bt1xalNTU+rt7ZXNZlNXV5eGhoYqj7vdbvn9fgUCATkcDlmWpZmZGU1PT6/7szkcDvX29spB58UtcTI+rmdmBnVZuFsdnpBMw1SikNFUNqGZXErJQlZjmTkVyqVV13DZNv42z1Q2oQeHntal4W69sm3/ssc7PCHd0neVxjMxjaXn1OXlAwYAAIB6sxEqqqtwOKwPf/jDW7LWfffdV/n+da97na644oqqzrvpppt08OBBvfzyyyqVSvr617+uL3zhCysea1mWvvrVr1Zu33777ero6Khqn3e/+9269957K+O4//Ef/1Ef/ehHqzoXAHBxI1QEAE2qmk5FRyIBfenVR+S2V/fhHjbuxo5OFctWJVC02F9d9wq9/+c/W3a/IWmlj/icpqkPXnJYduZSAwB2oGo7FXm93soYs2rHn1mWpXw+v2oIZ2G8U7V1DgwMaG5uTtPT0xsKBJXLZY2Ojqq/v1979+5VIpFQLBZbt3vPAo/Ho0gkImm+BX02m5XD4ZDT6Vzyc3i9Xnm9XmUyGU1PT1fCRfl8vhLOyuVyS4JFTqdTNptN4XBYs7Oza9aRTqeVz+fldDrl8Xg0MDCgbDYrr9dbCQQVCgXNzs4qFotVFcRyuVzq6empqXMVVjebS+kno79WrlzU+fScbIa5pAORJNkMU9e27tX+QLvy5aJejo/rVHxcqeLvfh+nsknlSgW5ahxP9sLsiB6bOqU3dF2mAX/rmsd2eEL6n2ce0009RxRyrjySDwAAANuDTkU709jY2JJxaW9+85urPtcwDN188816+eWXJUn/9m//pjvvvHPF181PPvnkkotIatnH7Xbr9a9/vR544AFJ0gMPPECoCAAgiVARADStwTVCRTbD0CeP7NUf7O2uY0V4fVfXqo/991der5lcTmVJfrtdrW63ypalb587qx+OjCw59uaeXrVeMLoEAICdotoQyeI27tV2CyoWixocHFRnZ+eyMWiWZen8+fPq6urS6Oiostms2traFAgEVCgUVC6Xl72pahiGIpGIAoGApqamFI/Hq6pjsVwup/HxcbW1tSkcDiscDiubzSoej6/bvSgcDsswjMo4toVwld1ul8/nk8vlksvlqnRn8ng86u3tVSaT0dTUlDKZjPL5vLxebyXIVCqVFI/H5Xa75XA4FI1GFQgENDY2tmZ4Kx6PV8auuVwuOZ1O5fN5TU9PK5lMVh2UstlsikQiCofDla5Q2LhkIasX5kZ0fPqserwRXde6Tx2eoEzDVK5U0HBqRo9OnNRsPqWbuo/oYKizcm63N6LXdx5WppjXUGpa/2vylObyaf149Nd6c+9VMqsM4D05dUYn5kb09v5rqx6dFi9k9Njkad3Uc2RDPzcAAACwm/ziF79Y0mH2Na95TU3nv+Y1r9FXvvIVSVIymdSTTz6pG264YcV9Fng8Hl177bU177MQKjp79qzOnTungYGBmtYAAFx8CBUBQBOK5wuay6/8oZDDNPTJI/t0257VAy6ov6jbregKQaH/vP+A+nx+/dPpU0oVi5Kk69va6l0eAABbptrxZwtBGcuyVCqtPq7pQpZlaWxsTLlcTtFotNLRZyGYZFmWUqlU5Z9+v1/nz59XsVjUnj17VuxkZLfb1dnZqXA4rImJCWWz2arrkeYDOclkUqFQSJFIRG63W263W62trUomk4rFYspklgfCvd75Li65XG5J4KdYLCoWi1VuBwIBtba2VroGeTwe9fX1KZ/PyzAM+Xy+Jd2IPB6PxsbGKoGmSCSi9vZ2jVwQZF6sXC7Lsixls1klk0klk8mqO0hJ83/vLS0tCoVChIm2QKaY178OP6PR9Pzf62XhHr2p+/Ilx7hsDu0Pdmh/sEMn4+M6EFx5bIHH7tShUJcG/K364chzOpWY0D+ffVzXtu7V3sD6zzvtpk3v2vdqOczqu5++d/+Ncm5i1BoAAAA2xjRWH32M5vXUU09Vvg8Gg1WPJFtw4MCBJbePHz++Yqjo+PHjle8HBgZqHlW90j6EigAAvAMEAE1otdFnB4M+ffbqgzoU8te5ImzGazs7dXkkoi89/5yGUilFVhnpAgDATrD46srVGIZR6WhUzfErmZmZkcvlks/nk2EYymQycrvdMgxDTqezMg5sdna2EuhJJBIKrjCqdIHb7VZfX58SiYQmJydrCjst7DU3N6dgMKhIJCKn06lgMKhgMKh8Pl/pXlQsFuXz+SoBrPX2SSQSSiQS8vl88vv98ng8lTFp0nwoaqHj0cLPsbhD0tzcnFpaWhSNRjU9Pb1kbcMwFAqF5HK5dObMGRV/G3Kult1uVyQSIUy0xRKFrA4GO5QoZJQoZHVFpG/N41cLFC3msjn0H/uu1iMTL+v49Fl9b+gp7fW36ebeK+Q0V3/756qW/prrJ1AEAADQGIw/25lOnz5d+X4jIZ2F16ALF5ucOXNmxeMW379nz56a97mwttX2AQDsLrwLBABNaKXRZ3dc0q8/PNRX9RgDNJcWl0ufv/oa/V/PP6ezyaSORCKNLgkAgA2pJpTicDhW7BhUK8uyFI/H5XK5lMlkFA6HJUmtra0aGRmpdNxZMD09Lb/fv2b4xTAMBYNB+f1+zczMaHZ2tqbgk2VZisViisVi8vv9CgaD8nq9cjqdam1tVTQaVblcXtLRye12y263r/tnl0qllEqlJM2PKOvq6pLT6ZRhGPJ6vUqlUpWQVTQaVT6fl2ma8nq9stlsikaj8vl8Gh4eVrlcls/nUyQSUSwW0/j4eNU/ozQfJmppaVEwGCRMtA3aPUG1e4LaF2jX/3fmV9qqZ/iGYejGjkOKuvz699HndSY5qW+deVxv6btKIad3i3YBAABAo1TfW3Jr5XK5qkcm19PCSOlmt7irbEtLy4bWaGlpqYSKVupSm8/nNTk5ual9vF6v3G53pbvvWt1wAQC7B6EiAGhCg8n0ktvvP9Sn919S+xXEaC4O09T7Dh7U//38r/V/HD2qQI3tZwEAaAbVhIoWB4pM05Rpmks661Qrl8spmUyqu7tb2Wy28mbxQvDmQoVCQWNjY+ru7l431GSaplpbWxUMBjU5ObnqmmtZCDUthH58Pp98Pt+yFvM2m0179uxRLBbTzMxMVR2ScrmcBgcH1dXVVVl3IXR0+vTpyn3lclm5XE7xeFw2m02dnZ3au3evksmk4vG4hoeHa/qZFsJEoVBoS4JhWJvf4dZ/6D6y5X/Wh8PdGknP6oW5EU3lEvp/T/5Sl0d6dSTSq4jLJ5tBUAwAAADVu++++/TlL3+50WUs84lPfELHjh1rdBnrWnwxjNvt3tAai89bvN5q921mn4VQ0Ur7AAB2H0JFANCEziV+16noxo4W3XGYucUXi06PV9lSUf/t6af16SNH1O7xNLokAABqUk2o6MJj7Ha78vl8zXstXIU5MTEhwzBkmqZSqZTm5uZWPSeVSmlyclLt7e1V7eF0OtXT01M5byN1Wpa1pMuQ0+lUKBRSOByuhEVM01QkElE4HFYikVAsFquMbVtNuVzWyMiI+vv75fP5lty/MDJtsfb2dpVKJY2MjFTeBK6Ww+GodCYiTFRfA/7WbVm3xxvRC3PzVxaXZem52SG9GBvV73VeqsPh7m3ZEwAAANurUePPqh8cjZUs7vK0FaGilbpGXXjfdu0DANh9CBUBQBNaGH/W4XHpz6451OBqsNVy5bJm82n916eO6z/t36/XdHQ2uiQAAKpWTZedUqmkUqlUGQHmdDo3FNZZsBC+KRaLVY3impubk9PprIxLq4bP55PX69Xc3Jymp6c31FlpwULbecMwltWwMH4tGAwql8tpbm5OiURi1f0Mw5DT6ZRpmvJ4PKsGkSKRiLxerwYHB1UoFKqulTDRxStVXPoBQMjh0a0D1yrMGDQAAIAdyzSqH92M5rH4QpuNvjZefJ7T6Vxxj9WO38p9AAC7D6EiAGgyxXJZo+msbIb059deIr+D/6u+mJzPpJX+bfcGu2nKwegJAMAOU02nImm+TXooFJIkeTyeLWmbnsvl5PV6ZbPZ1g03TUxMyOPxyOVyKZFIaGZmRr29vZWg00oMw1AkElEgEND09LRisdim6k0kEmsGm1wulzo6OtTe3q5CoaBMJqNsNqtMJlN5I9eyLMXjcYXDYUWj0RXHmQUCAfn9fg0NDVUV+pLmw0TRaFSBQIAw0UXqpdhY5ftWl1+39l8rn8PVwIoAAACwWbYGPXX/0Ic+pPe9732N2XwNCyOym53X6628xluvY+1qFp/n9S6/UODC+7ZrHwDA7sMn1QDQZIZTWZUsS3dc0q8rWoKNLgdbbCo7f8V4j9erTx+5Qq0bbEMLAECjVBsqisfjlVBROBxWsVjU3NycLGvjV9YWCgUZhiG/319V4CedTsvlcskwDOVyOZ0+fVq9vb3yrDN+1G63q6OjQ4FAQOfPn6/6Z75QNpuVZVnrhnYWuhEtjE2T5kecLQSMFvb3er2VbkWmacrv98vtdqtQKGh4eLiqP1vCRLvDyfi4pnLzQb6I06e3D1wnr52rjAEAAHa6Ro0/c7lcOybA04w6OzsrY7zXGue9lsXndXV1LXvc5/MpEAhUxmRvZJ9sNrtklPZK+wAAdh9CRQDQZIaSGXV73Xrvwd5Gl4JtYErq9/n0p1deJZ/D0ehyAACoWbUBm0wmo1wuVwn1tLW1KRKJaHZ2VrFYbEPjxaampuRwOKoKFbnd7kpAZ6Flu2VZGhoaUmtrq1paWtbdz+v1amBgQBMTE5U3ZmthWZby+bxcLpcymYymp6dVKBRkmqZsNptsNptM01zxyzCMymiyxeEft9utTCajUCikbDareDxeVS02m03RaFShUIgw0UUuls/oobETkqROT0hv679GbhvPOwEAAIBGGRgY0IsvvihJOnv2bM3np1IpTU1NLVlvtX2ef/75De8zODi45GKV1fYBAOwuhIoAoMkMpzL63NUHZTcZi3UxanW79SdXXEmgCACwY1U7XkuSRkZG1N/fL7t9/qWn3W5XW1ubWlpaNDU1VfN4sXK5rJGRkUpYaC3hcFjmb59PLey/YGpqSul0Wt3d3ZVjVmOz2dTV1SWfz6eJiYmaw1CZTEYul0uzs7NKp9M1nStJpmnK5XLJ4/HI4XBUrjadnZ2t6nzDMNTS0qJIJLLuz4qNG8/ENJ1N6rJIT0PrmMkl9cC5J5Up5RVyeHRr/zVyESgCAAC4aDSqUxE25+jRo/rBD34gab6D0PT0tKLRaNXnnz59esntq6++etV9FoeKSqXSmiPAN7oPAGB34R1FAGgyr+uK6mh0/Q/KsDO1ezwKORk9AQDYmSzLqilUVCwWNTg4qEwms+R+m82m9vZ2hcPhDdVRTRhpcYBmofPPYul0WufOnat6z2AwqIGBgXVHp11ooXV8LW/kLlYul5XJZDQzM6Px8fGaxseFQiHt3btX0WiUQNE2Mw1DZ5ITDa1hMhPXt84+rlRxftzuq9oPECgCAAC4yJhGY76wOTfccMOS2w8//HBN5z/66KOV751Op17xilesu08qldJTTz1V0z6PPPJI5fv29nYdOnSopvMBABcn3lUEgCbT46vtgyoAAIB6qXb02YXnDA0NaWZmZkkgZmEkWmdn57aM40qlUktur7RHoVBQLper1Dk5OamxsTFNTEwoFostC1A5HA719vaqs7NTPp+vqrpTqZTK5bK8Xu8mfpra+P1+7dmzRx0dHcu6NGF7BBwenUlMaiw915D9k4Ws/mXwuLKlQuW+Dg8XKgAAAFxsbIbVkC9szuHDh5cEdBa6FlXrRz/6UeX7N73pTQoEAise99rXvnbJxTu17FMsFvXQQw9Vbt96662MzgYASCJUBAAAAACoUi1dii40NTWl0dHRZcGihQ5Abrd7K0qsiMViS8aNrdSpx263y+VyybIsjY2NaXZ2VolEQnNzcxofH9fp06c1NjamfD5fOSeXyymdTsvn82lgYECdnZ3y+/2rvtlaKpUUi8XqEipyu93q6+tTd3e3nHRGrCu3zaFeX4t+NPq8ZnOp9U/YQmXL0veHn1WmNP97ejjUrf+091UKOTf+OzebSylfrj1ECAAAAGBld9xxR+X7n/zkJ3rxxRerOu+xxx7Ts88+W7n9wQ9+cNVjnU6n/vAP/7By+5vf/KYmJyer2ue73/2uxsfHJUkul2vJOgCA3Y1QEQAAAACgKhvpVLRYKpXS3NzyTi5Op1N9fX1qbW3d8Jgut9ut7u7uJfeNj4+rXC5LWnn8WG9vryQpkUgsG9EmzY97SyQSOnfunM6fP6/BwUENDg4qHo9rYmJCZ8+eVaFQUFdXl/bv36+uri4FAoFlAaPZ2VnZbLaaR6dVy+FwqLu7W319fdu2B9bX6g4olk/rH049ou8NPqVfTZzU87NDShSW/25tpV9NvKyxzPy/V1e19OumniNq8wQ3teaDQ08pXyJUBAAA0GzMBn1h82699VYdOXJE0vxrzc9+9rNLLoRZSTKZ1Oc///nK7be97W2VNVbz/ve/v/LaOJPJ6LOf/ey6FwidP39ed999d+X2Bz7wAXV0dKx5DgBg9+C5AAAAGzSZXf8Dop+fH9P/8/JL+tehoTpUBADA9qo2VGSz2Vbt3LPaGoZhqKWlRfv27VM0Gq25Nr/fL7/fr+7ubtntdhmGoUKhUAkxXRgqCoVCcjqdKpfL6165aVmW4vG4stnsssemp6c1ODioTCYjv99fCRgtdAzq7e1Vf3+/JG15Nyabzab29nbt2bNnzW5JqA+X6ZAkWbJ0Jjmpx6dO66djJ/QPJx9RsbzxLl9rOTE3qienz0qSronu0es6D2/Jukeje+Q0GZ0HAADQbEyjMV/YPNM0dffdd1dGl504cUJ33HGHxsbGVjx+bGxMH/zgB3XmzBlJUl9fn+6888519/H5fLr77rvlcMy/Pnn44Yd17NixFS/wkaSXXnpJH/jABzQ9PS1Juuqqq/Txj3+85p8PAHDx4h0iAAA26NmZGU1nc/rf9+1b8fEvPvOMXozNv1h77/4D9SwNAIBtUU2oqK2tTeFwWJI0Nzen6enpSrcgaT78sxbTNBWNRpVMJpXL5aqubWZmRg6HQ4FAQH6/X5ZlLbkaMxqNVq4Cdblcamtrq5y3mbFu0vxItJGREblcLrW0tMjv9y/pGFQsFpVIJBSPxze1zwLTNBWJRBSJRDbc2Qlbz21zLLltytAVLX26JrpHdnN5p6zNemF2RD8e+7UkqcMd1I0dh7Zs7ajLr+lcUl3e8JatCQAAgM0j4FNfxWJRv/zlL5e8ppVUCeBI8x15f/rTny55PBQK6Zprrlm23r59+3TffffpIx/5iGKxmI4fP65bbrlFN998s6655hq1tLRoenpaTz31lH74wx9WOur29PTo/vvvVygUqqru6667Tl/60pf0J3/yJ8rlcvrxj3+sm266SW95y1t05MgRBYNBTU5O6tFHH9XPfvYzFQoFSdJll12me++9l3HaAIAlDMuyrEYXAQDAxSRbKunn58f0xOSUJrMZzebz+oOBPbp1YKDRpQEAsCnnz59fMxhjs9m0d+/eJUGXYrGoyclJJRIJ2Ww27du3b92OOqVSSWfPnt1Q2KetrU2RSGTFx8rlssrlsuz2+etrCoWCzp49q61+Wex0OuXz+ZTP55XNZjcdWlrgcDgUiUQUDAYJEzWh04kJPTj0tKT5QNF/7L9aA/7WLd/n2ZlBnYyPayQ9W7nvtoFr1eervcPXWnuMZ+K6qWft0QoAAAAXo1KppFOnTlVu79+/f8Vxyo3wP898vyH7vnPvmxuyb6ONjIzojW98Y83n9fT06Cc/+cmqjw8PD+vP//zP9fDDD6+5jmEYeutb36o777yzcvFOLU6cOKE777xTzz333JrH2e12vfvd79ZnPvOZLe+wCwAXs2Z+zrCV6FQEAMAWc9tsurmnVzf39EqSRlIpjaRTDa4KAIDNyWazSiQSax4TDoeXhV3sdru6uroUCoVULpfXDRQVi0UNDw9vOIiTSqVWDRWZprmkvqmpqS0PFElSPp9XPp/fsvV8Pp/C4bC8Xi8jzpqY1/a7q3kPhjq3NFCULRX0xNRpPTV9Tl6bUz2+iA6HujWUmlaxXNrSQJEkuWwOXdnSt6VrAgAAYPNsBn0C6slut8s0zWWditbjcrnWfLy3t1df+9rX9PTTT+u73/2unnzySQ0NDSmbzcrn82lgYECveMUrdNttt+nQoY13JL300kv1zW9+U4888ogefPBBPfPMMxodHVU+n1cgEND+/fv16le/Wm9/+9vV18fzfwDAyggVAQCwzXp8PvX4fI0uAwCADSuVShobG1s3gLPWFY1er3fdfdLptEZHR2t+w3axbDarZDIpn8+3YgCnVCpVAlLrhaQayTRNBYNBhcNhWs/vEK5F48/a3IEtW/dUfFzfH3lWAbtbb+y6TIfD3bIZ8+E4y7J0OjGxZXstuCTUteVrAgAAYPMYf1ZfHR0dOnHixLatf/ToUR09enTb1pfmux3deOONuvHGG7d1HwDAxYtQEQAAAABgTalUSoVCYd3jRkZG5PF4FI1GqwoRLWZPNjSmAAAb6UlEQVRZliYnJzcVKJLmR5yNjo5WRoU5HA5ls1nlcjlls1kVi8VNrb/dnE6nwuEwI852oIjLJ5thqmSVVdzk7/FiPxp9Xq9o3adrW/dWwkQLDMPQ/mDHlu0FAACA5kaoCAAA1BuhIgAAAADAmqoJFC3IZDKanp6uOVRUKBSUy+VqLW3N9SYmtr6Dy3YwDKMy4szj8TDibAc7FOzUidioksXslqwXz2f05p4rtSfQtiXrAQAAYGcjVAQAAOqNUBEAAAAAYE31CLk4HA6FQiHFYrFt36tZeL1eBQIB+f1+2Wy2RpeDLdDpDelEbFSJwtaEioJOj4JOz5asBQAAAAAAANSKUBEAAAAAYE0ul6um4wuFgizLWjOMdOHjhmGoo6NDbrdbExMTsixrw/U2M7fbrUAgoEAgILudl+QXm0K5JEkaTs0oVyrIZXM0uCIAAABcTGx0KgIAAHXGO5gAAAAAgDV5vV45nU7l8/mqji8WixoeHlZbW5vcbrcKhYKSyaTy+Xzlq1wuy+12y+PxKBgMyul0SpJCoZDcbrdGRkZULBa388eqG6fTqWAwqEAgIIeDkMnFLFOc/3ekZJX14tyorooONLgiAAAAXExM4+K8+AIAADQvQkUAAAAAgDUtdBEaGhqq+pxMJqPBwUF5PB5ZlqVsdvk4qEwmo0wmo5mZGUWjUUWjUUnznZFsNtuODhXZ7fZKkKjWTk/Yuc5nfje+77Gp0zoQ7JTPsfTv/1xySlPZhKIuv7Klgrq8YYWc3nqXCgAAgB3IbHQBAABg1yFUBAAAAABY10JHoXg8XtN5mUymquNmZmbU0tJSGYm2EwNFNputMtrM7XavOf4NF5/pbFKj6dnK7WypoAcGn9Db+q5R0OmRJM3l03pw6GmVrHLluNd2XKKjdDQCAAAAAABAEyJUBAAAAACoSmtrq5LJpMrl8voH18iyLBUKBTmdTpXLZZVKpS3fYyvY7XY5nU7ZbDaVy2VZliW73a5AICCv10uQaAcpWWWNpef07MygBlPTes/+GxRweDa0Vtkq6ydjv9aFwyhmcin9j1OP6FCoS36HS8/NDBEoAgAAwIaZvNwAAAB1RqgIAAAAAFAVu92unp4ejY6ObkvoZ3x8XNFoVDabbcvXrpXNZpPT6ZTL5Vryz2aoDVtjJDWrB4eeVtGa/13+6dgJ3dp/zYbW+tXEySWjzxYrWCX9em542f2vbN1HoAgAAAA1sREqAgAAdUaoCAAAAABQNY/Ho4GBAY2OjiqbzW7p2plMRsPDww3r9uPxeBSNRuV0OmW383L5Ytfvj+rW/mv03aHjKpRLOpec0mBySv3+1prWeX52SE9On63pnMvDvbq+/UBN5wAAAACmcWFvTAAAgO1lNroAAAAAAMDOYrfb1dfXp1AotC3rW1b93yh3OBzq7u6W1+slULSL9PgienPPlZXbvxx/uabzB5PT+unYiZrO6fO16Pe6Dtd0DgAAACDNjz9rxBcAANi9CBUBAAAAAGpmGIY6OjrU0dHRsM5CG2Gay18GG4ah7u5uRptdRCYz8aqP3RNok8Oc/7ufyiV0LjlV9bn9/qi8NmfVxwcdHt3Se5VMg7djAAAAAAAA0Py4/BIAAAAAsGGhUEhut1uJRELpdHrLR6LVym63y+FwyOFwVL5f/E/TNFUsFpXJZJTNZpXNZtXS0iKXy9XQurG1pnNJtXmCVR2bLGRVKJcqt8+n5zSwxgg0y7KWBOmibr/SqZl19zEk3dRzRC6bo6q6tttQakaPTZ7S7Xte0ehSAAAAUCW6BgEAgHojVAQAAAAA2BSXy1UJ5ZRKJaXT6cpXoVDY1r3dbrcCgYC8Xq8cDseKnYguZLfbFQgEFAgEtrU2NM7hcHfVx6aKuSW3s6W1f2cv7Mw1kp6tap+j0QF1eyNV17XdvDanRqusHQAAAM2BfpcAAKDeCBUBAAAAALaMzWZbEtgplUrK5/PK5XLK5XLK5/PK5/MyTVM2m002m03lclm5XE7lcrmqPVwuV2UPh6M5ur5g5+rwhHRFpE/PzQ5JknLlYlXnPTz+kp6dGVTZstY91mt36vq2A5uqc6t57E7d0ntVo8sAAABADXbQ5GkAAHCRIFQEAAAAANg2NptNHo9HHo9nzeMsy1KxWKwEjxaHkCTJ6XRWgkROp7MepWMX+b2uS+W2OfT41GnN5lKrHjebS+mxyVN6KX6+pvVf1XZADtO22TK3lNfu1IFgR6PLAAAAAAAAQBMjVAQAAAAAaDjDMORwOJZ1HrIsS5ZlVTXWDNiMV7Uf0GwupZOJcf38/Iu6seOQbMbvfu9+PTush8ZOqKz1OxMt5rE5dVm4Z6vLBQAAwC5EoyIAAFBvhIoAAAAAAE3LMAwZ9PhHnRyNDuhkYlzPzAzqZHxc3d6wnKZd5zMxTeeSG1qzyxvidxgAAABbgqeVAACg3ggVAQAAAAAASGpx+Srfp4o5vRwf3/Safb7optcAAAAAJIn+rQAAoN4IFQEAAAAAAEgqWauPNou6/Lqh/aAMw9ATU2c0mp6tas3FI9QAAACAzTCM2kbxAgAAbBahIgAAAAAAAEmZYn7F+7u9Eb29/xrZTZskacDfqmK5pFQxr4fHf6PTiYlV1xxMTuvySO+21AsAAAAAAABsJy6XAwAAAAAAkHQ2ObnsPodp0y29V1YCRQvspk0hp0c39RxRwOFedc2TiXE9OzO45bUCAABg9zEa9AUAAHYvQkUAAAAAAGDXm8ul9OTUmWX3X9XSL6/dtep5TtOuW3qvkuOC0NFiPzv/ov7h1CM6MTeqklXeknoBAACw+xhGY74AAMDuxfgzAAAAAACwq41nYnpw6GnlysUl97tMu66J7ln3/A5PSFdH9+ixyVOrHjOTS+rfR5/XIxMvaX+gQ61uvyJOv0JOj/xrdDoCAAAAFpDvAQAA9UaoCAAAAAAAXBSGUzP6/vCz+t/2Xq+Q07Pu8WXL0vOzQ/rl+MsqWqVlj1/bulcum6OqvUvl6joQpYt5PTc7tOQ+l2lXmyeoVpdfre6AQk6vWl0BOW28bQMAAAAAAIDG4d0pAAAAAACw4yUKGX1/+FllSnl96+xj+g/dl6vf37rmOaZhqN/fKodp02h6TqcTE8qWCpIkr92pK1v6q9r7bGJST8+c23DtuXJRw6kZDadmflebDLW6A2r3BBV0eOSzu+S2ORR2ehV2+Ta8FwAAAHYuk1ZFAACgzggVAQAAAACAHS2ez+g7g8eVKeUlSaliTv8yeFxt7oDCTp+8dqe6PGEdDHUuOzfs9Crs9OrScI9eXz6sn59/Ub+eG9FVLf1ymLZ19/7VxEk9MXVGlqwt/ZnCLp9e2bZfnZ6QbIapklWWJUvTuZTGs3H1eCOMTQMAANhlyBQBAIB6I1QEAAAAAAB2rBfnRvWL8d9UOgwtNplNaCqb0NHogPYG2tZdy27a9Htdl2o8E1e3N7LmsZZl6efnX9SzF4wy2wqGpLf1Xa3gCiPcvHbXlu8HAACAncEgVQQAAOqMUBEAAAAAANiRHp14WU9MnVn18bDTq5u6j6jTG656TdMw9e79r173uH8ZfFJDqRmZMnQw1Kkeb0QdnpAiTp9KKqtQLqlUnv9n0Sopns/oVGJcZxJTKlqlNddu94RWDBRVYyITV6qY0x5/qwzD0GQ2rp+OvqDXd12qDk9oQ2sCAAAAAABgdyJUBAAAAAAAdiS7sfp4shaXX7fveYXcNse27H1JqEtBh0dHowNqcfmXPGaTKae59C2XDk9IB0OdypeKejE2qudnhzWdS664dp+vZcN1RV1+/XDkOf1w5DnZDVNhl0/Xte0jUAQAAHARoFERAACoN0JFAAAAAABgR4q6/SveH3R49Pb+a7YtUCRJl4Z7dGm4p+bznDa7rmzp15Ut/RpNz+rp6XM6lZhYcozDXD0stR6baeqN3ZfpW2cfV7e/TW/tu0qmYW54PQAAADQPQkUAAKDeCBUBAAAAAIAdyW93L7vPY3Pq7f3XyO9Y/liz6fZG1O2NaCg1rV+c/02lc9FkNrHpdQ+HunRjxyUEigAAAC4iJqkiAABQZ7yzBAAAAAAAdqTABcEhp2nX2/uvUdjla1BFG9Pni+pde1+lq6N7JEmn4xOK5dObWvMNXZfJa3duQXUAAABoFkaDvgAAwO5FqAgAAAAAAOxIHrtTtt924jFk6K19R9XmCTa4qo2xmaZe03FIb+y6TJYsPTF1ZlPr2TcxQg0AAAAAAACQGH8GAAAAAAB2ML/DrVg+raPRAfX6WhpdzqZdHumVw7Tpx6O/1nWtexVyehtdEgAAAJqEYViNLgEAAOwyhIoAAAAAAMCOZTNMBR0eXd+2v9GlbJlDoS7ZTZv+bfgZvWPgOrlsjkaXBAAAgCbAKDIAAFBvhIoAAAAAAMCOVLLKmsul9Lb+q+W4yMZ97Qu0y2aYenj8Jb2p+/JGlwMAAIAmYJAqAgAAdWY2ugAAAAAAAICNmM4mdSDYoX5/a6NL2RYD/la5bQ6dSUxWdbxlWZrKJra5KgAAAAAAAOwWhIoAAAAAAMCONJKe0eWR3kaXsa2uie7RC3MjVR07nJ5VxOXb5ooAAADQKGaDvgAAwO7F+DMAAAAAALAjnU5M6kCwo9FlbCuP3ak3915Z3bE2h2wGH/sAAABcrBh/BgAA6o1QEQAAAAAA2HEyxbzG0nPKlYoKOBpdzfaqNijU6g5scyUAAABoJDJFAACg3ggVAQAAAACAHedcckqWLA2nZgjTAAAAYFegUxEAAKg3emIDAAAAAIAd5zexMUnS0zPnZFlWg6sBAAAAAAAALj6EigAAAAAAwI4ynJrRYGpaklQol2Ts8ku2JzJxlaxyo8sAAADANjMa9AUAAHYvQkUAAAAAAGBHeXTiZUlSpyek9+y/ocHVNNb5TEwn5kZkM3iLBwAA4GJnGo35AgAAuxfvOAEAAAAAgB1jIhPX+UxMLS6fbhu4Tl67q9ElNcxUNqFvn31CXd5wo0sBAABAHdCpCAAA1BuhIgAAAAAAsGM8PzskSXpj1+VymLYGV9M48XxGDw49raJVUp8v2uhyAAAAAAAAcBGyN7oAAAAAAACAauRLRb0UP68jkd5d3Z2nbJX107EXFC9kFHR45LE7G10SAAAA6sAwrEaXAAAAdhlCRQAAAAAAYEf4TWxMDsOmG9oPNrqUhjINU28fuFZnEpP61cTJRpcDAACAOmEUGQAAqDdCRQAAAAAAYEc4nZjQ0eiAXDZHo0tpCnsDbQo43LIsS4bBR0wAAAAXO57yAQCAejMbXQAAAAAAAEA1YoWMjkR6G11GU2l1BwgUAQAAAAAAYFvQqQgAAAAAAOwIf3jgNY0uAQAAAGgYouQAAKDeCBUBAAAAAAAAAAAATY7xIwAAoN4IFQEAAAAAAAAAAABNjqm3AACg3ggVAQAAAAAAAAAAAE2PVBEAAKgvOiUCAAAAAAAAAAAAAAAAWIJORQAAAAAAAAAAAECTM+hUBAAA6oxQEQAAAAAAAAAAANDkDIMBJAAAoL4IFQEAAAAAAAAAAABNj05FAACgvog0AwAAAAAAAAAAAAAAAFiCTkUAAAAAAAAAAABAkzPoVAQAAOqMUBEAAAAAAAAAAADQ9AgVAQCA+iJUBAAAAAAAAAAAADQ5wzAbXQIAANhlCBUBAAAAAAAAAAAATY9ORQAAoL6INAMAAAAAAAAAAAAAAABYgk5FAAAAAAAAAAAAQJMz6FQEAADqjFARAAAAAAAAAAAA0OQIFQEAgHojVAQAAAAAAAAAAAA0PbPRBQAAgF2GZx8AAAAAAAAAAAAAAAAAlqBTEQAAAAAAAAAAANDkDIPxZwAAoL4IFQEAAAAAAAAAAABNj1ARAACoL0JFAAAAAAAAAAAAQJMzCBUBAIA6MxtdAAAAAAAAAAAAAAAAAIDmQqciAAAAAAAAAAAAoOnRKwAAANQXoSIAAAAAAAAAAACgyTH+DAAA1BuhIgAAAAAAAAAAAKDJGQahIgAAUF+EigAAAAAAAAAAAICmR6gIAADUF8NXAQAAAAAAAAAAAAAAACxBpyIAAAAAAAAAAACgyRn0CgAAAHVGqAgAAAAAAAAAAABoeow/AwAA9UWoCAAAAAAAAAAAAGhyhkGoCAAA1Bd9EgEAAAAAAAAAAAAAAAAsQaciAAAAAAAAAAAAoOnRqagZZLNZff/739e///u/64UXXtDU1JQMw1Bra6suv/xy/f7v/75uuukmOZ3ORpcKAMCmESoCAAAAAAAAAAAAmpzBAJKG+9d//VfdddddmpiYWPbY8PCwhoeH9YMf/ED9/f36/Oc/r9e+9rUNqBIAgK1DqAgAAAAAAAAAAABoenQqaqS//uu/1te//vXK7UOHDumWW25Rf3+/SqWSzpw5o+9973saGhrS4OCgPvShD+lP//RP9f73v79xRQMAsEmEigAAAAAAAAAAAIAmZxAqaph77rmnEihyOBz63Oc+p/e85z3Ljjt27JjuuecefeUrX1G5XNZdd92lcDis2267rd4lAwCwJeiTCAAAAAAAAAAAAAAreOaZZ/TlL3+5cvsv//IvVwwUSZLNZtOxY8f0iU98Ysnxw8PD214nAADbgVARAAAAAAAAAAAA0OQMw2jI12531113qVQqSZLe8IY36Pbbb1/3nI9//OM6fPiwJCmdTutv//Zvt7VGAAC2C6EiAAAAAAAAAAAAoOmZDfravR5//HE99dRTldsf+9jHqjrPMAx95CMfqdx+8MEHNTo6uuX1AQCw3Xb3MwEAAAAAAAAAAABgBzAa9L/d7IEHHqh8393drSuvvLLqc9/whjfI5XJJksrlsr7zne9seX0AAGw3QkUAAAAAAAAAAAAAcIGf//znle9vvPHGms51u9267rrrKrd/9rOfbVldAADUC6EiAAAAAAAAAAAAoOkZDfranUZGRjQxMVG5feDAgZrX2L9/f+X75557Tvl8fktqAwCgXggVAQAAAAAAAAAAAE3OMIyGfO1Wp0+fXnJ77969Na+xZ8+eyveFQkEjIyObLQsAgLqyN7oAAAAAAAAAAAAAAOtpTK+AXC6nXC7XkL3X4nK55HK5tm390dHRJbcjkUjNa1x4zsjIyIbCSQAANAqhIgAAAAAAAAAAAAAruu+++/TlL3+50WUs84lPfELHjh3btvUTicSS2x6Pp+Y1LjwnmUxuqiYAAOqNUBEAAAAAAAAAAADQ5Axd0qCdf9igfRvrwu5Mbre75jUuPKcZOz4BALCWxvRJBAAAAAAAAAAAAIAm5XA4ltzO5/M1r3HhOU6nc1M1AQBQb3QqAgAAAAAAAAAAALCiD33oQ3rf+97X6DKWcblc27q+1+tdcjudTte8xoXnXLgmAADNjlARAAAAAAAAAAAAgBW5XK5tD/A0o87OziW35+bmal7jwnO6uro2VRMAAPXG+DMAAAAAAAAAAAAAWGRgYGDJ7XPnztW8xuDgYOV70zTV19e36boAAKgnQkUAAAAAAAAAAAAAsMj+/fsVCAQqt0+ePFnzGqdPn658f+mll8rj8WxJbfj/27tjlVbyMIzDX5IjeAEWViIEbeysBCtJoTZi6y3YWAgptLS2sLCzFbEUUgg2NlroBSgBEXIDomAlyZxuOJ+cZc/uGidLnqfKP8zAWw7kRwaA7yIqAgAAAAAAAPhFvV6PpaWl8nxzc/OP7v/4+Ij7+/vyvLy8/GXbAOC7iIoAAAAAAAAAPtnY2Cg/93q9eHh4+ON7b29v4/39vTxvbm5+6TYA+A6iIgAAAAAAAIBPWq1WzM7Olufj4+M/vvfk5KT8vLKyEs1m8yunAcC3EBUBAAAAAAAAfNJoNKLdbpfnq6uruLi4+Nv7zs/P4+7uLiIiJiYmYnd3d2gbAWCYREUAAAAAAAAAv9FqtWJra6s87+/vx9nZ2V9ef3p6GgcHB+W53W7H3NzcUDcCwLDUiqIoqh4BAAAAAAAAVev3+/H09FSem81mNBqNChcxCvr9frTb7eh0OuV38/Pzsb6+HjMzM1EURfR6vbi8vIxut1tes729HTs7O1VMBmDIxuWZ4UfVAwAAAAAAAABGVaPRiMPDw1hcXIyjo6N4fX2NbrebAqJfTU9Px97eXqyurn7zUgD4Wv6pCAAAAAAAAGJ8/nWAf+/t7S06nU5cX1/H4+NjvLy8RK1Wi6mpqVhYWIhWqxVra2sxOTlZ9VQAhmhcnhlERQAAAAAAABDj8wMhAPDfjMszQ73qAQAAAAAAAAAAwGgRFQEAAAAAAAAAAImoCAAAAAAAAAAASERFAAAAAAAAAABAIioCAAAAAAAAAAASUREAAAAAAAAAAJCIigAAAAAAAAAAgERUBAAAAAAAAAAAJKIiAAAAAAAAAAAgERUBAAAAAAAAAACJqAgAAAAAAAAAAEhERQAAAAAAAAAAQCIqAgAAAAAAAAAAElERAAAAAAAAAACQiIoAAAAAAAAAAIBEVAQAAAAAAAAAACSiIgAAAAAAAAAAIBEVAQAAAAAAAAAAiagIAAAAAAAAAABIREUAAAAAAAAAAEAiKgIAAAAAAAAAABJREQAAAAAAAAAAkIiKAAAAAAAAAACARFQEAAAAAAAAAAAkoiIAAAAAAAAAACD5UfUAAAAAAAAAGEWDwaDqCQDACBqXZwRREQAAAAAAAPzG8/Nz1RMAACrj9WcAAAAAAAAAAEAiKgIAAAAAAAAAAJJaURRF1SMAAAAAAACgakVRxGAwqHoGAPA/U6/Xo1arVT3jy4mKAAAAAAAAAACAxOvPAAAAAAAAAACARFQEAAAAAAAAAAAkoiIAAAAAAAAAACARFQEAAAAAAAAAAImoCAAAAAAAAAAASERFAAAAAAAAAABAIioCAAAAAAAAAAASUREAAAAAAAAAAJCIigAAAAAAAAAAgERUBAAAAAAAAAAAJKIiAAAAAAAAAAAgERUBAAAAAAAAAACJqAgAAAAAAAAAAEhERQAAAAAAAAAAQCIqAgAAAAAAAAAAElERAAAAAAAAAACQiIoAAAAAAAAAAIBEVAQAAAAAAAAAACSiIgAAAAAAAAAAIBEVAQAAAAAAAAAAiagIAAAAAAAAAABIREUAAAAAAAAAAEAiKgIAAAAAAAAAABJREQAAAAAAAAAAkIiKAAAAAAAAAACARFQEAAAAAAAAAAAkoiIAAAAAAAAAACARFQEAAAAAAAAAAImoCAAAAAAAAAAASERFAAAAAAAAAABAIioCAAAAAAAAAAASUREAAAAAAAAAAJCIigAAAAAAAAAAgERUBAAAAAAAAAAAJKIiAAAAAAAAAAAgERUBAAAAAAAAAACJqAgAAAAAAAAAAEhERQAAAAAAAAAAQCIqAgAAAAAAAAAAElERAAAAAAAAAACQiIoAAAAAAAAAAIBEVAQAAAAAAAAAACSiIgAAAAAAAAAAIBEVAQAAAAAAAAAAiagIAAAAAAAAAABIREUAAAAAAAAAAEAiKgIAAAAAAAAAABJREQAAAAAAAAAAkIiKAAAAAAAAAACARFQEAAAAAAAAAAAkoiIAAAAAAAAAACARFQEAAAAAAAAAAMlP72Q4v7BkLVkAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "fig, ax = rick.charts.chloro_map(con, data, subway = True, lower = 0, upper = 300, title = 'Growth in Trips', \n", + " island = False, cmap = 'YlGnBu', unit = '%', nbins = 3)" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [], + "source": [ + "query='''\n", + "WITH daily_ave AS (\n", + "\n", + "SELECT * FROM ptc.daily_trips\n", + "), total AS (\n", + "SELECT extract(month from pickup_datetime) as mon,\n", + "extract(year from pickup_datetime) as yr,\n", + "\n", + "CASE WHEN extract(year from pickup_datetime) = 2018 AND extract(month from pickup_datetime) IN (3) THEN 108321\n", + "WHEN extract(year from pickup_datetime) = 2018 AND extract(month from pickup_datetime) IN (11) THEN 161733 ELSE\n", + "avg(count)::integer END as count FROM daily_ave\n", + "GROUP BY extract(month from pickup_datetime), extract(year from pickup_datetime)\n", + "ORDER BY extract(year from pickup_datetime), extract(month from pickup_datetime)\n", + ")\n", + "\n", + "\n", + "SELECT \n", + "CASE WHEN mon = 1 THEN to_char(to_timestamp (mon::text, 'MM'), 'Mon')||' '||yr::text \n", + "WHEN mon = 9 AND yr = 2016 THEN to_char(to_timestamp (mon::text, 'MM'), 'Mon')||' '||yr::text \n", + "ELSE to_char(to_timestamp (mon::text, 'MM'), 'Mon')\n", + "END AS period, \n", + "count FROM total\n", + "'''\n", + "total=pandasql.read_sql(query, con)" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [], + "source": [ + "query='''\n", + "WITH daily_ave AS (\n", + "\n", + "SELECT * FROM ptc.daily_trips\n", + "), total AS (\n", + "SELECT extract(month from pickup_datetime) as mon,\n", + "extract(year from pickup_datetime) as yr,\n", + "\n", + "CASE WHEN extract(year from pickup_datetime) = 2018 AND extract(month from pickup_datetime) IN (3) THEN 108321\n", + "WHEN extract(year from pickup_datetime) = 2018 AND extract(month from pickup_datetime) IN (11) THEN 161733 ELSE\n", + "avg(count)::integer END as count FROM daily_ave\n", + "GROUP BY extract(month from pickup_datetime), extract(year from pickup_datetime)\n", + "ORDER BY extract(year from pickup_datetime), extract(month from pickup_datetime)\n", + ")\n", + "\n", + "\n", + "SELECT \n", + "CASE WHEN mon = 1 THEN to_char(to_timestamp (mon::text, 'MM'), 'Mon')||' '||yr::text \n", + "WHEN mon = 9 AND yr = 2016 THEN to_char(to_timestamp (mon::text, 'MM'), 'Mon')||' '||yr::text \n", + "ELSE to_char(to_timestamp (mon::text, 'MM'), 'Mon')\n", + "END AS period, \n", + "count/2 as count FROM total\n", + "'''\n", + "total2=pandasql.read_sql(query, con)" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAACkwAAAbCCAYAAABiUkk9AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAABFNAAARTQBrsa1HQAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzs3Xl0VeW5P/DnJGEI8zyLKCh6VZCKSutUrbbiWOtQtV71alFrWxUV26Ki1VbrUGudqr3VtmhvRevwE4tctdJrax0KAjIIBS2DIiAgiAQSSM7vD1dYHPY5kOGQhOTzWStLePZ5n/3s7ODKH9/1vql0Op0OAAAAAAAAAAAAgEasoL4HAAAAAAAAAAAAANjRBCYBAAAAAAAAAACARk9gEgAAAAAAAAAAAGj0BCYBAAAAAAAAAACARk9gEgAAAAAAAAAAAGj0BCYBAAAAAAAAAACARk9gEgAAAAAAAAAAAGj0BCYBAAAAAAAAAACARk9gEgAAAAAAAAAAAGj0BCYBAAAAAAAAAACARk9gEgAAAAAAAAAAAGj0BCYBAAAAAAAAAACARk9gEgAAAAAAAAAAAGj0BCYBAAAAAAAAAACARk9gEgAAAAAAAAAAAGj0BCYBAAAAAAAAAACARk9gEgAAAAAAAAAAAGj0BCYBAAAAAAAAAACARk9gEgAAAAAAAAAAAGj0BCYBAAAAAAAAAACARk9gEgAAAAAAAAAAAGj0BCYBAAAAAAAAAACARk9gEgAAAAAAAAAAAGj0BCYBAAAAAAAAAACARk9gEgAAAAAAAAAAAGj0BCYBAAAAAAAAAACARk9gEgAAAAAAAAAAAGj0BCYBAAAAAAAAAACARk9gEgAAAAAAAAAAAGj0BCYBAAAAAAAAAACARk9gEgAAAAAAAAAAAGj0BCYBAAAAAAAAAACARk9gEgAAAAAAAAAAAGj0BCYBAAAAAAAAAACARk9gEgAAAAAAAAAAAGj0BCYBAAAAAAAAAACARk9gEgAAAAAAAAAAAGj0BCYBAAAAAAAAAACARk9gEgAAAAAAAAAAAGj0BCYBAAAAAAAAAACARk9gEgAAAAAAAAAAAGj0BCYBAAAAAAAAAACARk9gEgAAAAAAAAAAAGj0iup7AKiOioqKWLBgQcyfPz8+/vjjWLt2bRQUFETr1q2jT58+MXDgwOjRo0edzVNWVhazZ8+Of//737F69eooKyuLDh06RPfu3WPw4MHRsWPHOptla5999llMmzYtPvroo/jkk0+isLAwOnToEH379o399tsvWrZsWW+zVdfixYtj5syZsWrVqli7dm20bt06OnbsGHvvvXf079+/3uYqLy+PuXPnxrx58+KTTz6JDRs2RPv27aNr164xaNCg6NatW73NtmHDhnjnnXdi8eLFsXr16igvL4+OHTtGr169YvDgwdGmTZt6mw0AAAAAAAAAAOqDwCQNXjqdjldffTXGjx8ff/vb32L16tXb/Hy/fv3i2GOPjdNOOy122WWXHTLPP/7xj/jjH/8Yr776apSWlmb9XCqVir333jvOOOOMOOmkk6J169Z5n2VrpaWlMWHChBg3blxMnz49Kioqsn6uWbNmMWzYsDj77LPjy1/+chQUNLzNZj/44IMYN25cPPvss7F8+fKcn+vYsWOceOKJcfbZZ8duu+1WJ7NNmzYt/vjHP8ZLL70U69aty/m5fv36xemnnx6nnnpqnYRnN23aFK+88ko8/vjj8dZbb8XGjRuzfq6wsDD233//OOuss+JrX/taNG/efIfPBgAAAAAAAAAA9S2VTqfT9T0E5DJhwoT45S9/GQsWLKj22qKiojj11FPj6quvjnbt2uVlnrlz58aNN94Yb7/9drXWde3aNX70ox/F8ccfn5c5snn55Zfjpz/9aSxZsqRa6/bZZ5+46aabYt99991Bk1VPSUlJ3HffffH73/8+Nm3aVOV1BQUFcfbZZ8fIkSN32O6JH374YfzkJz+JV155pVrr2rRpEyNHjoyzzz57h4VTJ0+eHD/+8Y/jX//6V7XW9evXL2644Yb40pe+tEPmAgAAAAAAAACAhkJgkgZp2bJlcfXVV8dbb71V6169e/eO+++/P/bee+9a9Xn88cfj5ptvrlaIb2snnHBC3HrrrXnd0W/jxo1xww03xFNPPVXjHgUFBfHDH/4wzjvvvLzNVRPvv/9+XHLJJbFw4cIa9+jdu3c89NBDsccee+Rxsoi//OUvcfXVV0dJSUmNe3zxi1+Me++9N9q2bZu3udLpdNxzzz3xwAMP1KrPhRdeGKNGjYpUKpWnyQAAAAAAAAAAoGERmKTBmTJlSnzve9+LVatWZb3erl27GDx4cOy2227RqlWrWLNmTSxYsCCmTp0aGzZsyLqmffv2MXbs2Nhrr71qNNNdd90VDz30UNZr3bp1iwMOOCB69eoVRUVFsWLFinjnnXdi3rx5WT9/4IEHxn//939HcXFxjWbZUmlpaVx00UXxxhtvZL2+xx57xKBBg6JLly6xadOm+Oijj2Ly5Mk5j7i+4IIL4gc/+EGt56qJ6dOnx4gRI2LNmjWJa82bN48DDjggBgwYEK1bt45169bF/PnzY8qUKVFWVpb4fNu2beOhhx6KAw44IC+z/fGPf4ybbrop6xHnHTp0iKFDh0bfvn2jefPm8cknn8SsWbNi1qxZke1/rwMGDIixY8dG586daz1XRUVF/OAHP4jnnnsu6/VddtklhgwZEt27d4+Iz4PIU6dOjcWLF2f9/PDhw+Ouu+5qkEe0AwAAAAAAAABAbQlM0qBMnjw5RowYkXUXvwMOOCAuuOCCOOKII6JZs2aJ6+vXr4+nn346HnjggVixYkXiet++fePpp5+u9u5+jz32WNx8882Jev/+/WPUqFFxxBFHZA2YzZkzJ37xi1/EX//618S1r371q3HPPffUaje/dDodV1xxRUycODFx7Ygjjogrr7wya0C0oqIiXn311bjjjjti/vz5ieujR4+u850mFy9eHGeccUYiJNuiRYu4+OKL49xzz8363tauXRuPPvpoPPjgg1FaWppxrUOHDvHkk09G3759azXbX/7yl/je976XCEv26NEjrrzyyjjuuOOy/jwuXrw47rvvvnj22WcT14YMGRK///3vo0WLFrWa7bbbbotHHnkkUd9///1j1KhRMXTo0KzrJk+eHHfeeWdMnTo1ce28886L0aNH12ouAAAAAAAAAABoiApvvPHGG+t7CIiIWLhwYZx77rmxbt26jHr79u3jlltuiR/96Eex++67R2FhYdb1zZo1i0GDBsUpp5wSc+fOjUWLFmVcX7NmTZSVlcVhhx1W5ZmmTJkSV155ZWKnwOHDh8dvfvObGDBgQM7QY5cuXeLEE0+Mtm3bxmuvvZZx7b333ovmzZvnDLRVxX//93/Ho48+mlFLpVJxzTXXxA033BBdunTJui6VSkW/fv3itNNOi0WLFiV2wnzttddi2LBh0atXrxrPVh0bN26M8847Lz744IOMevfu3ePRRx+N4cOH5wwWtmjRIg488MD4yle+EpMmTYrPPvts87UNGzbEm2++GaeddlrOn5ntWbRoUVxwwQWJXSwPPPDAeOyxx2Lw4ME5e7dv3z6OOeaY6N+/f0yaNCnKy8s3X1u6dGmsWrUqjjzyyBrNFRExYcKE+NnPfpaon3feefGLX/wi+vTpk3Ntr1694pRTTomSkpKYNm1axrXp06fHbrvtFnvuuWeNZwMAAAAAAAAAgIZIYJIGYdOmTXHeeefFRx99lFHv1atXjB07NoYNG1blXsXFxTF8+PCYMmVKfPjhhxnXZs+eHWeeeWaVjsMuKyuLSy65JFauXJlRP+KII+Kee+7JuqtgNvvvv38UFxcnQpNvv/12HHfccdGhQ4cq9dnSwoULY+TIkRkhvIiIq666KkaMGFGlHkVFRXHMMcfE7NmzY8GCBZvr6XQ63nnnnTj99NNrHDSsjoceeij+/Oc/Z9Tatm0bjz32WOyxxx5V6tG5c+f48pe/HOPHj8/YaXLlypXRvHnzOPDAA2s02xVXXBHvv/9+Rm2fffaJ3/72t1XeqXSPPfaIfv36xYsvvphRnz17do2DqatXr46LL7441q9fn1H/5je/GWPGjKnSkdoFBQVx6KGHxqpVq2LGjBkZ16ZMmRKnnXZatGzZstqzAQAAAAAAAABAQ7X9VA3UgdWrV8fSpUszau3bt4/f/OY30b9//2r3a968efzkJz+J5s2bZ9TLysrihRdeqFKPRx99NHFkddeuXeP222+vdpDwwgsvjCOOOCKjVlpaGrfeemu1+lS65ZZbEkdQH3rooXHRRRdVq09BQUHcfvvt0b1794z6/Pnz47HHHqvRbNWxdOnS+NWvfpWo33jjjdV+77vttlv8+Mc/TtQffPDBWLZsWbVnmzhxYvzjH//IqBUXF8cvfvGLaNWqVbV6HXfccXHWWWdl1NLpdNx0002J3Uur4p577kkEeffcc8+47rrrqt1r9OjRiaPbV65cGffcc0+1ewEAAAAAAAAAQEMmMEmD0KVLl5gwYUJ8/etf33zEdU1Cc1vadddd4/DDD0/U33zzze2uLSsri9/+9reJ+siRI2u0I2RExHXXXZfYlXLSpEkxd+7cavV59913469//WtGraioKK6//voazdWuXbu48sorE/Xf/va3iaOo8+2RRx7Jetz1CSecUKN+w4cPj4MPPjijVlpamvVdbs9DDz2UqF1wwQWx66671mi2kSNHRvv27TNqc+fOjUmTJlWrz4oVK+JPf/pTon7ttdcmAsJV0axZs6xByz/96U+JUCYAAAAAAAAAAOzMBCZpMLp27Rq33XZbPPHEE/HTn/40jjvuuFr3/NKXvpSozZkzZ7vrnn322fj4448zaj179oyvf/3rNZ6lb9++MXz48ET9N7/5TbX6ZPv8scceG/369avpaHHSSSdF7969M2rLly+P//f//l+Ne27PmjVr4sknn0zUv/Od79Sqb7b148aNi7Vr11a5x2uvvRazZ8/OqBUXF8f5559f47natWsXZ599dqJe3ff/6KOPJnYXHTJkSLWOrd/agQceGAcccEBGbcOGDfHoo4/WuCcAAAAAAAAAADQ0ApM0OIMGDYrTTjstL7169OiRqFVl17xnn302UTv11FOrfRT31s4444xE7aWXXoqSkpIqrV+3bl289NJLVepbHQUFBfGNb3wjUX/uuedq1XdbXnzxxcRz9+7dO2vItTqGDRsWu+yyS0atpKQk6/ctl2zv/9hjj4127drVarbTTz89UZsyZUosXry4SuvT6XTWEGtt33+uHjvy/QMAAAAAAAAAQF0TmKRR2/oI7IjPd87blmXLlsXbb7+dqB9zzDG1nueAAw6ITp06ZdTWr1+fOGI7l0mTJiV2F+zYsWMMHTq01rNle77JkyfH8uXLa907m4kTJ2adofJI9ppKpVJx9NFHJ+oTJkyo0vqysrJ45ZVXss5WW71794599tknUX/hhReqtH7atGnx0UcfZdQKCwvjqKOOqvVsRx55ZBQVFWXUPvzww5g+fXqtewMAAAAAAAAAQEMgMEmjtmrVqkStTZs221wzadKkSKfTGbVOnTrFXnvtVet5CgoK4qCDDkrU//KXv1RpfbYg30EHHVTrnS8jIgYOHBidO3fOqFVUVFQ5zFkdJSUl8cYbbyTqX/ziF/PSP1ufN954o0o7eb755pvx2WefZdQKCgri4IMPzsts2Y7OzvZes8n2ub333js6dOhQ67nat28fe++9d41nAwAAAAAAAACAhk5gkkZt1qxZiVq3bt22uWbq1KmJ2uDBg/M205AhQ6p0z2yyfS5bv5raf//9q3TP2nrnnXdi06ZNVbp/TWTrs3Hjxpg5c+Z212Z73gEDBmw3aFtVX/jCFxK1WbNmRVlZWY1my+f7z9Yr226rAAAAAAAAAACwMxKYpFF77bXXErX99ttvm2umTZuWqA0cODBvM+25556J2ocffhgff/zxNtctX748lixZskNn22OPPRK1HRGYzHbMc/fu3fOyU2LE57sldu/ePVHP9m6rMtuO/h6XlZXF7Nmzt7muvLw8a+BzR/9szpw5M8rLy/N2DwAAAAAAAAAAqC8CkzRab7/9drz33nuJ+uGHH55zzYYNG2LhwoWJ+u677563ufr165e1/u67725z3Zw5c7LW8znbbrvtlqgtWLAgNmzYkLd7RGR/lnw+R0T27/P2vscRO362Pn36RFFRUaK+vdkWLFgQ69evT9SzvbOayvY9KykpiQULFuTtHgAAAAAAAAAAUF8EJmm07rnnnkStffv2cdRRR+Vcs2TJkkin04l6jx498jZXt27doqAg+U8v2+6R27teWFgYXbt2zdts2XZlTKfT252turL1y+f3OFe/7T1HaWlprFy5skq9airXO6vJ+4/I72y5euX7/QMAAAAAAAAAQH0QmKRRmjhxYrz++uuJ+oUXXhjNmzfPuS5XMCyfocSioqLo1KlTle+9reudOnWKwsLCvM3WrVu3Kt+7Nj788MNELZ/f44jsz5LtvlvKFZiti9lqGpjM9c5qoq7ePwAAAAAAAAAA1AeBSRqdZcuWxQ033JCo9+nTJ84999xtrl2+fHnWert27fIyW6U2bdpU+d7but62bdu8zbStftubrToqKipixYoVVb53TWXrt2LFiqyByEp19f6zzVaT99+iRYttBoCrq0WLFtGsWbNqzwYAAAAAAAAAADsDgUkaldLS0vje974Xq1evzqgXFBTEbbfdFsXFxdtcv379+qz11q1b523GiOyByVz3rlRSUpKo1cVcEdufrTo2bNiQNbRYF8+STqdjw4YNOdfU1fvP1q8hvP+Imv1sAgAAAAAAAADAzkBgkkYjnU7H6NGj45133klcu+yyy2Lo0KHb7ZErGJZt173ayNZvW0G+XNfzPVdRUVGV711TuXrlc6fEiNzPsq3wX1N//xHZv2/5fP8AAAAAAAAAAFBfBCZpNG6//fZ4/vnnE/Xhw4fHd77znSr1KC0tzVrPFb6rqZqE0rLNlu+5cgXw8hmYy/U9LiwszNs9InJ/b3Ldf1vX6mK2hvD+I2oW5gQAAAAAAAAAgJ2BwCSNwq9//et45JFHEvWhQ4fGz372syr3yRVAKy8vr/FsVe23vd0Cs81WF3NF5Hcnw1zhw3w/S0VFRdb6tp4l1/vP1aumGur7z9VzR+xkCQAAAAAAAAAAdU1gkp3eI488Ej//+c8T9b322isefPDBaNmyZZV75frspk2bajxfVfsVFxdvc0222epirojtz1YduXrl+1k2btyYtb6tn4dc13L1qqmG+v5z9czn+wcAAAAAAAAAgPoiMMlO7Xe/+13cdtttifqAAQPi4YcfjrZt21arX67A3Lp162o0Xy4lJSVVvve2rmfrUxu5+lUndLo9LVq0qNa9aypXv22F/3I9Z13M1hDef66e+Xz/UF3l5eWxfPnyHbKjKgAAOwe/EwIANG1+HwQAwO+E5JPAJDutP/zhD3Hrrbcm6gMGDIixY8dGly5dqt2zQ4cOWetr166tdq9tydavU6dO21yTbbZPP/00bzNF5H7O7c1WHc2bN49WrVol6nXxLO3bt895JHjEzvf+S0pK8rrL5KZNm2L9+vXVng12pCVLlsSQIUNiyZIl9T0KAAD1xO+EAABNm98HAQDwOyH5VFTfA+yMVq1aFW+99VYsXbo0UqlU9OzZMwYNGhQ9evSo79GajCeffDJuvvnmRH3PPfeM3/3ud9G5c+ca9e3Vq1fW+ooVK2LXXXetUc+tpdPpWLVqVZXvva3rq1atinQ6HalUKi+zrVixImu9d+/eeem/Zb958+Zl1FauXJnXe2TrV5PvcUTu70tN5XO2lStXRvfu3XfYXNu6NwAAAAAAAAAA7EyadGCyoqIi/vSnP8UBBxwQ/fv33+7nP/zww/j5z38eEydOjHQ6nXGtoKAghg0bFtdcc00MHDhwR41MRDz33HMxZsyYxDvYZ5994uGHH46OHTvWuHeuYOCyZctq3HNrq1atio0bN1b53pWyhdY2btwYK1eurNFumtnkes58ByZ79eqVCEwuXbo0r/fI9izbe45OnTpFcXFxYpfFfM+2fPnyas+WK7S4dOnSvAUmc73/Pn365KU/AAAAAAAAAADUpyZ7JPeyZcvi7LPPjhtuuCGuu+667X7+tddei2984xvxwgsvREVFRaTT6Yyv8vLyeO211+KMM86IJ598sg6eoGmaOHFi/PCHP4yKioqM+pAhQ+L3v/99rcKSEZ8H5rIdffzvf/+7Vn23tGDBgqz1AQMGbHNdrlBvrn41sXDhwkStW7du0bZt27zdIyL7s+TzOSKyP8v2vscREbvvvnuils/Zli1blvXY6+3Ntvvuu0dBQfJ/2Tv6Z7OoqChvu6sCAAAAAAAAAEB9apKByeXLl8d//ud/xvTp0yOdTse0adPi73//e87PT58+Pb773e/GmjVrNh9/nO0rIqK0tDRuuOGGePnll+vqcZqMSZMmxdVXXx3l5eUZ9YMPPjgefvjhvIX6Bg8enKj961//ykvviIj33nsvUevYsWP069dvm+sGDBgQrVu3TtTnzp2br9Fi/vz5idqQIUPy1r/SoEGDErUPPvgg1q1bl5f+GzZsiA8++CBR33///be7dke//2zf44KCgqz33VKbNm2yhjl39M/mwIEDo7i4OG/3AAAAAAAAAACA+tLkApMVFRVx1VVXxaJFiyIiIpVKRTqdjvvuuy/r58vKyuKaa66JDRs2ZAQjt95hsrJXKpWKioqKGDVqVHz00Ud181BNwN///ve47LLLEkdZH3bYYfHrX/86a5CwprIF16ZNm5a3/tl6VSXIV1BQEPvtt1+iPnXq1LzMFfF5OHhrVZmturL1TKfTWe9fEzNnzkwEayOyv9uqfGbOnDmxYcOGvMyW7f0PGDAg2rRpU6PZ8vn+s822IwKzAAAAAAAAAABQH5pcYPLxxx+Pf/7zn5uDj5WmT58er776auLzf/jDH2LhwoWJoOTWtq5v2LAh7rrrrjxP3zS99dZb8d3vfjfKysoy6kcffXQ88MAD0bJly7ze77DDDkvUli5dGu+//35e+r/11luJ2uGHH16ltYceemii9uabb2b9mayuJUuWxOLFixP1I444ota9t9azZ8+sR1C//vrreen/xhtvJGqDBg2KTp06bXftIYcckjj6euPGjfHPf/4zL7O9+eabiVpt3v+MGTPis88+q/VcpaWlWQOrVZ0NAAAAAAAAAAAauiYVmCwtLY177703I/y4pa3DWul0Oh577LGcn892JHdlPZ1Ox5///OdYuHDhjniUJmPq1Klx8cUXJ3b3O/744+OXv/xlNG/ePO/3HDRoUPTu3TtRf+mll2rde968eYlQYmFhYRx77LFVWj98+PBEbfny5XnZAXPSpEmJ2sCBA6N///617p1Ntmd+8cUX89I727Mcf/zxVVrbtWvXGDp0aKKej/e/Zs2aePvtt2s825FHHpk4Hnvjxo3x17/+tdazvf7667F+/fqMWocOHeKQQw6pdW8AAAAAAAAAAGgImlRg8vnnn49PPvkkIj4PP1YGGyM+PxL3oosuyvj85MmT48MPP9z8+S1Vrt16Z8mt//z888/vkGdpCmbMmBEjRoyIkpKSjPo3vvGNuPPOO6OoqGiH3fuEE05I1P70pz/VeifHp59+OlE75JBDqrTzYUREnz59sh6R/MQTT9RqrlyznXjiibXum8vxxx+f2Ol1wYIFtd7Jcd68eTFz5syMWlFRUdawaS7Z3v+f//znWLduXa1me/755xPHyvfv3z/+4z/+o0rri4uL4ytf+UqivqPe//Dhw3fovzMAAAAAAAAAAKhLTSowOX78+M1/3jKo1adPnxg7dmx07Ngx4/P/93//l+ix5bp99903Ro8eHeeee24UFRUldppMp9MxceLEfD5CkzFnzpz49re/HWvXrs2of+tb34pbbrklcWRyvp1zzjmJ3SsXLVpUqwDsp59+Gk8++WSifsEFF1SrT7bPjx8/Pj744IMaz/bmm28mQoZt2rSJb37zmzXuuT277757fPnLX07Uf/WrX9Wq78MPP5yoHX/88dG9e/cq9zj55JOjc+fOGbXPPvssHn300RrPtWnTpvjd736XqOfj/b/55ptZd66sqoULF8bLL7+cUSsoKIjzzz+/xj0BAAAAAAAAAKChaTKByfXr18eUKVMSgcZUKhXXX399IiwZEfGPf/wj4+9b7kg5cODA+J//+Z8499xzY/To0fHTn/40Y/fByvu89957iWNu2bb33nsv/uu//itWr16dUb/wwgtjzJgxiV0Jd4Ru3brFKaeckqjfeeediRBnVd17772Jtfvvv3988YtfrFafo48+OnFM9saNG+MnP/lJjeYqLy+P2267LVE/66yzol27djXqWVWXXHJJovbaa6/F//7v/9ao38yZM+O5557LqBUUFCR2j92eli1bZg0L/vrXv65xMPWxxx6LRYsWZdR69uwZJ598crX67LPPPnHooYcm6jfffHNi98qquu2226K8vDyjduyxx0a/fv1q1A8AAAAAAAAAABqiJhOYnDdvXkaYqDLcuMcee8QRRxyR+Pxnn30Wc+bMyRrOS6VScckll2TsQHjSSSdFnz59Ep9Np9Mxd+7cfDxCk7Bw4cI4//zzY9WqVRn17373u3HNNdfU6SyXX355dOjQIaO2dOnSuOaaa6KioqJavf7v//4vHnvssYxaQUFBXHvttdWeq6CgIK677rpEfdKkSVl3V9yeu+++O2bNmpVR6969e9YwY77tv//+WY/9HjNmTPz73/+uVq+1a9fGqFGjEsG/s88+OwYMGFDt2c4999xEYHDdunVxxRVXVDsEPXv27Lj77rsT9R/96EfRrFmzas+Wbd3s2bPj1ltvrXavxx9/PP7yl79k1Fq1ahVXX311tXsBAAAAAAAAAEBD1mQCk9nCV6lUKo466qisn58yZcrmUFzlTpSVWrZsmXXdUUcdlbHLZKWtd5Uju0WLFsV5550Xy5cvz6h/85vfjMsuu6zO5+ncuXP86Ec/StRfeeWVuOqqq6K0tLQqRprvAAAgAElEQVRKfV599dW44oorEiHLc889NwYNGlSj2b70pS/FqaeemqjfcccdWY99zuWBBx6IX//614n6mDFjok2bNlXqcdttt8XAgQMzvvbbb79E6DWXa6+9Njp16pRRW716dZx//vlVDhuvWrUqLrzwwnj//fcz6r169Yorr7yySj221rJly7j55psToekZM2bERRddFGvWrKlSn5kzZ8a3v/3tRMjymGOOia997Ws1mm3AgAHxne98J1H/wx/+ED/72c8SodFcnnrqqbjpppsS9ZEjR0bv3r1rNBsAAAAAAAAAADRUTSYwufXxzpW2Ptq40uTJkxO1yuDk/vvvn7G7ZKW99tora6+aHuHclJSVlcW3v/3t+OijjxLXxo0blwjk1eZrr732iieeeKJKc33961+Ps846K1GfMGFCfP3rX49XXnkl526Ty5Ytix//+Mdx0UUXRUlJSca1gw46KK666qoqzZDL9ddfH/vuu29GLZ1Ox6233hojRoyId999N+faGTNmxH/913/FL3/5y8S1iy66KI4++ugqz/HJJ58kamVlZYlnzqVjx45x7733Jv5NLV26NE4//fS477774tNPP826tqysLJ566qk46aSTYvr06RnXWrVqFffdd1+0bt26ik+SlOs9vfXWW3HiiSfGs88+m/MY7NWrV8fdd98dZ555ZqxcuTLjWv/+/eOWW26p8VwRnx9nfuSRRybqv/3tb+Oss86Kf/7znznXvv/++zFy5MgYPXp0Ilx5wgknxH/+53/WajYAAAAAAAAAAGiIiup7gLqSK7zVpUuXrPVthY1y7QrYsWPHrPV169ZtZzpmz54dCxcurJN7pdPpWLZsWZU/f/3118eqVavif//3fzPq77//fnznO9+Jrl27xtChQ6N3795RVFQUn3zyScyZMydmzJiRNUw5cODArAHB6iouLo6HHnoozjnnnMQOqq+++mq8+uqrMWDAgBg0aFB07do10ul0LF++PKZNmxYLFizI2vPkk0+u8Y6MtTF06NC4/fbbY9SoURkBxNLS0rj33nvjwQcfjKFDh8aAAQOiTZs2sWHDhliwYEFMnjw5ayC5RYsW8Ytf/CL22WefWs82YsSIWL58eYwdOzajvmzZsvjBD34Qt9xySxx44IHRt2/faNGiRXz66acxb968mDp1atYwZc+ePeOhhx6Kdu3a1WquwsLCuOuuu+LCCy+Mt99+O+Pa9OnT45xzzok+ffrEF77whejRo0ekUqlYuXJlzJw5M+bMmZO15xe/+MW49dZbE7tqAgAAAAAAAABAY9BkApPNmjXLWt/6mNyIz0NaM2fOzBkayhWYrOoRxiRV9Xjr+lBYWBh333133HnnnfHwww8nrn/88cfxwgsvVKnXEUccEXfddVfefla6dOkSTzzxRFx++eXxj3/8I3F9/vz5MX/+/Cr1uvTSS+Oyyy6rt7Dc8OHDo3PnzvH9738/sSPsxo0b4/XXX4/XX399u306d+4c999/fwwZMiRvs1177bXRu3fvuP322xM7Mq5ZsyZefvnlKvXZb7/94le/+lV07do1L3O1atUqfv/738fo0aNj/PjxiesffPBBfPDBB1Xqdeqpp8aPf/zjnP+vBAAAAAAAAACAnV2TOZI717G8S5cuTdSmTp0amzZtiojPdyPc2uDBg7P2yrWLZXFxcVXHpIEqKCiIa665Jh555JHYbbfdqr2+Q4cOcdNNN8WDDz6Y92Btu3bt4uGHH44xY8ZE+/btq71+wIABMXbs2Lj88svzGpasSa+DDjooxo8fHyeccEKN7nfKKafE+PHj8xqWrHT++efHE088kfPf/7YUFxfHyJEj43/+53/yFpas1Lx587jzzjvjrrvuiu7du1d7fc+ePeOee+6JW265RVgSAAAAAAAAAIBGrcnsMNmrV6+s9VdeeSXOPvvsjNrf/va3jL9vGfzq2bNnzmO8lyxZkrVekxBbU9OlS5do0aJFnew0WVBQEH369KnR2kMOOSTGjx8fL730UowbNy4mT568OVybzZ577hmnnXZanHLKKbU+gnlbCgoK4lvf+laccMIJ8cwzz8RTTz0V//rXv3J+vqioKA466KA444wz4phjjomiopr/r6Bnz56JWvv27aNbt2416tetW7f4+c9/HiNGjIg//vGPMXHixMSOk1vq0KFDDB8+PM4888zYa6+9anTPqtp3331j3Lhx8eqrr8a4cePib3/7W5SVleX8fN++feOUU06J008/Pe9Bya0df/zxcdRRR8Xzzz8fTz75ZM4j4SM+/3kZNGhQnH766XHCCSdEy5Ytd+hsAAAAAAAAAADQEKTS2bZQbIQWL14cxxxzTEb4MZ1OR2FhYTzzzDOx5557RsTnu0R+9atfjZUrV27+TCqV2vzfr33ta3H33XdnvccPf/jDePbZZzffo3LN448/XqNd6Wj41q9fH++8804sWrQo1qxZE+Xl5dGuXbvo0aNHDB48ODp16lRvs61atSqmT58eS5cujU8//TQKCwujffv2seuuu8Z+++2X951PL7/88pg4cWJERIwcOTIuueSSvPRNp9Mxf/78mDNnTnzyySexbt26aN26dXTs2DH23nvv6N+/f70dI15WVhazZs2Kf//737F69eooKyuLtm3bRrdu3WLQoEE12vExX9auXRvTp0+PJUuWbA6cdujQIXr16hWDBw+Otm3b1ttsUB2LFy+OYcOGxRtvvBG77LJLfY8DAEA98DshAEDT5vdBAAD8Tkg+NZkdJnfZZZfo0qXL5iBkpfLy8rjwwgvjsssui44dO8ZvfvObWLFixeaQ5NYOPPDArP1LSkrilVdeSQS3UqlU9O/fP38PQoNSXFwcBx98cBx88MH1PUpCp06d4sgjj6yTe5WWlsYbb7wREZ/vFnruuefmrXcqlYo99tgj9thjj7z1zJfmzZvHkCFDdsgR4LXVtm3bOPTQQ+t7DAAAAAAAAAAAaDCaTGAyIuKoo46KJ554IiMMmUql4uOPP44xY8ZkfDbXxpuHHHJI1vrdd98dn376acbukhERAwcOjDZt2uTrEaBBeuGFFzbvYnjxxRdHq1at6nkiAAAAAAAAAACATAX1PUBdOu2007LWKwOUlV9b7hK55XHc//Ef/xH9+vVLrH/55Zdj7NixiV0pU6lUHHbYYXl/DmhoHn/88YiI6NWrV5x55pn1PA0AAAAAAAAAAEBSkwpMDho0KA499NCMUOSWO01WfuXaXfKss85K1MaPHx8jR47c3G/rsOWpp56a78eABmXu3LkxderUiIi49NJLo3nz5vU8EQAAAAAAAAAAQFKTCkxGRIwZMyaKi4sjIjJCk1t+VdoyBNm/f//4xje+kdFr8eLFcc0118SmTZs296n8byqVisMPPzx23XXXHf5MUJ8qd5fs169f4t8IAAAAAAAAAABAQ9HkApN9+/aNO+64IwoKPn/0yl0lt7ZlmLJly5Zx2223bV5TqXv37tG+ffvEmoiIwsLCGDVq1I54BGgwSkpK4rnnnouIiMsvvzwKCwvreSIAAAAAAAAAAIDsmlxgMiLi6KOPjvvvvz/atGmT9UjuLcOSrVu3jl/+8pexzz77JPo0b948RowYkbErZeXukpdeemn079+/bh4I6sn8+fNj/fr1ceSRR8bw4cPrexwAAAAAAAAAAICcmmRgMiLiy1/+crzwwgtx5plnRqtWrRLHchcWFsZxxx0XzzzzTBx++OE5+5xzzjnRtWvXjNqxxx4bl1566Y5+BKh3gwYNitmzZ8eDDz6YdadWAAAAAAAAAACAhqKovgeoT126dIkbb7wxrr322nj33XdjyZIlUVFREV26dIl99903WrVqtd0eLVq0iEsuuSRuvvnmSKVScc4558To0aPrYHoAAAAAAAAAAACgqpp0YLJSs2bNYtCgQTFo0KAarT/jjDPivffei2OPPTYOOuigPE8HAAAAAAAAAAAA1JbAZB40a9YsxowZU99jAAAAAAAAAAAAADkU1PcAAAAAAAAAAAAAADuaHSazWLRoUbz33nuxdu3aWLt2baxbty6Kioqibdu20bp16+jYsWPstdde0bFjx/oeFQAAAAAAAAAAAKgCgcmI+PTTT+O5556LF198Md5999347LPPqrSuR48esd9++8Xxxx8fX/nKV6KoyLcTAAAAAAAAAAAAGqImnfBbvXp13HHHHfH8889HWVlZRESk0+kqr//oo49i6dKl8dJLL0WHDh3iW9/6Vlx88cXRrFmzHTUyAAAAAAAAAAAAUAMF9T1AfXnxxRfjuOOOi6effjpKS0sjnU5HOp2OVCpVra/KdZ988kncf//9ccopp8Q777xT348HAAAAAAAAAAAAbKFJBiafeuqpuOKKK2LVqlWJkGREbA5Bbu8rIhLhyfnz58d5550X//znP+vzEQEAAAAAAAAAAIAtNLnA5MsvvxzXX399VFRU5AxJVlWu8OT69evj4osvjtmzZ++QZwAAAAAAAAAAAACqp0kFJj/77LO48cYbN4clI6LaIclctg5OlpSUxHXXXZeX3gAAAAAAAAAAAEDtNKnA5EMPPRQrVqzICEtubcsjtrf3lc2WPd99990YN27cjnkYAAAAAAAAAAAAoMqaVGDy+eefzxmWzHU897a+qhKefOqpp3bsQwEAAAAAAAAAAADbVVTfA9SVWbNmxUcffRSpVCprWDLi84Bj+/btY9iwYdG/f//o06dPtGrVKoqLi6OsrCxKSkpi5cqVsWDBgpgxY0a8++67m9dv2bcyTJlOp2PmzJmxdOnS6NGjR90+MAAAAAAAAAAAALBZkwlMLly4MFGrDDWm0+nYddddY9SoUXHkkUdGYWFhlXouW7YsHnvssfjDH/4Q69evzxrGjIiYPXu2wCQAAAAAAAAAAADUoyZzJPfy5csz/l4ZbkylUnHQQQfFM888E0cffXSVw5IREd27d4+rrroqnnzyyejTp8/mvlv7+OOPazc8AAAAAAAAAAAAUCtNJjBZUVGx+c9bhhrbtWsXd999d7Rq1arGvfv37x/33ntvNGvWLNE/ImLNmjU17g0AAAAAAAAAAADUXpMJTHbu3Dnj75W7S5544onRqVOnWvffa6+94qtf/WrWI7nbtm1b6/4AAAAAAAAAAABAzTWZwGTPnj2z1ocOHZq3exx++OFZ6926dcvbPQAAAAAAAAAAAIDqazKByS984QvRvn37RL1jx455u0fXrl0TtYKCgryGMgEAAAAAAAAAAIDqazKByaKiohg+fHjiyOy1a9fm7R5b9qo88nvIkCFZg5oAAAAAAAAAAABA3WkygcmIiO9///uJ8OL06dPz1n/WrFmJ2sUXX5y3/gAAAAAAAAAAAEDNNKnAZOfOnWP06NGbd39Mp9PxzDPPxIYNG2rdu7S0NJ555pnNfVOpVBx++OFx2GGH5WFyAAAAAAAAAAAAoDaaVGAyIuLkk0+OESNGbA41rly5Mm6++eZa9/35z38ey5cv3/z3vn37xh133FHrvgAAAAAAAAAAAEDtNbnAZETEVVddFUOHDo10Oh3pdDqefvrpGDVqVEbgsTrGjRsXY8eOzdhd8s4774x27drleXIAAAAAAAAAAACgJorqe4C6dOmll8aUKVMinU7HunXrIpVKRUREOp2O559/PiZMmBBdunSJoqLqfVuWLl2aqF188cVRXFxcpfX77bdf3H333dW6JwAAAAAAAAAAAFB1TSowOWnSpIj4PCC5pcqdIcvLy2PZsmU16l3Zo7L/qlWrqrx2yZIlNbonAAAAAAAAAAAAUDVNKjBZeVz2ljtLblmvbe8tVbXf1usAAAAAAAAAAACA/Cuo7wEaCsFFAAAAAAAAAAAAaLya1A6TlXKFI/MZmqxKr9ruagkAAAAAAAAAAABUjR0mAQAAAAAAAAAAgEavSe4waWdHAAAAAAAAAAAAaFqaVGCyqKgoysvL83r0NgAAAAAAAAAAANDwNanA5CWXXBJvvfVWgwtMDhw4sL5HAAAAAAAAAAAAgEatSQUmv/e979X3CAAAAAAAAAAAAEA9KKjvAQAAAAAAAAAAAAB2NIFJAAAAAAAAAAAAoNETmAQAAAAAAAAAAAAaPYFJAAAAAAAAAAAAoNErqu8BamPjxo2RTqcT9aKioigokAUFAAAAAAAAAAAAPrfTBiZPPPHEmD9/ftZrqVQqTj755Lj11lsz6qeddlrMmjWrLsaLiIiCgoI46qij4t57762zewIAAAAAAAAAAABJO+02jPPmzYt0Op31q6KiIsaPH59YM3PmzJxrdsRXeXl5TJo0qR6+OwAAAAAAAAAAAMCWdtodJiM+30kym8qwYnXW7AjbmgMAAAAAAAAAAACoOzt1YDLi81DilqoSiNx6zY5Ql8FMAAAAAAAAAAAAYNt22iO5AQAAAAAAAAAAAKpKYBIAAAAAAAAAAABo9Hb6I7lrcvS147IBAAAAAAAAAACgadlpA5OVocd0Op31emFhYaJWUFAQFRUVO3SurRUV7bTfYgAAAAAAAAAAAGg0dto03wUXXBAzZszIGpgsLCyMYcOGJerXXHNNzJ07ty7G22zIkCF1ej8AAAAAAAAAAAAgaacNTI4aNaraa84///z8DwIAAAAAAAAAAAA0eAX1PQAAAAAAAAAAAADAjiYwCQAAAAAAAAAAADR6ApMAAAAAAAAAAABAo1dU3wPUlXnz5sWFF14YGzZsyHp99913j8cff7yOpwIAAAAAAAAAAADqQpMJTP7973+P5cuX57y+Zs2aOpwGAAAAAAAAAAAAqEtNJjBZXl4eERGpVCqjnk6nI5VKxcCBA+tjLAAAAAAAAAAAAKAOFNT3AHVl11133eb1Ll261NEkAAAAAAAAAAAAQF1rMoHJYcOGRYsWLTb/PZ1OZ1xv06ZNXY8EAAAAAAAAAAAA1JEmE5hs27ZtnHTSSYmgZKW1a9fW8UQAAAAAAAAAAABAXWkygcmIiO9///vRrl27iIhIpVIZ1+bMmVMfIwEAAAAAAAAAAAB1oEkFJrt16xa33HJLxi6TqVQq0ul0TJ06NRYvXlyP0wEAAAAAAAAAAAA7SpMKTEZEHH300fHtb387cTR3Op2OW2+9tZ6mAgAAAAAAAAAAAHakJheYjIi4+uqr47LLLtscmqzcZXLSpEnxwAMP1PN0AAAAAAAAAAAAQL41ycBkRMSll14aN9xwQyI0ee+998ZVV10V//rXvxK7UAIAAAAAAAAAAAA7p6L6HqAu3XfffTF9+vTNf//00083/zmdTm8OTU6YMCEmTJhQ6/ulUqk49thj46677qp1LwAAAAAAAAAAAKDmmlRg8v77789ar9xJcsvQZD6k0+l48cUX89ILAAAAAAAAAAAAqLkmFZisSiCy8jP5ul95eXleegEAAAAAAAAAAAA116QCk5W2DERmC0/mY4fJfIUuAQAAAAAAAAAAgNprkoHJfB25DQAAAAAAAAAAAOwcCup7AAAAAAAAAAAAAIAdrUnuMOm4bAAAAAAAAAAAAGhamlRgMpVK1flx3EVFTepbDAAAAAAAAAAAAA1Sk0rzjRo1KubNm1en9xwyZEid3g8AAAAAAAAAAABIalKByQsuuKC+RwAAAAAAAAAAAADqQUF9DwAAAAAAAAAAAACwowlMAgAAAAAAAAAAAI3eTnsk94wZM+K9995L1Pv06RNDhw6th4kAAAAAAAAAAACAhmqnDUyed955sX79+kS9RYsWMW3atHqYCAAAAAAAAAAAAGiodtrAZElJSaRSqUin0xn10tLSepoIAAAAAAAAAAAAaKh22sBkpVQqtfnPW4cnAQAAAAAAAAAAACIiCup7gNpKp9OCkgAAAAAAAAAAAMA27fSBSQAAAAAAAAAAAIDtEZgEAAAAAAAAAAAAGj2BSQAAAAAAAAAAAKDRE5gEAAAAAAAAAAAAGj2BSQAAAAAAAAAAAKDRE5gEAAAAAAAAAAAAGj2BSQAAAAAAAAAAAKDRK6rvAXaEif+fvTuPrrK82wX820lImBEnEETmIOCMKIJK1FprFcda5wHrDK1D9XQ47Wm/83X6qrXHFtQqgiBOOOKsVQEVVGRQRAJBEESQeR7CkOzzh0pFVBCy8yY717WWy7X23nnue2kgutbN+7zwQuy2225J14hUKhUtWrSIJk2aJF0FAAAAAAAAAAAAarSsGUym0+nNf7/++usTbvMfDRs2jLfffjvpGgAAAAAAAAAAAFCjZc1g8su+GE9WBStXrky6AgAAAAAAAAAAANR4WTmYTKVSSVeIiKo13AQAAAAAAAAAAICaLCsHk1VhqFhVRpsAAAAAAAAAAABARE7SBQAAAAAAAAAAAAAyzWASAAAAAAAAAAAAyHoGkwAAAAAAAAAAAEDWy0u6QCakUqmkKwAAAAAAAAAAAABVSFYOJtPpdNIVNsvJ8RBPAAAAAAAAAAAASFrWDCZTqVSk0+lIpVLRs2fPaNy4cdKVIiKic+fOSVcAAAAAAAAAAACAGi9rBpNfdueddyZdAQAAAAAAAAAAAKhC3BcNAAAAAAAAAAAAZD2DSQAAAAAAAAAAACDrGUwCAAAAAAAAAAAAWc9gEgAAAAAAAAAAAMh6BpMAAAAAAAAAAABA1jOYBAAAAAAAAAAAALKewSQAAAAAAAAAAACQ9QwmAQAAAAAAAAAAgKxnMAkAAAAAAAAAAABkvbykC+ysVCqVdAUAAAAAAAAAAACgiqu2T5hs1apVpNPpLf6KiNh9990TbgYAAAAAAAAAAABUNdX2CZPDhw+PxYsXb/V6o0aNEmgDAAAAAAAAAAAAVGXVdjBZUFAQzZs3T7oGAAAAAAAAAAAAUA1U2yu5AQAAAAAAAAAAALaXwSQAAAAAAAAAAACQ9QwmAQAAAAAAAAAAgKxnMAkAAAAAAAAAAABkPYNJAAAAAAAAAAAAIOsZTAIAAAAAAAAAAABZz2ASAAAAAAAAAAAAyHoGkwAAAAAAAAAAAEDWM5gEAAAAAAAAAAAAsp7BJAAAAAAAAAAAAJD1DCYBAAAAAAAAAACArGcwCQAAAAAAAAAAAGQ9g0kAAAAAAAAAAAAg6xlMAgAAAAAAAAAAAFnPYBIAAAAAAAAAAADIenlJFwAAAAAAAAAAAIAvrF2+JmaNnREfvf1hzBj/YXRe0S5G3z4iOh+5f3T+wYGRk+s5gewYg0kAAAAAAAAAAAASVV5WHlNemhSjB42M94aPj7KNZZvfax3NY8T/vBAj/ueF2KNtkzju2h/EkZcfG7UKaiXYmOrIYBIAAAAAAAAAAIBELJqxIEYPGhVvDn4tls9dul2ff+hng2Pik+Pi6sevjzoN61ZCS7KFwSQAAAAAAAAAAACVZv2a0pjw2NgYM2hUlIwq3qEzpr36Qfyt6L/j2hd/FQ32aFjBDclWBpMAAAAAAAAAAABkVDqdjlljZ8TogSPjnYfejNJV63b6zDnvzo5Hb7o/et97dQU0pCYwmAQAAAAAAAAAACAjVi5cEW/f90aMHjQyPp0yt8LPf2vI61F0zfHR+rB2FX422cdgEgAAAAAAAAAAgApTtqksPnjhvRg9cGRMemZilG8qy2jes394Ivo+dVNGM8gOBpMAAAAAAAAAAADstPnT5sWYQaPizSGvx8r5yystd+aY6ZFOpyOVSlVaJtWTwSQAAAAAAAAAAAA7pHR1aYwf9laMHjQyZowuSaTDmqWrY9GMBbFnu6aJ5FN9GEwCAAAAAAAAAACw3dLpdMwYUxJjBo6KccPejPVr1iddKZbNWWIwyTYZTAIAAAAAAAAAALBNKz5dFm8OeT3GDBoVC0o+TbrOFho1a5x0BaoBg0kAAAAAAAAAAAC+VtnGTfH+sxNj9KBRMfm5d6O8rDzpSl9rl+a7Jl2BasBgEgAAAAAAAAAAgC3Mm/JJjBk4Kt4a+nqsWrgy6TrfqsXBraJ2/dpJ16AaMJgEAAAAAAAAAAAg1q1cG+889GaMGTQqPnr7w6TrbLfvXf/DpCtQTRhMAgAAAAAAAAAA1FDpdDqmvzY1Rg8aGeMfeTs2rtuQdKXvpHGL3eLQH3dLugbVhMEkAAAAAAAAAABADbPskyXx5uDXY8y9o2LRjAVJ19khBfVrx9WPXx95+WZwbB/fKQAAAAAAAAAAADXAxvUbY9LTE2L0wJEx5aVJkS5PJ11ph+XWyo2rHrs+WnZpk3QVqhGDSQAAAAAAAAAAgCz2yaSPY/TAkfH2/W/EmiWrk66z0zp+b78469YLo/l+LZKuQjVjMAkAAAAAAAAAAJBl1i5fE+88OCbeGDgyPh7/UdJ1KkTH7+0Xx/z0hDjg5EMilUolXYdqyGASAAAAAAAAAAAgC5SXl8e0EVNizKCRMfHxd2Jj6cakK+20Rns3jrHLJ8Y/X7gj9u9+YNJ1qOYMJgEAAAAAAAAAAKqxJbMXxZh7X4s37x0VS2YvTrrOTssrqBUHn9E1evTuGfXaN4wjunePXVrsmnQtsoDBJAAAAAAAAAAAQDWzsXRDvPvkuBg9aFRMfXlypNPppCvttH26tI4evYui67lHRL3G9SMiYs6cOQm3IpsYTAIAAAAAAAAAAFQTH0/4KEYPHBljHxgda5evTbrOTqu3a/04/Pwe0f3SomhxYMuk65DlDCYBAAAAAAAAAACqsNVLVsXYB8bEmEEjY867s5Ous9NSqVR0OuGA6NG7ZxxwSpeoVVAr6UrUEAaTAAAAAAAAAAAAVUx5WXkUv/x+jB40Kt57clxs2rAp6Uo7bfc2e0aP3kXR7aKjYtcWuyVdhxrIYBIAAAAAAAAAAKCKWLlwRYzs91KMGfxaLJuzJOk6O61Wnfzo8qPDonvvomh/9L6Rk5OTdCVqMINJAAAAAAAAAACAhG1cvzFe+PPw+Petz8X61aVJ19lprQ9vF91794yuZx8RdRrVTboORITBJAAAAAAAAAAAQKJKV62L20+/Naa9+g5uWWcAACAASURBVEHSVXZKgz0axuEXHBk9Li2KZp33TroObMVgEgAAAAAAAAAAICEb1q6P//f9P8dHb3+YdJUdkspJxX4/PCh69C6K/U86OPLyTdKounx3AgAAAAAAAAAAJKC8vDwGXXxHtRxL7tm+afToXRTdLjoqdmnWOOk6sF0MJgEAAAAAAAAAABLw1G8fiQmPjU26xnYrqFcQXc7qFj0u7Rlte3SIVCqVdCX4TgwmAQAAAAAAAAAAKtmbQ16L5/88POka26Vt98LocWlRdDnr8KjdoE7SdWCHGUwCAAAAAAAAAABUog/fmBpDrxiQdI1v1bBJo+h20dHRo/fR0XTf5knXgQphMAkAAAAAAAAAAFBJFs1cEHec8ffYtGFT0lW2kpOXGwecfHB0790z9vvBgZFby7yM7OI7GgAAAAAAAAAAoBKsW7E2+ve6JVYvXpV0lS3s1bF5dO/dM7pdeFQ0bNIo6TqQMQaTAAAAAAAAAAAAGVa2qSzuOucf8Wnx3KSrRERE7QZ14tCzu0WPS4ui9eHtIpVKJV0JMs5gEgAAAAAAAAAAIMOGXX9fTHlxUtI1orBnx+jeu2cccuZhUVCvdtJ1oFIZTAIAAAAAAAAAAGTQiP4vxcj+LyWWv0uzxnHExUdH9949Y892TRPrAUkzmAQAAAAAAAAAAMiQD158L4ZdN6TSc3Nr5caBp3aJHr2LotP3D4ic3JxK7wBVjcEkAAAAAAAAAABABsyb8kncdfY/orysvNIym+/fInpcWhSHn98j6u/esNJyoTowmAQAAAAAAAAAAKhgqxatjP69bo7SlesynlWnUd047Nzu0f3SomjZpXWkUqmMZ0J1ZDAJAAAAAAAAAABQgTau3xh3nvn3WPzRoozm7Htc5+jRuygOOr1r5NfJz2gWZAODSQAAAAAAAAAAgAqSTqdj6JUD4sM3pmUsY6+OzaPP0zfGHm2aZCwDslFO0gUAAAAAAAAAAACyxQt/eSreGvJ6xs6vv3sDY0nYQQaTAAAAAAAAAAAAFWDC42Pjyf/9cMbOz8vPi6sfv95YEnaQwSQAAAAAAAAAAMBOmj1+Zgy88PaMZlxw12XR7sh9M5oB2cxgEgAAAAAAAAAAYCcsm7s0bj/1b7Fx3YaMZfzgl6fEERcdnbHzoSYwmAQAAAAAAAAAANhB69eUxu2n3hLL5y3LWMbBZ3SNU//w44ydDzWFwSQAAAAAAAAAAMAOKC8vj0EX3xEfT5iVsYx9urSO3oOvjpwcUy/YWX4VAQAAAAAAAAAA7IDhvxkWEx9/J2Pn79KscVzz5M+joF7tjGVATWIwCQAAAAAAAAAA8B29Ofi1eOEvT2Xs/Py6BdHnqRujcfNdM5YBNY3BJAAAAAAAAAAAwHcw/fWpcd8Vd2c049L7rol9Dmmd0QyoaQwmAQAAAAAAAAAAttOiGQvijjNujbKNZRnLOP1P58TBp3fN2PlQUxlMAgAAAAAAAAAAbIe1y9dE/1NuiTVLVmcs44iLj44TftErY+dDTWYwCQAAAAAAAAAAsA1lm8ri7nP+EZ8Wz81YRruj9o3z7/xJpFKpjGVATWYwCQAAAAAAAAAAsA3DrhsSU156P2Pn795mz7j6seuiVkGtjGVATWcwCQAAAAAAAAAA8C1G9HsxRt7+74ydX6dR3ej79E1Rf/eGGcsADCYBAAAAAAAAAAC+0eQX3ouHrxuSsfNzcnPiiod/Fnt1bJ6xDOAzBpMAAAAAAAAAAABfY94Hn8Td5/wj0uXpjGWcfdvF0en7B2TsfOA/DCYBAAAAAAAAAAC+YtWildH/lJujdOW6jGUc0/eEKLrm+IydD2zJYBIAAAAAAAAAAOBLNq7fGHeccWss/mhRxjI6/+DAOOvWCzJ2PrA1g0kAAAAAAAAAAIDPpdPpGHrF3TFjdEnGMvbq1Dwuf/CnkZuXm7EMYGsGkwAAAAAAAAAAAJ97/s/D46373sjY+fV3bxB9n74p6jSqm7EM4OsZTAIAAAAAAAAAAETEhMfGxvDfDMvY+Xn5eXH1EzfE7q33zFgG8M0MJgEAAAAAAAAAgBpv1riZMfCi2zOaceGAK6Jdjw4ZzQC+mcEkAAAAAAAAAABQoy37ZEncfuotsXHdhoxlnPjr06LbBUdm7Hxg2wwmAQAAAAAAAACAGmv9mtLof+rfYsWnyzOWcciPDotT/u+PMnY+sH0MJgEAAAAAAAAAgBqpvLw8Bl54e8yZOCtjGS0PbRO97706cnJMtSBpfhUCAAAAAAAAAAA10pO/fjjefXJcxs7fpfmucc2TP4/8ugUZywC2n8EkAAAAAAAAAABQ44y5d1S8+NenM3Z+ft2C6PPUjbFLs8YZywC+G4NJAAAAAAAAAACgRil5rTiGXjkgY+enUqn4ydBrYp+DW2UsA/juDCYBAAAAAAAAAIAaY9GMBXHnGX+Pso1lGcs4/c/nxEGndc3Y+cCOMZgEAAAAAAAAAABqhLXL10S/XjfHmqWrM5bR/ZKe8f2bTs7Y+cCOM5gEAAAAAAAAAACyXtnGTXHX2f+I+VPnZSyj/dH7xvl3/iRSqVTGMoAdZzAJAAAAAAAAAABktXQ6HQ9fOySK//1+xjL2aNskrnr0usjLz8tYBrBzDCYBAAAAAAAAAICsNqLfSzHqzpczdn6dRnWj79M3Rv3dG2YsA9h5BpMAAAAAAAAAAEDWmvz8uzHs+iEZOz8nNyeufOTaaLpv84xlABXDYBIAAAAAAAAAAMhKcyfPibvP+Weky9MZyzjnn5dEx+/tn7HzgYpjMAkAAAAAAAAAAGSdlQtXRP9TbonSVesylnHsz34QPa/6XsbOByqWwSQAAAAAAAAAAJBVNpZuiDvP+HssmbUoYxn7nXhgnPW3CzJ2PlDxDCYBAAAAAAAAAICskU6n474rBsSMMSUZy2jWee+47MGfRk6u+RVUJ37FAgAAAAAAAAAAWeP5Pw2Pt4e+kbHzG+zRMPo8fVPUaVg3YxlAZuQlXQAAAAAAAAAAAPjsyYgLp8+PaSOnxKy3Z8TST5bEinnLov4eDaNph72i5aFtYv+TDo5GTXdJumqVNf6Rt2L4b4dl7Py8/Ly4+okbYvdWe2QsA8gcg0kAAAAAAAAAAEjAlweSJaOKo2TklFjx6fKv/WzJyCkR/3olIiJadW0TB5x8SBzQ65DY+8CWkUqlKrN2lTXrnRkx6JI7M5px0T1XRNvuhRnNADLHYBIAAAAAAAAAACpBOp2OhR/Oj5KRxVEyakqUjCyO5fOWfedzZr0zM2a9MzOe+t2j0bjFbpvHkx2KOkat2vkZaF71LZ2zJPqf+rfYuG5DxjJO+s3pcfj5R2bsfCDzDCYBAAAAAAAAACAD0ul0LJqxIEpGFse0LwaSc5dWaMayOUti1B3/jlF3/DsK6hVEx+8fEAecfHDsf9LB0XDPRhWaVVWVri6N20+9JVbO//qnc1aELmcdHif//syMnQ9UDoNJAAAAAAAAAACoAOl0OhbPXBjTRk757JrtDAwkv836Nevj3SfeiXefeCdSqVS0OrxtHHDyIXFgr0Oi2X4tsvLq7vLy8hh4Yf+Y8+7sjGW06tomLhl0VeTk5GQsA6gcBpMAAAAAAAAAALAD0ul0LP5oYUwbMSVKRhVHycgpseyTyhtIfpt0Oh0fvfVhfPTWhzH8N8Nit1Z7bL66u7Bnx8jLz47Z0BO/ejjeGz4+Y+c33nvXuObJn0d+3YKMZQCVJzt+5wMAAAAAAAAAgAz7YiBZMrI4SkZNiWkji2PZnCVJ19ouS2YtihH9XowR/V6M2g3qRKcT9o8DTj4k9v/hQVF/94ZJ19showeNjJdufjpj5xfUK4g+T90YjfZqnLEMoHIZTAIAAAAAAAAAwDdY/NFnV2x/9gTJ4lj68eKkK+200lXrYsKjY2PCo2MjlZOKNke03/z0yb06Nq8WV3eXjCqO+6+6J2Pnp1KpuHRon2hxUKuMZQCVz2ASAAAAAAAAAAA+t3jWoigZ+Z8rtpfMrv4DyW+TLk/HjNElMWN0STzxq4di9zZ7/ufq7qP3jdxaVW9etPDD+XHnmX+Pso1lGcs443/OjYNOPTRj5wPJqHq/owEAAAAAAAAAQCVZMntRlIws/uwpkjVgILkti2cujFf/8UK8+o8XonbDOrHfiQfGAScfEvudeFDU27V+0vVizbLV0a/XzbFm6eqMZfToXRTH//ykjJ0PJMdgEgAAAAAAAACAGmPpx4tj2sgpnw8ki2PJrEVJV6qySleui3EPvxXjHn4rcnJzom2Pws1Pn2zaoVml9ynbuCnuPvsfsWDapxnLKOzZMc6749JqcS058N0ZTAIAAAAAAAAAkLWWzlkS00Z8ECUji6Nk1JRY/JGB5I4oLyuP6a9NjemvTY3H/tcDsWf7ppvHk+2O7BC5ebkZzU+n0/HQzwZH8cuTM5axZ7smceWj10VevkkVZCu/ugEAAAAAAAAAyBpL5yyJks+fHjlt1JRYPHNh0pWy0sLp8+Plvz8XL//9uajbuN7mq7s7/+DAqLtLvQrPG/HPF+O1f71S4ed+oe4udaPP0zdF/d0aZCwDSJ7BJAAAAAAAAAAA1dayT5bEtJHFn40kRxXHohkLkq5U46xdtibGPjAmxj4wJnLycqP9UR02P31yz3ZNd/r895+bGMNuuK8Cmn69nNycuOKR6xK5ZhyoXAaTAAAAAAAAAABUG8vmLo2SkVNi2ggDyaqofFNZTBvx2b+fR34+NJru22zzeLLNEe2/89XdcyfPiQHn9ot0eTpDjSPO7d87Oh63X8bOB6oOg0kAAAAAAAAAAKqsZXOXxvRRxZ8PJKfEwg8NJKuT+VPnxfyp8+KlW56JervWj/1+eNBnV3efcEDUaVT3W7925cIV0b/XzVG6al3G+h137Ylx9BXHZex8oGoxmAQAAAAAAAAAoMpYPm/ZZ0+Q/PyK7YXT5yddiQqyZunqeHvoG/H20Dcit1ZuFPbsuPnpk7u33nOLz24s3RB3nH5rLJm9OGN99j/p4PjRLedn7Hyg6jGYBAAAAAAAAAAgMSs+XRbTRhZHyecDyQUlnyZdiUpQtrEsil+eHMUvT46HrxsSzTrvvXk82frwdjHksrti5pvTM5bffP8WcdkDfSMnNydjGUDVYzAJAAAAAAAAAEClWfHpsigZVRwlI4tj2qgpsWCagSQR8z74JOZ98Em88D9PRe2GdaJ0Zeau4W6wZ8Po89SNUbtBnYxlAFWTwSQAAAAAAAAAABmzYv7yzwaSI6YYSG6nervWj/Y9O0aHnh2jcYvdYspLk2LSMxNj+dylSVerFJkcS+YV1Iqrn7ghdmu5R8YygKrLYBIAAAAAAAAAgAqzcsGKmDZyyuYrtudPnZd0pSqvbuN6UdizYxT27BgdjukczfbbO3Jy/nNV9MGnd43zbk/HnImz4r2nJ8SkZybEx+M/SrBx9XXxwCuj7RGFSdcAEmIwCQAAAAAAAADADlu5YMXnV2x/NpD8tHhu0pWqvLq71I32PTtGYc9O0eGYTtF8/xZbDCS/TiqVin0OaR37HNI6ev3uzFg+b1lMeuaz8eTUlyfHxtKNldS++jrpt2fEYed2T7oGkCCDSQAAAAAAAAAAttvKhSti+qjimDayOEpGTYlPpxhIbkvdXepG+6M7RmFRp+hQ1DGa779P5OR++0ByW3Zp1jiOvuK4OPqK42LD2vVR/MrkmPT0hJj0zMRYOX95BTXPHoee3S16/f7MpGsACTOYBAAAAAAAAADgG61atDJKRhXHtBFTDCS3U51GdTdfsV1Y1Cn2PmDnB5LfJr9uQRzYq0sc2KtLlJeXx8fjP/p8PDkh5rw7O2O51UWrw9rGxQOvilQqlXQVIGEGkwAAAAAAAAAAbPbFQPKLK7bnffBJ0pWqvDqN6kb7o/eNwp4do0NRp9j7wJYZHUh+m5ycnGjVtW206to2Tvm/Z8XSOUvi/S+u7n51SmxaX7Ou7m7cYre45smfR36d/KSrAFWAwSQAAAAAAAAAQA22evHKKBk1NaZ9MZCcPCfpSlVe7YZ1ov3R+0aHnp2isKhjtDioVWIDyW3ZtcVu0fPq46Pn1cdH6erSmPry+zHp6Ykx6dkJsWrhyqTrZVRBvYLo89SN0ajpLklXAaoIg0kAAAAAAAAAgBpk9eKVUfLa1CgZWRwlo6bE3PcNJLeldoM6/3mC5DGdqvRA8tvUrl87Djqtaxx0WtcoLy+PWWNnbL66O9u+D1KpVPzkgb7R4sCWSVcBqhCDSQAAAAAAAACALLZ6yaqY/trUmDZiioHkdqrdoE60O6pDdCjqFIVFnaLFQS0jNy836VoVKicnJ9p0ax9turWP0/54diyZvWjzeHLaiClRtrEs6Yo75cy/nhcH9uqSdA2gijGYBAAAAAAAAADIImuWro6SUcVR8vkV259M+jjpSlVeQf3a0f6oDlFY1Ck6FHWKFge3yrqB5Lbs1nKPOKbvCXFM3xOidNW6mPLS+zHpmQnx/rMTY/XiVUnX+06O/Mkx8b0bfph0DaAKMpgEAAAAAAAAAKjG1ixdHdNfK45pI4ujZFRxzJ30caTT6aRrVWmbB5I9O0VhUcfY55DWNW4g+W1qN6gTh5x5WBxy5mFRXlYeH739YUx6ekK89/T4+HTK3KTrfasOx3SKc/v3jlQqlXQVoAoymAQAAAAAAAAAqEbWLFsd01+bGiUji6Nk1JT45D0DyW0pqFcQ7Y7aNwp7dowORZ1in0NaRW4ts5ntkZObE227F0bb7oVx+p/PiUUzF2y+urtk1NQo31R1ru7es33TuPKR6yIv379b4Ov53QEAAAAAAAAAoApbs2x1fPj6tJg2YoqB5HYqqFcQbY/sEB0+f4Jkyy6tDSQryB5tmsRx154Yx117YqxbsTY+eHFSTHpmQkx+7t1Ys3R1Yr3qNq4XfZ++KertWj+xDkDV5ycBAAAAAAAAAEAVsrF0QxS/PDmmvvpBlIwqjk/enW0guQ35dQui3ZGFUdizU3Q4ppOBZCWp06huHPrjbnHoj7tF2aaymPnm9M1Xdy+Y9mml9cjJy40rH7kumhTuVWmZQPXkJwMAAAAAAAAAQBWwZunqeOa/Hosxg1+L0pXrkq5TpeXXLYi2PQqjQ9FnT5BsdWgbA8mE5eblRvuj9o32R+0bZ/71vFgw/dPPr+6eGB++PjXKy8ozln1e/96x77GdM3Y+kD38pAAAAAAAAAAASNj4R9+O+6+6J9ErjauyWnXyo12Pwigs6hQdijpFy0PbRF6+2UtV1qT9XnH8DSfF8TecFGuWrY4PXvjs6u4Pnn831i5fW2E5x113Yhx1+bEVdh6Q3fzkAAAAAAAAAABISOnq0hh23ZAYPXBk0lWqlM0DyZ6fP0Gya1sDyWqsXuP6cdi53eOwc7tH2cZN8eHoks+fPjkhFk6fv8PnHn/DSXHGX8+twKZAtvOTBAAAAAAAAAAgAbPHz4wB5/XbqcFYtqhVu1a0/Xwg2aGoY7Q6rJ2BZJbKrZUXHT5/UuhZf7sg5k+bF+89NT4mPTMxZoyeFuny9DbPyCuoFWf85Zw47toTK6ExkE38ZAEAAAAAAAAAqETl5eXx71uejeG/HRZlG8uSrpOIWrVrRZvuhZ8P5zpGy65to1ZBraRrkYCmHZpF05uaxQk39YrVS1bF5Offi0nPTIipL0/e6or6Bns0jCMvOyaO/dkPomGTRgk1Bqozg0kAAAAAAAAAgEqybO7SuPeSO2LqKx8kXaVSbR5I9uwYhUWdotVhBpJsrf5uDaLbBUdGtwuOjIiI1UtWxYJpn0akIpoU7hX1d2uQcEOgujOYBAAAAAAAAACoBO8OHxdDLrsr1ixZve0PV3N5BbWibff2UdizUxQWdYzWh7WNWrXzk65FNVN/twZRv7uRJFBxDCYBAAAAAAAAADJow9r18cjPh8Zr/3ol6SoZk1dQK9oc0T4Ke3aMDkWdovXhBpIAVD0GkwAAAAAAAAAAGTLn3Vlxz/n949PiuUlXqVB5+XmbB5KFRZ2iTbd2BpIAVHkGkwAAAAAAAAAAFay8vDxeve2FeOJXD8WmDZuSrrPT8vLzonW3dtGhqFMUFnWK1oe3i/w6BpIAVC8GkwAAAAAAAAAAFWjF/OVx7yV3xJSX3k+6yg77YiBZ2LNTdCjqGK27tTeQBKDaM5gEAAAAAAAAAKgg7z87MQZf+q9YtWhl0lW+k9xaudG6W/vo8KUrtvPrFiRdCwAqlMEkAAAAAAAAAMBO2rBuQzz2vx6Ikf1fSrrKdsmtlRutD28XhZ8PJNse0d5AEoCsZzAJAAAAAAAAALAT5k6eEwPO6xfzJs9Juso3yq2VG60OaxsdijoZSAJQYxlMAgAAAAAAAADsgHQ6HSP7vxSP3vRAbFq/Mek6W8jJy43Wh7eNwp6dokNRx2hzRPsoqFc76VoAkCiDSQAAAAAAAACA72jlwhUx5Cd3xfvPTky6SkR8PpA8rO1/rtjubiAJAF9lMAkAAAAAAAAA8B188OJ7ce8ld8bKBSsS65CTlxuturaJwp4do0NRp2jbo9BAEgC2wWASAAAAAAAAAGA7bFy/MZ741UPxyv97PrEOPXoXxaFnd4s23Qujdn0DSQD4LgwmAQAAAAAAAAC24dPiuTHgvH7xyXuzE8mvv3uDuHjglXHAyYckkg8A2cBgEgAAAAAAAADgG6TT6Xj9rldj2A33xcZ1GxLp0On7+8clg66KRns1TiQfALKFwSQAAAAAAAAAwNdYvXhlDLn87nhv+PhE8nNr5cbpfz4njrvuxMjJyUmkAwBkE4NJAAAAAAAAAICvKH5lctx78R2xfN6yRPKb7tssfnJ/39jn4FaJ5ANANjKYBAAAAAAAAAD43KYNm2L4bx+Jf9/yTKTT6UQ6HH3FcXHWrRdEft2CRPIBIFsZTAIAAAAAAAAARMSCkk9jwPn94uPxHyWSX2/X+nHRgMvjoNO6JpIPANnOYBIAAAAAAAAAqNHS6XSMHjgyHr52SGxYuz6RDh2O7Ry9B18djZvvmkg+ANQEBpMAAAAAAAAAQI21ZtnqGHrlgJjw6NhE8nPycuO0P/w4jr/xpMjJyUmkAwDUFAaTAAAAAAAAAECNVDKqOAZe2D+WfbI0kfw92zeNn9zfN1od2iaRfACoaQwmAQAAAAAAAIAapWzjpnj694/FC395KtLpdCIdevQuih/fdlHUrl87kXwAqIkMJgEAAAAAAACAGmPRjAUx4Px+MWvsjETy6+5SNy7412XR5axuieQDQE1mMAkAAAAAAAAAZL10Oh1v3fd6PNj33li/ujSRDu2P3jcuHXJN7LrP7onkA0BNZzAJAAAAAAAAAGS1dSvWxv3XDIx3HhyTSH5Obk70+v2P4ge/PCVycnMS6QAAGEwCAAAAAAAAAFnsw9HTYuAF/WPJ7MWJ5O/eZs/4ydA+0aZb+0TyAYD/MJgEAAAAAAAAALJO2aayeO4PT8Szf3gi0uXpRDp0u/DIOOefl0SdhnUTyQcAtmQwCQAAAAAAAABklcWzFsXAC/rHjDElieTXblgnzr/jJ3HYud0TyQcAvp7BJAAAAAAAAACQNcY+OCbuv/qeKF25LpH8tt0L49KhfWL3Vnskkg8AfDODSQAAAAAAAACg2itdtS4e/Om98daQ1xPJT+Wk4qTfnhE//N+nRW5ebiIdAIBvZzAJAAAAAAAAAFRrH739YQw4v18snrkwkfzdWu4elw7tE+16dEgkHwDYPgaTAAAAAAAAAEC1VF5WHi/85al4+vePRnlZeSIdup5zRJx3+6VRd5d6ieQDANvPYBIAAAAAAAAAqHaWzlkSAy/sH9Nfm5pIfkH92nFuv0ui24VHRSqVSqQDAPDdGEwCAAAAAAAAANXK+EffjqFX3B1rl69NJL/VYW3jsvv7xh5tmySSDwDsGINJAAAAAAAAAKBaKF1dGsOuHRKjB41MJD+VSsUPfnVq9PrdGZFby+QCAKobP70BAAAAAAAAgCpv1riZcc/5/WLh9PmJ5Dfee9e49L4+UdizYyL5AMDOM5gEAAAAAAAAAKqs8vLy+Pctz8aTvxkW5ZvKEulwyI8OiwvuvCzq7Vo/kXwAoGIYTAIAAAAAAAAAVdKyuUtj0MV3xLRXP0gkP79uQZx920XR49KiSKVSiXQAACqOwSQAAAAAAAAAUOW8++Q7MeSyu2PN0tWJ5O/TpXVcdn/faFK4VyL5AEDFM5gEAAAAAAAAAKqMDWvXxyM3DI3X7nolkfxUKhXH33hynPrfZ0VevlkFAGQTP9kBAAAAAAAAgCphzruzYsB5/WL+1HmJ5O/SrHFcMvjq6HjcfonkAwCZZTAJAAAAAAAAACQqnU7Hq/94IR7/xYOxacOmRDocdNqhceHdl0f93Rokkg8AZJ7BJAAAAAAAAACQmI2lG2LolQPirfveSCS/Vp38+PGtF8ZRVxwbqVQqkQ4AQOUwmAQAAAAAAAAAErFs7tK484xbY9Y7MxPJ3/vAlnHZA31jr47NE8kHACqXwSQAAAAAAAAAUOlmvjU97jzz77Hi0+WJ5B933Ylx+p/PiVoFtRLJBwAqn8EkAAAAAAAAAFCp3hz8Wgy9ckBs2rCp0rMbNmkUl9x7VXQ+4cBKzwYAkmUwCVkqnU7HzJkzo7i4OJYtWxZr1qyJBg0axG677RadO3eOFi1aJF1xu5WWlsakSZNizpw5sXz58igrK4vGjRtHs2bN4sADD4z69esn1m3p0qUxadKkWLBgQSxfvjzy8/Njl112iTZt2kSnTp2iVq3k/jTanDlzYvLkybF06dJYtWpV1KtXLxo3bhwdO3aMtm3bJtYLAAAAAACAmqtsU1k8dtMD8cptzyeSv/9JB8dF91wRDfdslEg+AJAsg0myyoYNG+LBBx+MYcOGxcyZM6O8vDxycnLirrvuiqOOOmqHzpw2bVr8+Mc/jtLS0gpu+x+9evWKW265pULOXHOwogAAIABJREFUmj59ejz44IPx7LPPxvLl3/zo+qZNm8YZZ5wR55xzTjRp0qRCsivSpk2b4tVXX42HHnooxo4dGxs3bvzaz+Xm5sZBBx0U5557bpxwwgmRn5+f8W6rV6+OJ598MoYNGxbTpk37xs/Vrl07evbsGeeff34cfvjhGe8VEfHJJ5/Eww8/HE8++WQsXLjwGz/XuHHj6NWrV5x33nnRunXrSukGAAAAAABAzbZm6eq4+9x/RvG/36/07LyCWvGjm8+Loj7fj1QqVen5AEDVYDBJVti0aVM8/vjj0b9//5g/f/4W75WXl8eiRYt2+OzZs2dndCwZEbF+/fqdPmPp0qVx8803xxNPPBHpdHqbn58/f37cfvvtMWDAgLjyyivjiiuuqJSx4fYYN25c/Nd//VeUlJRs87NlZWUxfvz4GD9+fPTr1y9+97vfRffu3TPSK51Ox6OPPhq33HLLt45Rv1BaWhovvvhivPjii9GjR4/43e9+Fy1btsxIt7Vr10a/fv1i8ODBsWnTtq8tWLZsWQwZMiSGDh0a5513Xlx//fWJPqkTAAAAAACA7Dbvg0/i9tP+FotmLKj07Gb7tYjL7u8Tzfffp9KzAYCqJSfpArAzysvL4+mnn44f/vCH8dvf/narsWRFWLZsWYWf+VUNGjTYqa+fOHFinHzyyfH4449v11jyyzZs2BD//Oc/46yzzooFCyr/f06+LJ1Ox2233Rbnn3/+do0lv2rWrFnRu3fv+Otf//qd/zlsy+rVq+PKK6+M3/zmN9s1lvyq0aNHR69eveL55yv+aoGZM2fGaaedFvfcc892jSW/rLy8PIYOHRqnnHJKTJ8+vcK7AQAAAAAAwHtPjY+/HPF/EhlLHtP3hPjV2/9tLAkARIQnTFKNvfzyy3Hbbbft0LDuu6iMwWSjRo12+GtfeeWVuP7667/2KZV169aNrl27RuvWraN27dqxcuXKmDZtWrz77rtRVla2xWenTp0aZ511Vtx7773Rpk2bHe6zo8rLy+MXv/hFPPXUU1/7fosWLeLggw/efH34ggULYuLEiTFnzpytPnvPPffEvHnz4tZbb42cnJ3fhS9dujQuueSSr71+O5VKRefOnaNz587RuHHj2LBhQ3z88ccxbty4rYaV69evj+uvvz4WL14cF1544U73ioh477334vLLL48VK1Zs9V5+fn506dIl2rVrF/Xq1Ys1a9bEhx9+GOPHj48NGzZs8dm5c+fGueeeG//617+iS5cuFdINAAAAAACAmi2dTsfzfxoeT/2fRyr8gSfb0mCPhnHxwCtj/5MOrtRcAKBqM5ik2nnzzTfj1ltvjUmTJlVKXmUMJps3b75DXzdp0qS44YYbthpLNmzYMK699tr40Y9+FLVr197q6xYtWhQDBgyI++67b4vh5IIFC+Kqq66Khx9+OBo3brxDnXbUzTff/LVjyYMOOihuuummOPTQQ7/268aNGxe33HJLTJw4cYvXn3/++dhzzz3j17/+9U712rBhQ/Tp0+drx5Knnnpq/PSnP40WLVps9d6mTZviueeei7/97W9bPPk0nU7HH//4x2jatGkcf/zxO9Vtzpw5cdVVV201liwoKIgrr7wyLrrooq99eumqVavivvvuizvvvHOL751Vq1bFNddcE4888kjss48/YQcAAAAAAMCOW7+mNAZf+q8Y/8jblZ7d6YQD4pJBV0WjprtUejYAULUZTFKtfPTRR3HJJZdUauZXB5MNGzaMESNGRP369Su1x1etWLEirrnmmigtLd3i9Xbt2sWAAQNir732+sav3WOPPeJXv/pVHHvssdG3b99YuXLl5vdmz54dN954Y9xzzz0Z6/5Vzz33XAwcOHCr1y+++OL4xS9+Ebm5ud/4tYceemjcf//9cfPNN8egQYO2eG/w4MFxwAEHxMknn7zD3f74xz/GhAkTtnitVq1a8Ze//OVbz83Ly4tTTjklevbsGX379o2xY8dufi+dTsdNN90Uw4cPj5YtW+5Qr40bN0afPn1i6dKlW7zepEmTuPvuu6NDhw7f+LUNGjSIa665Jr73ve/F5ZdfvsWgc/ny5dGnT5947LHHIj8/f4e6AQAAAAAAULMtmb0o7jj91pjz7uxKzc3Lz4vT/3JuHPuzEyrkJjoAIPv4LwSqla+OA7/QtGnTuOqqq+Khhx6q8MyvDib32muvxMeSERF//etfY9GiRVu81qxZsxg8ePC3jiW/7PDDD4877rhjq2HcG2+8EcOHD6+wrt9m+fLl8Yc//GGr188+++z49a9//a1jyS/k5ubGL3/5yzjvvPO2eu9Pf/rT115XvT3GjRsXDz/88Favb2ss+WWNGjWKu+66K/bbb78tXl+3bl38/ve/36FeERF33333Vk+9bNCgQQwaNOhbx5JfVlhYGPfee+9WV8KXlJTEgAEDdrgbAMD/Z+/Ow6ys6/6Bf2YFhn1RBEQF3HFDRdHQRDMllXLBXQHBBdOntOzno2mZ5dKTZT6p4IIomQvihqW55ZKCYioK7iKyCrLJMgwMM+f3h4/leM7ALPc5wzCv13V1WZ+Z+/39nDnmdbzmzX0DAAAA0HR98MK7cfU+l+W8LNllp25x8eRfxXd+PFBZEgColk8JNFrFxcUxcODAuPXWW+Mf//hHXHDBBdGnT5/Ez/lmYbJDhw6Jn1Fbb731VkyYMKHKLD8/P/7nf/4nOnXqVKusvffeO370ox+lza+99tpYvXp1vfasiRtuuCEWL15cZbb99tvHz3/+81pnXXLJJbHjjjtWmS1evDhuuOGGWmelUqm44oorIpVKVZmfcMIJtb5jZYsWLeL666+PkpKSKvOXX345/v73v9d6t88++yxuvvnmtPkvf/nL6NWrV62yevToEVdccUXafNSoUbFgwYJa7wYAAAAAAEDT9fyop+MP37kqVny+fMPfnKADzz4kLpny6+i+xzY5PRcAaHwUJmlUOnfuHAcccEBcfvnl8c9//jOuv/76OPDAA7P6J4S+WZjs2LFj1s6qqdGjR6cV+QYNGhR77713nfKGDh0a22yzTZXZ4sWL44EHHqjrijWyaNGijGdceumldXocdFFRUcai5QMPPJBWytyQZ555Jj744IMqszZt2sRPfvKTWu8VEdG9e/cYPnx42nz06NG1zhozZkysXbu2yqxv3751fvT4wIEDY999960yW7NmTdojzgEAAAAAACCTdWvXxd0jb4+/nDsmKtdV5Ozclh1axcgHL4hTbh4exSXNcnYuANB4KUzSqHTo0CFuu+22OOWUU9IeI5wt3yxMtm/fPifnVmfGjBnxzDPPVJnl5eXF2WefXefMwsLCGDFiRNr8jjvuiMrKyjrnbsi4ceNizZo1VWZ9+vSJfv361Tmzb9++sddee1WZlZWVxbhx42qVk+mR1CeffHK9/r4bOnRo2l0mp0+fHpMmTapxxhdffBHjx49Pm48cObLOe1V3/X333RcrVqyoVy4AAAAAAACbthWfL4/rv3tVvDD6mQ1/c4K2PWDHuGzqNbHHD/rm9FwAoHFTmIT1WLt2baxatarKrKEfyf3oo4+m3V2yb9++0bNnz3rlHnnkkWllvrlz58aUKVPqlVudVCoVjzzySNr8+OOPr3d2poxHH320xtfPmjUr3njjjbT5cccdV6+9WrVqFYcffnjaPNPPoTpPPvlklJaWVpl169Yt9t9//3rt1q9fv+jevXuVWWlpaTz11FP1ygUAAAAAAGDTNfvNmXFV35/Hhy+8l9NzDzz7kLjgqUuifbeG/d0tAND4KEzCenzz7pIRDV+YfOKJJ9Jmhx56aL1zW7RoEf3790+b/+1vf6t3diZvvvlmzJ8/v8qsoKAgDj744HpnDxgwIAoLC6vM5s6dG1OnTq3R9Y8//njabOedd04rFNZFpvfq6aefTnvEdnWqe//z8vLqtVdeXl585zvfSZtn6/0HAAAAAACgcfvX+Mnx2/5XxJJZi3J2Zn5hQZx80xlxys3Do7C4cMMXAAB8g8IkrMfGVpicMWNGfPLJJ2nz/fbbL5H8TI/CfvbZZxPJrknuTjvtFO3atat3dtu2bWOnnXaq0Zk13a0+jwn/un322ScKCgqqzFasWFGjO3mWlpbG5MmT0+ZJvf+ZciZPnpx2R0sAAAAAAACarsrKynjksvvjlhNuiLWla3J2bqtOreOCpy+Jb5+TfhMQAICaUpiE9Vi2bFnarCELk5keE926devYdtttE8nfc88902YLFy6MuXPnJpL/dZleS58+fRLLz5T1+uuvb/C6tWvXxvTp02uUVxetWrWK7bbbLm2e6efxTW+99VasW7cubb7HHnskslumnPLy8pg2bVoi+QAAAAAAADRuq5eXxqhj/hB/+83DOT13y923jkum/Dq2PzD9pikAALWhMAnrkekOk+3bt2+ATb6U6ZHS2223Xb0fx/yVXr16pd39MOLLx2cnqaKiImMJb4cddkjsjO233z5tNm3atKioqFjvddOnT4/y8vKs7lbXwmSm979z586J3JUz4ss7c3bu3DltnvT7DwAAAAAAQOPz+ccL4tr9fxFTH/1XTs/da/C+8bN//iI6br1ZTs8FADZNCpOwHhvbI7nfe++9tFnPnj0Tyy8uLo4uXbqkzd99993EzoiImDlzZqxevTpt3qNHj8TO2GabbdJmpaWlMXPmzPVel+lnXFRUFN27d09os8y7ZTq3Jt+T5PsfkXm3pN9/AAAAAAAAGpd3n347rtrn5zH/neSfTLc+37/y+Djz3v+KZi2b5/RcAGDTVdjQC8DG7JuFyYKCgrS7+S1cuDCeeuqpeOONN+Kdd96JZcuWxfLlyyMvLy9atmwZXbt2jZ49e0bfvn3jgAMOiK5du9Z5n3nz5qXNtthiizrnZbLFFlvEnDlzNnhufVSXl+RrqS5r3rx50atXr2qvy7Tb5ptvHvn5yfXLM+22ePHiWLNmTTRr1qxWu2Xj/a/JuQAAAAAAAGz6UqlUPPPHJ+KBn/45UpWpnJ3brFXzGP7nH8bug/bK2ZkAQNOgMAnr8c3CZLt27f79+OuXX3457rzzznjxxRerfczz2rVrY+nSpTF9+vSYOHFi5OXlxf777x9nnXVW9OvXr1a7rF27NhYtWpQ232yzZG89v/nmm6fNclWYzHR2XVWXtaHXkunrufgZp1KpmDdv3nrvsjl3bvqf2MvFbpnOBQAAAAAAYNNWvqY87h55e0wa+0JOz92sV+c49+GfRNfeW+b0XACgaVCYhPX4ZmGyrKwsHnroobjnnnti6tSptc5LpVLx0ksvxUsvvRTf+c534te//nW0b9++RtcuXLgwUqn0P7XVpk2bWu+xPq1bt854dpIy5TVr1iyKi4sTO6NZs2ZRVFQU5eXlGzx7Q1/P9DOpj+ryFi5cWG1hsrKyMmNhNhe7LVq0KFKp1L/LwgAAAAAAAGzavpi/NG4+9g/xyeSPcnruTt/ZJc6897+iZYdWOT0XAGg6FCZhPZYtW1blf69atSouvvjiRLKffvrpeOedd2Ls2LGx9dZbb/D7V69enXHesmXLRPZZX151Z9dVaWlpjc6tr1atWqWVXjf0WnKxW6tWmf8Fr6ysrNprysrKMhZmc7FbKpWKsrKyaNGiRaJnAQAAAAAAsPGZOeXjuPno38eyeUs3/M0JOuRHA+PY/zk5CgoLcnouANC0KEzCeixevHiD37PTTjvFt7/97dh///2jS5cu0aFDhygsLIylS5fGJ598Eq+88ko8/PDD8dlnn6VdO2/evDjttNPigQce2ODjqKsr+hUVFdXsxdRQprz1FfnqIlNe0q8jIqKwMP0fcRt6LbnYLdNeEesvc1a3d5J35YxY/24KkxEVFRWJP6Ke9fvq5+3nDgDQdPlMCADQtPk8CLn19oOvx2MXT4iKNetydmZBcUF876pjYvfBe8e8+f6/DkA6nwkbRteuXaOgYNP7gwwKk7AevXv3jnfffTdtnpeXF4ccckicddZZsfvuu2e8tkuXLtGlS5fYf//947zzzovx48fHb3/727RS3IIFC+InP/lJ3HXXXet95PHatWszzpP+B1NdSoa1tWbNmhqdW191KX/mYrfq8ta3W6a9InLz/q/v/KZm8eLF0a9fv4Zeo0k65phjGnoFAAAamM+EAABNm8+DkGWpiJ1W9Ixeq7rn9Niy/DXxWuvp8ch1z0Zcl9OjAWiEfCbMrTfeeGODN4BrjBQmYT1+85vfxKBBg+I3v/lNvP/++xERsc8++8TFF18cvXv3rnFOUVFRnHzyybHvvvvG0KFDY+HChVW+/uqrr8bEiRNj0KBB1WZUV4yrrKys8R41UVFRkTbLxR0WM51bX3V5LZl+zknvVt17tr67RVb3/udqt2zcAbQx6tixY0yePLmh12hS5s2bF8ccc0w8+OCD0bVr14ZeBwCABuAzIQBA0+bzIGTf6i9K46Hz74kZz3+Q03O77r5lHHfL6dFmi7Y5PReAxsdnwobRsWPHhl4hKxQmYQP23XffeOihh+L++++PTp06xaGHHlrnrF69esWtt94aJ510UpSWllb52o033rjewmR1j0MuLy+v8z6ZrFuXfnv9pB/F3Lx58xqdW191eS2Zvp70btXlZfq5fKW6vZPerbq/n9a3W1NSUFAQ3bvn9k9W8qWuXbv62QMANHE+EwIANG0+D0J2fPbe3Ljl2NGx8MPPcnpuv9P6x6mjR0RR8+pvKAIA3+QzIUnIb+gFoDEoKCiIk046qV5lya/suOOOMXTo0LT5zJkz46233qr2umbNmmWcf7N4WV+Z8pIuy2XKS/p1VJe5odeSi91WrVqVcb6+MmdDvv8RyZdmAQAAAAAAaFhv//WNuLrf5TktS+bl58Vx/3NKDB07UlkSAGgQCpPQAIYPH57x8csvvfRStde0a9cu43zFihWJ7VVdXocOHRI9I9NrKS0tTfRuievWrYvVq1enzTf0WjLttnz58sT2iohYuXJlxnn79u2rvaa4uDhKSkrS5knvlun9b9u2bbWPBAcAAAAAAKBxSaVS8cQ1j8aNg34XZcvTf5+WLS3alsT5f/1ZHPqTIyIvLy9n5wIAfJ3CJDSAVq1aRZ8+fdLm7777brXXtG/fPmNhbtGiRYnutnjx4rRZ165dEz2jurxMZ9dVdVkbei2Zvp7kXhHVv2fdunVb73WZvp70brl4/wEAAAAAAGgYa0vXxO2n3hgPXXJvpFKpnJ27xY5d479fuTJ6H7Z7zs4EAMhEYRIayO67p//LwGefrf9295mKaxu6prYWLFiQNttQka+2qivgJflaMr2OiIgtt9xyvddl2q26rLrKlNemTZto3br1eq/bVN5/AAAAAAAAcm/J7MXxPwdeEVPueTmn5+56RJ+4eNKvovP2XXJ6LgBAJgqT0EAyPRp6Q49X7tWrV9ps5syZSa0UlZWVMXv27LT5tttum9gZERE9e/aM/Pz0f/x88skniZ2R6edSWFgYW2+99Xqvy/QzLisri/nz5ye1Wnz66ac1Orcm35Pk+x+Rebek338AAAAAAABy66OX3o+r+l4as16fmdNzD794UJz78E+iRdv0J+kBADQEhUloIJker70hu+22W9rsgw8+SGKdiIiYNWtWrF27Nm2+xx57JHZGxJePJO/Zs2faPMnX8vHHH6fNdthhh2jRosV6r8t058+IZHf76KOP0maZHtH+TZne/zlz5sSqVasS2ausrCzmzJmTNk/6/QcAAAAAACB3/nnbP+L3B/86Vixc/81bklTUojhG/OW8OPqqEyO/QC0BANh4+GQCDWTp0qVpszZt2qz3mkzFtSVLlmS8K2BdvPnmm2mzVq1aZeUOg5mKiW+88UZi+ZleS01KiR06dIju3bunzV9//fVE9iovL4933nknbV6TUmKm70mlUjF16tREdps2bVpUVFSkzasrkQIAAAAAALDxqihfF/ecd0eMO+vWqChP/x1QtrTfskP87MVfRN8T98/ZmQAANaUwCQ3k888/T5t17tx5vdfstttuGUuVkyZNSmSnV155JW12wAEHZHx8dn31798/bfb222/HypUr6529Zs2ajCXCAw88sM67TZ48ud57RXxZ5FyzZk2VWVFRUey3334bvLZLly4Zy6tJvf+ZXuNuu+2W8fHxAAAAAAAAbLxWLloefzz8mnjupqdyem6vb20fl0z5TWy1Z4+cngsAUFMKk9BAXn311bTZTjvttN5riouL45BDDkmbP/VU/f9Fp6KiIl544YW0+RFHHFHv7EwGDBiQ9njs8vLyeO655+qdPWnSpFi9enWVWbt27eJb3/pWja4fOHBg2mzq1KmxYMGCeu/27LPPps0OOOCADd5d9CuHH3542uzJJ5+s914REf/4xz/SZtl6/wEAAAAAAMiOuW/Piqv2uSze/0f6U8+yqf+IAXHhMz+PNp3b5vRcAIDaUJiEBjB37tz44IMP0uZ9+/bd4LVHHnlk2uzll1+OOXPm1GunF198MRYtWlRl1rZt2xrflbG2WrRokbH8ef/999c7+8EHH0ybDRw4MAoLC2t0fd++fWOLLbaoMkulUjF+/Ph67bVu3bqYOHFi2vyoo46qccYRRxwReXl5VWYzZ86MKVOm1Gu3Dz/8MKZNm1ZlVlhYmLE8CgAAAAAAwMbp9QdfjWv3/0Usnpn+tLtsyS/IjxP/d2icOnpEFBbX7PdxAAANRWES1mPp0qWJPe7460aNGpU223zzzWOvvfba4LX9+/ePHXbYocqssrIyRo8eXa+dbr/99rTZKaecEs2aNatX7vqcccYZabNXXnklXn/99Tpnfvrpp/H0009XmeXn58fQoUNrnFHd9//5z3+u1yPDH3300bRHsW+55ZZx2GGH1TijZ8+ecdBBB6XNb7755jrvFZH5/T/iiCM2+Jh4AAAAAAAAGl5lZWVM/OUDMfq462PNqjU5O7dlx1bx46cuiQE//G7aTT8AADZGCpNQjXfeeSeOPfbYGDZsWIwdOzax3OnTp2e8A+Kpp54a+fk1+7/k2WefnTabMGFCvPXWW3Xa6emnn057RHhJSUmcfvrpdcqrqd69e0f//v3T5ldeeWWUl5fXKfPaa6+NioqKKrPDDz88ttlmm1rlHH/88dGuXbsqs6VLl8Yf/vCHOu21cuXKuOGGG9LmI0aMiIKCglplnXPOOWmzl156Kf7+97/Xabdp06bFo48+WmWWn58fZ511Vp3yAAAAAAAAyJ2ylWUxevAf47Ffpf8OMpu67do9Lnn117HDQTvn9FwAgPpQmIQMHnnkkTjppJNi7ty5kUql4uqrr47f/e53kUql6pW7YMGCGDlyZKxbt67KfLPNNqtVOfF73/te7L333lVmFRUVccEFF8SSJUtqtdP8+fPj8ssvT5uff/750b59+1pl1cV///d/R1FRUZXZO++8E1dffXWts+6999545plnqsxKSkripz/9aa2zWrZsmfG6u+++Ox5//PFa5/3iF7+I+fPnV5ntvPPOMXjw4Fpn7bHHHhkf43355ZfHJ598UqusFStWxEUXXZRWMj355JNj2223rfVuAAAAAAAA5M7nMxbEtfv/It58aEpOz+1zTN/42UtXRKcem+f0XACA+lKYhAzuvffeKCsrqzK79dZb4+yzz651IfEr06ZNi5NPPjkWLFhQZZ6XlxdXXXVVtGjRosZZeXl58etf/zrtcdlz5syJIUOGpBXzqjN79uwYMmRILF68uMp8l112iSFDhtQoY+nSpbHbbrvFDjvsUOU/1157bY2u33bbbWPkyJFp87vvvjuuueaatCJfdSZMmBC/+tWv0uYXXHBBdOvWrUYZ3zR48ODo169flVkqlYqf/exn8de//rVGGevWrYvLL788HnvssSrzwsLCuPLKK6OwsLBOu1166aXRoUOHKrNly5bF0KFD4/33369RxpIlS2L48OExY8aMKvOuXbvGhRdeWKe9AAAAAAAAyI33np0eV+9zWcybNjun5x71y+PirPt/FM1bNc/puQAASVCYZJOyZs2aWs2rc+ONN0bv3r3T5s8//3wMGjQoHn744RoX+RYvXhx/+MMf4qSTToo5c+akff28886LAw88sFb7RUT06NEjrrnmmsjLy6sy/+CDD2LQoEExbty4tNLnV0pLS2Ps2LHxgx/8ID799NMqX+vUqVPccMMNNX5M9KpVqzL+fJcuXVrDV/LlI6YHDBiQNr/jjjvipJNOiilTqv8TcTNmzIgLLrggLrnkkrT35Mgjj4zTTjutxntkct1116UVLteuXRsXXnhhXHTRRTFr1qxqr500aVIcf/zxcd9996V97bLLLotddtmlznu1b98+/vd//zeKi4urzD/77LMYPHhw/OlPf4rly5dnvHbt2rUxYcKEGDRoUEydOrXK10pKSuJPf/pTtGzZss67AQAAAAAAkD2pVCr+8ae/xx8PuzpWLVmZs3ObtWwW50y4II68/JjIz1c1AAAap7xUfZ8xDDm0ZMmSGDBgQLVFwLrYdddd44EHHkibr1q1KuOdAb/SrVu3OOyww2LvvfeObbbZJtq0aRMFBQWxbNmyWLJkSUyfPj2mTJkSL7zwQrWFzXPOOScuuOCCeu0/duzYuOaaazI+LrykpCT69u0bPXr0iBYtWsSqVatixowZ8dprr2X8GbZt2zZuv/322HXXXWt8/pw5c+KQQw5Jmx999NFxzTXX1DintLQ0hg8fHq+//nrGr2+55Zax5557xhZbbBF5eXmxePHimDZtWrz33nsZv3+//faLW265Ja1QWBcff/xxDBkyJD7//POMX+/du3fssssu0b59+1i3bl3Mnz8/Xn/99Wrv9Dly5Mj48Y9/XO+9IiIef/zxuOiii6K8vDzta0VFRbH33nvHtttuG61atYqysrKYOXNmvPbaa7FixYq072/WrFnccMMNcdBBByWyGyRh9uzZ0a9fv5g8eXI7PxG3AAAgAElEQVR07969odcBAKAB+EwIANC0+TwIVZWvKY97fnhHvDTmuZye26nHZnHuwz+JbrtuldNzASDCZ0KSVbdnwUIDKS0tTbQsGRHVPmK7ZcuWcd1118VBBx0Uv/3tb2PhwoVVvj537twYM2ZMjBkzptZntm7dOq688soYOHBgnXb+uqFDh0bnzp3j4osvTvvZlJaWxvPPPx/PP//8BnO23nrrGDVqVPTs2bPeO9VFSUlJ3HnnnXHJJZfExIkT074+Z86cjHfozOTYY4+NK664IoqKihLZrVevXjF+/PgYOXJkvPvuu2lfnz59ekyfPn2DOYWFhXHZZZfFiSeemMheEREDBw6Mjh07xvnnnx/Lli2r8rXy8vKYNGlSTJo0aYM5HTt2jBtvvDH69OmT2G4AAAAAAAAkZ/mCL2LUsX+Ij1/+IKfn7nBw7zjrvv+KVh1b5/RcAIBscJ9s2ICjjjoqnnjiibjoootiiy22qFdWs2bN4pRTToknn3wykbLkVwYOHBiPPPJIHHDAAbW+trCwMIYNGxYPPvhgomXJbz4qvCaKi4vjd7/7Xfz+97+Pzp071/r6Ll26xA033BBXXXVVYmXJr2ffd999cf7550fz5s1rfX2fPn1iwoQJiZYlv7LPPvvExIkT48gjj6z1tXl5eXH00UfHxIkTlSUBAAAAAAA2Up/+a0Zc1ffSnJclB5x3WPzo8f+nLAkAbDLcYZJGpaSkJJo3b57oXSY7deq0we9p2bJljBgxIoYOHRqTJ0+OJ554Il555ZWYNWvWBq8tLi6OPffcMw4++OD4/ve/H+3atUti7TTbbLNN3HbbbfHaa6/FvffeG88880yUlpZW+/2bb755DBo0KE488cR63a64TZs20apVq1i5cmWV+bbbblvnzCOOOCIOPvjgeOyxx2L8+PHx9ttvR2VlZcbvzc/Pj9122y0GDx4cRx55ZJ3KjDXVrFmzOO+882Lw4MExfvz4ePjhh2P27NnVfn9xcXEceOCBccIJJ8QBBxxQpxJpTW2++eZx3XXXxZlnnhn33HNPPPHEE2l3nPy6du3axcCBA+PEE0+MHXfcMWt7AQAAAAAAUD+v3vNy3DV8dJSXlefszIKigjj5pjOi//ABOTsTACAX8lKpVKqhl4DGavHixTFjxoyYPXt2LF++PEpLS6OgoCBKSkqiY8eO0aNHj+jZs2c0a9Ys57tVVFTEe++9Fx9++GEsW7YsVq9eHa1bt44OHTrELrvsEltttVWi53344Yf/vsNhu3bt4plnnolWrVolkr1ixYqYOnVqzJs3798lwHbt2kXXrl1j9913j9atG+5PtC1YsCDeeuutWLhwYaxYsSKKi4ujXbt20aNHj+jdu3cUFxc3yF6pVCo++uijeO+992Lp0qWxatWqaNmyZbRv3z522mmn6NWrV1YLnJCU2bNnR79+/WLy5Mn1KncDANB4+UwIANC0+TxIU1ZZURkPX3pf/P23E3N6bpvObeOcCRdEr/23z+m5AFAdnwlJkjtMQj107NgxOnbsGH379m3oVdIUFBRE7969o3fv3jk577nnnvv3fz/rrLMSK0tGRLRu3Tr69++fWF6SOnfuHIceemhDr5EmLy8vtttuu9huu+0aehUAAAAAAABqafUXpXHbKX+KaX97M6fnbrVXjxj54IXRoXvHnJ4LAJArCpNAvaVSqbj//vsj4stHQ5966qkNvBEAAAAAAAA0Tgs+mB83fv93seD9+Tk9d5+T94/Tbj0rils0zBPUAAByQWESqLeXX345Zs2aFRER5557boM8ghwAAAAAAAAau2lPTI3bTvrfWP1Fac7OzMvLi6OvPjG+e9GRkZeXl7NzAQAagsIkUG/33ntvRER07949jjvuuAbeBgAAAAAAABqfF299Nu4eeXukKlM5O7N5mxYx4i/nxa7f65OzMwEAGpLCJFAvCxcujGeffTYiIs4777woKipq4I0AAAAAAACgcZly36S4+5zbI5XKXVmy8/Zd4tyHL4wtduyWszMBABqawiRQLw888ECsW7cutttuuxg0aFBDrwMAAAAAAACNyievfBR3nH5TTsuSvQ/fPUb85bwoadcyZ2cCAGwMFCaBennrrbeiTZs2cemll0Z+fn5DrwMAAAAAAACNxppVZTHmtBujorwiZ2d+96dHxtFXnxj5BX63BwA0PQqTQL2MGjWqoVcAAAAAAACARumBn94dCz9akJOzipoXxWm3nhn7ntI/J+cBAGyMFCYBAAAAAAAAIMfe/tsb8cLoZ3JyVrtuHWLkQxfGNnv3zMl5AAAbK4VJAAAAAAAAAMihlYuWx13Db8nJWT332y7OeeDH0bZL+5ycBwCwMVOYBAAAAAAAAIAcSaVSMe7s22P5gi+yfta3hh0UJ900LIqaFWX9LACAxkBhEgAAAAAAAAByZPJdL8abD03J6hn5Bfkx+LpTY8D5h0VeXl5WzwIAaEwUJgEAAAAAAAAgBxbN/Dzu/a87s3pGSfuWcdb9P4qdDtklq+cAADRGCpMAAAAAAAAAkGWVFZVxx5Cbo2zF6qyd0bX3lnHuwz+JzXp1ztoZAACNmcIkAAAAAAAAAGTZU7//a3z04ntZy9/9+3vFGXedG81bt8jaGQAAjZ3CJAAAAAAAAABk0eypn8YjP78/a/lHXHZMHPmLYyI/Pz9rZwAAbAoUJgEAAAAAAAAgS8rL1sYdp98UFeUViWcXlzSLoWPPib2O2zfxbACATZHCJAAAAAAAAABkySOXjY+5b8/OSvaIe86L3Y/aKyvZAACbIvfjBgAAAAAAAIAs+OD5d+Pp3/8tK9n9RwxQlgQAqCWFSQAAAAAAAABI2OovSuOOITdHKpVKPLtTz81j8O9PSzwXAGBTpzAJAAAAAAAAAAm778d3xZJZixLPzcvPizPuOjeat2qeeDYAwKZOYRIAAAAAAAAAEvT6hFdj0p0vZCX78Iu/H7323z4r2QAAmzqFSQAAAAAAAABIyBfzl8afz7ktK9lb7blNHHn5MVnJBgBoChQmAQAAAAAAACABqVQq7hpxS6xavDLx7KLmRTHsrnOjsLgw8WwAgKZCYRIAAAAAAAAAEvDC6Gdi2uNTs5J9zDUnRdedt8xKNgBAU6EwCQAAAAAAAAD1tOCD+fHAT+/OSvZO39klDjrvu1nJBgBoShQmAQAAAAAAAKAeKtZVxJjTb4q1pWsSzy5pVxJDxpwd+fl+vQ8AUF8+UQEAAAAAAABAPTx+1SMx89WPs5J98k1nRPstO2YlGwCgqVGYBAAAAAAAAIA6mjnl4/jrlQ9mJbvvSftH3xP3z0o2AEBTpDAJAAAAAAAAAHWwtnRNjDntpqisqEw8u123DnHSn4YmngsA0JQpTAIAAAAAAABAHUz42V9iwQfzs5I99I6zo2X7VlnJBgBoqhQmAQAAAAAAAKCWpj0xNZ676amsZB/8X4fHTt/ZNSvZAABNmcIkAAAAAAAAANTCysUr4q7ho7OS3WWnbnH01SdmJRsAoKlTmAQAAAAAAACAGkqlUvGXc8fEF/OXJZ6dX1gQZ4w7N4pbFCeeDQCAwiQAAAAAAAAA1Nirf3kp/jX+laxkH/WLY2OrPXtkJRsAAIVJAAAAAAAAAKiRJbMWxT3njc1Kds/9tovD/t9RWckGAOBLCpMAAAAAAAAAsAGVlZUxdtioWP1FaeLZzVo2i2F3joyCwoLEswEA+A+FSQAAAAAAAADYgGf/+ES8/493spI9+PenxebbbpGVbAAA/kNhEgAAAAAAAADWY+602fHQJfdlJXvXI/tE/xEDspINAEBVCpMAAAAAAAAAUI3yNeUx5rSbYt2a8sSzW3VqHaffelbk5eUlng0AQDqFSQAAAAAAAACoxmO/nBBzpn6alezTbhkRbTq3zUo2AADpFCYBAAAAAAAAIIOP/vle/P23E7OS/a1hB8UeP+iblWwAADJTmAQAAAAAAACAb1i9vDTGnH5zpFKpxLM79dgsjr/+tMRzAQBYP4VJAAAAAAAAAPiG8Rf8ORbP/Dzx3Ly8vBh258ho3rpF4tkAAKyfwiQAAAAAAAAAfM2bD0+Jl+54LivZh/3sqNi2/45ZyQYAYP0UJgEAAAAAAADg/yxf8EWMO+u2rGRvufvWcdQVx2UlGwCADVOYBAAAAAAAAICISKVScdeZt8TKRSsSzy5sVhRnjDs3CosLE88GAKBmFCYBAAAAAAAAICL+eds/4u3H3shK9tFXnRDddumelWwAAGpGYRIAAAAAAACAJm/hR5/F+AvHZSV7hwE7x8E/Ojwr2QAA1JzCJAAAAAAAAABNWsW6irhjyM2xZtWaxLObt2kRQ+84J/Lz/XoeAKCh+UQGAAAAAAAAQJP292snxoxJH2Yl+6Q/DYsOW3XKSjYAALWjMAkAAAAAAABAkzXr9U9i4hUTspK91+B9Y99TvpWVbAAAak9hEgAAAAAAAIAmae3qtTHmtJuicl1F4tltu7SLk286I/Ly8hLPBgCgbhQmAQAAAAAAAGiSHvrve2P+u3Ozkj1kzNnRqmPrrGQDAFA3CpMAAAAAAAAANDnvPv12PHvDE1nJPujcQ6P3YbtnJRsAgLpTmAQAAAAAAACgSVm1dGWMHTY6K9mdt+8Sx/725KxkAwBQPwqTAAAAAAAAADQp95w3NpbNXZJ4bn5Bfpwx7twoLmmWeDYAAPWnMAkAAAAAAABAk/HqPS/HlHtezkr2EZcdE9v07ZWVbAAA6k9hEgAAAAAAAIAmYemcxXHPD8dkJXubfXrFwEu+n5VsAACSoTAJAAAAAAAAwCavsrIyxg4bFaXLShPPLi5pFmfcdW4UFBYkng0AQHIUJgEAAAAAAADY5D33pyfjvWemZyX7uN+dEp2375KVbAAAkqMwCQAAAAAAAMAmbd47c+LBi+/JSvYuA3ePA88+JCvZAAAkS2ESAAAAAAAAgE3WurXr4o7Tb4rysvLEs1t2bBWn33ZW5OXlJZ4NAEDyFCYBAAAAAAAA2GQ99qsHY9brM7OSferoEdG2S/usZAMAkDyFSQAAAAAAAAA2SR+//EE8cc0jWcneb8iBsecx+2QlGwCA7FCYBAAAAAAAAGCTU7ayLMacflOkKlOJZ3fculOccP3piecCAJBdCpMAAAAAAAAAbHLGXzguFs1YmHhuXl5eDB07Mlq0LUk8GwCA7FKYBAAAAAAAAGCTMnXiv+Kft/0jK9nfufB7sf23d8pKNgAA2aUwCQAAAAAAAMAmY8Xny2PcmbdmJbvbrt3j+78+PivZAABkn8IkAAAAAAAAAJuEVCoVfz77tlixcHni2YXFhXHGuB9GUbOixLMBAMgNhUkAAAAAAAAANgkvj30+3nz4taxkD7pycGy521ZZyQYAIDcUJgEAAAAAAABo9BZ9sjDu+9FdWcne7sAd49ALj8hKNgAAuaMwCQAAAAAAAECjVllRGXcMuTnWrCxLPLt56xYxdOzIyC/w63UAgMbOJzoAAAAAAAAAGrUnf/dYfPTP97OSfeINQ6LTNptlJRsAgNxSmAQAAAAAAACg0Zr95sx49PLxWcnuc0zf6Hf6AVnJBgAg9xQmAQAAAAAAAGiUysvWxpjTboqK8orEs9t0bhunjhoeeXl5iWcDANAwFCYBAAAAAAAAaJQevvT+mDd9TlayT7/9rGjVqU1WsgEAaBgKkwAAAAAAAAA0Ou89Oz2e/sPfspJ94NmHxK7f65OVbAAAGo7CJAAAAAAAAACNSumyVTF22KisZG++bec47nenZCUbAICGpTAJAAAAAAAAQKNy73/dGUtnL048N78gP84Y98No1rJ54tkAADQ8hUkAAAAAAAAAGo3X7p8cr/z5n1nJHnjJD6LHvttmJRsAgIanMAkAAAAAAABAo7B07pK4e+TtWcneeu+eccTPf5CVbAAANg4KkwAAAAAAAABs9FKpVNw1fHSULl2VeHZR86I4466RUVBUmHg2AAAbD4VJAAAAAAAAADZ6z930VLzz5NtZyT72tyfHFjt2y0o2AAAbD4VJAAAAAAAAADZqn70/Lyb87C9Zyd75u7vGt889NCvZAABsXBQmAQAAAAAAANhoVZSviztOvynKV69NPLukfcs4/fazIz/fr84BAJoCn/oAAAAAAAAA2Gj97TcPx8wpM7KSfcrNw6N9tw5ZyQYAYOOjMAkAAAAAAADARumTVz6Kv/3m4axk73PKt2Lv4/tlJRsAgI2TwiQAAAAAAAAAG501q8pizOk3RWVFZeLZ7bfsECf979DEcwEA2LgpTAIAAAAAAABspFKpVJSvKY9UKtXQq+TchIv+Egs//Cwr2UPHjoySdi2zkg0AwMarsKEXAAAAAAAAAOBLKxctj3+NfyVeG/9KzH17VpQuXRWpylQUFhdGSfuW0aJdSZS0++qvJVHSNn3Wol3LL7/2tf9e1Ly4oV9arUx7/M14ftTTWck+5McDY8eDe2clGwCAjZvCJAAAAAAAAEADS6VSMenOF+L+C8bF6i9K076+bu26WL7gi1i+4Is65Rc1L/p3efKrgmVJu5Jo0fbrZcuvFTG/MStqVlTfl1hjKxctjzuH35KV7C47d4ujrzohK9kAAGz8FCYBAAAAAAAAGlBlZWXcOWxUTB73z6ydUV5WHuWfLYvlny2r0/VFLYq/UaT8v7tXti35Rtmyainzq78WFtfsV9OpVCr+fM7tdd5zfQqKCuKMcT9sdHfbBAAgOQqTAAAAAAAAAA3owf93T1bLkkkoX702vli9Nr6YX7ciY3FJswxFypJo0bZqwXLp7MXxxoNTEt7+S4OuGBxb9dkmK9kAADQOCpMAAAAAAAAADeRf4yfHU9f9taHXyLq1pWtibemaWDZvaYOc3+tb28d3LzqyQc4GAGDjkd/QCwAAAAAAAAA0RV98tizuPndMQ6+xyWvWqnkMu3Nk5Bf49TgAQFPnEyEAAAAAAABAjqVSqbj7nNtj1eKVDb3KJu+E60+PzXp2bug1AADYCChMAgAAAAAAAOTY5LtejKmP/quh19jk7f79vWL/Yd9u6DUAANhIKEwCAAAAAAAA5NCS2Yvj3h/d2dBrbPJab94mTh09IvLy8hp6FQAANhIKkwAAAAAAAAA5kkql4q4Rt0TZ8tUNvcom77Rbz4w2m7dt6DUAANiIKEwCAAAAAAAA5MgLo5+Jd596u6HX2OT1Hz4gdj9qr4ZeAwCAjYzCJAAAAAAAAEAOfP7xgphw0d0NvcYmr1PPzWPw709t6DUAANgIKUwCAAAAAAAAZFllZWWMPWN0rFm1pqFX2aTl5efFsDtHRvPWLRp6FQAANkIKkwAAAAAAAABZ9uwfn4iPXnyvodfY5B3+/wbFtt/aoaHXAABgI6UwCQAAAAAAAJBF89+dGw9dcl9Dr7HJ695nmzjyF8c29BoAAGzEFCYBAAAAAAAAsqRiXUWMHXpzrFtT3tCrbNIKmxXFGePOjcLiwoZeBQCAjZjCJAAAAAAAAECW/P3aiTFzyoyGXmOTd8w1J0bXnbds6DUAANjIKUwCAAAAAAAAZMHsqZ/GY7+a0NBrbPJ2PKR3DDj/sIZeAwCARkBhEgAAAAAAACBh69aui7FDbo6K8oqGXmWT1rJDqxgy5pzIz/erbwAANqywoRcAAAAAAAAA2NQ89qsHY85bsxLPLSwujItfuTI6bNUxVi8rjdJlpbF62aooXVYapctW/XtWunRVrP7iq/l/vmf1stIoW7E68b0aQlGL4vjhxJ9Gh+4dG3oVAAAaCYVJAAAAAAAAgAR98spH8cQ1j2Ql+6hfHhfdd986IiJatm9Vp4yKdRVRtnz1vwuWq5Z+VbT8z19Ll5XG6i+qljC/Kl2uWVmW5Euqk5YdW8XwP/8weu23fUOvAgBAI6IwCQAAAAAAAJCQtavXxh1Db45UZSrx7B79to1Df3pEvXMKCguiZYdW0bJDHQuX5ev+r0yZfvfKf5ctl62K0i++Nlv6n+Ll2tI1dd49vyA/9j6hXwz+/WnRZvO2dc4BAKBpUpgEAAAAAAAASMjDl94XC96fn3huUYviGDZ2ZBQUFiSeXVsFRYXRqlObaNWpTZ2uX7d2XbV3r/z3bOmXhcuy5aujuGWzaNmuZWy1V4/oc/TedT4XAAAUJgEAAAAAAAAS8MEL78azf3wiK9nHXH1idN6+S1ayc62wuDBab9YmWm+m+AgAQG7lN/QCAAAAAAAAAI1d2cqyuHPYqEilkn8U9/YH7RwHnffdxHMBAKCpUZgEAAAAAAAAqKcJF90diz75PPHcZq2ax5AxZ0d+vl/tAgBAfflUDQAAAAAAAFAP7zz5Vrww+pmsZA++7tTotM1mWckGAICmRmESAAAAAAAAoI5Kl62Ku0bckpXs3ofvHv1HDMhKNgAANEUKkwAAAAAAAAB1dP8F42LpnCWJ55a0K4nTbj0z8vLyEs8GAICmSmESAAAAAAAAoA7efOS1mHTnC1nJPuGGodG+W4esZAMAQFOlMAkAAAAAAABQSysXLY8/n31bVrL3OLpv7HvKt7KSDQAATZnCJAAAAAAAAEAt/eWHd8SKhcsTz23VqXWccvMZHsUNAABZoDAJAAAAAAAAUAtT7psU/xr/SlayTxk1PNps3jYr2QAA0NQpTAIAAAAAAADU0Bfzl8Y9P7wjK9n7nPKt2POYfbKSDQAAKEwCAAAAAAAA1EgqlYpxZ98Wq5asTDy7bZd2ceINQxLPBQAA/kNhEgAAAAAAAKAGXh77fLz92BtZyT7t1jOjZftWWckGAAC+pDAJAAAAAAAAsAFLZi2K+388LivZ/YcPiF2/1ycr2QAAwH8oTAIAAAAAAACsR2VlZdw14pYoW7E68eyOW3eK4647JfFcAAAgncIkAAAAAAAAwHq8MOqZePfpaVnJHjLm7GjRpiQr2QAAQFUKkwAAAAAAAADVWPjRZzHhZ3/JSvaA8w6LHQb0zko2AACQTmESAAAAAAAAIIPKisoYO2xUrC1dk3j25tttEcdcc2LiuQAAQPUUJgEAAAAAAAAyeOb6x+Pjlz5IPDcvPy+G3nFOFJc0SzwbAAConsIkAAAAAAAAwDfMe2dOPPzz+7OS/d2fHhm99t8+K9kAAED1FCYBAAAAAAAAvqaifF2MHToq1q0pTzy7a+8t46grjks8FwAA2DCFSQAAAAAAAICveeKaR+PT12YknptfWBDD7hwZRc2KEs8GAAA2TGESAAAAAAAA4P/MemNmPHblQ1nJ/t6lP4it9uyRlWwAAGDDFCYBAAAAAAAAIqJ8TXmMHXpzVK6rSDx7qz23ie9d8v3EcwEAgJpTmAQAAAAAAACIiMeumBBz356deG5hcWEMu/PcKCgqTDwbAACoOYVJAAAAAAAAoMmbMfnD+PtvJ2Yle9CvBkfX3ltmJRsAAKg5hUkAAAAAAACgSVtbuibGDh0VqcpU4tk999suDv3JEYnnAgAAtacwCQAAAAAAADRpD11yXyz4YH7iuUUtimPo2HMiv8CvZQEAYGPgkzkAAAAAAADQZL3/3Dvx7A1PZCX72GtPis7bdclKNgAAUHsKkwAAAAAAAECTVLZiddx5xuisZO9wcO/49rmHZiUbAACoG4VJAAAAAAAAoEl64Kd3x+KZnyee27x1ixhy+1mRn+/XsQAAsDHxCR0AAAAAAABocqY9MTVevPXZrGQP/v2p0XHrzbKSDQAA1J3CJAAAAAAAANCkrFq6MsadeWtWsnf53h7xrTMOyko2AABQPwqTAAAAAAAAQJNy/4/vimVzlySeW9K+ZZx2y5mRl5eXeDYAAFB/CpMAAAAAAABAk/HGQ1Ni8rh/ZiX7pD8Ni3Zd22clGwAAqD+FSQAAAAAAAKBJWPH58rj7nNuzkr3nsftE3xP3y0o2AACQDIVJAAAAAAAAYJOXSqXiL+eOiRWfL088u/VmbeLkm87wKG4AANjIKUwCAAAAAAAAm7wp906K1ye8mpXsU0cPj9abtclKNgAAkByFSQAAAAAAAGCTtmze0rjnvDuykt3vtP6xxw/6ZiUbAABIlsIkAAAAAAAAsMlKpVIx7qxbo3TpqsSz23XrEMdff3riuQAAQHYoTAIAAAD/n737DKyyPv8GfiUhYW8VBHEgQ7AO6qwFrbVWUbStdVSpiht3bd1tHV0W3KhVcSCOuqniwL1X1aIiioIgQ0BkyCZkneeFf/s0ngNknNwnCZ/Py19yru91zh3bjC/nBgAAaLRev/2lmPjk+3Uy+8hbToiW7VvVyWwAACD7FCYBAAAAAACARmnhjPnx4G/vrpPZA074cXxv3+3qZDYAAFA3FCYBAAAAAACARqeioiJGHzcyipetyvrsjptvGAdfMTjrcwEAgLqlMAkAAAAAAAA0Oi//49n49IWP6mT2kFFDo1nr5nUyGwAAqDsKkwAAAAAAAECjMm/K3Hj4vHvrZPaPz9g3eu3Rp05mAwAAdUthEgAAAAAAAGg0Ksor4o4hN0XpqpKsz+7Ua+P4xd8Oy/pcAAAgGQqTAAAAAAAAQKPx7JVPxLQ3p2R9bl5+Xgy5Y2gUtWia9dkAAEAyFCYBAAAAAACARmHOR1/E2IserJPZ+5x7QHTftWedzAYAAJKhMAkAAAAAAAA0eOWlZTHq6H9EWUlZ1md33aZbDLr4l1mfCwAAJEthEgAAAAAAAGjwnvzbozFz/PSsz81vUhDHjD45CpsWZn02AACQLIVJAAAAAAAAoEGbOf7zePKvj9TJ7EF//EV0237zOpkNAAAkS2ESAAAAAAAAaLBKV5fGqKNvjIqy8qzP3mzH7rHv+QdmfS4AAJAbCpMAAAAAAABAg/XYxQ/FnI++yPrcJk0LY8gdQ6OgsEnWZwMAALmhMAkAAAAAAAA0SFPfmBzPXPF4ncz++V8OjS59N6mT2QAAQG4oTAIAAAAAAAANzuoVxXHHkBsjVZHK+uwtf9gr9vrNwKzPBQAAckthEgAAAAAAAMH7CvkAACAASURBVGhw/nXB/fHVZ/OyPreoRdMYMmpo5Bf4UyoAADQ2vssHAAAAAAAAGpRPX/woXrz+6TqZ/cvhR8RGPTrXyWwAACC3FCYBAAAAAACABmPV0pUx+tib62R2n598L3YfuledzAYAAHJPYRIAAAAAAABoMB763T2xcMaCrM9t1qZ5HHXriZGf70+oAADQWPluHwAAAAAAAGgQPnzyvXjtthfrZPahVx8ZHTbdoE5mAwAA9YPCJAAAAAAAAFDvrVi0PO464ZY6mb3NoH6x25A96mQ2AABQfyhMAgAAAAAAAPXefWeOjiVzF2d9bssOreLIm4+PvLy8rM8GAADqF4VJAAAAAAAAoF6b9OSH8fY9r9fJ7MNvOCbabty+TmYDAAD1i8IkAAAAAAAAUG8VlRfGuN//q05m73DILrHTYT+ok9kAAED90yTXCwAAAAAAAABkkkqlYpslPWPl6hVZn916ozZxxA3HZH0uAABQf3mHSQAAAAAAAKBemvjI+7Hx6g3rZPaRI0+IVhu0qZPZAABA/aQwCQAAAAAAANQ7X89eFE9f9GidzP7B0bvHdgfuUCezAQCA+kthEgAAAAAAAKhXUqlU3HXCLVG8dFXWZ7ffpEMcevWRWZ8LAADUfwqTAAAAAAAAQL3y2q0vxkdPfVAns4+69cRo0a5lncwGAADqN4VJAAAAAAAAoN5YMH1+PPi7u+tk9u4n7RV9f7ptncwGAADqP4VJAAAAAAAAoF6oqKiI0cfeHKuXF2d99gZbbBi/vHxw1ucCAAANh8IkAAAAAAAAUC+8dP0zMfmlj7M+Ny8vL44eNTSatWqW9dkAAEDDoTAJAAAAAAAA5NyXn86JMeffWyez9/rNwOi1e586mQ0AADQcTXK9AAAAAAAAALD+KSspi+nvTI3JL0+KKa9MiqmvT47S4tKs53Teqkv87C+HZn0uAADQ8ChMAgAAAAAAAHWutLgkpr31WUx55ZOY/MqkmPbmlChdVVKnmXn5eTHkjqFR1LyoTnMAAICGQWESAAAAAAAAyLrVK4pj2ptTYvLLk2LyK5/E9H9/FmUlZYnusO/5P4stdu6RaCYAAFB/KUwCAAAAAAAAtbZq6cqY+saUmPLypJj8yqSY/s60qCgrz9k+m2y7aQy66KCc5QMAAPWPwiQAAAAAAABQbSsXr4gpr34SU17+5hbbM8d/HqmKVK7XioiIgsKCGDL65GhS5M+hAADA/+cnBAAAAAAAAGCdli9YGlNe/TQmvzwpprwyKb74YGakUvWjIPldgy76ZXTbbrNcrwEAANQzCpMAAAAAAABAmqXzlsTklyd9U5B89ZOYM3FWrleqks136h77nHdArtcAAADqIYVJAAAAAAAAIL6evSim/F9BcvIrk2Lep3NzvVK1FTYrjGNGnxwFTQpyvQoAAFAPKUwCAAAAAADAemjB9Pkx5eVJMeWVT2LyK5Ni/tR5uV6p1n7+18Oi81Zdc70GAABQTylMAgAAAAAAQCOXSqVi/tR539xe+5VJMfnlT2LRzAW5XiuregzYKn585r65XgMAAKjHFCYBAAAAAACgkUmlUvHlJ3P+++6RU16eFIvnfJ3rtepM05ZNY8jtJ0V+fn6uVwEAAOoxhUkAAAAAAABo4CoqKmLuR1/E5JcnfVOQfOWTWPbV0lyvlZhfXj44NtyyU67XAAAA6jmFSQAAAAAAAGhgKsor4osJM/97i+0pr34SKxYuz/VaOdFn721i95P2yvUaAABAA6AwCQAAAAAAAPVceVl5zBz/+X9vsf3Zq5/GqiUrc71WzrXaoHUcdeuJkZeXl+tVAACABkBhEgAAAAAAAOqZspKymPHutP/eYnvq65Nj9fLiXK9VrxQ2K4xTx54dHbp1zPUqAABAA6EwCQAAAAAAAPXEzPGfx6sjX4h37n/TO0iuRduN28Wxd50a3XftmetVAACABkRhEgAAAAAAAHKsdHVpPPqHB+K5q56MVCqV63XqraYtm8ZOh+8Wv7jsV9GqY+tcrwMAADQwCpMAAAAAAACQQ0u/WhI3HHB5TH9nWq5XqZdWFqyKXX/RP3Y4YOfY/hc7RbNWzXK9EgAA0EApTAIAAAAAAECOfPXZlzFi4LCYP3VerlepNzbq2Tl67d4neu6+VbTq2Tb2+eXA+NuVI6Jbt265Xg0AAGjgFCYBAAAAAAAgB6a/MzWuH3R5LJu/NNer5NTGfbpGz923il579Imeu/eJdl3a//djs2bNyuFmAABAY6MwCQAAAAAAAAmbOO79uPmQa6Nk5epcr5K4rtt0i5679/m/guRW0WajtrleCQAAWE8oTAIAAAAAAECC3rjj5bjrhFuiorwi16vUubz8vOi2/Wb/vyA5YKto2aFVrtcCAADWUwqTAAAAAAAAkIBUKhXj/vZoPPrHB3K9Sp3JL8iPTXfYInr9X0GyR//e0bxti1yvBQAAEBEKkwAAAAAAAFDnKsor4r7T74iXb3ou16tkVUFhQWy+85b/LUh2/0HPaNa6ea7XAgAAyEhhEgAAAAAAAOpQyaqSuG3w9fH+I+/mepVaa9K0MLrv2uO/t9juvmuPKGrRNNdrAQAAVInCJAAAAAAAANSRFYuWxw0HXhFT35ic61VqpKhF09hyt57Rc8BW0XOPPrHFzltGYbOiXK8FAABQIwqTAAAAAAAAUAcWzpgfIwYOiy8/mZPrVaqsaatm0aN/7+i1e5/oucdWsdkO3aNJkT8pAgAAjYOfbgAAAAAAACDLvpgwM67bb1gsnvN1rldZq+ZtW0SPAd8UJHvt0Se69ds8CpoU5HotAACAOqEwCQAAAAAAAFn0yQsfxY0HXRXFS1flepU0LTu2ip6794leu28VvfboE1232TTyC/JzvRYAAEAiFCYBAAAAAAAgS965740YdfSNUV5anutVIiKi9UZtotcefb4pSe7RJzbu2zXy8xUkAQCA9ZPCJAAAAAAAAGTBc1c/GQ/+7u6c7tCua4fotcdW/30XyU69u0ReXl5OdwIAAKgvFCYBAAAAAACgFioqKuLhc/4Zz139ZOLZHTfbIHru0Sd6/d87SG7QfSMFSQAAgDVQmAQAAAAAAIAaKl1dGqOPvTneufeNxDJ3PmK36PvTbaPXHn2i42YbJpYLAADQ0ClMAgAAAAAAQA2sWrIybvzl1fHpCx8lkpdfkB+/Hnl8/PCYHyWSBwAA0NgoTAIAAAAAAEA1LZ7zdVy337D4YsLMRPKKWjSNEx84I7bZr18ieQAAAI2RwiQAAAAAAABUw5efzI4RA4fFwhkLEslrtUHrOO3xc2KLnXskkgcAANBYKUwCAAAAAABAFU19Y3LccOAVsWLR8kTyNui+UZz51PmxUY/OieQBAAA0ZgqTAAAAAAAAUAXvP/pu3Hr4dVFaXJpI3qY7bBGnP35utOnUNpE8AACAxk5hEgAAAAAAANbhlZufj3+eenukKlKJ5PXdZ9s46cHfRLNWzRLJAwAAWB8oTAIAAAAAAMAapFKpGHvRg/HkXx9JLPMHR+8eR448PgoK/SkPAAAgm/yUBQAAAAAAABmUl5bFPUNvj9dHvZRY5sALfhY/+8uhkZeXl1gmAADA+kJhEgAAAAAAAL5j9YriGHnYiJj45PuJ5OXl5cVhI46OPU/9aSJ5AAAA6yOFSQAAAAAAAPgfS79aEjcccHlMf2daInlNmhbG8f88Lfr9YqdE8gAAANZXCpMAAAAAAADwf+ZPnRcjBv49vvpsXiJ5Ldq1iFPHnh09+m+VSB4AAMD6TGESAAAAAAAAImL6u9Pi+kHDY9lXSxPJa9+tY5wx7rzo0neTRPIAAADWdwqTAAAAAAAArPc+evqDuPnga2L1itWJ5HXdpluc/uR50b5rh0TyAAAAUJgEAAAAAABgPffmna/EncffEhVl5Ynk9fpR3zh5zFnRol3LRPIAAAD4hsIkAAAAAAAA66VUKhVP/X1sPPL7+xPL3OHQXeOY0SdHYdPCxDIBAAD4hsIkAAAAAAAA652K8oq474zR8fKNzyaWudeZA+PgKwdHfn5+YpkAAAD8fwqTAAAAAAAArFdKVpXE7UfeEO+NeSexzIMvHxx7/27/xPIAAABIpzAJAAAAAADAemPFouXxj59fGZ+99mkieQWFBTFk1NDY+YgfJpIHAADAmilMAgAAAAAAsF5YNHNBjBg4LOZOmp1IXrPWzWPomLOiz17fSyQPAACAtVOYBAAAAAAAoNGb/eHMGLHf8Fg8e1EieW06t4sznjw3um2/eSJ5AAAArJvCJAAAAAAAAI3apy99HP/4+ZVRvHRVInmdem8cZ4w7PzbYfMNE8gAAAKgahUkAAAAAAAAarXcfeCtGHfWPKCspSySv+w96xqljz45WHVsnkgcAAEDVKUwCAAAAAADQKD1/7bh48Ld3RyqVSiRvuwN3iOP/eVoUtWiaSB4AAADVozAJAAAAAABAo1JRURFjzrs3nr3yicQyB5zw4zj8hmOioElBYpkAAABUj8IkAAAAAAAAjUZZSVmMPu7mePue1xPLPPDSg2O/P/wi8vLyEssEAACg+hQmAQAAAAAAaBRWLV0ZN/3y6vjk+Y8SycsvyI/BNx0X/Y/bM5E8AAAAakdhEgAAAAAAgAZvydyv47r9h8es92ckklfUommceP8Zsc3+/RLJAwAAoPYUJgEAAAAAAGjQvvx0TowYOCwWTp+fSF6rDVrHaY+fE1vs3CORPAAAALJDYRIAAAAAAIAGa+qbk+OGA66IFYuWJ5K3wRYbxhlPnR+dem6cSB4AAADZozAJAAAAAABAg/TB2P/ELYdfF6WrShLJ2/T7m8fpT5wXbTq1TSQPAACA7FKYBAAAAAAAoMF5ZeTz8c9Tbo9URSqRvL77bBsnPXBmNGvdPJE8AAAAsk9hEgAAAAAAgAYjlUrFY5c8HE/8eUximbseNSCOuuWEKCj0pzUAAICGzE91AAAAAAAANAjlZeVxz9Db4vXbX0osc9/zD4yf//WwyMvLSywTAACAuqEwCQAAAAAAQL23ekVx3PKr6+LDJ95LJC8vLy8Ou/ao2PO0fRLJAwAAoO4pTAIAAAAAAFCvLZu/NK4/4PKY/vbURPKaNC2M4+4+Nb7/y50TyQMAACAZCpMAAAAAAADUW/OnzYsRA4fFV1O+TCSvRbsWccqjZ0fPAVslkgcAAEByFCYBAAAAAACol2aO/zyu2394LJ23JJG89pt0iDPGnR9dtt4kkTwAAACSpTAJAAAAAABAvfPxMxPipoOvidXLixPJ6/K9bnHGk+dG+006JpIHAABA8hQmAQAAAAAAqFfeuuvVGH3cyKgoK08kr9cefeLkf/02WrRrmUgeAAAAuaEwCQAAAAAAQL2QSqXi6eGPxb8uuC+xzB0O2SWOGX1yFDYrSiwTAACA3FCYBAAAAAAAIOcqyivi/t/cGS/d8EximT8+Y9845KpfR35+fmKZAAAA5I7CJAAAAAAAADlVWlwStx/1jxj/0NuJZR407PD46dmDIi8vL7FMAAAAckthEgAAAAAAgJxZ8fXy+MfPr4rPXv0kkbyCwoI4+vaTYpfB/RPJAwAAoP5QmAQAAAAAACAnFs1aGNftNyzmfPRFInlNWzWLk8ecFX1+sk0ieQAAANQvCpMAAAAAAAAkbvbEWTFi4LBYPHtRInltOreL0584Nzbtt3kieQAAANQ/CpMAAAAAAAAkavLLk+IfP78yVi1ZmUhep14bxxnjzosNttgokTwAAADqJ4VJAAAAAAAAEvOfB9+K24/8R5SVlCWSt8WuPeK0sWdHqw3aJJIHAABA/aUwCQAAAAAAQCJeuO7peOA3d0YqlUokb9sDvh8n3Ht6FLVomkgeAAAA9ZvCJAAAAAAAAHWqoqIi/nXB/fHM5Y8lltn/+D3jiH8cGwVNChLLBAAAoH5TmAQAAAAAAKDOlJWUxZ3Hj4x/3/1aYpkHXHJw7P/HX0ReXl5imQAAANR/CpMAAAAAAADUieJlq+Kmg6+JSc9+mEhefkF+DL7xuOh//J6J5AEAANCwKEwCAAAAAACQdUu+XBzX7T88Zr03PZG8wuZFceL9Z8S2g76fSB4AAAANj8IkAAAAAAAAWTVv8ty4dt+/x8Lp8xPJa9mxVZz++LmxxS49EskDAACgYVKYBAAAAAAAIGumvTUlrj/g8lixcHkieRtssWGcMe786NRr40TyAAAAaLgUJgEAAAAAAMiKCY+Pj5GHjYjSVSWJ5G36/c3jtMfPjbad2yWSBwAAQMOmMAkAAAAAAECtvXbri3H30FsjVZFKJK/P3tvE0Id+E81aN08kDwAAgIZPYRIAAAAAAIAaS6VS8fifxsTjlz6cWOYuv+4fR916YjQp8qcuAAAAqs5PkQAAAAAAANRIeVl5/POU2+O1W19MLHPf8w6Mn//tsMjLy0ssEwAAgMZBYRIAAAAAAIBqK1m5Om45/LqY8Nj4RPLy8vLisGuPij1P2yeRPAAAABofhUkAAAAAAACqZfmCpXH9AVfE5//+LJG8Jk0L49i7TokdDt4lkTwAAAAaJ4VJAAAAAAAAqmzB51/FiIHDYt7kuYnktWjXIk5+5HfRa/c+ieQBAADQeClMAgAAAAAAUCUz35se1+0/PJZ+uTiRvPabdIgzxp0fXbbeJJE8AAAAGjeFSQAAAAAAANbp42c/jJt+eXWsXl6cSF6XrTeJ0588Lzp065hIHgAAAI2fwiQAAAAAAABr9dbdr8XoY2+OirLyRPJ67r5VnPLI76JFu5aJ5AEAALB+UJgEAAAAAAAgo1QqFc9c/niMOf/exDK/f/DOceydp0Rhs6LEMgEAAFg/KEwCAAAAAACQpqKiIh4866544bqnE8vc87R94tCrj4z8gvzEMgEAAFh/KEwCAAAAAABQSWlxSYw6+sb4z4P/TizzoGGHx0/PHhR5eXmJZQIAALB+UZgEAAAAAADgv1YuXhE3/uKqmPzypETy8psUxNG3nxS7/rp/InkAAACsvxQmAQAAAAAAiIiIr79YGCP2Gx5zJs5KJK9pq2Yx9OGzou/e2ySSBwAAwPpNYRIAAAAAAICY89EXMWLg3+PrLxYlktemU9s4/cnzYtN+myeSBwAAAAqTAAAAAAAA67kpr34S//jZFbFy8cpE8jbq2TnOfOr82GCLjRLJAwAAgAiFSQAAAAAAgPXa+Iffjtt+fUOUrS5NJG+LXXrEaY+dHa02aJNIHgAAAHxLYRIAAAAAAGA99eL1T8f9Z94ZqVQqkbxtBvWLE+87I4paNE0kDwAAAP6XwiQAAAAAAMB6JpVKxSMX3h9PDRubWGb/4/aMI248NgqaFCSWCQAAAP9LYRIAAAAAAGA9Ul5aFncePzLeuuu1xDIHXfzLGHTRQZGXl5dYJgAAAHyXwiQAAAAAAMB6onjZqrj5kGvi42c+TCQvLz8vBt94XAw44ceJ5AEAAMDaKEwCAAAAAACsB5Z8uTiuHzQ8Zo6fnkheYfOiOOG+02O7A3ZIJA8AAADWRWESAAAAAACgkZs3ZW6M2PfvseDz+YnktezYKk577JzovmvPRPIAAACgKhQmAQAAAAAAGrHP3/4srh90eSxfsCyRvI6bbxhnjDsvOvfukkgeAAAAVJXCJAAAAAAAQCP14RPvxcjDRkTJytWJ5HXbfrM4/Ylzo+3G7RPJAwAAgOpQmAQAAAAAAGiEXrvtxbhn6G1RUV6RSF6fn3wvTnroN9G8TYtE8gAAAKC6FCYBAAAAAAAakVQqFU/8+V/x2CUPJZa58+AfxtG3nRRNivzpCQAAgPrLT60AAAAAAACNRHlZedx76qh49ZYXEsv86TkHxC8uOyzy8/MTywQAAICaUJgEAAAAAABoBEpWro5bj7g+Phj7n0Ty8vLy4tCrj4wfn7FvInkAAABQWwqTUEvz5s2LDz/8MObPnx9LliyJ5s2bR7t27aJXr17Ru3fvnP2L2lQqFdOmTYtJkybF119/HStWrIjWrVtHx44dY+utt45u3brlZK+aKC4ujgkTJsSsWbNi8eLFUV5eHu3bt48uXbrEdtttF61atcrZbosWLYoJEybEvHnzYvHixVFUVBTt2rWL7t27R9++faOwsDBnu82aNSsmTpwYixYtimXLlkXLli2jffv20adPn9hyyy1zthcAAAAAkH3LFy6LGw68Iqa9OSWRvCZFTeLYu06JHQ7ZNZE8AAAAyAaFSRqFkpKSuPfee+OBBx6IadOmRUVFReTn58fIkSNjwIABWc9buHBhPPTQQ/Hwww/HjBkz1vh5rVq1in322ScGDx4cW2+9ddb3yGTKlClx7733xhNPPBGLFy9e4+d17tw5DjrooPjVr34VnTp1SmS36igrK4sXXngh7rvvvnj77bejtLQ04+cVFBTE9ttvH4cffnjss88+UVRUVOe7LV++PB555JF44IEH4tNPP13j5zVr1iz22GOPGDx4cOyyyy51vldExBdffBH3339/PPLII/HVV1+t8fPat28fBxxwQBxxxBGxxRZbJLIbAAAAAFA3FkyfHyMG/j3mfTo3kbzmbVvEKY/8Lnrt0SeRPAAAAMiWvFQqlcr1ElBTZWVlMWbMmLjhhhviyy+/TPv4ZZddFgcddFDW8kpLS2PUqFFx4403xsqVK6v12P333z8uuOCC2HDDDbO2z/9atGhRXH755fGvf/0rqvOfdVFRUZx00klx4oknJlI2rIp33303Lr300pg8eXK1Hrf55pvHxRdfHLvttlud7JVKpeKhhx6KK664Yq1l1Ex++MMfxsUXXxybbbZZney2cuXKuP7662P06NFRVlZW5cfl5+fHEUccEWeddVZO36kT1mTWrFmx6667xltvvdWg3hkXAIDs8T0hAKzdrPenx4j9hsfSL6v3O8uaate1Q5wx7rzo+j3/v0wyfD8IAIDvCcmm3NwrGGqpoqIiHnvssdhvv/3ij3/8Y8ayZLbNnz8/Dj/88LjyyiurXZaMiHjiiSdi0KBB8c4772R9t/feey8GDRoUY8aMqVZZMuKbd+e87rrr4pBDDol58+ZlfbfqSKVSce2118bgwYOrXZaMiJg+fXocc8wxMXz48Gq/DuuyfPnyOOmkk+IPf/hDtcuSERGvv/56HHDAATFu3Lis7hURMW3atPj5z38et912W7XKkhHf/Ld09913x4EHHhhTpiRzqx4AAAAAIDsmPT8xrtjjz4mVJTfu2zXOe+NSZUkAAAAaLLfkpsF57rnn4tprr61Roa6mZsyYEUOGDIk5c+akfezbW0L37t072rRpE8XFxfH555/HO++8k1asXLx4cRxzzDFx1VVXxU9/+tOs7Pb888/HWWedFatXr077WIsWLWKnnXaKLbbYIpo1axZLly6NTz/9NN5///0oLy+v9LmffPJJHHLIIXHHHXdE9+7ds7JbdVRUVMR5550XY8eOzfjxbt26Rb9+/f57+/B58+bFe++9F7NmzUr73Ntuuy3mzJkTV111VeTn174XvmjRohgyZEjG22/n5eXF1ltvHVtvvXW0b98+SkpKYubMmfHuu++mFStXr14dZ511VixYsCCOPPLIWu8VEfHBBx/ECSecEEuWLEn7WFFRUeywww7Ro0ePaNmyZaxYsSI+++yz+M9//hMlJSWVPnf27Nlx+OGHx8033xw77LBDVnYDAAAAAOrO2/98Pe445qYoLy1f9ydnQY8BW8Upj/w2WrZ3pxoAAAAaLoVJGow333wzrrrqqpgwYUKiuYsXL44TTzwxrSxZUFAQv/71r+OEE07IeJvt4uLiePjhh+Paa6+tVGYrLS2Ns88+O+68887Yfvvta7XbhAkT4re//W1aWbJNmzZx5plnxsEHHxzNmjVLe9z8+fPj1ltvjbvuuqtScXLevHkxdOjQuP/++6N9+/a12q26Lr/88oxlye233z7OOeec2HHHHTM+7t13340rrrgi3nvvvUrn48aNi4022iguvPDCWu1VUlISp556asay5M9+9rM4/fTTM77dc1lZWTz55JNx5ZVXVnoH1FQqFX/961+jc+fOsffee9dqt1mzZsXQoUPTypJNmzaNk046KY466qho3bp12uOWLVsWd911V9x0002VvnaWLVsWp5xySjz44IOx6aab1mo3AAAAAKBupFKpePbKJ+Lhc/+ZWOb3f7lzHHvXKVHYrCixTAAAAKgLbslNg/D555/HkCFDEi9LRkScffbZMX369EpnrVq1ittvvz0uvPDCjGXJiIhmzZrF4MGD49FHH41evXpV+tjq1avjtNNOy/iugFW1ZMmSOOWUU6K4uLjSeY8ePWLs2LHx61//OmNZMiJiww03jAsuuCBGjRoVbdq0qfSxGTNmxNlnn13jvWriySefjNtvvz3t/Oijj45//vOfayxLRkTsuOOOcc8998QxxxyT9rHRo0fH448/Xqvd/vrXv8b48eMrnRUWFsaVV14Zw4cPz1iWjIho0qRJHHjggTF27NjYeeedK30slUrFOeecEzNmzKjxXqWlpXHqqafGokWLKp136tQpHnzwwTj11FMzliUjIlq3bh2nnHJKPPTQQ9G5c+dKH1u8eHGceuqpae9ACQAAAADkXkVFRTz427sTLUv+6NSfxgn3naEsCQAAQKOgMEmD8N1S4Lc6d+4cQ4cOjfvuu69Och999NF49dVXK50VFhbGTTfdFLvuumuVZmy88cZxxx13RNeuXSudz58/P4YPH17j3YYPHx7z58+vdNalS5cYPXp0bLzxxlWascsuu8SNN94YRUWVf9H12muvxaOPPlrj3apj8eLF8Ze//CXt/LDDDosLL7wwCgoK1jmjoKAgzj///DjiiCPSPva3v/2txsXUd999N+6///6087///e8xaNCgKs1o27ZtjBw5Mr73ve9VOl+1alVccsklNdorIuKWW25Je9fL1q1bx6hRo6J3795VmtGrV6+44447om3btpXOJ0+eHLfegAUcYgAAIABJREFUemuNdwMAAAAAsq90dWncesT18fy14xLL/MVlv4pfjTg68gv8OQkAAIDGwU+4NDhFRUUxcODAuOWWW+LFF1+Ms846K/r165f1nFWrVsWwYcPSzk8//fTYaaedqjWrY8eOceWVV6aV/x5++OH48MMPq73bhAkT4uGHH650lp+fH5dffnlssMEG1Zq14447xplnnpl2PmzYsFi1alW1d6uuESNGxMKFCyud9erVK/7whz9Ue9aFF14YW221VaWzhQsXxogRI6o9K5VKxaWXXhqpVKrS+WGHHVblsuS3mjdvHtdcc020aNGi0vkbb7wRTz/9dLV3+/LLL+PGG29MO7/kkktiyy23rNasLbbYIi699NK085tuuinmzZtX7d0AAAAAgOxbuXhFjBg4LP7zwFuJ5OU3KYhjRp8c+553YOTl5SWSCQAAAElQmKRB6NSpUwwYMCAuuuiieO211+Kaa66J3XffPfLz6+5L+IEHHkgr8m266aZx7LHH1mhev3794mc/+1mls1QqFSNHjqz2rJtvvjmtyHfggQeu9dbVazNkyJDYfPPNK50tXLgwHnrooRrNq6oFCxZkzPj973+f9q6XVVFYWJixaPnQQw+lXct1ef7552Py5MmVztq0aRO/+93vqr1XRES3bt3iuOOOSzu/+eabqz3r9ttvT7tl9k477VTtIue3Bg4cGLvsskuls9WrV8eoUaNqNA8AAAAAyJ6vZy+KK/b4U0x+6eNE8pq2bBqnP35O7HrkgETyAAAAIEkKkzQIHTp0iFtvvTUGDx6cdvvgulBeXp6xLHbCCSdEYWFhjecOHTo07V/jPvfcczF9+vQqz5g2bVo8//zzlc7y8vLipJNOqvFeTZo0ieOPPz7tfNSoUVFRUVHjuety1113xerVqyud9evXr8q3O89kp512ih122KHSWXFxcdx1113VmpPpltRHHHFErb7+hgwZkvYukx999FG8+eabVZ6xZMmSePDBB9POTz755BrvtabH33///bFs2bJazQUAAAAAam7Ox1/EsN0ujtkfzkokr/VGbeJ3L/0x+v5020TyAAAAIGkKk5DB22+/HXPnzq101rx58xq/g9+3Nttss9h5550rnVVUVMRjjz1W5Rljx45Ne3fJnXbaKbp3716r3QYNGpRW5ps9e3a88847tZq7JqlUKh599NG080MPPbTWszPNGDt2bJUfP3PmzHjvvffSzg8++OBa7dWqVavYd999084zvQ5r8swzz8TKlSsrnXXt2jV22223Wu226667Rrdu3SqdrVy5Mp599tlazQUAAAAAauaz1z6Jy/tfEl/Pqt7dc2pqo56d47w3Lo3Ndqjd75oBAACgPlOYhAzGjRuXdta/f/+0QmFN7L333lXKW5OnnnqqSjOrq3nz5tG/f/+08yeffLLWszN5//3300qpBQUF8eMf/7jWs/fcc89o0qRJpbPZs2fHBx98UKXHZ7oeffv2TSsU1kSma/Xcc8+l3WJ7TdZ0/b/7zqXVlZeXFz/5yU/Szuvq+gMAAAAAazZ+zNtx9d6XxcrFK9f9yVmw+c5bxrmvXRIbdu+USB4AAADkisIkZPDCCy+knf3gBz/IyuxMc6ZOnVql23JPmzYtPv/88yrNrIlMt8LO9FpkQ6a5ffr0iXbt2tV6dtu2baNPnz5VyqzqbrW5Tfj/2nnnnaOgoKDS2bJly6r0Tp4rV66Mt956K+28Lr8233rrrbR3tAQAAAAA6s6LNzwTIw+5NspWlyaSt83+/eK3z/8+Wm/YJpE8AAAAyCWFSfiOWbNmxfz589POt99++6zM33LLLaNNm/RfPGW6BXRVPqd169bRo0ePrOz2/e9/P+3sq6++itmzZ2dl/v/K9Fz69euXtfmZZo0fP36djyspKYmPPvqoSvNqolWrVtGzZ8+086pc/wkTJkRZWVnaeba+NjPNKS0tjYkTJ2ZlPgAAAACwZqlUKv514X1x3+l3RCqVSiTzh8f8KE7+12+jactmieQBAABArilMwndkum1zQUFBxpJbTeTl5WUsOFalMJdpt549e9b6dszf2nLLLdPe/TDim9tnZ1N5eXnGEl7v3r2zltGrV6+0s4kTJ0Z5eflaH/fRRx9FaWn6v9zO5m41LUxmuv6dOnXKyrtyRnzzzpydOqXfcifb1x8AAAAAqKy8tCxGH3tzPPX3sYll7v/Hg+LIW0+IgibpvxMGAACAxkphEr7jk08+STvr2rVrFBUVZS1j8803r1JuVT6ne/fu2VgpIiKKiopi4403TjufNGlS1jIiIqZPnx6rVq1KO99iiy2ylpHpNV65cuU6b32e6TUuLCyMbt26ZWmz+nv9IzLvlu3rDwAAAAD8f8XLVsV1gy6PN0e/kkheXn5eDL7puDjw0oOz9o/xAQAAoKFQmITvmDNnTtpZ586ds5qRaV6m3Kp8Tn3ZrTrWNC+bz2VNs9b1XDJ9fKONNor8/Oz9z2Wm3RYuXBirV6+u9m4N8foDAAAAAN9YMvfruGKPP8WkZz9MJK+wWWGcPOa3sfuJeyWSBwAAAPWNwiR8R6Zy2IYbbpjVjI022ijtbMGCBVFSUrLGx5SUlMSCBQtysltShclM2TW1plk1KUwm8RqnUql17jZ79uy0syR2y5QLAAAAANTO3EmzY9huF8es92ckkteyQ6s46/nfx3YH7pBIHgAAANRHCpPwHV999VXaWevWrbOakWleKpXKmP2/e6VSqbTzNm3a1Plua9urJjLNa9q0aVZve960adMoLCysUva6Pp7E9V9T9rcqKioyFmaT2G3BggUZv/YAAAAAgJr57LVPYnj/S2LhjPTf+dWFjpttEOe+fkls+YNeieQBAABAfaUwCd+xcuXKtLOWLVtmNaNVq1YZz4uLi9f4mFWrVmU8z/ZumeatKbumkniNIzK/zut6LvX1+hcXF2csLSaxWyqVWutuAAAAAEDVjX/47bh678ti5dcrEsnbZLvN4rw3Lo3OvbskkgcAAAD1WZNcLwD1TaZiWKZ3KqyNJk0y/6e3tjLfmj6W7d0yzct2WS6J1zgi8+u8rudSX6//mvbO5rtyRqx9t+bNm2c1CwAAAADWNy+MeCoeOOuuxO7ostVeW8fQh8+K5m1aJJIHAAAA9Z3CJHzH6tWr087WVCKrqTXNy5T9rZKSkoznBQUFWdnpWzUpGVZXEq9xRM3Kn7m8/mvbbU1fG0lc/7Xlr2/Ky8tjzpw5uV5jvfLt6+11BwBYf/meEIDGIFVREc9fNi7eGvlKYplb/2z7OPCKQ2LBkoURSxYmlgvZ5vtBAAB8T5gbXbp0yXovpT5QmITvKCgoiIqKikpn5eXlWc347vxvre2dDNf0P0BrmlVTmZ5rEu+wmO3XeE0z1/VcMr3OSV3/tb1b5Jquf3342lyfLFy4MHbddddcr7FeOuigg3K9AgAAOeZ7QgAaqvxUXmy3eKvoWrxRYplTW86Kx//9cgzb/drEMqGu+X4QAADfEybrvffei402Su5n2aQoTMJ3NG/ePEpLSyudlZWVZTXju/O/1axZs7XuVZ1ZNZXpuWb7VsyZnme2X+M1zVzXc8n08WzvtqZ5Nbn+9eFrc33SsWPHeOutt3K9xnplzpw5cdBBB8WYMWOiS5cuuV4HAIAc8D0hAA1Z8ZJV8eCJd8aMt6YlE5iXF3v/cf/4w3EDksmDBPh+EAAA3xPmRseOHXO9Qp1QmITvaNq0adrZypUrs5qxpnlrK/Nl2mtts2oq07xsl+Uyzcv281jTzHU9lyR2W7FiRcbz+nr9I7Jfmm2oCgoKolu3brleY73UpUsXrz0AwHrO94QANDSLZi2M24+4PuZMnJVIXpOiJnHMnafEjoe6QwqNk+8HAQDwPSHZkJ/rBaC+ad++fdrZ0qVLs5qxfPnyjOcdOnRY42PatWuX8XzZsmVZ2Wlt89a2V01kei4rV67M6rsllpWVxapVq9LO1/VcMu2W1PXP9LX3raKiomjRokXaebZ3y3T927Ztu8ZbggMAAAAA6WZ/ODOG7XZxYmXJZm2axxlPna8sCQAAAOugMAnfkemtexcuXJjVjAULFqSdtWnTJlq1arXGx7Rv3z5jYS7TrNrI9Fyz/XbGa5qXzdd5TbPW9Vxydf0jIrp27brWx2X6eLZ3S+L6AwAAAEBj9umLH8XwAZfG4tmLEslr16V9nPvqxdH7R30TyQMAAICGTGESviNTOezLL7/Masa8efPSztZVlouo37tVx5oKeNl8LpmeR0TEJptsstbHZdptTbNqKtO8Nm3aROvWrdf6uMZy/QEAAACgsXr73jfi2n3/HsVL0+9+Uxc27ts1znvj0ui6zaaJ5AEAAEBDpzAJ37Hlllumnc2aNSurt4ueMWNGlXKr8jnTp0/PxkoREVFRURGzZqXfIqZHjx5Zy4iI6N69e+Tnp//Pz+eff561jEyvS5MmTWKzzTZb6+MyvcbFxcUxd+7cbK1Wb69/RObdsn39AQAAAKCxSaVS8fTlj8Vtg6+P8tLyRDJ7DNgqznnl4uiw6QaJ5AEAAEBjoDAJ37HtttumnZWWlma1mPbZZ5+lnfXr12+dj8u02+TJk7OyU0TEzJkzo6SkJO18++23z1pGRESrVq2ie/fuaefZfC5Tp05NO+vdu3c0b958rY/bbrvtMp5nc7dsXv8vvvgiVqxYkZW9iouL44svvkg7z/b1BwAAAIDGpKK8Iu4/884Yc969iWV+/+Cd4zdPnx8tO7RKLBMAAAAaA4VJ+I6tttoqmjZtmnb+3nvvZWX+3Llz46uvvko7r0opLdPnLFq0KOO7AtbE+++/n3bWqlWrOnmHwUzFxGy9xhGZn0tVSokdOnSIbt26pZ2PHz8+K3uVlpbGxx9/nHZe0+ufSqXigw8+yMpuEydOjPLy9H/9vqYSKQAAAACs70pWlcTIw66NF69/OrHMH5+xb5xw3xlR2KwosUwAAABoLBQm4TuKiopil112STt/8803szL/3//+d9rZhhtuGH379l3nY7fddtto06ZNorsNGDAg4+2za6t///5pZx9++GEsX7681rNXr16dsUS4++6713i3t956q9Z7RXxT5Fy9enWls8LCwvjBD36wzsduvPHGGcur2br+mZ7jtttuGx06dMjKfAAAAACqrry0LCa/Minef/Td+PjZD2PqG5OjtDj97jDkzvKFy+Kan/4t3hvzTmKZB18xOA675qg6+Z0tAAAArA/8RA0ZDBw4MO3s5ZdfTiu61cQLL7yQdrbvvvtW6RdcRUVFsddee6WdP/vss7Xeq7y8PF555ZW08/3337/WszPZc889026PXVpaGi+99FKtZ7/55puxatWqSmft2rWLH/7wh1V6fKbr/8EHH8S8efNqvVum6z9gwICMRdhM9t1337SzZ555ptZ7RUS8+OKLaWd1df0BAAAAyGzqG5Pj5kOvid9ueFJc+aM/x42/uCqu3eeyGN7/kji366lx7+l3xKwPsnPHGWpuwfT5Mbz/JTH19cmJ5DUpahLH33t67P1bv68DAACA2lCYhAx+8pOfRLNmzSqdLV++PMaNG1eruYsXL85YSjvwwAOrPGPQoEFpZ2+88UZ88cUXtdrt1VdfjQULFlQ6a9u2bZXflbG6mjdvnrH8+cADD9R69pgxY9LOBg4cGE2aNKnS43faaafo3LlzpbNUKhUPPvhgrfYqKyuLxx57LO38gAMOqPKM/fffP/Ly8iqdTZ8+Pd55p3b/in3KlCkxceLESmdNmjTJWB4FAAAAIPvKSsrikd/fH5fvfmmMf+jtKF66Ku1zVn69Il664Zn4S78L4rYjb4ivZy/KwabMfG96DNvt4pj36dxE8pq3bRFnPHV+7HTYuu9SAwAAAKydwiRk0KZNmzjkkEPSzkeOHBnl5eU1nnvXXXdFSUnl2+bsuOOOse2221Z5Rv/+/aN3796VzioqKuLmm2+u8V4REbfddlva2eDBg6Np06a1mrs2xx57bNrZv//97xg/fnyNZ86YMSOee+65Smf5+fkxZMiQKs9Y0+fffffdtbpl+NixY2P+/PmVzjbZZJPYZ599qjyje/fu8aMf/Sjt/MYbb6zxXhGZr//+++8fnTp1qtVcAAAAANZtxaLlccUef4pxlz0aqYpUlR7z9j2vx0W9fxdP/vURt+pO0EdPfxBX7PGnWPrl4kTy2m/SIc597ZLo/aO+ieQBAABAY6cwCWtw7LHHRmFhYaWzqVOnxujRo2s0b+7cuTFq1Ki085NOOqnaszI95uGHH44JEybUaLfnnnsu3n777UpnLVq0iKOOOqpG86pq6623jv79+6ed//nPf47S0tIazRw2bFhaqXXfffeNzTffvFpzDj300GjXrl2ls6+//jquvvrqGu21fPnyGDFiRNr58ccfHwUFBdWaNXTo0LSz119/PZ5++uka7TZx4sQYO3ZspbP8/Pw48cQTazQPAAAAgKpbNn9pXLXXX+Pzf39W7ceWrFwdj/7xgbi47zkxfszbkUpVrWxJzbxxx8tx/QFXxOrlxYnkdd2mW5z35p+iy9abJJIHAAAA6wOFSViDLl26xHHHHZd2fvXVV8d//vOfas0qLS2Nc845J1asWFHpfM8996zRLa/322+/2HHHHSudlZeXx1lnnRWLFlXvNjxz586Niy66KO389NNPj/bt21d7t+q64IIL0oqpH3/8cVx22WXVnnXffffF888/X+msRYsWcfbZZ1d7VsuWLTM+7p577qnRrdkvvvjimDu38i16+vbtm/GdTNdl++23z3gb74suuig+//zzas1atmxZnHPOOWkl0yOOOCJ69OhR7d0A+H/s3Xd0VOXexfE9k0wS0kMSCCC9SxMQpEiRJiAgqCgWxHJFig3EBog0ERXUi4q9vxYElBp6lSoIEjoCUhJCSw/pM+f9A+USgxDCzJyU72etLIZzZs5vE8oKJ3ueBwAAAADyL+lkot7qMFHRO45e03XijpzRR3e9o7c7T1LMzmNOSoe/GYahhRN/1lePfCRHTsF3ILoatTvU03NrX1FIhdJumQcAAAAAQElBYRK4jKFDh6p69eq5jmVlZenxxx/X5s2b83WNtLQ0Pfnkk9qyZUuu435+fho7dmyBclksFk2cODHPdtnR0dEaMGBAnmLevzl+/LgGDBiguLi4XMfr16+vAQMG5OsaCQkJatiwoWrXrp3r4/XXX8/X62vUqKHBgwfnOf7tt99q8uTJ+d4Cffbs2Ro/fnye48OGDVOFChXydY1/6tu3r1q0aJHrmGEYev7557Vw4cJ8XSMnJ0djxozRggULch339PTUhAkT5OnpWaBso0aNUunSuW+WJiYm6qGHHtL+/fvzdY34+Hg9+uijOnz4cK7j5cuX1/DhwwuUCwAAAAAAAPmTEBOvqe0n6MTuaKddc//K3ZrQ+CV9N/QLpcalOO26JZk9x65vB32meWNmum1m8/ta6anIF1QqyNdtMwEAAAAAKCkoTKJYyMzMvKrj+eXl5aV3331XQUFBuY6npKTo4Ycf1sSJE3X69OlLvtbhcGjZsmXq3bu3Vq1aleuch4eH3n77bUVERBQ4W9WqVTV58mRZLJZcxw8cOKBevXrpm2++UUbGpbeGSUtL05dffqnevXvr6NHc714PCwvTtGnT8r1N9Llz5y75eU5ISMjnr+T8FtO33HJLnuNffPGF7r333jxl04sdPnxYw4YN08iRI/OUK3v06KH+/fvnO8elTJ06NU/hMisrS8OHD9dzzz2nY8f+/R37Gzdu1N13360ZM2bkOffyyy+rfv36Bc4VEhKid999V15eXrmOnzx5Un379tV7772n5OTkS742KytLs2fPVq9evbRjx45c53x9ffXee+/Jz8+vwNkAAAAAAABweXFHz2hKu/E6dSB/b3y+GobD0JoPlunlWsO16r0lsrtpRcTiKPNchj644y398slKt8289fmeevjrIfL0KtgbrQEAAAAAwOVZDMMwzA4BXEl8fLxuueWWfy0AFkSDBg00a9asfD1369atGjhwYJ4ttaXz5cdGjRqpTp06CgwMVFZWlmJiYrR169Y8KzdKktVq1dixY3XPPfdc869Bkr788ktNnjxZl/qr7Ovrq2bNmqlq1aoqVaqUzp07p8OHD2vr1q2X/FwGBQXps88+U4MGDfI9Pzo6Wh07dsxzvE+fPpo8eXK+r5OWlqZHH31U27Ztu+T56667Tk2aNFFERIQsFovi4uK0a9cu7du375LPb9mypT7++OM8hcKCOHTokAYMGKAzZ85c8ny9evVUv359hYSEKCcnR7Gxsdq2bdu/rvQ5ePBgPfPMM9ecS5IWLVqk5557TtnZ2XnO2Ww23XjjjapRo4b8/f2VkZGhI0eOaOvWrUpJybvCgLe3t6ZNm6b27ds7JRvgDMePH1eLFi20adMmVaxY0ew4AAAAMAFfEwIobs4cOqW3Or6q+GNn3TKvfL3rdPc7D6pux4K/ebckSj6dpPd7TdGRXw+5ZZ7FYtE90wbolqFd3DIPKEr4ehAAAAB8TQhn4i2KKBLS0tKcWpaUzpcw8+vGG2/UDz/8oEGDBikmJibXObvdrm3btv1r0e9ivr6+mjJlyiULhgX10EMPqWzZsnrxxRfzfI7S0tK0Zs0arVmz5orXqVy5sj788ENVq1bNadmuhq+vr7766iuNHDlS8+fPz3M+Ojpa0dH5257ozjvv1Lhx42Sz2ZySrXr16po5c6YGDx6svXv35jm/e/du7d69+4rX8fT01Msvv6x+/fo5JZckdevWTaGhoXryySeVmJiY61x2drY2btyojRs3XvE6oaGhev/999W4cWOnZQMAAAAAAEBuJ/ef0NsdX1XiifzvznKtTuyO1judJ+mGPs1015v3KbxaWbfNLqpOHzypad1e15lDp9wyz+Zj06PfPqHGfZq5ZR4AAAAAACUZW3ID+VSrVi3NnTtX/fv3z/d21Re75ZZbNG/ePKeWJf/WrVs3zZ07V23atLnq13p6eurhhx/WTz/95NSy5D+3Cs8PLy8vTZkyRW+99ZbKlr36G7flypXTtGnTNGnSJKeVJS++9owZM/Tkk0/Kx8fnql/fuHFjzZ4926llyb81b95c8+fPV48ePa76tRaLRX369NH8+fMpSwIAAAAAALhQzK7jmtp+glvLkhf7/ectGlvvec0ZNUMZqc59c3px8uevB/VG67FuK0v6lfbXsOWjKEsCAAAAAOAmrDCJIsHX11c+Pj5OXWUyLCzsql8TEBCg0aNHq3///poxY4bmzZv3r9s0S+dzd+rUSf369VPTpk2vJe4VValSRZ9++qm2bt2qH374QStWrFBaWtq/Pr9MmTLq1auX+vXrd03LFQcGBsrf31+pqam5jteoUaPA17ztttvUoUMHLViwQDNnztTOnTvlcDgu+Vyr1aqGDRuqb9++6tGjR4HKjPnl7e2tJ554Qn379tXMmTM1Z84cHT9+/F+f7+XlpbZt2+qee+5RmzZtClQiza8yZcpo6tSpeuyxx/T9999r8eLFeVacvFhwcLC6deumfv36qU6dOi7LBQAAAAAAAOnY9iN6p8sknYtLvfKTXSgnM1uLXpurDV+u0R2T71Xz+1vLamVdhb9FLdimj++Zpuz0LLfMC60SrqcWvaCI2uXdMg8AAAAAAEgWwzAMs0MARdnRo0e1e/duxcfHKyUlRaVKlVJwcLBq1qypOnXqFGg1Smew2+3at2+f/vjjDyUmJio9PV0BAQEqXbq06tevr0qVKjl13h9//HFhhcPg4GCtWLFC/v7+Trl2SkqKduzYoRMnTlwoAQYHB6t8+fJq1KiRAgICnDKnIE6dOqWoqCidPn1aKSkp8vLyUnBwsKpWrap69erJy8vLlFyGYejgwYPat2+fEhISdO7cOfn5+SkkJER169ZV9erVXVrgBJzl+PHjatGihTZt2nRN5W4AAAAUXXxNCKCoO7LlkP5762tKS/z3NzebpWqLGrrnnQdVtXnB3/xcXKz9eIW+G/K5DId7vmVSqUkVPbHgeQVFBLtlHlCU8fUgAAAA+JoQzsQKk8A1qly5sipXrmx2jDw8PDxUr1491atXzy3zVq9efeHxwIEDnVaWlM6v7HnzzTc77XrOVLZsWXXu3NnsGHlYLBbVrFlTNWvWNDsKAAAAAABAiXVw/X692/0NZaSkmx3lkv7cdFCTW4xRy4faqs+r9yioXIjZkdzOMAzNGzNTka/OcdvM629tqMd/fFo+AaXcNhMAAAAAAJzHXhsArplhGPrxxx8lnd8a+oEHHjA5EQAAAAAAAGCu/av3aFrXyYW2LHmxjV+u1cu1n9WSN+YrOzPb7DhuY8/O0VePfOTWsmSrh9rpiXkjKEsCAAAAAGASCpMArtmGDRt07NgxSdKQIUPk7e1tciIAAAAAAADAPHuWRund7q8r81ym2VHyLTM1Qz+9+L3GN3heO+b/JsNwz9bUZslISdd7Pd/Uxq/Wum3mbS/foQc/GygPG5t/AQAAAABgFgqTAK7ZDz/8IEmqWLGi7rrrLpPTAAAAAAAAAOaJWrBN7/eaouyMorlS4+mDpzT99qma1m2yYvfGmB3HJZJiEzSl/QTtWbrTLfOsHlY98NF/1GvcXbJYLG6ZCQAAAAAALo3CJIBrcvr0aa1cuVKS9MQTT8hms5mcCAAAAAAAADDHtp9+1Yd3vq2crByzo1yzPUt3anzDFzTjma91LiHV7DhOc3JfjF5v9YqObz/ilnlevt4aMudZtXmsg1vmAQAAAACAy6MwCeCazJo1Szk5OapZs6Z69epldhwAAAAAAADAFFt+2KBP7pkme7bd7ChO47A7tHLaYo2p/azWfrRCDrvD7EjX5OD6/Xrj5nGKO3rWLfMCwgP17KrRanBbY7fMAwAAAAAAV0ZhEsA1iYqKUmBgoEaNGiWrlX9SAAAAAAAAUPJs/GqtPnvICMDhAAAgAElEQVTg/SJfKPw3qWdT9O3gz/TqjaN0YM1es+MUyLafftXbnSbpXLx7VsssU6OsXtgwTlWaVXfLPAAAAAAAkD+eZgcAULR9+OGHZkcAAAAAAAAATLP24xX6bvDnMgzD7CguF73jqKbeMkFN+96kO9+4T6GVw82OlC8r312iH5/52m2/R1VvqqGh80YoIDzQLfMAAAAAAED+sRwcAAAAAAAAAAAFsPLdJfp20GduKeKVr1/R5TPy67eZm/VK3RGa98osZaVlmh3nXzkcDs1+/jvNePort5UlG/ZsouErRlGWBAAAAACgkKIwCQAAAAAAAADAVVo6ZYFmPP2VW2b1Gt9XY3ZM1tB5I1SmRlm3zLyS7IxsLZzwk8bUHaEtP2wodCtsZmdm6/P+07V0ygK3zWw7sKMGzR4mL19vt80EAAAAAABXh8IkAAAAAAAAAABXYeHEnzX7+e/cMuuO1+/VbaP7yGKxqGGPJnpl15u684375BNQyi3zryTheJw+ve89TWk3Xse2HzE7jiQpLfGc3u3+urZ8v8FtM2+feLfu++AReXh6uG0mAAAAAAC4ehQmAQAAAAAAAADIB8MwNGf0j5o3ZqZb5t3z3wG69bmeuY55enmqy4geGr9/qlo91M4tOfLj4Lr9mnTjKH0z8BMln04yLUdCdJzebDte+1ftccs8q6eHHvpykLqP7C2LxeKWmQAAAAAAoOAoTAIAAAAAAAAAcAWGYWj2899p0aQ5Lp9lsVh0/4ePqsOTt/7rc4IigjXg88f10uYJqtaypssz5YdhGFr36SqNqf2slr8dqZysHLfOj9l1XK+3ekUndh13yzxvfx89ueA5tXywrVvmAQAAAACAa0dhEgAAAAAAAACAyzAMQzOe/lrLpi50+SyL1aIBnz+utgM75uv5VZpV1/PrxuqRb4YouHyIa8PlU3pSmmY++38a3+gF7Vq8wy0z96/arTfbjFNCdLxb5gVGBGvEmjG6vktDt8wDAAAAAADOQWESAAAAAAAAAIB/4XA49O2gz7TqvSUun2X1sOqRb4aq5YCrW7HQYrHopvtv1rh9U9VtZG95ettclPDqnNofq3e7v673er6pUwdiXTZnyw8bNK3b60pPSnPZjItF1CmvFzaMU6XGVdwyDwAAAAAAOA+FSQAAAAAAAAAALsFhd+jrRz/WL5+sdPksD5uHHpvxlJrf26rA1/Dx91HviXdr3J431fiOZk5Md212LtyucQ2e16znvlV6svNKjYZhaOmUBfr0vvfctv139da19Py6sQqrEu6WeQAAAAAAwLkoTAIAAAAAAAAA8A/27Bx93v99bfxqrctneXp5atDsYWpyR3OnXC+sahkNmjVMw5aPUvn6FZ1yzWtlz7Zr2dSFernWcK3/fLUcDsc1Xc9hd+jHZ77W7Oe/c1LCK2t8RzM9s3Sk/Er7u20mAAAAAABwLgqTAAAAAAAAAABcJCcrR5/c+662/LDR5bNsPjYNnTdCDXs0cfq163Sop9HbJune9x4uNCW/lNPJ+vo/H+u1m17WoQ0HCnSNrPQsfdJvmla+6/pt0v/W4clbNXDG0/Iq5eW2mQAAAAAAwPkoTAIAAAAAAAAA8JfsjCx9eOfb2v7TFpfP8vbz1pORL+j6Lg1dNsPD00Pth3TWhANvqf3QLrJ6FI5vCxz77U+9cfNYffbAe0qIjsv3687Fp+qdLpO0bfavLkyX251v3Ke733mw0HzuAAAAAABAwfG/ewAAAAAAAAAAJGWlZWp676nauXC7y2f5BJTSU4tfVO3217t8liT5lfbXve8+pNHbX1PtDvXcMjM/fv1ug8bUGaGFE39WVnrWZZ979sgZvXHzWB1aX7CVKa+Wh81Dj377hLqM6CGLxeKWmQAAAAAAwLUoTAIAAAAAAAAASryM1Ay92+NN7Vm60+WzfIN99cyyl1SjdW2Xz/qnCvUratiykRr80zCFVQ13+/xLyUrL1LwxMzW23nPaNvtXGYaR5znHth/R661e0cl9J9ySqVSQr55e/KKa39vKLfMAAAAAAIB7UJgEAAAAAAAAAJRo6UlpmtZ1sg6s3uPyWX6h/hq2YrSqNq/h8ln/xmKx6IbezTR295u6feLd8vbzNi3LxeKOnNFHfd/R251eVXTUsQvH9yyN0pR245V8MtEtOYIrlNZza8eo9i2FZyVOAAAAAADgHJ5mBwAAAAAAAAAAwCznElI1retkHdly2OWzAsoEatjyUapQv6LLZ+WHzcdL3Uf2VssBbTVn5A/a9M06syNJkvav2qOJTV5S28c7qXy96zTjma/lyLG7ZXb5+hX1VOTzCrku1C3zAAAAAACAe1GYBAAAAAAAAACUSKlnk/VOl9d0/PejLp8VVC5Yw1eMUkSdCi6fdbVCKpTWw18NUdtBnfTjM1+7pTx6JYbD0JoPlrl1Zq3212vwT8PkG+zn1rkAAAAAAMB92JIbAAAAAAAAAFDiJJ9K0tRbJrqlLBlSMVQj1owplGXJi1VvWUsvbByvAZ8/rsCyQWbHcatm/VrqqUUvUJYEAAAAAKCYozAJAAAAAAAAAChREmLiNaX9eJ3YHe3yWWFVwzVizRiVqRHh8lnOYLVa1eqhdhq/f6q6PNdTHjYPsyO5XJcRPfTI/w2VzdtmdhQAAAAAAOBiFCYBAAAAAAAAACVG3NEzmtJuvE7tj3X5rDI1IzRizRiFVQl3+SxnKxXoqztfv1ev7HpDDXs2MTuOS1gsFt3z3wG68437ZLXy7RIAAAAAAEoC7gAAAAAAAAAAAEqEM4dOaUq7CTp7+LTLZ5W7voJGrH5ZIdeFunyWK5WtWU5D547QU4teULm6hXtL8avh6W3TwB+fVocnbzU7CgAAAAAAcCNPswMAAAAAAAAAAOBqJ/ef0NudJikxJt7ls65rVFnPLH1JAeGBLp/lLvVubaQ6v9fT6unLNH/sbKUnpZkdqcB8Q/w0dN4I1Whd2+woAAAAAADAzVhhEgAAAAAAAABQrJ3YHa2p7Se4pSxZqWlVDV8xqliVJf/mYfNUx6e7acKBt9R2YEdZLBazI1210MphemH9WMqSAAAAAACUUBQmAQAAAAAAAADF1vHfj2jqLROUfCrJ5bOqtayp4ctHya+0v8tnmSkgPFD3f/ioRv32qmq2rWN2nHyr2LiKXtgwThF1is/W4gAAAAAA4OpQmAQAAAAAAAAAFEtHthzSWx1fVerZFJfPqtm2jp5e/KJKBfm6fFZhUfGGKnp21csaOOMpla4UZnacy7q+SwONWP2ygsqFmB0FAAAAAACYiMIkAAAAAAAAAKDYObThgN7uPElpCedcPqtup/p6KvIF+QSUcvmswsZisahp3xYat+dN9Rx7l2ylvMyOlEfLAW31xPznSuTvDwAAAAAAyI3CJAAAAAAAAACgWDmwZq/+e+trykhOd/ms+t1v0NB5I+Tl6+3yWYWZl6+3eoy5Q+P3TtGN97QwO84F3Uf11oDPH5eHzdPsKAAAAAAAoBCgMAkAAAAAAAAAKDb2LNupad1fV+a5TJfPuqH3jRo0e5hsPoVvVUWzlK4Upse+f0oj1oxRxcZVTMthsVp0/weP6vYJd8tisZiWAwAAAAAAFC4UJgEAAAAAAAAAxcLOyO16v9cUZadnuXxW07tbaOCMp2Tztrl8VlFUs00djfx1oh746D/yDwtw62xbKS8N/nm42j7e0a1zAQAAAABA4UdhEgAAAAAAAABQ5P0+Z4s+6POWcjKzXT6rRf+b9ej/DWWb5yuweljV5rEOmnDgLXV8ppusnh4un+kfFqBnV41Wo55NXT4LAAAAAAAUPRQmAQAAAAAAAABF2pYZG/VR3//Knm13+azWj7TXgM8HycMN5b/iwjfYT3e/1V+vRE1Wva6NXDYnvHpZvbBhnKo2r+GyGQAAAAAAoGijMAkAAAAAAAAAKLI2ffOLPrv/PTnsDpfPaje4sx74+D+yenBrvSAi6lTQkwuf1xPzn1OZmhFOvXaVZtX0/PqxKlPDudcFAAAAAADFC3d1AAAAAAAAAABF0rpPV+nLhz6U4TBcPqvjM91073sPyWrltvq1sFgsanBbY72y8w3d+cZ98gkodc3XbNCjsYavHK3AMkFOSAgAAAAAAIoz7uwAAAAAAAAAAIqcVe8v1TcDP5FhuL4s2fXFXuo79QFZLBaXzyopPL081WVED43fP1WtH25f4M9tm8c6aPBPw+Xt5+PkhAAAAAAAoDiiMAkAAAAAAAAAKFKWvbVQPzz5pVtm9Rx7l3q/eg9lSRcJigjWg58N1IubJ6h6q1r5fp2tlJf6vtVf93/4qDw8PVyYEAAAAAAAFCeeZgcAAAAAAAAAACC/IifN0dzRP7plVp/X+qnrC73cMqukq3JjNT33yyva8sNGrXx3sf7cdPBfn1u3cwPd/8EjCq9W1o0JAQAAAABAcUBhEgAAAAAAAABQ6BmGofmvzNLCiT+7Zd7db/dXx6e7uWUWzrNYLGp+bys1v7eVTuyO1m8zNynlTIrSk9Nk9bCqVtu6qtOxnkIrh5sdFQAAAAAAFFEUJgEAAAAAAAAAhZphGPrpxR+09M35bpl33/RH1G5QJ7fMwqWVr3edyte7y+wYAAAAAACgmKEwCQAAAAAAAAAotAzD0I/PfK2V7y5x+SyLxaL+nz6m1g+3d/ksAAAAAAAAuB+FSQAAAAAAAABAoeRwOPT9kC+09uMVLp9l9bDq4a8Gq/l9rV0+CwAAAAAAAOagMAkAAAAAAAAAKHQcdoe+fuxjbfxyrctnWT099J/vnlDTu25y+SwAAAAAAACYh8IkAAAAAAAAAKBQsefY9cWAD7Tl+w0un+Xp5amBM59Wo55NXT4LAAAAAAAA5qIwCQAAAAAAAAAoNHKycvTZ/e9p2+xfXT7L5mPToJ+Gq37XRi6fBQAAAAAAAPNRmAQAAAAAAAAAFArZGVn66O7/aueC7S6f5eXrraHzRqhOh3ounwUAAAAAAIDCgcIkAAAAAAAAAMB0qWeT9Vn/6dqzJMrls3wCSunJhc+pxs11XD4LAAAAAAAAhQeFSQAAAAAAAACAaZJOJmrZlIVa8+FyZaVlunxeqSBfPb34RVW9qYbLZwEAAAAAgIKx2+06c+aMEhISdOrUKdWqVUvRx48rIiJCNpvN7HgowihMAgAAAAAAAADcLv54nJa8MV/rPl2lnMxst8z0K+2vZ5a+pEpNqrplHgAAAAAAuLKsrCydOnVKJ2NjFXvypGJjY3X69GnZc3IuPKdd27ZasmSJVqxcqapVq6p9+/aqUKGCialRVFGYBAAAAAAAAAC4zZnDp7R48jxt/Gqt7Nl2t80NCA/UM8tG6rqGldw2EwAAAAAA5JaWlqaTf5Ui/y5Ixp09K8Mw8vX6nOxs/XHggA4ePKi2bdqobbt28vDwcHFqFCcUJgEAAAAAAAAALndyX4wWTZ6nX79dL4fd4dbZQeWCNWz5KJWry8oTAAAAAAC4g2EYSk5OzlWMPBkbq6SkJOdc3+HQmjVrdPrMGd19992yWCxOuS6KPwqTAAAAAAAAAACXiY46pshJc7Rt5uZ8rxbhTCHXldawFaNUtmY5t88GAAAAAKAkcDgcio+Pz1OOTEtLc/nsvXv2aOOGDWrVurXLZ6F4oDAJAAAAAAAAAHC6I1sOKXLSHO2Y+5tpGUKrhGv4ilEKq1rGtAwAAAAAABQnOTk5On36dK5i5MlTp5SdlWVapmXLl6tGzZoqU4b//+PKKEwCAAAAAAAAAJzm4Pr9WjjxZ+1ZEmVqjjI1ymrYitEqXTHU1BwAAAAAABRVmZmZOnnyZK6VI8+cOSOH3W52tFwMh0O///67unTpYnYUFAEUJgEAAAAAAAAA18QwDO1buVuRr87RgdV7zI6jcnUraNjykQoqF2J2FAAAAAAAioTU1NQ85cj4uDizY+Xbzp071alTJ1mtVrOjoJCjMAkAAAAAAAAAKBDDMLRr0e+KfHWODm/8w+w4kqQKDSrqmWUjFVgmyOwoAAAAAAAUOoZhKDExMVcx8mRsrFJSUsyOdk1SkpOVkJCg0FB2msDlUZgEAAAAAAAAAFwVh8OhHXN/U+SrP+vYtiNmx7mgUpMqenrJS/IPDTA7CgAAAAAAprPb7Tp79myulSNPnjypjIwMs6O5RE5OjtkRUARQmAQAAAAAAAAA5IvD7tDWHzdp0aQ5OrE72uw4uVS9qYaeWvSCfIP9zI4CAAAAAIDbZWdn69SpU7lWjTx16lSJKhGWpF8rCo7CJAAAAAAAAADgsuzZOdr87Xotem2uTv9x0uw4edRoU0dPLnhOPgGlzI4CAAAAAIDLpaen51o1MvbkSZ09e1aGw2F2NFMFBLDjBK6MwiQAAAAAAAAA4JKyM7O18cu1Wvz6PMUdOWN2nEuq3aGehs59Vt5+PmZHAQAAAADAqQzDUEpKSq5i5MnYWCUmJpodrdApGxGhwMBAs2OgCKAwCQAAAAAAAADIJSstU798slJL31ygxBMJZsf5V/W6NtKg2cPkVcrL7CgAAAAAADhNTEyMtm7dqkMHDyo5OdnsOEVCzZo1zY6AIoLCJAAAAAAAAABAkpSRkq41HyzXsrcWKuV04f6GTPshnXXX1Adk87aZHQUAAAAAAKeIj4/X4sWLdWD/frOjFCm+vr5q0aKF2TFQRFCYBAAAAAAAAIASLi3xnFZOW6IV/12ktIRzZse5rKBywXrws8dVv2sjs6MAAAAAAOAUWVlZWvfLL1q/fr3sdrvZcYqcHj17yt/f3+wYKCIoTAIAAAAAAABACZV6NlnL316kVe8vVUZyutlxLiswIlhdRtymto93lLefj9lxAAAAAAC4ZoZhaO/evVqyeLGSkpLMjlMktWvXTtdff73ZMVCEUJgEAAAAAAAAgBImKTZBy6ZGas2Hy5WVlml2nMsKqRiqW5/vqZsfbS+bj5fZcQAAAAAAcIozZ85oUWSkDh8+bHaUIsnbx0d9+vRRnTp1zI6CIobCJAAAAAAAAACUEPHH47Tkjfla9+kq5WRmmx3nssKqlVG3l25Xi/5t5OnFrWwAAAAAQPGQkZGhNWvWaPOmTXI4HGbHKXLKlC2rRg0bqmGjRgoICDA7Doog7jIBAAAAAAAAQDF35vApLX5tnjZ+vVb2bLvZcS4rok55dRvZW836tZSHp4fZcQAAAAAAcArDMLRz504tXbpUqSkpZscpEnx9fVWuXDn5+fnp7Xfe0YcffKB69eubHQtFHIVJAAAAAAAAACimYvfGaPHkufr1uw1y2Av3qhXXNayk7qN6q/EdzWX1sJodBwAAAAAAp4mNjdWiyEgdO3bM7CiFVlBwsMpFRCiiXDmVK1dOERERCgwMlMVi0fHjx3X48GEFBgWZHRPFAIVJAAAAAAAAAChmoqOOKfLVn7Vt1q8yDMPsOJdVpVk1dR/dRw17NJHFYjE7DgAAAAAATpOenq6VK1dq65Ythf7/5+5isVgUFhZ2vhj5V0EyIiJCvr6+ZkdDCUFhEgAAAAAAAACKiSNbDiny1TnaMe83s6NcUY2ba+u20X1Ut3MDipIAAAAAgGLF4XBo+/btWrF8udLS0syOYxoPT0+VLVPm/IqRf60cWaZMGXl5eZkdDSUYhUkAAAAAAAAAKOIOrtunha/O0Z4lUWZHuaK6neqr++g+qtW2rtlRAAAAAABwuujoaEVGRupETIzZUdzK28dHERERubbVDgsLk4eHh9nRgFwoTAIAAAAAAABAEWQYhvat3K3IiT/rwJq9Zse5ogY9Gqv7yN6q1qKm2VEAAAAAAHC6c+fOafny5dq+bZvZUVzOPyAgVzEyIiJCISEh7CCBIoHCJAAAAAAAAAAUIYZhaFfk71r46s/6c9NBs+NcUZM7m6vbyN6q1LiK2VEAAAAAAHA6u92urVu3atXKlcrIyDA7jtOFlC6tchERubbV9vf3NzsWUGAUJgEAAAAAAACgCHA4HPp9zlZFvjpHx7cfMTvOZVmsFjXr11LdXuqt8vWuMzsOAAAAAAAucfToUUUuXKhTp06ZHeWaWa1WhYeHny9F/rV6ZEREhHx8fMyOBjgVhUkAAAAAAAAAKMQcdoe2/rhJiybN0Ynd0WbHuSyrp4da9m+jW1/sqbI1y5kdBwAAAAAAl0hOTtayZcu0MyrK7CgFYrPZVDYiIte22uHh4bLZbGZHA1yOwiQAAAAAAAAAFEL27Bxt+r91Wjx5nk7/cdLsOJfl6eWp1o+0160v9FRo5XCz4wAAAAAA4BI5OTnavHmz1qxeraysLLPj5EupUqUurBpZrnx5RUREKDQ0VFar1exogCkoTAIAAAAAABQS9uwc7Yz8Xbsif9feFbsUfyxOVqtFXn7eqn3L9arf9QY1v6+VvHy9zY4KwAXSk9OUdCJBCTEJitl5XCv/u0hxR8+aHeuybKW81PbxjuoyooeCy4eYHQcAAAAAAJc5dOiQFkVG6uzZwvt/9cCgoFyrRkZERCgoKEgWi8XsaEChQWESAAAAAADAZEknE/XLxyv1y8crlHgiIdc5h6ScrBxt/2mLtv+0RZGv/qx7pg1Qo55NzQkL4KrZs3OUFJuoxBMJSoxJUGJM/PnHJy56HJOgzNQMs6Pmm7e/j24Z2kUdh3VTYJkgs+MAAAAAAOAyiYmJWrJkifbu2WN2lP+xWBQWGnph5ciIv8qRfn5+ZicDCj0KkwAAAAAAACYwDEOH1u/X6unL9NusX+XIsefrdXFHz2r67VN1839u0b3vPSxPL27vAGYxDEPn4lPPlyD/Lj/GJJxfJfLE/x6nnE6WYRhmx3UK32BfdXiqqzo81VV+pf3NjgMAAAAAgMtkZ2drw4YN+uWXX5STnW12HEmSv7+/Onfporp168rLy8vsOECRxB11AAAAAAAAN8o8l6HN367XmunLFB11rMDXWffpKsXujdGgWcMUWJbV3QBny0rP+mt77ItKkH+tBpl0YWXIROVkFo5vmLiaf1iAOg+/Te2GdFKpQF+z4wAAAAAA4FL79+/X4kWLlJCQcOUnu4HValWLFi3Utl07+fj4mB0HKNIoTAIAAAAAALjBqQOxWj19mTZ+tVbpSWlOueah9Qc0qdkoDfppuKrcWM0p1wSKO4fdoZTTSXm3x45JUOKJ8yXIxJh4pSWcMztqoRBULlhdRvRQm4Ed5O3HN2QAAAAAAMVbXFycFi9erD8OHDA7ygVVq1VT9+7dFR4ebnYUoFigMAkAAAAAAOAiDrtDUQu2afX0Zdq7bKdLZiREx2tK23Hq/8ljuun+m10yAygq0pPT8myPnXjifz9POpGgpNhEOewOs6MWeqUrhenW53uq9SPtZPNhiy8AAAAAQPGWlZWlX375RRvWr5fdbjc7jiQpMChIXbt2Vd26dWWxWMyOAxQbFCYBAAAAAACcLOVMstZ9ukprP1qh+GNnXT4vOyNbn/efrugdx9TntX6yelhdPhNwJ3t2jpJiE5UQE6+kv1aATIhJUFJs7mJkZmqG2VGLvPDqZdXtpdt10wM3y9OL28cAAAAAgOLNMAzt2bNHS5YsUXJSktlxJEkeHh5q3bq1bm7TRl5evIkRcDbueAEAAAAAADiBYRj6c/NBrZ6+TL/9uEk5WTluz7B0ygLF7DquR78dKr8Qf7fPB5zBnmPXjrm/ad+KXTr622HFHT2r1DMpMgzD7GjFWrm6FdRt5O268Z6W8vD0MDsOAAAAAAAud/r0aS2KjNSff/5pdpQLatWqpVu7dlVoaKjZUYBii8IkAAAAAADANchKz9KW7zdo9fSlOrbtiNlxtHvxDk1uMUZD5jyrcnUrmB0HyDd7jl3rPl2lRa/NVcLxOLPjlBjXNaqs7qN6q/EdzWS1sjotAAAAAKD4y8jI0JrVq7V582Y5HA6z40iSQkqXVteuXVW7dm2zowDFHoVJAAAAAACAAjhz+JTWfLBcG75Yo3PxqWbHyeX0Hyc1ucUYPfrtUDXs0cTsOMAV7Vm2UzOHf6MTu6PNjlJiVGleXbeN7qMGtzWWxWIxOw4AAAAAAC5nGIaioqK0bOlSpaYWjvt5njab2rZpo5atWslms5kdBygRKEwCAAAAAADkk8Ph0O7FO7R6+jLtXrSjUG8RnJGSrum3T1WvCX3V7aXbKUShUDq5/4RmPfetdi7YbnaUEqNm2zrqPqqP6naqz78LAAAAAIASIzY2VpGRkTp+7JjZUS64/vrr1eXWWxUcHGx2FKBEoTAJAAAAAABwBefiU7X+89Va8+FynT182uw4+WYYhuaO/lHRUcc04LOB8vbzMTsSIOn836kF43/S6unL5Mixmx2nRKjbuYG6j+qtWm3rmh0FAAAAAAC3SUtL06qVK7V169ZC8+bnsLAwdeveXdWrVzc7ClAiUZgEAAAAAAD4F0d/O6zV7y/Tlh82KDsj2+w4Bfbbj5t0an+sBv88XGFVws2OgxLMnp2jNR+u0Pyxs5SWcM7sOCVCw55N1H1kb1W9qYbZUQAAAAAA+WC325WcnKzExEQlJiYqJSVFFkkWq1X+/v4KDQ1VaGiofH19zY5aqDkcDm3ftk3LV6xQelqa2XEkSV5eXmrfvr2a33STPD2pbAFm4W8fAAAAAADARbIzs/Xbj5u0evoy/bn5oNlxnCZ6x1G91ny0Hp/5jGq1Y4U5uJdhGNq16HfNGvGtTu47YXacYs9isajxnc3UfWRvVbyhitlxAAAAAAAX+Wch8p8fycnJMhyOK17H19dXoWFhCg0NVVho6IXHpUuXLvFlvOjoaEUuXKgTJwrPPYiGDRuqc5cuCggIMDsKUOKV7H8hAQAAAAAA/hJ/7KzWfLhc6z9brZQzyWbHcYnUsyl6u/Mk3fPOg2o3uJMsFovZkVACnNgdrZnPfqM9S3eaHaXYs1gtanZvK3V76XaVv/46s+MAAAAAQIlkt9uVkpLyvxJkQsKFxwlXUYi8krS0NKUdO6bjx47lOm6xWGh5VI4AACAASURBVBQcHHx+JcqwsFxlysDAwGJ9Pyg1NVUrli/X9u3bzY5yQdmICHXv3l2VK1c2OwqAv1CYBAAAAAAAJZbD4dC+Fbu1evpSRc3fJsNhmB3J5Rw5dn3/xBc6/vsR3fvew/L04vYQXCPlTLLmvzJLaz9eUSL+bpnJ6umhlg+2UdcXe6lMjQiz4wAAAABAseZwOC69QuRfxcgkJxUiC8owDCUkJCghIUEHD+bePcVms13Y0js0LExhfxUpQ0ND5ePjY1Lia2e327V1yxatXLVKmRkZZseRJPn4+KhDx45q2rSpPDw8zI4D4CLcEQcAAAAAACVOWuI5bfxqrdZ8sFynDsSaHccU6z5dpdi9MRo0a5gCywaZHQfFSE5Wjla9u0QLJ/6s9KQ0s+MUa57eNrV+pL1ufb6HQiuHmx0HAAAAAIoFh8ORZ4XIhIu3zE5KksPEQuS1yM7O1smTJ3Xy5Mk85/z8/c+vRnnRipRhYWEKCQkp1IW/I0eOKDIyUqdPnTI7ynkWi5o0bqyOnTrJz8/P7DQALoHCJAAAAAAAKDGio45p9ftLtfnb9cpKyzQ7jukOrT+gSc1GadBPw1Xlxmpmx0ERZxiGdszdqtnPf6fTBwvJNymKKVspL7V9vKO6jOih4PIhZscBAAAAgCLlUoXIi1eKTCrChchrcS41VedSU3X06NFcxy1Wq0JCQi5ZpvT39zdti+/k5GQtXbpUu3buNGX+pVSoUEHdb7tNFSpUMDsKgMugMAkAAAAAAIq1nKwcbf/pV62evkwH1+03O06hkxAdryltx6n/J4/ppvtvNjsOiqjjO45q5vBvtH/VHrOjFFsWq0UV6ldU8/taq9XD7RQQHmh2JAAAAAAolPIUIv/xkZSUJIfdbnbMIsNwOBQfF6f4uLg857y8vS9s6R12UZkyNDRU3t7eLsmTk5OjTZs2ac2aNcrOynLJjKvl6+urTp0764YbbpDVajU7DoAroDAJAAAAAACKpYSYeP3y0Qr98ukqJZ9MNDtOoZadka3P+0/X8d+P6o7J98rqwY1d5E/SyUTNe3mm1n++WoZhmB2nyLJYLAooE6jgCiEKKh+ikPKlLzwOrlBaweVDVKZGWXn5uuabTQAAAABQlDgcDqWmpv7rCpGJFCLdJiszU7EnTij2xIk85wICAv63GuVFZcrg4OACb/F98OBBLVq0SHFnz15rdKewWCxq1ry5brnlFpUqVcrsOADyicIkAAAAAAAoNgzD0IHVe7R6+jL9PmerHPait32St7+PWvRvoxt636iZw7/Rid3Rbpu9bOpCxew6rv9894T8QvzdNhdFT3ZGlla8s1iRk+YoMzXD7DiFmre/j4Ir/K/4GHxRCfLv40ERQfKwcasWAAAAAKRLFCL/uUJkYqLsFCILvZSUFKWkpOjIn3/mOm718FDpkJBLlin9/PwuucV3QkKClixZon1797or/hVVqlxZ3bt3V0REhNlRAFwl7sIBAAAAAIAiLyMlXZu+WafV05cqdk+M2XEKpFzdCmo3pLNa9L9ZpQJ9JUkvbBinLx76UL//vMVtOfYsidLkm17WkLkjVK5uBbfNRdFgGIa2zdqs2S98r7gjZ8yOYyqrp4eCygX/r/hYPncJMrh8sIIrlJZPACtMAAAAAMDFHA6Hzp07d8kVIhMoRBZ7DrtdZ8+e1dlLrBLp4+Nzfkvvv8uUYWE6c/q01q1bp5ycHBPS5uUfEKAuXbqoQYMGlyx3Aij8KEwCAAAAAIAi68SeaK2ZvkybvlmnjJR0s+NcNauHVTf0vlHth3RWrfbX57nJ6hNQSo/PfFoLJ/ysBeNmuy3X6YOnNLnFGD3yf0PUqGdTt81F4XZk62HNHP6NDq7bb3YUl/Mr7f8v22OHKKRCaQWVD1FAmUBZrWxfDwAAAAD/ZBjGFbfMtheS8hsKl4yMDMXExCgmpvC9IdpqtapFy5Zq166dvL29zY4D4BpQmAQAAAAAFCoxu45ry/cbFLs3RsmnkpSdniVbKS/ZSnnJq5SXbD628z/3sZ3/+cXnLjp//udXfo7Vg7JLUWPPsWvH3N+0evpS7V+1x+w4BRJYNkhtHuugNgM7KOS60Ms+12q1qucrd+q6hpX0xYPTlXku0y0ZM1LS9UHvt9RrQl91e+l23jFfgiXExGvOqBna9PUvZke5Zp7etgsrQIZUCFFQuZDc22X/dcyrlJfZUQEAAACg0MpTiLzEltmFZTVAwBmqVaumbt27Kzw83OwoAJyAwiQAAAAAwHSGYWjH3K1a+OocHfvtT7fO9rB55CpTepXykueFMqYt9zmf3IXLiwuZeYqZ//IcTx8bK5IVUNLJRK37ZKXWfrxSiTHxZscpkOqta6n9kC5qcmdzeXpd3W2Zxn2aqcyGcZree6rO/umerZANw9Dc0T8qesdRDfj8cXn7+bhlLgqHrLRMLZ2yUEvemK+sNPcUdQvKYrEooGzQhW2wg8uH/FWALP3XdtnnH/uG+FH+BQAAAIArMAwjz5bZCRQiUQIFBQXp1q5dVbduXe4nAMUIhUkAAAAAgGkMw9COeb9pwfifdHz7EVMy2LPtsmenKyPZfds5e3rbLlrl0pZnBcxcpU0fmzy9bfKwecjTy1MeXp7y/OvD48KPHpc49teP/3jd/17vketYYS1xGoahQ+v3a/X0Zdo2+1fZs+1mR7pqXr7ean5fK7Uf2kUVG1W+pmtVaFBJL/06UZ/0m6Z9K3Y7KeGV/TZzs04dOKnBPw9XWBXeSV/cORwObfl+g35+6QclRBeecrLFYlGj25sqonb5PNtjB0UEycPGrU4AAAAAyI9LFSL/uUokhUiUZB6enmrdurVuvvlmeXmxCwVQ3HAXEQAAAADgdoZhKGrBNi0YN1vHth0xO47b5WRmKyczW+lJaWZHucDqYc1dxrR5/KNk6fEvZc2/jtn++ZrLFTxzlzY9bJcofto89Mcv54uS0TuOmv3pKZAyNSPUbnBntXqorXyD/Zx2Xf/QAD216EXNfu47rfjvIqdd90qidxzVa81Ha+CPT6t2++vdNhfudXjTH/px2Df6c/NBs6PkUrNtHd39Vn9ValLV7CgAAAAAUOjlKURe4iMnO9vsmEChVKt2bXXt2lWlS5c2OwoAF6EwCQAAAABwG8MwtHPhds0fN9vtW2/j8hx2hxzpWcpOzzI7SpFmsVrUsEcTtR/SWXU61XfZyp0enh66++3+uq5RJX076DPlZLln1YfUsyl6p/Mk3f3Og2o/pDNbERUj8cfO6qeXftCW7zeYHSWXsGpldOcb96lxn2b8eQMAAACAvxiGobS0tAvlx4RLrRBJIRK4KiGlS6tbt26qVauW2VEAuBiFSQAAAACAyxmGoV2Rv2v+uNk6uvWw2XEAp/MPC9DNj96itoM6KrSy+7asbvVQO5WrW0Ef3PGWkmIT3TLTYXfohye/VPTvR9XvvYdk87a5ZS5cIyM1Q0ten6dlUxcqO6PwfDPNJ6CUuo/urQ5PdeXPGAAAAIASKzk5WdHR0UqIj89TiMymEAk4hc1mU5u2bdWyZUvZbNyDAEoCCpMAAAAAAJcxDEO7F+/Q/HGzdeTXQ2bHAZyu6k011H5IZzXte5NsPl6mZRi55VV9eOfbbt1Ged1nqxS7N0aPz3pGQRHBbpsL53A4HNr09S+aM2qG28q2+WGxWtTmPx3Uc/xdCiwTZHYcAAAAAHC7M2fOaGdUlHbt3q34uDiz4wDFWr169dTl1lsVFMQ9CKAkoTAJAAAAAHA6wzC0e0mUFoyb7dYCF+AONh+bmvVrpfZDO6ty02pmx5EkBZcP0bOrRuvbwZ9r41dr3Tb30IYDmtRstAb/PFxVbiwcnwtc2YG1ezVz+Dc6tu2I2VFyqdupvvpOfUAVGlQyOwoAAAAAuFVKSop27dqlqKgoxZ44YXYcoNgLDw9Xt+7dVa0a97OAkojCJAAAAADAaQzD0N5lOzVv7Cz9uYmiJIqXsKrhajuok1o/0l7+oQFmx8nD5uOlAZ8/roo3VNasEd/KYXe4ZW5iTLymtB2nBz5+TC0euNktM1EwZ/88rdkvfKdts341O0ouZWuV011T7leD2xrLYrGYHQcAAAAA3CIzM1P79u1TVFSUDh86JMMwzI6EQiIgIEDBwcG5Pkr5+ioxMVFxcXGKO3tWZ+PilJqSYnbUIsfL21vt27fXTTfdJA8PD7PjADAJhUkAAAAAwDUzDEN7l+/SgnGzdWjDAbPjAE5jsVhUr2tDtR/SRfW6NpLVw2p2pMuyWCzq+HQ3la93nT6+Z5rSEs65ZW52Rra+eHC6oncc1R2T7y30n6eSJj05TZGvztXK/y5STlaO2XEu8A321W1j7lT7IZ3l6cVtSgAAAADFn91u1+HDhxW1Y4f27dun7OxssyPBBP6XKEQGBwcrJCREgYGBstls+bpOZmbm+QJlXJzOnj17oUwZFxenrKwsF/8qip5GjRqpU+fOCggofG+EBuBe3IkEAAAAABSYYRjat2KX5o+brUPrKUqi+PAN8VPrh9ur3eBOCq9e1uw4V61upwYa+etETe/zlk7sOu62ucumLlTMruP6z3dPyC/E321zcWkOu0PrP1+tuS//qJTTyWbHucDqYVW7wZ3V45U7CuVqrQAAAADgTIZhKCYmRjujorRr1y6dO+eeNzfCPP7+/nkLkSEhCg4OVlBQUL4LkVfi7e2t8uXLq3z58rmOG4ahlJSUXKtR/v04ITFRhsM9u5IUFhEREep+222qVKmS2VEAFBIUJgEAAAAAV80wDO1ftUfzx87SwXX7zY4DOE2lJlXUfkgXNevXUl6+3mbHuSbh1cvqhQ3j9MWAD/T7z1vcNnfPkihNvullDZ7zrMpff53b5iK3vSt2adaz/6foqGNmR8mlfvcbdNeb96tc3QpmRwEAAAAAl4qPj1dUVJSioqIUHxdndhw4kd8/CpEhLipEFpTFYlFgYKACAwNVtWrVXOdycnKUkJCQazXKs389Lm5lXp9SpdSxQwc1vfFGWa3shgLgfyhMAgAAAACuyv5VuzV/3Gz9sXaf2VEAp/D08lTTu1uo/ZDOqnpTDVksFrMjOY2Pv48en/m0IifO0fyxs9w29/TBU3q95St65P+GqFHPpm6bC+nUH7Ga/dx32jHvN7Oj5FLu+grqO/UB1bu1kdlRAAAAAMBlzp07p927dikqKkrR0dFmx0EB+fn5XXJ1yL8LkV5eXmZHLDBPT0+Fh4crPDw8z7n09PQLW3znKlPGxSmnKG0fb7GoaZMm6tCxo/z8/MxOA6AQojAJAAAAAMiX/av3aMG42TqwZq/ZUQCnKF0pTG0f76jWj7ZXYJkgs+O4jNVqVY8xd+i6hhX1+YMfKDM1wy1zM1LS9UHvt9RrfF91G3l7sSqiFkbnElK1cMLPWv3+Utmz7WbHucAv1F+9xvVVm4Ed5OH5/+zdeXTU9b3/8dfMZLKTPSEhC0lIICxJWBJAAcUNVECWgHVf6r211drb37Xe3va2au16e1vrta321ut6tS4QFkGkCsqigGQBwhYgZGGHLCRkT2b5/QGNoAgCyXyyPB/nzJnJN8O8X+A5MfOd1/fzsZmOAwAAAACdrq2tTbt379a2oiKVlJTI1ce2O+6J/M8oRIaeY8vsnlyIvBx+fn6Ki4tTXNzZO4a4XC7V19er6nSJ8swyZW1treR2G0r8ZbFxcbr55psVG8vOFgC+GoVJAAAAAMB57Vm7S0ufzNWe1TtNRwE6xdDrR2jyw1OUPm1UnypwjZyVrR+uj9Zzs36vqtLjHpnpdru15Kfv6GBRhe596UH5BPh6ZG5f4nQ4tfZ/VmnpkwvUWN1gOk4Hm92ma747VTf/ZJYCQgNNxwEAAACATuVyuVRWVqaioiLt2rlTbW1tpiPhDP7+/l9aGfLMW18tRF4qq9Wq4OBgBQcHa9CgQWd9r729vWOL7zMLlVXV1WpuavJYRv+AAN1www3KzMxk+20AF0RhEgAAAABwTnvXFWvpz3K1+6MdpqMAl803yE9X3nuVrn7oBkUPGWA6jjGxI+L1402/0Au3PatdK7d7bG7B/M90bPcRfWfxo4pI/PKWT7g021ds1YIfvK4jOw+ZjnKWzJljlPPbO9Q/NcZ0FAAAAADoNG63W0ePHlXR1q3atn27GurrTUfqs/xOFyJDz7FtdnBwsHx8fExH7DPsdruioqIUFRX1pe81NTV1bPF91uqUNTVyOhydMt9isWjs2LGafM018vPz65TXBND7UZgEAAAAAJyl5JNTRcniVRQl0fPFpsdr8kNTNPbOCfINZHVDSQoIC9Qjy3+o3Mf+plX//b7H5h4s2q9fZf+HHpz/fQ2ZPMxjc3ujI7sOacEPXtf297eajnKWuIwEzXv6bqVdO9x0FAAAAADoNLW1tdpWVKSioiJVVlaajtMn/KMQ+VU3CpE9g7+/v/z9/RUfH3/WcZfLpbq6urNWo/zH47q6uq/9+impqbr++usVHR3d2dEB9HIUJgEAAAAAkqR96/do6ZMLPLrqHNAVrF42jc7J1uSHpihl4hBZLBbTkbodm5dNt/7hbsVlJuiNb78oR1vnXNV/IY3VDXrmhl/p1mfu0eSHbuC/zUVqqK7X0idztfYvK+VyukzH6dAvKkgzf36rJnxzsqw2tr0CAAAA0PM1Nzdrx44dKioq0v6KCtNxeh0/P78vFyHP2D6bQmTvZrVaFRoaqtDQUKWkpJz1vba2NtXU1Hy+GmV1tapratTa2iqnw6HQsDDFxMQoIyPjnKtaAsDXQWESAAAAAPq4fRv2aNnPcrXzg22mowCXJWRAqCZ96zpN+udrFBwTajpOj3DlfVcrZmisnp/ztOqO1Hpkpsvp0luPvKKDWyp025/uk93H7pG5PZmjzaHVz32o957KVVNtk+k4Hby8vXTd92/STT+eKb8gf9NxAAAAAOCytLe3a+/evSoqKtLePXvkdDpNR+qxzleIDA4Olq8vu4Dg3Ly9vRUdHc2qkQC6FIVJAAAAAOijSjfu1dKf5Wrn34tMRzmvMbeO17SfzFZUarTam9vU3tymtuY2tTe3q73lH1+3n3H89K2l/Yyvz3jccvp5Le1nvF77F1771PfRMwyePEyTH7pBI2eOkc3OqY6LlTQuRT/O+6X+kvMHlX1W4rG5n7z4sY7sOqQHF3xfwdEhHpvbk7jdbhUtK9SCH7yh43uPmo5zltFzx2rOb25XZHJ/01EAAAAA4JK5XC7t379fRVu3asfOnWptaTEdqUfwPVch8owbhUgAQHfGpwgAAAAA0MeUbSrR0idztWPFVtNRzmv03LGa/niOYkfEdxyz+9ilkACPzHe73XK0tn9ezvxCmfLMr7/0nDPLmC3nKm1+ueDZ1twuRyslza/LJ9BX4++epMkP3aABw+NMx+nxQgaE6tGPf6I3HnpJG15Z67G5+9bv0a+yf6LvLPx/Sswe5LG5PcHBov2a/+j/qXjVDtNRzpIwOlG3/uEepU5KMx0FAAAAAC7ZsWPHVFRUpG3btulkXZ3pON2Or6/vV26XTSESANDTUZgEAAAAgD6ibFOJlj21UNuXbzEd5bxG54zVtJ/OUVxGgtEcFotFdl9v2X29JQ/t7uxyueRodZxVpnS0OuRoc8jZdure0eaQs93Z8fVZxzvunV8+9o8/036uP/Pl13O2O7/wmp8fNylmaKyu/s71Gn/PJLYA7mR2X2/d++KDShiZqPmPvi6X0+WRubWHavRfVz2lu1/4Z42/a6JHZnYXbU2tqiqvVFXpcVWVHldl6XFVlZ16fGTXIbldbtMROwTHhGj2r27TuLsnymq1mo4DAAAAABft5MmT2rZtm4qKinTsaPdaxd/TvlSI/MKW2X5+fqYjAgDQZShMAgAAAEAvV55fqmU/y9W29zabjnJeo+Zka9pP5yg+c6DpKMZYrVZ5+3nL289bnllH8+K53e7zlinPdfzMEudFFT/bnXI5XQoIC1RYQriG35ipmKGxslgspv8Zei2LxaJrv3ejYobH6YVvPKvGmgaPzHW0tuvle57Twa0VmvOb22W19Y5CnsvlUt3hE6osPa7qssqzCpGVpcd18mit6YgXZPe1a8oPpmvKv82QbyAriAAAAADoWVpaWrRr1y4Vbd2qsvJyyd19LkzrSj4+Pl9aFfLMG4VIAEBfRmESAAAAAHqpioJSLf1ZrrYt695FyZGzsjT98TmKH5loOgq+BovFIi9vL3l5c0qhNxt63Qj9aNPP9dysp3V4+wGPzf3w9+/p0Lb9+qc3H1FAaKDH5l6OlvrmU0XIM8qQVWWnCpHV5VVytLabjnjJxt5xpWb/6jaFJUSYjgIAAAAAX5vD4VBJSYm2FRVp9+7dcjgcpiN1Om8fH4WeY6tsCpEAAFwYn24AAAAAQC+zv7BMy55aqK3vFpiOcl6ZM8do+uM5ShiVaDoKgHOITO6vH67/mV6+93ltWZTnsbk7P9im34z7qb6z+FENGBbnsblfxelw6sTBmjO2zT6m6vLKjpJkQ1W96YidLmlcim79w91KHp9qOgoAAAAAfC1ut1sHDhxQUVGRdmzfrubmZtOROpW3j4+GDRum9PR0DRgwQL6+vuzAAQDAJaIwCQAAAAC9xP7N5Vr2VK62LunmRclbxmj643OUMDrJdBQAF+Ab6KsH5/+Llv9isZY+ucBjc4+XHNN/XvGEvvn6QwobGdXl8xpPNJxRiDy9SmR5papKj6u6okouh7PLM3QHofHhmvPr25R9+5V88AYAAACgR6isrNS2oiIVbdum2hMnTMfpVFarVampqcrIzNTgwYNlt9tNRwIAoFegMAkAAAAAPdyBrRVa9rNcbVmcbzrKeaVPH6UZT+Ro4Jhk01EAXASr1arpj89RXEa8XrrnebU2tHhkbkt9s56f9bSu+tcbJPflvZajzaGa/VVnFyL/sW122XE11TZ1TugeytvfRzf+cIZueHSavP19TMcBAAAAgPNqaGjQ9m3bVFRUpMOHD5uO0+niExKUkZ6uYcOHKyAgwHQcAAB6HQqTAAAAANBDHSzar2VP5WrzQs9tlXsp0qeN0vTH5ygxe5DpKAAuw8hZ2frh+mg9N+v3qio97pGZbrdba37/gUb7DlNbY+t5n9dQVX92IbL0uCrLTt2fOFgtt+syW5e91BX3XqWZv7hVobFhpqMAAAAAwFdqbW1VcXGxioqKVLpvn9zu3vUeLzwiQhkZGUpPT1dYGO/PAADoShQmAQAAAKCHObRtv5Y9tVCFuZtMRzmvETeP1PTH5yhpbIrpKAA6SeyIeP140y/0wm3PatfK7R6bO6AlUq/kPK/7XnhQTbWNnxcjyz4vR7aep1CJL0uZOETznr5biVms+gsAAACge3I6nSotLVXR1q0qLi5We3u76UidKiAwUOkjRigjM1MxMTGyWCymIwEA0CdQmAQAAACAHuLQ9gNa9lSuChd076Lk8BszNeOJHCWNoygJ9EYBYYF6ZPkPlftvf9OqZ9732Nzju47otxOf9Ni83io8MVI5v71Do3PG8mEcAAAAgG6pqqpK+fn52lZUpMbGRtNxOpXd21tDhw5VRkaGkpKSZLPZTEcCAKDPoTAJAAAAAN3c4R0HteznC1U4/7Nuvd3QsKkZmv74HA26YrDpKAC6mM3LplufvlvxmQP1+rdflKO1d63y0Rv59vPTTT+aqeu+f6Psvt6m4wAAAADAWRwOh3bv3q38vDyVlZWZjtOpLFarBg0apIyMDKWlpcnbm/dkAACYRGESAAAAALqpwzsP6r2fL1TBO928KDklXdMfz9GgKylKAn3NFfdepei0AXp+ztOqO1JrOg7OwWKxaMIDkzXz57cqqH+w6TgAAAAAcJba2loVFBSosLBQjQ0NpuN0qtjYWGVkZGj4iBEKDAw0HQcAAJxGYRIAAAAAupkjuw7pvZ8vVP7bG7t1UXLo9SM0/YkcpUwYYjoKAIOSxqXox3m/1F9y/qCyz0pMx8EZhlwzTPNOrwQKAAAAAN2Fy+VSSUmJ8vLytHfvXqkbn/+6WKFhYcpIT1d6RoYiIiJMxwEAAOdAYRIAAAAAuomq8kot+cnbyntzQ7cuSqZdN1wznshRysQ001EAdBMhA0L16Mc/0RsPvaQNr6w1HafPi0rpr5z/ulOZt4yRxWIxHQcAAAAAJEn19fXaXFiogoIC1dXVmY7Tafz9/TV8xAhlZGQoLi6O92EAAHRzFCYBAAAAwDCXy6VVz7yvJT95R+0t7abjfKUh1w7X9MfnaPBVQ01HAdAN2X29de+LDyphZKLmP/q6XE6X6Uh9jl+wv6b9dLau+e5UeXlz2g8AAACAeW63W+Xl5crLy1Pxrl1yuXrHe0UvLy+lpaUpIzNTgwYNks1mMx0JAAB8TZw5BQAAAACDThyq0Sv3Pa/iVTtMR/lKgycP04wncjT4aoqSAM7PYrHo2u/dqJjhcXrhG8+qsabBdKQ+wWqzatK3rtOMJ3PULzLIdBwAAAAAUFNTk7Zu2aL8/HxVV1ebjtMpLBaLkpKTlZGRobS0NPn6+pqOBAAALgGFSQAAAAAwpDB3k/7vWy+o6USj6SjnlHpVmmY8OVdDJg8zHQVADzP0uhH60aaf6/nZT+vQtgOm4/Rqw6aka97v79aA4XGmowAAAADo49xutw4ePKj8/Hzt2L5dDofDdKROER0To4yMDI0YMUJBQVykBgBAT0dhEgAAAAA8rKW+WW//y2ta/8oa01HOKWVSmm55MkeDJw+TxWIxHQdADxWZ3F//9unP9Mp9z2vzwjzTcXqd6LQBmvu7OzXippH8rAYAAABgVGtrq7YVFSk/P19Hjx41HadTBIeEKCM9XekZGYqKijIdBwAAdCIKkwAAAADgQaUb9+qlu59T5b5jpqN8ScrEIadWlLyGoiSAzuEb6KtvvfMvev+Xi/XuEwtMx+kV+g+J0Q3/Ok1X3neVbHZO7QEAAAAw3MSz4wAAIABJREFU5+jRo8rPz1dRUZHaWltNx7lsvn5+Gj58uDIyMhQfHy+r1Wo6EgAA6AKcVQUAAAAAD3A6nHr/V0v03s8XyuV0mY5zlkFXDtaMJ3OUdt0IipIAOp3VatW0n85RbHq8XrrnebU2tJiO1CP4BPgoIjlKEUmnbtFpAzToylTFDI/jQzsAAAAAxrS3t2vnzp3Ky8vTwQMHTMe5bDYvLw0ePFgZGRlKTU2VlxcVCgAAejv+bw8AAAAAXayy9Jhevud57Vu/x3SUsyRfkaoZT87V0OspSgLoeiNnZeuH66P13Kzfq6r0uOk4xlksFoXGh58qRSZGKiI5SpHJUae+To5Sv8ggfjYDAAAA6DaqqqpUkJ+vLVu2qLm52XScy5aYmKiMjAwNHTZMfn5+puMAAAAPojAJAAAAAF3E7XZr4/+t01uPvKqW+u5zIjlpfIpueXKuht6QThkHgEfFjojXjzf9Qi/c9qx2rdxuOk6X8w3yU+Sg/qeKkElRikiK7ChEhiVEyO5jNx0RAAAAAL6S0+lUcXGx8vPzVVZaajrOZYuKilJGRoZGpKcrJCTEdBwAAGAIhUkAAAAA6AKNJxr0xndeUsE7G01H6ZA4dpBmPDlXw6dmUJQEYExAWKAeWf5D5f7b37TqmfdNx7ksVptVYQMjPi9EnnEfmRwl/9AAft4CAAAA6HFqa2tVWFCgwsJCNTQ0mI5zWfoFBSk9PV0ZGRmKjo42HQcAAHQDFCYBAAAAoJPt/niHXr73eZ04WGM6iiQpMTv5VFHyxkyKOwC6BZuXTbc+fbfiRw7U6w++KEdru+lIXykgPPDzrbKTohSZ3P/040iFxofL5mUzHREAAAAALpvL5VJJSYny8/O1d88eud1u05EumY+Pj4YNG6aMzEwNHDhQVqvVdCQAANCNUJgEAAAAgE7iaHNoyU/n68PfLesWJ5UHZiVrxpM5GnHTSIqSALqlK+65StFpA/SXOX9Q7eETRjJ4eXspPDHyjEJkVMe22RFJkfIL8jeSCwAAAAA8oaGhQZsLC1VQUKDa2lrTcS6Z1WZTamqqMjIyNHjwYNntdtORAABAN0VhEgAAAAA6wZFdh/TiXX/Wgc3lpqMoYUySZjyRo/RpoyhKAuj2ksam6Md5v9DzOX9Q2caSLpkRFB2iiKRTpcjIpM8LkZHJUQoeEMpqIwAAAAD6FLfbrfLycuXn5WlXcbFcTqfpSJcsPiFBGRkZGj58uPz9ueANAABcGIVJAAAAALgMbrdba55fqQWPvaH25jajWRJGJ2r6EznKmD6aoiSAHiU4JlSPrXlcHz37dy39Wa5aG1ou6s/b/bw/XxnyH6tFJp/aPjs8MUI+Ab5dlBwAAAAAeo7m5mZt2bJF+fn5qq6qMh3nkoWHhyszM1PpGRkKDQ01HQcAAPQwFCYBAAAA4BKdPF6n1x74q7a9t9lojvhRiZrxRI4yZlCUBNBz2exeuuHRacq67Qpt+tun2rFiq8o+2yenw6H2tnYFx4QqOjWmY5XI8DO2zw7qH8zPPwAAAAA4B7fbrUOHDik/L0/bt2+Xw+EwHemSWG02DR06VNnZ2Ro4cCDvAQEAwCWjMAkAAAAAl2Db8s169Zv/o/rjJ41liMscqBlPzFHmzCxOEgPoNUJjwzT1sRma+tgMSdKBAwc0fvx4bdy4UfHx8YbTAQAAAEDP0Nraqm3btik/P19HjxwxHeeShYSEaExWlkaNGqXAwEDTcQAAQC9AYRIAAAAALkJbc5tyH3tDq5/70FiGuIwETX8iR5kzx8hqtRrLAQAAAAAAgO7l2LFjys/L09aiIrW1tpqOc0ksFosGDx6srOxsDRo0iPNfAACgU1GYBAAAAICv6cCWcr145591ZNchI/O9vL0065ff0HX/7yZOFAMAAAAAAECS1N7erp07dyo/P18H9u83HeeSBfbrp9GjR2v06NEKCQkxHQcAAPRSFCYBAAAA4AJcLpdWPr1ci//jbTnbnUYyxAyN1QNvPKz4kYlG5gMAAAAAAKB7qa6uVkF+vjZv2aLmpibTcS5ZcnKysrKzNWTIENlsNtNxAABAL0dhEgAAAADO48TBar1831+0+6MdxjJMfniKcn57h7z9vI1lAAAAAAAAgHlOp1O7d+9Wfl6eSktLTce5ZH5+fho5apTGjBmjiIgI03EAAEAfQmESAAAAAL5CwfyNev3bL6rpRKOR+f2ignTvSw8q/eZRRuYDAAAAAACge6irq1NBQYEKCwvVUF9vOs4li4+PV1Z2toYNGya73W46DgAA6IMoTAIAAADAF7TUN+ut772qDa+uNZYhffoo3fO/31JQVLCxDAAAAAAAADDH5XJp3759ys/L0549e+R2u01HuiTe3t7KyMxUVlaWoqOjTccBAAB9HIVJAAAAADjDvg179NLdz6mq9LiR+XY/b837/V266sHrZLFYjGQAAAAAAACAOS0tLcrLy1NBfr5qa2tNx7lk0dHRysrOVnp6unx8fEzHAQAAkERhEgAAAAAkSU6HU8t/sUjLf7lYLqfLSIaE0Yl64PWHFZ0Wa2Q+AAAAAAAAzHG5XCrIz9fHq1erqbHRdJxL4uXlpREjRigrO1uxsbFcEAwAALodCpMAAAAA+rzKfcf04t1/VtnGEiPzLRaLpjw2Xbc8NU9e3rxNAwAAAAAA6GtOnjypRQsXqqyszHSUSxIeEaGsrCxlZmbK39/fdBwAAICvxCdxAAAAAPost9utDa+u1Vvfe1WtDS1GMoTGh+v+V7+jIZOHGZkPAAAAAAAAs4qLi7VkyRI1NzWZjnJRrFarhg4dqqzsbCUmJrKaJAAA6BEoTAIAAADokxprGvT6t/9XhQs2GcuQ9Y3xuuO5byogNNBYBgAAAAAAAJjR1tamDz74QPl5eaajXJTgkBCNGTNGo0aNUr9+/UzHAQAAuCgUJgEAAAD0OcUf7dDL9z6v2kM1Rub79vPT7X+6T+PumsiV9wAAAAAAAH3Q0aNHlbtggSorK01H+XosFg1OTVVWdrZSUlJktVpNJwIAALgkFCYBAAAA9Bntre1a8pN3tPLp5XK73UYyDJowWN987SFFJEUZmQ8AAAAAAABz3G63PvvsM3344YdyOhym41xQQGCgRo8erTFjxigkJMR0HAAAgMtGYRIAAABAn3Bk1yG9eOefdGBLhZH5VptV0x+foxt/NFM2L5uRDAAAAAAAADCnoaFBSxYv1t69e01HuaCkpCRlZWcrLS1NNhvnsgAAQO9BYRIAAABAr+Z2u7X6uQ+V+9gbam9pN5IhclB/PfD6w0oal2JkPgAAAAAAAMwqKSnRokWL1NjQYDrKV/L189PIkSOVlZWliIgI03EAAAC6BIVJAAAAAL3WyWN1evWB/9H25VuMZZjwzcm69Zl75BvoaywDAAAAAAAAzHA4HFq1cqU2bNhgOspXiouLU1Z2toYPHy673W46DgAAQJeiMAkAAAB0M021jTqwpUKHtx+Qo82hgLBAhSVEKH7UQAWEBpqO12MULSvUaw/8VfWVJ43MDwgL1F1//SeNnjPWyHwAAAAAAACYVVlZqdwFC3T06FHTUb7E7u2tjIwMZWVlKSYmxnQcAAAAj6EwCQAAAHQTR4sP6cOnl+uz1z/5yq2jI5KjlDA6UQNHJythdKISRicqMCLIw0m7t7amVi34wRta85eVxjIMvX6E7n352wqNDTOWAQAAAAAAAGa43W4VFhZqxfvvq7393Of5TOnfv7+ysrOVnp4uX192RAEAAH0PhUkAAADAsOa6Ji19Mlcf/+nvcjld531uVelxVZUeV+GCTR3HwhIilDAmSQmjEjVwTJISRicpqH9wV8fulvYXlunFu/6so8WHjcz38vbS7F/fpmv/5UZZrVYjGQAAAAAAAGBOU1OTli5dql07d5qO0sHm5aXhw4crOztbcXFxslgspiMBAAAYQ2ESAAAAMMTlcumz1z/Rwh++qZPH6i75dWr2V6lmf5W2LMrrOBYSG3Z6BcqkUytSjklWyIDQzojdLbmcLn34+/e05KfvyNnuNJJhwPA4ffP1hxWfOdDIfAAAAAAAAJhVXl6uhbm5OnnypOkokqSw8HBlZWVp5MiR8vf3Nx0HAACgW6AwCQAAABhwYEu53vzuK9q3fk+XvH7toRrVHqpR0dLCjmNB0SGnt/M+VaJMGJOs0LiwHn9Fec2Bar187/Pas9rcVfvXPjJVs39zu7z9vI1lAAAAAAAAgBlOp1OrV6/WunXrJLfbaBar1aq0tDRlZWcrMTGRXVAAAAC+gMIkAAAA4EGNJxr07k/na81fVsrt8uzJ05NHa7V9+RZtX76l41hgRL8ztvNOVsLoRIUnRvaYEmXe2xv0t++8qKbaJiPzg/oH696Xv60RN2YamQ8AAAAAAACzampqlJubq0MHDxrNERQcrDFjxmj06NHq16+f0SwAAADdGYVJAAAAwANcLpfWv7RGi378lhqq6k3H6dBQVa+dfy/Szr8XdRzzDw04vZ138untvJMUkRzVra5Gbz7ZpLe+96o2vrbOWIbMW8bo7hf+Wf0ig4xlAAAAAAAAgDlbt27Ve++9p7bWVjMBLBalpqQoKztbqamp3er8HQAAQHdFYRIAAADoYuV5+/Tmd19WeV6p6ShfS9OJRhWv2qHiVTs6jvkF+yt+VOLplSiTlDAmSVGp0UZOwu5bv0cv3f1nVZVVeny2JNn9vHXr03dr0reu7TErcQIAAAAAAKDztLS06L333tO2oqILP7kL2Gw2jR8/XlnZ2QoNDTWSAQAAoKeiMAkAAAB0kYaqk1r047f16Yur5XZ7dvvtztZc16Q9q3dqz+qdHcd8An3PLlGOTlJ02gBZbV1TonQ6nHrv54u0/JeLPL6d+T8kjEnSA68/rOghA4zMBwAAAAAAgFkHDhxQbm6uak+cMDI/IiJCOXPnKiYmxsh8AACAno7CJAAAANDJXE6X1v11lRb/5B01nWg0HafLtDa0qGRdsUrWFXcc8/b3UVxmghJGJ53ezjtZMUMHyGa/vLcex0uO6qW7n1PZZyWXG/uSWCwWTf3hDM14cq68vHkbBQAAAAAA0Ne4XC6tW7dOq1evltvlMpJhzJgxmnrjjfL29jYyHwAAoDfgkz4AAACgE+1bv0dvfvdlHdhSYTqKEW1NrSrdsFelG/Z2HLP72hWbkXB6JcpkJYxO1IAR8V+reOh2u7X+lTV6+3uvqrWxtSujf6WwhAjd/9p3NPiqoUbmAwAAAAAAwKy6ujotzM1VRYWZc36+fn665ZZbNGzYMCPzAQAAehMKkwAAAEAnOHmsTgv//U1teHWt6SjdTntLu8o37VP5pn2SVkmSvLy9NCA9/qwSZWx6vOy+n18d31Bdrze+/aIKczcZSi5l336l7vjz/fIPCTCWAQAAAAAAAObs3LlT7y5ZopaWFiPzExMTNXvOHAUHBxuZDwAA0NtQmAQAAAAug9Ph1Oo/f6B3n1iglpPNpuP0GI42h/YXlGl/QZk++d+PJUlWL5sGDI/TwNFJihocrY//+HfVHj5hJJ9vkJ/u+PP9GnfnRCPzAQAAAAAAYFZbW5tWrFihwoICI/MtVquuveYaTZg4UVar1UgGAACA3ojCJAAAAHCJ9qzZpTcfeUWHtx8wHaVXcDmcOri1Qge3mt3OPGXiEN3/2kOKSIw0mgMAAAAAAABmHDlyRAsWLFB1VZWR+aGhocqZO1dxcXFG5gMAAPRmFCYBAACAi1R7+IQWPPaG8t5cbzoKOpHVy6YZT+Toxn+/RVYbV+0DAAAAAAD0NS6XSxs3btTKlSvlcjqNZMjMzNRNN98sX19fI/MBAAB6OwqTAAAAwNfkaHNo1X+/r/d+vkitDS2m46ATRaVG64HXH1Zi9iDTUQAAAAAAAGBAfX29Fi9apH379hmZ7+Pjo2nTpysjI8PIfAAAgL6CwiQAAADwNexauU1vfe9VHS0+bDoKOtnEB67RvD/cLd9ArtoHAAAAAADoi/bs2aPFixerqbHRyPy4uDjlzJ2r0NBQI/MBAAD6EgqTAAAAwHnU7K/S/EdfV2HuJtNR0MkCwgN191//WaNmZ5uOAgAAAAAAAAPa29v14YcfatNnnxmZb7FYNOmqq3T11VfLZrMZyQAAANDXUJgEAAAAzqG9tV0f/u49Lf/VYrU3t5mOg0429IZ03ffytxUygKv2AQAAAAAA+qLjx49rwYIFOn7smJH5QUFBmpOTo8TERCPzAQAA+ioKkwAAAMAXbFu+We98/zUdLzFzsvSLvHzsCosP6zZ5ejIvH7tm//o2Xfu9qbJarabjAAAAAAAAwMPcbrfy8vL0wd//LofDYSTDsGHDNOOWW+Tn52dkPgAAQF9GYRIAAAA4rbL0mN75f/+noqWFpqN0yLxljOY9fZcik/urua5J+zeXa39h2elbuY7tPiK32206Zo8wYES8/umNhxWbnmA6CgAAAAAAAAxobGzUu0uWaPfu3Ubm2+123XTTTRo1erQsFouRDAAAAH0dhUkAAAD0eW3NbVrxm3f1998ulaO13XQcSVJUSn/d+sw9Sr95VMcxv2B/DZk8TEMmD+s41lLfrINbK1RRUHaqTFlQpiO7DsntokR5pmu/d6Pm/OY22X29TUcBAAAAAACAAaWlpVq4cKEa6uuNzI+OidHcuXMVERFhZD4AAABOoTAJAACAPsvtdmvrkny986+vq7q80nQcSZLdz1s3/8cs3fDoNNl97Bd8vm8/P6VMTFPKxLSOY21NrTqwtUL7C08VKPdvLtfhHQflcji7Mnq3FBQdovtf+baGTckwHQUAAAAAAAAGOBwOffzxx/r0008lQzu1XHnllbr2uuvk5cXH8wAAAKbxGxkAAAD6pGN7jujt77+mHSu2mo7SYfTcsZr3u7sUlnB5V5l7+/to0BWDNeiKwR3H2lvadLBo/xklyjId2nZAzvbeW6IcOStLd//1nxQYEWQ6CgAAAAAAAAyorq5W7oIFOnz4sJH5gYGBmj1njgYNGmRkPgAAAL6MwiQAAAD6lNbGFi3/xWJ9+PR73aYsGJ02QLc9e6+GXp/eZTPsvt5KGpuipLEpHcfaW9t1ZMfBU9t5F566HSw60G22Jb9U3v4++sYz92jCA5NlsVhMxwEAAAAAAICHud1ubdmyRcuXL1d7W5uRDIMHD9bMWbMUEBBgZD4AAADOjcIkAAAA+gS3262C+Z9pwQ9e14mDNabjSJJ8An01/fE5uvZ7N8rL2/O/mtt97EoYnaSE0Ukdx5ztDh3eeehUgbKgTBWFZTq4db/am82cWL5YA7OS9cDrD6v/4BjTUQAAAAAAAGBAc3Ozli1bph3btxuZb/Py0tQpU5Q9diwX8wIAAHRDFCYBAADQ6x3eeVBv/8urKl61w3SUDmPvuFJz/vMOhcaGmY5yFpvdS/GZAxWfOVAT7p8sSXI6nDpafLijRLl/c7kObC5Xa2Or2bBnsFgsuvFHMzXjiTmy2XmbAwAAAAAA0BdVVFRoYW6u6urqjMyPjIrS3Llz1b9/fyPzAQAAcGF8kggAAIBeq/lkk957apFWPbtCLkf32H57wIh43f7H+zT46qGmo3xtNi+bYkfEK3ZEvK645ypJksvp0vG9R05v511+ekvvcrXUN3s8X/jACN3/2kNKnZTm8dkAAAAAAAAwz+l0au3atVq7Zo3cbreRDNljx2rKlCmy2+1G5gMAAODroTAJAACAXsftdmvT3z5V7r/9TXVHak3HkST5Bvlp5lPzdPVDN8jmZTMd57JZbVZFp8UqOi1W4+6cKElyuVyq3Hfs1CqUheWqKCzTgcIyNdU2dVmOsXdO0B1/ul9+wf5dNgMAAAAAAADd14kTJ7QwN1cHDhwwMt/P318zZ85UWhoX8wIAAPQEFCYBAADQqxws2q83H3lFJeuKTUfpcMV9V2nOr29XUP9g01G6lNVqVf/UGPVPjVH2bVdKOlVerSo7fmoVyoIy7d9cpoqCMjVWN1zWLN8gP9353Dc19o4JnREdAAAAAAAAPdC2bdu0bOlStba2GpmflJys2bNnKygoyMh8AAAAXDwKkwAAAOgVmmob9e7jC7T6uQ/kdpnZdueL4kcl6vY/3qdBVw42HcUYi8WiyOT+ikzurzFzx0k6VaKs2V91ahXKgjIdOF2irD9+8sKvZ7Vo3F0TNfOpeQpLiOjq+AAAAAAAAOiGWltb9f7y5dqyZYuR+VarVdddd52uuPJKWa1WIxkAAABwaShMAgAAoEdzuVza8OpaLfr3t1RfeeHCnSf4hwZo1i9u1aRvXSerjROmX2SxWBQ+MFLhAyM1ana2pFMlytrDJ05v512misIyVZdVqrmuSY5Wh2Iz4pWYPUjj7pqoAcPiDP8NAAAAAAAAYMqhQ4eUu2CBampqjMwPCw9XTk6OYmNjjcwHAADA5aEwCQAAgB6roqBUbz7yiso2lpiOIulUEXDCA5M1+1ffUGAE2/BcDIvFotDYMIXGhinzljGm4wAAAAAAAKCbcblcWv/pp/roo4/kcrmMZBg1apRuvOkm+fj4GJkPAACAy0dhEgAAAD1OQ3W9lvzHO1r3wkdyu7vH9tuJYwfp9j/ep8TsQaajAAAAAAAAAL3KyZMntWjhQpWVlRmZ7+PrqxkzZmjEiBFG5gMAAKDzUJgEAABAj+FyuvTJ/36sxf/xthprGkzHkSQFRvTT7F/fpivvv1pWK9tvAwAAAAAA4PK1tLSopKRER48cUWNTk5wOh7y8vL76Zref//vnuPWUc1nFxcVasmSJmpuajMxPSEjQnJwchYSEGJkPAACAzkVhEgAAAD1C6ca9evORV7S/wMxV5F9ksVp09bev1y1PzVNAWKDpOAAAAAAAAOgFGhsb9dFHH2nz5s1yOZ1dOstqs110yfJCN/vXLG7abLYLFjbb2tr0wQcfKD8vr0v/Hb6KxWrV5Kuv1sRJk2Sz2YxkAAAAQOejMAkAAIBu7eTxOi3+0dv69OXVpqN0GDRhsG7/432KH5loOgoAAAAAAAB6iR07dmjpu++qpaXFI/NcTqfanE61tbZ6ZN4X2S5Q2Kw7eVK1J04YyRYSEqI5OTlKSEgwMh8AAABdh8IkAAAAuiWnw6m1f1mpdx+fr6ZaM9vtfFFQ/2Dl/PYOjbtroiwWi+k4AAAAAAAA6AXa2tr09xUrVFBQYDqKRzmdTjmdTrUaKmx+lREjRmj6jBny9fU1HQUAAABdgMIkAAAAup2964r11iOv6GDRftNRJElWm1XXfHeqZjyZI79gf9NxAAAAAAAA0EscP35c8+fPV+Xx46aj9Hne3t66edo0ZWZmcrE0AABAL0ZhEgAAAEa0t7arZn+VaiqqVF1eparySlVXVKpy3zGVbSwxHa/D4KuH6rY/3qfYEfGmowAAAAAAAKCXcLvd2lxYqOXvvy9He7vpOH3egNhY5eTkKDw83HQUAAAAdDEKkwAAAOgS7S1tqtlfrerySlVXVJ2+r1R1+anHdUdq5Xa7Tcf8SiEDQjX3d3cq6xtXcEU5AAAAAAAAOk1LS4uWLV2q7du3m44Ci0UTJ0zQ5GuukZcXH50DAAD0BfzWBwAAgEvS1tymmv1VXyhEnr4/XYjsiWx2m677/s2a9tPZ8g30NR0HAAAAAAAAvcihQ4e0YMECnaipMR2lz+vXr59mz5mj5ORk01EAAADgQRQmAQAAcE5tzW2qqahU1ekVIWsqqlRdUXlq6+zyKp082jMLkecz9IZ03fbf9yg6LdZ0FAAAAAAAAPQibrdbGzds0IcrV8rldJqO0+elpaXplpkz5e/vbzoKAAAAPIzCJAAAQB/V1tR61oqQVeVVqtn/+ZbZJ4/VmY7oMWEJEZr39F0aNTub7bcBAAAAAADQqRobG7V48WLt3bPHdJQ+z8tu141Tp2pMVhbnAQEAAPooCpMAAAC9VGtjyxmFyNP3+z8vSNYfP2k6onFe3l6a8th03fSjmfL29zEdBwAAAAAAAL1MeXm5chcsUH19vekofV7//v2VM3euoqKiTEcBAACAQRQmAQAAeqiWhpZT22SX/2Ob7EpVV5zeOru8SvWVFCLPZ8TNI/WNZ+5RVEq06SgAAAAAAADoZVwul9auWaM1a9bI7XabjtPnjR8/Xtddf73sdrvpKAAAADCMwiQAAEA31VLffNaW2dXlVaquOFWOrKmoUkMVV6VfioikSN36zD3KnDHGdBQAAAAAAAD0QidPnlRubq4qystNR+nzAgICNGv2bKWmppqOAgAAgG6CwiQAAEA34HK6dGj7AZWsK9beT3arbGOJavZXmY7Vq9h97brpRzM15bHpsvt6m44DAAAAAACAXmjPnj1avGiRmpqaTEfp81JSUjRr9mwFBgaajgIAAIBuhMIkAACAAe2t7arIL1XJut3a+0mx9n26R811nETtKiNnZ2ve7+9SRGKk6SgAAAAAAADohRwOh1atWqUN69ebjtLn2Ww2XX/DDRo3bpysVqvpOAAAAOhmKEwCAAB4QPPJJu1bv7djBcnyTfvkaG03HavXi0qN1m3P3qvhUzNNRwEAAAAAAEAvVVNTowXz5+vw4cOmo/R5ERERypk7VzExMaajAAAAoJuiMAkAANAF6o7WquST3R0FyYNbK+R2uU3H6jN8Anx0809m67rv3yS7j910HAAAAAAAAPRS27dv17vvvqu21lbTUfq8MVlZmjp1qry9vU1HAQAAQDdGYRIAAOAyud1uVe47pr3rilWybrdKPinW8ZJjpmP1WWNuHa95v7tToXHhpqMAAAAAAACgl2pra9OKFStUWFBgOkqf5+vnp1tuuUXDhg0zHQUAAAA9AIVJAACAi+RyunSwaL9K1hWr5NPd2rtut04erTUdq8+LGRar2569T2nXDjcdBQAAAAAAAL3Y8ePHNX/+fFUeP246Sp+XmJio2XPmKDg42HQUAAAA9BAUJgEAAC6gvaVN5Xmlp1bOC3+jAAAgAElEQVSQ/GS39q3fo5aTzaZj4TTffn6a/sQcXfvIVNns/HoLAAAAAACAruF2u1VYUKD3V6yQo73d4/N9fH110003KTw8XA6Ho/Nv7e0dj51Op8f/fhfDx9dXk6++WuPGj5fVajUdBwAAAD0InygDAAB8QXNdk0o+3X1qe+1Pd6t80z452hymY+Ecxt01UTn/ebuCY0JNRwEAAAAAAEAv1tLSoqVLl2rH9u1G5sfGxWnu3LkKDfXMeTCXyyWn03nJhcvLvZ2rsGmxWjVgwAANGTxYY7KyFBAQ4JF/CwAAAPQuFCYBAECfV3fkhPau292xguShov1yu92mY+E84jISdNsf71PqpDTTUQAAAAAAANDLHTp0SAvmz9eJEyeMzJ8wYYKuve462Ww2j820Wq2yWq2y2+0em3mmMwub7e3tstvt8vHxYTVJAAAAXDYKkwAAoE9xu906vvfoqXLk6VUkK/cdMx0LX1NUSn9NeWyGrrz/atm8PHeCGAAAAAAAAH2Py+XSxg0btHLlSrlcLo/P9w8I0OzZs5Wamurx2aadWdj08/MzHQcAAAC9CIVJAADQqzkdTh0q2t+xemTJJ7t18lid6Vi4AIvVotC4cIUNjFBEYoQGDI/XoAmDlTw+VVYbV5EDAAAAAACgazU2NmrxokXau3evkflJSUmak5Ojfv36GZkPAAAA9FYUJgEAQK/S1tym8k37Thcki1W6oUQt9c2mY+ELLFaLwuLDFZ4YqbCBEQofGKnwxAhFJEYqPDFSoXFhstn5VRUAAAAAAACeV1ZWpoW5uaqvr/f4bIvFomuuuUYTJ01i+2kAAACgC/ApNAAA6NGaahu179M9HStIVuSXytHmMB2rz7ParAo9XYgMT4xQeELE6cenC5GxoRQiAQAAAAAA0K04nU6tXbNGa9auldxuj88PCgpSzty5GjhwoMdnAwAAAH0Fn1IDAIAe5cShGpWsK9bedbtV8kmxDm8/KLeBk5d9ndVmVVjC6ULkwMjTW2dHdhQkQ2LDZPOymY4JAAAAAAAAfC11dXVamJuriooKI/OHDBmimbNmyd/f38h8AAAAoK+gMAkAALott9utAIefNr+5SSt3LlPJumJVlVWajtUnWL1sHYXIiNOFyPDEU6tERiRGKnhAKIVIAAAAAAAA9Aq7d+/W4sWL1dzU5PHZNptNU6ZM0dhx42SxWDw+HwAAAOhrKEwCAIBupbWxRXlvbdC25Vu0Z+1OXVM9Vu/9e67pWL2OzW5TWMLpEuTA0ytDDvx82+yQAaGy2qymYwIAAAAAAABdxuFwaOWHH2rjxo1G5oeFhWnuvHkaMGCAkfkAAABAX0RhEgAAdAuNJxq07MlcbXhtnZrrPH8ld29js9s+L0AO/Hyr7H8cC46hEAkAAAAAAIC+q7q6WgsWLNCRw4eNzE/PyND06dPl4+NjZD4AAADQV1GYBAAAxh0vOao/zfgvHdt9xHSUHsPL2+v0NtmfrwwZkRjZcSw4JkRWK4VIAAAAAAAA4Iu2bdumpUuXqq211eOz7Xa7pk2frszMTLbgBgAAAAygMAkAAIw6vOOgfjf5KTVWN5iO0i0FRYcoddIQxWUOVERSVMcW2kHRwRQiAQAAAAAAgIvQ1tam95cv1+bNm43M79+/v+bOm6fIyEgj8wEAAABQmAQAAAa5XC7937deoCx5hqiU/kqZmKaUSUOUOilNkYP6c6U5AAAAAAAAcJmOHTum+fPnq6qy0sj87OxsTZk6VXa73ch8AAAAAKdQmAQAAMasf2mNSjfsNR3DGIvVorjMgUqdOEQpk9KUMnGIgqNDTMcCAAAAAAAAeg23262C/HytWLFCDofD4/N9fH01c+ZMDRs2zOOzAQAAAHwZhUkAAGDMqmdXmI7gUV4+diWOHdRRkBx0Rar8gv1NxwIAAAAAAAB6pebmZi1dulQ7d+wwMj8uLk45c+cqNDTUyHwAAAAAX0ZhEgAAGNFQXa/D2w+YjtGl/IL9NWjCYKWe3mJ7YFay7D5suQMAAAAAAAB0tYMHD2rB/Pmqra01Mn/ixIm65tprZbPZjMwHAAAAcG4UJgEAgBH7Pt1jOkKnC44JUcqktI4VJGNHxMtqs5qOBQAAAAAAAPQZLpdLG9av16pVq+RyuTw+PyAgQLPnzFFKSorHZwMAAAC4MAqTAADAiNbGVtMRLlv/wTFKmThEqZNOrSAZkRQli8ViOhYAAAAAAADQJzU0NGjxokUqKSkxMj85OVmz58xRv379jMwHAAAAcGEUJgEAgBGB4YGmI1wUi9Wi+JEDlTIx7VRBcuIQBfUPNh0LAAAAAAAAgKTS0lItXLhQDfX1Hp9tsVp1zTXXaOLEibJa2XEGAAAA6M4oTAIAACP6RQWZjnBedl+7ksaldKwgmXxFqnz7+ZmOBQAAAAAAAOAMTqdTa9as0dq1ayW32+Pzg4KDNXfuXCUkJHh8NgAAAICLR2ESAAAYEZueoPCBEaquqDIdRZLkH+KvQROGdBQkE8Ykye5jNx0LAAAAAAAAwFeoq6tTbm6u9ldUGJmflpamW2bOlL+/v5H5AAAAAC4ehUkAAGCE1WbVVQ9er0U/fsvI/JDYMKVOGnJ6i+0hihkex3Y5AAAAAAAAQA+xe/duLV60SM3NzR6fbbPZNGXqVI0dO1YWi8Xj8wEAAABcOgqTAADAmAkPTNYHv1+mxuqGLp/Vf0iMUiemKWXSqRUkwxMjOZkJAAAAAAAA9DAOh0MffvihPtu40cj88PBwzZ03TzExMUbmAwAAALg8FCYBAIAx/SKD9J2F/6pnbviVHG2OTntdq82q+FGJHdtrp0wcon6RQZ32+gAAAAAAAAA8r7q6Wgvmz9eRI0eMzM/IzNS0adPk4+NjZD4AAACAy0dhEgAAGJU6KU33vvSgXrn/L3K2Oy/pNex+3koal6LUiUOUMilNyVekyjfQt5OTAgAAAAAAADBlX0mJ1q9fr7a2No/Ptnt7a9q0aRo5cqTHZwMAAADoXBQmAQCAcWPvmKC4kQP15sMva8+aXRd8vn9ogFImDulYQTJhdJK8vPm1BgAAAAAAAOht2tvbddWkSVq9erWR+f2jozVv3jxFREQYmQ8AAACgc9EsAAAA3cKAYXH6149+oh0rtqp41Q7tWbtLx/YcUXVjjVLTByt2aHzHCpIxw2JltVpNRwYAAAAAAADQhY4ePaolixdryJAhRuZnjx2rKVOmyG63G5kPAAAAoPNRmAQAAN2GxWLRiJtGasRNp7a2OXDggMaPH69fL3lW8fHxhtMBAAAAAAAA8AS32638/HytWLFCTofD4/N9fX01c9YsDR061OOzAQAAAHQtCpMAAAAAAAAAAAAAPK61tVW1tbWqq6tT7YkTqq2rU11traqqq3Xs6FEjmeLi4zV37lyFhIQYmQ8AAACga1GYBAAAAAAA/5+9O4+Our73P/6ayU52YghbwhLCDmELybBaW1pxqRuI2uV6tXW5tlaw+js9tXW7va1tFapYty5WbJWiFpe6FBVFySRAgADBkLAlIUBIyL7O+vtDSw0zSSbJJN8sz8c5niPvme/n+5oZj2f8+prvBwAAAAD8yu12q7m5WdXV1Z+XIqurVV1T85+/r65WU1OT0TH/w2TSokWL9JWvfEUBAQFGpwEAAADQQyhMAgAAAAAAAAAAAOgUt9utxsbG1oXI80qRLS0tRsf0SXhEhK6++molJycbHQUAAABAD6MwCQAAAAAAAAAAAKAVl8ulhoaGc4XI80uRNdXVstvtRsfstvHJybrqqqsUGRlpdBQAAAAAvYDCJAAAAAAAAAAAADDIuFwu1dbWquaLO0Kev3V2TXW1nE6n0TF7jMls1kUXXaSFCxfKbDYbHQcAAABAL6EwCQAAAAAAAAAAAAwwDodDtbW1n5cga2pUXVV1rghZXV2t2tpauVwuo2MaIjo6WtesWKGkpCSjowAAAADoZRQmAQAAAAAAAAAAgH7Gbrefuzvkl7fK/vefa+vqJLfb6Jh9zuQpU3TFFVcoLCzM6CgAAAAADEBhEgAAAAAAAAAAAOhj3G63qqqqVFFR4bUU2VBfb3TEfiUgMFDf+MY3lJaWJpPJZHQcAAAAAAahMAkAAAAAAAAAAAD0EcXFxdq3b5+OHD6sqqoqo+MMCHEXXKAVK1ZoxIgRRkcBAAAAYDAKkwAAAAAAAAAAAICBnE6n8vPzZc3M1IkTJ4yOM6CkzpqlSy65RCEhIUZHAQAAANAHUJgEAAAAAAAAAAAADNDc3Kw9u3crKztbNdXVRscZUIKCg3XZZZcpNTXV6CgAAAAA+hAKkwAAAAAAAAAAAEAvqq6uVnZ2tnbn5KilpcXoOAPO8OHDtWLlSl1wwQVGRwEAAADQx1CYBAAAAAAAAAAAAHpBaWmprJmZyjt4UG6Xy+g4A9L89HQtW7ZMQUFBRkcBAAAA0AdRmAQAAAAAAAAAAAB6iMvl0qFDh2TNzFRxcbHRcQas0LAwXXnllZo8ebLRUQAAAAD0YRQmAQAAAAAAAAAAAD9raWnR3r17lZWVparKSqPjDGiJSUm65pprFBMTY3QUAAAAAH0chUkAAAAAAAAAAADAT2pra7UjO1u7cnLU3NRkdJyBzWTS4sWLdeGFFyogIMDoNAAAAAD6AQqTAAAAAAAAAAAAQDedOnVK1sxMHThwQC6Xy+g4A15kVJSuvPJKJScnGx0FAAAAQD9CYRIAAAAAAAAAAADoApfLpcLCQlmtVh0/dszoOINCcEiIFi5cKIvFouDgYKPjAAAAAOhnKEwCAAAAAAAAAAAAnWCz2bQvN1fWrCydragwOs6AZDabFR0drdDQUH300Uf61re+pZmpqRo1ahTbbwMAAADoMgqTAAAAAAAAAAAAgA/q6uq0c8cO7dy1S02NjUbH6dcCAgMVEx2tmJgYRcfEKOaLv6K/mEVGRspsNqukpEQPPfywfv2b3ygxMdHo2AAAAAD6OQqTAAAAAAAAAAAAQDvKyspktVq1f98+OZ1Oo+P0C0HBwZ+XINsoRYaHh8tsNhsdEwAAAMAgQ2ESAAAAAAAAAAAAOI/b7daRI0eUmZmpo0eOGB2nzwkNDf1PCdJLKTIsLEwmk8nomAAAAADQCoVJAAAAAAAAAAAA4At2u1379+2TNStL5WfOGB3HMEOGDGldgoyOblWIDA0NNToiAAAAAHQahUkAAAAAAAAAAAAMeg0NDdq5c6d27tihhoYGo+P0uIjIyNZ3hoyOVkxsrKK/mAUHBxsdEQAAAAD8jsIkAAAAAAAAAAAABq3y8nJlWa3Kzc2Vw+EwOo5fmEwmRUZFeb0zZExMjKKiohQUFGR0TAAAAADodRQmAQAAAAAAAAAAMKi43W4dO3ZM1sxMFRYWGh2n08xms6K/XIQ8rxQZFRWlgIAAo2MCAAAAQJ9DYRIAAAAAAAAAAACDgsPh0IEDB2S1WlV2+rTRcXxmDgjQjOnTNWv2bA0dOlSRkZEym81GxwIAAACAfofCJAAAAAAAAAAAAAa0xsZG5ezapewdO1RfV2d0HJ+FhoUpbd48pc2fr6ioKKPjAAAAAEC/R2ESAAAAAAAAAAAAA9LZs2eVZbVq7969stvtRsfx2dChQ5VhsWjWrFkKDg42Og4AAAAADBgUJgEAAAAAAAAAADBguN1uFRUVyWq16tChQ5LbbXQkn40ZM0aWBQs0ceJEttwGAAAAgB5AYRIAAAAAAAAAAAD9ntPp1MGDB2XNzNTJkyeNjuMzk9ms6dOmKcNi0ahRo4yOAwAAAAADGoVJAAAAAAAAAAAA9FtNTU3avXu3srOzVVtTY3Qcn4WEhmru3LlKT09XdHS00XEAAAAAYFCgMAkAAAAAAAAAAIB+p6qqSllZWdqze7dsNpvRcXwWExurjIwMzZ49WyEhIUbHAQAAAIBBhcIkAAAAAAAAAAAA+o2SkhJZMzP12Wefye12Gx3HZ6MTE7VgwQJNnjxZZrPZ6DgAAAAAMChRmAQAAAAAAAAAAECf5nQ6lZ+fL2tmpk6cOGF0HJ+ZTCZNmTpVFotFiYmJRscBAAAAgEGPwiQAAAAAAAAAAAD6pJaWFu3evVvZWVmqrq42Oo7PgoODNWfOHKVnZCg2NtboOAAAAACAL1CYBAAAAAAAAAAAQJ9SXV2tHdnZysnJUUtLi9FxfBYVHa2M9HTNmTtXoaGhRscBAAAAAJyHwiQAAAAAAAAAAAD6hNLSUlmtVuXl5cntchkdx2cjR46UZcECTZ06VQEBAUbHAQAAAAC0gcIkAAAAAAAAAAAADONyuXTo0CFZrVYVFxUZHcd3JpMmT5oky4IFSkpKkslkMjoRAAAAAKADFCYBAAAAAAAAAADQ62w2m/bu2aOsrCxVVlYaHcdnQUFBmjV7tjIyMhQXF2d0HAAAAABAJ1CYBAAAAAAAAAAAQK+pra3Vjh07tGvXLjU3NRkdx2eRkZGan56uuXPnasiQIUbHAQAAAAB0AYVJAAAAAAAAAAAA9LhTp07JarXqwIEDcjmdRsfxWcLw4VqwYIGmTZumwED+1xoAAAAA9Gf8Vx0AAAAAAAAAAAB6hMvl0uHDh2XNzNSxY8eMjtMpKRMnymKxaNy4cTKZTEbHAQAAAAD4AYVJAAAAAAAAAAAA+JXdbldubq6yrFZVVFQYHcdngYGBSp01SxkZGYqPjzc6DgAAAADAzyhMAgAAAAAAAAAAwC/q6+u1c8cO7dy5U42NjUbH8Vl4eLjmz5+veWlpCg8PNzoOAAAAAKCHUJgEAAAAAAAAAABAt5SVlSnLatW+ffvkdDqNjuOz+GHDZLFYNGPGDAUFBRkdBwAAAADQwyhMAgAAAAAAAAAAoNPcbreOHDkiq9WqI4cPGx2nU5KTk2VZsEDJyckymUxGxwEAAAAA9BIKkwAAAAAAAAAAAPCZw+HQ/v37Zc3M1JkzZ4yO47OAgADNnDlTGRaLEhISjI4DAAAAADAAhUkAAAAAAAAAAAB0qKGhQbt27tSOnTvVUF9vdByfhQ0ZorS0NKWlpSkyMtLoOAAAAAAAA1GYBAAAAAAAAAAAQJvKy8uVlZWl3L175XA4jI7js7gLLpAlI0MzU1MVHBxsdBwAAAAAQB9AYRIAAAAAAAAAAACtuN1uHT9+XNbMTBUUFBgdp1PGjhunBQsWaMKECTKbzUbHAQAAAAD0IRQmAQAAAAAAAAAAIElyOBzKy8uT1WrV6VOnjI7jM7PZrOkzZshisWjEiBFGxwEAAAAA9FEUJgEAAAAAAAAAAAa5xsZG5eTkaEd2turq6oyO47PQ0FDNmzdP89PTFRUVZXQcAAAAAEAfR2ESGKBsNpsOHjyoY8eOqbq6WjabTTExMUpISFBqaqpiY2ONjuizyspK7du3T2VlZaqurlZwcLBiYmI0fvx4TZ06VUFBQYZlKykp0YEDB1RZWam6ujqFh4crNjZWU6ZMUXJysmG5nE6nDh06pMLCQlVVVam5uVnR0dGKj4/XzJkzNWzYMMOyAQAAAAAAAOg7zp49q+ysLO3Zs0d2u93oOD6LHTpUGRkZmjVrlkJCQoyOAwAAAADoJyhMAj54+eWX9dBDD8npdPbI+iaTSQ8++KBWrVrVrXXcbrcyMzP10ksvadu2bWppaWnzfFOmTNG1116rb37zmwoPD+/WeXtCfX29Nm/erL///e86dOhQm88LDQ3V0qVL9a1vfUvp6em9ku3EiRPauHGjNm/erDNnzrT5vNjYWF1++eW64YYbNG7cuF7JtnfvXr300kvasmWLGhoa2nze2LFjtXLlSl1zzTX9qjwLAAAAAAAAoPvcbreKi4tltVqVn58vud1GR/JZ0pgxslgsmjRpksxms9FxAAAAAAD9DIVJwAeHDx/usbKk9PnFKZvN1q01Dh06pAceeEC7d+/26XwHDx7UAw88oCeffFI/+clPdOmll3br/P7idrv1yiuv6Le//a2qq6s7fH5zc7Pee+89vffee1q4cKHuv/9+jRkzpkeyNTY2av369frLX/4ih8PR4fOrqqr0wgsv6MUXX9QNN9yg1atXKyIiokeylZaW6n//93/14Ycf+vT848eP6ze/+Y2eeuoprV69WjfccAMXFwEAAAAAAIABzul06uDBg7JarTpZWmp0HJ+ZzGZNmzpVGRaLRo8ebXQcAAAAAEA/RmES8EFVVVWPnyMyMrLLx7788st6+OGHfSrxna+8vFxr1qzRhx9+qF/+8pcKDg7uco7uqq+v15o1a/Txxx936fjt27fr8ssv1yOPPKLly5f7NdvRo0d12223qaioqNPHulwuvfjii9q6daueeeYZpaSk+DXbBx98oB//+MdqbGzs9LH19fV6+OGH9f777+uJJ57o1j+HAAAAAAAAAPqm5uZm7c7JUXZ2tmpqaoyO47OQkBDNmTtX6enpiomJMToOAAAAAGAAoDAJ+KA3CpPR0dFdOu6xxx7TM8884/WxYcOGae7cuRo5cqQCAwNVUVGhffv2qbCw0OO5b731lsrKyvTcc88pLCysS1m6o7KyUjfeeKPX7bdNJpOmTZumadOmKTY2VjabTcXFxdq1a5fHXShbWlq0evVqVVRU6Dvf+Y5fsuXm5ur73/++1wuJwcHBmjt3riZMmKDw8HA1NDTo8OHDysnJ8bhraGlpqa6//no988wzmjt3rl+yvfTSS3rooYfkcrk8HouJidG8efOUlJSk4OBgVVVVKS8vT3l5eXKft8WO1WrVddddpxdeeEFxcXF+yQYAAAAAAADAWFVVVcrOztbu3btla2kxOo7PomNilJGRodmzZys0NNToOAAAAACAAYTCJOCDni5MBgQEaMSIEZ0+7sUXX/RalkxOTtY999yjpUuXet1mOT8/X2vXrtVHH33Uar5z507de++9evzxx2UymTqdp6tsNpvuuOMOr2XJK664Qj/84Q+VmJjo8ZjD4dDbb7+tRx99VKdPnz43d7vd+sUvfqHhw4dr2bJl3cpWUlKi2267zaMsGRISoltvvVXf/e53vd6Vsa6uThs2bNDTTz+tli9diKyrq9P//M//aNOmTUpKSupWtg8++MBrWXL48OFas2aNLrnkEgUFBXl9TevXr9fmzZtbzQ8fPqw77rhDf/nLXxQSEtKtbAAAAAAAAACMc+LECWVmZuqzgwc9fjzdl40aPVoLFizQ5MmTFRAQYHQcAAAAAMAAZHL3p/9SBgxy4YUX6tSpU+f+vGjRIj377LOGXrDJycnRd77zHTmdzlbz5cuX65FHHvGp8Pb888/rV7/6lccFszVr1ujWW2/1a9723H///Xr55ZdbzYKCgvSrX/1Kl112WYfH19TU6Ac/+IF27NjRah4WFqbXX39dY8aM6VIuu92ua665xqPImZCQoOeee06TJk3qcI2CggJ9//vfb1XolKSJEyfq1Vdf7fIW6MXFxbriiis8tuFOS0vTk08+6dMdS99++239v//3/zzuhLlq1So99NBDXcoF+FtJSYkyMjKUlZXltTgNAACAgY/vhAAA+Mblcik/P1/WzEyVlJQYHcdnJpNJk6dMkcVi6faPzDEw8X0QAAAAfCeEP3neeg6Ah/PvMDlu3DhDy5I2m00///nPPcqSS5cu1aOPPurz3QFvvPFG3XPPPR7zJ598UkVFRX7J2pFdu3Zp48aNHnNfy5LS59uZP/vss5o+fXqreVNTkx544IEuZ3vuuec8ypKRkZH685//7FNZUvq8GPn88897FBgLCgr0hz/8ocvZ7r//fo+y5LRp0/Tss8/6vL37JZdcokceecTjbqJ///vftWvXri5nAwAAAAAAANB7WlpalJWVpccff1x/37ix35Qlg4KDlZ6RoR/eeadWrVpFWRIAAAAA0CsoTAIdaGpqUnNzc6vZ0KFDDUrzuQ0bNujw4cOtZvHx8fr1r3/d6SLnzTffrKVLl7aatbS06Je//GW3c3bE7XbrwQcf9LjD5apVq3wuS/5bWFiY1q1bpyFDhrSaZ2Zm6r333ut0ttOnT+upp57ymD/wwANKTk7u1Frjxo3Tgw8+6DF/+umnVVZW1uls7777rjIzM1vNwsLCtHbtWo/X35FLLrlE119/fauZ2+3WQw891K+26gEAAAAAAAAGm5qaGm3517/02GOP6d133lH1eT/876uioqK0bNkyrVmzRsuXLzf8ejsAAAAAYHChMAl04Py7S0pSXFycAUk+Z7PZ9Oc//9ljvnr1asXExHRpzfvuu09BQUGtZlu3bvW4u6K/ffDBByooKGg1i4qK0t13392l9RITE3XzzTd7zJ955plOr/WnP/3JY6vqtLS0Thc5/2358uVKT09vNWtpafH6WXbE2+u56aaburz1+OrVqz3uSnno0CFt3bq1S+sBAAAAAAAA6DknT57Uq6+8ot+tW6ft27er5bwf/PdVI0aM0NXXXKMf3XWXFi5apLCwMKMjAQAAAAAGIQqTQAe8FSaN/MXr5s2bVV5e3mo2YsQIXXnllV1eMykpScuXL/eYd2fLaF94W/+GG27weUtpb2688UaPuyzm5eXJarX6vEZNTY02bdrkMb/99tu7nKut4zdu3Ki6ujqf19i+fbsOHjzYahYWFqYbb7yxy7mioqJ0ww03eMx7+vMHAAAAAAAA4BuXy6X8/Hz9+c9/1rPPPKP9+/fL5XIZHatjJpMmTZqkG//7v3XLrbdq5syZnd4lCQAAAAAAf6IwCXTAW2EyNjbWgCSf27x5s8fsmmuu6fZFpmuvvdZjtmXLFjU2NnZr3bYUFxdrz549HvMVK1Z0a92IiAhdfPHFHvPXX3/d5zX+9a9/ebzuUaNGacGCBd3KlpGRocTExFazxsZGbdmyxec1vH3+F198saKiorqVbeXKlR6znJwclZSUdGtdAAAAAAAAAF1ns9m0c8cOrV+/Xi+/9JKKjh83OpJPAoOClJaWph/84Ae6/oYbNHbsWJlMJqNjAQAAAABAYZI5LaAAACAASURBVBLoSF+6w2RZWZl2797tMV+2bFm31547d67H62pqatJHH33U7bW9eeeddzxmU6dO9SgUdoW39+P999/32GK7Le+++67XNbt7Qc9kMulrX/uax/ztt9/26XibzaYPP/zQa7buGjVqlKZNm+Yx9/Y5AQAAAAAAAOhZdXV1+uD997X2scf0z3/+U5VnzxodyScRERG66Ktf1Zo1a3TpZZfpggsuMDoSAAAAAACtUJgEOtCXCpNbt26V2+32yDJ58uRur202mzV//nyP+QcffNDttb3xVvzLyMjwy9rz58/3uONmXV2ddu7c2eGxjY2NysrK8phbLBa/ZPO2TlZWlk938szOzlZ9fX2rmdlsVnp6ul+yeXv/vX1OAAAAAAAAAHrGqVOn9I/XXtPatWv1ySefqKmpyehIPklISNCVV12lu1av1pIlSzRkyBCjIwEAAAAA4BWFSaAD1dXVrf4cGBio6OhoQ7J428I6NTXVb+vPnj3bp3N2l81mU15enk/n74qIiAilpKR4zH15Lfv27ZPD4fCYz5o1yy/ZvK1jt9t14MCBDo/1ln/ChAmKiIjwS7Y5c+Z4zPLy8ny+MycAAAAAAACAznO5XDp06JCef/55PfP008rNzZXL6TQ6lk9SUlL03f/6L912++2aNWuWAgMDjY4EAAAAAEC7+C9XoAPn32EyJiam21szd9XevXs9ZpMmTfLb+hMnTvSYlZaWqry8XPHx8X47T15enux2u8fcn68lJSVF+fn5rWa+FCZzc3M9ZgkJCYqJifFLrujoaCUkJKisrKzVfO/evV7v8NlRNn+/Z+ez2Ww6ePCg3wqjAAAAAAAAAD5ns9m0d+9eZWdl6Ww/2XJbkgICA5WamiqLxeLX68YAAAAAAPQGCpNAB84vTBq1HXdzc7OKioo85uPHj/fbOcaOHet1/tlnn/n1wtf5RUZJCgoKUmJiot/O4e21eDuvL8/x53ssfZ7t/MLkZ5991uFxPZ1t9OjRCgwM9LjD5meffUZhEgAAAAAAAPCT2tpa7cjO1q6cHDX3ky23JWlIeLjmp6VpXlqa33a9AQAAAACgt1GYBDpwfmEyNjbW4zn5+fn66KOPtHfvXh05ckS1tbWqr69XUFCQIiIilJSUpJSUFGVkZGjx4sVduph08uRJud1uj/nw4cM7vVZbhg0bJrPZLJfL5XFuf/K23r/P7S/e3pezZ8+qpaVFISEhncrmz/e4rfU6eo9bWlq8/srcn9kCAgIUHx+vU6dOdSobAAAAAAAAgI6VlpYqy2pVXl6exzXYviw+Pl4Wi0UzZs5UUFCQ0XEAAAAAAOgWCpNAB9q6w6Tdbtfrr7+uv/3tb8rLy/N6rMPhUFNTk8rLy5WTk6OXX35ZYWFhuvjii3X77bdrzJgxPudoq7Tmzzs/BgYGaujQoaqoqPDp3F3lbT1/b90ybNgwj5nb7dbJkyc1bty4No8rLS01JJu3835ZW4XZnshGYRIAAAAAAADwD5fLpUOHDslqtarYyw5Cfdn45GRZLBZNmDBBJpPJ6DgAAAAAAPgFhUmgA+cXJktLS/X888/r+eef9yiW+aKpqUn/+Mc/9NZbb+nmm2/WnXfeqYCAgA6PO3PmjNd5VFRUpzO0JyIiwqMw2da5u8rbepGRkX49R1vrnTlzps3CpMvl8njtvZWtoqJCbre7zQuPvfX5e8vm788fAAAAAAAAGOhaWlq0Z88eZWdleVxj7svMAQGaOWOGLAsWKCEhweg4AAAAAAD4HYVJoAPV1dWt/rxv3z7t27ev2+va7XY9/fTTys3N1VNPPaWwsLB2n9/U1OR1Hh4e3u0sX+Ztu/C2zt1VjY2NHrPeeB2S1Nzc3OYxzc3NXu/i2BvZ3G63mpub2/znoLc+f2/r+fvzBwAAAAAAAAaq6upq7cjOVs7u3Wpp51pkXxM2ZIjS5s1T2vz5fv8BOQAAAAAAfQmFSaAddXV1stls7T4nMDBQaWlpWrp0qebOnav4+HjFxcXJZrOpqqpKBw4ckNVq1Ztvvum1KGi1WnXHHXfoueeea/dOk22V1oKCgjr3ojrgbb32SoZd4W09f7+OwEDv/3prr/zX1usMDg72S6Z/ay9bZwuT/fHz78+cTidblPeyf7/fvO8AAACDF98JAQD9wZkzZ3TgwAEdP3bM64+y+6ro6GhNmz5dKSkpCgwMVHV1tcdNBACj8X0QAAAAfCc0xsiRI33aNbe/oTAJtMNkMmnatGnKy8vzeCwsLEwrVqzQTTfdpJEjR3o8HhwcrIiICCUmJmr58uVas2aN1q9frw0bNng8d/v27XryySd15513tpmlpaXF67yt8l1XeVvP34U5b6+lN16H1P5raes99ve//NvK1tb523usN7JRmPyPs2fPKiMjw+gYg9LVV19tdAQAAAAYjO+EAAaT8PBwjR8/XsPi4xUWFiaz2ayamhpVVlWptLRUlZWVRkeEPr9+PHbMGE2fMUPD+9n21SdPntT+AwdUXFxsdBTAZ3wfBAAAAN8Je9eePXs0bNgwo2P4HYVJoB0RERF65ZVXtGnTJq1bt06VlZUym8266qqrtHr1asXHx/u8VkxMjO677z7Nnz9fq1evlsPhaPX4s88+q6uuukqJiYlej2+rZOd0Ov1amnM6nR4zf9/F0Fteb+ftDpfL5XXe3t0i23ofeytbe+9zW59/W2t1VW98/v1ZXFycsrKyjI4xqJw8eVJXX321XnvtNa/ldAAAAAx8fCcEMJicPn1ae/fuVemJEx6PJXypkDdkyBAlJiZqdGKiRo4c6fcdUtA+m82mgkOHlJeXp/r6eqPj+MxkMml8crKmT5+uCy64wOg4gM/4PggAAAC+ExojLi7O6Ag9gsIk0AGz2axVq1bpkksu0QsvvKCLLrpIU6ZM6fJ6X//61/XAAw/ovvvuazW32+167rnn9NBDD3k9LjQ01Ovc4XD4tTB5fpFTUpvbRHeVt/W8nbc72lqvrfdRavt1+jub3W73Om8vW1uPtbVWV/XG59+fBQQEtFlqRs8aOXIk7z0AAMAgx3dCAAOV2+3W0aNHte3jj1VUVOTTMY2NjTp06JAOHTokc0CAxowZo4kpKUqZOFFxcXEymUw9nHpwqqqqUnZWlnbv2SNbO7vF9DWhoaGaO2+e5s+fr+joaKPjAF3G90EAAADwnRD+QGES8FFkZKTuuOMOv6y1cuVKbd68Wbt27Wo1f/fdd3Xfffd5/UV4W4W5hoYGhYSE+CWX9PnFVl/P3VXe1vN23u5oaGjwOm+v/NfW++jvbG2t1162tj6D3sjm788fAAAAAAAAnxclCwoKtG3bNq93lPSVy+nUsaNHdezoUb333nuKjY1VyhflybFjx7J7SDe53W6VlJTIarUq/7PP5Ha7jY7ks9jYWGVkZGjW7Nl+vYYMAAAAAEB/RmESMMhtt92m733ve61mNTU12r9/v+bOnevx/JiYGK/r1NXVaejQoX7LVVdX5zHz5/qS99dSW1vr13O0tRVObGxsm8cEBwdryJAhHqVBf2fz9h5HR0e3e6fQ9j5/f+qNzx8AAAAAAGAwc7lcys/P17aPP9bp06f9vn5VVZV27NihHTt2KDAoSOPGjfu8QJmS0u61MbTmdDp18OBBZVmtKi0tNTpOpyQlJcmyYIEmTZoks9lsdBwAAAAAAPoUCpOAQdLT0xUaGqrm5uZW8/z8fK+FyZEjR3pdp6KiQmPGjPFLJrfbrcrKSp/P3VXe1jt79qxfz1FRUeF1PmrUqHaPGzVqlAoLC1vN/J3N23odvcftff7+1JVsAAAAAAAA6JjT6VReXp62bdumivLyXjmnw25XYUGBCgsKJEnx8fHn7j6ZlJTU7g94B6umpibtzslRdna2339I3ZNMZrOmTp0qi8Wi0aNHGx0HAAAAAIA+i8IkYJDg4GBNnjxZe/fubTU/deqU1+e3VfQrKyvzW6bKykrZ7Xafz91V3gp4/nwdba0XFRWlyMjIdo8bOXKkR2HS37/095ato/d46NChCgsLU1NTU49mO3PmTKezAQAAAAAAoG0Oh0P7cnP1yaefqsrLj5V7U3l5ucrLy5WZmangkBAlJyefu/tkR9fNBrqzZ88qOytLe/buld1mMzqOz4JDQjR3zhylZ2S0uUsNAAAAAAD4DwqTgIG8bYHT1q+Whw4dqpiYGFVXV7eaHzt2zG95jh8/7nU+YcIEv51DkpKTkz1mzc3NOnXqlEaMGOGXcxQVFfl0Xm/P+fjjj1vN2npfuspbNl/e4/HjxysvL6/VzJ/ZysrKPAqZkv8/fwAAAAAAgMHAbrdrz+7d+nT7dtXW1Bgdx4OtpUWfHTyozw4elCQNHzFCE7+4++SoUaMGxVbObrdbRUVFslqtOnTokOR2Gx3JZ9ExMcpIT9fsOXMUGhpqdBwAAAAAAPoNCpOAgcLDwzv1/NTUVI8yX8EX2+n4w5EjRzxmsbGxGjt2rN/OIX3+OrwpKCjwW2Hy8OHDHrPZs2d3eNzMmTM9ZidOnFBDQ0OnPy9vmpubdeLECY/5rFmzOjw2NTXVozDpz8/f23tmNpvb/LwAAAAAAADgyWazadeuXcrcvl319fVGx/HZ6VOndPrUKW3btk1hYWGaMGGCUiZO1IQJEzRkyBCj4/mVw+FQXl6esqzWNnf86atGjx6tDItFU6ZMYUt1AAAAAAC6gMIkYKCqqiqPWVRUVJvP91aYPH9L7+7wtpYvRb7OGjp0qBITE1VSUtJqvnv3bi1durTb69vtdh384pfxX+bLa/H2HLfbrdzcXC1YsKDb2Q4cOCCn0+kx96WUmJqaqr/97W+tZvn5+WpubvbLr8i9ff4TJkxQREREt9cGAAAAAAAY6Jqbm7Vjxw5lWa1qbGw0Ok63NDU1af/+/dq/f79MJpNGjR6tlJQUTZw4UcOHD5fJZDI6Ypc0NjYqZ9cu7dixQ3V1dUbH8ZnJZNKUqVNlsViUmJhodBwAAAAAAPo1CpOAgcrLyz1mCQkJbT5/8eLFevzxx1vNTp8+raNHj2r8+PHdzrNjxw6P2ZIlS7q9rjeLFi3SSy+91GqWlZXll7X37t2rlpaWVrOgoCBZLJYOjx0xYoQmTJjgcbdFq9Xql8Kkt9c4c+ZMDR06tMNjFy5cKLPZLJfLdW5mt9u1c+dOLV68uNvZsrOzPWY99fkDAAAAAAAMFI2NjcrKylJ2drZampuNjuN3brdbJ0pKdKKkRFs//FARkZFK+eLuk+PHj+8X20FXVFQoy2rV3txcOex2o+P4LCQkRHPmzNH89HTFxsYaHQcAAAAAgAGBwiRgkMrKSq9bIE+ZMqXNY2bOnKlRo0aptLS01XzLli269dZbu5WnsLDQ446PAQEBuvjii7u1bluWL1/uUZjMzc1VWVlZu6VRX3z44Yces8WLF7d7984vu/jii7V+/fpWs3/961+6++67u5VLkrZu3eoxu/TSS306Nj4+XvPmzfMotm7ZsqXbhcmamhrt3r27y9kAAAAAAAAGm/r6elkzM7Vz507ZbDaj4/Sa+ro67dmzR3v27JHZbFbSmDFKSUlRSkqK4uPj+8zdJ91ut44dOyar1arCggKj43RKTGysMtLTNWv27H5RSAUAAAAAoD8xGx0AGKy2bdvW6k6BkjRkyBBNmzat3eMuu+wyj9krr7wit9vdrTyvvfaax2zhwoU+3fmwK9LS0jR8+PBWM7fbrU2bNnVrXYfDoTfffNNjfvnll/u8xqWXXupxYff48ePauXNnt7IVFhbqwIEDrWaBgYFavny5z2t4+/z/+c9/qqGhoVvZ3nrrLdnP+3V9cnKypk6d2q11AQAAAAAABpqamhq98/bbWrd2rbZv3z6oypLnc7lcOn7smLb861/6/ZNP6nfr1umfb72lgoICw94Xh8OhPXv26OmnntILf/lLvypLJiYl6dpVq3TnnXcqw2KhLAkAAAAAQA+gMAl0oLCw0OudILvD6XTq2Wef9Zh/5StfUVhYWLvHfvvb31ZwcHCrWXFxsd56660u56mtrfVaVLzpppu6vGZHzGazbrzxRo/5iy++qPr6+i6v+8Ybb3hsdT569Gh94xvf8HmN8ePH68ILL/SYP/XUU13OJUl//OMfPWaXXnppp+6oecUVVyguLq7VrL6+Xhs2bOhyLofDoeeff95j3pOfPwAAAAAAQH9TVVWlN994Q7/73e+UnZ0th8NhdKQ+p7q6Wjt37tTf/vpXPfLII3pxwwZlZ2ersrKyx8/d0NCgjz/6SGvXrtXrmzerrKysx8/pDyazWdNnzND3b7lFN998s6ZOnSqzmf91AwAAAABAT+G/uoF2vPHGG1qxYoVWrVqlXbt2+W3dv/71rzpy5IjH/Nvf/naHxw4bNkxXXXWVx/y3v/2t6urqupTniSee8Dh21qxZslgsXVrPV9dee61iYmJazaqqqrR27dourVdfX6/HH3/cY/69731PAQEBnVrrtttu85ht375d7733XpeyHThwQG+88Uarmdls1i233NKpdUJDQ70WTZ999lmdOHGiS9lefPFFFRcXt5qNGDFCV1xxRZfWAwAAAAAAGEgqKir0j3/8Q48//rhycnLkcjqNjtQvOB0OHT58WO+8/bYe/93v9MQTT+jdd9/V0aNH/Vo2PXPmjN544w2tfewxbd26VQ3d+DF2bwoNDdXChQt11113acWKFRo1apTRkQAAAAAAGBQoTAJeOJ1O/eIXv9A999yj5uZm1dfX6+abb9a7777b7bUzMzP1yCOPeMwvuugizZkzx6c1fvSjH3kUDU+fPq17773XY5vvjnz88cd68cUXW83MZrN++tOfdmqdrggPD9ePf/xjj/lf//pXvfPOO51e7/7779epU6dazaZOnaqVK1d2eq1Zs2Z53cb75z//uY4dO9apterq6nTPPffIed7F9BtuuEETJkzodLbvfve7Gjt2bKtZQ0OD7rrrLjU1NXVqrYMHD2rdunUe85/85CcKCgrqdDYAAAAAAICBoqysTJs2bdL69euVu3ev3J287obWzlZUKMtq1Qt/+Yt+/cgjevmll5Sza5dqa2s7vZbb7dbhw4f14oYN+v2TT2p3Tk6/uePn0KFDtfySS7R6zRot+/rXFR0dbXQkAAAAAAAGFQqTgBe1tbV67bXXWs2am5t111136bHHHuvyxbfXX39dd9xxh8fxMTExeuCBB3xeJy4uTj/5yU885h9++KHuvvtutbS0+LTOtm3bdNddd3mULL/73e9q5syZPq2xdetWTZ48WZMmTTr31+TJk/XBBx/4dPzKlSuVkZHRauZ2u3Xvvffqn//8p09rOBwO/fznP/fYljwwMFAPP/ywAgMDfVrnfD/96U81dOjQVrPq6mrdeOONOnTokE9rVFZW6uabb9bRo0dbzUeOHKk1a9Z0KVdoaKgefvhhmUymVvP9+/frlltuUU1NjU/rHDhwQN/73vc8SpbLli3r1BbmAAAAAAAAA0lpaaleeuklPfX73yvvwAHJ7TY60oBjs9mUn5+vN998U489+qieeuopvf/++yoqKvL40fGX2e125eTk6Pe//71e3LBBhw8f7sXU3TNm7Fhdd/31+sEPf6j09HSFhIQYHQkAAAAAgEGJwiTgRWxsrJ5//nmPuzi63W4988wzuvbaa7V7926f1ysoKNDq1at17733qrGxsdVjQUFBeuyxx5SQkNCpjFdeeaWuv/56j/nbb7+tK6+8Uh9++GGbd5ssKyvTgw8+qFtuucUjz/z583X33Xf7nKOqqkru8y4au91un0t7kvToo496bDljs9m0Zs0a3XPPPR7bRX+Z1WrVtddeq40bN3o89rOf/UzTp0/3Ocf5YmNj9cQTTyg4OLjV/PTp01q5cqXWr1/f5i/gbTabXn31VX3zm99Ubm5uq8eGDBmi9evXKzw8vMvZ2vqcduzYocsvv1ybN2+W3W73emx1dbXWrVun6667TmfPnm31WHJysv7v//6vy7kAAAAAAAD6q+LiYr24YYOee/ZZHcrPNzrOoFJ2+rQ+/eQT/flPf9JvfvMbvbJpk3Jzc9XQ0CBJqq+v19YPP9TatWv15htvqPzMGYMT+8ZsNmvmzJm65dZb9d///d+aPHmyzGb+twwAAAAAAEYyuc9vOgE4p6ioSD/60Y/02WefeX08NTVVX/3qVzVjxgwlJiYqPDxcDodD1dXVKi8v1549e5SVlaVdu3Z5lAqlz+8UuHbtWl100UVdyud0OrV69Wq99957Xh+Pj4/XvHnzNGrUKAUGBqqqqkr5+fnav3+/1zLlpEmT9MILL3gURdvz2muveb3b5S9/+UtdffXVPq9z5MgR/dd//ZfKy8u9Pj5t2jRNnz5dsbGxcjgcOnXqlHbv3u2xBfe/3X777brrrrt8Pn973nnnHd1zzz1eC4hBQUGaN2+eJkyYoIiICDU3N+v48ePatWuX6urqPJ4fEhKixx9/XBdeeKFfsv3iF7/QCy+84PWx6OhopaWlKSkpSSEhIaqtrVVhYaH27Nnj9bWMGDFCGzZsUGJiol+yAf5QUlKijIwMZWVl8c8mAADAIMV3QgA9ye1269ixY9r28cc6fvy40XFwPpNJCQkJqigvb/fOk31NWFiY5s6bp/nz5ysqKsroOEC/x/dBAAAA8J0Q/tS1fWqBQWLMmDH6+9//rqefflp/+MMfPLa6zs3N9bh7oK/Gjx+vdevWadKkSV3OFxAQoHXr1um3v/2t/vjHP3o8Xl5ernfeecentZYuXarHHntMERERXc7THcnJydq0aZNuv/12rwXVvLw85eXldbhOYGCgfvazn+m6667zW7bly5crLi5OP/zhD1VdXd3qMbvdLqvVKqvV2uE6cXFxevLJJzV79my/ZfvpT3+qUaNG6de//rXHReOamhq9//77Pq0zY8YMPfXUU4qPj/dbNgAAAAAAgL7K7XarsLBQ2z7+WCdOnDA6TocmpKTI1tKikpISrz/MHrDcbpWdPm10Cp/FxcUpw2JRamqqx641AAAAAACgb6AwCXQgODhYd955p1asWKE//elPevXVVz22se6MuLg43XLLLfrWt76loKCgbuczm8269957tXDhQj388MM6duxYp46PiYnRmjVrtHLlSr9uB2MymTp9zIgRI7Rx40Y999xzeu6559Tc3Nyp42fPnq0HHnhAkydP7vS5OzJ//ny9+eabeuSRR/TWW2916liTyaQrr7xS99xzj+Li4vye7cYbb9S8efP00EMPdbrAGxYWpttuu0033XQTF3EBAAAAAMCA53K5lJ+fr23btul0GzuX9Bkmk6ZNnarFS5Zo+PDhkqSmpiYdOXJEBQUFOlxY2K3rlPCfcePHy2KxaMKECWy5DQAAAABAH8eW3EAn1dfX64MPPtCWLVuUk5OjysrKDo+Jjo5WRkaGLr74Yn3ta1/rsWKa3W7Xli1btHHjRu3atUsOh6PN506cOFErVqzQVVdd1a1tYT799FPdeuutHud65ZVXNGPGjC6vW1ZWpk2bNmnz5s0qKSlp83nBwcFasmSJVq1apcWLF3epqNlZ+fn5eumll/Tuu+963HHyy2JiYrR8+XJdd911PVLiPJ/b7da2bdu0ceNGffLJJ7LZbG0+NykpSVdddZVWrlzJXSXRp3FrdQAAAPCdEIA/OJ1O5eXl6ZNt21ReXm50nHaZzGbNmDFDixcvbve6jcvl0smTJ1VYWKjCggKdPHmyF1MiICBAM2bMUIbFcq7QCqBn8H0QAAAAfCeEP1GYBLqppKREx48f18mTJ1VfX6/m5mYFBwcrPDxcw4cP17hx4zRmzJhe/2VxU1OT9u3bp+LiYtXU1MjpdCoqKkrDhw9Xamqqhg4d6tfz/fWvf9VDDz0kSVq4cKH+9Kc/+W3tsrIy7du3T2fOnFFdXZ2Cg4MVExOjcePGadq0aYbdGdHtduvw4cPKz89XVVWVGhoaFB4ertjYWE2ZMkXJycm9UuD0xmazKS8vT8eOHVN1dbVsNpsiIyM1bNgwzZw5UwkJCYbkAjqLL74AAADgOyGA7nA6ncrNzdWnn3zi0w+fjWQOCNCsWbO0aNGiLl27q6+v1+HDh1VYUKDDR46opZO7t8A3Q4YM0by0NKWlpSkyMtLoOMCgwPdBAAAA8J0Q/sSW3EA3JSYm9sl/GYeFhSk9PV3p6em9cr6PPvro3N+vXr3ar2snJCRo2bJlfl3TH0wmk1JSUpSSkmJ0FA/BwcGaPXu2Zs+ebXQUAAAAAACAXme327V3zx59+umnqqmpMTpOuwIDAzVn7lwtXLhQ0dHRXV4nIiJCs2bN0qxZs+R0OlVSUvL53ScLC3WmrMyPiQen+Ph4ZVgsmjlzpoKCgoyOAwAAAAAAuojCJIBuO3HihD799FNJ0rJly7q1FTcAAAAAAADQVTabTTm7dml7Zqbq6+qMjtOuoOBgpaWlyWKx+P1OhQEBARo7dqzGjh2rZcuWqaamRoUFBSosLNTRo0dlt9v9er6BLDk5WZYFCwzdTQYAAAAAAPgPhUkA3bZp0ya5XC6ZzWb96Ec/MjoOAAAAAAAABpnm5mbt3LFDVqtVjY2NRsdpV0hIiNLT05VhsWjIkCG9cs7o6GjNS0vTvLQ0ORwOFRUVqeCLAmXl2bO9kqE/CQgMVOrMmcqwWDRs2DCj4wAAAAAAAD+iMAmgW+x2u1599VVJ0mWXXdYnt6cGAAAAAADAwNTY2Kjs7GxlZ2WpubnZ6DjtChsyRJaMDKXNn6+wsDDDcgQGBio5OVnJyclavny5zp49+/nW3QUFOn78uJxOp2HZjBYeHq60+fM1b948RUREGB0HAAAAAAD0AAqTALrl/fffV3l5uYKCgnTnnXcaHQcAAAAAAACDQH19vaxWq3bu2CGbzWZ0nHaFR0Ro4YIFmjtvnkJCQoyO4yEuLk5xcXHKyMiQzWbTsWPHVFhQoILCQtXW1Bgd3zNangAAIABJREFUr1cMS0iQxWLR9OnTFRQUZHQcAAAAAADQgyhMAuiWjRs3SpKuueYaJSYmGpwGAAAAAAAAA1ltba22b9+unJwcOex2o+O0KyoqSgsXLdKcOXP6TQkvODhYkyZN0qRJk+R2u3XmzJnP7z5ZWKji4mK5XS6jI/pVSkqKMiwWjR8/XiaTyeg4AAAAAACgF1CYBNAtubm5Gjt2rH7wgx8YHQUAAAAAAAADVFVVlbZ/+qn27NnT57eMjo2N1aLFi5WamqrAwP57Cd5kMikhIUEJCQlatGiRmpqadPToURUWFKjw8GE11NcbHbFLAoOClJqaqoyMDMXHxxsdBwAAAAAA9LL+e7UGQJ+wZ88eoyMAAAAAAABggKqoqNCnn3yi3H37+vzdDS+44AItXrJE06dPV0BAgNFx/C4sLEzTpk3TtGnT5HK5dPr0aRUUFKiwsFClpaWS2210xHZFREZq/vz5mjdvnoYMGWJ0HAAAAAAAYBAKkwAAAAAAAACAPqWsrEyfbNumvLw8uft4ES8hIUFLli7VlClTZDabjY7TK8xms0aOHKmRI0fqwgsvVENDgw4fPqzCggIdPnJEzU1NRkc8Z/jw4bIsWKBp06b16zt+AgAAAAAA/+DqAAAAAAAAAADAMG63W5WVlSo6flxFRUUqKipSdXW10bE6NHLUKC1dulQTJ06UyWQyOo6hwsPDlZqaqtTUVDmdTpWWln6+dXdhoU6fPt37gUwmTZo4URkWi8aOHTvoPx8AAAAAAPAfFCYBAAAAAAAAAL3G5XKpvLz8XDmyqKhI9XV1RsfyWdKYMVq6dKnGjx9PEc+LgIAAJSUlKSkpSV/92tdUW1urwsJCFRYW6uiRI7LZbD127qCgIM2aPVsZGRmKi4vrsfMAAAAAAID+i8IkAAAAAAAAAKDHOJ1OlZWVqej4cR0vKlJxUZGa+tCWzb4an5ysJUuWaOzYsUZH6VeioqI0d+5czZ07Vw6HQ8XFxefuPllRUeGXc0RGRSl9/nzNnTdPYWFhflkTAAAAAAAMTBQmAQAAAAAAAAB+43A4dPLkyXNbbBeXlMjW0mJ0rC6bOGmSlixZotGjRxsdpd8LDAzU+PHjNX78eH3j4otVWVl57u6Tx48dk8Ph6NR6I0eOlGXBAk2dOlUBAQE9lBoAAAAAAAwkFCYBAAAAAAAAAF1ms9l04sSJc9trnygp6XTxrc8xmTR1yhQtXrJEI0aMMDrNgDV06FClp6crPT1dNptNx48fV2FBgQoKC1VTXe31GHNAgCZOnCiLxaKkpCS2RQcAAAAAAJ1CYRIAAAAAAAAA4LPm5maVlJTo+Bd3kDx58qRcTqfRsfzCZDJpxowZWrR4sYYNG2Z0nEElODhYEydO1MSJE3WJ262KigqdPHlSZ86ckcNuV2hYmOLj4zVhwgSFhoYaHRcAAAAAAPRTFCYBAAAAAAAAAG1qaGhQcXHxuS22T58+LbfbbXQsvzIHBGhWaqoWLlqkuLg4o+MMeiaTSfHx8YqPjzc6CgAAAAAAGGAoTAIAAAAAAAAAzqmtrT23vXbR8eMqLy83OlKPCQgM1Jw5c7Rw4ULFxMQYHQcAAAAAAAA9jMIkAAAAAAAAAAxSbrdbVVVV/ylIFhWpqrLS6Fg9LigoSPPS0rRgwQJFRkYaHQcAAAAAAAC9hMIkAAAAAAAAAAwSbrdbFRUV57bXLioqUm1trdGxek1ISIjmp6crIyND4eHhRscBAAAAAABAL6MwCQAAAAAAAAADlMvlUllZ2bnttYuKi9XY0GB0rF4XFhamjIwMzU9PV1hYmNFxAAAAAAAAYBAKkwAAAAAAAAAwQDidTp08efLc3SOLi4vV0txsdCzDhIeHa8GCBZqXlqaQkBCj4wAAAAAAAMBgFCYBAAAAAAAAoJ+y2+0qLS09t8V2SUmJ7Ha70bEMFxkVpUULF2rO3LkKCgoyOg4AAAAAAAD6CAqTAAAAAAAAANBPtLS0qKSk5FxBsrS0VE6n0+hYfUZMTIwWLV6sWbNmKTCQy98AAAAAAABojStGAAAAAAAAfZDb7ZbD4VBzc7PCwsIo/gCDVGNjo4qLi89tsX3q1Cm5XS6jY/U5cRdcoMWLF2vGjBkKCAgwOg4AAAAAAAD6KK60AwAAAAAAGMzpdKq8vFylpaUqLS3VydJSlZeXn7trXEBgoEaPHq2xY8cqNTVVQ4cONTgxAF84nU7ZbDa1tLSopaWl7b9vaVHLF3/+8t83NzerqrLS6JfRpw1LSNCSJUs0depUmc1mo+MAAAAAAACgj6MwCQAAAAAA0IvcbreqqqpalSNPnjolh93e5jFOh+Pz7XePH9fHH32k5ORkzUtL08SJE7mTGuBnDoej43LjF6XGjv7e4XAY/XIGrJEjR2rJ0v/P3r01V33f9x7/rrV0PgsBOgESIAljkOwYOZk0TZMmjeNpLnrZ/QA6fQi9253pze5z6CNody+6p7tp6qbe2cmeXDiWHCMBMUiAJJBAHCUkdF5r7QuEDBiDAUl/6a/Xa2bNkuWF+AgNjC3e8/v9IHp6eoSSAAAAAHxjgkkAAACALTQ/P78RRz4OJBcXF9/oY16+fDkuX74ctbW18d5778V7Z85EfX39Ji2G3aVYLMbq6uorn974vLdXlpc3TnZl5ykrK4uTJ0/GO+++G0ePHo1MJpP0JAAAAAB2GcEkAAAAwCZZWlqKGzduPBVIPpid3bKfb25uLn7961/Hb37zm+jp6Yn+99+P48ePO22NXW9hYSEmJyfj1q1bMTs7+9LQsVgoJD2ZLVBRURFHOjqiY/3R2trqVF0AAAAA3ohgEgAAAOA1rK2txfT0dExevx6TU1MxOTkZd+7ciSgWt31LsViMixcvxsWLF6OhoSHOnDkT33rvvaipqdn2LfA6CoVCTE1NxejISIyOjsbk5GQUE/i9RLKqq6s34siOzs44ePCgABwAAACATSWYBAAAAHiJQqEQd+7ciampqY1AcvrmzR15de/MzEx8/PHH8atf/SpOnjwZ/e+/H52dna6uZcd5+PBhjI6OxujISFy+fDkWFhaSnsQ2q6uvj84nAsmmpiZ/VgEAAACwpQSTAAAAAE8oFosxOzv7VBw5NTUVK8vLSU97JYVCIc6fPx/nz5+Ppqam6O/vj3fefTeqqqqSnsYeVSgUYnJyMkbWT5GcmppK5ERWkrOvqenLEyQ7OqKxsTHpSQAAAADsMYJJAAAAYE9bWFj4Mo6cnIzJqal4OD+f9KxNdffu3fjoo4/ivz7+OE6fOhX9778fhw4dcpIbW25+fv6pUyQXFxeTnsQ2Onjw4MbpkR0dHVFbW5v0JAAAAAD2OMEkAAAAsGesrKzEjRs3YmpyciOOvH/vXtKztk1+bS3Onj0bZ8+ejebm5ujv74/evr6oqKhIehopkc/nvzxFcmQkbty4kfQktkkmk4nW1taNQPLIkSNOtAUAAABgxxFMAgAAAKmUz+fj1q1bMTk5uRFI3rp9O4qFQtLTdoTp6en4+c9/Hv/5y19GX29v9L//frS2tiY9i11obm4uRkdHY2RkJK5cvhxLS0tJT2IbZHO5aG9v37he+/Dhw+JrAAAAAHY8wSQAAACw6xWLxbh3795TceSNmzdjbXU16Wk73urKSgwODsbg4GC0t7fHmf7+OH36dJSVlSU9jR0qn8/HtWvXYnRkJEZGR2P65s2kJ7ENSkpL4/DhwxuB5KFDh6K0tDTpWQAAAADwSgSTAAAA7CgrKysxNTUV9+/fj9nZ2VhbXY1sNhvZXC6y2Wzkstmv/vP6248fuZf88zd5TS6Xi0wmk/QvB19jbm7u0ZXajwPJqalYWlxMetau9/jX9KOPPop33nkn+vv74+DBg0nPYgeYnZ2N0dHRGB0ZiStXrsTy8nLSk9hi5eXlceTIkY0rtltbW6OkxLeTAQAAANjdfIcLAACARK2srMT169dj7OrVuDo2FpOTk1HI55OeFRERmUzm5bHmM8Hmy16TezLc/CavyWYjk81GNpN59JzNbux6nec3+bFPfozttLS0FFNTU0+dHvngwYNt3bDXLC8txe8++SR+98kncaSjI/r7++Ptt98WS+0ha2trce3atRgZGYnR0dG4NT2d9CS2WGVVVXR0dETneiDZ3Nwc2Ww26VkAAAAAsKl8lxsAAIBttbq6GteuXYuxsbEYGxuLyevXI79DAslnFYvFyOfzO3ZfUjLr8WYmk/ky5NyM52fel8lk4t7du3Hnzp2kP+U9bWJ8PCbGx+M/fvGL+Na3vhVn+vtj3759Sc9iC8zMzMToeiB55cqVWFlZSXoSW6i2tjY6Ojs3rtg+cOCAk5UBAAAASD3BJAAAAFtqdXV14wTJsbGxuL6DA0m+mWKxGMX1r6Gv5N6xsLAQv/3tb+O3v/1tHDt+PPr7++PEiRORy+WSnsZrWltbi/Hx8Y2rtm/fvp30JLZQY2PjxvXaHR0d0djYKJAEAAAAYM8RTAIAALCpVldXY3JycuOK7evXr0d+bS3pWcAmunL5cly5fDlqamvjvffeizNnzkR9fX3Ss/gG7t+/H6MjIzEyOhpXr16NVadIptaBAwc2AskjR474PQoAAAAAIZgEAADgDa2trT06QXL9iu3r167FmkAS9oT5ubn4za9/Hf/vN7+J7p6e6O/vj66urshms0lPY93q6uqjUyTXI8m7rrhPp0wmWlpaNq7X7ujoiOrq6qRXAQAAAMCOI5gEAADglaytrW2cIDk2NhbXBJKw5xWLxbh08WJcungx6hsa4syZM/Gtb30ramtrk562J927dy9GRkZidGQkro6NxdrqatKT2GTZbDba2to2rtc+fPhwVFZWJj0LAAAAAHY8wSQAAAAvtLa2FlNTU3H1yUBSfAN8jdmZmfg/H38c//dXv4q3Tp6M/v7+OHr0aGQymaSnpdbq6mqMjY1tRJL37t1LehKbIJPNRnl5eZSXlUVFRUU07tsXzQcPRkdnZxw6dCjKysqSnggAAAAAu45gEgAAgKc8DiTHxsZi7OrVmBBIwrYoKS2N1tbWaG9ri/ZDh6K9vT1KSkri89//PgYHB2N2djbpia+kUCjEhfPn48L589HU1BRn+vvj3XffjaqqqqSn7XrFYjHu3r0boyMjMTo6GmNjY0763SFyuVyUlZdvhI4vfbu8PMrKyp77dklJidAYAAAAADaZYBIAAGCPy+fzjwLJ9RMkJyYmYlUgCVsqk83GwYMHo729fSOQPHDgQORyua+89k9+8IP44+9/P0ZGRmJgYCBGRkYiisUEVr++u3fvxn9+9FF8/PHHcerUqejv74/Dhw+LwV7ByspKXL16NUZHR2N0ZCTu37+f9KTUKCktjfL1ULFsPWj8urdfFjqWlPh2KwAAAADsZL6DBwAAsMfk8/m4cePGxhXbExMTsbqykvQsSLXGffsexZHrj5aWlle6TjebzcaJEyfixIkTMTMzE4ODg/HZZ5/Fw/n5LVy9+fJrazF09mwMnT0bB5ubo7+/P/r6+qKioiLpaTtKPp+PxcXFmJ+fj6tXrsTI6GiMj49H3imSG8oex4vfJHR8QeBYVlb23FAZAAAAAEgnwSQAAEDKPQ4kN67YnpiIFYEkbJnqmpqn4si2trZNvYa6oaEhfvzjH8cPf/jD+OKLL2JgYCCuXrmyaR9/u9yano5///nP45e//GX09vZGf39/tLW1JT1r06ytrcXi4mIsLS1tPG+8vbgYi0tLX/ssYv9SY2NjdHV3R3d3dzQ3N29EjtlsNulpAAAAAMAuJJgEAABImXw+Hzdv3ty4Ynt8YiJWlpeTngWpVFZeHu1tbdH2RCBZV1e3LVdN53K5OHXqVJw6dSru3LkTg4OD8fnnn8fiwsKW/9ybaXVlJT4bHIzPBgejrb09+vv74/Tp0690AueWbVtd/Ur0+Dh4XFpaemH0uLa6mvT8XamkpCQ6Ozujq7s7urq6oqmpydXtAAAAAMCmEUwCAADscoVCIW7evPnlFdvj47EskIRNl8vloqWl5ak4sqmpaUecdLd///746U9/Gj/60Y/iD3/4Qwx8+mlMTEwkPeuVTU1Oxr9OTsZHH30U77zzTvT397/RxysWiy+MHhfXT338uujRFdjbY19TU3R1dUV3d3d0dnZGaWlp0pMAAAAAgJQSTAIAAOwyjwPJx1dsjwskYfNlMnFg//5HV2qvx5HNzc1RUrKzv5VSWloafX190dfXF9PT0zE4MBBnz57ddX9GLC8txe8++SR+98kn0dzSEsePH4+5ubm4efPm86PHF5z4WMjnk/50eEZJaWkcXT9Fsru7O/bt25f0JAAAAABgj9jZ3+UHAAAgCoVCTE9Pf3nF9vh4LC0tJT0LUqW+vn7j1Mi29vZoa2uL8vLypGe9kebm5vjzn/0s/uwnP4lzw8Px6cBA3JiaSnrWK5u+eTN+9Kd/Gv/zn/4p6Sm8gab9+6O7qyu6urujo6PDKZIAAAAAQCIEkwAAADtMoVCIW7dubVyxPT4+HkuLi0nPgtSorKqK9ra2p06PrKmpSXrWlikrK4v3zpyJ986cicnJyRgYGIhzw8Oxurqa9DRSrLS0NI4eO7YRSTY2NiY9CQAAAABAMAkAALATFIvFuH79egwPDcWFCxdifn4+6UmQCqWlpdHa1vYokDx0KNra2qKxsTEymUzS0xLx+BTNDz74IIaGhmJgYCBu37qV9CxS4sCBAxvXbB85cmTHX2EPAAAAAOw9vmsJAACQoNu3b8fw0FAMDw/H/fv3k54Du1omm43m5uanTo88cOBA5HK5pKftOJWVlfGd73wnvv3tb8fExEQMDAzEhfPnI5/PJz2NXaSsrCyOHTsWXeunSDY0NCQ9CQAAAADghQSTAAAA2+zBgwdxbng4hoaH4+aNG0nP2bGam5ujs7MzOjo7o6qqKgqFQuTz+SgUCk89Nt63/px/8t8/+75tek0Ui0n/8u0J+5qaHp2YuH56ZEtLS5SWliY9a1fJZDLR0dERHR0d8eGHH8bnn38egwMDce/evaSnsUMdbG6Orq6u6O7ujsOHDztFEgAAAADYVXxHEwAAYBssLi7GHy5ciKHh4RgbGxPUPcfB9UCys7MzOjo6orq6OulJr+25QecL3vey1xSLxaefC4UoFIuv9VwsFl/7x77S8yv+mBfJZrNRW1sbLa2tT12tXVlZuU1f0b2huro6vve978V3v/vdGBsbi4FPP40vvvgiCi/5+pBu5eXlj06R7O6Orq6uqK+vT3oSAAAAAMBrE0wCAABskdXV1RgZGYmhoaEYuXTJVbfPOHDwYBzt7IzOo0d3fSD5rGw2G9lsNukZu8pzw9D18LKiosKv5zbKZrNx7NixOHbsWMzNzcXvP/ssBgcHY3Z2NulpbJPmlpboXr9m+/Dhw661BwAAAABSQzAJAACwiQqFQoyNjcXQ0FD84cKFWF5eTnrSjnHgwIFHJ0iuB5I1NTVJT2IHeRxECrN2ltra2viTH/wg/vj734+RkZEYGBiIkZERp+SmTHlFRRw/fjy6u7vj+PHjUVdXl/QkAAAAAIAtIZgEAAB4Q8ViMW7cuBFDQ0Nx7ty5mJ+bS3rSjrD/cSC5/hBIwu6VzWbjxIkTceLEiZiZmYnBwcH47LPP4uH8fNLTeE2tra0b12wfOnRIrAwAAAAA7AmCSQAAgNd09+7dGB4ejuHh4bh7507ScxLXtH//U1ds19bWJj0J2AINDQ3x4x//OH74wx/GF198EQMDA3H1ypWkZ/ESFZWV0XX8eHStnyLpz2gAAAAAYC8STAIAALyC+fn5OHfuXAwPDcXk5GTScxLV1NS0ccV2Z2en+Ab2mFwuF6dOnYpTp07FnTt3YnBwMD7//e9jcXEx6WlERGQy0dbWFl1dXdHd3R3t7e2RzWaTXgUAAAAAkCjBJAAAwEssLS3FF198EcNDQ3HlypUoFotJT0rEvseB5Pqjrq4u6UnADrF///746U9/Gj/60Y/iwoULMTAwENcmJpKetedUVlU9dYpkTU1N0pMAAAAAAHYUwSQAAMBzrK2txejoaAwPDcXFixdjbW0t6UnbrnHfvqeu2K6vr096ErDDlZaWxjvvvBPvvPNOTE9Px+DAQJw9ezaWl5eTnpZOmUy0t7dHd1dXdHV3R1tbm1MkAQAAAABeQDAJAACwrlAoxMTERAwPDcX5CxdiaY9dK9vY2PjUFdsCSeBNNDc3x5//7GfxZz/5SZwbHo5PBwbixtRU0rN2varq6o1rto8dOxbV1dVJTwIAAAAA2DUEkwAAwJ5WLBZjeno6hoeGYvjcuXgwO5v0pG3T8DiQXH80NDQkPQlIobKysnjvzJl478yZmJycjIGBgTg3PByrq6tJT9tRsrlcVFZUREVl5VefKyujqakpmpub4+DBg06RBAAAAAB4TYJJAABgT7p//36cGx6OoeHhuH3rVtJztkV9Q8PGFdsCSSAJ7e3t0d7eHh988EEMDQ3FwMBAqv4MzpWUfH30+ET8WFFR8ZXn0tLSyGQySX8KAAAAAACpJpgEAAD2jIcPH8aF8+djaHg4rk1MJD1ny9XV1z8VSDY2NiY9CSAiIiorK+M73/lOfPvb346JiYkYGBiIC+fPRz6fT3palJaWRsXjmPE1okcAAAAAAHYuwSQAAJBqKysrcfHixRgaGorLo6NRKBSSnrRl6urqNuLIo0ePRkNDg9PKgB0tk8lER0dHdHR0xIcffhiff/55DA4MxL17997o45aVlT0VOD43fvya6LGkxLfLAAAAAADSyneAAQBgB7l3716MXLoU169fj1u3b0ehUIhcLhc1NTVRW1sbtTU1UVNb++jt2tqoqamJmpoacccz8vl8XLlyJYaGhuKLL76I1ZWVpCdtidq6ukcnSK6fItnY2CiQBHat6urq+N73vhff/e53Y2pqKkZHR+PmzZvx4MGDGPj00/ijP/qjaNy37+n48Wuix1wul/SnAwAAAADADuRvVQEAIEH5fD6uXbsWly5dikuXLsWd27df6+NUVlV9Nah8TlyZ5qtCi8ViXL9+PYaGhuL8+fOx8PBh0pM2XW1t7cYJkp2dnbFv3z6BJJA62Ww2Dh06FIcOHYqIiGvXrsXf/d3fxX//27+Nw4cPJ7wOAAAAAIDdTDAJAADbbHFxMUZHR+PSxYsxMjoaS4uLb/4xFxZicWEhbk1Pv/B1FRUVXw0qa2qitq5u4xTLmpqaKC8vf+NN2+XWrVsxPDwcw8PDMXP/ftJzNl1NbW30nj4dvX190draKpAEAAAAAACA1ySYBACALVYsFuPOnTuPTpG8eDEmrl2LYqGQyJalpaVYWlp66UmWZeXlTweVtbVfOa2ytrY2ysvLEwn4Zmdn49y5czE8NBQ3b97c9p9/q5VXVMTbJ09Gb19fdHZ2RjabTXoSAAAAAAAA7HqCSQAA2AJra2sxPj6+cdX2/Xv3kp70SlaWl+Pu8nLcvXv3ha8rKS396mmVT8SVj8PKysrKNw4rFxcX48KFCzE8NBRj4+MRxeIbfbydJpfLRU9PT/T29UV3d3eqr08HAAAAAACAJAgmAQBgk8zPz29ctT16+XKsLC8nPWnLra2uxv17914ahOZKSh7Fk08Glc+5Cryqquqp0xRXV1fj0qVLMTw0FCMjI5HP57f6U9pemUwc7eyM3r6+OHnyZFRWVia9CAAAAAAAAFJLMAkAAK+pWCzG9PT0xlXb1ycnU3fq4WbJr63F7MxMzM7MvPB12Ww2atZPq6ysrIzr167FcgrD09a2tujt7Y3Tp09HXV1d0nMAAAAAAABgTxBMAgDAK1hdXY2rV69uXLX9YHY26UmpUigU4sGDB/HgwYOkp2y6xn37ore3N3p7e+PAgQNJzwEAAAAAAIA9RzAJAAAv8eDBgxhZDySvXLkSq6urSU9il6iuro5Tp09HX19ftLe3RyaTSXoSAAAAAAAA7FmCSQAAeEahUIgbN25sXLV948aNpCexi5SVlcVbJ09GX19fHD16NHK5XNKTAAAAAAAAgBBMAgBARESsrKzElStX4uLFizFy6VLMz88nPYldJJvLRXdXV/T29UVPT0+UlZUlPQkAAAAAAAB4hmASAIA9a2ZmJi5dvBiXLl2Kq2NjkV9bS3oSu0xHR0f09vbG26dORVVVVdJzAAAAAAAAgBcQTAIAsGcUCoW4fv36o6u2L12KW9PTSU9iF2pubo7evr44ffp0NDQ0JD0HAAAAAAAA+IYEkwAApNrS0lJcvnz50VXbIyOxuLCQ9CR2ofqGhujt7Y3e3t5obm5Oeg4AAAAAAADwGgSTAACkzt27dzeu2h4fH49CoZD0JHahyqqqOHXqVPT29sbhw4cjm80mPQkAAAAAAAB4A4JJAAB2vXw+HxMTExtXbd+9cyfpSexSJaWl8dZbb0Vvb28cP348Skr8LxMAAAAAAACkhb/9AwBgV1pYWIjR0dG4dPFijI6OxtLSUtKT2KUy2WwcP348ent746233ory8vKkJwEAAAAAAABbQDAJAMCuUCwW4/bt249Okbx4Ma5duxbFYjHpWexihw4fjr7e3nj71KmoqalJeg4AAAAAAACwxQSTAADsWGtrazE2NrZx1fbM/ftJT2KX23/gQPT19sbp3t7Yt29f0nMAAAAAAACAbSSYBABgWxWLxVhZWYmlpaWvPhYXN96+f/9+XLlyJVZWVpKenIgDBw5ET09P9Jw4ES0tLfHw4cOYm5uL+fn5R89zczE3Nxdz8/OP3p6fj8WFhaRn70i1dXXRe/p09Pb1RUtLS2QymaQnAQAAAAAAAAkQTAIA8EoKhcLXB48veSyvP7tK+6uyuVwc7eyMnp6e6O7p+crph+Xl5S89EXFtbe3LoHJ+PuYePHgqqHwcWj5cWIhI+degoqIi3n777ejt64uOjo7IZrNJTwIAAAAAAAASJpgEANhjXhg8PnHC41OP5eWnokfB4+ZXsObqAAAgAElEQVSorq6O7p6e6OnpiePHj0d5efkbfbySkpJoaGiIhoaGF74un89vnFj5dadVzs3NxcP5+V31tc6VlMSJnp7o7euL7u7uKCnxvzsAAAAAAADAl/wNIgDALlMoFGL5iYDxm5zo+Gz8mPbTBXeylpaWjau229raEjn5MJfLRV1dXdTV1b3wdYVCIR4+fLhxauVGXPnkteDz8zE/Px+FfH6b1j8tk8nE0aNHo7evL06ePBkVFRWJ7AAAAAAAAAB2PsEkAMAOsLq6GrOzs48eMzOPnh88iMXnnPi4LHjcVUpKSuLosWNxYv2q7fr6+qQnfWPZbDZqa2ujtrY2Wltbv/Z1hUIhFhcXv7wK/Jm48skTLPNra5uyra2tLXr7+uL06dNRW1u7KR8TAAAAAAAASDfBJADAFisWi7GwsPBUEDnzTBz58OHDpGeyiWrr6h6dItnTE0ePHo2ysrKkJ22pbDYb1dXVUV1d/cLXFYvFWFpa+jKofEFcubq6+tSPzWQy0dzSEidOnIje3t7Yv3//Vn5KAAAAAAAAQAoJJgEA3lA+n48HDx7E7OxszDw+HfLx8/rj2fiL9Glvb9+4arulpSUymUzSk3acTCYTlZWVUVlZGQcPHvza1xWLxVheXo75+flYW1uLTCYTDQ0NUV5evo1rAQAAAAAAgLQRTAIAvMTS0tJzY8jHp0TOzc25InsPKi0ri+PHj0dPT090d3e7FnoTZTKZqKioiIqKiqSnAAAAAAAAACkimAQA9rRCoRBzc3NPXZf9ZAw5OzMTy8vLSc9kh2hoaNg4RbKzszNKSvznNAAAAAAAAMBu4W94AYBUW1lZeSqGnHnimuzZmZl48OBBFAqFpGeyQ2UymTh0+HCcWI8kDxw44KptAAAAAAAAgF1KMAkA7FrFYjEePny4EUA+e2X27OxsLCwsJD2TXaa8oiK6urqip6cnurq6orq6OulJAAAAAAAAAGwCwSQAsGPl8/mora2NqampuHPnznOvzM6vrSU9kxRoamrauGr7yJEjkcvlkp4EAAAAAAAAwCYTTAIAO0Y+n4+rV6/GyMhIjI6Oxt07d+K//eVfxi/+/d+TnkbKZLPZONLR8SiS7OmJ/fv3Jz0JAAAAAAAAgC0mmAQAdoTbt2/H//qXf4nJycmkp5BSlZWV0d3dHT0nTsTx48ejsrIy6UkAAAAAAAAAbCPBJACQuN///vfxb//2b67XZtMdOHgwTqxftX3o0KHIZrNJTwIAAAAAAAAgIYJJACBRY2Nj8b//9V+jUCgkPYUUyOVy0Xn06MZV242NjUlPAgAAAAAAAGCHEEwCAImZm5uLf/7nfxZL8kaqa2qiZ/2q7WPHjkV5eXnSkwAAAAAAAADYgQSTAEBiBgcG4uH8fNIz2IVaWlujp6cnTpw4Ea2tra7aBgAAAAAAAOClBJMAQCKKxWKcPXs26RnsEg0NDdHS0hJdXV3R3dMT9fX1SU8CAAAAAAAAYJcRTAIAibhx40bcv38/6Rlsk0w2GxUVFS9+lJdHRWXlV95fWVkZZWVlSX8KAAAAAAAAAOxygkkAIBEPHz5MegKvIPtNgseKiij/mveXlZVFJpNJ+tMAAAAAAAAAYA8TTAIAiVhdXU16wp6SzeW+UfD4dY/S0lLBIwAAAAAAAAC7mmASAGAXyOZyUflN4sb1K63Ly8sFjwAAAAAAAADwBMEkAJCIjo6OiEwmolhMekriciUlUV9fH/X19dGw/lzf0LDxvtraWsEjAAAAAAAAALwhwSQAkIjq6upoa2uLqcnJpKdsucqqqq+NIRsaGqKqqiqy2WzSMwEAAAAAAAAg1QSTAEBi3n333V0fTGaz2airq9sIIB/HkA3rz3V1dVFeXp70TAAAAAAAAADY8wSTAEBi+vv749y5czExPp70lK9VVl7+6GTIZ06FfPK6bKdDAgAAAAAAAMDOJ5gEABKTzWbjL/7iL+If/uEfYnlpafsHZDJRW1Pz5amQz7kyu7Kycvt3AQAAAAAAAACbTjAJACSqqakp/vqv/zr+8R//MW7furWpH7uktPTpEPKZK7Nra2ujpMR/DgEAAAAAAADAXqAQAAAS19TUFH/1V38VH//Xf8XZoaFvfNpkVXX1c0+FfHxldlVVVWQymS1eDwAAAAAAAADsBoJJAGBHKC8vjz//2c/iJx98EBcvXozx8fGYmZmJ//jFL+KnH34YbW1tj+LIJ8LI0tLSpGcDAAAAAAAAALuEYBIA2FFKS0vj9OnTcfr06bh27Vr8zd/8TfyPv//7OHz4cNLTAAAAAAAAAIBdLJv0AAAAAAAAAAAAAICtJpgEAAAAAAAAAAAAUk8wCQAAAAAAAAAAAKSeYBIAAAAAAAAAAABIPcEkAAAAAAAAAAAAkHqCSQAAAAAAAAAAACD1BJMAAAAAAAAAAABA6gkmAQAAAAAAAAAAgNQTTAIAAAAAAAAAAACpJ5gEAAAAAAAAAAAAUk8wCQAAAAAAAAAAAKSeYBIAAAAAAAAAAABIPcEkAAAAAAAAAAAAkHqCSQAAAAAAAAAAACD1BJMAAAAAAAAAAABA6gkmAQAAAAAAAAAAgNQTTAIAAAAAAAAAAACpJ5gEAAAAAAAAAAAAUk8wCQAAAAAAAAAAAKSeYBIAAAAAAAAAAABIPcEkAAAAAAAAAAAAkHqCSQAAAAAAAAAAACD1BJMAAAAAAAAAAABA6gkmAQAAAAAAAAAAgNQTTAIAAAAAAAAAAACpJ5gEAAAAAAAAAAAAUk8wCQAAAAAAAAAAAKSeYBIAAAAAAAAAAABIPcEkAAAAAAAAAAAAkHqCSQAAAAAAAAAAACD1BJMAAAAAAAAAAABA6gkmAQAAAAAAAAAAgNQTTAIAAAAAAAAAAACpJ5gEAAAAAAAAAAAAUk8wCQAAAAAAAAAAAKSeYBIAAAAAAAAAAABIPcEkAAAAAAAAAAAAkHqCSQAAAAAAAAAAACD1BJMAAAAAAAAAAABA6gkmAQAAAAAAAAAAgNQTTAIAAAAAAAAAAACpJ5gEAAAAAAAAAAAAUk8wCQAAAAAAAAAAAKSeYBIAAAAAAAAAAABIPcEkAAAAAAAAAAAAkHqCSQAAAAAAAAAAACD1BJMAAAAAAAAAAABA6gkmAQAAAAAAAAAAgNQTTAIAAAAAAAAAAACpJ5gEAAAAAAAAAAAAUk8wCQAAAAAAAAAAAKSeYBIAAAAAAAAAAABIPcEkAAAAAAAAAAAAkHqCSQAAAAAAAAAAACD1BJMAAAAAAAAAAABA6gkmAQAAAAAAAAAAgNQTTAIAAAAAAAAAAACpJ5gEAAAAAAAAAAAAUk8wCQAAAAAAAAAAAKSeYBIAAAAAAAAAAABIPcEkAAAAAAAAAAAAkHqCSQAAAAAAAAAAACD1BJMAAAAAAAAAAABA6gkmAQAAAAAAAAAAgNQTTAIAAAAAAAAAAACpJ5gEAAAAAAAAAAAAUk8wCQAAAAAAAAAAAKSeYBIAAAAAAAAAAABIPcEkAAAAAAAAAAAAkHqCSQAAAAAAAAAAACD1BJMAAAAAAAAAAABA6gkmAQAAAAAAAAAAgNQTTAIAAAAAAAAAAACpJ5gEAAAAAAAAAAAAUk8wCQAAAAAAAAAAAKSeYBIAAAAAAAAAAABIPcEkAAAAAAAAAAAAkHqCSQAAAAAAAAAAACD1BJMAAAAAAAAAAABA6gkmAQAAAAAAAAAAgNQTTAIAAAAAAAAAAACpJ5gEAAAAAAAAAAAAUk8wCQAAAAAAAAAAAKSeYBIAAAAAAAAAAABIPcEkAAAAAAAAAAAAkHqCSQAAAAAAAAAAACD1BJMAAAAAAAAAAABA6gkmAQAAAAAAAAAAgNQTTAIAAAAAAAAAAACpJ5gEAAAAAAAAAAAAUk8wCQAAAAAAAAAAAKSeYBIAAAAAAAAAAABIPcEkAAAAAAAAAAAAkHqCSQAAAAAAAAAAACD1BJMAAAAAAAAAAABA6gkmAQAAAAAAAAAAgNQTTAIAAAAAAAAAAACpJ5gEAAAAAAAAAAAAUk8wCQAAAAAAAAAAAKSeYBIAAAAAAAAAAABIPcEkAAAAAAAAAAAAkHqCSQAAAAAAAAAAACD1BJMAAAAAAAAAAABA6gkmAQAAAAAAAAAAgNQTTAIAAAAAAAAAAACpJ5gEAAAAAAAAAAAAUk8wCQAAAAAAAAAAAKSeYBIAAAAAAAAAAABIPcEkAAAAAAAAAAAAkHqCSQAAAAAAAAAAACD1BJMAAAAAAAAAAABA6gkmAQAAAAAAAAAAgNQTTAIAAAAAAAAAAACpJ5gEAAAAAAAAAAAAUk8wCQAAAAAAAAAAAKSeYBIAAAAAAAAAAABIPcEkAAAAAAAAAAAAkHqCSQAAAAAAAAAAACD1BJMAAAAAAAAAAABA6gkmAQAAAAAAAAAAgNQTTAIAAAAAAAAAAACpJ5gEAAAAAAAAAAAAUk8wCQAAAAAAAAAAAKSeYBIAAAAAAAAAAABIPcEkAAAAAAAAAAAAkHqCSQAAAAAAAAAAACD1BJMAAAAAAAAAAABA6gkmAQAAAAAAAAAAgNQTTAIAAAAAAAAAAACpJ5gEAAAAAAAAAAAAUk8wCQAAAAAAAAAAAKSeYBIAAAAAAAAAAABIPcEkAAAAAAAAAAAAkHqCSQAAAAAAAAAAACD1BJMAAAAAAAAAAABA6gkmAQAAAAAAAAAAgNQTTAIAAAAAAAAAAACpJ5gEAAAAAAAAAAAAUk8wCQAAAAAAAAAAAKSeYBIAAAAAAAAAAABIPcEkAAAAAAAAAAAAkHqCSQAAAAAAAAAAACD1BJMAAAAAAAAAAABA6gkmAQAAAAAAAAAAgNQTTAIAAAAAAAAAAACpJ5gEAAAAAAAAAAAAUk8wCQAAAAAAAAAAAKSeYBIAAAAAAAAAAABIPcEkAAAAAAAAAAAAkHqCSQAAAAAAAAAAACD1BJMAAAAAAAAAAABA6gkmAQAAAAAAAAAAgNQTTAIAAAAAAAAAAACpJ5gEAAAAAAAAAAAAUk8wCQAAAAAAAAAAAKSeYBIAAAAAAAAAAABIPcEkAAAAAAAAAAAAkHqCSQAAAAAAAAAAACD1BJMAAAAAAAAAAABA6gkmAQAAAAAAAAAAgNQTTAIAAAAAAAAAAACpJ5gEAAAAAAAAAAAAUk8wCQAAAAAAAAAAAKSeYBIAAAAAAAAAAABIPcEkAAAAAAAAAAAAkHqCSQAAAAAAAAAAACD1BJMAAAAAAAAAAABA6gkmAQAAAAAAAAAAgNQTTAIAAAAAAAAAAACpJ5gEAAAAAAAAAAAA/j97dx5eZXnmD/xOgEAChE12NxYFRgVUUNuKdrEdEcqIe13AHVu3YsXRcS5+tDoqbh1XcEFwaVEUpuLaKtqiraIoirYiIIuA7JFFQgiQ/P6Ya2aavieQ5SQhh8/nv945z/3c/GOf6znf874ZT2ASAAAAAAAAAAAAyHgCkwAAAAAAAAAAAEDGE5gEAAAAAAAAAAAAMp7AJAAAAAAAAAAAAJDxBCYBAAAAAAAAAACAjCcwCQAAAAAAAAAAAGQ8gUkAAAAAAAAAAAAg4wlMAgAAAAAAAAAAABlPYBIAAAAAAAAAAADIeAKTAAAAAAAAAAAAQMYTmAQAAAAAAAAAAAAynsAkAAAAAAAAAAAAkPEEJgEAAAAAAAAAAICM17CuBwCgZpSWlsaiRYvis88+i6+//jq2bNkSzZs3jzZt2sQhhxwS++23X12PCAAAAAAAAAAAtUZgEiDDLFiwICZPnhwvvfRSbNiwodzPdejQIU455ZQ466yzon379rU4IQAAAAAAAAAA1D6v5AbIEAUFBXHDDTfEj3/84/jNb36zy7BkRMSqVaviwQcfjBNOOCHuv//+KC4urqVJAQAAAAAAAACg9glMAmSAOXPmxODBg2PatGlRWlpaqbXFxcVx3333xemnnx6rV6+uoQkBAAAAAAAAAKBueSU3QD03Y8aMGDlyZGzbti3xt7y8vOjfv3906dIlmjRpEps2bYrPP/88Pvroo9i5c2eZz86bNy9OP/30mDRpUnTt2rW2xgcAAAAAAAAAgFohMAlQj82dOzeuueaaRFgyPz8/rr766jjttNOiSZMmiXVr166NRx99NJ588skywcnVq1fHZZddFs8880y0atWqxucHAAAAAAAAAIDa4pXcAPXUxo0b42c/+1kUFRWVqXfv3j2mT58e5557bsqwZERE27Zt44YbboiJEydGfn5+mb8tXbo0rr322hqbGwAAAAAAAAAA6oLAJEA9dfvtt8fatWvL1Dp16hSPP/54dOzYsUI9jj766Bg3blzk5OSUqb/99tvx/PPPp21WAAAAAAAAAACoawKTAPXQ3LlzY+rUqWVq2dnZcccdd8Q+++xTqV79+vWLq6++OlEfO3ZsbN26tVpzAgAAAAAAAADAnkJgEqAeeuihh6K0tLRMbciQIdGvX78q9Tv//PPjwAMPLFNbv359PPfcc1UdEQAAAAAAAAAA9igCkwD1zKJFi2LGjBllallZWTFixIgq92zYsGFcfPHFifrEiROjpKSkyn0BAAAAAAAAAGBPITAJUM9Mnz498XTJ/v37R9euXavVd/DgwZGXl1emtmLFinj//fer1RcAAAAAAAAAAPYEApMA9cyrr76aqP3whz+sdt/c3Nw49thjE/WXX3652r0BAAAAAAAAAKCuCUwC1COLFi2KxYsXJ+rf+ta30tL/mGOOSdTeeOONtPQGAAAAAAAAAIC6JDAJUI/MmTMnUWvevHl07949Lf2POOKIRG3NmjWxYsWKtPQHAAAAAAAAAIC6IjAJUI98/PHHidpBBx0UWVlZaenfrVu3aNCgQaL+0UcfpaU/AAAAAAAAAADUFYFJgHpk3rx5iVrXrl3T1j8nJyc6duyYqH/22Wdp2wMAAAAAAAAAAOqCwCRAPfLVV18lah06dEjrHqn6pdoXAAAAAAAAAADqE4FJgHqiuLg41q1bl6i3bds2rfu0a9cuUROYBAAAAAAAAACgvmtY1wMAUDFr1qyJ0tLSRD0/Pz+t+zRv3jzl3lAXOnXqFHPmzIk2bdrU9SgAANQRZ0IAgL2b8yAAAM6EpJPAJEA9sXXr1pT1pk2bpnWfVP3K2xtqWoMGDVI+9RQAgL2HMyEAwN7NeRAAAGdC0skruQHqifJCi40aNUrrPqn6FRUVpXUPAAAAAAAAAACobQKTAPVEcXFxynqDBg3Suk/DhsmHDwtMAgAAAAAAAABQ3wlMAtQT5QUjS0pK0rrPzp07E7V0P8USAAAAAAAAAABqm8AkQD2Rm5ubsr59+/a07rNjx44K7w0AAAAAAAAAAPWFwCRAPdG4ceOU9cLCwrTuk6pfkyZN0roHAAAAAAAAAADUNoFJgHqiZcuWKeubN29O6z6p+rVu3TqtewAAAAAAAAAAQG0TmASoJ1q1ahV5eXmJ+rp169K6z/r16xO1Tp06pXUPAAAAAAAAAACobQKTAPVIquDiqlWr0rrH6tWrE7XOnTundQ8AAAAAAAAAAKhtApMA9Ui3bt0StSVLlqStf0lJSSxbtixR7969e9r2AAAAAAAAAACAuiAwCVCP9O7dO1GbP39+2vp/+eWXUVxcnKj37ds3bXsAAAAAAAAAAEBdEJgEqEdSBRcLCgpi6dKlaen/0UcfJWrNmjXzhEkAAAAAAAAAAOo9gUmAeqR3796Rn5+fqL/zzjtp6T9r1qxEbcCAAZGd7f8uAAAAAAAAAACo3yRgAOqRnJyc+MEPfpCov/baa9XuvXPnzpg5c2aiPmjQoGr3BgAAAAAAAACAuiYwCVDPDB48OFH7y1/+EsuXL69W37feeivWrVtXptaiRYs47rjjqtUXAAAAAAAAAAD2BAKTAPXMscceGz169ChTKykpiYceeqhafSdMmJConXPOOdG4ceNq9QUAAAAAAAAAgD2BwCRAPTRixIhEberUqTF37twq9Xv99dfjvffeK1PLy8uLYcOGVakfAAAAAAAAAADsaQQmAeqhk046Kfr161emtnPnzhg5cmQUFBRUqtfKlStj9OjRifqVV14ZrVq1qtacAAAAAAAAAACwpxCYBKiHsrKy4uabb068Lnv58uUxfPjwWLlyZYX6LFu2LIYPHx7r168vUz/00ENj+PDhaZsXAAAAAAAAAADqmsAkQD3VpUuXuO222yIrK6tMff78+TFkyJB48skno6ioKOXawsLCmDRpUpx88smxdOnSMn/bZ5994t57740GDRrU2OwAAAAAAAAAAFDbskpLS0vreggAqm7SpElx2223Rar/nOfl5UX//v2jS5cukZubG1u2bIlFixbF7NmzU4YpW7RoERMmTIjDDjusNkYHAAAAAAAAAIBaIzAJkAFeeeWVuP7668t9omRFHHDAATF+/Pjo2rVrGicDAAAAAAAAAIA9g1dyA2SAgQMHxvPPPx8DBgyo9NqGDRvGBRdcENOmTROWBAAAAAAAAAAgY3nCJECGmT17djz99NMxY8aMKCwsLPdz7dq1iyFDhsRZZ50V++23Xy1OCAAAAAAAAAAAtU9gEiBD7dy5M+bNmxcLFiyIDRs2xNatW6N58+bRunXrOPTQQ2P//fev6xEBAAAAAAAAAKDWCEwCAAAAAAAAAAAAGS+7rgcAAAAAAAAAAAAAqGkCkwAAAAAAAAAAAEDGE5gEAAAAAAAAAAAAMp7AJAAAAAAAAAAAAJDxBCYBAAAAAAAAAACAjCcwCQAAAAAAAAAAAGQ8gUkAAAAAAAAAAAAg4wlMAgAAAAAAAAAAABlPYBIAAAAAAAAAAADIeAKTAAAAAAAAAAAAQMYTmAQAAAAAAAAAAAAynsAkAAAAAAAAAAAAkPEEJgEAAAAAAAAAAICMJzAJAAAAAAAAAAAAZDyBSQAAAAAAAAAAACDjCUwCAAAAAAAAAAAAGU9gEgAAAAAAAAAAAMh4ApMAAAAAAAAAAABAxhOYBAAAAAAAAAAAADKewCQAAAAAAAAAAACQ8QQmAQAAAAAAAAAAgIwnMAkAAAAAAAAAAABkPIFJAAAAAAAAAAAAIOMJTAIAAAAAAAAAAAAZT2ASAAAAAAAAAAAAyHgCkwAAAAAAAAAAAEDGE5gEAAAAAAAAAAAAMp7AJAAAAAAAAAAAAJDxBCYBAAAAAAAAAACAjCcwCQAAAAAAAAAAAGQ8gUkAAAAAAAAAAAAg4wlMAgAAAAAAAAAAABlPYBIAAAAAAAAAAADIeAKTAAAAAAAAAAAAQMYTmAQAAAAAAAAAAAAyXsO6HgAA4O+VlpbGokWL4rPPPouvv/46tmzZEs2bN482bdrEIYccEvvtt19djwgAwB5o9erV8cknn8TatWtj48aNkZubGy1btoyDDz44evToEdnZfjcMAFCTSkpKYsmSJbFw4cJYu3ZtbN68ObKzs6Np06ax7777Ro8ePaJDhw61Nk9xcXH87W9/i8WLF8eGDRuiuLg4WrZsGe3bt48+ffpEq1atam0WAIC9wfLly2PRokWxYsWK+Oabb2L79u2Rm5sbzZs3j3333Te6d+8e++yzT63PtWzZsvj000+joKAgNm/eHE2bNo1WrVpFr169olu3brU+D3VPYBIA2CMsWLAgJk+eHC+99FJs2LCh3M916NAhTjnllDjrrLOiffv2tTghAAC7U1xcHJMnT44pU6bEokWLoqSkJLKzs+Phhx+OAQMGpH2/9evXx3PPPRdTp06NpUuXlvu5Zs2axT//8z/HOeecE4ccckja5wAA2FuVlpbGzJkz44UXXoi33nprl/d6EREHHnhgnHjiiXHaaafVyA+jS0tL4y9/+UtMnjw5Zs6cGdu2bUv5uaysrOjVq1ecccYZMWTIkGjatGnaZwEAyHSlpaXx7rvvxosvvhgzZ86MNWvW7HZNly5d4vvf/34MHTo0DjrooBqbbfny5fHMM8/E7373u13O1apVq/jxj38cZ599dnTp0qXG5mHPklVaWlpa10MAAHuvgoKCuOOOO+K//uu/ojLHkpycnBgxYkRceumlkZOTU4MTAgCwOzt27Ihp06bFAw88EKtWrUr8/dZbb41TTjklbftt3749Jk6cGOPGjYvCwsJKrR00aFDccMMN0bZt27TNAwCwN3r55ZfjnnvuiSVLllR6bcOGDePUU0+Na6+9NvLz89Myz+effx5jxoyJDz/8sFLr2rZtGzfccEMMGjQoLXMAAOwNXnvttbjvvvvi888/r3KP73//+/GLX/wiunfvnra5CgsL4/7774/HH388duzYUeF12dnZcfbZZ8fIkSOjWbNmaZuHPZPAJABQZ+bMmROXX355rF+/vso9evbsGQ8//LCnTQIA1IGSkpJ46aWX4r777tvlEx7TGZhcu3Zt/PSnP41PPvmkyj1atmwZ999/f/Tv3z8tMwEA7E1Wr14d1157bbz33nvV7tW5c+d44IEHolevXtXq8/TTT8dNN91UqS/F/9HgwYPj1ltv9eNsAIBdWLNmTdx4440xc+bMtPTLycmJX/ziF3H++edXu9eiRYvisssu2+U95e507tw5HnrooRp9+iV1T2ASAKgTM2bMiJEjR6Z8LU5eXl70798/unTpEk2aNIlNmzbF559/Hh999FHs3Lkz8fn27dvHpEmTomvXrrUxOgAAEfH666/HPffcE/Pnz9/tZ9MVmFy6dGmcf/758dVXXyX+1qBBg+jbt2/06NEj8vPzo6ioKBYvXhzvv/9+yqdQNmrUKO6+++740Y9+VO25AAD2Fh988EFcccUVUVBQkPLv+fn50adPn+jSpUvk5eXFxo0bY8mSJTFnzpwoKipKuaZFixbxxBNPRM+ePas009133x0PPfRQyr+1a9cujjzyyOjUqVM0bNgw1q1bF3Pnzo0FCxak/Hz//v3jkUceidzc3CrNAgCQyT744IO4+uqrY+3atYm/NWrUKAYMGBADBgyIXr16RceOHSMnJyfWrJ47iDsAACAASURBVFkTq1evjpkzZ8Yrr7xS7oN0zj///LjhhhuqPNvHH38cl1xySWzcuDHxt5ycnDjyyCOje/fu0bRp09iyZUssXLgwPvjggyguLk58vnnz5vHQQw/FkUceWeV52LMJTAIAtW7u3Llx3nnnJS5J8/Pz4+qrr47TTjstmjRpkli3du3aePTRR+PJJ59MBCcPOOCAeOaZZ6JVq1Y1OjsAwN7unXfeibvvvjvmzp1b4TXpCExu2LAhzjzzzMQrHxs0aBDnnntuXHLJJSlfs11UVBRTp06Ne+65J3Fh2rhx43jiiSeib9++1ZoNAGBvMHv27LjkkktS/hjlyCOPjAsvvDCOP/74aNSoUeLvW7dujWnTpsWDDz4Y69atS/x9//33j2nTpkXz5s0rNdNTTz0VN910U6LerVu3GDVqVBx//PGRnZ2d+Pu8efPi17/+dfzxj39M/O1HP/pR3HvvvZGVlVWpWQAAMtnbb78dl19+eeL73caNG8c555wTF198cbRp02aXPXbs2BETJkyI+++/P2VQcfTo0XHOOedUerZly5bFGWeckfhRT+PGjWPEiBExbNiwlOfMzZs3x5NPPhnjx49PPOSnZcuW8eyzz8b+++9f6XnY8wlMAgC1auPGjTFo0KDEL4+6d+8ejz76aHTs2HG3PWbNmhVXXHFFbNq0qUz92GOPjQkTJqR1XgAA/s/ixYvjxBNPrPS6dAQmL7744njrrbfK1Jo1axYPPPBAHHPMMbtdv3Llyrj00ksTT8Rs27ZtvPTSS9GiRYtqzQcAkMmWLl0ap556amzevLlMvUWLFjF69OgYPHhwhfoUFBTEqFGj4u233078rbJPFfrggw/ivPPOS/yweuDAgTF27Nho3LjxbntMmjQpbrvttvjHr0uvueaaGDFiRIVnAQDIdKNGjYrp06eXqfXp0yfGjh0bXbp0qVSvzz77LM4777zE2TI3Nzdefvnl6NSpU4V7bd++PU499dT4/PPPy9Tbt28fjzzySPTo0WO3PebPnx+XXHJJrFq1qkz94IMPjqlTp0ZOTk6F56F+SP6kCgCgBt1+++2JsGSnTp3i8ccfr1BYMiLi6KOPjnHjxiUOp2+//XY8//zzaZsVAICyynuNYocOHeKyyy6Lp59+ukb2ff755xNhyUaNGsX48eMrFJaMiOjYsWNMmjQpOnfuXKa+du3auP3229M2KwBAptmxY0dcccUViS+0O3XqFJMnT65wWDIionXr1jFu3Lg46qijEn/77W9/W+6rvv9RcXFxjB49OhGWPP744+Ouu+6qUFgy4r9DmqNGjUrUH3jggVi6dGmFegAA7A3GjBkTRxxxxP/+71NPPTWeeuqpSoclIyJ69eoV999/fzRo0KBMfevWrfHII49UqtcjjzySCEs2b948Jk6cWKGwZMR/ByMnTZqU+EH1/Pnz49FHH63UPNQPApMAQK2ZO3duTJ06tUwtOzs77rjjjthnn30q1atfv35x9dVXJ+pjx46NrVu3VmtOAAB2LycnJwYOHBiPPPJIvPnmmzFy5Mg4/PDD077P1q1bY+zYsYn6lVdeGf37969UrzZt2sRdd92VuIydOnVqfPLJJ9WaEwAgU23YsCHxtJ0WLVrEo48+Gt26dat0v5ycnLj55psTP4YuLi6OV155pUI9nnzyyVi4cGGZWtu2beP2229PnPV256KLLorjjz++TG3btm1x6623VqoPAEAma9q0aTzyyCNx9NFHx0UXXRS33HJLtZ68eMwxx8Rpp52WqL/wwguJH8WUZ9WqVTFu3LhEfcyYMZU+p3bp0iV++ctfJurjx4+P1atXV6oXez6BSQCg1jz00EOJ19sMGTIk+vXrV6V+559/fhx44IFlauvXr4/nnnuuqiMCALAL7du3jwEDBsTo0aPj7bffjv/8z/+M4447LrKza+6KacqUKbF+/foytf333z8uvPDCKvU7/PDD41/+5V/K1EpLS+Phhx+u8owAAJlsn332iZdffjlOPvnkyMrKioiqfQn99w444IA47rjjEvVZs2btdm1xcXFMnDgxUR85cmS0bNmySvP8+7//ezRq1KhM7c0330w8rQgAYG/WrFmzeOKJJ+K6665LS78zzzwzUdu8eXPMnz+/Qusfe+yxKC4uLlPr379/pZ6A/vcGDhwYRx99dJnatm3bUp49qd8EJgGAWrFo0aKYMWNGmVpWVlaMGDGiyj0bNmwYF198caI+ceLEKCkpqXJfAABSa926dTz66KNxzjnnJF5RUxN27tyZ8kLykksuSXyhXRmXXXbZ/37Z/z9ef/31WLJkSZV7AgBksrZt28bYsWNjypQp8R//8R9x0kknVbvnt7/97URt3rx5u133u9/9LtauXVum1rFjxzj55JOrPMv+++8fAwcOTNS9ghEAoOb06tUrcnNzE/UVK1bsdu3GjRvj2WefTdR/+tOfVmumVOufeeaZ2Lx5c7X6smcRmAQAasX06dMTT5fs379/dO3atVp9Bw8eHHl5eWVqK1asiPfff79afQEAqHvvvfderFy5skwtNze3yr8S/x8HHHBAHHXUUWVqJSUl8cILL1SrLwBApuvdu3fKVydWRYcOHRK1f3yyeCq/+93vErVTTz210q/i/kdnnHFGovbaa69FYWFhtfoCAJBadnZ25OfnJ+pbt27d7do//OEPiXNa586dU/4opzKOOeaY2G+//crUCgsL47XXXqtWX/YsApMAQK149dVXE7Uf/vCH1e6bm5sbxx57bKL+8ssvV7s3AAB165VXXknUjj322MQPZqoi1Vk01X4AANSMVE8MLyoq2uWa1atXx4cffpiop+Oe8cgjj4zWrVuXqW3dujX++Mc/Vrs3AACppXpyY8uWLXe7rrzvnv/xrTKVlZWVFSeccEKi7rvnzCIwCQDUuEWLFsXixYsT9W9961tp6X/MMcckam+88UZaegMAUHdSnenSdYZM1eeLL77wWm4AgFpSUFCQqDVr1myXa958883EW2xat24dPXv2rPY82dnZiaeQR0TMmDGj2r0BAEhavHhxyqd5H3zwwbtcV1hYGO+++26iXpP3hu+++64nj2cQgUkAoMbNmTMnUWvevHl07949Lf2POOKIRG3NmjWxYsWKtPQHAKD2LVu2LNauXZuo9+3bNy39u3XrlvKVP6nOrgAApN9f//rXRK1du3a7XJPqrNanT5+0zXT44YdXaE8AAKrvxRdfTNR69uwZ7du33+W6uXPnxo4dOxL1dN0bpuqzffv2+PTTT9PSn7onMAkA1LiPP/44UTvooIOq/Uj0/9GtW7do0KBBov7RRx+lpT8AALUv1RmyQYMGcdBBB6Wlf1ZWVsof8PhCHACgdvz5z39O1A477LBdrkl139ejR4+0zZTqaUYrVqxI+UMeAACqbt26dfH4448n6sOGDdvt2lT3hu3bt6/Qq7wrokWLFilDm757zhwCkwBAjZs3b16i1rVr17T1z8nJiY4dOybqn332Wdr2AACgdqU6Q3bu3DlycnLStseBBx5YoX0BAEivDz/8ML744otE/bjjjit3TVFRUSxdujRRT+c9Y6rzYYR7RgCAdCouLo5rrrkmNm/eXKbep0+fGDp06G7X1/R3zxGpz4XOhJlDYBIAqHFfffVVotahQ4e07pGqX6p9AQCoH5whAQAy17333puotWjRIr7//e+Xu+arr76K0tLSRD2dZ8R27dpFdnby61NnRACA9Ni0aVP87Gc/i1mzZpWpt23bNu6+++6UZ7F/5N6Q6hKYBABqVHFxcaxbty5Rb9u2bVr3adeuXaLm0AoAUH+lOsvVxhly3bp1UVxcnNZ9AAD4P6+++mq88847ifpFF120y6eJl3fXl84zYsOGDaN169YV3hsAgIopLS2Nl19+OYYMGRJvvfVWmb917tw5Jk6cGPvuu2+Feq1YsSJRq417w1T7Uj81rOsBAIDMtmbNmpS//M7Pz0/rPs2bN0+5NwAA9VOqs1yqM191pOpXWloaa9asqfAFLQAAFbd69er4f//v/yXq++67bwwbNmyXa8u760v3PWOzZs0SPwB3zwgAUDnFxcXx9ddfx8KFC2PWrFnx0ksvxfLly8t8JisrK4YOHRrXXXddtGrVqkJ9S0pKUj6spzbuDdetWxelpaWRlZWV1r2ofQKTAECN2rp1a8p606ZN07pPqn7l7Q0AwJ6vsLAwUUv3GbJZs2Yp60VFRWndBwCAiG3btsUVV1wRGzZsKFPPzs6OsWPHRm5u7i7X19Y9Y6ozontGAIDynX322fHBBx9U+PO5ublx8sknx3nnnRfdunWr1F5FRUUpH9ZTG2fC0tLSKCoq2u25lT2fV3IDADWqvMvERo0apXWfVP180Q0AUH+lOsul+wzZsGHq3xL7QhwAIL1KS0vj3/7t32Lu3LmJv1111VXRr1+/3fZwzwgAsGdatWpVpT6fn58fhxxySLRv377Se5V3LsvJyal0r11xb5jZBCYBgBpVXFycst6gQYO07pPq0OoiEwCg/tq2bVuiVt5FZVWV1y/V3gAAVN3tt98eL774YqI+cODA+OlPf1qhHuWd0WrjjOieEQAgfVavXh3//u//Ht/+9rfjpptuivXr11d4bXlnwtr47nlX+1O/CEwCADWqvMNpSUlJWvfZuXNnopbuX5cDAFB7Up0jU535qqO8M6lzJABA+jz88MPx2GOPJer9+vWL2267rcJ9yvvSOt1nRPeMAACVs88++1Rp3bZt2+Kpp56KE088MV577bUKrSnvu2f3hlRGen9yBQDwD3Jzc1PWt2/fntZ9duzYUeG9AQDY8+Xm5ibOjKnOfNVR3pm0SZMmad0HAGBv9dhjj8Vdd92VqPfs2TPGjx9fqXNXeZ/dsWNHWp8o5J4RAKBypkyZkrK+cePGWLduXaxcuTLefvvt+OMf/xiLFy9OfG7Tpk1xxRVXxHXXXRcXXXTRLvcq71zm3pDK8IRJAKBGNW7cOGW9sLAwrfuk6ufACgBQf6U6R9bGGTLCF+IAAOkwadKkGDt2bKLevXv3mDBhQjRv3rxS/cq769uyZUuV5iuPe0YAgPRo0aJFdOvWLY499ti4/vrr49VXX41HHnkkDj744JSfv/3228sNX/6PuvzuOcK9YaYQmAQAalTLli1T1jdv3pzWfVL1a926dVr3AACg9rRq1SpR27RpU1r3+Oabb1LWnSMBAKrnN7/5Tdx6662Jevfu3eOJJ56o0msb3TMCANR/xx13XDz//PNx4YUXpvz7zTffHAsWLCh3fU5OTuTl5SXq6b43THUmbNGiRVqfbE7dEZgEAGpUq1atUh5a161bl9Z91q9fn6h16tQprXsAAFB7Up3lUp35qiPVmTQ/Pz+aNWuW1n0AAPYmzz77bNx0002J+sEHHxxPPPFEtGnTpkp9y7vrS+c9Y2lpaRQUFFR4bwAAKi87Ozv+9V//NS6++OLE37Zt2xZ33333Ltd37tw5UUv3vaHvnjObwCQAUONSHR5XrVqV1j1Wr16dqKU6LAMAUD84QwIA1D/Tp0+P0aNHR2lpaZn6IYccUq2wZET557RUZ7qqKigoiO3bt1d4bwAAqm7UqFFx9NFHJ+pvvvlmfPnll+Wuc29IdQlMAgA1rlu3bonakiVL0ta/pKQkli1blqh37949bXsAAFC7Up0hly1bFjt27EjbHkuXLq3QvgAA7N6rr74a119/fZSUlJSpH3744fH4449Hq1atqtW/devWKV/LvXjx4mr1/Xvl3Vm6ZwQAqBk///nPE7XS0tJ46623yl1T0989R6S+N3QmzBwCkwBAjevdu3eiNn/+/LT1//LLL6O4uDhR79u3b9r2AACgdqU6Q27fvj2tl58LFy5M1A4//PC09QcA2Fu8+eabce2118bOnTvL1I8++uiYMGFCNG/ePC379OnTJ1FL5z3jF198kai1atUqDjzwwLTtAQDA/zniiCOiffv2ifqnn35a7ppU94bLly+PLVu2pGWmoqKiWL58eaLuu+fMITAJANS4VIfHgoKClL/MqYqPPvooUWvWrJlf+QAA1GM9e/aMxo0bJ+pz5sxJS/+VK1fGmjVrEnUXnwAAlfP222/HVVddlXiV9YABA+Lhhx+Opk2bpm2vVIHJVHeDVZWql/MhAEDN6tWrV6L29ddfl/v5VOez0tLS+Pjjj9Myz6effpr4IVBE6rMo9ZPAJABQ43r37h35+fmJ+jvvvJOW/rNmzUrUBgwYENnZjjoAAPVVTk5OHH300Yl6TZ4h27ZtG//0T/+Ulv4AAHuD9957Ly6//PLE219OOOGEePDBB6NJkyZp3W/AgAGJ2qpVq2LRokVp6f/ee+8lascdd1xaegMAkFqzZs0StX/8Mc7f69ixY8oH56Tr3vDdd99N1Hr37h2tW7dOS3/qnhQBAFDjcnJy4gc/+EGi/tprr1W7986dO2PmzJmJ+qBBg6rdGwCAujVw4MBE7U9/+lNs27at2r3feOONRO3EE0/0oxsAgAqaM2dOjBgxIoqKisrUBw0aFPfcc0/k5OSkfc/evXtH586dE/V03DMuWLAgli1bVqbWoEGDOPHEE6vdGwCA8qV6mmSLFi12uSbVGe0Pf/hDWuZ58803EzXfPWcWN8AAQK0YPHhwovaXv/wlli9fXq2+b731Vqxbt65MrUWLFn75DQCQAU444YTEU4m++eabeOWVV6rVd8OGDSkvPocMGVKtvgAAe4tPPvkkLrnkkigsLCxTP+WUU+LOO++Mhg0b1tjeqe4Zn3vuuSgtLa1W32nTpiVq3/nOdzxJCACgBpWWlsbChQsT9a5du+5y3aBBgyIrK6tMbcmSJfH+++9Xa54FCxbEp59+WqbWsGHDlD/spv4SmAQAasWxxx4bPXr0KFMrKSmJhx56qFp9J0yYkKidc8450bhx42r1BQCg7uXn58fpp5+eqD/88MOxc+fOKvd98sknE6+N7NevX/Tu3bvKPQEA9hbz5s2Liy++ODZv3lymfs4558Qtt9xS40/sPvfccxNPr/zyyy/jxRdfrHLPTZs2xbPPPpuoX3jhhVXuCQCQSYqLi+Phhx9O+TTI6vjwww9j9erViXrfvn13ua5r167x3e9+N1EfN25cteZJ9d3zoEGDon379tXqy55FYBIAqDUjRoxI1KZOnRpz586tUr/XX3893nvvvTK1vLy8GDZsWJX6AQCw57nwwgujUaNGZWpffPFFPP7441Xqt3Llypg4cWKinuqsCgBAWV988UVccMEFsWHDhjL1iy66KEaPHp14yk9NaNeuXQwdOjRRv/POOxMhzoq67777Emv79u0b3/rWt6rUDwAgk6xbty6GDRsWd911VwwfPjwKCgrS0rekpCTuuOOORL1NmzZxzDHH7Hb9ZZddlqj9+c9/jt///vdVmufTTz+N6dOnl6llZ2fHpZdeWqV+7LkEJgGAWnPSSSdFv379ytR27twZI0eOrPTBeuXKlTF69OhE/corr4xWrVpVa04AAPYcnTp1iosuuihR//Wvfx0ffPBBpXpt3749Ro0aFVu2bClT/973vhfHHXdcteYEAMh0S5cujfPPPz9xj3f55ZfHddddV6uzXH311dGyZcsytVWrVsV1110XJSUller1pz/9KZ566qkytezs7LjxxhurPScAQH03b968OPXUU2POnDkREfH555/HGWecEQsWLKh279tuu+1/+/69c889Nxo2bLjb9X379o0f//jHifro0aNj8eLFlZpl8+bNMWrUqMRbbc4+++zo3r17pXqx5xOYBABqTVZWVtx8882J12UvX748hg8fHitXrqxQn2XLlsXw4cNj/fr1ZeqHHnpoDB8+PG3zAgCwZ7j88sujW7duZWrFxcUxYsSImDVrVoV6FBYWxpVXXhnvv/9+mXrTpk1jzJgx6RoVACAjffnllzF8+PBYs2ZNmfqZZ54ZV111Va3P06ZNm7jhhhsS9TfeeCN+8YtfxLZt2yrUZ+bMmfHzn/88EbIcNmxY9O7dOy2zAgDUZ5988kmsWrWqTG3ZsmVx2mmnxcSJE2P79u2V7rlhw4a49tprU75BpnPnznHBBRdUuNeNN94YrVu3TvQ///zz4/PPP69Qj4KCgrjoooti0aJFZeqdOnWKa665psKzUH9klZaWltb1EADA3uXll1+Oa665Jv7xGJKfnx9XXXVVnH766dGkSZPEusLCwpgyZUrcd9998c0335T52z777BNTpkyJzp071+jsAACUb9u2bSm/WB4zZkz85Cc/qVbvL774In7yk5/Exo0by9QbNGgQZ599dlx66aXRrl27xLqSkpKYMWNG3HHHHbF06dLE2nHjxsXxxx9frdkAADJZcXFxDB48OHGWqglZWVnxq1/9Ks4444wKfX7MmDExefLkRL1r164xatSo+O53vxvZ2cnnx6xevTrGjx8fkydPTtxRHnXUUTFhwoTIycmp2j8CACDDPPjgg3HPPfek/Nu+++4b5557bpx00knRvn37Xfb56quvYtq0afHb3/428WCciIjGjRvHb3/72zj00EMrNd/s2bPjggsuiOLi4kS/Sy+9NIYNGxb5+fmJdcXFxfHCCy/Er3/961i7dm2Zv+Xl5cVTTz0VhxxySKVmoX4QmAQA6sSkSZPitttuS1xIRvz3AbR///7RpUuXyM3NjS1btsSiRYti9uzZUVRUlPh8ixYtYsKECXHYYYfVxugAAHutgoKC+N73vpfyTFZVhx12WDz33HMV+uzs2bPj0ksvTbxSO+K/w499+vSJnj17Rn5+fhQXF8eKFSti9uzZKS9gs7OzY8yYMXHmmWdW+98AAJDJPvroo1o9M11xxRVx5ZVXVuizO3fujJEjR8bvf//7lH9v27Zt9OvXLzp37hwNGzaMr7/+OubNmxeffPJJyld39+jRI5544onE674BAPZ206ZNizFjxuzySd4HHHBAHHTQQdGxY8do2rRplJaWxqZNm2LdunXxt7/9LVasWFHu2ry8vBg3blwcc8wxVZrvlVdeiVGjRqV84mWjRo2iX79+0b1792jWrFkUFRXFkiVLYvbs2bF58+bE5xs3bhz33ntvfPe7363SLOz5BCYBgDrzyiuvxPXXX1+tL9wPOOCAGD9+fHTt2jWNkwEAkMry5cvjBz/4QVp7du7cOd54440Kf37+/Plx2WWX7fKCdXfy8vLizjvvTPu/BQAgE82aNSuGDRtWa/tVJjAZ8d9PFL/zzjtjwoQJ1dr3+OOPj7vvvjuaNWtWrT4AAJlq3rx5ceONN8ann36a1r6HHHJI3H777dG9e/dq9XnvvffiyiuvjA0bNlS5R5s2beKBBx6Iww8/vFqzsGdLPoMeAKCWDBw4MJ5//vkYMGBApdc2bNgwLrjggpg2bZqwJADAXuTggw+O559/Ps4777xo0KBBpdd/73vfi+nTpwtLAgBkiOzs7Ljuuuviscceiy5dulR6fcuWLeNXv/pVjB8/XlgSAGAXevbsGVOmTIlbbrklDjzwwGr369ixY/zyl7+MKVOmVDssGRFx1FFHxQsvvBCDBw+u9NqsrKwYOnRovPDCC8KSewFPmAQA9gizZ8+Op59+OmbMmBGFhYXlfq5du3YxZMiQOOuss2K//farxQkBAKiJV3L36dMnpkyZUqW1S5cujWeeeSamT58ea9euLfdzeXl5ccIJJ8RZZ50VRx55ZFVHBQDYK33xxRcxdOjQXb5+MV2ys7PjlltuiaFDh1Zp/fbt2+O1116LZ555JmbPnh07duwo97MHH3xwnHbaaTF06NDIz8+v6sgAAHulkpKSePfdd+OFF16Id999N7766qsKrdt3333jqKOOioEDB8Z3vvOdKv0guiLmzZsXkydPjldffXWXT5xs2bJlDBw4MM4666zo2bNnjczCnkdgEgDYo+zcuTPmzZsXCxYsiA0bNsTWrVujefPm0bp16zj00ENj//33r+sRAQDYAy1dujT++te/RkFBQWzevDlyc3OjZcuWcdBBB0XPnj1r7PIVAIA909atW2Pu3Lnx5ZdfxsaNG2Pnzp2Rn58fHTp0iD59+kTr1q3rekQAgIyxcuXKWLx4caxYsSI2b94cW7dujUaNGkWTJk2iZcuW0blz5zjwwAOjTZs2tTpXaWlpLFy4MObNmxdff/11bNmyJZo2bRqtWrWKXr16Rbdu3SIrK6tWZ6LuCUwCAAAAAAAAAAAAGS+7rgcAAAAAAAAAAAAAqGkCkwAAAAAAAAAAAEDGE5gEAAAAAAAAAAAAMp7AJAAAAAAAAAAAAJDxBCYBAAAAAAAAAACAjCcwCQAAAAAAAAAAAGQ8gUkAAAAAAAAAAAAg4wlMAgAAAAAAAAAAABlPYBIAAAAAAAAAAADIeAKTAAAAAAAAAAAAQMYTmAQAAAAAAAAAAAAynsAkAAAAAAAAAAAAkPEEJgEAAAAAAAAAAICMJzAJAAAAAAAAAAAAZDyBSQAAAAAAAAAAACDjCUwCAAAAAAAAAAAAGU9gEgAAAAAAAAAAAMh4ApMAAAAAAAAAAABAxhOYBAAAAAAAAAAAADKewCQAAAAAAAAAAACQ8QQmAQAAAAAAAAAAgIwnMAkAAAAAAAAAAABkPIFJAAAAAAAAAAAAIOMJTAIAAAAAAAAAAAAZT2ASAAAAAAAAAAAAyHgCkwAAAAAAAAAAAEDGE5gEAAAAAAAAAAAAMp7AJAAAAAAAAAAAAJDxBCYBAAAAAAAAAACAjCcwCQAAAAAAAAAAAGQ8gUkAAAAAAAAAAAAg4wlMAgAAAAAAAAAAABlPYBIAAAAAAAAAAADIeAKTAAAAAAAAAAAAQMYTmAQAAAAAAAAAAAAynsAkAAAAAAAAAAAAkPEEJgEAAAAAAAAAAICMJzAJAAAAAAAAAAAAZDyBSQAAAAAAAAAAACDjCUwCAAAAAAAAAAAAGU9gEgAAAAAAAAAAAMh48DV9zgAADztJREFUApMAAAAAAAAAAABAxhOYBAAAAAAAAAAAADKewCQAAAAAAAAAAACQ8QQmAQAAAAAAAAAAgIwnMAkAAAAAAAAAAABkPIFJAAAAAAAAAAAAIOMJTAIAAAAAAAAAAAAZT2ASAAAAAAAAAAAAyHgCkwAAAAAAAAAAAEDGE5gEAAAAAAAAAAAAMp7AJAAAAAAAAAAAAJDxBCYBAAAAAAAAAACAjCcwCQAAAAAAAAAAAGQ8gUkAAAAAAAAAAAAg4wlMAgAAAAAAAAAAABlPYBIAAAAAAAAAAADIeAKTAAAAAAAAAAAAQMYTmAQAAAAAAAAAAAAynsAkAAAAAAAAAAAAkPEEJgEAAAAAAAAAAICMJzAJAAAAAAAAAAAAZDyBSQAAAAAAAAAAACDjCUwCAAAAAAAAAAAAGU9gEgAAAAAAAAAAAMh4ApMAAAAAAAAAAABAxhOYBAAAAAAAAAAAADKewCQAAAAAAAAAAACQ8QQmAQAAAAAAAAAAgIwnMAkAAAAAAAAAAABkPIFJAAAAAAAAAAAAIOM1rOsBAOpaUVFRnHzyybF48eI6nSMvLy8ef/zx6N279//W7rjjjpgwYUKUlpamXHPQQQfFiy++WFsjAgAAAAAAAABAveUJk8Beb926dXUeloyIKCwsjIULF5apzZ07t9ywZETEggULori4uKZHAwAAAAAAgP/f3r2Fdl3/Dxx/7ahOZdbMecgOWhYYmmTiwguTbBCxDmRW60YSa5RiJQgRhhB46MIDGU7KWVokoTflgsxDpemFYUoHRUHFZqQb5GEeNud+F3/qn7V9v9ucbvv4eFzJ5/3+vN5vb/TmyecLANDlCSYBurhUQSUAAAAAAAAAAPB/BJMAAAAAAAAAAABA4gkmAQAAAAAAAAAAgMQTTAIAAAAAAAAAAACJJ5gErnt9+vSJm266qaOvEbm5uXHzzTd39DUAAAAAAAAAACCRsjv6AgAdrVevXrFt27YW77906VKUlZXF1q1b0+5dtGhRPPLII22+W2Zm6q49IyMjsrKy2jwfAAAAAAAAAACuF74wCdBKmZmZccMNN7Rob0FBwRWdNXbs2MjObrptz87OjpKSkmbXAQAAAAAAAACA/6eyAejEysrKoqysrKOvAQAAAAAAAAAAXZ4vTAIAAAAAAAAAAACJJ5gEAAAAAAAAAAAAEs9PcgPwH3V1dbFnz544cOBAnDp1KnJycqKwsDBGjhwZgwcPbtWs06dPx+7du+PQoUNx7ty5yM/Pj1tuuSXuu+++6N69e7veu7GxMY4cORL79u2L6urqOHPmTOTk5ETv3r1j8ODBMWzYsCgoKGjXMwEAAAAAAAAA6BoEkwCd2KpVq2LBggVx6dKlJteHDx8e69evb3Jt/vz5UVFR0ezssrKymDlz5mXPjh07FuXl5fH5559HbW1tk++NHDkyZsyYEePGjUt5971798b7778fmzdvjvr6+v+sd+vWLZ544ol4+eWXo1+/filnpfPLL7/EZ599Fl999VVUV1en3Hv33XfHww8/HM8884x4EgAAAAAAAADgOiKYBOjE9u/f32wsGRHx888/t2ktIuLXX3/9+891dXXxwQcfRHl5eZw7dy7le3v27IkXXnghpkyZErNnz46MjIzL1s+cORMLFy6MtWvXppxz4cKF+PTTT2Pjxo2xbNmyGDVqVMr9TTly5EjMmzcvtmzZ0uJ39u3bF/v27Yvy8vIoLS2N6dOnR15eXqvPBgAAAAAAAACga8ns6AsA0LzGxsarfsbRo0fj6aefjsWLF6eNJf+poqIilixZctmz3bt3R0lJSdpY8p9qampi6tSpcfjw4Ra/ExHxySefRElJSatiyX+6cOFCrFy5Mh599NHL4lEAAAAAAAAAAJJJMAlwnbp48WJ888038dRTT7U5GFyxYsXf727fvj2mTJkSVVVVrZ5z5syZmD17dov3z58/P+bOnRvnz59v9Vn/VlVVFc8991zs3LnzimcBAAAAAAAAANB5CSYBrlPbt2+PadOmxZ9//tnmGQ0NDbFixYr4+uuv46WXXmrVFyr/7ccff4wdO3ak3bdkyZKoqKho8zlNOXv2bLzyyitx8ODBdp0LAAAAAAAAAEDnkd3RFwCgY/z7575zcnLigQceiNtvvz0yMzNj7969sWvXrrRzKisro7Ky8rJnffv2jbFjx8bAgQOjpqYmtm7dGjU1NWlnbdy4MYqKilKuv/feeylnZGVlxYQJE2LcuHExcODAiIj4/fffY+PGjbFt27Zmf+b89OnT8dprr8X69esjO9t/jwAAAAAAAAAASaMIASAee+yxeP3116OwsPCy55s3b44ZM2ZEfX19i+bk5eXFrFmzYtKkSZGbm/v389ra2pg+fXps37495fs//PBDs2snT56MuXPnpnx/2LBhsXjx4hg6dOh/1iZPnhy7du2KmTNnxokTJ5p8f//+/bFq1aqYOnVqynMAAAAAAAAAAOh6/CQ3wHUsIyMj5syZEwsXLvxPLBkRMWHChHj++edbNKt///6xbt26KC0tvSyWjIjo2bNnvPPOO9GtW7eUM44fP97s2vLly5sNHSMihgwZEmvWrGkylvzL6NGjo7y8/D/3+6eKioqoq6tLeU8AAAAAAAAAALoewSTAdeytt96K0tLSlHseeuihtHN69uwZH374YQwZMqTZPQUFBTFq1KiUc06ePNnk81OnTsXatWtTvjtnzpzIz89Pe9fhw4fHpEmTml2vrq6OL7/8Mu0cAAAAAAAAAAC6FsEkwHVq0KBB8eyzz6bd169fv7R7SkpK4rbbbrviWQ0NDU0+r6ysjNra2mbf69+/fxQVFaU9/y/FxcUp1zdt2tTiWQAAAAAAAAAAdA2CSQBSysxM/19FQUFBi2ZlZWW16Q7pAsZUX7ZsSl5eXsr1HTt2tGoeAAAAAAAAAACdX3ZHXwAAUmlsbIxdu3al3PP999/HXXfd1W5nnjp1Kv74448oLCxst5kAAAAAAAAAAHQsX5gEoFP77bff4uzZs9f83MOHD1/zMwEAAAAAAAAAuHoEkwB0akePHu2Qc0+fPt0h5wIAAAAAAAAAcHUIJgHo1DoqXOyIr1oCAAAAAAAAAHD1CCYB6NTOnz9/zc/s3r17DBo06JqfCwAAAAAAAADA1ZPd0RcAgFTy8vLS7hk1alSsXr06cnJyrsGNAAAAAAAAAADoinxhEoBOLT8/P+2e/v37iyUBAAAAAAAAAEhJMAlApzZ06NC0e2pqaq7BTQAAAAAAAAAA6MoEkwB0agUFBVFYWJhyz08//RR1dXXX6EYAAAAAAAAAAHRFgkkAOr3x48enXD979mxs2rSp1XMbGhpi0aJFUVlZGfX19W28HQAAAAAAAAAAXYFgEoBO79FHH0275913340LFy60au68efNi+fLl8eqrr8aECRNi2bJlUV1d3dZrAgAAAAAAAADQiQkmAej0xowZEyNHjky55+DBg/HGG29EQ0ND2nmNjY2xYMGCWL169d/Pjh8/HkuXLo3x48fHxx9/fMV3BgAAAAAAAACgcxFMAtAlzJo1KzIyMlLu+eKLL2LatGlx7NixZvdUVVXFiy++GCtXrmxyvb6+Pvr27XtFdwUAAAAAAAAAoPPJ7ugLAEBLjBkzJkpLS2PNmjUp923bti2Ki4tj4sSJUVRUFAMGDIiLFy9GVVVVfPfdd/Htt9+m/Arl5MmTo7i4uL2vDwAAAAAAAABABxNMAtBlzJ49Ow4ePBg7d+5Mua+uri42bNgQGzZsaNX8+++/P958880ruSIAAAAAAAAAAJ2Un+QGoMvIzc2NZcuWxZgxY9p99ogRI2L58uWRm5vb7rMBAAAAAAAAAOh4gkkAupRevXrFypUro7S0NDIyMtplZnFxcXz00UfRq1evdpkHAAAAAAAAAEDnI5gEuIquNOhL935mZtv/GW/p3Vqyr6X3aK+/T05OTsyZMyfWrFkT99xzT4veacqNN94Y8+bNi6VLl0aPHj3aPAcAAAAAAAAAgM5PMAnQBsOHD08b9/Xu3TsGDx58Refce++9kZOT0+RaVlZWPPjgg82+O2LEiGbvmJ2dnfLdfyooKIgBAwY0u56fnx9FRUUtmnXnnXc2e6fMzMyYOHFii+b8ZfTo0bFu3bpYtWpVPP7449GnT5+07+Tm5sbYsWPj7bffji1btsSTTz7ZqjMBAAAAAAAAAOiaMhobGxs7+hIA0B4uXboUhw4digMHDsSJEyeitrY2MjIyokePHlFQUBC33npr3HHHHdG9e/eOvioAAAAAAAAAANeYYBIAAAAAAAAAAABIPD/JDQAAAAAAAAAAACSeYBIAAAAAAAAAAABIPMEkAAAAAAAAAAAAkHiCSQAAAAAAAAAAACDxBJMAAAAAAAAAAABA4gkmAQAAAAAAAAAAgMQTTAIAAAAAAAAAAACJJ5gEAAAAAAAAAAAAEk8wCQAAAAAAAAAAACSeYBIAAAAAAAAAAABIPMEkAAAAAAAAAAAAkHiCSQAAAAAAAAAAACDxBJMAAAAAAAAAAABA4gkmAQAAAAAAAAAAgMQTTAIAAAAAAAAAAACJJ5gEAAAAAAAAAAAAEk8wCQAAAAAAAAAAACSeYBIAAAAAAAAAAABIPMEkAAAAAAAAAAAAkHiCSQAAAAAAAAAAACDxBJMAAAAAAAAAAABA4gkmAQAAAAAAAAAAgMQTTAIAAAAAAAAAAACJJ5gEAAAAAAAAAAAAEk8wCQAAAAAAAAAAACSeYBIAAAAAAAAAAABIPMEkAAAAAAAAAAAAkHiCSQAAAAAAAAAAACDxBJMAAAAAAAAAAABA4gkmAQAAAAAAAAAAgMQTTAIAAAAAAAAAAACJJ5gEAAAAAAAAAAAAEk8wCQAAAAAAAAAAACSeYBIAAAAAAAAAAABIPMEkAAAAAAAAAAAAkHiCSQAAAAAAAAAAACDxBJMAAAAAAAAAAABA4gkmAQAAAAAAAAAAgMQTTAIAAAAAAAAAAACJJ5gEAAAAAAAAAAAAEk8wCQAAAAAAAAAAACSeYBIAAAAAAAAAAABIPMEkAAAAAAAAAAAAkHiCSQAAAAAAAAAAACDxBJMAAAAAAAAAAABA4gkmAQAAAAAAAAAAgMQTTAIAAAAAAAAAAACJJ5gEAAAAAAAAAAAAEk8wCQAAAAAAAAAAACSeYBIAAAAAAAAAAABIPMEkAAAAAAAAAAAAkHj/A4FncLBFDyrdAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "fig, ax = rick.charts.line_chart(total['count'], 'Trips', 'Time', baseline = total2['count'])" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [], + "source": [ + "# fig.text(0.94, 0.96, '176,000', transform=ax.transAxes, wrap = True, fontsize=9, fontname = 'Libre Franklin',\n", + "# verticalalignment='top', ha = 'center', bbox=props, color = purple)" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAACkwAAAbCCAYAAABiUkk9AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAABFNAAARTQBrsa1HQAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzs3Xl0VeW5P/DnJGEI8zyLKCh6VZCKSutUrbbiWOtQtV71alFrWxUV26Ki1VbrUGudqr3VtmhvRevwE4tctdJrax0KAjIIBS2DIiAgiAQSSM7vD1dYHPY5kOGQhOTzWStLePZ5n/3s7ODKH9/1vql0Op0OAAAAAAAAAAAAgEasoL4HAAAAAAAAAAAAANjRBCYBAAAAAAAAAACARk9gEgAAAAAAAAAAAGj0BCYBAAAAAAAAAACARk9gEgAAAAAAAAAAAGj0BCYBAAAAAAAAAACARk9gEgAAAAAAAAAAAGj0BCYBAAAAAAAAAACARk9gEgAAAAAAAAAAAGj0BCYBAAAAAAAAAACARk9gEgAAAAAAAAAAAGj0BCYBAAAAAAAAAACARk9gEgAAAAAAAAAAAGj0BCYBAAAAAAAAAACARk9gEgAAAAAAAAAAAGj0BCYBAAAAAAAAAACARk9gEgAAAAAAAAAAAGj0BCYBAAAAAAAAAACARk9gEgAAAAAAAAAAAGj0BCYBAAAAAAAAAACARk9gEgAAAAAAAAAAAGj0BCYBAAAAAAAAAACARk9gEgAAAAAAAAAAAGj0BCYBAAAAAAAAAACARk9gEgAAAAAAAAAAAGj0BCYBAAAAAAAAAACARk9gEgAAAAAAAAAAAGj0BCYBAAAAAAAAAACARk9gEgAAAAAAAAAAAGj0BCYBAAAAAAAAAACARk9gEgAAAAAAAAAAAGj0BCYBAAAAAAAAAACARk9gEgAAAAAAAAAAAGj0BCYBAAAAAAAAAACARk9gEgAAAAAAAAAAAGj0BCYBAAAAAAAAAACARk9gEgAAAAAAAAAAAGj0BCYBAAAAAAAAAACARk9gEgAAAAAAAAAAAGj0BCYBAAAAAAAAAACARk9gEgAAAAAAAAAAAGj0BCYBAAAAAAAAAACARk9gEgAAAAAAAAAAAGj0iup7AKiOioqKWLBgQcyfPz8+/vjjWLt2bRQUFETr1q2jT58+MXDgwOjRo0edzVNWVhazZ8+Of//737F69eooKyuLDh06RPfu3WPw4MHRsWPHOptla5999llMmzYtPvroo/jkk0+isLAwOnToEH379o399tsvWrZsWW+zVdfixYtj5syZsWrVqli7dm20bt06OnbsGHvvvXf079+/3uYqLy+PuXPnxrx58+KTTz6JDRs2RPv27aNr164xaNCg6NatW73NtmHDhnjnnXdi8eLFsXr16igvL4+OHTtGr169YvDgwdGmTZt6mw0AAAAAAAAAAOqDwCQNXjqdjldffTXGjx8ff/vb32L16tXb/Hy/fv3i2GOPjdNOOy122WWXHTLPP/7xj/jjH/8Yr776apSWlmb9XCqVir333jvOOOOMOOmkk6J169Z5n2VrpaWlMWHChBg3blxMnz49Kioqsn6uWbNmMWzYsDj77LPjy1/+chQUNLzNZj/44IMYN25cPPvss7F8+fKcn+vYsWOceOKJcfbZZ8duu+1WJ7NNmzYt/vjHP8ZLL70U69aty/m5fv36xemnnx6nnnpqnYRnN23aFK+88ko8/vjj8dZbb8XGjRuzfq6wsDD233//OOuss+JrX/taNG/efIfPBgAAAAAAAAAA9S2VTqfT9T0E5DJhwoT45S9/GQsWLKj22qKiojj11FPj6quvjnbt2uVlnrlz58aNN94Yb7/9drXWde3aNX70ox/F8ccfn5c5snn55Zfjpz/9aSxZsqRa6/bZZ5+46aabYt99991Bk1VPSUlJ3HffffH73/8+Nm3aVOV1BQUFcfbZZ8fIkSN32O6JH374YfzkJz+JV155pVrr2rRpEyNHjoyzzz57h4VTJ0+eHD/+8Y/jX//6V7XW9evXL2644Yb40pe+tEPmAgAAAAAAAACAhkJgkgZp2bJlcfXVV8dbb71V6169e/eO+++/P/bee+9a9Xn88cfj5ptvrlaIb2snnHBC3HrrrXnd0W/jxo1xww03xFNPPVXjHgUFBfHDH/4wzjvvvLzNVRPvv/9+XHLJJbFw4cIa9+jdu3c89NBDsccee+Rxsoi//OUvcfXVV0dJSUmNe3zxi1+Me++9N9q2bZu3udLpdNxzzz3xwAMP1KrPhRdeGKNGjYpUKpWnyQAAAAAAAAAAoGERmKTBmTJlSnzve9+LVatWZb3erl27GDx4cOy2227RqlWrWLNmTSxYsCCmTp0aGzZsyLqmffv2MXbs2Nhrr71qNNNdd90VDz30UNZr3bp1iwMOOCB69eoVRUVFsWLFinjnnXdi3rx5WT9/4IEHxn//939HcXFxjWbZUmlpaVx00UXxxhtvZL2+xx57xKBBg6JLly6xadOm+Oijj2Ly5Mk5j7i+4IIL4gc/+EGt56qJ6dOnx4gRI2LNmjWJa82bN48DDjggBgwYEK1bt45169bF/PnzY8qUKVFWVpb4fNu2beOhhx6KAw44IC+z/fGPf4ybbrop6xHnHTp0iKFDh0bfvn2jefPm8cknn8SsWbNi1qxZke1/rwMGDIixY8dG586daz1XRUVF/OAHP4jnnnsu6/VddtklhgwZEt27d4+Iz4PIU6dOjcWLF2f9/PDhw+Ouu+5qkEe0AwAAAAAAAABAbQlM0qBMnjw5RowYkXUXvwMOOCAuuOCCOOKII6JZs2aJ6+vXr4+nn346HnjggVixYkXiet++fePpp5+u9u5+jz32WNx8882Jev/+/WPUqFFxxBFHZA2YzZkzJ37xi1/EX//618S1r371q3HPPffUaje/dDodV1xxRUycODFx7Ygjjogrr7wya0C0oqIiXn311bjjjjti/vz5ieujR4+u850mFy9eHGeccUYiJNuiRYu4+OKL49xzz8363tauXRuPPvpoPPjgg1FaWppxrUOHDvHkk09G3759azXbX/7yl/je976XCEv26NEjrrzyyjjuuOOy/jwuXrw47rvvvnj22WcT14YMGRK///3vo0WLFrWa7bbbbotHHnkkUd9///1j1KhRMXTo0KzrJk+eHHfeeWdMnTo1ce28886L0aNH12ouAAAAAAAAAABoiApvvPHGG+t7CIiIWLhwYZx77rmxbt26jHr79u3jlltuiR/96Eex++67R2FhYdb1zZo1i0GDBsUpp5wSc+fOjUWLFmVcX7NmTZSVlcVhhx1W5ZmmTJkSV155ZWKnwOHDh8dvfvObGDBgQM7QY5cuXeLEE0+Mtm3bxmuvvZZx7b333ovmzZvnDLRVxX//93/Ho48+mlFLpVJxzTXXxA033BBdunTJui6VSkW/fv3itNNOi0WLFiV2wnzttddi2LBh0atXrxrPVh0bN26M8847Lz744IOMevfu3ePRRx+N4cOH5wwWtmjRIg488MD4yle+EpMmTYrPPvts87UNGzbEm2++GaeddlrOn5ntWbRoUVxwwQWJXSwPPPDAeOyxx2Lw4ME5e7dv3z6OOeaY6N+/f0yaNCnKy8s3X1u6dGmsWrUqjjzyyBrNFRExYcKE+NnPfpaon3feefGLX/wi+vTpk3Ntr1694pRTTomSkpKYNm1axrXp06fHbrvtFnvuuWeNZwMAAAAAAAAAgIZIYJIGYdOmTXHeeefFRx99lFHv1atXjB07NoYNG1blXsXFxTF8+PCYMmVKfPjhhxnXZs+eHWeeeWaVjsMuKyuLSy65JFauXJlRP+KII+Kee+7JuqtgNvvvv38UFxcnQpNvv/12HHfccdGhQ4cq9dnSwoULY+TIkRkhvIiIq666KkaMGFGlHkVFRXHMMcfE7NmzY8GCBZvr6XQ63nnnnTj99NNrHDSsjoceeij+/Oc/Z9Tatm0bjz32WOyxxx5V6tG5c+f48pe/HOPHj8/YaXLlypXRvHnzOPDAA2s02xVXXBHvv/9+Rm2fffaJ3/72t1XeqXSPPfaIfv36xYsvvphRnz17do2DqatXr46LL7441q9fn1H/5je/GWPGjKnSkdoFBQVx6KGHxqpVq2LGjBkZ16ZMmRKnnXZatGzZstqzAQAAAAAAAABAQ7X9VA3UgdWrV8fSpUszau3bt4/f/OY30b9//2r3a968efzkJz+J5s2bZ9TLysrihRdeqFKPRx99NHFkddeuXeP222+vdpDwwgsvjCOOOCKjVlpaGrfeemu1+lS65ZZbEkdQH3rooXHRRRdVq09BQUHcfvvt0b1794z6/Pnz47HHHqvRbNWxdOnS+NWvfpWo33jjjdV+77vttlv8+Mc/TtQffPDBWLZsWbVnmzhxYvzjH//IqBUXF8cvfvGLaNWqVbV6HXfccXHWWWdl1NLpdNx0002J3Uur4p577kkEeffcc8+47rrrqt1r9OjRiaPbV65cGffcc0+1ewEAAAAAAAAAQEMmMEmD0KVLl5gwYUJ8/etf33zEdU1Cc1vadddd4/DDD0/U33zzze2uLSsri9/+9reJ+siRI2u0I2RExHXXXZfYlXLSpEkxd+7cavV59913469//WtGraioKK6//voazdWuXbu48sorE/Xf/va3iaOo8+2RRx7Jetz1CSecUKN+w4cPj4MPPjijVlpamvVdbs9DDz2UqF1wwQWx66671mi2kSNHRvv27TNqc+fOjUmTJlWrz4oVK+JPf/pTon7ttdcmAsJV0axZs6xByz/96U+JUCYAAAAAAAAAAOzMBCZpMLp27Rq33XZbPPHEE/HTn/40jjvuuFr3/NKXvpSozZkzZ7vrnn322fj4448zaj179oyvf/3rNZ6lb9++MXz48ET9N7/5TbX6ZPv8scceG/369avpaHHSSSdF7969M2rLly+P//f//l+Ne27PmjVr4sknn0zUv/Od79Sqb7b148aNi7Vr11a5x2uvvRazZ8/OqBUXF8f5559f47natWsXZ599dqJe3ff/6KOPJnYXHTJkSLWOrd/agQceGAcccEBGbcOGDfHoo4/WuCcAAAAAAAAAADQ0ApM0OIMGDYrTTjstL7169OiRqFVl17xnn302UTv11FOrfRT31s4444xE7aWXXoqSkpIqrV+3bl289NJLVepbHQUFBfGNb3wjUX/uuedq1XdbXnzxxcRz9+7dO2vItTqGDRsWu+yyS0atpKQk6/ctl2zv/9hjj4127drVarbTTz89UZsyZUosXry4SuvT6XTWEGtt33+uHjvy/QMAAAAAAAAAQF0TmKRR2/oI7IjPd87blmXLlsXbb7+dqB9zzDG1nueAAw6ITp06ZdTWr1+fOGI7l0mTJiV2F+zYsWMMHTq01rNle77JkyfH8uXLa907m4kTJ2adofJI9ppKpVJx9NFHJ+oTJkyo0vqysrJ45ZVXss5WW71794599tknUX/hhReqtH7atGnx0UcfZdQKCwvjqKOOqvVsRx55ZBQVFWXUPvzww5g+fXqtewMAAAAAAAAAQEMgMEmjtmrVqkStTZs221wzadKkSKfTGbVOnTrFXnvtVet5CgoK4qCDDkrU//KXv1RpfbYg30EHHVTrnS8jIgYOHBidO3fOqFVUVFQ5zFkdJSUl8cYbbyTqX/ziF/PSP1ufN954o0o7eb755pvx2WefZdQKCgri4IMPzsts2Y7OzvZes8n2ub333js6dOhQ67nat28fe++9d41nAwAAAAAAAACAhk5gkkZt1qxZiVq3bt22uWbq1KmJ2uDBg/M205AhQ6p0z2yyfS5bv5raf//9q3TP2nrnnXdi06ZNVbp/TWTrs3Hjxpg5c+Z212Z73gEDBmw3aFtVX/jCFxK1WbNmRVlZWY1my+f7z9Yr226rAAAAAAAAAACwMxKYpFF77bXXErX99ttvm2umTZuWqA0cODBvM+25556J2ocffhgff/zxNtctX748lixZskNn22OPPRK1HRGYzHbMc/fu3fOyU2LE57sldu/ePVHP9m6rMtuO/h6XlZXF7Nmzt7muvLw8a+BzR/9szpw5M8rLy/N2DwAAAAAAAAAAqC8CkzRab7/9drz33nuJ+uGHH55zzYYNG2LhwoWJ+u677563ufr165e1/u67725z3Zw5c7LW8znbbrvtlqgtWLAgNmzYkLd7RGR/lnw+R0T27/P2vscRO362Pn36RFFRUaK+vdkWLFgQ69evT9SzvbOayvY9KykpiQULFuTtHgAAAAAAAAAAUF8EJmm07rnnnkStffv2cdRRR+Vcs2TJkkin04l6jx498jZXt27doqAg+U8v2+6R27teWFgYXbt2zdts2XZlTKfT252turL1y+f3OFe/7T1HaWlprFy5skq9airXO6vJ+4/I72y5euX7/QMAAAAAAAAAQH0QmKRRmjhxYrz++uuJ+oUXXhjNmzfPuS5XMCyfocSioqLo1KlTle+9reudOnWKwsLCvM3WrVu3Kt+7Nj788MNELZ/f44jsz5LtvlvKFZiti9lqGpjM9c5qoq7ePwAAAAAAAAAA1AeBSRqdZcuWxQ033JCo9+nTJ84999xtrl2+fHnWert27fIyW6U2bdpU+d7but62bdu8zbStftubrToqKipixYoVVb53TWXrt2LFiqyByEp19f6zzVaT99+iRYttBoCrq0WLFtGsWbNqzwYAAAAAAAAAADsDgUkaldLS0vje974Xq1evzqgXFBTEbbfdFsXFxdtcv379+qz11q1b523GiOyByVz3rlRSUpKo1cVcEdufrTo2bNiQNbRYF8+STqdjw4YNOdfU1fvP1q8hvP+Imv1sAgAAAAAAAADAzkBgkkYjnU7H6NGj45133klcu+yyy2Lo0KHb7ZErGJZt173ayNZvW0G+XNfzPVdRUVGV711TuXrlc6fEiNzPsq3wX1N//xHZv2/5fP8AAAAAAAAAAFBfBCZpNG6//fZ4/vnnE/Xhw4fHd77znSr1KC0tzVrPFb6rqZqE0rLNlu+5cgXw8hmYy/U9LiwszNs9InJ/b3Ldf1vX6mK2hvD+I2oW5gQAAAAAAAAAgJ2BwCSNwq9//et45JFHEvWhQ4fGz372syr3yRVAKy8vr/FsVe23vd0Cs81WF3NF5Hcnw1zhw3w/S0VFRdb6tp4l1/vP1aumGur7z9VzR+xkCQAAAAAAAAAAdU1gkp3eI488Ej//+c8T9b322isefPDBaNmyZZV75frspk2bajxfVfsVFxdvc0222epirojtz1YduXrl+1k2btyYtb6tn4dc13L1qqmG+v5z9czn+wcAAAAAAAAAgPoiMMlO7Xe/+13cdtttifqAAQPi4YcfjrZt21arX67A3Lp162o0Xy4lJSVVvve2rmfrUxu5+lUndLo9LVq0qNa9aypXv22F/3I9Z13M1hDef66e+Xz/UF3l5eWxfPnyHbKjKgAAOwe/EwIANG1+HwQAwO+E5JPAJDutP/zhD3Hrrbcm6gMGDIixY8dGly5dqt2zQ4cOWetr166tdq9tydavU6dO21yTbbZPP/00bzNF5H7O7c1WHc2bN49WrVol6nXxLO3bt895JHjEzvf+S0pK8rrL5KZNm2L9+vXVng12pCVLlsSQIUNiyZIl9T0KAAD1xO+EAABNm98HAQDwOyH5VFTfA+yMVq1aFW+99VYsXbo0UqlU9OzZMwYNGhQ9evSo79GajCeffDJuvvnmRH3PPfeM3/3ud9G5c+ca9e3Vq1fW+ooVK2LXXXetUc+tpdPpWLVqVZXvva3rq1atinQ6HalUKi+zrVixImu9d+/eeem/Zb958+Zl1FauXJnXe2TrV5PvcUTu70tN5XO2lStXRvfu3XfYXNu6NwAAAAAAAAAA7EyadGCyoqIi/vSnP8UBBxwQ/fv33+7nP/zww/j5z38eEydOjHQ6nXGtoKAghg0bFtdcc00MHDhwR41MRDz33HMxZsyYxDvYZ5994uGHH46OHTvWuHeuYOCyZctq3HNrq1atio0bN1b53pWyhdY2btwYK1eurNFumtnkes58ByZ79eqVCEwuXbo0r/fI9izbe45OnTpFcXFxYpfFfM+2fPnyas+WK7S4dOnSvAUmc73/Pn365KU/AAAAAAAAAADUpyZ7JPeyZcvi7LPPjhtuuCGuu+667X7+tddei2984xvxwgsvREVFRaTT6Yyv8vLyeO211+KMM86IJ598sg6eoGmaOHFi/PCHP4yKioqM+pAhQ+L3v/99rcKSEZ8H5rIdffzvf/+7Vn23tGDBgqz1AQMGbHNdrlBvrn41sXDhwkStW7du0bZt27zdIyL7s+TzOSKyP8v2vscREbvvvnuils/Zli1blvXY6+3Ntvvuu0dBQfJ/2Tv6Z7OoqChvu6sCAAAAAAAAAEB9apKByeXLl8d//ud/xvTp0yOdTse0adPi73//e87PT58+Pb773e/GmjVrNh9/nO0rIqK0tDRuuOGGePnll+vqcZqMSZMmxdVXXx3l5eUZ9YMPPjgefvjhvIX6Bg8enKj961//ykvviIj33nsvUevYsWP069dvm+sGDBgQrVu3TtTnzp2br9Fi/vz5idqQIUPy1r/SoEGDErUPPvgg1q1bl5f+GzZsiA8++CBR33///be7dke//2zf44KCgqz33VKbNm2yhjl39M/mwIEDo7i4OG/3AAAAAAAAAACA+tLkApMVFRVx1VVXxaJFiyIiIpVKRTqdjvvuuy/r58vKyuKaa66JDRs2ZAQjt95hsrJXKpWKioqKGDVqVHz00Ud181BNwN///ve47LLLEkdZH3bYYfHrX/86a5CwprIF16ZNm5a3/tl6VSXIV1BQEPvtt1+iPnXq1LzMFfF5OHhrVZmturL1TKfTWe9fEzNnzkwEayOyv9uqfGbOnDmxYcOGvMyW7f0PGDAg2rRpU6PZ8vn+s822IwKzAAAAAAAAAABQH5pcYPLxxx+Pf/7zn5uDj5WmT58er776auLzf/jDH2LhwoWJoOTWtq5v2LAh7rrrrjxP3zS99dZb8d3vfjfKysoy6kcffXQ88MAD0bJly7ze77DDDkvUli5dGu+//35e+r/11luJ2uGHH16ltYceemii9uabb2b9mayuJUuWxOLFixP1I444ota9t9azZ8+sR1C//vrreen/xhtvJGqDBg2KTp06bXftIYcckjj6euPGjfHPf/4zL7O9+eabiVpt3v+MGTPis88+q/VcpaWlWQOrVZ0NAAAAAAAAAAAauiYVmCwtLY177703I/y4pa3DWul0Oh577LGcn892JHdlPZ1Ox5///OdYuHDhjniUJmPq1Klx8cUXJ3b3O/744+OXv/xlNG/ePO/3HDRoUPTu3TtRf+mll2rde968eYlQYmFhYRx77LFVWj98+PBEbfny5XnZAXPSpEmJ2sCBA6N///617p1Ntmd+8cUX89I727Mcf/zxVVrbtWvXGDp0aKKej/e/Zs2aePvtt2s825FHHpk4Hnvjxo3x17/+tdazvf7667F+/fqMWocOHeKQQw6pdW8AAAAAAAAAAGgImlRg8vnnn49PPvkkIj4PP1YGGyM+PxL3oosuyvj85MmT48MPP9z8+S1Vrt16Z8mt//z888/vkGdpCmbMmBEjRoyIkpKSjPo3vvGNuPPOO6OoqGiH3fuEE05I1P70pz/VeifHp59+OlE75JBDqrTzYUREnz59sh6R/MQTT9RqrlyznXjiibXum8vxxx+f2Ol1wYIFtd7Jcd68eTFz5syMWlFRUdawaS7Z3v+f//znWLduXa1me/755xPHyvfv3z/+4z/+o0rri4uL4ytf+UqivqPe//Dhw3fovzMAAAAAAAAAAKhLTSowOX78+M1/3jKo1adPnxg7dmx07Ngx4/P/93//l+ix5bp99903Ro8eHeeee24UFRUldppMp9MxceLEfD5CkzFnzpz49re/HWvXrs2of+tb34pbbrklcWRyvp1zzjmJ3SsXLVpUqwDsp59+Gk8++WSifsEFF1SrT7bPjx8/Pj744IMaz/bmm28mQoZt2rSJb37zmzXuuT277757fPnLX07Uf/WrX9Wq78MPP5yoHX/88dG9e/cq9zj55JOjc+fOGbXPPvssHn300RrPtWnTpvjd736XqOfj/b/55ptZd66sqoULF8bLL7+cUSsoKIjzzz+/xj0BAAAAAAAAAKChaTKByfXr18eUKVMSgcZUKhXXX399IiwZEfGPf/wj4+9b7kg5cODA+J//+Z8499xzY/To0fHTn/40Y/fByvu89957iWNu2bb33nsv/uu//itWr16dUb/wwgtjzJgxiV0Jd4Ru3brFKaeckqjfeeediRBnVd17772Jtfvvv3988YtfrFafo48+OnFM9saNG+MnP/lJjeYqLy+P2267LVE/66yzol27djXqWVWXXHJJovbaa6/F//7v/9ao38yZM+O5557LqBUUFCR2j92eli1bZg0L/vrXv65xMPWxxx6LRYsWZdR69uwZJ598crX67LPPPnHooYcm6jfffHNi98qquu2226K8vDyjduyxx0a/fv1q1A8AAAAAAAAAABqiJhOYnDdvXkaYqDLcuMcee8QRRxyR+Pxnn30Wc+bMyRrOS6VScckll2TsQHjSSSdFnz59Ep9Np9Mxd+7cfDxCk7Bw4cI4//zzY9WqVRn17373u3HNNdfU6SyXX355dOjQIaO2dOnSuOaaa6KioqJavf7v//4vHnvssYxaQUFBXHvttdWeq6CgIK677rpEfdKkSVl3V9yeu+++O2bNmpVR6969e9YwY77tv//+WY/9HjNmTPz73/+uVq+1a9fGqFGjEsG/s88+OwYMGFDt2c4999xEYHDdunVxxRVXVDsEPXv27Lj77rsT9R/96EfRrFmzas+Wbd3s2bPj1ltvrXavxx9/PP7yl79k1Fq1ahVXX311tXsBAAAAAAAAAEBD1mQCk9nCV6lUKo466qisn58yZcrmUFzlTpSVWrZsmXXdUUcdlbHLZKWtd5Uju0WLFsV5550Xy5cvz6h/85vfjMsuu6zO5+ncuXP86Ec/StRfeeWVuOqqq6K0tLQqRprvAAAgAElEQVRKfV599dW44oorEiHLc889NwYNGlSj2b70pS/FqaeemqjfcccdWY99zuWBBx6IX//614n6mDFjok2bNlXqcdttt8XAgQMzvvbbb79E6DWXa6+9Njp16pRRW716dZx//vlVDhuvWrUqLrzwwnj//fcz6r169Yorr7yySj221rJly7j55psToekZM2bERRddFGvWrKlSn5kzZ8a3v/3tRMjymGOOia997Ws1mm3AgAHxne98J1H/wx/+ED/72c8SodFcnnrqqbjpppsS9ZEjR0bv3r1rNBsAAAAAAAAAADRUTSYwufXxzpW2Ptq40uTJkxO1yuDk/vvvn7G7ZKW99tora6+aHuHclJSVlcW3v/3t+OijjxLXxo0blwjk1eZrr732iieeeKJKc33961+Ps846K1GfMGFCfP3rX49XXnkl526Ty5Ytix//+Mdx0UUXRUlJSca1gw46KK666qoqzZDL9ddfH/vuu29GLZ1Ox6233hojRoyId999N+faGTNmxH/913/FL3/5y8S1iy66KI4++ugqz/HJJ58kamVlZYlnzqVjx45x7733Jv5NLV26NE4//fS477774tNPP826tqysLJ566qk46aSTYvr06RnXWrVqFffdd1+0bt26ik+SlOs9vfXWW3HiiSfGs88+m/MY7NWrV8fdd98dZ555ZqxcuTLjWv/+/eOWW26p8VwRnx9nfuSRRybqv/3tb+Oss86Kf/7znznXvv/++zFy5MgYPXp0Ilx5wgknxH/+53/WajYAAAAAAAAAAGiIiup7gLqSK7zVpUuXrPVthY1y7QrYsWPHrPV169ZtZzpmz54dCxcurJN7pdPpWLZsWZU/f/3118eqVavif//3fzPq77//fnznO9+Jrl27xtChQ6N3795RVFQUn3zyScyZMydmzJiRNUw5cODArAHB6iouLo6HHnoozjnnnMQOqq+++mq8+uqrMWDAgBg0aFB07do10ul0LF++PKZNmxYLFizI2vPkk0+u8Y6MtTF06NC4/fbbY9SoURkBxNLS0rj33nvjwQcfjKFDh8aAAQOiTZs2sWHDhliwYEFMnjw5ayC5RYsW8Ytf/CL22WefWs82YsSIWL58eYwdOzajvmzZsvjBD34Qt9xySxx44IHRt2/faNGiRXz66acxb968mDp1atYwZc+ePeOhhx6Kdu3a1WquwsLCuOuuu+LCCy+Mt99+O+Pa9OnT45xzzok+ffrEF77whejRo0ekUqlYuXJlzJw5M+bMmZO15xe/+MW49dZbE7tqAgAAAAAAAABAY9BkApPNmjXLWt/6mNyIz0NaM2fOzBkayhWYrOoRxiRV9Xjr+lBYWBh333133HnnnfHwww8nrn/88cfxwgsvVKnXEUccEXfddVfefla6dOkSTzzxRFx++eXxj3/8I3F9/vz5MX/+/Cr1uvTSS+Oyyy6rt7Dc8OHDo3PnzvH9738/sSPsxo0b4/XXX4/XX399u306d+4c999/fwwZMiRvs1177bXRu3fvuP322xM7Mq5ZsyZefvnlKvXZb7/94le/+lV07do1L3O1atUqfv/738fo0aNj/PjxiesffPBBfPDBB1Xqdeqpp8aPf/zjnP+vBAAAAAAAAACAnV2TOZI717G8S5cuTdSmTp0amzZtiojPdyPc2uDBg7P2yrWLZXFxcVXHpIEqKCiIa665Jh555JHYbbfdqr2+Q4cOcdNNN8WDDz6Y92Btu3bt4uGHH44xY8ZE+/btq71+wIABMXbs2Lj88svzGpasSa+DDjooxo8fHyeccEKN7nfKKafE+PHj8xqWrHT++efHE088kfPf/7YUFxfHyJEj43/+53/yFpas1Lx587jzzjvjrrvuiu7du1d7fc+ePeOee+6JW265RVgSAAAAAAAAAIBGrcnsMNmrV6+s9VdeeSXOPvvsjNrf/va3jL9vGfzq2bNnzmO8lyxZkrVekxBbU9OlS5do0aJFnew0WVBQEH369KnR2kMOOSTGjx8fL730UowbNy4mT568OVybzZ577hmnnXZanHLKKbU+gnlbCgoK4lvf+laccMIJ8cwzz8RTTz0V//rXv3J+vqioKA466KA444wz4phjjomiopr/r6Bnz56JWvv27aNbt2416tetW7f4+c9/HiNGjIg//vGPMXHixMSOk1vq0KFDDB8+PM4888zYa6+9anTPqtp3331j3Lhx8eqrr8a4cePib3/7W5SVleX8fN++feOUU06J008/Pe9Bya0df/zxcdRRR8Xzzz8fTz75ZM4j4SM+/3kZNGhQnH766XHCCSdEy5Ytd+hsAAAAAAAAAADQEKTS2bZQbIQWL14cxxxzTEb4MZ1OR2FhYTzzzDOx5557RsTnu0R+9atfjZUrV27+TCqV2vzfr33ta3H33XdnvccPf/jDePbZZzffo3LN448/XqNd6Wj41q9fH++8804sWrQo1qxZE+Xl5dGuXbvo0aNHDB48ODp16lRvs61atSqmT58eS5cujU8//TQKCwujffv2seuuu8Z+++2X951PL7/88pg4cWJERIwcOTIuueSSvPRNp9Mxf/78mDNnTnzyySexbt26aN26dXTs2DH23nvv6N+/f70dI15WVhazZs2Kf//737F69eooKyuLtm3bRrdu3WLQoEE12vExX9auXRvTp0+PJUuWbA6cdujQIXr16hWDBw+Otm3b1ttsUB2LFy+OYcOGxRtvvBG77LJLfY8DAEA98DshAEDT5vdBAAD8Tkg+NZkdJnfZZZfo0qXL5iBkpfLy8rjwwgvjsssui44dO8ZvfvObWLFixeaQ5NYOPPDArP1LSkrilVdeSQS3UqlU9O/fP38PQoNSXFwcBx98cBx88MH1PUpCp06d4sgjj6yTe5WWlsYbb7wREZ/vFnruuefmrXcqlYo99tgj9thjj7z1zJfmzZvHkCFDdsgR4LXVtm3bOPTQQ+t7DAAAAAAAAAAAaDCaTGAyIuKoo46KJ554IiMMmUql4uOPP44xY8ZkfDbXxpuHHHJI1vrdd98dn376acbukhERAwcOjDZt2uTrEaBBeuGFFzbvYnjxxRdHq1at6nkiAAAAAAAAAACATAX1PUBdOu2007LWKwOUlV9b7hK55XHc//Ef/xH9+vVLrH/55Zdj7NixiV0pU6lUHHbYYXl/DmhoHn/88YiI6NWrV5x55pn1PA0AAAAAAAAAAEBSkwpMDho0KA499NCMUOSWO01WfuXaXfKss85K1MaPHx8jR47c3G/rsOWpp56a78eABmXu3LkxderUiIi49NJLo3nz5vU8EQAAAAAAAAAAQFKTCkxGRIwZMyaKi4sjIjJCk1t+VdoyBNm/f//4xje+kdFr8eLFcc0118SmTZs296n8byqVisMPPzx23XXXHf5MUJ8qd5fs169f4t8IAAAAAAAAAABAQ9HkApN9+/aNO+64IwoKPn/0yl0lt7ZlmLJly5Zx2223bV5TqXv37tG+ffvEmoiIwsLCGDVq1I54BGgwSkpK4rnnnouIiMsvvzwKCwvreSIAAAAAAAAAAIDsmlxgMiLi6KOPjvvvvz/atGmT9UjuLcOSrVu3jl/+8pexzz77JPo0b948RowYkbErZeXukpdeemn079+/bh4I6sn8+fNj/fr1ceSRR8bw4cPrexwAAAAAAAAAAICcmmRgMiLiy1/+crzwwgtx5plnRqtWrRLHchcWFsZxxx0XzzzzTBx++OE5+5xzzjnRtWvXjNqxxx4bl1566Y5+BKh3gwYNitmzZ8eDDz6YdadWAAAAAAAAAACAhqKovgeoT126dIkbb7wxrr322nj33XdjyZIlUVFREV26dIl99903WrVqtd0eLVq0iEsuuSRuvvnmSKVScc4558To0aPrYHoAAAAAAAAAAACgqpp0YLJSs2bNYtCgQTFo0KAarT/jjDPivffei2OPPTYOOuigPE8HAAAAAAAAAAAA1JbAZB40a9YsxowZU99jAAAAAAAAAAAAADkU1PcAAAAAAAAAAAAAADuaHSazWLRoUbz33nuxdu3aWLt2baxbty6Kioqibdu20bp16+jYsWPstdde0bFjx/oeFQAAAAAAAAAAAKgCgcmI+PTTT+O5556LF198Md5999347LPPqrSuR48esd9++8Xxxx8fX/nKV6KoyLcTAAAAAAAAAAAAGqImnfBbvXp13HHHHfH8889HWVlZRESk0+kqr//oo49i6dKl8dJLL0WHDh3iW9/6Vlx88cXRrFmzHTUyAAAAAAAAAAAAUAMF9T1AfXnxxRfjuOOOi6effjpKS0sjnU5HOp2OVCpVra/KdZ988kncf//9ccopp8Q777xT348HAAAAAAAAAAAAbKFJBiafeuqpuOKKK2LVqlWJkGREbA5Bbu8rIhLhyfnz58d5550X//znP+vzEQEAAAAAAAAAAIAtNLnA5MsvvxzXX399VFRU5AxJVlWu8OT69evj4osvjtmzZ++QZwAAAAAAAAAAAACqp0kFJj/77LO48cYbN4clI6LaIclctg5OlpSUxHXXXZeX3gAAAAAAAAAAAEDtNKnA5EMPPRQrVqzICEtubcsjtrf3lc2WPd99990YN27cjnkYAAAAAAAAAAAAoMqaVGDy+eefzxmWzHU897a+qhKefOqpp3bsQwEAAAAAAAAAAADbVVTfA9SVWbNmxUcffRSpVCprWDLi84Bj+/btY9iwYdG/f//o06dPtGrVKoqLi6OsrCxKSkpi5cqVsWDBgpgxY0a8++67m9dv2bcyTJlOp2PmzJmxdOnS6NGjR90+MAAAAAAAAAAAALBZkwlMLly4MFGrDDWm0+nYddddY9SoUXHkkUdGYWFhlXouW7YsHnvssfjDH/4Q69evzxrGjIiYPXu2wCQAAAAAAAAAAADUoyZzJPfy5csz/l4ZbkylUnHQQQfFM888E0cffXSVw5IREd27d4+rrroqnnzyyejTp8/mvlv7+OOPazc8AAAAAAAAAAAAUCtNJjBZUVGx+c9bhhrbtWsXd999d7Rq1arGvfv37x/33ntvNGvWLNE/ImLNmjU17g0AAAAAAAAAAADUXpMJTHbu3Dnj75W7S5544onRqVOnWvffa6+94qtf/WrWI7nbtm1b6/4AAAAAAAAAAABAzTWZwGTPnj2z1ocOHZq3exx++OFZ6926dcvbPQAAAAAAAAAAAIDqazKByS984QvRvn37RL1jx455u0fXrl0TtYKCgryGMgEAAAAAAAAAAIDqazKByaKiohg+fHjiyOy1a9fm7R5b9qo88nvIkCFZg5oAAAAAAAAAAABA3WkygcmIiO9///uJ8OL06dPz1n/WrFmJ2sUXX5y3/gAAAAAAAAAAAEDNNKnAZOfOnWP06NGbd39Mp9PxzDPPxIYNG2rdu7S0NJ555pnNfVOpVBx++OFx2GGH5WFyAAAAAAAAAAAAoDaaVGAyIuLkk0+OESNGbA41rly5Mm6++eZa9/35z38ey5cv3/z3vn37xh133FHrvgAAAAAAAAAAAEDtNbnAZETEVVddFUOHDo10Oh3pdDqefvrpGDVqVEbgsTrGjRsXY8eOzdhd8s4774x27drleXIAAAAAAAAAAACgJorqe4C6dOmll8aUKVMinU7HunXrIpVKRUREOp2O559/PiZMmBBdunSJoqLqfVuWLl2aqF188cVRXFxcpfX77bdf3H333dW6JwAAAAAAAAAAAFB1TSowOWnSpIj4PCC5pcqdIcvLy2PZsmU16l3Zo7L/qlWrqrx2yZIlNbonAAAAAAAAAAAAUDVNKjBZeVz2ljtLblmvbe8tVbXf1usAAAAAAAAAAACA/Cuo7wEaCsFFAAAAAAAAAAAAaLya1A6TlXKFI/MZmqxKr9ruagkAAAAAAAAAAABUjR0mAQAAAAAAAAAAgEavSe4waWdHAAAAAAAAAAAAaFqaVGCyqKgoysvL83r0NgAAAAAAAAAAANDwNanA5CWXXBJvvfVWgwtMDhw4sL5HAAAAAAAAAAAAgEatSQUmv/e979X3CAAAAAAAAAAAAEA9KKjvAQAAAAAAAAAAAAB2NIFJAAAAAAAAAAAAoNETmAQAAAAAAAAAAAAaPYFJAAAAAAAAAAAAoNErqu8BamPjxo2RTqcT9aKioigokAUFAAAAAAAAAAAAPrfTBiZPPPHEmD9/ftZrqVQqTj755Lj11lsz6qeddlrMmjWrLsaLiIiCgoI46qij4t57762zewIAAAAAAAAAAABJO+02jPPmzYt0Op31q6KiIsaPH59YM3PmzJxrdsRXeXl5TJo0qR6+OwAAAAAAAAAAAMCWdtodJiM+30kym8qwYnXW7AjbmgMAAAAAAAAAAACoOzt1YDLi81DilqoSiNx6zY5Ql8FMAAAAAAAAAAAAYNt22iO5AQAAAAAAAAAAAKpKYBIAAAAAAAAAAABo9Hb6I7lrcvS147IBAAAAAAAAAACgadlpA5OVocd0Op31emFhYaJWUFAQFRUVO3SurRUV7bTfYgAAAAAAAAAAAGg0dto03wUXXBAzZszIGpgsLCyMYcOGJerXXHNNzJ07ty7G22zIkCF1ej8AAAAAAAAAAAAgaacNTI4aNaraa84///z8DwIAAAAAAAAAAAA0eAX1PQAAAAAAAAAAAADAjiYwCQAAAAAAAAAAADR6ApMAAAAAAAAAAABAo1dU3wPUlXnz5sWFF14YGzZsyHp99913j8cff7yOpwIAAAAAAAAAAADqQpMJTP7973+P5cuX57y+Zs2aOpwGAAAAAAAAAAAAqEtNJjBZXl4eERGpVCqjnk6nI5VKxcCBA+tjLAAAAAAAAAAAAKAOFNT3AHVl11133eb1Ll261NEkAAAAAAAAAAAAQF1rMoHJYcOGRYsWLTb/PZ1OZ1xv06ZNXY8EAAAAAAAAAAAA1JEmE5hs27ZtnHTSSYmgZKW1a9fW8UQAAAAAAAAAAABAXWkygcmIiO9///vRrl27iIhIpVIZ1+bMmVMfIwEAAAAAAAAAAAB1oEkFJrt16xa33HJLxi6TqVQq0ul0TJ06NRYvXlyP0wEAAAAAAAAAAAA7SpMKTEZEHH300fHtb387cTR3Op2OW2+9tZ6mAgAAAAAAAAAAAHakJheYjIi4+uqr47LLLtscmqzcZXLSpEnxwAMP1PN0AAAAAAAAAAAAQL41ycBkRMSll14aN9xwQyI0ee+998ZVV10V//rXvxK7UAIAAAAAAAAAAAA7p6L6HqAu3XfffTF9+vTNf//00083/zmdTm8OTU6YMCEmTJhQ6/ulUqk49thj46677qp1LwAAAAAAAAAAAKDmmlRg8v77789ar9xJcsvQZD6k0+l48cUX89ILAAAAAAAAAAAAqLkmFZisSiCy8jP5ul95eXleegEAAAAAAAAAAAA116QCk5W2DERmC0/mY4fJfIUuAQAAAAAAAAAAgNprkoHJfB25DQAAAAAAAAAAAOwcCup7AAAAAAAAAAAAAIAdrUnuMOm4bAAAAAAAAAAAAGhamlRgMpVK1flx3EVFTepbDAAAAAAAAAAAAA1Sk0rzjRo1KubNm1en9xwyZEid3g8AAAAAAAAAAABIalKByQsuuKC+RwAAAAAAAAAAAADqQUF9DwAAAAAAAAAAAACwowlMAgAAAAAAAAAAAI3eTnsk94wZM+K9995L1Pv06RNDhw6th4kAAAAAAAAAAACAhmqnDUyed955sX79+kS9RYsWMW3atHqYCAAAAAAAAAAAAGiodtrAZElJSaRSqUin0xn10tLSepoIAAAAAAAAAAAAaKh22sBkpVQqtfnPW4cnAQAAAAAAAAAAACIiCup7gNpKp9OCkgAAAAAAAAAAAMA27fSBSQAAAAAAAAAAAIDtEZgEAAAAAAAAAAAAGj2BSQAAAAAAAAAAAKDRE5gEAAAAAAAAAAAAGj2BSQAAAAAAAAAAAKDRE5gEAAAAAAAAAAAAGj2BSQAAAAAAAAAAAKDRK6rvAXaEif+fvTuPrrK82wX820lImBEnEETmIOCMKIJK1FprFcda5wHrDK1D9XQ47Wm/83X6qrXHFtQqgiBOOOKsVQEVVGRQRAJBEESQeR7CkOzzh0pFVBCy8yY717WWy7X23nnue2kgutbN+7zwQuy2225J14hUKhUtWrSIJk2aJF0FAAAAAAAAAAAAarSsGUym0+nNf7/++usTbvMfDRs2jLfffjvpGgAAAAAAAAAAAFCjZc1g8su+GE9WBStXrky6AgAAAAAAAAAAANR4WTmYTKVSSVeIiKo13AQAAAAAAAAAAICaLCsHk1VhqFhVRpsAAAAAAAAAAABARE7SBQAAAAAAAAAAAAAyzWASAAAAAAAAAAAAyHoGkwAAAAAAAAAAAEDWy0u6QCakUqmkKwAAAAAAAAAAAABVSFYOJtPpdNIVNsvJ8RBPAAAAAAAAAAAASFrWDCZTqVSk0+lIpVLRs2fPaNy4cdKVIiKic+fOSVcAAAAAAAAAAACAGi9rBpNfdueddyZdAQAAAAAAAAAAAKhC3BcNAAAAAAAAAAAAZD2DSQAAAAAAAAAAACDrGUwCAAAAAAAAAAAAWc9gEgAAAAAAAAAAAMh6BpMAAAAAAAAAAABA1jOYBAAAAAAAAAAAALKewSQAAAAAAAAAAACQ9QwmAQAAAAAAAAAAgKxnMAkAAAAAAAAAAABkvbykC+ysVCqVdAUAAAAAAAAAAACgiqu2T5hs1apVpNPpLf6KiNh9990TbgYAAAAAAAAAAABUNdX2CZPDhw+PxYsXb/V6o0aNEmgDAAAAAAAAAAAAVGXVdjBZUFAQzZs3T7oGAAAAAAAAAAAAUA1U2yu5AQAAAAAAAAAAALaXwSQAAAAAAAAAAACQ9QwmAQAAAAAAAAAAgKxnMAkAAAAAAAAAAABkPYNJAAAAAAAAAAAAIOsZTAIAAAAAAAAAAABZz2ASAAAAAAAAAAAAyHoGkwAAAAAAAAAAAEDWM5gEAAAAAAAAAAAAsp7BJAAAAAAAAAAAAJD1DCYBAAAAAAAAAACArGcwCQAAAAAAAAAAAGQ9g0kAAAAAAAAAAAAg6xlMAgAAAAAAAAAAAFnPYBIAAAAAAAAAAADIenlJFwAAAAAAAAAAAIAvrF2+JmaNnREfvf1hzBj/YXRe0S5G3z4iOh+5f3T+wYGRk+s5gewYg0kAAAAAAAAAAAASVV5WHlNemhSjB42M94aPj7KNZZvfax3NY8T/vBAj/ueF2KNtkzju2h/EkZcfG7UKaiXYmOrIYBIAAAAAAAAAAIBELJqxIEYPGhVvDn4tls9dul2ff+hng2Pik+Pi6sevjzoN61ZCS7KFwSQAAAAAAAAAAACVZv2a0pjw2NgYM2hUlIwq3qEzpr36Qfyt6L/j2hd/FQ32aFjBDclWBpMAAAAAAAAAAABkVDqdjlljZ8TogSPjnYfejNJV63b6zDnvzo5Hb7o/et97dQU0pCYwmAQAAAAAAAAAACAjVi5cEW/f90aMHjQyPp0yt8LPf2vI61F0zfHR+rB2FX422cdgEgAAAAAAAAAAgApTtqksPnjhvRg9cGRMemZilG8qy2jes394Ivo+dVNGM8gOBpMAAAAAAAAAAADstPnT5sWYQaPizSGvx8r5yystd+aY6ZFOpyOVSlVaJtWTwSQAAAAAAAAAAAA7pHR1aYwf9laMHjQyZowuSaTDmqWrY9GMBbFnu6aJ5FN9GEwCAAAAAAAAAACw3dLpdMwYUxJjBo6KccPejPVr1iddKZbNWWIwyTYZTAIAAAAAAAAAALBNKz5dFm8OeT3GDBoVC0o+TbrOFho1a5x0BaoBg0kAAAAAAAAAAAC+VtnGTfH+sxNj9KBRMfm5d6O8rDzpSl9rl+a7Jl2BasBgEgAAAAAAAAAAgC3Mm/JJjBk4Kt4a+nqsWrgy6TrfqsXBraJ2/dpJ16AaMJgEAAAAAAAAAAAg1q1cG+889GaMGTQqPnr7w6TrbLfvXf/DpCtQTRhMAgAAAAAAAAAA1FDpdDqmvzY1Rg8aGeMfeTs2rtuQdKXvpHGL3eLQH3dLugbVhMEkAAAAAAAAAABADbPskyXx5uDXY8y9o2LRjAVJ19khBfVrx9WPXx95+WZwbB/fKQAAAAAAAAAAADXAxvUbY9LTE2L0wJEx5aVJkS5PJ11ph+XWyo2rHrs+WnZpk3QVqhGDSQAAAAAAAAAAgCz2yaSPY/TAkfH2/W/EmiWrk66z0zp+b78469YLo/l+LZKuQjVjMAkAAAAAAAAAAJBl1i5fE+88OCbeGDgyPh7/UdJ1KkTH7+0Xx/z0hDjg5EMilUolXYdqyGASAAAAAAAAAAAgC5SXl8e0EVNizKCRMfHxd2Jj6cakK+20Rns3jrHLJ8Y/X7gj9u9+YNJ1qOYMJgEAAAAAAAAAAKqxJbMXxZh7X4s37x0VS2YvTrrOTssrqBUHn9E1evTuGfXaN4wjunePXVrsmnQtsoDBJAAAAAAAAAAAQDWzsXRDvPvkuBg9aFRMfXlypNPppCvttH26tI4evYui67lHRL3G9SMiYs6cOQm3IpsYTAIAAAAAAAAAAFQTH0/4KEYPHBljHxgda5evTbrOTqu3a/04/Pwe0f3SomhxYMuk65DlDCYBAAAAAAAAAACqsNVLVsXYB8bEmEEjY867s5Ous9NSqVR0OuGA6NG7ZxxwSpeoVVAr6UrUEAaTAAAAAAAAAAAAVUx5WXkUv/x+jB40Kt57clxs2rAp6Uo7bfc2e0aP3kXR7aKjYtcWuyVdhxrIYBIAAAAAAAAAAKCKWLlwRYzs91KMGfxaLJuzJOk6O61Wnfzo8qPDonvvomh/9L6Rk5OTdCVqMINJAAAAAAAAAACAhG1cvzFe+PPw+Petz8X61aVJ19lprQ9vF91794yuZx8RdRrVTboORITBJAAAAAAAAAAAQKJKV62L20+/Naa9+g5uWWcAACAASURBVEHSVXZKgz0axuEXHBk9Li2KZp33TroObMVgEgAAAAAAAAAAICEb1q6P//f9P8dHb3+YdJUdkspJxX4/PCh69C6K/U86OPLyTdKounx3AgAAAAAAAAAAJKC8vDwGXXxHtRxL7tm+afToXRTdLjoqdmnWOOk6sF0MJgEAAAAAAAAAABLw1G8fiQmPjU26xnYrqFcQXc7qFj0u7Rlte3SIVCqVdCX4TgwmAQAAAAAAAAAAKtmbQ16L5/88POka26Vt98LocWlRdDnr8KjdoE7SdWCHGUwCAAAAAAAAAABUog/fmBpDrxiQdI1v1bBJo+h20dHRo/fR0XTf5knXgQphMAkAAAAAAAAAAFBJFs1cEHec8ffYtGFT0lW2kpOXGwecfHB0790z9vvBgZFby7yM7OI7GgAAAAAAAAAAoBKsW7E2+ve6JVYvXpV0lS3s1bF5dO/dM7pdeFQ0bNIo6TqQMQaTAAAAAAAAAAAAGVa2qSzuOucf8Wnx3KSrRERE7QZ14tCzu0WPS4ui9eHtIpVKJV0JMs5gEgAAAAAAAAAAIMOGXX9fTHlxUtI1orBnx+jeu2cccuZhUVCvdtJ1oFIZTAIAAAAAAAAAAGTQiP4vxcj+LyWWv0uzxnHExUdH9949Y892TRPrAUkzmAQAAAAAAAAAAMiQD158L4ZdN6TSc3Nr5caBp3aJHr2LotP3D4ic3JxK7wBVjcEkAAAAAAAAAABABsyb8kncdfY/orysvNIym+/fInpcWhSHn98j6u/esNJyoTowmAQAAAAAAAAAAKhgqxatjP69bo7SlesynlWnUd047Nzu0f3SomjZpXWkUqmMZ0J1ZDAJAAAAAAAAAABQgTau3xh3nvn3WPzRoozm7Htc5+jRuygOOr1r5NfJz2gWZAODSQAAAAAAAAAAgAqSTqdj6JUD4sM3pmUsY6+OzaPP0zfGHm2aZCwDslFO0gUAAAAAAAAAAACyxQt/eSreGvJ6xs6vv3sDY0nYQQaTAAAAAAAAAAAAFWDC42Pjyf/9cMbOz8vPi6sfv95YEnaQwSQAAAAAAAAAAMBOmj1+Zgy88PaMZlxw12XR7sh9M5oB2cxgEgAAAAAAAAAAYCcsm7s0bj/1b7Fx3YaMZfzgl6fEERcdnbHzoSYwmAQAAAAAAAAAANhB69eUxu2n3hLL5y3LWMbBZ3SNU//w44ydDzWFwSQAAAAAAAAAAMAOKC8vj0EX3xEfT5iVsYx9urSO3oOvjpwcUy/YWX4VAQAAAAAAAAAA7IDhvxkWEx9/J2Pn79KscVzz5M+joF7tjGVATWIwCQAAAAAAAAAA8B29Ofi1eOEvT2Xs/Py6BdHnqRujcfNdM5YBNY3BJAAAAAAAAAAAwHcw/fWpcd8Vd2c049L7rol9Dmmd0QyoaQwmAQAAAAAAAAAAttOiGQvijjNujbKNZRnLOP1P58TBp3fN2PlQUxlMAgAAAAAAAAAAbIe1y9dE/1NuiTVLVmcs44iLj44TftErY+dDTWYwCQAAAAAAAAAAsA1lm8ri7nP+EZ8Wz81YRruj9o3z7/xJpFKpjGVATWYwCQAAAAAAAAAAsA3DrhsSU156P2Pn795mz7j6seuiVkGtjGVATWcwCQAAAAAAAAAA8C1G9HsxRt7+74ydX6dR3ej79E1Rf/eGGcsADCYBAAAAAAAAAAC+0eQX3ouHrxuSsfNzcnPiiod/Fnt1bJ6xDOAzBpMAAAAAAAAAAABfY94Hn8Td5/wj0uXpjGWcfdvF0en7B2TsfOA/DCYBAAAAAAAAAAC+YtWildH/lJujdOW6jGUc0/eEKLrm+IydD2zJYBIAAAAAAAAAAOBLNq7fGHeccWss/mhRxjI6/+DAOOvWCzJ2PrA1g0kAAAAAAAAAAIDPpdPpGHrF3TFjdEnGMvbq1Dwuf/CnkZuXm7EMYGsGkwAAAAAAAAAAAJ97/s/D46373sjY+fV3bxB9n74p6jSqm7EM4OsZTAIAAAAAAAAAAETEhMfGxvDfDMvY+Xn5eXH1EzfE7q33zFgG8M0MJgEAAAAAAAAAgBpv1riZMfCi2zOaceGAK6Jdjw4ZzQC+mcEkAAAAAAAAAABQoy37ZEncfuotsXHdhoxlnPjr06LbBUdm7Hxg2wwmAQAAAAAAAACAGmv9mtLof+rfYsWnyzOWcciPDotT/u+PMnY+sH0MJgEAAAAAAAAAgBqpvLw8Bl54e8yZOCtjGS0PbRO97706cnJMtSBpfhUCAAAAAAAAAAA10pO/fjjefXJcxs7fpfmucc2TP4/8ugUZywC2n8EkAAAAAAAAAABQ44y5d1S8+NenM3Z+ft2C6PPUjbFLs8YZywC+G4NJAAAAAAAAAACgRil5rTiGXjkgY+enUqn4ydBrYp+DW2UsA/juDCYBAAAAAAAAAIAaY9GMBXHnGX+Pso1lGcs4/c/nxEGndc3Y+cCOMZgEAAAAAAAAAABqhLXL10S/XjfHmqWrM5bR/ZKe8f2bTs7Y+cCOM5gEAAAAAAAAAACyXtnGTXHX2f+I+VPnZSyj/dH7xvl3/iRSqVTGMoAdZzAJAAAAAAAAAABktXQ6HQ9fOySK//1+xjL2aNskrnr0usjLz8tYBrBzDCYBAAAAAAAAAICsNqLfSzHqzpczdn6dRnWj79M3Rv3dG2YsA9h5BpMAAAAAAAAAAEDWmvz8uzHs+iEZOz8nNyeufOTaaLpv84xlABXDYBIAAAAAAAAAAMhKcyfPibvP+Weky9MZyzjnn5dEx+/tn7HzgYpjMAkAAAAAAAAAAGSdlQtXRP9TbonSVesylnHsz34QPa/6XsbOByqWwSQAAAAAAAAAAJBVNpZuiDvP+HssmbUoYxn7nXhgnPW3CzJ2PlDxDCYBAAAAAAAAAICskU6n474rBsSMMSUZy2jWee+47MGfRk6u+RVUJ37FAgAAAAAAAAAAWeP5Pw2Pt4e+kbHzG+zRMPo8fVPUaVg3YxlAZuQlXQAAAAAAAAAAAPjsyYgLp8+PaSOnxKy3Z8TST5bEinnLov4eDaNph72i5aFtYv+TDo5GTXdJumqVNf6Rt2L4b4dl7Py8/Ly4+okbYvdWe2QsA8gcg0kAAAAAAAAAAEjAlweSJaOKo2TklFjx6fKv/WzJyCkR/3olIiJadW0TB5x8SBzQ65DY+8CWkUqlKrN2lTXrnRkx6JI7M5px0T1XRNvuhRnNADLHYBIAAAAAAAAAACpBOp2OhR/Oj5KRxVEyakqUjCyO5fOWfedzZr0zM2a9MzOe+t2j0bjFbpvHkx2KOkat2vkZaF71LZ2zJPqf+rfYuG5DxjJO+s3pcfj5R2bsfCDzDCYBAAAAAAAAACAD0ul0LJqxIEpGFse0LwaSc5dWaMayOUti1B3/jlF3/DsK6hVEx+8fEAecfHDsf9LB0XDPRhWaVVWVri6N20+9JVbO//qnc1aELmcdHif//syMnQ9UDoNJAAAAAAAAAACoAOl0OhbPXBjTRk757JrtDAwkv836Nevj3SfeiXefeCdSqVS0OrxtHHDyIXFgr0Oi2X4tsvLq7vLy8hh4Yf+Y8+7sjGW06tomLhl0VeTk5GQsA6gcBpMAAAAAAAAAALAD0ul0LP5oYUwbMSVKRhVHycgpseyTyhtIfpt0Oh0fvfVhfPTWhzH8N8Nit1Z7bL66u7Bnx8jLz47Z0BO/ejjeGz4+Y+c33nvXuObJn0d+3YKMZQCVJzt+5wMAAAAAAAAAgAz7YiBZMrI4SkZNiWkji2PZnCVJ19ouS2YtihH9XowR/V6M2g3qRKcT9o8DTj4k9v/hQVF/94ZJ19showeNjJdufjpj5xfUK4g+T90YjfZqnLEMoHIZTAIAAAAAAAAAwDdY/NFnV2x/9gTJ4lj68eKkK+200lXrYsKjY2PCo2MjlZOKNke03/z0yb06Nq8WV3eXjCqO+6+6J2Pnp1KpuHRon2hxUKuMZQCVz2ASAAAAAAAAAAA+t3jWoigZ+Z8rtpfMrv4DyW+TLk/HjNElMWN0STzxq4di9zZ7/ufq7qP3jdxaVW9etPDD+XHnmX+Pso1lGcs443/OjYNOPTRj5wPJqHq/owEAAAAAAAAAQCVZMntRlIws/uwpkjVgILkti2cujFf/8UK8+o8XonbDOrHfiQfGAScfEvudeFDU27V+0vVizbLV0a/XzbFm6eqMZfToXRTH//ykjJ0PJMdgEgAAAAAAAACAGmPpx4tj2sgpnw8ki2PJrEVJV6qySleui3EPvxXjHn4rcnJzom2Pws1Pn2zaoVml9ynbuCnuPvsfsWDapxnLKOzZMc6749JqcS058N0ZTAIAAAAAAAAAkLWWzlkS00Z8ECUji6Nk1JRY/JGB5I4oLyuP6a9NjemvTY3H/tcDsWf7ppvHk+2O7BC5ebkZzU+n0/HQzwZH8cuTM5axZ7smceWj10VevkkVZCu/ugEAAAAAAAAAyBpL5yyJks+fHjlt1JRYPHNh0pWy0sLp8+Plvz8XL//9uajbuN7mq7s7/+DAqLtLvQrPG/HPF+O1f71S4ed+oe4udaPP0zdF/d0aZCwDSJ7BJAAAAAAAAAAA1dayT5bEtJHFn40kRxXHohkLkq5U46xdtibGPjAmxj4wJnLycqP9UR02P31yz3ZNd/r895+bGMNuuK8Cmn69nNycuOKR6xK5ZhyoXAaTAAAAAAAAAABUG8vmLo2SkVNi2ggDyaqofFNZTBvx2b+fR34+NJru22zzeLLNEe2/89XdcyfPiQHn9ot0eTpDjSPO7d87Oh63X8bOB6oOg0kAAAAAAAAAAKqsZXOXxvRRxZ8PJKfEwg8NJKuT+VPnxfyp8+KlW56JervWj/1+eNBnV3efcEDUaVT3W7925cIV0b/XzVG6al3G+h137Ylx9BXHZex8oGoxmAQAAAAAAAAAoMpYPm/ZZ0+Q/PyK7YXT5yddiQqyZunqeHvoG/H20Dcit1ZuFPbsuPnpk7u33nOLz24s3RB3nH5rLJm9OGN99j/p4PjRLedn7Hyg6jGYBAAAAAAAAAAgMSs+XRbTRhZHyecDyQUlnyZdiUpQtrEsil+eHMUvT46HrxsSzTrvvXk82frwdjHksrti5pvTM5bffP8WcdkDfSMnNydjGUDVYzAJAAAAAAAAAEClWfHpsigZVRwlI4tj2qgpsWCagSQR8z74JOZ98Em88D9PRe2GdaJ0Zeau4W6wZ8Po89SNUbtBnYxlAFWTwSQAAAAAAAAAABmzYv7yzwaSI6YYSG6nervWj/Y9O0aHnh2jcYvdYspLk2LSMxNj+dylSVerFJkcS+YV1Iqrn7ghdmu5R8YygKrLYBIAAAAAAAAAgAqzcsGKmDZyyuYrtudPnZd0pSqvbuN6UdizYxT27BgdjukczfbbO3Jy/nNV9MGnd43zbk/HnImz4r2nJ8SkZybEx+M/SrBx9XXxwCuj7RGFSdcAEmIwCQAAAAAAAADADlu5YMXnV2x/NpD8tHhu0pWqvLq71I32PTtGYc9O0eGYTtF8/xZbDCS/TiqVin0OaR37HNI6ev3uzFg+b1lMeuaz8eTUlyfHxtKNldS++jrpt2fEYed2T7oGkCCDSQAAAAAAAAAAttvKhSti+qjimDayOEpGTYlPpxhIbkvdXepG+6M7RmFRp+hQ1DGa779P5OR++0ByW3Zp1jiOvuK4OPqK42LD2vVR/MrkmPT0hJj0zMRYOX95BTXPHoee3S16/f7MpGsACTOYBAAAAAAAAADgG61atDJKRhXHtBFTDCS3U51GdTdfsV1Y1Cn2PmDnB5LfJr9uQRzYq0sc2KtLlJeXx8fjP/p8PDkh5rw7O2O51UWrw9rGxQOvilQqlXQVIGEGkwAAAAAAAAAAbPbFQPKLK7bnffBJ0pWqvDqN6kb7o/eNwp4do0NRp9j7wJYZHUh+m5ycnGjVtW206to2Tvm/Z8XSOUvi/S+u7n51SmxaX7Ou7m7cYre45smfR36d/KSrAFWAwSQAAAAAAAAAQA22evHKKBk1NaZ9MZCcPCfpSlVe7YZ1ov3R+0aHnp2isKhjtDioVWIDyW3ZtcVu0fPq46Pn1cdH6erSmPry+zHp6Ykx6dkJsWrhyqTrZVRBvYLo89SN0ajpLklXAaoIg0kAAAAAAAAAgBpk9eKVUfLa1CgZWRwlo6bE3PcNJLeldoM6/3mC5DGdqvRA8tvUrl87Djqtaxx0WtcoLy+PWWNnbL66O9u+D1KpVPzkgb7R4sCWSVcBqhCDSQAAAAAAAACALLZ6yaqY/trUmDZiioHkdqrdoE60O6pDdCjqFIVFnaLFQS0jNy836VoVKicnJ9p0ax9turWP0/54diyZvWjzeHLaiClRtrEs6Yo75cy/nhcH9uqSdA2gijGYBAAAAAAAAADIImuWro6SUcVR8vkV259M+jjpSlVeQf3a0f6oDlFY1Ck6FHWKFge3yrqB5Lbs1nKPOKbvCXFM3xOidNW6mPLS+zHpmQnx/rMTY/XiVUnX+06O/Mkx8b0bfph0DaAKMpgEAAAAAAAAAKjG1ixdHdNfK45pI4ujZFRxzJ30caTT6aRrVWmbB5I9O0VhUcfY55DWNW4g+W1qN6gTh5x5WBxy5mFRXlYeH739YUx6ekK89/T4+HTK3KTrfasOx3SKc/v3jlQqlXQVoAoymAQAAAAAAAAAqEbWLFsd01+bGiUji6Nk1JT45D0DyW0pqFcQ7Y7aNwp7dowORZ1in0NaRW4ts5ntkZObE227F0bb7oVx+p/PiUUzF2y+urtk1NQo31R1ru7es33TuPKR6yIv379b4Ov53QEAAAAAAAAAoApbs2x1fPj6tJg2YoqB5HYqqFcQbY/sEB0+f4Jkyy6tDSQryB5tmsRx154Yx117YqxbsTY+eHFSTHpmQkx+7t1Ys3R1Yr3qNq4XfZ++KertWj+xDkDV5ycBAAAAAAAAAEAVsrF0QxS/PDmmvvpBlIwqjk/enW0guQ35dQui3ZGFUdizU3Q4ppOBZCWp06huHPrjbnHoj7tF2aaymPnm9M1Xdy+Y9mml9cjJy40rH7kumhTuVWmZQPXkJwMAAAAAAAAAQBWwZunqeOa/Hosxg1+L0pXrkq5TpeXXLYi2PQqjQ9FnT5BsdWgbA8mE5eblRvuj9o32R+0bZ/71vFgw/dPPr+6eGB++PjXKy8ozln1e/96x77GdM3Y+kD38pAAAAAAAAAAASNj4R9+O+6+6J9ErjauyWnXyo12Pwigs6hQdijpFy0PbRF6+2UtV1qT9XnH8DSfF8TecFGuWrY4PXvjs6u4Pnn831i5fW2E5x113Yhx1+bEVdh6Q3fzkAAAAAAAAAABISOnq0hh23ZAYPXBk0lWqlM0DyZ6fP0Gya1sDyWqsXuP6cdi53eOwc7tH2cZN8eHoks+fPjkhFk6fv8PnHn/DSXHGX8+twKZAtvOTBAAAAAAAAAAgAbPHz4wB5/XbqcFYtqhVu1a0/Xwg2aGoY7Q6rJ2BZJbKrZUXHT5/UuhZf7sg5k+bF+89NT4mPTMxZoyeFuny9DbPyCuoFWf85Zw47toTK6ExkE38ZAEAAAAAAAAAqETl5eXx71uejeG/HRZlG8uSrpOIWrVrRZvuhZ8P5zpGy65to1ZBraRrkYCmHZpF05uaxQk39YrVS1bF5Offi0nPTIipL0/e6or6Bns0jCMvOyaO/dkPomGTRgk1Bqozg0kAAAAAAAAAgEqybO7SuPeSO2LqKx8kXaVSbR5I9uwYhUWdotVhBpJsrf5uDaLbBUdGtwuOjIiI1UtWxYJpn0akIpoU7hX1d2uQcEOgujOYBAAAAAAAAACoBO8OHxdDLrsr1ixZve0PV3N5BbWibff2UdizUxQWdYzWh7WNWrXzk65FNVN/twZRv7uRJFBxDCYBAAAAAAAAADJow9r18cjPh8Zr/3ol6SoZk1dQK9oc0T4Ke3aMDkWdovXhBpIAVD0GkwAAAAAAAAAAGTLn3Vlxz/n949PiuUlXqVB5+XmbB5KFRZ2iTbd2BpIAVHkGkwAAAAAAAAAAFay8vDxeve2FeOJXD8WmDZuSrrPT8vLzonW3dtGhqFMUFnWK1oe3i/w6BpIAVC8GkwAAAAAAAAAAFWjF/OVx7yV3xJSX3k+6yg77YiBZ2LNTdCjqGK27tTeQBKDaM5gEAAAAAAAAAKgg7z87MQZf+q9YtWhl0lW+k9xaudG6W/vo8KUrtvPrFiRdCwAqlMEkAAAAAAAAAMBO2rBuQzz2vx6Ikf1fSrrKdsmtlRutD28XhZ8PJNse0d5AEoCsZzAJAAAAAAAAALAT5k6eEwPO6xfzJs9Juso3yq2VG60OaxsdijoZSAJQYxlMAgAAAAAAAADsgHQ6HSP7vxSP3vRAbFq/Mek6W8jJy43Wh7eNwp6dokNRx2hzRPsoqFc76VoAkCiDSQAAAAAAAACA72jlwhUx5Cd3xfvPTky6SkR8PpA8rO1/rtjubiAJAF9lMAkAAAAAAAAA8B188OJ7ce8ld8bKBSsS65CTlxuturaJwp4do0NRp2jbo9BAEgC2wWASAAAAAAAAAGA7bFy/MZ741UPxyv97PrEOPXoXxaFnd4s23Qujdn0DSQD4LgwmAQAAAAAAAAC24dPiuTHgvH7xyXuzE8mvv3uDuHjglXHAyYckkg8A2cBgEgAAAAAAAADgG6TT6Xj9rldj2A33xcZ1GxLp0On7+8clg66KRns1TiQfALKFwSQAAAAAAAAAwNdYvXhlDLn87nhv+PhE8nNr5cbpfz4njrvuxMjJyUmkAwBkE4NJAAAAAAAAAICvKH5lctx78R2xfN6yRPKb7tssfnJ/39jn4FaJ5ANANjKYBAAAAAAAAAD43KYNm2L4bx+Jf9/yTKTT6UQ6HH3FcXHWrRdEft2CRPIBIFsZTAIAAAAAAAAARMSCkk9jwPn94uPxHyWSX2/X+nHRgMvjoNO6JpIPANnOYBIAAAAAAAAAqNHS6XSMHjgyHr52SGxYuz6RDh2O7Ry9B18djZvvmkg+ANQEBpMAAAAAAAAAQI21ZtnqGHrlgJjw6NhE8nPycuO0P/w4jr/xpMjJyUmkAwDUFAaTAAAAAAAAAECNVDKqOAZe2D+WfbI0kfw92zeNn9zfN1od2iaRfACoaQwmAQAAAAAAAIAapWzjpnj694/FC395KtLpdCIdevQuih/fdlHUrl87kXwAqIkMJgEAAAAAAACAGmPRjAUx4Px+MWvsjETy6+5SNy7412XR5axuieQDQE1mMAkAAAAAAAAAZL10Oh1v3fd6PNj33li/ujSRDu2P3jcuHXJN7LrP7onkA0BNZzAJAAAAAAAAAGS1dSvWxv3XDIx3HhyTSH5Obk70+v2P4ge/PCVycnMS6QAAGEwCAAAAAAAAAFnsw9HTYuAF/WPJ7MWJ5O/eZs/4ydA+0aZb+0TyAYD/MJgEAAAAAAAAALJO2aayeO4PT8Szf3gi0uXpRDp0u/DIOOefl0SdhnUTyQcAtmQwCQAAAAAAAABklcWzFsXAC/rHjDElieTXblgnzr/jJ3HYud0TyQcAvp7BJAAAAAAAAACQNcY+OCbuv/qeKF25LpH8tt0L49KhfWL3Vnskkg8AfDODSQAAAAAAAACg2itdtS4e/Om98daQ1xPJT+Wk4qTfnhE//N+nRW5ebiIdAIBvZzAJAAAAAAAAAFRrH739YQw4v18snrkwkfzdWu4elw7tE+16dEgkHwDYPgaTAAAAAAAAAEC1VF5WHi/85al4+vePRnlZeSIdup5zRJx3+6VRd5d6ieQDANvPYBIAAAAAAAAAqHaWzlkSAy/sH9Nfm5pIfkH92nFuv0ui24VHRSqVSqQDAPDdGEwCAAAAAAAAANXK+EffjqFX3B1rl69NJL/VYW3jsvv7xh5tmySSDwDsGINJAAAAAAAAAKBaKF1dGsOuHRKjB41MJD+VSsUPfnVq9PrdGZFby+QCAKobP70BAAAAAAAAgCpv1riZcc/5/WLh9PmJ5Dfee9e49L4+UdizYyL5AMDOM5gEAAAAAAAAAKqs8vLy+Pctz8aTvxkW5ZvKEulwyI8OiwvuvCzq7Vo/kXwAoGIYTAIAAAAAAAAAVdKyuUtj0MV3xLRXP0gkP79uQZx920XR49KiSKVSiXQAACqOwSQAAAAAAAAAUOW8++Q7MeSyu2PN0tWJ5O/TpXVcdn/faFK4VyL5AEDFM5gEAAAAAAAAAKqMDWvXxyM3DI3X7nolkfxUKhXH33hynPrfZ0VevlkFAGQTP9kBAAAAAAAAgCphzruzYsB5/WL+1HmJ5O/SrHFcMvjq6HjcfonkAwCZZTAJAAAAAAAAACQqnU7Hq/94IR7/xYOxacOmRDocdNqhceHdl0f93Rokkg8AZJ7BJAAAAAAAAACQmI2lG2LolQPirfveSCS/Vp38+PGtF8ZRVxwbqVQqkQ4AQOUwmAQAAAAAAAAAErFs7tK484xbY9Y7MxPJ3/vAlnHZA31jr47NE8kHACqXwSQAAAAAAAAAUOlmvjU97jzz77Hi0+WJ5B933Ylx+p/PiVoFtRLJBwAqn8EkAAAAAAAAAFCp3hz8Wgy9ckBs2rCp0rMbNmkUl9x7VXQ+4cBKzwYAkmUwCVkqnU7HzJkzo7i4OJYtWxZr1qyJBg0axG677RadO3eOFi1aJF1xu5WWlsakSZNizpw5sXz58igrK4vGjRtHs2bN4sADD4z69esn1m3p0qUxadKkWLBgQSxfvjzy8/Njl112iTZt2kSnTp2iVq3k/jTanDlzYvLkybF06dJYtWpV1KtXLxo3bhwdO3aMtm3bJtYLAAAAAACAmqtsU1k8dtMD8cptzyeSv/9JB8dF91wRDfdslEg+AJAsg0myyoYNG+LBBx+MYcOGxcyZM6O8vDxycnLirrvuiqOOOmqHzpw2bVr8+Mc/jtLS0gpu+x+9evWKW265pULOXHOwogAAIABJREFUmj59ejz44IPx7LPPxvLl3/zo+qZNm8YZZ5wR55xzTjRp0qRCsivSpk2b4tVXX42HHnooxo4dGxs3bvzaz+Xm5sZBBx0U5557bpxwwgmRn5+f8W6rV6+OJ598MoYNGxbTpk37xs/Vrl07evbsGeeff34cfvjhGe8VEfHJJ5/Eww8/HE8++WQsXLjwGz/XuHHj6NWrV5x33nnRunXrSukGAAAAAABAzbZm6eq4+9x/RvG/36/07LyCWvGjm8+Loj7fj1QqVen5AEDVYDBJVti0aVM8/vjj0b9//5g/f/4W75WXl8eiRYt2+OzZs2dndCwZEbF+/fqdPmPp0qVx8803xxNPPBHpdHqbn58/f37cfvvtMWDAgLjyyivjiiuuqJSx4fYYN25c/Nd//VeUlJRs87NlZWUxfvz4GD9+fPTr1y9+97vfRffu3TPSK51Ox6OPPhq33HLLt45Rv1BaWhovvvhivPjii9GjR4/43e9+Fy1btsxIt7Vr10a/fv1i8ODBsWnTtq8tWLZsWQwZMiSGDh0a5513Xlx//fWJPqkTAAAAAACA7Dbvg0/i9tP+FotmLKj07Gb7tYjL7u8Tzfffp9KzAYCqJSfpArAzysvL4+mnn44f/vCH8dvf/narsWRFWLZsWYWf+VUNGjTYqa+fOHFinHzyyfH4449v11jyyzZs2BD//Oc/46yzzooFCyr/f06+LJ1Ox2233Rbnn3/+do0lv2rWrFnRu3fv+Otf//qd/zlsy+rVq+PKK6+M3/zmN9s1lvyq0aNHR69eveL55yv+aoGZM2fGaaedFvfcc892jSW/rLy8PIYOHRqnnHJKTJ8+vcK7AQAAAAAAwHtPjY+/HPF/EhlLHtP3hPjV2/9tLAkARIQnTFKNvfzyy3Hbbbft0LDuu6iMwWSjRo12+GtfeeWVuP7667/2KZV169aNrl27RuvWraN27dqxcuXKmDZtWrz77rtRVla2xWenTp0aZ511Vtx7773Rpk2bHe6zo8rLy+MXv/hFPPXUU1/7fosWLeLggw/efH34ggULYuLEiTFnzpytPnvPPffEvHnz4tZbb42cnJ3fhS9dujQuueSSr71+O5VKRefOnaNz587RuHHj2LBhQ3z88ccxbty4rYaV69evj+uvvz4WL14cF1544U73ioh477334vLLL48VK1Zs9V5+fn506dIl2rVrF/Xq1Ys1a9bEhx9+GOPHj48NGzZs8dm5c+fGueeeG//617+iS5cuFdINAAAAAACAmi2dTsfzfxoeT/2fRyr8gSfb0mCPhnHxwCtj/5MOrtRcAKBqM5ik2nnzzTfj1ltvjUmTJlVKXmUMJps3b75DXzdp0qS44YYbthpLNmzYMK699tr40Y9+FLVr197q6xYtWhQDBgyI++67b4vh5IIFC+Kqq66Khx9+OBo3brxDnXbUzTff/LVjyYMOOihuuummOPTQQ7/268aNGxe33HJLTJw4cYvXn3/++dhzzz3j17/+9U712rBhQ/Tp0+drx5Knnnpq/PSnP40WLVps9d6mTZviueeei7/97W9bPPk0nU7HH//4x2jatGkcf/zxO9Vtzpw5cdVVV201liwoKIgrr7wyLrrooq99eumqVavivvvuizvvvHOL751Vq1bFNddcE4888kjss48/YQcAAAAAAMCOW7+mNAZf+q8Y/8jblZ7d6YQD4pJBV0WjprtUejYAULUZTFKtfPTRR3HJJZdUauZXB5MNGzaMESNGRP369Su1x1etWLEirrnmmigtLd3i9Xbt2sWAAQNir732+sav3WOPPeJXv/pVHHvssdG3b99YuXLl5vdmz54dN954Y9xzzz0Z6/5Vzz33XAwcOHCr1y+++OL4xS9+Ebm5ud/4tYceemjcf//9cfPNN8egQYO2eG/w4MFxwAEHxMknn7zD3f74xz/GhAkTtnitVq1a8Ze//OVbz83Ly4tTTjklevbsGX379o2xY8dufi+dTsdNN90Uw4cPj5YtW+5Qr40bN0afPn1i6dKlW7zepEmTuPvuu6NDhw7f+LUNGjSIa665Jr73ve/F5ZdfvsWgc/ny5dGnT5947LHHIj8/f4e6AQAAAAAAULMtmb0o7jj91pjz7uxKzc3Lz4vT/3JuHPuzEyrkJjoAIPv4LwSqla+OA7/QtGnTuOqqq+Khhx6q8MyvDib32muvxMeSERF//etfY9GiRVu81qxZsxg8ePC3jiW/7PDDD4877rhjq2HcG2+8EcOHD6+wrt9m+fLl8Yc//GGr188+++z49a9//a1jyS/k5ubGL3/5yzjvvPO2eu9Pf/rT115XvT3GjRsXDz/88Favb2ss+WWNGjWKu+66K/bbb78tXl+3bl38/ve/36FeERF33333Vk+9bNCgQQwaNOhbx5JfVlhYGPfee+9WV8KXlJTEgAEDdrgbAMD/Z+/Ow6ys6/6Bf2YFhn1RBEQF3HFDRdHQRDMllXLBXQHBBdOntOzno2mZ5dKTZT6p4IIomQvihqW55ZKCYioK7iKyCrLJMgwMM+f3h4/leM7ALPc5wzCv13V1WZ+Z+/39nDnmdbzmzX0DAAAA0HR98MK7cfU+l+W8LNllp25x8eRfxXd+PFBZEgColk8JNFrFxcUxcODAuPXWW+Mf//hHXHDBBdGnT5/Ez/lmYbJDhw6Jn1Fbb731VkyYMKHKLD8/P/7nf/4nOnXqVKusvffeO370ox+lza+99tpYvXp1vfasiRtuuCEWL15cZbb99tvHz3/+81pnXXLJJbHjjjtWmS1evDhuuOGGWmelUqm44oorIpVKVZmfcMIJtb5jZYsWLeL666+PkpKSKvOXX345/v73v9d6t88++yxuvvnmtPkvf/nL6NWrV62yevToEVdccUXafNSoUbFgwYJa7wYAAAAAAEDT9fyop+MP37kqVny+fMPfnKADzz4kLpny6+i+xzY5PRcAaHwUJmlUOnfuHAcccEBcfvnl8c9//jOuv/76OPDAA7P6J4S+WZjs2LFj1s6qqdGjR6cV+QYNGhR77713nfKGDh0a22yzTZXZ4sWL44EHHqjrijWyaNGijGdceumldXocdFFRUcai5QMPPJBWytyQZ555Jj744IMqszZt2sRPfvKTWu8VEdG9e/cYPnx42nz06NG1zhozZkysXbu2yqxv3751fvT4wIEDY999960yW7NmTdojzgEAAAAAACCTdWvXxd0jb4+/nDsmKtdV5Ozclh1axcgHL4hTbh4exSXNcnYuANB4KUzSqHTo0CFuu+22OOWUU9IeI5wt3yxMtm/fPifnVmfGjBnxzDPPVJnl5eXF2WefXefMwsLCGDFiRNr8jjvuiMrKyjrnbsi4ceNizZo1VWZ9+vSJfv361Tmzb9++sddee1WZlZWVxbhx42qVk+mR1CeffHK9/r4bOnRo2l0mp0+fHpMmTapxxhdffBHjx49Pm48cObLOe1V3/X333RcrVqyoVy4AAAAAAACbthWfL4/rv3tVvDD6mQ1/c4K2PWDHuGzqNbHHD/rm9FwAoHFTmIT1WLt2baxatarKrKEfyf3oo4+m3V2yb9++0bNnz3rlHnnkkWllvrlz58aUKVPqlVudVCoVjzzySNr8+OOPr3d2poxHH320xtfPmjUr3njjjbT5cccdV6+9WrVqFYcffnjaPNPPoTpPPvlklJaWVpl169Yt9t9//3rt1q9fv+jevXuVWWlpaTz11FP1ygUAAAAAAGDTNfvNmXFV35/Hhy+8l9NzDzz7kLjgqUuifbeG/d0tAND4KEzCenzz7pIRDV+YfOKJJ9Jmhx56aL1zW7RoEf3790+b/+1vf6t3diZvvvlmzJ8/v8qsoKAgDj744HpnDxgwIAoLC6vM5s6dG1OnTq3R9Y8//njabOedd04rFNZFpvfq6aefTnvEdnWqe//z8vLqtVdeXl585zvfSZtn6/0HAAAAAACgcfvX+Mnx2/5XxJJZi3J2Zn5hQZx80xlxys3Do7C4cMMXAAB8g8IkrMfGVpicMWNGfPLJJ2nz/fbbL5H8TI/CfvbZZxPJrknuTjvtFO3atat3dtu2bWOnnXaq0Zk13a0+jwn/un322ScKCgqqzFasWFGjO3mWlpbG5MmT0+ZJvf+ZciZPnpx2R0sAAAAAAACarsrKynjksvvjlhNuiLWla3J2bqtOreOCpy+Jb5+TfhMQAICaUpiE9Vi2bFnarCELk5keE926devYdtttE8nfc88902YLFy6MuXPnJpL/dZleS58+fRLLz5T1+uuvb/C6tWvXxvTp02uUVxetWrWK7bbbLm2e6efxTW+99VasW7cubb7HHnskslumnPLy8pg2bVoi+QAAAAAAADRuq5eXxqhj/hB/+83DOT13y923jkum/Dq2PzD9pikAALWhMAnrkekOk+3bt2+ATb6U6ZHS2223Xb0fx/yVXr16pd39MOLLx2cnqaKiImMJb4cddkjsjO233z5tNm3atKioqFjvddOnT4/y8vKs7lbXwmSm979z586J3JUz4ss7c3bu3DltnvT7DwAAAAAAQOPz+ccL4tr9fxFTH/1XTs/da/C+8bN//iI6br1ZTs8FADZNCpOwHhvbI7nfe++9tFnPnj0Tyy8uLo4uXbqkzd99993EzoiImDlzZqxevTpt3qNHj8TO2GabbdJmpaWlMXPmzPVel+lnXFRUFN27d09os8y7ZTq3Jt+T5PsfkXm3pN9/AAAAAAAAGpd3n347rtrn5zH/neSfTLc+37/y+Djz3v+KZi2b5/RcAGDTVdjQC8DG7JuFyYKCgrS7+S1cuDCeeuqpeOONN+Kdd96JZcuWxfLlyyMvLy9atmwZXbt2jZ49e0bfvn3jgAMOiK5du9Z5n3nz5qXNtthiizrnZbLFFlvEnDlzNnhufVSXl+RrqS5r3rx50atXr2qvy7Tb5ptvHvn5yfXLM+22ePHiWLNmTTRr1qxWu2Xj/a/JuQAAAAAAAGz6UqlUPPPHJ+KBn/45UpWpnJ3brFXzGP7nH8bug/bK2ZkAQNOgMAnr8c3CZLt27f79+OuXX3457rzzznjxxRerfczz2rVrY+nSpTF9+vSYOHFi5OXlxf777x9nnXVW9OvXr1a7rF27NhYtWpQ232yzZG89v/nmm6fNclWYzHR2XVWXtaHXkunrufgZp1KpmDdv3nrvsjl3bvqf2MvFbpnOBQAAAAAAYNNWvqY87h55e0wa+0JOz92sV+c49+GfRNfeW+b0XACgaVCYhPX4ZmGyrKwsHnroobjnnnti6tSptc5LpVLx0ksvxUsvvRTf+c534te//nW0b9++RtcuXLgwUqn0P7XVpk2bWu+xPq1bt854dpIy5TVr1iyKi4sTO6NZs2ZRVFQU5eXlGzx7Q1/P9DOpj+ryFi5cWG1hsrKyMmNhNhe7LVq0KFKp1L/LwgAAAAAAAGzavpi/NG4+9g/xyeSPcnruTt/ZJc6897+iZYdWOT0XAGg6FCZhPZYtW1blf69atSouvvjiRLKffvrpeOedd2Ls2LGx9dZbb/D7V69enXHesmXLRPZZX151Z9dVaWlpjc6tr1atWqWVXjf0WnKxW6tWmf8Fr6ysrNprysrKMhZmc7FbKpWKsrKyaNGiRaJnAQAAAAAAsPGZOeXjuPno38eyeUs3/M0JOuRHA+PY/zk5CgoLcnouANC0KEzCeixevHiD37PTTjvFt7/97dh///2jS5cu0aFDhygsLIylS5fGJ598Eq+88ko8/PDD8dlnn6VdO2/evDjttNPigQce2ODjqKsr+hUVFdXsxdRQprz1FfnqIlNe0q8jIqKwMP0fcRt6LbnYLdNeEesvc1a3d5J35YxY/24KkxEVFRWJP6Ke9fvq5+3nDgDQdPlMCADQtPk8CLn19oOvx2MXT4iKNetydmZBcUF876pjYvfBe8e8+f6/DkA6nwkbRteuXaOgYNP7gwwKk7AevXv3jnfffTdtnpeXF4ccckicddZZsfvuu2e8tkuXLtGlS5fYf//947zzzovx48fHb3/727RS3IIFC+InP/lJ3HXXXet95PHatWszzpP+B1NdSoa1tWbNmhqdW191KX/mYrfq8ta3W6a9InLz/q/v/KZm8eLF0a9fv4Zeo0k65phjGnoFAAAamM+EAABNm8+DkGWpiJ1W9Ixeq7rn9Niy/DXxWuvp8ch1z0Zcl9OjAWiEfCbMrTfeeGODN4BrjBQmYT1+85vfxKBBg+I3v/lNvP/++xERsc8++8TFF18cvXv3rnFOUVFRnHzyybHvvvvG0KFDY+HChVW+/uqrr8bEiRNj0KBB1WZUV4yrrKys8R41UVFRkTbLxR0WM51bX3V5LZl+zknvVt17tr67RVb3/udqt2zcAbQx6tixY0yePLmh12hS5s2bF8ccc0w8+OCD0bVr14ZeBwCABuAzIQBA0+bzIGTf6i9K46Hz74kZz3+Q03O77r5lHHfL6dFmi7Y5PReAxsdnwobRsWPHhl4hKxQmYQP23XffeOihh+L++++PTp06xaGHHlrnrF69esWtt94aJ510UpSWllb52o033rjewmR1j0MuLy+v8z6ZrFuXfnv9pB/F3Lx58xqdW191eS2Zvp70btXlZfq5fKW6vZPerbq/n9a3W1NSUFAQ3bvn9k9W8qWuXbv62QMANHE+EwIANG0+D0J2fPbe3Ljl2NGx8MPPcnpuv9P6x6mjR0RR8+pvKAIA3+QzIUnIb+gFoDEoKCiIk046qV5lya/suOOOMXTo0LT5zJkz46233qr2umbNmmWcf7N4WV+Z8pIuy2XKS/p1VJe5odeSi91WrVqVcb6+MmdDvv8RyZdmAQAAAAAAaFhv//WNuLrf5TktS+bl58Vx/3NKDB07UlkSAGgQCpPQAIYPH57x8csvvfRStde0a9cu43zFihWJ7VVdXocOHRI9I9NrKS0tTfRuievWrYvVq1enzTf0WjLttnz58sT2iohYuXJlxnn79u2rvaa4uDhKSkrS5knvlun9b9u2bbWPBAcAAAAAAKBxSaVS8cQ1j8aNg34XZcvTf5+WLS3alsT5f/1ZHPqTIyIvLy9n5wIAfJ3CJDSAVq1aRZ8+fdLm7777brXXtG/fPmNhbtGiRYnutnjx4rRZ165dEz2jurxMZ9dVdVkbei2Zvp7kXhHVv2fdunVb73WZvp70brl4/wEAAAAAAGgYa0vXxO2n3hgPXXJvpFKpnJ27xY5d479fuTJ6H7Z7zs4EAMhEYRIayO67p//LwGefrf9295mKaxu6prYWLFiQNttQka+2qivgJflaMr2OiIgtt9xyvddl2q26rLrKlNemTZto3br1eq/bVN5/AAAAAAAAcm/J7MXxPwdeEVPueTmn5+56RJ+4eNKvovP2XXJ6LgBAJgqT0EAyPRp6Q49X7tWrV9ps5syZSa0UlZWVMXv27LT5tttum9gZERE9e/aM/Pz0f/x88skniZ2R6edSWFgYW2+99Xqvy/QzLisri/nz5ye1Wnz66ac1Orcm35Pk+x+Rebek338AAAAAAABy66OX3o+r+l4as16fmdNzD794UJz78E+iRdv0J+kBADQEhUloIJker70hu+22W9rsgw8+SGKdiIiYNWtWrF27Nm2+xx57JHZGxJePJO/Zs2faPMnX8vHHH6fNdthhh2jRosV6r8t058+IZHf76KOP0maZHtH+TZne/zlz5sSqVasS2ausrCzmzJmTNk/6/QcAAAAAACB3/nnbP+L3B/86Vixc/81bklTUojhG/OW8OPqqEyO/QC0BANh4+GQCDWTp0qVpszZt2qz3mkzFtSVLlmS8K2BdvPnmm2mzVq1aZeUOg5mKiW+88UZi+ZleS01KiR06dIju3bunzV9//fVE9iovL4933nknbV6TUmKm70mlUjF16tREdps2bVpUVFSkzasrkQIAAAAAALDxqihfF/ecd0eMO+vWqChP/x1QtrTfskP87MVfRN8T98/ZmQAANaUwCQ3k888/T5t17tx5vdfstttuGUuVkyZNSmSnV155JW12wAEHZHx8dn31798/bfb222/HypUr6529Zs2ajCXCAw88sM67TZ48ud57RXxZ5FyzZk2VWVFRUey3334bvLZLly4Zy6tJvf+ZXuNuu+2W8fHxAAAAAAAAbLxWLloefzz8mnjupqdyem6vb20fl0z5TWy1Z4+cngsAUFMKk9BAXn311bTZTjvttN5riouL45BDDkmbP/VU/f9Fp6KiIl544YW0+RFHHFHv7EwGDBiQ9njs8vLyeO655+qdPWnSpFi9enWVWbt27eJb3/pWja4fOHBg2mzq1KmxYMGCeu/27LPPps0OOOCADd5d9CuHH3542uzJJ5+s914REf/4xz/SZtl6/wEAAAAAAMiOuW/Piqv2uSze/0f6U8+yqf+IAXHhMz+PNp3b5vRcAIDaUJiEBjB37tz44IMP0uZ9+/bd4LVHHnlk2uzll1+OOXPm1GunF198MRYtWlRl1rZt2xrflbG2WrRokbH8ef/999c7+8EHH0ybDRw4MAoLC2t0fd++fWOLLbaoMkulUjF+/Ph67bVu3bqYOHFi2vyoo46qccYRRxwReXl5VWYzZ86MKVOm1Gu3Dz/8MKZNm1ZlVlhYmLE8CgAAAAAAwMbp9QdfjWv3/0Usnpn+tLtsyS/IjxP/d2icOnpEFBbX7PdxAAANRWES1mPp0qWJPe7460aNGpU223zzzWOvvfba4LX9+/ePHXbYocqssrIyRo8eXa+dbr/99rTZKaecEs2aNatX7vqcccYZabNXXnklXn/99Tpnfvrpp/H0009XmeXn58fQoUNrnFHd9//5z3+u1yPDH3300bRHsW+55ZZx2GGH1TijZ8+ecdBBB6XNb7755jrvFZH5/T/iiCM2+Jh4AAAAAAAAGl5lZWVM/OUDMfq462PNqjU5O7dlx1bx46cuiQE//G7aTT8AADZGCpNQjXfeeSeOPfbYGDZsWIwdOzax3OnTp2e8A+Kpp54a+fk1+7/k2WefnTabMGFCvPXWW3Xa6emnn057RHhJSUmcfvrpdcqrqd69e0f//v3T5ldeeWWUl5fXKfPaa6+NioqKKrPDDz88ttlmm1rlHH/88dGuXbsqs6VLl8Yf/vCHOu21cuXKuOGGG9LmI0aMiIKCglplnXPOOWmzl156Kf7+97/Xabdp06bFo48+WmWWn58fZ511Vp3yAAAAAAAAyJ2ylWUxevAf47Ffpf8OMpu67do9Lnn117HDQTvn9FwAgPpQmIQMHnnkkTjppJNi7ty5kUql4uqrr47f/e53kUql6pW7YMGCGDlyZKxbt67KfLPNNqtVOfF73/te7L333lVmFRUVccEFF8SSJUtqtdP8+fPj8ssvT5uff/750b59+1pl1cV///d/R1FRUZXZO++8E1dffXWts+6999545plnqsxKSkripz/9aa2zWrZsmfG6u+++Ox5//PFa5/3iF7+I+fPnV5ntvPPOMXjw4Fpn7bHHHhkf43355ZfHJ598UqusFStWxEUXXZRWMj355JNj2223rfVuAAAAAAAA5M7nMxbEtfv/It58aEpOz+1zTN/42UtXRKcem+f0XACA+lKYhAzuvffeKCsrqzK79dZb4+yzz651IfEr06ZNi5NPPjkWLFhQZZ6XlxdXXXVVtGjRosZZeXl58etf/zrtcdlz5syJIUOGpBXzqjN79uwYMmRILF68uMp8l112iSFDhtQoY+nSpbHbbrvFDjvsUOU/1157bY2u33bbbWPkyJFp87vvvjuuueaatCJfdSZMmBC/+tWv0uYXXHBBdOvWrUYZ3zR48ODo169flVkqlYqf/exn8de//rVGGevWrYvLL788HnvssSrzwsLCuPLKK6OwsLBOu1166aXRoUOHKrNly5bF0KFD4/33369RxpIlS2L48OExY8aMKvOuXbvGhRdeWKe9AAAAAAAAyI33np0eV+9zWcybNjun5x71y+PirPt/FM1bNc/puQAASVCYZJOyZs2aWs2rc+ONN0bv3r3T5s8//3wMGjQoHn744RoX+RYvXhx/+MMf4qSTToo5c+akff28886LAw88sFb7RUT06NEjrrnmmsjLy6sy/+CDD2LQoEExbty4tNLnV0pLS2Ps2LHxgx/8ID799NMqX+vUqVPccMMNNX5M9KpVqzL+fJcuXVrDV/LlI6YHDBiQNr/jjjvipJNOiilTqv8TcTNmzIgLLrggLrnkkrT35Mgjj4zTTjutxntkct1116UVLteuXRsXXnhhXHTRRTFr1qxqr500aVIcf/zxcd9996V97bLLLotddtmlznu1b98+/vd//zeKi4urzD/77LMYPHhw/OlPf4rly5dnvHbt2rUxYcKEGDRoUEydOrXK10pKSuJPf/pTtGzZss67AQAAAAAAkD2pVCr+8ae/xx8PuzpWLVmZs3ObtWwW50y4II68/JjIz1c1AAAap7xUfZ8xDDm0ZMmSGDBgQLVFwLrYdddd44EHHkibr1q1KuOdAb/SrVu3OOyww2LvvfeObbbZJtq0aRMFBQWxbNmyWLJkSUyfPj2mTJkSL7zwQrWFzXPOOScuuOCCeu0/duzYuOaaazI+LrykpCT69u0bPXr0iBYtWsSqVatixowZ8dprr2X8GbZt2zZuv/322HXXXWt8/pw5c+KQQw5Jmx999NFxzTXX1DintLQ0hg8fHq+//nrGr2+55Zax5557xhZbbBF5eXmxePHimDZtWrz33nsZv3+//faLW265Ja1QWBcff/xxDBkyJD7//POMX+/du3fssssu0b59+1i3bl3Mnz8/Xn/99Wrv9Dly5Mj48Y9/XO+9IiIef/zxuOiii6K8vDzta0VFRbH33nvHtttuG61atYqysrKYOXNmvPbaa7FixYq072/WrFnccMMNcdBBByWyGyRh9uzZ0a9fv5g8eXI7PxG3AAAgAElEQVR07969odcBAKAB+EwIANC0+TwIVZWvKY97fnhHvDTmuZye26nHZnHuwz+JbrtuldNzASDCZ0KSVbdnwUIDKS0tTbQsGRHVPmK7ZcuWcd1118VBBx0Uv/3tb2PhwoVVvj537twYM2ZMjBkzptZntm7dOq688soYOHBgnXb+uqFDh0bnzp3j4osvTvvZlJaWxvPPPx/PP//8BnO23nrrGDVqVPTs2bPeO9VFSUlJ3HnnnXHJJZfExIkT074+Z86cjHfozOTYY4+NK664IoqKihLZrVevXjF+/PgYOXJkvPvuu2lfnz59ekyfPn2DOYWFhXHZZZfFiSeemMheEREDBw6Mjh07xvnnnx/Lli2r8rXy8vKYNGlSTJo0aYM5HTt2jBtvvDH69OmT2G4AAAAAAAAkZ/mCL2LUsX+Ij1/+IKfn7nBw7zjrvv+KVh1b5/RcAIBscJ9s2ICjjjoqnnjiibjoootiiy22qFdWs2bN4pRTToknn3wykbLkVwYOHBiPPPJIHHDAAbW+trCwMIYNGxYPPvhgomXJbz4qvCaKi4vjd7/7Xfz+97+Pzp071/r6Ll26xA033BBXXXVVYmXJr2ffd999cf7550fz5s1rfX2fPn1iwoQJiZYlv7LPPvvExIkT48gjj6z1tXl5eXH00UfHxIkTlSUBAAAAAAA2Up/+a0Zc1ffSnJclB5x3WPzo8f+nLAkAbDLcYZJGpaSkJJo3b57oXSY7deq0we9p2bJljBgxIoYOHRqTJ0+OJ554Il555ZWYNWvWBq8tLi6OPffcMw4++OD4/ve/H+3atUti7TTbbLNN3HbbbfHaa6/FvffeG88880yUlpZW+/2bb755DBo0KE488cR63a64TZs20apVq1i5cmWV+bbbblvnzCOOOCIOPvjgeOyxx2L8+PHx9ttvR2VlZcbvzc/Pj9122y0GDx4cRx55ZJ3KjDXVrFmzOO+882Lw4MExfvz4ePjhh2P27NnVfn9xcXEceOCBccIJJ8QBBxxQpxJpTW2++eZx3XXXxZlnnhn33HNPPPHEE2l3nPy6du3axcCBA+PEE0+MHXfcMWt7AQAAAAAAUD+v3vNy3DV8dJSXlefszIKigjj5pjOi//ABOTsTACAX8lKpVKqhl4DGavHixTFjxoyYPXt2LF++PEpLS6OgoCBKSkqiY8eO0aNHj+jZs2c0a9Ys57tVVFTEe++9Fx9++GEsW7YsVq9eHa1bt44OHTrELrvsEltttVWi53344Yf/vsNhu3bt4plnnolWrVolkr1ixYqYOnVqzJs3798lwHbt2kXXrl1j9913j9atG+5PtC1YsCDeeuutWLhwYaxYsSKKi4ujXbt20aNHj+jdu3cUFxc3yF6pVCo++uijeO+992Lp0qWxatWqaNmyZbRv3z522mmn6NWrV1YLnJCU2bNnR79+/WLy5Mn1KncDANB4+UwIANC0+TxIU1ZZURkPX3pf/P23E3N6bpvObeOcCRdEr/23z+m5AFAdnwlJkjtMQj107NgxOnbsGH379m3oVdIUFBRE7969o3fv3jk577nnnvv3fz/rrLMSK0tGRLRu3Tr69++fWF6SOnfuHIceemhDr5EmLy8vtttuu9huu+0aehUAAAAAAABqafUXpXHbKX+KaX97M6fnbrVXjxj54IXRoXvHnJ4LAJArCpNAvaVSqbj//vsj4stHQ5966qkNvBEAAAAAAAA0Tgs+mB83fv93seD9+Tk9d5+T94/Tbj0rils0zBPUAAByQWESqLeXX345Zs2aFRER5557boM8ghwAAAAAAAAau2lPTI3bTvrfWP1Fac7OzMvLi6OvPjG+e9GRkZeXl7NzAQAagsIkUG/33ntvRER07949jjvuuAbeBgAAAAAAABqfF299Nu4eeXukKlM5O7N5mxYx4i/nxa7f65OzMwEAGpLCJFAvCxcujGeffTYiIs4777woKipq4I0AAAAAAACgcZly36S4+5zbI5XKXVmy8/Zd4tyHL4wtduyWszMBABqawiRQLw888ECsW7cutttuuxg0aFBDrwMAAAAAAACNyievfBR3nH5TTsuSvQ/fPUb85bwoadcyZ2cCAGwMFCaBennrrbeiTZs2cemll0Z+fn5DrwMAAAAAAACNxppVZTHmtBujorwiZ2d+96dHxtFXnxj5BX63BwA0PQqTQL2MGjWqoVcAAAAAAACARumBn94dCz9akJOzipoXxWm3nhn7ntI/J+cBAGyMFCYBAAAAAAAAIMfe/tsb8cLoZ3JyVrtuHWLkQxfGNnv3zMl5AAAbK4VJAAAAAAAAAMihlYuWx13Db8nJWT332y7OeeDH0bZL+5ycBwCwMVOYBAAAAAAAAIAcSaVSMe7s22P5gi+yfta3hh0UJ900LIqaFWX9LACAxkBhEgAAAAAAAAByZPJdL8abD03J6hn5Bfkx+LpTY8D5h0VeXl5WzwIAaEwUJgEAAAAAAAAgBxbN/Dzu/a87s3pGSfuWcdb9P4qdDtklq+cAADRGCpMAAAAAAAAAkGWVFZVxx5Cbo2zF6qyd0bX3lnHuwz+JzXp1ztoZAACNmcIkAAAAAAAAAGTZU7//a3z04ntZy9/9+3vFGXedG81bt8jaGQAAjZ3CJAAAAAAAAABk0eypn8YjP78/a/lHXHZMHPmLYyI/Pz9rZwAAbAoUJgEAAAAAAAAgS8rL1sYdp98UFeUViWcXlzSLoWPPib2O2zfxbACATZHCJAAAAAAAAABkySOXjY+5b8/OSvaIe86L3Y/aKyvZAACbIvfjBgAAAAAAAIAs+OD5d+Pp3/8tK9n9RwxQlgQAqCWFSQAAAAAAAABI2OovSuOOITdHKpVKPLtTz81j8O9PSzwXAGBTpzAJAAAAAAAAAAm778d3xZJZixLPzcvPizPuOjeat2qeeDYAwKZOYRIAAAAAAAAAEvT6hFdj0p0vZCX78Iu/H7323z4r2QAAmzqFSQAAAAAAAABIyBfzl8afz7ktK9lb7blNHHn5MVnJBgBoChQmAQAAAAAAACABqVQq7hpxS6xavDLx7KLmRTHsrnOjsLgw8WwAgKZCYRIAAAAAAAAAEvDC6Gdi2uNTs5J9zDUnRdedt8xKNgBAU6EwCQAAAAAAAAD1tOCD+fHAT+/OSvZO39klDjrvu1nJBgBoShQmAQAAAAAAAKAeKtZVxJjTb4q1pWsSzy5pVxJDxpwd+fl+vQ8AUF8+UQEAAAAAAABAPTx+1SMx89WPs5J98k1nRPstO2YlGwCgqVGYBAAAAAAAAIA6mjnl4/jrlQ9mJbvvSftH3xP3z0o2AEBTpDAJAAAAAAAAAHWwtnRNjDntpqisqEw8u123DnHSn4YmngsA0JQpTAIAAAAAAABAHUz42V9iwQfzs5I99I6zo2X7VlnJBgBoqhQmAQAAAAAAAKCWpj0xNZ676amsZB/8X4fHTt/ZNSvZAABNmcIkAAAAAAAAANTCysUr4q7ho7OS3WWnbnH01SdmJRsAoKlTmAQAAAAAAACAGkqlUvGXc8fEF/OXJZ6dX1gQZ4w7N4pbFCeeDQCAwiQAAAAAAAAA1Nirf3kp/jX+laxkH/WLY2OrPXtkJRsAAIVJAAAAAAAAAKiRJbMWxT3njc1Kds/9tovD/t9RWckGAOBLCpMAAAAAAAAAsAGVlZUxdtioWP1FaeLZzVo2i2F3joyCwoLEswEA+A+FSQAAAAAAAADYgGf/+ES8/493spI9+PenxebbbpGVbAAA/kNhEgAAAAAAAADWY+602fHQJfdlJXvXI/tE/xEDspINAEBVCpMAAAAAAAAAUI3yNeUx5rSbYt2a8sSzW3VqHaffelbk5eUlng0AQDqFSQAAAAAAAACoxmO/nBBzpn6alezTbhkRbTq3zUo2AADpFCYBAAAAAAAAIIOP/vle/P23E7OS/a1hB8UeP+iblWwAADJTmAQAAAAAAACAb1i9vDTGnH5zpFKpxLM79dgsjr/+tMRzAQBYP4VJAAAAAAAAAPiG8Rf8ORbP/Dzx3Ly8vBh258ho3rpF4tkAAKyfwiQAAAAAAAAAfM2bD0+Jl+54LivZh/3sqNi2/45ZyQYAYP0UJgEAAAAAAADg/yxf8EWMO+u2rGRvufvWcdQVx2UlGwCADVOYBAAAAAAAAICISKVScdeZt8TKRSsSzy5sVhRnjDs3CosLE88GAKBmFCYBAAAAAAAAICL+eds/4u3H3shK9tFXnRDddumelWwAAGpGYRIAAAAAAACAJm/hR5/F+AvHZSV7hwE7x8E/Ojwr2QAA1JzCJAAAAAAAAABNWsW6irhjyM2xZtWaxLObt2kRQ+84J/Lz/XoeAKCh+UQGAAAAAAAAQJP292snxoxJH2Yl+6Q/DYsOW3XKSjYAALWjMAkAAAAAAABAkzXr9U9i4hUTspK91+B9Y99TvpWVbAAAak9hEgAAAAAAAIAmae3qtTHmtJuicl1F4tltu7SLk286I/Ly8hLPBgCgbhQmAQAAAAAAAGiSHvrve2P+u3Ozkj1kzNnRqmPrrGQDAFA3CpMAAAAAAAAANDnvPv12PHvDE1nJPujcQ6P3YbtnJRsAgLpTmAQAAAAAAACgSVm1dGWMHTY6K9mdt+8Sx/725KxkAwBQPwqTAAAAAAAAADQp95w3NpbNXZJ4bn5Bfpwx7twoLmmWeDYAAPWnMAkAAAAAAABAk/HqPS/HlHtezkr2EZcdE9v07ZWVbAAA6k9hEgAAAAAAAIAmYemcxXHPD8dkJXubfXrFwEu+n5VsAACSoTAJAAAAAAAAwCavsrIyxg4bFaXLShPPLi5pFmfcdW4UFBYkng0AQHIUJgEAAAAAAADY5D33pyfjvWemZyX7uN+dEp2375KVbAAAkqMwCQAAAAAAAMAmbd47c+LBi+/JSvYuA3ePA88+JCvZAAAkS2ESAAAAAAAAgE3WurXr4o7Tb4rysvLEs1t2bBWn33ZW5OXlJZ4NAEDyFCYBAAAAAAAA2GQ99qsHY9brM7OSferoEdG2S/usZAMAkDyFSQAAAAAAAAA2SR+//EE8cc0jWcneb8iBsecx+2QlGwCA7FCYBAAAAAAAAGCTU7ayLMacflOkKlOJZ3fculOccP3piecCAJBdCpMAAAAAAAAAbHLGXzguFs1YmHhuXl5eDB07Mlq0LUk8GwCA7FKYBAAAAAAAAGCTMnXiv+Kft/0jK9nfufB7sf23d8pKNgAA2aUwCQAAAAAAAMAmY8Xny2PcmbdmJbvbrt3j+78+PivZAABkn8IkAAAAAAAAAJuEVCoVfz77tlixcHni2YXFhXHGuB9GUbOixLMBAMgNhUkAAAAAAAAANgkvj30+3nz4taxkD7pycGy521ZZyQYAIDcUJgEAAAAAAABo9BZ9sjDu+9FdWcne7sAd49ALj8hKNgAAuaMwCQAAAAAAAECjVllRGXcMuTnWrCxLPLt56xYxdOzIyC/w63UAgMbOJzoAAAAAAAAAGrUnf/dYfPTP97OSfeINQ6LTNptlJRsAgNxSmAQAAAAAAACg0Zr95sx49PLxWcnuc0zf6Hf6AVnJBgAg9xQmAQAAAAAAAGiUysvWxpjTboqK8orEs9t0bhunjhoeeXl5iWcDANAwFCYBAAAAAAAAaJQevvT+mDd9TlayT7/9rGjVqU1WsgEAaBgKkwAAAAAAAAA0Ou89Oz2e/sPfspJ94NmHxK7f65OVbAAAGo7CJAAAAAAAAACNSumyVTF22KisZG++bec47nenZCUbAICGpTAJAAAAAAAAQKNy73/dGUtnL048N78gP84Y98No1rJ54tkAADQ8hUkAAAAAAAAAGo3X7p8cr/z5n1nJHnjJD6LHvttmJRsAgIanMAkAAAAAAABAo7B07pK4e+TtWcneeu+eccTPf5CVbAAANg4KkwAAAAAAAABs9FKpVNw1fHSULl2VeHZR86I4466RUVBUmHg2AAAbD4VJAAAAAAAAADZ6z930VLzz5NtZyT72tyfHFjt2y0o2AAAbD4VJAAAAAAAAADZqn70/Lyb87C9Zyd75u7vGt889NCvZAABsXBQmAQAAAAAAANhoVZSviztOvynKV69NPLukfcs4/fazIz/fr84BAJoCn/oAAAAAAAAA2Gj97TcPx8wpM7KSfcrNw6N9tw5ZyQYAYOOjMAkAAAAAAADARumTVz6Kv/3m4axk73PKt2Lv4/tlJRsAgI2TwiQAAAAAAAAAG501q8pizOk3RWVFZeLZ7bfsECf979DEcwEA2LgpTAIAAAAAAABspFKpVJSvKY9UKtXQq+TchIv+Egs//Cwr2UPHjoySdi2zkg0AwMarsKEXAAAAAAAAAOBLKxctj3+NfyVeG/9KzH17VpQuXRWpylQUFhdGSfuW0aJdSZS0++qvJVHSNn3Wol3LL7/2tf9e1Ly4oV9arUx7/M14ftTTWck+5McDY8eDe2clGwCAjZvCJAAAAAAAAEADS6VSMenOF+L+C8bF6i9K076+bu26WL7gi1i+4Is65Rc1L/p3efKrgmVJu5Jo0fbrZcuvFTG/MStqVlTfl1hjKxctjzuH35KV7C47d4ujrzohK9kAAGz8FCYBAAAAAAAAGlBlZWXcOWxUTB73z6ydUV5WHuWfLYvlny2r0/VFLYq/UaT8v7tXti35Rtmyainzq78WFtfsV9OpVCr+fM7tdd5zfQqKCuKMcT9sdHfbBAAgOQqTAAAAAAAAAA3owf93T1bLkkkoX702vli9Nr6YX7ciY3FJswxFypJo0bZqwXLp7MXxxoNTEt7+S4OuGBxb9dkmK9kAADQOCpMAAAAAAAAADeRf4yfHU9f9taHXyLq1pWtibemaWDZvaYOc3+tb28d3LzqyQc4GAGDjkd/QCwAAAAAAAAA0RV98tizuPndMQ6+xyWvWqnkMu3Nk5Bf49TgAQFPnEyEAAAAAAABAjqVSqbj7nNtj1eKVDb3KJu+E60+PzXp2bug1AADYCChMAgAAAAAAAOTY5LtejKmP/quh19jk7f79vWL/Yd9u6DUAANhIKEwCAAAAAAAA5NCS2Yvj3h/d2dBrbPJab94mTh09IvLy8hp6FQAANhIKkwAAAAAAAAA5kkql4q4Rt0TZ8tUNvcom77Rbz4w2m7dt6DUAANiIKEwCAAAAAAAA5MgLo5+Jd596u6HX2OT1Hz4gdj9qr4ZeAwCAjYzCJAAAAAAAAEAOfP7xgphw0d0NvcYmr1PPzWPw709t6DUAANgIKUwCAAAAAAAAZFllZWWMPWN0rFm1pqFX2aTl5efFsDtHRvPWLRp6FQAANkIKkwAAAAAAAABZ9uwfn4iPXnyvodfY5B3+/wbFtt/aoaHXAABgI6UwCQAAAAAAAJBF89+dGw9dcl9Dr7HJ695nmzjyF8c29BoAAGzEFCYBAAAAAAAAsqRiXUWMHXpzrFtT3tCrbNIKmxXFGePOjcLiwoZeBQCAjZjCJAAAAAAAAECW/P3aiTFzyoyGXmOTd8w1J0bXnbds6DUAANjIKUwCAAAAAAAAZMHsqZ/GY7+a0NBrbPJ2PKR3DDj/sIZeAwCARkBhEgAAAAAAACBh69aui7FDbo6K8oqGXmWT1rJDqxgy5pzIz/erbwAANqywoRcAAAAAAAAA2NQ89qsHY85bsxLPLSwujItfuTI6bNUxVi8rjdJlpbF62aooXVYapctW/XtWunRVrP7iq/l/vmf1stIoW7E68b0aQlGL4vjhxJ9Gh+4dG3oVAAAaCYVJAAAAAAAAgAR98spH8cQ1j2Ql+6hfHhfdd986IiJatm9Vp4yKdRVRtnz1vwuWq5Z+VbT8z19Ll5XG6i+qljC/Kl2uWVmW5Euqk5YdW8XwP/8weu23fUOvAgBAI6IwCQAAAAAAAJCQtavXxh1Db45UZSrx7B79to1Df3pEvXMKCguiZYdW0bJDHQuX5ev+r0yZfvfKf5ctl62K0i++Nlv6n+Ll2tI1dd49vyA/9j6hXwz+/WnRZvO2dc4BAKBpUpgEAAAAAAAASMjDl94XC96fn3huUYviGDZ2ZBQUFiSeXVsFRYXRqlObaNWpTZ2uX7d2XbV3r/z3bOmXhcuy5aujuGWzaNmuZWy1V4/oc/TedT4XAAAUJgEAAAAAAAAS8MEL78azf3wiK9nHXH1idN6+S1ayc62wuDBab9YmWm+m+AgAQG7lN/QCAAAAAAAAAI1d2cqyuHPYqEilkn8U9/YH7RwHnffdxHMBAKCpUZgEAAAAAAAAqKcJF90diz75PPHcZq2ax5AxZ0d+vl/tAgBAfflUDQAAAAAAAFAP7zz5Vrww+pmsZA++7tTotM1mWckGAICmRmESAAAAAAAAoI5Kl62Ku0bckpXs3ofvHv1HDMhKNgAANEUKkwAAAAAAAAB1dP8F42LpnCWJ55a0K4nTbj0z8vLyEs8GAICmSmESAAAAAAAAoA7efOS1mHTnC1nJPuGGodG+W4esZAMAQFOlMAkAAAAAAABQSysXLY8/n31bVrL3OLpv7HvKt7KSDQAATZnCJAAAAAAAAEAt/eWHd8SKhcsTz23VqXWccvMZHsUNAABZoDAJAAAAAAAAUAtT7psU/xr/SlayTxk1PNps3jYr2QAA0NQpTAIAAAAAAADU0Bfzl8Y9P7wjK9n7nPKt2POYfbKSDQAAKEwCAAAAAAAA1EgqlYpxZ98Wq5asTDy7bZd2ceINQxLPBQAA/kNhEgAAAAAAAKAGXh77fLz92BtZyT7t1jOjZftWWckGAAC+pDAJAAAAAAAAsAFLZi2K+388LivZ/YcPiF2/1ycr2QAAwH8oTAIAAAAAAACsR2VlZdw14pYoW7E68eyOW3eK4647JfFcAAAgncIkAAAAAAAAwHq8MOqZePfpaVnJHjLm7GjRpiQr2QAAQFUKkwAAAAAAAADVWPjRZzHhZ3/JSvaA8w6LHQb0zko2AACQTmESAAAAAAAAIIPKisoYO2xUrC1dk3j25tttEcdcc2LiuQAAQPUUJgEAAAAAAAAyeOb6x+Pjlz5IPDcvPy+G3nFOFJc0SzwbAAConsIkAAAAAAAAwDfMe2dOPPzz+7OS/d2fHhm99t8+K9kAAED1FCYBAAAAAAAAvqaifF2MHToq1q0pTzy7a+8t46grjks8FwAA2DCFSQAAAAAAAICveeKaR+PT12YknptfWBDD7hwZRc2KEs8GAAA2TGESAAAAAAAA4P/MemNmPHblQ1nJ/t6lP4it9uyRlWwAAGDDFCYBAAAAAAAAIqJ8TXmMHXpzVK6rSDx7qz23ie9d8v3EcwEAgJpTmAQAAAAAAACIiMeumBBz356deG5hcWEMu/PcKCgqTDwbAACoOYVJAAAAAAAAoMmbMfnD+PtvJ2Yle9CvBkfX3ltmJRsAAKg5hUkAAAAAAACgSVtbuibGDh0VqcpU4tk999suDv3JEYnnAgAAtacwCQAAAAAAADRpD11yXyz4YH7iuUUtimPo2HMiv8CvZQEAYGPgkzkAAAAAAADQZL3/3Dvx7A1PZCX72GtPis7bdclKNgAAUHsKkwAAAAAAAECTVLZiddx5xuisZO9wcO/49rmHZiUbAACoG4VJAAAAAAAAoEl64Kd3x+KZnyee27x1ixhy+1mRn+/XsQAAsDHxCR0AAAAAAABocqY9MTVevPXZrGQP/v2p0XHrzbKSDQAA1J3CJAAAAAAAANCkrFq6MsadeWtWsnf53h7xrTMOyko2AABQPwqTAAAAAAAAQJNy/4/vimVzlySeW9K+ZZx2y5mRl5eXeDYAAFB/CpMAAAAAAABAk/HGQ1Ni8rh/ZiX7pD8Ni3Zd22clGwAAqD+FSQAAAAAAAKBJWPH58rj7nNuzkr3nsftE3xP3y0o2AACQDIVJAAAAAAAAYJOXSqXiL+eOiRWfL088u/VmbeLkm87wKG4AANjIKUwCAAAAAAAAm7wp906K1ye8mpXsU0cPj9abtclKNgAAkByFSQAAAAAAAGCTtmze0rjnvDuykt3vtP6xxw/6ZiUbAABIlsIkAAAAAAAAsMlKpVIx7qxbo3TpqsSz23XrEMdff3riuQAAQHYoTAIAAAD/n737DKyyPv8GfiUhYW8VBHEgQ7AO6qwFrbVWUbStdVSpiht3bd1tHV0W3KhVcSCOuqniwL1X1aIiioIgQ0BkyCZkneeFf/s0ngNknNwnCZ/Py19yru91zh3bjC/nBgAAaLRev/2lmPjk+3Uy+8hbToiW7VvVyWwAACD7FCYBAAAAAACARmnhjPnx4G/vrpPZA074cXxv3+3qZDYAAFA3FCYBAAAAAACARqeioiJGHzcyipetyvrsjptvGAdfMTjrcwEAgLqlMAkAAAAAAAA0Oi//49n49IWP6mT2kFFDo1nr5nUyGwAAqDsKkwAAAAAAAECjMm/K3Hj4vHvrZPaPz9g3eu3Rp05mAwAAdUthEgAAAAAAAGg0Ksor4o4hN0XpqpKsz+7Ua+P4xd8Oy/pcAAAgGQqTAAAAAAAAQKPx7JVPxLQ3p2R9bl5+Xgy5Y2gUtWia9dkAAEAyFCYBAAAAAACARmHOR1/E2IserJPZ+5x7QHTftWedzAYAAJKhMAkAAAAAAAA0eOWlZTHq6H9EWUlZ1md33aZbDLr4l1mfCwAAJEthEgAAAAAAAGjwnvzbozFz/PSsz81vUhDHjD45CpsWZn02AACQLIVJAAAAAAAAoEGbOf7zePKvj9TJ7EF//EV0237zOpkNAAAkS2ESAAAAAAAAaLBKV5fGqKNvjIqy8qzP3mzH7rHv+QdmfS4AAJAbCpMAAAAAAABAg/XYxQ/FnI++yPrcJk0LY8gdQ6OgsEnWZwMAALmhMAkAAAAAAAA0SFPfmBzPXPF4ncz++V8OjS59N6mT2QAAQG4oTAIAAAAAAAANzuoVxXHHkBsjVZHK+uwtf9gr9vrNwKzPBQAAckthEgAAAAAAAMH7CvkAACAASURBVGhw/nXB/fHVZ/OyPreoRdMYMmpo5Bf4UyoAADQ2vssHAAAAAAAAGpRPX/woXrz+6TqZ/cvhR8RGPTrXyWwAACC3FCYBAAAAAACABmPV0pUx+tib62R2n598L3YfuledzAYAAHJPYRIAAAAAAABoMB763T2xcMaCrM9t1qZ5HHXriZGf70+oAADQWPluHwAAAAAAAGgQPnzyvXjtthfrZPahVx8ZHTbdoE5mAwAA9YPCJAAAAAAAAFDvrVi0PO464ZY6mb3NoH6x25A96mQ2AABQfyhMAgAAAAAAAPXefWeOjiVzF2d9bssOreLIm4+PvLy8rM8GAADqF4VJAAAAAAAAoF6b9OSH8fY9r9fJ7MNvOCbabty+TmYDAAD1i8IkAAAAAAAAUG8VlRfGuN//q05m73DILrHTYT+ok9kAAED90yTXCwAAAAAAAABkkkqlYpslPWPl6hVZn916ozZxxA3HZH0uAABQf3mHSQAAAAAAAKBemvjI+7Hx6g3rZPaRI0+IVhu0qZPZAABA/aQwCQAAAAAAANQ7X89eFE9f9GidzP7B0bvHdgfuUCezAQCA+kthEgAAAAAAAKhXUqlU3HXCLVG8dFXWZ7ffpEMcevWRWZ8LAADUfwqTAAAAAAAAQL3y2q0vxkdPfVAns4+69cRo0a5lncwGAADqN4VJAAAAAAAAoN5YMH1+PPi7u+tk9u4n7RV9f7ptncwGAADqP4VJAAAAAAAAoF6oqKiI0cfeHKuXF2d99gZbbBi/vHxw1ucCAAANh8IkAAAAAAAAUC+8dP0zMfmlj7M+Ny8vL44eNTSatWqW9dkAAEDDoTAJAAAAAAAA5NyXn86JMeffWyez9/rNwOi1e586mQ0AADQcTXK9AAAAAAAAALD+KSspi+nvTI3JL0+KKa9MiqmvT47S4tKs53Teqkv87C+HZn0uAADQ8ChMAgAAAAAAAHWutLgkpr31WUx55ZOY/MqkmPbmlChdVVKnmXn5eTHkjqFR1LyoTnMAAICGQWESAAAAAAAAyLrVK4pj2ptTYvLLk2LyK5/E9H9/FmUlZYnusO/5P4stdu6RaCYAAFB/KUwCAAAAAAAAtbZq6cqY+saUmPLypJj8yqSY/s60qCgrz9k+m2y7aQy66KCc5QMAAPWPwiQAAAAAAABQbSsXr4gpr34SU17+5hbbM8d/HqmKVK7XioiIgsKCGDL65GhS5M+hAADA/+cnBAAAAAAAAGCdli9YGlNe/TQmvzwpprwyKb74YGakUvWjIPldgy76ZXTbbrNcrwEAANQzCpMAAAAAAABAmqXzlsTklyd9U5B89ZOYM3FWrleqks136h77nHdArtcAAADqIYVJAAAAAAAAIL6evSim/F9BcvIrk2Lep3NzvVK1FTYrjGNGnxwFTQpyvQoAAFAPKUwCAAAAAADAemjB9Pkx5eVJMeWVT2LyK5Ni/tR5uV6p1n7+18Oi81Zdc70GAABQTylMAgAAAAAAQCOXSqVi/tR539xe+5VJMfnlT2LRzAW5XiuregzYKn585r65XgMAAKjHFCYBAAAAAACgkUmlUvHlJ3P+++6RU16eFIvnfJ3rtepM05ZNY8jtJ0V+fn6uVwEAAOoxhUkAAAAAAABo4CoqKmLuR1/E5JcnfVOQfOWTWPbV0lyvlZhfXj44NtyyU67XAAAA6jmFSQAAAAAAAGhgKsor4osJM/97i+0pr34SKxYuz/VaOdFn721i95P2yvUaAABAA6AwCQAAAAAAAPVceVl5zBz/+X9vsf3Zq5/GqiUrc71WzrXaoHUcdeuJkZeXl+tVAACABkBhEgAAAAAAAOqZspKymPHutP/eYnvq65Nj9fLiXK9VrxQ2K4xTx54dHbp1zPUqAABAA6EwCQAAAAAAAPXEzPGfx6sjX4h37n/TO0iuRduN28Wxd50a3XftmetVAACABkRhEgAAAAAAAHKsdHVpPPqHB+K5q56MVCqV63XqraYtm8ZOh+8Wv7jsV9GqY+tcrwMAADQwCpMAAAAAAACQQ0u/WhI3HHB5TH9nWq5XqZdWFqyKXX/RP3Y4YOfY/hc7RbNWzXK9EgAA0EApTAIAAAAAAECOfPXZlzFi4LCYP3VerlepNzbq2Tl67d4neu6+VbTq2Tb2+eXA+NuVI6Jbt265Xg0AAGjgFCYBAAAAAAAgB6a/MzWuH3R5LJu/NNer5NTGfbpGz923il579Imeu/eJdl3a//djs2bNyuFmAABAY6MwCQAAAAAAAAmbOO79uPmQa6Nk5epcr5K4rtt0i5679/m/guRW0WajtrleCQAAWE8oTAIAAAAAAECC3rjj5bjrhFuiorwi16vUubz8vOi2/Wb/vyA5YKto2aFVrtcCAADWUwqTAAAAAAAAkIBUKhXj/vZoPPrHB3K9Sp3JL8iPTXfYInr9X0GyR//e0bxti1yvBQAAEBEKkwAAAAAAAFDnKsor4r7T74iXb3ou16tkVUFhQWy+85b/LUh2/0HPaNa6ea7XAgAAyEhhEgAAAAAAAOpQyaqSuG3w9fH+I+/mepVaa9K0MLrv2uO/t9juvmuPKGrRNNdrAQAAVInCJAAAAAAAANSRFYuWxw0HXhFT35ic61VqpKhF09hyt57Rc8BW0XOPPrHFzltGYbOiXK8FAABQIwqTAAAAAAAAUAcWzpgfIwYOiy8/mZPrVaqsaatm0aN/7+i1e5/oucdWsdkO3aNJkT8pAgAAjYOfbgAAAAAAACDLvpgwM67bb1gsnvN1rldZq+ZtW0SPAd8UJHvt0Se69ds8CpoU5HotAACAOqEwCQAAAAAAAFn0yQsfxY0HXRXFS1flepU0LTu2ip6794leu28VvfboE1232TTyC/JzvRYAAEAiFCYBAAAAAAAgS965740YdfSNUV5anutVIiKi9UZtotcefb4pSe7RJzbu2zXy8xUkAQCA9ZPCJAAAAAAAAGTBc1c/GQ/+7u6c7tCua4fotcdW/30XyU69u0ReXl5OdwIAAKgvFCYBAAAAAACgFioqKuLhc/4Zz139ZOLZHTfbIHru0Sd6/d87SG7QfSMFSQAAgDVQmAQAAAAAAIAaKl1dGqOPvTneufeNxDJ3PmK36PvTbaPXHn2i42YbJpYLAADQ0ClMAgAAAAAAQA2sWrIybvzl1fHpCx8lkpdfkB+/Hnl8/PCYHyWSBwAA0NgoTAIAAAAAAEA1LZ7zdVy337D4YsLMRPKKWjSNEx84I7bZr18ieQAAAI2RwiQAAAAAAABUw5efzI4RA4fFwhkLEslrtUHrOO3xc2KLnXskkgcAANBYKUwCAAAAAABAFU19Y3LccOAVsWLR8kTyNui+UZz51PmxUY/OieQBAAA0ZgqTAAAAAAAAUAXvP/pu3Hr4dVFaXJpI3qY7bBGnP35utOnUNpE8AACAxk5hEgAAAAAAANbhlZufj3+eenukKlKJ5PXdZ9s46cHfRLNWzRLJAwAAWB8oTAIAAAAAAMAapFKpGHvRg/HkXx9JLPMHR+8eR448PgoK/SkPAAAgm/yUBQAAAAAAABmUl5bFPUNvj9dHvZRY5sALfhY/+8uhkZeXl1gmAADA+kJhEgAAAAAAAL5j9YriGHnYiJj45PuJ5OXl5cVhI46OPU/9aSJ5AAAA6yOFSQAAAAAAAPgfS79aEjcccHlMf2daInlNmhbG8f88Lfr9YqdE8gAAANZXCpMAAAAAAADwf+ZPnRcjBv49vvpsXiJ5Ldq1iFPHnh09+m+VSB4AAMD6TGESAAAAAAAAImL6u9Pi+kHDY9lXSxPJa9+tY5wx7rzo0neTRPIAAADWdwqTAAAAAAAArPc+evqDuPnga2L1itWJ5HXdpluc/uR50b5rh0TyAAAAUJgEAAAAAABgPffmna/EncffEhVl5Ynk9fpR3zh5zFnRol3LRPIAAAD4hsIkAAAAAAAA66VUKhVP/X1sPPL7+xPL3OHQXeOY0SdHYdPCxDIBAAD4hsIkAAAAAAAA652K8oq474zR8fKNzyaWudeZA+PgKwdHfn5+YpkAAAD8fwqTAAAAAAAArFdKVpXE7UfeEO+NeSexzIMvHxx7/27/xPIAAABIpzAJAAAAAADAemPFouXxj59fGZ+99mkieQWFBTFk1NDY+YgfJpIHAADAmilMAgAAAAAAsF5YNHNBjBg4LOZOmp1IXrPWzWPomLOiz17fSyQPAACAtVOYBAAAAAAAoNGb/eHMGLHf8Fg8e1EieW06t4sznjw3um2/eSJ5AAAArJvCJAAAAAAAAI3apy99HP/4+ZVRvHRVInmdem8cZ4w7PzbYfMNE8gAAAKgahUkAAAAAAAAarXcfeCtGHfWPKCspSySv+w96xqljz45WHVsnkgcAAEDVKUwCAAAAAADQKD1/7bh48Ld3RyqVSiRvuwN3iOP/eVoUtWiaSB4AAADVozAJAAAAAABAo1JRURFjzrs3nr3yicQyB5zw4zj8hmOioElBYpkAAABUj8IkAAAAAAAAjUZZSVmMPu7mePue1xPLPPDSg2O/P/wi8vLyEssEAACg+hQmAQAAAAAAaBRWLV0ZN/3y6vjk+Y8SycsvyI/BNx0X/Y/bM5E8AAAAakdhEgAAAAAAgAZvydyv47r9h8es92ckklfUommceP8Zsc3+/RLJAwAAoPYUJgEAAAAAAGjQvvx0TowYOCwWTp+fSF6rDVrHaY+fE1vs3CORPAAAALJDYRIAAAAAAIAGa+qbk+OGA66IFYuWJ5K3wRYbxhlPnR+dem6cSB4AAADZozAJAAAAAABAg/TB2P/ELYdfF6WrShLJ2/T7m8fpT5wXbTq1TSQPAACA7FKYBAAAAAAAoMF5ZeTz8c9Tbo9URSqRvL77bBsnPXBmNGvdPJE8AAAAsk9hEgAAAAAAgAYjlUrFY5c8HE/8eUximbseNSCOuuWEKCj0pzUAAICGzE91AAAAAAAANAjlZeVxz9Db4vXbX0osc9/zD4yf//WwyMvLSywTAACAuqEwCQAAAAAAQL23ekVx3PKr6+LDJ95LJC8vLy8Ou/ao2PO0fRLJAwAAoO4pTAIAAAAAAFCvLZu/NK4/4PKY/vbURPKaNC2M4+4+Nb7/y50TyQMAACAZCpMAAAAAAADUW/OnzYsRA4fFV1O+TCSvRbsWccqjZ0fPAVslkgcAAEByFCYBAAAAAACol2aO/zyu2394LJ23JJG89pt0iDPGnR9dtt4kkTwAAACSpTAJAAAAAABAvfPxMxPipoOvidXLixPJ6/K9bnHGk+dG+006JpIHAABA8hQmAQAAAAAAqFfeuuvVGH3cyKgoK08kr9cefeLkf/02WrRrmUgeAAAAuaEwCQAAAAAAQL2QSqXi6eGPxb8uuC+xzB0O2SWOGX1yFDYrSiwTAACA3FCYBAAAAAAAIOcqyivi/t/cGS/d8EximT8+Y9845KpfR35+fmKZAAAA5I7CJAAAAAAAADlVWlwStx/1jxj/0NuJZR407PD46dmDIi8vL7FMAAAAckthEgAAAAAAgJxZ8fXy+MfPr4rPXv0kkbyCwoI4+vaTYpfB/RPJAwAAoP5QmAQAAAAAACAnFs1aGNftNyzmfPRFInlNWzWLk8ecFX1+sk0ieQAAANQvCpMAAAAAAAAkbvbEWTFi4LBYPHtRInltOreL0584Nzbtt3kieQAAANQ/CpMAAAAAAAAkavLLk+IfP78yVi1ZmUhep14bxxnjzosNttgokTwAAADqJ4VJAAAAAAAAEvOfB9+K24/8R5SVlCWSt8WuPeK0sWdHqw3aJJIHAABA/aUwCQAAAAAAQCJeuO7peOA3d0YqlUokb9sDvh8n3Ht6FLVomkgeAAAA9ZvCJAAAAAAAAHWqoqIi/nXB/fHM5Y8lltn/+D3jiH8cGwVNChLLBAAAoH5TmAQAAAAAAKDOlJWUxZ3Hj4x/3/1aYpkHXHJw7P/HX0ReXl5imQAAANR/CpMAAAAAAADUieJlq+Kmg6+JSc9+mEhefkF+DL7xuOh//J6J5AEAANCwKEwCAAAAAACQdUu+XBzX7T88Zr03PZG8wuZFceL9Z8S2g76fSB4AAAANj8IkAAAAAAAAWTVv8ty4dt+/x8Lp8xPJa9mxVZz++LmxxS49EskDAACgYVKYBAAAAAAAIGumvTUlrj/g8lixcHkieRtssWGcMe786NRr40TyAAAAaLgUJgEAAAAAAMiKCY+Pj5GHjYjSVSWJ5G36/c3jtMfPjbad2yWSBwAAQMOmMAkAAAAAAECtvXbri3H30FsjVZFKJK/P3tvE0Id+E81aN08kDwAAgIZPYRIAAAAAAIAaS6VS8fifxsTjlz6cWOYuv+4fR916YjQp8qcuAAAAqs5PkQAAAAAAANRIeVl5/POU2+O1W19MLHPf8w6Mn//tsMjLy0ssEwAAgMZBYRIAAAAAAIBqK1m5Om45/LqY8Nj4RPLy8vLisGuPij1P2yeRPAAAABofhUkAAAAAAACqZfmCpXH9AVfE5//+LJG8Jk0L49i7TokdDt4lkTwAAAAaJ4VJAAAAAAAAqmzB51/FiIHDYt7kuYnktWjXIk5+5HfRa/c+ieQBAADQeClMAgAAAAAAUCUz35se1+0/PJZ+uTiRvPabdIgzxp0fXbbeJJE8AAAAGjeFSQAAAAAAANbp42c/jJt+eXWsXl6cSF6XrTeJ0588Lzp065hIHgAAAI2fwiQAAAAAAABr9dbdr8XoY2+OirLyRPJ67r5VnPLI76JFu5aJ5AEAALB+UJgEAAAAAAAgo1QqFc9c/niMOf/exDK/f/DOceydp0Rhs6LEMgEAAFg/KEwCAAAAAACQpqKiIh4866544bqnE8vc87R94tCrj4z8gvzEMgEAAFh/KEwCAAAAAABQSWlxSYw6+sb4z4P/TizzoGGHx0/PHhR5eXmJZQIAALB+UZgEAAAAAADgv1YuXhE3/uKqmPzypETy8psUxNG3nxS7/rp/InkAAACsvxQmAQAAAAAAiIiIr79YGCP2Gx5zJs5KJK9pq2Yx9OGzou/e2ySSBwAAwPpNYRIAAAAAAICY89EXMWLg3+PrLxYlktemU9s4/cnzYtN+myeSBwAAAAqTAAAAAAAA67kpr34S//jZFbFy8cpE8jbq2TnOfOr82GCLjRLJAwAAgAiFSQAAAAAAgPXa+Iffjtt+fUOUrS5NJG+LXXrEaY+dHa02aJNIHgAAAHxLYRIAAAAAAGA99eL1T8f9Z94ZqVQqkbxtBvWLE+87I4paNE0kDwAAAP6XwiQAAAAAAMB6JpVKxSMX3h9PDRubWGb/4/aMI248NgqaFCSWCQAAAP9LYRIAAAAAAGA9Ul5aFncePzLeuuu1xDIHXfzLGHTRQZGXl5dYJgAAAHyXwiQAAAAAAMB6onjZqrj5kGvi42c+TCQvLz8vBt94XAw44ceJ5AEAAMDaKEwCAAAAAACsB5Z8uTiuHzQ8Zo6fnkheYfOiOOG+02O7A3ZIJA8AAADWRWESAAAAAACgkZs3ZW6M2PfvseDz+YnktezYKk577JzovmvPRPIAAACgKhQmAQAAAAAAGrHP3/4srh90eSxfsCyRvI6bbxhnjDsvOvfukkgeAAAAVJXCJAAAAAAAQCP14RPvxcjDRkTJytWJ5HXbfrM4/Ylzo+3G7RPJAwAAgOpQmAQAAAAAAGiEXrvtxbhn6G1RUV6RSF6fn3wvTnroN9G8TYtE8gAAAKC6FCYBAAAAAAAakVQqFU/8+V/x2CUPJZa58+AfxtG3nRRNivzpCQAAgPrLT60AAAAAAACNRHlZedx76qh49ZYXEsv86TkHxC8uOyzy8/MTywQAAICaUJgEAAAAAABoBEpWro5bj7g+Phj7n0Ty8vLy4tCrj4wfn7FvInkAAABQWwqTUEvz5s2LDz/8MObPnx9LliyJ5s2bR7t27aJXr17Ru3fvnP2L2lQqFdOmTYtJkybF119/HStWrIjWrVtHx44dY+utt45u3brlZK+aKC4ujgkTJsSsWbNi8eLFUV5eHu3bt48uXbrEdtttF61atcrZbosWLYoJEybEvHnzYvHixVFUVBTt2rWL7t27R9++faOwsDBnu82aNSsmTpwYixYtimXLlkXLli2jffv20adPn9hyyy1zthcAAAAAkH3LFy6LGw68Iqa9OSWRvCZFTeLYu06JHQ7ZNZE8AAAAyAaFSRqFkpKSuPfee+OBBx6IadOmRUVFReTn58fIkSNjwIABWc9buHBhPPTQQ/Hwww/HjBkz1vh5rVq1in322ScGDx4cW2+9ddb3yGTKlClx7733xhNPPBGLFy9e4+d17tw5DjrooPjVr34VnTp1SmS36igrK4sXXngh7rvvvnj77bejtLQ04+cVFBTE9ttvH4cffnjss88+UVRUVOe7LV++PB555JF44IEH4tNPP13j5zVr1iz22GOPGDx4cOyyyy51vldExBdffBH3339/PPLII/HVV1+t8fPat28fBxxwQBxxxBGxxRZbJLIbAAAAAFA3FkyfHyMG/j3mfTo3kbzmbVvEKY/8Lnrt0SeRPAAAAMiWvFQqlcr1ElBTZWVlMWbMmLjhhhviyy+/TPv4ZZddFgcddFDW8kpLS2PUqFFx4403xsqVK6v12P333z8uuOCC2HDDDbO2z/9atGhRXH755fGvf/0rqvOfdVFRUZx00klx4oknJlI2rIp33303Lr300pg8eXK1Hrf55pvHxRdfHLvttlud7JVKpeKhhx6KK664Yq1l1Ex++MMfxsUXXxybbbZZney2cuXKuP7662P06NFRVlZW5cfl5+fHEUccEWeddVZO36kT1mTWrFmx6667xltvvdWg3hkXAIDs8T0hAKzdrPenx4j9hsfSL6v3O8uaate1Q5wx7rzo+j3/v0wyfD8IAIDvCcmm3NwrGGqpoqIiHnvssdhvv/3ij3/8Y8ayZLbNnz8/Dj/88LjyyiurXZaMiHjiiSdi0KBB8c4772R9t/feey8GDRoUY8aMqVZZMuKbd+e87rrr4pBDDol58+ZlfbfqSKVSce2118bgwYOrXZaMiJg+fXocc8wxMXz48Gq/DuuyfPnyOOmkk+IPf/hDtcuSERGvv/56HHDAATFu3Lis7hURMW3atPj5z38et912W7XKkhHf/Ld09913x4EHHhhTpiRzqx4AAAAAIDsmPT8xrtjjz4mVJTfu2zXOe+NSZUkAAAAaLLfkpsF57rnn4tprr61Roa6mZsyYEUOGDIk5c+akfezbW0L37t072rRpE8XFxfH555/HO++8k1asXLx4cRxzzDFx1VVXxU9/+tOs7Pb888/HWWedFatXr077WIsWLWKnnXaKLbbYIpo1axZLly6NTz/9NN5///0oLy+v9LmffPJJHHLIIXHHHXdE9+7ds7JbdVRUVMR5550XY8eOzfjxbt26Rb9+/f57+/B58+bFe++9F7NmzUr73Ntuuy3mzJkTV111VeTn174XvmjRohgyZEjG22/n5eXF1ltvHVtvvXW0b98+SkpKYubMmfHuu++mFStXr14dZ511VixYsCCOPPLIWu8VEfHBBx/ECSecEEuWLEn7WFFRUeywww7Ro0ePaNmyZaxYsSI+++yz+M9//hMlJSWVPnf27Nlx+OGHx8033xw77LBDVnYDAAAAAOrO2/98Pe445qYoLy1f9ydnQY8BW8Upj/w2WrZ3pxoAAAAaLoVJGow333wzrrrqqpgwYUKiuYsXL44TTzwxrSxZUFAQv/71r+OEE07IeJvt4uLiePjhh+Paa6+tVGYrLS2Ns88+O+68887Yfvvta7XbhAkT4re//W1aWbJNmzZx5plnxsEHHxzNmjVLe9z8+fPj1ltvjbvuuqtScXLevHkxdOjQuP/++6N9+/a12q26Lr/88oxlye233z7OOeec2HHHHTM+7t13340rrrgi3nvvvUrn48aNi4022iguvPDCWu1VUlISp556asay5M9+9rM4/fTTM77dc1lZWTz55JNx5ZVXVnoH1FQqFX/961+jc+fOsffee9dqt1mzZsXQoUPTypJNmzaNk046KY466qho3bp12uOWLVsWd911V9x0002VvnaWLVsWp5xySjz44IOx6aab1mo3AAAAAKBupFKpePbKJ+Lhc/+ZWOb3f7lzHHvXKVHYrCixTAAAAKgLbslNg/D555/HkCFDEi9LRkScffbZMX369EpnrVq1ittvvz0uvPDCjGXJiIhmzZrF4MGD49FHH41evXpV+tjq1avjtNNOy/iugFW1ZMmSOOWUU6K4uLjSeY8ePWLs2LHx61//OmNZMiJiww03jAsuuCBGjRoVbdq0qfSxGTNmxNlnn13jvWriySefjNtvvz3t/Oijj45//vOfayxLRkTsuOOOcc8998QxxxyT9rHRo0fH448/Xqvd/vrXv8b48eMrnRUWFsaVV14Zw4cPz1iWjIho0qRJHHjggTF27NjYeeedK30slUrFOeecEzNmzKjxXqWlpXHqqafGokWLKp136tQpHnzwwTj11FMzliUjIlq3bh2nnHJKPPTQQ9G5c+dKH1u8eHGceuqpae9ACQAAAADkXkVFRTz427sTLUv+6NSfxgn3naEsCQAAQKOgMEmD8N1S4Lc6d+4cQ4cOjfvuu69Och999NF49dVXK50VFhbGTTfdFLvuumuVZmy88cZxxx13RNeuXSudz58/P4YPH17j3YYPHx7z58+vdNalS5cYPXp0bLzxxlWascsuu8SNN94YRUWVf9H12muvxaOPPlrj3apj8eLF8Ze//CXt/LDDDosLL7wwCgoK1jmjoKAgzj///DjiiCPSPva3v/2txsXUd999N+6///6087///e8xaNCgKs1o27ZtjBw5Mr73ve9VOl+1alVccsklNdorIuKWW25Je9fL1q1bx6hRo6J3795VmtGrV6+44447om3btpXOJ0+eHLfegAUcYgAAIABJREFUemuNdwMAAAAAsq90dWncesT18fy14xLL/MVlv4pfjTg68gv8OQkAAIDGwU+4NDhFRUUxcODAuOWWW+LFF1+Ms846K/r165f1nFWrVsWwYcPSzk8//fTYaaedqjWrY8eOceWVV6aV/x5++OH48MMPq73bhAkT4uGHH650lp+fH5dffnlssMEG1Zq14447xplnnpl2PmzYsFi1alW1d6uuESNGxMKFCyud9erVK/7whz9Ue9aFF14YW221VaWzhQsXxogRI6o9K5VKxaWXXhqpVKrS+WGHHVblsuS3mjdvHtdcc020aNGi0vkbb7wRTz/9dLV3+/LLL+PGG29MO7/kkktiyy23rNasLbbYIi699NK085tuuinmzZtX7d0AAAAAgOxbuXhFjBg4LP7zwFuJ5OU3KYhjRp8c+553YOTl5SWSCQAAAElQmKRB6NSpUwwYMCAuuuiieO211+Kaa66J3XffPfLz6+5L+IEHHkgr8m266aZx7LHH1mhev3794mc/+1mls1QqFSNHjqz2rJtvvjmtyHfggQeu9dbVazNkyJDYfPPNK50tXLgwHnrooRrNq6oFCxZkzPj973+f9q6XVVFYWJixaPnQQw+lXct1ef7552Py5MmVztq0aRO/+93vqr1XRES3bt3iuOOOSzu/+eabqz3r9ttvT7tl9k477VTtIue3Bg4cGLvsskuls9WrV8eoUaNqNA8AAAAAyJ6vZy+KK/b4U0x+6eNE8pq2bBqnP35O7HrkgETyAAAAIEkKkzQIHTp0iFtvvTUGDx6cdvvgulBeXp6xLHbCCSdEYWFhjecOHTo07V/jPvfcczF9+vQqz5g2bVo8//zzlc7y8vLipJNOqvFeTZo0ieOPPz7tfNSoUVFRUVHjuety1113xerVqyud9evXr8q3O89kp512ih122KHSWXFxcdx1113VmpPpltRHHHFErb7+hgwZkvYukx999FG8+eabVZ6xZMmSePDBB9POTz755BrvtabH33///bFs2bJazQUAAAAAam7Ox1/EsN0ujtkfzkokr/VGbeJ3L/0x+v5020TyAAAAIGkKk5DB22+/HXPnzq101rx58xq/g9+3Nttss9h5550rnVVUVMRjjz1W5Rljx45Ne3fJnXbaKbp3716r3QYNGpRW5ps9e3a88847tZq7JqlUKh599NG080MPPbTWszPNGDt2bJUfP3PmzHjvvffSzg8++OBa7dWqVavYd999084zvQ5r8swzz8TKlSsrnXXt2jV22223Wu226667Rrdu3SqdrVy5Mp599tlazQUAAAAAauaz1z6Jy/tfEl/Pqt7dc2pqo56d47w3Lo3Ndqjd75oBAACgPlOYhAzGjRuXdta/f/+0QmFN7L333lXKW5OnnnqqSjOrq3nz5tG/f/+08yeffLLWszN5//3300qpBQUF8eMf/7jWs/fcc89o0qRJpbPZs2fHBx98UKXHZ7oeffv2TSsU1kSma/Xcc8+l3WJ7TdZ0/b/7zqXVlZeXFz/5yU/Szuvq+gMAAAAAazZ+zNtx9d6XxcrFK9f9yVmw+c5bxrmvXRIbdu+USB4AAADkisIkZPDCCy+knf3gBz/IyuxMc6ZOnVql23JPmzYtPv/88yrNrIlMt8LO9FpkQ6a5ffr0iXbt2tV6dtu2baNPnz5VyqzqbrW5Tfj/2nnnnaOgoKDS2bJly6r0Tp4rV66Mt956K+28Lr8233rrrbR3tAQAAAAA6s6LNzwTIw+5NspWlyaSt83+/eK3z/8+Wm/YJpE8AAAAyCWFSfiOWbNmxfz589POt99++6zM33LLLaNNm/RfPGW6BXRVPqd169bRo0ePrOz2/e9/P+3sq6++itmzZ2dl/v/K9Fz69euXtfmZZo0fP36djyspKYmPPvqoSvNqolWrVtGzZ8+086pc/wkTJkRZWVnaeba+NjPNKS0tjYkTJ2ZlPgAAAACwZqlUKv514X1x3+l3RCqVSiTzh8f8KE7+12+jactmieQBAABArilMwndkum1zQUFBxpJbTeTl5WUsOFalMJdpt549e9b6dszf2nLLLdPe/TDim9tnZ1N5eXnGEl7v3r2zltGrV6+0s4kTJ0Z5eflaH/fRRx9FaWn6v9zO5m41LUxmuv6dOnXKyrtyRnzzzpydOqXfcifb1x8AAAAAqKy8tCxGH3tzPPX3sYll7v/Hg+LIW0+IgibpvxMGAACAxkphEr7jk08+STvr2rVrFBUVZS1j8803r1JuVT6ne/fu2VgpIiKKiopi4403TjufNGlS1jIiIqZPnx6rVq1KO99iiy2ylpHpNV65cuU6b32e6TUuLCyMbt26ZWmz+nv9IzLvlu3rDwAAAAD8f8XLVsV1gy6PN0e/kkheXn5eDL7puDjw0oOz9o/xAQAAoKFQmITvmDNnTtpZ586ds5qRaV6m3Kp8Tn3ZrTrWNC+bz2VNs9b1XDJ9fKONNor8/Oz9z2Wm3RYuXBirV6+u9m4N8foDAAAAAN9YMvfruGKPP8WkZz9MJK+wWWGcPOa3sfuJeyWSBwAAAPWNwiR8R6Zy2IYbbpjVjI022ijtbMGCBVFSUrLGx5SUlMSCBQtysltShclM2TW1plk1KUwm8RqnUql17jZ79uy0syR2y5QLAAAAANTO3EmzY9huF8es92ckkteyQ6s46/nfx3YH7pBIHgAAANRHCpPwHV999VXaWevWrbOakWleKpXKmP2/e6VSqbTzNm3a1Plua9urJjLNa9q0aVZve960adMoLCysUva6Pp7E9V9T9rcqKioyFmaT2G3BggUZv/YAAAAAgJr57LVPYnj/S2LhjPTf+dWFjpttEOe+fkls+YNeieQBAABAfaUwCd+xcuXKtLOWLVtmNaNVq1YZz4uLi9f4mFWrVmU8z/ZumeatKbumkniNIzK/zut6LvX1+hcXF2csLSaxWyqVWutuAAAAAEDVjX/47bh678ti5dcrEsnbZLvN4rw3Lo3OvbskkgcAAAD1WZNcLwD1TaZiWKZ3KqyNJk0y/6e3tjLfmj6W7d0yzct2WS6J1zgi8+u8rudSX6//mvbO5rtyRqx9t+bNm2c1CwAAAADWNy+MeCoeOOuuxO7ostVeW8fQh8+K5m1aJJIHAAAA9Z3CJHzH6tWr087WVCKrqTXNy5T9rZKSkoznBQUFWdnpWzUpGVZXEq9xRM3Kn7m8/mvbbU1fG0lc/7Xlr2/Ky8tjzpw5uV5jvfLt6+11BwBYf/meEIDGIFVREc9fNi7eGvlKYplb/2z7OPCKQ2LBkoURSxYmlgvZ5vtBAAB8T5gbXbp0yXovpT5QmITvKCgoiIqKikpn5eXlWc347vxvre2dDNf0P0BrmlVTmZ5rEu+wmO3XeE0z1/VcMr3OSV3/tb1b5Jquf3342lyfLFy4MHbddddcr7FeOuigg3K9AgAAOeZ7QgAaqvxUXmy3eKvoWrxRYplTW86Kx//9cgzb/drEMqGu+X4QAADfEybrvffei402Su5n2aQoTMJ3NG/ePEpLSyudlZWVZTXju/O/1axZs7XuVZ1ZNZXpuWb7VsyZnme2X+M1zVzXc8n08WzvtqZ5Nbn+9eFrc33SsWPHeOutt3K9xnplzpw5cdBBB8WYMWOiS5cuuV4HAIAc8D0hAA1Z8ZJV8eCJd8aMt6YlE5iXF3v/cf/4w3EDksmDBPh+EAAA3xPmRseOHXO9Qp1QmITvaNq0adrZypUrs5qxpnlrK/Nl2mtts2oq07xsl+Uyzcv281jTzHU9lyR2W7FiRcbz+nr9I7Jfmm2oCgoKolu3brleY73UpUsXrz0AwHrO94QANDSLZi2M24+4PuZMnJVIXpOiJnHMnafEjoe6QwqNk+8HAQDwPSHZkJ/rBaC+ad++fdrZ0qVLs5qxfPnyjOcdOnRY42PatWuX8XzZsmVZ2Wlt89a2V01kei4rV67M6rsllpWVxapVq9LO1/VcMu2W1PXP9LX3raKiomjRokXaebZ3y3T927Ztu8ZbggMAAAAA6WZ/ODOG7XZxYmXJZm2axxlPna8sCQAAAOugMAnfkemtexcuXJjVjAULFqSdtWnTJlq1arXGx7Rv3z5jYS7TrNrI9Fyz/XbGa5qXzdd5TbPW9Vxydf0jIrp27brWx2X6eLZ3S+L6AwAAAEBj9umLH8XwAZfG4tmLEslr16V9nPvqxdH7R30TyQMAAICGTGESviNTOezLL7/Masa8efPSztZVlouo37tVx5oKeNl8LpmeR0TEJptsstbHZdptTbNqKtO8Nm3aROvWrdf6uMZy/QEAAACgsXr73jfi2n3/HsVL0+9+Uxc27ts1znvj0ui6zaaJ5AEAAEBDpzAJ37Hlllumnc2aNSurt4ueMWNGlXKr8jnTp0/PxkoREVFRURGzZqXfIqZHjx5Zy4iI6N69e+Tnp//Pz+eff561jEyvS5MmTWKzzTZb6+MyvcbFxcUxd+7cbK1Wb69/RObdsn39AQAAAKCxSaVS8fTlj8Vtg6+P8tLyRDJ7DNgqznnl4uiw6QaJ5AEAAEBjoDAJ37HtttumnZWWlma1mPbZZ5+lnfXr12+dj8u02+TJk7OyU0TEzJkzo6SkJO18++23z1pGRESrVq2ie/fuaefZfC5Tp05NO+vdu3c0b958rY/bbrvtMp5nc7dsXv8vvvgiVqxYkZW9iouL44svvkg7z/b1BwAAAIDGpKK8Iu4/884Yc969iWV+/+Cd4zdPnx8tO7RKLBMAAAAaA4VJ+I6tttoqmjZtmnb+3nvvZWX+3Llz46uvvko7r0opLdPnLFq0KOO7AtbE+++/n3bWqlWrOnmHwUzFxGy9xhGZn0tVSokdOnSIbt26pZ2PHz8+K3uVlpbGxx9/nHZe0+ufSqXigw8+yMpuEydOjPLy9H/9vqYSKQAAAACs70pWlcTIw66NF69/OrHMH5+xb5xw3xlR2KwosUwAAABoLBQm4TuKiopil112STt/8803szL/3//+d9rZhhtuGH379l3nY7fddtto06ZNorsNGDAg4+2za6t///5pZx9++GEsX7681rNXr16dsUS4++6713i3t956q9Z7RXxT5Fy9enWls8LCwvjBD36wzsduvPHGGcur2br+mZ7jtttuGx06dMjKfAAAAACqrry0LCa/Minef/Td+PjZD2PqG5OjtDj97jDkzvKFy+Kan/4t3hvzTmKZB18xOA675qg6+Z0tAAAArA/8RA0ZDBw4MO3s5ZdfTiu61cQLL7yQdrbvvvtW6RdcRUVFsddee6WdP/vss7Xeq7y8PF555ZW08/3337/WszPZc889026PXVpaGi+99FKtZ7/55puxatWqSmft2rWLH/7wh1V6fKbr/8EHH8S8efNqvVum6z9gwICMRdhM9t1337SzZ555ptZ7RUS8+OKLaWd1df0BAAAAyGzqG5Pj5kOvid9ueFJc+aM/x42/uCqu3eeyGN7/kji366lx7+l3xKwPsnPHGWpuwfT5Mbz/JTH19cmJ5DUpahLH33t67P1bv68DAACA2lCYhAx+8pOfRLNmzSqdLV++PMaNG1eruYsXL85YSjvwwAOrPGPQoEFpZ2+88UZ88cUXtdrt1VdfjQULFlQ6a9u2bZXflbG6mjdvnrH8+cADD9R69pgxY9LOBg4cGE2aNKnS43faaafo3LlzpbNUKhUPPvhgrfYqKyuLxx57LO38gAMOqPKM/fffP/Ly8iqdTZ8+Pd55p3b/in3KlCkxceLESmdNmjTJWB4FAAAAIPvKSsrikd/fH5fvfmmMf+jtKF66Ku1zVn69Il664Zn4S78L4rYjb4ivZy/KwabMfG96DNvt4pj36dxE8pq3bRFnPHV+7HTYuu9SAwAAAKydwiRk0KZNmzjkkEPSzkeOHBnl5eU1nnvXXXdFSUnl2+bsuOOOse2221Z5Rv/+/aN3796VzioqKuLmm2+u8V4REbfddlva2eDBg6Np06a1mrs2xx57bNrZv//97xg/fnyNZ86YMSOee+65Smf5+fkxZMiQKs9Y0+fffffdtbpl+NixY2P+/PmVzjbZZJPYZ599qjyje/fu8aMf/Sjt/MYbb6zxXhGZr//+++8fnTp1qtVcAAAAANZtxaLlccUef4pxlz0aqYpUlR7z9j2vx0W9fxdP/vURt+pO0EdPfxBX7PGnWPrl4kTy2m/SIc597ZLo/aO+ieQBAABAY6cwCWtw7LHHRmFhYaWzqVOnxujRo2s0b+7cuTFq1Ki085NOOqnaszI95uGHH44JEybUaLfnnnsu3n777UpnLVq0iKOOOqpG86pq6623jv79+6ed//nPf47S0tIazRw2bFhaqXXfffeNzTffvFpzDj300GjXrl2ls6+//jquvvrqGu21fPnyGDFiRNr58ccfHwUFBdWaNXTo0LSz119/PZ5++uka7TZx4sQYO3ZspbP8/Pw48cQTazQPAAAAgKpbNn9pXLXXX+Pzf39W7ceWrFwdj/7xgbi47zkxfszbkUpVrWxJzbxxx8tx/QFXxOrlxYnkdd2mW5z35p+iy9abJJIHAAAA6wOFSViDLl26xHHHHZd2fvXVV8d//vOfas0qLS2Nc845J1asWFHpfM8996zRLa/322+/2HHHHSudlZeXx1lnnRWLFlXvNjxz586Niy66KO389NNPj/bt21d7t+q64IIL0oqpH3/8cVx22WXVnnXffffF888/X+msRYsWcfbZZ1d7VsuWLTM+7p577qnRrdkvvvjimDu38i16+vbtm/GdTNdl++23z3gb74suuig+//zzas1atmxZnHPOOWkl0yOOOCJ69OhR7d0A+H/s3Xd0VOXexfE9k0wS0kMSCCC9SxMQpEiRJiAgqCgWxHJFig3EBog0ERXUi4q9vxYElBp6lSoIEjoCUhJCSw/pM+f9A+USgxDCzJyU72etLIZzZs5vE8oKJ3ueBwAAAADyL+lkot7qMFHRO45e03XijpzRR3e9o7c7T1LMzmNOSoe/GYahhRN/1lePfCRHTsF3ILoatTvU03NrX1FIhdJumQcAAAAAQElBYRK4jKFDh6p69eq5jmVlZenxxx/X5s2b83WNtLQ0Pfnkk9qyZUuu435+fho7dmyBclksFk2cODHPdtnR0dEaMGBAnmLevzl+/LgGDBiguLi4XMfr16+vAQMG5OsaCQkJatiwoWrXrp3r4/XXX8/X62vUqKHBgwfnOf7tt99q8uTJ+d4Cffbs2Ro/fnye48OGDVOFChXydY1/6tu3r1q0aJHrmGEYev7557Vw4cJ8XSMnJ0djxozRggULch339PTUhAkT5OnpWaBso0aNUunSuW+WJiYm6qGHHtL+/fvzdY34+Hg9+uijOnz4cK7j5cuX1/DhwwuUCwAAAAAAAPmTEBOvqe0n6MTuaKddc//K3ZrQ+CV9N/QLpcalOO26JZk9x65vB32meWNmum1m8/ta6anIF1QqyNdtMwEAAAAAKCkoTKJYyMzMvKrj+eXl5aV3331XQUFBuY6npKTo4Ycf1sSJE3X69OlLvtbhcGjZsmXq3bu3Vq1aleuch4eH3n77bUVERBQ4W9WqVTV58mRZLJZcxw8cOKBevXrpm2++UUbGpbeGSUtL05dffqnevXvr6NHc714PCwvTtGnT8r1N9Llz5y75eU5ISMjnr+T8FtO33HJLnuNffPGF7r333jxl04sdPnxYw4YN08iRI/OUK3v06KH+/fvnO8elTJ06NU/hMisrS8OHD9dzzz2nY8f+/R37Gzdu1N13360ZM2bkOffyyy+rfv36Bc4VEhKid999V15eXrmOnzx5Un379tV7772n5OTkS742KytLs2fPVq9evbRjx45c53x9ffXee+/Jz8+vwNkAAAAAAABweXFHz2hKu/E6dSB/b3y+GobD0JoPlunlWsO16r0lsrtpRcTiKPNchj644y398slKt8289fmeevjrIfL0KtgbrQEAAAAAwOVZDMMwzA4BXEl8fLxuueWWfy0AFkSDBg00a9asfD1369atGjhwYJ4ttaXz5cdGjRqpTp06CgwMVFZWlmJiYrR169Y8KzdKktVq1dixY3XPPfdc869Bkr788ktNnjxZl/qr7Ovrq2bNmqlq1aoqVaqUzp07p8OHD2vr1q2X/FwGBQXps88+U4MGDfI9Pzo6Wh07dsxzvE+fPpo8eXK+r5OWlqZHH31U27Ztu+T56667Tk2aNFFERIQsFovi4uK0a9cu7du375LPb9mypT7++OM8hcKCOHTokAYMGKAzZ85c8ny9evVUv359hYSEKCcnR7Gxsdq2bdu/rvQ5ePBgPfPMM9ecS5IWLVqk5557TtnZ2XnO2Ww23XjjjapRo4b8/f2VkZGhI0eOaOvWrUpJybvCgLe3t6ZNm6b27ds7JRvgDMePH1eLFi20adMmVaxY0ew4AAAAMAFfEwIobs4cOqW3Or6q+GNn3TKvfL3rdPc7D6pux4K/ebckSj6dpPd7TdGRXw+5ZZ7FYtE90wbolqFd3DIPKEr4ehAAAAB8TQhn4i2KKBLS0tKcWpaUzpcw8+vGG2/UDz/8oEGDBikmJibXObvdrm3btv1r0e9ivr6+mjJlyiULhgX10EMPqWzZsnrxxRfzfI7S0tK0Zs0arVmz5orXqVy5sj788ENVq1bNadmuhq+vr7766iuNHDlS8+fPz3M+Ojpa0dH5257ozjvv1Lhx42Sz2ZySrXr16po5c6YGDx6svXv35jm/e/du7d69+4rX8fT01Msvv6x+/fo5JZckdevWTaGhoXryySeVmJiY61x2drY2btyojRs3XvE6oaGhev/999W4cWOnZQMAAAAAAEBuJ/ef0NsdX1XiifzvznKtTuyO1judJ+mGPs1015v3KbxaWbfNLqpOHzypad1e15lDp9wyz+Zj06PfPqHGfZq5ZR4AAAAAACUZW3ID+VSrVi3NnTtX/fv3z/d21Re75ZZbNG/ePKeWJf/WrVs3zZ07V23atLnq13p6eurhhx/WTz/95NSy5D+3Cs8PLy8vTZkyRW+99ZbKlr36G7flypXTtGnTNGnSJKeVJS++9owZM/Tkk0/Kx8fnql/fuHFjzZ4926llyb81b95c8+fPV48ePa76tRaLRX369NH8+fMpSwIAAAAAALhQzK7jmtp+glvLkhf7/ectGlvvec0ZNUMZqc59c3px8uevB/VG67FuK0v6lfbXsOWjKEsCAAAAAOAmrDCJIsHX11c+Pj5OXWUyLCzsql8TEBCg0aNHq3///poxY4bmzZv3r9s0S+dzd+rUSf369VPTpk2vJe4VValSRZ9++qm2bt2qH374QStWrFBaWtq/Pr9MmTLq1auX+vXrd03LFQcGBsrf31+pqam5jteoUaPA17ztttvUoUMHLViwQDNnztTOnTvlcDgu+Vyr1aqGDRuqb9++6tGjR4HKjPnl7e2tJ554Qn379tXMmTM1Z84cHT9+/F+f7+XlpbZt2+qee+5RmzZtClQiza8yZcpo6tSpeuyxx/T9999r8eLFeVacvFhwcLC6deumfv36qU6dOi7LBQAAAAAAAOnY9iN6p8sknYtLvfKTXSgnM1uLXpurDV+u0R2T71Xz+1vLamVdhb9FLdimj++Zpuz0LLfMC60SrqcWvaCI2uXdMg8AAAAAAEgWwzAMs0MARdnRo0e1e/duxcfHKyUlRaVKlVJwcLBq1qypOnXqFGg1Smew2+3at2+f/vjjDyUmJio9PV0BAQEqXbq06tevr0qVKjl13h9//HFhhcPg4GCtWLFC/v7+Trl2SkqKduzYoRMnTlwoAQYHB6t8+fJq1KiRAgICnDKnIE6dOqWoqCidPn1aKSkp8vLyUnBwsKpWrap69erJy8vLlFyGYejgwYPat2+fEhISdO7cOfn5+SkkJER169ZV9erVXVrgBJzl+PHjatGihTZt2nRN5W4AAAAUXXxNCKCoO7LlkP5762tKS/z3NzebpWqLGrrnnQdVtXnB3/xcXKz9eIW+G/K5DId7vmVSqUkVPbHgeQVFBLtlHlCU8fUgAAAA+JoQzsQKk8A1qly5sipXrmx2jDw8PDxUr1491atXzy3zVq9efeHxwIEDnVaWlM6v7HnzzTc77XrOVLZsWXXu3NnsGHlYLBbVrFlTNWvWNDsKAAAAAABAiXVw/X692/0NZaSkmx3lkv7cdFCTW4xRy4faqs+r9yioXIjZkdzOMAzNGzNTka/OcdvM629tqMd/fFo+AaXcNhMAAAAAAJzHXhsArplhGPrxxx8lnd8a+oEHHjA5EQAAAAAAAGCu/av3aFrXyYW2LHmxjV+u1cu1n9WSN+YrOzPb7DhuY8/O0VePfOTWsmSrh9rpiXkjKEsCAAAAAGASCpMArtmGDRt07NgxSdKQIUPk7e1tciIAAAAAAADAPHuWRund7q8r81ym2VHyLTM1Qz+9+L3GN3heO+b/JsNwz9bUZslISdd7Pd/Uxq/Wum3mbS/foQc/GygPG5t/AQAAAABgFgqTAK7ZDz/8IEmqWLGi7rrrLpPTAAAAAAAAAOaJWrBN7/eaouyMorlS4+mDpzT99qma1m2yYvfGmB3HJZJiEzSl/QTtWbrTLfOsHlY98NF/1GvcXbJYLG6ZCQAAAAAALo3CJIBrcvr0aa1cuVKS9MQTT8hms5mcCAAAAAAAADDHtp9+1Yd3vq2crByzo1yzPUt3anzDFzTjma91LiHV7DhOc3JfjF5v9YqObz/ilnlevt4aMudZtXmsg1vmAQAAAACAy6MwCeCazJo1Szk5OapZs6Z69epldhwAAAAAAADAFFt+2KBP7pkme7bd7ChO47A7tHLaYo2p/azWfrRCDrvD7EjX5OD6/Xrj5nGKO3rWLfMCwgP17KrRanBbY7fMAwAAAAAAV0ZhEsA1iYqKUmBgoEaNGiWrlX9SAAAAAAAAUPJs/GqtPnvICMDhAAAgAElEQVTg/SJfKPw3qWdT9O3gz/TqjaN0YM1es+MUyLafftXbnSbpXLx7VsssU6OsXtgwTlWaVXfLPAAAAAAAkD+eZgcAULR9+OGHZkcAAAAAAAAATLP24xX6bvDnMgzD7CguF73jqKbeMkFN+96kO9+4T6GVw82OlC8r312iH5/52m2/R1VvqqGh80YoIDzQLfMAAAAAAED+sRwcAAAAAAAAAAAFsPLdJfp20GduKeKVr1/R5TPy67eZm/VK3RGa98osZaVlmh3nXzkcDs1+/jvNePort5UlG/ZsouErRlGWBAAAAACgkKIwCQAAAAAAAADAVVo6ZYFmPP2VW2b1Gt9XY3ZM1tB5I1SmRlm3zLyS7IxsLZzwk8bUHaEtP2wodCtsZmdm6/P+07V0ygK3zWw7sKMGzR4mL19vt80EAAAAAABXh8IkAAAAAAAAAABXYeHEnzX7+e/cMuuO1+/VbaP7yGKxqGGPJnpl15u684375BNQyi3zryTheJw+ve89TWk3Xse2HzE7jiQpLfGc3u3+urZ8v8FtM2+feLfu++AReXh6uG0mAAAAAAC4ehQmAQAAAAAAAADIB8MwNGf0j5o3ZqZb5t3z3wG69bmeuY55enmqy4geGr9/qlo91M4tOfLj4Lr9mnTjKH0z8BMln04yLUdCdJzebDte+1ftccs8q6eHHvpykLqP7C2LxeKWmQAAAAAAoOAoTAIAAAAAAAAAcAWGYWj2899p0aQ5Lp9lsVh0/4ePqsOTt/7rc4IigjXg88f10uYJqtaypssz5YdhGFr36SqNqf2slr8dqZysHLfOj9l1XK+3ekUndh13yzxvfx89ueA5tXywrVvmAQAAAACAa0dhEgAAAAAAAACAyzAMQzOe/lrLpi50+SyL1aIBnz+utgM75uv5VZpV1/PrxuqRb4YouHyIa8PlU3pSmmY++38a3+gF7Vq8wy0z96/arTfbjFNCdLxb5gVGBGvEmjG6vktDt8wDAAAAAADOQWESAAAAAAAAAIB/4XA49O2gz7TqvSUun2X1sOqRb4aq5YCrW7HQYrHopvtv1rh9U9VtZG95ettclPDqnNofq3e7v673er6pUwdiXTZnyw8bNK3b60pPSnPZjItF1CmvFzaMU6XGVdwyDwAAAAAAOA+FSQAAAAAAAAAALsFhd+jrRz/WL5+sdPksD5uHHpvxlJrf26rA1/Dx91HviXdr3J431fiOZk5Md212LtyucQ2e16znvlV6svNKjYZhaOmUBfr0vvfctv139da19Py6sQqrEu6WeQAAAAAAwLkoTAIAAAAAAAAA8A/27Bx93v99bfxqrctneXp5atDsYWpyR3OnXC+sahkNmjVMw5aPUvn6FZ1yzWtlz7Zr2dSFernWcK3/fLUcDsc1Xc9hd+jHZ77W7Oe/c1LCK2t8RzM9s3Sk/Er7u20mAAAAAABwLgqTAAAAAAAAAABcJCcrR5/c+662/LDR5bNsPjYNnTdCDXs0cfq163Sop9HbJune9x4uNCW/lNPJ+vo/H+u1m17WoQ0HCnSNrPQsfdJvmla+6/pt0v/W4clbNXDG0/Iq5eW2mQAAAAAAwPkoTAIAAAAAAAAA8JfsjCx9eOfb2v7TFpfP8vbz1pORL+j6Lg1dNsPD00Pth3TWhANvqf3QLrJ6FI5vCxz77U+9cfNYffbAe0qIjsv3687Fp+qdLpO0bfavLkyX251v3Ke733mw0HzuAAAAAABAwfG/ewAAAAAAAAAAJGWlZWp676nauXC7y2f5BJTSU4tfVO3217t8liT5lfbXve8+pNHbX1PtDvXcMjM/fv1ug8bUGaGFE39WVnrWZZ979sgZvXHzWB1aX7CVKa+Wh81Dj377hLqM6CGLxeKWmQAAAAAAwLUoTAIAAAAAAAAASryM1Ay92+NN7Vm60+WzfIN99cyyl1SjdW2Xz/qnCvUratiykRr80zCFVQ13+/xLyUrL1LwxMzW23nPaNvtXGYaR5znHth/R661e0cl9J9ySqVSQr55e/KKa39vKLfMAAAAAAIB7UJgEAAAAAAAAAJRo6UlpmtZ1sg6s3uPyWX6h/hq2YrSqNq/h8ln/xmKx6IbezTR295u6feLd8vbzNi3LxeKOnNFHfd/R251eVXTUsQvH9yyN0pR245V8MtEtOYIrlNZza8eo9i2FZyVOAAAAAADgHJ5mBwAAAAAAAAAAwCznElI1retkHdly2OWzAsoEatjyUapQv6LLZ+WHzcdL3Uf2VssBbTVn5A/a9M06syNJkvav2qOJTV5S28c7qXy96zTjma/lyLG7ZXb5+hX1VOTzCrku1C3zAAAAAACAe1GYBAAAAAAAAACUSKlnk/VOl9d0/PejLp8VVC5Yw1eMUkSdCi6fdbVCKpTWw18NUdtBnfTjM1+7pTx6JYbD0JoPlrl1Zq3212vwT8PkG+zn1rkAAAAAAMB92JIbAAAAAAAAAFDiJJ9K0tRbJrqlLBlSMVQj1owplGXJi1VvWUsvbByvAZ8/rsCyQWbHcatm/VrqqUUvUJYEAAAAAKCYozAJAAAAAAAAAChREmLiNaX9eJ3YHe3yWWFVwzVizRiVqRHh8lnOYLVa1eqhdhq/f6q6PNdTHjYPsyO5XJcRPfTI/w2VzdtmdhQAAAAAAOBiFCYBAAAAAAAAACVG3NEzmtJuvE7tj3X5rDI1IzRizRiFVQl3+SxnKxXoqztfv1ev7HpDDXs2MTuOS1gsFt3z3wG68437ZLXy7RIAAAAAAEoC7gAAAAAAAAAAAEqEM4dOaUq7CTp7+LTLZ5W7voJGrH5ZIdeFunyWK5WtWU5D547QU4teULm6hXtL8avh6W3TwB+fVocnbzU7CgAAAAAAcCNPswMAAAAAAAAAAOBqJ/ef0NudJikxJt7ls65rVFnPLH1JAeGBLp/lLvVubaQ6v9fT6unLNH/sbKUnpZkdqcB8Q/w0dN4I1Whd2+woAAAAAADAzVhhEgAAAAAAAABQrJ3YHa2p7Se4pSxZqWlVDV8xqliVJf/mYfNUx6e7acKBt9R2YEdZLBazI1210MphemH9WMqSAAAAAACUUBQmAQAAAAAAAADF1vHfj2jqLROUfCrJ5bOqtayp4ctHya+0v8tnmSkgPFD3f/ioRv32qmq2rWN2nHyr2LiKXtgwThF1is/W4gAAAAAA4OpQmAQAAAAAAAAAFEtHthzSWx1fVerZFJfPqtm2jp5e/KJKBfm6fFZhUfGGKnp21csaOOMpla4UZnacy7q+SwONWP2ygsqFmB0FAAAAAACYiMIkAAAAAAAAAKDYObThgN7uPElpCedcPqtup/p6KvIF+QSUcvmswsZisahp3xYat+dN9Rx7l2ylvMyOlEfLAW31xPznSuTvDwAAAAAAyI3CJAAAAAAAAACgWDmwZq/+e+trykhOd/ms+t1v0NB5I+Tl6+3yWYWZl6+3eoy5Q+P3TtGN97QwO84F3Uf11oDPH5eHzdPsKAAAAAAAoBCgMAkAAAAAAAAAKDb2LNupad1fV+a5TJfPuqH3jRo0e5hsPoVvVUWzlK4Upse+f0oj1oxRxcZVTMthsVp0/weP6vYJd8tisZiWAwAAAAAAFC4UJgEAAAAAAAAAxcLOyO16v9cUZadnuXxW07tbaOCMp2Tztrl8VlFUs00djfx1oh746D/yDwtw62xbKS8N/nm42j7e0a1zAQAAAABA4UdhEgAAAAAAAABQ5P0+Z4s+6POWcjKzXT6rRf+b9ej/DWWb5yuweljV5rEOmnDgLXV8ppusnh4un+kfFqBnV41Wo55NXT4LAAAAAAAUPRQmAQAAAAAAAABF2pYZG/VR3//Knm13+azWj7TXgM8HycMN5b/iwjfYT3e/1V+vRE1Wva6NXDYnvHpZvbBhnKo2r+GyGQAAAAAAoGijMAkAAAAAAAAAKLI2ffOLPrv/PTnsDpfPaje4sx74+D+yenBrvSAi6lTQkwuf1xPzn1OZmhFOvXaVZtX0/PqxKlPDudcFAAAAAADFC3d1AAAAAAAAAABF0rpPV+nLhz6U4TBcPqvjM91073sPyWrltvq1sFgsanBbY72y8w3d+cZ98gkodc3XbNCjsYavHK3AMkFOSAgAAAAAAIoz7uwAAAAAAAAAAIqcVe8v1TcDP5FhuL4s2fXFXuo79QFZLBaXzyopPL081WVED43fP1WtH25f4M9tm8c6aPBPw+Xt5+PkhAAAAAAAoDiiMAkAAAAAAAAAKFKWvbVQPzz5pVtm9Rx7l3q/eg9lSRcJigjWg58N1IubJ6h6q1r5fp2tlJf6vtVf93/4qDw8PVyYEAAAAAAAFCeeZgcAAAAAAAAAACC/IifN0dzRP7plVp/X+qnrC73cMqukq3JjNT33yyva8sNGrXx3sf7cdPBfn1u3cwPd/8EjCq9W1o0JAQAAAABAcUBhEgAAAAAAAABQ6BmGofmvzNLCiT+7Zd7db/dXx6e7uWUWzrNYLGp+bys1v7eVTuyO1m8zNynlTIrSk9Nk9bCqVtu6qtOxnkIrh5sdFQAAAAAAFFEUJgEAAAAAAAAAhZphGPrpxR+09M35bpl33/RH1G5QJ7fMwqWVr3edyte7y+wYAAAAAACgmKEwCQAAAAAAAAAotAzD0I/PfK2V7y5x+SyLxaL+nz6m1g+3d/ksAAAAAAAAuB+FSQAAAAAAAABAoeRwOPT9kC+09uMVLp9l9bDq4a8Gq/l9rV0+CwAAAAAAAOagMAkAAAAAAAAAKHQcdoe+fuxjbfxyrctnWT099J/vnlDTu25y+SwAAAAAAACYh8IkAAAAAAAAAKBQsefY9cWAD7Tl+w0un+Xp5amBM59Wo55NXT4LAAAAAAAA5qIwCQAAAAAAAAAoNHKycvTZ/e9p2+xfXT7L5mPToJ+Gq37XRi6fBQAAAAAAAPNRmAQAAAAAAAAAFArZGVn66O7/aueC7S6f5eXrraHzRqhOh3ounwUAAAAAAIDCgcIkAAAAAAAAAMB0qWeT9Vn/6dqzJMrls3wCSunJhc+pxs11XD4LAAAAAAAAhQeFSQAAAAAAAACAaZJOJmrZlIVa8+FyZaVlunxeqSBfPb34RVW9qYbLZwEAAAAAgIKx2+06c+aMEhISdOrUKdWqVUvRx48rIiJCNpvN7HgowihMAgAAAAAAAADcLv54nJa8MV/rPl2lnMxst8z0K+2vZ5a+pEpNqrplHgAAAAAAuLKsrCydOnVKJ2NjFXvypGJjY3X69GnZc3IuPKdd27ZasmSJVqxcqapVq6p9+/aqUKGCialRVFGYBAAAAAAAAAC4zZnDp7R48jxt/Gqt7Nl2t80NCA/UM8tG6rqGldw2EwAAAAAA5JaWlqaTf5Ui/y5Ixp09K8Mw8vX6nOxs/XHggA4ePKi2bdqobbt28vDwcHFqFCcUJgEAAAAAAAAALndyX4wWTZ6nX79dL4fd4dbZQeWCNWz5KJWry8oTAAAAAAC4g2EYSk5OzlWMPBkbq6SkJOdc3+HQmjVrdPrMGd19992yWCxOuS6KPwqTAAAAAAAAAACXiY46pshJc7Rt5uZ8rxbhTCHXldawFaNUtmY5t88GAAAAAKAkcDgcio+Pz1OOTEtLc/nsvXv2aOOGDWrVurXLZ6F4oDAJAAAAAAAAAHC6I1sOKXLSHO2Y+5tpGUKrhGv4ilEKq1rGtAwAAAAAABQnOTk5On36dK5i5MlTp5SdlWVapmXLl6tGzZoqU4b//+PKKEwCAAAAAAAAAJzm4Pr9WjjxZ+1ZEmVqjjI1ymrYitEqXTHU1BwAAAAAABRVmZmZOnnyZK6VI8+cOSOH3W52tFwMh0O///67unTpYnYUFAEUJgEAAAAAAAAA18QwDO1buVuRr87RgdV7zI6jcnUraNjykQoqF2J2FAAAAAAAioTU1NQ85cj4uDizY+Xbzp071alTJ1mtVrOjoJCjMAkAAAAAAAAAKBDDMLRr0e+KfHWODm/8w+w4kqQKDSrqmWUjFVgmyOwoAAAAAAAUOoZhKDExMVcx8mRsrFJSUsyOdk1SkpOVkJCg0FB2msDlUZgEAAAAAAAAAFwVh8OhHXN/U+SrP+vYtiNmx7mgUpMqenrJS/IPDTA7CgAAAAAAprPb7Tp79myulSNPnjypjIwMs6O5RE5OjtkRUARQmAQAAAAAAAAA5IvD7tDWHzdp0aQ5OrE72uw4uVS9qYaeWvSCfIP9zI4CAAAAAIDbZWdn69SpU7lWjTx16lSJKhGWpF8rCo7CJAAAAAAAAADgsuzZOdr87Xotem2uTv9x0uw4edRoU0dPLnhOPgGlzI4CAAAAAIDLpaen51o1MvbkSZ09e1aGw2F2NFMFBLDjBK6MwiQAAAAAAAAA4JKyM7O18cu1Wvz6PMUdOWN2nEuq3aGehs59Vt5+PmZHAQAAAADAqQzDUEpKSq5i5MnYWCUmJpodrdApGxGhwMBAs2OgCKAwCQAAAAAAAADIJSstU798slJL31ygxBMJZsf5V/W6NtKg2cPkVcrL7CgAAAAAADhNTEyMtm7dqkMHDyo5OdnsOEVCzZo1zY6AIoLCJAAAAAAAAABAkpSRkq41HyzXsrcWKuV04f6GTPshnXXX1Adk87aZHQUAAAAAAKeIj4/X4sWLdWD/frOjFCm+vr5q0aKF2TFQRFCYBAAAAAAAAIASLi3xnFZOW6IV/12ktIRzZse5rKBywXrws8dVv2sjs6MAAAAAAOAUWVlZWvfLL1q/fr3sdrvZcYqcHj17yt/f3+wYKCIoTAIAAAAAAABACZV6NlnL316kVe8vVUZyutlxLiswIlhdRtymto93lLefj9lxAAAAAAC4ZoZhaO/evVqyeLGSkpLMjlMktWvXTtdff73ZMVCEUJgEAAAAAAAAgBImKTZBy6ZGas2Hy5WVlml2nMsKqRiqW5/vqZsfbS+bj5fZcQAAAAAAcIozZ85oUWSkDh8+bHaUIsnbx0d9+vRRnTp1zI6CIobCJAAAAAAAAACUEPHH47Tkjfla9+kq5WRmmx3nssKqlVG3l25Xi/5t5OnFrWwAAAAAQPGQkZGhNWvWaPOmTXI4HGbHKXLKlC2rRg0bqmGjRgoICDA7Doog7jIBAAAAAAAAQDF35vApLX5tnjZ+vVb2bLvZcS4rok55dRvZW836tZSHp4fZcQAAAAAAcArDMLRz504tXbpUqSkpZscpEnx9fVWuXDn5+fnp7Xfe0YcffKB69eubHQtFHIVJAAAAAAAAACimYvfGaPHkufr1uw1y2Av3qhXXNayk7qN6q/EdzWX1sJodBwAAAAAAp4mNjdWiyEgdO3bM7CiFVlBwsMpFRCiiXDmVK1dOERERCgwMlMVi0fHjx3X48GEFBgWZHRPFAIVJAAAAAAAAAChmoqOOKfLVn7Vt1q8yDMPsOJdVpVk1dR/dRw17NJHFYjE7DgAAAAAATpOenq6VK1dq65Ythf7/5+5isVgUFhZ2vhj5V0EyIiJCvr6+ZkdDCUFhEgAAAAAAAACKiSNbDiny1TnaMe83s6NcUY2ba+u20X1Ut3MDipIAAAAAgGLF4XBo+/btWrF8udLS0syOYxoPT0+VLVPm/IqRf60cWaZMGXl5eZkdDSUYhUkAAAAAAAAAKOIOrtunha/O0Z4lUWZHuaK6neqr++g+qtW2rtlRAAAAAABwuujoaEVGRupETIzZUdzK28dHERERubbVDgsLk4eHh9nRgFwoTAIAAAAAAABAEWQYhvat3K3IiT/rwJq9Zse5ogY9Gqv7yN6q1qKm2VEAAAAAAHC6c+fOafny5dq+bZvZUVzOPyAgVzEyIiJCISEh7CCBIoHCJAAAAAAAAAAUIYZhaFfk71r46s/6c9NBs+NcUZM7m6vbyN6q1LiK2VEAAAAAAHA6u92urVu3atXKlcrIyDA7jtOFlC6tchERubbV9vf3NzsWUGAUJgEAAAAAAACgCHA4HPp9zlZFvjpHx7cfMTvOZVmsFjXr11LdXuqt8vWuMzsOAAAAAAAucfToUUUuXKhTp06ZHeWaWa1WhYeHny9F/rV6ZEREhHx8fMyOBjgVhUkAAAAAAAAAKMQcdoe2/rhJiybN0Ynd0WbHuSyrp4da9m+jW1/sqbI1y5kdBwAAAAAAl0hOTtayZcu0MyrK7CgFYrPZVDYiIte22uHh4bLZbGZHA1yOwiQAAAAAAAAAFEL27Bxt+r91Wjx5nk7/cdLsOJfl6eWp1o+0160v9FRo5XCz4wAAAAAA4BI5OTnavHmz1qxeraysLLPj5EupUqUurBpZrnx5RUREKDQ0VFar1exogCkoTAIAAAAAABQS9uwc7Yz8Xbsif9feFbsUfyxOVqtFXn7eqn3L9arf9QY1v6+VvHy9zY4KwAXSk9OUdCJBCTEJitl5XCv/u0hxR8+aHeuybKW81PbxjuoyooeCy4eYHQcAAAAAAJc5dOiQFkVG6uzZwvt/9cCgoFyrRkZERCgoKEgWi8XsaEChQWESAAAAAADAZEknE/XLxyv1y8crlHgiIdc5h6ScrBxt/2mLtv+0RZGv/qx7pg1Qo55NzQkL4KrZs3OUFJuoxBMJSoxJUGJM/PnHJy56HJOgzNQMs6Pmm7e/j24Z2kUdh3VTYJkgs+MAAAAAAOAyiYmJWrJkifbu2WN2lP+xWBQWGnph5ciIv8qRfn5+ZicDCj0KkwAAAAAAACYwDEOH1u/X6unL9NusX+XIsefrdXFHz2r67VN1839u0b3vPSxPL27vAGYxDEPn4lPPlyD/Lj/GJJxfJfLE/x6nnE6WYRhmx3UK32BfdXiqqzo81VV+pf3NjgMAAAAAgMtkZ2drw4YN+uWXX5STnW12HEmSv7+/Onfporp168rLy8vsOECRxB11AAAAAAAAN8o8l6HN367XmunLFB11rMDXWffpKsXujdGgWcMUWJbV3QBny0rP+mt77ItKkH+tBpl0YWXIROVkFo5vmLiaf1iAOg+/Te2GdFKpQF+z4wAAAAAA4FL79+/X4kWLlJCQcOUnu4HValWLFi3Utl07+fj4mB0HKNIoTAIAAAAAALjBqQOxWj19mTZ+tVbpSWlOueah9Qc0qdkoDfppuKrcWM0p1wSKO4fdoZTTSXm3x45JUOKJ8yXIxJh4pSWcMztqoRBULlhdRvRQm4Ed5O3HN2QAAAAAAMVbXFycFi9erD8OHDA7ygVVq1VT9+7dFR4ebnYUoFigMAkAAAAAAOAiDrtDUQu2afX0Zdq7bKdLZiREx2tK23Hq/8ljuun+m10yAygq0pPT8myPnXjifz9POpGgpNhEOewOs6MWeqUrhenW53uq9SPtZPNhiy8AAAAAQPGWlZWlX375RRvWr5fdbjc7jiQpMChIXbt2Vd26dWWxWMyOAxQbFCYBAAAAAACcLOVMstZ9ukprP1qh+GNnXT4vOyNbn/efrugdx9TntX6yelhdPhNwJ3t2jpJiE5UQE6+kv1aATIhJUFJs7mJkZmqG2VGLvPDqZdXtpdt10wM3y9OL28cAAAAAgOLNMAzt2bNHS5YsUXJSktlxJEkeHh5q3bq1bm7TRl5evIkRcDbueAEAAAAAADiBYRj6c/NBrZ6+TL/9uEk5WTluz7B0ygLF7DquR78dKr8Qf7fPB5zBnmPXjrm/ad+KXTr622HFHT2r1DMpMgzD7GjFWrm6FdRt5O268Z6W8vD0MDsOAAAAAAAud/r0aS2KjNSff/5pdpQLatWqpVu7dlVoaKjZUYBii8IkAAAAAADANchKz9KW7zdo9fSlOrbtiNlxtHvxDk1uMUZD5jyrcnUrmB0HyDd7jl3rPl2lRa/NVcLxOLPjlBjXNaqs7qN6q/EdzWS1sjotAAAAAKD4y8jI0JrVq7V582Y5HA6z40iSQkqXVteuXVW7dm2zowDFHoVJAAAAAACAAjhz+JTWfLBcG75Yo3PxqWbHyeX0Hyc1ucUYPfrtUDXs0cTsOMAV7Vm2UzOHf6MTu6PNjlJiVGleXbeN7qMGtzWWxWIxOw4AAAAAAC5nGIaioqK0bOlSpaYWjvt5njab2rZpo5atWslms5kdBygRKEwCAAAAAADkk8Ph0O7FO7R6+jLtXrSjUG8RnJGSrum3T1WvCX3V7aXbKUShUDq5/4RmPfetdi7YbnaUEqNm2zrqPqqP6naqz78LAAAAAIASIzY2VpGRkTp+7JjZUS64/vrr1eXWWxUcHGx2FKBEoTAJAAAAAABwBefiU7X+89Va8+FynT182uw4+WYYhuaO/lHRUcc04LOB8vbzMTsSIOn836kF43/S6unL5Mixmx2nRKjbuYG6j+qtWm3rmh0FAAAAAAC3SUtL06qVK7V169ZC8+bnsLAwdeveXdWrVzc7ClAiUZgEAAAAAAD4F0d/O6zV7y/Tlh82KDsj2+w4Bfbbj5t0an+sBv88XGFVws2OgxLMnp2jNR+u0Pyxs5SWcM7sOCVCw55N1H1kb1W9qYbZUQAAAAAA+WC325WcnKzExEQlJiYqJSVFFkkWq1X+/v4KDQ1VaGiofH19zY5aqDkcDm3ftk3LV6xQelqa2XEkSV5eXmrfvr2a33STPD2pbAFm4W8fAAAAAADARbIzs/Xbj5u0evoy/bn5oNlxnCZ6x1G91ny0Hp/5jGq1Y4U5uJdhGNq16HfNGvGtTu47YXacYs9isajxnc3UfWRvVbyhitlxAAAAAAAX+Wch8p8fycnJMhyOK17H19dXoWFhCg0NVVho6IXHpUuXLvFlvOjoaEUuXKgTJwrPPYiGDRuqc5cuCggIMDsKUOKV7H8hAQAAAAAA/hJ/7KzWfLhc6z9brZQzyWbHcYnUsyl6u/Mk3fPOg2o3uJMsFovZkVACnNgdrZnPfqM9S3eaHaXYs1gtanZvK3V76XaVv/46s+MAAAAAQIlkt9uVkpLyvxJkQsKFxwlXUYi8krS0NKUdO6bjx47lOm6xWGh5VI4AACAASURBVBQcHHx+JcqwsFxlysDAwGJ9Pyg1NVUrli/X9u3bzY5yQdmICHXv3l2VK1c2OwqAv1CYBAAAAAAAJZbD4dC+Fbu1evpSRc3fJsNhmB3J5Rw5dn3/xBc6/vsR3fvew/L04vYQXCPlTLLmvzJLaz9eUSL+bpnJ6umhlg+2UdcXe6lMjQiz4wAAAABAseZwOC69QuRfxcgkJxUiC8owDCUkJCghIUEHD+bePcVms13Y0js0LExhfxUpQ0ND5ePjY1Lia2e327V1yxatXLVKmRkZZseRJPn4+KhDx45q2rSpPDw8zI4D4CLcEQcAAAAAACVOWuI5bfxqrdZ8sFynDsSaHccU6z5dpdi9MRo0a5gCywaZHQfFSE5Wjla9u0QLJ/6s9KQ0s+MUa57eNrV+pL1ufb6HQiuHmx0HAAAAAIoFh8ORZ4XIhIu3zE5KksPEQuS1yM7O1smTJ3Xy5Mk85/z8/c+vRnnRipRhYWEKCQkp1IW/I0eOKDIyUqdPnTI7ynkWi5o0bqyOnTrJz8/P7DQALoHCJAAAAAAAKDGio45p9ftLtfnb9cpKyzQ7jukOrT+gSc1GadBPw1Xlxmpmx0ERZxiGdszdqtnPf6fTBwvJNymKKVspL7V9vKO6jOih4PIhZscBAAAAgCLlUoXIi1eKTCrChchrcS41VedSU3X06NFcxy1Wq0JCQi5ZpvT39zdti+/k5GQtXbpUu3buNGX+pVSoUEHdb7tNFSpUMDsKgMugMAkAAAAAAIq1nKwcbf/pV62evkwH1+03O06hkxAdryltx6n/J4/ppvtvNjsOiqjjO45q5vBvtH/VHrOjFFsWq0UV6ldU8/taq9XD7RQQHmh2JAAAAAAolPIUIv/xkZSUJIfdbnbMIsNwOBQfF6f4uLg857y8vS9s6R12UZkyNDRU3t7eLsmTk5OjTZs2ac2aNcrOynLJjKvl6+urTp0764YbbpDVajU7DoAroDAJAAAAAACKpYSYeP3y0Qr98ukqJZ9MNDtOoZadka3P+0/X8d+P6o7J98rqwY1d5E/SyUTNe3mm1n++WoZhmB2nyLJYLAooE6jgCiEKKh+ikPKlLzwOrlBaweVDVKZGWXn5uuabTQAAAABQlDgcDqWmpv7rCpGJFCLdJiszU7EnTij2xIk85wICAv63GuVFZcrg4OACb/F98OBBLVq0SHFnz15rdKewWCxq1ry5brnlFpUqVcrsOADyicIkAAAAAAAoNgzD0IHVe7R6+jL9PmerHPait32St7+PWvRvoxt636iZw7/Rid3Rbpu9bOpCxew6rv9894T8QvzdNhdFT3ZGlla8s1iRk+YoMzXD7DiFmre/j4Ir/K/4GHxRCfLv40ERQfKwcasWAAAAAKRLFCL/uUJkYqLsFCILvZSUFKWkpOjIn3/mOm718FDpkJBLlin9/PwuucV3QkKClixZon1797or/hVVqlxZ3bt3V0REhNlRAFwl7sIBAAAAAIAiLyMlXZu+WafV05cqdk+M2XEKpFzdCmo3pLNa9L9ZpQJ9JUkvbBinLx76UL//vMVtOfYsidLkm17WkLkjVK5uBbfNRdFgGIa2zdqs2S98r7gjZ8yOYyqrp4eCygX/r/hYPncJMrh8sIIrlJZPACtMAAAAAMDFHA6Hzp07d8kVIhMoRBZ7DrtdZ8+e1dlLrBLp4+Nzfkvvv8uUYWE6c/q01q1bp5ycHBPS5uUfEKAuXbqoQYMGlyx3Aij8KEwCAAAAAIAi68SeaK2ZvkybvlmnjJR0s+NcNauHVTf0vlHth3RWrfbX57nJ6hNQSo/PfFoLJ/ysBeNmuy3X6YOnNLnFGD3yf0PUqGdTt81F4XZk62HNHP6NDq7bb3YUl/Mr7f8v22OHKKRCaQWVD1FAmUBZrWxfDwAAAAD/ZBjGFbfMtheS8hsKl4yMDMXExCgmpvC9IdpqtapFy5Zq166dvL29zY4D4BpQmAQAAAAAFCoxu45ry/cbFLs3RsmnkpSdniVbKS/ZSnnJq5SXbD628z/3sZ3/+cXnLjp//udXfo7Vg7JLUWPPsWvH3N+0evpS7V+1x+w4BRJYNkhtHuugNgM7KOS60Ms+12q1qucrd+q6hpX0xYPTlXku0y0ZM1LS9UHvt9RrQl91e+l23jFfgiXExGvOqBna9PUvZke5Zp7etgsrQIZUCFFQuZDc22X/dcyrlJfZUQEAAACg0MpTiLzEltmFZTVAwBmqVaumbt27Kzw83OwoAJyAwiQAAAAAwHSGYWjH3K1a+OocHfvtT7fO9rB55CpTepXykueFMqYt9zmf3IXLiwuZeYqZ//IcTx8bK5IVUNLJRK37ZKXWfrxSiTHxZscpkOqta6n9kC5qcmdzeXpd3W2Zxn2aqcyGcZree6rO/umerZANw9Dc0T8qesdRDfj8cXn7+bhlLgqHrLRMLZ2yUEvemK+sNPcUdQvKYrEooGzQhW2wg8uH/FWALP3XdtnnH/uG+FH+BQAAAIArMAwjz5bZCRQiUQIFBQXp1q5dVbduXe4nAMUIhUkAAAAAgGkMw9COeb9pwfifdHz7EVMy2LPtsmenKyPZfds5e3rbLlrl0pZnBcxcpU0fmzy9bfKwecjTy1MeXp7y/OvD48KPHpc49teP/3jd/17vketYYS1xGoahQ+v3a/X0Zdo2+1fZs+1mR7pqXr7ean5fK7Uf2kUVG1W+pmtVaFBJL/06UZ/0m6Z9K3Y7KeGV/TZzs04dOKnBPw9XWBXeSV/cORwObfl+g35+6QclRBeecrLFYlGj25sqonb5PNtjB0UEycPGrU4AAAAAyI9LFSL/uUokhUiUZB6enmrdurVuvvlmeXmxCwVQ3HAXEQAAAADgdoZhKGrBNi0YN1vHth0xO47b5WRmKyczW+lJaWZHucDqYc1dxrR5/KNk6fEvZc2/jtn++ZrLFTxzlzY9bJcofto89Mcv54uS0TuOmv3pKZAyNSPUbnBntXqorXyD/Zx2Xf/QAD216EXNfu47rfjvIqdd90qidxzVa81Ha+CPT6t2++vdNhfudXjTH/px2Df6c/NBs6PkUrNtHd39Vn9ValLV7CgAAAAAUOjlKURe4iMnO9vsmEChVKt2bXXt2lWlS5c2OwoAF6EwCQAAAABwG8MwtHPhds0fN9vtW2/j8hx2hxzpWcpOzzI7SpFmsVrUsEcTtR/SWXU61XfZyp0enh66++3+uq5RJX076DPlZLln1YfUsyl6p/Mk3f3Og2o/pDNbERUj8cfO6qeXftCW7zeYHSWXsGpldOcb96lxn2b8eQMAAACAvxiGobS0tAvlx4RLrRBJIRK4KiGlS6tbt26qVauW2VEAuBiFSQAAAACAyxmGoV2Rv2v+uNk6uvWw2XEAp/MPC9DNj96itoM6KrSy+7asbvVQO5WrW0Ef3PGWkmIT3TLTYXfohye/VPTvR9XvvYdk87a5ZS5cIyM1Q0ten6dlUxcqO6PwfDPNJ6CUuo/urQ5PdeXPGAAAAIASKzk5WdHR0UqIj89TiMymEAk4hc1mU5u2bdWyZUvZbNyDAEoCCpMAAAAAAJcxDEO7F+/Q/HGzdeTXQ2bHAZyu6k011H5IZzXte5NsPl6mZRi55VV9eOfbbt1Ged1nqxS7N0aPz3pGQRHBbpsL53A4HNr09S+aM2qG28q2+WGxWtTmPx3Uc/xdCiwTZHYcAAAAAHC7M2fOaGdUlHbt3q34uDiz4wDFWr169dTl1lsVFMQ9CKAkoTAJAAAAAHA6wzC0e0mUFoyb7dYCF+AONh+bmvVrpfZDO6ty02pmx5EkBZcP0bOrRuvbwZ9r41dr3Tb30IYDmtRstAb/PFxVbiwcnwtc2YG1ezVz+Dc6tu2I2VFyqdupvvpOfUAVGlQyOwoAAAAAuFVKSop27dqlqKgoxZ44YXYcoNgLDw9Xt+7dVa0a97OAkojCJAAAAADAaQzD0N5lOzVv7Cz9uYmiJIqXsKrhajuok1o/0l7+oQFmx8nD5uOlAZ8/roo3VNasEd/KYXe4ZW5iTLymtB2nBz5+TC0euNktM1EwZ/88rdkvfKdts341O0ouZWuV011T7leD2xrLYrGYHQcAAAAA3CIzM1P79u1TVFSUDh86JMMwzI6EQiIgIEDBwcG5Pkr5+ioxMVFxcXGKO3tWZ+PilJqSYnbUIsfL21vt27fXTTfdJA8PD7PjADAJhUkAAAAAwDUzDEN7l+/SgnGzdWjDAbPjAE5jsVhUr2tDtR/SRfW6NpLVw2p2pMuyWCzq+HQ3la93nT6+Z5rSEs65ZW52Rra+eHC6oncc1R2T7y30n6eSJj05TZGvztXK/y5STlaO2XEu8A321W1j7lT7IZ3l6cVtSgAAAADFn91u1+HDhxW1Y4f27dun7OxssyPBBP6XKEQGBwcrJCREgYGBstls+bpOZmbm+QJlXJzOnj17oUwZFxenrKwsF/8qip5GjRqpU+fOCggofG+EBuBe3IkEAAAAABSYYRjat2KX5o+brUPrKUqi+PAN8VPrh9ur3eBOCq9e1uw4V61upwYa+etETe/zlk7sOu62ucumLlTMruP6z3dPyC/E321zcWkOu0PrP1+tuS//qJTTyWbHucDqYVW7wZ3V45U7CuVqrQAAAADgTIZhKCYmRjujorRr1y6dO+eeNzfCPP7+/nkLkSEhCg4OVlBQUL4LkVfi7e2t8uXLq3z58rmOG4ahlJSUXKtR/v04ITFRhsM9u5IUFhEREep+222qVKmS2VEAFBIUJgEAAAAAV80wDO1ftUfzx87SwXX7zY4DOE2lJlXUfkgXNevXUl6+3mbHuSbh1cvqhQ3j9MWAD/T7z1vcNnfPkihNvullDZ7zrMpff53b5iK3vSt2adaz/6foqGNmR8mlfvcbdNeb96tc3QpmRwEAAAAAl4qPj1dUVJSioqIUHxdndhw4kd8/CpEhLipEFpTFYlFgYKACAwNVtWrVXOdycnKUkJCQazXKs389Lm5lXp9SpdSxQwc1vfFGWa3shgLgfyhMAgAAAACuyv5VuzV/3Gz9sXaf2VEAp/D08lTTu1uo/ZDOqnpTDVksFrMjOY2Pv48en/m0IifO0fyxs9w29/TBU3q95St65P+GqFHPpm6bC+nUH7Ga/dx32jHvN7Oj5FLu+grqO/UB1bu1kdlRAAAAAMBlzp07p927dikqKkrR0dFmx0EB+fn5XXJ1yL8LkV5eXmZHLDBPT0+Fh4crPDw8z7n09PQLW3znKlPGxSmnKG0fb7GoaZMm6tCxo/z8/MxOA6AQojAJAAAAAMiX/av3aMG42TqwZq/ZUQCnKF0pTG0f76jWj7ZXYJkgs+O4jNVqVY8xd+i6hhX1+YMfKDM1wy1zM1LS9UHvt9RrfF91G3l7sSqiFkbnElK1cMLPWv3+Utmz7WbHucAv1F+9xvVVm4Ed5OH5/+zdeXTU9b3/8dfMZLKTPSEhC0lIICxJWBJAAcUNVECWgHVf6r211drb37Xe3va2au16e1vrta321ut6tS4QFkGkCsqigGQBwhYgZGGHLCRkT2b5/QGNoAgCyXyyPB/nzJnJN8O8X+A5MfOd1/fzsZmOAwAAAACdrq2tTbt379a2oiKVlJTI1ce2O+6J/M8oRIaeY8vsnlyIvBx+fn6Ki4tTXNzZO4a4XC7V19er6nSJ8swyZW1treR2G0r8ZbFxcbr55psVG8vOFgC+GoVJAAAAAMB57Vm7S0ufzNWe1TtNRwE6xdDrR2jyw1OUPm1UnypwjZyVrR+uj9Zzs36vqtLjHpnpdru15Kfv6GBRhe596UH5BPh6ZG5f4nQ4tfZ/VmnpkwvUWN1gOk4Hm92ma747VTf/ZJYCQgNNxwEAAACATuVyuVRWVqaioiLt2rlTbW1tpiPhDP7+/l9aGfLMW18tRF4qq9Wq4OBgBQcHa9CgQWd9r729vWOL7zMLlVXV1WpuavJYRv+AAN1www3KzMxk+20AF0RhEgAAAABwTnvXFWvpz3K1+6MdpqMAl803yE9X3nuVrn7oBkUPGWA6jjGxI+L1402/0Au3PatdK7d7bG7B/M90bPcRfWfxo4pI/PKWT7g021ds1YIfvK4jOw+ZjnKWzJljlPPbO9Q/NcZ0FAAAAADoNG63W0ePHlXR1q3atn27GurrTUfqs/xOFyJDz7FtdnBwsHx8fExH7DPsdruioqIUFRX1pe81NTV1bPF91uqUNTVyOhydMt9isWjs2LGafM018vPz65TXBND7UZgEAAAAAJyl5JNTRcniVRQl0fPFpsdr8kNTNPbOCfINZHVDSQoIC9Qjy3+o3Mf+plX//b7H5h4s2q9fZf+HHpz/fQ2ZPMxjc3ujI7sOacEPXtf297eajnKWuIwEzXv6bqVdO9x0FAAAAADoNLW1tdpWVKSioiJVVlaajtMn/KMQ+VU3CpE9g7+/v/z9/RUfH3/WcZfLpbq6urNWo/zH47q6uq/9+impqbr++usVHR3d2dEB9HIUJgEAAAAAkqR96/do6ZMLPLrqHNAVrF42jc7J1uSHpihl4hBZLBbTkbodm5dNt/7hbsVlJuiNb78oR1vnXNV/IY3VDXrmhl/p1mfu0eSHbuC/zUVqqK7X0idztfYvK+VyukzH6dAvKkgzf36rJnxzsqw2tr0CAAAA0PM1Nzdrx44dKioq0v6KCtNxeh0/P78vFyHP2D6bQmTvZrVaFRoaqtDQUKWkpJz1vba2NtXU1Hy+GmV1tapratTa2iqnw6HQsDDFxMQoIyPjnKtaAsDXQWESAAAAAPq4fRv2aNnPcrXzg22mowCXJWRAqCZ96zpN+udrFBwTajpOj3DlfVcrZmisnp/ztOqO1Hpkpsvp0luPvKKDWyp025/uk93H7pG5PZmjzaHVz32o957KVVNtk+k4Hby8vXTd92/STT+eKb8gf9NxAAAAAOCytLe3a+/evSoqKtLePXvkdDpNR+qxzleIDA4Olq8vu4Dg3Ly9vRUdHc2qkQC6FIVJAAAAAOijSjfu1dKf5Wrn34tMRzmvMbeO17SfzFZUarTam9vU3tymtuY2tTe3q73lH1+3n3H89K2l/Yyvz3jccvp5Le1nvF77F1771PfRMwyePEyTH7pBI2eOkc3OqY6LlTQuRT/O+6X+kvMHlX1W4rG5n7z4sY7sOqQHF3xfwdEhHpvbk7jdbhUtK9SCH7yh43uPmo5zltFzx2rOb25XZHJ/01EAAAAA4JK5XC7t379fRVu3asfOnWptaTEdqUfwPVch8owbhUgAQHfGpwgAAAAA0MeUbSrR0idztWPFVtNRzmv03LGa/niOYkfEdxyz+9ilkACPzHe73XK0tn9ezvxCmfLMr7/0nDPLmC3nKm1+ueDZ1twuRyslza/LJ9BX4++epMkP3aABw+NMx+nxQgaE6tGPf6I3HnpJG15Z67G5+9bv0a+yf6LvLPx/Sswe5LG5PcHBov2a/+j/qXjVDtNRzpIwOlG3/uEepU5KMx0FAAAAAC7ZsWPHVFRUpG3btulkXZ3pON2Or6/vV26XTSESANDTUZgEAAAAgD6ibFOJlj21UNuXbzEd5bxG54zVtJ/OUVxGgtEcFotFdl9v2X29JQ/t7uxyueRodZxVpnS0OuRoc8jZdure0eaQs93Z8fVZxzvunV8+9o8/036uP/Pl13O2O7/wmp8fNylmaKyu/s71Gn/PJLYA7mR2X2/d++KDShiZqPmPvi6X0+WRubWHavRfVz2lu1/4Z42/a6JHZnYXbU2tqiqvVFXpcVWVHldl6XFVlZ16fGTXIbldbtMROwTHhGj2r27TuLsnymq1mo4DAAAAABft5MmT2rZtm4qKinTsaPdaxd/TvlSI/MKW2X5+fqYjAgDQZShMAgAAAEAvV55fqmU/y9W29zabjnJeo+Zka9pP5yg+c6DpKMZYrVZ5+3nL289bnllH8+K53e7zlinPdfzMEudFFT/bnXI5XQoIC1RYQriG35ipmKGxslgspv8Zei2LxaJrv3ejYobH6YVvPKvGmgaPzHW0tuvle57Twa0VmvOb22W19Y5CnsvlUt3hE6osPa7qssqzCpGVpcd18mit6YgXZPe1a8oPpmvKv82QbyAriAAAAADoWVpaWrRr1y4Vbd2qsvJyyd19LkzrSj4+Pl9aFfLMG4VIAEBfRmESAAAAAHqpioJSLf1ZrrYt695FyZGzsjT98TmKH5loOgq+BovFIi9vL3l5c0qhNxt63Qj9aNPP9dysp3V4+wGPzf3w9+/p0Lb9+qc3H1FAaKDH5l6OlvrmU0XIM8qQVWWnCpHV5VVytLabjnjJxt5xpWb/6jaFJUSYjgIAAAAAX5vD4VBJSYm2FRVp9+7dcjgcpiN1Om8fH4WeY6tsCpEAAFwYn24AAAAAQC+zv7BMy55aqK3vFpiOcl6ZM8do+uM5ShiVaDoKgHOITO6vH67/mV6+93ltWZTnsbk7P9im34z7qb6z+FENGBbnsblfxelw6sTBmjO2zT6m6vLKjpJkQ1W96YidLmlcim79w91KHp9qOgoAAAAAfC1ut1sHDhxQUVGRdmzfrubmZtOROpW3j4+GDRum9PR0DRgwQL6+vuzAAQDAJaIwCQAAAAC9xP7N5Vr2VK62LunmRclbxmj643OUMDrJdBQAF+Ab6KsH5/+Llv9isZY+ucBjc4+XHNN/XvGEvvn6QwobGdXl8xpPNJxRiDy9SmR5papKj6u6okouh7PLM3QHofHhmvPr25R9+5V88AYAAACgR6isrNS2oiIVbdum2hMnTMfpVFarVampqcrIzNTgwYNlt9tNRwIAoFegMAkAAAAAPdyBrRVa9rNcbVmcbzrKeaVPH6UZT+Ro4Jhk01EAXASr1arpj89RXEa8XrrnebU2tHhkbkt9s56f9bSu+tcbJPflvZajzaGa/VVnFyL/sW122XE11TZ1TugeytvfRzf+cIZueHSavP19TMcBAAAAgPNqaGjQ9m3bVFRUpMOHD5uO0+niExKUkZ6uYcOHKyAgwHQcAAB6HQqTAAAAANBDHSzar2VP5WrzQs9tlXsp0qeN0vTH5ygxe5DpKAAuw8hZ2frh+mg9N+v3qio97pGZbrdba37/gUb7DlNbY+t5n9dQVX92IbL0uCrLTt2fOFgtt+syW5e91BX3XqWZv7hVobFhpqMAAAAAwFdqbW1VcXGxioqKVLpvn9zu3vUeLzwiQhkZGUpPT1dYGO/PAADoShQmAQAAAKCHObRtv5Y9tVCFuZtMRzmvETeP1PTH5yhpbIrpKAA6SeyIeP140y/0wm3PatfK7R6bO6AlUq/kPK/7XnhQTbWNnxcjyz4vR7aep1CJL0uZOETznr5biVms+gsAAACge3I6nSotLVXR1q0qLi5We3u76UidKiAwUOkjRigjM1MxMTGyWCymIwEA0CdQmAQAAACAHuLQ9gNa9lSuChd076Lk8BszNeOJHCWNoygJ9EYBYYF6ZPkPlftvf9OqZ9732Nzju47otxOf9Ni83io8MVI5v71Do3PG8mEcAAAAgG6pqqpK+fn52lZUpMbGRtNxOpXd21tDhw5VRkaGkpKSZLPZTEcCAKDPoTAJAAAAAN3c4R0HteznC1U4/7Nuvd3QsKkZmv74HA26YrDpKAC6mM3LplufvlvxmQP1+rdflKO1d63y0Rv59vPTTT+aqeu+f6Psvt6m4wAAAADAWRwOh3bv3q38vDyVlZWZjtOpLFarBg0apIyMDKWlpcnbm/dkAACYRGESAAAAALqpwzsP6r2fL1TBO928KDklXdMfz9GgKylKAn3NFfdepei0AXp+ztOqO1JrOg7OwWKxaMIDkzXz57cqqH+w6TgAAAAAcJba2loVFBSosLBQjQ0NpuN0qtjYWGVkZGj4iBEKDAw0HQcAAJxGYRIAAAAAupkjuw7pvZ8vVP7bG7t1UXLo9SM0/YkcpUwYYjoKAIOSxqXox3m/1F9y/qCyz0pMx8EZhlwzTPNOrwQKAAAAAN2Fy+VSSUmJ8vLytHfvXqkbn/+6WKFhYcpIT1d6RoYiIiJMxwEAAOdAYRIAAAAAuomq8kot+cnbyntzQ7cuSqZdN1wznshRysQ001EAdBMhA0L16Mc/0RsPvaQNr6w1HafPi0rpr5z/ulOZt4yRxWIxHQcAAAAAJEn19fXaXFiogoIC1dXVmY7Tafz9/TV8xAhlZGQoLi6O92EAAHRzFCYBAAAAwDCXy6VVz7yvJT95R+0t7abjfKUh1w7X9MfnaPBVQ01HAdAN2X29de+LDyphZKLmP/q6XE6X6Uh9jl+wv6b9dLau+e5UeXlz2g8AAACAeW63W+Xl5crLy1Pxrl1yuXrHe0UvLy+lpaUpIzNTgwYNks1mMx0JAAB8TZw5BQAAAACDThyq0Sv3Pa/iVTtMR/lKgycP04wncjT4aoqSAM7PYrHo2u/dqJjhcXrhG8+qsabBdKQ+wWqzatK3rtOMJ3PULzLIdBwAAAAAUFNTk7Zu2aL8/HxVV1ebjtMpLBaLkpKTlZGRobS0NPn6+pqOBAAALgGFSQAAAAAwpDB3k/7vWy+o6USj6SjnlHpVmmY8OVdDJg8zHQVADzP0uhH60aaf6/nZT+vQtgOm4/Rqw6aka97v79aA4XGmowAAAADo49xutw4ePKj8/Hzt2L5dDofDdKROER0To4yMDI0YMUJBQVykBgBAT0dhEgAAAAA8rKW+WW//y2ta/8oa01HOKWVSmm55MkeDJw+TxWIxHQdADxWZ3F//9unP9Mp9z2vzwjzTcXqd6LQBmvu7OzXippH8rAYAAABgVGtrq7YVFSk/P19Hjx41HadTBIeEKCM9XekZGYqKijIdBwAAdCIKkwAAAADgQaUb9+qlu59T5b5jpqN8ScrEIadWlLyGoiSAzuEb6KtvvfMvev+Xi/XuEwtMx+kV+g+J0Q3/Ok1X3neVbHZO7QEAAAAw3MSz4wAAIABJREFU5+jRo8rPz1dRUZHaWltNx7lsvn5+Gj58uDIyMhQfHy+r1Wo6EgAA6AKcVQUAAAAAD3A6nHr/V0v03s8XyuV0mY5zlkFXDtaMJ3OUdt0IipIAOp3VatW0n85RbHq8XrrnebU2tJiO1CP4BPgoIjlKEUmnbtFpAzToylTFDI/jQzsAAAAAxrS3t2vnzp3Ky8vTwQMHTMe5bDYvLw0ePFgZGRlKTU2VlxcVCgAAejv+bw8AAAAAXayy9Jhevud57Vu/x3SUsyRfkaoZT87V0OspSgLoeiNnZeuH66P13Kzfq6r0uOk4xlksFoXGh58qRSZGKiI5SpHJUae+To5Sv8ggfjYDAAAA6DaqqqpUkJ+vLVu2qLm52XScy5aYmKiMjAwNHTZMfn5+puMAAAAPojAJAAAAAF3E7XZr4/+t01uPvKqW+u5zIjlpfIpueXKuht6QThkHgEfFjojXjzf9Qi/c9qx2rdxuOk6X8w3yU+Sg/qeKkElRikiK7ChEhiVEyO5jNx0RAAAAAL6S0+lUcXGx8vPzVVZaajrOZYuKilJGRoZGpKcrJCTEdBwAAGAIhUkAAAAA6AKNJxr0xndeUsE7G01H6ZA4dpBmPDlXw6dmUJQEYExAWKAeWf5D5f7b37TqmfdNx7ksVptVYQMjPi9EnnEfmRwl/9AAft4CAAAA6HFqa2tVWFCgwsJCNTQ0mI5zWfoFBSk9PV0ZGRmKjo42HQcAAHQDFCYBAAAAoJPt/niHXr73eZ04WGM6iiQpMTv5VFHyxkyKOwC6BZuXTbc+fbfiRw7U6w++KEdru+lIXykgPPDzrbKTohSZ3P/040iFxofL5mUzHREAAAAALpvL5VJJSYny8/O1d88eud1u05EumY+Pj4YNG6aMzEwNHDhQVqvVdCQAANCNUJgEAAAAgE7iaHNoyU/n68PfLesWJ5UHZiVrxpM5GnHTSIqSALqlK+65StFpA/SXOX9Q7eETRjJ4eXspPDHyjEJkVMe22RFJkfIL8jeSCwAAAAA8oaGhQZsLC1VQUKDa2lrTcS6Z1WZTamqqMjIyNHjwYNntdtORAABAN0VhEgAAAAA6wZFdh/TiXX/Wgc3lpqMoYUySZjyRo/RpoyhKAuj2ksam6Md5v9DzOX9Q2caSLpkRFB2iiKRTpcjIpM8LkZHJUQoeEMpqIwAAAAD6FLfbrfLycuXn5WlXcbFcTqfpSJcsPiFBGRkZGj58uPz9ueANAABcGIVJAAAAALgMbrdba55fqQWPvaH25jajWRJGJ2r6EznKmD6aoiSAHiU4JlSPrXlcHz37dy39Wa5aG1ou6s/b/bw/XxnyH6tFJp/aPjs8MUI+Ab5dlBwAAAAAeo7m5mZt2bJF+fn5qq6qMh3nkoWHhyszM1PpGRkKDQ01HQcAAPQwFCYBAAAA4BKdPF6n1x74q7a9t9lojvhRiZrxRI4yZlCUBNBz2exeuuHRacq67Qpt+tun2rFiq8o+2yenw6H2tnYFx4QqOjWmY5XI8DO2zw7qH8zPPwAAAAA4B7fbrUOHDik/L0/bt2+Xw+EwHemSWG02DR06VNnZ2Ro4cCDvAQEAwCWjMAkAAAAAl2Db8s169Zv/o/rjJ41liMscqBlPzFHmzCxOEgPoNUJjwzT1sRma+tgMSdKBAwc0fvx4bdy4UfHx8YbTAQAAAEDP0Nraqm3btik/P19HjxwxHeeShYSEaExWlkaNGqXAwEDTcQAAQC9AYRIAAAAALkJbc5tyH3tDq5/70FiGuIwETX8iR5kzx8hqtRrLAQAAAAAAgO7l2LFjys/L09aiIrW1tpqOc0ksFosGDx6srOxsDRo0iPNfAACgU1GYBAAAAICv6cCWcr145591ZNchI/O9vL0065ff0HX/7yZOFAMAAAAAAECS1N7erp07dyo/P18H9u83HeeSBfbrp9GjR2v06NEKCQkxHQcAAPRSFCYBAAAA4AJcLpdWPr1ci//jbTnbnUYyxAyN1QNvPKz4kYlG5gMAAAAAAKB7qa6uVkF+vjZv2aLmpibTcS5ZcnKysrKzNWTIENlsNtNxAABAL0dhEgAAAADO48TBar1831+0+6MdxjJMfniKcn57h7z9vI1lAAAAAAAAgHlOp1O7d+9Wfl6eSktLTce5ZH5+fho5apTGjBmjiIgI03EAAEAfQmESAAAAAL5CwfyNev3bL6rpRKOR+f2ignTvSw8q/eZRRuYDAAAAAACge6irq1NBQYEKCwvVUF9vOs4li4+PV1Z2toYNGya73W46DgAA6IMoTAIAAADAF7TUN+ut772qDa+uNZYhffoo3fO/31JQVLCxDAAAAAAAADDH5XJp3759ys/L0549e+R2u01HuiTe3t7KyMxUVlaWoqOjTccBAAB9HIVJAAAAADjDvg179NLdz6mq9LiR+XY/b837/V266sHrZLFYjGQAAAAAAACAOS0tLcrLy1NBfr5qa2tNx7lk0dHRysrOVnp6unx8fEzHAQAAkERhEgAAAAAkSU6HU8t/sUjLf7lYLqfLSIaE0Yl64PWHFZ0Wa2Q+AAAAAAAAzHG5XCrIz9fHq1erqbHRdJxL4uXlpREjRigrO1uxsbFcEAwAALodCpMAAAAA+rzKfcf04t1/VtnGEiPzLRaLpjw2Xbc8NU9e3rxNAwAAAAAA6GtOnjypRQsXqqyszHSUSxIeEaGsrCxlZmbK39/fdBwAAICvxCdxAAAAAPost9utDa+u1Vvfe1WtDS1GMoTGh+v+V7+jIZOHGZkPAAAAAAAAs4qLi7VkyRI1NzWZjnJRrFarhg4dqqzsbCUmJrKaJAAA6BEoTAIAAADokxprGvT6t/9XhQs2GcuQ9Y3xuuO5byogNNBYBgAAAAAAAJjR1tamDz74QPl5eaajXJTgkBCNGTNGo0aNUr9+/UzHAQAAuCgUJgEAAAD0OcUf7dDL9z6v2kM1Rub79vPT7X+6T+PumsiV9wAAAAAAAH3Q0aNHlbtggSorK01H+XosFg1OTVVWdrZSUlJktVpNJwIAALgkFCYBAAAA9Bntre1a8pN3tPLp5XK73UYyDJowWN987SFFJEUZmQ8AAAAAAABz3G63PvvsM3344YdyOhym41xQQGCgRo8erTFjxigkJMR0HAAAgMtGYRIAAABAn3Bk1yG9eOefdGBLhZH5VptV0x+foxt/NFM2L5uRDAAAAAAAADCnoaFBSxYv1t69e01HuaCkpCRlZWcrLS1NNhvnsgAAQO9BYRIAAABAr+Z2u7X6uQ+V+9gbam9pN5IhclB/PfD6w0oal2JkPgAAAAAAAMwqKSnRokWL1NjQYDrKV/L189PIkSOVlZWliIgI03EAAAC6BIVJAAAAAL3WyWN1evWB/9H25VuMZZjwzcm69Zl75BvoaywDAAAAAAAAzHA4HFq1cqU2bNhgOspXiouLU1Z2toYPHy673W46DgAAQJeiMAkAAAB0M021jTqwpUKHtx+Qo82hgLBAhSVEKH7UQAWEBpqO12MULSvUaw/8VfWVJ43MDwgL1F1//SeNnjPWyHwAAAAAAACYVVlZqdwFC3T06FHTUb7E7u2tjIwMZWVlKSYmxnQcAAAAj6EwCQAAAHQTR4sP6cOnl+uz1z/5yq2jI5KjlDA6UQNHJythdKISRicqMCLIw0m7t7amVi34wRta85eVxjIMvX6E7n352wqNDTOWAQAAAAAAAGa43W4VFhZqxfvvq7393Of5TOnfv7+ysrOVnp4uX192RAEAAH0PhUkAAADAsOa6Ji19Mlcf/+nvcjld531uVelxVZUeV+GCTR3HwhIilDAmSQmjEjVwTJISRicpqH9wV8fulvYXlunFu/6so8WHjcz38vbS7F/fpmv/5UZZrVYjGQAAAAAAAGBOU1OTli5dql07d5qO0sHm5aXhw4crOztbcXFxslgspiMBAAAYQ2ESAAAAMMTlcumz1z/Rwh++qZPH6i75dWr2V6lmf5W2LMrrOBYSG3Z6BcqkUytSjklWyIDQzojdLbmcLn34+/e05KfvyNnuNJJhwPA4ffP1hxWfOdDIfAAAAAAAAJhVXl6uhbm5OnnypOkokqSw8HBlZWVp5MiR8vf3Nx0HAACgW6AwCQAAABhwYEu53vzuK9q3fk+XvH7toRrVHqpR0dLCjmNB0SGnt/M+VaJMGJOs0LiwHn9Fec2Bar187/Pas9rcVfvXPjJVs39zu7z9vI1lAAAAAAAAgBlOp1OrV6/WunXrJLfbaBar1aq0tDRlZWcrMTGRXVAAAAC+gMIkAAAA4EGNJxr07k/na81fVsrt8uzJ05NHa7V9+RZtX76l41hgRL8ztvNOVsLoRIUnRvaYEmXe2xv0t++8qKbaJiPzg/oH696Xv60RN2YamQ8AAAAAAACzampqlJubq0MHDxrNERQcrDFjxmj06NHq16+f0SwAAADdGYVJAAAAwANcLpfWv7RGi378lhqq6k3H6dBQVa+dfy/Szr8XdRzzDw04vZ138untvJMUkRzVra5Gbz7ZpLe+96o2vrbOWIbMW8bo7hf+Wf0ig4xlAAAAAAAAgDlbt27Ve++9p7bWVjMBLBalpqQoKztbqamp3er8HQAAQHdFYRIAAADoYuV5+/Tmd19WeV6p6ShfS9OJRhWv2qHiVTs6jvkF+yt+VOLplSiTlDAmSVGp0UZOwu5bv0cv3f1nVZVVeny2JNn9vHXr03dr0reu7TErcQIAAAAAAKDztLS06L333tO2oqILP7kL2Gw2jR8/XlnZ2QoNDTWSAQAAoKeiMAkAAAB0kYaqk1r047f16Yur5XZ7dvvtztZc16Q9q3dqz+qdHcd8An3PLlGOTlJ02gBZbV1TonQ6nHrv54u0/JeLPL6d+T8kjEnSA68/rOghA4zMBwAAAAAAgFkHDhxQbm6uak+cMDI/IiJCOXPnKiYmxsh8AACAno7CJAAAANDJXE6X1v11lRb/5B01nWg0HafLtDa0qGRdsUrWFXcc8/b3UVxmghJGJ53ezjtZMUMHyGa/vLcex0uO6qW7n1PZZyWXG/uSWCwWTf3hDM14cq68vHkbBQAAAAAA0Ne4XC6tW7dOq1evltvlMpJhzJgxmnrjjfL29jYyHwAAoDfgkz4AAACgE+1bv0dvfvdlHdhSYTqKEW1NrSrdsFelG/Z2HLP72hWbkXB6JcpkJYxO1IAR8V+reOh2u7X+lTV6+3uvqrWxtSujf6WwhAjd/9p3NPiqoUbmAwAAAAAAwKy6ujotzM1VRYWZc36+fn665ZZbNGzYMCPzAQAAehMKkwAAAEAnOHmsTgv//U1teHWt6SjdTntLu8o37VP5pn2SVkmSvLy9NCA9/qwSZWx6vOy+n18d31Bdrze+/aIKczcZSi5l336l7vjz/fIPCTCWAQAAAAAAAObs3LlT7y5ZopaWFiPzExMTNXvOHAUHBxuZDwAA0NtQmAQAAAAug9Ph1Oo/f6B3n1iglpPNpuP0GI42h/YXlGl/QZk++d+PJUlWL5sGDI/TwNFJihocrY//+HfVHj5hJJ9vkJ/u+PP9GnfnRCPzAQAAAAAAYFZbW5tWrFihwoICI/MtVquuveYaTZg4UVar1UgGAACA3ojCJAAAAHCJ9qzZpTcfeUWHtx8wHaVXcDmcOri1Qge3mt3OPGXiEN3/2kOKSIw0mgMAAAAAAABmHDlyRAsWLFB1VZWR+aGhocqZO1dxcXFG5gMAAPRmFCYBAACAi1R7+IQWPPaG8t5cbzoKOpHVy6YZT+Toxn+/RVYbV+0DAAAAAAD0NS6XSxs3btTKlSvlcjqNZMjMzNRNN98sX19fI/MBAAB6OwqTAAAAwNfkaHNo1X+/r/d+vkitDS2m46ATRaVG64HXH1Zi9iDTUQAAAAAAAGBAfX29Fi9apH379hmZ7+Pjo2nTpysjI8PIfAAAgL6CwiQAAADwNexauU1vfe9VHS0+bDoKOtnEB67RvD/cLd9ArtoHAAAAAADoi/bs2aPFixerqbHRyPy4uDjlzJ2r0NBQI/MBAAD6EgqTAAAAwHnU7K/S/EdfV2HuJtNR0MkCwgN191//WaNmZ5uOAgAAAAAAAAPa29v14YcfatNnnxmZb7FYNOmqq3T11VfLZrMZyQAAANDXUJgEAAAAzqG9tV0f/u49Lf/VYrU3t5mOg0429IZ03ffytxUygKv2AQAAAAAA+qLjx49rwYIFOn7smJH5QUFBmpOTo8TERCPzAQAA+ioKkwAAAMAXbFu+We98/zUdLzFzsvSLvHzsCosP6zZ5ejIvH7tm//o2Xfu9qbJarabjAAAAAAAAwMPcbrfy8vL0wd//LofDYSTDsGHDNOOWW+Tn52dkPgAAQF9GYRIAAAA4rbL0mN75f/+noqWFpqN0yLxljOY9fZcik/urua5J+zeXa39h2elbuY7tPiK32206Zo8wYES8/umNhxWbnmA6CgAAAAAAAAxobGzUu0uWaPfu3Ubm2+123XTTTRo1erQsFouRDAAAAH0dhUkAAAD0eW3NbVrxm3f1998ulaO13XQcSVJUSn/d+sw9Sr95VMcxv2B/DZk8TEMmD+s41lLfrINbK1RRUHaqTFlQpiO7DsntokR5pmu/d6Pm/OY22X29TUcBAAAAAACAAaWlpVq4cKEa6uuNzI+OidHcuXMVERFhZD4AAABOoTAJAACAPsvtdmvrkny986+vq7q80nQcSZLdz1s3/8cs3fDoNNl97Bd8vm8/P6VMTFPKxLSOY21NrTqwtUL7C08VKPdvLtfhHQflcji7Mnq3FBQdovtf+baGTckwHQUAAAAAAAAGOBwOffzxx/r0008lQzu1XHnllbr2uuvk5cXH8wAAAKbxGxkAAAD6pGN7jujt77+mHSu2mo7SYfTcsZr3u7sUlnB5V5l7+/to0BWDNeiKwR3H2lvadLBo/xklyjId2nZAzvbeW6IcOStLd//1nxQYEWQ6CgAAAAAAAAyorq5W7oIFOnz4sJH5gYGBmj1njgYNGmRkPgAAAL6MwiQAAAD6lNbGFi3/xWJ9+PR73aYsGJ02QLc9e6+GXp/eZTPsvt5KGpuipLEpHcfaW9t1ZMfBU9t5F566HSw60G22Jb9U3v4++sYz92jCA5NlsVhMxwEAAAAAAICHud1ubdmyRcuXL1d7W5uRDIMHD9bMWbMUEBBgZD4AAADOjcIkAAAA+gS3262C+Z9pwQ9e14mDNabjSJJ8An01/fE5uvZ7N8rL2/O/mtt97EoYnaSE0Ukdx5ztDh3eeehUgbKgTBWFZTq4db/am82cWL5YA7OS9cDrD6v/4BjTUQAAAAAAAGBAc3Ozli1bph3btxuZb/Py0tQpU5Q9diwX8wIAAHRDFCYBAADQ6x3eeVBv/8urKl61w3SUDmPvuFJz/vMOhcaGmY5yFpvdS/GZAxWfOVAT7p8sSXI6nDpafLijRLl/c7kObC5Xa2Or2bBnsFgsuvFHMzXjiTmy2XmbAwAAAAAA0BdVVFRoYW6u6urqjMyPjIrS3Llz1b9/fyPzAQAAcGF8kggAAIBeq/lkk957apFWPbtCLkf32H57wIh43f7H+zT46qGmo3xtNi+bYkfEK3ZEvK645ypJksvp0vG9R05v511+ekvvcrXUN3s8X/jACN3/2kNKnZTm8dkAAAAAAAAwz+l0au3atVq7Zo3cbreRDNljx2rKlCmy2+1G5gMAAODroTAJAACAXsftdmvT3z5V7r/9TXVHak3HkST5Bvlp5lPzdPVDN8jmZTMd57JZbVZFp8UqOi1W4+6cKElyuVyq3Hfs1CqUheWqKCzTgcIyNdU2dVmOsXdO0B1/ul9+wf5dNgMAAAAAAADd14kTJ7QwN1cHDhwwMt/P318zZ85UWhoX8wIAAPQEFCYBAADQqxws2q83H3lFJeuKTUfpcMV9V2nOr29XUP9g01G6lNVqVf/UGPVPjVH2bVdKOlVerSo7fmoVyoIy7d9cpoqCMjVWN1zWLN8gP9353Dc19o4JnREdAAAAAAAAPdC2bdu0bOlStba2GpmflJys2bNnKygoyMh8AAAAXDwKkwAAAOgVmmob9e7jC7T6uQ/kdpnZdueL4kcl6vY/3qdBVw42HcUYi8WiyOT+ikzurzFzx0k6VaKs2V91ahXKgjIdOF2irD9+8sKvZ7Vo3F0TNfOpeQpLiOjq+AAAAAAAAOiGWltb9f7y5dqyZYuR+VarVdddd52uuPJKWa1WIxkAAABwaShMAgAAoEdzuVza8OpaLfr3t1RfeeHCnSf4hwZo1i9u1aRvXSerjROmX2SxWBQ+MFLhAyM1ana2pFMlytrDJ05v512misIyVZdVqrmuSY5Wh2Iz4pWYPUjj7pqoAcPiDP8NAAAAAAAAYMqhQ4eUu2CBampqjMwPCw9XTk6OYmNjjcwHAADA5aEwCQAAgB6roqBUbz7yiso2lpiOIulUEXDCA5M1+1ffUGAE2/BcDIvFotDYMIXGhinzljGm4wAAAAAAAKCbcblcWv/pp/roo4/kcrmMZBg1apRuvOkm+fj4GJkPAACAy0dhEgAAAD1OQ3W9lvzHO1r3wkdyu7vH9tuJYwfp9j/ep8TsQaajAAAAAAAAAL3KyZMntWjhQpWVlRmZ7+PrqxkzZmjEiBFG5gMAAKDzUJgEAABAj+FyuvTJ/36sxf/xthprGkzHkSQFRvTT7F/fpivvv1pWK9tvAwAAAAAA4PK1tLSopKRER48cUWNTk5wOh7y8vL76Zref//vnuPWUc1nFxcVasmSJmpuajMxPSEjQnJwchYSEGJkPAACAzkVhEgAAAD1C6ca9evORV7S/wMxV5F9ksVp09bev1y1PzVNAWKDpOAAAAAAAAOgFGhsb9dFHH2nz5s1yOZ1dOstqs110yfJCN/vXLG7abLYLFjbb2tr0wQcfKD8vr0v/Hb6KxWrV5Kuv1sRJk2Sz2YxkAAAAQOejMAkAAIBu7eTxOi3+0dv69OXVpqN0GDRhsG7/432KH5loOgoAAAAAAAB6iR07dmjpu++qpaXFI/NcTqfanE61tbZ6ZN4X2S5Q2Kw7eVK1J04YyRYSEqI5OTlKSEgwMh8AAABdh8IkAAAAuiWnw6m1f1mpdx+fr6ZaM9vtfFFQ/2Dl/PYOjbtroiwWi+k4AAAAAAAA6AXa2tr09xUrVFBQYDqKRzmdTjmdTrUaKmx+lREjRmj6jBny9fU1HQUAAABdgMIkAAAAup2964r11iOv6GDRftNRJElWm1XXfHeqZjyZI79gf9NxAAAAAAAA0EscP35c8+fPV+Xx46aj9Hne3t66edo0ZWZmcrE0AABAL0ZhEgAAAEa0t7arZn+VaiqqVF1eparySlVXVKpy3zGVbSwxHa/D4KuH6rY/3qfYEfGmowAAAAAAAKCXcLvd2lxYqOXvvy9He7vpOH3egNhY5eTkKDw83HQUAAAAdDEKkwAAAOgS7S1tqtlfrerySlVXVJ2+r1R1+anHdUdq5Xa7Tcf8SiEDQjX3d3cq6xtXcEU5AAAAAAAAOk1LS4uWLV2q7du3m44Ci0UTJ0zQ5GuukZcXH50DAAD0BfzWBwAAgEvS1tymmv1VXyhEnr4/XYjsiWx2m677/s2a9tPZ8g30NR0HAAAAAAAAvcihQ4e0YMECnaipMR2lz+vXr59mz5mj5ORk01EAAADgQRQmAQAAcE5tzW2qqahU1ekVIWsqqlRdUXlq6+zyKp082jMLkecz9IZ03fbf9yg6LdZ0FAAAAAAAAPQibrdbGzds0IcrV8rldJqO0+elpaXplpkz5e/vbzoKAAAAPIzCJAAAQB/V1tR61oqQVeVVqtn/+ZbZJ4/VmY7oMWEJEZr39F0aNTub7bcBAAAAAADQqRobG7V48WLt3bPHdJQ+z8tu141Tp2pMVhbnAQEAAPooCpMAAAC9VGtjyxmFyNP3+z8vSNYfP2k6onFe3l6a8th03fSjmfL29zEdBwAAAAAAAL1MeXm5chcsUH19vekofV7//v2VM3euoqKiTEcBAACAQRQmAQAAeqiWhpZT22SX/2Ob7EpVV5zeOru8SvWVFCLPZ8TNI/WNZ+5RVEq06SgAAAAAAADoZVwul9auWaM1a9bI7XabjtPnjR8/Xtddf73sdrvpKAAAADCMwiQAAEA31VLffNaW2dXlVaquOFWOrKmoUkMVV6VfioikSN36zD3KnDHGdBQAAAAAAAD0QidPnlRubq4qystNR+nzAgICNGv2bKWmppqOAgAAgG6CwiQAAEA34HK6dGj7AZWsK9beT3arbGOJavZXmY7Vq9h97brpRzM15bHpsvt6m44DAAAAAACAXmjPnj1avGiRmpqaTEfp81JSUjRr9mwFBgaajgIAAIBuhMIkAACAAe2t7arIL1XJut3a+0mx9n26R811nETtKiNnZ2ve7+9SRGKk6SgAAAAAAADohRwOh1atWqUN69ebjtLn2Ww2XX/DDRo3bpysVqvpOAAAAOhmKEwCAAB4QPPJJu1bv7djBcnyTfvkaG03HavXi0qN1m3P3qvhUzNNRwEAAAAAAEAvVVNTowXz5+vw4cOmo/R5ERERypk7VzExMaajAAAAoJuiMAkAANAF6o7WquST3R0FyYNbK+R2uU3H6jN8Anx0809m67rv3yS7j910HAAAAAAAAPRS27dv17vvvqu21lbTUfq8MVlZmjp1qry9vU1HAQAAQDdGYRIAAOAyud1uVe47pr3rilWybrdKPinW8ZJjpmP1WWNuHa95v7tToXHhpqMAAAAAAACgl2pra9OKFStUWFBgOkqf5+vnp1tuuUXDhg0zHQUAAAA9AIVJAACAi+RyunSwaL9K1hWr5NPd2rtut04erTUdq8+LGRar2569T2nXDjcdBQAAAAAAAL3Y8ePHNX/+fFUeP246Sp+XmJio2XPmKDg42HQUAAAA9BAUJgEAAC6gvaVN5Xmlp1bOC3+jAAAgAElEQVSQ/GS39q3fo5aTzaZj4TTffn6a/sQcXfvIVNns/HoLAAAAAACAruF2u1VYUKD3V6yQo73d4/N9fH110003KTw8XA6Ho/Nv7e0dj51Op8f/fhfDx9dXk6++WuPGj5fVajUdBwAAAD0InygDAAB8QXNdk0o+3X1qe+1Pd6t80z452hymY+Ecxt01UTn/ebuCY0JNRwEAAAAAAEAv1tLSoqVLl2rH9u1G5sfGxWnu3LkKDfXMeTCXyyWn03nJhcvLvZ2rsGmxWjVgwAANGTxYY7KyFBAQ4JF/CwAAAPQuFCYBAECfV3fkhPau292xguShov1yu92mY+E84jISdNsf71PqpDTTUQAAAAAAANDLHTp0SAvmz9eJEyeMzJ8wYYKuve462Ww2j820Wq2yWq2y2+0em3mmMwub7e3tstvt8vHxYTVJAAAAXDYKkwAAoE9xu906vvfoqXLk6VUkK/cdMx0LX1NUSn9NeWyGrrz/atm8PHeCGAAAAAAAAH2Py+XSxg0btHLlSrlcLo/P9w8I0OzZs5Wamurx2aadWdj08/MzHQcAAAC9CIVJAADQqzkdTh0q2t+xemTJJ7t18lid6Vi4AIvVotC4cIUNjFBEYoQGDI/XoAmDlTw+VVYbV5EDAAAAAACgazU2NmrxokXau3evkflJSUmak5Ojfv36GZkPAAAA9FYUJgEAQK/S1tym8k37Thcki1W6oUQt9c2mY+ELLFaLwuLDFZ4YqbCBEQofGKnwxAhFJEYqPDFSoXFhstn5VRUAAAAAAACeV1ZWpoW5uaqvr/f4bIvFomuuuUYTJ01i+2kAAACgC/ApNAAA6NGaahu179M9HStIVuSXytHmMB2rz7ParAo9XYgMT4xQeELE6cenC5GxoRQiAQAAAAAA0K04nU6tXbNGa9auldxuj88PCgpSzty5GjhwoMdnAwAAAH0Fn1IDAIAe5cShGpWsK9bedbtV8kmxDm8/KLeBk5d9ndVmVVjC6ULkwMjTW2dHdhQkQ2LDZPOymY4JAAAAAAAAfC11dXVamJuriooKI/OHDBmimbNmyd/f38h8AAAAoK+gMAkAALott9utAIefNr+5SSt3LlPJumJVlVWajtUnWL1sHYXIiNOFyPDEU6tERiRGKnhAKIVIAAAAAAAA9Aq7d+/W4sWL1dzU5PHZNptNU6ZM0dhx42SxWDw+HwAAAOhrKEwCAIBupbWxRXlvbdC25Vu0Z+1OXVM9Vu/9e67pWL2OzW5TWMLpEuTA0ytDDvx82+yQAaGy2qymYwIAAAAAAABdxuFwaOWHH2rjxo1G5oeFhWnuvHkaMGCAkfkAAABAX0RhEgAAdAuNJxq07MlcbXhtnZrrPH8ld29js9s+L0AO/Hyr7H8cC46hEAkAAAAAAIC+q7q6WgsWLNCRw4eNzE/PyND06dPl4+NjZD4AAADQV1GYBAAAxh0vOao/zfgvHdt9xHSUHsPL2+v0NtmfrwwZkRjZcSw4JkRWK4VIAAAAAAAA4Iu2bdumpUuXqq211eOz7Xa7pk2frszMTLbgBgAAAAygMAkAAIw6vOOgfjf5KTVWN5iO0i0FRYcoddIQxWUOVERSVMcW2kHRwRQiAQAAAAAAgIvQ1tam95cv1+bNm43M79+/v+bOm6fIyEgj8wEAAABQmAQAAAa5XC7937deoCx5hqiU/kqZmKaUSUOUOilNkYP6c6U5AAAAAAAAcJmOHTum+fPnq6qy0sj87OxsTZk6VXa73ch8AAAAAKdQmAQAAMasf2mNSjfsNR3DGIvVorjMgUqdOEQpk9KUMnGIgqNDTMcCAAAAAAAAeg23262C/HytWLFCDofD4/N9fH01c+ZMDRs2zOOzAQAAAHwZhUkAAGDMqmdXmI7gUV4+diWOHdRRkBx0Rar8gv1NxwIAAAAAAAB6pebmZi1dulQ7d+wwMj8uLk45c+cqNDTUyHwAAAAAX0ZhEgAAGNFQXa/D2w+YjtGl/IL9NWjCYKWe3mJ7YFay7D5suQMAAAAAAAB0tYMHD2rB/Pmqra01Mn/ixIm65tprZbPZjMwHAAAAcG4UJgEAgBH7Pt1jOkKnC44JUcqktI4VJGNHxMtqs5qOBQAAAAAAAPQZLpdLG9av16pVq+RyuTw+PyAgQLPnzFFKSorHZwMAAAC4MAqTAADAiNbGVtMRLlv/wTFKmThEqZNOrSAZkRQli8ViOhYAAAAAAADQJzU0NGjxokUqKSkxMj85OVmz58xRv379jMwHAAAAcGEUJgEAgBGB4YGmI1wUi9Wi+JEDlTIx7VRBcuIQBfUPNh0LAAAAAAAAgKTS0lItXLhQDfX1Hp9tsVp1zTXXaOLEibJa2XEGAAAA6M4oTAIAACP6RQWZjnBedl+7ksaldKwgmXxFqnz7+ZmOBQAAAAAAAOAMTqdTa9as0dq1ayW32+Pzg4KDNXfuXCUkJHh8NgAAAICLR2ESAAAYEZueoPCBEaquqDIdRZLkH+KvQROGdBQkE8Ykye5jNx0LAAAAAAAAwFeoq6tTbm6u9ldUGJmflpamW2bOlL+/v5H5AAAAAC4ehUkAAGCE1WbVVQ9er0U/fsvI/JDYMKVOGnJ6i+0hihkex3Y5AAAAAAAAQA+xe/duLV60SM3NzR6fbbPZNGXqVI0dO1YWi8Xj8wEAAABcOgqTAADAmAkPTNYHv1+mxuqGLp/Vf0iMUiemKWXSqRUkwxMjOZkJAAAAAAAA9DAOh0MffvihPtu40cj88PBwzZ03TzExMUbmAwAAALg8FCYBAIAx/SKD9J2F/6pnbviVHG2OTntdq82q+FGJHdtrp0wcon6RQZ32+gAAAAAAAAA8r7q6Wgvmz9eRI0eMzM/IzNS0adPk4+NjZD4AAACAy0dhEgAAGJU6KU33vvSgXrn/L3K2Oy/pNex+3koal6LUiUOUMilNyVekyjfQt5OTAgAAAAAAADBlX0mJ1q9fr7a2No/Ptnt7a9q0aRo5cqTHZwMAAADoXBQmAQCAcWPvmKC4kQP15sMva8+aXRd8vn9ogFImDulYQTJhdJK8vPm1BgAAAAAAAOht2tvbddWkSVq9erWR+f2jozVv3jxFREQYmQ8AAACgc9EsAAAA3cKAYXH6149+oh0rtqp41Q7tWbtLx/YcUXVjjVLTByt2aHzHCpIxw2JltVpNRwYAAAAAAADQhY4ePaolixdryJAhRuZnjx2rKVOmyG63G5kPAAAAoPNRmAQAAN2GxWLRiJtGasRNp7a2OXDggMaPH69fL3lW8fHxhtMBAAAAAAAA8AS32638/HytWLFCTofD4/N9fX01c9YsDR061OOzAQAAAHQtCpMAAAAAAAAAAAAAPK61tVW1tbWqq6tT7YkTqq2rU11traqqq3Xs6FEjmeLi4zV37lyFhIQYmQ8AAACga1GYBAAAAAAA/5+9O4+Our73P/6ayU52YghbwhLCDmELybBaW1pxqRuI2uV6tXW5tlaw+js9tXW7va1tFapYty5WbJWiFpe6FBVFySRAgADBkLAlIUBIyL7O+vtDSw0zSSbJJN8sz8c5niPvme/n+5oZj2f8+prvBwAAAAD8yu12q7m5WdXV1Z+XIqurVV1T85+/r65WU1OT0TH/w2TSokWL9JWvfEUBAQFGpwEAAADQQyhMAgAAAAAAAAAAAOgUt9utxsbG1oXI80qRLS0tRsf0SXhEhK6++molJycbHQUAAABAD6MwCQAAAAAAAAAAAKAVl8ulhoaGc4XI80uRNdXVstvtRsfstvHJybrqqqsUGRlpdBQAAAAAvYDCJAAAAAAAAAAAADDIuFwu1dbWquaLO0Kev3V2TXW1nE6n0TF7jMls1kUXXaSFCxfKbDYbHQcAAABAL6EwCQAAAAAAAAAAAAwwDodDtbW1n5cga2pUXVV1rghZXV2t2tpauVwuo2MaIjo6WtesWKGkpCSjowAAAADoZRQmAQAAAAAAAAAAgH7Gbrefuzvkl7fK/vefa+vqJLfb6Jh9zuQpU3TFFVcoLCzM6CgAAAAADEBhEgAAAAAAAAAAAOhj3G63qqqqVFFR4bUU2VBfb3TEfiUgMFDf+MY3lJaWJpPJZHQcAAAAAAahMAkAAAAAAAAAAAD0EcXFxdq3b5+OHD6sqqoqo+MMCHEXXKAVK1ZoxIgRRkcBAAAAYDAKkwAAAAAAAAAAAICBnE6n8vPzZc3M1IkTJ4yOM6CkzpqlSy65RCEhIUZHAQAAANAHUJgEAAAAAAAAAAAADNDc3Kw9u3crKztbNdXVRscZUIKCg3XZZZcpNTXV6CgAAAAA+hAKkwAAAAAAAAAAAEAvqq6uVnZ2tnbn5KilpcXoOAPO8OHDtWLlSl1wwQVGRwEAAADQx1CYBAAAAAAAAAAAAHpBaWmprJmZyjt4UG6Xy+g4A9L89HQtW7ZMQUFBRkcBAAAA0AdRmAQAAAAAAAAAAAB6iMvl0qFDh2TNzFRxcbHRcQas0LAwXXnllZo8ebLRUQAAAAD0YRQmAQAAAAAAAAAAAD9raWnR3r17lZWVparKSqPjDGiJSUm65pprFBMTY3QUAAAAAH0chUkAAAAAAAAAAADAT2pra7UjO1u7cnLU3NRkdJyBzWTS4sWLdeGFFyogIMDoNAAAAAD6AQqTAAAAAAAAAAAAQDedOnVK1sxMHThwQC6Xy+g4A15kVJSuvPJKJScnGx0FAAAAQD9CYRIAAAAAAAAAAADoApfLpcLCQlmtVh0/dszoOINCcEiIFi5cKIvFouDgYKPjAAAAAOhnKEwCAAAAAAAAAAAAnWCz2bQvN1fWrCydragwOs6AZDabFR0drdDQUH300Uf61re+pZmpqRo1ahTbbwMAAADoMgqTAAAAAAAAAAAAgA/q6uq0c8cO7dy1S02NjUbH6dcCAgMVEx2tmJgYRcfEKOaLv6K/mEVGRspsNqukpEQPPfywfv2b3ygxMdHo2AAAAAD6OQqTAAAAAAAAAAAAQDvKyspktVq1f98+OZ1Oo+P0C0HBwZ+XINsoRYaHh8tsNhsdEwAAAMAgQ2ESAAAAAAAAAAAAOI/b7daRI0eUmZmpo0eOGB2nzwkNDf1PCdJLKTIsLEwmk8nomAAAAADQCoVJAAAAAAAAAAAA4At2u1379+2TNStL5WfOGB3HMEOGDGldgoyOblWIDA0NNToiAAAAAHQahUkAAAAAAAAAAAAMeg0NDdq5c6d27tihhoYGo+P0uIjIyNZ3hoyOVkxsrKK/mAUHBxsdEQAAAAD8jsIkAAAAAAAAAAAABq3y8nJlWa3Kzc2Vw+EwOo5fmEwmRUZFeb0zZExMjKKiohQUFGR0TAAAAADodRQmAQAAAAAAAAAAMKi43W4dO3ZM1sxMFRYWGh2n08xms6K/XIQ8rxQZFRWlgIAAo2MCAAAAQJ9DYRIAAAAAAAAAAACDgsPh0IEDB2S1WlV2+rTRcXxmDgjQjOnTNWv2bA0dOlSRkZEym81GxwIAAACAfofCJAAAAAAAAAAAAAa0xsZG5ezapewdO1RfV2d0HJ+FhoUpbd48pc2fr6ioKKPjAAAAAEC/R2ESAAAAAAAAAAAAA9LZs2eVZbVq7969stvtRsfx2dChQ5VhsWjWrFkKDg42Og4AAAAADBgUJgEAAAAAAAAAADBguN1uFRUVyWq16tChQ5LbbXQkn40ZM0aWBQs0ceJEttwGAAAAgB5AYRIAAAAAAAAAAAD9ntPp1MGDB2XNzNTJkyeNjuMzk9ms6dOmKcNi0ahRo4yOAwAAAAADGoVJAAAAAAAAAAAA9FtNTU3avXu3srOzVVtTY3Qcn4WEhmru3LlKT09XdHS00XEAAAAAYFCgMAkAAAAAAAAAAIB+p6qqSllZWdqze7dsNpvRcXwWExurjIwMzZ49WyEhIUbHAQAAAIBBhcIkAAAAAAAAAAAA+o2SkhJZMzP12Wefye12Gx3HZ6MTE7VgwQJNnjxZZrPZ6DgAAAAAMChRmAQAAAAAAAAAAECf5nQ6lZ+fL2tmpk6cOGF0HJ+ZTCZNmTpVFotFiYmJRscBAAAAgEGPwiQAAAAAAAAAAAD6pJaWFu3evVvZWVmqrq42Oo7PgoODNWfOHKVnZCg2NtboOAAAAACAL1CYBAAAAAAAAAAAQJ9SXV2tHdnZysnJUUtLi9FxfBYVHa2M9HTNmTtXoaGhRscBAAAAAJyHwiQAAAAAAAAAAAD6hNLSUlmtVuXl5cntchkdx2cjR46UZcECTZ06VQEBAUbHAQAAAAC0gcIkAAAAAAAAAAAADONyuXTo0CFZrVYVFxUZHcd3JpMmT5oky4IFSkpKkslkMjoRAAAAAKADFCYBAAAAAAAAAADQ62w2m/bu2aOsrCxVVlYaHcdnQUFBmjV7tjIyMhQXF2d0HAAAAABAJ1CYBAAAAAAAAAAAQK+pra3Vjh07tGvXLjU3NRkdx2eRkZGan56uuXPnasiQIUbHAQAAAAB0AYVJAAAAAAAAAAAA9LhTp07JarXqwIEDcjmdRsfxWcLw4VqwYIGmTZumwED+1xoAAAAA9Gf8Vx0AAAAAAAAAAAB6hMvl0uHDh2XNzNSxY8eMjtMpKRMnymKxaNy4cTKZTEbHAQAAAAD4AYVJAAAAAAAAAAAA+JXdbldubq6yrFZVVFQYHcdngYGBSp01SxkZGYqPjzc6DgAAAADAzyhMAgAAAAAAAAAAwC/q6+u1c8cO7dy5U42NjUbH8Vl4eLjmz5+veWlpCg8PNzoOAAAAAKCHUJgEAAAAAAAAAABAt5SVlSnLatW+ffvkdDqNjuOz+GHDZLFYNGPGDAUFBRkdBwAAAADQwyhMAgAAAAAAAAAAoNPcbreOHDkiq9WqI4cPGx2nU5KTk2VZsEDJyckymUxGxwEAAAAA9BIKkwAAAAAAAAAAAPCZw+HQ/v37Zc3M1JkzZ4yO47OAgADNnDlTGRaLEhISjI4DAAAAADAAhUkAAAAAAAAAAAB0qKGhQbt27tSOnTvVUF9vdByfhQ0ZorS0NKWlpSkyMtLoOAAAAAAAA1GYBAAAAAAAAAAAQJvKy8uVlZWl3L175XA4jI7js7gLLpAlI0MzU1MVHBxsdBwAAAAAQB9AYRIAAAAAAAAAAACtuN1uHT9+XNbMTBUUFBgdp1PGjhunBQsWaMKECTKbzUbHAQAAAAD0IRQmAQAAAAAAAAAAIElyOBzKy8uT1WrV6VOnjI7jM7PZrOkzZshisWjEiBFGxwEAAAAA9FEUJgEAAAAAAAAAAAa5xsZG5eTkaEd2turq6oyO47PQ0FDNmzdP89PTFRUVZXQcAAAAAEAfR2ESGKBsNpsOHjyoY8eOqbq6WjabTTExMUpISFBqaqpiY2ONjuizyspK7du3T2VlZaqurlZwcLBiYmI0fvx4TZ06VUFBQYZlKykp0YEDB1RZWam6ujqFh4crNjZWU6ZMUXJysmG5nE6nDh06pMLCQlVVVam5uVnR0dGKj4/XzJkzNWzYMMOyAQAAAAAAAOg7zp49q+ysLO3Zs0d2u93oOD6LHTpUGRkZmjVrlkJCQoyOAwAAAADoJyhMAj54+eWX9dBDD8npdPbI+iaTSQ8++KBWrVrVrXXcbrcyMzP10ksvadu2bWppaWnzfFOmTNG1116rb37zmwoPD+/WeXtCfX29Nm/erL///e86dOhQm88LDQ3V0qVL9a1vfUvp6em9ku3EiRPauHGjNm/erDNnzrT5vNjYWF1++eW64YYbNG7cuF7JtnfvXr300kvasmWLGhoa2nze2LFjtXLlSl1zzTX9qjwLAAAAAAAAoPvcbreKi4tltVqVn58vud1GR/JZ0pgxslgsmjRpksxms9FxAAAAAAD9DIVJwAeHDx/usbKk9PnFKZvN1q01Dh06pAceeEC7d+/26XwHDx7UAw88oCeffFI/+clPdOmll3br/P7idrv1yiuv6Le//a2qq6s7fH5zc7Pee+89vffee1q4cKHuv/9+jRkzpkeyNTY2av369frLX/4ih8PR4fOrqqr0wgsv6MUXX9QNN9yg1atXKyIiokeylZaW6n//93/14Ycf+vT848eP6ze/+Y2eeuoprV69WjfccAMXFwEAAAAAAIABzul06uDBg7JarTpZWmp0HJ+ZzGZNmzpVGRaLRo8ebXQcAAAAAEA/RmES8EFVVVWPnyMyMrLLx7788st6+OGHfSrxna+8vFxr1qzRhx9+qF/+8pcKDg7uco7uqq+v15o1a/Txxx936fjt27fr8ssv1yOPPKLly5f7NdvRo0d12223qaioqNPHulwuvfjii9q6daueeeYZpaSk+DXbBx98oB//+MdqbGzs9LH19fV6+OGH9f777+uJJ57o1j+HAAAAAAAAAPqm5uZm7c7JUXZ2tmpqaoyO47OQkBDNmTtX6enpiomJMToOAAAAAGAAoDAJ+KA3CpPR0dFdOu6xxx7TM8884/WxYcOGae7cuRo5cqQCAwNVUVGhffv2qbCw0OO5b731lsrKyvTcc88pLCysS1m6o7KyUjfeeKPX7bdNJpOmTZumadOmKTY2VjabTcXFxdq1a5fHXShbWlq0evVqVVRU6Dvf+Y5fsuXm5ur73/++1wuJwcHBmjt3riZMmKDw8HA1NDTo8OHDysnJ8bhraGlpqa6//no988wzmjt3rl+yvfTSS3rooYfkcrk8HouJidG8efOUlJSk4OBgVVVVKS8vT3l5eXKft8WO1WrVddddpxdeeEFxcXF+yQYAAAAAAADAWFVVVcrOztbu3btla2kxOo7PomNilJGRodmzZys0NNToOAAAAACAAYTCJOCDni5MBgQEaMSIEZ0+7sUXX/RalkxOTtY999yjpUuXet1mOT8/X2vXrtVHH33Uar5z507de++9evzxx2UymTqdp6tsNpvuuOMOr2XJK664Qj/84Q+VmJjo8ZjD4dDbb7+tRx99VKdPnz43d7vd+sUvfqHhw4dr2bJl3cpWUlKi2267zaMsGRISoltvvVXf/e53vd6Vsa6uThs2bNDTTz+tli9diKyrq9P//M//aNOmTUpKSupWtg8++MBrWXL48OFas2aNLrnkEgUFBXl9TevXr9fmzZtbzQ8fPqw77rhDf/nLXxQSEtKtbAAAAAAAAACMc+LECWVmZuqzgwc9fjzdl40aPVoLFizQ5MmTFRAQYHQcAAAAAMAAZHL3p/9SBgxy4YUX6tSpU+f+vGjRIj377LOGXrDJycnRd77zHTmdzlbz5cuX65FHHvGp8Pb888/rV7/6lccFszVr1ujWW2/1a9723H///Xr55ZdbzYKCgvSrX/1Kl112WYfH19TU6Ac/+IF27NjRah4WFqbXX39dY8aM6VIuu92ua665xqPImZCQoOeee06TJk3qcI2CggJ9//vfb1XolKSJEyfq1Vdf7fIW6MXFxbriiis8tuFOS0vTk08+6dMdS99++239v//3/zzuhLlq1So99NBDXcoF+FtJSYkyMjKUlZXltTgNAACAgY/vhAAA+Mblcik/P1/WzEyVlJQYHcdnJpNJk6dMkcVi6faPzDEw8X0QAAAAfCeEP3neeg6Ah/PvMDlu3DhDy5I2m00///nPPcqSS5cu1aOPPurz3QFvvPFG3XPPPR7zJ598UkVFRX7J2pFdu3Zp48aNHnNfy5LS59uZP/vss5o+fXqreVNTkx544IEuZ3vuuec8ypKRkZH685//7FNZUvq8GPn88897FBgLCgr0hz/8ocvZ7r//fo+y5LRp0/Tss8/6vL37JZdcokceecTjbqJ///vftWvXri5nAwAAAAAAANB7WlpalJWVpccff1x/37ix35Qlg4KDlZ6RoR/eeadWrVpFWRIAAAAA0CsoTAIdaGpqUnNzc6vZ0KFDDUrzuQ0bNujw4cOtZvHx8fr1r3/d6SLnzTffrKVLl7aatbS06Je//GW3c3bE7XbrwQcf9LjD5apVq3wuS/5bWFiY1q1bpyFDhrSaZ2Zm6r333ut0ttOnT+upp57ymD/wwANKTk7u1Frjxo3Tgw8+6DF/+umnVVZW1uls7777rjIzM1vNwsLCtHbtWo/X35FLLrlE119/fauZ2+3WQw891K+26gEAAAAAAAAGm5qaGm3517/02GOP6d133lH1eT/876uioqK0bNkyrVmzRsuXLzf8ejsAAAAAYHChMAl04Py7S0pSXFycAUk+Z7PZ9Oc//9ljvnr1asXExHRpzfvuu09BQUGtZlu3bvW4u6K/ffDBByooKGg1i4qK0t13392l9RITE3XzzTd7zJ955plOr/WnP/3JY6vqtLS0Thc5/2358uVKT09vNWtpafH6WXbE2+u56aaburz1+OrVqz3uSnno0CFt3bq1S+sBAAAAAAAA6DknT57Uq6+8ot+tW6ft27er5bwf/PdVI0aM0NXXXKMf3XWXFi5apLCwMKMjAQAAAAAGIQqTQAe8FSaN/MXr5s2bVV5e3mo2YsQIXXnllV1eMykpScuXL/eYd2fLaF94W/+GG27weUtpb2688UaPuyzm5eXJarX6vEZNTY02bdrkMb/99tu7nKut4zdu3Ki6ujqf19i+fbsOHjzYahYWFqYbb7yxy7mioqJ0ww03eMx7+vMHAAAAAAAA4BuXy6X8/Hz9+c9/1rPPPKP9+/fL5XIZHatjJpMmTZqkG//7v3XLrbdq5syZnd4lCQAAAAAAf6IwCXTAW2EyNjbWgCSf27x5s8fsmmuu6fZFpmuvvdZjtmXLFjU2NnZr3bYUFxdrz549HvMVK1Z0a92IiAhdfPHFHvPXX3/d5zX+9a9/ebzuUaNGacGCBd3KlpGRocTExFazxsZGbdmyxec1vH3+F198saKiorqVbeXKlR6znJwclZSUdGtdAAAAAAAAAF1ns9m0c8cOrV+/Xi+/9JKKjh83OpJPAoOClJaWph/84Ae6/oYbNHbsWJlMJqNjAQAAAABAYZI5LaAAACAASURBVBLoSF+6w2RZWZl2797tMV+2bFm31547d67H62pqatJHH33U7bW9eeeddzxmU6dO9SgUdoW39+P999/32GK7Le+++67XNbt7Qc9kMulrX/uax/ztt9/26XibzaYPP/zQa7buGjVqlKZNm+Yx9/Y5AQAAAAAAAOhZdXV1+uD997X2scf0z3/+U5VnzxodyScRERG66Ktf1Zo1a3TpZZfpggsuMDoSAAAAAACtUJgEOtCXCpNbt26V2+32yDJ58uRur202mzV//nyP+QcffNDttb3xVvzLyMjwy9rz58/3uONmXV2ddu7c2eGxjY2NysrK8phbLBa/ZPO2TlZWlk938szOzlZ9fX2rmdlsVnp6ul+yeXv/vX1OAAAAAAAAAHrGqVOn9I/XXtPatWv1ySefqKmpyehIPklISNCVV12lu1av1pIlSzRkyBCjIwEAAAAA4BWFSaAD1dXVrf4cGBio6OhoQ7J428I6NTXVb+vPnj3bp3N2l81mU15enk/n74qIiAilpKR4zH15Lfv27ZPD4fCYz5o1yy/ZvK1jt9t14MCBDo/1ln/ChAmKiIjwS7Y5c+Z4zPLy8ny+MycAAAAAAACAznO5XDp06JCef/55PfP008rNzZXL6TQ6lk9SUlL03f/6L912++2aNWuWAgMDjY4EAAAAAEC7+C9XoAPn32EyJiam21szd9XevXs9ZpMmTfLb+hMnTvSYlZaWqry8XPHx8X47T15enux2u8fcn68lJSVF+fn5rWa+FCZzc3M9ZgkJCYqJifFLrujoaCUkJKisrKzVfO/evV7v8NlRNn+/Z+ez2Ww6ePCg3wqjAAAAAAAAAD5ns9m0d+9eZWdl6Ww/2XJbkgICA5WamiqLxeLX68YAAAAAAPQGCpNAB84vTBq1HXdzc7OKioo85uPHj/fbOcaOHet1/tlnn/n1wtf5RUZJCgoKUmJiot/O4e21eDuvL8/x53ssfZ7t/MLkZ5991uFxPZ1t9OjRCgwM9LjD5meffUZhEgAAAAAAAPCT2tpa7cjO1q6cHDX3ky23JWlIeLjmp6VpXlqa33a9AQAAAACgt1GYBDpwfmEyNjbW4zn5+fn66KOPtHfvXh05ckS1tbWqr69XUFCQIiIilJSUpJSUFGVkZGjx4sVduph08uRJud1uj/nw4cM7vVZbhg0bJrPZLJfL5XFuf/K23r/P7S/e3pezZ8+qpaVFISEhncrmz/e4rfU6eo9bWlq8/srcn9kCAgIUHx+vU6dOdSobAAAAAAAAgI6VlpYqy2pVXl6exzXYviw+Pl4Wi0UzZs5UUFCQ0XEAAAAAAOgWCpNAB9q6w6Tdbtfrr7+uv/3tb8rLy/N6rMPhUFNTk8rLy5WTk6OXX35ZYWFhuvjii3X77bdrzJgxPudoq7Tmzzs/BgYGaujQoaqoqPDp3F3lbT1/b90ybNgwj5nb7dbJkyc1bty4No8rLS01JJu3835ZW4XZnshGYRIAAAAAAADwD5fLpUOHDslqtarYyw5Cfdn45GRZLBZNmDBBJpPJ6DgAAAAAAPgFhUmgA+cXJktLS/X888/r+eef9yiW+aKpqUn/+Mc/9NZbb+nmm2/WnXfeqYCAgA6PO3PmjNd5VFRUpzO0JyIiwqMw2da5u8rbepGRkX49R1vrnTlzps3CpMvl8njtvZWtoqJCbre7zQuPvfX5e8vm788fAAAAAAAAGOhaWlq0Z88eZWdleVxj7svMAQGaOWOGLAsWKCEhweg4AAAAAAD4HYVJoAPV1dWt/rxv3z7t27ev2+va7XY9/fTTys3N1VNPPaWwsLB2n9/U1OR1Hh4e3u0sX+Ztu/C2zt1VjY2NHrPeeB2S1Nzc3OYxzc3NXu/i2BvZ3G63mpub2/znoLc+f2/r+fvzBwAAAAAAAAaq6upq7cjOVs7u3Wpp51pkXxM2ZIjS5s1T2vz5fv8BOQAAAAAAfQmFSaAddXV1stls7T4nMDBQaWlpWrp0qebOnav4+HjFxcXJZrOpqqpKBw4ckNVq1Ztvvum1KGi1WnXHHXfoueeea/dOk22V1oKCgjr3ojrgbb32SoZd4W09f7+OwEDv/3prr/zX1usMDg72S6Z/ay9bZwuT/fHz78+cTidblPeyf7/fvO8AAACDF98JAQD9wZkzZ3TgwAEdP3bM64+y+6ro6GhNmz5dKSkpCgwMVHV1tcdNBACj8X0QAAAAfCc0xsiRI33aNbe/oTAJtMNkMmnatGnKy8vzeCwsLEwrVqzQTTfdpJEjR3o8HhwcrIiICCUmJmr58uVas2aN1q9frw0bNng8d/v27XryySd15513tpmlpaXF67yt8l1XeVvP34U5b6+lN16H1P5raes99ve//NvK1tb523usN7JRmPyPs2fPKiMjw+gYg9LVV19tdAQAAAAYjO+EAAaT8PBwjR8/XsPi4xUWFiaz2ayamhpVVlWptLRUlZWVRkeEPr9+PHbMGE2fMUPD+9n21SdPntT+AwdUXFxsdBTAZ3wfBAAAAN8Je9eePXs0bNgwo2P4HYVJoB0RERF65ZVXtGnTJq1bt06VlZUym8266qqrtHr1asXHx/u8VkxMjO677z7Nnz9fq1evlsPhaPX4s88+q6uuukqJiYlej2+rZOd0Ov1amnM6nR4zf9/F0Fteb+ftDpfL5XXe3t0i23ofeytbe+9zW59/W2t1VW98/v1ZXFycsrKyjI4xqJw8eVJXX321XnvtNa/ldAAAAAx8fCcEMJicPn1ae/fuVemJEx6PJXypkDdkyBAlJiZqdGKiRo4c6fcdUtA+m82mgkOHlJeXp/r6eqPj+MxkMml8crKmT5+uCy64wOg4gM/4PggAAAC+ExojLi7O6Ag9gsIk0AGz2axVq1bpkksu0QsvvKCLLrpIU6ZM6fJ6X//61/XAAw/ovvvuazW32+167rnn9NBDD3k9LjQ01Ovc4XD4tTB5fpFTUpvbRHeVt/W8nbc72lqvrfdRavt1+jub3W73Om8vW1uPtbVWV/XG59+fBQQEtFlqRs8aOXIk7z0AAMAgx3dCAAOV2+3W0aNHte3jj1VUVOTTMY2NjTp06JAOHTokc0CAxowZo4kpKUqZOFFxcXEymUw9nHpwqqqqUnZWlnbv2SNbO7vF9DWhoaGaO2+e5s+fr+joaKPjAF3G90EAAADwnRD+QGES8FFkZKTuuOMOv6y1cuVKbd68Wbt27Wo1f/fdd3Xfffd5/UV4W4W5hoYGhYSE+CWX9PnFVl/P3VXe1vN23u5oaGjwOm+v/NfW++jvbG2t1162tj6D3sjm788fAAAAAAAAnxclCwoKtG3bNq93lPSVy+nUsaNHdezoUb333nuKjY1VyhflybFjx7J7SDe53W6VlJTIarUq/7PP5Ha7jY7ks9jYWGVkZGjW7Nl+vYYMAAAAAEB/RmESMMhtt92m733ve61mNTU12r9/v+bOnevx/JiYGK/r1NXVaejQoX7LVVdX5zHz5/qS99dSW1vr13O0tRVObGxsm8cEBwdryJAhHqVBf2fz9h5HR0e3e6fQ9j5/f+qNzx8AAAAAAGAwc7lcys/P17aPP9bp06f9vn5VVZV27NihHTt2KDAoSOPGjfu8QJmS0u61MbTmdDp18OBBZVmtKi0tNTpOpyQlJcmyYIEmTZoks9lsdBwAAAAAAPoUCpOAQdLT0xUaGqrm5uZW8/z8fK+FyZEjR3pdp6KiQmPGjPFLJrfbrcrKSp/P3VXe1jt79qxfz1FRUeF1PmrUqHaPGzVqlAoLC1vN/J3N23odvcftff7+1JVsAAAAAAAA6JjT6VReXp62bdumivLyXjmnw25XYUGBCgsKJEnx8fHn7j6ZlJTU7g94B6umpibtzslRdna2339I3ZNMZrOmTp0qi8Wi0aNHGx0HAAAAAIA+i8IkYJDg4GBNnjxZe/fubTU/deqU1+e3VfQrKyvzW6bKykrZ7Xafz91V3gp4/nwdba0XFRWlyMjIdo8bOXKkR2HS37/095ato/d46NChCgsLU1NTU49mO3PmTKezAQAAAAAAoG0Oh0P7cnP1yaefqsrLj5V7U3l5ucrLy5WZmangkBAlJyefu/tkR9fNBrqzZ88qOytLe/buld1mMzqOz4JDQjR3zhylZ2S0uUsNAAAAAAD4DwqTgIG8bYHT1q+Whw4dqpiYGFVXV7eaHzt2zG95jh8/7nU+YcIEv51DkpKTkz1mzc3NOnXqlEaMGOGXcxQVFfl0Xm/P+fjjj1vN2npfuspbNl/e4/HjxysvL6/VzJ/ZysrKPAqZkv8/fwAAAAAAgMHAbrdrz+7d+nT7dtXW1Bgdx4OtpUWfHTyozw4elCQNHzFCE7+4++SoUaMGxVbObrdbRUVFslqtOnTokOR2Gx3JZ9ExMcpIT9fsOXMUGhpqdBwAAAAAAPoNCpOAgcLDwzv1/NTUVI8yX8EX2+n4w5EjRzxmsbGxGjt2rN/OIX3+OrwpKCjwW2Hy8OHDHrPZs2d3eNzMmTM9ZidOnFBDQ0OnPy9vmpubdeLECY/5rFmzOjw2NTXVozDpz8/f23tmNpvb/LwAAAAAAADgyWazadeuXcrcvl319fVGx/HZ6VOndPrUKW3btk1hYWGaMGGCUiZO1IQJEzRkyBCj4/mVw+FQXl6esqzWNnf86atGjx6tDItFU6ZMYUt1AAAAAAC6gMIkYKCqqiqPWVRUVJvP91aYPH9L7+7wtpYvRb7OGjp0qBITE1VSUtJqvnv3bi1durTb69vtdh384pfxX+bLa/H2HLfbrdzcXC1YsKDb2Q4cOCCn0+kx96WUmJqaqr/97W+tZvn5+WpubvbLr8i9ff4TJkxQREREt9cGAAAAAAAY6Jqbm7Vjxw5lWa1qbGw0Ok63NDU1af/+/dq/f79MJpNGjR6tlJQUTZw4UcOHD5fJZDI6Ypc0NjYqZ9cu7dixQ3V1dUbH8ZnJZNKUqVNlsViUmJhodBwAAAAAAPo1CpOAgcrLyz1mCQkJbT5/8eLFevzxx1vNTp8+raNHj2r8+PHdzrNjxw6P2ZIlS7q9rjeLFi3SSy+91GqWlZXll7X37t2rlpaWVrOgoCBZLJYOjx0xYoQmTJjgcbdFq9Xql8Kkt9c4c+ZMDR06tMNjFy5cKLPZLJfLdW5mt9u1c+dOLV68uNvZsrOzPWY99fkDAAAAAAAMFI2NjcrKylJ2drZampuNjuN3brdbJ0pKdKKkRFs//FARkZFK+eLuk+PHj+8X20FXVFQoy2rV3txcOex2o+P4LCQkRHPmzNH89HTFxsYaHQcAAAAAgAGBwiRgkMrKSq9bIE+ZMqXNY2bOnKlRo0aptLS01XzLli269dZbu5WnsLDQ446PAQEBuvjii7u1bluWL1/uUZjMzc1VWVlZu6VRX3z44Yces8WLF7d7984vu/jii7V+/fpWs3/961+6++67u5VLkrZu3eoxu/TSS306Nj4+XvPmzfMotm7ZsqXbhcmamhrt3r27y9kAAAAAAAAGm/r6elkzM7Vz507ZbDaj4/Sa+ro67dmzR3v27JHZbFbSmDFKSUlRSkqK4uPj+8zdJ91ut44dOyar1arCggKj43RKTGysMtLTNWv27H5RSAUAAAAAoD8xGx0AGKy2bdvW6k6BkjRkyBBNmzat3eMuu+wyj9krr7wit9vdrTyvvfaax2zhwoU+3fmwK9LS0jR8+PBWM7fbrU2bNnVrXYfDoTfffNNjfvnll/u8xqWXXupxYff48ePauXNnt7IVFhbqwIEDrWaBgYFavny5z2t4+/z/+c9/qqGhoVvZ3nrrLdnP+3V9cnKypk6d2q11AQAAAAAABpqamhq98/bbWrd2rbZv3z6oypLnc7lcOn7smLb861/6/ZNP6nfr1umfb72lgoICw94Xh8OhPXv26OmnntILf/lLvypLJiYl6dpVq3TnnXcqw2KhLAkAAAAAQA+gMAl0oLCw0OudILvD6XTq2Wef9Zh/5StfUVhYWLvHfvvb31ZwcHCrWXFxsd56660u56mtrfVaVLzpppu6vGZHzGazbrzxRo/5iy++qPr6+i6v+8Ybb3hsdT569Gh94xvf8HmN8ePH68ILL/SYP/XUU13OJUl//OMfPWaXXnppp+6oecUVVyguLq7VrL6+Xhs2bOhyLofDoeeff95j3pOfPwAAAAAAQH9TVVWlN994Q7/73e+UnZ0th8NhdKQ+p7q6Wjt37tTf/vpXPfLII3pxwwZlZ2ersrKyx8/d0NCgjz/6SGvXrtXrmzerrKysx8/pDyazWdNnzND3b7lFN998s6ZOnSqzmf91AwAAAABAT+G/uoF2vPHGG1qxYoVWrVqlXbt2+W3dv/71rzpy5IjH/Nvf/naHxw4bNkxXXXWVx/y3v/2t6urqupTniSee8Dh21qxZslgsXVrPV9dee61iYmJazaqqqrR27dourVdfX6/HH3/cY/69731PAQEBnVrrtttu85ht375d7733XpeyHThwQG+88Uarmdls1i233NKpdUJDQ70WTZ999lmdOHGiS9lefPFFFRcXt5qNGDFCV1xxRZfWAwAAAAAAGEgqKir0j3/8Q48//rhycnLkcjqNjtQvOB0OHT58WO+8/bYe/93v9MQTT+jdd9/V0aNH/Vo2PXPmjN544w2tfewxbd26VQ3d+DF2bwoNDdXChQt11113acWKFRo1apTRkQAAAAAAGBQoTAJeOJ1O/eIXv9A999yj5uZm1dfX6+abb9a7777b7bUzMzP1yCOPeMwvuugizZkzx6c1fvSjH3kUDU+fPq17773XY5vvjnz88cd68cUXW83MZrN++tOfdmqdrggPD9ePf/xjj/lf//pXvfPOO51e7/7779epU6dazaZOnaqVK1d2eq1Zs2Z53cb75z//uY4dO9apterq6nTPPffIed7F9BtuuEETJkzodLbvfve7Gjt2bKtZQ0OD7rrrLjU1NXVqrYMHD2rdunUe85/85CcKCgrqdDYAAAAAAICBoqysTJs2bdL69euVu3ev3J287obWzlZUKMtq1Qt/+Yt+/cgjevmll5Sza5dqa2s7vZbb7dbhw4f14oYN+v2TT2p3Tk6/uePn0KFDtfySS7R6zRot+/rXFR0dbXQkAAAAAAAGFQqTgBe1tbV67bXXWs2am5t111136bHHHuvyxbfXX39dd9xxh8fxMTExeuCBB3xeJy4uTj/5yU885h9++KHuvvtutbS0+LTOtm3bdNddd3mULL/73e9q5syZPq2xdetWTZ48WZMmTTr31+TJk/XBBx/4dPzKlSuVkZHRauZ2u3Xvvffqn//8p09rOBwO/fznP/fYljwwMFAPP/ywAgMDfVrnfD/96U81dOjQVrPq6mrdeOONOnTokE9rVFZW6uabb9bRo0dbzUeOHKk1a9Z0KVdoaKgefvhhmUymVvP9+/frlltuUU1NjU/rHDhwQN/73vc8SpbLli3r1BbmAAAAAAAAA0lpaaleeuklPfX73yvvwAHJ7TY60oBjs9mUn5+vN998U489+qieeuopvf/++yoqKvL40fGX2e125eTk6Pe//71e3LBBhw8f7sXU3TNm7Fhdd/31+sEPf6j09HSFhIQYHQkAAAAAgEGJwiTgRWxsrJ5//nmPuzi63W4988wzuvbaa7V7926f1ysoKNDq1at17733qrGxsdVjQUFBeuyxx5SQkNCpjFdeeaWuv/56j/nbb7+tK6+8Uh9++GGbd5ssKyvTgw8+qFtuucUjz/z583X33Xf7nKOqqkru8y4au91un0t7kvToo496bDljs9m0Zs0a3XPPPR7bRX+Z1WrVtddeq40bN3o89rOf/UzTp0/3Ocf5YmNj9cQTTyg4OLjV/PTp01q5cqXWr1/f5i/gbTabXn31VX3zm99Ubm5uq8eGDBmi9evXKzw8vMvZ2vqcduzYocsvv1ybN2+W3W73emx1dbXWrVun6667TmfPnm31WHJysv7v//6vy7kAAAAAAAD6q+LiYr24YYOee/ZZHcrPNzrOoFJ2+rQ+/eQT/flPf9JvfvMbvbJpk3Jzc9XQ0CBJqq+v19YPP9TatWv15htvqPzMGYMT+8ZsNmvmzJm65dZb9d///d+aPHmyzGb+twwAAAAAAEYyuc9vOgE4p6ioSD/60Y/02WefeX08NTVVX/3qVzVjxgwlJiYqPDxcDodD1dXVKi8v1549e5SVlaVdu3Z5lAqlz+8UuHbtWl100UVdyud0OrV69Wq99957Xh+Pj4/XvHnzNGrUKAUGBqqqqkr5+fnav3+/1zLlpEmT9MILL3gURdvz2muveb3b5S9/+UtdffXVPq9z5MgR/dd//ZfKy8u9Pj5t2jRNnz5dsbGxcjgcOnXqlHbv3u2xBfe/3X777brrrrt8Pn973nnnHd1zzz1eC4hBQUGaN2+eJkyYoIiICDU3N+v48ePatWuX6urqPJ4fEhKixx9/XBdeeKFfsv3iF7/QCy+84PWx6OhopaWlKSkpSSEhIaqtrVVhYaH27Nnj9bWMGDFCGzZsUGJiol+yAf5QUlKijIwMZWVl8c8mAADAIMV3QgA9ye1269ixY9r28cc6fvy40XFwPpNJCQkJqigvb/fOk31NWFiY5s6bp/nz5ysqKsroOEC/x/dBAAAA8J0Q/tS1fWqBQWLMmDH6+9//rqefflp/+MMfPLa6zs3N9bh7oK/Gjx+vdevWadKkSV3OFxAQoHXr1um3v/2t/vjHP3o8Xl5ernfeecentZYuXarHHntMERERXc7THcnJydq0aZNuv/12rwXVvLw85eXldbhOYGCgfvazn+m6667zW7bly5crLi5OP/zhD1VdXd3qMbvdLqvVKqvV2uE6cXFxevLJJzV79my/ZfvpT3+qUaNG6de//rXHReOamhq9//77Pq0zY8YMPfXUU4qPj/dbNgAAAAAAgL7K7XarsLBQ2z7+WCdOnDA6TocmpKTI1tKikpISrz/MHrDcbpWdPm10Cp/FxcUpw2JRamqqx641AAAAAACgb6AwCXQgODhYd955p1asWKE//elPevXVVz22se6MuLg43XLLLfrWt76loKCgbuczm8269957tXDhQj388MM6duxYp46PiYnRmjVrtHLlSr9uB2MymTp9zIgRI7Rx40Y999xzeu6559Tc3Nyp42fPnq0HHnhAkydP7vS5OzJ//ny9+eabeuSRR/TWW2916liTyaQrr7xS99xzj+Li4vye7cYbb9S8efP00EMPdbrAGxYWpttuu0033XQTF3EBAAAAAMCA53K5lJ+fr23btul0GzuX9Bkmk6ZNnarFS5Zo+PDhkqSmpiYdOXJEBQUFOlxY2K3rlPCfcePHy2KxaMKECWy5DQAAAABAH8eW3EAn1dfX64MPPtCWLVuUk5OjysrKDo+Jjo5WRkaGLr74Yn3ta1/rsWKa3W7Xli1btHHjRu3atUsOh6PN506cOFErVqzQVVdd1a1tYT799FPdeuutHud65ZVXNGPGjC6vW1ZWpk2bNmnz5s0qKSlp83nBwcFasmSJVq1apcWLF3epqNlZ+fn5eumll/Tuu+963HHyy2JiYrR8+XJdd911PVLiPJ/b7da2bdu0ceNGffLJJ7LZbG0+NykpSVdddZVWrlzJXSXRp3FrdQAAAPCdEIA/OJ1O5eXl6ZNt21ReXm50nHaZzGbNmDFDixcvbve6jcvl0smTJ1VYWKjCggKdPHmyF1MiICBAM2bMUIbFcq7QCqBn8H0QAAAAfCeEP1GYBLqppKREx48f18mTJ1VfX6/m5mYFBwcrPDxcw4cP17hx4zRmzJhe/2VxU1OT9u3bp+LiYtXU1MjpdCoqKkrDhw9Xamqqhg4d6tfz/fWvf9VDDz0kSVq4cKH+9Kc/+W3tsrIy7du3T2fOnFFdXZ2Cg4MVExOjcePGadq0aYbdGdHtduvw4cPKz89XVVWVGhoaFB4ertjYWE2ZMkXJycm9UuD0xmazKS8vT8eOHVN1dbVsNpsiIyM1bNgwzZw5UwkJCYbkAjqLL74AAADgOyGA7nA6ncrNzdWnn3zi0w+fjWQOCNCsWbO0aNGiLl27q6+v1+HDh1VYUKDDR46opZO7t8A3Q4YM0by0NKWlpSkyMtLoOMCgwPdBAAAA8J0Q/sSW3EA3JSYm9sl/GYeFhSk9PV3p6em9cr6PPvro3N+vXr3ar2snJCRo2bJlfl3TH0wmk1JSUpSSkmJ0FA/BwcGaPXu2Zs+ebXQUAAAAAACAXme327V3zx59+umnqqmpMTpOuwIDAzVn7lwtXLhQ0dHRXV4nIiJCs2bN0qxZs+R0OlVSUvL53ScLC3WmrMyPiQen+Ph4ZVgsmjlzpoKCgoyOAwAAAAAAuojCJIBuO3HihD799FNJ0rJly7q1FTcAAAAAAADQVTabTTm7dml7Zqbq6+qMjtOuoOBgpaWlyWKx+P1OhQEBARo7dqzGjh2rZcuWqaamRoUFBSosLNTRo0dlt9v9er6BLDk5WZYFCwzdTQYAAAAAAPgPhUkA3bZp0ya5XC6ZzWb96Ec/MjoOAAAAAAAABpnm5mbt3LFDVqtVjY2NRsdpV0hIiNLT05VhsWjIkCG9cs7o6GjNS0vTvLQ0ORwOFRUVqeCLAmXl2bO9kqE/CQgMVOrMmcqwWDRs2DCj4wAAAAAAAD+iMAmgW+x2u1599VVJ0mWXXdYnt6cGAAAAAADAwNTY2Kjs7GxlZ2WpubnZ6DjtChsyRJaMDKXNn6+wsDDDcgQGBio5OVnJyclavny5zp49+/nW3QUFOn78uJxOp2HZjBYeHq60+fM1b948RUREGB0HAAAAAAD0AAqTALrl/fffV3l5uYKCgnTnnXcaHQcAAAAAAACDQH19vaxWq3bu2CGbzWZ0nHaFR0Ro4YIFmjtvnkJCQoyO4yEuLk5xcXHKyMiQzWbTsWPHVFhQoILCQtXW1Bgd3zNangAAIABJREFUr1cMS0iQxWLR9OnTFRQUZHQcAAAAAADQgyhMAuiWjRs3SpKuueYaJSYmGpwGAAAAAAAAA1ltba22b9+unJwcOex2o+O0KyoqSgsXLdKcOXP6TQkvODhYkyZN0qRJk+R2u3XmzJnP7z5ZWKji4mK5XS6jI/pVSkqKMiwWjR8/XiaTyeg4AAAAAACgF1CYBNAtubm5Gjt2rH7wgx8YHQUAAAAAAAADVFVVlbZ/+qn27NnT57eMjo2N1aLFi5WamqrAwP57Cd5kMikhIUEJCQlatGiRmpqadPToURUWFKjw8GE11NcbHbFLAoOClJqaqoyMDMXHxxsdBwAAAAAA9LL+e7UGQJ+wZ88eoyMAAAAAAABggKqoqNCnn3yi3H37+vzdDS+44AItXrJE06dPV0BAgNFx/C4sLEzTpk3TtGnT5HK5dPr0aRUUFKiwsFClpaWS2210xHZFREZq/vz5mjdvnoYMGWJ0HAAAAAAAYBAKkwAAAAAAAACAPqWsrEyfbNumvLw8uft4ES8hIUFLli7VlClTZDabjY7TK8xms0aOHKmRI0fqwgsvVENDgw4fPqzCggIdPnJEzU1NRkc8Z/jw4bIsWKBp06b16zt+AgAAAAAA/+DqAAAAAAAAAADAMG63W5WVlSo6flxFRUUqKipSdXW10bE6NHLUKC1dulQTJ06UyWQyOo6hwsPDlZqaqtTUVDmdTpWWln6+dXdhoU6fPt37gUwmTZo4URkWi8aOHTvoPx8AAAAAAPAfFCYBAAAAAAAAAL3G5XKpvLz8XDmyqKhI9XV1RsfyWdKYMVq6dKnGjx9PEc+LgIAAJSUlKSkpSV/92tdUW1urwsJCFRYW6uiRI7LZbD127qCgIM2aPVsZGRmKi4vrsfMAAAAAAID+i8IkAAAAAAAAAKDHOJ1OlZWVqej4cR0vKlJxUZGa+tCWzb4an5ysJUuWaOzYsUZH6VeioqI0d+5czZ07Vw6HQ8XFxefuPllRUeGXc0RGRSl9/nzNnTdPYWFhflkTAAAAAAAMTBQmAQAAAAAAAAB+43A4dPLkyXNbbBeXlMjW0mJ0rC6bOGmSlixZotGjRxsdpd8LDAzU+PHjNX78eH3j4otVWVl57u6Tx48dk8Ph6NR6I0eOlGXBAk2dOlUBAQE9lBoAAAAAAAwkFCYBAAAAAAAAAF1ms9l04sSJc9trnygp6XTxrc8xmTR1yhQtXrJEI0aMMDrNgDV06FClp6crPT1dNptNx48fV2FBgQoKC1VTXe31GHNAgCZOnCiLxaKkpCS2RQcAAAAAAJ1CYRIAAAAAAAAA4LPm5maVlJTo+Bd3kDx58qRcTqfRsfzCZDJpxowZWrR4sYYNG2Z0nEElODhYEydO1MSJE3WJ262KigqdPHlSZ86ckcNuV2hYmOLj4zVhwgSFhoYaHRcAAAAAAPRTFCYBAAAAAAAAAG1qaGhQcXHxuS22T58+LbfbbXQsvzIHBGhWaqoWLlqkuLg4o+MMeiaTSfHx8YqPjzc6CgAAAAAAGGAoTAIAAAAAAAAAzqmtrT23vXbR8eMqLy83OlKPCQgM1Jw5c7Rw4ULFxMQYHQcAAAAAAAA9jMIkAAAAAAAAAAxSbrdbVVVV/ylIFhWpqrLS6Fg9LigoSPPS0rRgwQJFRkYaHQcAAAAAAAC9hMIkAAAAAAAAAAwSbrdbFRUV57bXLioqUm1trdGxek1ISIjmp6crIyND4eHhRscBAAAAAABAL6MwCQAAAAAAAAADlMvlUllZ2bnttYuKi9XY0GB0rF4XFhamjIwMzU9PV1hYmNFxAAAAAAAAYBAKkwAAAAAAAAAwQDidTp08efLc3SOLi4vV0txsdCzDhIeHa8GCBZqXlqaQkBCj4wAAAAAAAMBgFCYBAAAAAAAAoJ+y2+0qLS09t8V2SUmJ7Ha70bEMFxkVpUULF2rO3LkKCgoyOg4AAAAAAAD6CAqTAAAAAAAAANBPtLS0qKSk5FxBsrS0VE6n0+hYfUZMTIwWLV6sWbNmKTCQy98AAAAAAABojStGAAAAAAAAfZDb7ZbD4VBzc7PCwsIo/gCDVGNjo4qLi89tsX3q1Cm5XS6jY/U5cRdcoMWLF2vGjBkKCAgwOg4AAAAAAAD6KK60AwAAAAAAGMzpdKq8vFylpaUqLS3VydJSlZeXn7trXEBgoEaPHq2xY8cqNTVVQ4cONTgxAF84nU7ZbDa1tLSopaWl7b9vaVHLF3/+8t83NzerqrLS6JfRpw1LSNCSJUs0depUmc1mo+MAAAAAAACgj6MwCQAAAAAA0IvcbreqqqpalSNPnjolh93e5jFOh+Pz7XePH9fHH32k5ORkzUtL08SJE7mTGuBnDoej43LjF6XGjv7e4XAY/XIGrJEjR2rJ0v/P3r01V33f9x7/rrV0PgsBOgESIAljkOwYOZk0TZMmjeNpLnrZ/QA6fQi9253pze5z6CNody+6p7tp6qbe2cmeXDiWHCMBMUiAJJBAHCUkdF5r7QuEDBiDAUl/6a/Xa2bNkuWF+AgNjC3e8/v9IHp6eoSSAAAAAHxjgkkAAACALTQ/P78RRz4OJBcXF9/oY16+fDkuX74ctbW18d5778V7Z85EfX39Ji2G3aVYLMbq6uorn974vLdXlpc3TnZl5ykrK4uTJ0/GO+++G0ePHo1MJpP0JAAAAAB2GcEkAAAAwCZZWlqKGzduPBVIPpid3bKfb25uLn7961/Hb37zm+jp6Yn+99+P48ePO22NXW9hYSEmJyfj1q1bMTs7+9LQsVgoJD2ZLVBRURFHOjqiY/3R2trqVF0AAAAA3ohgEgAAAOA1rK2txfT0dExevx6TU1MxOTkZd+7ciSgWt31LsViMixcvxsWLF6OhoSHOnDkT33rvvaipqdn2LfA6CoVCTE1NxejISIyOjsbk5GQUE/i9RLKqq6s34siOzs44ePCgABwAAACATSWYBAAAAHiJQqEQd+7ciampqY1AcvrmzR15de/MzEx8/PHH8atf/SpOnjwZ/e+/H52dna6uZcd5+PBhjI6OxujISFy+fDkWFhaSnsQ2q6uvj84nAsmmpiZ/VgEAAACwpQSTAAAAAE8oFosxOzv7VBw5NTUVK8vLSU97JYVCIc6fPx/nz5+Ppqam6O/vj3fefTeqqqqSnsYeVSgUYnJyMkbWT5GcmppK5ERWkrOvqenLEyQ7OqKxsTHpSQAAAADsMYJJAAAAYE9bWFj4Mo6cnIzJqal4OD+f9KxNdffu3fjoo4/ivz7+OE6fOhX9778fhw4dcpIbW25+fv6pUyQXFxeTnsQ2Onjw4MbpkR0dHVFbW5v0JAAAAAD2OMEkAAAAsGesrKzEjRs3YmpyciOOvH/vXtKztk1+bS3Onj0bZ8+ejebm5ujv74/evr6oqKhIehopkc/nvzxFcmQkbty4kfQktkkmk4nW1taNQPLIkSNOtAUAAABgxxFMAgAAAKmUz+fj1q1bMTk5uRFI3rp9O4qFQtLTdoTp6en4+c9/Hv/5y19GX29v9L//frS2tiY9i11obm4uRkdHY2RkJK5cvhxLS0tJT2IbZHO5aG9v37he+/Dhw+JrAAAAAHY8wSQAAACw6xWLxbh3795TceSNmzdjbXU16Wk73urKSgwODsbg4GC0t7fHmf7+OH36dJSVlSU9jR0qn8/HtWvXYnRkJEZGR2P65s2kJ7ENSkpL4/DhwxuB5KFDh6K0tDTpWQAAAADwSgSTAAAA7CgrKysxNTUV9+/fj9nZ2VhbXY1sNhvZXC6y2Wzkstmv/vP6248fuZf88zd5TS6Xi0wmk/QvB19jbm7u0ZXajwPJqalYWlxMetau9/jX9KOPPop33nkn+vv74+DBg0nPYgeYnZ2N0dHRGB0ZiStXrsTy8nLSk9hi5eXlceTIkY0rtltbW6OkxLeTAQAAANjdfIcLAACARK2srMT169dj7OrVuDo2FpOTk1HI55OeFRERmUzm5bHmM8Hmy16TezLc/CavyWYjk81GNpN59JzNbux6nec3+bFPfozttLS0FFNTU0+dHvngwYNt3bDXLC8txe8++SR+98kncaSjI/r7++Ptt98WS+0ha2trce3atRgZGYnR0dG4NT2d9CS2WGVVVXR0dETneiDZ3Nwc2Ww26VkAAAAAsKl8lxsAAIBttbq6GteuXYuxsbEYGxuLyevXI79DAslnFYvFyOfzO3ZfUjLr8WYmk/ky5NyM52fel8lk4t7du3Hnzp2kP+U9bWJ8PCbGx+M/fvGL+Na3vhVn+vtj3759Sc9iC8zMzMToeiB55cqVWFlZSXoSW6i2tjY6Ojs3rtg+cOCAk5UBAAAASD3BJAAAAFtqdXV14wTJsbGxuL6DA0m+mWKxGMX1r6Gv5N6xsLAQv/3tb+O3v/1tHDt+PPr7++PEiRORy+WSnsZrWltbi/Hx8Y2rtm/fvp30JLZQY2PjxvXaHR0d0djYKJAEAAAAYM8RTAIAALCpVldXY3JycuOK7evXr0d+bS3pWcAmunL5cly5fDlqamvjvffeizNnzkR9fX3Ss/gG7t+/H6MjIzEyOhpXr16NVadIptaBAwc2AskjR474PQoAAAAAIZgEAADgDa2trT06QXL9iu3r167FmkAS9oT5ubn4za9/Hf/vN7+J7p6e6O/vj66urshms0lPY93q6uqjUyTXI8m7rrhPp0wmWlpaNq7X7ujoiOrq6qRXAQAAAMCOI5gEAADglaytrW2cIDk2NhbXBJKw5xWLxbh08WJcungx6hsa4syZM/Gtb30ramtrk562J927dy9GRkZidGQkro6NxdrqatKT2GTZbDba2to2rtc+fPhwVFZWJj0LAAAAAHY8wSQAAAAvtLa2FlNTU3H1yUBSfAN8jdmZmfg/H38c//dXv4q3Tp6M/v7+OHr0aGQymaSnpdbq6mqMjY1tRJL37t1LehKbIJPNRnl5eZSXlUVFRUU07tsXzQcPRkdnZxw6dCjKysqSnggAAAAAu45gEgAAgKc8DiTHxsZi7OrVmBBIwrYoKS2N1tbWaG9ri/ZDh6K9vT1KSkri89//PgYHB2N2djbpia+kUCjEhfPn48L589HU1BRn+vvj3XffjaqqqqSn7XrFYjHu3r0boyMjMTo6GmNjY0763SFyuVyUlZdvhI4vfbu8PMrKyp77dklJidAYAAAAADaZYBIAAGCPy+fzjwLJ9RMkJyYmYlUgCVsqk83GwYMHo729fSOQPHDgQORyua+89k9+8IP44+9/P0ZGRmJgYCBGRkYiisUEVr++u3fvxn9+9FF8/PHHcerUqejv74/Dhw+LwV7ByspKXL16NUZHR2N0ZCTu37+f9KTUKCktjfL1ULFsPWj8urdfFjqWlPh2KwAAAADsZL6DBwAAsMfk8/m4cePGxhXbExMTsbqykvQsSLXGffsexZHrj5aWlle6TjebzcaJEyfixIkTMTMzE4ODg/HZZ5/Fw/n5LVy9+fJrazF09mwMnT0bB5ubo7+/P/r6+qKioiLpaTtKPp+PxcXFmJ+fj6tXrsTI6GiMj49H3imSG8oex4vfJHR8QeBYVlb23FAZAAAAAEgnwSQAAEDKPQ4kN67YnpiIFYEkbJnqmpqn4si2trZNvYa6oaEhfvzjH8cPf/jD+OKLL2JgYCCuXrmyaR9/u9yano5///nP45e//GX09vZGf39/tLW1JT1r06ytrcXi4mIsLS1tPG+8vbgYi0tLX/ssYv9SY2NjdHV3R3d3dzQ3N29EjtlsNulpAAAAAMAuJJgEAABImXw+Hzdv3ty4Ynt8YiJWlpeTngWpVFZeHu1tbdH2RCBZV1e3LVdN53K5OHXqVJw6dSru3LkTg4OD8fnnn8fiwsKW/9ybaXVlJT4bHIzPBgejrb09+vv74/Tp0690AueWbVtd/Ur0+Dh4XFpaemH0uLa6mvT8XamkpCQ6Ozujq7s7urq6oqmpydXtAAAAAMCmEUwCAADscoVCIW7evPnlFdvj47EskIRNl8vloqWl5ak4sqmpaUecdLd///746U9/Gj/60Y/iD3/4Qwx8+mlMTEwkPeuVTU1Oxr9OTsZHH30U77zzTvT397/RxysWiy+MHhfXT338uujRFdjbY19TU3R1dUV3d3d0dnZGaWlp0pMAAAAAgJQSTAIAAOwyjwPJx1dsjwskYfNlMnFg//5HV2qvx5HNzc1RUrKzv5VSWloafX190dfXF9PT0zE4MBBnz57ddX9GLC8txe8++SR+98kn0dzSEsePH4+5ubm4efPm86PHF5z4WMjnk/50eEZJaWkcXT9Fsru7O/bt25f0JAAAAABgj9jZ3+UHAAAgCoVCTE9Pf3nF9vh4LC0tJT0LUqW+vn7j1Mi29vZoa2uL8vLypGe9kebm5vjzn/0s/uwnP4lzw8Px6cBA3JiaSnrWK5u+eTN+9Kd/Gv/zn/4p6Sm8gab9+6O7qyu6urujo6PDKZIAAAAAQCIEkwAAADtMoVCIW7dubVyxPT4+HkuLi0nPgtSorKqK9ra2p06PrKmpSXrWlikrK4v3zpyJ986cicnJyRgYGIhzw8Oxurqa9DRSrLS0NI4eO7YRSTY2NiY9CQAAAABAMAkAALATFIvFuH79egwPDcWFCxdifn4+6UmQCqWlpdHa1vYokDx0KNra2qKxsTEymUzS0xLx+BTNDz74IIaGhmJgYCBu37qV9CxS4sCBAxvXbB85cmTHX2EPAAAAAOw9vmsJAACQoNu3b8fw0FAMDw/H/fv3k54Du1omm43m5uanTo88cOBA5HK5pKftOJWVlfGd73wnvv3tb8fExEQMDAzEhfPnI5/PJz2NXaSsrCyOHTsWXeunSDY0NCQ9CQAAAADghQSTAAAA2+zBgwdxbng4hoaH4+aNG0nP2bGam5ujs7MzOjo7o6qqKgqFQuTz+SgUCk89Nt63/px/8t8/+75tek0Ui0n/8u0J+5qaHp2YuH56ZEtLS5SWliY9a1fJZDLR0dERHR0d8eGHH8bnn38egwMDce/evaSnsUMdbG6Orq6u6O7ujsOHDztFEgAAAADYVXxHEwAAYBssLi7GHy5ciKHh4RgbGxPUPcfB9UCys7MzOjo6orq6OulJr+25QecL3vey1xSLxaefC4UoFIuv9VwsFl/7x77S8yv+mBfJZrNRW1sbLa2tT12tXVlZuU1f0b2huro6vve978V3v/vdGBsbi4FPP40vvvgiCi/5+pBu5eXlj06R7O6Orq6uqK+vT3oSAAAAAMBrE0wCAABskdXV1RgZGYmhoaEYuXTJVbfPOHDwYBzt7IzOo0d3fSD5rGw2G9lsNukZu8pzw9D18LKiosKv5zbKZrNx7NixOHbsWMzNzcXvP/ssBgcHY3Z2NulpbJPmlpboXr9m+/Dhw661BwAAAABSQzAJAACwiQqFQoyNjcXQ0FD84cKFWF5eTnrSjnHgwIFHJ0iuB5I1NTVJT2IHeRxECrN2ltra2viTH/wg/vj734+RkZEYGBiIkZERp+SmTHlFRRw/fjy6u7vj+PHjUVdXl/QkAAAAAIAtIZgEAAB4Q8ViMW7cuBFDQ0Nx7ty5mJ+bS3rSjrD/cSC5/hBIwu6VzWbjxIkTceLEiZiZmYnBwcH47LPP4uH8fNLTeE2tra0b12wfOnRIrAwAAAAA7AmCSQAAgNd09+7dGB4ejuHh4bh7507ScxLXtH//U1ds19bWJj0J2AINDQ3x4x//OH74wx/GF198EQMDA3H1ypWkZ/ESFZWV0XX8eHStnyLpz2gAAAAAYC8STAIAALyC+fn5OHfuXAwPDcXk5GTScxLV1NS0ccV2Z2en+Ab2mFwuF6dOnYpTp07FnTt3YnBwMD7//e9jcXEx6WlERGQy0dbWFl1dXdHd3R3t7e2RzWaTXgUAAAAAkCjBJAAAwEssLS3FF198EcNDQ3HlypUoFotJT0rEvseB5Pqjrq4u6UnADrF///746U9/Gj/60Y/iwoULMTAwENcmJpKetedUVlU9dYpkTU1N0pMAAAAAAHYUwSQAAMBzrK2txejoaAwPDcXFixdjbW0t6UnbrnHfvqeu2K6vr096ErDDlZaWxjvvvBPvvPNOTE9Px+DAQJw9ezaWl5eTnpZOmUy0t7dHd1dXdHV3R1tbm1MkAQAAAABeQDAJAACwrlAoxMTERAwPDcX5CxdiaY9dK9vY2PjUFdsCSeBNNDc3x5//7GfxZz/5SZwbHo5PBwbixtRU0rN2varq6o1rto8dOxbV1dVJTwIAAAAA2DUEkwAAwJ5WLBZjeno6hoeGYvjcuXgwO5v0pG3T8DiQXH80NDQkPQlIobKysnjvzJl478yZmJycjIGBgTg3PByrq6tJT9tRsrlcVFZUREVl5VefKyujqakpmpub4+DBg06RBAAAAAB4TYJJAABgT7p//36cGx6OoeHhuH3rVtJztkV9Q8PGFdsCSSAJ7e3t0d7eHh988EEMDQ3FwMBAqv4MzpWUfH30+ET8WFFR8ZXn0tLSyGQySX8KAAAAAACpJpgEAAD2jIcPH8aF8+djaHg4rk1MJD1ny9XV1z8VSDY2NiY9CSAiIiorK+M73/lOfPvb346JiYkYGBiIC+fPRz6fT3palJaWRsXjmPE1okcAAAAAAHYuwSQAAJBqKysrcfHixRgaGorLo6NRKBSSnrRl6urqNuLIo0ePRkNDg9PKgB0tk8lER0dHdHR0xIcffhiff/55DA4MxL17997o45aVlT0VOD43fvya6LGkxLfLAAAAAADSyneAAQBgB7l3716MXLoU169fj1u3b0ehUIhcLhc1NTVRW1sbtTU1UVNb++jt2tqoqamJmpoacccz8vl8XLlyJYaGhuKLL76I1ZWVpCdtidq6ukcnSK6fItnY2CiQBHat6urq+N73vhff/e53Y2pqKkZHR+PmzZvx4MGDGPj00/ijP/qjaNy37+n48Wuix1wul/SnAwAAAADADuRvVQEAIEH5fD6uXbsWly5dikuXLsWd27df6+NUVlV9Nah8TlyZ5qtCi8ViXL9+PYaGhuL8+fOx8PBh0pM2XW1t7cYJkp2dnbFv3z6BJJA62Ww2Dh06FIcOHYqIiGvXrsXf/d3fxX//27+Nw4cPJ7wOAAAAAIDdTDAJAADbbHFxMUZHR+PSxYsxMjoaS4uLb/4xFxZicWEhbk1Pv/B1FRUVXw0qa2qitq5u4xTLmpqaKC8vf+NN2+XWrVsxPDwcw8PDMXP/ftJzNl1NbW30nj4dvX190draKpAEAAAAAACA1ySYBACALVYsFuPOnTuPTpG8eDEmrl2LYqGQyJalpaVYWlp66UmWZeXlTweVtbVfOa2ytrY2ysvLEwn4Zmdn49y5czE8NBQ3b97c9p9/q5VXVMTbJ09Gb19fdHZ2RjabTXoSAAAAAAAA7HqCSQAA2AJra2sxPj6+cdX2/Xv3kp70SlaWl+Pu8nLcvXv3ha8rKS396mmVT8SVj8PKysrKNw4rFxcX48KFCzE8NBRj4+MRxeIbfbydJpfLRU9PT/T29UV3d3eqr08HAAAAAACAJAgmAQBgk8zPz29ctT16+XKsLC8nPWnLra2uxv17914ahOZKSh7Fk08Glc+5Cryqquqp0xRXV1fj0qVLMTw0FCMjI5HP57f6U9pemUwc7eyM3r6+OHnyZFRWVia9CAAAAAAAAFJLMAkAAK+pWCzG9PT0xlXb1ycnU3fq4WbJr63F7MxMzM7MvPB12Ww2atZPq6ysrIzr167FcgrD09a2tujt7Y3Tp09HXV1d0nMAAAAAAABgTxBMAgDAK1hdXY2rV69uXLX9YHY26UmpUigU4sGDB/HgwYOkp2y6xn37ore3N3p7e+PAgQNJzwEAAAAAAIA9RzAJAAAv8eDBgxhZDySvXLkSq6urSU9il6iuro5Tp09HX19ftLe3RyaTSXoSAAAAAAAA7FmCSQAAeEahUIgbN25sXLV948aNpCexi5SVlcVbJ09GX19fHD16NHK5XNKTAAAAAAAAgBBMAgBARESsrKzElStX4uLFizFy6VLMz88nPYldJJvLRXdXV/T29UVPT0+UlZUlPQkAAAAAAAB4hmASAIA9a2ZmJi5dvBiXLl2Kq2NjkV9bS3oSu0xHR0f09vbG26dORVVVVdJzAAAAAAAAgBcQTAIAsGcUCoW4fv36o6u2L12KW9PTSU9iF2pubo7evr44ffp0NDQ0JD0HAAAAAAAA+IYEkwAApNrS0lJcvnz50VXbIyOxuLCQ9CR2ofqGhujt7Y3e3t5obm5Oeg4AAAAAAADwGgSTAACkzt27dzeu2h4fH49CoZD0JHahyqqqOHXqVPT29sbhw4cjm80mPQkAAAAAAAB4A4JJAAB2vXw+HxMTExtXbd+9cyfpSexSJaWl8dZbb0Vvb28cP348Skr8LxMAAAAAAACkhb/9AwBgV1pYWIjR0dG4dPFijI6OxtLSUtKT2KUy2WwcP348ent746233ory8vKkJwEAAAAAAABbQDAJAMCuUCwW4/bt249Okbx4Ma5duxbFYjHpWexihw4fjr7e3nj71KmoqalJeg4AAAAAAACwxQSTAADsWGtrazE2NrZx1fbM/ftJT2KX23/gQPT19sbp3t7Yt29f0nMAAAAAAACAbSSYBABgWxWLxVhZWYmlpaWvPhYXN96+f/9+XLlyJVZWVpKenIgDBw5ET09P9Jw4ES0tLfHw4cOYm5uL+fn5R89zczE3Nxdz8/OP3p6fj8WFhaRn70i1dXXRe/p09Pb1RUtLS2QymaQnAQAAAAAAAAkQTAIA8EoKhcLXB48veSyvP7tK+6uyuVwc7eyMnp6e6O7p+crph+Xl5S89EXFtbe3LoHJ+PuYePHgqqHwcWj5cWIhI+degoqIi3n777ejt64uOjo7IZrNJTwIAAAAAAAASJpgEANhjXhg8PnHC41OP5eWnokfB4+ZXsObqAAAgAElEQVSorq6O7p6e6OnpiePHj0d5efkbfbySkpJoaGiIhoaGF74un89vnFj5dadVzs3NxcP5+V31tc6VlMSJnp7o7euL7u7uKCnxvzsAAAAAAADAl/wNIgDALlMoFGL5iYDxm5zo+Gz8mPbTBXeylpaWjau229raEjn5MJfLRV1dXdTV1b3wdYVCIR4+fLhxauVGXPnkteDz8zE/Px+FfH6b1j8tk8nE0aNHo7evL06ePBkVFRWJ7AAAAAAAAAB2PsEkAMAOsLq6GrOzs48eMzOPnh88iMXnnPi4LHjcVUpKSuLosWNxYv2q7fr6+qQnfWPZbDZqa2ujtrY2Wltbv/Z1hUIhFhcXv7wK/Jm48skTLPNra5uyra2tLXr7+uL06dNRW1u7KR8TAAAAAAAASDfBJADAFisWi7GwsPBUEDnzTBz58OHDpGeyiWrr6h6dItnTE0ePHo2ysrKkJ22pbDYb1dXVUV1d/cLXFYvFWFpa+jKofEFcubq6+tSPzWQy0dzSEidOnIje3t7Yv3//Vn5KAAAAAAAAQAoJJgEA3lA+n48HDx7E7OxszDw+HfLx8/rj2fiL9Glvb9+4arulpSUymUzSk3acTCYTlZWVUVlZGQcPHvza1xWLxVheXo75+flYW1uLTCYTDQ0NUV5evo1rAQAAAAAAgLQRTAIAvMTS0tJzY8jHp0TOzc25InsPKi0ri+PHj0dPT090d3e7FnoTZTKZqKioiIqKiqSnAAAAAAAAACkimAQA9rRCoRBzc3NPXZf9ZAw5OzMTy8vLSc9kh2hoaNg4RbKzszNKSvznNAAAAAAAAMBu4W94AYBUW1lZeSqGnHnimuzZmZl48OBBFAqFpGeyQ2UymTh0+HCcWI8kDxw44KptAAAAAAAAgF1KMAkA7FrFYjEePny4EUA+e2X27OxsLCwsJD2TXaa8oiK6urqip6cnurq6orq6OulJAAAAAAAAAGwCwSQAsGPl8/mora2NqampuHPnznOvzM6vrSU9kxRoamrauGr7yJEjkcvlkp4EAAAAAAAAwCYTTAIAO0Y+n4+rV6/GyMhIjI6Oxt07d+K//eVfxi/+/d+TnkbKZLPZONLR8SiS7OmJ/fv3Jz0JAAAAAAAAgC0mmAQAdoTbt2/H//qXf4nJycmkp5BSlZWV0d3dHT0nTsTx48ejsrIy6UkAAAAAAAAAbCPBJACQuN///vfxb//2b67XZtMdOHgwTqxftX3o0KHIZrNJTwIAAAAAAAAgIYJJACBRY2Nj8b//9V+jUCgkPYUUyOVy0Xn06MZV242NjUlPAgAAAAAAAGCHEEwCAImZm5uLf/7nfxZL8kaqa2qiZ/2q7WPHjkV5eXnSkwAAAAAAAADYgQSTAEBiBgcG4uH8fNIz2IVaWlujp6cnTpw4Ea2tra7aBgAAAAAAAOClBJMAQCKKxWKcPXs26RnsEg0NDdHS0hJdXV3R3dMT9fX1SU8CAAAAAAAAYJcRTAIAibhx40bcv38/6Rlsk0w2GxUVFS9+lJdHRWXlV95fWVkZZWVlSX8KAAAAAAAAAOxygkkAIBEPHz5MegKvIPtNgseKiij/mveXlZVFJpNJ+tMAAAAAAAAAYA8TTAIAiVhdXU16wp6SzeW+UfD4dY/S0lLBIwAAAAAAAAC7mmASAGAXyOZyUflN4sb1K63Ly8sFjwAAAAAAAADwBMEkAJCIjo6OiEwmolhMekriciUlUV9fH/X19dGw/lzf0LDxvtraWsEjAAAAAAAAALwhwSQAkIjq6upoa2uLqcnJpKdsucqqqq+NIRsaGqKqqiqy2WzSMwEAAAAAAAAg1QSTAEBi3n333V0fTGaz2airq9sIIB/HkA3rz3V1dVFeXp70TAAAAAAAAADY8wSTAEBi+vv749y5czExPp70lK9VVl7+6GTIZ06FfPK6bKdDAgAAAAAAAMDOJ5gEABKTzWbjL/7iL+If/uEfYnlpafsHZDJRW1Pz5amQz7kyu7Kycvt3AQAAAAAAAACbTjAJACSqqakp/vqv/zr+8R//MW7furWpH7uktPTpEPKZK7Nra2ujpMR/DgEAAAAAAADAXqAQAAAS19TUFH/1V38VH//Xf8XZoaFvfNpkVXX1c0+FfHxldlVVVWQymS1eDwAAAAAAAADsBoJJAGBHKC8vjz//2c/iJx98EBcvXozx8fGYmZmJ//jFL+KnH34YbW1tj+LIJ8LI0tLSpGcDAAAAAAAAALuEYBIA2FFKS0vj9OnTcfr06bh27Vr8zd/8TfyPv//7OHz4cNLTAAAAAAAAAIBdLJv0AAAAAAAAAAAAAICtJpgEAAAAAAAAAAAAUk8wCQAAAAAAAAAAAKSeYBIAAAAAAAAAAABIPcEkAAAAAAAAAAAAkHqCSQAAAAAAAAAAACD1BJMAAAAAAAAAAABA6gkmAQAAAAAAAAAAgNQTTAIAAAAAAAAAAACpJ5gEAAAAAAAAAAAAUk8wCQAAAAAAAAAAAKSeYBIAAAAAAAAAAABIPcEkAAAAAAAAAAAAkHqCSQAAAAAAAAAAACD1BJMAAAAAAAAAAABA6gkmAQAAAAAAAAAAgNQTTAIAAAAAAAAAAACpJ5gEAAAAAAAAAAAAUk8wCQAAAAAAAAAAAKSeYBIAAAAAAAAAAABIPcEkAAAAAAAAAAAAkHqCSQAAAAAAAAAAACD1BJMAAAAAAAAAAABA6gkmAQAAAAAAAAAAgNQTTAIAAAAAAAAAAACpJ5gEAAAAAAAAAAAAUk8wCQAAAAAAAAAAAKSeYBIAAAAAAAAAAABIPcEkAAAAAAAAAAAAkHqCSQAAAAAAAAAAACD1BJMAAAAAAAAAAABA6gkmAQAAAAAAAAAAgNQTTAIAAAAAAAAAAACpJ5gEAAAAAAAAAAAAUk8wCQAAAAAAAAAAAKSeYBIAAAAAAAAAAABIPcEkAAAAAAAAAAAAkHqCSQAAAAAAAAAAACD1BJMAAAAAAAAAAABA6gkmAQAAAAAAAAAAgNQTTAIAAAAAAAAAAACpJ5gEAAAAAAAAAAAAUk8wCQAAAAAAAAAAAKSeYBIAAAAAAAAAAABIPcEkAAAAAAAAAAAAkHqCSQAAAAAAAAAAACD1BJMAAAAAAAAAAABA6gkmAQAAAAAAAAAAgNQTTAIAAAAAAAAAAACpJ5gEAAAAAAAAAAAAUk8wCQAAAAAAAAAAAKSeYBIAAAAAAAAAAABIPcEkAAAAAAAAAAAAkHqCSQAAAAAAAAAAACD1BJMAAAAAAAAAAABA6gkmAQAAAAAAAAAAgNQTTAIAAAAAAAAAAACpJ5gEAAAAAAAAAAAAUk8wCQAAAAAAAAAAAKSeYBIAAAAAAAAAAABIPcEkAAAAAAAAAAAAkHqCSQAAAAAAAAAAACD1BJMAAAAAAAAAAABA6gkmAQAAAAAAAAAAgNQTTAIAAAAAAAAAAACpJ5gEAAAAAAAAAAAAUk8wCQAAAAAAAAAAAKSeYBIAAAAAAAAAAABIPcEkAAAAAAAAAAAAkHqCSQAAAAAAAAAAACD1BJMAAAAAAAAAAABA6gkmAQAAAAAAAAAAgNQTTAIAAAAAAAAAAACpJ5gEAAAAAAAAAAAAUk8wCQAAAAAAAAAAAKSeYBIAAAAAAAAAAABIPcEkAAAAAAAAAAAAkHqCSQAAAAAAAAAAACD1BJMAAAAAAAAAAABA6gkmAQAAAAAAAAAAgNQTTAIAAAAAAAAAAACpJ5gEAAAAAAAAAAAAUk8wCQAAAAAAAAAAAKSeYBIAAAAAAAAAAABIPcEkAAAAAAAAAAAAkHqCSQAAAAAAAAAAACD1BJMAAAAAAAAAAABA6gkmAQAAAAAAAAAAgNQTTAIAAAAAAAAAAACpJ5gEAAAAAAAAAAAAUk8wCQAAAAAAAAAAAKSeYBIAAAAAAAAAAABIPcEkAAAAAAAAAAAAkHqCSQAAAAAAAAAAACD1BJMAAAAAAAAAAABA6gkmAQAAAAAAAAAAgNQTTAIAAAAAAAAAAACpJ5gEAAAAAAAAAAAAUk8wCQAAAAAAAAAAAKSeYBIAAAAAAAAAAABIPcEkAAAAAAAAAAAAkHqCSQAAAAAAAAAAACD1BJMAAAAAAAAAAABA6gkmAQAAAAAAAAAAgNQTTAIAAAAAAAAAAACpJ5gEAAAAAAAAAAAAUk8wCQAAAAAAAAAAAKSeYBIAAAAAAAAAAABIPcEkAAAAAAAAAAAAkHqCSQAAAAAAAAAAACD1BJMAAAAAAAAAAABA6gkmAQAAAAAAAAAAgNQTTAIAAAAAAAAAAACpJ5gEAAAAAAAAAAAAUk8wCQAAAAAAAAAAAKSeYBIAAAAAAAAAAABIPcEkAAAAAAAAAAAAkHqCSQAAAAAAAAAAACD1BJMAAAAAAAAAAABA6gkmAQAAAAAAAAAAgNQTTAIAAAAAAAAAAACpJ5gEAAAAAAAAAAAAUk8wCQAAAAAAAAAAAKSeYBIAAAAAAAAAAABIPcEkAAAAAAAAAAAAkHqCSQAAAAAAAAAAACD1BJMAAAAAAAAAAABA6gkmAQAAAAAAAAAAgNQTTAIAAAAAAAAAAACpJ5gEAAAAAAAAAAAAUk8wCQAAAAAAAAAAAKSeYBIAAAAAAAAAAABIPcEkAAAAAAAAAAAAkHqCSQAAAAAAAAAAACD1BJMAAAAAAAAAAABA6gkmAQAAAAAAAAAAgNQTTAIAAAAAAAAAAACpJ5gEAAAAAAAAAAAAUk8wCQAAAAAAAAAAAKSeYBIAAAAAAAAAAABIPcEkAAAAAAAAAAAAkHqCSQAAAAAAAAAAACD1BJMAAAAAAAAAAABA6gkmAQAAAAAAAAAAgNQTTAIAAAAAAAAAAACpJ5gEAAAAAAAAAAAAUk8wCQAAAAAAAAAAAKSeYBIAAAAAAAAAAABIPcEkAAAAAAAAAAAAkHqCSQAAAAAAAAAAACD1BJMAAAAAAAAAAABA6gkmAQAAAAAAAAAAgNQTTAIAAAAAAAAAAACpJ5gEAAAAAAAAAAAAUk8wCQAAAAAAAAAAAKSeYBIAAAAAAAAAAABIPcEkAAAAAAAAAAAAkHqCSQAAAAAAAAAAACD1BJMAAAAAAAAAAABA6gkmAQAAAAAAAAAAgNQTTAIAAAAAAAAAAACpJ5gEAAAAAAAAAAAAUk8wCQAAAAAAAAAAAKSeYBIAAAAAAAAAAABIPcEkAAAAAAAAAAAAkHqCSQAAAAAAAAAAACD1BJMAAAAAAAAAAABA6gkmAQAAAAAAAAAAgNQTTAIAAAAAAAAAAACpJ5gEAAAAAAAAAAAA/j97dx5eZXnmD/xOgEAChE12NxYFRgVUUNuKdrEdEcqIe13AHVu3YsXRcS5+tDoqbh1XcEFwaVEUpuLaKtqiraIoirYiIIuA7JFFQgiQ/P6Ya2aavieQ5SQhh8/nv945z/3c/GOf6znf874ZT2ASAAAAAAAAAAAAyHgCkwAAAAAAAAAAAEDGE5gEAAAAAAAAAAAAMp7AJAAAAAAAAAAAAJDxBCYBAAAAAAAAAACAjCcwCQAAAAAAAAAAAGQ8gUkAAAAAAAAAAAAg4wlMAgAAAAAAAAAAABlPYBIAAAAAAAAAAADIeAKTAAAAAAAAAAAAQMYTmAQAAAAAAAAAAAAynsAkAAAAAAAAAAAAkPEEJgEAAAAAAAAAAICM17CuBwCgZpSWlsaiRYvis88+i6+//jq2bNkSzZs3jzZt2sQhhxwS++23X12PCAAAAAAAAAAAtUZgEiDDLFiwICZPnhwvvfRSbNiwodzPdejQIU455ZQ466yzon379rU4IQAAAAAAAAAA1D6v5AbIEAUFBXHDDTfEj3/84/jNb36zy7BkRMSqVaviwQcfjBNOOCHuv//+KC4urqVJAQAAAAAAAACg9glMAmSAOXPmxODBg2PatGlRWlpaqbXFxcVx3333xemnnx6rV6+uoQkBAAAAAAAAAKBueSU3QD03Y8aMGDlyZGzbti3xt7y8vOjfv3906dIlmjRpEps2bYrPP/88Pvroo9i5c2eZz86bNy9OP/30mDRpUnTt2rW2xgcAAAAAAAAAgFohMAlQj82dOzeuueaaRFgyPz8/rr766jjttNOiSZMmiXVr166NRx99NJ588skywcnVq1fHZZddFs8880y0atWqxucHAAAAAAAAAIDa4pXcAPXUxo0b42c/+1kUFRWVqXfv3j2mT58e5557bsqwZERE27Zt44YbboiJEydGfn5+mb8tXbo0rr322hqbGwAAAAAAAAAA6oLAJEA9dfvtt8fatWvL1Dp16hSPP/54dOzYsUI9jj766Bg3blzk5OSUqb/99tvx/PPPp21WAAAAAAAAAACoawKTAPXQ3LlzY+rUqWVq2dnZcccdd8Q+++xTqV79+vWLq6++OlEfO3ZsbN26tVpzAgAAAAAAAADAnkJgEqAeeuihh6K0tLRMbciQIdGvX78q9Tv//PPjwAMPLFNbv359PPfcc1UdEQAAAAAAAAAA9igCkwD1zKJFi2LGjBllallZWTFixIgq92zYsGFcfPHFifrEiROjpKSkyn0BAAAAAAAAAGBPITAJUM9Mnz498XTJ/v37R9euXavVd/DgwZGXl1emtmLFinj//fer1RcAAAAAAAAAAPYEApMA9cyrr76aqP3whz+sdt/c3Nw49thjE/WXX3652r0BAAAAAAAAAKCuCUwC1COLFi2KxYsXJ+rf+ta30tL/mGOOSdTeeOONtPQGAAAAAAAAAIC6JDAJUI/MmTMnUWvevHl07949Lf2POOKIRG3NmjWxYsWKtPQHAAAAAAAAAIC6IjAJUI98/PHHidpBBx0UWVlZaenfrVu3aNCgQaL+0UcfpaU/AAAAAAAAAADUFYFJgHpk3rx5iVrXrl3T1j8nJyc6duyYqH/22Wdp2wMAAAAAAAAAAOqCwCRAPfLVV18lah06dEjrHqn6pdoXAAAAAAAAAADqE4FJgHqiuLg41q1bl6i3bds2rfu0a9cuUROYBAAAAAAAAACgvmtY1wMAUDFr1qyJ0tLSRD0/Pz+t+zRv3jzl3lAXOnXqFHPmzIk2bdrU9SgAANQRZ0IAgL2b8yAAAM6EpJPAJEA9sXXr1pT1pk2bpnWfVP3K2xtqWoMGDVI+9RQAgL2HMyEAwN7NeRAAAGdC0skruQHqifJCi40aNUrrPqn6FRUVpXUPAAAAAAAAAACobQKTAPVEcXFxynqDBg3Suk/DhsmHDwtMAgAAAAAAAABQ3wlMAtQT5QUjS0pK0rrPzp07E7V0P8USAAAAAAAAAABqm8AkQD2Rm5ubsr59+/a07rNjx44K7w0AAAAAAAAAAPWFwCRAPdG4ceOU9cLCwrTuk6pfkyZN0roHAAAAAAAAAADUNoFJgHqiZcuWKeubN29O6z6p+rVu3TqtewAAAAAAAAAAQG0TmASoJ1q1ahV5eXmJ+rp169K6z/r16xO1Tp06pXUPAAAAAAAAAACobQKTAPVIquDiqlWr0rrH6tWrE7XOnTundQ8AAAAAAAAAAKhtApMA9Ui3bt0StSVLlqStf0lJSSxbtixR7969e9r2AAAAAAAAAACAuiAwCVCP9O7dO1GbP39+2vp/+eWXUVxcnKj37ds3bXsAAAAAAAAAAEBdEJgEqEdSBRcLCgpi6dKlaen/0UcfJWrNmjXzhEkAAAAAAAAAAOo9gUmAeqR3796Rn5+fqL/zzjtp6T9r1qxEbcCAAZGd7f8uAAAAAAAAAACo3yRgAOqRnJyc+MEPfpCov/baa9XuvXPnzpg5c2aiPmjQoGr3BgAAAAAAAACAuiYwCVDPDB48OFH7y1/+EsuXL69W37feeivWrVtXptaiRYs47rjjqtUXAAAAAAAAAAD2BAKTAPXMscceGz169ChTKykpiYceeqhafSdMmJConXPOOdG4ceNq9QUAAAAAAAAAgD2BwCRAPTRixIhEberUqTF37twq9Xv99dfjvffeK1PLy8uLYcOGVakfAAAAAAAAAADsaQQmAeqhk046Kfr161emtnPnzhg5cmQUFBRUqtfKlStj9OjRifqVV14ZrVq1qtacAAAAAAAAAACwpxCYBKiHsrKy4uabb068Lnv58uUxfPjwWLlyZYX6LFu2LIYPHx7r168vUz/00ENj+PDhaZsXAAAAAAAAAADqmsAkQD3VpUuXuO222yIrK6tMff78+TFkyJB48skno6ioKOXawsLCmDRpUpx88smxdOnSMn/bZ5994t57740GDRrU2OwAAAAAAAAAAFDbskpLS0vreggAqm7SpElx2223Rar/nOfl5UX//v2jS5cukZubG1u2bIlFixbF7NmzU4YpW7RoERMmTIjDDjusNkYHAAAAAAAAAIBaIzAJkAFeeeWVuP7668t9omRFHHDAATF+/Pjo2rVrGicDAAAAAAAAAIA9g1dyA2SAgQMHxvPPPx8DBgyo9NqGDRvGBRdcENOmTROWBAAAAAAAAAAgY3nCJECGmT17djz99NMxY8aMKCwsLPdz7dq1iyFDhsRZZ50V++23Xy1OCAAAAAAAAAAAtU9gEiBD7dy5M+bNmxcLFiyIDRs2xNatW6N58+bRunXrOPTQQ2P//fev6xEBAAAAAAAAAKDWCEwCAAAAAAAAAAAAGS+7rgcAAAAAAAAAAAAAqGkCkwAAAAAAAAAAAEDGE5gEAAAAAAAAAAAAMp7AJAAAAAAAAAAAAJDxBCYBAAAAAAAAAACAjCcwCQAAAAAAAAAAAGQ8gUkAAAAAAAAAAAAg4wlMAgAAAAAAAAAAABlPYBIAAAAAAAAAAADIeAKTAAAAAAAAAAAAQMYTmAQAAAAAAAAAAAAynsAkAAAAAAAAAAAAkPEEJgEAAAAAAAAAAICMJzAJAAAAAAAAAAAAZDyBSQAAAAAAAAAAACDjCUwCAAAAAAAAAAAAGU9gEgAAAAAAAAAAAMh4ApMAAAAAAAAAAABAxhOYBAAAAAAAAAAAADKewCQAAAAAAAAAAACQ8QQmAQAAAAAAAAAAgIwnMAkAAAAAAAAAAABkPIFJAAAAAAAAAAAAIOMJTAIAAAAAAAAAAAAZT2ASAAAAAAAAAAAAyHgCkwAAAAAAAAAAAEDGE5gEAAAAAAAAAAAAMp7AJAAAAAAAAAAAAJDxBCYBAAAAAAAAAACAjCcwCQAAAAAAAAAAAGQ8gUkAAAAAAAAAAAAg4wlMAgAAAAAAAAAAABlPYBIAAAAAAAAAAADIeAKTAAAAAAAAAAAAQMYTmAQAAAAAAAAAAAAyXsO6HgAA4O+VlpbGokWL4rPPPouvv/46tmzZEs2bN482bdrEIYccEvvtt19djwgAwB5o9erV8cknn8TatWtj48aNkZubGy1btoyDDz44evToEdnZfjcMAFCTSkpKYsmSJbFw4cJYu3ZtbN68ObKzs6Np06ax7777Ro8ePaJDhw61Nk9xcXH87W9/i8WLF8eGDRuiuLg4WrZsGe3bt48+ffpEq1atam0WAIC9wfLly2PRokWxYsWK+Oabb2L79u2Rm5sbzZs3j3333Te6d+8e++yzT63PtWzZsvj000+joKAgNm/eHE2bNo1WrVpFr169olu3brU+D3VPYBIA2CMsWLAgJk+eHC+99FJs2LCh3M916NAhTjnllDjrrLOiffv2tTghAAC7U1xcHJMnT44pU6bEokWLoqSkJLKzs+Phhx+OAQMGpH2/9evXx3PPPRdTp06NpUuXlvu5Zs2axT//8z/HOeecE4ccckja5wAA2FuVlpbGzJkz44UXXoi33nprl/d6EREHHnhgnHjiiXHaaafVyA+jS0tL4y9/+UtMnjw5Zs6cGdu2bUv5uaysrOjVq1ecccYZMWTIkGjatGnaZwEAyHSlpaXx7rvvxosvvhgzZ86MNWvW7HZNly5d4vvf/34MHTo0DjrooBqbbfny5fHMM8/E7373u13O1apVq/jxj38cZ599dnTp0qXG5mHPklVaWlpa10MAAHuvgoKCuOOOO+K//uu/ojLHkpycnBgxYkRceumlkZOTU4MTAgCwOzt27Ihp06bFAw88EKtWrUr8/dZbb41TTjklbftt3749Jk6cGOPGjYvCwsJKrR00aFDccMMN0bZt27TNAwCwN3r55ZfjnnvuiSVLllR6bcOGDePUU0+Na6+9NvLz89Myz+effx5jxoyJDz/8sFLr2rZtGzfccEMMGjQoLXMAAOwNXnvttbjvvvvi888/r3KP73//+/GLX/wiunfvnra5CgsL4/7774/HH388duzYUeF12dnZcfbZZ8fIkSOjWbNmaZuHPZPAJABQZ+bMmROXX355rF+/vso9evbsGQ8//LCnTQIA1IGSkpJ46aWX4r777tvlEx7TGZhcu3Zt/PSnP41PPvmkyj1atmwZ999/f/Tv3z8tMwEA7E1Wr14d1157bbz33nvV7tW5c+d44IEHolevXtXq8/TTT8dNN91UqS/F/9HgwYPj1ltv9eNsAIBdWLNmTdx4440xc+bMtPTLycmJX/ziF3H++edXu9eiRYvisssu2+U95e507tw5HnrooRp9+iV1T2ASAKgTM2bMiJEjR6Z8LU5eXl70798/unTpEk2aNIlNmzbF559/Hh999FHs3Lkz8fn27dvHpEmTomvXrrUxOgAAEfH666/HPffcE/Pnz9/tZ9MVmFy6dGmcf/758dVXXyX+1qBBg+jbt2/06NEj8vPzo6ioKBYvXhzvv/9+yqdQNmrUKO6+++740Y9+VO25AAD2Fh988EFcccUVUVBQkPLv+fn50adPn+jSpUvk5eXFxo0bY8mSJTFnzpwoKipKuaZFixbxxBNPRM+ePas009133x0PPfRQyr+1a9cujjzyyOjUqVM0bNgw1q1bF3Pnzo0FCxak/Hz//v3jkUceidzc3CrNAgCQyT744IO4+uqrY+3atYm/NWrUKAYMGBADBgyIXr16RceOHSMnJyfWrJ47iDsAACAASURBVFkTq1evjpkzZ8Yrr7xS7oN0zj///LjhhhuqPNvHH38cl1xySWzcuDHxt5ycnDjyyCOje/fu0bRp09iyZUssXLgwPvjggyguLk58vnnz5vHQQw/FkUceWeV52LMJTAIAtW7u3Llx3nnnJS5J8/Pz4+qrr47TTjstmjRpkli3du3aePTRR+PJJ59MBCcPOOCAeOaZZ6JVq1Y1OjsAwN7unXfeibvvvjvmzp1b4TXpCExu2LAhzjzzzMQrHxs0aBDnnntuXHLJJSlfs11UVBRTp06Ne+65J3Fh2rhx43jiiSeib9++1ZoNAGBvMHv27LjkkktS/hjlyCOPjAsvvDCOP/74aNSoUeLvW7dujWnTpsWDDz4Y69atS/x9//33j2nTpkXz5s0rNdNTTz0VN910U6LerVu3GDVqVBx//PGRnZ2d+Pu8efPi17/+dfzxj39M/O1HP/pR3HvvvZGVlVWpWQAAMtnbb78dl19+eeL73caNG8c555wTF198cbRp02aXPXbs2BETJkyI+++/P2VQcfTo0XHOOedUerZly5bFGWeckfhRT+PGjWPEiBExbNiwlOfMzZs3x5NPPhnjx49PPOSnZcuW8eyzz8b+++9f6XnY8wlMAgC1auPGjTFo0KDEL4+6d+8ejz76aHTs2HG3PWbNmhVXXHFFbNq0qUz92GOPjQkTJqR1XgAA/s/ixYvjxBNPrPS6dAQmL7744njrrbfK1Jo1axYPPPBAHHPMMbtdv3Llyrj00ksTT8Rs27ZtvPTSS9GiRYtqzQcAkMmWLl0ap556amzevLlMvUWLFjF69OgYPHhwhfoUFBTEqFGj4u233078rbJPFfrggw/ivPPOS/yweuDAgTF27Nho3LjxbntMmjQpbrvttvjHr0uvueaaGDFiRIVnAQDIdKNGjYrp06eXqfXp0yfGjh0bXbp0qVSvzz77LM4777zE2TI3Nzdefvnl6NSpU4V7bd++PU499dT4/PPPy9Tbt28fjzzySPTo0WO3PebPnx+XXHJJrFq1qkz94IMPjqlTp0ZOTk6F56F+SP6kCgCgBt1+++2JsGSnTp3i8ccfr1BYMiLi6KOPjnHjxiUOp2+//XY8//zzaZsVAICyynuNYocOHeKyyy6Lp59+ukb2ff755xNhyUaNGsX48eMrFJaMiOjYsWNMmjQpOnfuXKa+du3auP3229M2KwBAptmxY0dcccUViS+0O3XqFJMnT65wWDIionXr1jFu3Lg46qijEn/77W9/W+6rvv9RcXFxjB49OhGWPP744+Ouu+6qUFgy4r9DmqNGjUrUH3jggVi6dGmFegAA7A3GjBkTRxxxxP/+71NPPTWeeuqpSoclIyJ69eoV999/fzRo0KBMfevWrfHII49UqtcjjzySCEs2b948Jk6cWKGwZMR/ByMnTZqU+EH1/Pnz49FHH63UPNQPApMAQK2ZO3duTJ06tUwtOzs77rjjjthnn30q1atfv35x9dVXJ+pjx46NrVu3VmtOAAB2LycnJwYOHBiPPPJIvPnmmzFy5Mg4/PDD077P1q1bY+zYsYn6lVdeGf37969UrzZt2sRdd92VuIydOnVqfPLJJ9WaEwAgU23YsCHxtJ0WLVrEo48+Gt26dat0v5ycnLj55psTP4YuLi6OV155pUI9nnzyyVi4cGGZWtu2beP2229PnPV256KLLorjjz++TG3btm1x6623VqoPAEAma9q0aTzyyCNx9NFHx0UXXRS33HJLtZ68eMwxx8Rpp52WqL/wwguJH8WUZ9WqVTFu3LhEfcyYMZU+p3bp0iV++ctfJurjx4+P1atXV6oXez6BSQCg1jz00EOJ19sMGTIk+vXrV6V+559/fhx44IFlauvXr4/nnnuuqiMCALAL7du3jwEDBsTo0aPj7bffjv/8z/+M4447LrKza+6KacqUKbF+/foytf333z8uvPDCKvU7/PDD41/+5V/K1EpLS+Phhx+u8owAAJlsn332iZdffjlOPvnkyMrKioiqfQn99w444IA47rjjEvVZs2btdm1xcXFMnDgxUR85cmS0bNmySvP8+7//ezRq1KhM7c0330w8rQgAYG/WrFmzeOKJJ+K6665LS78zzzwzUdu8eXPMnz+/Qusfe+yxKC4uLlPr379/pZ6A/vcGDhwYRx99dJnatm3bUp49qd8EJgGAWrFo0aKYMWNGmVpWVlaMGDGiyj0bNmwYF198caI+ceLEKCkpqXJfAABSa926dTz66KNxzjnnJF5RUxN27tyZ8kLykksuSXyhXRmXXXbZ/37Z/z9ef/31WLJkSZV7AgBksrZt28bYsWNjypQp8R//8R9x0kknVbvnt7/97URt3rx5u133u9/9LtauXVum1rFjxzj55JOrPMv+++8fAwcOTNS9ghEAoOb06tUrcnNzE/UVK1bsdu3GjRvj2WefTdR/+tOfVmumVOufeeaZ2Lx5c7X6smcRmAQAasX06dMTT5fs379/dO3atVp9Bw8eHHl5eWVqK1asiPfff79afQEAqHvvvfderFy5skwtNze3yr8S/x8HHHBAHHXUUWVqJSUl8cILL1SrLwBApuvdu3fKVydWRYcOHRK1f3yyeCq/+93vErVTTz210q/i/kdnnHFGovbaa69FYWFhtfoCAJBadnZ25OfnJ+pbt27d7do//OEPiXNa586dU/4opzKOOeaY2G+//crUCgsL47XXXqtWX/YsApMAQK149dVXE7Uf/vCH1e6bm5sbxx57bKL+8ssvV7s3AAB165VXXknUjj322MQPZqoi1Vk01X4AANSMVE8MLyoq2uWa1atXx4cffpiop+Oe8cgjj4zWrVuXqW3dujX++Mc/Vrs3AACppXpyY8uWLXe7rrzvnv/xrTKVlZWVFSeccEKi7rvnzCIwCQDUuEWLFsXixYsT9W9961tp6X/MMcckam+88UZaegMAUHdSnenSdYZM1eeLL77wWm4AgFpSUFCQqDVr1myXa958883EW2xat24dPXv2rPY82dnZiaeQR0TMmDGj2r0BAEhavHhxyqd5H3zwwbtcV1hYGO+++26iXpP3hu+++64nj2cQgUkAoMbNmTMnUWvevHl07949Lf2POOKIRG3NmjWxYsWKtPQHAKD2LVu2LNauXZuo9+3bNy39u3XrlvKVP6nOrgAApN9f//rXRK1du3a7XJPqrNanT5+0zXT44YdXaE8AAKrvxRdfTNR69uwZ7du33+W6uXPnxo4dOxL1dN0bpuqzffv2+PTTT9PSn7onMAkA1LiPP/44UTvooIOq/Uj0/9GtW7do0KBBov7RRx+lpT8AALUv1RmyQYMGcdBBB6Wlf1ZWVsof8PhCHACgdvz5z39O1A477LBdrkl139ejR4+0zZTqaUYrVqxI+UMeAACqbt26dfH4448n6sOGDdvt2lT3hu3bt6/Qq7wrokWLFilDm757zhwCkwBAjZs3b16i1rVr17T1z8nJiY4dOybqn332Wdr2AACgdqU6Q3bu3DlycnLStseBBx5YoX0BAEivDz/8ML744otE/bjjjit3TVFRUSxdujRRT+c9Y6rzYYR7RgCAdCouLo5rrrkmNm/eXKbep0+fGDp06G7X1/R3zxGpz4XOhJlDYBIAqHFfffVVotahQ4e07pGqX6p9AQCoH5whAQAy17333puotWjRIr7//e+Xu+arr76K0tLSRD2dZ8R27dpFdnby61NnRACA9Ni0aVP87Gc/i1mzZpWpt23bNu6+++6UZ7F/5N6Q6hKYBABqVHFxcaxbty5Rb9u2bVr3adeuXaLm0AoAUH+lOsvVxhly3bp1UVxcnNZ9AAD4P6+++mq88847ifpFF120y6eJl3fXl84zYsOGDaN169YV3hsAgIopLS2Nl19+OYYMGRJvvfVWmb917tw5Jk6cGPvuu2+Feq1YsSJRq417w1T7Uj81rOsBAIDMtmbNmpS//M7Pz0/rPs2bN0+5NwAA9VOqs1yqM191pOpXWloaa9asqfAFLQAAFbd69er4f//v/yXq++67bwwbNmyXa8u760v3PWOzZs0SPwB3zwgAUDnFxcXx9ddfx8KFC2PWrFnx0ksvxfLly8t8JisrK4YOHRrXXXddtGrVqkJ9S0pKUj6spzbuDdetWxelpaWRlZWV1r2ofQKTAECN2rp1a8p606ZN07pPqn7l7Q0AwJ6vsLAwUUv3GbJZs2Yp60VFRWndBwCAiG3btsUVV1wRGzZsKFPPzs6OsWPHRm5u7i7X19Y9Y6ozontGAIDynX322fHBBx9U+PO5ublx8sknx3nnnRfdunWr1F5FRUUpH9ZTG2fC0tLSKCoq2u25lT2fV3IDADWqvMvERo0apXWfVP180Q0AUH+lOsul+wzZsGHq3xL7QhwAIL1KS0vj3/7t32Lu3LmJv1111VXRr1+/3fZwzwgAsGdatWpVpT6fn58fhxxySLRv377Se5V3LsvJyal0r11xb5jZBCYBgBpVXFycst6gQYO07pPq0OoiEwCg/tq2bVuiVt5FZVWV1y/V3gAAVN3tt98eL774YqI+cODA+OlPf1qhHuWd0WrjjOieEQAgfVavXh3//u//Ht/+9rfjpptuivXr11d4bXlnwtr47nlX+1O/CEwCADWqvMNpSUlJWvfZuXNnopbuX5cDAFB7Up0jU535qqO8M6lzJABA+jz88MPx2GOPJer9+vWL2267rcJ9yvvSOt1nRPeMAACVs88++1Rp3bZt2+Kpp56KE088MV577bUKrSnvu2f3hlRGen9yBQDwD3Jzc1PWt2/fntZ9duzYUeG9AQDY8+Xm5ibOjKnOfNVR3pm0SZMmad0HAGBv9dhjj8Vdd92VqPfs2TPGjx9fqXNXeZ/dsWNHWp8o5J4RAKBypkyZkrK+cePGWLduXaxcuTLefvvt+OMf/xiLFy9OfG7Tpk1xxRVXxHXXXRcXXXTRLvcq71zm3pDK8IRJAKBGNW7cOGW9sLAwrfuk6ufACgBQf6U6R9bGGTLCF+IAAOkwadKkGDt2bKLevXv3mDBhQjRv3rxS/cq769uyZUuV5iuPe0YAgPRo0aJFdOvWLY499ti4/vrr49VXX41HHnkkDj744JSfv/3228sNX/6PuvzuOcK9YaYQmAQAalTLli1T1jdv3pzWfVL1a926dVr3AACg9rRq1SpR27RpU1r3+Oabb1LWnSMBAKrnN7/5Tdx6662Jevfu3eOJJ56o0msb3TMCANR/xx13XDz//PNx4YUXpvz7zTffHAsWLCh3fU5OTuTl5SXq6b43THUmbNGiRVqfbE7dEZgEAGpUq1atUh5a161bl9Z91q9fn6h16tQprXsAAFB7Up3lUp35qiPVmTQ/Pz+aNWuW1n0AAPYmzz77bNx0002J+sEHHxxPPPFEtGnTpkp9y7vrS+c9Y2lpaRQUFFR4bwAAKi87Ozv+9V//NS6++OLE37Zt2xZ33333Ltd37tw5UUv3vaHvnjObwCQAUONSHR5XrVqV1j1Wr16dqKU6LAMAUD84QwIA1D/Tp0+P0aNHR2lpaZn6IYccUq2wZET557RUZ7qqKigoiO3bt1d4bwAAqm7UqFFx9NFHJ+pvvvlmfPnll+Wuc29IdQlMAgA1rlu3bonakiVL0ta/pKQkli1blqh37949bXsAAFC7Up0hly1bFjt27EjbHkuXLq3QvgAA7N6rr74a119/fZSUlJSpH3744fH4449Hq1atqtW/devWKV/LvXjx4mr1/Xvl3Vm6ZwQAqBk///nPE7XS0tJ46623yl1T0989R6S+N3QmzBwCkwBAjevdu3eiNn/+/LT1//LLL6O4uDhR79u3b9r2AACgdqU6Q27fvj2tl58LFy5M1A4//PC09QcA2Fu8+eabce2118bOnTvL1I8++uiYMGFCNG/ePC379OnTJ1FL5z3jF198kai1atUqDjzwwLTtAQDA/zniiCOiffv2ifqnn35a7ppU94bLly+PLVu2pGWmoqKiWL58eaLuu+fMITAJANS4VIfHgoKClL/MqYqPPvooUWvWrJlf+QAA1GM9e/aMxo0bJ+pz5sxJS/+VK1fGmjVrEnUXnwAAlfP222/HVVddlXiV9YABA+Lhhx+Opk2bpm2vVIHJVHeDVZWql/MhAEDN6tWrV6L29ddfl/v5VOez0tLS+Pjjj9Myz6effpr4IVBE6rMo9ZPAJABQ43r37h35+fmJ+jvvvJOW/rNmzUrUBgwYENnZjjoAAPVVTk5OHH300Yl6TZ4h27ZtG//0T/+Ulv4AAHuD9957Ly6//PLE219OOOGEePDBB6NJkyZp3W/AgAGJ2qpVq2LRokVp6f/ee+8lascdd1xaegMAkFqzZs0StX/8Mc7f69ixY8oH56Tr3vDdd99N1Hr37h2tW7dOS3/qnhQBAFDjcnJy4gc/+EGi/tprr1W7986dO2PmzJmJ+qBBg6rdGwCAujVw4MBE7U9/+lNs27at2r3feOONRO3EE0/0oxsAgAqaM2dOjBgxIoqKisrUBw0aFPfcc0/k5OSkfc/evXtH586dE/V03DMuWLAgli1bVqbWoEGDOPHEE6vdGwCA8qV6mmSLFi12uSbVGe0Pf/hDWuZ58803EzXfPWcWN8AAQK0YPHhwovaXv/wlli9fXq2+b731Vqxbt65MrUWLFn75DQCQAU444YTEU4m++eabeOWVV6rVd8OGDSkvPocMGVKtvgAAe4tPPvkkLrnkkigsLCxTP+WUU+LOO++Mhg0b1tjeqe4Zn3vuuSgtLa1W32nTpiVq3/nOdzxJCACgBpWWlsbChQsT9a5du+5y3aBBgyIrK6tMbcmSJfH+++9Xa54FCxbEp59+WqbWsGHDlD/spv4SmAQAasWxxx4bPXr0KFMrKSmJhx56qFp9J0yYkKidc8450bhx42r1BQCg7uXn58fpp5+eqD/88MOxc+fOKvd98sknE6+N7NevX/Tu3bvKPQEA9hbz5s2Liy++ODZv3lymfs4558Qtt9xS40/sPvfccxNPr/zyyy/jxRdfrHLPTZs2xbPPPpuoX3jhhVXuCQCQSYqLi+Phhx9O+TTI6vjwww9j9erViXrfvn13ua5r167x3e9+N1EfN25cteZJ9d3zoEGDon379tXqy55FYBIAqDUjRoxI1KZOnRpz586tUr/XX3893nvvvTK1vLy8GDZsWJX6AQCw57nwwgujUaNGZWpffPFFPP7441Xqt3Llypg4cWKinuqsCgBAWV988UVccMEFsWHDhjL1iy66KEaPHp14yk9NaNeuXQwdOjRRv/POOxMhzoq67777Emv79u0b3/rWt6rUDwAgk6xbty6GDRsWd911VwwfPjwKCgrS0rekpCTuuOOORL1NmzZxzDHH7Hb9ZZddlqj9+c9/jt///vdVmufTTz+N6dOnl6llZ2fHpZdeWqV+7LkEJgGAWnPSSSdFv379ytR27twZI0eOrPTBeuXKlTF69OhE/corr4xWrVpVa04AAPYcnTp1iosuuihR//Wvfx0ffPBBpXpt3749Ro0aFVu2bClT/973vhfHHXdcteYEAMh0S5cujfPPPz9xj3f55ZfHddddV6uzXH311dGyZcsytVWrVsV1110XJSUller1pz/9KZ566qkytezs7LjxxhurPScAQH03b968OPXUU2POnDkREfH555/HGWecEQsWLKh279tuu+1/+/69c889Nxo2bLjb9X379o0f//jHifro0aNj8eLFlZpl8+bNMWrUqMRbbc4+++zo3r17pXqx5xOYBABqTVZWVtx8882J12UvX748hg8fHitXrqxQn2XLlsXw4cNj/fr1ZeqHHnpoDB8+PG3zAgCwZ7j88sujW7duZWrFxcUxYsSImDVrVoV6FBYWxpVXXhnvv/9+mXrTpk1jzJgx6RoVACAjffnllzF8+PBYs2ZNmfqZZ54ZV111Va3P06ZNm7jhhhsS9TfeeCN+8YtfxLZt2yrUZ+bMmfHzn/88EbIcNmxY9O7dOy2zAgDUZ5988kmsWrWqTG3ZsmVx2mmnxcSJE2P79u2V7rlhw4a49tprU75BpnPnznHBBRdUuNeNN94YrVu3TvQ///zz4/PPP69Qj4KCgrjoooti0aJFZeqdOnWKa665psKzUH9klZaWltb1EADA3uXll1+Oa665Jv7xGJKfnx9XXXVVnH766dGkSZPEusLCwpgyZUrcd9998c0335T52z777BNTpkyJzp071+jsAACUb9u2bSm/WB4zZkz85Cc/qVbvL774In7yk5/Exo0by9QbNGgQZ599dlx66aXRrl27xLqSkpKYMWNG3HHHHbF06dLE2nHjxsXxxx9frdkAADJZcXFxDB48OHGWqglZWVnxq1/9Ks4444wKfX7MmDExefLkRL1r164xatSo+O53vxvZ2cnnx6xevTrGjx8fkydPTtxRHnXUUTFhwoTIycmp2j8CACDDPPjgg3HPPfek/Nu+++4b5557bpx00knRvn37Xfb56quvYtq0afHb3/428WCciIjGjRvHb3/72zj00EMrNd/s2bPjggsuiOLi4kS/Sy+9NIYNGxb5+fmJdcXFxfHCCy/Er3/961i7dm2Zv+Xl5cVTTz0VhxxySKVmoX4QmAQA6sSkSZPitttuS1xIRvz3AbR///7RpUuXyM3NjS1btsSiRYti9uzZUVRUlPh8ixYtYsKECXHYYYfVxugAAHutgoKC+N73vpfyTFZVhx12WDz33HMV+uzs2bPj0ksvTbxSO+K/w499+vSJnj17Rn5+fhQXF8eKFSti9uzZKS9gs7OzY8yYMXHmmWdW+98AAJDJPvroo1o9M11xxRVx5ZVXVuizO3fujJEjR8bvf//7lH9v27Zt9OvXLzp37hwNGzaMr7/+OubNmxeffPJJyld39+jRI5544onE674BAPZ206ZNizFjxuzySd4HHHBAHHTQQdGxY8do2rRplJaWxqZNm2LdunXxt7/9LVasWFHu2ry8vBg3blwcc8wxVZrvlVdeiVGjRqV84mWjRo2iX79+0b1792jWrFkUFRXFkiVLYvbs2bF58+bE5xs3bhz33ntvfPe7363SLOz5BCYBgDrzyiuvxPXXX1+tL9wPOOCAGD9+fHTt2jWNkwEAkMry5cvjBz/4QVp7du7cOd54440Kf37+/Plx2WWX7fKCdXfy8vLizjvvTPu/BQAgE82aNSuGDRtWa/tVJjAZ8d9PFL/zzjtjwoQJ1dr3+OOPj7vvvjuaNWtWrT4AAJlq3rx5ceONN8ann36a1r6HHHJI3H777dG9e/dq9XnvvffiyiuvjA0bNlS5R5s2beKBBx6Iww8/vFqzsGdLPoMeAKCWDBw4MJ5//vkYMGBApdc2bNgwLrjggpg2bZqwJADAXuTggw+O559/Ps4777xo0KBBpdd/73vfi+nTpwtLAgBkiOzs7Ljuuuviscceiy5dulR6fcuWLeNXv/pVjB8/XlgSAGAXevbsGVOmTIlbbrklDjzwwGr369ixY/zyl7+MKVOmVDssGRFx1FFHxQsvvBCDBw+u9NqsrKwYOnRovPDCC8KSewFPmAQA9gizZ8+Op59+OmbMmBGFhYXlfq5du3YxZMiQOOuss2K//farxQkBAKiJV3L36dMnpkyZUqW1S5cujWeeeSamT58ea9euLfdzeXl5ccIJJ8RZZ50VRx55ZFVHBQDYK33xxRcxdOjQXb5+MV2ys7PjlltuiaFDh1Zp/fbt2+O1116LZ555JmbPnh07duwo97MHH3xwnHbaaTF06NDIz8+v6sgAAHulkpKSePfdd+OFF16Id999N7766qsKrdt3333jqKOOioEDB8Z3vvOdKv0guiLmzZsXkydPjldffXWXT5xs2bJlDBw4MM4666zo2bNnjczCnkdgEgDYo+zcuTPmzZsXCxYsiA0bNsTWrVujefPm0bp16zj00ENj//33r+sRAQDYAy1dujT++te/RkFBQWzevDlyc3OjZcuWcdBBB0XPnj1r7PIVAIA909atW2Pu3Lnx5ZdfxsaNG2Pnzp2Rn58fHTp0iD59+kTr1q3rekQAgIyxcuXKWLx4caxYsSI2b94cW7dujUaNGkWTJk2iZcuW0blz5zjwwAOjTZs2tTpXaWlpLFy4MObNmxdff/11bNmyJZo2bRqtWrWKXr16Rbdu3SIrK6tWZ6LuCUwCAAAAAAAAAAAAGS+7rgcAAAAAAAAAAAAAqGkCkwAAAAAAAAAAAEDGE5gEAAAAAAAAAAAAMp7AJAAAAAAAAAAAAJDxBCYBAAAAAAAAAACAjCcwCQAAAAAAAAAAAGQ8gUkAAAAAAAAAAAAg4wlMAgAAAAAAAAAAABlPYBIAAAAAAAAAAADIeAKTAAAAAAAAAAAAQMYTmAQAAAAAAAAAAAAynsAkAAAAAAAAAAAAkPEEJgEAAAAAAAAAAICMJzAJAAAAAAAAAAAAZDyBSQAAAAAAAAAAACDjCUwCAAAAAAAAAAAAGU9gEgAAAAAAAAAAAMh4ApMAAAAAAAAAAABAxhOYBAAAAAAAAAAAADKewCQAAAAAAAAAAACQ8QQmAQAAAAAAAAAAgIwnMAkAAAAAAAAAAABkPIFJAAAAAAAAAAAAIOMJTAIAAAAAAAAAAAAZT2ASAAAAAAAAAAAAyHgCkwAAAAAAAAAAAEDGE5gEAAAAAAAAAAAAMp7AJAAAAAAAAAAAAJDxBCYBAAAAAAAAAACAjCcwCQAAAAAAAAAAAGQ8gUkAAAAAAAAAAAAg4wlMAgAAAAAAAAAAABlPYBIAAAAAAAAAAADIeAKTAAAAAAAAAAAAQMYTmAQAAAAAAAAAAAAynsAkAAAAAAAAAAAAkPEEJgEAAAAAAAAAAICMJzAJAAAAAAAAAAAAZDyBSQAAAAAAAAAAACDjCUwCAAAAAAAAAAAAGU9gEgAAAAAAAAAAAMh48DV9zgAADztJREFUApMAAAAAAAAAAABAxhOYBAAAAAAAAAAAADKewCQAAAAAAAAAAACQ8QQmAQAAAAAAAAAAgIwnMAkAAAAAAAAAAABkPIFJAAAAAAAAAAAAIOMJTAIAAAAAAAAAAAAZT2ASAAAAAAAAAAAAyHgCkwAAAAAAAAAAAEDGE5gEAAAAAAAAAAAAMp7AJAAAAAAAAAAAAJDxBCYBAAAAAAAAAACAjCcwCQAAAAAAAAAAAGQ8gUkAAAAAAAAAAAAg4wlMAgAAAAAAAAAAABlPYBIAAAAAAAAAAADIeAKTAAAAAAAAAAAAQMYTmAQAAAAAAAAAAAAynsAkAAAAAAAAAAAAkPEEJgEAAAAAAAAAAICMJzAJAAAAAAAAAAAAZDyBSQAAAAAAAAAAACDjCUwCAAAAAAAAAAAAGU9gEgAAAAAAAAAAAMh4ApMAAAAAAAAAAABAxhOYBAAAAAAAAAAAADKewCQAAAAAAAAAAACQ8QQmAQAAAAAAAAAAgIwnMAkAAAAAAAAAAABkPIFJAAAAAAAAAAAAIOM1rOsBAOpaUVFRnHzyybF48eI6nSMvLy8ef/zx6N279//W7rjjjpgwYUKUlpamXHPQQQfFiy++WFsjAgAAAAAAAABAveUJk8Beb926dXUeloyIKCwsjIULF5apzZ07t9ywZETEggULori4uKZHAwAAAAAAgP/f3r2Fdl3/Dxx/7ahOZdbMecgOWhYYmmTiwguTbBCxDmRW60YSa5RiJQgRhhB46MIDGU7KWVokoTflgsxDpemFYUoHRUHFZqQb5GEeNud+F3/qn7V9v9ucbvv4eFzJ5/3+vN5vb/TmyecLANDlCSYBurhUQSUAAAAAAAAAAPB/BJMAAAAAAAAAAABA4gkmAQAAAAAAAAAAgMQTTAIAAAAAAAAAAACJJ5gErnt9+vSJm266qaOvEbm5uXHzzTd39DUAAAAAAAAAACCRsjv6AgAdrVevXrFt27YW77906VKUlZXF1q1b0+5dtGhRPPLII22+W2Zm6q49IyMjsrKy2jwfAAAAAAAAAACuF74wCdBKmZmZccMNN7Rob0FBwRWdNXbs2MjObrptz87OjpKSkmbXAQAAAAAAAACA/6eyAejEysrKoqysrKOvAQAAAAAAAAAAXZ4vTAIAAAAAAAAAAACJJ5gEAAAAAAAAAAAAEs9PcgPwH3V1dbFnz544cOBAnDp1KnJycqKwsDBGjhwZgwcPbtWs06dPx+7du+PQoUNx7ty5yM/Pj1tuuSXuu+++6N69e7veu7GxMY4cORL79u2L6urqOHPmTOTk5ETv3r1j8ODBMWzYsCgoKGjXMwEAAAAAAAAA6BoEkwCd2KpVq2LBggVx6dKlJteHDx8e69evb3Jt/vz5UVFR0ezssrKymDlz5mXPjh07FuXl5fH5559HbW1tk++NHDkyZsyYEePGjUt5971798b7778fmzdvjvr6+v+sd+vWLZ544ol4+eWXo1+/filnpfPLL7/EZ599Fl999VVUV1en3Hv33XfHww8/HM8884x4EgAAAAAAAADgOiKYBOjE9u/f32wsGRHx888/t2ktIuLXX3/9+891dXXxwQcfRHl5eZw7dy7le3v27IkXXnghpkyZErNnz46MjIzL1s+cORMLFy6MtWvXppxz4cKF+PTTT2Pjxo2xbNmyGDVqVMr9TTly5EjMmzcvtmzZ0uJ39u3bF/v27Yvy8vIoLS2N6dOnR15eXqvPBgAAAAAAAACga8ns6AsA0LzGxsarfsbRo0fj6aefjsWLF6eNJf+poqIilixZctmz3bt3R0lJSdpY8p9qampi6tSpcfjw4Ra/ExHxySefRElJSatiyX+6cOFCrFy5Mh599NHL4lEAAAAAAAAAAJJJMAlwnbp48WJ888038dRTT7U5GFyxYsXf727fvj2mTJkSVVVVrZ5z5syZmD17dov3z58/P+bOnRvnz59v9Vn/VlVVFc8991zs3LnzimcBAAAAAAAAANB5CSYBrlPbt2+PadOmxZ9//tnmGQ0NDbFixYr4+uuv46WXXmrVFyr/7ccff4wdO3ak3bdkyZKoqKho8zlNOXv2bLzyyitx8ODBdp0LAAAAAAAAAEDnkd3RFwCgY/z7575zcnLigQceiNtvvz0yMzNj7969sWvXrrRzKisro7Ky8rJnffv2jbFjx8bAgQOjpqYmtm7dGjU1NWlnbdy4MYqKilKuv/feeylnZGVlxYQJE2LcuHExcODAiIj4/fffY+PGjbFt27Zmf+b89OnT8dprr8X69esjO9t/jwAAAAAAAAAASaMIASAee+yxeP3116OwsPCy55s3b44ZM2ZEfX19i+bk5eXFrFmzYtKkSZGbm/v389ra2pg+fXps37495fs//PBDs2snT56MuXPnpnx/2LBhsXjx4hg6dOh/1iZPnhy7du2KmTNnxokTJ5p8f//+/bFq1aqYOnVqynMAAAAAAAAAAOh6/CQ3wHUsIyMj5syZEwsXLvxPLBkRMWHChHj++edbNKt///6xbt26KC0tvSyWjIjo2bNnvPPOO9GtW7eUM44fP97s2vLly5sNHSMihgwZEmvWrGkylvzL6NGjo7y8/D/3+6eKioqoq6tLeU8AAAAAAAAAALoewSTAdeytt96K0tLSlHseeuihtHN69uwZH374YQwZMqTZPQUFBTFq1KiUc06ePNnk81OnTsXatWtTvjtnzpzIz89Pe9fhw4fHpEmTml2vrq6OL7/8Mu0cAAAAAAAAAAC6FsEkwHVq0KBB8eyzz6bd169fv7R7SkpK4rbbbrviWQ0NDU0+r6ysjNra2mbf69+/fxQVFaU9/y/FxcUp1zdt2tTiWQAAAAAAAAAAdA2CSQBSysxM/19FQUFBi2ZlZWW16Q7pAsZUX7ZsSl5eXsr1HTt2tGoeAAAAAAAAAACdX3ZHXwAAUmlsbIxdu3al3PP999/HXXfd1W5nnjp1Kv74448oLCxst5kAAAAAAAAAAHQsX5gEoFP77bff4uzZs9f83MOHD1/zMwEAAAAAAAAAuHoEkwB0akePHu2Qc0+fPt0h5wIAAAAAAAAAcHUIJgHo1DoqXOyIr1oCAAAAAAAAAHD1CCYB6NTOnz9/zc/s3r17DBo06JqfCwAAAAAAAADA1ZPd0RcAgFTy8vLS7hk1alSsXr06cnJyrsGNAAAAAAAAAADoinxhEoBOLT8/P+2e/v37iyUBAAAAAAAAAEhJMAlApzZ06NC0e2pqaq7BTQAAAAAAAAAA6MoEkwB0agUFBVFYWJhyz08//RR1dXXX6EYAAAAAAAAAAHRFgkkAOr3x48enXD979mxs2rSp1XMbGhpi0aJFUVlZGfX19W28HQAAAAAAAAAAXYFgEoBO79FHH0275913340LFy60au68efNi+fLl8eqrr8aECRNi2bJlUV1d3dZrAgAAAAAAAADQiQkmAej0xowZEyNHjky55+DBg/HGG29EQ0ND2nmNjY2xYMGCWL169d/Pjh8/HkuXLo3x48fHxx9/fMV3BgAAAAAAAACgcxFMAtAlzJo1KzIyMlLu+eKLL2LatGlx7NixZvdUVVXFiy++GCtXrmxyvb6+Pvr27XtFdwUAAAAAAAAAoPPJ7ugLAEBLjBkzJkpLS2PNmjUp923bti2Ki4tj4sSJUVRUFAMGDIiLFy9GVVVVfPfdd/Htt9+m/Arl5MmTo7i4uL2vDwAAAAAAAABABxNMAtBlzJ49Ow4ePBg7d+5Mua+uri42bNgQGzZsaNX8+++/P958880ruSIAAAAAAAAAAJ2Un+QGoMvIzc2NZcuWxZgxY9p99ogRI2L58uWRm5vb7rMBAAAAAAAAAOh4gkkAupRevXrFypUro7S0NDIyMtplZnFxcXz00UfRq1evdpkHAAAAAAAAAEDnI5gEuIquNOhL935mZtv/GW/p3Vqyr6X3aK+/T05OTsyZMyfWrFkT99xzT4veacqNN94Y8+bNi6VLl0aPHj3aPAcAAAAAAAAAgM5PMAnQBsOHD08b9/Xu3TsGDx58Refce++9kZOT0+RaVlZWPPjgg82+O2LEiGbvmJ2dnfLdfyooKIgBAwY0u56fnx9FRUUtmnXnnXc2e6fMzMyYOHFii+b8ZfTo0bFu3bpYtWpVPP7449GnT5+07+Tm5sbYsWPj7bffji1btsSTTz7ZqjMBAAAAAAAAAOiaMhobGxs7+hIA0B4uXboUhw4digMHDsSJEyeitrY2MjIyokePHlFQUBC33npr3HHHHdG9e/eOvioAAAAAAAAAANeYYBIAAAAAAAAAAABIPD/JDQAAAAAAAAAAACSeYBIAAAAAAAAAAABIPMEkAAAAAAAAAAAAkHiCSQAAAAAAAAAAACDxBJMAAAAAAAAAAABA4gkmAQAAAAAAAAAAgMQTTAIAAAAAAAAAAACJJ5gEAAAAAAAAAAAAEk8wCQAAAAAAAAAAACSeYBIAAAAAAAAAAABIPMEkAAAAAAAAAAAAkHiCSQAAAAAAAAAAACDxBJMAAAAAAAAAAABA4gkmAQAAAAAAAAAAgMQTTAIAAAAAAAAAAACJJ5gEAAAAAAAAAAAAEk8wCQAAAAAAAAAAACSeYBIAAAAAAAAAAABIPMEkAAAAAAAAAAAAkHiCSQAAAAAAAAAAACDxBJMAAAAAAAAAAABA4gkmAQAAAAAAAAAAgMQTTAIAAAAAAAAAAACJJ5gEAAAAAAAAAAAAEk8wCQAAAAAAAAAAACSeYBIAAAAAAAAAAABIPMEkAAAAAAAAAAAAkHiCSQAAAAAAAAAAACDxBJMAAAAAAAAAAABA4gkmAQAAAAAAAAAAgMQTTAIAAAAAAAAAAACJJ5gEAAAAAAAAAAAAEk8wCQAAAAAAAAAAACSeYBIAAAAAAAAAAABIPMEkAAAAAAAAAAAAkHiCSQAAAAAAAAAAACDxBJMAAAAAAAAAAABA4gkmAQAAAAAAAAAAgMQTTAIAAAAAAAAAAACJJ5gEAAAAAAAAAAAAEk8wCQAAAAAAAAAAACSeYBIAAAAAAAAAAABIPMEkAAAAAAAAAAAAkHiCSQAAAAAAAAAAACDxBJMAAAAAAAAAAABA4gkmAQAAAAAAAAAAgMQTTAIAAAAAAAAAAACJJ5gEAAAAAAAAAAAAEk8wCQAAAAAAAAAAACSeYBIAAAAAAAAAAABIPMEkAAAAAAAAAAAAkHj/A4FncLBFDyrdAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "execution_count": 10, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "fig" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": {}, + "outputs": [], + "source": [ + "query = '''\n", + "\n", + "WITH sum AS (\n", + "\n", + "SELECT pickup_datetime, hr, sum(count) as count, extract(month from pickup_datetime) as mon, extract(year from pickup_datetime) as yr,\n", + "extract(dow from pickup_datetime) as dow FROM ptc.trip_data_agg_ward_25\n", + "\n", + "\n", + "WHERE pickup_datetime > '2018-08-31'\n", + "GROUP BY pickup_datetime, hr\n", + "\n", + ")\n", + ", collect AS (\n", + "SELECT avg(count) as count, hr, dow from sum\n", + "group by hr, dow)\n", + "\n", + "SELECT period_name, period_uid, count, hr, CASE WHEN dow = 0 THEN 7 ELSE dow END AS dow, \n", + "CASE WHEN swatch IS NULL THEN '#999999' ELSE swatch END AS swatch\n", + "FROM collect\n", + "LEFT JOIN ptc.period_lookup_simple ON dow=period_dow AND hr=period_hr\n", + "LEFT JOIN ptc.periods_simple USING (period_uid)\n", + "ORDER BY dow, hr\n", + "\n", + "'''\n", + "count_18 = pandasql.read_sql(query,con)" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAACgkAAAO+CAYAAAA0GWfEAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAABFNAAARTQBrsa1HQAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzs3Xl01OXZxvFrJgtJgEAgYd/DKougiLQFBEWriGhVrBaqKLIUFyoKKipYiwIiCsUFUYuKewUKKCAgAcSNRUgChB0CZAWSkJA9mXn/4E2aYSaQzG8mk8x8P+fkSO75PfdzTzontoerz2OyWq1WAQAAAAAAAAAAAAAAAAAAr2P29AAAAAAAAAAAAAAAAAAAAMA9CAkCAAAAAAAAAAAAAAAAAOClCAkCAAAAAAAAAAAAAAAAAOClCAkCAAAAAAAAAAAAAAAAAOClCAkCAAAAAAAAAAAAAAAAAOClCAkCAAAAAAAAAAAAAAAAAOClCAkCAAAAAAAAAAAAAAAAAOClCAkCAAAAAAAAAAAAAAAAAOClCAkCAAAAAAAAAAAAAAAAAOClCAkCAAAAAAAAAAAAAAAAAOClCAkCAAAAAAAAAAAAAAAAAOClCAkCAAAAAAAAAAAAAAAAAOClCAkCAAAAAAAAAAAAAAAAAOClCAkCAAAAAAAAAAAAAAAAAOClCAkCAAAAAAAAAAAAAAAAAOClCAkCAAAAAAAAAAAAAAAAAOClCAkCAAAAAAAAAAAAAAAAAOClCAkCAAAAAAAAAAAAAAAAAOClCAkCAAAAAAAAAAAAAAAAAOClCAkCAAAAAAAAAAAAAAAAAOClCAkCAAAAAAAAAAAAAAAAAOClCAkCAAAAAAAAAAAAAAAAAOClCAkCAAAAAAAAAAAAAAAAAOClCAkCAAAAAAAAAAAAAAAAAOClCAkCAAAAAAAAAAAAAAAAAOClCAkCAAAAAAAAAAAAAAAAAOClCAkCAAAAAAAAAAAAAAAAAOClCAkCAAAAAAAAAAAAAAAAAOClCAkCAAAAAAAAAAAAAAAAAOClCAkCAAAAAAAAAAAAAAAAAOClCAkCAAAAAAAAAAAAAAAAAOClCAkCAAAAAAAAAAAAAAAAAOClCAkCAAAAAAAAAAAAAAAAAOClCAkCAAAAAAAAAAAAAAAAAOClCAkCAAAAAAAAAAAAAAAAAOClCAkCAAAAAAAAAAAAAAAAAOClCAkCAAAAAAAAAAAAAAAAAOClCAkCAAAAAAAAAAAAAAAAAOClCAkCAAAAAAAAAAAAAAAAAOClCAkCAAAAAAAAAAAAAAAAAOClCAkCAAAAAAAAAAAAAAAAAOClCAkCAAAAAAAAAAAAAAAAAOClCAkCAAAAAAAAAAAAAAAAAOCl/D09AADHzp8/r927dyspKUnp6eny8/NT/fr11apVK3Xv3l1BQUEemy0lJUWxsbE6ffq0zp07p+DgYNWvX18dO3ZUp06dZDZ7Jn9stVp19OhRxcXFKT09XdnZ2apbt64aNmyorl27qmXLlh6ZCwAAAAAAAAAAAAAAAPAUQoJwq4KCAn3++ef66quvdPToUVksFpnNZi1atEj9+/ev8nnOnDmjCRMmKDY2VhaLpbR+xx13aPbs2VU+z8Xy8/O1evVqffnll4qOjraZsayAgAD17dtXf/nLXzRw4MAqCeWdPXtWX3/9tZYuXar4+Phyn6tTp47++Mc/asSIEeratavb55KkQ4cO6fPPP9e3336rjIyMcp9r0qSJ7rzzTt17771q3LhxlcwGAAAAAAAAAAAAAAAAeJLJarVaPT0EvE9RUZGWLVumt956S8nJyXavz5w5U3feeWeVzzVmzBht2bLFrt6nTx8tWbKkyucpa8OGDXr55ZeVmJhYqXVdu3bVSy+9pG7durllrsLCQi1evFjvvPOOcnJyKrX21ltv1bPPPquIiAi3zJaWlqY5c+Zo+fLlqsyvssDAQI0bN05jx45VYGCgW2YDAAAAAAAAAAAAAAAAqgPP3AkKr2WxWLRq1SoNGTJEL7zwgsOAoKd89tlnDgOCnlZYWKipU6fqkUceqXRAUJL27t2r4cOH66OPPnL5bKdPn9Z9992nuXPnVjogKEnffvuthg4dqu3bt7t8tl27dmno0KFatmxZpQKC0oUTLhcsWKDhw4crJSXF5bMBAAAAAAAAAAAAAAAA1QXXDcNlNmzYoPnz5+vgwYOeHsXOsWPH9Oqrr3p6DDv5+fkaO3asfvnlF4evd+jQQT169FB4eLiKioqUlJSkHTt2KDU11eY5i8WiV155RcnJyXr66addMlt8fLxGjRrlMLjo5+ennj17qlOnTgoNDVVeXp6OHTum7du324UJMzIy9OCDD+r111/XTTfd5JLZvv/+ez3xxBPKz8+3ey0kJETXXHON2rZtq6CgIGVmZurAgQPavXu3iouLbZ7dv3+/hg8frg8//FDt2rVzyWwAAAAAAAAAAAAAAABAdUJIEIb9/PPPev311xUTE+PpURwqKirSlClTlJub6+lRbFitVk2ZMsVhQPC6667TpEmT1LlzZ7vXLBaLtmzZojlz5ujw4cM2r/373/9WkyZN9MADDxiaLSMjQ2PHjrULCPr5+WnkyJEaM2aMwyuE8/LytHTpUs2fP1/nzp0rrRcWFuqpp57Sxx9/rJ49exqaLSYmRpMmTbILCIaGhmrixIm6++67FRQUZLfu9OnTev/997VkyRKbsGBKSorGjx+vL7/8UmFhYYZmAwAAAAAAAAAAAAAAAKobrhuGIceOHdOoUaOqbUBQkt55551qOd97772ntWvX2tRMJpOmTJmiRYsWOQwISpLZbNbAgQO1bNky3XrrrXavz5o1Szt27DA021NPPaXjx4/b1OrUqaN///vfmjp1qsOAoCQFBQVpxIgRWrFihTp27GjzWn5+vh599FGb8GBlnTt3ThMmTFBeXp5NvX379lq5cqVGjhzpMCAoSREREXr22We1ePFihYaG2rwWHx+vp556yum5AAAAAAAAAAAAAAAAgOqKkCAMuTisVaJJkyYaP368vvjiiyqeyFZMTIwWLlzo0RkciY+P15tvvmlXnzRpkkaPHl2hHrVq1dJrr72mQYMG2dQtFoumT5+ugoICp2ZbsWKFfvjhB5taQECAFi5cqL59+1aoR9OmTfXhhx+qefPmNvXTp08buvb51Vdf1enTp21qzZo100cffaSmTZtWqMe1116rd955R4GBgTb1rVu3asWKFU7PBgAAAAAAAAAAAAAAAFRHhAThMoGBgbrlllv03nvvKSoqSk888YR69erlsXlyc3M1efJkFRUVeWyG8rzyyit21+X269dPY8eOrVQfs9msV199VY0bN7apHz58WJ988kml58rNzdXs2bPt6o899piuueaaSvVq2LCh5s6dKz8/P5v60qVLFRsbW+nZYmJitHTpUpua2WzWnDlzFB4eXqlevXv31sSJE+3qs2fPrnbXUgMAAAAAAAAAAAAAAABGEBKEIY0bN1b//v01bdo0bd26VfPmzdOAAQNkNnv+ozV79my7K3PHjBmj+vXre2ag/xcXF6dNmzbZ1Pz9/fXCCy841S80NFSTJk2yqy9evLjSpwl+9dVXOnv2rE2tVatWeuihh5yarVevXrr99tttalarVYsWLap0r3fffVdWq9WmNmzYMPXu3dup2UaNGqU2bdrY1M6ePauvv/7aqX4AAAAAAAAAAAAAAABAdeT5JBdqtAYNGuj999/XiBEjVK9ePU+PU2rz5s36/PPPbWr9+vXTk08+qdq1a3toqgvef/99u9rNN99sF1irjGHDhtld7Zuamlqp63OLi4u1ePFiu/qYMWMUEBDg9Gzjx4+XyWSyqW3YsMEuwHkpR48e1ffff29TM5lMGjdunNNz+fv76+GHH7arL168WBaLxem+AAAAAAAAAAAAAAAAQHVCSBBeJz09Xc8995xNrUGDBpo1a5ZdWK2qZWdna/369Xb1e+65x1Bfs9msO++8066+cuXKCvfYtm2bkpKSbGrBwcEaOnSoodlat26tPn362NQsFotWrVpV4R4rV660O0XwmmuuUbt27QzNNnToUIWEhNjUEhIStH37dkN9AQAAAAAAAAAAAAAAgOqCkCC8zvTp03X69Gmb2syZMxUREeGhif4nKipK+fn5NrWwsDCnr8wt68Ybb7Sr7dixQ6mpqRVav2bNGrtav3797EJ0rprN0X7lWbt2bYV6VlZwcLD69etnV1+9erXh3gAAAAAAAAAAAAAAAEB1QEgQXmX58uX67rvvbGojR47UwIEDPTPQRTZu3GhX69Onj/z8/Az37tSpkxo2bGhTs1gs2rRpk9Oz/e53vzM8V3l9jhw5UqErh48ePapjx45VqKcz+vbta1dz9LMAAAAAAAAAAAAAAAAAaiJCgvAaCQkJmjFjhk2tY8eOmjJliocmsrdr1y67Wq9evVzWv2fPnhXa82InT560O32xvH7OiIyMVGhoqFOzOXqmbt26at++vUtmu+qqq+xqqampSkhIcEl/AAAAAAAAAAAAAAAAwJMICcIrWCwWPf300zp//nxprVatWpo7d65q1arlwcn+JzU1VYmJiXb1Tp06uWyPDh062NUqEsSLjo62q/n5+Tns5wyTyeQw1OfsbB06dJDJZHLJbJGRkQ5Pcty9e7dL+gMAAAAAAAAAAAAAAACeREgQXuGDDz7Q9u3bbWpTpkxRx44dPTSRvf379zust2vXzmV7tG3b1q52/Phx5eXlXXKdo9maN2+uwMBAl83Wpk2bCu1bkWdc+TMLDAxU06ZN7epxcXEu2wMAAAAAAAAAAAAAAADwFEKCqPH279+v+fPn29QGDhyokSNHemgixxydIujn56eIiAiX7dG4cWO7mtVqdbj35WZr0qSJy+Yqr9/l5irvmeoyGwAAAAAAAAAAAAAAAFDdERJEjVZQUKDJkyersLCwtBYREaGZM2d6cCrHHIXOGjRo4PCqW2c1atSowntf7nVXhhclx7OdOXNGBQUF5a4pKCjQmTNnPDIbIUEAAAAAAAAAAAAAAAB4A0KCqNHeeOMNHTx4sPR7k8mkWbNmqUGDBh6cyrHU1FS7Wt26dV26R3n9HO19uderYjar1XrJ2VJTU2W1Wu3qoaGhbp/tcj8zAAAAAAAAAAAAAAAAoCYgJIga69dff9XixYttaqNGjVK/fv08NNGl5eTk2NVq167t0j3q1KnjsJ6bm3vJdZ6cLS8vr9w15c3t6tkc9bvczwwAAAAAAAAAAAAAAACoCQgJokbKysrSM888Y3PKXJcuXTRp0iQPTnVpjsJwAQEBLt3D39+/wntf7vWqmu1SYbzyXnP1bI76Xe5nBgAAAAAAAAAAAAAAANQEhARRI7300ktKTEws/T44OFhz585VYGCgB6e6tPz8fLtaecE5Z5UXnrtc4K0qZiuvn6O9SxQUFDis+/n5uWSmEo5mIyQIAAAAAAAAAAAAAAAAb0BIEDXO2rVrtXLlSpvaM888o8jISA9NVDGOgmjFxcUu3aO8fpc7ec9R6M7Vs1ksFof1S81WXhiwvF7OcvReXX1aIQAAAAAAAAAAAAAAAOAJhARRo6SkpGj69Ok2tRtvvFH33nuvhyaquKCgILtaUVGRS/cor19wcPAl1zl63dWzFRYWOqw7+rmUKG/u8no5y9F7vdzPDAAAAAAAAAAAAAAAAKgJCAmixrBarZo6daoyMjJKa40bN9aMGTM8OFXFOQrD5eTkuHSP8vpdKognSbVq1apwL2eV1+9SYTxHc12ql7Mc9bvczwyA84qLi5WamuryE0uBEnzG4G58xuBufMbgbnzG4E58vuBufMbgbnzG4G58xuBufMbgbnzG4G58xuBOfL7gywgJosb49NNPtXXr1tLvzWazZs+erfr163twqopzNGdmZqZL98jKynJYb9CgwSXXhYWF2dVcPdv58+cd1i81W3n/2Zb3Pp3lqN/lfmYAnJeYmKhevXopMTHR06PAS/EZg7vxGYO78RmDu/EZgzvx+YK78RmDu/EZg7vxGYO78RmDu/EZg7vxGYM78fmCL/P39AA1UVpamrZt26bk5GSZTCY1bdpUPXr0UJMmTTw9mtc6evSo5syZY1MbPXq0fve733loospr1qyZXS0tLU1Wq1Umk8kle5w5c8ZhvXnz5ped7eDBgza1s2fPumSmEo5mCw0NVZ06dcpdExYWppCQELuT/sp7n85y9F4d/ecFAAAAAAAAAAAAAAAA1DQ+HRK0WCz6+uuvdfXVVysyMvKyzyckJGju3Llau3atrFarzWtms1l9+/bVlClT1KlTJ3eN7LNeeukl5eXllX7fpUsXTZw40YMTVZ6j0FlhYaHOnj2r8PBwl+yRkpLisF6RkODFkpOTXTJTCUezXW4u6cJshw8ftqlVl9kAAAAAAAAAAAAAAACA6s5nQ4IpKSmaOHGioqOj1bNnT33++eeXfP7HH3/UpEmTlJmZaRcQlC7cW/7jjz/qnnvu0fPPP6/hw4e7a3Sfc/DgQf388882tYKCAr366quV7lVUVKTU1FS7+r59+zRjxgy7E/1q1aqlhx9+2CVXGpcXRD1+/LjLQoLx8fF2tUaNGqlu3bqVnu3kyZMqKiqSv79rfk04mq0i4dzIyEi7kODx48ddMpN0ISx88uRJu3r79u1dtgcAAAAAAAAAAAAAAADgKT4ZEkxNTdVf//pXnTx5UlarVbt379bWrVvVr18/h89HR0frkUceKT3JrryrYa1Wq/Lz8zV9+nSFhYVp8ODBbnsPviQ9Pd2uduTIER05csRle5w/f15Llixx+Fr//v117bXXGt6jffv2ql27trKzs23qBw4cUO/evQ33l2QXppOkXr16XXZdjx497GqFhYU6fvy4y8JyRmb77rvvbGoXX41sxIkTJ1RQUGBX79mzp8v2AAAAAAAAAAAAAAAAADzF7OkBqprFYtGTTz6pEydOSLoQ+LNarXrzzTcdPl9QUKApU6YoLy9PJpOpNCBotVptvkp6mUwmWSwWTZ48WUlJSVXzplAjmM1mde/e3a6+a9cul+0RHR1tV6tI2K1z586qVauWXd1VsyUlJTk8wbEiszl6Ji0tzeHJhM7YvXu3Xa1OnTqcJAgAAAAAAAAAAAAAAACv4HMhwS+++ELbt2+3Ow0wOjpaW7ZssXv+008/VXx8vF048GIX1/Py8vT666+7eHrfFB4erpCQEI/sHRQU5LKrgCU5PK3y119/dfiZqqzExESH1+Zed911l10bGBjo8LTEi695dtavv/5qV4uIiNAVV1xx2bU9evRQaGholc7Wv39/mc0+9+sRAAAAAAAAAAAAAAAAXsinrhvOz8/XggULbAJ/ZcOCP//8swYMGFD6vdVq1SeffGLzfFkXBw3LnihotVr17bff6tFHH1Xr1q3d8n58RWRkpMtOtLNYLLrnnnsUGxtrU+/SpYuWLl0qPz8/l+xTnltuuUWvvfaaTS01NVW7d++u0NW7lxIVFWVX69SpkyIjIys828VB2c2bNys/P9/hKYOVsXHjRrvazTffXKEgXmBgoG644QYtX77cpr5+/Xrde++9huYqLi52GA6+9dZbDfUFAAAAAAAAAAAAAAAAqgufOirrm2++UXp6uqT/BQRLgn3t27fX2LFjbZ7fsWOHEhISSp8vq2TtxScIXvznb775xi3vBc4xm80KDg62q9etW9ftAUFJatGihcMw4FdffWW497Jly+xqt912W4XXDx48WEFBQTa18+fPa82aNYbmysjIcBhgHDZsWIV7DB061K72008/6dSpU4Zm++GHH3TmzBmbWr169WzCwgAAAAAAAAAAAAAAAEBN5lMhwVWrVpX+uewpgC1atNDHH3+ssLAwm+c3b95s16Psum7dumnq1Km6//775e/vL5PJZPO61WrV2rVrXfkW4AUeeughu9qqVasMBd5+/fVX7dmzx6ZWp04d/fnPf65wj9DQUA0fPtyuvmjRIhUXFzs925IlS1RQUGBT6927t3r06FHhHv369VOnTp1sahaLRe+++67Tc0nSBx98YFcbMWKE4ZMTAQAAAAAAAAAAAAAAgOrCZ0KCubm52rlzp12Iz2Qy6YUXXrALCEoXTiorq+zJg506ddJnn32m+++/X1OnTtXLL79sc4pgyT5HjhxRbm6uO94SaqjBgwfbXQFcWFioGTNmONWvuLhYs2fPtqvfd999Cg0NrVSvhx56SAEBATa1I0eO6KOPPnJqtqSkJC1evNiuPm7cuEr3crRm6dKliomJcWq2DRs2aNu2bTa1kJAQ3X///U71AwAAAAAAAAAAAAAAAKojnwkJHjp0SIWFhaXflwT6OnTooOuuu87u+fPnz2v//v02ocISJpNJ48ePV2BgYGlt2LBhatGihd2zVqtVBw4ccMVbgJcwm816/vnn7epRUVEOT7a7nHnz5mnv3r02tcaNG2v8+PGV7tWsWTONHj3arv7GG29o586dlepVWFioyZMnKzs726Y+aNAgp67zHTJkiHr37m1TKy4u1hNPPKG0tLRK9UpKStK0adPs6o899pjDwDAAAAAAAAAAAAAAAABQU/lMSPDYsWN2NZPJpOuvv97h8zt37pTFYpH0vxMHSwQFBTlcd/3119ucJljixIkTzo6Namr//v3q2rWrOnXqZPP1ySefVGj973//e91111129Tlz5ujDDz+s8Bxvv/22Fi1aZFefNm2a6tSpU+E+ZT3yyCN2Jx0WFBRo3Lhx+vXXXyvUIycnR4899pi2b99uU69du7ZefPFFp+YymUyaMWOG3VXAp06d0gMPPKCkpKQK9Tl58qQeeOABnT171qberVs3PfDAA07NBgAAAAAAAAAAAAAAAFRXPhMSzMjIcFi/OAxVYseOHXa1krBgz549bU4RLNG5c2eHvbKysioxqXfJz8+vVL2mOHfunIqKiuzq6enpFe7xwgsvqFu3bjY1q9WqmTNnasyYMYqLiyt3bWxsrB588EHNnz/f7rWxY8dq8ODBFZ7jYoGBgVqwYIHq1atnU8/KytKDDz6oGTNmKDU11eFai8Wi9evX64477lBUVJTNa35+fnrjjTfUpEkTp2dr27atZs2aZXfC58GDBzVs2DAtWbJEeXl5Dtfm5OToww8/1B133KH4+Hib18LDw/Wvf/1Lfn5+Ts8GAAAAAAAAAAAAAAAAVEf+nh6gquTk5Dish4eHO6xffAJaWT169HBYL++a0ouvW/UmaWlpGjRoULnBrPK8+OKL5Z4o1717d3399dcumK56Cw4O1rvvvquRI0fanXS5ZcsWbdmyRe3bt1ePHj0UEREhq9Wq1NRU7d69W8ePH3fY8/bbb9ekSZMMzxYZGam3335bY8eOtfn8FhcXa8mSJfrss8905ZVXqnPnzgoNDVVBQYESEhK0Y8cOuxP6pAtXLE+fPt3h1d6VNWTIEKWmpmrWrFk2J3dmZmZqxowZev3113XNNdeobdu2Cg4OVnZ2to4ePaodO3Y4/JzWq1dPCxcuVPPmzQ3PBgAAAAAAAAAAAAAAAFQ3PhMSDAgIcFjPzc21q+Xn52vPnj12p5WVKC8k6Oz1rjVZTk5OpQOCl5OWlubSftVZeHi4vvrqK02cOFE//fST3euHDx/W4cOHK9RrwoQJevzxx8v93FZW79699cUXX2j8+PFKSEiwea24uFi//fabfvvtt8v2CQkJ0WuvvaYbbrjBJXNJ0qhRo9S4cWM988wzdp+/nJwcbd68WZs3b75sn9atW2vhwoVq166dy2YDAAAAAAAAAAAAAAAAqhOfuW64du3aDuvJycl2tV27dpVeJVv2pLISV155pcNe5Z1WGBwcXNExUcM5E9ALDQ3VBx98oGnTptld8VsR7du318cff6yJEye6LCBYomPHjlqxYoX++te/OnUV76BBg7Ry5UqXBgRL3HLLLVqxYoX69+9f6bX+/v568MEHtWzZMgKCAAAAAAAAAAAAAAAA8Go+ExJs1qyZw/rGjRvtaj/88IPN92WDV02bNi33iuLExESHdWeCXzVFSEiIgoKCXNqzvJ+vq7Ro0cKu1rlz50r1aNiwoWrVqmVXb9++vVMzmc1mjRgxQuvXr9ezzz6rjh07XvJ5f39//f73v9e8efO0YsUKXXvttU7tWxF169bV888/rzVr1mj06NGKiIi45PMhISEaNmyYPvvsMy1cuFAtW7Z022xt2rTR+++/r08//VS33XabQkJCLvl8o0aN9PDDD2vt2rV65plnfPL0TwAAAAAAAAAAAAAAAPgWn7lu+OLTwkwmk6xWq37++WcdPHiwNJSVk5OjFStW2J3IZrVaZTKZyr1qWJKio6Md1lu3bm1w+uqrQYMG5b7v6mrmzJmaOXOmoR7t27dXTEyMNm3apHHjxkmSIiMjdeONNxrqW69ePY0aNUqjRo1SWlqaoqOjlZycrMzMTPn5+alevXpq3bq1unfvXuUnVLZu3VpTpkzRlClTFB8fr7179yotLU1ZWVkKDg5W/fr11aFDB3Xu3NmpUweN6N27t3r37q3i4mLt379fhw4dUkZGhnJzc1W3bl01aNBA3bp1U6tWrap0LgAAAAAAAAAAAAAAAMDTfCYk2LJlS4WHh+vs2bM29eLiYo0ePVqPP/64wsLC9P777+vMmTOlIcKLXXPNNQ775+TkaOPGjXbhQpPJpMjISNe9EVQrmzZtKv3z448/7tJwXIMGDTRo0CCX9XOl1q1bV8vwq5+fn7p27aquXbt6ehQAAAAAAAAAAAAAAACgWvCZkKAkXX/99frqq69sAoAmk0mnT5/WtGnTbJ51FBCUpD/84Q8O6/PmzVNmZmZpSLBkfadOnbjS1EtlZ2dr1apVkqSuXbvqj3/8o4cnAgAAAAAAAAAAAAAAAABbZk8PUJXuvvtuh/WS0GDJV9nTAEteM5lMuuKKK9SmTRu79Rs2bNDHH39sd/qgyWRS//79Xf4+UD18++23On/+vCTp73//u90pkgAAAAAAAAAAAAAAAADgaT4VEuzRo4f69etnEwQse6JgyVd5pwjed999drVVq1bpiSeeKO13ccDwrrvucvXbQDXxxRdfSJKuvvpqDRgwwMPTAAB0zryIAAAgAElEQVQAAAAAAAAAAAAAAIA9nwoJStK0adMUHBwsSTZBwbJfJcoG/yIjI3XnnXfa9Dp58qSmTJmioqKi0j4l/zSZTBowYIBat27t9veEqhcTE6O9e/dKkiZNmuThaQAAAAAAAAAAAAAAAADAMZ8LCbZq1Upz5syR2XzhrZecHnixsgHCoKAgzZ49u3RNicaNG6tevXp2ayTJz89PkydPdsdbQDXw5ZdfSpL69++v3r17e3gaAAAAAAAAAAAAAAAAAHDM50KCkjR48GC99dZbqlOnjsPrhssGBGvXrq358+era9eudn0CAwM1ZswYm9MHS04RnDBhgiIjI6vmDaHKxcTEKCIiQk8//bSnRwEAAAAAAAAAAAAAAACAcvlkSFCSBg4cqDVr1ujee+9VSEiI3ZXDfn5+GjJkiJYvX64BAwaU22fkyJGKiIiwqd18882aMGGCu98CPGjVqlXaunWrOnTo4OlRAAAAAAAAAAAAAAAAAKBc/p4ewJPCw8P14osv6rnnnlNcXJwSExNlsVgUHh6ubt26KSQk5LI9atWqpfHjx+uf//ynTCaTRo4cqalTp1bB9AAAAAAAAAAAAAAAAAAAXJpPhwRLBAQEqEePHurRo4dT6++55x4dOXJEN998s/r06ePi6QAAAAAAAAAAAAAAAGqG/Ow8pRxIUvKBJPkF+Kl5txaKaN9Efv5+nh4NAHwWIUEXCAgI0LRp0zw9BgAAAAAAAAAAAAAAgEecP5ul7179RlFvfqfC3AKb1+pGhOrWF/6k/mNvkH8gURUAqGpmTw8AAAAAAAAAAAAAAACAmit+51G90HGS1s1ZZRcQlKSs05n64vGPNOOqZ5WZcs4DEwKAbyOe7cCJEyd05MgRZWVlKSsrS9nZ2fL391fdunVVu3ZthYWFqXPnzgoLC/P0qAAAAAAAAAAAAAAAAB5zKuaE5v9xlnLSsy/7bNK+BM2/eZaejHpeIfVrV8F0AACJkKAkKTMzUytXrtS6desUFxen8+fPV2hdkyZN1L17d91666264YYb5O/PjxMAAAAAAAAAAAAAAPgGq9Wqj0a/q+y0iuUsJOlUdLyWP/OFRiwc7cbJAABl+XSqLSMjQ3PmzNE333yjgoILx91ardYKr09KSlJycrLWr1+v+vXra8SIERo3bpwCAgLcNTIAAAAAAAAAAAAAAEC1ELdhj07sPFbpdT9/vEW3vXS3QhvVc8NUAICLmT09gKesW7dOQ4YM0bJly5Sfny+r1Sqr1SqTyVSpr5J16enpeuutt/SnP/1JMTExnn57AAAAAAAAAAAAAAAAbrXp7XVOrSvMK9RPize7eBoAQHl8MiS4dOlS/f3vf1daWppdMFBSafDvcl+S7AKDhw8f1gMPPKDt27d78i0CAAAAAAAAAAAAAAC4TWF+oeLW73F6/d7vOIAJAKqKz4UEN2zYoBdeeEEWi6XcYGBFlRcYzM3N1bhx47Rv3z63vAcAAAAAAAAAAAAAAABPOrRlvwpy8p1ef+THA8o7n+fCiQAA5fGpkOD58+f14osvlgYEJVU6GFiei8OCOTk5ev75513SGwAAAAAAAAAAAAAAoDqJ/XaXofXFhcU6tCXORdMAAC7Fp0KC7777rs6cOWMTELxY2euDL/flSNmecXFx+vLLL93zZgAAAAAAAAAAAAAAADxkz5rdhnsYua4YAFBxPhUS/Oabb8oNCJZ39fClvioSGFy6dKl73xQAAAAAAAAAAAAAAEAVSjmUpNRDyYb77Fsf44JpAACX4+/pAarK3r17lZSUJJPJ5DAgKF0I9dWrV099+/ZVZGSkWrRooZCQEAUHB6ugoEA5OTk6e/asjh8/rtjYWMXFxZWuL9u3JEBotVq1Z88eJScnq0mTJlX7hgEAAAAAAAAAAAAAANxg75pol/RJ2peg9IQ0hTVv4JJ+AADHfCYkGB8fb1crCfJZrVa1bt1akydP1qBBg+Tn51ehnikpKfrkk0/06aefKjc312EAUZL27dtHSBAAAAAAAAAAAAAAAHiFWBdcNVxi/4Y9+t0DA1zWDwBgz2euG05NTbX5viTQZzKZ1KdPHy1fvlyDBw+ucEBQkho3bqwnn3xS//nPf9SiRYvSvhc7ffq0seEBAAAAAAAAAAAAAACqgfzsPB3cFOeyfvs2xLqsFwDAMZ8JCVosltI/lw3yhYaGat68eQoJCXG6d2RkpBYsWKCAgAC7/pJ07tw5p3sDAAAAAAAAAAAAAABUFwei9qkov9Bl/eLWx9pkOgAAruczIcGGDRvafF9yiuBtt92mBg2M323fuXNn3XTTTQ6vG65bt67h/gAAAAAAAAAAAAAAAJ4W++0ul/bLSs1UQuxJl/YEANjymZBg06ZNHdZ79+7tsj0GDBjgsN6oUSOX7QEAAAAAAAAAAAAAAOAJVqtVe9ZEu7xv3HquHAYAd/KZkOBVV12levXq2dXDwsJctkdERIRdzWw2uzSICAAAAAAAAAAAAAAA4AlJ+xKUduKMy/vGbSAkCADu5DMhQX9/f91yyy121wFnZWW5bI+yvUquM+7Vq5fDcCIAAAAAAAAAAAAAAEBNErvatVcNlzi0Zb8K8wrc0hsA4EMhQUl67LHH7AJ70dGuOwZ37969drVx48a5rD8AAAAAAAAAAAAAAICnuOOqYUkqzCvU4a0H3NIbAOBjIcGGDRtq6tSppaf8Wa1WLV++XHl5eYZ75+fna/ny5aV9TSaTBgwYoP79+7tgcgAAAAAAAAAAAAAAAM/JPZfj1iDfvvV73NYbAHydT4UEJen222/XmDFjSoN8Z8+e1T//+U/DfefOnavU1NTS71u1aqU5c+YY7gsAAAAAAAAAAAAAAOBpcRv2yFJU7L7+62Pc1hsAfJ3PhQQl6cknn1Tv3r1ltVpltVq1bNkyTZ482SbkVxlffvmlPv74Y5tTBF977TWFhoa6eHIAAAAAAAAAAAAAAICqF/vtLrf2P7k7Xtlnzrt1DwDwVf6eHqAqTZgwQTt37pTValV2drZMJpMkyWq16ptvvtHq1asVHh4uf//K/ViSk5PtauPGjVNwcHCF1nfv3l3z5s2r1J4AAAAAAAAAAAAAAABVwWKxaM/aaLfvc+zHw27fAwB8kU+FBKOioiRdCAWWVXICYHFxsVJSUpzqXdKjpH9aWlqF1yYmJjq1JwAAAAAAAAAAAAAAgLud2h2vzOQMt+9z7IdDbt8DAHyRT4UES64CLnuCYNm60d5lVbTfxesAAAAAAAAAAAAAAACqk9jVu6tkn6M/HKySfQDA15g9PUB1QVgPAAAAAAAAAAAAAADA3p41VRMSzErOVJ2ikCrZCwB8iU+dJFiivECgK4OCFell9PRCAAAAAAAAAAAAwNdZii06sGmfdnzxs1IPJ0uS/AL81KhDUzXv1kLNurVUs64tVLtBHQ9PCgA10/kzmTr2y+Eq2y+8IKzK9gIAX+GTIUEAAAAAAAAAAAAANd/J6Hi9e/c8nT6SYvda3IY9Nt/XbxamZt1aqOkVLdS8W8vSPwfVCaqqcQGgRtr7XUyV3s4YkU9IEABczSdDgpzgBwAAAAAAAAAAANRsO//zixaPWqjC3IIKPZ+RmK6MxHTtWxdrUw9vG6Fm3VqqTe926nHbVWpxZWv+PhEAyqiqq4ZLNCyor+KCoirdEwC8nU+FBP39/VVcXFylCXcAAAAAAAAAAAAArnX6aEqlAoKXcubYaZ05dloxq37TyulfK/L3HXXfWw+q5ZWtXTApANRslmKL9q6NqdI9/a1+OrXrhNpEtq3SfQHAm/lUSHD8+PHatm1btQsJdurUydMjAAAAAAAAAAAAADWC1WrVZxP+7ZKAoCNHfjqomX2e17iv/64rb7vaLXsAQE1xbNthZaedr/p9fzikfndfV+X7AoC38qmQ4KOPPurpEQAAAAAAAAAAAAAYcHjrAbsrg12tuLBYi4bP18TvnlXH67q4dS8AqM72rK7aq4ZLHP3hkEf2BQBvZfb0AAAAAAAAAAAAAABQUVFvrauSfYoKivTefQt0LjmjSvYDgOpozxrPhASTYk4pO73qTzAEAG9FSBAAAAAAAAAAAABAjZCRmK5dy7ZX2X6ZyRn6YMSbshRbqmxPAKguziWl68Rvxz2yt9Vi1YGN+zyyNwB4I0KCAAAAAAAAAAAAAGqEHxZ9L0tRcZXueSBqn775x9Iq3RMAqoM9a6I9un/cevdeLQ8AvoSQIAAAAAAAAAAAAIBqr6igSFsWbfTI3qtf/q/2rYupkr2sVqsS953S/o17tWv5dsXvPCqLhZMMAVQ9o1cNh7VoYGj9vvVV83sXAHyBv6cHMKKwsFBWq9Wu7u/vL7OZ/CMAAAAAAAAAAADgLXYt367M5AyP7G21WvXByLf0/K6ZCmtuLPRSnsK8Av20eLO2LNqoU9HxNq/VCa+rq4f31Z9e+bOC64W4ZX8AKKu4sEj71hk7yW/YS8P18cOLZLXY5zoq4syx0zp9JEURkY0NzQEAqMEhwdtuu02HDx92+JrJZNLtt9+umTNn2tTvvvtu7d27tyrGkySZzWZdf/31WrBgQZXtCQAAAAAAAAAAAHijTW+v9+j+589k6f37FmjS98/JL8C1f826Z220vnz8Q6UeTil3783vrFfMqp168KO/qdOgri7dHwAudvjHg8rLynV6vX+gv666+1ptefd7HfvVcbajIvatj9V1hAQBwLAae9zeoUOHZLVaHX5ZLBatWrXKbs2ePXvKXeOOr+LiYkVFRXngpwMAAAAAAAAAAAB4j1MxJ3T4h/2eHkOHtx7Qf5//j8v6nY0/rXfuekMLhswuNyBYVvqpNL19x+tKPpDoshkAwJE9q41dNdzhui4KqhOkLoO7GeoTt8HYaYYAgAtqbEhQunBioKMvSSouLq7UGnd8XWoOAAAAAAAAAAAAABWz6a11nh6h1Lo5qxS9aqehHoX5hVr9yn81/YrJ2r18e6XW5mXlauFdb6gwv9DQDABwKXvWGAsJdrulpySpy43dDfXZ//1eFReRuwAAo2p0SFCS3el9zqxxxxcAAAAAAAAAAAAA43IysvXrpz96egwbH45aqDPHTzu1dt+6GL3U42mteP4rFeYWONUjaV+C9n0X49RaALics/Gnlbj3lKEe3YdcCAm269tBteoEOd0n91yO4nccNTQLAMALQoIAAAAAAAAAAAAAvNdPH25RQU6+p8ewkZOerff+PF9FBUUVXpN28qzeHT5P82+epdRDyYZn2PZ59QpOAvAeRq8ajohsrEYdmkiS/AP91XFgF0P94tZz5TAAGEVIEAAAAAAAAAAAAEC1ZLFYtPltY1cNm/3ManNNO9WqXctFU11wfPtRLZ386WWfKyoo0tpZKzW9y1P6bek2l+2/77sYbjgD4BaxLrhq2GQylX5/xWBjVw7vIyQIAIb5e3oAo8r+i8WdawAAAAAAAAAAAABUrbj1sUo9nGKoR887emvcf/4ui8WitPgz2rcuVp/+7QOXzLdxwXdq37+zrr772tKa1WrV+TNZSj2UrKR9CVo39xulHEhyyX5l5WTkKP1Umhq0bOjy3gB8V2FegfZ/v9dQj27/f9VwiStuMhYSPPrLYeVl5SqobrChPgDgy2psSLAk6Ffe/zvGz8/PrmY2m2WxWNw618X8/WvsjxgAAAAAAAAAAADwqKi3jJ0iKEkDJ9wo6cLfFYa3baQB425Q2okzWjNzheHekvTx6EU6FR2vM8dSlXooWSkHk5V7LsclvS8nIfYEIUEALnVwc5wKcwucXh8QHKiO19leL9y4UzOFtWig9FNpTvW0FBXrwKZ9uvK2q52eCwB8XY1NsD300EOKjY11GBL08/NT37597epTpkzRgQMHqmK8Ur169arS/QAAAAAAAAAAAABvcOZYqvZ8a+zKy6ZXNFfHgVfY1W/7x9068tNBHdwcZ6i/JOVl5Wr1y/813McZCTEn1X0Ifx8JwHX2rDb2e7fz9V0VGBxoUzOZTOoyuLt++nCz033j1u8hJAgABtTYkODkyZMrvWbUqFGuHwQAAAAAAAAAAACAy21+Z0O5t4pV1MAJN5XeUFaWn7+fHv7sUf2z17PKSs00tIcnnYo94ekRAHiZPWuMhQS7X3TVcIkuNxoLCe5bH+P0WgCAZPb0AAAAAAAAAAAAAABQVkFugX789yZDPYLqBqvvX/uV+3q9pmEa/emjDkOENUVC7ElPjwDAiyQfSFTq4RRDPbreUk5IcHA3Q31TDiQp7eRZQz0AwJcREgQAAAAAAAAAAABQrez48mdlp5031KPv/f0VVDf4ks90uaGbhk6/y9A+npS8P1GF+YWeHgOAl/jxg02G1je9ornC20Q4fK1uRKha9mpjqH/c+lhD6wHAlxESBAAAAAAAAAAAAFBtWK1WRb21znCfQY/cWKHnhjx3h7rc2N3wfp5gKSpW8v5ET48BwAsU5ORr6wdRhnp0K+cUwRJdBhv7XRu3gZAgADjL39MDVJVDhw5p9OjRysvLc/h6u3bt9MUXX1TxVAAAAAAAAAAAAADKOr7tiE7sPGaoR+cbuqpJ5+YVetbsZ9ZDSybo5aumKiMx3dC+npAQe1Itr2zt6TEA1HDbPv9JOenZhnp0H3LpkOAVN3XXujmrnO4ft2GPLBaLzGbOwwKAyvKZ35xbt25VamqqMjMzHX6dO3fO0yMCAAAAAAAAAAAAPs81pwjeVKnnQxvV08OfPyazX83769OEmBOeHgFADWe1WhX1prHfvUF1gxX5h06XfKb9HzoqICjA6T3On8nSqWh+5wGAM2ref8t1UnFxsSTJZDLZfJXUOnW69L+sAAAAAAAAAAAAALhXZuo57fzqF0M9wlo2VPehV1V6XYf+nXXHy382tLcnnIolMAPAmMNbD+hUdLyhHlfc1F3+gZe+zDIgKFAdBnQ2tM+xXw8bWg8AvspnQoKtW1/6iO3w8PAqmgQAAAAAAAAAAACAI1vfj1JRQZGhHteNHyw/fz+n1t741K3qPrSXof2rWmLsSU+PAKCGc8UJrn3+8ocKPddlcHdD+xi9jh4AfJXPhAT79u2rWrVqlX5vtVptXq9Tp05VjwQAAAAAAAAAAADg/xUXFWvLu98b6uEf6K9+Dw9yer3ZbNaDH/5NDVrVnANGMhLTdf5MpqfHAFBDpSekadfSbYZ6hLVsqB63VewE1ytu6mFor/jfCAkCgDN8JiRYt25dDRs2zC4cWCIrK6uKJwIAAAAAAAAAAABQImbVb0o/edZQj95/7qu6EaGGetRuUEdjv3xcfgHOnUboCQmcJgjASVsWbpCl2GKoR2VOcG3evaVqN3D+EKfEPSdVmF/o9HoA8FU+ExKUpMcee0yhoRf+R4HJZLJ5bf/+/Z4YCQAAAAAAAAAAAICkTW8bv+5y4ISbXDCJ1Pba9rrr1b+4pNelmP3MumHiLRo67U5DfU7FnHDRRAB8SWF+oX54b6OhHv61AtR/TMVPcDWZTGp1VRun9ysuLCYYDQBO8KmQYKNGjfTKK6/YnCZoMplktVq1a9cunTzJv0gAAAAAAAAAAACAqpYUl6D93+811KN173Zq0yfSRRNJ1z9+s66+p6/L+l2sw4DOem7nK7rnjb+qff/OhnoRmAHgjJ3/+VVZqcauK7/mvt+pTnjlTnBtdVVbQ3vG7zhqaD0A+CKfCglK0uDBg/Xwww/bXTtstVo1c+ZMD00FAAAAAAAAAAAA+K5Nb6833GPghBvtbhMzwmQy6cGP/qbuQ3u5pJ9/oL+adWupAWNv0JNRL+jJqBfUokcrSReu3zQiIZaTBAFUXtSb3xnucf2jf6z0mtZXGwsJnth5zNB6APBF/p4ewBOeeuophYSE6F//+pdMJlPpaYJRUVF6++23NWHCBE+PCAAAAAAAAAAAAPiEvKxc/fLxD4Z61G5YR73//DsXTfQ/AbUCNO4/f9f6177V2lkrlJ+df8nnzX5mhbeNUKMOTdSoQ1M16tBEjTs0UaOOTdWgZUOZ/Ryf4RLaqJ5CG9dTZso5p+ZM2HNKlmKLU2sBeF5xUbEORO1T9Mqdyj6bpfzsfIXUD1G9pmGq17S+6je78M96zcJUr2mYAoMDDe95bNthHd92xFCPyN93dOpUwFYGQ4LxvxESBIDK8smQoCRNmDBBYWFh+sc//mETFFywYIGOHDmicePGqUOHDi79fxsBAAAAAAAAAAAAsPXLkq3Ky8o11OMPDw1ySWjGkYBaARry3B36w+iBiv12lw5s2qfcjByZ/cyq3yzsQhCw44VAYHjbCPkFOPdXsM17tFLm+lin1hbmFuj00RQpyKnlADxo3/pYffTQu8pISKvwmtIAYbP6/x8kDFN4m3B1HHiFmnRuVqGcQ9Sb64yMLUka+MhNTq0Lb9tIIWG1lZOe7dT6xD0nVZhfqIBaAU6tBwBf5FMhwTfffFPR0dGl32dmZpb+2Wq1lgYFV69erdWrVxvez2Qy6eabb9brr79uuBcAAAAAAAAAAADgjba+v9HQepPJpOv+NthF05SvXpP66jd6kPqNHuSW/s27tVSckyFBSUqIOamIPk1dOBEAd1szc4X++9yXlV6Xk5GjnIwcJcUl2L0W1qKBhk6/S394aGC5YcHMlHPa+dUvld63rNAm9XXVXX2cWmsymdTqqjba//1ep9YXFxYrIfak2vRu59R6APBFPhUSfOuttxzWrVZr6T9LgoKuYLVatW6d8fQ9AAAAAAAAAAAA4I3OHD+tk7vjDfXoPrSXwttEuGgiz2nRo5Wh9adiThASBGqQ6JU7nQoIXk76qTQtGfOedi3bpgc/+pvqhIfaPfPDextVVFBkaJ8B426Qf6DzkZPWV7dzOiQoSSd2HiMkCACVYPb0AFWpbBiw5MvRMyXXDxv9kqTi4uIqfY8AAAAAAAAAAABATXFoc5zhHoOcvO6yumluMCSYsOekiyYB4G7nz2Tqw1HvuHWPPWui9dp1/1T6RdcYFxcWacvCDYZ6+wX4acC4Gwz1aH11W0Pr43ceNbQeAHyNT4UES1wc5LtY2RChs18AAAAAAAAAAAAALu3wjwcMrW/UoYk6D+7momk8q2mXZjL7Of/XtwkxJ1w4DQB3+ual5crJyHH7PklxCXptwD90+mhKaW3X8h3KSEw31Pfq4deqXpP6hnq0MhgSPPHbMUPrAcDX+GRIkDAfAAAAAAAAAAAA4HlHfjpoaP3ACTfKbPaOv/IMCApU447OXxd8+kiKCrLzXTgRAHdIOZikzQZP8quMM8dO67UBLylx3ylJUtRb6wz3HOiCE1zD2zZSSFhtp9cnxJ5UYX6h4TmA/2PvzsOjrK/+j38meyAJYQkhGwHCGvbFBVkUFfcF960+bq1L1T6lj7bVX92qVuuC1dZat1q1Kiq44IILLhWQRRIIgbCEAAkkIYRAICF7Zn5/eFEJMyHJ/b0nk5l5v66Lq/WbOec+zNwOwZw5BwgWgfEdMwAAAAAAAAAAAAC/cnBvtUrzii3Hh0eFa/I1022syPdSxqQZxZdvLmv7QQB86r275srZ1Nyp16ws2acnTvyjlr7yrbYs3miUq//EgRp0/BDjmhwOh/pPGGA5vrmxWSWsWQeAdgvKJsHD1w176xcAAAAAAAAAAACA1plOERx4/BB1i7c+haorShnd3yi+bGOpTZUA8Ib8xRu15v0ffHLtgxXVeu2GF4zznHzb6bb1RPSfMMgovjCLlcMA0F5hvi6gMzkcjk5fMRwWFlRPMQAAAAAAAAAAANAuBUvNmgQHTxlqUyVdR8pos0mCuzfssqkSAHZzOp2ad8e/fV2GkZg+sZp02fG25UufONAovogmQQBot6DqYLvzzjuVn5/fqdccP358p14PAAAAAAAAAAAA8Adblm4yis+YMsymSrqO1DFmkwR3b6JJEOiqst5Zru0/bPV1GUam/eJkhUdF2JbPtEmwMJsmQQBor6BqErz++ut9XQIAAAAAAAAAAAAQ9BrrG42aZRwOhzImD7Gxoq6hV/8+ioqLVt2BWkvxuzeUStE2FwXAWGNdg96/a66vyzASEhqi6TefamvOPoP6qlt8N9VU1liKL8ndoaaGJoVFBFXrCwBYEuLrAgAAAAAAAAAAAAAEl6LsbWqqb7QcnzI6TdE9utlYUdfgcDiMVg7X7a9VlNO+KV8A7PHN375QReEeX5dhZNysSeqV1tvWnA6HQ2kTrE8TbGpoUsm6HTZWBACBiyZBAAAAAAAAAAAAAJ1qyxLDVcMnDLWpkq4ndbTZyuG4xhibKgFgh+qKKn368Ae+LsPYjNtO90redIMmQUkqzGLlMAC0h9/OXM3NzVVBQYHbeWpqqiZNmuSDigAAAAAAAAAAAAC0R8H3m43iM6YEbpNgyhizJsHYpu42VQLADp88+L5q91tbp9tVpIxO05Dpw72Su/9EsybBoqxt0i9sKgYAApjfNglec801qq2tdTuPjIzUmjVrfFARAAAAAAAAAAAAgLa4XC4VLDVrEhw8dZhN1XQ9JuuGJSmukSZBoKsoyy/Vt3//0tdlGDvp1tPkcDi8kjvdsElwe9ZWmyoBgMDmt02CNTU1cjgccrlcLc7r6+t9VBEAAAAAAAAAAACAtpRtLlX1nirL8fEpvdSrfx8bK+paUkaZNQkySRDoOj64+205m5qN81z8xFVqqm/S/tJK7S/dp8qSfSrO3aH66jobqjy6bvHddNxVU7yWPyEjUdE9ulmetliSu0NNDU0Ki/Db9hcA6BR+/y55eLf6kQ2DAAAAAAAAAAAAALoW0ymCGVOGem2iVVcQ3aObeg9IUMX2ckvxMU3d1NzQZHNVADpqy9JNyp6/0jjPcT+bqpm/OdvtvCRvp54+7RFVluwzvsbRTLl+hiK7R3ktv8PhUP8JA7TpmzxL8U0NTSpZt0P9J5hNJASAQBfi6wJMuVwumgMBAAAAAAAAAAAAP2G8anhK4K4aPsRk5XCIQrSnwA45/O8AACAASURBVFqDIQB7uFwuzbvjDeM8YZHhmvXQpR6/lpyZqju+u1d9BiYYX6c1DodDJ/7yVK/lP8S0wa8wa5tNlQBA4PL7JkEAAAAAAAAAAAAA/mPL0k1G8YOnDLWpkq4rZXR/o/jdG0ptqgSAFVnvrtC2FVuM85z66zOPul49YVCi7vjuPiWNSDG+liejzxmvhEGJXsl9uPSJZk2CRTQJAkCbaBIEAAAAAAAAAAAA0Cmqyg+obLP1BrbI7pFKGWPWQOcPUg1/j7s37bKpEgAd1VjfqPfvess4T0yfWJ3x+/PafFzPlF76v2/vUdr4AcbXPNKMW0+zPacn/Q2bBAuzaRIEgLbQJAgAAAAAAAAAAACgUxR8b7ZqeNDkIQoNC7Wpmq7LZN2wxCRBwJe+/dsX2rPNfOX3OfddpOge3dr12NiEOP3f139Qho2TVhOHJWn4qaNsy3c0CRmJioqLthxfvLZITQ1NNlYEAIGHJkEAAAAAAAAAAAAAnWLLErNVwxknBP6qYUnqO6SfwiLDLcfv3sgkQcAXqiuq9OnD7xvnSRyapOk3ntyhmOge3fS/n/1emaeNNr6+9OMUwZCQzmkpCQkJUf8J1qcJNjU0qWT9ThsrAoDAQ5MgAAAAAAAAAAAAgE5hOkkwY8owmyrp2kLDQpU8MsVyfFXZAVVXVNlYEYD2+PShD1RTWWOc58I/X6HQ8LAOx0V2j9IvP7xD4y44xuj6UbHRmnzNdKMcHZVuuHK4KIuVwwBwNDQJAgAAAAAAAAAAAPC6htoGFa7aajneEeLQoOMH21hR15Yyur9RfHHuDpsqAdAeu7fs0rd//8I4z5DpwzX2vImW48Mjw3Xj27/S8VdPtZxj+k2nKCrW+vpfK0ybBAuzrP/5AgDBgCZBAAAAAAAAAAAAAF5XuGqrmhubLcenjk3v9KYVX0oZnWYUX7y2yKZKALTH+3fPNXqPO+Tix6+Sw+EwyhEaFqprXrlZJ/1yZodje/Xvo7PvvdDo+lb0N50kmM0kQQA4mo7Pp/UDn332mXr37u3rMuRwOJSWlqbExERflwIAAAAAAAAAAAD4VMFSw1XDJwy1qRL/kDrGbJLgTpoEgU5T8P1mZc9baZzn2CtP0IBjMmyoSAoJCdHlf71WUXHR+uzRBe2KCY8K19Uv/kJRMVG21NARCRmJioqLVt2BWkvxO9fuUHNjk6U1zQAQDALm3dHlcv33f2fPnu3jan4SFxenFStW+LoMAAAAAAAAAAAAwKe2fL/JKH7w1GE2VeIfUgybBIvXsW4Y6CwL7nvXOEdYZLjOf+gyG6r5icPh0AV/ulwpo9L01u3/Us2+g60+Nj65p255/ze2NSl2VEhIiPpPGKjN3+ZZim+qb1TJ+p1KGzfA3sIAIEAE5Lphl8vVZX4dOHDA108HAAAAAAAAAAAA4FNOp9N4kuDgKcE1STCubw/F9o2zHF+ybqeczU4bKwLgya5NJdr41XrjPCf/6gz1GZBgQ0Xujr1yiu7LfUyn/PpMJY1IafG15JGpuuTJn+menEd91iB4SPoEs5XDhVmsHAaA1gTMJMHDORwOX5cg6afphgAAAAAAAAAAAEAw27Wx5KgTrNrSO72Peqb2trEi/5A6pr82LFpnKbahpl7lW8uUOCTJ5qoAHM6ONcPde8fozLvOs6Ga1sUn99Slc66WJFWVH5DDIUV0j1J4VHiX6bHoP9GsSbAoa5t0wwybqgGAwMIkQS/9AgAAAAAAAAAAAPAj0ymCGUE2RfCQlNGGK4dzWTkMeFvel2uNc5xz70XqFt/dhmraJzYhTjF94hQRHdFlGgQlKd2wSbAwm0mCANCagGwSBAAAAAAAAAAAANB1bFm6ySg+44RhNlXiX1JGpxnFF68tsqkSAJ7UVdWq4Pt8oxx9h/TT9JtOsaki/5YwOFERMZGW43fmFKm5scnGigAgcNAkCAAAAAAAAAAAAMCrTCcJDp4anE2CqWPMJgnuZJIg4FWbvs2Ts6nZKMeFj16hsIgwmyrybyEhIeo3KsVyfFN9o0rW77SxIgAIHDQJAgAAAAAAAAAAAPCa/bsqVV5QZjk+Ki5aySNTbazIfyRlpsgRYn0VaEkukwQBb8r7ItcofvDUYRo3a5JN1QSGJIMmQUkqzGLlMAB4EpBNgg6Hw+e/AAAAAAAAAAAAAJhPERw0eYhCQgPyx5ptCo+KUOLQJMvx5QW7VVddZ2NFAA634UuzJsETb5lJf8ERkkabNQkW0SQIAB4F5HfTLperS/ySfhyHCwAAAAAAAAAAAASrLUs3GcUPnhKcq4YPSTFYOexyuVTK6k3AKyoKy1W2udQox4hTR9lUTeBIGm02ObYwmyZBAPAkYBbbOxwOuVwuORwOnXjiierZs6evS5IkjRw50tclAAAAAAAAAAAAAD5T8L3ZJMHBU4baVIl/Sh3dX1nvLLccX5y7QwOPG2xjRQAkacOX64zi+08YoNiEOJuqCRy9BvZWo6NJ4S5r7Sw7c4rU3Nik0PCAaYcBAFsE5LviP/7xD1+XAAAAAAAAAAAAAAS9hpp6FWVvtxwfEhqiAcdm2FeQH0oZnWYUv3NtkU2VADhc3pdrjeJHnDrapkoCiyMkRAfCq9W7Id5SfFN9o0ryipU2Nt3mygDAvwVkkyAgSWVlZcrNzVV5ebn279+v6OhoxcfHa+jQoRo2bBiroA3U1dVp7dq12rFjhyorK9Xc3KyePXsqOTlZY8eOVUxMjM9q27t3r9auXauysjJVVlYqIiJC8fHxGjRokDIzMxUeHu6z2gAAAAAAAAAACDbbVhbI2dRsOb7/hAGK7B5lY0X+x2TdsCQV59IkCNjN2ezUhkVmkwQzTxtjUzWBZ79Bk6AkFWVto0kQAI5AkyC8qqGhQW+99Zbeeecdbd26VU6nUyEhIXrhhRc0bdo0269XUVGhefPmaf78+SosLGz1cTExMTr99NN11VVX+XQl9Jw5c/Tiiy/K6XR6JX9oaKief/55W57rpqYmff3115o7d65WrlypxsbGVq85btw4XXHFFTr99NMVERFhfO22VFdX64MPPtA777yjTZs2tfq4qKgonXjiibrqqqt03HHHeb0uAAAAAAAAAACCXcFSs1XDGScMs6kS/9U7vY+iYqNVV1VrKX7n2iK5XC45HA6bKwOCV2HWVtXsO2g5Pjw6QhlBvkr9aPaHVxnFF2Zt05TrT7KlFgAIFDQJwiuampr03nvv6dlnn9WuXbtafM3pdKq8vNzW6zU2NuqVV17Rc889p5qamjYfX11drfnz52v+/Pk6++yzdddddykhIcHWmtpj8+bNXmsQlKTm5uZWm/k6YtWqVXrggQe0eXPbf5Fvbm5WVlaWsrKy9Le//U333XefTjjhBOMaPHG5XJo3b56eeOIJVVZWtvn4uro6ff755/r88881ZcoU3XfffUpP5xMkAAAAAAAAAAB4y5alrX+4vz1oopEcDodSRqep4HtrDZc1+w6qsmSfeqb0srkyIHjlfZFrFD/spBEKj2QDWmsqDZsEi7K32VQJAAQO9q3CVk6nUx999JHOOuss3XPPPW4Ngt5QXl6uK664Qk8++WS7GgSP9Mknn+icc87RDz/84IXqjq49jW2m4uLiLMe6XC49/fTTuuqqq9rVIHik7du367rrrtNjjz0ml8tluQ5PqqurddNNN+kPf/iDpedx6dKlOvfcc7Vw4UJb6wIAAAAAAAAAAD9yOp3auizfKMdgmgQlSSmj04zii9eychiwU96XZk2CI2ayavhoDobWKqK79Y11O3MK1Wyw6h4AAhGTBGGbRYsW6emnn7bUTGZVYWGhrr32WpWUlLh97dDa22HDhikuLk51dXXatm2bfvjhB7dmwsrKSl133XWaM2eOTjvttM4qX/v27fP6Naw2CTqdTv3ud7/TggULPH49LS1N48ePV2JioiSprKxMq1ev1o4dO9we+/LLL6ukpERz5sxRSIh5b/LevXt17bXXelwt7HA4NHLkSI0cOVI9e/ZUQ0ODioqKtGrVKrdmwvr6es2ePVt79uzR1VdfbVwXAAAAAAAAAAD4Sen6nard3/EBD4f0GdRXPZJ62liR/0od098ofufaIo06c5xN1QDBra6q1rgBOvO00TZVE6AcUuLIFO1YaW0iYGNdo0rzio3fOwEgkNAkCGPLli3TnDlztHbt2k69bmVlpW688Ua3BsHQ0FD97Gc/0y9+8QuPK4Tr6uo0f/58Pf3009q/f/9/zxsbG3XHHXfotdde07hxnfOXJG83CUZERFheo/z44497bBAcN26c7rzzTk2aNMlj3KpVq/TEE09o9erVLc4XLlyovn376u6777ZUzyENDQ269dZbPTYInn/++br99tuVlub+abqmpiZ9+umnevLJJ1tMuHS5XHr44YfVr18/zZw506g2AAAAAAAAAADwky1LzFYNM0XwJ8aTBNe5D3kAYM2mb/PkNJhSF5/cU0kjUmysKDAljbbeJChJhVlbaRIEgMPQJAgj27Zt07XXXuuTa99xxx3avn17i7OYmBg9++yzOv7441uNi4qK0lVXXaWTTz5ZN954Y4vJh/X19brtttv0ySefqEePHt4qXZLU3NysAwcOtDi75JJL9OCDD8rhcHj12m359NNP9c9//tPt/JprrtHvfvc7hYaGtho7adIkvfHGG3r88cf1yiuvtPjaq6++qjFjxuicc86xXNvDDz+s7OzsFmfh4eF69NFHj5o3LCxM5513nk488UTddtttWrly5X+/5nK5dOedd+rDDz9Uenq65doAAAAAAAAAAMBPtnxvtn0qY8owmyrxfymjzRpdWDcM2CfvC8NVw6eN9vnPg/1B0uhUo/iirG2act1J9hQDAAHAfO8nglpdXZ3H8379+unmm2/W3LlzvXLdDz/8UIsXL25xFh4ern/84x9HbRA8XFJSkv71r38pJaXlpzTKy8v12GOP2VZrayorK+VyuVqcDR482OffEFZWVuqhhx5yO7/ssst09913H7VB8JDQ0FD9/ve/15VXXun2tT/96U8tJjh2xKpVq/T222+7nbfVIHi4Hj166IUXXtCoUaNanNfW1ur++++3VBcAAAAAAAAAAHBXsNSsSXAwTYL/Fd2jm3qn97EcX7qhRE0NTTZWBASvDV+aNQlmzhxjUyWBLWm02bTFwmzrUwgBIBDRJAjbRERE6Mwzz9SLL76ob775RrNnz9b48eNtv05tba3+/Oc/u53ffvvtOuaYYzqUq3fv3nryySfdGt/mz5+v3Fyzb+7a4mnVcM+ePb16zfZ45plnVFFR0eJs6NCh+sMf/tDhXHfffbeGDx/e4qyiokLPPPNMh3O5XC498MADbo2Vl112WYcnE0ZHR+svf/mLunXr1uL8+++/1+eff97h2gAAAAAAAAAAQEv7iveqYnu55fhu8d3Ub0SyjRX5v2SDlcPOpmaVbSqxsRogOO3ZXq6yzaVGOUacOqrtB0G9B/VRZEyU5fidOUVqNlgLDQCBxu+bBB0Oh88nrwWzxMRETZs2Tffee6+WLFmiv/zlL5o+fbpCQrx3a73zzjtuTWz9+/fX9ddfbynf+PHjdf7557c4c7lceuGFFyzX2B6emgR79+7t1Wu2Zc+ePZo3b57b+f/7f/9PERERHc4XHh7usblw3rx5bq9hW7766qsWq6ElKS4uTv/3f//X4bokKS0tTTfccIPb+fPPP28pHwAAAAAAAAAA+InpFMGMKcO8+vMmf5RquHJ4JyuHAWOmUwT7Txig2IQ4m6oJbI6QEKWNH2A5vrG2Qbs2FNtXEAD4Ob/9znrAgAFyuVwtfklSnz7Wx2yj43r16qWXXnpJV111lXr06OH16zU3N+uVV15xO//FL36h8PBwy3lvvvlmt2bTRYsWafv27ZZztsVTk2CvXr28dr32eP3111VfX9/ibPz48e1e4ezJMccco4kTJ7Y4q6ur0+uvv96hPC+99JLb2ZVXXml031177bVu0wTXr1+vZcuWWc4JAAAAAAAAAACkgqWbjOIzThhqUyWBI2WMaZPgDpsqAYLXhkWsGu5M6RMGGsUXZrFyGAAO8dsmwQ8//FBfffWV26+FCxf6ujR40cqVK1Va2nJ8c3R0dIfXzR4pPT1dxx57bIszp9Opjz76yCjv0XS1JkGXy6UPP/zQ7fzSSy81zu0px4IFC9odX1RUpNWrV7udX3zxxUZ1xcTE6IwzznA79/Q8AAAAAAAAAACA9tti2iQ4hSbBI6UYrBuWpJJ1TBIETDibndqwaJ1RjhEzR9tUTXDoP9GwSXDVVpsqAQD/57dNgpGRkUpJSXH7FRMT4+vS4EWemkCnTp3qNg3OipkzZ7brenbpak2Ca9ascWvADA0N1cknn2yce8aMGQoLC2txVlxcrJycnHbFe3odMjMzlZZm9pdhyfPrvmjRIjU0NBjnBgAAAAAAAAAgGNVV12lnjvWGtNDwUA04JsPGigJD4tAkhUWEtf3AVjBJEDBTmLVVNfsOWo4Pj46gAbqD0k2bBLOZJAgAh/htkyCC09dff+12NnnyZFtye8pTUFDgtZXDRzYJdu/eXREREV65Vnt4em5HjBih+Ph449w9evTQiBEj2nXN9tZmsgL5cMcee6xCQ0NbnFVVVemHH36wJT8AAAAAAAAAAMFm24otcjY7Lcf3nzhQEdG++5lJVxUaFqqkkamW4yuL96q6osrGioDgkveF2arhYSeNUHhkuE3VBIfEoUmK7B5pOX5nTpGam5ptrAgA/BdNgvAbO3bsUHl5udv5uHHjbMmfkZGhuLg4t3NPa27tUFlZ2eKffTlFUPL8+xw/frxt+T3lys7ObjOuoaFB69evb1c+K2JiYjRkyBC3c2+97gAAAAAAAAAABLotS8xWDQ8+YZhNlQSe1DH9jeKLc5kmCFiV96VZk+CImWNsqiR4hISGKG38AMvxjbUN2rWh2L6CAMCP0SQIv+FpNW1oaKjHBi8rHA6HBg8e7HburWaxIycJ+rJJsLm5WevWrXM7HzbMvr+EDx3qPjp73bp1am4++ic31q9fr8bGRq/WRpMgAAAAAAAAAAD2Kfh+s1H84Kms42xNyqg0o3iaBAFr6qpqtXVZvlGOzNNG21RNcOk/wXDlcBYrhwFAokkQfmTjxo1uZykpKbau6B0wYEC7rmuHrtQkuH37dtXW1rqdDxxo9g3X4Tw9tzU1NW2uc/b0/IeHhystzewvwYfrzNcdAAAAAAAAAIBA1tzUbNxIM+gEmgRbk2I6SXBtkU2VAMFl07d5chqsrY1P6aWkESk2VhQ80ifSJAgAdgjzdQFAe5WUlLid9evXz9ZreMrn6bp2OLJJsGfPnm6PWb16tRYvXqw1a9Zo+/btqqqq0sGDBxUZGakePXooLS1NI0aM0PHHH68pU6YoMjLSUi2t/R7tfH5by1VSUqKMjIxW4zzV1rdvX4WE2Nfj7Km2iooK1dfXW35OAQAAAAAAAAAIRsW5O1RfXWc5vu+Qforr28PGigKL6brhkrydNlUCBJe8L8xWDWfOHC2Hw2FTNcGlv2GTYFE2TYIAINEkCD/iqVksISHB1mv07dvX7WzPnj1qaGiwdWKh1PokwZqaGr3zzjuaO3eutm3z/A1LTU2NampqVFpaqpUrV+rVV19VXFyczj//fN10000dfl5aaxL09HxY1VqutpowffW6u1wulZSU2DpNEQAAAAAAAACAQFewdJNR/OApw2yqJDDFJfZQbEKcqsoPWIovWb9TLpeLZiWggzZ8adYkOGImq4at6jcsWZHdI1V/sN5S/I7V29VQU6+IbgyHARDcWDcMv7F79263s9jYWFuv4Smfy+XyeG0TjY2Nqq6ubnFWUFCgZ599VjNmzNAjjzzSaoNgaw4cOKDXX39dM2fO1Ouvv96hWE+/v8jISFsbIyMjIxUeHt6ua7f19c543Vu7NgAAAAAAAAAAaF3B95uN4jOmsGq4Lcmj0yzH1h2oVWXxXhurAQLfnu3lKttcapRjxKmjbKom+ISEhih1XLrl+Ma6Rq37LMfGigDAP9EkCL9RU1Pjdta9e3dbrxETE+PxvK7O+lh8T46cIihJ33zzjZ555hlVVlYa5a6trdVDDz2kO++8U83Nze2K6YznVvL8/NbW1h41JpBedwAAAAAAAAAAApnL5dKWJaaTBGkSbEvSiBSj+NK8YpsqAYKD6RTB/hMGKDYhzqZqglP6BLPtb9nzVthUCQD4L9YNw294atjyNJnORFiY538l2mpk66i9e9v+hFZUVJQmT56s6dOna9y4cerdu7d69uypuro6VVRUKCcnR0uWLNFnn32mxsZGt/gFCxYoLCxMjzzySJvX6oznVvL8/LbViBdIr7u/am5ubnMtNNARh+4n7it4C/cYvI17DN7GPQZv4x6DN3F/wdu4x+Bt3GPwtkC/xyp37NW+ndan1EX37KaGbs3asWOHjVUFnuhks2EKeUvXKXZET5uqQbAJ9PcxT7I+NGswSz1+AO9rHeDpHosZFG+UM+ejLG3N36rwKPt/Bg7/EozvYei45ORkhYaG+roM29EkCL9RX1/vdtZac5dVreXzdG0TsbGx6t+/v4qKity+Fh8fryuvvFJXX321evXq5fb1iIgIxcXFaeDAgZo1a5buvPNOPfroo/r000/dHvvee+9p0qRJuuiii45aT2c8t5Ln5r62mgR9+bozSfBHFRUVOv74431dBgLQhRde6OsSEOC4x+Bt3GPwNu4xeBv3GLyJ+wvexj0Gb+Meg7cF6j2WUpOo8RpuOX5bTZEmT55sY0WBqVdDD52gcZbjX37iRf3vS3faWBGCUaC+j7lxSaeVnaAIWW8ue3Lu07r7/QdsLCo4HH6PRTdF6hRZ/3llw8EGXXz8LJVFVdhRGgJA0LyHwZLVq1erb9++vi7DdjQJwm+EhobK6XS2OGvvOt32OjL/IXZPrktJSdEnn3yif/3rX3ruuedUU1OjiIgI/exnP9Mvf/lLxcbGtjtXYmKinnrqKY0fP14PP/yw29cfe+wxnX766a2u1JU8N8nZ/dy2lrOt59ZTd3Znve4RERG2Xsdf9e7dW8uXL/d1GQggJSUluvDCC/Xee+8pOTnZ1+UgAHGPwdu4x+Bt3GPwNu4xeBP3F7yNewzexj0Gbwv0e+zj387Tmrd/sBx/5W+u1t9uPsm+ggJUbWWNnhxrveFo8vDj9MIHr9lYEYJJoL+PHal4zQ69cv7fLMeHR4frw+UfKyyS1oz2au0ee/HMv6gsr9Ry3utOvFqznr7cjhLhx4LtPQzW9O7d29cleAV/EsFvREdHu63VbWpqsvUantb2Sj+u/rVbRESEbrzxRs2aNUtz587VBRdcoLS0NMv5/ud//kd79+7Vc8891+K8srJSb7zxhm666aZWYz39/ux+blvLGR0dfdQYT1+3u7bW8nnjdfdHoaGhRvcm0Jrk5GTuLXgV9xi8jXsM3sY9Bm/jHoM3cX/B27jH4G3cY/C2QL3HSrLN1mlOOvu4gHxebJcmxfWL14FdlZbCKwrKlZqaKofDYXNhCCaB+j52pLWvrjKKH3ZSpgYOHmhTNcHlyHvsuMunasG971rOt+WrjeqXkKjwKAbFIHjew4DDhfi6AKC9IiMj3c5qampsvUZr+dpqZDPRt29f/epXv7LlD6Bbb71V/fv3dzv/6KOPjhrnqRnO7ue2tZxtNeJ1Rm0HDx70eO7N1x0AAAAAAAAAgECyv3SfdufvshwfHh2h9EmDbKwosCWPTLEcW3egVvt27rWxGiBw5X2ZaxQ/YuYYmyrBxEuOM4qvq6o1fj0BwJ/RJAi/0bNnT7ezAwcO2HqN6upqj+e9evWy9TreEh4erhtuuMHtPD8/X2VlZa3GxcfHu53V1NTYOrGvqalJtbW1budtPbeeauus193TPQcAAAAAAAAAANzlL95kFD9o8hCFRbAErb2SM1ON4kvW77SpEiBw1R6o0dZl+UY5Mk8bbVM16DcsWcmjzAbvZM9faVM1AOB/aBKE3/C0D76iosLWa+zZs8ftLC4uTjExMbZex5umT5/u8XzDhg2txnh6biV7n9/WcrV27aN9vTNed0lKSbH+KTwAAAAAAAAAAIJJ/net/xyiPYZMG25TJcEhaaRZk2BpHk2CQFs2f7tBzqZmy/HxKb2UNIKfN9ppwkXHGsXnfJilxvpGm6oBAP9CkyD8hqdmsV27rI+t98TTtD1/axRLTk5WQkKC23lpaelRYzyx8/ltbZJhaurR/xLrqbajTUW0wlO+uLg4xcbG2nodAAAAAAAAAAACVf7ijUbxQ6fTJNgRyZlmP78qXV9sUyVA4Mr7Yq1RfObM0XI4HDZVA8l85XDt/hpt/GqdTdUAgH+hSRB+IyMjw+1sx44dtq7ELSwsbNd1uzpPa3KrqqpaffygQYMUEuL+drBt2zbbatq+fbvbWVhYmNLT048a5+n5r6urO2rTY0cFyusOAAAAAAAAAIAvHNxbreLcHZbjQ8NDNfC4wTZWFPhMJwmWMEkQaNOGRWbNZKwatl9yZqrxdMaseStsqgYA/AtNgvAbY8aMcTtrbGz02Hxm1ZYtW9zOxo8fb1v+ztK9e/cOPT4mJkaDBg1yO9+8ebNdJamgoMDtbNiwYYqOjj5q3NixYz2e21lboLzuAAAAAAAAgCQVLNusN255WQ9NuEv/G3+D/jBktp48+SEteekbNdTU+7o8AAFoy5JNRvEDjslQRLdIm6oJDt17xqhHUrzl+NK8YrlcLhsrAgLLnu3lKttsNrRk+CmjbKoGh5twsdk0wZwPVqmpwb5BRADgL2gShN8YPny4IiPd/4K4evVqW/KXlpZq9+7dbufjxo2zJX9n2rdvn9tZW6tzPTXj2fXcStKaNWvcztrTiNerVy+lpaW5nWdnZ9tSV2Njo/Ly8tzO/fF1BwAAAAAAQHCrKj+gl676mx6bcr++qqdxfwAAIABJREFUe/4r7VhTqLoDtSovKNPmb/P0+o0v6vf9b9f6z3N8XSqAAJP/ndmq4SHTWDVsRbLBNMG6qlrt21FhYzVAYNnwZa5RfP8JAxSbEGdTNTjcxIuPNYqvqazRxq/X21QNAPgPmgThNyIiInTcce6fCli2bJkt+VescB8rnJCQoMzMTFvydxaXy6Xy8nK388TExKPGTZ061e0sNzdX1dXVxjXV19crJ8f9PzxOnz69XfGealu+fLlxXdKPzYv19S0/PR0eHq7Jkyfbkh8AAAAAAADoDLUHavT0GY/qh7e+P+rjDu6t1t/OeVzfPf9VJ1UGIBjkL95gFD9kOk2CViRlGq4cXs/KYaA1eV+uNYrPnOm+JQ/2SB6VpsRhSUY5slk5DCAI0SQIv3LmmWe6nf3nP/9xa/Ky4uuvv3Y7O+OMMxQS4l//muTl5engwYNu5201O86YMcNt9W9jY6O+/fZb45qWLVum2traFmfx8fGaMmVKu+I9ve45OTkqKyszrs3T6z5t2jTFxfHJHgAAAAAAAPiPl674q3as3t6uxzqbnXrjlpe16h17PogLILjVVdWqKHu75XhHiEMZJwy1r6AgYjJJUPpx5TAAd85mpzYuWmeUI/O00TZVgyM5HA5NuMhs5fCaD1apuZGVwwCCi391PyHonXrqqYqKimpxVl1drYULFxrlrays1DfffON2ft555xnl9QVPv4/U1FT169fvqHHR0dE65ZRT3M7feecd45ree+89t7MzzzxTYWFh7Yo/5phj3Op3uVx69913jepqamrSRx995HZ+7rnnGuUFAAAAAAAAOtOWJRu1bmHHVwi/cs1zKvh+sxcqAhBMti7Ll7PZaTk+bVy6ont0s7Gi4GHaJMgkQcCzwlVbVVNZYzk+olukBtH87FWmK4cP7q3Wpm/NpuACgL+hSRB+JS4uTpdcconb+QsvvKDm5mbLeV9//XU1NDS0OJs0aZLGjPHeGOicnByVlpbamrO6ulr//ve/3c7POuusdsVff/31bmcrVqxQdna25ZoKCwu1aNGiFmchISG69tpr252jtcf/+9//NlqHvGDBArfVzKmpqTr99NMt5wQAAAAAAAA62xdPfmIprqm+Uc+e/4R2b9llc0UAgsnm7zYaxQ+eyqphq5IyU4ziS/JoEgQ8yfvCbNXw0JNGKDwy3KZq4Enq2HT1HZxolIOVwwCCDU2C8DvXX3+9wsNbflNVUFCgV1991VK+0tJSvfLKK27nN910k6V87fHyyy/riiuu0KWXXqqCggLb8v71r3/Vvn37WpyFh4frsssua1f8yJEjNXXqVLfzBx98UI2NjZZq+vOf/+zWwHnGGWdowIABHcpz6aWXKj4+vsXZvn379NRTT1mqq7q6Ws8884zb+c9//nOFhoZaygkAAAAAAAB0trrqOq23MEXwkIMV1frr2Y+puqLKxqoABJP8xWZNgkOm0yRoVbf47opP7mk5vjSvWC6Xy8aKgMCQZ7hqeMSprBr2NjtWDq9+/wc1N1kfRAQA/oYmQfid5ORk3XDDDW7nTz31lLKysjqUq7GxUXfeeacOHjzY4nzGjBmaPn26UZ2e1NXV6de//rUee+wxNTc3a/fu3bryyiv1ww8/GOd+77339K9//cvt/PLLL1dqavvHzd91111uTZh5eXl65JFHOlzT3Llz9dVXX7U469atm+64444O5+revbvHuDfeeMPSuun77rvPbZJjZmamx0mVAAAAAAAAQFe18at1ampoMsqxO3+XnrtgjhrrGtp+MAAcprGuQdtXbDHKMWQaTYImkgxWDtdX12lv0R4bqwH8X+2BGm1dlm+UI/M0mgQ7w8RLzJoEq/dUKd9wGi4A+BOaBOGXbr31VmVkZLQ4a2ho0E033aQVK9o3Frimpka33367W4Ne9+7ddf/997e7losuukjDhg1r8evCCy/0+NidO3e6rd6trKzUddddp9dee63d1zzSyy+/rHvuucftfMCAAZo9e3aHcg0ePFi33HKL2/kbb7yhRx99tN1rnefPn68//vGPbuezZ89WSoq18feXXHKJjj/++BZnLpdLv/3tb/XJJ+1bqdLU1KR7771XH3/8cYvzsLAwPfjggwoLC7NUGwAAAAAAAOALuZ+stiXPliWb9Or1z8vpdNqSD0Bw2LaywKhROWlEimIT4mysKPgkZ1pvEpSkkvWsHAYOl/f5WjkNpsvFp/RS0gizVeBon7TxA9RnYIJRjqx3l9tUDQB0fTQJwqvq6+s7dN5eERER+utf/6oePXq0OK+qqtJ1112nhx56SLt37/YY63Q69eWXX2rWrFn65ptvWnwtNDRUTz31lPr169fuWo5c7yv92PjnyeDBg/Xss88qKiqqxXljY6MefvhhXXvttcrPb/8nU7Kzs3X99dfrscceU1NTy7+Ex8XF6emnn1b37t3bne+Qm2++WTNmzHA7f+WVV3TFFVccdfLh1q1bNXv2bN19991uDYXnnHOOrr766g7Xc7gnn3zSrcmwoaFBv/nNb3TnnXeqqKio1dhly5bp0ksv1dtvv+32tXvuuUejRo0yqg0AAAAAAADoTC6XS+sMVg0f6Ye5y7Tgnndtywcg8JlOYGKKoLlkg0mC0o8rhwH8JOejbKP4zJmj5XA4bKoGR+NwODTh4uPbfuBRrH7/Bzmb+ZAMgODAyCwY2bt3r2bMmKG6uroOxd1///2tTusbPXq05s2b12aOjIwM/f3vf9eNN97YYl1wc3OzXn/9db355psaO3ashg8frri4ODU0NKi4uFirVq1SRUWFW76QkBDdd999OvHEEzv0e+moE088Ua+//rpmz56tnTtbfjpr2bJlOvfcc3XcccdpxowZyszMVHJysrp37676+npVVlaqrKxMq1at0tKlS7V+/XqP14iPj9eLL76o4cOt/eU6NDRUc+bM0Q033KDs7JbfCOfk5OhnP/uZUlNTNWHCBPXr108Oh0MVFRVat26dNm70/B8EJk+erEceecT4m+I+ffroxRdf1DXXXKPy8vIWX1uwYIEWLFigkSNHatSoUerZs6eamppUWlqq7Oxst/XCh9xyyy26/PLLjeoCAAAAAAAAOtvOtUWqLN5ra86Fj3yoPgP7aurP3T9EDABHyl9s2CQ4nSZBU0kjzSaWleQxSRA4pLmpWes+XWOUg1XDnWvixcfqi8c/shxftfuAtizZpKEnjrCxKgDommgShJGampoONwi2Ze/e9v9HrUmTJmnu3Lm6+eabVVzc8pNOzc3Nys7Odmty86Rbt2564okndMopp3S4XivGjBmjDz74QE899ZTmzp3bYuKey+XS8uXLtXy5tdHG48eP15w5c5ScnGxUY7du3fTqq6/q7rvv1kcfuX9jtXPnTrcmx9ZcdNFFeuCBBxQeHm5U0yEZGRl69913dcstt2jDhg1uX1+/fn2rDZSHCwsL0z333EODIAAAAAAAAPySXauGj/TGLS+rV//eyjxtjFfyAwgMzY1N2vr9ZqMcg5kkaMx03XAp64aB/yr4frMO7q02yjH8FDaXdab0SYPUO72PKgr3WM6R9e5ymgQBBAXWDcPvDR06VB9++KGuvvpqhYaGdjh+xowZWrBgQac1CB4SGxure++9VwsWLNCsWbOMG+hSUlL06KOP6q233jJuEDwkIiJCTzzxhObMmaPExMQOxyclJemZZ57Rn/70J9saBA/P/fbbb+v22293W9/cHuPHj9f8+fNpEAQAAAAAAIDfWrfQbNJNa5zNTj1/ydMqzi3ySn4AgaFo9XbVH6y3HN9nYIJ6pfW2saLgFN2jm+JTelmOL80rltPJqk1AktYarhoeeNxgxSbE2VQN2sPhcGjCRccZ5ch+7wfeBwEEBZoEYaRbt26WGrSOpk+fPh2OiY2N1R/+8ActXLhQN9xwgxISEo76+G7duum8887Tm2++qX/84x9KS0uzWq7HhrwhQ4a0O37w4MH685//rO+++04PPPCApk+frtjY2HbFJiQk6LzzztMLL7ygRYsW6YILLjBe5+vJ2Wefrc8//1wPPfSQxo4dq5CQ1t86QkJCNG7cOD388MP67LPPdPrpp9tezyGRkZG67bbb9MUXX+j2229v83WMiIjQqaeeqhdffFFvvfWW5XXMAAAAAAAAgK9VV1Rp67J8r+Wvq6rVX895XJUl+7x2DQD+bcviTUbxQ6YztckuyQYrh+sP1mtvUYWN1QD+y7RJcMy5E2yqBB0x4eJjjeIP7KpUwVKzybgA4A9YNwwjvXr1Uk5Ojq/L+K/09HT99re/1W9/+1sVFhZq/fr12rt3r6qqqhQdHa34+HgNGTJEw4cPtzR10JN///vfampq0kknnaTy8nJJ0k033dThPL169dLll1+uyy+/XE6nU9u3b1dRUZFKSkpUU1Oj+vp6RUVFqXv37kpOTtagQYOUmmo2Qr4joqOjdckll+iSSy5RVVWVcnJyVFJSosrKSklSfHy8kpOTNXbs2HY3OdolMTFRt912m2677TaVlZVp7dq12r17t6qqqhQREaH4+HgNHDhQI0eOVERERKfWBgAAAAAAAHhD3udr5XK6vHqNfTsq9LdzH9cd/7lXUTH2flgcgP/LX7zRKH4Iq4Ztk5SZqrwvci3Hl67fqT4Djj6AAwh0uzaVqGxzqVGOsTQJ+sTA4warZ1pv7dthveE5e94K/lwCEPBoEkTASk9PV3p6eqdcKy8v778NgieddJImTDD7BjAkJESDBg3SoEGD7CjPdrGxsZo6daqvy/AoMTFRM2fO9HUZAAAAAAAAgFflfrq6U66zY/V2vXTFX3XL+79RaJg9H7wG4P+cTqd5k+B0mjHskjzSbKhEyfqdGn32eJuqAfyT6RTB3ul9lDzK+vY6WOdwODThwmP11dMLLefInr9Slzx19VE36gGAv+MdDrDBW2+9JenHb0Bmz57t42oAAAAAAAAABDJns1PrP1vbadfL/WS13vn1a3K5vDu5EID/KF2/UzX7DlqO75EUr4SMRBsrCm6mTYKlG4ptqgTwX2s/Nl01PFEOh8OmatBREy85zii+smSfti3fYlM1ANA10SQIGKqqqtLChT9+KuHMM8/U8OF88g0AAAAAAACA92xbsUUH91Z36jW//fuXWvzC1516TQBd1+bvzKcI0kxjn6TMFKP4kvU7baoE8E/VFVXasmSTUY4xrBr2qYHHD1Z8ck+jHFnzVthUDQB0TTQJAoY++OAD1dbWKjQ0VL/61a98XQ4AAAAAAACAAJf7SeesGj7S/N+9qf27Kn1ybQBdi/Gq4WkjbKoEkhQd100903pbji/NK5bT6bSxIsC/rFuYI5fT+sTkqNhoDT2R9zVfCgkJ0fgLjzXKkT1/Je+FAAIaTYKAobfffluSNGvWLA0cONDH1QAAAAAAAAAIdOsWrvHJdesO1Oq937/lk2sD6DpcLpfybZgkCHuZTBNsqKnX3sI9NlYD+Je1H2UZxY88Y4zCIsJsqgZWma4c3rejQoU/bLWpGgDoemgSBAysWrVK+fn5ioiI0G233ebrcgAAAAAAAAAEuH3Fe7VjTaHPrr/yze91oGy/z64PwPd2b9mlAwZTRbv3ijFejwt3yZmpRvGsHEawampo0vrP1hrlGHPuRJuqgYmME4Yqrl+8UY6sd1k5DCBw0SQIGFi7dq3Cw8N1++23Kzk52dflAAAAAAAAAAhw6z71zRTBQ5xNzfr+X//xaQ0AfMt0iuDgacMUEsKPKO2WPJImQcCK/O82qK6q1nK8I8ShUWeOtbEiWBUSGqIJFx5jlCN7/gq5XNZXTwNAV8Z34ICB66+/XuvWrdONN97o61IAAAAAAAAABAFfrRo+3NKXv+GHp0AQy19suGp4GquGvcG0SbB0Q7FNlQD+JWdBtlH84KnDFNM71qZqYGrCxWYrhysK96hwFSuHAQQmmgQBAAAAAAAAAPADjfWN2vBlrlGO0PBQ4zp2bynT5m/zjPMA8E+mkwSHTB9hUyU4nOkKZyYJIhi5XC6t/disSXDMORNsqgZ2GDJtuGL7xhnlyJq30qZqAKBroUkQAAAAAAAAAAA/kP/dRtUfrLccHxYZrv/9/C6FR0cY17L4pW+McwDwP3uL9qhie7nl+MiYKKWNS7exIhwSFRutXv37WI7ftaFETqfTxoqArq9k3Q6j9zRJGnveRJuqgR1CQkM0/gLDlcPzljM1G0BAokkQAAAAAAAAAAA/kPvJaqP4oSeN0LCTMvXzN26Vw+EwyrV6/kpVV1QZ5QDgf0xXDWecMEShYeYTTeFZ8kjr0wQbauqNm6UAf5PzkdkUwcShSUocmmRTNbCL6crhPdvKtWP1dnuKAYAuhCZBAAAAAAAAAAD8wLqFa4ziR581XpI0btYxmvWny4xyNTU0afnrS4xyAPA/xquGp7Fq2JuSRqQaxbNyGMFmrWGT4JhzWTXcFQ09cYRi+sQa5Vj9/g82VQMAXQdNggAAAAAAAAAAdHFl+aXanb/LKMfos8b99/+f/Ksz1C2+m1G+JS99zSo2IMiYThIcMn24TZXAkySDSYKSVLq+2KZKgK5v/65KbV9ZYJSDJsGuKTQsVONmTTLKsW3FFpuqAYCugyZBAAAAAAAAAAC6uNxPzKYIJg5LUkJG4n//OSI6QsdeNdUoZ2lesbYuyzfKAcB/HNi9X7s2lliOD4sM14BjBtlYEY6UPNJwkmAekwQRPHI/WW30YYfuvWKUccJQGyuCnSZecrxRfHHuDpsqAYCugyZBAAAAAAAAAAC6OLtWDR9u2i9ONsopSYtf+to4BwD/sGXxJqP4gcdlKDwqwqZq4ElSplmTYClNgggiaz82WzU86qxxCg0Ltaka2G3YSSPUvVeM5fiq8gNyNjttrAgAfI8mQQAAAAAAAAAAurC66jrl/2eDUY5Rh60aPiR1TH8NODbDKO+qt5erdn+NUQ4A/iH/O7P3oSHTWDXsbVExUeqR2tNyfOmGEjmdNMUg8DXUNijvi1yjHGNZNdylhYaHefz+t71cTpcO7q22sSIA8D2aBAEAAAAAAAAA6MI2LspVU0OT5fio2OhWm3Om/dxsmmBjbYNWvrnUKAcA/5C/eKNR/JDpI2yqBEeTMCSx7Qe1orG2QRXbym2sBuiaNn29Xo21DZbjQ8NDlXn6GBsrgjf0Tu9jFF+1+4BNlQBA10CTIAAAAAAAAAAAXVjup2arhkfMHKWwiDCPX5t0+WRFxkQZ5V/80jdG8QC6vprKg9qZU2Q5PiQ0RIMmD7GxIrQmYaj1JkFJKlnPymEEvpwFWUbxQ0/KVHRcN5uqgbfE9u1hFF+1e79NlQBA10CTIAAAAAAAAAAAXZTL5dK6hTlGOUafNb7Vr0XFROmYyycb5d+xersKs7Ya5QDQtRUs3SyXy2U5vv/EgYoybEhG+/QZ0tconiZBBDqn06ncT1Yb5RhzDquG/UFs3zij+ANMEgQQYGgSBAAAAAAAAACgi9qZU6jK4r1GOUadOfaoX5/2C7OVw5K05EWmCQKBbPN3hquGW1l5DvsZTxLMo0kQga0oe7sqS/YZ5RhzLk2C/iDOsEmQdcMAAg1NggAAAAAAAAAAdFGmq4b7TxigHkk9j/qY9EmDlDo23eg6K9/6XnXVdUY5AHRd+Ys3GMUPmU6TYGfpM9hskmBpXrFNlQBd09qPso3iU0anqc+ABJuqgTexbhgAWqJJEAAAAAAAAACALmqdYZPg0VYNH+JwODT15zOMrlNXVausd5Yb5QDQNdUfrFPhqm2W4x0OhwZPHWZjRTiaiO6RqgmttRy/a0OxnM1OGysCupa1H5s1CbJq2H+YrhtmkiCAQEOTIAAAAAAAAAAAXVB1RZW2Ls83yjHqrHHtetxxV01ReHSE0bUWv/S1UTyArmnr8i1yNjVbjk8ZnabuPWNsrAhtqQqrsRzbWNeoPdt221gN0HXs3VGhHau3G+UYe95Ee4qB13XvFSNHiMNy/AEmCQIIMDQJAgAAAAAAAADQBa3/LEcup8tyfEyfWA04JqNdj+0W310TLznO8rUkadvyLSpet8MoB4CuZ8vijUbxg6exarizVYUdNIovWb/TpkqAriXXcIpgXGIPpR8zyKZq4G0hoSGK6RNrOZ5JggACDU2CAAAAAAAAAAB0QesWmq0aHnXmWIWEtv/HANMMVw5L0pIXmSYIBJp8wybBodNpEuxsJpMEJZoEEbhyPjJrEhx99niFhNBi4U9i+/awHEuTIIBAw59gAAAAAAAAAAB0Mc5mp9Z/ttYox6gz27dq+JCMKcOUNCLF6JrL/71EjXUNRjkAdB1NDU3ausxs7TmTBDtfteEkwdI8mgQReOqq67Tp6/VGOcacO8GmatBZYvvGWY6lSRBAoKFJEAAAAAAAAACALmbr8nwd3FttOT4kNESZp4/pUIzD4dCUG06yfE1Jqtl3UNnzVxrlANB1FK7aqsa6RsvxiUOT1KNfvI0VoT2qDScJluYV21QJ0HXkfbFWTQ1NluPDo8I14tRRNlaEzhBn0CRYV1Wrhlo+/AIgcNAkCAAAAAAAAABAF7PuU7NVw4NOGKruPWM6HDf5f6YpLCLM6NpLXvrGKB5A17H5PxuM4ocwRdAnmkOcik/rZTl+18YSOZudNlYE+N7aj81WDQ8/ZZQiu0fZVA06S2yC9SZBSaouZ5oggMBBkyAAAAAAAAAAAF1MrmGT4OizOrZq+JCYPnEad8Eko2tv/s8GlW0uNcoBoGswbaoZPG2YTZWgoxKGJlqObaxrVPnWMhurAXzL2exU7serjXKwatg/xfbtYRR/gJXDAAIITYIAAAAAAAAAAHQh+3ZWaGdOoVEOq02CkjT15ycbXVtimiAQCPbtrNDWZflGOYZMH2FTNegokyZBSSpdv9OmSgDf27Zii6r3VBnlGHMOTYL+KNZg3bAkVe3eb1MlAOB7NAkCAAAAAAAAANCFrFuYYxTfM623kkelWY4fNiNTfQb1Naph2avfqamhySgHUHugRlnzVujjP76nL574WItf/FqVJft8XVbQWP3+KqP4nmm91Tu9j03VoKP6GDYJlqwvtqkSwPdyFmQZxadPGqT45J42VYPOZN4kyCRBAIEjzNcFAAAAAAAAAACAn+R+arYOb/RZ4+RwOCzHh4SEaOoNM/TB/3vbco6q8gPKWZCliRcfZzkHgtfBvdWa+6t/KevdFWpubG7xtZDQEI0+e7zOf+hSpRg0w6Jtq99baRQ/ZPpwo/cimEkYYtgkmMckQQQO09XpTBH0XzQJAsBPmCQIAAAAAAAAAEAX0VjfqI2L1hnlGGWwaviQE66drpBQsx8hLHnpa+M6EHwKlm3Wg+N+r5Vvfu/WIChJzmanchZk6bEp92v952ZTN9G6A2X7lb94o1GOkaePtakaWNFncIJRkybrhhEoygvKVJpnNhlz7Hk0CfqruL49jOJpEgQQSJgkCAAAAAAAABxm384KLf3nf7RtRb4KV21TZEykEjISlT5xkE79zVmKTTCbRAAAR5P/3UbVH6y3HB8WGa7hJ480rqNHUk+NOXeC1nxgfd3ohi/Xac/2cvUZkGBcD4LDgbL9em7WHFWVt/0D+bqqWv3tnMd107xfa9z5kzqhuuCy5oNVcjldluNDw0M15pzxNlaEjgqPjlDvgQnas3W3pfhdm0rV3NSs0LBQmysDOlfOR2ZTBHum9Vbq2HSbqkFnM54kWL7fpkoAwPeYJAgAAAAAAABIcjqd+vbvX+r+kb/VR/fP07qFOaoqP6A928q1YdE6ffbnBfrD4Nn69OEP5HQ6fV0ugAC1buEao/hhMzIV2T3Kllqm/nyGUbzL5dLSl7+xpRYEh9d+/kK7GgQPcTY79c+fPasda7Z7r6gglW24anjEzNHqFt/dpmpgVfLIVMuxTfWNlhsMga6iualZ//n7F0Y5xpwzgdXpfiwyJkrh0RGW4w8wSRBAAKFJEAAAAAAAAJD05i3/1Fu3vaK6qtpWH1NXVasP73lH8/7vjU6sDEAwyf9ug1H8aBtWDR8y8vSx6pnW2yjH96/8R81N7itjgSOVbS5V7ierOxxXf7Bez57/pPbvqvRCVcHp4N5qbfomzyjHhAuPtakamEjOtN4kKEklrByGn1v+2mLt3lJmlGPMuawa9mcOh0NxBtMEWTcMIJDQJAgAAAAAAICgt/z1xVr84tftfvxXTy/Uor8s9GJFgJn6g3X65m+f67mLntJvEm7U7N6/0P2j7tTzl/xFW5Zs9HV5aEXtgRrtWFNolGOUjU2CIaEhmnLdiUY5Kkv2GU9HRHDI/dT6fbJvR4Weu2COGusabKwoeOUsyJLToLk3JDREY8+faGNFsCrJYJKgRJMg/FtTQ5M+efA9oxyRMVEaNiPTporgKyYrh2kSBBBIaBIEAAAAAABAUKss2ac3bvlnh+Pe+92b2rWx2AsVAWa2LNmoh8bfpbm/elVr3v9BByuqVbPvoErzipU9f6Uen/5HPXHSH1VZss/XpeIIBd/ny+V0WY7vNzxZCYMSbaxImnL9ScYr9r57/it7ikFA2/yt2eS6bSu26LWfvyCXy/q/Q/hR9nyzVcPDZmQqpnesTdXAhMm6YUkqzaNJEP5r6T+/VUXhHqMcmaeNVnhkuE0VwVdi+/awHFu1ez/fWwAIGDQJAgAAAAAAIKgt/NMHaqip73Bcc2Oz3rz1FX5ggC5l9fs/6IkTH2xzrVr+dxs15+SHtL+URsGuZMtisymPI08fa1MlP+nVv49GnjHGKMf6hTnas223TRUhUFVsLzfOsfLN77XwTx/aUE3wqj1Qow1f5hrlGM+q4S6j3/BkOUKsN3ozSRD+qrGuQZ8+/IFxnjHnsGo4EMQmWJ8k2NzYrNr9NTZWAwC+Q5MgAAAAAAAAgtbeoj1a8tI3luM3fZOnlW8utbEiwLqKwnK9dsPz7W5cLdtcqqdm/kn1B+u8XBnaK9+wSXCuUV7tAAAgAElEQVToSSNsqqSlqT8/2Sje5XIxTRBt2ltkNu3pkA/veUdZ81bYkisY5X68Wk0NTZbjHQ6Hxs2aZGNFMBERHaGEQX0tx5dtKlWzweppwFcWv/C1Kov3GuUIjwpndXqAMFk3LLFyGEDgoEkQAPD/2bvv8KrKbA3g70khvRMSSijSE4qCUqSLFAsWBAtiL+M4OuN17DN3bGMvY0VFBLGAhSa9S+81kA4hIT0hOenttPsHNyMlpOz1nf7+nuc+zwj51l5zBzcn2Wu/i4iIiIiIyG2t+vdS0YNwAPj17z+gurRKUUdE2v3y9A+oLm1dykVeYg4WP7vASh1Raxhq65Gx76SoRo+RvRV1c74BN16B4Cjta9qAsyv/DLX1ijoiV1NTXt3q+1dT5t33BTIPpiur504OLZGtGu4+sjdCokMVdUMqtI/VvnLYWG9E0cmm04mJHE19dR3WvCVPlR1690gEhAUq6IjsTT4kWKaoEyIi++KQIBERERERERERuaWi9ALs+nabuE5FYTmW/eMXBR0RaVdfXYeENUc0nd365UYcW31YcUfUWhn700VDyx3iOiEwIkhhR3/w9PbC1fePEdWoPFOBg4tkw0fkuvRZsrSnCxlq6jHr5g9QmsuV6q1RV1WL42uOimoMvo2rhh1N+9iOovNcOUzO5vfP16O8QDbU5entiev+cYuijsjegtrJXnYpL2CSIBG5Bg4JEhERERGRVVSXVmHfwl2Yc/dn+PDaN/DpDe9g/oNfIXHDMZhNZnu3R0REhFWvL4VZ0fq0bV9uRMZ+WQIYkUTy5gQYag2az3/30GxUFPHhlz2lbZOtGrZWimCDkQ+PE9fY9uVGBZ2QKyrJKlZeszRXj1m3fID66jrltV3V8TVHYaiRJX5eMfUqRd2QKh3itCcJAkAehwTJidRW1GDduyvEdUY8OBZtu0bKGyKHEMwkQSIiABwSJCIiIiIiK9j74w680PlJfHP3Z9i/cBdSNifg+Jqj2PXtVnw86S38s8dTOLEzxd5tEhGRG8tPycWe77crq2exWPDj43M5CE92k3UkU3S+vKAM3z/6NSwWi6KOqLXSdsiGBHuO6qOok8ZFdo9C7MT+ohond6Ui60iGmobIpZScPmOVupkH0vHtA1/CbObfzy1xWLhquNvQHgjrFKGoG1JFOiSYm8ghQXIemz9Zh6riSlENLx9vXM8UQZciXTdcXsiXqYjINXBIkIiIiIiIlLFYLPjxsW8w955ZqKusveTXFWeewYfX/Bs7526xXXNERETnWPnaEljMaoehTh88ha1MySI70StI4Tr620F+PrMTk9GEkztTRTV6WHlIEADG/HmCuMbWL3ifpIuVnFafJNjg4K97sfLVJVar7yoMtfWIXylbPT+Iq4YdUnSfDtB56DSfz03IUdgNkfVUl1ZhwwcrxXVGP3oNB55djHTdcAWHBInIRXBIkIiIiIiIlNk1byu2zd7Uoq81GUz47uHZ2PvjDit3RUREdL6c41k48NNuq9Re9o+fUZZfapXaRE1Rtarzl6e+Q+GJfCW1qOWyj2Y2+ZJNcyK6RiI8xvoPs/vfcAXChNfZt2AnasqqFXVErkKfZZ0kwQarXl+CfQt3WfUazi5x/THRfQjgkKCj8vZtg8juUZrPF6TkwmQwKuyIyDo2/mcNqktlnzG8/dpg8os3K+qIHEVg2yDR+YoirhsmItfAIUEiIiIiIlKiNFePn5/6rtXn5j/4FZI3J1ihIyIiosatfHWx1Vaq1pbXYNEzP1ilNlFTVCQJAkBdVR3m3jsLJqNJST1qmbTtKaLzPUdbP0UQADy9PDHqkWtENeqq6pSueyfXYM0kwQbzH/wKp/aesPp1nNUh4arhmCu6om23doq6IdUkK4dNBhMKTxQo7IZIvcriCmz6aI24ztjHJyAkOlRBR+RIvNp4wT8sQPN5JgkSkavgkCARERERESlxeOl+TakDJoMJX0z9EDnHs6zQFRER0fmyjmTg0GLZQ/Dm7FuwC0mbjlv1GkQXUjlgc2rPCax58zdl9ah5aduTRed7jrTNkCAAjHx4HDy8PEU1tn6x0WrD2uScVKWhNsVYZ8CsWz+0ybWcjbHeiPjlB0U1Bk1liqAja9+3o+h8wtqjijohso4N769CbUWNqIZPgA8mPTdFUUfkaILaBWs+yyFBInIVHBIkIiIiIiIljq8+rPlsbXkNPr3+HehzShR2REREdLHlLy+yyXUW/mUeDHUGm1yLqKasWvxQ9EKrXl+CU/uYuGULFosFJ4RDgj1G9VbUTfNCokMx6LarRDXyknKQtk3235lch9lsVpaG2pzy/FLMuuUDGOu5OvVcyZsTxCs6B03jkKAjkyQJAsCeH3Yo6oRIvfLCMmz+dJ24zjV/uw5BkdoHycixBbUL0XyWQ4JE5Co4JEhEREREREqc2ntSdF6fXYLPbnwPNeWyBxNERESXcmrfCcSvOGSTaxWk5mH9eyttci2iktNnlNc0m8yYe88s1FW1PimaWic/OReVZyo0nw9qF4yoXu0VdtS8MY9NENfY8sUGBZ2QK6goKIPJYLsV51mHM/h39AUOC1OWO8R1QnTvDoq6IWtoLxwSzDqcgdyEbEXdEKm17p0VqK+uE9XwC/HHhL9fr6gjckTBgiTBqpJKmAx8wYCInB+HBImIiIiISKy2shZVJZXiOtlHM/HV9I/5QxcnZzaZceCXPVj4xDy8OeSfeP2KFzHr1g+w9KWfoM/mai8ish9bpQg2WPPmMhSlF9j0muSeVK4aPldhWj4W/f1Hq9SmP4hXDY/qA51Op6ibFl5zdB+0j5Wtrjy8ZD/K8vSKOiJnZq17WFNWv7mMQ9D/z2Q04chvB0Q1ruCqYYfXvm9HePu1EdXY8/12Rd0QqVOaq8dWBS8eXPs/1yMgLFBBR+SopCmRkpd6iIgcBYcEiYiIiIhITGV6TdKGY/j+T3NgsViU1STbyTiQjreH/wtf3/kJtszagMwD6cg+momjvx3E2reX4589/gcL/jIP9TX19m6ViNzMiZ0pSFwXb9NrGmoN+OnJb/l3GlldiRXXdG6bvQlHVxy0Wn0CTuxIEZ3vOaqPok5aTqfTYcyfZWmCZqMJO77ZoqYhcmrWSENtjqGmHglrbfu5wFGd2J4sHnwYzFXDDs+rjRd6jekrqrFvwU6YzWZFHRGpsebNZTDUGkQ1AsIDMf6pyYo6IkcVJEgSBIByrhwmIhfAIUEiIiIiIhIryVT7UGf3t9uw8tXFSmuS9W2ZtQFvD/tfZB5Iv+TXGOuN2PrFBnxx6wcw1HJQkIhsZ/m/frXLdY+vOYrDS/bb5drkPqw9YPP9I1+jvLDMqtdwZ2nbZEmCPewwJAgAw+4ZCZ8AH1GN7bM3wWS03ZpZckzWHHRuSvKm43a5rqM5uEi2arhdz2h06BejqBuypqvuHC46r88uQeqWJEXdEMmVnD6DHXN+F9eZ+MyN8Av2V9ARObKgdiGi8xUcEiQiF8AhQSIiIiIiEitWPCQIACtfW4Kdc7cor0vqmc1mLHr2Ryx8Yh4s5palZSWuP4ZvH/jSyp0RyRWeyMe+BTux9YsN2PrlRuQmZDMVzgml/J6AlN8T7Xb9n5/6DrUVNXa7Prk+fXaJVetXFJbj+0e+5v3PCoozi0RDnr7Bfug0oLPCjlrOL9gfQ+8eKaqhzy7BsZWHFHVEzsoe64YBIOd4ll2u60jMZjOOLJO9zDBo6hCbrzwnba6YOgRt/GXD3Vw5TI5k1b+XwlhvFNUIigzG2CcmKuqIHFlwlHRIkC9NEZHz45AgERERERGJqU4SbPDDn+YgYd1Rq9QmNepr6vH1HZ9gwwerWn32wM97kHU00wpdEcklbjiG98e+hv/t9TS+mfk5FvxlHhY8Phev9n8OL3R+Ent+2MFhGSdhsVjwm51SBBuU5pRgxStMyCXrscWqzvgVh7D9681Wv467SdsuWzXcY0QveHja78f8o/98rbjG1i83KuiEnJm9kgSz40+7/ee59N1pKMsrFdW44jauGnYWvoG+uPzWK0U1Di3eh/rqOkUdEWlXlF6AXd9uE9eZ9PwU+Ab6KuiIHJ103TCTBInIFXBIkIiIiIiIxIqt9GDabDLjq+kfI+tIhlXqk0x5YRk+HP9vHFqsfT3VuneWK+yISM5isWDNW7/hk8lvX3L9Y2lOCebdOwufXPc2KosrbNwhtVbi+nic3Jlq7zaw+ZO1yI4/be82yEXpbTRg8+vTP6AgLc8m13IXJ7YLVw2PtM+q4QYxA7ug+9W9RDUS1x/jnys3Z4tB58bUltdYJRXfmUi+lwOAiC5t0WVwN0XdkC0MmylLgK2rrMWRZQcUdUOk3arXl8JsNIlqhLQPxZg/T1DUETk6DgkSEXFIkIiIiIiIFLDmQ526ylp8esO7dntwRI3LT8nFO1e/jFN7TojqHPntIOpr6hV1RSS38T+rsewfP7coVSZx/TG8c/XLKDpZYIPOSAuLxYLlClIEPb09xTXMJjN+/PM3MJvN4lpE5zKbzVZfN9ygvroOc++ZBZNBttaN/nBihyxJsOdo+w4JAsAYBWmC277cpKATclZ6O60bBoAcNx7gt1gsOLxEtmr4Cq4adjp9xvdDcHSoqMaeH3Yo6oZIm/yUXCWrr6978Wa08WujoCNyBhwSJCLikCARERERESlgrXXDDcrySvHpDe+iurTKqtehlkndloR3rn4ZZ9ILxbUMNfXiBB0iVfJTcvHbP39p1ZnCtHy8PfxfOLnb/kl1dLH4lYeQsT9dXOdPvz6F0I7h4jrpu9Owe758JRbRuSoKymAyyFJUWiNj30mse3elza7nyiqKypGXlKP5vJePN7pceZnCjrQZNG0oAtsGiWrs+nYrXxxxU/U19agost9D9+yjmXa7tr1lHkgXv4w3iKuGnY6nlyeG3HW1qEbi+niU5cvWVBNJrHxtCSxm2br4sJgIjHzkGkUdkTPwDw2Ah5f2FwDLi8oUdkNEZB8cEiQiIiIiIhGTwYjSXL3Vr5ObkI0vpv4HhjqD1a9Fl7ZvwU58PPEtVOvVDWweX3tUWS0iiQ3vr4KhtvX3mMozFfjP+DfE69pILbPZjBUvLxLX6T0uFgNvGozb/3OPgq7OrsUyCddiEZ2rxA4JXGvf/o3DAQpIUwS7De0Obx9vRd1o5+3jjREPjhXVqNZX4cDPu5X0Q85Fny27h3UWrrrNPua+SYLSz66hHcLQbVgPRd2QLQ27d5TovMVswf6FuxR1Q9Q6OcezcOAn+WeG6/9xi0N8jiLb0el0CBakCTJJkIhcAYcEiYiIiIhIRJ9dIn57t6VStyTi57/Ot8m16HwWiwWr31yGb2Z+DmO92hWDievildYj0sJisYgGVg21Bsy+/WNs+GBVi1YVk/UdWXoAWUfk6UA3vTYdwNmknLjJA8X1ijOKcHzNEXEdogbSFCgt6qrqmIqpQNo2WZpyz1H2XzXcYPSfxotXjm79YoOibsiZSAed+00eKPqzlxOfJbq+szq7alg2JHj5rVfBw4OPGZ1RzMAu6Ng/RlSDK4fJXla+ulj8PXfbbpEY8cAYRR2RM5GsHOaQIBG5An56JyIiIiIiEVun12z/ejMSNxyz6TXdnclgxPePfN3qNawtlZeUg+LMIqvUJmqpwhP5KM0pEdWwWCxY9OyP+OnJb5kUZ2dmkxkrXpGnCMZOGoAeI3oDOJs6cNen98NLQdrEzrlbxDWIGpRk2T5JEAA/jymQtsN1hgTbdmuHftdfLqqRsT8dGQfkK+LJuUgHnaP7dEBkjyjN5wvT8lFXVSvqwRllx59G4YkCUQ2uGnZuQ2eOFJ3POpyBnOPuOWRL9nP6cIaSBP8b/3UbPL29FHREzoZDgkTk7jgkSEREREREIvYY7lr64kKbX9Nd1ZRV49Mb37P6QEsC0wTJzs6kFyqrtWXWBnwx9UPUVrrfA2dHceCXPchNyBbXuenVaef9c2T3KFz34s3iusdWHuaqVlLGHuuGgbPDAUxO1a62ogZZhzM0n/fw9MBlw3uqa0iBMY9dK66x7YuNCjohZyK9h4V3botOAztrPm+xWJR8ZnA2h4VDNkGRwQ41qEytN2TGCHEC7J7vmSZItrX85V/FNaJ6tceQu0co6IacUVC7EM1n66vr+HMeInJ6HBIkIiIiIiKRkkzbr7g7fSjDbqk57qQkqxjvjX4VSTZICuKQINlbcYbae9mxlYfxwdjXUJanV1qXmmexWLDuneXiOgOmDEK3IT0u+vVJz09Bu57Rotpmkxl7uaKNFNFn2+czUbW+imkaAid3pcJi1j5kGXNFV/gG+SnsSC5u8kBEdI0U1di3cCeq9JWKOiJnoBd+XxfeOQKd+msfEgTcc+XwIemq4VuuhIcnHzE6s7CO4egzPk5UY9+CnTCbzIo6Imraqb0ncGzlYXGdG1++DZ5engo6ImcUFKk9SRAAKgrLFHVCRGQf/ARPREREREQixXYYEgSA5E3H7XJdd1FeUIb3x7yGnGO2eWCWvPE4TAajTa5F1BhrpKKePpSBt4e/7JbpNPZ0+tApZMefFte5MEWwgbePN2Z8/oC4/s65W5jCRkrYK0kQAPKScux2bWeXtj1FdL7HyN6KOlHHw9MDo/80XlTDUGvA7m+3KeqInIHk5S+dhw6hHcLQcYBsSDDraKbovLPJS8pBXqLs/s1Vw65BunK4NKcEKVsSFXVD1DQVKYId4jrhyjuGKeiGnJVk3TDAlcNE5Pw4JEhERERERCIlp+0zJJiXlGuX67oDQ50Bn9/8PoozbLdKuraiBid3p9nsekQXstbAc8npM3hnxMtI4mCzzcSvOCSuMei2IYi5vOslf7/vtf1x1Z3DRdfIT85F+h7e90hOmsIlkc8hQc3StieLzvca7ZhrPkc8OBZebbxENbZ+uRFmM5Op3IXk+8mQ9mHw9PZCJ+GQYM4x+csFzuSQcNWwf1gAeo+LVdQN2dMVU4egjb+PqAbTsckWTuxIRuJ6+ZaLKa9Mg4cHxyPcGYcEicjd8W9BIiIiIiISsVd6TUEKhwStZd+PO5Gx76TNr5uw9qjNr0nUwJpDsbXlNfjkunew69utVrsG/SFRuCJdp9NhyiuNpwie6+bXbxddBwB2zeWfCZIx1NajvED7yitvvzai6/OlDW0MdQbxZy1HTBIEzq5wGzR9qKhGYVo+UjYnKOqIHJnFYhF9PxneOQIAENE1UrR+Oyf+tFul+x4WrhoeePNgeHrLhoHJMfgG+uLyW68U1Ti0eB/qq+sUdUTUuN/+tUhcI+byLuI/7+T8gtuFiM5zSJCInB2HBImIiIiISLOzD3XskySYn8yH0tZgsViw8aM1drl2wrp4u1yXCABKrLw63Ww0Yf6DX2Hduyuseh13V11ahVN7T4hqXHnncHSI69Ts10V2j0KvMX1F19r/827UVtaKapB702eXiM7HTuwvOp+fzCRBLTL3n4SxzqD5fPvYjghsK0tBsaaxf54grrHli40KOiFHV1VcAUNNvebzDUOCOp0OHQfEaK5TXVotvp86i4LUPGQdka1XHjSVq4ZdyTDhyuG6ylocWXZAUTdEF0venIBUBWutp7zKFEGSJwmWF2p/QYuIyBHwb0IiIiIiItKsorAchlrtDzglik4WwFhvtMu1XVleYg5yj2fZ5dpZhzNQll9ql2uTezPUGVCaq7fJtZa8sBBHlu23ybXcUfLmBFjM2pOAdB463PivqS3++hEPjtV8LeDsQ9VDi/aKapB7k64a7npld/iF+Gs+zyRBbVK3yVYN9xzpmKuGG1w2vKd4/evRZQdwcleqoo7IUZVkyQbzwmPa/vc/d+ov+zOXfVQ2OOcsdsz5XXTeN8gPfSfIBszJsfQZ3w/B0aGiGnu4cpisxGKxYPm/fhXX6TqkOwbcOEhBR+TsuG6YiNwdhwSJiIiIiEiz4kzrredsjtlkRtHJArtd31XZe+Vv4nqmCZLt2ToRde69X6Aonfcva0haL1s1fOUdwxHdu0OLv37QbUNE6w0BYOc8rhwm7SRrOgEgvEtbRPdt+Z/5C5XmlKCmvFrUgzs6sSNFdL7HKMdcNdxAp9NhjDBN0GKxYP5DX6FekDJHjk/6GawhSRAAOg3sIqqVHX9adN4ZGOuN2D1/m6hG/xuvgLePt6KOyBF4enli6IwRohqJ6+P5wh9ZRcK6eCUvDdz06jTodDoFHZGzC4oUDgkWcUiQiJwbhwSJiIiIiEgz6XrO4KgQ0XmuHFYvwc5Delw5TPZQnGHbIcG6ylrsnr/dptd0BxaLRXwPu/zmK1v19W38fXDVncNF1zyxPRkFqXmiGuS+SoRJguExEWjfp6OoRj7TBFvFbDLj5E7Zw+6eo2Wrzm1hyN0jxEPUBSl5WPHKYkUdkSMSDzp3/iNJULJuGAByjrn+kODR3w6IhxsG3cZVw65o6D2ylcMWswX7FuxU1A3RWapSBLuP6IXYiQMUdESuoI2/D3wCfTWfr+C6YSJychwSJCIiIiIizaQPdWInyX5IxyFBteqqapG2NcmuPSSuj4fZZLZrD+R+pAPPWhz4ZTcsFu1rcelihSfyUZyhPeFWp9Ohz/i4Vp8b8dBYzddssItpgqSRihQuSZIgAOQl5YjOu5vso5morajRfD6iS1uEx0Q0/4V25hvoi2HCoRMA2PDBSpzad0JBR+SIpPewsHP+XejYTzYkmH3U9YcEtwtXDbfx90G/yQMVdUOOJGZgF3TsL/t3aC9XDpNi8SsOIfNAurjOza9NZ4ognUeycpjrhonI2XFIkIiIiIiINCsWDtbETugvOp+fwiFBlVK3JsFYbxTXkfzwtaq4EpkH5T8EJmqNM4LBMq0KUvLE91A6X6Jw1XCXqy5DYERQq891vao7OsR1El1793fbYDKaRDXIPemzSzSf1el0CO0YjvZ9ZUmCeUwSbJW07cmi8z1H91HUifVJVw4DZ9Op5j/4FQx1BgUdkaMRp6Ges27YN8gPkd2jNNcqSM1z6fXWRekFSNog+6zU7/qBaOPvo6gjcjRDZ8oGu7OOZCLneJaibsjdmc1mJSmCvcfFove41r8IRq6NQ4JE5M44JEhERERERJpJkx/6TugvGihjkqBaCWtlazo9PD1w9xcPoddY2Qo8aR9ErVWcafshQYD3MNWkD761Dq7rdDqMeHCs6NpleaVIWHtUVIPck+SzWHB0CLzaeImHBPOTmSTYGtIhwR4jnWdIsENcJ/QaI1+NnJeYg1WvL1XQETkavWBIsI2/DwLCA8/7tY4DOmuuZzFbkJeYrfm8o9shTBEEgKvvH6OgE3JUQ2aMEKet7fmeaYKkxuHF+5AdL094vem16Qq6IVcTHBWi+WxFUTnMZm5AISLnxSFBIiIiIiLSTJKC5R8WgOB2IQjv0lZzjfzkXK7rVChxvWw4b9r7d2P0n8YjbpJsBVXCOg7KkG3ZY90wABQwDVUZk8GI5M0JohqxEwdoPjt05kh4eHmKrr+TK4eplSwWC0pOax+waVjTGdE1El4+3prr5HPdcItZLBac2J4iqtFzVG9F3djG2MflaYIAsO6d5Th96JSSWuQ4JPew8M4RFw00dRKuS3XVlcMmgxG7vt0mqhEWEyH+Po8cW1jHcPQZL0tc27dgJ8wmDs+QjNlkxopXFovrxE0eiB4jnOtzE9lGUKT2JEGL2YLqkkqF3RAR2RaHBImIiIiISLMSQfpWxP8PB0b1bq+5Rm15DcrzSzWfpz8UpRegIDVPVGPQtKEAzv4gVuLU3hOo4g/cyIaK7bBuGDi7cpjUSN9zAnWVtZrP+wT64rJhPTSfD4oMxsCbBmk+DwDxKw6hvLBMVIPcS01ZtejPfcOaTg9PD0T36aC5TlF6IQy1rruiU6WClFxUFGlfURYUGYyo3tr/t7KHK6YOQUfh4BZwdmBg/oNfwVhvVNAVOQKTwYiyXL3m8+euGm4gSRIEoCS1yhHFrzws/r55xINj4eHJR4quTrpyuDSnBClbEhV1Q+5q/0+7kKfgJZSbXp2moBtyRUHttCcJAkA5Vw4TkRPjJ3oiIiIiB1SQmoetX27Ej499g09veAc//GkO1r23AvqcEnu3RvRfNeXVqC6t1ny+IUEwWvigk+s61UhcJ0sR7Ng/BmEdw//7n0Pah2quZTFbkLTxuKgfopYy1htRmqP9AbVEPpMElZEmofa5Jg6e3l6iGtKVw2ajCXu5oo1aQZLABQDhMX+kObfvq/3zmMVsQWFavqgXd5EmTBHsMaq3eBWkrXl4euDOT+9XUis7/jTWvPWbklpkf/ocvSgVPqzTxUOCMQO7SFpCzjHXHBLcMWez6LzOQyf+nEPO4YqpQ9DG30dUY+8P/DxL2pmMJqx8bYm4zsCbBqPrVd0VdESuKLid9iRBAKjgkCAROTEOCRIRERE5iLL8Umz8aA3eHPJP/KvP37Hg8bnYNnsTjq85iu1fb8aS5xfiH5f9Dd8/8jWq9EzYIvtT9WBaklwDAPlM4lIiQTgkeO7qKZ1OJ185vJYrh8k29FnFdltbziRBdaRDgn0n9Bf3EDtxAEI7hIlq7Jy3xW5/Hsn56LNkn8Ua1g0DQHSfjqJaeUkcem6JEzuSRed7juqjqBPb6jW6L8b+ZaKSWqvfWIaso5lKapF9lZw+Izof3rntRb8W0S0SPgHaB5yyj552ub+HizOLkLBW9jmp33WXIzzm4qFMcj2+gb64/NYrRTUOLdqLuirtScfk3vZ8v13JyydTmCJITQjikCARuTEOCRIRERHZUW1FDXZ/tw0fT34Lz3f6C359+ntkHki/5NebDCbs+OZ3fHjNG1xHR3ZXkil7qNOwblg8JMgkQTFjvRHJmxNENS5cMSxdOZyw7qjLPaAjx1QsvJdJlObqUVtRY7fru4rK4gpkHjglqhE3aYC4D08vTwy7d5SoRl5iDk7tPSHuhdyDfMDmj4EPSZIgACUr4dxB2pa1auUAACAASURBVDb3HBIEgFvfuhNtu0WK65iNJsx/8CuYDFw77Oykg86NrRv28PBAB8F666qSSpQKViA7op1zt4q/rxr1yDWKuiFnMEy4criuqg5Hlh1Q1A25E2O9EateXyquM2jaEHGyLLk26brhCj6XISInxiFBIiIiIhszGYyIX3kIc2Z8imei/4xv7/8SieuPwWJu+Q9ts49m4uOJb8FkNFmxU6KmSQdrwlUNCXJdp9jJXamoq9T+pn8bfx90H9HrvF/re20/6Dy0r8MryytFzrEszeeJWqo4o0h03tPbU3S+IJVpglLJmxJED7/bdotEZPcoJb2oWMW3c+4WcQ1yDyXSAZtzkwT7ypIE85M5JNicktNnRJ+ffYP80MmJH3j7Bvrinq8fVVIr63AG1r27Ukktsh9xMn0jSYIAEDNAuHI43nVWDpuMJvHnitAOYeh3/eVqGiKn0Gd8P4S0DxXV2MOVw6TBrnlbxd+f63Q6THmZKYLUNCYJEpE745AgERERkQ1YLBac3JWKBY/PxbMdHsfnN72P/T/thqGmXnPN7PjT2DVvq8IuiVpHOiTYkCQYHBUCvxB/zXUKmCQoJl3t2/uaWHj7eJ/3awHhgeg2tIeoLlcOky1IH0JIUzOZhionXTUcO2EAdDrtQ83natcjGj1Hy5K+Dvy8hyvaqEXEQ4LnDNi06xktGu7PS+SQYHPStstSBLuP6AUPT+f+cX6fa+Iw+k/jldRa9foS5CZkK6lF9qEyDfVcHQd0FtXNdqEhweNrjqA0p0RU4+oHxsDTS/ZSDDkXTy9PDLlrhKhG0oZjKMtzrVROsi5DbT1WvyFPEbzqruHoENdJQUfkyjgkSETuzLl/qkBERETk4EwGI7bN3oR/9vwfvDvyFWz9ciOqiiuV1V/56mKuWSK70WepSRLU6XSiNMHizDOor64T9eLuEtbJBmziJjU+JHWpX2+phHUcEiTrKxY+oI6dKFtTW5DCJEEJi8WCxA3HRDX6TuyvqJuzRjwwVnS+tqIGhxbtU9MMuTTJqk6vNl4IjAz67z97+3iLEjULUvNhNpk1n3cHJ7aniM73GNlbUSf2ddu7My6ZANcaxnoj5j/4JdP1nZh00DmsU3ijv95pgPZ1w4BrDQnumPO76LxOp8OIh8Yp6oacydB7ZCuHLWYL9i3cpagbcgfbv/4d+mzZULPOQ4cb/3Wboo7IlQVGBIleFCznumEicmIcEiQiIiKykqL0Arw28AX8+Ng3OJNeaJVrlObqkbQpwSq1iZojSRL09vVGUOQfb21KVw5zXad2ZXl6ZB/NFNXod4kktX7XyYYET+xIQW1FjagGUXMkSYIeXp7oPS5WdP183r9EClJyRYNSOg8d+lwTp7AjYNC0IfAN8hPV2Dlvi5pmyKVJVnWGxUTAw+P8Hw23F6wcNtYZcOaUdb7ncRVpO2RJgj1HyVJKHYVvkB/umf2wkloZ+9Ox8cPVSmqR7UnuYUHtguHt26bR3+vYX5Yk6CrrhvXZxTi26rCoRt+J/dG2a6SijsiZxAzsgo79ZQO3h5fsV9QNubr66jqseXOZuM6we0chqld7BR2Rq/Pw9EBg26Dmv/ASmCRIRM6MQ4JEREREVlCQlof3x7xukxWC+xbstPo1iBpTIhgSDO/c9rw3NqN7y4YEua5Tu8T1sgSuyO5Rl0we6jy4m+iHbiaDCcmbOQhN1lWcIbiXxYQjqmc0PAQr2JgkKCO9h3Ub2gP+oQGKujnLJ8AXV94xTFQjbVsyCtL4Z4MuzWwyi9JWGlvTKX1pIy+JK4cvpfJMuWgls5ePN7pedZnCjuwrduIAjHhwrJJay19ehPxk/tlzRpIh/6bSKP1C/BEhGGzLT86Foc6g+byj2DVvKyxmi6jGqEeuUdQNOaOhM2VpgpkH0l3i3yWyvi2zNqC8QJbM5uHliRv/d6qijsgdSFYOVzBJkIicGIcEiYiIiBSzWCz4/pGvUZojW5HQUkeW7kddVa1NrkXUwFhvRFleqebzDauGG0T3kb3pyyFB7aQrfeMmXXrVqoeHB2KFazwT1nLlMFmPyWCEPlv7A+qIrpHw9PZCZPd2mmsUpObBbOaKTq0S1svWpUvXRV+KiuGXXfO2imuQ6yovKINZsGY1LObiIcH2sdqTBAEgP4mfxy7lxA7ZquGuQ7pfMjXNWU3/YCZCOza+LrY1jHUGzH9oNtddO5masmrUlFVrPt/YoPO5Og3QniZoNplFQ72OwGwyY8c3W0Q1gqNCMHDKIDUNkVMaMmOEaB2nsd7In9VQs8oLyrDq30vFdUY8MAZtu2n/vpzcj2RIsJxJgkTkxDgkSERERKTY4aX7kbZNtkqqNeqq6nB0+SGbXY8IOJv6YLFoTyWI6HzhkKAwSTCFP3jWwmwyi1O44i6xavi/vz9JtnI4YV286M8aUVP0OXpRwkrDwLMkDdVQUy9K0nFnhjoDUrckiWpIB5kvpdvQHuKBqz3fbYdJMARGrq3ktPYUVAAIb2xIULBuGADymOZ2SanC7w9dZdXwufxC/DHzq4eU1ErfnYbNn6xVUotso0T42Sc85tJJggDEa1KdfeVw4oZj4r8nrr5/DDy9vRR1RM4orGM4+oyPE9XgSk5qzuLnF6C2vEZUw6uNF67/562KOiJ3IRkSrC2vgaG2XmE3RES2wyFBIiIiIsU2fbTG5tfkymGyNfGD6QuSBCO7R4nWdeYncyWjFpkH0lFVUqn5vFcbL/QaG9vk10hTuoozilCQyv99yTqKM4pE5yO6nF1lF9VLlobKlcPapO9KRX11nebzfiH+6HpVd4Ud/UGn02HEA2NFNUpz9UgUJiWS65IOFzeWJCh+aYNJgpckTRLsOaq3ok4cS//rr8Cwe0cpqbXsHz+j6GSBklpkfdLvJ8Nimk6h7DSwi6h+tpMPCW7/erO4xsiHxynohJzdVXdeLTovXSFLri1tezL2fLddXGfUo+MbfQGGqClBkSGi8xVFFYo6IbKdmrJq7Jy3BSteXYxl//gZ695bgXy+7Od2OCRIREREpFBuYrb4AZAWCeviUXmGb+eS7RRnCocEL1gPJV7XmZLLdZ0aJKyTDZ/0GNUbvoG+TX5NcFQIOg/qKroOVw6TtUiHBNt2/f8hwd7ClekcEtREmoTaZ3wcPAUD6s0Zes9I0QA8AOycu0VNM+RySk4LU7g6X5zC5Rvkh7BO2te/5iXlMP23EbUVNcg6nKH5vM5Dh8uG91TXkIO5/cN7EBwdKq5jqDVg9RvLFHREtmCNe9i5JOuGASA7PlN03p7K8vSIX35QVKPP+DhEdo9S1BE5s3Y9o0XnKwo5JEiNMxlNWPjEPHEdb19vXPfiTQo6IncjSRIEeH8j51Klr8S8+2bhmeg/47uHZmPlq4ux5q3fsOT5hXg59lm8Evcsds7bApPBaO9WyQY4JEhERESk0I45v9vlumajCQd/3WuXa5N7kg4JNqRvnUuSXmOoNYgfNLmjhHWy4buWpgSqWDlMZA3ie9n/DwlK07cKuDJdk8QNsntD7ARZ0mlzgtuFYMCUQaIaR5cfQkURXwShi8lXdTaethItWDlcW16DsrxSzedd1Y5vtsBs0v4yS8wVXeEX7K+wI8cSEB6ImV+qWTu854cd0OeUKKlF1iVNQ73wpbMLRXaPgrdfG831s4+edtqh513fbhPdcwBg1CPjFXVDzk4+RMPPsdS43z9bj5xjWeI6Yx+fiJD2YQo6InfD+xu5i5zjWXhryP9iz/c7YKwzNPo1eUk5+O6h2Xg59lns+nYrTEaTjbskW+KQIBEREZEihjoD9nwvX5Gg1V6uHCYbKpEmCXa5OPkhqpdwxV0yh2xao6qkEqf2nhDV6De5ZcN/cS38uktJ3ZKI+pp6UQ2ixhRnypIEG+5l0eIkQd6/WquiqBynD2WIasRO7K+mmSaMeGCM6LzZaMLeH3Yo6oZciXRI8FKrOtsLh57zkriq6Fz11XVY985yUY2eI/so6sZxDbxpMIbMkK20BPjynDMRDzo3kyTo4emBjv1jNNevPFPhlGtSzWYzdsyRrRoObBuEgTcPVtQROTvpEE05k7aoEWV5eqx4eZG4jk+ADyY9P0VBR+SOgjkkSG4gNyEb7495DUUnC1r09UUnCzD/wa/wct9nOCzowjgkSERERKTIkaX7UVVcabfrn9yZijPCtYlELVV8WvuQoM5Dh7COF7/lG91HOGTDIcFWSdp4HBaz9nSM0A5h6NCvZQ/eLhvWA77BfpqvZag1IG1bkubzRJdSnKH9Xubh6fHftZyBbYMREB6ouVYB1w23WtLG46Lz7XpGo2037WvuWypu8kCEtJet0dw5d4vTphmR9UhSuPxD/S+ZTCdJEgSAvEQOCZ5r6xcbxYNGPUe7/pAgANzx8X3iYRQAOLSIQ4LOoETw/aRXG68W/Vnp1F+4cvio860cTtmcgDOnZD8XGn7faHj7eCvqiJydf2gAPL09NZ/nEA01ZtFzC1BbUSOuM+7JSQiKlH92IPcU1C5EdJ5D0OTo9NnF+OS6t1Gtr2r12XOHBXfP38ZhQRfDIUEiIiIiRbbbadXwufYxTZBsRC94qBPaMRye3l4X/bp4XSeHBFslYa1s1XDcpIHQ6XQt+lpPby/0vbaf6HoJa7lymNQrFgzXh3UKh6fXHw/MogRpgvrsEtRV1Wo+744S10tXDVs/RRAAPL08Mfze0aIauQnZyNh/UlFH5CokAzZhl1g1DADthUOC+UwS/K+6qlqse3eFuE6Pkb0VdOP4AiOCMOPzB8V1Tu5KhT5bllJH1ldyWvv/RqGdwuHh0fyjrY4DhEOC8adF5+1h+9eyFEEAGPnwOAWdkKvQ6XSiQRoOCdKFUrcmYd+P8p9fB4QHYuIzNyroiNwV1w2TK6vSV+KT696BPrtEVKfoZAG+feBLvBL7DHZ/x2FBV8EhQSIiIiIFCk/kI2Vzgr3bwL4FO5k0Q1ZnNptFD3XCOzf+YDq6t3DdMNd1tpjFYhEP2MRNHtC6r58kWzmcsE421Eh0IZPRJPphWUTXyPP+WTIkCAAFqfmi8+5ExT0sdmLr7mESVwtXDgPA1i83KuiEXIWhtl70UKqpNZ3RfYXrhvnSxn9t+XwDKopkDw87DejsVgk5g24bgsHTh4rrHFy0T0E3ZC1mk1n0Gay5VcMNOg2UDQnmHMsSnbe18sIyHFl2QFSj15i+4u/LyfVIBmk4REPnMhmMWPjEPCW1bnnzDlGaP1FwlCxJUPo5n8ha6mvqMevmD5CbkK2sZuGJAnx7P4cFXQWHBImIiIgU2OEAKYLA2fVezvi2OzmXioIyGOuNms9HdGn8oU5AeKDoh8/5XNfZYrnHs1Caq9d8XuehQ59WJgPGTZIN5OQn53KlOilVlquHWfBDrfAL7mXiQWcO1rRYbkI2yvJKNZ/38PJEr7F9FXbUtKhe7dFjlGxd6J7vtiv9AS85N2kaQMOq9MYERQYjIEL7A1cmCZ5VW1GDde/JUwSH3D1CQTfO5c5P70dg2yBRDa4cdmzlBWWyz2CXeOnsQh37x2i+BgDkONnPVnbP3waTQfbAlimC1BjJz2nKC8r4MjP91+ZP1in5nqbrkO68X5GYT6AvvH29NZ/nEDQ5IpPRhDkzPsWJHSlWqf/fYcG4Z3Hw1z1WuQZZH4cEiYiIiIRMBiN2z98mquEfFoDrXroFz+18BZ7ens0faIKKlQ1ETSnO1L7eDmgmvUawcrg8vxTVpVWaz7uT48JVw92G9kBAWOsGCMI7t0X7WNkKw8R1XDlM6kiHTiO6nJ8kGC1NEmQaaotJUwQvG94TfsH+irppmRHCNEGL2YLFzy9Q1A05O0miM9D0ZzGdTidaOVxeUIYqfaXm867i98/Wo6pY9v+HNv4+GH6fbF25MwpuF4Kb/327qAZXDjs2ybp0AAhvYmX6uQLCAptcr96cvKQc0ctxtmSxWMQvr/qHBWDQbUMUdUSuRJK2ZawzoLaiRmE35Kz0OSVY8epicR2dToe7PnugRWvniZoiX6deprAbIjmLxYIFj8/F0d8OWv1ahWn5mH3HJ/j6rk/4/b8T4t+gREREREJHVxxCeYHsm8Jr/+d63PLv29F9eC/0u/5yUa39P+2C2WwW1SBqinRI8MLBmnNJk7gKmCbYIgnCYTutq4O5cpgcSYn0Xtb1/CGbKOn9K5X3r5ZK3HBMdD52Qn9FnbTcoGlD4RPoK6pxfPURJG06rqgjcmb6LNnwU3NDM5KXNgAgP8m9h55ryqux/v2V4jrjnpiIYMGDS2d25e3DxC/PceWw47LmoPOFOg3QvnLYZDA5TdJz6tYkFKbli2oMv3c0vH3bKOqIXIl07T3TtggAFj/7I+oqa8V1Rj16DbpeeZmCjoi4Tp1cy4pXFtt849mBn/fgy9s+gsngHC/W0FkcEiQiIiISkn7w1nnocPU56TJDZ8hWSumzS5C2LVlUg6gp4uSHS6wbBhQ8lHaShzj2VFtZi5PClQNxk7WtDo6bLBsSTN6U4DRpHuT4ihUnCUZ2j4KHp/Yfs3BlessYauuRtjVJVEO6/lwL30BfXHXHcHGdxc/+yJdBSP5ZrJlVnZIkQeBs+pY72/zxWlTrZenWPoG+mPjMDYo6cj7+oQGInSi7V3PlsOOS3sNakw4oGRIEgGwnWTm8/evN4hojH+HqTmqcZIgG4CANAcmbE7D/p93iOgERgbjljTsUdER0lnRIkOvUyVFs/XIjVr2+xC7XTt2SiCUv/GSXa5M2HBIkIiIiEijOLBKvv+x/wxUI6xj+xz/fOAi+QX6imlw5TNYkTd9q6sE0hwStL3VLomjQLiA8EF0Ga3tru+eo3vD2055OUVtRg/TdaZrPE52rOENtkqBXGy+0vayd5noFKXkc/mqBtO0pMNQaNJ8PCA9E50HdFHbUclc/KFs5DABZRzKx94cdCrohZ1YiTBJsLoUrWjgk6M5JgtWlVdj4n9XiOtc8OQmBbWVDGc5u8PShovNcOey45EmCLR8S7CgdEjyaKTpvC5XFFTi8WJac2X1EL3SI7aSoI3I10lRb6fYVcm7GeiN+evJbJbWmvn0XAsIDldQiAmRDgsZ6I2rLuU6d7O/w0v1Y+MQ8u/aw6aM1OH3olF17oJbjkCARERGRwM5vtojfGBv58Plva7fxa4Mrpl4lqnlo8V4Y6rQ/QCdqSrEw+SHCmkmCKe77ULqlEtbKVvbGTuyvOS3N27cNeo+LFV1f2j9RgzOZ2pMEdR46hHW6+AF1VO/2mmvWV9ehNEev+by7SFwvezmjz7X9RImPEpcN64n2sbLhKwD47Z+/oL6mXkFH5KwkQ4I6nQ5hHcOa/Jr2fWWfx/KS3TdJcNNHa1BdWi2q4Rvkhwl/d98UwQYDbxosXjl8SDg4RdZRkiV86cyGSYI5xxw/SXDPd9vFaeujHr5GUTfkioKiZEOCTBJ0b5s+XqMkZbrbsB7nbeIhUiEoUjgEXcghaLKv1G1JmDPjM1jM9k21tFgsWPjkt3z52UlwSJCIiMgF1dfUIz85BznHTsNkNNm7HZdlMpqwc95WUY3QDmHod93lF/36EOHK4erSaiSsOSKqQXQpkiTBgIhA+AT4XvL3wzu3hbevt+b6TBJsXoIw/TRukmxlsPR8wjoOCZIakntZaMdweLXxuujXo3vJBmsKOOjcrKQNx0TnYyf0V9RJ6+l0Okx6doq4jj67BJs+WqOgI3JWekEKV0j7UHh6X3z/OldYTATa+Ptovka+m64brtJXYqOCfzfH/20yU3KgZuXwwV+5ctgR6QWDzv5hAa3avNCuZ7To+8vs+CzNZ23BUGcQ33f8QvzFyZ3k2oLF64Y5ROOu9NnFWPWafP2lzkOHGZ89AA8PjjWQWvL7G4egyX5yjp3GrJs/gNFBwkLSd6dx84WT4N+mRERELsJkNGHvjzvw6oDn8WTA/Xg59lm8NvAF/C3kIbw/9jUkbTpu7xZdTsLaoyjNKRHVGPHgWHh6XZyO0OeaOARHh4pq713AlcNkHcWCwZqmUgQBwMPTA1G9tCdxFZ4ogMkgS1FwZYUn8lF0skBUI3aibMAmbrLsYW/WkUyU5TFtjWTMJjNKBKmol7qXSZIEASA/JU903tWV5emRHS9L9LHnkCAADJ05Eh36xYjrrH17OVML3JTFYhElCYa1IIHLw8MD0X2038+KM86gvrpO83lntfHD1eKVY34h/hj/P9cp6sj5DZ7GlcOuSLJuuLl16Rfy9PJE+zjta3TL80sd+u/b7V9tEg1dAsDQu0eIBsPJ9UnWcQJcN+zOfv37D6irkn8mHPPYteg8qJuCjojOJ72/cUiQ7KU4swifXPcOaspkKfaqLXl+ocP1RBfjkCAREZELKMvT443BL2HuPbOQe/z8t5wNNfVI25aMjya8ia+mf4Taylo7del6dsz5XXRep9NhxENjG/09D08PXHXHcFH9+BWH+YGclKspqxY9/AzvEtns10QJVg6bjSYUpRdqPu/qpCmCMZd3QUj7plcUNqddj2i0vaydqMbhpQdE54nK8vQwGbSnLUd0bfxeJl2ZXsAhwSYlbZS99BLdp0OrhwtU8/D0wLT3Zojr1FbUKEnlIOdTXVqFOsH3dOGdW7amM7qv9tXYFovF7YaeK4srsOnjteI645+6DgFhTBFsMPBmrhx2NfXVdag8U6H5fFhMeKvPdOovXDksfEHBWuqqarH6zWXiOiMf4aphalpgpHCIpohDNO4occMxJYm+QZHBuOn16Qo6IroYh6DJGVUWV+DjyW+jNNfxXqIvLyjDilcX27sNagaHBImIiJxcWZ4eH1zzb+Qca34FyqHF+zBnxqcwm8w26My1lebqcWzVYVGNvhP7I6KJgakhd8tWDhvrDDi0hA9ESC1JiiAAhLcgvSa6t2zIhiuHL026qle68g04OyAtXTm8/r0VMNYzMZK0k97LrJckyPtXUxKlq4YV3MNUiJs0EH0VJBpu+2oT/8y4IX2WLMk8rFPLhgTb99E+JAi438rhDe+vEg1vAoB/qD+ufYopgufiymHXI0lCBYDwmNYP+3caKBsSlKYYW8vvn64XJxh1HdIdMQO7KOqIXJW3jzf8Q/01n2fSlvsx1Bnw05PfKqk19Z27+AIFWU1QuxDRed7fyNbK8vT49IZ3Hfol498/XYfchGx7t0FN4JAgERGREzMZjJh164et+kB4bOVhLH95kRW7cg+75m0VD1uOerjpt7W7DO6Gdj2jRdfYx5XDpFhxZpHofHPrhgEgWjpkwyHBRhnqDEjZnCiqETdZNtz3Rx3Zw97izDPY8912Jb2QeyrOkN7LGh/yD4oMFj1Ac+Qf8tmb2WxGknhI0L6rhs9127szoNPpRDXMJjOWvviToo7IWUhWpQMtTxJsHysbEsxzoyHBiqJy/P7ZOnGdCX+/EX4h2v8OcVVcOexaJKuGgZbfw87VaYDrDQlWl1Zh3XsrxHVGMUWQWkgySMMhGvdSXliGOXd9ioJU+fe23Uf0wrB7Rynoiqhx8nXDTBIk24lfeQivDXwBGftOKqup0+ng4SVLbr+Q2WTGT3/9FhaLRWldUodDgkRERE5sxSuLNX0g3PL5etRX11mhI/dgNpux4xvZquHgqBAMvGlQk1+j0+kwZIYsTTBlc6JDxo6T8yqRJgm2ZEhQuK6TqUqNO7kzVXTv9wn0Rfereynppfe4OPHquNVvLoPJwDRB0qY4Q5gk2LXxe5lOp0OUIA215PQZfka7hJz406JVPp7enug1pq/CjmRiBnbB8PtGi+scWXYAqduSFHREzkIvTeFq4crt9n2Z7NxS699biboq2b07IDwQ456cqKgj18KVw67FVvewc3XsHyO6piOuG9744WpU66tENXyD/HDlHcMVdUSuTjJIw3Wc7uPgr3vwar/ncGTZAXEtnYcOd332ADw8OMpA1hPEderkBAy19fjpr/Px+U3vo/JMhdLat390L/6d9iFGPXKN0mHBlN8TmejuwPg3KxERkZNK3ZqEtW8v13S2pqwaB37Zo7gj95G88bg4gWj4faPh6e3V7NcNFa4ctlgsOPDzblENonNZa0Xnudr1YpKgNSSsla0a7jM+Dl5tmr9vtYRvoC96jOojqlGcUYTdTBMkjcRJgl0bTxIE5CuHC9LyReddVeJ6WYpgj5G94RPgq6gbNW56fTq8/dqI6yx+9keYzbKEa3Ie0hSusJiWpXBFdo8SPSRwlyTB8oIybJm1QVxn4jM3wi+YKYKNUbJyeBEfUDkKW6WhniuwbTBCO4RpvmZeYo5DvZxUeaYcGz9aI65z9f2j4RvoWJ+NyHEFR2lPEqwqqXSof4dIvfLCMnx1+0eYfccnygZYxv1lItehk9V5tfHiOnVyaHlJOXh72L+UJNdfaPILN+GaJychokskZn71MF5P/RAjHx6nbFhw0TM/oK6qVkktUotDgkRERE6oqqQSc+/5XBTXfHzNEYUduZftczaLa4x8eFyLvq5dj2h0HdJddK29XDlMCpUIkx9aMiToG+jb4gfYjSlIzmWcfSMS1smGBOOED2cvNHBK02mqLbGGaYKkUbHgAbVOp2vyHhUtSBIEOOh8KYkb4kXnYyeovYepENYxHBOevl5cJ2N/Og7yBSC3USJcm9rSARtPby9E9YzWfJ3CtHyYjCbN553FundXiBNgA9sGYewTTBFsinjl8E6uHHYU8nXDrU8SBIBOA7WvHDbWG1GQ6jgvcax9ZwXqKmUPXL19vTHp+ZsUdUTuQJq2pTr5iBxH4sqjeLXfczi0SF1qb3BUCKa8Ok1ZPaKmcJ06OSKLxYJtszfhjSv/gWwrpFpfff8Y3PLGHef9Wtuukbhn9iN4PfVD9L22n/ga+uwSrHnzN3EdUo9DgkRERE7GYrHgh8fmQJ9dIqqTvjtNUUfupbywDEd/Oyiq0XtcLNr1aPkDt6HClcOnD57i+lVSRrJu2NuvDQIioJ39cQAAIABJREFUglr0tZKVw9Wl1fwhzQX0OSXIOZYlqhE7Se2AzdC7R8DLx1tU48ypIuz5foeijsidSJIEQ9qHwruJP7viJMGUPNF5V1RfXYcT21NENWIn9lfUjVqTnpsiWt/WYOmLP8FQW6+gI3J0kgEbLx/vVj3kjxasHDYZTCg6WaD5vDMoy9Nj6xcKUgSfvZFpXs3gymHXUZIleFHDQ4eQ9qGaznbsr31IEACyj2aKzqtSmqvHls/Xi+uM/ctEUboiuR/p59Vy/ozG5VSdqcQgfSyW/GWB8iHQ296dAf/QAKU1iS5FtE69kOvUSb2qkkp8Nf0j/PjYNzDUqP85T/8brsDM2Q9Dp9M1+vttu0bivnmPwSfAR3ytDR+sQkEaf87paDgkSERE5GR2zduq5M08fXYJ36TXYPf8bTAZZIkYIx++plVff+Udw6HzaPwDe0vt+5FpgqSGZN1wRJe2l/zm80JM4lIrcZ0sgSuqV3tEXhalqJuzAtsGY+RDY8V1VjNNkFrJbDaLBp6bWjUMyO9fBam8f10odVsyjPXa/z0PigxGp8sdc1WVb5AfprwiT8kozjyD3z+TDw2Q49MLklDDY8Jb/FkMAKL7dNR8LQDId/GVw2vfWQFDrUFUI6hdMMY+PkFRR66LK4ddh2TQObRjODw1rj/rNEA4JGiFBBctVr+xTHzf8Qn0xeTnpyjqiNyFJGkLACoKOEjjSg78sgdfTfgQHWqb/t5Yix6j+mDozJHK6xJdimRIsKq40i3S08l2Urcm4fXLX8DhJfutUr/bsB549Oe/NvuZOqxjOG7436ni6xnrjfjlqe+49cnBeNm7ASK6WGVlJY4cOYK8vDzo9Xp4enoiNDQUnTt3Rv/+/eHra7+3iwsKCnDs2DEUFRWhrKwMfn5+CA0NRa9evdC7d294eNhn9thisSA9PR1JSUnQ6/WoqqpCUFAQIiIiEBcXh5iYGLv0RaRaQWoefvrrfGX10nenYfB07Ss93Y3FYsGOOb+LagREBOKKW69s1ZngqBD0vbYfEtcf03zdvQt2Ysqr01r1UJDoQobaepTnl2o+H96CVcMNJEmCAJCfkoteY/qKariShPWyIcE4xSmCDSa/cBN2zPldNPxzJr0Qe3/ciavvH6OwM3Jl5flloj9zEV2bvpdF9oiCzkMHi1nbD8DymSR4kfjlshTnvhP62e171ZYY+fA4bP5krXjAfc2by3D1A2MQ2MLUXnI+ZpMZ+hy95vNNrUpvTHtBkiAA5CXl4vJbRCUclj6nBNu+2iSuM+m5KfAJYIpgSwyeNhTHVh3WfL5h5XBYJ/4MxF4sFgv0WdqHBFu6Lr0xnQbKXhbIOWb/IcEzGUXYMWezuM61T12HwLbyFGNyL8FRsiFBJgm6hvLCMix8Yp7S1cLn8vD0wIzP7ufPr8mmVKxTD4nWlnRM1MBkNGHVa0uw+s1lmn+e2JzoPh3wxIpn0ca/ZQmB45+6DjvnbkFBquznlMfXHEX8ykMYOGWwqA6pwyFBcip79+7FAw88AJPJNlP5oaGhWLlyJSIj1b8Nc6G6ujqsXr0aP//8M44ePQqz2dzo13l7e2PYsGGYMWMGxo4da5MHHcXFxVi0aBEWL16MzMxLr1YIDAzEpEmTcPfddyMuLs7qfQFAWloaFi5ciFWrVqG09NJDC9HR0Zg6dSruvPNOREWpTcEhshVjvRFz7v4M9dV1ymqe3J2GwdOHKavn6lK3JqEwLV9UY9g9o+Dt26bV54bMGCEaEjyTXohTe0/gsmE9NdcgKhE80AGAiM42HBJkkuB/mYwmJG3Qfv8AgLjJAxV1c76wThEY8dA48aq+1W8sw9CZIzUni5B7Kc7UvmoYAMKbuZd5+3ijbbd2mtdsFqTkwWKx8MHI/0venIBts2WDOLETrDPorIqnlydue3cGPr/pfVGd6tJqrP73Mtz+n3sUdUaOpiy/FGZBUkVz968Lte8rSxLMc+EkwbVv/QZjnSzNKzg6FGMeu1ZRR66vYeWwJNn/0OJ9GP+36xR2Ra1ReaZClILX2nvYuaJ6RcOrjZfmF0Wyj9p/SHDla4vFmy38wwIw4e83KOqI3Il03XAFV3I6vUNL9uHHx75Rvlr4XOOenCReD0/UWuKk1MJyDgmSyJmMInxz92dI351mtWuEdgjD39a+0KqXSr3aeOHOT+7Dx5PfFl//l6e+Q+yE/pqejZJ6jvsaNVEj0tPTbTYgCAClpaU4c0b7GpeW2rhxIyZPnowXXngBhw8fvuSAIAAYDAZs374df/7znzFt2jQcP37can0ZDAbMnj0b1157LT788MMmBwSBswmIixcvxtSpU/H000+jqEj28K0pJSUlePHFFzFlyhT8+OOPTQ4IAkB+fj5mzZqFa6+9Fp999hnq6+ut1huRtSz/1684ffCU0pqn9p5QWs/VqXhje9QjrVs13OCKW6+Ct5/sA/S+BbtE54kkq6EA2yYJFqRwSLBBxv6TqNZXaT7v5eNt1VTGyS/cBE9v2XBf0ckCrlWnFivOkH2P19y6YQCI6t1ec/26ylqU5mpPCnMl+pwSzJnxqfgt6r4T+ivqyHr633AFeo2NFdfZMmu95gFVcnySBC4ACG9lkqDkXga47pBgSVaxOGEeACY/P6XFKQ7ElcOuoESwLh1o/T3sXJ7eXmgfq33wuTRXj8oz9ktCy0/JxZ7vtovrTHp2CvxC/BV0RO5GOiRYXsAkQWe28aM1+GraR1YdEAyODsWUV26zWn2iS5EmpXIImiRO7EzBv6940aoDgn4h/vjrmuc1vXATO3EALr/1KnEPZ04VYf17K8V1SA0OCZJTscXA3oWsmd5gMBjw0ksv4S9/+Qtyc1v/IDshIQHTp0/H/PnqVo82KCoqwl133YUPPvgA1dXVrT6/atUq3Hjjjdi/f7/y3g4fPowbb7wRS5YsafUO+/r6enz66aeYPn06Cgr44IScR/LmBKt8gDp98BQMwvQDd1FVUolDi2X3tO4jemlO4/AN8sPAmwaJrn/gl90wCZJHiEoyhQ91WvGNaEj7UPgG+Wm+FpMEzzKbzVj52hJRjZ6j+1j1AXZ4TARGPjROXGf1G0t5j6MWKc6QvczUtiVDgr1kgzUFXDkMk8GIOXd9igrharIO/WIQ2iFMUVfWo9PpMO29GeI6JoMJS1/6SUFH5IikL2y0dt2wT4BviwajL6UgObfJF2Gd1bp3lovW1gNnkxxGPTpeUUfuY/C0oaLzJ3emQp9Toqgbai1b38MuJF85nCU6L7HilUXilyaCo0Iw7smJijoidyMeoiniEI2zWv/+Svz69PdWv870D2bCL5hDzGR78qRUDkGTNmnbk/HJ5LdRU9b6OYyW8vLxxuO//V2U0jr9g5nw9vUW97Lmrd9wRvgzWVKDQ4LkVGw9JOjt7Y2YmBir1K6rq8PDDz+MxYsXN/r7PXv2xG233YY//elPeOihh3D99dejXbt2F32d2WzGm2++iXfeeUdZb5mZmbj99ttx7NjFa+k8PT0xePBgzJgxA4899hjuv/9+jBkzBv7+F394Ly0txQMPPID169cr623Tpk247777UFx88Q+V/P39MWbMGNx///147LHHMGPGDAwePBienhcn0yQnJ2P69OlIT09X1huRtVQWV2DevbNaPRTbEsZ6I7IOZyiv64r2fL9dvE5q1MPaUgQbDJkxQnS+orAcSRutl0BLrq9YOCQY0YokQZ1Oh+g+2odsijPOoL6GycFbPluPxHXxohpxk6y/plNFmmDhiQLsW8A0QWqedOC5JQMz0b2Zhiq19KWfcWJHirhOnDB1ypa6DL4MQ2eOFNc5+OtenNydqqAjcjTiJMHOrR+wad9X+/2srqoOpdmuNZBVeaYcO+dtFdeZ/MJNaCNMindHDSuHJQ4xTdBuxEmCGu5h5+rYX/Zz/iw7rRzOOpqJAz/vEde57sWb4RPgq6Ajckd+If6i+y+HaJzT8bVHseT5hVa/zvD7RuOqO4db/TpEjREnpfL+RhqUnD6DL6Z+iLqqOqtdw9PbE48sfAK9Rss2BLXtGonJL9ws7sdQa8CiZ34Q1yE5L3s3QNQafn7a02S0uP322xEQEKC8rsViwXPPPYc9ey7+5n7MmDF4+umn0adPn4t+z2w2Y9u2bXjvvfdw4sT5K0Lnzp2L6Oho3HfffaLeSktL8eijj16UbOjp6YmZM2fikUceQWTkxQ/FamtrsXjxYnz88ccoK/vjrTCDwYBnnnkG3333HS6//HJRb/Hx8Xj66adRV3f+X5jBwcH429/+hmnTpsHX9+IfdBQVFWHOnDn4/vvvz1tXXVBQgMceeww///wzwsIcP1mC3JPFYsH3j86x6sq59N1puGxYT6vVdwUWiwXbv5atGvYL8cfg6bLUg7hJAxEQHoiqkkrNNfYt2Il+kweK+iD3JX2o05ohQeDsyuGM/doG+i0WCwrT8tFpgPa35JxdzvEsLFbww9w4G9wzwju3xYgHx2LbV5tEdVa/sQxDZoyAp5fs4TG5tjOZsrdWW/KAWroyPd/NkwQPL92PDR+sUlIrdqLjrxo+182vT8fBX/eKX05Z/OwCPLv9ZatuRyDbk34W05LCFd2nI46vOar5mnlJOZrWGjmq3z/fAIPwRZSwTuEY+bA8Rdkd+YcGoO+E/ji++ojmGgcX7cX4v12nsCtqKX2WbGhYei+Rfm+YE2+fIcHl//pVXCOsUzhGPSp7cZXcm06nQ1C7EJRqTGPlkKDzKTyRj29mfGqV4IJzDZ4+FDNmPcjvW8hugsVJgkxKpdYx1hsx+45PUFWs/Tlfc/zDAvDoz39F32vV/Exs4rM3Yvf8rThzSvYz1cNL9iNxfTxineiFXlfEJEFyKi+88AJSUlKU/19ycjJ69jx/QCY8PBx//etfrfLf4+uvv8batWvP+zWdTofnnnsOs2fPbnRAEAA8PDwwduxYLFmyBDfccMNFv//222/jwIEDot6eeeYZZGRknPdrgYGBmDt3Ll566aVGBwQBwNfXF3fffTd+++039OrV67zfq6urwxNPPHHe8GBrlZWV4fHHH0dtbe15v96jRw8sX74cM2fObHRAEAAiIyPx4osvYt68eQgOPv/DXmZmJp555hnNfRFZ2445v+PIUvVru8+VvifNqvVdQfruNOQl5ohqDL17hHhdp1cbL/F6pSNL96Ouqrb5LyRqhCRJ0MPTAyGtXPcYJUzicueVw4Y6A+bO/Fw8ZBIWE6F5TXprXffizfI0wbR87F+4S1FH5Kok64aDo0Ph7dt88lNUb9m64Xw3ThIsOlmAbx/4Ukkt32A/9BjV+PfXjiqiSyTG/22yuM7JXamIX3lIQUfkSEqkSYIahgSlnwPyklznflZfU48tn8u3ZVz30i0t+ruEGnfl9GGi81w5bD8lWXZOEhQOCWYfs/2QYPqeNMSvkP99fsP/TuV9h8QkaVvlBRyicSb/x955h0dVfev/nZn03huEJCQQejP03nuRKoICUhVRRAUboIJSBVQUQelVpAWk916kIyVICYSQ3nuZmd8f/PhewkxIctaemvV5nvvcezc56yzisOecvd/9vrmZuVjy+gJkp+ouAtPSxhL95w3BqI0T2F2ZMSiOXsQ4dRZBM2Vk66fr8fD8vZJ/UCJVWlXD1KuzhQkEAcDK1goDF74tpNamD1ejML9QSC1GGiwSZBgAR48exX//FRXJTJkyBS4uLsLv9ejRIyxevFhjfNKkSRg5cmSpalhbW2P+/Plo27boqWOVSoXp06cjP1/aiebw8HCcPHmyyJilpSV+++03NGlSugU4X19frFq1ChUqFF1ETkhIwNy5cyX1BQBz585FQkLRzTw/Pz+sXr0avr6l24Br3LgxlixZAiuroi8cp06dQnh4uOTeGEZXxN6Jxp8T1+j8Pg/OskiwJE7+QXMRBIAWo8Wc2G40hBY5nJeVh2s7ecOYkQbFvca1oluZ3d3ITlzlWCS444s/8USA00XNTnX0dprbrZIHmg1vTa6z57sdUClVAjpizBG1Wk2KG3YPLJ2DjZO3M2ycpDvhx5VTJ8H8nHz81n8RctNzhNRr/GZzk9xw6vp5b9i7O5DriHJjZIwHikjQzsUONo5ln5d8CHHDABB7m3bYypg4u/oEMhMzSDWeuycz0uHIYdMl+bH0OczawQZ2LrTEHycvZzj5SF/vf/rvEygLlSX/oEDCp24m1/AM9kaz4a0EdMOUd5y8pQtpMuLTde5Ix4hBrVZj9Tu/4enNJzq7R+WmVfDVlVno+HF3yOUsVWAMi62LHeSERJKMBBYJMqXn4uZzOPLzfp3Ulivk6PVNf0w6/JWkA4IlUadnAyGJQ3ERMTj8414BHTFS4W9eptyTl5eH7777rshY48aN0adPH53c7/vvv9eIy23RogXGjBlTpjpyuRxz586Ft7d3kfF79+5h3bqy57nn5ORgzpw5GuMTJkxAw4YNy1TL3d0dP/zwAxSKog9VW7duxY0bN8rc2/Xr17F169YiY3K5HPPmzYOHR9liJsLCwvDhhx9qjM+ZMwc5OWI2ohhGBAV5BfhjyC/kGKPSkPIkGSlPaI4U5kxGQjoubaZtIAQ2rAz/ugFC+gluXpUcsXNKgOiRKX+oVCqkEDamXSV8bn2oToLl1Inr9qEbOLRwj5BadXo1EFKntHT9ojdpYQ4A4u7G4J9N7CbIaCcjPh0FudIdNj0CtTurv4xMJoMPwU0w+VEi8vXwHGhsbJqwCk+uPRJSy87VHj2+7ieklr6xdbZDj2n03v87cQeR/9wX0BFjLKQQBDZS3yHIToJmcmhDpVTh0AK68Lbbl31gYWUhoKPyy/PIYQqXWCRoECiHztz83YUcXqpYx1/ytYV5BYj/L5bcQ2mJOHoTdw7fJNfp+XU/KCx53mHoUJwEC/MKkJvB+y+mwL7ZO3F5ywWd1H7uHvjpienkNT+GEYVcLoejp6Pk69lJkCktsRFPsWbUMp3Udg/wwCfHp6H71L6QK3QjAZPJZBi06G3ygS0A2P3tNnZ3NyAsEmTKPUuXLsWTJ/93IkahUODLL7/Uyb1u376NY8eOFRmzsLDA1KlTJdVzcnLCpEmTNMZXrlxZZjfBzZs3Iymp6GJzpUqV8M4770jqrX79+ujdu3eRMbVajWXLyv7lt3TpUo1TZr169UJYWJik3oYPH47AwMAiY0lJSdiyZYukegyjC8K/2oyoK5F6ux+7CRbPrq+3Ij87r+QffAUtRolxEQSevbQ2GtyMVCPi6C08vvxQUEdMeSEtJhXKAumuCe4BZd+Y9gzxhkwufSOoPDoJZiZlYNVwMTGdPtX8ULt7fSG1Sot7gKcQl4vdM7ezmyCjFUrUMFA2kQ3FDVWtViPhnv42oY2B0yuP4fSKY8LqDVs+Bk7E2CBD0mpse3hV8SHXOShA1MQYB/k5+SSXCleJMZ32bg4kUYC5OAle23kJ8ffiSDXcA8U85zDAa/0bk67nyGH9U5hfiPRY6XGjUuewl6lQmxg5LMCtvTSo1WqET/2LXMevZkU0fIO2hsQwz3H0lP48AHDksCnw796rCP+K7mCqjSLugToSsDCMVCiRwxnxPLcxJZOXlYul/RchLzNXeO2wQU3w1ZVZCG5WVXjtl/Gu6ouOk7qT6+Rl5WHNyKVQqXj93hDwtzBTromKisIff/xRZKx///4IDQ3Vyf1evhcAdOnSRUOwVhZ69eqlEe0bHx9fpvhcpVKJlStXaoyPHj0alpaWknsbN26cxgnPQ4cOITIystQ1Hjx4gMOHDxcZk8lkGDt2rOS+LCwsMGrUKI3xlStX8pcRYxTcOnhD79Fg91kkqJWY29E4uexwyT/4CqwdbNDwjaaCOnoGNXIY4A1jpuxQ4jkBae41ltaW8KzsJfmecREx5eq7Xa1WY/245Uh9miKkXpcpvQwS+9L1iz50N8GIGFz886ygjhhzIpEoEnQvpZMgAHhX5cj00hJ17RE2jtd8J5VKp096oF6fsjniGxsWVhboO3swuc7lLReQ9Ij2uWeMA6r7u1tF6QIbiptgZmKGWURwHZj/N7lGlym92M1LEBw5bHqkRieTokZFRaZVJKY8ROtJJPjv3qu4f+YuuU6vbwewGIcRBuXQAMBuW8ZO/L1YLB+yWHgsNLsHMqYAZX7juY0pCbVajQ3vrRAe425tb423l4/BqA0TYOdiL7T2q+j6ZR+4VHAj17l14AaOLT4goCOmrPDbAVOumTlzZpHoXwcHB0ycOFEn98rKysLBgwc1xgcOHEiqK5fL0bdvX43xnTt3lrrGhQsXEBMTU2TM1tYWPXr0IPUWEBCARo0aFRlTqVTYtWtXqWvs3LlT46WkYcOGqFy5Mqm3Hj16wM7OrshYdHQ0/vnnH1JdhqHyzAFqid7v++AciwS1sXXyBrITVcM3msLG0VZQR8+oUMsfFevQTr9f/PMckgnRsUz5gxINBUhzEgQAb4ITV352HlKflB+HkDOrjuPyVjGRMFVbV0fjoS2E1CorHoGeaDaM3QQZ3UAVPJdJJEiIGwaA2IiYkn/IDMhJy8ayAYtIMdAvEtKyGvp8R3vPNhbq9QlDcHPaSXCVUoXDP+4T1BFjSFKiaM80UuOGAZozKvDs8JUpc+90BNl939HTCU3ebimoI8be1YEjh02MZEJcOkCbw16EupZydcdF8rtxSahUKiEugpVeC0K9PtKSeBhGG07eNJduFtIYL7mZuVjy+gJkp2YLrcvugYypQBEJ5mXlIS9LvDscYz6c+uMozq09JbRmpQaB+PLS92g+oo2GYZOusXGwQf/5Q4TU2jplI6L/jRJSiyk9/I3MlFvOnDmjEf07YsQIuLnRlc/aOHr0aBFBIgC4urpKjsx9kY4dO2qMXbx4EfHx8aW6fu/evRpjLVq00BDRiepN2/2KY98+zc0MbTXLiq2tLVq00Nz43rNnD7k2w1DYNX0L0mJS9X7fqMuRKMgTszFrLtw6eAM3dl8h12k5WlzU8Is0JEYOq5QqHPmJN4yZ0pNEFdZIFAlSTxmXFyeuhPtx+PPDNUJq2TrbYcTqdw26gNv1i95kN8HYO09xcfM5QR0x5gI1brgsc5kPUSQYd9f8RYJqtRqrRy4lR3g+x9HLCaM3TjAbpy6ZTIYB84eS65z64yiyU7MEdMQYEqooxdVf+nqXb42KpHvH3jbt5zERTv9txneCla2VgG6Y53DksGlBncPcBMUN+1TzI7lQxtyOxrd1P8OFjWeE9PMymYnpWDNyGaKuRJJr9Z4xUO+bxox5Q4njBFgkaKyo1Wqsfuc3oQ5X7B7ImBrUOHWe35jieHz5ITZ9sFpozY6TumPy6W/gXZW27kghbGATVG1Tg1ynMK8AK4b+wvvTeoZFgky5RKVSYe7cuUXGXF1dMXz4cJ3d88iRIxpjjRo1gkJB2/wEgNDQULi7F10oUalUGiLIsvTWtKmYaExtde7fv1+qyOEHDx7g4cOHpaophSZNmmiMaftdMIy+SH2aghNLadG2UinMLxSyAGkuqJQqbPlkHblOxboBCAijOZ8WR6M3m5MXe0/+fgQ56WJPiDLmCz1uWNqmDtW5pjyIBJWFSix/6xfkZYo5tTpkyTvCnDqk4hHkhaYC3Hb2sJsg8xLU2NWyiAQ9Q3xI39VxEeY/fx1etBdXtolxc5fJZRi9cQJc/FyF1DMWghqHkF2A8jJzcfJ3ftc1dVKILuCU73bf6uXXSTDubgyuhV8i1bC0tUKb9zoI6oh5jojI4SuCXLiZkiE7CQqKG7awsiBFqAPPXJCXD1mM5W/9gpw0MWsqKpUKp5YfxbTqn+Ds6hPkeiEtQlGzcx0BnTHM/+FEjBtOj0sT1Akjkn2zd+LyFnHfh+weyJgiTiyCZnRAVkomlg5YhEJBAjgnb2d8sHcK+s8fAktrSyE1pSKTyfDGT8OEzPNPrj/Gji/+FNAVU1r425kpl+zcuRO3b98uMjZ27Fg4ODjo7J5Xrmi6UdWvX19Y/Xr16pXqni8TFRWFhATNjTJt9aQQHBwMJyfNl8fS9KbtZxwdHRESEiKktwYNGmiMxcfHIzradBevGdPm5r5rBhUyUOOTzIkzK48j+gbd4rrl6HY6O7Xt5u+O2j1o3yO56Tk4vfyYmIYYsyeJ7Pwg0UmQRYIlsmfmdjw8d09IrcZDW6DhGzSnUlF0/aI3eaEh5nY0Lv3FboLM/5EUKX0uc/RygpWddal/3srWCu6B0kU5sXdioFarJV9v7Nw7HYGtUzYKq9fr2wEIbVtTWD1jouPH3ck1jvy0H4X5hQK6YQwFVWDjShDY+BAFNbF3THed5eAPu8lzcfMRreHgQRNWMJqIiBy+yM+JeoPuJCjuEFMFYuTwcy6sP41v636Guydul/zDryD6xmPMb/0t1o7+HVlJmUJ66z2TXQQZ8TiS44ZZJGhs/Lv3KsK/2iysXvUOtfDJ8WnsHsiYHJS4YQBI5/mNeQm1Wo3VI5Yi8SHtsPJznH1d8MXF71Czc10h9URQoZY/2r7fWUitQwv34PahG0JqMSXDIkGm3JGXl4dFixYVGfPw8MDgwYN1ds/4+Hg8faq5QR0aGirsHlWqVNEYK40Q79q1axpjCoVCaz0pyGQyraI+qb1VqVJF2AJHcHCwVifHq1evCqnPMGXl3qkIg97/wTkWCQJAbkYOwqfSF0ccPZ3QbHgrAR0VT8dJ9A3jwz/ug7JQKaAbxtyhOAk6epZNWPMiZJGgmTtx3T97F7tnbhdSyz3AA4N/Hi6klgg8K3uj6dv0eXT3zO1QqdhNkHm2QEeJTncP9CzzNd6EzZHcjBykx6ZKvt6YSY9Pw+9v/AyVoGeQ2t3ro8tnvYTUMkaCm1VFUBPaYbnU6GSOYDdxkqOkz18ymQyuFaS7bLr4ucLG0Vby9TEmGjecHp+Gs2tOkmrI5DJ0+KiboI6Yl+HIYdMh5QlN6OxSUXpk+stUqO0vrFZXAlpnAAAgAElEQVTy40QsaDsT27/YVGYxvkIlx6HvdmNmgy9w//RdYT3V6FQbVVtVF1aPYZ5DjuNMYKctYyL+XiyWD1ks7GCae6AnRm2cAIUFPT2NYfQNVSTIToLMyxyY/zeu7aQ50j9HrpBj1MYJcK0g7nlYFD2/7kf+9/OcVcN/Q2ZShpBazKthkSBT7li9ejViYmKKjA0fPhw2NjY6u+edO3e0jleuLC6CMigoSGMsMjISubmvjp3T1luFChVgZWUlrLfAwMBS3bc0PyPyd2ZlZQVfX1+N8ZddJhlGX8QY2F2BnQSfsX/uLiHxFz2/6S9ZFFVaqrSqRo4zTn6ciMtbzgvqiDFXqMIatzLEc76Mg7sjHDwcJV8fFxFT8g+ZKLkZOVjx1q9Qq+gLujK5DO+sfQ+2znYCOhNH1y8FuAneimbXVAYAkJmYgfzsPMnXlyVq+DneVTXfN8pCrBnOYWq1GmtH/45UQaIM9wAPjFj9LuRy813ikslkQg6HHFpAd0RjDEdKlPR/M85+rlBYWki+XiaTwYcQOZwSlYTczFevTxkjxxYfIEdD1e/bEJ7B3oI6Yl6GI4dNB4obqpOPi9BItYqCnASfo1arsW/2TsxpPr1Uh9TUajXu7PsXbRIa4tyyE8JTRXrPGCi0HsM8x8LKAnYu0tcMWERjPORm5GDJ6wuQnSomMt3S1grvbp8EB3fp63cMY0hYJMiI5O6J20Ljc/t8P8hoD4DYOtuh35w3hdRKfZqC9eOW87qVHjDfFVSG0UJWVhaWL19eZMzFxUWnLoIAtLoIKhQKeHqW3YmiOLy9NRcc1Wq11nuX1JuPj4+wvoqrV1Jfxf2MsfTGMKJRq9WIJboruPq7k15mUp4kk092mzrJUUk4+MNuch3fGhXQYlRbAR29mmcbxnRXioML9vCDN/NKslOzkEfY2JUirHkRiptg6tMU5KSLWfQ0NjZ9uBqJD+KF1OryWW+EtKgmpJZIPCt7o/FbLch1Nr6/EneP80GQ8k5SJC3iwz2g7O9vPqE0kaA5Cp2vhV/E9V2XhdSysLLAmL8mwt7NQUg9Y6b+6w3hEURbQ4i6+ggRR28J6ojRJ2q1mhTV6epPdxzwJUcOm9ZaS15WLo79epBcp9PHPQR0wxSHiMjhS3xoTueQD51Vkh6Xro2AsMqQycVH8T6+9BAzG3yBuS2/xk/d5mDpwEVY/c5SbPpgNXZ8+Sf2zgrH0cX78Uvv+dgydi1sVeJNC+r1CUNgw2DhdRnmOY5e0iOHRRzKZuio1Wqsfmcpnt58IqzmsOVj4F83QFg9htE3lLkNYJEg83+kxaY+S84QdAikbu/X0OkT436nbPxWC1RtU0NIrctbL+DMquNCajHFwyJBplyxbt06pKYWjWsaMmQIHBx0u6GgTXTm5uamNepWKl5eXqW+d0l/LlK8CGjvLTExEfn5+cVek5+fj8REzcUjffTGIkHGEKTHpiInTbqI5bkDVEgLWox5eXcT3PHlnyjIpTlFAED/eUP0Fq3QoH9juFWiCbAeXXyA/06W7PDKlF8oUcPAMxEzBR9CXCdgniKbS1vO4+yqE0JqBTasjJ7T+wqppQu6fdGH7CaoLFBiSd8FZh8/zbwayuY0IC1umCPTi1KYX4itkzcIqzdw4VsIJLoqmwpyhRztJwo4HPLD3wK6YfRNdmoW8rKkO6FS3xcAAfPZbcM655eVM6tOICs5k1QjpGU1BDWmRYUzJUONHH5w7h7JaZgpmZy0bNKhMzfi++TLOLg7ooqO3FgKcvJx//Rd3Nx3DZe3PNvkPLp4P/bOCseOL//Epg9W48bfV3Ryb5lMhl7f9NdJbYZ5jqO3dCENi2iMg32zd+KyQBfdJmNaoeEbzYTVYxhD4OhJc8HMSGARNAMoC5VYPmQx0mNTS/7hUuAR5InhK8dBJhN/uEUkcrkcI1aNE5ZQ9OeHa5BwP05ILUY7LBJkyg1ZWVlYsWJFkTFra2sMGTJE5/eOj9d0eHF0FGu7XVw9bfcu6c/10ZtarX5lb/Hx8VpdrZycxOTav6q3kn5nDKMLqK4KTd9uhaqtqpM3IO6XY5Fg5D/3cX7dKXKdGp1qo2aXugI6Kh0KCwXafdCZXOfQgj0CumHMFbKwxoBOgoDpOdeUREp0MtaN/UNILSs7a7yzdjwpglDXeIX4oPFQuptgdkoWfu4+FxkJvDFRXqE7CUqIGyaLnM1r/jq6eD/i74lZ6Gv0ZjO0GtdBSC1TodmI1qSINwD4d+81PL0lzjWE0Q+UmE4AcKtIF9hQnQRjTEgkqFKqcGgh/f2o0yf0mHCmZKiRw6pCJaJvRAnsiHkZ6hxGPXSmjTbvmt8zRNgbTVGhttgoZYZ5GSdCik1WciaUBYUCu2HKSsSxWwj/arOweglWKWg3pYuwegxjKKztbWBtby35ehZBl2+UhUqcX38KM+p+Jiy9wcLaEmP/mgg7F3sh9XSNWyUPvPnrO0Jq5WXmYsXbv0JZqBRSj9HEeHeCGEYw2lwEe/XqBXd38YsML5OdrekOZm8vdlIvzg0xJyfnldcZsrfc3OJPkBbXt+jetNUr6XdW3lAqleyuqAdunblJut45xBVRUVFwCKbZot85fhNRUbpdHH/+eTKmz5Varca6CStK/sESkMllaPFxezx5ot+N16AuVWH9jTXyMqS7H1zbdRlXj12Ge7BYx1ZDYIyfMVPn/rV7pOvV9jLS3KJwtyTd/+6FO6jQJpBU40UM/RnbPHo1slOyhNTqMK078m0LdT73U6k/ojHOrT0JtYoWjZ74IB6Lun6PIRvHwNKG9rnSJYb+jJkrj/59SLq+wKbs/1bUajWs7K2Qn1W8i/qreHIzSif/Pg3xGctOzsKub7cKqeUR4oU2X3XR+zOXMVDvzUY48+sxUo3wGX+hx1zdOQ3xHCae/65EkK6XOSnoc4kL7az5wyv3hc1nuv6M3dp9HYkPaAdI3YM94VrHw+ifscyFoBZVcO+odHf8O//choXf/20M8zwmlv8u05IL5CLmsJfwbOyHKu2r47/Dt4XWNRQyhRwNxzbnOYf5H7qax2S2tOeBiGsRcPQWawTBlI7C3AKsGP6rVnMOKTj4OWG/8jRi4+Mg11OiDlO+0PfzmK2bvWT39qToJP4ONjFEfL6UBUrc2H4Zp385ipRI2qGYl+n0TU/IPC1M6nPl28IftfrUx7876K7ZD87+h01TVqPVxI4COpOOn5+f0GRQY0GmFvU0wDBGTG5uLtq0aYOUlJT/jclkMuzevRvBwcE6v/+YMWNw/HjR/PQGDRpg48aNwu6Rn5+P2rVra4xPnjwZI0eOLPa6evXqaYjixo0bh48++khYb6dOndLaw5YtW7T2DADXr1/HgAEDNMZXrlyJZs3EWZcvWLAAS5cuLTJmZ2eHK1d0E/tgisTHx6N+/fqGbsPsqZkWgqBs6c4MZ92uIsk6DXK1HF1im0Mu0SxYCRX2+5yCSla+Hg98cjwQllqTXOeR3VPccDaMG2P19MoIzvIn1TBk/4xxQ/18nfC4hHRL6XFtdoU2aJcgPUYsxiYBl1zFnOIzNO55zmiaXE9IrVjrRFx0vQkYd2LB/6ibGgr/HB8htZ7axOOyy22T+bszYmiYXAveedIPie31PgmlXFXm61okNoBLgTS3djXU2Otz0iyezWqlhSCQ8Lz7nEKZEqfcLyPTUvPAW3nAWmmF9vGNJT/vA8+e+Y94nUOeokBgZ4wuCcjyQ+30KpKvv+j6L2JtaJsWMjXQJbYlFBI/e5mKbBzz+ofUg15QAy2S6sOlgCZguOYcgSi7WEFNMSVRMdsb9dKqSb7+juND3HN4LLAj5kUCsnxRO72q5OsvutxErC3N3V4bFioFGqbUgnu+i/Da+uah3RPcdL5v6DaYckCVjACEZgZKvv6Ex0WkW4o59MiUjeBMf1TPqCyklhJKnPK4ggz+b8mYEc0T68NV4jtArjwPh7zPCe6IMVbkahkqZvsgJMsfdkpb4fWjbGNxzTnCJNetLVQKtEoMg53ShlxLBTXOuF9BqlWGgM6kceXKFXh5eRns/rqCnQSZcsH27duLCAQBoHnz5noRCAJAXp7myQMLC7H//CwttTuhvMqtD9BPb8XV03bv5+Tna3faEK3W1tZbSb+z8oa7uzvOneOHW12z7s3fEXlaulPXn/u3wMHr2ebzil4/4+k1aa4qCsix+ddNqPhagOReSuLp06fo27cvtm3bBj8/WgSfCArzCrG04wKkpNI2zazsrbDw+K9w8BQb2V5a0p6m4peWc6AqLLt44TnBykpYtHsJ7N21O8CaCsb2GTMHtr67Drf33JB8ffjhnbAlxCOqlCrMqfYVlPnSLOZr+9fEL4fobqHPMdRnTK1WY2WfX/A0mX6C0MHTEXP2TzWpf+/JDxOxpN18spsgAPjleqF/34FoN6WrgM7Ew/OYbljaaSESIqQJNuzc7HH6whlJ1+74cJPkU7QyyBC+djs8q4oRyD5H35+xhLtxWNZlEdSQ/pzynAE/DcXXveYL6Mp02fnxZlzfckny9QrI8c2gr9Dmk84Cu/o/eA4Tz5HZe3FmyTHJ1y9ZuxS+tSuS+1jWeSHi70ibRx3hgNMnTkFhRV9z0uVn7NH5B1g7cGnJP/gK7D0dsPHUX7AwYtdicyPpfgKWtJP+3fBG94HoMef/HFZ5HhPLkTl7SS64v679DX516HOYNgpzC7D/6524svGCTurrA48QL0zZPdOondIZ/aOreezS2rPY+9UOydcvWbgEwa2ki4YZaWQlZuKX1nORD+kpNC/S/+ehGB02ib8rGZ2i7+exzaNW4+5BaYfMbWW2OHvmDGRymtsqoz+kfL4KcwtwZdM/OPPbMWSkp+mkL89QH0zeMQNWdlY6qa8PHl94iLWDlpLX8OWQoYd9B4zeOxHWDtLjwCnoI5HUELBIkDF71Go1Vq1apTE+ePBgvfWgTYimVIrNUS+uXnHiwecoFAqoVEU3akT39nL957yqt+LEgMXVkoq2v2tJv7PyhkKhgL8/zZ2MKZnUyGTJ19q52KFag+qQyZ4dK6nWqqZkkSAAZD5Ig38f3f839/PzM4rP1sEFu5HyiG4F3vXzPqjeoIaAjqTh7++PsIFNcGGDNAED8EwweW/nbfSY1ldgZ4bDWD5j5kBOgvSTwdb21qhSq+r/5iipeFfxxdOb0ua2lMgk+Pn6QSE4/kTfn7HLWy/g6VUxEQMjVr+HavWqC6mlL/z9/dF4SHOcW3tKSL0zvx5D5bohaDm6nZB6uoDnMXGo1WqkR6dKvt4jyEvyf4vK9YNpURupap19DvT1Gds+dgPUSvq7XJv3OqLL+J4COjJten81gCQSBIArGy5g0Ky3YGWnu4VWnsPEUZgmLbL8OdUb1oSjJz3az79OoGSRoFqpglWuJfyCxQl9dPEZ2/n+n+QaHT7shqAqYpx6mNLh4+lNuj43IVvrZ4nnMTEUphLnsLAacPJ2FtSNJuPWT8TVAf9gzejfkZUk3QHfEPjXD8R72yfBrZKHoVthjBTR81hCaAzpehu1Nc+rBmD998uRnylGINjpkx7oMr7n/yIw+buS0TX6+ox5VfLGXUgTCaqVKrg5uMHB3TAGEox0SvP5ysvKxYmlh3Fg/m6kx0pfWywJawcbvL/jE/iEmrbw2t/fHwlTYrB3Vji5VurjZJyedxjDVowV0BnzHJYzM2bP0aNHERkZWWTMz88Pbdu21VsPNjaalqqFhYVC71FcPVvbV9vcavtz0b0VFGiPMNL2e3lOcX0XV0sq2v6uJf3OGEY0OenZSI2WLhL0qV6hiPimclPpMVQA8PC8dEdDUyMzKQN7Zm4n13H1d0eHj7oJ6IhGx0ndyTWO/XoABbm0BXzG/Eh6JD3ayS3AgywQBACfatJfjpUFSiQ+jCf3YEiUBYXY8SV90xoA2r7fGbW61BVSS9/0mN4PlrbiTlJueG8Fbh2U7pLJmA5ZyZnIy5TuGO4R6Cn5Wm/i4l5sxFPS9Ybm371XcXPfNXKdwIaV0f+HoQI6Mn0q1qmE6h1rk2pkJWXi7OoTgjpidE3yY+mHmixtLOHgIWazypfwPAYAMbejhfShK2JuR+P6rsukGtb21mg9roOgjpjSYmljBRc/V8nXJz5MENgN8zKUOczC2lIviQ31+jTE9OtzUKNzHZ3fSwQymQytxrbHpyemsUCQ0SuOXrRDBxlxunFeYoon+t8onPz9iJBa1TvWxuuz3hBSi2GMDfL8Fp8uqBPGWCjIK8CB+X/jy8oTseWT9ToVCALA23+MMXmB4HN6ft0PAWFiDs6dWXUcl7earuu3McIiQcbsWblypcbYoEGDhMfWvgptYrjs7Gyh9yiu3quEeABgba3pGqCv3l4lxtPW16tqSUVbvZJ+Zwwjmtg7tI1f32oVivz/VJHgg7P/ka43JXZ/uw3ZqfR5pe+sN2AlULQilUoNghDaluZmmBGfjvPrTgvqiDEH8nPySYsc7gFiNizIIhviXGtoTi0/hri7tBP7AOBXsyL6ztGfo7ZoPCt74/XvBwmrp1KqsHTAIkT/K8ahkTFekgliZwBwD6CIBH1J9xbxb99QKAsKseWT9eQ6CksF3lk3HpbW7Pr+nE4f0w+HHFq4ByoBDo+M7kmJki6wcfV3F3JgA3h2QI1CrJGLBA/+sJtco/k7bWDv5kBvhikz7kHSv6uTHyfxfKhDKHOYm78b5HqK7nP2dcWE3ZMxaNHbsDDiZw7/+oGYcvYbDFkyEtb2vI7N6Beqq2c6i2j0ilqtxpZP1pEjHwHAI8gTozdOgFzB0gLGPGGRIPMctVqNS1vO4+san2Dr5A3ISND9f9t2EzojbGATnd9HXygsLTBy3Xhh6RVrx/yOFILZDlMU/iZnzJqIiAhcuFBUWaxQKPD666/rtQ8XFxeNsfR0sV8oGRkZWsfd3NxeeZ2rq+YpW9G9ZWZqj2l4VW/afmdA8X9PqWirV9LvjGFEE3ubJlzxqV5UOONWyQPOvtr/DZWGlCfJSHlCj981dmIjnuLYkkPkOoGNghH2RlMBHYlBhJvgwQW7hce7M6YLZUMHgDBXA4qTIGDaIsHczFz8/c1Wch0LKwu8s268UYiaKbSd0BkNBc67uek5+Ln7XKTFpAiryRgfiZE0hyD3QOlzmXcVH9K94yJMVyR4YtkRIc5hbd/vDO8qNLGluVG9Y21UqE2LXIq/F4fru2ixxYzuUSlVSHkifTHc1d9dWC++RJFgjBE/j6XFpuL8ulOkGjK5DO2NwGG+vOIR5CX5WlWhslysgxgC8hymZ5c8uVyOdh90wRf/zETFOpX0eu+SsHG0xaBFb+Pz8zMQ1CjE0O0w5RSyiCaBnQT1yb97r+LWAXp6gqWtFcZtm8QHIRizxtGLJoLOiOf5zRx4dOkB5reZgWUDf9Sb23hQ4xD0mzdEL/fSJ95VfTFAUCJIdkoWfu42B+n870wILBJkzJo//9SMZGvVqhW8vb312oefn+amdnJyMtRq+umd5yQmanfGqFDh1Qu42npLShK7KKatNycnJzg4FP9C4erqCjs7u1LVoqDt76rtd8IwuoQqXHlZOCOTydhNsBRsm7IRqkIluc6AH4bq7VR7aajZta4QMdXNvfRYQMY8oEQNAzT3rRehfq7j7piuyObwor1IFxDJ0+e7QfCvGyCgI8Mil8sxbMVYBDevKqxmSlQSFveaj7ws6XG0jHGTRBQJuhFcUa3srEmuqrF3ngp9d9QXWSmZ2PX1FnIde3cHdJ+q34N+poBMJkMHAWKkgwv2COiG0SVpsakkhzO3SuJEgt5VfSCTS3clNGYnwaM/70dhfiGpxmsDGpPi6Rka1N89Rw7rhrSYFKOZw8pChVr++Oz8DCEHMUUQNqgJvrk9H+0+6AKFhf4SkhjmZWyd7aCwlP4Z5Lhh/SHK1R0Ahi0fYxbrSQzzKqgiaHZKNW1SopOxcvgSfN/wK9w7eUdv97V3c8CYPz+AhZWF3u6pT1qOaYe6vV4TUiv6RhQWtJvJB/0FYDw72gwjmJycHOzcuVNjvH///nrvRZvorKCgQKgYLy4uTuu4FJFgbGyskJ6eo623kvoCjLs3hhFJzB3aRok2N4fKTWgiwftmLhKMOHoT13bSXVMa9G+EkOahAjoSh1wuF7RhTI/aYswDakSnqE0dH2JcZ2yE8TrXvIqMhHQcmPc3uU6VVtXQ/qOuAjoyDixtrPDe9knwChF3+OfxpYdYPuQXjpozU5IiaXMZVXhAiRzOScs2ydiaPTN3ICtJu6t8Wej5dX/YudgL6Mj8aDi4GZx8pDuIA8C9UxF4eP6eoI4YXZD8mPgs5i/OhcvSxork1hYbEWOUjuW5mbk4/hvdZb7TJz0EdMNIhRI3DACJD+MFdcK8SPJjojN9RcOIBAHA0toS/ecPwcSDX8ClgmGSZ7xCvPHhvs8weuMHcPHTTARiGH0jk8lIblssotEfJ5YdEZKq0W5CZzR8o5mAjhjGuHHiuOFySUFOPnZ9sxXTQj/GuTUn9XpvmUyGd9aNF5bEZIzIZDK89ftoOHnTnDqfE3MrGj+0ncnRw0RYJMiYLXv27NGIknV1dUWbNm303ktwcLDW8cjISGH3ePTokcaYl5cXHB0dX3mdtt6ioqJQWEg7PV1Sb8X9Tkr6GZG/M5VKhaioKI3xkBCOa2D0CyVu2MLaEu5aNq3JToLnzFckqFKq8NfH68h1LKws0HfWYAEdiafJWy3g6El7qY04eguPr0SKaYgxaZIeGc5960VsHG1JGzMxt6NN0olrz3c7kJuRQ67Tf75xuZ6KwMHDCe/vniw07ubazktCviMY44MssiHOZd5ViS6/JiZ0jvsvBkcX7yfX8a1RAa3GthfQkXliaW2JdhM6k+vw4RDjJiWKtvjtJjBuGAB8qkufzwpy8pFwT/shV0NyZsUxZKdkkWqEtq2BgNcqC+qIkQJFwAoASewkqBPIz2BGsGlavX0tTLs2Gw36N9LbPS2sLdFjej9Muz4HNTrV0dt9GaY0OHlLX3NkEY1+EOXq7ujphF4zBgjoiGGMH44bLl+oVSpUyPbCr23m4e9vtiI/O0/vPXT7sg9qdamr9/vqG0dPJwxbMVZYvbi7MZjf+lvyvlV5xrx2iRjmBTZv3qwx1rVrV1hY6N+uNSQkBPb2ms4HERERwu5x757myf/69euXeF2dOpqLDAUFBULFeCJ7u3v3rpCeAODx48fIz8/XGK9Xr56wezBMSRTmFyLhvvRNEp9QX8gVml/nlRoEQU6IH4m6HImCvALJ1xszp1ccQ9RVTfFyWWk7oTM8g/UbX19aLG2s0GZ8J3Id3jBmAPqmDiVi82V8qkl34spOyUJmYkbJP2hEJDyIw/ElB8l1wgY1QWCYeW5ae1fxxXs7JgmNZDjy0z6cWHpYWD3GOKDEDdu52sPWyY50f4qTIADERZhWZPrWyRugLFCS6/SfP5Qj9Uqg1dj2sLKzJtW4vPUCO2gZMXSBjViRoG/1iqTrV7z9K/KycgV1Q0dZqMShRXvJdTp+bByRpOUZD6qTIOFZgSme5Ciik6CB4oZf5lkU3IcYvnIcrB1sdHqvGp1qY9r12eg5vR8sbax0ei+GkQJFSJMRn26SBzhNDVGu7r2+HUB+F2YYU8He3QEymUzy9RkJLII2Fe6djsDKPr+gflp1ZMQa5r9b0+Gt0OPrfga5tyGo1bWekD3L5yQ+iMf81jOQ8MD4DiGaAiwSZMyShw8f4urVqxrjPXv2NEA3z6Ifa9eurTF+5coVYfe4du2axlhpxG7VqlWDtbXmhoKo3mJiYhAfr7nZUJretP1McnKyVmdCKWj7jDg4OLCTIKNX4v+LJcUaelfT7uJgZWuFSvUDJNctzC/E48sPJV9vrKQ8ScKWT9eT69i7O6Dbl30EdKQ7Wr/bAZY2lqQaFzedJS/oM6YPJR5KbqGAs6+4SCSfUKITl4CYFX2yc9pfZJGN3EKBPjMHCerIOAlpUQ3DVo4TWnPzR2sQeydaaE3GsFA2/rW5NpcVn2Ke2UqLKYkEI47exLXwS+Q6NbvULRcnqqnYuzmg2YjWpBpqlRqHBYikGN1Ajep0Fewk6EtwEgSAyAv3sXTAj1AWiEuwoHB29QmSkBx45npaqysfODU0rhXdSYclWSytG8hxw0YiEgSexaU1HdYK067NRsPBzUhCAm04+7pg9KYP8MHez+BdhXbAhGF0iSMhkrMwrwC56fS0BKZ4RLm6+9XyR/ORbegNMYyJoLBQwN5delpJehw7CRo7iQ/jseyNnzCv5Td4eu2JQXpQWCrQY3o/vP37GLNL/SmJfnPfhG+NCsLqJT9OxPzWMxD3n+msmRoL5euTx5QbwsPDNcb8/PzQoEEDA3TzjBYtWmiMnT9/XsipqadPn2qNzW3duuSNAisrKzRu3Fhj/OzZs+S+gGd/x5fx9PREjRo1Sry2Tp06cHLSfOHUZW8tW7Ysd1/KjGGhClZ8X7HhXLkJMXL4rHlFDqvVaqwb+4eQhaie0/vBzkXTIdaYcPR0QtO3W5FqqJQqHPlpn6COGFMl6ZF09xo3fzetbqdSoYpsTEkk+PhKJC5sOEOu02pse6N1PRVJo8HN0HvGQGH1CnILsHeW5jsFY5pkp2aRvv+FiASJToKmEjesUqqweRI9sluukKP//CECOiofdJjYFTI5TahwesUxZKXQ3UYY8aQ8MTaRIH1R/+a+a1g9chlUKukH5kSQk56N8K80k0jKSsePuwsXCzFlR66QkwRlHDesG1KIBw9Fz2Ei8Ajywqj172P6v3MxcOFbaDqsFaq1r4mgxiHwrVEBbpU8YOdqX2rRqkdlL/SfPwTf3J6PsIFNeD5hjB4nYiRnOkdy6pRtn20S4uo+4Ad2dWfKHxQRNMepGy9pMSnYMH4lplX7GJc2nzNIDzK5DI2GNMe063PQc3o/oXsmpoKVrRVGrhsPhaW475bU6DKXNRoAACAASURBVGTMbz0DMbf5sH9Z0H/uKsPoGLVajZ07d2qMd+okzsJUCl27dsX8+fOLjMXHx+Pq1aulit59FUePHtUYCw0NRXBwcKl7O3HiRJGx48ePIy8vT6vLYFk4cuSIxliXLl1KJcSzsrJC+/btsX379iLjBw8exBtvvEHqS6lUavydAaB7d46HYfQL9cHF5xUbNJWbVsGRn6WfGnxwzrxEgmdXn8C/ezVdV8uKd6gvWo1tL6Aj3dP+o644sYwWmXny9yPoPvV1jpYop6iUKqQ8SZZ8vVslcVHDQPly4tr++UZyDWsHG3Sf+rqAbkyDrl/0Rvz9WJxdpfmMJ4WLf57DGz8Nh60zz3+mDtUhSkRsuksFN1jbWyMvK0/S9XEmIhI8s+o4nlyjO7+3HNMefjVokablCc9gb9R/vSEub70guUZeVh5OLjuCLlN6CeyMEQElbtjO1R42gmMxqc9jzzm/7hScvJwNKgje+3042fHD2dcFjd5sLqgjhopHkCcSH0hzBEx9moKC3HyOdxUMZQ6zd3eAtb1uo30p+FavUKJwuiCvAHmZucjNyP3//zsHeZl5ePooGh99Ngnrtq1H7eZ1y+VGMWO6UEQ0wDMhDbtl6oaIY7dwdfs/5Dq1u9dHjY6a6WgMY+44ejkj5pa0PTsWCRofmUkZ2D/3bxxdvB8FOfkG6UGukKPJWy3R5fNe/N0HwL9eIHrPHIhtU+h7H89Jj03FD21m4KNDX6BC7UrC6poz/ObBmB2XLl1CdLTmF3jnzp0N0M3/UbFiRa1iwM2b6SeWt23bpjFWlmjlDh06wMam6IJLZmYm9u6lxQ2lpqZqFTD26lX6TYcePXpojJ05cwZPntBsgE+ePInExKKLVM7OzmjViua6xTBlhRpl+KrFyMpNqU6C90jXGxMp0cnY/NFaIbX6zxsChaVpnLPwCfVD3V6vkWrkpufg9PJjYhpiTI7UpylQFUo/fewmQFjzImQnQRMR2dw+dAO3Dtwg1+n4cXfyCX9TQiaTYehvoxDarqaQeoX5hbix+4qQWoxhMQaRoEwmg1dV6YuBiQ8TUJhvHNGcxZGbkSPEkcvW2Q69vuknoKPyRYdJ3cg1jv683+g/Z+WRlCjjObABPPs3KqruwQW7cWD+30JqlZWE+3FCYrbbfdAFltaWAjpiROAR6EW6nuKizmiHEjfsZoQugmXF0toSDu6O8Aj0RIVa/ghuWhU1OtZGaOeaSLZOg1uQBwsEGZNDhEiQEY9KqcJfH4txde83900BHTGM6UGZ33LSslGQVyCwG0YquRk52D1jG74MnogD83YZRCCosFSg5eh2mHF3AYatGMsCwRfo+HF3hLYtOXGyLGQkpOOHdjPx+Eqk0LrmCr99MGbHnj17NMY8PT3Jbn0ieOeddzTGdu3aRRK8nT9/Hv/++2+RMQcHBwwaNKjUNZycnDBgwACN8WXLlkGplC4MWLt2LfLzi37xhoWFoU6dOqWu0aJFC4SGhhYZU6lUWLp0qeS+AGD58uUaY0OGDCE7JzJMWYm5LV2wIpPJ4F3Vp9g/d6vkAWdfF8n1U6OTydFWxoBarcb6ccuRk5ZNrlWtfU3U7m7475OyIGLD+PCP+6As4A3j8kjyI6KwRvDG9HMnLqk8ufYIKqVhY+1KQqVSYdtn9JN0jl5O6Cjg37+pYWFlgXFbJgqJQgSAKwJO4DOGJzGStuEvIm4YoAmdVUoVEu7HCelDV+ydRXfkAoDuU1+Hgwdt47E8Ety0KoKbVSXVSH2aglsHrgvqiBFBfk4+MhKkb6RToldfRe1u9YTV2jp5A86uEeMCXKb7TtlAFsVaO9iYjMt8ecE9iPadnciRw0LJy8pFVrL0KHtdCJ0ZhqHjSI0bFvDOwGhyds0JRAkQR7Qa10HYmgrDmBqOnrS1iEzCuxtDpyA3H4cW7sGXwROxc/oW5Kbn6L0HC2tLtBnfCTPvLcLQpaPgEUQ7xGSOyOVyDF/1LuzdHYTWzUrKxML2M/HwgvkY4OgKFgkyZoVarcahQ4c0xlu2bAmZTGaAjorSoUMHjQjggoICzJw5U1I9pVKJOXPmaIwPHjwYTk5le5B55513YGlZ9OTz/fv3sXr1akm9xcTEYOXKlRrjY8eOLXMtbdds3boV169L27w4dOgQLlwoGsNkZ2eHt99+W1I9hpGKSqUiRV+6B3m+MgZHJpMJcBM0/cjhc2tPCnGCkslk6D9/qFF8n5SFKi2rISCsMqlG8uNEnFt7SlBHjClBcX0AxDsJymQyeIdKP3WX8iQZ59cb92f50uZzeHw5klynx7R+sHG0pTdkgti52OP93ZPJ7gYA8O/ea8g3UBwFI45koiuQKJGgN8FJEABi7xivG2piZAIOLaQ7cnmFeKPt+4ZNATBlRBwOubr9ooBOGFFQD225VtSNSLBB/8ZC660ZuQw39ujPvTfi2C1c2UY/CNBiVFvYudgL6IgRBXUTLumhtKhiRjspUcQ5zAycBBnGHHHypokE2UlQPLmZudjxJd3V3c7FDj2/Zld3pvzixE6pJomyoBAnfz+CqVUn4a+P1yEzMUPvPVjaWqH9xK74/sEiDP55uFk4YusSN393vLd9EixtxLryZ6dmY1HHWbh/5q7QuuYGiwQZs+L69euIi9N0V2jdurUButFELpfjq6++0hg/evSoVme7kli0aBFu3rxZZMzb2xvjxo0rcy0/Pz+MHDlSY3zhwoW4dOlSmWoVFBTg008/RVZWVpHxtm3bSorz7datG8LCwoqMKZVKfPTRR0hOLlvsTkxMDKZNm6YxPmHCBLi6upa5N4ahkBKVhPzsPMnXl+ZEX+UmNJHgfRMXCaY+TcHmiWuE1Go2vDX86wYIqaVPZDKZEDexv7/dxnb55RBq3JaIiM6XoUYOh0/9CwW5xin6KswvxA4BUZ1eId5oObqtgI5MF49AT4zf+QksbYsX05eG/Ow8dtUyA5KorqiC5jIfgsgZAOlwia7Z/vlGFAp4Tug3901YWFkI6Kh8Uq93GDyDvUk1/jt1R1A3jAjIBzZ05CQY2rYGGvRrJKyeSqnC0gE/4sE53b9/qpQqbP5oLbmOXCFHh4ldBXTEiMSDnQSNCmOdwxiGoUGPG2YnQdEcmLsL6bGp5Drdp/aFg7ujgI4YxjQhO6WySFCvqFQqXNhwGtNrfIp1Y/9AypOyaQZEYO1gg86Te+L7hz9i4IK34OzLWoPSEtKiGibsngwrO7Epj7kZOfix8yzcPXFbaF1zgkWCjFlx4MABjTG5XI5mzZoJu8edO3dQs2ZNhIaGFvmfdevWler6Zs2aoV8/zZM48+bNw6pVq0rdx6+//oply5ZpjE+bNg0ODtLsWcePH6/hdJifn4+xY8fi/PnzpaqRnZ2NCRMm4J9/ip7Itre3x9dffy2pL5lMhpkzZ2pEAT958gTDhg1DTEzpNsuioqIwbNgwJCUVXaCqVasWhg0bJqk3hqFAiRoGSieUITsJ6mGTRleo1Wqsf3c5slPpMcM2jrboNUMzlt1UaNC/MTmmJ/lxIk4vPyamIcZkoLpv6SIeyieUJhJMiUrCkZ/3C+pGLCeXHUbiA7p7Se+Zg6CwZJFNUKMQjFw3nuwAy5HDpk9SpPQNf1tnO2EuUd7E+Sv2rnE6Cd47HYGLf54j1wltWwN1e4eV/INMscgVcrT/sAupRvx/sRwBZ0QkPyY+i+nIvUAmk2HwLyPg4iduA6QgJx+Le8xDzO1oYTW1cXrFMTy59ohcp9nw1hyFaoR4VKY5CSayk6BQ6CJB/jfGMMYINY4znUWCQkmOSsKBH3aT63iFeKPN+E4COmIY04VF0KbD4yuR+K7BF1g+9Bck3Nc0kNI1FlYW6Phxd3z/8Ef0nT0YTkSBaXkltG1NfLhvivBEpLysPPzcbS7un2VHQW2wSJAxK44dO6YxVrVq1TJH776KtLQ0FBYWaoynpKSUusbUqVNRq1atImNqtRqzZs3C6NGjcft28crmGzduYMSIEfjxxx81/mzMmDHo0KFDqft4GSsrK/z8889wdi76RZaRkYERI0Zg5syZiI/XvlimUqlw8OBB9OnTB0ePHi3yZwqFAgsXLoSPj4/k3oKCgjB79myNTd67d++iV69eWLt2LXJzc7Vem52djVWrVqFPnz549KjoQrCHhwd++uknKBQKyb0xjFRiiZsfpXESDHgtCApL6Z/vqMuRJused2HDaVzfdVlIrX7z3hS6AaZvFBYK8oYxAOz5bjvHbpYzkqgb0zpwfqjUIIhcY9+scGQlZwroRhy5GTnYPWM7uU5AWGU06C/O2cfUqf96Q3T5rBepxvWdl6As0Hz+Z0wHiiuqqKhhAPCuKv19CDBOJ0G1Wo2/Pi7dgblXIZPJMOCHoWRRLwM0G9Eadq40Yeu90xGCumGopETRnBB06cLl5OWMD/ZOga2znbCaWcmZ+LHLbHLMcnHkpGUjXIBrs7WDjUkfIjNnHD2dSE4ULBIUS0o0cQ7jmDaGMUosrCxIz5scxymW7V9sQoGA9Vp2dWcYESJBnt/0wfHfDmFO02l4cv2xQe7foF8jfH1zHvrPG8LuqwIIaVENH+7/TOjaAvAsIWhx97kG+5wYM/xtz5gNcXFxuHfvnsZ4w4YNDdDNq7G1tcXSpUsxdOhQPHz4sMifnThxAidOnEBISAjq1KkDT09PqNVqxMfH4+rVq4iMjNRas3fv3pg0aRK5t+DgYPz6668YM2ZMkbhgpVKJtWvXYsOGDahbty6qVasGJycn5OfnIzo6GhcvXtRw6AOeOTlOnz5dSORzt27dEB8fj9mzZ0OtVv9vPD09HTNnzsSCBQvQsGFDBAUFwdbWFllZWXjw4AEuXryoVUDo7OyM3377DRUqlCy0YhhdQHVI8KleshuNpY0V/OsHIvLCfUn3KMwvxOPLDxHctKqk6w1FWmwqNn2wWkit6h1qoeXodkJqGZLmI9tg1zdbkZueI7lGWkwqji85iI6TugvsjDFmKE6CTt7OsLShRb1qo1qHWrBxsiV9lrNTs7H3+3D0nz9EYGc0DszfjYwE+kJS39mDIZfzWbAXaTaiNfbOCpd8fXZqNiKO3UaNjrUFdsXoi5y0bGSnZJX8g8XgHijOwcba3gau/u5IiZImfom98xRqtdqohHRXd1yU/Jz5Is1GtIZ/vUB6Qwys7W3QYlQ7HJi3S3KNeycj0KAvC86NAaqToKuOBTYValfC+J2f4MfOs1CQK+ZwWUpUEn7sMhufnpgOezdpSRnFsee7HUKet7p90QfOPi4COmJEI5PJ4BHkiac3n0i6nuOGxZIeQ4u+1PUcxjCMdBy9nCS/Z7GIRhwPL9zDhfWnyXWqtmFXd4YBnq1nU+D5TfdcDb+IDe+tMMi9KzUIxIAFb6Fqq+oGub85U7lJFXx06Ass6jSLtI77Mtmp2fix8yx8enI6vEJoh7fNCd49YsyGM2fOaB2vUaOGnjspHR4eHti8eXOxUcj37t3Dtm3bsHTpUixbtgw7duwoViD43nvvYc6cOcI2i8LCwrBp0yat4jmlUonLly9jw4YN+O2337BixQrs379fq0DQzs4OixcvxqBBg4T0BQDDhw/HwoULYWNjo/Fn2dnZOH78OFatWoUlS5ZgzZo1OHXqlFaBYEBAADZt2oTatXmzlzEcsUQ3mNLEDQNA5cYhpPs8OGtakcP/ixkW8CBp7WCDoctGG9VmvFRsneyEiB33zd6J3Eztzq2MeaFWq0kb024BuomGsrS2RP3X6YdAji7ej0RCBKlI0mJTcWgBPRqmZpe6qNaupoCOzAuvEB9UrFOJVOPKtguCumH0DcVFEADcBcfc+YT6Sr42OyULmYkZAruhoVKqED5VjCNX75kDBXTEPKdGJ9p7LjsJGg8URz2ZXKYXN/QqLath1MYJkMnFvTPF3IrGzz3mIi2WJjB6kfh7sTj8415yHY8gT7SfSHdpZ3SHe5B0F+DslCzkpGUL7KZ8kxpT+uSdl5HJZHD24dg2hjFWHAmxiiyiEYNarcZfk8S4ug9cwK7uDAMIcBIUcCCJKZ70uDSsG/OH3u/r4ueK4SvH4fMLM1kgqEMCXquMSUe+goOHWHfG9Lg0LOo0i+xybk6wSJAxG06f1n5aJjQ0VC/3l/IA7eTkhOXLl2PatGkaEb+lISQkBGvWrMGHH34o/AG+atWqCA8Px1tvvSUpirdt27bYuXMn2rdvL7QvAOjatSvCw8PRsmXLMl9rYWGBESNGYNu2bahcubLw3himLFDihp28nWHvWjpXhcpNq0i+DwA8OGdaIsF/Np3FtfBLQmr1m/smPATGDBqadh90IcVPA0BmYgaO/LhPUEeMMZOVnIm8rDzJ17vrSCQIAB0ndSM/+xTmF2LntL8EdURj94ztpN818OxZ9PVZbwjqyPyoRxSWXt1xESqlSlA3jD5JIoqBRcYNA4B3VekiQQCIi3gqqBM659efQswtmjM2AHT5rBc7cgkmqHEI5ArpS35RVyL5UIiRkPxYukjQxc8VCkv9hMjU6x2Gob+NElrz4bl7mFHvM/y796qQels+XQ9lgZJcp9/cITpxy2bE4RHoRbqeI4fFkUZwEnTwdNTbHMYwTNlxIghpspIzoSwoFNhN+eTSX+dx/8xdcp1mw9nVnWGeY+NoCwtrS8nXZ8SnCeyGeZndM7frVYhpaWuF7lP74tuIH9B0WCtO79ED/nUD8PHRqWRXz5dJikzAj51nITPJeA5fGxL+JDNmQ3KypvrXxcVFuBDM3d0d1tbWGuMhIdKcuuRyOYYMGYKDBw/i888/R9Wqr470tLCwQLNmzbBo0SKEh4ejcePGku5bGhwdHfHVV19h7969GDlyJDw9X71BZmdnh169ev3PZdDf319nvQUGBuKPP/7A+vXr0bNnT9jZvTqn3svLC6NGjcK+ffvw2WefwcFBbGQNw5SVzMR0khOMT/XSx2STRYJnNaPcjZX0uDRsmrBKSK3QdjXRcozpxwy/iJu/O1qMbEuuc2D+38hKyRTQEWPMUKKGAcDNX3ciwQq1K6HpsFbkOhfWn8bjK5H0hgjE/ReDk78fIddpNKQ5/OsGCOjIPGnQlyYSTI9LMznRPPMMspOgaJFgaOmcoIuD6kQtisL8Quz6eiu5jnuABzp81E1AR8yL2DjYoFKDQMnXq5QqPDxvOu8A5oparZYcTw7oP6azxai26D1DrCtoRnw6fu4+F39OXIOCPOlxxrcP/yvkIFnV1tVRn/hMwegeD4KTIMCRwyJJeyrdSVAfTqgMw0iH4iQIABkJvElPQVlQiO1fbCLXsba3Ru+ZAwR0xDDmgUwmI7kJprNTqs5Ij0vD6eVH9Xa/xkNb4Ns7P6DXN/1hba+ZbsjoDr+aFfHxsanC3wdibkXj525zkJuRI7SuKcJHsRizYcUK/eTPh4SE4Pr16zh27BjGjh0LAAgODkbHjh1JdZ2dnTF8+HAMHz4cycnJuHbtGmJjY5Geng6FQgFnZ2cEBASgdu3asLW1FfFXKTUBAQGYPHkyJk+ejEePHuHmzZtITk5GRkYGbG1t4eLigipVqqBatWqSXAcphIWFISwsDEqlEnfu3MF///2H1NRU5OTkwNHREW5ubqhVqxYqVaJFzDGMaGJu01xgfEsZNQwAbpU84OzrIvkEd2p0MpKjkuCm502msqJWq7H+vRXISqaL16ztrfH276PN8mRQ1y/74PTK4ygkbLLlpGXj0II9wjcBGeOCKqzRVdzwc3p92x//bDqDglzpn2W1Wo1tn23ExP2fC+ysbPffOH4lVIU0VxsLKwv0+pYXdV+FXy1/eIV4I/5enOQaV7b9g5Dm+nEpZ8RBdhIUPJf5lOEZThvRN6IEdULj5O9HyL9bAHh99mBY2bIjly4Ibh6KyH8eSL7+3qkIVG9fS2BHTFnJTskiOQ27VdL/+1vXL3ojLTYVx345ILTukZ/24e7x2xi14X34luHAHAAoC5X4a9Jacg8ymQwDFrzFUXwmAF0kGA+PMB9B3ZRfVEoVKTLc2ZddhhnGmCFHcsansRiYwOkVx5H4gO5823lKLzj78n8HhnkRRy8nyYe1OE5ddxxcsIe0D1BagptVxYAFQxHUSJo5FCMGn1A/fHxsKha0/450ePJlIv95gF/7/IAJuyeX64QAFgkyjESOHTv2v//7gw8+ECqOc3NzQ9u2dKcnXRAQEICAAONzqVEoFKhZsyZq1qxp6FYYplTE3qGJBMuywSyTyVC5aRVc2faP5Ps9PPef0YsEL24+h6vbpf8dX6TvnDfhEUSLKDJWXCu4ofW7HXB40V5SncM/7kO7D7rA0ZO2KMgYL2T3LR2LBF0ruqP9h12xb85OUp3bB2/g1oHrqNGpjqDOSs/JZUdw+9C/5Dqt3+1oVtHoukAmk6He641wYN4uyTWubP8H/ecPYXGAiZH0yLjihn1CaXHDp5cfRcdJ3eBWSbdz7KvIy8rFnpnbyXWCm1VF2MAmAjpitBHSIpT0vHf/dITAbhgppDzRTMwoC64V9f/+JpPJMGjR28hISMelzeeE1n5y7RG+C/sSAxe+hcAupXfLP/XHUSEC6+bvtEGl+oHkOozucSe+y7OToBgyEtKhVqklX8+iFYYxbihxw8AzRyhGGvk5+dg9Yxu5jqu/Ozp+3F1ARwxjXlDmt4z4dKjVal47FExWciaOLzmo03t4hXij98xBeG1AY/7vZyR4hfjgk+PTsLD9TKHvaBFHb+H3N37G2C0TobDQr/mVsWB+9jgMoweysrKwa9ezDcaaNWuic+fOBu6IYRhTI+Z2NOn6ssQNA0DlJrTI4ftnjTtiMT0+DRvfXymkVtU2NdBqXHshtYyVLp/1gpWdNalGXmYu9s+VLrZhjJ/kx8btJAg8+yzbuzuQ62z7bCNUKpWAjkpPYmQCtny6nlzHxskW3b7sLaAj86f+62Gk65MiE/Dk2iNB3TD6giJ4tnG0hZ2rvcBuAJeKbrAkOOflZeVhw/iVUKulb7pTObr4gJBNvQELhvLCqw6hOp8+OPsflESnW4ZGKiGmE4DBDnnJFXKMWP0uqrUXf4izICcf68ctx5axa2GpKvnse3ZqFnZO+4t8XxtHW/SeyS7qpgLVSVCEUy5DixoG2EmQYYwdctwwu21J5vivB8nPiQDQd9Yb7OrOMFqgzG+FeQUcZaoDjvy8H3mZuTqp7ejjhKFLR+Hrm/MQNrAJr1MZGR6Bnvj42DR4VRHr9H5t5yWsGblU73tCxgKLBBlGArt370Zm5rM4y4kTJ/IXBsMwZYbqJOhbvWxRdZWb0kSCD84Zt0hw4/srkZVEjxm2srPG23+YZ8zwizh5OaPdB3SB+7FfDiAthr4oxRgnqdE09xpdOwkCgK2zHbp9+Tq5TtTVR7iw4YyAjkqHSqXCmlHLhCxudJ7cEw4e7OhZGgIbBZPjjCiuvIxhoGz0uwd6CH/Xk8vl8K5KcxO8sfsKLm85L6ijspGdmiXkkMBrA5twdIuOcfJ2Ji2i5mXlIeoqC6MNCVVg42pAJ3hLa0uM2/oRKjUI1En9iP030SohDJFn77/y53bP2I7MxAzy/bp92QdO3jQxBKM/bJ3sYO8m/SBR4kN6fCMDpMVIjxoGwDGkDGPkOHlT44ZZJCiFnPRs7J0dTq4T1DgEDQc3E9ARw5gf1OQknt/EkpuRgyM/7RNe187NHjed7mH88cloObodFJYcwGqsuPm745NjU8uUsFcazq09hc0T1xr0ILahMO8dcIbREZs2bQIAvPbaa2jVqpWBu2EYxhSJJTgJ2jjawqWCW5muCXgtCApL6bbJUZcjUZBXIPl6XXLpr3O4vOWCkFp9Z78Bz8reQmoZO50+7QFbZztSjYLcAuz5boegjhhjg3Iq2cbRlvz5Ki2t3+1AdgsBgPCvNqMgN19ARyVzculhRBy5Sa7j7OuC9h92EdBR+UAul6NeH5qb4BVBsfaMfsjNyCEdItCVI2pZD3toY9MHq5GVQj8gUVYOzN+N7JQsUg25Qo7e3w4Q1BHzKqq0qEa6/t4pjhw2JFSHGEO7cNk62WHC7inwDNbN+5WtyhrrBv+OHV/+iahrjxAb8RTJjxORHp+GnPRsPL31BEd+3k++j2ewN9rx85bJ4U54P0iKTCyXG0WiMfU5jGGYV0N1EkxnEY0kDi3cK+Sg/IAf2NWdYYrDkRinziJBsRxfcoi8DvUiNk626PXtAIw/OQUP7aNhYWMprDajO5x9XfHx0anwq+UvtO7Rxfux6+utQmuaAiwSZJgycv36ddy8+WxTd9KkSQbuhmEYUyQvK5cUfedTzbfML/GWNlbwrx8o+Z6F+YV4fPmh5Ot1RVZyJja+v0pIrSqtqqH1ex2F1DIF7F0d0HFSN3Kdk78fQdIjjmMyRyjuNa4V3fS22GhpbYneMweR6yQ/TsSxXw4K6OjVJD6Mx9bJG4TU6jG9H6ztbYTUKi/U79uIdP3Tm08QG0FzA2b0B+V5CwDcA+gCZG0EE2NgASA9Lg3bP9skoJuy3fPIj3vJdZoOa0V2U2RKR3CLqqTr759mkaAhoToJGoMLl5O3Mz7c95nuXPjUauydFY6Z9T/H9Oqf4PPAD/Cpz7uY6DIK39SaDJWAyOz+896EpTVvHJkalENE+dl5yErUvxDf3KA6CTobwRzGMEzx0EU0aYI6KT9kJqbj0II95Dphg5oguBntPYFhzBme34yH/Jx8HFpIn/cAwNLWCp0n98T3D35E969eh7WDtZC6jP5w8nbGR4e+EL6muHvGNhxaRF/vNCVYJMgwZeTPP/8EALRs2RJhYTQnEoZhyidxd2NJ10u1VK7chBg5fNb4Iod3z9iOjAT6ySxLWysMWz7W7GOGX6bdh11g7y49hgkAlAVK7J6xXVBHjLGgVqtJmzpOenZ9CBvUBJVeCyLX2fPddmQl625DUKVSYfXIZcjLyiPX8g71RfN32pDrlDeqtKpGmVFuEgAAIABJREFUip8DgKvbLwrqhtE1yUSRoEegbkSCdXu9RnJ4fs7J34/gv5N3BHRUOvZ+v4M8f1lYWaDHtL6COmJKIqQFTZB671QEu2kZkNQYmkjQycc4XLg8g70xYc8U2DjaGrqVMhPatgbq9ua1P1PEI9CLdH1qVLKgTsovVKGzsy+LBBnGmLF1toOFlfRoRhbRlJ19s3chNyOHVENhqcDrswYL6ohhzBN2SjUeTi8/ivQ42veFwlKBNu91xHf3FqLv7MHkdWHGsDh5OWPigc/hWrFsaXsl8dektTi98pjQmsZM+doJZxgBXL9+HZ6enpgyZYqhW2EYxkShRA0DgE+1CpKuq9yUKBI8Z1wiwaRHCTi+RIzrV99Zb+gsBsuYsXWyQ+fJPcl1zq4+gbj/YgR0xBgL2alZKPh/7N13mJ1lmT/w73vOnOnnTJ85UzK9pjdCSAiQhAAhhYAUUQRBkVWQxV1FEQEFRFFXt+BPcVfEdS1rAaS3hASSUJOQOiUzk5nJ9JLMmT5z2u+PbDSElJn3fk573+/nuva69nJ9ntzuLm/e8z73873H9I8YD3ZyjcViwSce/ZR4n5H+Ebz0vb8qqOjUtvzsddRtPqBkrysf+SSsUfImI7OxRlkxZ/0C0R67nlYz4p4Cr7dJlnSbFqAmwdRpaVh680VK9vrtP/wS7nH9z+vJ6mvuwZuPbxTvc+EXVyE1PzBjnOnjMkudohSEgS4XuutlF5xIP0mDjT3DITq4Vy1/XiG+9Mw/hVVNZ6NZNFz7kxs5ii9CSZIEAaD/sKzBjQBXpzBJ0BmgBFIiUkLTNNl7JptopuRoax/e+Omr4n0uuO3igF2GIzIKhzRJUNjURsd4Jjx45QfPife56vvX4/rHbuYFFANJzU/HXa/eg8R0u9J9f3Prf2LX0+8r3TNcsUmQaIqee+45bN26FWVlsmYbIjKvDmGTYHaV3iTBUtGfe+CVveLaVXru23+BZ8Ij3qd0WSUuuuMSBRVFpuW3XyIe/+Xz+vD8g08pqojCgatdeKATgh/dlStmYObqOeJ93njs1YCM0O5p6MJTX/+9kr2mXzobczcw1UaveVedI1rf9H4jjrTIEuooOPqETYKpBYFrZrviu9cq+ZjVUd2GVx6VfzQ9mxcefFr83hWTEIPL7lmvqCKaDE3TlKQJUmj0C97HwnFMZ8XyGfjcb++AJUIuOSz7/Arkzc4PdRmkU1oRkwRDrV/Y6Gy1RU5TMZFZSZoEB9kkOCUvPvwMPMLLYdHxMbj83g2KKiIyLum4YTZBq/HOb97C0VbZO3liuh3LvrBCUUUUTpyVufjHl7+BWIe6iQV+nx9Pfvbn4kvnkYBNgkREREHWWdMuWu+s0pckmJqfjiTBCNCxwVH8++pHRR96VWnbdxjv/Pdb4n1scdG48b9uNd2Y4RNFx8dg9TflH4je/912tO9vVVARhQPpP+eSZ43Eld+7Xpz24hl349n7/6SoomOOjRl+HBMj8jHDsY44fOYXtzLVRqDq4pmISYwV7fHhMxw5HAmkDb/phYFrEkxMs+OaH39GyV4vPfIMOmsCd5Gjs6YN23+9RbzPyrtWwyEc20NTV3p+pWh9w9Y6RZXQVPi8PgwIUriSc8Jj1PDJ5n9iEb78wt2IS4oPdSlnFOuIw7oHrw51GSQgTxJkk6CUq8NYjc5E9HGSkZyDXS74/X6F1RhXd30ntj6xWbzPyn+8THxRnMgMEjOESYIcpy7m9XjxyqPPivdZeddqxCTIvgFT+MqfX4Tbn/0qbLE2ZXuODY7i17c8bvh3FPOeiBMREYWIpEnQEmVFRrG+G/GapolHDh9p6cV/rPkBRgdGRPtIPXPv/yp5Sdvw3euQVZatoKLItuwLK5AyLU20h9/vx7MPqG2sotBxdciaBIM9bvi4vNn5WHzTMvE+7/7PNhz+sEle0P/Z/NirOPhmjZK9rv3xZ5Aq/OfV7Gyx0Zi1Zq5oD7OMHoh0R5r1Jz7GJMQgIU3t2IqTnfvppahaNUu8j2fCg9/c9kv4fD4FVX3csw/8GX6f7L0rPiUBl3x1raKKaCrESYLbmCQYCoM9A/B59f8zHc6jlKavmoX7PvweSpaWh7qU01p731Vsao5wacI0YI4blpE2Oofq0hkRTY2k4cwz4cHYwKjCaozrue/8BT6PV7RHfHI8Vn11jaKKiIzNFmMTXWqSXJSgY3b86V1013eJ9ohLisfy2807Qcwsyi+owm1/vkvpxIK6zQew/+XdyvYLR2wSJCIiCiKvx4uuug7d67PKnKKRK8WL5aPSW3c34/Gr/1XJqF896rfWYM9zO8X7lCwtx4ovX6qgoshni7Fh7X1XiffZ9dT7aN7RqKAiCjXpuOFQptes/8414ttjfr8ff7n7d/AKP8ICx258P3XPH8T7AMDM1XOw5OYLlexldvOuXCRaf/CtGgz2cHxIuOsTNAmmFqQHPLFT0zR8+me3wBYXLd6r/q0abH9CnvZ3spadh7DjT++K97ns6+vDPjnMqKbNLUBMQozu9V11HRhgEkLQuYSpzqG6sDFZaQUZ+Oc37sO6b18NzRJe6ciZpVlYzt+JEc8WGy3654BJgjJDvYOiRufkMG50JqK/swvTtviOeXZte1vw/u+2i/e55GvrkJCSqKAiInNwOPU3QUsuStCxiTwvPfKMeJ+Lbr+E36FMYtbl83Dzr7+o9Dvu8w89Zeg0QTYJEhERBVFvYze8bv1NJ86qHNGfL00SPK769X34za2/CPpLkt/vV9JsY4u14aZf3gaLla9Cx5130zJklGSJ93n2gT8rqIZCTT5uOHSHOqnT0rDizsvE+1S/vg8PzfkG9r64S/ezzufz4de3PA736IS4nrikeNzAMcPKzFw9B1Ex+ptJ/T4/dj+7Q2FFpJpnwoPBbv2NnGmFsjGFk5VRnIW198sb9QHgL3f/FgNdag/anvnWH8V7JGUnY/kdvL0dKtYoK4oWl4r2qN/KNMFgE7+LhXmTIHDs/zfX3n8VvrrlfnHqm0pX/+gGREXrv5hH4SNNMHJ4oL0fMO6ZUMBJn2EOJgkSRQR7pnAkp+LfLkb01/v/JP7+bs90YMWdvABBNBWSb9tMEpTZ8+wOtO9vFe0RHR+Di++Snw9Q5Fh0/RJc/9Oble136J161Gzcp2y/cMOTcSIioiDqqG4TrXdW5orWFywoEidsHffOb7bimXv/V8lek7Xn+Z1o2FYn3mf9g9cgq5xjhk9ktUVh7QOfEO+z78UP0bBd/n8jCi1Xp7RJMLSHOpd9Yz0SUuU3pDuq2/DY2h/i3y77Plr3tEx5/aZ/f0VZY8V1/3ojUnJTlexFQKw9DlWrZor24Mjh8CYdm56aF7yx3qv+6XLkzc4X7zPSP4I/fuW/FVR0TN2b1UrGa6z51pWIjtefZEdypUuFI4fZJBh00gabcE8SPFHp0gp8a9f3sPC6xaEuBVUXz8TsdfNDXQYpkl6UqXutz+NDnJd/d+klfQ+LpGcYkZlJxg0DwIDgUpcZNL5zELv/Kr+cePm9VyImIVZBRUTmIfm2PT48jrFBjlPXw+/348VH/ire54LbViIxXdbITpHnwn+4GBu+e52y/V54+Glle4UbNgkSEREFUWd1u2h9tjBJ0BYbjTlXLBDtcaKXv/8stvzsNWX7nYnP68Mz35Q3JaYXZypJGTOiRdcvQXaVrBEVOHbLlSKbZNxwfHJ8yJtB4pMTcPm9G5TtV/3aXjw8/x785tb/hGuSIyO66jqUNVLPWjMPi29cpmQv+rt5V54jWl/z+j6MukYUVUOqiRtscoN3OG21ReGGX3xeSVLo+394G3tf3CXex+/3K3mGpRdlYOnnlov3IZnSZZWi9Q3b2CQYbNJxw5GQJHii+OQEfP53X8ZNT9wmGo8toVk0XPPjzzC12UDShanA8V42VOgl+T0JhP7SGRFNjjhJkE2CZ6Qi1T01Px3LvrBCQTVE5pLklL2LTPb7MX1U9Wt70fxBo2iPqOgorPrnNYoqokhz2TfW45KvrlWy18E3a+CZ8CjZK9ywSZCIiCiIOmtlTYLOSlmTIABccNvF4j1O9PsvP4kPnwl8mtK7/7NVHDMOAFc8eA3HR52GxWrBuu9cLd6ndtN+1Gzar6AiChVJc00oRw2f6MIvrVI6LtTv82PrL9/AfWVfwVv/vhEW/6l/So30D6NlV5OyMcPxyfG44XE1zUP0UXPWzReNnfdMeLD3xQ8VVkQq9bdJmwSDm9xZtKhU2Uje39/+K4wNjYn22PfSh0rSm9d9+2q+d4WBonNLRc+7lp1NGB+W/f8UTY2ZkgSP0zQNSz57Ie7d+QjyFxQF/c+/4AsrkTtzWtD/XAocybhhAIhjk6BuTBIkMgd7pixJkE2Cp1e9cR9qFXxbXfvAVbDFqJkqRGQmDqfs+caRw/q88N1nxHssuflCvkuamKZpuOrR63G+ogvL48Lvq+GKX2qJiIiCSD5uWN4kWHHRdFzwhZV48xcbxXsBxxpn/utTj+Err9+LkiXlSvY8mXvcjWcf+LN4n2lzC7Dwk+cpqMi45l11DqbNLcDhD5tF+zz37T+jcsUMRVVRMPn9ftGHjKSc8Eh9sMXYsOHha/HLG36qdN/x4XFs+ZdXsdxyDrb+xyZEea3obepB36Fu9B7qUZ4sd92/3cQPGwGSmO5A2YVVog/vu55+D4uuX6KwKlKlv+2IaH0wkwSPu+Lha7Hr6fdxtFVWe19zL3667ocoPb8CaQUZSCtMR2pBOlLz0095QDQ+PIbeQz3obexG76Fu9DZ2Y/ez8rFWOTPysOhTS8X7kFxsYiymzSvUfSPf5/Xh0LsNfLcLIsm7mGbRxMk+oZRVlo2vb/sO/nrfn/DqD58Lyp8ZnxyP9Q/KL0tReJGMGwaAeG+cokrMR9roHGlpqERmJX3fGOhyKarEWFSlujsrc7D4M5xKQaSH9BI8mwSn7uBbNah/q0a0h8VqwaV3r1NUEUUqTdPw6Z9/DqMDI9jxp3dFexk1SZBNgkREREHi9/tF44ZT89MRk6DmJvs1P74Bh3c349C79Ur2c4+58dP1P8Ld274NZ4W8kfFkW372Oo609Ir32fDIJ2GxMEj5TCwWC9Y/eA1+uv5Hon3qt9aiZVcT8ucVqimMgmbk6DA8427d68OpoW3hJ8/Daz9+AS07m5TvHeeLxeYfvaJ83xPNWb8A595wfkD/DLObd+U5oibBfS/uxsToBKLjohVWRSpEWpIgAMTa43D9Yzfj/234F/FedVuqUbel+mP/elJ2MtIKM2BzRGNJ71z8ZOFDGO4ZEv95p3LFQ9eI0utIrdKlFaKxPfVba9kkGESSBhtHVhKsUVaF1QRfVHQUPvHo9Zi+aiZ+ddPPAn7IdtMTtyExPXIbK+nUMoqFTYIeJgnqJR2x58iSpfcQUXDYM4TjhnvYJHgqu5/dgab3GsT7rH/wmoh/JyQKlaRs2SX4AY4bnrIXH5GnCJ57w/nii0JkDBarBbf85nYMdg+c8vuo2fFrLRERUZD0tx/F2OCo7vXOKnXNd9HxMbj92a8iszRL2Z7DR4bw76sfRd2WavQ0dCkbSTY6MIKXFPxAKL9oOmZcOltBRcY3a808FC0uFe+z7YnN8mIo6KSpDw5n+DQJWiwWXPXop0Jdhi7xKQn49M9u4ZjhAJu7YaFo/cTIOA68ukdRNaRSf7swSTBEDc9z1i/A/E8sCtj+ro5+NL59ELWv7EeqOylgDYKFi0ow5wrZP1+kVun5FaL19VtlN/ppalyC9zEjJXBVXTwL9334fcxZvyBgf8YVD1+LuRvOCdj+FDrJuamw2vQ3R8Rz3LBukmeYPcOBqGhmWxBFgqjoKMSnJOhez3HDH+fz+vDX+/4k3id/fiHmXcX3GyK9kpyyJkEmCU5N0weNOPCK7Puqpmm47BvrFVVERhAVHYWrf/TpUJcRltgkSEREFCSdNfpTBAEguzJXUSXH2DMcuPOlbygdRdXX1IN/Wf4QvlX2FdxpvwV3Om7BfeVfwQ8v+A4ev/Zf8fsvP4mt/7EJ00ac6K7thN/vP+uer/3oBQz1Dopru/KR69hsM0mapuGKh64V7/Pe77bBPTahoCIKJulHjOQwGTd8XNXKmZhx2ZxQlzFl1//HZ8WjLejsUnJTxU3Ru55+X1E1pJIkSdAWaxMddkld9283IdYR2SMON3yX713hRtok2Pj2QXg9XkXV0Jl43R7RoXk4pTqrYM9w4ItP/xPueu2bKFlSrmzf5NxUfPmFu3H5Nzco25PCi8VqQWp+uu71bBLUT/KbUprcQ0TBJfmuzHHDH/f+H7ajfd9h8T5XPHwdp+kQCUjfR6SpymajIiRk/tWLAjLljCJbwYJizLx8bqjLCDu8kkVERBQkndVtovXOSvUvuBklWbjj+bvx4+UPYXx4XPn+40Nj6K4fQ3d910f+9TmowC8u+QmSc1Iwe+18rPzK6lO+wA90ufD6T14U1zH3ynNQvLhMvI+ZVK6YgfKLpqNu8wHde4wcHcaHz3yAcz65RGFlFGiS1AcgPA+mr/r+9Tjwyp5JNSaHg7kbFuKc6/nPTbDMu/IcHHqnXvf6Pc/ugNftgdXGn9fhRJKKmpybGtIGt+ScFFz1vU/id7f/KmQ1SFSsmIGqlTNDXQadxJGVhMwyJ7oPdupaPz48jtbdzShYUKy4MjrZQJdL9M6SbMBLBpqmoWrlTFStnIlR1wh2vv4BvnLrP+Jb93wL9ng7PGNuTIxOwD3m/tt/7xlzwz0+gYlRNzxjx/5ncckJSM5JwYxLZ2PGZXM4gs8E0osy0NPQdfZ/4ynE+mLgHnMrrsj4fD6frEkwDH9PEtHp2TOT0FXboWstkwQ/yjPhwbMP/Fm8T+mySk7TIRKKT0lAVHQUPBMeXes5bnjy2vYdxofPfCDeZ/U9VyiohoxozbeuxL4XPwx1GWGFpxhERERB0lEtSxJUOW74RIULi/GFP/4jfrr+R/B5fQH5M06nv/0o3vzFRrz1n5sw/5pzsfqeKzBtTsHf/ucvPPSUuHlRs2jY8LA8Fc9sNE3DFQ9ejR9e8KBon21PbGaTYISRjhsOx0OdvNn5uOj2S/DGY6+EupSzSkhNxKf+H8cMB9O8K8/BU1//ve71I/0jqNtSjaqLZymsiiT8fr8oSTA5N/TPsWW3rcS7v92Ghu11oS5lyvjeFb5Kl1bobhIEgPqttWwSDAIjvoupFJcUj/xFRWiL68a8Ty7CtGnTQl0ShbG0wgzRelfrUYD3DadkqGdQ9G1JOt6PiILLkaU/SXDk6DA8Ex6OGP8/257YjN7GbvE+Gx6+lt+UiIQ0TYPDmYwjLb261nPc8OS9/P2/iveYtWYeps0tlBdDhlS8uAxVF89E9ev7Ql1K2GDWMBERUZB01siSBLOr1I4bPtHM1XNxw+OfD9j+Z+P3+7Hjj+/g4Xn34LF1P0TD23XoaejCm7/YJN57yWcvDOj/7oys9PxK8ZjW6tf3obepR1FFFAzig+kwHQ/1iR9cj2lzC87+bwyx6x/7LA/Ggiyz1Im82fmiPXY9xZHD4WTUNYKJEf2XDJJzUxVWo4/FYsENj38eVltkpVzNuWIB05vDmHTkcP22WkWV0JkYMdWZKFTSizJF6/sPH1FUiXm4OtjoTGQm9owk0fqh3kFFlUS2idEJvPDQU+J9Zq6eg7JllQoqIiLJN242CU5Od30n3v/D2+J9Vn+TKYJ0ZmvuuyrUJYQVNgkSEREFSWeN/iTBhLRE2DP038ycjKW3XIS1D3wioH/GZOx9YRd+sPTb+P5598Pn8Yr2ssXasO7bof/PFMku+/p68R5vP7lFQSUULNJxCElhOuLOFhuNO1/+BqouDt8RmPOuOgcLrzsv1GWY0twrzxGt3/XMB/D5gpvGS6cnSREEwqfBJmdGHi69e12oy5i0YynE14S6DDoDcZPgW7WiMbg0Of3twnexHF42IDouvUiWJNh/WPZOYUZGvXRGRKdmz5R9rx7ocimqJLJt/c9NSpqKrnj4OgXVEBEgeycZ6h2E161vVLGZvPLoc/D7ZN8YKlbMQMl55YoqIqMqW1aJ8gurQl1G2GCTIBERURCMukZEP/SdlYEZNXyytfdfhfM/tzwof9bZqLhJuvyOS5GSl6agGvMqu6ASmaVZoj22P/lm0EdZk36SQ534lAREx0UrrEYtR2YS7nzpG7j6h59GrCMu1OV8RGK6nWOGQ2j+VbImwYHOfhx6p15RNSTV3yZL/QmXJkEAuPzeDcgsc4a6jEk551NLkDtLlspJgZVZ5hQd5A50udDT0KWwIjoVaYNNOD3DiEKNSYLBJ21y4TOMKLI4smRJgoPdbBL0+/148/GN4n0WXLsY+fMK5QUREQD5841N0Gc20O3C2//9pnify7+5QUE1ZAaXf+vKUJcQNtgkSEREFAQd1cJRw5XBGZeraRo+9bNbMPPyuUH58wIpPjkel31DnoJndpqmYcnNF4n2ONLSi5qN+9QURAEnGXEXCakPFqsFq/55DR4++BNc9KVVsFjD4yfR9Y/dDEem7OMT6ZczcxoySmQN0Rw5HD6OSpsEw2Dc8HG22Gjc8PPPhbqMs7JEWbH+21eHugw6C03T5GmCWzlyONCk44Y5qpPo79LESYJsEpwq8TMsAn5TEtHfSZMEB7sHFFUSuToOtInPDjSLhvXf4e8xIpWk03I4cvjMdvzpXXjdskliRYtLUbF8uqKKyOgqV8xA8XlloS4jLITHiRgREZHBSX/oO6uCkyQIANYoK279w50oWFgctD8zEC69ez0SUhNDXYYhnHfTBdAssnSzbb/arKYYCii/3y/6gBFJqQ/2DAeuf+xm3L/nUcxaOy+ktSy45lwsvHZxSGswO03TME86cvjp9ziGM0yIxw3nhtezrGL5DCz57IWhLuOMzv/cReJGWwqO0qVsEgx3/R36n2GWKCsS0+0KqyGKbPYMB6LjY3Sv57jhqWOSIJG5ONgkKLbn+Z3iPZbcdCGcFcE7PyAyA+nFBVcnmwTPZN+Lu8R7rLn3Sk7loUnTNA1rmCYIgE2CREREQdFZ3S5an10VnCTB42ITY3HH819DerFsNE+oJGUnY8Wdl4a6DMNIzknBzNWydMkPn/4AQ33yEdIUWMNHhuCZ8OheH4nJNdlVubjj2a/hrlfvQd7s4I/JTCtIx/WP3Rz0P5c+bp5w5HDvoR607m5WVA1JSBNswilJ8LhP/PBT4pSOQHE4k7GOKYIRQ5wkuI1NgoEmTXW2WPi5l+g4TdOQLkgTZJLg1EkanYFj7xVEFDnswokIHMcpbxKMio7CmvvZ9ECkmsMpe74xSfD0fD4fGt8+KNpj2twCQ0xEo+CacdmciA/IUYFfjYiIiIKgs1bWJOgMcpMgADgyk3DnS1+PyCSKtfd/QpQWQB+39JaLROs9Ex6899ttSmqhwBGPhorgA52qi2fh3h2P4Mb/+kLQDqYS0hJx58vfgD0jPBt/zKZwUYk4uYQjh8NDv7RJMAwbnhPT7PiHP9+FqOioUJfyEZpFw+d/ezscWRyXHimmzS0QvSd31XZgoJuHuYEkeYaF4/OLKNQkI4fHXKMYdY0orMb4JAfiien2sHvXIaIzk/4OGOwxd5LgUO+AuFHmgttWIq1A/991RHRqHDccOJ3V7Rjpl71jr77nCqYI0pQxTfAYNgkSEREFQadg3LAtLhqp+WkKq5m8rLJs3PHc12CLiw7Jn69HZpkTS28J75F8kWj22nniBKNtT2zmKM4wZ/bRUBarBUtvuQgP1f0Ya751ZUCffTMvn4tvvvcwx8GEEYvFgrkbFor22P2cfEwQyR1t05/6Y89whO3hdOn5lbjlf25HTEJ4XISIT0nArX+4ExXLZ4S6FJoCqy0KRYtLRXs0bKtTVA2dzD3uxnDfkO71kZjqTBRo6YWyCQm9h7oVVWIO0jRUIoossY440e+nQZNfPtn30m74ffq/lUbHx2D1NzcorIiIjpO+lwxw3PBpSScUZFVkY95VixRVQ2Yze9185M0pCHUZIcUmQSIiogBzj02gp1H/R2VnRXZIR0YVnVuKW//wZWiWyLiVs+Hha2G1hefhfiSz2qKw+IZloj1a97SgZechRRVRIEjTt4xyMB2bGIv1D16Dh2r/BYtvlP3//XEJaYkoXFSCS+9eh3/efB/ueO5rSC+KzJHuRib9wNS6u9n0SQjhoL9NcDgd5s+xBVefiwf2/QBzrlgAizU074fxKQlYfOMy3L/nUSy4+tyQ1EAyZdKRw1s5cjhQxBc22GBD9DGSccMA0HuoR1Elxufz+eDq1N/wE+7vYUT0cZqmiS4Vm33c8J4XdonWz7liAVPdiQLEkekQJdW52CR4Wg3bZRcPl99+Sci+iVHk0zQNl99r7gZ7nqATEREFWPfBTtGNwFCMGj7ZnHULcNMvb8N/f/4X8Hl9oS7ntAoWFmM+D6sDZsktF+K1H78g2mPbLzejYEGxoopINXGToMEOplPy0nDzk1/E8jsuxas/fA67n90Jz7j7lP/emIQYpBVlIr0oA+mFGX//74sykVaYjjhHfJCrJz3KLqhEQmoiho/oT3GqfeMAFl67WGFVNBVetweDgoOm5NzwP5xOK8jAl57+Z4y6RlCzaT9a97TgSHMv+pp70NfciyMtffB5vOI/Jz4lAenFx59lWcgozkTOjFwULS6DNcqq4D8JhUqptElQeOufTk+SwAWwwYboVORNgkwSnKyh3kHRO4jRfk8SmYU9KwlHW/WluQ92m/eSnWfCg/0v7xbtMXvtfEXVENHJrLYoJKbbdV8G5rjh02sUNgmWX1ilqBIyq3lXnYPs6bnoOKB/CmAkY5MgERFRgHXWtIvWZ1eGxyjK8266AIkZdjz52Z9jqHcw1OWc0pXf+6TodhedWc70PBQtLsWhd+p17/He77fj6n+5AdERNMLaTMw+bvh0ChcW4wv/+48Y6R9G9eu2TgPeAAAgAElEQVT70N7chu899Age+N63UbGwCmmFGUhMt/P5YwDWKCvmrF+A7U9u0b1HzcZ9bBIMIVenSzTaPpKeY3FJ8Zh35TmYd+U5H/nXfV4fXB1H0dd0rGmwr7kXfU09ONLS+7cmQq/bA7fHg/TCDGSX5yC9KPPYfxVnIqM4E2lFGUhISQzRfzIKtKJzS2GxWnRf/mnZ2YTx4THEJMQqroykFzYi6RlGFCxpwvRuJglOnjwNlc8wokjkECQJDnYPwO/3m/J7ysG3ajA2MKp7vcVqwYzLZiusiIhOlpSdrLtJcECQrmxkA10udNd36V4f64hD9vQ8hRWRGVksFlx+75X45acfC3UpIcEmQSIiogDrqJY1CTrDpEkQAGZdPg/fbfw3bPnZa9jz/C40v98A99ipU7WCrWrVLFStnBnqMgzv/FuWi5oER10j2PXUezj30+crrIpUcXUwSfBM4pMTsODqc5F5+DCaf9yB6WvnYNq0aaEuixSbu2GhrElw036F1dBUSVO4knNTFVUSOharBSl5aUjJS0Ppaf66PXz4MBYvXox3trzD55gJxdrjkDe3AC07Dula7/N40fReAyqWz1BcGYmfYWwSJPoYaZJgXxObBCdLnIZq8N+TREZlz9Q/7tYz4cHYwCjiksw3fWHv87JRw6XnV/BiF1GAOZxJwB59awc6+03bBH0m0lHDxeeVcdQwKbHw2sV4/jt/QVddR6hLCTo2CRIREQVYZ40srjgcxg2fKDYxFpd+bR0u/do6+Lw+DPYMYKCzH65OFwY6+zHQ5cJApwsDXSf8a539GOkfCWhdVz5yXUD3p2MWXrcY/3vXf2NiZFz3Htue2MwmwTAlSa+JT0mALZYJkRT5yi+qEiVs9TR0oa+5B2kFsgNp0udom74xV8elGKBJkGgySpdW6G4SBICDb9WySTAApEmCHDdM9HFxjngkpCZi+MiQrvUcNzx50iRBPsOIIpM9Q3+SIHAsVcpsTYJ+vx97nt8p2mPWmnmKqiGi00kSpBx7JjwYPjKExDS7wooin7RJsHRJuaJKyOwsVgtW33MFnrz556EuJejYJEhERBRgkiRBzaIhs8ypsBq1LFYLkpzJSHIm42wZNO6xCex/eTee+faf0LGnVWkdC65djIIFxUr3pFOLtcdhwbXn4u0n39S9R+0bB9DT2IWM4iyFlZEKrnb9hzpMriGjiHPEo3BRCRrfPqh7j5qN+7H0louU1UST198mTRLks4zMoWxZJTb9+8u619dvq1VYDR0nTXXm+xjRqaUVZehuEuxr6mUKzCRxZDqROTmy9CcJAsBgtwtZ5dmKqokMXbXt6GnQP24TAGavm6+oGiI6nSSnLOV4oNPFJsGTiJME2SRICi361BI8/+Bf0HvIXOnxzOIkIiIKIJ/Xh65a/U2CGSVZsMXYFFYUOrbYaMzdcA5uefYOvJO6B/nnFinZ1xJlxRUPXaNkL5qc82+5SLzH9l/pH+VJgeH3+0UH00x9ICOpXCFLx6rZtE9RJTRV/cIkQT7LyCxKlso+rDe+fRBej1dRNXScpMEmKsaG+JQEhdUQGYdk5PDEyDgGuwcUVmNc4iRBjhsmikj2TGGSoAmfsbufk6UIZpZmma6xkigUHE5ZE7T0EpjRuMcmRBMNLFYLis4tVVgRmZ3VFoXV92wIdRlBxyZBIiKiADrS0gv3mFv3+uwwGzWsgqZp6I05ihv/+A/42pv3Y+bqOaL9LvnqGmSV8aNIMJUsrRB/iHr712/qHuVJgTHcNwivW/9hP1MfyEgqV84Ura/ZdAB+v19RNTQV0gSbFCYJkkkkOZORWao/1Xl8aAxte1oUVkSArMEmOSeZSWdEp5FemClaz5HDkyM9CHcI03qIKDSkTYKDXS5FlUSOvS/sEq2ftXY+3/uIgkAybhiQX6AwmuYPGuGZ8OhenzcnH7GJsQorIgIW37gMqfnpoS4jqNgkSEREFEAd1W2i9VkVOYoqCU+l51fiyy98Hfd+8F3Mv3rRlD9ulJ5fgfUPMkUw2DRNw5KbLxTtcbT1CA68tldRRaRCv2DUMCAfv0AUTorPK4MtLlr3+oHOfnQckL0DkD6SJMGoGBsSOAaGTKTk/ArR+vqtHDmsmkvQ6MwkVKLTkyQJAjDd+Cm9JAfhCWmJhpmkQWQ29kxZ0pbZkgSHjwyhYZts3OYcjhomCgppyrGrk02CJ2rYflC0vmSJ7BsG0alERUfh0rvXhbqMoGKTIBERUQB1VusfNQwA2VXGbhI8Ln9+EW774114YN8PcN5NF8BiPfsryqy18/DFp74Ca5Q1CBXSySb7f6cz2fbEG4qqIRWkqQ88mCYjscXYUCpsnqnZyJHDoSBJEmQKF5lN6VLZc+7g1hpFlRBwbKTpSP+I7vVMdSY6vfRiYZJgI5MEJ0P2HsZnGFGkcmTJmgTNNtJ9/8u7RdNV4pLixd8riGhy5OOG2SR4oobtsgbpkiVliioh+qilt1wobgqOJGwSJCIiCiBpkqARxw2fSXZVLj77q3/AQwd/ghV3XoaUaWkf+/cUnlOMz/ziVtz+168iMV02zoL0S3ImY9aaeaI9dv91BwZ7zPUhMJxJR3TyUIeMpnLFDNH6mjf2K6qEpqK/TXA4nZuqsBKi8Fe2rFK0vn5rHUerKyQ9QJKOwiIysvQijhsONJ/PJ3qOmelQjshoEtNlaeyDPeYaN7zn+Z2i9TMumw2rLUpRNUR0JtLfWANMEvwbv98vbxIUXnQkOh1bbLSp0gT5FkFERBRAnbWyJEFnpTmSBE+WXpiB6/71Rlz7k8+gbe9hDPUOwmK1IK0wHWkFsjFBpM6Smy/E7md36F7vdXvx7m+34eK7ViusivRySccN81CHDKZy5UzR+rrN1fB6vEy8DaLRgRGMD43pXp+cywYbMpfMMifsGQ7dlzYGOvvR29iNjJIsxZWZEy9sEAVOakE6NE3T3djc28Rxw2cz3DcEn8erez2T6YkiV1R0FOJTEjBydFjX+oEu81wg9ro92PfSbtEes9Zw1DBRsMQmxiImMVb3tyZXp7maoM+k+2AnhnoHda9PmZaG1FOEihCpsuzWFXjpe381RcIxkwSJiIgCxO/3i8YNJ+ekIC4pXmFFkUfTNOTNzkflihkov7CKDYJhZtblc8UjRbY9sZkJNGGC44aJPip/XiHik/X/PTzqGkHLzkMKK6KzkaQIAkByDpMEyVw0TUOJcFRZ/dZaRdWQtEmQFzaITs8WYxP9XuljkuBZiZ9hTj7DiCKZ5PvgYLd5mmjqt9Vh1DWie71m0TBz9RyFFRHR2SQJRg5Lv7cbSf022beD0qXliiohOrXo+Bhc9o0rQl1GULBJkIiIKEAGewYwfGRI9/osk6YIUuSw2qKw+MYLRHu07zuMpvcbFFVEEv3iEXc81CFjsVgtKF8uHDm8kSOHg6m/7YhoPVO4yIykH9rZJKiOS9pgw2cY0RmlF+m/dHikpQ9eQUqeGUhHpvM9jCiy2TMduteaIbHnuD3PyUYNlywpR2KabLwzEU2NQzByWPp+ZCQN22SjhovPY5MgBd6KL1+K8gurQl1GwLFJkIiIKEAkKYIAkM0mQYoAS2+WNQkCwPYntiiohKQkB9MJqYmwxdgUVkMUHipXCJsEN+1TVAlNhjhJkOOGyYRKhUmCB7fWKKqEOG6YKLAkTYI+rw9HW2WXEYxO3OgsOIAnotCTNAmOHB2GZ8KjsJrwtfeFXaL1s9dy1DBRsEkuxo8NjGJiZFxhNZGrYbusSZBJghQMFqsFt/zmS6L3mkjAJkEiIqIA6ahuE613VuUqqoQocJyVuSgR/kB77w/b+WM5DEhuNjK5hoyqaqWsSbBhWx3cYxOKqqGzETfY5HLcMJlP/rxCRMfH6F7fVduBwR7zpL8EknQUFZsEic4srTBTtJ4jh89MmpSTlMNkeqJIZs/QP44TgCneJ7vqOtBV1yHaY9baeYqqIaLJShKMUwcAVyfTBIf6BtFZoz9UJSYhBrmz8xVWRHR6KXlpuO/D72POFQtCXUrAsEmQiIgoQCQvvQCQzSZBihBLb75ItH5sYBQ7//KemmJIF5/PJzqYTuaBDhlUVkWOqOnCPeZGw/aDCiuiMxGPG2aSIJmQ1RaFosWloj0atnHksAr97foPj6LjYxDriFNYDZHxSJIEAaD3UI+iSoxJelmDSYJEkc0hbKIxw8jhPc/LRg2nF2fyvIAoBKTvKBw5DDS+Lfs2WnhuKaxRVkXVEJ1dkjMZX3zqnxCfnBDqUgKCTYJEREQB0lkjTBLkuGGKEAuuXYyYxFjRHtue2KymGNJluG8IXrdX93oe6JBRaZqGSmGaYM1GjhwOFo7qJNKndKls5HDb3sOKKjE3yajO5JxkaJqmsBoi40kvkiUJ9jJJ8IykKTmSUX5EFHrSsXyD3S5FlYSvPc8LRw2vmcf3PaIQkL6jsEnw2KQVidIlHDVMwadpGmyxtlCXERBsEiQiIgqQjmr9SYKxjjh+IKWIEZsYi4XXLhbtUbelGt31nYoqoqmSpz7weUXGVblipmh9zab9iiqhs5EkCSakJcIWG62wGqLIUXq+rEmwUzg2jY6RvI8lscmZ6KzESYJNTBI8E0mjc0JqImwxxjyAIzILaZPgQJexmwRH+odR/1aNaI/Z6+YrqoaIpsLhlCWlDnDcMBreljUJlixlkyCRSmwSJCIiCoCxoTEcPdyne312VS5vBlJEWXrLReI9tv9qi3gP0kd6o5HpW2Rk0iTBpvcbMOoaUVQNnUl/mySFi88xMq/ixaXQLPp/e3TVsklQamxwFONDY7rX8xlGdHbJuamw2vSPKevjuOEzkvymZKMzUeTjuOEz2//ybvi8Pt3rY+1xKLugSmFFRDRZHDcs45nwoOm9Bt3rNU1D8eIyhRUREZsEiYiIAqCrVn+KIAA4qzhqmCJL8Xll4hHZ7/zmLfh8+j+YkX6S1AeA44bJ2FLy0pBVnq17vd/nR92WaoUV0al4PV7RmLvk3FSF1RBFllh7HNIK9Sdsdda0w+/3K6zIfOSpznwXIzobi9WC1Px03es5bvj0/H4/XB2CNFQm0xNFPPm4YWM3Ce55fqdo/fRLZyEqOkpRNUQ0FRw3LHN4VxPcY27d63Nm5iEuKV5hRUTEJkEiIqIA6KyRNQlmV+YqqoQoODRNE6cJHm09grY9LUrqoakRH0zn8FCHjK1yhSxNsGbjPkWV0OkMdg/A79PfpMQULjI7yWWP8aEx0x98SEkvbPAZRjQ5kpHDro5+TIxOKKzGOIb7BuF1e3Wv5zOMKPI5MoVJgj3GbRL0erzY99Ju0R6z13LUMFGoJKQlwhKlP416oMvcv5Xrt9WK1pcs4ahhItXYJEhERBQA0pFb0kQ2olBY/Jlloh/MAHDgtb2KqqGp4LhhojOrXDlTtL5m035FldDp9LcdEa1nkiCZnSQxFZAnqZud/MIG38WIJkOSmgoAR5o5cvhU+ttlvyeTnLx0RhTpYh1xoqS7gS6XwmrCS8P2OowcHda9XtM0zFw9V2FFRDQVFotFNFLd7BfqGt8+KFpfsrRCUSVEdBybBImIiAKgs07YJMhxwxSBHFlJmL12nmiPajYJhoRkNBQAOHioQwZXsXw6NE3Tvb59f6toFC6dnbxJkA02ZG7OCtnvj07hJSmzkzYJ8sIG0eSkF2WK1vceYpPgqUh/T7LRmSjyaZoGu6CJZrDbuE2Ce5/fJVpffF4Z7Bmycc5EJCMZOWzmJkG/34/6bXWiPUqWlCmqhoiOY5MgERFRAEiSBK02q/jDNVGoSEcOH3yrFhMj40pqocmTHEwnpCXCFmNTWA1R+ElITcS0eQWiPWqZJhhQR9tkh9MpTBIkk8uqkCYJsklQwiVN4crhhQ2iyZCMGwbYJHg64jRUwcE7EYUPe6b+RrbBbuOOG97z/E7R+llrZBeyiUjO4RQ0QfcMwOf1KawmcvQe6saA4NK0w5nMs1KiAGCTIBERkWI+nw/dBzt1r88oyYJVOLKVKFRmXDYHiel23es9424cfKtGYUU0GZIbjUyuIbOoXCEcObyRTYKBJE0SZIINmZ1T2iRYx3HDEv3SFK5sPsOIJkOeJNitqBJjkSbk8DclkTE4hE2Cfr9fYTXhobu+E501svfk2evmK6qGiPRKEkzR8fv8hk5LPZOG7bJRw6VLy0WTXYjo1NgkSEREpFh/21FRElpWueyAjiiUrFFWTL9klmiPA69y5HAw+Xw+0aEOG2vILCpXzhCtr9m0z5CHHuFCPKqT44bJ5BzOZMTa43Sv57hhGZfgGRbriENsYqzCaoiMK02YJNjXxCTBU5E8wwD+piQyCnum/qQtz4QHo64RhdWEhz3CUcNpBenImZGnqBoi0kt6KcusI4cbttWK1pcsKVdUCRGdiE2CREREinXVym4HskmQIt30VbNF66tfZ5NgMA31DsLn8epez9FQZBal51fAatOf9NvX3IveRqbPBIrkcNpqs4pScImMQNM00cjhvqYeuMfdCisyF0mjMxO4iCbPnuFAdHyM7vVMEjw1l2CMHAAkCUb4EVH4kDQJAsYcObz3BeGo4bXzmaJFFAak7yrSd6VI1bC9TrSeTYJEgcEmQSIiIsW66vSPGgYgOpwjCgeVF8tGcrbtPQyXcOQaTZ54NBTH25FJxCTEovi8MtEe1Rv3KaqGTtbfJmuwsVj4eYRI8jvE7/Ojp75LYTXm4ff7RY3OTOAimjxN05AuSBPsPcQkwVORNDonpCbCFhutsBoiChXJuGEAhhvHOeoaQd2WGtEeczhqmCgsSC/JmzFJcKR/GO37WnWvt8XaMG1eobqCiOhv+BWciIhIMSYJktml5KaKR2EceI1pgsHC0VBEk1e5QtYEXbNpv6JK6GRH247oXpucm6qwEqLI5RT+Dumskf0OMquR/mG4x/SnMDJJkGhqJCOHR44OG3IcptSA4OCbyfRExmEXNgkOdBkrSXD/K3tEkztiEmNRdmGVwoqISC+OG566Q+/Ww+/3615fuKgEUdFRCisiouPYJEhERKRYZ12HaD2TBMkIqlbNEq1nk2DwSFIfAB7qkLlUrpwhWl+7aT98Pp+iaui4saExjA2M6l6fnMsGGyIAcFbmiNZ3Ci9LmZWrXTimk6nORFOSXpgpWs+Rwx/l9/tFvyl56YzIOBxZ0nHDxkoSlI4ann7JLNhibIqqISIJ6ffvAROOG27YxlHDROGKTYJERESKdQuaBOOT42HPkN26JAoH0y+ZLVpf/dpeNtIEiTRJkOk1ZCZFi0oQkxire/1Q7yDa9h5WWBEBQL8gRRBggw3RcVkVsibBLuFlKbOSXthIzuGFDaKpkIwbBoCeRjYJnmi4bxBet/6kLF46IzIOcZJgt3GSBH1eH/a++KFoj1lr5imqhoik7MImaJcJmwTrt7NJkChcsUmQiIhIIffYBPqaenWvz6rIgaZpCisiCo3yCypFcfCD3QNo29OisCI6Hem4AzYJkplYbVEou6BStEfNxn2KqqHj+tuEDTZMEiQCAGSWOUW/Rbpq2SSoBy9sEAVXerEsSbDvUI+iSoxB/HuSlzWIDMOeKU0SNE6TYOM7BzHcN6R7vaZpmHU5mwSJwoUtxoaE1ETd6802btjr8aLp3XrRHmwSJAocNgkSEREp1F3fBb/fr3t9VrlTYTVEoRMdH4PSZRWiPThyODj6O2QH0w4nkx/IXCpXyEYO12zar6gSOk6aJJiSm6qoEqLIFh0XjdT8NN3ru2rbRb+FzEqaJMhRnURTk17EccMqiZ9hTBIkMgx7hl203kjjhvc8Jxs1XLioRDy+mYjUkryzmG3ccNueFowPj+ten12VK2rKJKIzY5MgERGRQtL0jKxy2YgvonBSdfEs0fpqNgkGhSS9JjHdLkqMJIpE0ibBg2/WwOv2KKqGAAWjOtkkSPQ3WRXZuteO9I9gsMc4CTDBIh83zCZBoqmQjhvubWKS4ImkyThsdCYyDqstStTUYaRxw3tf2CVaP3vtfEWVEJEqDqf+xl1XR7+pLtTVb5ONGi4+r0xRJUR0KmwSJCIiUqirTtgkKDiUIwo30y+ZLVp/8K1aTIzov3FGkyM51OGhNJlR7ux8JKbrT0gYHxrDofcaFFZEHDdMpI700hJHDk+dS5jqzBQuoqmJtcchIU1/EwvHDX8UkwSJ6ET2TIfutUZJEuw91I32/a2iPWat5ahhonCTlK3/25F7zI1R14jCasJbw/Za0fqSpRw1TBRIbBIkIiJSSNwkWM4mQTKOvDn5sGfo/zjoGXfj4Fs1Ciuik/l8PlGToIMHOmRCFosFFcuni/ao2ciRwyr1t8vGDTNJkOjvpJeW2CQ4dZIGm4TURNhioxVWQ2QOkpHDvU09pkqCORtpkiAvnhEZi6hJsMsYTYJ7npelCKZMS0Pe7HxF1RCRKklO2XdwM40cbth+ULS+dGmFokqI6FTYJEhERKRQZ2277rWapiGzzKmwGqLQslgsqFo1U7THgVc5cjiQhnoG4fP6dK9PFtygJIpklStkz7aaTfsUVUKALEkwPiUB0XFssCE6zilsEpT8HjIrV7v+wyKO6STSRzJy2D06gQGDNLKowDRUIjqRI0v/OM6R/hF4JjwKqwmNfS99KFo/e808aJqmqBoiUkUybhiQX6yIFEcO9+Ho4T7d6xPT7TwnJQowNgkSEREp1F3XqXttan4aD6nJcKavko0crn6dTYKBJD7Q4cE0mVTlyhmi9Y1vH8T48Jiiaqi/TX+SINNriD4qq0I2bphNglNzLNVZ//tYcg6ba4j0SCvUnyQIHBslScdIDrzjUxKYhkpkMJKJIgAw2DOgqJLQ8Pl8aNheJ9pj9rr5iqohIpUk44YB8zQJNmwTjhpeUs5GaaIAY5MgERGRIkO9Axg+MqR7fSZHDZMBVV4sS9tq23tY3MhGpycZbwewuYbMK6MkC6n56brXe91e1G+VfTSjY3xe2dj05Fw+x4hOlJybgpiEGN3rOW54aob7huB1e3Wv54UNIn0kSYIA0HeoR1Elkc8l+E3JFEEi47FnypK2Brsju0mwp74LYwOjutdHx8egYvl0hRURkSrS9xaXScYNS0cNlywpV1QJEZ0OmwSJiIgU6RQeiGWxSZAMKCU3FTkz8kR7HHiNaYKBIhlvB/BQh8xL0zRUrpClCdZs3K+oGnMb7BmQjU3PSVVYDVHks1gsostLvY3d8BpgTFywiC9sCNMsiMxK2iTYyyZBAIDf75dd1mCjM5Hh2DNlSYKRPs69+YNG0fqqVTOZsEoUppI4bnhSGrYLkwSXskmQKNDYJEhERKSINDXDWcEmQTKmqlWzROvZJBg40pRGHuqQmUlHDte8wSZBFSSjhgEmCRKdiuR3ic/rw9EW2T+XZiJJ4AKYJEikV3oRxw2rMHxkCB5BYzgvnREZjyNLmiQY2U2CTe/LmgRnXjZXUSVEpJp43LAJkgTHhsbQurtF9/qo6CgULChSWBERnQqbBImIiBTpqhMmCVbkKKqEKLxMv2S2aH31a3vh8+lPiaLTk6bX8GCazEyaJHh4ZxOGjwwpqsa8+tuEzc65TBIkOpk04byvkQlbkyVOEuS7GJEuqQXp0DRN9/reJj7nAHkijvSwnYjCjzRJMNLHDTfvkDUJFp1boqgSIlIt1hEHW5z+pM8BEzQJHnq3XjTtI39BEdNUiYKATYJERESKiJsEy52KKiEKL+UXVCIqOkr3+sHuAbTt0X8DjU5PeqgjvSFOFMmSslOQPT1X93q/34/azQcUVmROTBIkUk96eYlNgpMnTRJkkyCRPrYYm+jCU28jkwQBBWmoTBIkMhwzNwn6vD607GzSvT4qxoacGXnqCiIipTRNE40cNsO44cbtdaL1JUs4apgoGNgkSEREpIhk3LAtLhop09IUVkMUPqLjY1C6rEK0B0cOB4Zk3LA9wyFq/iQygsoVM0XrazZy5LDUUWmSIBtsiD5GMm4YAPoa2CQ4WUx1Jgqd9KIM3Wv7mnow6hpRWE1kkh528z2MyHgcmbLLpAMRPG64s6YdEyPjutdPm1sAq43f2YjCmSQF2QxNgvXCJsHSpWwSJAoGNgkSEREp4PP60F3fqXt9VpkTFgv/Wibjqrp4lmh9NZsEA6K/Xf/HCR5KEwGVK2Ujh2s27VNUiXn1t0uTBDlumOhkmeJxw72KKjE+8ahOQZIFkdlJmgQBoGVXk5pCIpi40ZlJgkSGE+uIQ1SMTff6SE4SbP5ANmq4YEGRokqIKFAk7y4jR4fhHncrrCa8+Lw+NL59ULRH8XlsEiQKBnYjEBERKdDX1AOv26t7fSZHDZPBTb9ktmj9wbdqRbdx6eN8Xh8GOgVNgjzQIUL5hVXQLJru9V21HTgqHJdrdpIxd5Yoq3gcFpERxSbGihpoj3Dc8KRJGmzsmQ6mzRAJSEert+w4pKiSyCVudObFMyLD0TRN9BtrMIKTBJuETYKF55QoqoSIAsWRJUxLFXyLD3cdB1oxNjCqe31maZb4f79ENDlsEiQiIlKgs7ZdtD6rXPZxmijc5c3Jhz1D/0dCz7gbB9+qUVgRDfYMwOf16V6fLBivQGQU8ckJKFhYLNqjZiPTBCX6BeOGk7KTmeRMdBpZgpHDI0eGYfOxeW0yJI3OHNNJJJM/X5bY1LKLTYKuDmmSIJ9jREYkaRKM5HGczTuESYLCbwtEFHjSd5dIfsadTf022ajhkqUViiohorPh13AiIiIFumo7ROudgkM4okhgsVhQtWqmaI8Dr3LksEry1AcmCRIBQOUK2cjhus3Viioxp35BEmNyLg+miU7HKUzYSvTEK6rEuHxeH1ySVGc2CRKJ5M8vFK1vZpKg6DdlfHI8ouOiFVZDROFCkgTl6uiHe2xCYTXB4XV70Pphs+710fExcFYyRIAo3Ekn6xg5SbBhu7BJcAlHDRMFC5sEiYiIFOiqkzUJZpWzSZCMb/oq2U5N3JMAACAASURBVMjhA6+xSVAlSXINwNQHouMqV8oaoA/v1n+QYHYTI+MY6R/RvT5FME6VyOikl5gSPHGKKjGuwW4X/D6/7vVMdSaScWQmISVP/7tAd10nxgb1j1QzAsnIdDY6ExmX9B2lr6lHUSXB036gDe4xt+71+fMLYbHyyJ4o3DmcsnG4Rk4SbNhWK1rPJkGi4OEbBxERkQLiJkEmCZIJVK2aJVrfvu+weJwR/Z3kQAcAkpkkSATg2EesqBib7vUd+1vh9XgVVmQeRwUpggCbnYnORPr7hEmCZyd9F5OmWBCRbOSw3+/HYUFqVKTz+/2ig24+w4iMK704U7S+p7FbUSXB0/yBcNTwAo4aJooEHDd8aq6Oo+g9pL/BOz45Hs4qpqkSBQubBImIiBSQjBu2ZzoQn5ygsBqi8JSck4KcGXmiPZgmqI583DCba4gAIDouGiVL9d929Ux4RO8RZtbfJmx25rhhotPK4rjhgOO7GFHoSZoEAXOPHB45OgzPuP7UrGQ+w4gMS9ok2BuJTYLvC5sEF8r+PiKi4JBecnAZdNxw/TbZqOHiJeWwWNi2RBQs/KeNiIhIaGxoTJQCIT2AI4ok0jRBNgmqw3HDROoULpTd+m/lyGFdpM+xZI4bJjqt1Pw02GL1p6QmeDlu+Gzkqc58FyOSyp9fKFp/eJd5mwSlzzCHk88wIqPKMGGSYNMOaZMgkwSJIoE9wwHNouleb9QmwdpN+0XrS87jqGGiYGKTIBERkVC3dNRwmVNRJUThb/ols0Xrq1/bC5/Pp6gac+sXjm5OciYpqoQo8uXNzhetb93ToqgSc5GOG05hkiDRaVksFmQKfqckeOLg4yj1MxJf2GCTIJFYwQImCeolTUNNzuG4YSKjEicJHoqsJkH3uBttgt/0sfY40Xs3EQWPxWqBPVP/N3GjjhuueUPYJCiY0EJEU8cmQSIiIqFO4YjArIpsRZUQhb/yCyoRFR2le/1g94Dowxv9neSjhD3TAatN//8diYwmb06BaD2bBPWRjxtmkiDRmUh+p1hgQX+r7J9Ro2OSIFHoJWWnwOHU36zWWdOO8eExhRVFDibTE9HpJKQmItahP1U60sYNt+09DK9b/+WY/AVFHLNJFEEkI4cHOl0KKwkPR9uOoEtwRmqJsqJoUYnCiojobPjWQUREJNRV2y5a7+S4YTKR6PgYlC6rEO3BkcNqSA51eKBD9FFZ5U5RAzTHDevT3y5LEmQKF9GZZZXLfqf0NfQoqsSYJBc2NIsGe6ZDYTVE5iVJE/T7/Gjdbc7LHkwSJKLT0TRNNHK4t7Ebfr9fYUWB1fyBbNRwIUcNE0UUyXSdgS6X4aYkSUcNFywoQnR8jKJqiGgy2CRIREQk1HWwU7Q+q5zjBMhcpq+SjxwmGZ/XB1en/kMdHugQfZTVFoXsGXm617s6+jHYM6CwInOQJAnGOuIQmxirsBoi43EKE8/ZJHhmkiRBR1YSrFFWhdUQmVf+fNnI4Zad5hw5LE1D5cUzImOTjBweHx6PqN/H0ibBAjYJEkWUJKf+dxifx4uh3kGF1YSedNRw5YoZiiohoslikyAREZGQJEnQYrUgvThLYTVE4a9q1SzR+oNv1WJiZFxRNeY02DMAv0//rWwe6BB9XN6cfNF6jhyeOkmTYApHDROdlbNSmCTYyCbBMxGlOjMJlUiZ/PmFovXNJm0SdHVKmwR58YzIyNKL9DcJAkBPQ5eiSgKveYfs74GChbJmdSIKLofwHcZII4f9fj9qNsqaBCvYJEgUdGwSJCIiEvD7/eiq058kmF6cKRpPSBSJ8ubkw56hfzyaZ9yNg2/VKKzIfCSH0gCQzINpoo/JmyVrEmxjk+CU+Hw+uDr0P8uSc/kcIzqbLGmSIJsET8vr9mCwW39CDt/FiNSRjBsGgMM7m9QUEmFc7fqT6eOS4jlWjsjgJOOGgWMjhyPBxOgE2vcd1r0+PiVB3FBJRMElGTcMQPQtK9z0NHTh6OE+3eujYmwoWVKusCIimgw2CRIREQm4OvoxPjSme31WuezgjSgSWSwWVK2aKdrjwKscOSwhHw3F1Aeik+XNKRCtZ5Lg1Az1DsLr9upen8wkQaKzinPEw+HU/3c+mwRPb6DLBb9ff6pzMlOdiZRJzk0VXWJr39+KidEJhRVFBtFlDTY6ExmeZNwwEDlNgq27m+Hz+nSvL1hYDE3TFFZERIEmnbDj6tB/0SLcSFMES5aUITouWlE1RDRZbBIkIiISkIwaBtgkSOY1fdVs0foDr7FJUELcJMhDHaKPyZs9TbS+dXezokrMQTJqGODhNNFkOQVpgsM9Qxh1jSisxjj4LkYUPjRNQ74gTdDn9aFtr7kue/j9fvQLkgSlY/qIKPxllGSJ1vcciowmwab3G0XrpWm2RBR80svzhmoSfEM4ang5Rw0ThQKbBImIiAQ6aztE66UjvIgiVdWqWaL17fsOGyqaP9ikHyPYXEP0cYnpDtE/Gx0H2uB1exRWZGz9bUdE65kkSDQ50ktNncJLVUblEjYJ8l2MSK38eYWi9S07DqkpJEKM9A/DM+7WvZ7PMCLjS81Ph2bRn5AXKUmCzTuETYILixVVQkTB4hCOGx7oNEaToM/nQ90bB0R7VK5kkyBRKLBJkIiISKCrTtYk6KzIUVQJUWRJzklBzow80R5ME9RPejDNccNEp5Y3J1/3Ws+ER3z5wEzESYK5PJwmmgzppaYuPtdOSZLABQBJOXwXI1JJkiQIAC07m9QUEiFc0meYYJQ9EUWGqOgopE5L070+YpoEP5A1CRaySZAo4ojHDRukSbB9XysGewZ0r49JjOUzkChE2CRIREQkIG0SzCp3KqqEKPJI0wTZJKhfvyCFUdM0OLJkNyaJjCp3lv4mQYAjh6dCnCTIBBuiSZFeamLz86lJxw3zGUakVv58WZNg805zJQlKU/05Mp3IHNKLM3Wv7W87CvfYhMJq1BsbGkNntf7UbHuGAymCRkoiCo3ouGjEJcXrXm+UccM1m2SjhssvrILVFqWoGiKaCjYJEhHRGQ0fGULtZllktJFJkjFi7XFw8PY0mdj0S2aL1le/thc+n09RNeYi+Rhhz3TwBzzRaeTNKRCtb91zWFElxidusOG4YaJJEScJ1nHc8KmIU53ZYEOkVFpBOhJSE3Wvb993GG7B+N1II30PYzI9kTmkF+lvEvT7/ehr7lVYjXqHdzXB7/frXl+wsAiapn8kMxGFjmTksFHGDdds2idaX7F8uqJKiGiq2CRIRERn5Jnw4McrHsaWn78e6lLCjnvcjd5D+kcfZFVk80MAmVr5BZWIitbfbDbYPYC2PS0KKzIPycE0D3SITk8ybhgAWvcwSXCyJIfTFquFiahEk5RWmAGrzap7fWcNkwRPRZLqbImyIjHdrrAaItI0DfnzC3Wv97q9aN9nnsse0gQcpqESmYMkSRAI/5HD0lHDBQtLFFVCRMEmGTlshCRBr8eLg1tqRHtUrpypqBoimio2CRIR0aT87ktPYPuTW0JdRljpbeyG36f/tiBHDZPZRcfHoHRZhWgPjhyeOp/Xh4Eul+71TK4hOr2s8mxExdh0r2fj8+RJxg07nMmwWPk5hGgyrFFWZJbp/93SfbATPi+Tn08mvbBhsfAZRqSaeOTwDvOMHBanofLiGZEpZAibBHvCvUlwh7RJUPb3DhGFjuRdZnx4HGODowqrCb7mDxpF/xkS0hKRO2uawoqIaCr4RYmIiCbtD3f+GqOukVCXETa6amWjs7LKcxRVQhS5pq+SjRw+8OoeRZWYx2C3S9TgnCy4KUlkdNYoK3Jm5Ope7+rox2DPgMKKjKu/Tf/hdHIun2NEU5FVof93i2fcjSMt4T0qLhQkaahM4CIKDGmT4OGdTWoKiQAu4Zg8NgkSmYPxkwRlzeEFC4oVVUJEwSadTiF9lwq1mk37Resrlk/nxTeiEOI/fURENGnjQ2N46z83hbqMsNFZKxudlVWRragSoshVtWqWaH3j2/XweryKqjEHyaE0wAMdorPJnS0cObybI4fPZmJ0AsNHhnSvT85NVVgNkfE5y2W/W6S/m4zGPe7GcJ/+ZxhTnYkCo2CBMElwp3mSBCW/KeOS4hGTEKuwGiIKV9Ikwd5D4dskOOoaQVed/nfc5JwUXvwgimDS7+ORPnK49g1Zk2DlCo4aJgolNgkSEdGUvPn4xlCXEDa66zpF67OEh21ERpA3Jx/2DIfu9RMj42jbe1hhRcYnbhLkR0yiM8qbXSBa38qRw2clHXGXzGZnoimRXm6SJrAbjfRAiM8wosBIL85EXFK87vVte1rgdXsUVhS+JM8xXjojMo+ENDti7XG614dzkmCLsDG8YCFTBIkiWZJw0k4kNwm6xybQsK1OtEflihmKqiEiPdgkSEREU9LT0IW+5p5QlxEWOuuk44adiiohilwWiwVVq2Q3xxrfPqioGnMQH0yzSZDojKbNESYJsknwrKTNzkwSJJoaeZMgkwRPJG105oUNosDQNA358wt1r/dMeNC+v1VdQWHK7/eLnmN8hhGZh6ZpopHDPY3d8Pv9CitSp+n9RtF6aXotEYVWklM2bngggscNN759EO4xt+71KXmpyCzj2ShRKLFJkIiIpqxuc3WoSwgLksOulLxUjlch+j9VFwtHDr/DJsGpEB9MM/mB6Izk44bZJHg2/W1HROuTc3k4TTQVzooc0fpOwSg2IxI3OrPBhihg8ufLmjZadjapKSSMjfQPiw6G+XuSyFwkTYLjQ2MY6h1UWI06zTuETYJMEiSKaGZOEqzeKBs1XLFiBjRNU1QNEenBJkEiIpqy2s0HQl1CyA0fGRJ9pJCmcRAZScnSctH6Q2wSnBKOGyYKrMQ0uyipruNAK7xur8KKjKe/jUmCRMGUkJqIxHS77vVMEvwo8ch0vosRBYy0SbB5h2z8ZCSQj0znM4zITDKK9DcJAuE7crj5A1mTYD6TBIkimvTSgyuCkwRr35A1CVYu56hholBjkyAREU1ZHZsE0SVMw8gqY5Mg0XGZpU4kpCXqXt9d34XBngGFFRmb5FBH0zQ4smTjFIjMIE8wctjr9qKvITwPQsLFUWGSYAqTBImmTHLJqb/tCMYGRxVWE9l4YYMofEnHP7bsMkGTIJPpiWgKJEmCwLGRw+FmqG8QvYd6dK9PzU+HI5Pf1ogiWXxKAqKio3Svj9Rxw2ODo2h6r0G0R8UKNgkShRqbBImIaMr6mnvReyj8fqAHkzQNg0mCRH+naRqKF5eJ9uDI4clzdeg/1LFnJcEaZVVYDZEx5c2SjRzuqu5UVIkxiUd1MkmQaMqc5bKRw9JLVkYieRcDmCRIFEgZpVmItcfpXt+6uwVej7EToaVJgmx0JjIXaZNgOCYJtghTYwsWMkWQKNJpmgaHU//Fh0gdN3zwzRr4vD7d6zPLnEidlqawIiLSg02CRESki9lHDnfWtovWZ1XIDtmIjKbo3FLR+kPv1CuqxPj62/V/hGDqA9HkSJIEAaC7ms00Z9IvSBKMSYwVHf4TmVVWpeySE0cO/52k0Tkqxob4lASF1RDRiSwWC6bNK9C93j06gc4a2feicCdOQ+VvSiJTyTBgk2CTcNRw4cISRZUQUShJ3mkitUmwZpNw1DBTBInCApsEiYhIF7OPHO4+KEv4ySp3KqqEyBiKz2OSYDB4PV4Mdrl0r2dyDdHk5M6WJgka+3BZqr9N/+F0MkcNE+niFF5y6mST4N+4BBc2knOSoWmawmqI6GT584Qjh4UJU+FOeqjN35RE5pJakC56d+lp7FJYjRrNTBIkIsiaBId6B+F1exRWExxsEiQyBjYJEhGRLrVvHIDf7w91GSEjOeSKirEhrSBDYTVEka9oUYnoo2HTew2GH+ukwmD3gOjZzdQHosnJKs9GVIxN9/pujhs+Lb/fD5cgwYajhon0yaoQJgnWsfn5OEkKF8d0EgVe/gJhk+BOozcJMkmQiCbPFmNDcp7+32A9YZgk2CxMEpT+PUNE4cGRlSRaPyC4yB8KQ70DaN3dLNqj/KLpiqohIgk2CRIRkS5HW4+EZdx/MPi8PlGSYGZpFixW/hVMdKJYexxyZubpXj8+PI72fYcVVmRM8tFQPJgmmgxrlFX0TBvqGUS0V3+ToZEN9w3CM6H/tnUKkwSJdMkozoQlyqp7PccNHzM+PIZR14ju9UzgIgq8/PmFovXNhm8S1J8kGOuIQ0xCrMJqiCgSSEYO97cegXvcrbAamYEuF44e7tO9PqMkCwkpiQorIqJQkX4nj7SRw7VvyKbL5c0pgD3DoagaIpKICnUBRIHS2tqKxsZGtLW1YWhoCO7/z959h0lVnv0D/87Mzvbee4Nld2lLk14ENYo/G4IFW4w1xsRCIm9MNFHfxB41iXkjYsGSaJAYUQxElGoBhKVvh2WX7bts72Xm94chYZlddvfcz/Tv57re63pzdp5nbryWw8w533PfPT3w8fFBQEAA4uPjMXr0aISHh9u7TKfT3d2NnJwcFBcXo7GxEd3d3QgODkZUVBSysrIQEmK/C9atra04cOAAKisr0dDQAIPBgODgYCQmJmLChAnw9uZFKNXyt+YgYlSUvcuwufrSOvQKLk5EjpF14SByVakz01B+WHvQ7/iuIiRMSlZXkAuSdN8CeGOaaCTiJySKxs0F9vLGwUAaBKOGASA4lp0EibQwGD0QkRqJ6gJtYb/qgiqYTCbo9e79sJT0RhAf2CCyvuj0WBh9jOjp0Hbdp+xACUx9Jpd9OFTUDZVdBIncUkRqFAq252paazabUV9ShygHuZ4u7SLIUcNErkP6uaapyrlCgtJRw+kL2UWQyFEwJEguw2w2Y9euXdiwYQN27NiBmpqhO5ylpKRg0aJFWLJkCdLS0mxQ5X+9//77eOKJJ9DXZ53RiDqdDo8//jiuu+468V5msxlff/013nvvPezYsQNdXV2DvmdmZiauvfZaXHHFFfDz8xO/91C6urrwz3/+E3/7299w8OBBmEymAV9nNBoxc+ZM3HDDDTj//PPd/saEKvnbczD3joX2LsPmtN4YOy3aQS5qEDma1Flp2Ll6i+b1x3cVYsEPL1RYkesR35iO5U0douGKz0oUrQ/ssf5naWfUWF4vWh/MToJEmkWlx2j+LtTd3oXG8gaEJoQprsq5SLs684ENIuvTG/SIGhuLsn3axql1tXWhuqASMZlxiiuzP7PZLPpOyXMYkXsKF3QSBL4bOewoIcET0pDg1FRFlRCRvQVGy8YNu1snwcwLxiuqhIikmJIhl7B582ZceeWVuPXWW7Fu3bphBQQBoLi4GK+//jouu+wy3HPPPSgqKrJypf9VVFRktYAg8N1Fm+7ubvE++fn5uOGGG3Dbbbdh8+bNgwYET79nTk4OHnvsMVx88cX49NNPxe9/Lp9//jkuueQS/PznP8f+/fsHDQgCQE9PD3bu3Il77rkHy5Ytw5EjR6xam7so2JoDs9ls7zJsTjoqKyrdMS5qEDma1JmjReuPf1OoqBLXxXHDRLYTP1EYEuxlSHAgjcJOgkG8OU2kmfTmbHV+haJKnJe0qzPPYUS2ETNBFvArEXSTdmQdTe3o6dB+vZmdBInckzQkWHd8ePf7bKFkn7STIEOCRK7CncYNN5SdEjVP0Rv0GD0vXWFFRCTBkCA5tZqaGtx555348Y9/jPz8fNFeW7ZswZIlS7BmzRo1xQ2hoUF2YXg4AgICROvff/99XH311cjOzh7x2traWqxYsQI//elPlYQVz9TT04Nf/OIXuPfee1FRMfKbDEePHsU111yDt956S2ld7qixogE1hVX2LsPmqqQhQQd58pHI0USOiYFviPZQTE1hFVpPtSisyPVw3DCR7cRnJYnWB/Rw3PBApJ0EQ+I4bphIq+j0WNF66fcoV8BOgkTOIXpCvGh9abZrhgQ5Mp2ItIhwkZCg2WxGyV7Z+T1xSrKaYojI7qQPPzQ70bhh6ajh5Omj4BPoq6gaIpLiuGFyWvv27cP999+P2tpai58ZjUbMmzcP8+bNQ2ZmJmJiYuDp6YmamhpUV1djx44d2LhxI06dOtVvXXd3N5566ilUVlbi4Ycftmr9tggJBgVpb3X8wgsvYNWqVQP+LDIyElOnTkVsbCw8PDxQV1eHQ4cOobDQsoPThg0bUF1djdWrV8PHx0dzPad1dXXhrrvuwq5duwb8eVpaGiZOnIjw8HD09vaisrISe/futeguaTKZ8OSTT6Kqqgr/8z//I67LneVvy3G70FtNITsJElmDXq9H6szROLLxoOY9incVIXhiuMKqXEuT4OKDTq9DQGSgwmqIXJtfqD9C4kPRUKYt1BbQ64u+7l7FVTk/ccCG44aJNJN+j6nKYyfBpgrZjaDgWHbhIrKFmPGyULSrhgTlnel5DiNyR+Jxw8WOERJsrGgQhXqi0mMYkiFyIYGRgdDpdJqnrUmu09uaNCSYvnCcokqISAWGBMkpffnll7j33nvR2dnZ77iXlxduvPFG3HHHHQgLC7NYFxoaioyMDCxYsAAPP/wwXn/9dbz88ssWne7WrFmDxMRE3HjjjVb7M1g7JGgwGBATo+0C/rvvvjtgQHDUqFF46KGHsGDBAuj1lo1I8/Ly8OKLL2Lbtm39jn/77bdYuXIl/vCHP0Cn02mqCfjuSa2VK1cOGBBcsGABVqxYgYyMDIufmUwm7NixA88995zFSOk33ngD0dHR+P73v6+5LndXsC0H8++6wN5l2JSkA4ZfmD/8w2RdPolcWcqMNFFI8Ng3hZjKkOCgJDd1AiKDYPAwKKyGyPXFTUzUHBLUQ4+6Y7VIHpWiuCrnJjmP6fQ6BEbz5jSRVtEZstCMZDyRq2is5LhhImcQPjoSfeiDAdq+/5zcXwKTyTTg9VNnJu0kyG6oRO7JPzwAXv7e6GrtHPrFA3CUToIle2WjhpPPG6WoEiJyBAajB/zDA9BS26xpvbOMGzabzcgXhgQzFjEkSORIGBIkp7R+/XqLgGBWVhaeeeYZpKQM7yaah4cH7r77bsyfPx8333wzWlr6jyd87rnnsHDhQsTGyi6CD+bskODcuXPx6quvwmCw7833ffv24cknn7Q4vnjxYjzzzDPw8vIadG1GRgZWrVqFNWvW4Omnn+739MRnn32GV199FXfffbfm2lavXo1Nmzb1O6bT6fDQQw/h9ttvH3SdXq/H+eefj1mzZuHhhx/Gp59+2u/nTz/9NMaNG4dp06Zprs2d5W/LhdlsFgVAnUlXWycaTp4a+oWDkI7oInJ1qbPSROuLdxdi6t2zFFXjeiTjhtm5hmjk4icm4sg/D2heX5NbCXxPYUEuoLFc+3ksMIphZyIJ//AA+Ib4ob2hTdP6ao4bFn0W8/LzgneAfEIDEQ1N72FAs7ENIT3aOql3tnSgtqja5SZvSM5hAMcNE7krnU6HiNRIlB0q1bS+7niNQ9x/kIYEk6byAUAiVxMUE6w5JNhc1aS4GuuoKarS/AA0AHh4GTFqtuyeDxGp5VqPspHbeOyxxzBlypT//O+lS5fi3XffHXZA8EyZmZl4+eWXLcJ5HR0dWL16tbjWwZwdEkxJSbF7QLC7uxu/+tWv0NfX1+/4ggUL8Lvf/e6cAcEz3XrrrXjooYcsjv/pT39CSUmJptpKSkrw8ssvWxxfsWLFOQOCZ/Ly8sLzzz+PhQsX9jtuMpnw61//2qKjJA1Pc1UjqvPdZ2xUTWGVaH3kmGhFlRC5ppTpo0QX/Yp3H4Opz6SwItfR19uHlhptFy0Adq4h0iI+K0m0vjqXgZqzNZZrvzAZHBeqsBIi96PT6UQjh+tL69Dd3qWwIucj6YYaFBti95vjRO6kydgy9IvOwRVHDks73gTxwTMityUZOdzZ0oG2U7Jzsgol+2Tn9aRpqYoqISJHERgdpHltc1Wj5lHFtpT3hayL4Kg5Y2D09lRUDRGpwJAgOSU/Pz+sXr0aM2bMwO23344nn3wSnp7a/4GZOXMmli1bZnH8k08+sQjMqdDR0WHRCTE01P43rN555x2LcbwRERF49tlnRxxgvP3227FgwYJ+x7q6uvDUU09pqu3JJ59EV1f/mwlz587FXXfdNaJ99Ho9nn32WURFRfU7XlRUhHfffVdTbQTkb82xdwk2U10gCwlGj2EnQaJz8QnyRczYOM3ru1o7UVtQrbAi19Fc3SS68BDEEZ1EIxY/MVG0niHB/nq6etBap/3mUHAcw85EUtLO6NXCh66cmdlsFnZ15jmMyJaajK2i9dIwiSMSj0xnJ0EitxWeoj0kCAC1dh45bDabRZ0EdXodEibJHiIkIscj+WzT292LtnrZ501byN/KUcNEroYhQXJa/v7+ePvtt7Fy5Uol+1133XUWx1paWlBQUKBk/zOd3UUQAMLCwpS/z0h0d3fjzTfftDj+4IMPIjhYWyjgkUcegdFo7Hds69atyM/PH9E+ubm52LZtW79jHh4eePTRRzXVFRgYiBUrVlgcf/PNN9lNUKP87bn2LsFmpF0TJZ03iNxF6kxZ+/ny/drGl7g66Wgo3pgmGrnItGgYvY1Dv3AQNXkMCZ5JfB7jjWkiMenoTHceOdzZ0oGuNu2dFNnVmci2xJ0E959QU4gDkXQS9A7wgbe/t8JqiMiZSDoJAt+NHLan+tI60QNrMWPj4eXHcyCRq5E+VO/oI4dNJhPytjAkSORqGBIk+rfMzEz4+PhYHC8vL1f+XgOFBO3dSfCjjz5CbW1tv2MxMTG46qqrNO+ZmJiIxYsXWxx/7bXXRrTPQK+/5JJLkJycrLU0XHHFFYiL69+pqqamBuvXr9e8pzsr2JbjFG2xVagqkN3Ukt5UI3IHqbNkIcGybG2j7V2dZLwdwBvTRFoYPAyIGReveX1bbSuaqx37gqEtSc9jHDdMJCd96En60JUzkwad2dWZyLZaPNph8BzZZJUzncwudrlrZZLzGEcNE7m3CGFI0N6dBE98DyDRcwAAIABJREFUq72LIAAkTUtRVAkRORLJuGEAaBJ2aba28sMn0XZKe7dD7wAfjlonckAMCRL9m16vR2BgoMXxjo4O5e81UEgwJMS+N94/+ugji2NLly4d8Zjhs1177bUWxzZv3oz29vZhrW9ra8PmzZuHte9I6PV6XH311RbHP/74Y9G+7qqlphmVueoDtY6oRhAS1Ol1iBgdNfQLidxcyszRovXl2ewkOBBJ1weAnQSJtEqYKBspVHaI57TTGsulIUGex4ikpOOGpQ9dObPGCn4WI3ImZp0ZkRnag9Htje2oK7ZvqEUls9ks+k7JUcNE7s3ZOwlKRg0DQNJUhmSIXJH08430er215X1xRLQ+bUEGDB6ynAERqceQINEZWlos24VrHbV7Lo7WSbC6uhrZ2dkWxy+66CLx3lOnTrX4s3V0dFiMDx7M1q1b0dXVfxxPSEgIpk2bJq5toD/f3r17UVPjOhfwbCl/a469S7A6s9mMKsF4rLDkCBi9tI8cJHIX0Rmx8A321bz+1LFaGE0eCityDeLuNTHs/ECkRXxWomh92UF2Rz2tsbxetJ6dBInkIkZHQafXaV7vzuOG2dWZyPlEj5cFo0v3FSuqxP46mzvQ3a59ZHowOwkSubWwpHDodNo/Q9o7dF2yTxYSTGYnLSKXJL1e3lTl2CFB6X3fjIUcNUzkiBgSJPq34uLiAbvbjRkzRvl7OVpIcOvWrRbjL0JDQ5GRkSHeW6/XY/r06RbHv/jii2Gt37Jli8Wx6dOnizscAkB6ejrCwsL6HTOZTMMOMFJ/BdtdPyTYXN2Ezmbt3UU5aphoePR6PZJnyLoJBndbdgd2d+IxnbwxTaRJ3ERhSJCdBP+DnQSJ7M/oZURYcoTm9VV5FS43fnO4pA9s8LMYke3FTIgXrS/NPqGmEAfQUCZ7WCMomucwIndm9PYUfR+zZydBs9mMkr3aQ996D4P4ugAROSb5uGHHDQn29fSiYHuuaI+MC8YrqoaIVGJIkOjfNmzYYHEsIyMDUVHqR4M2Nvb/R9/DwwNBQbIPEhL79++3OJaVlaVs/8mTJw/rPQcy0OsG2k+rSZMmDes9aWgF23JhMpnsXYZVVQtHYzEkSDR8qcKQYEgPQ4JnkzyZqNPrEBBpv88qRM5M2kmwnCHB/2iskN2cDmEnQSIlojO0d9bqau106Bsh1iTvJMguXES2Fj0+TrS+JNt1OglW5VeI1vMcRkSSkcP1J0+ht7tXYTXDV3usGh1Nlg1GhitufDw8fTwVVkREjkI6brjZgTsJnth7HF2tnZrX+4cHIHa87IEbIrIOhgSJANTV1eGtt96yOH7LLbdY5f3O7iQYHBwsarUudeDAAYtj6enpyvYfqBtjeXk5amtrz7mupqYGFRWWF6BU1paWlmZxjCFBbVrrWlB5tMzeZViVdDRWdDpDgkTDlTrL8vw8EiHdAYoqcR2S7jWBUUHQG/jVgUgLvxB/hCSEDf3CQVTmltvtZoijaRB0EvT09YJ3oI/Caojcl/Thp2ph0MRZNVUKQ4LCG1BENHKR6dHQe2ifZlKaXewy3VOr8mTn7mA+rEHk9iQhQbPJjPrSOoXVDF/JXtmo4SSOGiZyWd7+3vDy99a8vqmqSWE1auVvkU2PS184Fno97ycQOSL+zSS3193djRUrVqClpaXf8aysLCxZssQq73l2SNCeo4Y7OztRUlJicTw1Vd0Xl+Tk5AGP5+aeu01xXl7egMdV1paSkmJx7MSJE+js1P50hDvL3yZrPe3opCHBqHTtHTeI3E2KdNxwTyDMLt7ddKQk3WuCON6OSCReMFqor6cPlbnlCqtxXpKwc3BciF0fzCJyJdHC7zVVwu9VzkrSQdE70AfegptPRKSNh5cH4gQdUNpOtdot1KKaNCQo6UJLRK4hIkV7SBD4rqOfPUhGDQMMCRK5uiDByGHpg2TWlLfliGh9xiKOGiZyVB72LoDInpqbm7FixQrs3r273/GIiAi88MILVku4nx0SDAmxvPGel5eHbdu24cCBAzh27Biam5vR2toKo9EIf39/JCYmIi0tDTNnzsS8efPg7++vqZaKiooBn2iNjo7WtN9AIiMjodfrLUbRDtQlcKifGwwGREREKKttoHHSZrMZFRUVSsOI7iJ/Ww4W/eRie5dhNVUFsguiUWPU/b0icnW+wX6IyYzTHIwxmj1QW1iDxKQkxZU5p76eXrTWtgz9wkEEMyRIJBI/MRGHP9Xerbr8UCkSstz7fGY2m9FYrn3cMLvXEKkTJeyQLn34ylk1lAnOYfwsRmQ3iVNScPKA5QPWw1WyrxhhSequZdqLJCSo0+nEXWiJyPlJOgkCQN3xGkWVjEzJPlknwWSGBIlcWmBMCGqKtIWYJQ+SWVN3RzeOfV0o2iN90VhF1RCRagwJklsym83YuHEjnn32WVRW9r84HRcXh1WrViE+XvtTokMZrJNgT08P1q9fj7/+9a84evTogGt7e3vR0dGB2tpa7Nu3D++//z58fHxwySWX4J577kHSCMMQgwX1VAbxPDw8EBoairq6/k/OagkJhoaGwmDQPubjbJGRA38xZUhQm8LtuTCZTC7bQrqmoErzWi8/L96cJhqh1Jlpou5Z5dmlmHrheQorcl7N1U2iMVdB0cEKqyFyP3GCToIAUHawFLhZUTFOqr2hDT2dPZrXB8cxYEOkSrQ0JCh8+MoZ9XR2i7qJsaszkf0kTU3BV29s07y+NPsEplw9XV1BdmA2m0UhwbDkcHj6eCqsiIickTQkWGuHkKDJZELJPu2dBD08PRA7PkFhRUTkaIJitF8372zuQHd7Fzx9vRRWJHf8m0L0dmm/BheSEIbI0WyaQuSoGBIkt9Dd3Y2GhgYUFRVh9+7d+PTTT1FWVtbvNTqdDkuWLMHKlSsH7Oyn0tkhwfLycqxZswZr1qyxCC0OR0dHB/7xj39gw4YNuP3223HfffcNO0hXUzPwF6vAwMAR13Eu/v7+FiHBwd77XD8PCAhQWtdg+w1VGw2srb4V5YdPumSnm76eXtGFiMgxMRxxRzRCqbPS8NWb2zSvL8vW3u3B1UhGDQO8MU0klZAlDAkeLlVUifOSdBEEgOBYPqxBpEpgdDC8A3zQ2dKhab07jhuuKayC2aT9gY0QBp2J7CZxSopofWm2bEylI2gsr0dXa6fm9Rw1TEQAEDHKcqrTSNQV2/6eTXV+pej8F5+VCA9P3ooncmVBUdrHDQNAU1UjIlJl50fVcj8/LFqfsWgc74cSOTB+MiGXc8MNN2Dfvn3Dfr2Pjw+uuuoq3HzzzRg1apQVK/uvxsb+7YMPHTqEQ4cOifft6enBK6+8goMHD+LPf/4zfHx8hlzT0THwRX0/Pz9xPWcaaBzyYO99Wnt7u8UxW9QFDF0bDW73P74CQl2vk+CpY7Uw9fZpXh8QH4iTJ08qrMh5ne4SOlQ3USKf5IHP0cNVsuc4/97927FDRaL1Jh8z/1uegecxGimTtwkeXh7o7erVtL50f7Hb/x08dqBAtoGfzu3/G56J5zGSCkkJQ+WhsqFfOIBTJ2pRXFQMDy/3uSyZ85XsJotXpC/PYWfgOYys7czfsYjQCOgMepj7TJr2Kv62CKWlpU59o/T4l7Jxc36xATyHnYXnMbI2R/wdM5vNMPp6oqe9W9P6irxym59LDn2WLVoflh7psuc/R/wdI9fiLL9jZl/ZZ7zCAwXoNGo7L1pDTV4lvvj9RtEeEZNiHP7c5yy/X2RfsbGxSidcOgqdWTJ3jMgBLVq0COXlwx9NGBUVhZ/85CdYvHjxoIExlVpaWjBt2rRzvsbDwwPnnXceFixYgKlTpyIiIgJhYWH/6Yh45MgRfPPNN/jkk08GDNIBwJw5c7B69eohT1yvvfYannvuOYvjR48ehYeHugv2119/Pfbv39/v2Pnnn49Vq1YNuuauu+7C9u3b+x2bMmUK3nvvPWV1dXd3Y8KECRbHV65cidtvv13Z+zizpqpGrIz90bBfX+VVh72hA4/LdmaRnWGY3jBe8/oC/xMoCGBXM6IRMQMXV8+B0az936NNUV+iV6894OsqUlvjMbZF+8MQe0IOo8Zb1sWLyN3NrZuM4B7t3bo3R36NLoP2UR/OLqE9GllN6ZrX7ws+ikof7aM+iai/SQ0ZiO/U3u1gZ1g2mjxbFFbk2NJakpDemqx5Pc9hRPY1v3YqAnu1Xzf+PPIbdBoc5+bvSCW3xWJ8c5rm9YeC8lHqW6WwIiJyVpLzaY+uF/+K+gqwYeY6qzEdCR3aR2YeDMrHSZ7/iFxafHsUJjVlaF6/N/goqhzku56HyYB5dVPh1zd0E6JzcfbPvkSn7d+/H5GRkfYuQzn3eWSXaBDV1dV45JFH8L//+7+45ppr8KMf/QhhYWFWez+dTodx48bh6FHLEJWPjw+WLVuG2267DbGxlmMYPD094e/vj4SEBCxevBgrVqzAyy+/jHfeecfitV999RX+9Kc/4b777jtnPV1dXQMeVxkQHGy/zs5zt2kfqDbVdRmNxgGPD1UbDS7ZKwF/+Go19AbX6ib4zart+OLJf2pev/K3P8f4qyYrrMh5VVRU4Oqrr8aHH3444LmO6Ex/uek1FO/U3rXgrefewKgF2kMlruLjn63FoQ+G32n5bKveWY2YCXEKK3JuPI+RFhtWrsOBv32ref0bv3sdo+aPUViRc9n5+8+x/YXNmtf/8Y0/IX5qksKKnBvPYyQl/Tv5+D2PYuad8xVW5Nj+8ZP3cPTjA5rXr1r7GiLTtd+gdjU8h5G1nf07Jv0+9eqTr2DMRWMVVmhbGx/5CPve+Ubz+udfexGJ02Vjm10Nz2NkbY76O7b2zrdQ8FmOprVGswe2bPoCviFqp00NpqezBy9OeQLd0B50eflvf0ZUZozCqhyHo/6Oketwlt+xY9vz8d4tb2he/8sHf4Hzbp2tsCJtzCYT/nb7WyjakifaJzQ1HNu27lBUlfU4y+8X2Zc1M0P2xJAguZzw8PARdRI8raurC++++y4+/vhjPPnkk7jooousUN13423XrVuHDz74AC+99BLq6+uh1+uxZMkSPPjgg4iIiBj2XsHBwXjkkUcwffp0PPjgg+jt7T++7NVXX8WSJUuQkJAw6B6Dhe76+vqUtk/t67Ps4jRYQO+0gWobaB+JwfYbqjYaXGdzB3QNZiRMHvz3zhltq5aNoM6cNf6cfxfdUWxsLP+b0JDGLhgvCgm2FDUi4Sb+nrWUNonWT5g7ET6BvoqqcR08j9FIpM/KFIUEuyra3fr3zdQi+x6QPiUDoQnhiqpxHTyPkVbpMzKxHdpDgrWHq9zqd6/5ZKPmtTq9DhPnTYLRi9cpzsZzGFnb6d+xzLnjRSHBtpIWp/5dbS2TfZ/MWjAJ/uHaO2q7Mp7HyNoc7XcsYWyS5pAgAHh1GW3259m3bje627QHBI3eRkxeNBUGD9cbU3gmR/sdI9fj6L9juomyoZ36TjjEn++Tx9aJA4IAMOF7kxzizzNcjv77RWQNDAmSy1m7du2Ax5uamlBXV4fKykp8+eWX2LZtG4qLiy1e19zcjB//+MdWHTer1+tx3XXX4dJLL8Xbb7+NRYsWITMzU/N+3/ve9/DYY4/hkUce6Xe8p6cHq1evxhNPPDHoWm9v7wGP9/b2Kg0Jnh1gBL7rnHguA9U20D4Sg+03VG10bvlbjyJxcrK9y1CqqqBStD5qDLs+EGmROkv7SCMAOL67SFElzstsNqMyZ+QPUJwWEh/KgCCRAvFZsi52ZYdKFVXinKoFn8V0Oh2CYoIVVkNE0nNa0c58mEwm6PWu1YF+ICaTCVV5FZrXR6RGMiBIZGdJU2Vd8Er3W16DdiaSc5hfmD8DgkT0HxGpspF9tcdrkHzeKEXVnNue974WrU+YnOzyAUEigvh6U1Ol9gfKVDm0IRsbnvhQyV7pi8Yp2YeIrMf1r8QR/VtQUBBGjRqFuXPn4uc//zk2bdqE1atXY8yYgUd2Pfvss4MGDlUJCAjAvffeKwoInnbNNddg2rRpFsc3bdqE7u7Bn3YaLCTY1tYmrulM7e3tw37vc/18oH0kBttvqNro3PK3aX8a0FHVCG5MB8UEM2BDpFHKjNGi9cW7imAymRRV45way+vR2aK9G2p0JscME6kQN1H2VGq5m4cEK3O1h50DIgNhMPIZSSKVItOiERgVpHl9W32r6CEGZ9Jw8hR6OrR3oeFnMSL7i89KhE6v07y+dJ/zhgQ7mtpFN6+jMzi+jYj+K1wYEqw7XqOoknNrb2zDkU/3i/bIYFCGyC34hflDLwgEN1fbNyRYXViJN27+PyV7GYwGnvuInABDguTW5s+fj/Xr1+O2224b8Oe/+c1vUFiofcShrf3whz+0ONbU1ITDhw8PuiY4eOAnHFpaWpTVNdh+oaGh51wzUG3Nzc3KagIG/3MOVRudW+GOPJj6XCeU03qqBc3V2kerRKXzgiiRVn6h/ohKj9G8vqOpXdT1wBVIb8DH8MY0kRJ+If4ISQjTvL4ytwI9XT0KK3Ierada0FKj/XuA5N8RIhqYTqdD2vwM0R6FO+SjjJyB9LNoNL9PEtmdl5+3KOzWVNmIpsoGhRXZjvQcFpPB75NE9F/SToK2Cgnu/8e36O2WTbWadu1MRdUQkSPT6/WiB+js2Umws7UTr1z9Ijqa1DTomXj5FPiF+ivZi4ishyFBcnt6vR7/8z//gzvuuMPiZ11dXXjhhRfsUJU2M2bMGLADXl7e4BfeY2MHvsBVV1enrC6z2Yz6+vphv/e5fl5fXw+z2aystsH+nHFxvIAl0dncgdL9J+xdhjInhX+WqDSOGiaSkI4cLt7l3iOHK6QhwbH8N5FIlfisRM1rTb19bht6rhJ0EQR4c5rIWtLmCUOCO3MVVeLYKnOFIUF24SJyCIlThCOHs0+oKcTGxEFnnsOI6AxhyRGi9bXFtgkJfiscNRw7Lh5xE7R//yci5yIZOWyvkKDZbMbbd7yKiqNlSvYzGA244vFrlOxFRNbFkCDRvz300EOYMWOGxfGtW7eitNQ5Rnt5enoiI8PyIn1l5eBjUgcLw1VXVyurq76+Hj09ll1PhgriDRQS7OnpwalTp5TVNtifkyFBuQIXGjlcIhwLw+41RDKpM2UhwePfOE9XYGuQhmtiGRIkUiZ+YpJofdnBEkWVOBeGnYkcU9r8TNH6wh15Sh8CdFTV0oBNJgM2RI5AGhLM23JUUSW2VSn8PslzGBGdyejtieA47VOcbNFJsKmqUXzOPm/5bEXVEJEzCIzW3kmwpbbZLpPZNv/uU+xbu0vZflc8cQ1ix8Ur24+IrIchQaIzPPDAAxbHzGYzdu7caYdqtAkJCbE4dq4RvaGhoQOO9S0uloWiznTixIkBj48ePfqc60aNGjWi/bQoKbG80RoZGYmAgABl7+Gu8l0oJCjtihg/kU8NEkmIQ4K73DskKL+pw3ANkSrSzwRlB53j4SXVqqRduHgeI7KK2PHx8A321by+qbIRtcfUPaDoqCrzhJ/FOG6YyCEkTkkWrd/97pfi0ZX2UJXPToJEpFa4YORwfWkd+nqsey7dt3YXzCbZgyzTGRIkcitB0do7CZpNZrTUNCmsZmh5W47iw5+/p2y/KUun4+KVlyvbj4isiyFBojNMmTIFUVFRFsePHDlih2q08fPzG/GarKwsi2MFBQUqygEAHDt2zOJYSEgIkpOTz7lu9OjRA/558vPzVZWGoiLLEZSTJ09Wtr87K9qZj77ePnuXoUSpsJNgwuRkNYUQuanYcfHwDvDRvL4ypxwdTe0KK3IeZrNZNDIgIDIQ/mEMzhOpIhk3DADlh90zJCgN2MSwgw2RVej1eoyWjhzekaeoGsclGdUZEBkIv1B/hdUQkVaJk5Oh0+k0r2+pbcbB9XsVVmQbkoc1jN5GhCXJRosSkeuJEIQEzSYz6kvVTZoayB7hqOGUmaMRnqL9z0hEzicoxrKBz0jYcuRwfWkdVl//B3EY+rSYzDh8/427RZ+Tici2GBIkOktmpuW4nIaGBjtUos1AtQYGBp5zzUAhwQMHDiiraaC9Jk2aNOQ6vV6PCRMmWBzfv3+/kroA4ODBgxbHhlMbDa2zpQOl2eo6UtpLe2ObqLtFWHIEAzZEQnqDHsnTUzWvN5vNKN5jGVh3By01zWhvaNO8PmYsRwQQqRQ5OhpGH0/N68sOlrrFaM6zVQrGDXsH+IjGWRHRuaVJQ4I7XTsk2Fbfipaawac7DCWGnVCJHIZ3gA8ix0SL9tj52lZF1dhGb3ev6JpY1JgY6A28BUVE/UkDdLVWHDlce6waxbstG0uMxPTlcxRVQ0TOIkgwbhgAGsrqFVVybj2d3fjz0hfRWteiZD/vAB/88MMHRQ0eiMj2+A2N6Cz+/pZPaPf09NihEm1qa2stjg3UHfFM8+bNszhWVVWF48ePK6lpz549Fsfmz58/rLVz5861OLZ7924lN0crKipw8uRJi+MLFiwQ703fyd/q/COHTwpHDUvH0RDRd1JmCEcOf+OeI4crc7R3EQR4Y5pINb1Bj7jx2sO3LbXNaK6y3dPFjqCztRMNJ7V3iojOjOXTzERWNGaB5YOWI1G4I1dRJY5J0kUQ4KhhIkeTvmCsaH3u5sOoPe48Y9Zrj1XD1GfSvD6Ko4aJaACSccMAUGfFkOC3738jWq/T6zDt2pmKqiEiZxEUo33cMGCbh+fMZjP++qM3xZPTzvSDt+/hd1YiJ8SQINFZBurEFxQkewLAVurr6wccnztQd8QzTZw4EXFxliGAzZs3i2sqLCy0COIZDAZccsklw1q/ePFii2M1NTVKOh1u3Wr59G56ejpGjRol3pu+U7Dd+W/4lGafEK1PnJyiphAiNzdqliwkWLzbTUOCgtFQABAzliFBItXiJyaJ1pcdcq+Rw9KADcPORNaVMDkZXn5emtfXFdeiXhAEdnTikCDHpRM5lElLpon3+Or1bfJCbKQyV3s3ZwCIYUiQiAYgGTcMWK+ToNlsxp6/fiXaI+OC8QiMco77iUSkTlCsbNxw7udHFFUyuB2rvsDXa7Yr2+/SX16FSVfKPxsTke0xJEh0BrPZPGDILjVV+4hDW9qxYwdMpv5Pd/r6+mLcuHFDrr3sssssjq1bt07cse/DDz+0ODZnzhyEhg5v5Fd8fDwmT55scXzt2rWiugar7fLLLxfvS/9VtDMPfT299i5DpEQ4MjlxKkOCRCqkzBwtWn98V5HFv5HuQNpJMJYhQSLl4iYmitaXHXSvkCA7ohI5NoOHAaPmjBHt4crdBKUBm2gGbIgcSuaFExCaGC7a4+s129HX26eoIusSB515DiOiAcg7CVqnI2vZoVLxZ7fpy2crqoaInIm0m17ZwRI0VzcpqsbSsW8K8Lf731K237hLsnD5Y8uU7UdEtsWQIDml7u5uvPrqqwN2/ZPIzs5GdbXlF4xJkyYpfZ/CwsIBw4gSfX19ePXVVy2OL1y4ED4+PkOuv+mmm+Dp6dnvWGlpKTZs2KC5pubmZnzwwQcWx2+77bYR7TPQ6z/55BOUlWm/Ybh7924cOdL/yQx/f39cd911mvd0VXq99n8qutq6UKKwdbU9lEpDghw3TKSEf1gAItOiNa9vb2hDTUGlwoqcg/jGNMM1RMrFZwlDgofdKyRYJeyIyi5cRNaXNk86ctj6o5XspSqfARsiV6I36DHntvNFezRVNuLwp/uV1GNt8m6o/D5JRJYCo4Jg9PEc+oWDsFYnwW/f+1q03sPLiMlLzlNUDRE5E58gX/FEnrwvrNNNsKmqEauWvYS+HjUPqYSnRuL2d++F3sCYEZGz4t9ecjp1dXW45ZZb8Lvf/Q7f//73UV9fr2Rfk8mE5557zuJ4WFgYZs6cqeQ9AODjjz/GsmXLcN1112Hv3r3K9v3LX/6CY8eOWRy/6aabhrU+MjISS5YssTj+/PPPo6WlRVNNf/zjHy3WTpo0CbNmzRrRPhdeeKHFCOCenh785je/0VRXX18fnnnmGYvjy5cvR2BgoKY9XZnB0yBan781R1ElttfZ0oGagirN60PiQxEYyfECRKqkCkcOH9+lNqDvDCpztIcEfUP8OCKFyAri2UlwRCrzhGPueHOayOrS5meI1hfudN2QYLUgYOPp64WQhDCF1RCRCnNuWwCdXifa48vXtiqqxrokIUGdToeoMTEKqyEiV6HT6UQjh2uPVYsnYJ3NZDLh2/e/Ee0x8bLJ8AnyVVQRETmbzAsniNbnfH5YUSX/1dfTi1ev/T2aKhuV7Gf08cQP//4g/EL9lexHRPbBkCA5lby8PCxduhT793/3tGV+fj6uvfZaFBYWivd++umn/7PvmW666SZ4eHiI9+/r68Nvf/tbPPTQQ+js7ERraytuv/12bNq0Sbz3119/PWDobdGiRZgyZcqw97n//vsRHBzc71hVVRVWrlw54hGN27dvx7vvvtvvmF6vxy9/+csR7XN63SOPPGJxfOvWrXj99ddHvN9LL72Eo0eP9jsWFRWFH/7whyPeyx14eMp+//O3OW9I8OSBEtEFh8QpHDVMpFLqTGFI8Bv55wVn0lbfKhpTEDM2Djqd7OYXEVnyDfYTjamryqtAT1ePwoocmyTs7OFlRHiKbJQVEQ0t+bxUeHgZNa+vyqtAc431RivZS09nt6jTTVR6jKizPxFZR0h8GMYvlk2dObLxABrKTimqyDrMZrMoJBiWHA5PQacwInJtkpHDnc0daG9oU1gNcPzrAtSX1on2OO96jhomcmdjL5KFBHM3H1EegP7gp39B0Zf5yva7ZfWdSMhKUrYfEdkHrzSRUzl8+DCqqvp39Tp58iSWLVuGN998Ez09I79Z1tjYiJ/97Gd46623LH4WFxeHH/zgB4Ouve+++5Cent7v/2bMmDHga5ubm/Hhhx/2O9bZ2YkHHngAL7zwAnp7e0dcOwCsX78e9957r8X64OBgPPbYYyPaKywsDA/nuQDLAAAgAElEQVQ//LDF8S1btuCnP/0purq6hrXPjh078MADD1gEC2+55RZMnDhxRDWdNnv2bCxdutTi+HPPPYc1a9YMe5//+7//G3As869+9Sv4+/PJh4EYhCHBY18VoLdb2++3vclHDTMkSKRS6szRovXHd7lXSFA6apjdt4isRzJy2NTbhyrh329n0dPVg9pj1ZrXR6fHcPwJkQ0YvT2RMmPU0C88h6Kd6m5cOIqaomqYTdpv8nDUMJHjmnvHQtF6s8mMr97Yrqga62gsr0dXa6fm9TyHEdG5RKRGidarHjm856+yUcPegT4Yf6ksQE5Ezi1tQSYMRu2T2RrL60UPaJxt1zs7sfXlfynb74L7F2P6DXOU7UdE9sOr5eRUrrnmGtx///0Wxzs7O/H000/jkksuwZtvvonq6qFvJFVUVODll1/GpZdeik8++cTi515eXvjDH/4AHx+fQfdoaGiwONbYOHDL3pCQEKxZs8aiU5/ZbMaqVatw7bXXIjs7e8i6TysoKMCDDz6IlStXor29vd/PjEYjXnjhBURFjfyL1lVXXYXly5dbHP/nP/+Jq666Clu2bBm0q2B1dTUef/xx3HXXXRY1TZ8+HT/96U9HXM+ZHn30UYwfP77fMbPZjKeeegp33nkncnNzB117+PBh/OAHP8Dvf/97i5/ddddduPDCC0W1uTK9QY+Q+FDN67vbu3Bij3OO+JSHBJPVFEJEAIDY8Qnw8vPSvL7iSBk6WzoUVuTYJN23ACBmbLyiSojobHETZCOHS/bKPqM4i5rCKlHAJmYsw85EtpI2TzhyeMfg3+edlfQGTwwDNkQOa8L/m4ygmOChX3gOX72xDaa+kU1usSXpOSwqnecwIhqcpJMgANQpDAn29fRi37rdoj0mX30eu6cSuTlvf2+kzpJNQsrdrGbkcOn+E3j37teU7AUAafMzsPRZy+wAETkn+QxVIhv70Y9+hOjoaDz22GMWne3Kysrw9NNP4+mnn0ZSUhLS0tIQExMDPz8/mM1mNDc3o66uDjk5OSgvH/zGua+vL/785z9bBNKkJkyYgLVr1+L++++3CLQdPXoUy5cvR1ZWFi644AJMmDABCQkJ8PPzQ29vLxobG1FbW4v9+/dj165d2Lt374Bth729vfHiiy9izhztaf5HH30U9fX1+Ne/+j9hcPz4cdxzzz2IiIjAtGnTEBcXBw8PDzQ0NCAvLw+HDx8eMECYnp6OP/7xj/D0lH1J8vHxwapVq3DTTTehuLj/jdEdO3Zgx44dGD16NCZOnIiIiAiYzWbU1NTgwIEDOHHixIB7XnnllVixYoWoLlen0+mQvnAsdr3zpeY9Pnv+U4yeK7tpZA+l2SdE65OmspMgkUoGDwOSp49C/lZtY8zNZjOK9xxD5gVq/313VOKQYCZv6hBZS4KgkyAA5G87Ku5g4wyk57HoDIYEiWwlbX4m8NuPNK8v3JmnsBrHIO36yi5cRI7L4GHA7FsXYONT6zXvUV9ah5zNhzH+kiyFlalTmSsMOrMzPRGdQ4QDhQRzPz+C1roW0R7TOWqYiABkXjgBhTu0f7fN+fwwFt13iaiG1lMteGXpi+jpHPn0xYEEx4Xirr/dD4ORsSIiV8G/zeSUrr76aowdOxa//OUvceTIkQFfU1JSgpKSkhHvPW7cODz77LMYPVo20nAwSUlJWLt2LV555RW89tprFkHHgwcP4uDBg5r2Tk1NxUsvvYT09HRRjQaDAS+99BKef/55vP766xY/r62txcaNG4e114IFC/DCCy8oG+UbHh7+n6Dl119btoAvKipCUdHwutb96Ec/wn333QedTqekNlc2ZoEsJHjw433I35aD9PPHKqzKurraOkWjOgOjgxEUE6KwIiICgJQZozWHBAHg+DeF7hMSzC0TrWcnQSLric9KEq3P25IDs9ns8p9j5WPTGbAhspXUWWnQG/Sau2KVHSxFe2MbfIP9FFdmP1X5soBNNAM2RA5tzu3ni0KCAPDla1scNiQo7STIoDMRnYu0k2Dt8aGniQ3Xnvdko4YDIgORvmicomqIyJmNvWgCPv7VB5rXF2zLRV9Pr+ZAnqnPhNdvfBmnTtRqruFMHp4e+OG6BxAYFaRkPyJyDBw3TE4rIyMDa9euxZNPPonk5GTxfjExMXj88cexdu1aqwUET/P09MR9992HTZs24eabb4avr69ov7CwMDz88MP4+OOPxQHB0/R6PVauXIk33ngDKSkj74YWHByMJ554Aq+88oqygOBpgYGBeP311/GrX/0KQUEj/2AyevRovP3227j//vtd/saqKukL5eG+dT97d9BR1Y6o7FCpaLwduwgSWYe0ZX/xbuccf66FpAOXl7+3aNQ8EZ1bxKgoePpqH5/eXNUo7rLnDMQhQYadiWzG298biYLvQGazGce+KlBYkf1JunDp9DpEjo5SWA0RqRaRGoXMC2UPoB38OBvN1U2KKlKrKo8PaxCR9YQlR4jW1xWr6STY3d6FAx/tFe0x7dpZMHgYlNRDRM4taVoqfIO13/Pvau3E8V3a71+sf3Qtcj5TM7IYAK77w/eRMsO6mQkisj2GBMmpGQwGLF26FBs3bsSbb76Jq6++GrGxw78AER8fj6uvvhqrV6/GF198geuvvx4eHsNP5w/0Xmlpww8vxMbG4pFHHsHOnTvx7LPP4qKLLkJo6PBuyAcFBeHiiy/Giy++iG3btuHWW2+F0Wgc9nsP15w5c/DJJ5/gxRdfxMyZM4f87zNmzBj84he/wObNm3HddddBr7fOaUav1+PGG2/E5s2b8fDDD2PMmDHnfL2Hhwdmz56Nl156CevXr8eMGTOsUperCkuOQGhiuGiP0uwT2POXrxRVZH2l+4qHftE5JE5OVlMIEfUj/VJ6fFchzGbtAWBn0dHcjoayes3rY8bGMUhPZEV6gx6j5pz78+tQ8r4YuKO6K5GM6tQb9IhMi1ZYDRENJW1ehmh9gWAsk6MxmUyozq/UvD48JRJGb0+FFRGRNcy9Y5Fovam3D1+v2a6oGrUknQT9wvzhHx6osBoicjWePp4IjtU+hUfVuOFDG/ajq7VTtMd5y2cpqYWInJ/eoBd3Fs3drC3kl/3hHmx6+mPRe59p7u0LMf+uC5TtR0SOg+OGySXo9XrMnj0bs2fPBgBUVlaiuLgY5eXlaGlpQUdHB4xGI7y9vREcHIy4uDgkJycjLCxM9L7PPPMMnnrqKVx33XU4dOgQAODuu+8e8T7+/v648sorceWVVwIATp48iRMnTqCiogKtra3o7OyEp6cn/Pz8EB0djZSUFCQlJVktgHc2o9GISy+9FJdeeik6Ojpw6NAhlJaWoqmpCX19fQgMDER0dDSysrKGHXJUJSgoCLfeeituvfVW1NfX4+DBg6iqqkJzczMMBgOCgoKQlJSECRMmwMfHx6a1uRKdToeMRePEFy4/+uXfMGXpdFHnHFspzT4hWp84JVlJHUTUX2BkECJGRaH2mLaxIm2nWlFTWIWoMTGKK3Ms0tFQMWM53o7I2jIWjdN84Q8A8rYcxaL7LlFYkWPp6+1DdUGV5vURo6Lg4clLHkS2lDY/A5t/96nm9YU7cxVWY1+NZfXobu/SvD6aHbiInELWlVPhHx6A1roWzXt89fpWfO+hy2x2nXc4Opra0VTZqHk9Rw0T0XCEp0aisaJB09r60lOikZyn7XlP1tQgLDkCqTNlU0+IyLVkXjgB+z/8VvP6nM8P44onrhnRmsrccqy59RXN73m25PNScf0fv69sPyJyLLxiTi4pJiYGMTG2uflfW1uLnJwcAN910bvsssvEeyYkJCAhIUG8jzX4+PhgxowZDtmJLzQ0FAsXLrR3GS5r5i3zxCHBhrJ6fP7iRlz6y6sUVWU9pdnCToJTUxVVQkRnS52VpjkkCHzXTdDVQ4LSMaQxGQwJEllbxgWy8XT523LQ19vnsmON6opr0NvVo3k9w85Etjd6bjp0Op3mrs0le4vR1dYJLz9vxZXZnnRcenQ6AzZEzsDoZcSsW+Zj8wvaA9I1RdUo2JaLDGHXGZXED53x+yQRDUN4aiSKvszXtNbUZ0L9yVOISI3S/P5tDa04uvGg5vUAMH35bE7iIKJ+xl40QbT+xJ5jaGtohV+I/7Be39Hcjj9f/YK4K+ppARGBuHvdg+xsT+TCHOfxNCIn9cEHH6C3txcA8MADD/ALAbmsMQsyldxs3fTMx2iq0v40si30dHaj4miZ5vX+4QEIibdtV00idyIdOVy0U9sFSGciDgkyXENkdYmTk+Eb7Kt5fWdzB0r3yR5qcGRVubKb0+xgQ2R7fiH+iJug/YFHU28fju8qUliR/YgDNpn8LEbkLObecb54jy9f2yIvRCHpOYyfw4hoOMJTIkXrpSOH93/4LXq7e0V7nLd8tmg9EbmeiFFRCE+J0LzebDIjf2vOsF5rMpmw5tZXUJ1fqfn9zqQ36HHn+z9BaIJsEiMROTaGBIkE+vr6sG7dOgBAVlYWLrjgAjtXRGQ9Op0OS566XrxPV2snPvn1OgUVWU/ZoVKY+kya1ydOTWFgmMiKRs2SjfE4+tkhzR1unIW0ew1DgkTWpzfokS7sGJP7+RFF1Tge8XmMARsiuxg9L0O0vnBHnqJK7ItBZyL3EZ0Rh7T5snPf/g+/RWtds6KK5MTdUDkynYiGISJVFhKsFYYE97z3tWh93IQExI13zIlgRGRfmRfKugnmbj48rNdtevpjHPhor+i9znT1M8uRvtBxulsTkXUwJEgksH37dlRWfpfOf/DBB+1cDZH1TbxsCtIXjhXv8+XrW1F+5KSCiqyjNPuEaH3i5GQldRDRwOImJsLoo73dfcPJU+JOe45OclPH6OOJsCTtTzsS0fBlLJKNHM7bwpDgYBh2JrKPMQsyResLd+QqqsS+qvIZEiRyJ3PvWCRa39vdi13vfKmoGjmew4jIFsKFIUFJJ8GmygYUDLNT12CmL58jWk9EritTOHJ4OA8FH9l0EB8/+oHofc503vWzcOGDlyrbj4gcF0OCRALvv/8+AGDmzJmYNWuWnashsj6dTodlz98k7pJnNpnx95V/VVSVeqXZstF9SVNTFVVCRAMxeBiQfJ7s79mRjQcUVeN4utu7cKq4VvP66IxY6A38mkBkCxkXyJ7OPfZ1Ibo7uhVV41iqpB1seHOayC7ShJ0Ej+8qQk9Xj6Jq7EcyqjMgMhB+of4KqyEia5uydDp8g31Fe3z52laH6Xgv6YZq9DbyoTMiGhZpJ8G6Yu0hwW//tkt8zp12Pe8JEtHAMhaNE91HrT1Wfc5zXO3xarx+48vKPjvGTUjAzavv5IQ0IjfBu39EGlVUVGDnzp0AgBUrVti5GiLbSZycjBk3zxXvc3TTQeR8dkhBRepJQ4KJU5LVFEJEgxozX9al5ui/DiqqxPFU5VeKLhDEcDQUkc1EjYlBcFyo5vW9XT049lW+woocg9lsRqXg5nRoYji8/LwVVkREwxUYFYSwUdrDIb1dPSj59pjCimyvraEVzdVNmtcz5EzkfDx9PDHjpnmiPSpzy3Hs6wJFFWnX292L2mPVmtdHjYnhQ2dENCyB0cEwehs1r5eMG/72va80rwWAUbPHIDyZgWgiGphfqD+SpqWI9sgZZORwd0c3Xln6Etob2kT7n+Yb7It7PlzB62hEboTf1og0Onz4MHQ6HZYvX46srCx7l0NkU1f95lrRqM/T1j30F5j6TAoqUqe3uxflh7WPQvYN8UMYLxAQWd24S2T/9hbtzEdna6eiahxLZU6ZaH1MZryiSohoKDqdTtxNMO+Lo4qqcRwNZfXoEpyjOWqYyL4Sp8tuhhTsyFNUiX1IuggCQHQ6Q4JEzmjenQvFe3z52lYFlcjUHqsWXauLYtCZiIZJp9OJRg5rHTdcXViJE98e1/y+AHDe8tmi9UTk+jIvlI4cHjgk+Mljf0fZwRLR3qfpdDrc9u69iBgVpWQ/InIODAkSaXTxxRcjJycHjz32mL1LIbK5kPgwXLTiUvE+5YdP4us12xVUpE7FkZPo6+nTvD5xSjJbchPZQPL0UfAN8dO8vre7F/lbXC9YAwCVObIRnQzXENlWxiJhSHDLEUWVOA6OGiZybtKQYOFONw8JZvKzGJEzipuQiJQZo0V77F27C+2NarrCaFUp/BwWw89hRDQCkpBge0Mb2hpaR7xu7/vfaH5PANAb9Jh6zQzRHkTk+jIvkoUE8744avHgRk1RFT5/4VPRvme67NdLMeHSycr2IyLnwJAgERFpcvHKyxEYFSTeZ/2jHzhUN6/S7BOi9YlTUtUUQkTnZPAwiL9oH93kmiOHK4U3phkSJLKtjAvGi9aX7Cu2+81k1aQ3p2PHsiMqkT0lzpCFBI99VYC+Xu0PbtlblWBcOsCgM5Ezm3uHrJtgT0c39vz1a0XVaCMOOvMcRkQjEJGiPSQIjLyboNlsxu6/ykYNZ1w4HoGR8vsiROTaUmelwdPXS/P69oY2lGYX9zu24YkPlU1nm3j5FFz6yFVK9iIi58KQIBERaeId4IMrnrhGvE9zVSM+e26DgorUKNknGzWQOCVZTSFENKTxwpHDRzYdhNlsVlSN45CMGzYYDRwvQGRjIXGhiEqP0bzebDKjYFuOworsT9oRNTqTN6eJ7CkoLgTtBu0PgnW1duLkATXjk+yhKl/4wAbPYUROa9p1s+Dl7y3a48vXttj1eyq7oRKRLUk6CQIjDwmePFCC6vxK0XtO56hhIhoGo5cRYxZkiPbI2fzfkcMVR8uw5y+ykPNpkWnRuO3tH0GvZ1SIyB3xbz4REWk257bzETs+QbzPZ89vQEN5vbwgBUr3nxCtT5oq65pBRMM37uKJovWnTtSiWngT19H0dPWgtqha8/qoMTEweBgUVkREw5GxSNZNMPcL1xqfLu6IypvTRHZX79koWl+4I1dRJbYnGZlu9PFESEKYwmqIyJa8/b3F4ZGTB0pQsq946BdaiSQkqNPpEJUWrbAaInJ10pBg7QhDgt++J+vWavQ2YtJV00R7EJH7yLxQNgkp9/Mj//n/P3lsnZIHSbz8vHDPhyvgE+Qr3ouInBNDgkREpJneoMey524Q79PT0Y31j65VUJFMX08vyg6Wal7vHegjvrBBRMMXFBOChElJoj2ObHStkcM1hVWikQMcNUxkHxkXjBOtz9/iWiFBScAmMCoIfqH+CqshIi1OeTaJ1hfuzFNUiW31dPWM+Gb1maLTY9jNgcjJzb1zkXiPL1dvUVDJyJnNZlFIMDQpXDRWj4jcj3SaxUg6Cfb19uHb92UhwQmXTYZPIIM1RDQ8mRfJQoLHvspHV1snSrOLkf33PUpq+v4bdyN2XLySvYjIOfGqExERiYy7OAtjhd28AGDXWztx8sAJeUEClbkV6O3q0bw+cXIyb+gQ2dg44cjho/9yrZCgdEQnu28R2Uf6+WOh0+k0r6/MLUdjRYPCiuynpbYZrXUtmtdzxB2RY6gXhgSLdubDZNL+4IO91BZVw2zS3t2B5zAi55c0NUX8MNue975GZ6v2se1aNZbXo0vwvhyXTkQjFZ4cIVpfVzz8kGD23/egoUw2zWj68jmi9UTkXmLHxSMoJljz+r6ePhTuyMP6X32gpJ7vPXQ5pl4zU8leROS8mGQgIiKxZc/dCJ1e+41t4LunlT/42V+UtMvWqmTfcdH6xCkcNUxka+MXTxKtL9ieh+72LkXV2F+loPsWAMSM5VOERPbgF+qPhCnJoj3yXKSboPg8lsGb00SOoM3QAb8I7V092+pbxQ8/2IP0HBadznMYkbPT6XSYe4esm2BXayf2vv+NooqGT9JFEACieA4johHy9PUSBWiG28HZbDbjs+c+0fw+AOAT5Ivxi2UPKxORe9HpdMi8cLxoj41PrceRfx4Q15JxwThc9dtrxfsQkfNjSJCIiMTixidgzg/OF++Tv+Wokg+7WpVmnxCtTxTe3CeikUudlQafIO1jPnq7epC/NUdhRfYlDwmyew2RvWQskl00zNtyRFEl9iXuiMrzGJFj0AGJ02UPURXucL6Rw9KATTSDzkQuYcaNc2D08RTtsfM1248crsyVncPYmZ6ItAhPjdS8tr6kDn29fUO+Ln9rjvja/+Ql58HoLTu3E5H7ybxQNnK46Mt8cQ0hCWG4872fwOBhEO9FRM6PIUEiIlLiiv+9Bl5+XuJ9/r7yr8P6Ym8NpdnFovVJU9lJkMjWDB4G8dN4RzbaL5ysmiRco9PrEJkWrbAaIhqJzAvGidbnfXHUrh2ZVamSduHizWkih5E4PVW0vnBnrqJKbKcqTxh05qhOIpfgE+SLadfKRrmd2HMMtcerFVU0PAw6E5E9RAhCgqY+ExpOnhrydf8SdhEEgOk3zBbvQUTuR3rvQoVlz90I//BAe5dBRA6CIUEiIlIiKDoYF6+8XLxPZW45vnxtq4KKRsbUZ8LJAyWa13v5eSEyLUZhRUQ0XOMukY36OPqvQ4oqsa++3j5U52u/qRM5OhpGL6PCiohoJEbPTYeHp4fm9Q0nT6GmqEphRfZRKbw5zQ42RI4jcYbsIaqC7XlOF36WBGz4wAaRa5l7x0LxHrmbbdspmkFnIrKH8BTtIUFg6JHDZYdKkSO89hcYFYT0hbIH+4jIPQXFhCB2fILd3j8+KwlTlk232/sTkeNhSJCIiJS56Kf/D8FxoeJ9/vXsJzD1mRRUNHxV+RXo6ejWvD5hcjL0Bv6zSmQP0pBg7bFqVBdWKqrGfmqPVaOvR3snVo7oJLIvT18vpM5KE+2R98VRRdXYj6Qjqk+QL4JighVWQ0QSkelR8A321by+uarRqcLPJpMJVXnaP1OGp0RyhB2RCxk1e4z44YWC7TmKqhkeSdDZL8yfHWqISBPJuGEAKBviwf/Pnt8g2h8AZtw0l9f+iUgze3YTvOKJZdDref4iov/iGYGIiJTx9PXCVb+5VrzPqRO1yP38sIKKhq90n2zUcOLkZDWFENGIhcSFIn5iomiPoxsPKqrGfqQjOtl9i8j+MhYJRw5vsW23GdU6mtvRWF6veX10Zix0Op3CiohIQqfXY/S8DNEehTvyFFVjfY1l9ehu79K8nmM6iVyLTqcTdxPM35pjs46qHU3taKps1Lye5zAi0koybhj4bpRwR3P7gD+rL63Dt+9/I9pfb9Bj0U8uFu1BRO5t7EUT7PK+ydNHYeJlU+zy3kTkuBgSJCIipWbcPBcJCgJz2X/fIy9mBEqzT4jWJ06VjdIiIpmxF0tHDjt/SLBC0H0LYCdBIkeQcYHsyeL8rTkwmWzbjVklSfcaAIjJ4HmMyNGkSUOCO50nJCg9h0WnM2BD5Gpm3jwXHp4emtc3VzeJzy3Dxc9hRGQv4alRovUtNc34528+GvBnn7+0EaZe7VM3AGDa9bMQmhgu2oOI3Fva/AzRZ0KtrvrNtXyYlogsMCRIRERK6fV6XPP8jeJ9Dny0F33CL/AjUZIt7CQ4hSFBInsav1gWEszfmoNuwchxR1DJToJETi/5vFR4+XtrXt92qhVlB0sVVmRbklHDAMPORI5ozIJM0Xpn6iQoDglmMiRI5Gr8wwORIRwvV7DNNiOHxecwdhIkIo0Co4Ng9DaK9vji9xtRU1TV71hbQyu+fG2raF8A+N7PLhPvQUTuzcvPG6PmjLHpe45ZkCl+GJmIXBNDgkREpFz6wnGYeLmshXVrXYvNbgiZTCac3H9C83qjjycvhhLZ2ajZY+Ad4KN5fU9nDwq25yqsyPYk4RqdTsfzGJEDMBg9xIGavC+cd+RwZa6wgw3DzkQOJ2FyMrz8vDSvP3WiFvWldQorsh7pAxv8LEbkmtLPHytan2+jkKD4HMagMxFppNfrETMuXrRHX08f1j30l37HdrzyBbpaO0X7jv3eBCRkJYn2ICICgMwLbTty+Mr/vYZdBIloQAwJEhGRVSx9Zjn0Btk/M9nrdiuq5txqCqtEFwzisxJh8DAorIiIRsrD0wMZF4wT7XF04wFF1dieyWQSdX4ISw6Hp6/2G/hEpE7GItm5LG/LUUWV2F5VHm9OE7kag4dB3DHBWUYOV+VXitYzJEjkmtIXykKCBdtyYTabFVUzuKp8dhIkIvuRBqoB4OD6fcj990NzPZ3d2PLHf4n3/N5Dl4v3ICICgMyLbBcSHHdJFkbPzbDZ+xGRc2FIkIiIrCI6Iw5z71go2mP/P76Fqc+kqKLBlWafEK1PnMxRw0SOYNwlspHDR/91SFEltldfUocewbjkmLGyJ7aJSB3pKJDCHXno7e5VVI1tSTqiGn08EZYUobAaIlIlbZ57jByuEnThCogIhH9YgMJqiMhRJExKhk+Qr+b1LbXNqDhaprCigVUJOjobvY38HEZEIvPvvkBJx6u1D76Dvt4+7H73KzRXNYr2SpySLH6Ij4jotMTJyfAL9bfJe13xxDU2eR8ick4MCRIRkdXMuV0WEmyubkLRV/mKqhlc6b5i0fqkqQwJEjmC8YsnidZXF1Si9ni1ompsSxKsATiik8iRxI6Ph2+Yn+b13e1dKN5dpLAi2+jp7EZdcY3m9dHpMeIu1kRkHWnzZR0MnKGTYFtDK5qrmzSvj2IHLiKXpTfoxefBAiuPHO7t7kXtMe3fhaPG8HMYEclEjo7G7FsXiPepOHISO1Z9gc9+t0G81/d+dhlHdRKRMnqDXjwJaTgmLTkPydNSrf4+ROS8+M2NiIisJmlqCsKSwkV77P/7HkXVDK50vywkmDglWU0hRCQSmhCG2HGyjnhHNh5UVI1tVeTIOktwRCeR49Dr9UiePUq0R96/Ryw5k+qCKphN2kfpxYxl2JnIUSWflwoPL6Pm9VV5FWiu0R7As4Vq4ajhGIYEiVyadIxmvpVDgrXHqkWTPBh0JiIVrvzttfAO8BHv88GKd8SfzcKSIzBl2QxxLUREZ8q80Lojh3U6Ha54fJlV34OInB9DgkREZDU6nQ5Tln01FZQAACAASURBVMq+TGd/+C1MJuuNHDabzaJxwx6eHuJQEhGpM+5i4cjhTc4ZEqwUjLcDgFiOGyZyKMlzRovW5zphSLBSGnbOYEiQyFEZvT2RMkMWfi7aaf0O8xLSz2LRDNgQubT0hbKQYMG2XKteG5Oewxh0JiIVgqKDsfgXV4r36evpE+9x4YOXwuBhEO9DRHSmzIusGxI8b/ksxI1PsOp7EJHzY0iQiIisasqy6aL1jeX1Vh2ZV3e8Bh1N7ZrXx01MhMHoobAiIpIYt1gWEszfmoOezm5F1diOdNwwOwkSOZaUOWmi9cW7j6GztVNRNbZRmVshWs+x6USOLW2ebNTmoQ3Ziiqxjqo8WbcahgSJXFvcxET4hvhpXt9W34rywycVVtRfVZ7scxjPYUSkygUPLEZ4aqRda/AL9cec2+Sjj4mIzhaeHIHI0VFW2Vtv0OOyXy+1yt5E5FoYEiQiIqtKnj4KIfGhoj2y11lv5HBptmzUcNKUFEWVEJEKo+emw+jrqXl9d3sXCh28U83ZzGYzqgThmpD4UPgE+iqsiIikQhJD0Wbo0Lze1NuH/8/enYfJXVUJ4z/VS7rT2fd0IHtISMi+kUAISQhrwhriICgoqCiiiDoqjjo4+M6oM79Z3H3HBUEHFxYB2UT2QNgJa0ICgWwkIWQjZE93//7wFScmQLrut7uquz+f5/Hx6dt1zz15puZa1XXqnCX3L8wwo4a3emFaJ0HjhqG4HTJ1aNL+R345L9YuTivEa0hrFqV+YcMdBs1ZSUlJDD467R5c3IAjh5OLBN1hQEbKK8rjzH89p6A5TLvo2KhoU1nQHIDmq6FGDk8+b2r0OKS6QWIDzYsiQQAaVElJSYw5I62b4JPXPRp1dXUZZbS3ZU+kFQn2Htsvm0SATJRXlEe/I9LG2T1324KMsmkcm1ZtiB1b8i8mUlgDxWl9q01J+xfd9XxGmTSOlGLnkrLSBvsmNpCNAZMPiZLS/P8MWVtTGzf94+8yzChbKQU25a1bRec+XTLMBihGQ6aljRx+sUiLBHO5XPQ4pGeG2QAt3ejTxiePac9XeWV5TLv4uIKcDbQMDTFyuLS8NGZ99fTM4wLNkyJBABrcuMSRwxuWvxHLHl+aUTZ7W/7Uq0n7+47TSRCKzaBpQ5L2v3DHMxll0jiSRw0fqkgQitEbFRuT9i+6u+kUCdbsqUnqENZ9UI8oLS/LMCMga5VtK6NP4nunx3/zcHIn+Iawe+fueGPp63nv7zmkOkpK/IkWmrvBiUWCS+5bGLU1tRll81d1dXVJRYKd+3aNVlUVGWYEtHS5XC7e9x/nRq4k1+hnTz5varTv3qHRzwVajiHTh2V+vx310RnRpW+3TGMCzZe/QAHQ4AYcMTja9+yYFOOJBhg5XFdXF8sTOgmWlpdGr+G9M8wIyMLAxCLB1QtXxfpl6zLKpuG9llgkqJMgFKc3EjsJrnx6WWxZ92ZG2TSsdS+vjZrdNXnvd49B03DIUYcmx/j9V36bQSbZWvfS2qTCnZ6H9sowG6BY9Rp+cLTp0jbv/ds2bYuVzyzPMKM/27RqQ+x8a0fe+6uHusOA7B08sk8c9ZEZjXpmLpeLYz83q1HPBFqeqo5tot/EtElI/1t5ZXmc9A+nZRYPaP4UCQLQ4EpKSmLM6ROSYjx53SOZjxzesPyN2Lrhrbz39xreO8oryjPMCMhCx96dY0vp1qQYz932dEbZNLzVL6xM2t9LcQ0UpV2lu6P7oWmj2168p+HG0mVpzUIdUaElGH3quOQYz9/+dCy+b2EG2WQnpQNXRESPIQpsoCUoKSlJHzl8T/adot1hQLE65Yq50bpDVaOdN2bOhOg+yPh0oOENm5ndyOFpnzwuOlR3yiwe0PwpEgSgUaSOHH5j6euxYsGyjLL5s2UJXQQjIvqM6ZdNIkDm1lWmjel8/vamUySY+qFOz6GKa6BY9TtyUNL+RXc9l1EmDWv1wrR7TAcbaBoGHjkkuh+S/sHrDV/+deZfIEuxOrHQudprMWgxUkcOv3hv9l8ASX8d5g4DGka7bu1j1ldPb7Tzjvv87EY7C2jZhh6bTZFgRdvKOOGLJ2cSC2g5FAkC0CgGHXVotOvWPinGk9c+klE2f7b8yVeT9vcZ2z+bRIDMvV6xIWn/orueiz279mSUTcOpq6uL157Pv5Ng+x4dom2XdhlmBGSpf2qR4N3Zd5tpCMkFNsMOzigToCHlcrk48bJTk+Msnb8knvnDkxlklI01LyZ+YcO4YWgxUjsJLrl/UdTsqckomz9L/tKZOwxoQNMvPj56DK5u8HMGHz00+k9Me/8NcKAGTBoUFW0rk+PM/MyJ0bZr2ueuQMujSBCARlFaVhqjTxufFOOJa7MdObz8ybROgn3HKRKEYrWh1aYob53/OPCdW3fGS/NezDCjhrHl9Tdj28b8RyvrIgjFrc/E/lFSmv/b9nUvr431y9ZlmFHDSCkSzOVy0XNIw39oBGRj0gePyqTr1O//4bdRW1ObQUbpUgpscrlcJt0VgaahethB0a57/h/k7nhze+ZTNtYsSu2GqkgQaDhlrcrizH87p8HP0UUQaEyl5WUxeNrQpBhVndrEzM+elFFGQEuiSBCARjP2zMOT9r++ZE289tyKTHKpq6uL5QnjhktKS+KgkX0yyQXIXm2uLvpOHpgU47nbFmSUTcNZ/UL+XQQjjIaCYlfRrjL6TUy7yxbdVdzdBGtra2NtQoFN575do1VVRYYZAQ2ppLQkTrlibnKc155bEY9e81AGGaVJvcO69O8WrVq3yjAjoJjlcrn0kcP3ZPvaLqXQuU2XtrrXAA1uxKwxMey4bEZz7k+vww6Ow04c1WDxAfZn2My0e+24z8+Oqo5tMsoGaEkUCQLQaIZMGxptOrdNivHEtY9mksumVRtiy7o3895fPewgH+ZAkRt49JCk/c/f/nRGmTSc115IHdGpSBCK3aEzDkvav+ju5zLKpGFsXLE+dm7dmfd+9xg0PWNOnxD9JgxIjnPzP/4u9uzak0FG+du0amPSHWZMJ7Q8Q45O6xqz+N4XMsokYvvmbbF59aa897vDgMaQy+Vi7r9/MKnL/rs59nOzoqTEx+VA4xp5yrjIleTy2tuue/uY/qnjM84IaCm86gGg0ZSWl8XoU9NGDj91fTZFgsuffDVpf5+xRg1DsRs4Pa1I8LXnV8aGFeszyqZhrEkY0RkR0UtxDRS9Q48ZnrR/0d0vRF1dXUbZZG/1wvy710REVB/qHoOmJpfLxWn/fFZynDdeWRfzfnJPBhnlL6UDV4Q7DFqiIdPTOgkueeDFqNlTk0ku7jCgqeg17OCY+vGZmcft2KtTTDz7yMzjAryXrv26xfj3Tcpr7wlfOjUq21ZmnBHQUigSBKBRjT1zYtL+155fGasTi2IiIpYljBqOUCQITUHnvl2i+yE9k2IUezfB1PuwetjBGWUCNJQBkw+J8oTuxW+u2RSrE7uONqTUYmedBKFpGnrM8Bg6M60IOiLiliuuj51bd2SQUX5S7zBduKDl6TGkV7Tv2THv/Tvf2hHLE/+m9RepRYLuMKAxnXz5nKjqlO1ozWM+c2KUtSrLNCbAgTr+i6dESVlpvfYMPnpoTL/4uAbKCGgJFAkC0KgOPWZ4tO5QlRTjyevSuwkufyq1SLBfcg5Awzvs+FFJ+58r9iLBhMKfqk5tol339hlmAzSE8oryGDQlrTPqoruKd+RwagFjz6E+nIam6rT/83fJMd5cuznu/s4dGWSTn/QCm+qMMgGailwul9xN8MV7shk5nPqlM6/DgMbUtku7OPnyMzOLV9m+dRz1sRmZxQOor96j+sZHr/nUAY9Tb9e9fXzkfy6O0noWFgL8b4oEAWhUZa3KYtSp45JiZFEkuCJh3HAul4veo/sm5wA0vOEnphUJLvrTc1Gze09G2WRr64a34s21m/PeXz3soMjlchlmBDSUQ2cclrT/hT89m1Em2Vu9KLGT4FCdBKGp6jdhYIw5Y0JynDu+fXNs3fBWBhnV3+rUIkF3GLRIg48emrT/xXufzySPNS/qJAg0LUd//JjM3gNOvXBmtG6f1swAINXYORPjo7/+9Ht+mf+wE0bFlx/9RnSo7tRImQHNlSJBABrd2DlpI4dXPr0s1i5Znff+zWs2xabXNua9v+ehvaKiTWXe+4HGM3jasCivLM97/44t2+Plh5ZkmFF2kkcN+1AamoxDj0kbyfncLQti1bPLM8omO3V1dUmdBDtUd4yqjtmOmwIa16lXvC9yJWlfWti+eVvc8e2bM8qoflI6Cbbt2i7admmXYTZAU5HaSfCleYsz+TJbyh1WVlEeXfp2S84BoD5Ky8ti7r9/IIM4pXHMJSdkkBFAurFzJsY/L/2v+Lv/PDf6TRwYHao7Ri6Xi069u8TEc46Mj/3m0/GpW74Qnft0LXSqQDOgSBCARjfs2BFR2a51Uoynrnss773Ln0wcNTyuf9J+oPG0at0qBk9L+wDmudsWZJRNtlJHdFYPOzijTICG1mdMv6jqmH+Hg7q6urjui9dkmFE2trz+ZmzbuDXv/TpwQdNXPfSgmHzu1OQ4d3/3jqQvguVj26at8eaaTXnv14ELWq7ug3pGx4M6571/17ad8epjS5Ny2LNrT6x7aW3e+3sOqT7g0XgAWTrs+FExYtaYpBiHnzMlOvbSjQsoHq2qKmLGp0+Iyx6+Ir696gfx/Z1XxTeXfTcuuPqTMW7uJBOBgMx4FwdAoyuvbBUjT057I//EdY/kvXfp/LSuYH3G9EvaDzSuw44fmbT/+dufziiTbKUWCfYaprgGmoqS0pIYPD1t5PDztz8dC4ts7HByR1QFNtAsnHz5nChrVZYUY/f2XXHLFddnlNGBSenAFaFIEFqyXC4Xg6cljhy+54Wk/eteXhu1NbV57+/hDgMK6Mx/OydKykrz3n/s52dlmA1A9koT7jiAd6NIEICCGHNG2sjh5U+8Em+88nq99+3Ysj3u//FdSWf3GauTIDQlw08cnbR/5TPL4+mbnsgom+ysXrgyab8OXNC0HDojrUgwIuK6L/xP1Nbm/2Fw1nREBSIiOvfpGkd/4tjkOPN+em+sezn/rlj1pUgQSDEkseP94vvSigR9WQNoynoO6RXTLz4ur71jzpgQvbyXBABaKEWCABTE8BNGRauqiqQYT173aL333P2dO+KtN7Ykndt7TN+k/UDj6n5Iz+g6oHtSjGsu/nns2LI9o4yykVJcU9G2MjodnP94K6DxDTt2RHKMFQuWxaO/ejCDbLKR/OH0UB9OQ3Nx4pdPjYq2lUkxavfUxE3/+LuMMnpvqxemFQlW+8IGtGhDpqcVCb704OLYvXN33vsVOgNN3cmXz6n3XVTVsSrO+s6HGiYhAIAmQJEgAAXRqqoiRsxK6+5V3yLBrRvfij/+2x+Szux+SM9o3b4qKQbQuHK5XBx2/KikGBtXbogbv9p4Hzq/l+1vbouNKzfkvb962EGRy+UyzAhoaD0GV0f/SYOS4/z+K7+NXdt3ZZBRujWL0ooEdUSF5qNdt/Zx7GdPSo7z6P88FCueXpZBRu9t7YsKbID8de3fPTr17pL3/t3bd8Wrj76c9/7kIkGvw4ACa92+Kj5xw2ejsn3rA3p8SVlpfODHH4mOvTo1cGYAAMVLkSAABTN2zuFJ+1955KXYsPyNA378n/791ti+eVvSmX3HD0jaDxTG8BPTigQjIu753h3x6uNLM8gmXeoHOtXDfKADTdH0T+Y3Tul/27hifdzz3TsyyCZdSkfUqk5ton2PDhlmAxTazM+eFG26tE2Oc+NXfptBNu8t5fVYeWV5dO7TNcNsgKYml8sldxN88Z78Rg7veGtHPPuHJ/M+N5fLRY9Deua9HyArPYf0ii8++PXoN3Hguz6ufY8O8bm7/yHGzZ3USJkBABQnRYIAFMzwk0ZHeWV5Uownr3/sgB63Zd2bcdd/3Z50VkTE6FPHJ8cAGt+Q6cOirFVZUoy62rr45YU/iZo9NRlllb+UwpoI4+2gqZpw1hFx8Ki+yXFu+5cb4631WzLIKH/bN2+Lzas35b2/eqiOqNDctG5fFSdedmpynGdveSpemrcog4ze2Z5de2Ldy2vz3t9jSK8oKfVnWWjphkxLKxJcfF9+RYLzf3F/bNuU/5doO/ftGq2qKvLeD5ClXocdHF+Yd3mc+5OPxejTJ0Rl+9ZRUlYaVR2rov+kQXH2D86Pry/8txg05dBCpwoAUHD+GgVAwVS2rYzDTkwbOfzU9Qc2cviOb98cO9/akXRWRdvKGDl7TFIMoDAq2lTG8Fnp//+74qlX4+7vpBccp1IkCC1TSWlJzPnW+5PjbN+8LW654oYMMsrf6oWJo4aN6YRmadpFx0angzsnx7nhy7+Jurq6DDLav9dfWhO1NbV57+95aHWG2QBN1eDEIsGXH1oSu3fsqtee2prauPu/bks6t3qo12FAcSktK40jz58Wn7ju0vjPjT+JH+66Ov5jw0/iSw/9Uxz98ZlR1bFNoVMEACgKigQBKKhxcyYm7X/5wcWx6bWN7/qYzas3xr3f/2PSORERMz51vG9KQxM28zMnZhLnpq9dG+uXrcskVr5Si2uMG4ama9hxI2PYcSOS49z3wzuTumClSi52do9Bs1Re2Spm/+Oc5DgvzXsxls5fkkFG+5cyajgioueh7jAgomu/btGlX7e89+/ZuTuWPvxSvfY884cn4/WX0l4DZtHZGqCh6DgPAPDOFAkCUFAjZo9JGgFaV1cXT93w7iOHb/3nG2P3jt15nxER0bpDVRz7+VlJMYDCGjRlSAyZntapISJi17adcc3FVzZod5r3klIkWN66VXTpm/8HUUDhnfGts5M/+KjZXRM3/MNvMsqo/pKLnXVEhWZr8nlTo8eQ9E5792TwRbF3suyxpUn7dUMF/iJ15PCL99Rv5PBd/5nWRTAiYsRJaVNBAAAAKAxFggAUVOv2VTHs+JFJMZ687p1HDq9fti4e+L93JcWPiDj2sydFm05tk+MAhZPL5eLsH5yfVJj8F8/e8lQ8ee0jGWRVf2+88nq8sfT1vPf3PLRXlJR6GwBNWe9RfWPSuUclx3nitw/HK4/Ur/tMVlK7cOkkCM1XaVlpnHrF+5LjPHntI7F5zaYMMtpbbU1tPPzLeUkxFAkCf5H6RbbF9x14keCyJ5bG4vsWJp3X8aDO0X/SIUkxAAAAKAyfDgJQcGMTRw4vuX9hvLl2835/d+s3fh81u2uS4rfp0jZmXHJCUgygOPQc0itOuOzUTGL9+pKrYvvmbZnEqo8nfpdWnKiwBpqHU6+YG+WV5clxrv3C/xSkM+rqF1bmvbdVVUV06t0lw2yAYjN2zsToM65/Uoya3TUx77/vziijv3r+jqdj06oNee/P5XLRY3B6p0SgeRic2EnwlYdfil3bdx3QY/+UQRfBGZ86PkrLSpPjAAAA0PgUCQJQcCNPHhul5fn/gbGuti6u+8Kvoramdq/1119aEw9deV9qenH8F06O1u2rkuMAxeGEL52SSfeWN9dsihsu+3UGGdXP4797OGl/9aGKBKE56HRwlzjmMycmx3npgUXx9E1PZJDRgdu1fVesf/WNvPf3PLQ6Skr8OQOas1wuF6f/81nJce7/8V1Rs3tPBhn91YM/uzdpf9cB3aNV61bZJAM0eZ17d4luA3vkvX/Prj3x8kOL3/NxG1euj8d/k/ZesqJNRUz56PSkGAAAABSOv6oDUHBtOrWNoTOHJ8V4+Op5ceWHfxQ1e/7aNfCWK67fp3Cwvtr36BDTP3lcUgyguJRXlMc5P7ogk1j3//iueHn+e38gk5V1S9fG8ideSYqR2pUHKB4nfPGUaNu1XXKc6790TeZFNO9m5dPLkroXVg87OMNsgGI1dObw5DGcm17bGAt+/3hGGUW8+frmePqmJ5NiDD56aEbZAM3FkMRugovvfe+Rw/d8749Ruydt0sYRH54WbTq1TYoBAABA4SgSBKAojJ1zeHKMR345L35+7g+iZk9NvPbCynjklw8mxzzxslOjVVVFchyguAyeOjSOPH9acpy6urr45YU/bbTimtRRw+WV5TFoypCMsgEKrXWHqpj11TOS46x9cXXM+8k9GWR0YB675qGk/Vl0gwWKXy6Xi1O/8b7kOPd8/48ZZPNnj1w9L7nIZuTJYzPKBmguUguiX3yPIsEdb+2IB/7vXUln5HK5OOaSE5JiAAAAUFiKBAEoCqNOHRclpen/s/TYr+fHT87+btz41d8ldaiJiOh0cOc46mMzknMCitOcb58d7bq1T47z2nMr4o//dksGGb23JxJHDR924uiobFuZUTZAMZh64THRfVD+I+r+4uavXxc7tmzPIKN3t2fXnng0sUiweqix6dBSDJw8OPpPGpQUY8n9i2LVs8uTc6mrq0seNdy+R4cYcdLo5FyA5mVwYifBVx99OXZu3fGOv59/5X2xbdO2pDNGnTY+aSwyAAAAhadIEICi0LZLu+RvTv/Fk9c+GgtueCw5zklfOT3KK1tlkBFQjNp0bhtz//0DmcS65YrrY93LazOJ9U7Wvbw2lj/5alKM8XPTu7YCxaWsVVmc9s9nJcfZ8vqb8cd//UMGGb27525bEG+9sSUpRvUwRYLQkky76LjkGPd+/87kGEsfXhKrF65KijHp3KlRWl6WnAvQvHTs1Sl6DK7Oe3/N7pp4+cHF+/1dbU1t3PVft+cd+y9mfubE5BgAAAAUliJBAIpGFiOHs9J1QPc48sNHFzoNoIFNPPvIGHbciOQ4u3fsjl9d9LPkDqbvJotRwyNmG28HzdHYORNjwORDkuPc+e+3xqbXNmaQ0Tubf9UDSfvbdW+f9CE60PSMm3t4cvfnh385L7Zt2poU48Gf3pu0PyLiyPO9xwT2b0hiN8F3Gjn8zM1PJH+hre/4ATFoypCkGAAAABSeIkEAisbo08dHriRX6DQiImL2187Q4QFagFwuF2d///woryxPjrXwzmfj0f95MIOs9u/xxFHDI2aNMWoYmqlcLhdzvn12cpxd23bGzf94bQYZ7d9b67fEs394MinG8JNGRy5XHK8XgcZRXlEeUz46IynGrm0746Er7897/463dsTjv017LTZoypDoOaRXUgyg+Ro8bWjS/ncqErzzP25LihsRMfPSk7z+AgAAaAYUCQJQNNp37xDjimAUZs9De8Xh50wpdBpAI+k2sEfM/tqcTGL97rO/jK0b3sok1v/2+ktrYsVTrybFGHtm4e9XoOEMOnJIjD59QnKcB39+b7z2/MoMMtrXY9c8FDW7a5JiTD53akbZAE3J1AuPiZLStD9j3veDP0ZtbW1ee5/47cOx860dSecfef60pP1A8zY4sZPgsseWxo4t2/dae/Wxl+OlBxYlxe10cOcYd+bEpBgAAAAUB0WCABSVEy87LUrLSwuaw8mXn5n8ARTQtBz7uZOi1/DeyXG2rHszrvv7/8kgo70ljxpu3SpGzBqTUTZAsTrjX86KkrK011F1tXVx3Rezv8ci0kcNd+nbNQ6ZemhG2QBNSefeXWLUqeOSYrz+0tp44Y/P5rX3wZ/dm3R2ZbvWRfGFOKB4dejZMaqHHpT3/tqa2njhzr3vuD/9Z3oXwemfOt6kDQAAgGZCBQQAReXgkX3irO9+qKDnj/UNaWhxSsvL4gM/viCTEUoP/vzeeGleWreGv/VE8qjh0UYNQwvQY3B1TP1Y2kjOiIjnbl0Qi+9bmEFGf/XaCytj2eNLk2JM+uBRUVLizxjQUk3/5HHJMe79wR/rvWf1wlXx8kOLk84d/3eToqKN12LAu0vtJvjzc38YT93wWEREbFixPp5IHJNe0aYijkoc9w4AAEDx8Nd1AIrO1I8dE6d8/cyCnH3KP8314TO0UAMnD46pFx6TSazrvnhN1NXVZRJr7ZLVsWLBsqQY486clEkuQPGb9bUzorJd6+Q4N19+bQbZ/NX8X6R1EYyImHyeUcPQkg2eNiyqh+XfZSsi4rlbFsS6pWvrtSe1i2BExJQLpifHAJq/IdOGJu3ftW1n/GjOf8St//z7uOe7d0RtTX4j1v/iyPOnRVXHNkkxAAAAKB6qIAAoSrO+ekac/s9nNeqZ/SYMiJEnj23UM4Hicvq/nBXte3ZMjrN0/pJ4+sbHM8goq1HDozPJBSh+7bt3iOO/cHJynMX3LYwX73k+g4z+PP7u0V/NS4oxaMqQ6DawRyb5AE1TLpdL7iZYV1cX9/3wTwf8+Jrde+Lhq9OKnHsddnD0mzgwKQbQMqR2EvyLG7/y27jz/7slKUYul4sZl5yQST4AAAAUB0WCABStE750Ssz59tmNdt6pV7wvk1GjQNPVukNVnPVf52YS64Yv/yZq9tQkx0ktEhw5e4zxdtDCzLz0xOjYq1NynJv+8dpMuqIu/NOzsem1jUkxJp+riyAQcfgHpiR3S33wZ/fGrm07D+ixz/zhqdjy+ptJ5x15/jTvM4ED0q5b++g1vHcmsVJfw40+fXx0G+ALGgAAAM2JIkEAitpxn58dc//9gw1+zqCjDo2hx45o8HOA4jf2zMNjxKwxyXHWLHot5l95f1KMtYtXx8qnU0cNH560H2h6WlVVxCn/NDc5zkvzXoxFdz2XHGf+VWlduMory2PcXHcZEFHZrnXy6PFtG7fGo9c8dECPTR01XFpeGpM+OCUpBtCyDD46beRwVmZeelKhUwAAACBjigQBKHozP3NinPXdDzXoGadeMVd3ByAi/jxW6f3f+1C0qqpIjnXz5dcecKea/UntItiqqiKGn2TUMLREk8+bGgeNSO9Ek9pNcPvmbbHghseSchh9+oRo3aEqKQbQfEy7aGZyjHu//8f3vNs2rtoQz922IOmcUaeOi7Zd2yfFAFqWIdOzGTmcot/EgTHwiMGFTgMAAICMKRIEoEmY/snj4pwfXtAgsYceOyIGTy2Ob2oDxaFL325xyj+dRUw9IwAAIABJREFUmRxn02sb4+7v3JH3/id+93DS+SOMGoYWq6S0JM741tnJcZbOXxIv/PGZvPc/8btHYveO3Uk5TD73qKT9QPPS89CDkrvAr1iwLJbOX/Kuj5n/i/ujrjZtXOeR509P2g+0PMOOG1nwL0fMvPQkX6QFAABohhQJAtBkTL3wmPjgf3808z9UnprBOD6g+Znx6ROi95h+yXFu/9ZN8db6LfXet+bF12LlM8uTzjZqGFq2w44fGYcec1hynJRugvOvShu73rFXpxg6M60YCGh+pl10bHKMe77/x3f8XW1tbTz08/uS4nfq3SWGJRYzAi1PZdvKOPL8aQU7v3OfrjF2zsSCnQ8AAEDDUSQIQJMy5YLpcd7PLsysUHDkyWOj/+GDMokFNC+lZaVxzg/OT46zffO2uP1fbqr3vixGDY8wahhatFwuF6d8Pf3LEK8++nJeIzfXvbw2Xpr3YtLZE8+ZEiWl/nQB7G3k7LHRuU/XpBhP/O6R2Lx6435/t+T+RbHu5bVJ8Y84b6r7C8jLsZ+bFR2qOxbk7OkXHxelZaUFORsAAICG5S9VADQ5k8+bGh++6hORK0kvFDzl6+njRIHmq//hg2Lc3PRufPd8745Yv2xdvfakjhoeefKYaFVVkRQDaPoGHjE4hh0/MjnOzZdfV+9ugvOveiD53MnnGTUM7KuktCSO/sTMpBi1e2rigf++Z7+/e/Bn9ybFjog44sNHJ8cAWqaOvTrFxX/4QlS0rWzUcyvaVsaUjxiTDgAA0FwpEgSgSTr8nClxwa8uTurMMPbMidF7dL/skgKapVO/8b7kLjB7du2Jmy+/7oAfv2bRqlj17IqkM8fNnZS0H2g+Trk8/UsRyx5fGs/84ckDfnxtbW08fHVakWDf8QOi17CDk2IAzdeUC6ZFWUV5Uoz7f/ynqNm9Z6+1bZu2xpPXpnV0PvSYw6Jr/+5JMYCWrc+YfnHJHV+Kdt3bN9qZR54/Lao6tmm08wAAAGhcigQBaLIm/N3k+Mg1n4qSPMaglFWUZzJ+D2j+ehxSHUd9dEZynIeveiBWPbv8gB6bOmq4ok1FDD/RqGHgz/ofPiiGZzB+vD7dBF964MVY/2r9Oqj+rcnn6iIIvLO2XdvHhLMmJ8XYvHpTLPj943utPXbNQ7F7x+6kuEeerxMXkG7g5MFx2SNXxMEj+zT4WbmSXMz49PENfg4AAACFo0gQgCZt3JmHx4W//XSUltevUPDMfz07qoce1EBZAc3NrK+dkTy6t66uLm748m8O6LGPJxYJjjx5bLRq3SopBtC8nPyPc5JjrHjq1Xj6xsff+4ERMf8X9yedVVpeGhPef0RSDKD5m/bJ45Jj3PP9P+7187zEUcNVndrEmNPHJ8UA+IsufbvF38+7PEadMq5Bzxlz+oToNqBHg54BAABAYSkSBKDJG33ahPjEDZ+N1h2qDujxUz92TCYfJgEtR4eeHePYz56UHOfZW56KxfctfNfHrF64Kl57zqhhIFv9JgyMkSePTY5z89evj9ra2nd9zM6tO+KJxFGdI2aPjbZd2iXFAJq/fuMHRP/DByXFWHL/onju9qejZk9NrHh6WSx/4pWkeBPPPjLKK31ZA8hOZdvK+Pj1l8bxXzi5wc6YeWn6+10AAACKmyJBAJqFESeNia8u+Jc4ZOqh7/iYqo5VccGvLo5zfnRB5HK5RswOaA6O/fysaNs1vWDl+i9d867jOpNHDbetjMNOGJUUA2iesugmuPLpZbHghnfvJvjU9Y/Fzrd2JJ1j1DBwoLL4Ath3T/pWfKbjR+L7p/xbcqwpF0xLjgHwt0pKSuKMb74/PnTlx6OsVVmmsfsfPigGTD4k05gAAAAUn2zfTQJAAXXp2y0+d89XY/ULq+KpGx6L1QtXRS4XUdmudYyYNSaGHjsiyivKC50m0ES1bl8Vs75yevzmM1clxXnlkZfiqRsei7FnTNzv75/43cNJ8Y0aBt5Jn7H9Y/Rp42PB7w9sZPA7ufnr18Xo08dHScn+v3c4/6q0UcNtu7aL4SeOTooBtBzj5h4e137ul7Fl3ZtJcXZt2xm7tu1MitFnbL/oPbpfUgyAdzP53KnRbWCP+NEZ/5F87/3FzEtP8mVaAACAFkAnQQCalVwuF70OOzhmfeX0+MivLo4LfnlxnPPDC2Lk7LEKBIFkR114THTt3y05zu+//Juo2VOzz/prz6+M155fmRR7/NzDk/YDzdvsDLoJvvbcinjy2kf3+7sNK9bHi3e/kBR/4tlHZt4hB2i+yivKY8pHphc6jYiIOPL84sgDaN4GHTkkvvTIFXHQiN7JsTr36RpjzpiQQVYAAAAUO0WCAABwgMoryuPUK96XHGft4tXx4M/u3Wc9tYtgRdvKGHa8UcPAO+s9qm+MnbP/Tqb18Yd/ui5qa2r3WX/46gfedaT6gZh83tSk/UDLM/XjMyNXUtguWOWV5THx7CMKmgPQcnTt1y2+MO/yGDF7TFKcGZ86PkrLSrNJCgAAgKKmSBAAAOph/FmTo/fovslx/vD162Ln1h17rT1x7SNJMUedYtQw8N5mf+2M5BirX1gVj/9278Lmurq6ePiqB5LiHjSidyZ3LNCydO7dJUafNr6gOYyZMzGqOrYpaA5Ay1LZrnVcdMPn4rjPz85rf/dDesbRFx2bcVYAAAAUK0WCAABQDyUlJXHGN9+fHGfz6k1x13/d/vbPrz2/Mla/sCop5ri5k1LTAlqAg0b0iXHvS78v/rab4CuPvBRrF69Oijn53KmRyxW2GxjQNE3/5HEFPX/K+dMKej7QMpWUlsScb58d5/3swigtr19HwA/+34/6khkAAEALokgQAADqaeixI+LQYw5LjnPHt2+OO/715pj3k3vi9m/dlBSrsl3rOOz4kck5AS3D7K+dkVyMt/bF1fHoNQ+9/fP8X9yfFK+ktCQmnnNkUgyg5Ro8bVhUDzuoIGd3HdA9Djl6aEHOBoiIOOJDR8dn7/qHaN+z43s+tqJNRXzi+ktjsHsLAACgRVEkCAAA9ZTL5eL0f0nvJrjjze1x/Revias/9t/xyC/nJcUaecrYKK/UBQI4ML2GHRzjz5qcHOd/PvHTuKzfp+MLB10U835yT1KsYcePjA4H8ME2wP7kcrmYdlFhugke+eFpUVLiz6xAYQ2acmj808J/i2MuOTFKSve9k3IluRh58tj4woNfj9GnTShAhgAAABRSWaETAACApqjf+AEx/u8mxeO/ebjQqURExHijhoF6mv3V0+Px38yPutq6vGPs3Lozdm7dmUk+k8+dmkkcoOWa9MEpccNlv44dW7Y32pm5klxM/pD7CygOrTtUxfv+44Nx8uVz4uX5S2L5E69EeevyaNulXQyZcVh07t2l0CkCAABQIIoEAQAgT6de8b548rrHonZPTUHzqGzfOoYdN6KgOQBNT89DD4qJZx+Z3Mk0C1Udq2LUKWMLnQbQxFW2ax1HXjAt7vrP2xrtzMNOGBWdDurcaOcBHIjWHapi+AmjYvgJowqdCgAAAEXCHAwAAMhT90E9Y+rHZhQ6jRh1yjijhoG8zPrq6fsdR9fYxr9vsnsMyMTsr50R7RtxdPmR509rtLMAAAAAIF+F/yQAAACasFlfPSMq2lQUNIdxcw8v6PlA09XjkOo4/ANTCp1GTDrvqEKnADQTVR3bxNnf/3DkSnINfla7bu1j5GxdUAEAAAAofooEAQAgQfseHeLYz80q2Pl/HjU8smDnA03frK8Utptg90N6xoBJhxTsfKD5GXP6hLj45r+PynatG/ScmZ89KcpalTXoGQAAAACQBUWCAACQ6NjPzYp23doX5OzRp46L8orygpwNNA/dBvaIyedOLdj5k8+dGrlcw3f8AlqW4SeOji8//o2YdtGx0bpDVebxq4ceFDMvPSnzuAAAAADQEBQJAgBAosp2rWPWV08vyNnj5k4qyLlA83LSV06LkrLSRj83l8vFpA8Wftwx0Dz1OKQ63v+9D8e3V30/Lrn9S3Hy5WfG8BNHRVWnNklxK9u1jg/+90d1EQQAAACgyfCXLAAAyMBRHzsm/vSft8UbS19vtDNbd6iKoceOaLTzgOara//uccSHpsa8n9zTqOcOnj4sOvfp2qhnAi1Pq6qKGHbcyBh23MiIiKirq4vXl6yJpfOXxNKHl8Qrj7wUK59ZHnW1de8Zq3roQfHx6y+NnkN6NXTaAAAAAJAZRYIAAJCBslZlcdo33hc/Oft7jXbmKKOGgQyd9A+nxfxf3B81u2sa7czJ5x7VaGcB/EUul4seg6ujx+DqmHzen8et73hrRyx/4pU/Fw4+siReeeTl2PL65qirrYuS0pIYMuOwGDtnYkx8/xFR2a51gf8FAAAAAFA/igQBACAj4943Ke7891tj2eNLG+W8I/7fh9oAWejSt1scef60uP/HdzXKeVWd2sSYMyY2ylkA76WybWUMPnpoDD566NtrdXV1UbO7Jupqa6O8slUBswMAAACANCWFTgAAAJqLkpKSuOBXn4zK9g3fXebQYw6LIdMPa/BzgJblxC+fFq2qKhrlrFlfOT0q21Y2ylkA+cjlclHWqkyBIAAAAABNniJBAADIUI9DquP8qy6KkrLSBjujrKI8Tv+X9zdYfKDl6ty7S8z9/z7Q4OccNKJ3HH3RsQ1+DgAAAAAAoEgQAAAyN+qUcfHlx74RfccPyDx2RdvK+PStX4h+DRAbICLiqI/NiKM+OqPB4vce0y8+e9c/RHlFeYOdAQAAAAAA/FVZoRMAAIDmqPeovvHFh74eL9zxTCy+f1G8/NCLsWnVxti2cWts37wtr5jDjh8Zp/+fv4s+Y/tnnC3AX+VyuTjnRxfEQSP7xO+//JvYsWV7JnEr2lbGjE+fEMf//exo3aEqk5gAAAAAAMB7UyQIAAANpLSsNEbMGhMjZo3Za722pja2b94WWze8Fds2bo1tG7fG1v/33//7P7u274y2XdtHh+qOMeKk0XHQiD4F+pcALU0ul4vpnzwuJn1wSjx81QOx+P6FsWHZG7Ft07YoLS+N0vKy//ff//s/f7tWFmXlZdG5b9foNfzgGHz00GjbpV2h/2kAAAAAANDiKBIEAIBGVlJaEm06t402ndsWOhWAd9W6fVVMv/j4mH7x8YVOBQAAAAAAyFNJoRMAAAAAAAAAAAAAGoYiQQAAAAAAAAAAAGimFAkCAAAAAAAAAABAM6VIEAAAAAAAAAAAAJopRYIAAAAAAAAAAADQTJUVOgGALNXV1cXSpUtj4cKFsXHjxti6dWu0a9cuunTpEocddlj07t270CkCAAAAAAAAAECjUSQINAtLliyJa665Jm655ZbYtGnTOz6uZ8+eccYZZ8RZZ50VPXr0aMQMAQAAAAAAAACg8Rk3DDRpGzZsiMsuuyxOPvnk+NWvfvWuBYIREWvWrIkf/OAHMXPmzPje974Xu3btaqRMAQAAAAAAAACg8SkSBJqsp556KmbPnh3XX3991NXV1Wvvrl274rvf/W7MnTs31q5d20AZAgAAAAAAAABAYRk3DDRJd911V1x66aWxc+fOfX5XVVUVEyZMiP79+0dlZWW8+eab8eKLL8aCBQuipqZmr8cuWrQo5s6dG1deeWUMGDCgsdIHAAAAAAAAAIBGoUgQaHKeeeaZ+OxnP7tPgWD79u3jkksuiTPPPDMqKyv32bdu3br4yU9+EldfffVexYJr166Nj3/84/Gb3/wmOnXq1OD5AwAAAAAAAABAYzFuGGhSNm/eHBdddFHs2LFjr/VBgwbFTTfdFB/4wAf2WyAYEdGtW7e47LLL4uc//3m0b99+r98tW7YsPv/5zzdY3gAAAAAAAAAAUAiKBIEm5dvf/nasW7dur7VevXrFL37xi6iurj6gGIcffnj88Ic/jFatWu21Pm/evLjxxhszyxUAAAAAAAAAAApNkSDQZDzzzDNx3XXX7bVWUlIS//qv/xpdu3atV6zx48fHJZdcss/6t771rdi+fXtSngAAAAAAAAAAUCwUCQJNxo9//OOoq6vba+2UU06J8ePH5xXvQx/6UPTr12+vtfXr18e1116bb4oAAAAAAAAAAFBUFAkCTcLSpUvjrrvu2mstl8vFhRdemHfMsrKy+MhHPrLP+s9//vOora3NOy4AAAAAAAAAABQLRYJAk3DTTTft00VwwoQJMWDAgKS4s2fPjqqqqr3WVq1aFY899lhSXAAAAAAAAAAAKAaKBIEm4fbbb99n7dhjj02O27p165gyZco+67feemtybAAAAAAAAAAAKDRFgkDRW7p0abzyyiv7rE+ePDmT+JMmTdpn7e67784kNgAAAAAAAAAAFJIiQaDoPfXUU/ustWvXLgYNGpRJ/LFjx+6z9vrrr8eqVasyiQ8AAAAAAAAAAIWiSBAoek8//fQ+a4ccckjkcrlM4g8cODBKS0v3WV+wYEEm8QEAAAAAAAAAoFAUCQJFb9GiRfusDRgwILP4rVq1iurq6n3WFy5cmNkZAAAAAAAAAABQCIoEgaL32muv7bPWs2fPTM/YX7z9nQsAAAAAAAAAAE1Jrq6urq7QSQC8k127dsXIkSPjb6+qr3/963HWWWdlds6ll14at956615rY8aMiV//+teZnQH8WU1NTaxfvz66dOmy31HfkMpzjIbmOUZD8xyjoXmO0ZA8v2honmM0NM8xGprnGA3Nc4yG5jlGQ/McoyF5ftGSlRU6AYB38/rrr+9TIBgR0b59+0zPadeu3X7PBrJXWloa3bt3L3QaNGOeYzQ0zzEamucYDc1zjIbk+UVD8xyjoXmO0dA8x2honmM0NM8xGprnGA3J84uWzLhhoKht3759v+tt2rTJ9Jz9xXunswEAAAAAAAAAoKlQJAgUtXcq1CsvL8/0nP3F27FjR6ZnAAAAAAAAAABAY1MkCBS1Xbt27Xe9tLQ003PKyvadvq5IEAAAAAAAAACApk6RIFDU3qkYsLa2NtNzampq9lnLulshAAAAAAAAAAA0NkWCQFFr3br1ftd3796d6Tl79uw54LMBAAAAAAAAAKCpUCQIFLWKior9rm/bti3Tc/YXr7KyMtMzAAAAAAAAAACgsSkSBIpax44d97u+ZcuWTM/ZX7zOnTtnegYAAAAAAAAAADQ2RYJAUevUqVNUVVXts/7GG29kes769ev3WevVq1emZwAAAAAAAAAAQGNTJAgUvf0V661ZsybTM9auXbvP2kEHHZTpGQAAAAAAAAAA0NgUCQJFb+DAgfusvfrqq5nFr62tjRUrVuyzPmjQoMzOAAAAAAAAAACAQlAkCBS9kSNH7rO2ePHizOIvX748du3atc/66NGjMzsDAAAAAAAAAAAKQZEgUPT2V6y3YcOGWLZsWSbxFyxYsM9a27ZtdRIEAAAAAAAAAKDJUyQIFL2RI0dG+/bt91mfP39+JvEfeeSRfdaOOuqoKClxRQIAAAAAAAAA0LSpgAGKXqtWreKYY47ZZ/3OO+9Mjl1TUxP333//PuuzZs1Kjg0AAAAAAAAAAIWmSBBoEmbPnr3P2kMPPRQrV65MivvAAw/EG2+8sddahw4dYurUqUlxAQAAAAAAAACgGCgSBJqEKVOmxJAhQ/Zaq62tjR//+MdJcX/605/us3bOOedERUVFUlwAAAAAAAAAACgGigSBJuPCCy/cZ+26666LZ555Jq94f/rTn+LRRx/da62qqirOPffcvOIBAAAAAAAAAECxUSQINBknnXRSjB8/fq+1mpqauPTSS2PDhg31irV69er42te+ts/6pz71qejUqVNSngAAAAAAAAAAUCwUCQJNRi6Xi2984xv7jAJeuXJlnHfeebF69eoDirNixYo477zzYv369XutDx8+PM4777zM8gUAAAAAAAAAgEJTJAg0Kf37949vfvObkcvl9lpfvHhxnHLKKXH11VfHjh079rt327ZtceWVV8Zpp50Wy5Yt2+t3Xbt2je985ztRWlraYLkDAAAAAAAAAEBjy9XV1dUVOgmA+rryyivjm9/8ZuzvCquqqooJEyZE//79o3Xr1rF169ZYunRpPP744/stIOzQoUP89Kc/jREjRjRG6gAAAAAAAAAA0GgUCQJN1m233RZf+tKX3rFz4IHo27dv/OhHP4oBAwZkmBkAAAAAAAAAABQH44aBJuvEE0+MG2+8MY466qh67y0rK4sPf/jDcf311ysQBAAAAAAAAACg2dJJEGgWHn/88fj1r38dd911V2zbtu0dH9e9e/c45ZRT4qyzzorevXs3YoYAAAAAAAAAAND4FAkCzUpNTU0sWrQolixZEps2bYrt27dHu3btonPnzjF8+PDo06dPoVMEAAAAAAAAAIBGo0gQAAAAAAAAAAAAmqmSQicAAAAAAAAAAAAANAxFggAAAAAAAAAAANBMKRIEAAAAAAAAAACAZkqRIAAAAAAAAAAAADRTigQBAAAAAAAAAACgmVIkCAAAAAAAAAAAAM2UIkEAAAAAAAAAAABophQJAgAAAAAAAAAAQDOlSBAAAAAAAAAAAACaKUWCAAAAAAAAAAAA0EwpEgQAAAAAAAAAAIBmSpEgAAAAAAAAAAAANFOKBAEAAAAAAAAAAKCZUiQIAAAAAAAAAAAAzZQiQQAAAAAAAAAAAGimFAkCAAAAAAAAAABAM6VIEAAAAAAAAAAAAJopRYIAAAAAAAAAAADQTCkSBAAAAAAAAAAAgGZKkSAAAAAAAAAAAAA0U4oEAQAAAAAAAAAAoJlSJAgAAAAAAAAAAADNlCJBAAAAAAAAAAAAaKYUCQIAAAAAAAAAAEAzpUgQAAAAAAAAAAAAmilFggAAAAAAAAAAANBMKRIEAAAAAAAAAACAZkqRIAAAAAAAAAAAADRTigQBAAAAAAAAAACgmVIkCAAAAAAAAAAAAM2UIkEAAAAAAAAAAABophQJAgAAAAAAAAAAQDOlSBAAAAAAAAAAAACaKUWCAAAAAAAAAAAA0EwpEgQAAAAAAAAAAIBmSpEgAAAAAAAAAAAANFNlhU4AgMLbvn17LFiwIJYsWRKvvfZabN26Nerq6qJNmzZRXV0dgwYNijFjxkSbNm0KnSpFZOHChXHffffF8uXLo7a2Nqqrq+OSSy7JK9bWrVvjhRdeiJdeeinWrFkTmzdvjl27dkVpaWm0a9cuevToEQMHDoyRI0dG+/btM/6X0By4x8iHe4xi4h6jvtxhFBN3GPlwj1FM3GPkwz1GMXGPkQ/3GMXEPUZ9ucOg/nJ1dXV1hU4CgMLYs2dP3HfffXHffffFrl273vWxZWVlMXXq1Jg+fXqUl5c3UoYUo8WLF8edd94ZK1as2Gu9Y8eO8aUvfalesTZu3Bh/+tOf4umnn449e/a85+NLSkpi3LhxccIJJ3gjSES4x8iPe4xi4h6jvtxhFBN3GPlwj1FM3GPkwz1GMXGPkQ/3GMXEPUZ9ucMgf4oEAVqozZs3x9VXXx0rV67ca72ysjI6deoUEX9+YbRjx469fl9dXR3nnXdedOzYsdFypTi8/PLLceedd8arr76639/X98X3/Pnz45ZbbtnnRXerVq2ia9euUVZWFlu3bo3169fvs7d9+/bx4Q9/OKqrq+v1b6B5cY9RX+4xio17jPpwh1Fs3GHUl3uMYuMeo77cYxQb9xj15R6j2LjHqA93GKRTJAjQAm3ZsiV++MMfxoYNG95e69+/f8yYMSMGDRoUuVwuIiLq6uripZdeirvvvjteeeWVtx/bqVOnuOiii6Jdu3aNnjuNb8WKFXHbbbfF0qVL3/VxB/riu66uLm688cZ4+OGH91ofNmxYHHHEETFgwIAoKSl5e33Lli3x2GOPxb333rvXt8jatGkTn/rUp7wJbKHcY9SHe4xi5B7jQLnDKEbuMOrDPUYxco9RH+4xipF7jPpwj1GM3GMcKHcYZKf08ssvv7zQSQDQeGpra+NnP/tZrFmz5u21I444It7//vdH165d337RHRGRy+WiS5cuMXbs2Ni5c2csX748IiJ27NgRr776aowfP36vx9M8XXXVVW//3/4vWrVqFR07dozt27e/vVZZWRlTpkx5z3i33nprPPTQQ2//3KZNmzj33HNjxowZ0blz532eUxUVFdG/f/8YNWpULFq06O0zd+/eHWvXro2xY8em/PNogtxj1Jd7jGLjHqM+3GEUG3cY9eUeo9i4x6gv9xjFxj1GfbnHKDbuMerDHQbZKXnvhwDQnDzwwAN7vZAaOnRonHzyyXt9I+JvlZSUxKxZs2LYsGFvr61YsSIeeOCBBs2V4lBbWxsRf34jNmDAgJg7d2585StfienTp9c71t8+b9q0aRMf//jH45BDDnnPvZ07d44PfehDUVZW9vbakiVLYtmyZfXOg6bNPUZ9uccoNu4x6sMdRrFxh1Ff7jGKjXuM+nKPUWzcY9SXe4xi4x6jPtxhkB1FggAtyPbt2+Puu+9+++fy8vKYM2fOAX3DJpfLxZw5c6JVq1Zvr9199917fUOD5mngwIExc+bM+Pu///v42Mc+FuPGjdvreVAfBx10UJx22mnRpk2byOVycfbZZ0e3bt0OeH+3bt1i1KhRe609++yzeeVC0+QeIx/uMYqJe4z6codRTNxh5MM9RjFxj5EP9xjFxD1GPtxjFBP3GPXlDoPslL33QwBoLh566KHYuXPn2z9PnDgx2rZte8D727RpExMnTox58+ZFRMTOnTtj/vz5MWPGjMxzpXjMnj07s1glJSUxadKkGD16dLzxxhtx8MEH1zvGoEGD4oknnnj751WrVmWWH8XPPUY+3GMUE/cY9eUOo5i4w8iHe4xi4h4jH+4xiol7jHy4xygm7jHqyx0G2dFJEKAFefLJJ/f6ecKECfWOMX78+HeNCQeisrIyrxfeEbHPm8W33nori5RoItxjFAv3GPlyj1EM3GH8/+zdd1QU19sH8C9NQBFE7B1775oAKkoUewODPWoD5f9FAAAgAElEQVQSo7EmJjEm8WeMURONSUzTJAaxCxbE3mJBUcQuNhQ0KiCKUpRe9/3Dlz3OzsDuzi7swn4/5+SczHXvnQvLPntn5rn3ysUYRsaCcYzkYhwjY8E4RnIxjpGxYBwjuRjHyBgwhpGpYpIgEZGJiI2NRUJCgvK4YsWKqFGjhtbt1KhRAxUrVlQeP3/+nDMkqERlZmYKjjVZgp7KBsYxKisYx0wX4xiVBYxhposxjMoKxjHTxThGZQXjmOliHKOygnHMdDGOUVnAGEalGZMEiYhMxL179wTHDRs2lN2Wat379+/LbotIW3FxcYJje3t7A/WEShrjGJUVjGOmi3GMygLGMNPFGEZlBeOY6WIco7KCccx0MY5RWcE4ZroYx6gsYAyj0oxJgkREJiI6OlpwXKVKFdltqdZ9+PCh7LaItHXz5k3Bcd26dQ3UEyppjGNUVjCOmS7GMSoLGMNMF2MYlRWMY6aLcYzKCsYx08U4RmUF45jpYhyjsoAxjEozJgkSEZmI+Ph4wbGTk5PstipXriw4fvbsmey2iLRx9+5dPH36VFDWtm1bA/WGShrjGJUFjGOmjXGMSjvGMNPGGEZlAeOYaWMco7KAccy0MY5RWcA4ZtoYx6i0Ywyj0o5JgkREJiIpKUlw7ODgILutSpUqCY6Tk5Nlt0WkqezsbOzdu1dQ1qxZM9SsWdNAPaKSxjhGpR3jGDGOUWnGGEaMYVTaMY4R4xiVdoxjxDhGpR3jGDGOUWnGGEZlAZMEiYhMQHZ2NrKzswVl5cqVk92eat2srCxR+0T6tmfPHsFMMCsrKwwaNMiAPaKSxDhGZQHjmGljHKPSjjHMtDGGUVnAOGbaGMeoLGAcM22MY1QWMI6ZNsYxKu0Yw6gsYJIgEZEJkBoU6zLwtrKyEpXl5OTIbo9InZCQEFy8eFFQNnToUFStWtVAPaKSxjhGpR3jGDGOUWnGGEaMYVTaMY4R4xiVdoxjxDhGpR3jGDGOUWnGGEZlBZMEiYhMQG5urqjM0tJSdntSA2+pcxDpw9WrV7F//35BWY8ePdC5c2cD9YgMgXGMSjPGMQIYx6j0YgwjgDGMSjfGMQIYx6h0YxwjgHGMSjfGMQIYx6j0YgyjsoRJgkREJsDCwkJUlpeXJ7s9qbpS5yDS1a1bt7B9+3YoFAplWYcOHdC/f38D9ooMgXGMSivGMSrAOEalEWMYFWAMo9KKcYwKMI5RacU4RgUYx6i0YhyjAoxjVBoxhlFZIz81m4iISg2p2TRSy3prSqqu1DmIdHHz5k1s2bJFcKHXpk0bvP322zAzMzNgz8gQGMeoNGIco9cxjlFpwxhGr2MMo9KIcYxexzhGpRHjGL2OcYxKI8Yxeh3jGJU2jGFUFnElQSIiE1CuXDnR7JmcnBzZ7anWtbS0RLly5WS3R6RKauDdvn17jB49GubmHL6YIsYxKm0Yx0gV4xiVJoxhpIoxjEobxjFSxThGpQ3jGKliHKPShnGMVDGOUWnCGEZlFf96iYhMgLm5ORwcHARlL1++lN2eal1HR0fOmCC9uX37tmjg3bVrV/j4+HDgbcIYx6g0YRwjKYxjVFowhpEUxjAqTRjHSArjGJUmjGMkhXGMShPGMZLCOEalBWMYlWX8CyYiMhFVqlQRHCckJMhuKzExUXDs5OQkuy2i1925cwebN28WDLx79uwJLy8vDryJcYxKBcYxKgrjGBk7xjAqCmMYlQaMY1QUxjEqDRjHqCiMY1QaMI5RURjHyNgxhlFZx79iIiITUadOHcHx8+fPZbelWrdevXqy2yIqEBkZiY0bNyI3NxcAYGZmhgEDBqBfv34G7hkZC8YxMnaMY6QO4xgZM8YwUocxjIwd4xipwzhGxo5xjNRhHCNjxzhG6jCOkTFjDCNTYGnoDhARUclo0KCB4Pj+/fuy23rw4IHg2NnZWXZbRABw7949bNiwQTnwNjc3h5eXFzp37mzgnpExYRwjY8Y4RppgHCNjxRhGmmAMI2PGOEaaYBwjY8Y4RppgHCNjxjhGmmAcI2PFGEamgisJEhGZiEaNGqF8+fLK4+TkZDx79kzrdpKSkgTLf9vb26N+/fp66SOZpvv372PdunXIyckBAFhaWmLMmDEceJMI4xgZK8Yx0hTjGBkjxjDSFGMYGSvGMdIU4xgZK8Yx0hTjGBkrxjHSFOMYGSPGMDIlTBIkIjIRFhYWaNeunaDs0qVLWrdz+fJlwXGHDh1gbs6vE5Ln4cOHgoG3tbU1Jk6ciNatWxu4Z2SMGMfIGDGOkTYYx8jYMIaRNhjDyBgxjpE2GMfIGDGOkTYYx8gYMY6RNhjHyNgwhpGpYaQkIjIh3bt3FwySQ0NDkZ6ernH93NxcnDt3TnlsZWWFbt266bWPZDoePXqEtWvXIjs7GwBQoUIFTJ48GY0bNzZwz8iYMY6RMWEcIzkYx8hYMIaRHIxhZEwYx0gOxjEyJoxjJAfjGBkTxjGSg3GMjAVjGJkiJgkSEZmQypUr480331QeZ2VlYdeuXRrXP3DgAFJSUpTH3bp1Q8WKFfXaRzINMTExWLt2LbKysgAADg4OmDJlCurUqWPgnpGxYxwjY8E4RnIxjpExYAwjuRjDyFgwjpFcjGNkLBjHSC7GMTIWjGMkF+MYGQPGMDJVTBIkIjIx/fr1g5OTk/L4+vXr2LdvH/Lz84usd+bMGZw9e1Z5XL16dbz11lvF1k8qu2JjY+Hr64vMzEwAgI2NDaZOnYpq1aoZuGdUWjCOkaExjpGuGMfIkBjDSFeMYWRojGOkK8YxMjTGMdIV4xgZGuMY6YpxjAyJMYxMmaWhO0BERCWrXLlymDBhAv7880/l8t0hISGIiYnBW2+9hcaNG8PMzEz5+ujoaJw6dQrXr19XllWsWBETJkyApSW/RkyZ6sWauos3AEhJSYGvry8yMjKUZZmZmVi2bJnsfpibm2PGjBmoVauW7DaodGEcI31hHCNDYRwjfWAMI0NhDCN9YRwjQ2EcI31hHCNDYRwjfWEcI0NhHCN9YAwj0p6ZQqFQGLoTRERU8p4+fYoNGzYgISFBUG5jYwNHR0eYm5sjOTkZaWlpgn+vWrUq3nnnHVStWrUku0sGtG7dOkRERMiu7+LigqFDhwIArl69Cn9/f311TWny5Mlo1KiR3tsl48Y4RppiHCNjxThGmmAMI2PFGEaaYhwjY8U4RppiHCNjxThGmmIcI2PFOEaaYAwj0h+mVRMRmajq1atj5syZOHLkCM6dO6ecXZGZmYm4uDjR6y0sLODi4oI+ffrA2tq6pLtLBpSVlaW3+rm5ubp2h0iJcYw0xThGxopxjDTBGEbGijGMNMU4RsaKcYw0xThGxopxjDTFOEbGinGMNMEYRqQ/TBIkIjJhNjY2GDJkCHr16oUrV67g3r17iIuLUy7tXb58edSsWRONGjVCx44dYWdnZ+AekyHoeqFlY2Oj/H87OzuYm5trtOS3pszNzWFra6u39qh0YRwjTTCOkTFjHCN1GMPImDGGkSYYx8iYMY6RJhjHyJgxjpEmGMfImDGOkTqMYUT6w+2GiYiIiIiIiIiIiIiIiIiIiIiIiMooc0N3gIiIiIiIiIiIiIiIiIiIiIiIiIiKB5MEiYiIiIiIiIiIiIiIiIiIiIiIiMooJgkSERERERERERERERERERERERERlVFMEiQiIiIiIiIiIiIiIiIiIiIiIiIqo5gkSERERERERERERERERERERERERFRGMUmQiIiIiIiIiIiIiIiIiIiIiIiIqIxikiARERERERERERERERERERERERFRGcUkQSIiIiIiIiIiIiIiIiIiIiIiIqIyikmCRERERERERERERERERERERERERGUUkwSJiIiIiIiIiIiIiIiIiIiIiIiIyigmCRIRERERERERERERERERERERERGVUUwSJCIiIiIiIiIiIiIiIiIiIiIiIiqjmCRIREREREREREREREREREREREREVEYxSZCIiIiIiIiIiIiIiIiIiIiIiIiojGKSIBEREREREREREREREREREREREVEZxSRBIiIiIiIiIiIiIiIiIiIiIiIiojKKSYJEREREREREREREREREREREREREZRSTBImIiIiIiIiIiIiIiIiIiIiIiIjKKCYJEhEREREREREREREREREREREREZVRlobuABERERERERERERERERERUYG4uDhERkYiOjoaKSkpyMzMhI2NDSpWrIh69eqhSZMmqFGjhqG7SURUYhgXiUhXTBIkIiKTsG7dOnz11VeicnNzc3zzzTd49913i70Pq1evxtKlS5Gfny/6txUrVmD06NHF3geStmDBAvj6+iqPa9WqhQsXLhiwR2RKvvvuO/z+++8GOXf16tVx+fJlg5ybit+TJ0/QrVs3ZGRkKMt+/PFHjBo1yoC9InVCQ0Mxbtw4ZGZmKsuaN2+OQ4cOwcrKSi/n+Oijj7Bjxw4oFAoAgI2NDf744w/069dPL+2fOnUK7777rvJvr3z58jh58iRq166tl/aNXZ8+fXDr1i3lsbe3N3799VcD9ohKEt9/42GMY6xTp05h3LhxyMvLA/Aq/gYHB6NOnTol3UUyQlevXsWwYcOQk5MDALCwsMCmTZvQo0cPA/eMSDPbtm3DnDlzlGPM4rJkyRJMnDixWM9R4NKlS/Dx8RGMzadMmYIFCxaUyPkLHDhwAB988IHyd2ttbY3Dhw+jSZMmJdoPopJw48YN+Pv74/jx43j48KHa1zs7O8PDwwM+Pj5o3bp1CfSQyoo1a9Zg4cKFymM7OztcuHAB9vb2husUkQTGxbLh3XffxeHDh5XHb7zxBgIDAw3YIzJV3G6YiIhMQkJCgmR5fn4+1qxZU+w3MPPy8rBmzRrJBEEAePz4cbGen4oWExMjOOb7QSXp6dOnJnluKn7Pnz8XJAgCQGxsrIF6Q5pSKBSCh5AAEBERobfk9ZSUFOzatUsw9snMzMTu3bv10j4ABAUFCf72srOzUbFiRb21b+w4rjBtfP+NhzGOseLi4pQJgsCr+FvYtSqZnidPnigTBIFX9xHi4uIM2CMi7URHRxf7/TWg8Ht8xSEqKko0Ng8PDy+x8xeIjY0V/G6zsrLw7NmzEu8HUXG6ceMGRo0ahb59+8LPz0+jRBgA+O+//+Dr64u+fftixIgROH/+fDH3lMqK6OhowXFqaipevHhhoN4QiTEuli2qMYf36clQmCRIREQm79GjRzh79myxnuPEiRNMxiEiIiK1unTpggoVKojKg4OD9dL+6dOnkZubK1le2GQGban2tWPHjpyJT0RERERERJJ+//13DBw4EKdPn9apndDQUAwfPhyffPIJUlJS9NS7kvHJJ5+gdu3ayv/mzZtn6C4RkQExLhJRceF2w0RERAACAgLg5uZWrO0TEUmpUqWKwc7t5ORksHMTkTQrKyu4urri6NGjgvLg4GB88cUXOrd/8uRJyfKkpCSEh4ejffv2OrV/584dPHnyRFDWq1cvndokIpKDYywiorLHzMwMNWvWNHQ3iEhPFAoFvvrqK6xfv17y3y0tLdGkSRO0bNkSjo6OqFChAjIzMxEXF4e7d+/izp07kiuY+vv74+LFi/Dz80PDhg2L+8fQC9UVwqKiogzUEyIyJMZFIipuTBIkIiICcODAASxduhR2dnZ6bzsxMVH0oJ+IqMD8+fMxf/58rercvHkTnp6eovJ//vkH/fv311fXiMhAevbsKRo73LhxA4mJiahcubJObRe1ImFwcLDOSYJSSYhMEiQiQ+AYi4jI8CpXrowLFy7AxsbG0F0hIiO0evVqyUSYqlWrYvr06fD29i7yGjg+Ph6BgYFYs2aNaLJaVFQUvLy8sGPHDjRu3FjvfSciKg6Mi0RU3LjdMBEREYCMjAzs2bOnWNreuXMncnJyiqVtIjJNhW3b6eDgUMI9IaLi0LNnT1GZQqHAqVOndGo3KioKMTExhf67PrY0Vm2jatWqaN26tc7tEhGVBI6xiIj0q3z58kwQJCJJd+/exbJly0TlvXv3xsmTJzF58mS1k+SqVauGqVOn4syZM5gxYwYsLCwE//7s2TNMnDhRn90mIio2jItEVBKYJEhERPT/imtLYG41TERERNpo0KABGjRoICrXNYmvsK2GC1y+fBmpqamy28/MzERYWJigrEePHjAzM5PdJhERERGRoTg7O8PKykp5bGZmhlatWhmwR0Rlx7Jly5Cbmysoc3Nzwz///INKlSpp1ZaNjQ2++OIL+Pr6wtbWVllua2uLzz77TC/9JSIqboyLRFQSmCRIRET0/y5evIh79+7ptc1r167h9u3bem2TiIiIyj53d3dRma4rCapLMszJycHZs2dltx8WFobMzExBGbcaJiIiIqLSqmvXrnjw4AFiY2MRGxuLmJgYfPPNN4buFlGpFx8fj6NHjwrKLC0tsWzZMkFirrb69OmDf/75B+XKlUODBg2wZ88eDB06VNfuEhEVO8ZFIiopTBIkIiJ6zbZt2/Tanr+/v+DY0tIS5cqV0+s5iIiIqOyR2nL4yZMniIiIkNVeVlYWQkND1b5Ol9UKVeuam5tLJjsSERERERGR6Tpx4gTy8vIEZa6urnB2dta57Z49e2LXrl04cOAAWrZsqXN7REQlgXGRiEoKkwSJiMhkSQ2ud+zYIRqIy5WZmYndu3cLygYMGIBq1arppX0iIiIqu1xdXSVnCstN4gsLC0NGRoagrGvXrqLXqduSuCiqfWvXrh0qV64suz0iIiIiIiIqe8LDw0VlUtencrVv3x4ODg56a4+IqLgxLhJRSWGSIBERmayJEyeKyp48eaLTw/HXHTp0CC9evBCU+fj46KVtIiIiKtvs7OzQuXNnUbncLYdVE/isra2xdOlS0esePHiA6OhorduXWuVQajVEIiIiIiIiMm1xcXGisipVqhigJ0RExoFxkYhKCpMEiYjIZHl4eMDJyUlUHhAQoJf2Vbcarl69Onr06KGXtomIiKjsk0qyO3fuHLKysrRuS3USxBtvvIEWLVqgfv36al+rCakVDpkkSERERERERKrS09NFZZmZmQboCRGRcWBcJKKSYmnoDhARERmKlZUVhg8fjn/++UdQfvToUSQmJuq0PV5sbCzOnDkjKPPy8oKFhYXsNjXx9OlThIeH4/Hjx3j58iUsLCxgb2+P+vXro02bNqhUqVKxnl9KXFwcrl27hkePHiE9PR12dnaoUqUKOnToIJmYoA8xMTG4evUq4uPjkZqaCnt7e+U5a9euXSznfF1ubi6ioqIQGRmJ58+fIzU1VfleODk5oU2bNqhTp06x94OoLMvPz8e9e/dw69Yt5efMxsYGlSpVQrNmzdCsWTPY2trq/bwZGRm4ceMGHjx4gISEBGRmZsLGxgaOjo5o3LgxWrZsWSznff3ckZGRSE5OhpmZGZycnFC3bl107txZcmtafUtISEBERAQePnyIly9fIisrC3Z2drC3t0eDBg3QunXrYvv5TVHPnj3x3XffCcoyMzMRFham1cSDuLi4Qlf5c3d3x4YNGwT/FhwcjPHjx2vVV9UkwUqVKqFDhw5atSHFUJ/1Anl5ebh79y5u3ryJhIQEZGdno3LlyqhevTq6du0Ke3v7Yjt3UTIzM3HlyhVERUUhOTkZFhYWyjjUvn37YosHsbGxuHnzJh4/foyUlBRYWlqiYsWKcHZ2RsuWLeHo6Kj3c+bn5yMiIgJRUVF4+vQp0tPTYWVlpRzjtmrVqti2tTaG9z89PR137txRvtfp6emwsbGBg4MDatSogXbt2hXL752MQ25uLq5du4bIyEgkJCRAoVCgUqVKqFevHjp16oQKFSoYuovFLioqCpcvX8bTp09haWkJNzc3tG3bVuP6qampCA8Px6NHj5CcnIzMzEyUL18eTk5OaNKkCVq0aFFsMTM1NRXXrl3D/fv38eLFC1hZWaFKlSpwdnZG+/btYW5e/PP34+LicPfuXTx69AipqanIzs6Gvb09HBwc0KhRI7Rs2bJExpBExubZs2cICwtDdHQ0cnJy0Lx5c3h6epbY+ZOSknD16lU8evQIL1++hI2NDapUqYKmTZuiVatWJdKHR48e4e7du4iNjUVaWhry8vJQsWJFODo6omnTpmjatGmx38ck01WxYkVR2bVr1wzQk6KV1Fg8JycHL1++FJSlpaVBoVDAzMxM5/aNWUZGBsLCwhAZGYm0tDRUr14dw4YNk3WdHx8fj6tXryqfjdjZ2cHJyQmtW7dGo0aNiqH3QgqFAvfu3UNUVBSePHmC1NRUAIC9vT0cHR3RsmVLNGzYsMy/pyRPaYmLxurhw4cIDw9HbGwssrKyYG9vj6pVq6JTp06oWbOm3s+nUChw//59XL9+Hc+ePUNGRgYcHR1RtWpVdOnSRXKBGn3LyspCZGQkIiMjkZiYiNTUVFhbWyt/9rZt26J69erF3g8qfZgkSEREJs3Hx0eUJJidnY2goCC8++67stvdtm0b8vPzBWVvv/227PaKkpSUhI0bNyIoKAh37twp9HVmZmbo1KkTvL294ePjAxsbG1nnGz58OM6fP688HjhwIP7++2/Ba/Lz87Fr1y6sXbsWV69eLbSthg0bYurUqRg1apTONx7T09Oxfv16+Pv7IyoqqtDXtWrVCu+99x5GjBih95udp06dwtatW3Hy5EnRjR1VVatWhZeXF9555x00aNBAbdvHjx/HxIkTkZeXB+DV+zl16lTMnz9f534vXrwYq1evVra7ZcsWrnpp4iZOnIijR48qj3v06IGtW7fKaissLAxjx45FRkYGgFdbnG7evBkuLi6y2rt16xY2bNiAAwcOICEhodDX2djYoFevXhgzZgw8PDxknatAXl4e9u7di23btiE0NBTZ2dlFntfNzQ3jxo1D79699fLw9+LFi1i7di0OHz5c6AzSihUron///vjoo4/0noCdmJiIjRs34sCBA7hx40aRr7W0tESXLl0wfvx4DBgwQKOHzkOHDsXFixeVx1WqVMH+/ft1TqaOjY1F3759kZSUBADo2rUrdu3apVObJa1Vq1aoUqUKnj9/Lig/deqUVnFaaoviXr16AXiVLKiaJHjmzBnk5eVp/D2Zn5+P06dPC8q6d++u0/esIT7rr4uNjcWaNWsQGBhY6PmtrKzg6uqKmTNnyo5pBbZu3YpPP/1UeWxra4uwsDDRTcVbt25h9erVOHDgQKHxoHz58hg5ciSmT5+ulxuhz549w/r167F7927cv3+/0NeZm5ujc+fOyrFmuXLldDrv+fPnsWnTJhw9erTIcZW5uTnatWuHESNGwMfHB+XLl9fpvEDJv/+qsrKyEBQUhMDAQISFhSEnJ6fI1zdp0gSjR4/GyJEjNZoU9P333+O3335THltbW+OPP/5A//79deq3QqHA4MGDceXKFQCvPp/Xrl2DnZ2dTu2aogcPHuDPP//E7t27C/37t7S0RL9+/fDRRx+hRYsWGrfdu3dv3L59W3k8duxYLF++XFY/g4KC8NFHHyn/RitUqIDDhw/D2dm5yHqdO3cWbKf19ddf44MPPlAeKxQKBAUF4Y8//hD0FQBat26Nw4cPF9l+ZmYmduzYgZ07d+LSpUvKaygpdnZ26NWrF9555x24uroW2a6mTpw4gXXr1uHkyZPIzc2VfI2TkxOGDRuGmTNnomrVqno5b4HY2Fhs2LABBw8exL1794p8rbW1Nbp164YJEybAw8NDo4fWnTp1wpMnT5THzs7OOHjwoOSDTW1cu3YN3t7eyusGLy8vQawiUmfmzJkIDAxUHnt6esLPz0/wmosXL+KXX37ByZMnRfftIiIiRH/HUVFR6Nu3r2DctWLFCowePVrr/ikUCuzZswcbN27EuXPnoFAoJF9Xq1Yt+Pj4YOrUqTp/rlRFRkZi/fr1OHLkCGJjY4t8bfny5dGnTx9MnDgRXbt2Vdt2cnIyunbtirS0NGVZp06dEBQUpPN18eHDhzFlyhTl983s2bMxd+5cndokw5KaxH3w4EE8ffrU4AkNxT0W/+CDD7B//361rwsPDy/yvki7du1w4MABUfnu3bsxe/ZsZb9tbW1x5MgRNGzYUO05pbz11luCSYfjxo3DsmXLiqyjen1bqVIlhIeHC+4RxMbG4pdffkFgYKDyu7+Ak5OTxonbOTk58Pf3x9atW4tMqGrYsCHGjRuHiRMnwtraWqO2NXXlyhVs3LgRx44dE92/UeXg4IBBgwZhwoQJGiWFR0REoH///oJ7kYMHD8aff/6pc7/9/PywYMEC5feh3O830g9jiovGeM04depU/O9//xO8JisrC1u2bMH69esRGRlZaFtt2rTB9OnTMXjwYFk/w+sSExPh6+uL7du3FzqWMjc3R8eOHfHhhx+iX79+Op/zdfn5+Th06BC2bduGkJAQUfxUVbduXfj4+GDs2LEa/R1t2rQJ8+bNU45TLS0t8fXXX+v0vLzAlClTsG/fPgCAhYUFjh8/jsaNG+vcLmmP2w0TEZFJa9WqFVq2bCkq12XLYYVCgW3btgnK2rVrh2bNmsluU0peXh7++OMPuLi4YNmyZUUmCBb06+LFi/jiiy/QrVs32YkSjx8/FhzHx8cLji9cuABPT0/MmjWryARBALh//z7mzp2L0aNHIzExUVZ/AODAgQPo3r07Fi9eXGSCIADcvHkTc+bMgaenp+iBk1zXrl3DgAEDMHr0aOzZs0dtgiDw6oH7X3/9BXd3d/z000+FPjwqULduXcHDLYVCAT8/P43OVZTU1FSsW7dOeVyuXDm0bt1apzap9FP9bBSVFKLOgwcPBBerWVlZePTokdbtxMfHY+rUqfD09MTGjRuLTBoCXj0cPnjwIMaPH49BgwapjZGFuXDhAnr16oXp06cjODi4yATBgvMeO3YMkyZNgqenJ0JDQ2WdF3j1kGXatGkYOnQodu/eXeQWEykpKdi2bRvc3cOBAYwAACAASURBVN2xfPnyIh+GayorKwsrVqxAly5dsHz5crUJgsCrFY9CQ0Mxbdo09O/fX6M4W6tWLcHx8+fPsXHjRtn9LrB582ZlgiAAdOzYUec2S5qZmZlkMqC22wGrvr527dpo2rQpAMDNzU2UzPny5UtcvnxZ4/avX78u+h4vSELUlqE+6wXy8/Px888/o0ePHlizZk2R58/JyUFwcDBGjBiB999/X/D3pi3V8VVGRobgOz4pKQmffvop+vbti8DAwCLjQXp6Ovz8/NCnTx/JBFFNZWdnY9myZXBxccHPP/+s9rsgPz8f58+fx+effw5XV1e1STyFiY2Nxfjx4zF8+HDs3LlT7VgnPz8fV65cwVdffYU33ngDmzZtKvShuzqGev9fFxQUBBcXF8yZMwchISFqH0oCrx74L1q0CN27d5d8UKhKNe5mZWVh1apVsvtcICQkRJkgCADNmjVjgqCWUlNT8fXXX8Pd3R0bN24s8u8/NzcX+/btw4ABA7Bp0yaNz6HPcd69e/cEf6NpaWmCBzmFUX3N6w9TY2Ji4OXlhRkzZkiOI1STelQdOXIEbm5u+Pzzz3H+/Hm1Y6LU1FTs3bsXb7/9NoYPH46bN2+q7X9hYmNjMXr0aIwbNw7//vtvkdd4CQkJ8PX1haurqyiJSa6XL1/iq6++gqurK37//Xe1CYLAq8//sWPH8M477+Dtt99WmzQEQJSA/t9//yEoKEh2vwv8888/guuGTp066dwmmRbV2PLs2TPl/2dkZGDu3LkYNmwYjh8/LhlLpMri4+NF4y7VcZsmbt++jYEDB2LatGkIDQ0tcqzy+PFjrFy5Ei4uLsoHqbp6+vQppk2bhl69esHPz0+jz3p6ejp2796N4cOH44MPPlB7365ixYqipMZLly7pNB4t8Oeffwq+b0rjtR0JSSWeZmZmYtasWWrvuxSnkhiL63IP/HWFXatERUUJ+p2RkSFI7teW6q4EmowvVONkcnKyoE9+fn5wd3fH5s2bJRNc1I33Cpw7dw4eHh6YN2+e2hXX7t+/r3yfdLlXp9rm6NGjMWjQIAQEBKhNEASAFy9eYPPmzfD09MSXX36pNsGnRo0aokTrvXv3qn0Gok5+fj5Wr14t+F0zthqWMcVFY7xmVH0OeeTIEfTo0QPz588vMkEQeHXfcurUqZg2bZraz1xRNmzYgG7dumHlypVFjqXy8/Nx8eJFvPfee/Dy8tJo3KWJ4OBg9OjRA5MnT8bRo0c1+lmio6Px448/ws3NDevXr1f7+tq1awvGqbm5uVi1apXGcbkw//33n2Bc6+TkpNHiKVQ8mCRIREQmz8fHR1R248YN2Q8Hzp49K0qA0fcqgs+ePcPbb7+NpUuXIiUlRev6cXFxmDFjBmbOnImsrCy99Ck7OxuLFi3C8OHDtU6+O3PmDCZOnCirL0uXLsXkyZO1vtkRERGBQYMGYePGjRpdwBfmzz//xKBBg2Qv/Z6bm4sff/wRkydPLvIBVpMmTfDmm28KyjIzM3VeFWv37t2Ci4l+/foV25Z9RHIFBwfjrbfewt69e2Ulfly5cgUDBgwQrCqhiYCAAIwYMUKjG6BSbt++jbfffhs//PCD1v2+e/cu+vfvj927d2tVLycnB7/88gtGjhyJ8PBwreq+LiYmBgMHDsTPP/9cZDJSUW7fvo1Bgwbh3LlzRb5u3LhxorIdO3bolOiYn5+P7du3C8pK62zogm2BXxcRESG6OVYYqVX+Xm/Tzs5O8kawNg/zpJIWpfqtjqE+6wVSU1MxduxYrFixQuu/+4MHD6Jfv344fvy47M9MYY4fPw4PDw9s3bpVq5tySUlJmDRpkiBpS1PR0dEYMGAAfv31V1k3UOPi4vDuu+9iwYIFWr2X169fx4ABA3D8+HGtzwm8euD2+eefY9KkSVqPkQ39/mdkZGDatGmYPn06nj59KquNxMRETJ48WblCdGG8vLxE29RevnxZ7Y11dVQnWpXWuGsoZ8+ehYeHB/755x+1E4hel52djc8//xx79uwpxt6VjHPnzqFv376Cleu18fPPP2PSpEmyH4SfP39eeY2orbCwMPTr10/rZJj09HTMnz8fU6ZM0ekzePPmTfTu3Rvr1q3T6u/ndaGhoejbt6/ah87jx48Xleky0RJ4NeHl9cQKGxsbDB8+XKc2iQrExcVhyJAh2Lx5s+yJBLrYv38/Bg8erPV9o6SkJEyZMgXz589HdHS07POfPn0aHh4e2L17t+yff//+/Rg0aFCR1yAWFhaS3/3+/v6yzlng/v37gu+FmjVryp6QRMajV69esLe3F5WHhIRgwoQJaieL6VtJjsX1pTRuWZudnY0ZM2Zg/vz5OiXqAK8SDUeOHKl18lJsbCxGjhyJlStXyn6vgVcJpbpOzFu/fj3efvttpKenF/qaSpUqYdCgQaJyXcdeISEhgsSljh076n2RC9KOscVFY5WSkoJZs2Zh0qRJiImJ0apuwUqr2o6HcnJyMHPmTHzxxRd48eKFVnXDwsLg6emJvXv3al23QH5+Pr755huMGTMG//33n6w2MjIy8OWXX+LLL78s8nXu7u6oW7euoCwuLk7rCeuqVGOWj48PLC256a2h8DdPREQmz8vLC0uWLBHNDAwICMCiRYu0bk/15le5cuUwdOhQnfr4usePH0teAFtYWMDd3R2DBg1CixYtUK1aNeTm5uLp06e4ePEi9u7dK3pIHBgYiGfPnsHPzw+2tray+xQdHY0PPvhAkJDSuXNnDBs2DJ06dUKNGjUAvJrtc+7cOfj5+eHBgweCNi5duoQ//vgDc+bM0fi83377reTS+hUqVEC/fv3Qv39/NGjQAFWqVMGLFy8QExODo0ePYs+ePUhMTERmZibmzZsn74fGqwTFP/74Q1RuY2ODwYMHo3fv3mjevDkcHR2RmZmJx48fIywsDFu2bMHDhw8FdY4cOYKFCxfi22+/LfR8Y8eOFSXbBAQEYMKECbJ/BtW/Vz7MJWOzf/9+zJgxQzRjsnLlyhg+fDi6d++OJk2awN7eHhkZGYiOjkZYWBh27NghiJOZmZmYPXs28vLyNErcDg4OxqeffipKyGnWrBmGDx+Ozp07o169erC1tUVGRgZiYmJw5coV7Nu3TxBrFQoFVq5cieTkZCxZskSjn/m///7DyJEjJR/AtG7dGoMHD8Ybb7yB6tWro1y5cnj8+DFu3bqFwMBAnD9/HgqFAqGhobJnRj969AjDhg2TvFnaokULeHl5oXPnzqhTpw6sra2RlJSEmzdv4vDhw9i/f7/gwXRmZiYmTZqEQ4cOFboNspubG5ydnQU3OZ48eYITJ06gd+/esn6GU6dOCWaud+3atdRuX+Du7g4zMzPBDSyFQoFTp05hxIgRautfvXpVtMKZ6kM1d3d3hIWFCcpOnjyJTz75RKM+qt4Ub9mypdZboRjqs14gIyMDEyZMkExqrVmzJgYPHoxevXqhVq1acHBwQHx8PO7fv4+9e/fi33//RVZWFmJiYiQTJ+TKy8vDkiVLsHr1auX7X7VqVYwYMQI9evRAw4YNUb58ebx48QI3b95EYGCgaPW+zMxMzJw5EydPntT45ltUVBRGjhwpSrIpV64c+vfvD09PT7Ro0QJOTk7Iy8tDfHw8rly5gj179ojijq+vLzIyMvDDDz+oPW9cXBzGjx8vmrxRtWpVDB8+HG5ubmjUqBHs7e2Rm5uL+Ph43LhxA0eOHMGxY8cEicVHjx7FmDFj4O/vL0qGk2Lo9z8rKwvjx4+XjNvVqlWDt7c3unXrhoYNG8LOzg4pKSn477//cPLkSQQEBIhWm1uyZAnq1auHgQMHSp7Pzs4OQ4cOxZYtWwTl/v7+ou17NPXy5UscPHhQeVy+fHkMGzZMVlumJj8/Hz/++CNWrlypHHdUrFgR3t7e6NWrF5o2bQo7OzukpqYiIiIC+/btQ1BQkCiZfu7cuejevTscHR0N8WPoLDg4GO+++64g0dbBwQEuLi5o0KABLC0tkZqaKtqGvcDWrVuxYsUKUXmHDh0wbNgwtG/fHjVr1oStrS3S09Px8OFDnD9/Hrt37xYk52VnZ2PevHlIS0vD1KlTNer7pUuXMH78eMEWmwXeeOMNDBo0CB06dEC1atUAvLqmv3LlCnbu3KlcqXnfvn2yVwy7evUqfHx8JM/fpUsXDBkyBB06dEDNmjVhaWmJhIQEhIeHY8+ePThx4oRgjJGUlITRo0fj33//hYODg+T5hgwZgoULFwpiz5UrV3Dnzh3ZD5eDgoIE7/2AAQMKPT+RNmJjY+Ht7S1IsrOyssKbb76JRo0awcHBAWlpaUhKSkL58uX1fv7Dhw9j2rRpouRdc3NzuLu7Y+DAgWjVqhWqVauG7OxsxMXFITQ0FDt37lSOcXVZbfTo0aN4//33Rec3MzNDz549MWDAALRt21YZn549e4YrV65gx44duHDhgqDOw4cP8c4772Dfvn2FjitHjx6NX375RXAdfeTIESQlJcn+fpJ6qPz6lqVUOtna2mLs2LGSCXWnTp1Cz549MXv2bIwdO1ane9aaKOmx+IQJE0Q7Gz169AhHjx4VlNWoUaPQNoBXE8pLk+zsbEyfPl00Iaxt27bKewjZ2dmIj49Xuw3punXrMH/+fFF5uXLl0Lt3bwwYMABNmjRBtWrVkJqaisePH+PUqVMIDAxEXFwc8vLyNLpGLcz69eslE20sLS3Rt29f9O3bF61atUKVKlWQk5OD+Ph4XLx4EVu3bhUtrnDlyhVMmzZNsNOPqnHjxmHHjh2Csp07d2LevHmy46HqM4ExY8bIaof0x5jiorG6efMmPvjgA+WzRTMzM+Uz0Xbt2qFatWrIycnBkydPcPr0afj5+Ynur+/fvx/bt2+XXDxGSn5+PmbNmiU5Kc/R0REDBw6Ep6cn6tatC0dHRyQkJODRo0c4ePAgDhw4gNTUVCQnJ2t8balKoVBg5syZkiu3Ozg4YNiwYejZsyeaNGmiHNdGR0cjJCQEW7ZsEaysDbyKX/Xr18eUKVMkz2dubo7Ro0eLtpf29/eHh4eHrJ8hPz9fEMPMzMwwatQoWW2RniiIiIhMwIoVKxS1atUS/Pfo0SPlv0+aNEn0761bt1ZkZ2drdZ6XL18qGjZsKGjnvffeE7yma9euonOtWLFCo/bT09MVvXv3FtXv16+f4vr162rr79u3T9GhQwdR/enTp2v8M6r2v3nz5oqWLVsqj3v27Kk4ffq02p9j4sSJon40a9ZMkZaWplE/tm/fLqpfq1Ytxfvvv6+Ii4tTe/7Fixcr6tWrJ9lGrVq11J5/8+bNkvVmzZqlePbsWZF1c3JyFN99952obp06dRS3bt0qtF5mZqaiVatWonq3b99W218pkZGRgnZcXFwU+fn5stqikvXo0SPJv78zZ87opX3Vz3nXrl1lt+Xv7y/qp7+/v0Z1L126pHB2dhZ9TpYuXapITU0tsm5eXp5i7dq1igYNGgjqOzs7K65du1Zk3YyMDNHvoGHDhootW7Zo9Bk5fvy4olOnTqKfe+PGjWrrZmRkKHr16iWq26ZNG8WOHTvU1j9//rzCw8Oj0Nim7vsmLS1N0b17d1G9jh07Kg4cOKD2/Ddu3FC4ubmJ6k+ePLnIeqtXr5aM53JNnTpV0FZAQIDstoyBp6en6PczY8YMjer+9NNPgnr169dXvHz5UvCaq1evitqvW7euIjk5WW37KSkpivr16wvqLlmyRKufz1Cf9dfNmTNH9DuoV6+eYtmyZYqMjIwi68bExEiOawr+8/b2Vnt+qbHqm2++KYhBv/zyi9q+7NixQ1G7dm1RW5rED4VCoUhMTFS4uLiI6k+YMEERHR2ttn5ISIiiffv2ovp+fn5q606ZMkVU73//+59GY8OoqCjFkCFDRPWnTZumyY9t8Pd/xowZonrOzs6K3377TZGVlVVk3YSEBMW4ceNE9Tt37lxk36U+9+3atVPk5OSo7a+U9evXC9r66KOPZLVjaMU9xpIaF70+ZqhTp47if//7n+LFixdFtnPq1CnRdWetWrUUP/30k9o+yPkbLYxU7NLkd6Vax9XVVfDzdO7cWREQEKBIT0/XqB/x8fGKpk2bCtps2bKl4vDhwxrV37Fjh+CatlatWoratWsrTpw4obbu8+fPJePem2++qVH9I0eOKLp06VJoDFE3bn7y5ImiTZs2ono9evRQnD17Vu35Q0JCFO3atRPVX7RoUZH1vvzyS1GdhQsXqj1fYQYOHChoS5O+k/GRigm6XEtqy9vbW3DuZs2aKTp37qw8btSokeKnn35SxMfHa9zmmTNnRD+TpvfwIiMjFY0aNRLV7927t+Ly5ctq6/v7+0veA9I03t66dUvyu2LQoEGKGzduqD3/7t27FU2aNNF6XDd+/HhRHV9fX7Xnk5Kbm6vo2LGjIDa/fj+XSreUlBTB+yv1X/PmzRVz585VnD17VpGXl1cs/TDEWFzVw4cPRW3Mnj1b1s8jd3xWGDljR6k+qN6rmj17tiIiIkLr/pw9e1ZRp04dyX5FRkYWWTcnJ0exatUqydhc8J+6GHPy5EnJ848bN07x8OFDtf339fWVfCZx9OjRIutJ3SvUdKyrKjk5WfD90KRJE7X3XqhkGEtclPO5L4y+rhnbt28v+LsdPHiwIjw8vMg2EhMTFYMGDRK15erqqnH/Ve+rFvz3+eefq71vmpiYqJgzZ47kfTpNx8nff/+9qF6dOnUU33zzjSIlJaXIuunp6YqPPvpIVL9JkyZFjoefPHkiilMNGjRQJCQkqO2vlOPHj+vt74n0g9sNExERQXrL4cTERNEMPnVUZ78D+t1qeMGCBbh165agzM3NDYGBgWjdurXa+gMHDkRQUBBq1qwpKN+1a5doJRFNvXz5EsnJyQCAyZMn49ChQ+jWrVuRdWxtbfH7778rVxgskJKSonZbSuDVSjNfffWVqHzq1KlYs2aNqF2p83/11VfYtWsXqlSpovZ8qmJjY7Fw4UJBmbm5OZYvX45ffvlFbZuWlpaYN28eZs2aJSjPz8/H33//XWg9a2tryb+nrVu3at7516jOGBw1alSp3KqCyqb09HRMmTJFsA25jY0N1q1bhy+++ELtylDm5uaYNGkStm/fjkqVKinLs7Ky8MknnxS5Zee+ffsE2xWYmZnh77//xujRozX6jPTq1QvHjx+Hq6uroFyTreuWLVuGO3fuCMpq1KiBXbt2wdvbW239Ll264NChQ7JXBf3+++9F2yu3a9cOhw4dQv/+/dXWb9WqFQICApQrURTYv39/kVtk+fj4oFy5coKyo0ePytpKIzk5WbCamr29PQYPHqx1O8ZEauvekJAQjbbHUN0OolOnTqhYsaKgrE2bNqKt5vPy8hASEqK2/TNnzohWY9Zmq2FDftYLHDlyRPSdaGVlhT///BNz586FjY1NkfVr164NPz8/LF++XK9bZTx69AjAqxVEDx8+jFmzZqnti7e3NyZNmiQq13RM+9lnn4lWO54zZw7WrVuHOnXqqK3v5uaGQ4cOical3377rWArI1UxMTHYv3+/oGzatGlYtGiRRqv6NGrUCLt27RLNzD506JBo1rQqQ7//hw4dEm2R7ejoiJ07d2LGjBmi2KiqcuXKWLt2LVxcXATljx8/LnL72Xbt2qFNmzaCsmfPnuHYsWNa/gSvqK7yw5UoNBcXFwfg1d/Szp07sWjRIsltpl7XvXt3zJ07V1T+77//Fksfi9uDBw+U19GjR4/GiRMn4OPjo/EKGZs2bUJqaqry2NraGgEBAfD09NSovre3N44dOyZYBU+hUGDTpk1q686bN0+0OkXTpk2xd+9ejb4P+/TpgxMnTuCtt97SqK+qvvjiC9F4ycPDAwcOHBDFBSlubm7YvHmz6He9bt26IrcBHDdunKgsMDBQNCbQxN27dwUrcTds2FCjvhOpk5KSolxdvFOnTjh27Bg+/vhjVK1atdjPrVAoMGvWLNHnyMXFBbt370aHDh3UtjFy5EicOHEC7du31/r8+fn5+Oijj0T3KEeNGoXAwEC0atVKbRtDhgzBmjVrRNfAUjt6vE4qPsjdcvjkyZOC1a27d+8u2gKPSi87OzusXr0a1tbWhb7m5cuX2LRpE0aMGIEuXbpgwYIFuHTpkt76YKixuCpTuB8bEREB4NXqjAEBAVi5cqXWKxBnZGRg1qxZouv8IUOGICAgQO0OEpaWlvjwww9x5MgRNGjQQKtzA0BaWprkfYaPP/4YGzZsQL169dS28e677+K7774TlcuJrXK3HN61a5fg+2HYsGEarcBPxc8Y4qKxio+PR2ZmJiwtLfHll18iKChIdE9DlaOjI/7++2/RfZ0HDx4IVpMvzI0bN7By5UpR+eLFi/H999+rXfnc0dERP/74I/z8/GStWB0eHi7ayczGxgZ+fn5YsGAB7Ozsiqxva2uLn3/+GV5eXoLytLS0Ip9TVK9eXXQtnZ2dLfq+1JTqOHDs2LGy2iH9YZIgERERgLfeekty2yJtL7RUX+/k5CR7CWZVly5dEiWDNW7cGOvXr9dqefF69ephy5YtoguN7777Di9evJDVt/Lly+Pvv//GwoULi7yAeV2FChUkHx5eu3ZNbd0ff/xR8BAIAIYPH6719mgdO3bEnj17tN4S8fHjx4JEBOBVYo22g9s5c+aItt9U3e5JldQ5AgMDRdszqpOXl4edO3cqjy0sLDReYp2oJPz888+C7WIB4LffftP6AWrnzp3x/fffC8pu3bqFbdu2FVpH9QG7i4uL1ue1t7eHr68vmjVrBltbW3z88cfYtWtXkXUePXok2l6kXLly2Lx5Mxo1aqTxua2srLBixQpMnz5dqz4DwIsXLwRJLk2bNsXWrVu1epBWu3ZtycSFohJPKleuLEpCzMnJEW2noomgoCBBwtmwYcNK/TYcUkkG8fHxookDql68eCF46F5YW+bm5ujevbuoPDg4WG3fVF9jZ2eHLl26qK1XwJCfdeDV9+HixYtF5UuWLNEoMfZ1Y8eOLXKLIDl8fHywe/durbbL/uCDD0Rlmoyvjh8/LtguFgDee+89jbedLlC9enX8/fffgpuVmZmZWLZsWaF1jh07JnjQUqFCBXz88cdandfc3Bz/+9//4OXlBTMzM3h5eeHUqVNFxi9jeP+fPHkiSNwtX748/P39NUoeKGBlZYVly5aJtppSl/AnNa6UM/nkzp07uHr1qvK4adOmWsUBAnr06IFDhw6ha9euGtd55513RN9v169f1yg52lh9+OGHWLFihdqHHapU/9aHDRum0SS619WoUQMbN25E9erVUalSJXzzzTeSW3297vz58zhw4ICgzNHREQEBAVpNRqtQoQL8/PwwfPhwrfoMAKmpqYLEAldXV/j6+mr1oLdVq1ai747MzEycPXu20DotWrRAx44dBWXPnz/XeqIlIL6PIneyCxknY4hJLi4u8Pf3F91/KU6BgYGi8ZezszM2bNig1UPiqlWrYseOHaIJaOqkpKTA3Fz4+M/LywsrVqyAlZWVxu24u7uLYlN0dDTu3r1baJ233npLNDn55s2buH79usbnLcD4UPZ17doVf/75p0afiydPnsDX1xdDhgzBG2+8gSVLlsj6u1Jt01BjcVNUo0YN7NixQ+0CA4X566+/RPcP3nzzTfz+++9abbvbsGFD7N27F82bN9fq/PHx8aIx1syZM/Hpp59qleg5ZswY0bj/woULSElJKbSOt7e3KNHp33//xfPnzzU+bwHV+ySMrcbF0HHRmDk5OSEgIADTp08XjXMKU7NmTcnJ46/fwyjM4sWLkZubKyibOXOm5OTcovTp0wc7d+7UOlEwJiYGjo6OymMLCwusWbMGvXv31qodqYmIcu4XyZn0kZSUJLhGrFSpktb320j/mCRIRESEVxfzw4YNE5WfPHlStCpAYVRnvwOvHk5oc/OtKMuXLxckj5mZmWHZsmWyEh+aNm0qSh5JTEyEr6+v1m1VqFABu3btwsCBA7Wu+8Ybb4jK1F3YxsXFiS5knZycsGjRIq3PDwD169dHw4YNtarTpUsXhIWFISgoCO+99x4+/fRTWbNfrKysMGTIEEHZs2fPBLOkVTVu3Fg0OzUxMRFHjhzR6tzHjh0T/G17eHioXYGRqKQkJiZi7dq1grIRI0ZgwIABstobPHiw6GZAUfEuKipKcNyuXTtZ57W3t8euXbtw7tw5fPrpp2pvBKxatUqU8Dtr1iytb1oW0GY1twK//PILrly5guXLl2PAgAHw8/NTOytSypAhQ0Qz7m/evFlkHalZ0eoSvKSo3rAoC6tZde7cWTJhQl0S3+nTp5GXlyco69Wrl+Rr3d3dRWWnTp1S2zfVPri5uWk89jH0Zx14tXKo6uqZbm5usme1Fvb7lWPWrFn4+eef1a5kp6pu3bqoVauWoEyTBwc//vij4NjZ2Vly5WZN1K9fH19++aWgbM+ePYX2Q/U9aNKkiaxZ1gCwcuVKhISE4LfffkPt2rWLfK0xvP8TJ07EtWvXsHbtWnh5eeG3337TOrkJeLWaourDzBs3bhRZZ/jw4aKHXCdOnND4+qeA1OrUpDlvb29s2rRJtKKrOra2tmjbtq2gLC8vT7nKe2kzYMAAzJ8/X1Zd1bGb6u9FU7Vr18ahQ4cQGhqK999/X+332a+//ioq+/rrr0UrKmvCwsJCMmFfnW3btuHChQtYuHAhBg4ciL/++kvtqkdSRowYISpTF0P0sVpYbm6uYPKalZWVXndjIMOLi4vDZ599hgULFsj6b8mSJaJJotqoV6+e7NVbdPHbb78Jjs3MzPDDDz/I6oetrS3efPNNreo4ODjg4MGDCAkJwdy5c+Ht7Y0ffvhB1mplUp/JouKDhYWFZMKJtvFBdYeXypUro1+/flq1QaWDp6cn9u7dixYtWmhcJyYmBqtWrUK/fv3QvXt3rFq1Su0K4lIMORY3NVZWVli/OeNo8gAAIABJREFUfr1Wk2Bfl5mZiTVr1gjKbGxssHz5cq0SBAtUrlxZ7SpkqpydnREcHIwjR45gxowZmDRpEj7//HOtzw2Ix165ubnK1RalODg4iO535Obmaj25NiIiQpDE3qJFC62SYqlkGDIuGqsaNWpg//79Wo+JAEjWUbd7zeXLl3H69GlBWZMmTbSe0Fqgbdu2Wl/zDxgwAJcvX8bWrVsxduxYLFmyRNaiNI6OjqLJ2Oru07u7u4tWR719+7ZGk5Bft2vXLsFkfi8vL63vc5L+MUmQiIjo/0mtoqZ6w7ooUje79LUyW0REhGjLv549e8oaEBeYNm2aaLvBTZs2ab09kKOjo6ybJwAkk9LS09OLrBMQECBKeHj//fe1HmDryszMDF26dMGiRYtkXxgAkPzdqbtAkXpwreuql2UhiYbKji1btgi2vbCwsMCnn36qU5sffvih4PjWrVuFzqxU3ZLp6dOnss/r4OCg0UoyGRkZCAoKEpTZ29uLts4sCZUrV8bYsWOxZs0aWduvAK8SyJ2dnQVl6pKUXF1dRUnbERERogT8oqi+r61bt9b6pq8xsrKyklw9RF2SoOq/V6tWrdCtxaSSBKOjo0UJVK978OABHjx4ICjTJjnV0J/1gj6o+uyzz3Tqg77ISRYpoLpKsrrx1aVLl0SzqD/++GONV4iWMmrUKMHKyzk5OYWOq/UZdy0sLDSOXcby/ltbW6Nv37747bffdHr4rTquVDemtLOzE02U0vZBU05OjmDLmXLlyjHBR0tubm6yHmwC4s86oP7zbozMzMywYMEC2fVVY4i2ia6vq1atmtrtngEgNjZW9D3bsGFDg/z916xZE5MnT8bff/8t+7q4YcOGouQldTFkyJAhot/VyZMntYrhx44dEzy87N27d4lsBUslR6FQYMuWLfD19ZX136pVq0TjTW3MmTNHdO+ruJ0/f160hV337t0Nso22s7MzZs+ejV9//VX2A1mp+1bqru1GjRol+m5TXfFdHdVdM7y9vWUlQVPp0Lx5cxw+fBhLly5FnTp1tKp7//59LFmyBF26dMG8efO0vpYw1Fjc1Hh5ecl+hgAA+/fvF02G8fb2lp10qItWrVrhiy++wOLFi2VvFS0nturjmYDqyvFcRdB4GTIuGiNnZ2fUrVtXVl05181S94tmz56t030yOSwsLNCjRw8sX74c48ePl92OaszJyckpcoKhmZmZXiZ9qL6eMcc4MEmQiIjo/7Vu3VpyZo4mF1q5ubmCh2PAq1lYulz4vk5qi0pdB1O2traiVeyePn2KsLAwndrVhtSAuqitdoFXNwReV9q3yX19ufACRW0tALyaQaRaLzg4GHFxcRqdMyEhQbCcePXq1bXe1pGoOKl+zl1dXWXfBCjQrl07UWLyyZMnJV+rmtR39OhR0XYm+hYcHCz67A8dOrRUb5OrGqfUxTZA960MyvKNB6kkvgsXLiAjI6PQOqp/4+7u7oXewK5Ro4bkOKio1QSlkhS1mdFq6M96UlKSaCvFxo0bl4ltUrV9CKz6XlSoUAGDBg3SqQ/W1taipNHCEludnJwEx3FxcVqvkqytsvj+y4m7UiuBafOg6dixY4KHWZ6eniU+eceUybmeMkbNmjXTKf6rxpCdO3fqtPKYJg4cOCDaRrW0r6KpbQyxtbWFt7e3oCwvLw/bt2/X+JzcSpSKmyHudezbt09UVprjg9R9K3Uxtnbt2qIVlpOTk3Ho0CGNz8vJrabHwsICEyZMQGhoKPz8/NCvXz+tkjFycnKwceNGuLm5SSZ3FDc5Y3FToms8Vr1mBcpebFX3N9OlSxfRbiN3797FpUuXNDpnTk6O4DmTtbU1vLy8NKpLhlHa46Kx0Pa6OT8/HwcPHhSUOTg4lOptcuWM50aNGgVLS0tB2e7du0WT9Apz48YNwYqF7du3R8uWLTWqS8WLSYJERESvkUo2i4yMxOXLl4uspzr7HZDerkeu48ePC44tLS1lLSutqm/fvqKyEydO6NxucUlMTMTt27cFZW3bti1z2+Sqe7BnbW0t+lvV5mHMjh07BCtG+vj4yF69hEjfEhISRKt+devWTS9tqyZAFZYU3bVrV8FxSkoKJk2apNMKFuqorhYLSMfoss7Hx0d042bPnj1FJsIVyM7OFtzstLW1LVM3O6VW6MvKysK5c+ckXx8ZGSlKblW3FapUImJhCXaAOOGrcePGGs9uNobP+tmzZ0UJHqb4uQPE73OXLl30Mjta9ebf+fPnJcc5qnEXeLXyjyZbXsvF9/+Vtm3birZmjYqKwoULFzSqr5qcLXerZjJtUg8stKEaQ2JiYjB58uRi3V7LFMZumiSc6pJo/Pz5c8HktVq1asnatp3KNktLS522CjZE4vqZM2cExxYWFujTp0+J96M4yY0Pmk4Au379Om7duqU87ty5M5o2bap5B6lUMzc3h6enJ3x9fXHlyhX88MMPcHV1hbm5Zo+0MzIy8Nlnn+GTTz4plZMnyipdxnt5eXmiex/VqlVDx44dde2WUSnusdfRo0cFK1xKLURAxolxsWTduHFDtMqeu7t7mdsmV93fQrVq1eDp6Skoe/HihSiBsjCc8GG8mCRIRET0Gi8vL9HMCED9hZbqTS5LS0vRjHq5MjIyEBERIShr1qyZXlaXUn0gCADXrl3Tud3iEh4eLhq4tmvXzkC90V5eXh4SExOVD14PHz6Mv/76S1ZbumwvsG3bNuX/F7ZsOJGhXL9+XfQ5V92CVq7Xt70EXiVBSBkzZowocfbGjRvw8PDAnDlzcO7cOVFiia6kYm9pim8ZGRmIjY3FjRs3cOrUKaxfv17W90nlypVFszJfvnyJAwcOqK175MgRJCYmKo8HDhyo0XaBpUWDBg0kt1AtbGU21aQvc3Nz9OjRo8hzSCUJhoaGChLLC+Tm5opWYdNmq2Fj+KyHh4eLyqTGRmVdRkaGaEu84novCmKFqh49eoj+vpOSkjB69GiMGTMG+/bt0yhZWBul/f3Pzs7G06dPERERgdDQUOzatQt79+6V1ZbccWV8fLxgglHdunV12iabSK533nlHVHbq1Cl069YNCxYskPy860q1TTs7O4NsdydXamoqoqOjER4ejuDgYKxatUrWytnNmzdHp06dBGX379/H+fPn1dbdsWMHcnNzlccjR47U+EEnlR6VKlVCZGQkYmNjZf338OFDvY1LSkJmZibu3LkjKGvcuLFOiY4l7eXLl3j48CGuXr2K48ePY/HixbLa8fDwQK1atQRlISEhkmNBVar3WflQ2XQ5ODhgzJgx2L59Oy5cuIAFCxZoPGb39/fHV199VSz90udYnNT777//8OLFC0FZmzZtDNQb7SkUCiQnJ+P+/fu4dOkS/v33X/z000+y2vLy8hIlKmk6ubYs775hSow1LpYlpf0+fW5uLp4/f47IyEiEhYVh37592Lx5s6y25E76UJ3MX758eQwdOlRWH0j/xFkQREREJqxKlSrw8PAQbW+2Z88eLFy4UDIx79mzZ6KV/tzd3VG1alW99OnevXuiZBSp7QDlqFq1KqpUqSLYIkz1IbExuX//vqjM2JanfvDgAUJCQnDnzh3cuXMHjx8/RlpaGtLS0pCenq63mVqNGjWCi4sLQkNDBecODQ2Fi4tLofWuXr0qSDp1dXVF/fr19dInIn2QikE7d+4sdLU0TSkUCtGKDrGxscjNzRUlhzdo0AAff/wxVqxYISjPyspCQEAAAgIC4OTkBA8PD/Tp0wfu7u6ws7PTqX+q8a1GjRpGtV1jVlYWzpw5g/DwcNy9exdRUVF48eIFUlNTkZaWJplEJte4ceMQFBQkKNu6dava5HtTmJ3Ys2dPrFu3TlBW2EprqkmC7dq1UztDvGvXrrCxsRFsG5GWloaLFy+KvlsuXbok2gpHm9V/jOGzXhrGFSVBaqx56dIlLFiwQOe2pZJEHj58KFpx0sLCAsuXL8fo0aORl5cn+Lfg4GAEBwfDxsYG3bp1Q58+fdC7d2+dV5I29vdfoVDgypUruHjxIu7evYs7d+4gISFBGXc13d5FE8OHD8e3334r2Gpmz/+xd59xUR1tG8CvpYMooCiCBQtIEOwVe0GNIGJHIxpN7L3XmKgxj4+xxF4fRY0dOzbsDXvv2FCJIlFREQRp+37wx76cPWdhd1nYBa//J3c4ZWR3hzkz99yzdy+mT5+eaVDDjh07RAE+qrY0J8pJXl5eCAgIEPUF4uLisHr1aqxevRpOTk7w9vZGixYtUK9evWxlgYiLi8O///4rKPvuu+8M6vMfHx+PU6dO4d69ewgPD8fTp08RGxureDbN+N3NrsDAQNE2d5s3b5bMEptRxvfLyMgoT28ZSKpZW1vnqQC57IqIiBCN+xhS/wL4uhDj1KlTuH//PsLDw/Hs2TN8+vQJnz9/Rnx8vKgvpi1jY2N069YNc+fOVZSlpaVh69atGDVqlMrzvnz5IngetLa2hp+fn07qRHlb8eLF0b9/f/Tv3x9PnjzBzp07sWnTJtHf5IzWrVuHJk2aiDIhZSU3++KUNUN/dgOA169f49SpU4o5gcjISMTHxys+M7qaE7CxsUHbtm0FSQA+ffqEkJAQyV2y0kVHRwvGicqUKYN69erppE6kP7nZLn5L8kKbc//+fVy8eBEPHjzAw4cPER0drWhzdLnItlGjRnB2dsbz588VZWFhYYiMjESpUqVUnhcaGor3798rXrdt2zbb8yekOwwSJCIiUtKlSxdRkGBsbCwOHjwouW2h8uQYAHTu3Fln9YmOjhaV6TINvK2trSBI8O3bt0hNTTXI7Wdfv34tKjOEIJrExESsX78eO3bswJ07d3Ltvj169BAECQJfV/FkFiTI1dhk6KTavEOHDuXIvdLS0hAfHw8bGxvRz0aMGIGEhAQsWbJE8tx3794hODgYwcHBMDMzg5eXl2LiObMHZCmJiYmiLQwMZbuP27dvY+XKlThy5IgoICyneHl5wcXFRZD97cKFC3j+/LnKoOb0wdh05cuXR506dXK8rrmtcePGoiDB8PBwREVFwdHRUVGWmJgoCrZTJ4DPwsICXl5egsxgwNeAQ+W/LcpBiBYWFqhbt64a/4uvDOG7HhUVJTrWEPoVuU3qvbh582aOZZdW1ZbUr18fy5Ytw7BhwyQn3RITE3H06FEcPXoUMpkMlSpVUrS7lSpV0jg4x1Df/+joaKxYsQIhISFaZfXSRoECBdCuXTts2LBBURYfH4+QkBAEBASoPC9jgI+xsXGmxxLltP/+979ITk7Gzp07JX/+6tUrrF+/HuvXr4eVlRUaNmyIFi1aoHnz5ihWrJhG9zLU51Lga5autWvX4sSJE7kWwODn54epU6cKMvzs27cPM2bMQIECBSTPuXbtGh4+fKh43bBhQ1EAOVFeZMjtw/79+7Fx40aEhYXpNFA4M127dsX8+fMFgYfbtm3DyJEjVfbdDh06JHg+9vf3/6YCTUk95cuXx9ixYzF8+HDs2LED8+bNU9l3/vXXX9G8eXO1xrr10RenrBlq25qamopt27Zh69atuHLlSq5t4xoYGCgIEgS+PptlFiS4fft2QVvctWtXg1rgQtmXU+3it8hQ25zY2FisWrUKu3fvlgxkzAkymQw//PADZs6cqSiTy+XYunUrxowZo/I85QV8zFxqWJi/n4iISIm3t7dkh0/VllvK5ba2tjpdhZMxo0c6XW6fWLBgQVFZfHy8zq6vS1K/C6n656Z9+/ahUaNGmDZtWqYBgpaWlrC3t4erqyuaN2+OPn364I8//oC3t7fW927durXos7p//37J3xPwdXJ97969itd2dnaibT2J9C232x9V95PJZJg0aRK2bdsGT0/PTK+RlJSEU6dOYcqUKahbty68vb3x119/qbWNkqo66Hub3JiYGAwbNgytW7fGzp07VQb1mJiYwMbGBk5OTqhRowY6deqEMWPGYNq0aZLZd9WlHMCcPvigSnBwsGCwM78GQNevXx+mpqaicuVsghcvXhQFBqi7FbDUlsNS2QqVy7y8vDTKymQI33WpMn33K/TBEN6LdL6+vjh+/Di+//77TCcs5HI5bt26hXnz5qF169aoWbMmfvnlF9y4cSNb9dDn+5+amoq//voLDRo0wIoVK1QO5hsZGcHa2hoODg7w9PSEr68vhgwZgv/85z9wcXHR+v6abiFz5coVQUbQJk2aiLYUJMpNZmZmWLRoEZYvXy7avlzZ58+fERoaijFjxqB69erw8/PD8uXLERMTo9a9DPG59MWLF+jZsycCAgJw8OBBlQGCZmZmsLW1RcmSJVG3bl107doVEyZMwMSJE7W+t6WlpSjj8+fPnwXPnsq4eI3yK0NsH+7cuQN/f3/069cPp06dUhkgaGFhATs7Ozg7O6N+/foIDAzElClTMGDAAK3v7eTkhGbNmgnKIiMjcfbsWZXnKD/3de/eXev7U/5nZmaGbt264dSpUyoDECIjI3H06NFMr6PvvjhlzhDHzc6dO4cWLVpgzJgxuHz5ssoAQQsLCxQuXBhly5ZFkyZN0KtXL0ydOjXTgL6s1KhRQ7TT1MWLF/Hs2TOV52RsW01MTLjAKx/TVbv4LTPE/ty6detQv359zJs3T2WAoEwmg5WVFYoWLQp3d3d8//33GDBgAP7zn/+gRo0aWt87ICBANB4dHBws2pUkXVRUlGAxv5ubG2rWrKn1/Un3mEmQiIhIiampKdq1a4c1a9YIysPCwvDPP/8IVrcrr34Hvq6iNzc311l9dLXNhypSE7A5fU9tffnyRVRmZmamh5p8NW/ePMG2Kemsra3RrFkzNGvWDO7u7ihfvrzKYJny5ctr/UBmZmaGLl26YPny5YqyhIQE7NmzR3IQ9eDBg4LsDh06dNDpZ5VIF3S5bW1WbG1tsxxUrF+/PkJDQ3HhwgXs3LkTR48elcy6ldH9+/dx//59zJ8/H507d8bkyZMzzQwoNYkrFQiWWyIiIhAYGCg5uOjh4YEWLVqgbt26KF++PBwdHVUG8uzfv19yq1F1dO7cGbNmzRK0+8HBwRgzZgyMjMRr3TKuoDY1NdVpRl9DUqBAAdSsWVOURfbUqVOCAV7lLH92dnaoVq2aWveQChK8c+cOYmJiFIHpMTExuHXrluAYdYMQ0xnCd125X2FiYvJNrqLOzffCxMREkPVSirOzM1avXo2nT58iODgYoaGhCA8Pz/Sc169fIygoCEFBQahXrx5mzJgBNze3TM8xpPf/8+fPGDBgAI4dOyb6maOjI1q2bInGjRvDxcUFzs7Ooq2z00VHR2PBggVa1aFSpUqoUqWKIIPkpUuX8PTpU5QrV050vHLmCgb4kKHw8/NTBBzv2bMHx48fF2Vszkgul+PatWu4du0a5syZg969e2PUqFGZLnYwtOfSGzdu4McffxTsEJCuZs2a8Pb2Rq1atVC+fHkULVpU5XXWrl0rmWVVHYGBgaIxlC1btkhOTCYkJCAkJETxukiRImjVqpVW9yUyNFLtgz6f7Y4ePYqBAwfi8+fPgnJjY2PUr18fzZs3R9WqVVG+fHmVz6ypqamCcSdNBQYG4siRI4KyrVu3omHDhqJjX716hTNnziheV6xYEVWqVNH63vTtsLKywpw5c2BjYyP5eT127JjKvzWG0BenzBnauNnmzZsxYcIEUdC1hYUFGjZsCG9vb3h6eqJ8+fIqA4uePXsmeqbSRGBgICZPnqx4LZfLsWXLFkyYMEF07OXLl/HkyRPFa20yaVPek5128VtnSP25lJQUTJw4EZs2bRL9rHDhwvD29kbTpk3h5uaGMmXKqJzvMzMzw9WrV7WqQ9GiRdGyZUvs379fUfbPP//g7NmzaNSokeh45QBCZhE0PAwSJCIiktClSxfRALdcLkdwcDBGjhypKJPKrpGdVWBSpLbniY2N1dn1pa5lbW2ts+vrklSGIlVZ83LaokWLRAGCZmZmGDJkCPr06SO5famU7E5Gd+/eHStWrBCsVtyyZYtkkCCzNVBeILWN0MqVK+Hr66uH2vy/unXrom7dupDL5bh9+zZOnDiBkydP4tq1ayozMaSkpGDz5s04fvw4NmzYgIoVK0oeJzUJra+MrjExMejUqZNoW4Vq1aph0qRJqFevntrXyk77VrhwYfj6+gq2DHz16hVOnz4tCkZLD2JJ16JFCxQpUkTrexu6Jk2aiIIEz5w5A7lcrgjYVA4SbNSokWRwpZQKFSrA0dFRECSQlpaGM2fOwN/fX3E/5dWi6mxnnJEhfNeV+xUpKSlISEjIVhbMvEiqr9m7d2/MmDFDD7X5f+XKlcP48eMxfvx4REZG4vjx4zh58iTCwsIybSPPnTuH77//HvPmzUP79u1VHmco779cLkffvn1F31sHBweMHz8eHTt2VDkRqSy7/crAwEDRNtNbt24VZRhLSEgQZAgrVqxYtrJjE+makZERvL294e3tjdTUVFy9elXRd7t9+7bKTC8JCQlYunQpjhw5go0bN6JEiRKSxxnSc+nTp0/RpUsXUbvYpEkTTJw4McuM2Bllpw1xc3NDrVq1cPnyZUXZlStX8PjxY1FmpQMHDgjGITp16qTXiX4iXZJqH/T1bHfx4kX89NNPooXA7du3x+jRo1G2bFm1rpPd/kWzZs1QokQJQab9gwcPIjY2VrSQZ9u2bYLnDI5bkaYmTZqEkydP4sGDB4Lya9euSR5vSH1xUk3qGU1ffa9du3aJttiUyWTo3bs3hgwZAgcHB7Wuk93PS4cOHTBjxgwkJCQoyrZv345x48aJxn+47ee3TdN2kQyrPzdp0iRRgGDBggUxZswYdO/eXe0xLHXHhVUJDAwUBAkCX+cbpYIEMwZAm5ubi7LOk/5xu2EiIiIJlSpVEqVsB752btInFJQnx4CvWeGqV6+u07pIbX2cWSYETWXMLAd8TdVvqAP0UpPYqrbAzEl37twRBQja2dlh586dGD16tNoBgrpQrlw5eHl5CcquXbsm2P4N+LqyJywsTPG6WrVq+O6773KljkSasLW1FZXl5ncqKzKZDJUrV8bw4cOxa9cu3L59GytXrkS3bt1gb28veU50dDQCAgJUblcjFSyly2BwTUyYMEEUINitWzfs2rVLowBBXVAn2BkQD3bm94kkqYx9MTExuH37NoCvwZTKWY41zfIndXzGSZOMW0YAQOnSpVG+fHmN7mEI33Wp754++hX6JvV7N6R2FwBKlSqFH3/8EUFBQbh79y62bduGQYMGqfzcJSUlYejQoTh+/LjKaxrK+79u3TrRpGTVqlURGhqKgIAAtScldaFdu3aixULbt28XBRfs379f8Lvq3LlzrtaTSBPGxsaoXbs2xo8fj4MHD+LmzZtYuHAh2rdvrzKj9KNHjxAQEKBy8tlQnktTU1MxbNgw0YTVyJEjsWHDBo0CBHVBqu+m3E+TKsvvfTf6tuT0Ql91xcfHY8SIEYK/4TKZDLNnz8bixYvVDhDUBSMjI1FASmJiInbt2iU6Njg4WPFvCwsLdOjQIcfrR/mLsbExevToISpXHudIZ0h9cVLNUJ7doqKiBNn7gK9t1bp16/D777+rHSCoC4UKFULbtm1F9VP+PCtncC5evLhoG3jK3zRtF8lw+nNHjx7Fxo0bBWXOzs44cOAA+vTpk6uLXBs2bIgyZcoIykJDQ0Vz1RcvXkRERITidatWrSTnuEm/GCRIRESkgtRWhS9evFBk71GeHFN1TnZJTX4qr/rRVkxMDN68eSMoc3V11cm1c4LU9nQvXrzI9XosWbJEtDXfkiVL1N7KUdcCAwNFZcqBNBkDXAFOxJDhkmrzDHnQolChQvD19cWcOXNw/fp1rFu3ThS4C3xtb6dMmSJ5DQsLC9HWTq9evcr1rd8fP34sWhFYp04dzJo1Sy/B43Xr1hVlnjl8+DDev3+veP3582fBYGeJEiUkt8vNTzw8PCS3CkwP3FMO4JPJZBoHCUr9Dk+fPi26VzpNrw8YxnfdUPoV+qb8PQMMu901NTVF/fr1MXnyZJw+fRqhoaHo3LmzKBODXC7HmDFjJLemAgzj/U9LS8OiRYsEZYULF8bq1asz3RI0p1hZWYmyL75+/RonTpwQlCn3M7t27ZrjdSPSlSJFiqBjx45YvHgxbt68iaVLl8LDw0N0XEREBGbPni15jeLFi4vK9PH34/Tp07h+/bqgrH379hgzZowiu3Bu8vPzEy0C2L59uyDrdmRkJM6dO6d4XatWLcm/Q0R5lVT/IjIyMtfrsWPHDlG7NGTIEL2NBXXt2lXUV1MOGD5//jyePXumeO3j42NwC1cob5BawC8V+G9ofXFSzRCe3QAgKChIlHBh+vTpaN68ea7XBVBvTiAkJETw+e/SpQuzXn6D1G0X6StD6c/Nnz9f8Nrc3ByrV69GuXLlcr0uMplM1I9MTEzE7t27BWXKbRAzlxomBgkSERGpoGo7gfRBLOXBLCMjoxxJm1y4cGHRJMSDBw/w5cuXbF/7zp07orJKlSpl+7o5RWql861bt3K1DnFxcTh8+LCgrHbt2noNSmndurVoa80dO3YoJmPkcrkgxXeBAgUUW0YSGRqpSVrlrQ8NVfrWdtu3b8ecOXNEf0NCQ0MFWyxlpNy+JSQkiLLB5bQdO3aIykaOHKnXwUPljDRfvnwRbEEcEhIiyJ7TtWvXbG+fYOhkMpnkVg7pgXvKq8YrVqyIYsWKaXSPhg0bin6Pr1+/Rnh4OMLDw0UBZJpuNQwYxnddalAtt/sVhqBo0aKiSbC80u4CgKenJ+bPn489e/aIPuvR0dHYt2+f5HmG8P6fPXtW9H3q0aOHZABSbslqoun58+e4cOGC4rWXl5deBqiJdMHMzAz+/v44dOiQaNs4ANi4caNkoLG1tbWovYmIiMj1jDYZ+0TA1z7C6NGjc7UOGVlYWIjGRP79919BVtetW7dy8Rrla87OzqIgXX30L5XbBysrKwwePDjX65EMoAsAAAAgAElEQVTO0dFRFERz8+ZN3Lt3T/FaeVKZ7QNpSyoDlFQme0Psi5M0Q5gTkMvlora1ZMmSeg2AqV69umg3rCNHjiAmJkbxOuMclkwmY8DON0rddpG+kmpzcnucLCIiQrQgzNfXV3IHvNwSEBAgSiSwefNmxb/j4+MFY3DOzs5o2LBhrtWP1Je/Z0+IiIiywd7eXnLSe//+/Th//rwio2C6+vXrw8nJKUfqohyAlpycLAoC0IbUFmzaTPTnlsqVK4sGW69cuZLtbFuaBFw+evRINFEkFayhLuXVh9owMzNDly5dBGVv3rzB0aNHAQBhYWGClU7+/v6SD4ZEhsDFxQUlSpQQlB06dAhpaWl6qpF2unXrJpqklcvlgswpGVWpUkVUdvHixWzVISkpSaPjlQPH07N1aUt5uwFtdO7cGRYWFoKyjAOcGf9tZGSEgICAbN8zL5DK3Hf16lXExsbi7NmzgnJt/q7b2tpKfiZPnjwp6n+YmZlp9TkxhO965cqVRWXZ/d7pYhGHPij3Ze7fv4+nT5/qqTbaqVatGlauXCkqV9XuGsL7L7VgJzsLT3TRr/T09ETVqlUFZUePHsW7d+8AMDs15U9GRkYYOXKkaHFCQkICbty4IXmOchsil8tx6dKlbNVD077b7du3Ba9Lly6drS1EddGGZBZoLJfLBVuJFipUCH5+ftm+J5EhsbS0hJubm6Ds/fv32V4Alt32oVq1aihYsKBW99bFcx2QefsQFxcnyGpftmxZyQz9lH+kpKRg4cKFmDx5ss6fAdP7rRlJZQY0xL44SStbtiwKFSokKHvw4EG2f+eatK3v3r1DVFSUoKxBgwZaL1TV1edFuW1NSkpSLAJ+9uyZ4Bm3QYMGKF26tE7uS7pnCO0ifSU1JprdZz1AszZHuS8H6P9vlL29PVq1aiUou3PnDu7evQvg62L+z58/K34WEBCglwz3lDUGCRIREWVCOfAK+DpR0KlTJ8HkmKpjdaV169aisk2bNmXrmikpKdi1a5egzNbWFg0aNMjWdXNS4cKFRStl/v33X9EWaJpISUnB48eP1T5eeTAAyN4DlaqJa011795d1OFOH2xVznrJFYOUFeXPUm5vP/D9998LXr969UqwpWx2qPswrotAH6nvWnR0tOSxUm1vxgyg2rh//75Gxyu3b4ULF9Z6sPPff//VqG1Vxc7ODj4+PoKyu3fv4vbt24iIiBAMdjZu3FgUdJZfNWrUSPQ9TUpKwuTJk0WTeNpsBazqvJCQENF3sWbNmloHnuv7u+7l5SX6jCuvuteUpt87Q6H8PQMgGXCnDXXbXU0nv6VIbVupqt01hPdfql9pb2+v9f111a9UnmhKTk7G9u3bkZaWJgjwsbW1lfzsUN6SX7aZ0kXfTWrrbE36bsrPXZrKbhuSnfbj9u3bOsmEWKFCBdSuXVtQduzYMbx9+xZnzpzBP//8oyj39/eHpaVltu9JZGikFtBkt33ImHEvK+/fvxctbjWEcaumTZuKntd27dqFpKQk7N27FwkJCYpyjlvlb0+ePIG/vz9mzZqFtWvX4s8//9Tp9aUyzCkH7wKG2xfPLqmAjLze3zM2NhYFDicnJ4vmNjSlSd9L15+XsLAwrc/NqGPHjrCyshKUZdwJK+McFttWw2Uo7aIqeb0N0ZSnp6co0+KNGzcQHh6u9TXfvn2LN2/eqH28oc5DZrboI2NWaGNj429mMX9exCBBIiKiTHh7e8POzi7L46ytrSUD+XSlefPmolVex48fx9WrV7W+5t9//423b98KygIDA0UZmwyNVKaB7Exi79u3D7GxsWofL5W18P3791rdOzIyMtsDxenKli2LevXqCcpOnDiBc+fO4cCBA4oyd3d3VK9eXSf3pPzL2tpa8Prjx49afc7fv3+PNWvWaHxer169RIOa06ZNE7VZmlq/fj3c3d0zvVZsbCymTp0Kd3d30dbimlIepAMAc3NzyWMbN24sWhV98+ZNrbNapaWlady+KLdvHz9+1Hrl6oIFC5CcnKzVucqkBh+CgoLwv//9T1D2LQ122tvbw9PTU1SuvPVNwYIFUbNmTa3uIbU69fr166KtLpo1a6bV9QH9fteBr4GwykEeX758wbp167S+d3YXcehLixYtULJkSUHZpk2bsj2IeOfOHXh4eKBPnz4qJ2BSU1Oxbt061KhRA9OmTcvW/QBx26uq3TWE91+X/cp9+/bpLEjV399flG1o06ZN2L17N16+fKkoa9++vcE/O5CYcj8vMjJStABOHZGRkdle0KAL0dHRGDFiBCpWrJjtbec06bv5+PiIAo0PHz6MZ8+eaXXv+Ph47N27V6NzlNsQbdsPAJgzZ47W5ypTzsiYkpKCdevWISgoSFDOTKSUX0mNW23btk3rjHwvX77EmTNn1D5e6hlO2/YhOTkZCxYs0OpcZUZGRqJntpiYGAQHB2P9+vWKMhMTkxxdiE36FR0dDV9fX0Gm3kWLFunsOUoulyuyqGWknPkIMNy+eLqUlBStzpNaxPf8+XOtrjV37lytzssJUm1rUFCQ1ovNrl69qlGWV11+Xj5+/IhVq1Zpda6yggULom3btoKy+/fv48iRI4K+up2dXY7OX5H2DKldTJffnhk1ZWRkBF9fX1F5duYhN2/erNHvUJf9uRs3bih2HcuuBg0aoEyZMoKynTt34vTp07h8+bKirGnTpihevLhO7km6xyBBIiKiTJiZmaFdu3ZZHtemTZscXQFvZGSE4cOHC8rS0tIwbtw40epgdURFRWHWrFmCMhsbG/Tr1y9b9cwNAQEBMDMzE5SFhYVhw4YNGl/r7du3+OOPPzQ6R2qFoPLWjuqIi4vDgAEDEB8fr/G5qigH0qSkpKBz586Cz8i3FERD2lNelSaXyzXO2Pny5Ut06tRJcvuWrJQrV07U9kZHR2Po0KFaB61dvnwZ06ZNQ2JiIlauXAkvLy9BoAPwdRuOBg0aYNWqVfjy5QtGjRqVrWx4UtsQKGe4SmdpaYmOHTuKykeNGiXIqKCuJUuW4NGjRxqdU6RIEcHrxMREXLlyReN77969G2vXrtX4PFXq1KkDV1dXQdnWrVsF97C3t0fLli11ds+8QJ0tJho0aABTU1Otrl+9enVR4KoUbTMVAvr7rmckFYS6cOFCrSZ4Ll26JFg1m5cYGxtj2LBhgrLU1FQMGTJE66DNt2/fon///vj8+TMOHjyIFi1aCLaRS+fr64tJkyYhJiYGq1at0jhIJiOp7fxUtbuA/t9/XfUrHz16hPHjx2t8nipWVlZo3769oOzx48cYOnSooIwBPnmTcj/vw4cPGv+9f/DgATp06CDICqcPly9fRsOGDREcHIzExEQMGDBAo+wMyjTpu5UoUUIUKJ+cnIyRI0dq9Tds+vTpGk/6KLchERERmf7NU2Xx4sU6mzQCvo6PKGfemDdvnmABjqenp+S270T5Qa1atUS7YMTExGDy5MkaXystLQ0TJkzQaAGWnZ0djI2NBWVXrlzR6rlyypQpWj3Tq9KtWzeYmJgIysaNGyfYUq9FixbcAjEfs7Ozg6Ojo6h8/PjxOgmIWb16tWjRgI2NjeTiNkPqiyuPdQPQ+jmsWLFiorJjx45pdI20tDRMnToV8+bN06oOOcHHxweFCxcWlD1+/FirQMaEhARMmjRJo3OkPi9hYWEaB04lJydj+PDhklnCtCX1XNurVy+8fv1a8bpTp06SnzPSP0NqF9Plp2dGbanKmHfy5EmNr/X48WMsWbJEo3OUx+kB7f5GRUdHY+DAgVoFeUqRyWSiRWEfPnwQzTsqH0OGhUGCREREWVBn9Wrnzp1zvB4BAQGiDHAPHjzATz/9pNHWSjExMejevbtoK6Fx48ZJdjwNjYODA3788UdR+W+//aZR1q+4uDj06tULr1690uj+np6eogHNs2fParRFQFRUFLp06SJYHaYLrVu3znSbA3Nzc3To0EGn96T8qVatWqKyxYsXq93WnD9/Hm3atMGDBw+0rsOUKVNEAUqnT5/GTz/9pPFWaGfPnkXPnj0FAbM1a9aEk5OT4LhixYoJAqrev3+PgIAArSZF4uLiMGPGDEGZra0t6tatq/KcoUOHijLYPHv2DD///DM+f/6s9r337NkjCgRXR7Vq1URls2fP1miie+3ataJAI12QGpjJqHPnzloHw+VV6gTnZSeAz9jYWHIrxYyKFy8umgDVlD6+6xn5+PiIghSSkpLQu3dvREREqH3vR48e4aeffpLMLpBXdOvWTdQOREdHo0OHDhoHTL98+RIBAQGCjFpFixaVbAMzvj9yuRzDhw+XXOWujvQA0YwyWx2v7/e/atWqorLVq1fj3bt3al/j8uXL6NChg9bZiVTJqt2tWrUqKlasqNN7Uu6Q6ufNmzdP7UmDffv2oV27dho/R+WEEiVKCOr9/PlzdOnSBS9evND4WlFRUZg/f76gzMXFJdNA47Fjx4qyCV66dAmjRo3SqD1YunSpVovelNsQuVyO2bNnq31+WloaZs2ahZkzZ2p878xYWFigU6dOmR7DxWuU340bN05Utnv3bo2e0+RyOaZMmYLjx49rdG8jIyNR/yY+Ph5Lly5V+xqJiYkYOXIk/v77b43unZXixYvD29s702PYPuRvZmZmWLVqlSjbXVpaGsaOHYtff/1Vq4DWtLQ0LF26FFOnThX9bNy4cZLZ9QypLy61QO/mzZtaZcmT6uudOXNG7Z0q3r9/j169euks052umJubY8SIEaLypUuXatRWJSUlYfDgwRqP9ZUoUUIUOPXs2TONsqR9/PgRP/30E44cOaLRvbNSrVo1eHh4ZHoMF3gZLkNqF9Plp2dGbVWuXFky++bgwYNx7do1ta8THR2NH3/8UeMxTqlx+h07dmg0Pvfw4UO0b99eq+fjzEglcsnIwcEBzZs31+k9SbcYJEhERJSFypUrZzoB7uzsjDp16uR4PWQyGZYuXSra/vjUqVPo2LGjWg+2586dQ9u2bREeHi4ob9OmDXr16qXL6uaokSNHiib8ExMT0bdvX8yfPz/LQKYrV66gZcuWoi0T1VGwYEE0bNhQVN6vXz+cP38+03NTUlKwdetWeHt74+bNmwAg2mYxO0xNTTMNam3durVa22cT+fr6ij6b4eHhGD58eKYDlO/fv8evv/6KLl264N9//wUArQOIHBwcsGDBAlE9jhw5Ah8fH7W2W4+Li8PMmTPRvXt3wbbiDg4OmD9/vujaVlZWmDlzpqD89evX8Pf3x7x58xAXF6dW3W/cuIG2bduKgiQHDBiQadZZBwcHjB49WlSe3s5nzK4gJTExEb/99hsGDx6s1epAqYGPc+fOYfjw4VkORqUHM06ePFkxKa7L9q1Tp06Zbmn5LU4k1axZU7T9h7KmTZtm6x5ZZSvMThBiOn181zOSyWSYMWOGaAFAZGQk2rVrp1ZWuy1btsDHxydb2zwaAiMjIyxbtkyUneHJkyfw9fXF9u3bs2xbUlNTsXXrVrRq1UrQBpqYmGDBggWSC1J+//13QcappKQkDBs2DEOGDFF7xXlUVBT69OmD4OBgQXnjxo1Ro0YNlefp+/338vISZduKiYnBDz/8kOX//ePHj5g5cyY6duyImJgYALptdz08PCQHpdN9i+1ufiG1Vdvp06cxbdq0TL/jUVFRGDJkCPr376+Y4MhuoHh2OTk5YeLEiYKyhw8f4vvvv8eaNWvUXuBy6tQp+Pn5ITo6WlA+cuTITM/z9PSUXMAWHByM7t27Zxls/PHjRwwePFjj7PbppPpuwcHB+OOPP7LcovDOnTvo1KkTFi5cCEC37QeQeaCxhYUFF69RvteyZUvJYLiFCxdi0KBBiudlVaKiotC1a1etM7RLtQ9//fUXVq9eneW558+fh6+vryLwRdftQ2aZZRwdHbP9DEOGz8XFBWvWrJEcH1m9ejWaNWuGdevWKfq4mXn//j22bt2KFi1a4I8//hD1ZerUqYOePXtKnmtIfXFLS0vR9o2xsbGYNWuWxuM7JUuWlOzHDxo0SDQnkJFcLseePXvQvHlzRebBkiVLomDBghrdPyf17NkTlSpVEpSlZ1z99ddfBeMBUh4/fgw/Pz+EhoZqfG+ZTIbvv/9eVD5x4kSEhIRkeq5cLkdoaCi8vb0Vgd+52bbWqFEDFSpU0On9SLcMpV1Ml5+eGbPj119/FbWBHz58QNeuXbF+/fosF9YfOXIELVq0ECygVZerq6towVpSUhICAwOz3P0iISEBK1asQOvWrRXbzeuyzSlSpEimC3I7d+4sympNhsUk60OIiIioU6dO+P3331X+TNcPdaqUKlUKQUFB6Nmzp+Ch9/r16/Dx8UHTpk3h4+MDd3d3FC1aFHK5HG/evMHNmzexf/9+yXTU9evXF2VMMHQ2NjZYtmwZunTpIpj4SUlJwezZs7Fp0ya0b98ejRs3hpOTEwoVKoSYmBjcunULe/fuxdGjRxUPM35+foiPj9doZfaYMWNw8uRJwQPRhw8f0KVLF3z//fdo27YtPDw8YGtri9jYWERGRuLs2bPYs2cPIiMjFefUq1cP48ePh7+/vw5+K191794dy5Ytk3xY42QuqcvNzQ3t27fHzp07BeUhISG4e/cu+vTpAy8vL9jb2yM+Ph7h4eE4evQodu/erRgAMDIywrhx49CoUSP4+PhoVY+WLVtixowZ+OWXXwSf6adPn6Jt27bw8vKCn58fqlevDgcHBxgZGeHDhw8IDw/HqVOnEBISIhogtLGxwYYNG+Dg4KDynlOmTMH06dMVZYmJiZg7dy5WrlyJ1q1bo0GDBnBzc4O9vT3MzMyQkJCAly9f4vbt2zh48KBkwHC9evUwcODALP/P/fv3x6VLl0QDlrdu3YKPjw+8vb3RunVreHh4KNr558+f49SpU9iyZYtiK5FChQph9OjR+O2337K8Z7rq1asLBoPT7dy5ExcuXEBgYCAaNGiAEiVKwMjICG/evMGtW7dw7NgxHD58WBEcaG5ujgULFmD//v1ZDpSqy9bWFr6+vpLZxerUqYPy5cvr5D55iampKerXr69ycNvV1RUlSpTI1j2yCgLURZAgoJ/vekY1atTA5MmTMW3aNEH527dvMXDgQKxYsQJ+fn6oU6cOihUrBnNzc7x+/RqXLl3C1q1bFQs1ZDIZxo4di3Xr1okCTfKK9L5mjx49BL/TuLg4DB8+HIsWLUL79u1Rt25dlC5dGhYWFoiLi8PTp09x4cIF7NmzR7RCWSaTYc6cOWjUqJHkPUuUKIGgoCD88MMPgoDkXbt2Ye/evWjatCmaNm0KDw8PODk5wcrKComJiXj79i3u37+PEydOIDQ0VBQMVLx4cbUyaunz/be0tMTQoUNFzxl37txBs2bNEBAQAG9vb7i4uMDCwkKxnfLJkyexd+9ewUr0AQMGoFSpUlptZahKYGCg5KIaKysr0VbhlHc0a9YMtWvXFm2tu2rVKly6dAm9e/dGjRo1FM8yd+/eRWhoKPbt26f4npmbm2PWrFmwtLRE//799fHfUPjpp5/w7NkzQeDLx48fMWXKFCxYsAA+Pj6oV68eXF1dYWdnB1NTU8THx+P58+eK5+T0BVwZdezYUa3P+ZQpU3D9+nVRlvgzZ86gWbNm8PHxQatWrVChQgXY29sjKSkJT548wfHjx7Ft2zZF5iFHR0cEBgZqlAnQz88PixYtEk0SLV26FEeOHEH37t1Rp04dFC9eHGlpafj3339x7do1hIaG4vTp04rjbWxssGbNGsyYMUOrhXRSXF1dUadOHcmsRb6+vpIZk4jym/nz58PHx0fUN9qzZw+OHTsGPz8/tGzZEmXLlkXhwoWRkJCABw8e4PDhw9ixY4ciO/J3332Hxo0bY8WKFWrfOz0LWMYt2OVyOX799Vfs3LkT3bp1Q40aNVC0aFF8+fIF0dHRuHTpEvbv3y/IjuPk5IQNGzagS5cuWm99qqxJkyYoWbKkZBBWQECAKEMr5U8NGjTApk2b0LdvX9Fn68WLF5g0aRJ++eUXuLm5wdXVFcWKFYOVlRXS0tIQHx+PN2/e4NGjR3j8+LHK7L3VqlXDunXrVH6mDK0v3qxZM6xZs0ZQtnz5coSGhqJ27dqiRYINGjRAy5YtJa81btw40Tjw69ev4ePjgx49esDHxwelS5eGkZER/vnnH1y4cAHBwcF4+PCh4vg6depg1apV6Ny5c6bBhbnJ1NQUy5cvh6+vryh74+rVq7F79260a9cOzZs3R8mSJWFnZ4fY2Fjcu3cPBw4cQEhIiGIhhZeXF0qVKqVRJsChQ4ciODhYkL3+y5cvGDBgADZu3IhOnTqhSpUqKFy4MD5//oxXr17h3LlzCAkJEfwO3d3dsXLlSslEBNrq0KEDZsyYIbkTCbMI5g2G0C6my2/PjNoqXbo05s6di/79+wvGK+Pj4zFx4kSsWbMG/v7+aNCgAYoXL44CBQoonrl27twpmCP4+eefcenSpSyTAGQ0duxY0e8uMjISPj4+aNeuHVq3bo3vvvsO1tbW+PDhAyIiInD69Gns3r1b8Blq164d/Pz88PPPP2fjtyEUGBgoOe4vk8k4D5kHMEiQiIhIDR07dsTMmTNFq/FlMlmW2+joWq1atRAcHIw+ffoIAs5SU1Nx9OhRHD16VO1rdejQAXPmzIG5uXlOVDVH1axZE2vWrMHPP/8s2lbu5cuXWLx4MRYvXpzpNfr27YvffvsNv/zyi0b3rlq1KsaNGyfaJiYtLQ0HDhzAgQMHsrxG9+7dMWPGDLx8+VKje2elTJkyaNCgAc6cOSMqr1+/vk7vRfnbjBkzcPv2bTx69EhQ/vTpU0yaNCnTc4sWLYoFCxagcePGkpOumujVqxdsbGwwbtw40UDX+fPns8zgmZGzszOCgoLg5uaW6XH9+/eHg4MDxo4dK7jnp0+fsG3bNo0GEIGvkyArVqwQZaqSkp41tm/fvqLg5bS0NBw+fDjLrdUdHR2xYcMGFCtWTKMgQeDr9sJ+fn6itunVq1f4888/8eeff2Z6fvHixbF8+XLUqlVLoy3g1dGjRw/JIMFveeChcePGKoMEdRHAV7JkSZQrVw5Pnz4V/czY2Fhl0Jc29PFdz6hfv36Ij4/HnDlzRD+7ceOGKPhDmZmZGebPnw9/f3/s2bMnzwYJAl/7WNu3b0efPn1Ek9qPHz/WKIDF0tIS8+fPR5s2bTI9rnbt2tizZ4/ontr0b4Gvn4H169erHSirz/e/b9++CAsLE7X58fHxWLNmjWiiUJm5uTmmTZuGHj16YNOmTWrfVx3+/v6YOnWqaFscPz+/LDOZkmFbvHgx2rRpI8pkdfPmTclt3DIqU6YMli1bhsqVK2Pfvn05WU21TZ8+HU5OTqJn9rdv32L9+vVYv369Rtfr1KkT5s6dq9ax5ubm2LhxI3744QdRvzcpKQm7d+/G7t27M72Gm5sbNmzYgDdv3mjUxhoZGWHp0qVo164dPn78KPjZo0ePJLcWU+bq6opVq1bB1dVVrb6qJgIDAyWDBDlRTd8KOzs7BAcHo0uXLoosLuni4uKwefNmbN68OdNreHl5YfXq1aIxnqwUKFAAS5cuRffu3UW7AajTtwG+9gmXL18OR0dHnbYPRkZG+OGHH0TPljKZDF27dtXZfcjw1a5dG4cPH8aoUaNw8uRJ0c/T0tJw//79LDMmSfH398esWbOyzIJnSH3xPn36YOvWrYiPjxeUR0RESGYnfv78ucogwUaNGmHIkCGisfHExESsWrUq062EZTIZ+vfvjwkTJsDU1FSL/0nOKlOmDLZu3Ypu3bqJsqq9e/cOq1evzjJrqp+fHxYsWICgoCCN7l2iRAnMnj0bw4YNEy3QP3PmjFptdatWrTB//nxYWVlpdO+sFCxYEO3atRN9Dq2trdG2bVud3otyjiG0i+ny2zOjtnx9fTF37lyMHTtWFHz56NEjzJkzR3IsKZ1MJsOUKVPQv3//LDM4KmvTpg26d++OjRs3CsqTkpLUmqMwMjLCiBEjMGrUKI37klmpX78+ypYtK/r75OXlJcqMS4aHS3KIiIjUULRoUcnJ9jp16qB06dK5Xh9PT08cOXIEgYGBWg3UOTo6YsmSJVi0aFGeDBBM16RJExw4cACenp4anWdra4tFixZh6tSpWmeBHDZsGCZPnqzx7z89Q8+ff/4JMzMzre6dlWbNmonKunbtmmsZLyl/sLGxwZYtW1CrVi21z5HJZOjYsSOOHTuW5Talmmjfvj2OHDmiddCTkZERevbsiYMHD6odNNSuXTucPHkSfn5+WmcysLGxwdSpU7F+/XqNgiksLCywdu1ajBkzRuN2olWrVjhw4AC+++47TasL4Ov2rNu2bdO4XTUyMkK3bt1w5MgRjT4zmqhZs6Yo64yNjU2WwUf5WWbfCV1t06XqHtWqVYONjY1O7pFOH9/1jEaOHIk1a9bA3t5eo/Pc3Nywe/dunWYG1jcPDw8cOXIEvXr10npiqGHDhjh06JDa31EPDw8cP34cQ4cOzXRr9syYmJgoPgPK27JkRV/vv7GxMVasWKFVZr66devi4MGD6NGjh1b3zoqlpSW8vLxE5QzwyftKlCiB4OBguLq6qn2OiYkJ+vTpg8OHD6Ny5co5WDvtDBgwAIcPH85WALuDgwMWLlyIBQsWaPScZ2tri507d6J3794a9xt/+OEH7N27F05OTppWFwBQoUIFbNmyReNxCTMzMwwaNAgHDx7U6HOgCann0vLly6Nu3bo5cj8iQ1SyZEkcOHBA4wANY2NjDBkyBJs2bdK6z12vXj0EBQWhSJEiGp1XoEABTJ48GTt27ICjo6NW985K8+bNRWWNGjVCqVKlcuR+ZLgcHBywceNGrFu3DlWqVMn29VxcXLBu3TosXbpUrUAYQ+qLOzs7Y9myZTpbjDNhwgSMHj1ao76Ji4sLgoODMWXKFIMMEEzn6emJ0NBQjRfEW1hY4MP6WykAACAASURBVLfffsOyZcu0nhPp0KGDVkF+RYoUwdy5c7FmzZocy6gs1ffy9/fXeUAi5Sx9t4vp8uMzo7YCAgKwY8cOODs7a3Sek5MTNm7cmK1MijNnzkTfvn01Ps/d3R07d+7E6NGjc2ReUCaTSbY5mW19ToaDQYJERPRNcHFxEQzyW1lZwdbWVqNrDB48WDAwV6BAAQwdOlTjulSoUEHw2tTUVKtB+YIFC2LWrFk4ffo0+vfvn2WmFJlMhtq1a+O///0vwsLCtN4irFy5coLX2RnAs7W1FbwPRkZGqFixokbXcHNzw8GDB7F06VLUrVs304EPKysrBAYG4sSJE+jQoYOivFy5coKOcsmSJdW6d/qkSrt27TIN5DEyMkLt2rUxb948nDlzRrDKs3jx4ihevLjitampKQoXLqzW/VVRrouJiQm6dOmSrWuSYbG1tRUNKFlYWKBYsWI6vU/x4sWxfft2/Oc//8l04tHS0hIdOnTAoUOHsHDhQsEkhK2trWDgzdjYWKuJhjJlymDjxo3Ys2cPunTpolYbXrZsWQwaNAhhYWGYOXOmxpMrJUqUwPLly3H69GkMGDBA1P5JMTY2Ro0aNfD777/j0qVL6Nu3L4yNjTW6b/p1Ro4cibNnz+Lnn39G0aJFMz2+YsWKWLZsGdasWaP4HFhbWwvaFyMjI7UmoMuUKYOQkBDMmDEDZcuWzfTYwoUL48cff8SJEycwZ84cQftVpUoVQduqzravmZHJZKJB6nbt2mkdTJQfODs7w9/fX/QZq1ChgmRgjzZ++OEH0XtnZmaWY4M++viuZ9SqVSucO3cOkydPzrJ/5uDggIkTJ+LgwYOCgVvl7a/VyWZXunRpwfuY3TZdedWuh4eHxtewtrbGH3/8gbNnz2LQoEFqBaAUKVIEnTp1wu7du7FlyxaNA/UsLS0xYcIEXLlyBVOmTEGNGjXUakPLlSuHoUOHZvszoK/338rKCkuWLEFQUBDq1KmT6QCuhYUFfHx8sGXLFuzYsUMQEOvu7g4LCwtBHbNLuV/p5uaGmjVrZvu6hiqn+1glSpQQ/C2zsrJSq3+hivIkRfHixdUOdHVxccGBAwcwYcKETPsZtra26NmzJ06dOoVp06ahQIECip/Z29sLvqNmZmZZ9lkAiPoX7u7uatU5K25ubti8eTNCQ0PRs2dPtb5/pqamaNiwIebNm4fz58+jY8eOWt3bwsICM2bMwLFjxxAQEJDp5G/6s/mWLVswe/ZsRTCAg4ODYOLOxMRErX5z5cqVcfjwYYwbN07Q95Pi5OSk+Js5efJkQT+qWrVqgmOz24ZITb5/yxmgvwX29vaiv2HKfxdzknJ7qou2pXDhwoK/hcbGxhpnR7G1tcWyZcuwd+9etGnTRvC3WpmxsTGaNWuGffv2YeLEiYp7lyxZUnCehYWFWu1tkyZNcOzYMQwaNCjLfnW5cuUwduxYXLx4EYMGDRKMo1avXl3xb5lMlu2/i1JjaGwfvm3e3t44cOAADh06hH79+sHd3V3toIaSJUuic+fO2LFjB06dOgVvb2+N7m1IffHmzZvj1KlTGDFihGIrz/S+lomJiWKcp0qVKlmO7ctkMowaNQq7d+9Gs2bNMv1/Va9eHfPnz8fx48dFYwnK33d1xpWUn28LFSqk8yBgJycnbNu2DRs2bECzZs0yDWo0MzODv78/jhw5gn79+il+F2XKlBG0dQULFlTrWbJTp044evQoAgMDswzA8/T0xPTp03HhwgVBtlQTExNUqlRJ8drIyEitdj0zUm0rF3jlXfpsF9MZ0jNjdtoQBwcHwXOPqampxouLa9WqhZMnT+K///1vlsGbtra2GDRoEI4fPy5IpKA8RqbOPKSxsTGmTp2KnTt3onnz5pmOkZmYmKBJkyZYtWqVaCF/+fLlBc+oVlZWGgWNSlFuc2xtbdG6detsXZNyh0yunA+XiIiI8qznz5/j3r17eP36NT59+gQTExMUKlQIZcqUgaenp8aBkXlRTEwMbt26hWfPniE2NhYymQx2dnYoX748qlevnmOZExMSEnDjxg08ffoUHz58QGpqquJ3X7Vq1Vz93U+fPh0rVqxQvG7ZsqXG2ycQSXn48CFu3ryJd+/eISkpCXZ2dqhQoQKqVq2a61lJU1JS8OjRIzx48ADv3r1DXFwczMzMYG1tjdKlS8PNzS1Hsh5ER0cjPDwcz58/R1xcHBITE2FhYYHChQvD2dkZnp6eObIFY2pqKh48eID79+/j7du3SExMhKWlJZycnFClSpUczWr7/Plz3LhxA2/fvsWnT59gYWEBBwcHuLm5aTRAlV1xcXGiAZzQ0FCNsx5S3qKv73q6Fy9e4Pbt24iKilLcu2jRonB3d4eHh8c3l6U3MjISd+/eRVRUFD59+gSZTAZra2s4OjrCxcUF5cuX1/nvJDY2FuHh4Yo+1ufPn2FqagobGxuUKlUKFStW1HmQfDp9vf8xMTG4evUqXr16hY8fP8LIyAhFihSBi4sLKleunKt/c1u3bo1bt24pXv/222/o169frt2fckdaWhru3r2Lu3fvIiYmBqmpqbC3t8d3332HypUra7XgwVBERkYiPDwcL1++RFxcHJKTkxXBNWXKlIGHh0emATvaSkpKwr179xAeHo6YmBh8+fIFBQoUQOnSpVG1alWdBPGq8ujRI9y+fRvv3r1DfHw8LC0t4ejoCA8Pj1wN2Hrw4IEgW5ipqSmuXLmiccZWovwmISEBd+7cwcOHD/HhwwekpKSgYMGCcHZ2RvXq1WFnZ5cj901LS8O9e/dw7949vH//HgkJCShQoABKliyJSpUqqb1gVhfSM1anK1KkCK5cuZJjO25Q3hQbG4vHjx/j2bNn+PDhA+Lj4yGXy1GoUCEULFgQRYsWhaenZ7YXWyszpL64LsXExODSpUt49eoVYmNjYWVlpWh3shucZgg+ffqEW7du4cmTJ4iNjUVaWhoKFSqEcuXKoUaNGoKgJV1KTk7GrVu38OjRI3z48AFfvnxBwYIFUapUKVStWjVXf7dBQUH45ZdfFK/d3d1x9OjRXLs/5Tx9tYtA/n5m1Mbr169x69Yt/PPPP4q52CJFisDV1RVVqlTRagc4dcTFxeHq1at48eIFPn78CLlcDltbW5QrVw5Vq1bNsbZOSt++fXHgwAHF659//hnTp0/PtfuT9hgkSERERJTPNGjQABEREYrXQUFBguyFRER50c6dOwUZfCtVqoRDhw7psUZERPnbq1evULt2baQPHZqZmeHq1as5MuFARPnPggUL8Oeffype+/j4YNWqVXqsEREZirFjx2LTpk2K1/369cNvv/2mxxoREeV9Xbt2xZkzZxSvf//9d/z00096rBER5VeJiYmoUqUK4uLiFGVHjx7V2S4BlLO43TARERFRPnL48GFBgKCTk5MgewMRUV4kl8tFk8o9evTQU22IiL4NK1euRMa1xb6+vgwQJCK1JCQk4O+//xaUse9GRMDX7Py7d+9WvJbJZOjevbsea0RElPfduXMHYWFhitdWVlbo0KGDHmtERPnZxo0bBQGCNWvWZIBgHsIgQSIiIqJ8IiYmBlOnThWU9e3b95tL9U5E+c///vc/wXaX9vb26Nixox5rRESUv12/fh1r164VlA0YMEA/lSGiPGfmzJmIiopSvHZ3d0ejRo30WCMiMgRpaWmYPHkyPn/+rChr0aIFXFxc9FgrIqK8LTExERMmTEBaWpqirFu3brC1tdVjrYgov3r27BnmzZsnKON4Ud7CIEEiIiKifODFixfo0aMHnj9/rihzcnJCYGCgHmtFRJQ9crkca9aswfTp0wXlw4cPh4WFhZ5qRUSUv4WFhaFnz55ITk5WlPn4+MDT01OPtSKivCApKQkzZ87E6tWrBeXjxo3TU42IyFDExcVh1KhROHjwoKLM2NgYo0eP1mOtiIjytrdv36Jv3764fv26osza2hoDBw7UY62IKL+6c+cOunfvjg8fPijKqlSpglatWumxVqQpE31XgIiIiIjU8++//2L9+vX49OmTYOu3Z8+eISwsDImJiYoymUyGP/74A1ZWVvqoKhGRRkJCQnD9+nWkpKQoyuLj43H16lU8evRIcGy1atXw448/5nYViYjylZs3b2L//v2C/mNycjLCw8Nx8eJFwbE2NjaYNm1ableRiAzYxo0b8fjxY6SmpirKPnz4gEuXLiEyMlJwrK+vL1q2bJnbVSQiPUhNTcWqVavw+vVrQUarN2/e4Pz583jz5o3g+L59+3IRAhFRFuLj47Fq1Sq8f/9eMCfw6tUrnDt3Dh8/fhQcP3HiRDg6OuZ2NYkon3j69Cm2bduGhIQERZuTlpaGJ0+eICwsTPAMaGZmhlmzZsHIiLnp8hKZPONfEyIiIiIyWNu2bcPIkSPVOnbChAkYOnRoDteIiEg36tatK5pQllKqVCns2bMHDg4OuVArIqL8a+TIkdi2bVuWx1lYWGD9+vWoX79+LtSKiPKKEiVKqHVc5cqVsX37dhQoUCCHa0REhuCff/5BnTp11Dq2WbNmWLt2LYyNjXO4VkREedv58+fRqVMntY4NDAzErFmzcrhGRJSfzZs3D3Pnzs3yOCMjIyxYsAAdOnTIhVqRLjGkk4iIiCiPUGdth729PRYtWsQAQSLKU9Rp31q1aoX9+/czQJCISAfUaXfd3d2xe/duBggSkcaMjY3RtWtX7NixgwGCRN8QdfoX5ubmGDx4MIKCghggSESkBnXa1oIFC+LXX39lgCARZZs6bU7p0qWxYcMGBgjmUdxumIiIiCiPKFeuHBwcHBATE4Pk5GSYmpqiQIECcHR0hLu7O5o2bYrWrVvD0tJS31UlItJI9erVERMTg8TERMjlclhYWMDW1hblypVDrVq14Ovri4oVK+q7mkRE+YanpydCQ0MRHx+P1NRUmJubw9raGs7OzqhcuTJatmyJRo0aQSaT6buqRGSAatSogbt37+LLly8AAEtLSxQuXBiurq6oU6cO/Pz8UKZMGf1WkohynZ2dHVxdXfHixQskJSVBJpPBysoK9vb2cHV1Rf369dG2bVsu/CIi0oCTkxNKlSqF6OhoJCUlwdjYGFZWVihevDgqVKiARo0aoU2bNrC1tdV3VYkoH3Bzc4OdnR0+ffqElJQUmJqawtraGqVKlYKHhweaN2+OFi1awMSEoWZ5FbcbJiIiIiIiIiIiIiIiIiIiIiIiIsqnuN0wERERERERERERERERERERERERUT7FIEEiIiIiIiIiIiIiIiIiIiIiIiKifIpBgkRERERERERERERERERERERERET5FIMEiYiIiIiIiIiIiIiIiIiIiIiIiPIpBgkSERERERERERERERERERERERER5VMMEiQiIiIiIiIiIiIiIiIiIiIiIiLKpxgkSERERERERERERERERERERERERJRPMUiQiIiIiIiIiIiIiIiIiIiIiIiIKJ9ikCARERERERERERERERERERERERFRPsUgQSIiIiIiIiIiIiIiIiIiIiIiIqJ8ikGCRERERERERERERERERERERERERPkUgwSJiIiIiIiIiIiIiIiIiIiIiIiI8ikGCRIRERERERERERERERERERERERHlUwwSJCIiIiIiIiIiIiIiIiIiIiIiIsqnGCRIRERERERERERERERERERERERElE8xSJCIiIiIiIiIiIiIiIiIiIiIiIgon2KQIBEREREREREREREREREREREREVE+xSBBIiIiIiIiIiIiIiIiIiIiIiIionzKRN8VICIiw5SYmIh27dohIiJCr/WwsrLCunXrULlyZUH57NmzsXr1asjlcsnzXF1dsW/fvtyoIuVDSUlJ2LNnD06dOoV79+4hJiYGCQkJouNkMhlatmyJhQsX6qGWZAhu3LiBHj16ICkpSfLnVlZWCAkJQcmSJXO5ZkREREREREREREREREREXzFIkIiIJL19+1bvAYIA8PnzZzx+/FgUJHjr1i2VAYIA8OjRIyQlJcHMzCynq0j5zLVr1zBq1ChERUVleaxcLsf58+dzoVZkqCIiIlQGCAJf27BXr14xSJCIiIiIiIiIiIiIiIiI9IZBgkRElG9lFkRIJOXy5cvo3bs3kpOT1T6Hn7NvmzrvPz8jRERERERERERERERERKRPRvquABEREZEh+Pz5M0aOHKlRgCAREREREREREREREREREZGhY5AgEREREYDt27fjzZs3Gp9nZMTuFBERERERERERERERERERGS5uN0xEREQE4PDhw2odV6ZMGTg6Oipe16xZM6eqRERERERERERERERERERElG0MEiQiIkm2trYoWrSoVpnVdMnMzAwlS5bUax0o/5PL5bh161aWx40ePRr9+vXLhRoRERERERERERERERERERHpBoMEiYhIkrW1Nc6ePav28WlpaRg4cCBOnjyZ5bF//fUXfHx8slG7rLd4lclkMDY2ztY96NsRGxuLL1++ZHqMi4sL+vbtm0s1IiIiIiIiIiIiIiIiIiIi0o3MIyyIiIjUZGRkBDs7O7WOLVKkSLbvV7duXZiYSMe6m5iYoG3btip/TqQsPj4+y2O8vb0hk8lyoTZERERERERERERERERERES6w+gJIiLKkwYOHIiBAwfquxqUT6SlpWV5jJOTUy7UhIiIiIiIiIiIiIiIiIiISLeYSZCIiIhIDaampvquAhERERERERERERERERERkcYYJEhERERERERERERERERERERERESUT3G7YSIiIg0kJSXh5s2bePToEWJjY2FqagoHBwdUqVIFpUqV0uhanz59wvXr1xEREYGEhATY2NigdOnSqFGjBiwsLHRab7lcjufPn+PBgwd4+/Yt4uLiYGpqioIFC6JUqVKoUKECihQpotN7ZldcXBwePnyIiIgIfPr0CQkJCbCysoKNjQ1cXFzg6uoKc3NzndzrzZs3WR7z8uVLndzrW5OQkICHDx/iyZMn+PjxIxITE2FlZQU7OzuUL18eLi4uOnsfDbkORERERERERERERERERET6wiBBIiLKk9auXYtZs2YhLS1N8uceHh7YuXOn5M/++9//IigoSOW1Bw4ciBEjRgjKXr16hRUrViAkJATx8fGS51WpUgXDhg1DgwYNMq37rVu38L///Q/Hjx9HcnKy6Ofm5uZo3749Bg8ejGLFimV6razcu3cPwcHBOHz4MN6+fZvpsd999x1atmyJrl276i1g8PPnz9i1axcOHTqEK1euqHx/ga/b/9avXx++vr7w8fGBiYl63Zq///4bM2fORGpqqkZ1W7x4MRYvXiwok8lk6N27N8aPH6/RtQAgMjISHTp0QGxsrOTPCxUqhKVLl6JWrVpqXW/WrFlYt26d6P/l6OiIzZs3w9HRMctrJCUloW/fvrhw4YKg3NLSEps3b4a7u7tadUlJScHBgwcREhKCc+fOSX7O05mbm6NevXpo27YtWrVqBWNjY7XukRfqoI379+9j3LhxePjwoeTPXV1dsW/fvlyuFRERERERERERERERERHlZQwSJCKiPCk8PDzTALK7d+9q9TPga5BOuqSkJKxevRorVqxAQkJCpufdvHkTP//8syJoTCaTCX4eFxeHP//8E1u3bs30Ol++fMGWLVtw5MgRLFmyBNWqVcv0eCnPnz/HzJkzceLECbXPefDgAR48eIAVK1age/fuGDp0KKysrDS+tzZSU1Oxdu1arFy5Eh8+fFDrnOTkZJw8eRInT57EggULMGLECPj5+WV53t27dzUOEFRFLpfjzp07Wp2bmpqqMkAQAGJjY7F+/Xq1ggTj4uLw999/S/6/oqKisG/fPvTt2zfL6xw7dkwUIAh8zcRnaWmZ5fkAsG/fPvz111/4559/1Dr+y5cvOPF/7d17lNdz/gfwVzUz0kWXkXTx62LKJSqrOtqTS4nsimJZl1ik4riFspZ1wrGLwkHk0u4OW2ntuiyLrC2VVNYRYtVSraLGble6Tff6/eHU6TLfz/c701TT1+Px33zer8/r/erbF3OO53m/J0yICRMmROPGjePWW2+N008/PaN3K/IMZTF79uy47LLLYvny5SlrzjjjjL04EQAAAAAAAJANKu/rAQCgLLZs2bLH95g/f378/Oc/j0ceeSRtQHB7zzzzTDz66KM7PPv444/j7LPPThsQ3N7SpUujT58+MW/evIzfiYgYPXp0nH322aUKCG5v3bp1UVhYGN27d98hMLmnzJ8/Py644IIYMmRIxgHBnS1YsCAGDhwY1157baxataqcJ9wzmjZtGgUFBYk1kydPjnXr1qXt9e677yaelPf2229nNFOqupYtW0bTpk0T3125cmVcc801MWDAgIzDeTtbsGBBXH/99XHzzTdn9OeuiDOUVVFRUfTu3TsxINi3b9+47rrr9tpMAAAAAAAAQHYQEgSAnWzcuDHeeeedOO+888ockhs+fPi2d6dMmRJXXHFFFBUVlbrPqlWrSnWV7f333x933313rF27ttR77ayoqCguvvjiEk+WKy8zZ86MCy+8MP71r3+VS79x48ZFr169YvHixeXSb0/r1q1b4npxcXG89957aftMnDgxcX369OmxaNGixJqNGzfGpEmTSlxLd3rdwoUL4+KLL844jJjOG2+8Eb/4xS9KFfisCDOU1bJly6J3796Jf0dXXHFFDBw4cI/PAgAAAAAAAGQfIUEA2MmUKVOiX79+ZT7VLuL7q2SHDx8e48aNi6uvvrpUJxHubPr06RkFxR599NF45plnyrxPSYqLi+O6666LOXPmlGvfiO9PELzyyitjyZIl5dr3888/j379+qX8zHe+BnpfShcSjIgYP3584vrmzZtThvu22rJlS9rw3AcffJDyFLukkOCqVauiT58+MWvWrMT+pTV9+vS46aabMroauiLMUFZbZ086MfTSSy+NX/3qV3tsBgAAAAAAACC75ezrAQCgotn5KuPc3Nz48Y9/HM2aNYvKlSvHp59+GtOmTUvbZ8yYMTFmzJgdnh188MFxwgknRMOGDWPp0qUxceLEWLp0adpeY8eOjY4dOyauP/HEE4k9qlSpEl26dIlOnTpFw4YNIyLiv//9b4wdOzYmT56c8grnlStXxs033xwvv/xy5OSUz68O69evj2uuuSaWLVuWWFenTp3o2bNntGnTJmrXrh2LFy+OKVOmxJtvvpl4FezMmTPjrrvuisGDB++yduqpp8aiRYt2CH4tW7Ysvvjii8RZDjrooGjVqtUOzypXrhw9evRIfC/JEUccEU2bNk0MiI0fPz7uvvvulOHGTz75JO3nGPH9KYsXXXRRyvVUIcIWLVrE4YcfnvK9X/7yl2nDefn5+dG9e/do27Zt1KlTJ1asWBH/+c9/4uWXX4758+enfG/SpElRWFgYffv2TexfEWYoi/Xr18e1114bM2bMSFlz0UUXxR133FHuewMAAAAAAAA/HEKCAJCgR48eMWDAgKhfv/4Oz8ePHx833HBDbNiwIaM+1apVi4EDB8b5558feXl5256vXr06rr/++pgyZUri+x9++GHKteXLl8fdd9+d+H7Lli3jkUceKTHsdcEFF8S0adPixhtvTHlN7xdffBHPPvts9OnTJ3GfTA0fPjxtqKtTp07x4IMPRp06dXZ4fvbZZ0ffvn3jmmuuia+++irl+6+88kr07Nlzl3Bl165do2vXrjs8mz9//i7PdnbxxRfHTTfdlFhTFmeccUY89dRTKdcXL14cn376abRp06bE9XRXDW/1/vvvx8qVK6NmzZolrqcKCSaddvj666+nPaHw0ksvjYEDB0bVqlV3Wbv66qtj6NCh8eSTT6Z8//HHH48zzzxzW7C1Is5QFps3b46BAwcmXud9/vnnx5133lluewIAAAAAAAA/TK4bBoASVKpUKQYNGhRDhgzZJSAYEdGlS5e45JJLMup16KGHxksvvRS9evXaISAYEVG9evV44IEH4oADDkjssWjRopRrTz31VMpwX0RE8+bNY9SoUYmnwbVr1y6efvrpXebb3jPPPBPr169PnDMTy5Yti9/97neJNUcccUQ8/vjjuwQEtyooKIinn346qlevntjngQceyGimTK4gLq9TFHeWyZXDSSG4CRMmZLTPhg0bUgYKZ86cGd98802Ja6muGl6/fn0MGTIkcc8+ffrEHXfcUWI4L+L7kxhvvPHGuPLKK1P2WLt2bcprtCvCDGV11113xVtvvZVy/dxzz4177rmnQl2PDQAAAAAAAOyfhAQBoAR33nln9OrVK7Em3clzEd+HAP/4xz9G8+bNU9bk5+fHcccdl9hn+fLlJT5fsWJF/PnPf058d9CgQVGrVq20s7Zq1SrOP//8lOtLliyJN998M22fdJ577rlYu3ZtYs1tt90WBx54YGJNs2bN4vLLL0+smTFjRrz//vulHXGvOvroo+P//u//EmvGjx9f4vNvvvkm7TXJ2xs3blypnjdv3jxatGhR4tqrr74aCxcuTLnXYYcdFjfeeGNGc/Xv3z9q166dcv3FF18s8TtTEWYoi4cffjjxn9uzzjorfvvb3woIAgAAAAAAAOVCSBAAdtKoUaO46KKL0tYdcsghaWvOPvvsaNq06W732rRpU4nPx4wZE6tXr0753qGHHrrLdbtJ0p1ql+5a10y8+uqriesFBQUZz9yrV6+oXDn515l0+1UE6T732bNnx9dff73L80xPEdxq0qRJJZ4GmervNdUpghHfh+aSnHnmmZGbm5vRXAcccEB07tw55XpxcXGJ1/JWhBlKa8SIEYnXS5944okxePDgtN9rAAAAAAAAgEz5v48AUEaZhHjy8/Mz6lWlSpUyzZAutJd0gmFJqlWrlrj+3nvvlarfzmbPnh3z589PrEkKau0sPz8/WrdunVgzceLE2LJlS8Y994WyXjmc6vrgVIqLi2Pq1Kk7PCsqKorPP/+8VHMtXrw4PvnkwLG0OgAAEC1JREFUk8S9kq633tmWLVvSXh2989wVYYbSeu211+Lee+9NrGnXrl2Z/30AAAAAAAAAUJKcfT0AAFA2W7ZsiWnTpiXWTJ06NY444ohy23PFihWxcOHCqF+/fpnenz59etqaY445plQ9W7Vqldh36dKlMX/+/LRX+u5Lxx57bDRq1CiKiopS1rz99ttxxRVXbPt5zZo1ZbpKeezYsXHKKads+znVVcNNmzaNI488ssS1adOmpQ1e3nLLLXHLLbeUer5UZs+eXeFmKI1JkybFbbfdlnbmV155Jfr06RM5OX5NBwAAAAAAAMqHkwQBYD+1YMGCKC4u3uv7zps3r8zvzpkzJ21NJtczl7Z+d8Jde0u60wQ/+uij+Pbbb7f9PHXq1Fi3bt0udQUFBYl9xo8fH5s3b972c1muGp41a1biHnvCV199VeFmyNSbb74ZN9xwQ2zYsCFt7dy5c+OFF14o0z4AAAAAAAAAJRESBID9VLpre/eUlStXlvndhQsXpq2pW7duqXrWqVOnXPbd19KFBDdt2hTvvPPOtp9Lumo4JycnRo4cmfiZLFu2LD766KOIiPjuu+/iww8/LLEuKSS4L757O3/vKsIMmfrTn/4Ua9asybh+2LBhsXr16jLtBQAAAAAAALAzIUEA2E/tTlhvd+zO6YWrVq1KW1OtWrVS9TzwwAPLZd99rU2bNtGgQYPEmu1P/SspJHj88cdH3bp1d7hOuCRjx47d1mPjxo27rDdp0iSOOuqolO/vi89z5+9dRZhhT1m8eHEUFhbulb0AAAAAAACA7CckCAD7qbVr1+71PatWrRqNGjUq8/ubNm1KW1OpUqVS9axcOf2vM9tfr1tRVapUKU477bTEmsmTJ8e6detixowZsWjRol3Wu3btGhERXbp0Sewzbty4iEh91fDpp5+e+P6++O41b968ws2wJxUWFsaSJUv22n4AAAAAAABA9srZ1wMAAGWTyYl7xx13XIwcOTJyc3P3wkTpVa9ePW1NcXFxRnXb16dTs2bNjPvtS926dYsRI0akXC8uLo733nsvPvvssxLXt4YDO3XqFAcccECsW7euxLoFCxbEpEmTYvLkySWuJ101HJHZ6Y2DBg2KXr16pa0rq4owQ1k1atQomjdvHu+++27KmuLi4njsscfi7rvv3ouTAQAAAAAAANnISYIAsJ+qVatW2ppDDz20wgQEIyLq1q2btmb58uWl6plJfSb7VgTHH3981KtXL7Hmueeei9dff32X50ceeWQ0btw4Ir4PkHbs2DGxT9++fUsMWDZu3DiOOeaYxHdr166duL61z55UEWYoi8aNG8eoUaNiyJAhaYO+L774Ynz55Zd7aTIAAAAAAAAgWwkJAsB+6vDDD09bs3Tp0r0wSeYKCgrS1sydO7dUPefNm5e2pmXLlqXqua9UqlQp7VW/kyZNKvEz2nrV8FbprhxOpVu3bmlrMrl2d09/9yrCDKXVuHHjGDlyZDRs2DDq1q0bF154YWL9xo0b46GHHtpL0wEAAAAAAADZSkgQAPZT+fn5Ub9+/cSazz77LNavX7+XJkov3Ql1EREzZ84sVc/PP/88cb1GjRrRpEmTUvXclzIJ6ZXk1FNP3eHnzp07R6VKlUrdJ91VwxERrVq1Slvz8ccfl3rv0qgIM5RGo0aNYsSIEdGwYcNtz3r37h1Vq1ZNfG/cuHHx0Ucf7enxAAAAAAAAgCwmJAgA+7FTTjklcb24uDjefvvtUvfdtGlTPPzwwzFmzJjYsGFDGafbVZs2baJOnTqJNRMmTMi434oVK9IGqE4++eTIycnJuOe+1r59+8jPzy/VOw0bNoyjjz56h2eHHHJIHHvssaXq06hRo2jdunXaunbt2kWNGjUSa8aNGxdr1qwp1f4REV9++WXcf//9acOfFWGGTDVo0CBGjhwZjRo12uF5vXr14vzzz0/7/pAhQ8plDgAAAAAAAOCHSUgQAPZj3bt3T1vz+OOPx7p160rV97777ounnnoqbrrppujSpUsMGzYslixZUtYxt6lSpUrak+r+/e9/x7Rp0zLq9/zzz8fGjRsTa84666yM56sIKleuvMvVwensfIpguueppLvqeKu8vLy0tcuWLYs//OEPpdp/2bJlcdVVV8UzzzwTPXr0iEsuuST+/ve/l/h3XBFmyFT//v13CQhu1bdv38jLy0t8/+OPP45//OMfZd4fAAAAAAAA+GETEgSA/ViHDh2iTZs2iTVz5syJ22+/PTZt2pS235YtW2Lw4MExcuTIbc8WLVoUQ4cOjVNOOSWee+653Z758ssvj8qVk38Fuffee9MGG4uKitIGwAoKCtKetlgRZXLl7/ZShQG7dOmyx/a98sor015n/MQTT2R8MuTChQvjsssui6+//nrbsw8++CD69+8fp556aixYsKBCzpCJ7a8Y3ln9+vXjZz/7WdoeDz300G4FFQEAAAAAAIAfLiFBANjPDRw4MG1Q6vXXX49+/frFN998k7KmqKgorrrqqigsLCxxfcOGDXHwwQfv1qwREU2bNo3zzjsvsWbGjBnRv3//WL58eYnrc+fOjX79+sV3332X2CeTz6Yi6tChQ9SuXTuj2lq1akX79u1LXGvZsmUcdthhGfVp0KBB2sDp9goKCuKcc85JrNm0aVNcd9118fvf/z7x2urx48fHeeedF7NmzSpxffPmzSV+HhVhhvLQr1+/yM3NTayZN29e/OUvf9kj+wMAAAAAAADZLWdfDwAA7J4OHTpEr169YtSoUYl1kydPjm7dusVpp50WHTt2jAYNGsTGjRujqKgo3n333Zg0aVLiaYMXXHBBdOvWrVxmvuWWW2LixImxaNGilDUTJkyIn/zkJ9GjR49o27ZtHHTQQbF06dKYOnVqjBkzJtasWZO4x5lnnhmdO3cul3n3tpycnOjatWu8+OKLaWtPPvnkyMlJ/SvdqaeeGs8++2zaPqeffnqpA5W33357TJ06Nf73v/+lrNm4cWM88MADMXr06DjjjDOidevWUatWrfj2229j7ty58dprr8XcuXNTvp+TkxMPP/xw1KhRo8LOsLsaNmwYPXv2jBdeeCGxbtiwYdGjR4+oXr36HpkDAAAAAAAAyE5CggCQBW699daYM2dO/POf/0ysW79+fbzxxhvxxhtvlKp/+/bt44477tidEXdw0EEHxbBhw+LSSy+NtWvXpqxbunRpypMNkxx55JFxzz337M6I+1y3bt0yCgmmump4qy5dumQUEixLALRmzZrx5JNPxiWXXBKrV69OrM3keuiS/PrXv4527dpV6BnKw1VXXRV//etfE68UXrJkSRQWFsb111+/R2cBAAAAAAAAsovrhgEgC+Tl5cWwYcOiQ4cO5d67devW8dRTT0VeXl65933ssceiWrVq5dq3ZcuWMXz48P3+tLWOHTtGrVq1Emvy8vLixBNPTKw5/vjj016TW79+/fjRj35U6hkjIo4++uh4+umn085aFgMGDIiLL754v5hhdx122GFx1llnpa0rLCyMJUuW7PF5AAAAAAAAgOwhJAgAWaJGjRpRWFgYvXr1KvW1sal069YtRowYsceuWT3ppJNixIgRcdhhh5VLv65du8bo0aOjfv365dJvX8rNzY0uXbok1nTs2DFtGDInJydOOumkxJqyXDW8vfbt28fzzz8fRxxxRJl7bC8vLy8GDx4c/fr1269m2F1XXXVVVKlSJbGmuLg4hg4dupcmAgAAAAAAALKBkCAAe115BNjS9ahcuez/ict0vkzqMp2jvP48ubm5MWjQoBg1alQcc8wxGb1Tkrp168Z9990XQ4cOjQMPPLDMfTJx7LHHxt/+9rfo3bt3VK1atUw9GjduHA899FAMGzYsatasWc4Tfq+8gpelccYZZySud+3aNaM+6a4kTrdPJpo3bx4vvfRSDBgwIO3JhUk6dOgQr7zySvTs2XO/mCGT70W64N9WzZo1i5/+9Kdp61566aX4+uuvM+oJAAAAAAAAICQIQLlp1apV2jBbzZo1y+XUuLZt20Zubm6Ja1WqVInOnTunfLd169Yp58zJyUl8d3v5+fnRoEGDlOu1atWKjh07ZtSrRYsWKWeqXLlynHbaaRn12apdu3bx0ksvxbPPPhs9e/bMKDCVl5cXJ5xwQvzmN7+JCRMmxLnnnluqPXdHtWrV4tZbb43x48dH//7946ijjkr7Tl5eXnTu3DkefPDBeOutt6J79+5l3v+QQw6JQw89NOV6lSpVoqCgoMz9y6pTp07Rtm3bEtfq1auXcUiwc+fOKUOjbdu2LfNVwzvLzc2Nfv36xYQJE2LQoEHRoUOHyMnJSftevXr14pxzzonRo0fHyJEj4/DDD99vZjjyyCPjoIMOSrnetGnTUn13BgwYEM2aNUusqVq1anz77bcZ9wQAAAAAAAB+2Cpt2bJly74eAgDYszZv3hxz586N2bNnx+LFi2P16tVRqVKlOPDAAyM/Pz+aNGkSBQUFZT7Jb09YtmxZfPHFFzF//vxYuXJlrFu3LqpVqxa1a9eOgoKCaNGiRRxwwAH7ekzSWL16dcyaNSvmzp0by5cvjzVr1kReXl5Uq1YtGjZsGM2aNYsmTZpk/QwAAAAAAAAA+4qQIAAAAAAAAAAAAGQp1w0DAAAAAAAAAABAlhISBAAAAAAAAAAAgCwlJAgAAAAAAAAAAABZSkgQAAAAAAAAAAAAspSQIAAAAAAAAAAAAGQpIUEAAAAAAAAAAADIUkKCAAAAAAAAAAAAkKWEBAEAAAAAAAAAACBLCQkCAAAAAAAAAABAlhISBAAAAAAAAAAAgCwlJAgAAAAAAAAAAABZSkgQAAAAAAAAAAAAspSQIAAAAAAAAAAAAGQpIUEAAAAAAAAAAADIUkKCAAAAAAAAAAAAkKWEBAEAAAAAAAAAACBLCQkCAAAAAAAAAABAlhISBAAAAAAAAAAAgCwlJAgAAAAAAAAAAABZSkgQAAAAAAAAAAAAspSQIAAAAAAAAAAAAGQpIUEAAAAAAAAAAADIUkKCAAAAAAAAAAAAkKWEBAEAAAAAAAAAACBLCQkCAAAAAAAAAABAlhISBAAAAAAAAAAAgCwlJAgAAAAAAAAAAABZSkgQAAAAAAAAAAAAspSQIAAAAAAAAAAAAGQpIUEAAAAAAAAAAADIUkKCAAAAAAAAAAAAkKWEBAEAAAAAAAAAACBLCQkCAAAAAAAAAABAlhISBAAAAAAAAAAAgCwlJAgAAAAAAAAAAABZSkgQAAAAAAAAAAAAspSQIAAAAAAAAAAAAGQpIUEAAAAAAAAAAADIUkKCAAAAAAAAAAAAkKWEBAEAAAAAAAAAACBLCQkCAAAAAAAAAABAlhISBAAAAAAAAAAAgCwlJAgAAAAAAAAAAABZSkgQAAAAAAAAAAAAspSQIAAAAAAAAAAAAGQpIUEAAAAAAAAAAADIUkKCAAAAAAAAAAAAkKWEBAEAAAAAAAAAACBLCQkCAAAAAAAAAABAlhISBAAAAAAAAAAAgCwlJAgAAAAAAAAAAABZ6v8B8y44RFu5pywAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "fig, ax = rick.charts.tow_chart(data = count_18['count'], ylab='Trips', ymax = 14000, yinc= 3500)" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": {}, + "outputs": [], + "source": [ + "query = ''' \n", + "\n", + "WITH sum AS (\n", + "\n", + "SELECT pickup_datetime, sum(count) as count, extract(month from pickup_datetime) as mon, extract(year from pickup_datetime) as yr, area_name FROM ptc.trip_data_agg_ward_25\n", + "LEFT JOIN gis.ward_community_lookup ON pickup_ward2018 = area_short\n", + "\n", + "WHERE pickup_datetime > '2016-09-30'\n", + "GROUP BY pickup_datetime, area_name\n", + "), collect AS (\n", + "SELECT area_name, avg(count) as count, mon, yr from sum\n", + "group by area_name, mon, yr)\n", + "\n", + ",tot1 AS (\n", + "\n", + "SELECT area_name, avg(count) as count FROM collect\n", + "WHERE (yr =2016 AND mon IN (10))\n", + "GROUP BY area_name\n", + "), tot2 AS (\n", + "\n", + "SELECT area_name, avg(count) as count FROM collect\n", + "WHERE (yr =2018 AND mon IN (9)) \n", + "GROUP BY area_name\n", + ")\n", + "SELECT SPLIT_PART(area_name, 'Community', 1) as area_name,\n", + "b.count as count1, a.count as count2 FROM tot1 b\n", + "LEFT JOIN tot2 a USING (area_name)\n", + "ORDER BY count1 ASC\n", + "'''\n", + "\n", + "district_cond = pandasql.read_sql(query, con)" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAC/8AAAaaCAYAAAAmwCxdAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAABFNAAARTQBrsa1HQAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzs3et3lXWaJ/wrZxIgQBICJOEcwQNytAqwFUQtodTqUrFK7Wq1V9d01zOr5pnVf8LMy3lWrzXPi6menrbK6SotbVus8oBliZbiCQQBlSCCHAQ5HxMC5ECyk3lRjz6GvTfksGNu9fN55bp+975+V+6dF6z4vX93Xnd3d3cAAAAAAAAAAAAAAACJlT/UAwAAAAAAAAAAAAAAAJcm/A8AAAAAAAAAAAAAAAkn/A8AAAAAAAAAAAAAAAkn/A8AAAAAAAAAAAAAAAkn/A8AAAAAAAAAAAAAAAkn/A8AAAAAAAAAAAAAAAkn/A8AAAAAAAAAAAAAAAkn/A8AAAAAAAAAAAAAAAkn/A8AAAAAAAAAAAAAAAkn/A8AAAAAAAAAAAAAAAkn/A8AAAAAAAAAAAAAAAkn/A8AAAAAAAAAAAAAAAkn/A8AAAAAAAAAAAAAAAkn/A8AAAAAAAAAAAAAAAkn/A8AAAAAAAAAAAAAAAkn/A8AAAAAAAAAAAAAAAkn/A8AAAAAAAAAAAAAAAkn/A8AAAAAAAAAAAAAAAkn/A8AAAAAAAAAAAAAAAkn/A8AAAAAAAAAAAAAAAkn/A8AAAAAAAAAAAAAAAkn/A8AAAAAAAAAAAAAAAkn/A8AAAAAAAAAAAAAAAkn/A8AAAAAAAAAAAAAAAkn/A8AAAAAAAAAAAAAAAkn/A8AAAAAAAAAAAAAAAkn/A8AAAAAAAAAAAAAAAkn/A8AAAAAAAAAAAAAAAkn/A8AAAAAAAAAAAAAAAkn/A8AAAAAAAAAAAAAAAkn/A8AAAAAAAAAAAAAAAkn/A8AAAAAAAAAAAAAAAkn/A8AAAAAAAAAAAAAAAkn/A8AAAAAAAAAAAAAAAkn/A8AAAAAAAAAAAAAAAkn/A8AAAAAAAAAAAAAAAkn/A8AAAAAAAAAAAAAAAkn/A8AAAAAAAAAAAAAAAkn/A8AAAAAAAAAAAAAAAkn/A8AAAAAAAAAAAAAAAkn/A8AAAAAAAAAAAAAAAkn/A8AAAAAAAAAAAAAAAkn/A8AAAAAAAAAAAAAAAkn/A8AAAAAAAAAAAAAAAkn/A8AAAAAAAAAAAAAAAkn/A8AAAAAAAAAAAAAAAkn/A8AAAAAAAAAAAAAAAkn/A8AAAAAAAAAAAAAAAkn/A8AAAAAAAAAAAAAAAkn/A8AAAAAAAAAAAAAAAkn/A8AAAAAAAAAAAAAAAkn/A8AAAAAAAAAAAAAAAkn/A8AAAAA9FtjY2M0NjYO9RgAwNeYf08AAAPl3xMAAHxb5HV3d3cP9RAAAAAAwNfTnXfeGRERq1evHuJJAICvK/+eAAAGyr8nAAD4tnDyPwAAAAAAAAAAAAAAJJzwPwAAAAAAAAAAAAAAJJzwPwAAAAAAAAAAAAAAJJzwPwAAAAAAAAAAAAAAJJzwPwAAAAAAAAAAAAAAJJzwPwAAAAAAAAAAAAAAJJzwPwAAAAAAAAAAAAAAJJzwPwAAAAAAAAAAAAAAJJzwPwAAAAAAAAAAAAAAJJzwPwAAAAAAAAAAAAAAJJzwPwAAAAAAAAAAAAAAJJzwPwAAAAAAAAAAAAAAJJzwPwAAAAAAAAAAAAAAJJzwPwAAAAAAAAAAAAAAJJzwPwAAAAAAAAAAAAAAJJzwPwAAAAAAAAAAAAAAJJzwPwAAAAAAAAAAAAAAJJzwPwAAAAAAAAAAAAAAJJzwPwAAAAAAAAAAAAAAJJzwPwAAAAAAAAAAAAAAJJzwPwAAAAAAAAAAAAAAJJzwPwAAAAAAAAAAAAAAJJzwPwAAAAAAAAAAAAAAJJzwPwAAAAAAAAAAAAAAJJzwPwAAAAAAAAAAAAAAJJzwPwAAAAAAAAAAAAAAJJzwPwAAAAAAAAAAAAAAJJzwPwAAAAAAAAAAAAAAJJzwPwAAAAAAAAAAAAAAJJzwPwAAAAAAAAAAAAAAJJzwPwAAAAAAAAAAAAAAJJzwPwAAAAAAAAAAAAAAJJzwPwAAAAAAAAAAAAAAJJzwPwAAAAAAAAAAAAAAJJzwPwAAAAAAAAAAAAAAJJzwPwAAAAAAAAAAAAAAJJzwPwAAAAAAAAAAAAAAJJzwPwAAAAAAAAAAAAAAJJzwPwAAAAAAAAAAAAAAJJzwPwAAAAAAAAAAAAAAJJzwPwAAAAAAAAAAAAAAJJzwPwAAAAAAAAAAAAAAJJzwPwAAAAAAAAAAAAAAJJzwPwAAAAAAAAAAAAAAJJzwPwAAAAAAAAAAAAAAJJzwPwAAAAAAAAAAAAAAJJzwPwAAAAAAAAAAAAAAJJzwPwAAAAAAAAAAAAAAJJzwPwAAAAAAAAAAAAAAJJzwPwAAAAAAAAAAAAAAJJzwPwAAAAAAAAAAAAAAJJzwPwAAAAAAAAAAAAAAJJzwPwAAAAAAAAAAAAAAJFzhUA8AAAAAAHx9VVdXD/UIAAAAAAAA8K0g/A8AAAAA9Nujjz461CMAAAAAAADAt0L+UA8AAAAAAAAAAAAAAABcmvA/AAAAAAAAAAAAAAAknPA/AAAAAAAAAAAAAAAknPA/AAAAAAAAAAAAAAAknPA/AAAAAAAAAAAAAAAkXOFQDwAAACRHS0tL/Mv/+l9DPQYAANBP5eXl8bc//elQjwEAAAAAAAwC4X8AAOAL3d3d0dTUNNRjAAAAAAAAAAAAF8kf6gEAAAAAAAAAAAAAAIBLE/4HAAAAAAAAAAAAAICEE/4HAAAAAAAAAAAAAICEE/4HAAAAAAAAAAAAAICEE/4HAAAAAAAAAAAAAICEE/4HAAAAAAAAAAAAAICEE/4HAAAAAAAAAAAAAICEE/4HAAAAAAAAAAAAAICEE/4HAAAAAAAAAAAAAICEE/4HAAAAAAAAAAAAAICEE/4HAAAAAAAAAAAAAICEE/4HAAAAAAAAAAAAAICEE/4HAAAAAAAAAAAAAICEE/4HAAAAAAAAAAAAAICEE/4HAAAAAAAAAAAAAICEE/4HAAAAAAAAAAAAAICEE/4HAAAAAAAAAAAAAICEE/4HAAAAAAAAAAAAAICEE/4HAAAAAAAAAAAAAICEE/4HAAAAAAAAAAAAAICEE/4HAAAAAAAAAAAAAICEE/4HAAAAAAAAAAAAAICEE/4HAAAAAAAAAAAAAICEE/4HAAAAAAAAAAAAAICEE/4HAAAAAAAAAAAAAICEE/4HAAAAAAAAAAAAAICEE/4HAAAAAAAAAAAAAICEE/4HAAAAAAAAAAAAAICEE/4HAAAAAAAAAAAAAICEKxzqAQAAAAAABqqoqCjGjh0blZWVUVZWFsXFxdHd3R0XOjqitaUlTp8+HadOnYq2trahHrXfKisrY/z48VFaVhalw4ZFR0dHtLa2RmNjYxw+fDg6OzuHdL6SkpIvvoPS0tIoLi7+4v6fPXs2Dh8+nKj7P2rUqKipqYmy4cOjtLQ0UqlUtLa0xJkzZ+LQoUNx4cKFoR4RAAAAAACgB+F/AAAAACAn8vPz45577omrrr46CgoKeqz96U9/irfefDOn+40YMSLmzJ0bM2fMiNq6urQ9L9bV1RXHjx+PPbt3x9atW+PYsWM5nWcw1NbWxoLrrouZM2fG8OHDs17X2dkZBz77LLZs2RLbt2+PVCr1lcw3cuTImDdvXsyYOTNqa2oiLz/7y2a7u7rixMmT0dDQEB+8/36cPXv2K5nxy8aOHRsLFiyIq6+5JsrLy7Ne15VKxeEjR+L999+Phq1bPQgAAAAAAAAkgvA/AAAAAJATNy1bFrOuvTbjWmVFRc72GTNmTCxbtixmzZoV+ZcJ/H9Zfn5+jB8/PsaPHx9/ccMNsX///lj7+uvx6aef5my2XKmuro7bb789pkyd2qvrCwsLY+q0aTF12rS4rbk51qxZEw0NDYM236hRo+KWW2+Na6655rIPXXwuLz8/qqur45ZbbollN90UmzZtitdee+0reRvAqFGjYsWKFXHV1Vf36vr8goKoq6uLurq6+N6tt8Zrr78e723cGN3d3YM8KQAAAAAAQHbC/wAAAADAgE2dOjVuuOGGQd0jPz8/brzxxliyZEkUFA78T5uTJ0+Oh//mb2Lr1q3x0h/+EK2trTmYcuCWLl0aS5Yu7XWo/mIjy8tj5b33xpw5c2LVqlU5D9dff/31sWzZsigqLu53j/yCgvjuwoVxzaxZ8btnnok9e/bkcMKe5i9YECtWrIjifs47rLQ0br/99pg7Z0489dRTcebMmRxPCAAAAAAA0DvC/wAAAADAgJSVlcU999wT+fn5g7bH8OHD4/4HHoiJEyfmvPfs2bOjpqYmHn/ssWhqasp5/94qLCyMu+++O66ZNSsn/eqvuCL+w9/9XTzx29/G6dOnB9yvsLAw7lm5Mq6+xOn5Z5ubY9++fXHi5Mloa2uL4uLiGDlyZEyaNCnGjxsXeRf9jgwfPjx+8pOfxB//+MfYuHHjgGf8sry8vFi+fHksWrw4J/1qamvjP/zd38WTTzwRhw8fzklPAAAAAACAvhD+BwAAAAAG5O67746R5eWD1r+ysjIefOihGD169CWvO9vcHEePHo3GxsZoa2+PosLCGD5iRIwqL4+6urpLvi2gqqoqHn744XjkkUeipaUl1z/CZeXl5cW9994bV151VdZrLly4EAc++yxOnjwZ7e3tUVhUFGNGj466iRNj5MiRGT9TVVUVDz38cPzykUfi3Llz/Z6voKAg7rvvvrhixoyM60cOH47XXnstdu/eHd3d3RmvqaysjBuXLIm5c+f2qOcXFMTtd9wRnalUbNm8ud8zXmzF978fCxcuzLre2dkZBw8ejBPHj0drW1sUFBTEqPLyqK2rizFjxmT8zMiRI+PBhx6KR3/1qzhx4kTOZgUAAAAAAOgN4X8AAAAAoN8WX3991kB4LowZMyYe/pu/ifIsDxecO3cutmzZEg1bt14yjF1SUhJXXHFFXP8XfxE1NTWZ96qoiHtWrozHH3ssJ7P3xfIVK7IG/880NcXaN96Ihq1bo7OzM209Ly8vpk6dGjctWxaTJk1KWx89enT81U9+Ev/70Uejo6OjX/OtWLEi6/e8du3aeGPt2qyh/8+dOnUqnv397+Ojbdti5cqVMay0tMf6nXfcEWeammLPnj39mvHLFi1enDX439LSEm+9+WZs2bIl2tvbM15TV1cXS5YsiRkzZ6atlZaWxk9+8pN45JFH4vz58wOeFQAAAAAAoLcG7z3cAAAAAMA3Wk1NTdx6yy2DusfNt9ySMfjf3t4ea9asif/3v//3eO1Pf7rsKezt7e2xbdu2eORf/iWef/756LhwIeN19fX1cdUlTt8fDPX19bFo0aKMa9u3b49/+qd/ive3bMkY/I+I6O7ujr1798ajv/pVvPrqq9Hd1ZV2TU1NTSy7+eZ+zTdjxoz4zne/m3Ft9QsvxNrXX79s8P/Ldu3aFb/+9a+j9aI3LOQXFMRdd90Vw4YN69ecn6uuro7v3XprxrXP9u+Pf/rFL2L9+vVZg/8REQcPHownnnginv397zPe99FjxsQdd945oDkBAAAAAAD6SvgfAAAAAOiz4uLiuPfee6Og8P9/uWgqlYoLlwhU98dbb76Zdrr6/n374hf/43/EunfeyRqIz6a7uzu2bN4cTz75ZNYHABZff32/5+2r4uLiuPMHP8i41tDQEE//+79fMqR+sbffeitWr16dcW3RwoVZ33qQTX5+fty2fHnGtQ0bNsSmTZv61O9zR44ciaeffjq6Uqke9ZHl5fG9227rV8+IP78F4Yc//GGP38vP7du3L37zm9/EuXPnet3vgw8+iKf+7d8iddGcERFXX311XHnllf2eFQAAAAAAoK+E/wEAAACAPrvzBz+IisrKHrVnf//72LFjR073OX78ePzm17+Olv/vAYCNGzbEv/7rv0Zzc/OA+u7duzdefPHFjGuTJk2KkSNHDqh/by1evDhGjx6dVj965Eg8+/vf9+lE/c9t3rw5NmzYkFbPLyjIGuTPZtasWVFVVZVWP3PmTLz6yit9nu3L9u7dG+vWrUurz5s3Lyov+t3qrdmzZ0dtXV1avfnMmXjq3/6tzw+LRPz5TQWvvvpqxrXbli+PvLy8PvcEAAAAAADoD+F/AAAAAKBP5s6dG7Nnz+5R27J5czQ0NERXV1fO9zt27Fg8+uij8btnnok//OEP/QrEZ/LBBx/EiRMnMq5NnDgxJ3tcSlFRUSxctCit3tXVFc8++2zG0+Z765U1a6KpqSmtPmXKlJg0aVKv+8yZOzdjfd0770RHR0e/5/vcG2+8kfYgR35+ftxwww396pftcy+++GK0trb2q2dExPp16+LggQNp9YqKirj22mv73RcAAAAAAKAvhP8BAAAAgF6rrKyM22+/vUftxIkT8dJLLw3qvidPnoytW7fmvG+2NxWUl5fnfK+LLViwIMrKytLqDQ0NcfTo0QH17uzsjLWvv55xrbfB+uLi4pg6ZUpaPZVK5ey76OjoiA3vvptWnz17dsZ7cylXXnlljK2uTqvv378/du7c2e8ZP5ft9P/+PqgAAAAAAADQV8L/AAAAAECvFBQUxL0/+lEUl5R8Uevo6IhVTz+dk1Pgh0JTY2PGelFR0aDvPWfOnIz1d9evz0n/hoaGOHfuXFq9vr6+V8H6CRMmRH5BQVr9yOHDAzpF/2KbN2+OVGdnj1pBYWFcdfXVfeoz2Pdz3759cfTIkbR69bhxMWHChJzsAQAAAAAAcCnC/wAAAABAr9y2fHlayHnNmjVx7NixIZpo4AqzhPxbchhuz6SysjIm1NSk1Y8fPx5HMgTM+yOVSsX2jz5Kq+cXFMQ111zTqxkzOXb8+IBn+7K2trbYu3dvWn1WL2b8XElJSdRfcUVavbW1NSen/n8u2xsPZs2albM9AAAAAAAAshH+BwAAAAAua+bMmbFw4cIetR0ffxzvbdw4RBPlRrYT20/kOOB+sWyn2u/csSOn++zI0q83p+oPKy3NWG9paRnQTJns2bMnrTZ58uRev4HhiiuuyHjt7l27oqura8DzfW4g9xMAAAAAAGCghP8BAAAAgEsqLy+PH951V4/amTNn4rnnnhuiiXKjpKQkrpw5M63e3t4ehw4dGtS9J0+alLG+b9++nO5z4MCBSHV2ptXramsjP//Sfx4uKCjIvNDdnYvRevjss8/SavkFBVFbW9urz0+ePDljPdf38/Tp09Hc3JxWr6ioiBEjRuR0LwAAAAAAgIsJ/wMAAAAAWeXl5cU9K1dGWVnZF7WuVCp+98wz0draOoSTDdyym2/OeLr9B++/H6lUalD3rqury1g/ePBgTvfp6OiIYxneYlBcUhLjxo275Gfb29sz1r/8u5ArJ0+ezFjPdp/Srps4MWM91/fzUj0nZpkBAAAAAAAgV4T/AQAAAICsli5dGlOmTOlRe/PNN2P//v1DM1COzJ8/PxYtWpRWb2ttjbfffntQ966srIzSDAH6M01NWQP3A3EiQ/g/IqL2MsH65jNnMtarq6sHPNPFLly4EG1tbel7XeYBhYiIoqKiGJdhplQqlfWhgoHo7/0EAAAAAAAYqMKhHgAAAAAASKbJkyfHkiVLetT279sXb7zxxhBNNHD5+flx0003xY033phx/Q9/+EOcPXt2UGeorKzMWD916tSg7Hf69OmM9YqKikt+7ujRoxnrNbW1MWzYsIxh/YG40N4ew4YN61EbPXr0ZT83ZsyYyC8oSKufaWoalDc49Pd+AgAAAAAADJTwPwAAAACQprS0NFauXNkjVN3a0hLPPPNMdHd3D+Fk/ZOXlxdXXXVV3LRsWdaT6//0pz/F1q1bB32WbIH2M83Ng7LfmSwn+F8uWN/U1BSNp0/HmItC7QUFBTFv3rxYv359zmaMiCgsTP9z9ehRoy77ua/L/QQAAAAAABgo4X8AAAAAIM0P77oryi8KXj/33HPRPEiB6lzKy8uL4uLiKC8vj+rq6pg8ZUpcddVVMXLkyIzXd3R0xIurV8cHH3zwlcw3KktI/Py5c4Oy37ksfXsTrP/oo4/ihgxvSbjhhhuioaEha+++qqqqirLhw9PqI7J8Z1/2dbqfAAAAAAAAAyH8DwAAAAD0sHDhwrjyyit71DZu3Bg7duwYookyKygoiP/7P//nfp+43t3VFTt37oyXX345GhsbczxddsPLyjLWW9vaBmW/tix9M4XtL7Zhw4ZYtGhRFBYV9agPHzEi7rr77nj8sccGPF9FRUXcd//9Gdfy8/OjsLAwOjs7s37+63Q/AQAAAAAABkL4HwAAAAD4wvjx4+N73/tej9qxo0djzcsvD9FE2RUVFfUr+N+VSsXG996L9zZujFOnTg3CZJdWVFycsX6hvX1Q9mvP0reo8PJ/Hj579mysf/fduDHD6f/19fVx1913x+oXXrhkOD+bwsLCWLRoUSxZujSKs9yTiD9/z5fqn5T7GfHnWTs6OgZlXwAAAAAAAOF/AAAAACAi/hxcvvdHP+pxynvHhQuxatWqfoW7kyovLy+Ki4ujrKxsaML/WUL3qa6uQdmvK0vfootO889m7euvR319fUyYMCFtbe7cuVE9dmw888wzvb6XFRUVMWfOnFhw3XUxYsSIy15fVFQUra2t2dcTcj8jhP8BAAAAAIDBJfwPAAAAAERExB133BFVVVU9ai/98Y9x4sSJIZpocOTl58f8+fNj/vz5cerUqXhj7dpoaGiI7u7ur2T/wiyh+65UalD2S2Xpm22OTJ9/4re/jb/96U9jzJgxaes1tbXx85//PHbu3Bnbt2+Pw4cPR3Nzc6RSqRg+fHgMHz48qqqqYsqUKTF58uQYW13dp/kvFba/1M9xuc/1V7b7GfHntxkAAAAAAAAMFv8nAgAAAACIa6+9NubOm9ej9tG2bbFl8+YhmujyOjo64tzZszFi5Mh+96isrIx7Vq6M73znO7Fq1ao4c+ZMDifMLFsoPS8/f1D2y8/S91Ih9oudPXs2Hv3Vr+L++++P2rq69D0KCuKqq6+Oq66+us/ztZw/Hzt27Ii58+ZlnPVyJ+lnvZ95eX2epTey3c+Ivt1TAAAAAACAvhL+BwAAAIBvuYqKirjzzjt71JoaG+P5558fool6J5VKxT/+4z9mXMvLy4vi4uIoLy+PsWPHxqTJk+PKmTNjdIaT6yMiJk6aFP/Xf/yP8dvHH4+DBw8O5thZw+wFBQWDsl+2vpcL1V/s7Nmz8eijj8aSpUvjL66/vtdvDsimsbEx1q9fH+9v2RIdHR1Rf8UVUV5e3uc5k3I/LzULAAAAAABALgj/AwAAAMC3WEFBQdx7771RMmzYF7VUKhWrVq2K9vb2IZxsYLq7u6O9vT1OnDgRJ06ciO3bt8cfX3oppk+fHkuXLo1Jkyenfaa0tDQefPDB+M1vfhOHDh0atNk6swTEiwcYps+mKEvf/gTVU6lUvP7aa/H+li2xcOHCmDtvXpSWlvb+852d8cmuXfHB++/HJ598Et3d3V+s5Wc4qb+zoyPryf5fviaTr/p+Rgj/AwAAAAAAg0v4HwAAAAC+xW699daoqa3tUVv7+uuDfvr9UNmzZ0/s2bMnvvPd78aK5cujoLDnn0hLhg2LH/34x/HP//N/Rltb26DM0JbloYphX3oAI5ey9W0fwM/X1NQUL7/8crzyyisxceLEmDJ1aowdOzYqxoyJkmHDoqiwMC50dERba2u0trbG0WPH4sBnn8WBAweitbU1Y8+SDHM2Nzdfdpak3M8L7e09HmYAAAAAAADINeF/AAAAAPiWmjZtWixatKhHbe/evfH2228P0URfnfc2bozG06fjgQceSHsAYPTo0XHbbbfF888/Pyh7N585k7FeNnz4oOxXVlaWsd6UZY6+6Orqiv3798f+/fsH1Cc/Pz/jifpNTU2X/ew36X4CAAAAAABcSv5QDwAAAAAAfPXy8/Pj9jvuiLz8nn8ifPWVVwZ0enm2U9GHlZb2u+dg2b17d6xZsybj2pw5c2LUqFGDsm+2QPtg7Zetb2+C9V+VgQTq3U8AAAAAAODbwsn/AAAAAPAtVFNTE1VVVWn1v//ZzwZlvyuvvDL+y3/9rxnXdu/eHY8/9tig7Hs5GzZsiHnz5sX4CRN61AsKC2PWrFnxzjvv5HzPxsbGjPWKMWNyvldExJgsfZuyzDEUqqurM9aPHT162c9mu5+jR4+OvLy8AT3MksnX4X4CAAAAAADfTE7+BwAAAIBvocLC5JwLUlVZOaT7b9q0KWN96rRpg7LfsWPHoiuVSquPqagYlO9l7NixGeuHDx/O+V79dfHDF587cODAZT977ty5OHv2bFq9qKgoKioqBjzbxb4O9xMAAAAAAPhmEv4HAAAAAL7VPv3004z1TG9GyIWOjo44duxYWj0/Pz9qampyuldeXl7GYH0qlYpDhw7ldK+BmJBhxo6Ojjjai5P/IyIOZnlIoLa2dkBzZVKTpWdvHlQAAAAAAAAYCOF/AAAAAOBbrbm5OWN9eFnZoO2ZLSg+ZerUnO4zYcKEKCkpSasfPXo0Ojo6crpXfxUUFMQV9fVp9f379kVXV1evenxV97OsrCzjmyrOnz8fp06dyuleAAAAAAAAFxP+BwAAAIBvodOnT0dLS8tQjxEREUeOHBnS/fPy8r7yPXfu3JmxfuXMmTndZ8aMGZn337Ejp/sMxIwZM2JYaWlafdu2bb3uke1+zpgxI6ff74wZMyIvP/3P6km6nwAAAAAAwDdX4VAPAAAAAAB89Zqbm+P/+W//Led9l69YEYsXL06r79y5M5584omc75cL5eXlGeutbW2Dtuenn34a58+di+EjRvSo19TWRlVVVZw8eTIn+1wza1bGel+C9YNt3vz5abVUZ2fs6EOg/tSpU3HkyJGYMGFCj/qIESNi+vTpsXv37gHPGRExK8v9bGhoyEl/AAAAAACAS3HyPwAAAACQM+1ZAvOtCXnLQCbTpk3LWD+VowB+Jl1dXfHRRx9lXFuU4eGJ/pg6dWqMHTuJuPq9AAAgAElEQVQ2rX7wwIE4ffp0TvYYqClTpmR8O8G2bduirY8PXzRs3Zqxnqv7WVFREdOnT0+rNzc3x759+3KyBwAAAAAAwKUI/wMAAAAAiTV69Oj4+5/9LG655ZZB6Z+Xlxdz583LuHbw4MFB2fNz69evj65UKq0+b968qKqqGnD/ZTffnLH+zjvvDLh3LuTl5cWKFSvS6t1dXfHWW2/1ud/mzZujrbU1rV5fX5/1AY++WLZsWeTlp/9Jff26ddHd3T3g/gAAAAAAAJcj/A8AAAAAJNK0adPi73/2s6ipqYkblyyJ5cuXR15eXk73+O7ChVFTU5Nxbfv27Tnd62KNjY2xLcPp/wUFBXHX3XdHfoageW8tuO66mDRpUlr9+LFj8fHHH/e7b3l5edy4ZEnWe9YXN998c4yfMCGtvv3jj+NkP9660N7eHhvfey/j2g9+8IMoKSnpc8/PTZ8+Pa6dPTutfv78+di0aVO/+wIAAAAAAPSF8D8AAAAAkDgLFiyIv/7rv46ysrIvaouvvz4eeOCBKC0tzckes2bNitu+972Ma4cOHowjR47kZJ9Lef2116LjwoW0el1dXfzlX/5lv3pOnDgx44n6ERGvvPJKv3rW19fH/fffH//wD/8Qt9xySzz08MNRV1fXr14REQsXLYoblyxJq7e1tcUfX3qp333XvfNOnDt7Nq0+pqIifnzffVFQUNDnnhUVFbFy5cqMa2vXro2Ojo4+9wQAAAAAAOiPwqEeAAAAAADgYiNGjoz8DEHtGTNnxs9//vN4+eWXY9u2bdHd3d3n3sXFxXHTTTfFosWLs56uv2bNmsv2ueeee2L2nDlp9YaGhnhm1apezdLY2Bivvf56LF++PG1t7rx5UVRUFM8991xcyPCAQCYzZsyIlffeG0VFRWlrWz/8MHbt2tWrPl82ffr0+OsHH+xRGzZsWDz44IPx7LPP9ulNAsXFxXHb8uVx3XXXZVxfs2ZNnM0Q3u+ttra2ePHFF+O+++9PW5s+fXo8+NBD8fS//3ucP3++V/3q6urivvvvj7Lhw9PW9u/bF+9t3NjvWQEAAAAAAPpK+B8AAAAASJw31q6N0aNGxbz589PWRowcGSvvvTeWLF0aW7ZsiY+3b4+mpqbL9qyqqorZc+bEvHnzYuTIkVmv2/Duu7F///7L9isvL89YHzlixGU/+2Xvrl8fV9TXx7Tp09PWrpk1K+rq6uKNN96IrVu3RmdnZ8Ye48aNixtuuCGunT0743rj6dPxUj9P1N+7d2/s+/TTmDJ1ao96ybBhcd/998dH27bFunXr4tChQ1l7jBgxIubMnRuLFy2KEVnu/eZNm2LL5s39mvHLPv7443j//fdj3rx5aWtTpkyJn/+n/xRvvfVWbNm8Odrb2zP2GDNmTCy+/vq4bsGCjA+htLS0xHPPPTfgWQEAAAAAAPpC+B8AAAAASKTnn38+Lly4EAsXLcq4Pnbs2Fi+fHksX748mpub4/ixY9HU1BRt7e2R6uyM4uLiKCkpiVGjR8eE8eMznt5+sV27dsXLL7+c6x/lkrq7u+Opp56Kv/3pT2PcuHFp66NGj46//OEPY8X3vx8HPvssTp48GW3t7VFYUBDl5eVRU1sblZWVWfu3nD8fjz/+eLS2tvZ7vlWrVsXf/vSnUVFRkbZ+zaxZcc2sWdF4+nQcOXo0zp07F62trVFUVBTlI0dGdXV1VGf4ub5s586dsXr16n7Nl8kLzz8fo8rLMz5QUVZWFsuXL49bb7klDhw8GCeOH4/W1tbIz8+PESNHxoQJEzJ+D5/r6OiIJ594Ik6fPp2zeQEAAAAAAHpD+B8AAAAASKTu7u546aWX4viJE7Fi+fIoKi7Oem15eXnWk/h7a+uHH8azzz4bXV1dA+rTH+3t7fH4Y4/FA3/1V1FTU5PxmuLi4pheXx/T6+t73fdsc3M8+eSTcerUqQHNd+7cufjNr38dDz70UNYHDcZUVMSYDA8HXM7mzZvjxdWro7u7e0AzfllXV1c89dRT8aMf/zjqs9yvgsLCmDJlSkyZMqXXfdvb2uLpp5+OAwcO5GhSAAAAAACA3ssf6gEAAAAAAC5l86ZN8c///M+xf//+Qenf0tISv3vmmfjd7343JMH/z509ezYe/dWvYuvWrTnpd+jgwXjkkUfi8OHDOenX1NQUv3zkkdi9e3dO+rW3tcXq1avjheefH5T73t7eHr99/PFYt25ddOeg/6mTJ+OXv/xlzn5+AAAAAACAvnLyPwAAAACQeKdOnYr//eijMWPGjFiydGnU1dUNuOe5c+di48aNseHdd6O9vT0HU/7ZQE6w7+zsjN8980xs/fDDWLFiRVSNHdvnHi0tLfH6a6/Fpk2bcnqafkREa2trPP7YY7Hguuvi5mXLYviIEX3u0ZVKxdaGhnj1lVfi3LlzOZ3vYt3d3bHm5Zfjo23b4vu3396v35sLFy7E22+/He+8/XakUqlBmBIAAAAAAKB3hP8BAAAAgJw5depUpFKpKCgo+KLW1dUVJ06cyEn/Tz75JD755JOorq6O2XPmxPRp02Lc+PGRn3/5l5x2d3XFyZMn47PPPosdO3bEnj17BnTi/MlTp2LK1Klp9UOHDvW75+d2794dv/jFL6K+vj7mz58f06ZPj5KSkqzXpzo74+ChQ/HB++/Htm3boqOjY8AzXMrmTZti64cfxvwFC2LWrFlRV1sbeZf4DrpSqTh27Fh89NFH8cEHHwx66P9ihw4dil8+8khMnjw55s+fHzNmzIjSsrKs13d1dcXRo0fjww8/jK0ffhitra1f4bQAAAAAAACZCf8DAAAAADnT0NAQDQ0Ng77P8ePH49VXXolXI6KkpCSqqqqioqIiysrKoqi4OPLz8qKjszM6LlyI8+fPR2NjYzQ2Nub0hP/VL7wQq194IVasWBGLFi+OiIgL7e2xfv36nPTv7u6OXbt2xa5duyIvLy+qq6ujuro6SsvKoqSkJDo6OqK1pSUaGxvj8OHD0dnZmZN9e6ujoyM2vPtubHj33Rg2bFiMHz8+KiorY1hJSRQUFkZ7e3u0tbZGU1NTHDlyZNAfSOiN/fv3x/79+yMioqqqKsaNGxdlZWUxbNiw6Eylvpj30KFDceHChSGeFgAAAAAAoCfhfwAAAADga629vT0OHTqUkxP3+2Pql07/f3fDhjh//nzO9+ju7o5jx47FsWPHct47F9ra2mLfvn2xb9++oR6l106ePBknT54c6jEAAAAAAAB67fLvwgYAAAAAIKO6uroYN358RES0trTEunfeGeKJAAAAAAAA+KYS/gcAAAAA6KcF1133xX+/s25dtLW1DeE0AAAAAAAAfJMJ/wMAAAAA9ENJSUlcc801ERFx7uzZ2PDuu0M8EQAAAAAAAN9kwv8AAAAAAP0we86cKC4ujoiIN996Kzo6OoZ4IgAAAAAAAL7JhP8BAAAAAPphwfz5ERHR1NgYmzdtGuJpAAAAAAAA+KYT/gcAAAAA6KPa2toYP2FCRESsXbs2UqnUEE8EAAAAAADAN13hUA8AAAAAAPB1U1tbG11dXfHJJ5/Ehx9+ONTjAAAAAAAA8C0g/A8AAAAA0EcbN26MjRs3DvUYAAAAAAAAfIvkD/UAAAAAAAAAAAAAAADApQn/AwAAAAAAAAAAAABAwgn/AwAAAAAAAAAAAABAwgn/AwAAAAAAAAAAAABAwgn/AwAAAAAAAAAAAABAwgn/AwAAAAAAAAAAAABAwgn/AwAAAMD/Ye/O43LK///xP672VQuJsjQylsLY94/s+1izzDCGCIXBIG/GHkIKg5jsS7axZAajsS9hjH2rsaZUQqm06aqu3x9+rq+rc6pra5HH/Xab223O85zzfD2vrtPVUc/X6xARERERERERERERERERlXB6xV0AEREREREREREREREREREREREREVFhS09Px+3bt/Hff/8hKSkJhoaGqFChAho0aIAqVaoU6tgpKSnYsWMH0tLSIJFI0L9/f1StWrVQxyQiotKHzf9ERERERERERERERERERERERERERUQmk+H48ePYunUrrl27hoyMDABAmTJlcPXqVZibmxfKuKGhodi4cSMuXbqElJQUAICRkRFCQkJQvXp1lfO1bdsWjx490naZBZJIJHBzc8OCBQuUPic2NhYrV65EcHCw/LXnVr9+fXh4eKBnz57aKlXB7NmzsW/fPgCAjY0N3NzcCmUcIiIq3dj8T0RERERERERERERERERERERERFTIPjb9+/v748GDB4L9ycnJSExM1Hrzf2hoKPz9/XHlyhXBvoyMDLx69Url5v+MjIxiafwHPnwdxb5+efn9998xY8YMpKen53vcrVu3MGbMGLRr1w6rV6+GlZWVpqXKnTlzRt74DwCLFi2CpaWl1vITEdGXg83/RERERERERERERERERERERERERIWkoKb/wpJf07+m4uLitJ6zMKxevRpLlixRiFlaWqJt27aws7NDUlISbty4gbCwMPn+M2fOoG/fvjh48CCsra01ruHdu3fw8vKSb/fo0QM9evTQOC8REX2Z2PxPREREREREREREREREREREREREpGUymQwhISHw9/fH/fv3i2zcS5cuwd/fH5cvXy60MYq7+d/W1rbAYw4fPqzQ+C+RSDBu3DhMmjQJxsbGCseeP38eEydOxKtXrwAAjx49wqhRo7B//37o6OhoVKu3tzdiYmIAAFZWVli8eLFG+YiI6Mum2U8lIiIiIiIiIiIiIiIiIiIiIiIiIpL7uNJ/ly5dMHLkyCJr/L906RJcXV0xYMCAQm38BwA9PT3o6+sX6hj56dWrV77737x5g//9738KsVmzZmHGjBmCxn8AaNOmDYKDg2FpaSmP/fPPP9iwYYNGdV68eBFBQUHybW9vb5QrV06jnERE9GXjyv9EREREREREREREREREREREREREWpCdnY0+ffrgxo0bRTrumDFjcOTIkSIbr2HDhoiIiCjUMaRSKRo2bIiEhASFePPmzdGlS5d8z12xYgWSk5Pl2y4uLhg7dmy+51StWhVLlixROO7XX3/F999/D3Nzc5XrT0tLw7Rp0+TbnTp1Qt++fVXOQ0RE9Cmu/E9ERERERERERERERERERERERESkBampqfk2/ltaWsLV1RV6etpdt/fChQt57jMxMUHv3r0VVrX/HAQHBwsa/w0NDbF06dJ8z3v37h327t2rEMv9FIC89OzZE87OzvLtxMREHDx4UMmKFS1evBiRkZEAAAsLCyxZskStPERERJ9i8z8RERERERERERERERERERERERGRFshkMkFMT08PnTp1QmBgIG7evIlVq1ahQoUKhTquRCJBy5YtsWLFCty6dQsBAQGoXbu2VscsTElJSVi4cKEgPmHCBFSvXj3fc48dO4b09HT5dp06dVCvXj2lxpVIJBg8eLBC7NChQ0qd+6l//vkHW7dulW/PmTNH6+85ERF9mbQ7fbCIXb58Ge7u7pBKpcVdClxdXbFo0aLiLoOISOuWLVuGTZs2ybclEgmWLFmCPn36FNqYycnJcHFxQVpaWqGNkZuenh527dqFb775psjGJO2IiopCz549kZGRoRA3NTXFunXr0KxZs0IbWyaTYezYsTh37pzCL1K++eYb7Nu3r9DG/RxFRkaiV69eCr9gcXR0xLFjx4qxKiIiIiIiIiIiIiIiIiIi7dLV1ZX/f506dTBgwAD07dsXZcuWLdRxdXQ+rANcrVo1uLq6wtXVFfb29oU6ZmFatmwZ3rx5oxD7+uuvMW7cuALPzf0UhM6dO6s0dpcuXTB79mz59q1bt5CamgpTU1Olzk9PT8eUKVPkfQQuLi6CCQVERETq+qyb/2NjY0tE4z8A+eN5iIhKm4iICIVtmUyGqKioQh0zOTm5SBv/ASArKwuvX78u0jFJOypXrgwnJyfBYxNTU1MxZ84cHDlyBPr6+oUy9uHDh3H27FlBfNCgQYUy3ucsNjZWofEfAJ48eVJM1RARERERERERERERERERFQ4zMzOsWLECdevWLdKV9pctWwZbW1s0bty4yMYsLHfv3sX27dsF8fnz58PAwKDA82/fvq2wreyq/x/Z29vD0tISiYmJAACpVIoHDx6gSZMmSp2/bNkyPHv2DMCHhQuXLVum0vhERET5+ayb/4lKo507d+Lt27fy7QYNGqB169bFWBERUf7evn2Lffv2ITMzE8CHp0N069YNjo6ORVbDrFmz4OrqipycHIV4REQEgoKCMHz4cK2PmZ6ejhUrVgji9erVQ79+/bQ+HhERERERERERERERERERadfSpUvx66+/Avjwt+7Fixdj2LBhGucdOHCgxjlU1aNHjyIfszDIZDLMmDFD8Pf/Tp06wcXFpcDzs7OzBYtafv311yrX8fXXX+Pff/+Vb0dERCjV/H/9+nVs3LhRvj1z5kxUqlRJ5fGJiIjywuZ/ohIkLi4O3t7eCjEHBweEhIQUU0VERAW7cOEC/P39FWKvXr3CggULiqwGZ2dnuLq6Yt++fYJ9AQEB6NOnDywtLbU65qZNm/Dy5UuFmEQiwezZsyGRSLQ6FhERERERERERERERERERaV9sbKz8/2UyGV6/fl2M1RAA7N27Fzdv3lSIGRgYYO7cuUqdn5ycDKlUqhCzsrJSuY7c53y6mGte3r9/jylTpsgnLrRo0QI//vijymMTERHlR6e4C9CElZUVdHV1i7sMAED58uWLuwQqBXLfeOYVIyLtMzY2hr29fXGX8VnKysoSxD4+BaAoTZ48GWXKlBHEk5KSsHr1aq2O9erVK2zatEkQ79+/v8qPCyQiIiIiIiIiIiIiIiIiIiIgPT0dvr6+gvjQoUPx1VdfKZ0jN1NTU5VrMTMzU9hOS0sr8Bx/f388evQIwIc+lOXLl3PxQCIi0rrPeuX/du3a4cGDB2qdu337dixatEgQ79ChA9asWQMdnc96XgQRUalkaWmJc+fOwcjIqLhLoRLI2toaEyZMEP35vmfPHnz//fdwdHTUylgrVqwQ/MO+TJkymDJlilbyExERERERERERERERERERfWnWrVuHly9fKsRMTU0xceJEpXPo6QlbIrOyskTj+cm9YKu+vn6+x9+5cwfr16+Xb3t5ecHBwUGlMYmIiJTxxXa4556Z91GZMmXY+E9EVEKZmpqy8Z/y9f3336NGjRqCeFZWFpYsWaKVMcLCwhAcHCyIT5gwAdbW1loZg4iIiIiIiIiIiIiIiIiI6Evy6tUrheb5j9zd3VGuXDml84j1BSqzan9uqampCtv5PT1AKpXi559/RlZWFgCgUaNGGDVqlMpjEhERKYNd7kRERFRq6OnpYebMmaL7zp8/jwsXLmg8xpIlS5CTk6MQq1GjBr7//nuNcxMREREREREREREREREREX2Jli9fLmi4t7S0xNixY1XKY2JiAktLS4VYTEyMyvXExsYqbNvZ2eV57KpVqxAWFgYAMDQ0hL+/PxcgJiKiQsOfMERERFSqtGjRAp07dxbdt2TJEmRnZ6ud+9SpU7hy5Yog/ssvv6j8iEAiIiIiIiIiIiIiIiIiIiICHj58iD179gjio0aNgrm5ucr5HB0dFbbDw8NVOj8rKwtPnjzJN+dHDx48wJo1a+TbkydPRvXq1VUaj4iISBVs/iciIqJSZ/r06TA0NBTEHz9+LPoLA2VkZWXB19dXEO/WrRuaN2+uVk4iIiIiIiIiIiIiIiIiIqIvnZ+fn2AhvzJlysDNzU2tfE2bNlXYFlvkLz/Xr19HZmamfNvGxka0+T8rKws///wzpFIpAKBu3brw8PBQo2IiIiLlsfmfiIiISp1KlSph1KhRovt+/fVXJCcnq5xz165dePbsmULM2NgY06dPV6tGIiIiIiIiIiIiIiIiIiKiL114eDiOHj0qiI8YMQIWFhZq5Wzfvr3CdkhIiLxBXxlHjhxR2G7Xrp3ocQEBAbh79y4AQF9fH/7+/tDT01OxWiIiItWw+Z+IiIhKpdGjR8POzk4QT0xMxNq1a1XKlZycLHrOmDFjULFiRbVrJCIiIiIiIiIiIiIiIiIi+pL5+/tDJpMpxIyMjPJc8E8ZLVq0gIODg3w7ISEBu3fvVurc+Ph47NmzRyE2ePBgwXEPHz7EypUr5dsTJkyAk5OTegUTERGpgM3/REREVCoZGRnBy8tLdF9QUBAiIiKUzhUQEIDExESFWJUqVTBy5EhNSiQiIiIiIiIiIiIiIiIiIvpihYWF4dixY4L4oEGDYG1trXZeiUSCCRMmKMT8/f0RFxdX4Lnz5s1DWlqafLt58+Zo1qyZwjHZ2dn4+eef8f79ewBA7dq18dNPP6ldLxERkSr4jJkS5s2bN3jw4AFiY2ORnJyMnJwcmJubo1y5cqhVqxYqV64MiURSbPXFxsbi+vXriI2NhUwmQ40aNdC2bVuNcmZkZODhw4d4+vQpEhMTkZ6eDhMTE1hYWKBatWqoWbMmDA0NtfMCNKjx7t27iIiIQGJiInJycmBhYQEbGxs0aNBAo5vNT719+1YQS09PR2ZmJgwMDLQyRl6ys7Px7NkzPHz4EAkJCUhJSYGBgQHMzc1RqVIlODk5qf0oraKSk5ODyMhIPH36FHFxcUhNTYVUKoWZmRnMzc1ha2uLOnXqwNzcvFjqk0qluH//Pp4+fYqEhARkZWXJv7+/+eYbVKhQoVDHl8lkePr0KcLDw5GQkIDU1FSYm5vD2toajo6OqFGjRqGO/6V48eIFnj59itjYWKSmpiIjIwOmpqYoU6YMypUrB2dnZ619ZuQlJiYGjx8/RkxMDFJSUpCZmQkTExNYWlqiWrVqqF69OkxMTLQ2nthn17t377SWXxPdunXDrl27cPXqVYW4VCrF0qVLsW7dugJzREZGYufOnYL4jBkzCv2zOSkpCQ8ePMCLFy+QnJwMqVQKc3NzWFlZoUaNGqhWrRp0dIpvLmd8fDyuX7+OqKgoSKVSVKlSBV26dIGurm6x1UREREREREREREREREREX653796hS5cuCs3bBR3/qfXr12PHjh1KnWtjY4MTJ06oXCP9PytWrBCs+q+jo4PRo0drnHvAgAEICgrCjRs3AACvX7+Gm5sbtm7dChsbG8HxMpkMy5cvx8GDB+UxAwMDzJ8/X3Dshg0bcPPmTQCArq4u/Pz8oK+vL1rHnTt3cODAAVy9ehWRkZFISUmBmZkZqlatiqZNm6J///6oW7euxq+XiIi+HGz+LwGioqJw8OBBHDt2rMBViK2srNC5c2f06dMHDRs21GjcK1euYOTIkcjKypLHJkyYgPHjxwuOvXjxItavX49r164JbriOHj2K6tWrqzT2+/fvceTIERw9ehT//POPQg256enpoVmzZujRowd69uyp8USATp06ITIyUr5tZmaGs2fPijaEh4aGIigoCBcuXEBmZmaeOZ2dnTF8+HD06NFDqYbHKVOm4MiRI0rVm5CQUOANno2NDS5evKhUvtzOnz+PP/74A6dPn0Zqamq+x9aqVQs9evRAv379UK5cObXG07acnBycPn0ax44dQ2hoqGBl7twkEgm++uorfPvtt3B1dUX58uXVGnf48OG4fPmyfNvQ0BCHDh2Co6Oj4Ng7d+5gx44dOHnyZL7/uHRwcMCwYcPg6uqq1Qkvjx8/xp49e3DkyBHRJu2P7Ozs0LVrV4waNQply5bV2vhfgitXruDw4cO4ePEiXr16VeDx9vb26Nq1KwYPHowqVapopYawsDAcOHAAJ0+eRGxsbL7H6uvro3HjxujRowe+/fZbGBkZKTVG69at8fr1a6WOPXnyJGrWrJnvMT179oSfn59S+TQxa9Ys9O3bF9nZ2Qrx06dP4/Lly2jRokW+5/v6+kIqlSrE2rRpg/bt22u9VuDDLxwOHTqEo0ePIjw8PN9jTU1N0aFDB/Tq1Qv/93//p9G4ERER6N27NzIyMuSxfv36wcfHR3DsnTt3sHbtWly4cEHwdQ0MDISLi4tGtSgrOzsb3t7e2L9/v8J79M0332Dfvn1FUgMRERERERERERERERERlRyJiYl4/vy52uenpaUpPXFA2b+fk7gnT56IrvrftWtXODg4aJxfV1cXa9euRa9eveTv1a1bt9C5c2eMGTMGXbp0QcWKFZGcnIybN29iw4YNCr1AADB37lzUqVNHULevr698e+zYsfjmm28E40dGRmLWrFk4deqUYF9iYiISExNx+/ZtbNiwAZ07d8bChQthb2+v8esmIqLSj83/xejNmzdYtWoVDh48mG/z+6fevn2LvXv3Yu/evWjVqhWmTp0KJycntcaPiYkRjPvixQuF7YSEBMybNw8hISF55sndEJkfmUyGffv2Ye3atUo9RgkAsrKyEBoaitDQUKxatQrjxo3DwIED1X4CwqeN/wCQkpKCpKQkheb/8PBweHt749q1a0rlvH//PqZNm4bdu3dj5cqVsLW1zfd4ZZqDVaHOPyYuX76M5cuX4969e0qfEx4ejvDwcAQEBGDIkCHw8PCAmZmZymNry9GjR+Hv7y+4bvPzcfX7VatWISAgAO7u7vD09Mxz9m1ecl9H79+/x5s3bxSa/6OiouDj4yN6Ey8mIiICCxYsQFBQEH799VeVJ9XklpiYCD8/Pxw4cEDQnCsmJiYGmzdvxp49e+Du7o4xY8Zw9e4ChIaGYunSpfjvv/9UOi86OhqbNm3C5s2bMXDgQEyfPh2mpqZq1RAdHY2FCxfi9OnTSp8jlUpx+fJl+efA+PHj8d1330FPL//bAm3/4kLbn4V5qVmzJgYPHoygoCDBPh8fHwQHB+e5ev61a9fw999/K8T09fUxc+ZMrdeZkpKCdevWISgoCOnp6Uqdk5qaij/++AN//PEH6tati6lTp6J58+ZqjR8XF6fQ+A8I7wvS09OxZMkS7N27VzAZ8CNV7gs0IZPJMHPmTAQHByvETUxMMH369CKpgYiIiEO+gFUAACAASURBVIiIiIiIiIiIiIiI1BMYGCj6d2dtrPr/UZUqVbBnzx788MMPiImJAfChV8Hb2xve3t55nqejo4NffvkFw4cPV4jLZDJMnTpV/rd1R0dH/Pzzz4LzL168iDFjxhS4iOlHf//9N65fv45NmzahSZMmSr46IiL6Uol3ulGhO336NL799lvs27dP6cb/3EJDQzFw4ED89ttvyMnJ0XKFwMOHD+Hq6ppv478q4uLiMGLECMyZM0fpxn+xHHPmzMGIESPUzpGfzMxM+Pv7o1+/fko3/n/qxo0bGDx4MN68eaP12rQlMzMTCxcuxIgRI1Rq/P9Ueno6Nm7ciD59+uDWrVtarrBgiYmJGDVqFH7++WeVGv9zk0qlCAgIwODBg5GUlKS1+mQyGbZu3YqePXsq3fj/qSdPnmDw4MF48uSJ2jXcvXsX/fr1w759+5Rq/P9UWloaVq1aheHDhyMuLq7IGnk/JxkZGZg+fTrc3NxUbvz/lEwmw969e9G7d29ER0erfP65c+fQs2dPlRr/c0tMTMTChQsxePBgjb6fSrqJEyfC0tJSEP/vv//w+++/i54jk8lEV70fPnw4vvrqK63Wd/PmTfTu3RsbN25UuvE/t7t372L48OFYtGhRvk+rUdfLly/x3XffYc+ePXk2/helefPmCRr/jY2N8dtvv6FRo0bFVBURERERERERERERERERFScLCwvRvw0XBmdn5yIZpzRKSEjA/v37BfE6depovfm9Vq1aCAkJgaura54LA36qevXq2L17N8aOHSvYt3nzZly9ehXAhwkCfn5+MDIyUjjm2rVrGD58uELjf9WqVbFkyRL8888/ePLkCUJDQzF79mzY2NjIj4mPj8cPP/yABw8eqPtSiYjoC8GV/4vB9u3bsXjxYtHGOT09PTRp0gRff/01bGxsYGBggFevXiEyMhKhoaGCx0pJpVL4+/vj4cOHWLp0aYGrNivr3r17GDlypNKzDwvy5MmTfBv2HRwc0LRpU9jY2MDS0hKJiYl49eoVrly5gqioKMHxly9fxqBBg7BlyxatNWA+f/4ckyZNEtxAVatWDY0aNUKVKlVgYmKClJQUPH/+HJcvX0ZsbKwgT0xMDH766Sfs2rUrz7Fq1qyJp0+fCuJv374VbdS2tLTM970t6EkDH6WkpMDDw0N+E5qblZUVWrVqBTs7O5QtWxbp6el4/fo17t27hzt37giu2aioKAwdOhQrV65Ex44dlapBUy9evMDw4cNFrwsAMDIyQpMmTVCrVi2UK1cOEokESUlJePjwIf7991/Ra/revXsYM2YMtm7dKrghV1V8fDymTp2KS5cuKcTt7e3RtGlTODg4wMzMDGlpaYiOjsaVK1cQEREhyPPu3Tt4eHjgyJEjMDAwUKmGa9euwd3dPc/H0FlYWKBVq1awt7dHuXLlIJPJEBMTg1u3buHu3bvy9/nq1avo3r073r9/r9L4pV1SUhJGjBiB+/fvi+7X19dHgwYN4OzsjPLly0NfXx9JSUl4+vQprl69Krp6flRUFNzc3LB7925YW1srVUdoaCg8PT1FJ5AZGxujSZMmqFGjBqytrWFkZITU1FS8ePECd+/eRVhYmOD7+e7du3B1dcXWrVtRq1Yt0TGdnZ0Fn+PZ2dl4+/at4FiJRIKyZcvm+xpq1qxZ0MvUGgsLC0yaNAnz5s0T7Fu1ahV69OgheJLJ4cOHBZOkypcvDw8PD63WFhISgilTpohOtJFIJKhfvz6cnZ1Rrlw5GBsbIz4+HtHR0QgNDRV8pslkMmzfvh0PHz5EQECA2k+UyC0qKgo//vijWpNUCsPSpUuxZ88ehZiRkRHWrVuHpk2bFlNVRERERERERERERERERFTcypQpk+ff88VMmjRJYcG4AQMGYOXKlYVRGn1i27ZtgifTA4Cbm1uhjGdtbY1Vq1bhp59+wsGDB3H58mU8evQIycnJMDAwQIUKFVC/fn307NkTHTp0EO3Tev78OZYsWSLfHjFihGCiQmJiIjw8PBQW/WvdujU2bNiAMmXKyGMODg4YO3Ys+vbti2HDhsl7Ez72Cx0/fhzGxsba/jIQEVEpweb/IrZjxw4sWrRIEDcxMYGHhwcGDhyY5+zTjIwMHD9+HMuXLxc0jx45cgQymQz+/v4a1/js2TPRxn9bW1s0adIE9vb2AD6sDh4fH4/y5cvnm+9jg3hCQoJgX/v27TFx4sQ8G02BD43Z/v7+CA0NVYjHxsZi6NCh2Ldvn7wmdR06dAhbt25FSkqKPNatWzeMGTMGtWvXFj0nOzsb+/fvx6JFiwTN0devX8fJkyfzbIifNWsWZs2aJYhv27YNixcvVojZ2Njg4sWLqr4kgczMTIwaNQo3b94U7KtRowa8vLzQsmVL6Orqip4fGxuLjRs3YteuXQpPmpBKpZg4cSLWrFmDdu3aaVxnfhISEjBy5EjRxv/y5cvD09MTffr0yfPm9/379wgODsby5cuRnJyssO/mzZtYv349Jk2apHZ9Z8+exZQpUxS+P1u1agUPD488ZyXLZDKcOHECs2bNEjx94Pnz59i1a5fgEWL5efz4MUaPHi3a+O/g4IBp06bBxcUF+vr6oudHRUXht99+w/79+yGTyRS+J+jD5/CYMWNEf1FQpkwZuLu7Y9CgQbCwsBA9Pzs7GyEhIViyZImgiT4iIgI+Pj7w9fUtsI6EhAT8/PPPgsb/smXLYvz48ejbt2++/wiMjo7G9u3bsXPnToUcb9++xYgRIxAcHCw6qejgwYOi+caNG4eTJ08qxLp3766Vn0naNGjQIOzduxdhYWEK8fj4eKxbtw7Tpk2TxzIyMrBixQpBDi8vL6011APAiRMnMHnyZMHEL319ffz4448YNmxYnhO8srKycO7cOSxbtkwwiejKlSsYPXo0tm7dmuf3u7Li4+Ph5uYmaPy3tLREs2bNUKVKFejq6iI9PR1v3ryBg4ODRuMV5Ndff8XmzZsVYoaGhggICECLFi0KdewvhY6ODqpUqVLcZRARERERkZpyT24nIvocFPS3JiIiIqKC8H6C6PPx/v17bN26VRC3srJC7969C3VsR0dHhd4AZclkMkydOlXej1O1alXMmDFDcJy/vz9iYmLk2w4ODoLG/0/Z2tpiy5Yt6Nq1K+Lj4wF86P3ZuHEjJkyYoHKdRET0ZWDzfxG6cuUKfHx8BHEnJyesXbsWdnZ2+Z5vZGSEPn36oH379pg+fTpOnz6tsP/o0aOoXbs23N3d1a7x2rVruHLlikLjf4MGDTB+/Hi0atUKEolEpXxpaWnw9PQUNP4bGBjA19cXXbt2LTBHnTp1sHnzZvz++++YO3euQoPkmzdvMGHCBOzevRuGhoYq1fapNWvWyP+/cuXKWLx4cYErB+vq6mLQoEHyVaBzr6K9Z88elVfDNzc3F8RUXfU9L3PnzhVt/Hd3d8ekSZMKfGpExYoVMXv2bPTq1Qtjx45VeE+zsrIwbdo07N+/v1CbPmfOnCm6Sn6vXr0wb968AhtyDQ0NMWjQILRq1Qo//PCDws02AGzZsgXff/+92r8U+LQZtWzZspg3bx46d+6c7zkSiQSdO3eGvb09Bg8ejMzMTIX9e/fuVbr5//3795g8eTJSU1MF+4YOHYrp06cXeD1VrlwZCxcuhKurK2bOnIknT54oNfaXwtfXV/T7qFWrVvD19S1wpXtdXV10794dLVu2xPDhwwVN6H/++SdGjBgBJyenfPOsW7dOMEGrdu3aCAwMVOr6tbe3x4wZM/Dtt99ixowZePjwoXxfQkICvLy8sG3btgLzfFSYn13apKOjg1mzZmHIkCGCfdu3b8fgwYNRuXJlAMCmTZvw8uVLhWMaN26Mb7/9Vmv1PH78GF5eXoLGf3t7e6xfvx41atTI93w9PT106NABrVu3xqJFi7B3716F/deuXcOiRYtEn3agrEePHuHHH39EZGSkPFa9enVMmDABHTt21NoTh5S1ceNGrF27ViFmYGCANWvWoFWrVkVaS2lmbGwMt5Eji7sMIiIiIiIiIvqC5F7sgYiIiEhVvJ8g+nwEBwfjzZs3gvjAgQNhZGRUDBUVbMeOHbh06RKAD70+vr6+gkUZ37x5gx07dijEFixYkGfj/0d2dnaYNm0a/ve//8lj69evh7u7e4n9ehARUfHSKe4CvhSpqamYPn26oMGvVq1a2LJlS4GN/58qU6YMVq1ahbZt2wr2rVq1SqNm3aioKMTGxgIATE1N4e3tjd27d6N169YqN/4DwIoVKxSaSoEPqxmvWbNGqcb/Tw0YMAA+Pj7Q0VG8bO/fv4+AgACVaxPTs2dPHD58uMDG/0+1a9cOHTp0EMSvXbsmaOQuLidPnhRdsdvDwwNTp05VqXnzm2++wZYtWwRPqHj37h1mzpypca15OXfuHM6cOSOIe3h4wNfXV6WVuCtVqoR169YJnnKQkZGBEydOaFxry5Yt8eeffxbY+P8pZ2dnfPfdd4L406dP5d+TBQkMDBR8vwHAyJEjMXv2bJWasevXr4+9e/eiZcuWSp9TFJKTk4vtaQSPHj1CUFCQIN6nTx9s3LixwMb/T1laWiIwMFBw3cpkMvz555/5npuVlYXg4GCFmIGBAdauXavyxJU6depg9+7dCk9f0dfXR506dVTK8zlp3LgxevToIYhnZmbKn7rw6tUrbNy4UWG/rq4uZs+erbU6cnJy4OXlJXhKh52dHbZt21Zg4/+nDA0NMX/+fAwaNEiwb/fu3fJfQKjj7du3ePToEYAP18aUKVMQHByMrl27Fnnjf1BQkODJGPr6+li9ejXatGlTpLUQEREREREREREREREREZF6cjfIf/T9998XcSXKiY6OxqJFi+TbQ4cOFV2c7vfff1foFatXr55oT5mYwYMHo0KFCvLtxMRE/PXXXxpUTUREpRmb/4tIQECAYAVhY2NjrFmzRtBErQwDAwP4+fkp/NAHAKlUqnCzoS5LS0ts27YNAwcOVKvpHwD+++8/7Nq1SxCfOHEiXFxc1MrZu3dvDB06VBDfvHkzoqKi1MoJfGjq/OWXX+Dn56dSE/lHffr0EcTS09MRFxendk3akpGRgcWLFwviLi4umDRpklo5a9WqJXqdXb9+vcDGZXXVrl0bY8eOVXiywODBgzV6Dd27dxfEz507p26JAD48SWHTpk0qNYJ/JHYdARB92kFur1+/Fl3JoGXLlvDy8lK5FuDDau4bNmxQqQm5sL179w6NGjVCzZo11f6vdu3aak3yqFixIiZOnKjQKN+2bVvRSUnKKF++PH744QdB/Pz58/meFxYWhuTkZIVYu3btYG9vr3INAGBmZobAwEBUq1YNXbt2xbFjx9R6xN3nxMvLCyYmJoJ4SEgIzp49i8WLFwua8gcNGqTw3mtqz549uH//vkJMR0cHK1askD99QBUSiQRz586Fs7OzYN+iRYuQlZWldq3Ah6cPrV27FqNHj4a+vr5GudRx6NAheHt7K8T09fXznAxJREREREREREREREREREQlz71793Dz5k1BvFmzZqhevXoxVFQwLy8v+UKV9vb2mDVrluhxISEhCtu9e/dWegx9fX3BQoYnT55UsVIiIvpSsPm/CCQmJoquFv3TTz+p1eD3kZmZGebMmSOIh4aG4u7du2rnNTIywrZt21C3bl21cwAfHj+Uu9mwdu3aGDFihEZ5J02ahIoVKyrEMjMzsWXLFrVzent7Y9iwYWqfn9fXKiEhQe2c2nLo0CFER0crxExMTDBv3jyN8nbs2BGdOnUSxAMDAzXKm5fy5ctj8uTJCAkJQXBwMObNm6fxKtxis2uVabTPy7hx4zB16lS1GsEBoGbNmqJNtW/fvi3w3F27dgmalY2NjbFgwQK1avlIT09PrQlKJVlOTo7ge0IZZmZm8PDwwOHDhxESEoI5c+bAz89P7fcbEL8Gnz9/nu85YrVXrVpV7RoAwNbWFn/99RdWrVqFKlWqaJTrc1ChQgWMHj1adN+YMWMEs+ctLS0xceJErY2flZWF3377TRD//vvvUb9+fbXz6urqwtvbW/BUk8ePH2v0SwEdHR2sXr1a7Yl7mvrrr7/wyy+/QCaTyWN6enrw9/dXepUEIiIiIiIiIiIiIiIiIiIqfjt37hSNl9RV//fs2YOzZ8/Kt5ctWwYzMzPBcRkZGbh165ZCrH379iqNlXvhuytXrqh0PhERfTnY/F8E9u3bh/T0dIWYhYUFhgwZonHuDh06iK7KndeNkjI8PT01Xt345cuX+PvvvwXx0aNHQ09PT6Pcpqamoo36hw4dks+yVFWlSpU0qsna2lo0npGRoVFebdi+fbsg1rt3b9jZ2Wmce+zYsYLYw4cPC/3ms3bt2vjuu+80vpY+fYrAR/Hx8Wrn0/Q60tXVFW20L+g6ys7OxoEDBwTxb7/9VqMJRpQ3BwcHDBkyRPQfdKrmyU0qlSIpKSnPc7KzswWx3E+WoYKNHDlS6e+PyZMna3USTEhIiOA909XVzXNCgiqcnZ3Rpk0bQVyT+4IBAwaI5iwKZ86cwbRp0xSue11dXSxfvhydO3culpqIiIiIiIiIiIiIiIiIiEh1qampOHTokCBuamoqWPW+JHj58iXmz58v3x44cGCeT6aPiIiAVCqVbxsaGsLR0VGl8XL36718+RKpqakq5SAioi8Dm/+LwNGjRwWxXr16wdDQUCv5+/fvL4idPHlSsOq+MnR0dDBw4ECNazp+/LhgfCsrK3Ts2FHj3ADQp08fwQrpaWlpOH/+vFbyq8rAwKBYxi1IWFgYnj59Kohr4z0GgDp16ohOFDl+/LhW8hc2c3NzQUzdCSTaos61dPv2bcTFxQniAwYM0EZJVIjKlCkjGs/vOixXrpwgduLECbx48UJrdX0JDAwM8L///a/A45ycnLT2mfmR2H2Bi4sLbG1ttZLf1dVVELt27RrevHmjVr7vvvtO05LUcvnyZUycOFHhFyS6urrw9fVFt27diqUmIiIiIiIiIiIiIiIiIiJSzx9//CHaD9GtWzcYGxsXQ0X5mz59OpKTkwEAtra2mDdvXp7H5u7ZsLe3h66urkrj2dnZCfqGoqOjVcpBRERfBs2WzaYCxcXFITw8XBDX5mq1nTt3ho+Pj0IsJSUF169fR7NmzVTKVa5cOVhZWWlc07lz5wSxdu3aaa1J3traGg0bNsQ///yjED9//jy6d++ulTFKg08fO/WRvb09nJyctDZGp06dBNd4cU3CUJVMJivuErTi0qVLgpitrS3q1atXDNWUfDo6OihfvnxxlwEg72swv2uzbt260NfXV2iITk9Px8iRI7F27VpUr15d63WWVh07dkTr1q1x8eJF0f0SiQSzZ8+Gjo725kpmZmbi8uXLgrg27wtcXFxgYGCAzMxMeUwmk+H8+fPo16+fyvmK45q6fv06PD098f79e4W4u7t7iVzxobRJiU/B4sYzi7sMIiIiIiIiIiIiIiIiEmFZqSy8Lswt7jKIVPb777+LxsUWuCtuBw4cwMmTJ+XbPj4+sLCwyPP43Cv0iy1IqgxTU1OFv/UX9yKmRERUMrH5v5DduHFDENPR0YGzs7PWxrCzs0PZsmURHx+vEL99+7bKzf+5V9NXh0wmw61btwTxOnXqaJw7d77czf9i437Jbt68KYjVrVtXq2OI5YuOjsbr169hY2Oj1bE0kZ6ejsTERCQlJeHt27d4+/Ytzpw5U9xlacXt27cFMW1/v5UUZcqUwZkzZ2BmZlbcpagsMzMTb9++RWJiovy/69evq5zHxMQEPXr0QHBwsEI8IiICffr0Qa9evTB48GBO/lDSzJkz0atXL9Gn5bRu3RoNGzbU6njh4eFIS0sTxLX52ayvr4+aNWvi7t27CvFbt26p1fyvjXsDVdy/fx9jxowR/TqFhYUVaS1fKllODuKfq/ekCCIiIiIiIiIiIiIiIiKi3KKionD16lVBvHz58mjVqlUxVJS3169fY86cOfLtPn36oEuXLvmek7vnwNDQUK2xjYyM8s1LREQEsPm/0D1+/FgQc3BwgKmpqVbHcXJywoULFxRiT5480eoYyoqOjhZt2CuM5v/coqKiIJVKi7xRsaQSu/60OfEkv3xPnjwp0ub/Fy9e4MaNG3j06BEePXqE6OhopKamyv/7dJX00ubZs2eCWGlt/jc3Ny+xjf+vX7/Gv//+i8ePH+PRo0eIjIxESkqK/Br8dGa2piZNmoSzZ88iMTFRIS6VSnHgwAEcOHAAdnZ2aNeuHVxcXNC8eXO1/2FZ2jk6OqJLly44evSoYJ+2Py8B8c9lY2NjVKtWTavjODs7C5r/nz59qtUxCsOjR4/g5uaGd+/eie4/d+4czp49i7Zt2xZtYURERERERERERERERERUKkkkkuIu4Yuwf/9+yGQyQbx79+7Q0dEphoryNnPmTHk/Rrly5eDt7V3gOcbGxgrbuZ8EoKzc55mYmKiVh4iISjc2/xeyqKgoQaxcuXJaH0cs54sXL7Q+jjLEXjOg/dddtmxZQSwrKwsvX75E5cqVtTrW5yg7OxsxMTGCuLYb8q2trSGRSAQ36EVx/SUmJuL333/H8ePHce/evUIfryTKyckRfZ/Lly9fDNV8edLT03Hw4EEcP34c165dQ05OTpGMW7FiRaxevRqenp55NknHxMQgKCgIQUFBMDY2RvPmzdGuXTu0bdsWtra2RVLn58LBwUE0rqen/dsksZ+R1tbWWv9lRkm6L1BWREQERowYIZjUktuiRYvQsmVLGBgYFFFlRERERERERERERERERFRa1ahRQ6HvpUKFCsVcUel04MAB0XjPnj2LuJL8/fHHHzh27Jh829vbG9bW1gWeZ2VlpbBd0N+9xWRlZQma/3PnJSIiAtj8X+hSUlIEMXNzc62PI7YSttjYRSGvmYvaft155Suu113SpKamis6Y1fb7oKOjA1NTU8HXvTDfh8zMTOzcuRPr1q1DcnKy0udZWVmhUqVKqFy5MipVqoRHjx7hzJkzhVZnUUhNTUV2drYgXhifM/T/5OTk4NChQ1i5ciVevXql9HllypRBpUqV5P/Fx8fj8OHDatXQtGlT7N27F7Nnz8b169fzPTY9PR1nzpyRX++1a9dGu3bt0KlTJzg5Oak1fmlSlCs5FNV9gVjOkvzzMSYmBiNGjMDr16/lMYlEgkaNGuHatWsKx0ZGRmLjxo3w9PQs6jKJiIiIiIiIiIiIiIiIqJTx8PCAh4dHcZdRqt25cwfPnj0TxG1sbNCsWbNiqEhcQkICZs2aJd/u1q0bevXqpdS5VatWVdiOiYlBamoqTE1NlR7/6dOnCj1AhoaGqFixotLnExHRl4PN/4UsLS1NEFPlh7qyxHKKjV0U8mr+1/brziufuo9NKm3yev8L6/rL3VRaWNdfdHQ0xo0bh7CwMNH9VapUgYuLC2rXro1q1aqhYsWKMDExgYmJiWAV7+fPn3/2zf95fZ3Z/F94EhMTMXnyZFy6dEl0f/ny5dG2bVvUqVMH1apVg729vfwazL1SeVZWltrN/wDg6OiIXbt24dSpU9ixYweuXLkiOuknt7CwMISFhSEgIAAODg4YNmwYXF1dYWhoqHYtpJwv8b6gIHFxcRg+fLjCU0wkEgm8vb3Rp08f9OrVC0+fPlU457fffkOfPn1gZ2dX1OUSEREREREREREREREREZEKjh49Khpv3749dHR0iriavM2aNQvx8fEAAEtLSyxevFjpc+3s7FC2bFn5+TKZDHfu3EGLFi2UznHnzh2F7dq1a5eorw8REZUcbP4vZLkbPYHCab5LT08XxIyMjLQ+jjLEXjPw4XVrsyFZ7DUDxfe6S5q83ofCmBxRVNdfTEwMhg4dqtAg+lH79u3h6emJunXrKp1PV1dXm+WVKFKptLhLKJWSk5Px448/Ijw8XLCvadOm8PT0RPPmzZVeST73hBR1dejQAR06dEBcXBzOnj2Ls2fP4sqVK0r9vImIiMCCBQuwfft2LFq0CI0bN9ZKTSSuqO4LxHKW1MkdAwYMQFxcnHxbIpFg3rx5GDBgAADgf//7H0aPHq1wTkZGBnx8fLB69eoirZWIiIiIiIiIiIiIiIiIiFRz/Phx0XiHDh2KuJK8hYSEKCzeOG/ePJQvX16lHC1btsSff/4p3/7rr79Uav4PCQlR2G7VqpVK4xMR0ZeDU8MKmdjKu+/evdP6OGI5C2MlYWXkNa62X3de+YrrdZc0eX0dcq/QrymZTCaaU9vvQ1ZWFsaPHy9o/DczM8PatWuxbt06lRr/SwsTExPReGF8ztCHJuTcjf/6+vqYP38+duzYgRYtWijd+F8YbG1tMWjQIKxbtw5Xr17Ftm3bMGrUKNSqVavAuiIiIjB8+HAcO3asiKr9Mn2J9wUF+bTxHwBmz56NwYMHy7ddXFzg4uIiOO/vv/9GaGhooddHRERERERERERERERERETqefjwIR4/fiyI6+vro02bNsVQkVBiYiJmzJgh327fvr18sTpV9OnTR2E7ODhY6cUAX758idOnTyvEevfurXINRET0ZWDzfyETmwGYkJCg9XHevn0riNna2mp9HGXkNevx42ONtEXs6yiRSFSedVlaGRoawsLCQhDX9vuQmJiInJwcQbxChQpaHWfPnj24f/++QkxfXx+bNm1Cx44dtTrW58TExET0EV/JycnFUE3pdubMGZw6dUoQ9/f3V2hULin09fXRvHlzTJs2DYcPH8aFCxfg4+ODjh075rkCvFQqhZeXl+BRcqQ9ed0XyGQyrY4jdl+g7c/lwjBz5kwMGTJEEJ8xYwb09fUFcW9vbz7phIiIiIiIiIiIiIiIiIg+O9nZ2Xn+rTM9Pb1QxpTJZMjIyCjSMf/66y/ReL169WBubl4oY6pq7ty58kXrzM3NsXTpUrXydOzYEZUqVZJvx8fH47ffflPqXH9/f4X3pkmTJnB2dlarDiIiKv3Y/F/I1K3+yQAAIABJREFUHB0dBbGnT59q/YYpLCxMEPv666+1OoayvvrqK+jq6griDx480Oo4Yq/Zzs6uxK5sXByqVasmiGn7fci9CvpH1atX1+o4W7ZsEcTGjh2L+vXra3Wcz42uri4qVqwoiD99+rQYqindxK7Bfv36oXPnzsVQjepsbGzQr18/rF27FhcuXMD06dNhbW0tOE4qlWL+/PnFUOGXQey+IC0tDREREVodpyTdFyhr+vTp+PHHH0X3ffXVVxg6dKgg/uzZM2zdurWQKyMiIiIiIiIiIiIiIiIiUk3jxo1hb2+f539VqlQRPCX9o3bt2uV5XtWqVXH27FnR8/r27ZvvmJUqVcLNmzdFzx02bFi+5+3atUutr8OZM2dE482bN1crn7adOnUK+/fvl2/Pnj0bdnZ2auXS09ODl5eXQmzlypW4fPlyvucdPnwYQUFB8m2JRKLwJAIiIqLc2PxfyMRm4GVnZwtWMNdEQkICXr58KYjXqVNHa2OowtDQULS5UdsrSYs1sRfXay6pxL4e2n4fxK5la2trtW+ExYSHh+PFixcKMT09vRK52npxqFq1qiB27969Yqik9EpKSsK1a9cEcbEVyj8HFhYWcHNzw9GjR9GiRQvB/nv37uHWrVvFUFnpV7t2bUgkEkFcm5/NOTk5os3/Jfln5JQpU+Dm5pbvMePGjUPZsmUF8YCAgDx/KUZEREREREREREREREREVBxiY2MLJW9WVlaefx+NiYkplDFlMplar+fdu3d5TjZo0qSJpmVp7N27d5g+fbp8u3Xr1hr3gfTv3x9du3aVb2dlZeGHH37Avn37IJPJFI6VSqVYv349fvrpJ4W4m5sbmjVrplEdRERUurH5v5A5OTmhXLlygvipU6e0NobYDElDQ8NivQn4v//7P0Hs3LlzyMrK0kr+1NRU/Pvvv4K4i4uLVvKXFmLvQ2RkJB49eqS1McRmE7dp00a0uVVdYhM9KlasKPq9pYrXr19rdH5JUa9ePUEsLCwMqampWsmfmZmplTyfs/DwcGRnZyvE9PX14eTkpFHeV69eaXS+pqytrbFu3TrY29sL9v3zzz/FUFHpZ21tLdqEr837gqtXryItLU0Qb9OmjdbG0KaxY8di9OjRBR5nbm6OyZMnC+JpaWlqP3aRiIiIiIiIiIiIiIiIiIgKx6VLl/LsFRNbULeoLViwQD6pwcTEBMuXL9dK3lWrVqFhw4by7fT0dEyePBmtWrXC1KlT4ePjg4kTJ6Jp06bw9vZW+Bp16tQJs2fP1kodRERUerH5v5BJJBJ06NBBEA8ODoZUKtXKGAcPHhTEXFxcYGxsrJX86ujUqZMg9vr16zwfO6Wqv/76S9DYaGBggHbt2mklf2nRrFkzmJubC+L79u3TSv7IyEjR1dC7dOmilfwfvXnzRhDTtPEfQIGP1fpciD0KLSMjA0eOHNE4d05ODp49e6Zxns+d2DVoaWkJHR3NfoyWhGvQ2NgYffv2FcTFnihD2iH2M/L06dNISEjQSn6x+wJnZ2dUrlxZK/m1zd3dXelj+/fvL/pLoKNHj3LCChERERERERERERERERFRCXL+/HnRuKWlJezs7Iq4GkUXLlzArl275NszZszQ2t/UzczMsGfPHkEvxvPnz7F7926sWbMG+/fvFywY6ebmhg0bNkBfX18rdRARUenF5v8iIPY4oISEBK00YN++fVu0+XrYsGEa59ZEgwYNRJvzAgMDkZOTo1HurKwsbNu2TRDv2bMnrK2tNcpdEuVebVwVRkZGcHV1FcQPHTqklRXHN2/eLHgkVZUqVdC2bVuNcxckKSlJo/OTk5MRFBSkpWqKV6NGjUSv/V27dmn8/Xb27FmNv9al1bt37zQ6XyqVYuPGjSqfl5CQgPnz52PIkCFIT0/XqIaPypYtK4hp+vQOTT67SrsBAwbAwMBAIabu9ZBbdHQ0QkJCBPHivi/Ij5mZmdLH6ujoYObMmaL7Fi5cqLUnDBERERERERERERERERERaaJixYqFkldPTy/P3IXVUC+RSFCpUiWVz8urp6FFixaalqSxEydOAAB0dXXRs2dPjBgxQqv5TU1NsWbNGuzevRstW7bMc3FJXV1dtG/fHn/88Qe8vb3Z+E9ERErRK+4CvgQ1a9ZEmzZtBLMZ/f390bFjR9ja2qqVNysrC3PmzBHEGzZsiCZNmqiVU5tGjRqFyZMnK8Ru376NnTt3atSEuHXrVjx8+FAhpqenh1GjRqmds6TQ1dUVxFJSUjTKOWzYMOzatQvv37+Xx969e4cFCxZgzZo1aue9ffs29u7dK4iPHj1a49XQc7OyshLEIiIikJCQoNaEj5ycHPzyyy+iq7l/jgwMDNC3b19s2rRJIR4eHo5NmzaptKr2pzIyMuDv76+NEj97YtdZRkYG7t+/r/aj6Hx9fQWfZQXZtWsXVqxYgeTkZAAfHkHn4+Oj1vifevr0qSCmyi8FxD67NJ0cUZpZW1ujf//+2L17t0J827Zt6NmzJ5ycnNTOvWDBAmRkZCjEKlWqhO7du6uds6Rp3LgxunfvjmPHjinEHz58iJ07d2L48OHFUxgRERERERERERERERER0f9PbDHXwnbo0KEiHzM//v7+JbbvZMGCBViwYEGhj9OmTRu0adMGr1+/xo0bNxAZGYnU1FSYmpqiatWqaNSokeiCjURERPnhyv9FZObMmYKZeSkpKRg/frzaDZILFy5EeHi4QkxXVxdz585Vu05t6t69O5o2bSqI+/n54fLly2rl/Oeff7B69WpBfNiwYXB0dFQrZ0kitvpxSkoKXr58qXZOOzs70ebvEydOIDAwUK2ccXFxmDp1qmBV+Xr16qF///5q5cyP2Hubk5ODnTt3qpwrKysLXl5e+Pvvv7VRWonx448/wtjYWBBftWoVrly5onK+nJwcTJs2DY8ePdJGeZ+9atWqica3b9+uVr7ly5eLPsGkIH/88Ye88R8ADh48iCVLlgiewKGKuLg4HD58WBBXZaa92GfXkydP1K7pSzBx4kRYWloqxLKysjBx4kS1P/MDAwNx9uxZQXz27NmCJw187ry8vGBkZCSIr169utRM7CIiIiIiIiIiIiIiIiIiotLBxsYGXbp0gbu7OyZNmgR3d3d07tyZjf9ERKQWNv8Xka+++goTJ04UxO/cuQM3NzfExcUpnSszMxPz5s0TrBgMAJ6enqhVq5ZGtWqTt7c3zM3NFWIZGRkYO3YsTp48qVKu8+fPY+zYsYIVjWvUqIEJEyZoXGtJUKFCBdG4WGOuKkaPHi26Ormfnx9+/fVXZGdnK50rMjISw4YNQ2RkpELcxMQEPj4+Wl/1HwC++eYbQZMsAGzYsEGliSRRUVEYMmQI/vzzT22WVyLY2tqKPv1CKpXC3d0df/31l9K5kpKSMGnSpBI5QSItLQ1SqbTIx7W1tRX9bD18+DCCg4OVzpOQkIAxY8Zgw4YNatUxc+ZMwffYli1b4OnpidevX6ucLzo6GqNHj1aYUAAA9evXV+mJBmKfXZGRkbh586bKNX0prKysRCfrRUZG4ocfflBp8kROTg7Wr18PPz8/wb5+/fqhbdu2mpRaIlWsWFH0My8lJQW+vr7FUBEREREREREREREREREREREREVHhY/N/EXJ3d0fPnj0F8Tt37qBr167YuHEjEhMT8zw/KysLZ86cQa9evUQb/7t06YJx48ZptWZNOTg4wM/PD7q6ugrxjIwMjBs3DhMmTMDDhw/zzREREYGpU6fC3d0daWlpCvusrKwQEBAAExMTrddeHGrUqCG6evuaNWuwbds2QYOusgwNDbFmzRrR2aJr165Fv379cPHixXwnASQkJGDNmjXo2bMnIiIiFPbp6OjA19cX1atXV6u+gujq6mLw4MGCeGZmJtzd3REYGCi4Nj4VGxsLHx8ffPvtt7h165Y83qNHj0Kpt7iMGTMGDRo0EMQzMzMxadIkeHp65vv9lp2djaNHj6JXr14ICQkB8OFrL7a6dnF5+/Yt6tSpg5o1axbKf/Xr10dCQoLo2EOHDhXEZDIZZsyYgaVLl+b7+f3x+6dr164KK7N36tRJpRXZ69Wrh6lTpwrip0+fRpcuXeDn54cXL14UmCc+Ph5r165F7969BU+Q0dfXV/kJMvXq1RONT5o0CadOnUJmZqZK+b4U3bt3x+jRowXxyMhI9O7dG35+fnj16lWe58tkMvz7778YNGgQVqxYIdjfoEEDzJ8/X6s1lyTu7u6oWLGiIH748GHcuHGjGCoiIiIiIiIiIiIiIiIiIiIiIiIqXHrFXcCXZsmSJQCAI0eOKMTT0tLg6+uLFStWoHHjxqhRowZsbGxgYGCA+Ph4xMTE4OLFi3k2l3bv3h3Lli2DRCIp9NegKhcXF6xcuRJTpkwRNID+/fff+Pvvv+Hg4ICmTZvCxsYGVlZWSEpKwps3b3D9+vU8m5VtbW2xZcsWVK5cuSheRpHQ19dHt27dcPDgQYV4ZmYmFi9eDB8fH1hYWEBPT/Fbt02bNvDx8ck3t52dHXbs2IGRI0ciNjZWYV94eDhGjhwJKysrtGrVCnZ2dihbtiwyMzPx+vVr/Pfff7h27Zro5AB9fX0sX74cHTt2VPNVK8fd3R3BwcF4+fKlQlwqlcLPzw8bNmxAixYtUKNGDVhYWCAtLQ2vXr3C9evXER4eDplMplCzt7c3+vbti6NHjxZq3UVJX18fq1atwpAhQxAVFSXYf+rUKZw6dQpfffUVmjVrhvLly8PCwgIpKSl4/PgxQkNDFRrfTUxMsGrVKpw9exZBQUFF+VKKTXp6OtLS0mBtbS3Y169fP+zevRv3799XiOfk5GDz5s3YtWsXmjdvDicnJ1hZWeH9+/d48+YNbt26hbt37wq+fyZNmgQPDw+0b98e0dHRStc4cuRIpKenY82aNQrXdWpqKgIDAxEYGIjq1avD2dkZVapUgbm5OXR1dZGamoro6GiEh4fj7t27yMnJEeSWSCRYvHgxnJyclK4H+NBkXqVKFcETQV6+fAlPT0/o6+vD3Nxc4akFEokEP/30EwYOHKjSWKXNlClTkJ2djU2bNinEpVIpAgMDsWHDBvmTGMqVKwdTU1PEx8cjLi4OoaGheU4OaNq0KdatW6fS5JLPjZGREaZNm4aff/5ZIS6TybBgwQIcOHBAMPmQiIiIiIiIiIiIiIiIiIiIiIjoc8bm/yL2sVHa0dERAQEBkEqlCvuzsrJw5coVXLlyRal8enp68PT0hIeHh0JTZUnTuXNnbNu2DdOmTRNdlToiIkKwmnx+mjVrhmXLlqFChQparLJk8PT0xIkTJ/Du3TvBPplMJjoB5MGDB0rldnR0xN69e+Hl5SV6jb19+1YwMSU/9vb28PX1RaNGjZQ+R11mZmYIDAzEkCFDRL82ycnJCAkJka9Ynxd7e3v4+fmJrpBfGtja2iIoKAju7u7477//RI959uwZnj17lm8eGxsbBAYGwsnJCRcuXCiMUj87urq6WLduHQYNGiSYQAN8eKLJ2bNnFVb2F2NpaQkfHx+0b99e7VrGjx+PWrVqYc6cOYiPjxfsf/z4MR4/fqxSTjMzMyxbtgwdOnRQuR4dHR14eXlh/PjxovulUqnoExUePXqk8lilkZeXFxwcHODj4yN4iolMJsPNmzdx8+ZNpfMNGTIE06dPh6GhobZLLXF69OiBoKAgXL9+XSEeFhaGPXv2YMiQIcVUGRERERERERERERERERERERERkfaV3G7xUkwikcDT0xN79+5FixYt1M7TvHlz7N27F+PGjSvRjf8fNWzYEIcPH4abmxuMjY3VylG+fHnMnTsX27ZtK5WN/wBQuXJlBAYGwsbGRulz/j/27jvKyvLcG/DN9D4MvQxNqoKoiCJGVGyoEWOJQeI5VowaTbUlx1iPMZpo8mmKSUwsscVulFiJvXeNIFYEEeltemH4/siSo+49MGXDbOW61spa4X7e937uPW7WGtb6Pe/bmjc+9OzZM6699to477zzomfPnm0ZMfLy8uLYY4+Ne+65Z5ME/z81fPjwuOWWW2LEiBGtvjcvLy+mTZsW06dP/8oG/z/Vs2fPuP322+PYY4+N7OzsVt9/4IEHxr333tvqp79vDnr27Bm33HJLjBs3rtX3ZmVlxWGHHRb3339/u4L/n9prr73iwQcfjGOPPTYKCwvb3CczMzMOPPDAuO+++9oU/P/U3nvvHeedd16rvnPp+Laaz9qU833rW9+Kf/zjHzFp0qQ27zty5Mi45ppr4pxzztksgv+fOuuss5L+HnT55ZcnPXQCAAAAAAAAAADwZbXZPvm/vLw8srOzE568P2jQoE02w8iRI+Paa6+NV199Ne6+++6YMWNGLF26dL33lJWVxd577x0HHXRQu0PX/fv3j7y8vKitrV1X22abbdrVc0OKiorizDPPjGnTpsUdd9wRDzzwQMycOXO992RlZcW4ceNi//33j8mTJ7c70Dhs2LB455131v25oKAgJQcJhgwZ8rknbZeVlcXAgQPb1GvMmDHx0EMPxV133RVPPPFEzJ49O1auXBm1tbWRkZERWVlZkZ+fH8XFxdGjR4847LDDWtW/U6dOMXXq1Dj00ENj+vTpcf/998ezzz6b8Pfhi7bccsvYb7/94pBDDmnV4YRUGjx4cNx2220xffr0uOGGG2LWrFmxdu3aZq8fOnRofP3rX49vfetb0bVr14T10aNHxxtvvLHuz3379m3RHMOGDYuPP/543Z+zs7OjvLy8FZ8kuSFDhnyub1FRUQwbNqzVfXJycuLMM8+Mo446Kq6//vq4//77P9f3izIzM2OnnXaKadOmxc477/y5tWHDhkVWVlY0Njauu7Zfv36tnqk1SkpKoqioKCorKzfqPl9UXFwcnTt3Xu81nx6gmTFjRvztb3+Ll19+OZqampq9vry8PPbff/+YMmVK0u/I6NGjP/ffpri4OEpLS1s875lnnhknn3xy3HPPPfHII4/ECy+8EHV1deu9LyMjI4YNGxZ77bVXHHzwwSn57kZETJ06NSZOnBi33nprPP/88zFnzpxYvXp1NDQ0RGZmZmRnZ0d+fn6UlpZGeXl5HHDAASnZt70GDx78ue94RERubm6bDhq1R//+/eOKK66Id955J+6666548MEH1/v3NiKisLAw9thjj5g8eXLstttu7dq/T58+CX/vUvl7Qbdu3SI3N/dz38/hw4e3u+/IkSNj2rRpcfXVV3/uv2FFRUW89NJLsc8++7R7DwAAAAAAAAAAgHTQae36UrNsch999FG8/fbbsXjx4qisrIy1a9dGUVFRdOvWLUaMGBH9+/dP+yclt1ZFRUW89dZbMW/evKioqIiampooKCiI0tLSGDx4cAwfPnyzeoJxR6mvr4933nkn3n///Vi1alVUVVVFTk5OlJSURHl5eWy11VYtDiRvSsuXL4/XX389Fi1aFKtXr46mpqYoLi5eN3NHHVJIR/PmzYvZs2fHokWLorKyMjIzM6O4uDgGDBgQo0aNipKSko4e8UupsrIyXnvttViwYEGsWrUqGhsbo7CwMPr27RsjRoxo8YGSVKmvr485c+bEBx98EMuXL4+qqqpobGyMvLy86NKlS5SXl8eIESOiqKhok85F2yxatChmz54dn3zySVRUVMSaNWuiqKgounTpEsOGDYtBgwZFZmZmR4/JV0zFktVxWs8TO3oMAAAAAAAAkug6oFtcNOeKjh4DAIAOIvwPAACsI/wPAAAAAACQvoT/AQA2bxkdPQAAAAAAAAAAAAAAALB+wv8AAAAAAAAAAAAAAJDmhP8BAAAAAAAAAAAAACDNCf8DAAAAAAAAAAAAAECaE/4HAAAAAAAAAAAAAIA0J/wPAAAAAAAAAAAAAABpTvgfAAAAAAAAAAAAAADSXFZHDwAAAAAAAAAAQHop7FIUfUaWR/chPSO/tCByCnKitqI2qldUxfK5S2Puy3Oivrquw+brOrB79BreO7oM6BZ5xfmRnZcd9TX1UVdRG8s/WhZL3l8Ui99d2GHzkR5KepbGwB0GR0mv0ijsUhRrm9ZG5bKKWLVgRcx5/v2oXlnV0SMCAECrCP8DAAAAAAAAABA9hvaKnY/ZLbbef7soH91/vdeuaVwT81+bG89e/2Q8f8NTUb1i44aoO3XqFFvuvXXsOHXnGLHXqCjr22WD91Qtr4x3n5wdr9z+fLx610sdelgh4j9B9PNmXRqFZYUbfa+mpqa455zb4v6L/tGq+/ptNzBOf+KcyC3M20iT/Z+mNU1x7dFXxvM3Pp3Svl36d4tdpk2MHQ4fHz2G9Gp+/6amWPDm/Hju+ifjmWsej6rllSmdAwAANgbhfwAAAAAAAACAzVifkeVx8C8Oj1H7bxsZGRktuiczKzMGjN0iBozdIg65eGo89Kt744GL74mG2oaUztYpo1OMP3LX+PrZB0e3QT1adW9hl6LY9htjY9tvjI2aVdXxyG8fjIcv+2fUrKpO6Ywt1WNor00S/I+IyMjIiJz8nFbf12dk+SYJ/kdEZGRmRFZedsr6FXYpioMvPjy+dszukZG54e9xRkZGlI/uH9/81RFx4AWHxYO//M93uLEutd9hAABIpZb9iw0AAAAAAAAAgK+UjMyMOPSX346fvfqLGH3AmBYH/78oJz8nDjjn0Dhv5q+i33YDUzZf3637xf+8+PM46uoTWh38/6L80oL4+s8OjvNn/Sq2OXD7FE3YOkXdijfpfpXLWv8k+009Y1UbZkxm9OQxccHbl8WEaXu0KPj/RTn5OTH53EPj3H9fEn1G9UvJTAAAsDF48j8AAAAAAAAAwGamoKwwvnv3qTF0wohmr1nyweJ494m3YvG7C6NmdU3kl+ZHl/7dYuiEEdF7y74J13cb1CNOf+KcuObIK+PVu15s13wTjt8jplxxVGTnpu7J8BERpb3L4rt3nxp3/+yWuP+if6S094Z8GYL1X4YZv2if0w6Ig39xeJtC/1/UY0ivOOOpc+MvU38Xb97/Wrv7AQBAqgn/AwAAAAAAAABsRvJK8uOHD/40BozdIun67Edmxr3n3R7vPfV2sz0GbD8oDjjn0Bg9eczn6rmFeXH8378Xv//GZTHzgdfbNN8hFx8ek844cL3XrGlojI9emxufvLUgKpasisa6xijuXhLFPUqifJsB0W1g9/Xef9CFU6KxrjEevuyfbZqxLTZlsH5N45pYOmdxq+/blDM21DXE8nlL29Vjrx/vH4f+8tvNrq9pXBNzX/og5r8xLyqXVkRmVkaU9i6LAWO3SHqAJSIiv6QgTrzzR3HFvhfHO4+/1a75AAAg1YT/AQAAAAAAAAA2I9NuPCVp8L+xvjFu+cF18cSf/rXBHnNfnhO//8alsfMxu8W3/3Ds557Qn5mdFd+55fvxqwnnx/w35rVqtoN/sf7g/8wHXo+nr3ks3rzvtairqmv2uvJtBsS4I74WE0/ZJ7LzcpJec8jFU+OD596L959u/pBDKiUL1s/4zX1x26k3bJL9W6Koa+KMt/zwb/HIFQ90wDTrt93BOzQb/K+vrouHLvtnPPa7h6Jiyeqk1/Teqm9MOuPAGH/khIS17NzsOPHOH8clO58bi95ekNK5AQCgPdr/visAAAAAAAAAAL4UJp6yT2z99e0S6msaGuPKQ37douD/Zz1zzeNx5cG/joba+s/V84rz4+jrToqMrMwW9+o5rHfse2by4P/bj82KC8f8NK7Y/5J4+bbn1xv8j4iY//rcuOOMm+K8kWfEWzPeTHpNRmZGTP3d0S2er72SBes/em3uJtu/JZIdUPjo1Q83/SAbUNKrc/z3X74TGRmJ0acFs+bH/27707j33NubDf5HRHwy6+O49ugr44r9Lo7qlVUJ64VlhXHMtSdGp06dUjo7AAC0h/A/AAAAAAAAAMBmIL+0ICaf982ka3f+9O/x5n2vtanvzAdej5tOviah3m+bATHpjANa3GfRO5/E43+a8blafXVd3HDiX+LXe1zYpqD80jmL43cH/DLemP5K0vV+2wyILfca1eq+bZEsWL++cHpH+DLMGBEx9bdHR2FZYUL9k7c+jl9NOD8Wv7ewxb1mPvhG/HrPn0fN6uqEtUHjhsQeP9i3XbMCAEAqCf8DAAAAAAAAAGwGJp6yTxR2KUqoz33pg/jXb+5vV+9nrnk8Xvz7swn1SWdMjoLOiSHt5tx00tXx5FWPRETEio+Xxy93OS+e/PMj7Zqtsb4x/nTY5bFw9oKk69t/a6d29W+pZMH6yjQL1icP/1d0wCTNGzphRIw5dMeEem1FTfz+wEujekXiU/w35KNXP4zrjv1T0rXJ5x4a+aUFre4JAAAbg/A/AAAAAAAAAMBmYKf/npC0Pv1/74y1a9e2u/9tp14f9dV1n6vllxTExO/t06o+N5zwl7jxpL/GJePPadPT/pNprGuIe8+/I+naFjsNTckeG/JlCNYXdvn8QY2mNU1Rvbyyg6ZJbr//OShp/e6f3RpL3l/U5r6v3vlivHRL4gGW/NKCmHhK677DAACwsQj/AwAAAAAAAAB8xfUa0Sd6DuudUF+9eFX8+5+vpmSPVZ+sjGeueyKhPvGUSZGR2bqIyhN/+lesmL88JXN96o17X4k1DY0J9bLyLindpznJw//p8+T/gs6FkZmd9bla5bKKlBwMSZXybQbEyEmjE+pLPlgcj185o9397zrrlmha05RQ3/MH+0VWbna7+wMAQHsJ/wMAAAAAAAAAfMUN3GFw0vrbj8yKtU2pC3c//oeHE2rF3UtixJ6jUrZHW9VX1yV90n5OQe5G3zsjKzPySwsS5mmoqd/oe7dUssMJlUvT680E449M/vaKx37/UDQ1rml3/6UfLI437n0loV7UrTi23n/bdvcHAID2Ev4HAAAAAAAAAPiK6zmsV9L6x2/OS+k+C2bOjwWz5ifUx07ZKaX7tFV2fk5CrWrZxg+4p/tT/yOaCf/0r+0gAAAgAElEQVQnOSzRkbY/bFxCrWlNUzx/41Mp26O5XmOnjE/ZHgAA0FbC/wAAAAAAAAAAX3EFZYVJ6xvjye5vPfzvhNqofbdJ+T6t1XVg9yhM8nP4ZNbHG33vL0OwPt0PKGyx09AoK++aUJ/z/HtRsTh1c755/+vRWN+YUB99wHaRlZOVsn0AAKAthP8BAAAAAAAAAL7iMpsLLa9N/V7vPf1OQq20d1l0HdAt9Zu1wk7/vUvS+uxHZm70vdM9WB/RzAGFjXA4pK2GTBietP7O42+ldJ/66rr48MX3E+o5BbnRf8yglO4FAACtJfwPAAAAAAAAAPAVV7u6Jmk9WeC7vRbOXpC0PminoSnfq6W69O8We5/69YR6Q11DPH31Yxt9/+Th//QJ1kek/wGFLZr5/nzw3Lsp32vO8+8ln2F8x32HAQAgQvgfAAAAAAAAAOArb8X85UnrfUaWp3yvlc3s1XfrfinfqyUKOhfGd/9xauSXFCSsPfrbB2P1olUbfYbkT9VPn2B9RERRt6KEWmUahf8HjRuStL7gzfkp32vBzOQ9B+04OOV7AQBAazTzTjcAAAAAAAAAAL4qPnptbtL6iL1GRadOnWLt2rUp26u2IvlbBroO6J6yPVqqfHT/OP6W70ev4X0S1j7+97y455zbNskcLX2qfqdOnWLY7lvGiD1GxuCvDY+y8i5R2KUo8kryo766LmpW1cTSDxbHJ7M/jnefmB2zZ7yZsqfzF7bw7QSZ2Zmx5d5bx/CJW8Xg8cOipFfnKOpaFDkFOVFfXR9VK6pi6fuLYsGs+fH2o7Ni9iMzm33zREvlFuZG5z5lCfXG+sZY9uGSdvVOZsl7i5LWuw/plfK9AACgNYT/AQAAAAAAAAC+4uY8/17UVtZGXlHe5+olPUpj24PGxqt3vZiyvbLzspPWuw7olrI9NqSsX9eYdPoBsesJe0ZmdmI8ZumcxXHFfpdEQ23DJpkn6ZP/PxOsL+xSFBO+s0dM+M6e0W1g8kMS+SUFkV9SEF36dY1hu20Zu52wV6xpXBMzH3g9Hv3dQzHroTfaN2PXZDP+38GCzn27xO7f3Tu+dtzuUdKjNPmMpVmRX1oQ3QZ2jxF7joo9vrdvNNTWx2t3vxz/uvz+mPP8e22arWszP5OVHy9P6cGVTy3/aFkzc2y67zAAACQj/A8AAAAAAAAA8BXXUFMf/57+auxw+PiEtYN+PiXefOD1aKipT8leQ3YZnrRemuTJ7amQlZsdhV0Ko8eQXjFwx8ExctI2MXziVpGRmZH0+nefeCv+dNjlKXtifkskC9bXrK6J/NKC2PvUr8ce358U+SUFre6bmZUZow8YE6MPGBNvPzozbjjxr7H43YVtmzHJAYWa1TVR2rtz7PfTb8Qu0yZGdl5Oq/tm5+XEDoePjx0OHx+v3PFC3HzKNbF60apW9ejSzMGR1vZpqdULVyatF3UtjtyivKirrN0o+wIAwIYI/wMAAAAAAAAAbAYevmx60vB/rxF9YsrlR8YN3/lLu/cYuMPgOPKvJyRdyy3MbVfvXU/cK6b+9uhmQ/0bsmrhyrj3vNvjqase3ShPi1+fZMH6Qy6eGoV/nhYFnQtTssfwiSPjrJd+Htcd9+d45fbnW31/shmPue6k6Dqwe+Tktz70n8yYQ3eMIbsMjz9PuTzefWJ2i+8r7l6StF69oiolc31RQ21DNNTWJz3sUNStWPgfAIAO07Z/DQEAAAAAAAAA8KUy9+U58cLNzyRdmzBtjzjooinRqVOnNvXOLy2IQy6ZGmc8dW50buYJ/zkF7QuQ9xreu03B//lvzIur//v38dMB34sn//zIJg/+RyQP1nffokfKgv+fyivOj+Nv/l6MO+Jrrb432Yy9t+ybsuD/p0p6lsb37zszRuwxssX3NHdwpLZi44Xwm+ud6p8HAAC0hif/AwAAAAAAAABsJm4+5ZoYOmF4lJV3TVjb7yffiP7bDoy/TftzrFywokX9ykf3j/FH7xpfO2b3yC8tWO+12R0Ums7Oz4ncorzIK86PquWVHTJDcffEYH0ySz9cEjMfeD1mPvB6LPlgcVQsXhVVy6sivyQ/CrsWRf/tBsaQCSNihynjk4b1IyIyMjPiyL+eEIvfWxRznn+vRftmZGW2+CDCJ299HDMfeD1mPfRGLJ+3LFYvXh01q6qjoHNBFHcviQFjt4ihu42IsYftFHnF+Ul75BTkxgm3/zB+vv1ZsXTO4g3u2dx3Z03DmhbN3BbN9W7vIRYAAGgP4X8AAAAAAAAAgM1E9YqquGK/S+LUx86Ooq6J4fGR+24TF773m3jp1ufjjXtfjnmvfBirPlkRa5vWRnGPkijuURrlo/vH0AkjYuhuW0b3LXq0eO+mNU2p/Cgt1nNorzjiyuNiyuVHxQs3Ph33nn9HLJ+3dJPOULm0Irr079bs+qyH3oiHLp0eb814M+l61fLKqFpeGYvfXRgv3fpc3HH6jbHzMbvFwRcdnvTQRVZOVky7+Xtx3lanRUNtwwbny87NihXzl0XXAd2TrjetaYpX73wxHrp0enz44vvNfsbKpRXxyVsfx3PXPxm3/fiG2OP7+8b+Zx0U2bnZCdcXdC6MaTedEhePP2fD8zUT/m9q3Jjh/8ZWzQIAAJuC8D8AAAAAAAAAwGZkwcz5cemuF8RJd58aPYf2SljPzsuJ8UdOiPFHTmh17+Xzlsa7T8yOcf+1S8JafXV9m+b91NI5S6KpqSkyMjLadH9WTlbsfMxuscPU8XHHGTfFo797qF3ztMYvxp0du5+8TxxwziFR2KVoXX32IzPjjjNuinmvzGlVv4bahnj8yhnxxvRX46Q7fxwDth+UcE23gd1jjx/sGw9ecu8G+9VV1cW5W50e+545OfY57YDIKchdt/bKHS/EXT/9eyx+b2GrZqxdXRP3XXhXvHbXi3HyPadFt0GJB0UGjRsSY6eMj5dueXa9vZoL+XfK6NSqmVojIyszab2xPvmhAAAA2BQ6rV27dm1HDwEAAKSHiiWr47SeJ3b0GAAAAAAAbAJ5JflxyMVTY8Lxe0RGZtsC9Z/6+N/z4qFL/xkv3PxMRERcWX99wjUrPl4eP+l3Srv2aU52XnYUlBVGty16xqAdB8eWe42KEXuOiqyc5p+L+fyNT8c1R/0h1jZtuuhMYZeiOPB/D4vBOw+Le86+Ld6Y/kr7e3YtjtMeOzv6jCxPWKtYsjrO6PPdVr11oaxf1zj0km9HWb8uceeZN8f7z7zT7hm7bdEjTn/i3Ojcpyxhbd6rH8bPt/+f9d6/x/f3jSn/78iE+ku3PBtXTf1tu+dL5lcLr4ySHqUJ9fNHnxkL3vxoo+zZEl0HdIuL5lzRYfsDANCxPPkfAAAAAAAAAGAzVLu6Jm767tXx6O8ejL1+tH/scPj4yC3Ma/H9dVW18eqdL8bT1zwe7zw2a109Kzc7+fUVte2euTkNtQ2x6pOVseqTlfH+02/HjN/cF0XdimPi9ybFXj/aP/KKEj/XuCO+FhmZGfGXb2+c8HgyVcsr4+aTr0ltz2UVce0xf4yfPHdBwlsRiruXxJZ7jYqZD77R4n4rPlqW8p/J0g8Wxy0/uC5OuO2HCWv9txsYPYf3iUVvL2j2/oaa5G+NyCnMTVpPhdxmetdX1220PQEAYEOE/wEAAAAAAAAANmOfzPo4rj/+qrj5lGtj+O5bxpAJI6L3iD7RdWD3yCvJj+y87KitqI3qFVVRubQi5r36Ybz/zDvxwTPvRF1VYhA6vzQ/6T4r5i/f2B/lcyqXVsS9594eT/3l0fjOLd+PLXYamnDNDoePj7kvfxAPX/bPTTpbqs196YN45fYXYuy3dkpY22rS6FaF/zeWV+54IeY8/14MGjckYW3kpNHrDf/XrKpOWi/oXJiy+T4rIzOj2YMwNatqNsqeAADQEsL/AAAAAAAAAABEY11DzHzwjXYHxfNLCpLWl81d0q6+bbXio2Vx2cQL45R7T48t9xqVsH7Qz6fEK3e8EMs+7Jj5UuWVO55PGv4vHz2gA6ZJ7pU7X0ga/i/fpv9671v+0bKk9aLuxSmZK7FvSdJ6bWVtVC2r2Ch7AgBAS2Rs+BIAAAAAAAAAAGiZwq5FSevL5i7dxJP8n8a6hrjykF/H0iQB/6ycrJh05uQOmCq1Zv9rZtJ6jyE9N/EkzWt2xsHrn7G5gxld+nVt90yt6bu8A7/DAAAQIfwPAAAAAAAAAEAK9RlVnrQ+//W5m3iSz6urrI3bT70h6dqOU3eOjMwvd4ymanllNNTWJ9TzS5O/iaEjrFywImk9bwMzrvpkZdTXJH62nILcKO3dOSWzfVa3LXokrS+dszjlewEAQGt8uf/VAgAAAAAAAABAWum/3cCk9Q+efXfTDpLEa3e/FCs+Xp5Qzy8piIE7DO6AiVKranlVQi2nIKcDJkmuallF0npOQe4G753/WvLDI3237t+umZLpvVXfpPW5L89J+V4AANAawv8AAAAAAAAAAKRM/+0GJdSWvL8oKpcmD35vSmvXro13n5iddK3XiD6beJrUyy/NT6jVVtZ1wCTJNfcWgrrK2g3e+8FzyQ+PDNxhi3bNlLTn2OQ933/mnZTvBQAArSH8DwAAAAAAAABASpT27hwDd0x8gv6sGf/ugGmSW5nkyf8REUXdizfxJKmVW5gbuYV5CfWalYlvA+goJT1Lk9ZbMmNzwfvhu2/Vrpm+qFNGp9hi/NCEetOappjz3Hsp3QsAAFpL+B8AAAAAAAAAgJTYYerOkZGZGEd56ZbnOmCa5DpldOroETaKQeOGJK0vemfhJp6kec3O+O6GZ5z10L+jobY+oT5kwogo6FzY7tk+NbSZfm8/OitqK2pStg8AALSF8D8AAAAAAAAAACmx81G7JtRWLVwZ7z7+VgdMk1znPl2S1qtXpM8T8tti9IHbJ61/9NqHm3aQ9Rg9eUzS+kevfrjBe2srauLN+19PqGflZMXYKTu1d7R1xh4+Pmn9xb8/k7I9AACgrYT/AQAAAAAAAABot52P3i36bt0/of7kVY/E2rVrO2CiRJ0yOsWw3bdMurbo7U828TSpU1BWGOOO+FrStdmPzNzE0yTXY0ivGLXftknXWjrjCzc9nbQ+8XuTolOn9r/RIb+0IMZ9O/HnWF9TH6/e+WK7+wMAQHsJ/wMAAAAAAAAA0C65hbnxjQu/lVCvrayNRy5/oMV99vrx/nHhu7+Jblv0SOV464w+YEyU9uqcUF/T0BhzX56zUfaMiNjvp9+IC97+dZSPTjwckQoHnv/NKOpanFBfvXhVzP7Xmxu8PyMzIw6/4qg46+WLokv/bhtjxDjssv+KrJyshPq8V+bE4ncXtqjHq3e9GIvfS7y2z1blsfOxu7V7xklnTI684vyE+lN/eSSqV3653wwBAMBXg/A/AAAAAAAAAMBmqOew3jH5vENTErQ/4o/TonOfsoT6E3+cEVXLKzd4f3Z+Thx34ylx2KX/Fd0H94zTHj8nem/Vt91zfVZuUV5MufzIpGtv3v961FfXpXS/iIisnKw4+tqT4qCfT4meQ3vFaU+cEyP33Sale4z7r11it+/unXTtqb88Gmub1v/WhbyS/Dhl+hkx8ZRJ0X+7gXHmM+fHgLFbpHTG/X92cIyePCbp2uN/nNHiPmub1saDv7w36dqhvzwiyvp1bdN8ERF9RvWLvX68f0K9oa4hHvzl9Db3BQCAVBL+BwAAAAAAAADYTGRkZsSYb46LHz38P3HB7MvigHMOjdMeOzt6DOnV5p7fvPSIGHfE1xLqSz9cEtPPv2OD9xeUFcaZz5wfO07deV2trG+X+MmzF8SYQ3ds81yflVeSH9/75xnRdUD3pOtP/OlfKdnns3ILc+NHM86K8UdOWFfLLymIU+49PQ4499DolNGp3XuMO+JrcdRfvxMZGYkRoKoVVfHQr9YfWi/t3TnOfOb8GDlp9Lpa5z5lcfoT58SuJ+zZ7vki/vM0/W9ccFjStcXvLYxnrnm8Vf2eufaJ+PjNjxLqhWWFcfI9p0V+aUGrZyzqVhwn3fmjyM7NTlh79LcPxsqPl7e6JwAAbAzC/wAAAAAAAAAAm4mvHbd7nHDrD2LEnqPW1crKu8apj50dQyeMaFWv/wSmfxx7//jrSddv+M5VUVe14afpZ2RmRGnvzgn1vOL8OOG2H8ZxN54SZeVdWjXbZw3ddUT85NkLmv18bz86M968/7X19ui9Vd/4Xc118aemmz73v9/X/i36jOqX9J780oIo33ZAQj0jMyMmn3tonPHUedF36+T3bkhBWWEcc91Jcez1J0dmdlbSa+44/caoWVW93j6lvcui57DeCfXsvJw44srj4pTpZ0TXgckPTGxIWXmX+P79P4lDLp6adL2pqSlu+u7V0bSmqVV9mxrXxN+O+3OsaVyTsNZvmwFx+pPnRvfBPVvcr+ew3nH6k+cmPQCz6N2Fcc85t7VqPgAA2JgyzzvvvPM6eggAACA91FfXxUOXenUtAAAAAMBX1cK3FsR2B+8Qxd1LPlfPK86PnY6aEKW9OsfSOYujcklFsz26DeoRe5+6fxx3w8nRL0m4PSLi7rNuiWf/9mSLZqqvro+3Hn4zxk4ZHzn5OQnrfbfuF7ufvE/0GNIr6qvrY8X85RsMjGfn58R2B4+NQy/5dhx80eEJn/dTVSuq4neTfxXVK6rW26/PVuWxy3ETE+oZmRnx8q3PxbK5SxPWaitq44Nn3ontDxsXWTmJAf2y8q4x4Tt7Rs9hvaNiyepYMX95xNrmZ8jIzIgBY7eI/c8+OI6+5sQYOHZws9e+cPMz8Y+zb13vZ4qIWPXJylj87sLY5htjk749oOfQXrHrCXtG575dYuWCFbF64cr19svKyYohuwyPg34+JY7447ToNTzxYMGnHrjknnjqqkc3OGMyKxesiE6dOsXw3bdKWCvpURq7TJsY2Xk5sWDm/Khv5gBKSa/Ose9PDoyjrz0pSnslHj5pqK2PKw/+dSz7cEmbZtxYCjoXxJ4/3K+jxwAAoIN0Wrt27Xr+2QAAAGxOKpasjtN6ntjRYwAAAAAAsBH1GtEnTn/i3CjqVtzsNQtmzo8FM+fH6kUro2ZVTeQW5UaXft2ifJv+SZ+Q/lmP/3FG3PTdq1s9V/k2A+Lke06LLv26rve6hrqG+PiNebH4vUWxeuHKqK+ui06ZGZFfkh8FZUXRd1R59Nqyb2RmZa63T311XfzhoMvirRlvbnC2YbttGac+enbStcsm/m+88/hbzd47ZJfhccLtP4ySHqXr3aN6ZVXMe3lOLPlgcVSvqIzG+jWRV5IfhWWF0aV/txgwdlDkFuZtcNaZD7wefzjosmisb9zgtZ/a7uAd4ujrToq8ovX3X714VXz06txYOmdx1KyqjqbGNZHfuTAKOhdG9y16RL8xAyM7N3uD+z19zWPxt+P+3OL5mnP0NSfG+KN2bXa9aU1TfPji+/Hxvz+KyqUVEZ0iiruXRPno/tF/zKDIyEw88BDxn7cSXHX4b+OV259v94yp1nVAt7hozhUdPQYAAB1E+B8AAFhH+B8AAAAAYPPQb7uB8f37zoySnusPpLdGU1NT3HfhXXHveXe0uUdJr85xwq0/iCG7DE/ZXMlULq2IKw/5dbz31Nstur494f+IiLLyLjHtpu9t9M/1/A1Pxd+Ovyoa6xpafW+fkeVx/N+/H31Glm+Eyf7PQ5dNjzvPuDlSEVnKyMqMI686fr0HAFqrsb4xbjjhL/HsdU+krGcqCf8DAGzekh9fBQAAAAAAAADgK+ujVz+MX4w7O+a+9EFK+q1etCr+fNjl7Qr+R0SsXrgyLt3tgrjttBuitrI2JbN90Wt3vxTnb31Gi4P/qbBi/vL41a7nx40n/TUql1WkvH/V8sq4/jtXxdVH/qFNwf+I/7zt4cIxP41/nH3rRvnZr5i/LP5w0GVxx+k3pST4HxHR1Lgmrj3mj3H76Te26k0HzVm1cGX8v70vStvgPwAAePI/AACwjif/AwAAAABsXjIyM2LSGZNj0pmTI7+koNX3N9TWx+NXzoh7z78jalfXpHS24u4lMenMybHLtIltmu2zmpqaYvaMN+OfF97VptD/+p78f+luF8S7T85uca/cwtzY9cS9YuIp+0TXAd1bPctnVa2oiqf/+mjcf9E/onplVbt6fVZh1+LY64f7xi7H7xElPdr3doiVC1bEY394KGb85v5oqKlP0YSJeg7rHVP+35Exct9tWn3vmobGeOwPD8c9596e8u9xqnnyPwDA5k34HwAAWEf4HwAAAABg81RQVhi7nbRXjP3W+Cgf3X+91zbUNcS8l+fECzc/Ey/c+HRKQ+fJZOfnxPbfHBfbHLh9DNttyyjqVtyi+6pXVsWc596L2Y/MjBf//kysmL+8zTP0GNIrznr555FXnP+5en1NfZzZ9+Q2/wyG7joixhy6YwzbbavoM6o8MjIyNnjP6sWr4u1HZsUb01+JV+54oc1P+m+JjMyM2Gqf0bHtwWNj2K5bRs9hvVt03/J5S2P2v2bGa/e8HP+e/ko0rWnaaDN+Ub9tB8Qux+8R2x00Nkp7l6332gWz5seLNz8TT1/9WKz6ZOUmmrB9hP8BADZvwv8AAMA6wv8AAAAAABT3KInybQZEt0HdI7+0IDKzM6NmZXVUraiKJe8vivmvzY3G+sYOm6/bFj2i57De0aV/18grzo/s/JxY09AY9dX1UbOqOlZ8tCyWzlkSy+cujVTHYgq7FMWli/4YGZn/Cek/dOn0uOOMm1LSO684P3oO7x09hvSMom7FkVOYG5lZmVFXVRe1q2ti2dylseidT2LFR8tSsl9bFHYpip7De0f3LXpEQZeiyCvKi4iIuqq6qFlVHUvnLI5Fb38Sqxet6rAZP6vrwO7Rf8zAKO5eEgVlhdHU2BRVKypj5ccr4sMX3o+q5ZUdPWKrCf8DAGzehP8BAIB1hP8BAAAAAKB52x2yQ5x4+48iIqJmVXWcNfiHX8oAOV9ewv8AAJu3Db8rDAAAAAAAAAAAiAnH77nu/8/4zX2C/wAAwCYl/A8AAAAAAAAAABvQdUC32HLvURHxnzfpPvzr+zp4IgAAYHMj/A8AAAAAAAAAABuwy/F7REbGf6I2D1xyT9RV1nbwRAAAwOZG+B8AAAAAAAAAANYjIzMjdj56t4iIWDF/WTz2+4c7eCIAAGBzJPwPAAAAAAAAAADrMXrymOjcpywiIv554V3RWNfQwRMBAACbI+F/AAAAAAAAAABYjwnH7xEREYveXRhP//Wxjh0GAADYbAn/AwAAAAAAAADAegzcYXBULq2Im0++OprWNHX0OAAAwGYqq6MHAAAAAAAAAACAdHZqjxM6egQAAABP/gcAAAAAAAAAAAAAgHQn/A8AAAAAAAAAAAAAAGlO+B8AAAAAAAAAAAAAANKc8D8AAAAAAAAAAAAAAKQ54X8AAAAAAAAAAAAAAEhzwv8AAAAAAAAAAAAAAJDmhP8BAAAAAAAAAAAAACDNCf8DAAAAAAAAAAAAAECaE/4HAAAAAAAAAAAAAIA0J/wPAAAAAAAAAAAAAABpTvgfAAAAAAAAAAAAAADSnPA/AAAAAAAAAAAAAACkOeF/AAAAAAAAAAAAAABIc8L/AAAAAAAAAAAAAACQ5oT/AQAAAAAAAAAAAAAgzQn/AwAAAAAAAAAAAABAmhP+BwAAAAAAAAAAAACANCf8DwAAAAAAAAAAAAAAaU74HwAAAAAAAAAAAAAA0pzwPwAAAAAAAAAAAAAApDnhfwAAAAAAAAAAAAAASHPC/wAAAAAAAAAAAAAAkOaE/wEAAAAAAAAAAAAAIM0J/wMAAAAAAAAAAAAAQJoT/gcAAAAAAAAAAAAAgDQn/A8AAAAAAAAAAAAAAGlO+B8AAAAAAAAAAAAAANKc8D8AAAAAAAAAAAAAAKQ54X8AAAAAAAAAAAAAAEhzwv8AAAAAAAAAAAAAAJDmhP8BAAAAAAAAAAAAACDNCf8DAAAAAAAAAAAAAECaE/4HAAAAAAAAAAAAAIA0J/wPAAAAAAAAAAAAAABpLqujBwAAANJHp4yM6DqgW0ePAQAAAAAAQBKdy7t29AgAAHSgTmvXrl3b0UMAAAAAAAAAAAAAAADNy+joAQAAAAAAAAAAAAAAgPUT/gcAAAAAAAAAAAAAgDQn/A8AAAAAAAAAAAAAAGlO+B8AAAAAAAAAAAAAANKc8D8AAAAAAAAAAAAAAKQ54X8AAAAAoM2OPfbYOPbYYzt6DADgS8zvEwBAe/l9AgCAzUVWRw8AAAAAAHx5LV68uKNHAAC+5Pw+AQC0l98nAADYXHjyPwAAAAAAAAAAAAAApDnhfwAAAAAAAAAAAAAASHPC/wAAAAAAAAAAAAAAkOaE/wEAAAAAAAAAAAAAIM0J/wMAAAAAAAAAAAAAQJoT/gcAAAAAAAAAAAAAgDQn/A8AAAAAAAAAAAAAAGlO+B8AAAAAAAAAAAAAANKc8D8AAAAAAAAAAAAAAKQ54X8AAAAAAAAAAAAAAEhzwv8AAAAAAAAAAAAAAJDmhP8BAAAAAAAAAAAAACDNCf8DAAAAAAAAAAAAAECaE/4HAAAAAAAAAAAAAIA0J/wPAAAAAAAAAAAAAABpTvgfAAAAAAAAAAAAAADSnPA/AAAAAAAAAAAAAACkOeF/AAAAAAAAAAAAAABIc8L/AAAAAAAAAAAAAACQ5oT/AQAAAAAAAAAAAAAgzQn/AwAAAAAAAAAAAABAmhP+BwAAAAAAAAAAAACANCf8DwAAAAAAAAAAAAAAaU74HwAAAAAAAAAAAAAA0pzwPwAAAAAAAAAAAAAApDnhfwAAAAAAAAAAAAAASHPC/wAAAAAAAAAAAAAAkOaE/wEAAAAAAAAAAAAAIM0J/wMAAAAAAAAAAAAAQJoT/gcAAAAAAAAAAAAAgDQn/A8AAAAAAAAAAAAAAGlO+B8AAAAAAAAAAAAAANKc8D8AAA4CA0cAACAASURBVAAAAAAAAAAAAKQ54X8AAAAAAAAAAAAAAEhzwv8AAAAAAAAAAAAAAJDmhP8BAAAAAAAAAAAAACDNCf8DAAAAAAAAAAAAAECaE/4HAAAAAAAAAAAAAIA0J/wPAAAAAAAAAAAAAABpTvgfAAAAAAAAAAAAAADSnPA/AAAAAAAAAAAAAACkOeF/AAAAAAAAAAAAAABIc8L/AAAAAAAAAAAAAACQ5oT/AQAAAAAAAAAAAAAgzQn/AwAAAAAAAAAAAABAmhP+BwAAAAAAAAAAAACANCf8DwAAAAAAAAAAAAAAaU74HwAAAAAAAAAAAAAA0pzwPwAAAAAAAAAAAAAApDnhfwAAAAAAAAAAAAAASHPC/wAAAAAAAAAAAAAAkOaE/wEAAAAAAAAAAAAAIM0J/wMAAAAAAAAAAAAAQJoT/gcAAAAAAAAAAAAAgDQn/A8AAAAAAAAAAAAAAGlO+B8AAAAAAAAAAAAAANKc8D8AAAAAAAAAAAAAAKQ54X8AAAAAAAAAAAAAAEhzwv8AAAAAAAAAAAAAAJDmhP8BAAAAAAAAAAAAACDNCf8DAAAAAAAAAAAAAECaE/4HAAAAAAAAAAAAAIA0J/wPAAAAAAAAAAAAAABpLqujBwAAANJHdXV1/PlPf+roMdiMlZSUxLHHHdfRYwAAAAAAAAAApB3hfwAAYJ21a9fGypUrO3oMAAAAAAAAAP4/e3ceXdP9/X/8lVkikQQRU+gQMzG3wkfVUPrxKYKgpapqKC1KzTNVM1EqdOBDKTW0SE3VoigSSqma55kgEhESMtzfH59f83XdeyPDTXLp87FW18rZ73P23jlJ15Jkn/cBAOAx9rndAAAAAAAAAAAAAAAAAAAAAAAASBvD/wAAAAAAAAAAAAAAAAAAAAAA2DiG/wEAAAAAAAAAAAAAAAAAAAAAsHEM/wMAAAAAAAAAAAAAAAAAAAAAYOMY/gcAAAAAAAAAAAAAAAAAAAAAwMYx/A8AAAAAAAAAAAAAAAAAAAAAgI1j+B8AAAAAAAAAAAAAAAAAAAAAABvH8D8AAAAAAAAAAAAAAAAAAAAAADaO4X8AAAAAAAAAAAAAAAAAAAAAAGwcw/8AAAAAAAAAAAAAAAAAAAAAANg4hv8BAAAAAAAAAAAAAAAAAAAAALBxDP8DAAAAAAAAAAAAAAAAAAAAAGDjGP4HAAAAAAAAAAAAAAAAAAAAAMDGMfwPAAAAAAAAAAAAAAAAAAAAAICNY/gfAAAAAAAAAAAAAAAAAAAAAAAbx/A/AAAAAAAAAAAAAAAAAAAAAAA2juF/AAAAAAAAAAAAAAAAAAAAAABsHMP/AAAAAAAAAAAAAAAAAAAAAADYOIb/AQAAAAAAAAAAAAAAAAAAAACwcQz/AwAAAAAAAAAAAAAAAAAAAABg4xj+BwAAAAAAAAAAAAAAAAAAAADAxjH8DwAAAAAAAAAAAAAAAAAAAACAjWP4HwAAAAAAAAAAAAAAAAAAAAAAG8fwPwAAAAAAAAAAAAAAAAAAAAAANo7hfwAAAAAAAAAAAAAAAAAAAAAAbBzD/wAAAAAAAAAAAAAAAAAAAAAA2DiG/wEAAAAAAAAAAAAAAAAAAAAAsHEM/wMAAAAAAAAAAAAAAAAAAAAAYOMY/gcAAAAAAAAAAAAAAAAAAAAAwMY55nYDAAAAAAA8q27fvq2TJ0/q/Pnzio2NVXx8vNzd3eXp6anixYsrICBAbm5uud3mMyc2NlYnT57U2bNndefOHd27d09ubm7y8vJS4cKFVblyZXl6euZ2m6kuX76sQ4cOKSoqSjExMXJycpK3t7eKFSumqlWrKm/evLndIgAAAAAAAAAAAADABjD8DwAAAACAFZ05c0YrVqzQli1bdOzYsTTPdXBwUIUKFRQcHKxWrVrJ29s7h7rMXrt27VLv3r0VGRlpFPfy8tKePXvk7u5u9ZrXrl3T8uXLtXnzZh08eFAGg8HiuXZ2dipVqpSCgoLUrl07FS5c2Or9PMnJkyf17bffav369bp+/brF8xwcHBQQEKB27dqpVatWPAgAAAAAAAAAAAAAAP9g9rndAAAAAAAAz4Ljx4/rnXfeUb169TR79uwnDv5LUnJysg4dOqRRo0apRo0amjZtmuLj43Og2+xz/fp19ejRw2TwX5JiYmIUHR1t1XqXL19Wr169VKtWLU2dOlUHDhxIc/BfkgwGg06ePKkpU6bopZde0vDhwxUTE2PVviy5cuWKunbtqvr162v+/PlpDv5L//seOXDggIYMGaIaNWrov//9r5KTk3OkVwAAAAAAAAAAAACAbWH4HwAAAACALEhKStK4cePUuHFjbdmy5YmD55YkJCRoxowZql+/vv766y8rd5kzUlJS1Lt3b92+fTtH6n3xxReqV6+eVq9eraSkpEzlSE5O1sKFC1W3bl1t377dyh0aW7JkierVq6eNGzdm6vrY2FiNHDlSb7zxhq5cuWLl7gAAAAAAAAAAAAAAts4xtxsAAAAAAOBpFR0drffee0979+61eE6JEiX08ssv64UXXpCHh4diY2N15coV7dmzR6dPnzY5/9KlS2rZsqVmzZqlpk2bZmf7Vjdr1izt3r072+skJCSod+/e2rBhg8VzfH19FRgYKH9/f3l6eurevXuKjIzU3r17dfToUZOHNG7fvq2OHTtq7Nix6ty5s1X7TUlJ0ZgxYzR//nyr5Dt06JDeeOMNLViwQFWqVLFKTgAAAAAAAAAAAACA7WP4HwAAAACATIiNjVX79u116NAhs+u1a9fWgAED9PLLL1vM8eeffyokJESbN282isfHx6tnz55asGCBGjRoYNW+s8vvv/+ukJCQbK/z8OFDdevWTVu3bjW7XrFiRQ0cOFANGjSQvb35Fx6ePn1an3/+ub7//nujeHJyskaMGCFnZ2d16NDBaj2PGjVKCxYssLju7OysatWqqXTp0vL09FRiYqKuXr2qAwcO6NKlS2avuXHjhtq3b681a9aodOnSVusVAAAAAAAAAAAAAGC7GP4HAAAAACCDDAaDPvzwQ7OD/05OTvrkk0/0zjvvPDFP5cqV9c0332jZsmUaOnSoHj58mLqWlJSkHj16aPXq1apQoYJV+7e2mJgYffjhh0pOTs72WqNHj7Y4+N+vXz/169dPDg4Oaebw9/fXzJkz1axZM/Xu3VuxsbFG60OHDlWxYsX06quvZrnfr776yuLgv5eXl/r06aO33npL+fLlM3vO/v37NXPmTG3ZssVk7c6dO+rYsaPWr1+vggULZrlXAAAAAAAAAAAAAIBtM78FHgAAAAAAsGjBggVmB9AdHR01b968dA3+P+rNN9/U/Pnz5eLiYhS/d++ePvroIyUmJmap3+w2cOBAXblyJdvr/Pzzz1q0aJHZtYkTJ2rAgAFPHPx/VKNGjbR8+XJ5eXkZxZOTk/Xxxx/rzp07Wer32LFjmjBhgtm1mjVr6tdff9X7779vcfBfkqpXr65FixYpJCREzs7OJuuXL1/W0KFDs9QnAAAAAAAAAAAAAODpwPA/AAAAAAAZcOfOHU2fPt3s2tChQ9WoUaNM5W3QoIHZQfFjx45pzpw5mcqZExYuXKgNGzYYxdIaZs+spKQkjRs3zuxa586dM/zAxd8CAgI0d+5ck4cGIiMj9emnn2Yqp/S/BwgGDBhg9sGNWrVqadmyZSpUqFC687Vr107z5s2To6PpSxw3bNigjRs3ZrpXAAAAAAAAAAAAAMDTgeF/AAAAAAAyYMGCBYqJiTGJBwQEqHv37lnK/eabb6p58+Ym8Tlz5pitmduOHTtmMpBfoUIFff/991avFRYWprNnz5rEixQpomHDhmUp9yuvvKIePXqYxJctW6YzZ85kKueqVat08OBBk3jhwoU1b9485cmTJ8M5GzZsaHGX/3Hjxik5OTnDOQEAAAAAAAAAAAAATw+G/wEAAAAAyABLg+39+vWTvX3Wf8wePXq0yWB4XFycFixYkOXc1hQfH6+ePXsqISEhNebm5qY5c+Zky87/K1euNBvv2bOn3Nzcspy/b9++Kly4sFEsJSVFoaGhGc5lMBgsXjdx4kR5e3tnqkdJev/991W1alWT+IULF7RmzZpM5wUAAAAAAAAAAAAA2D6G/wEAAAAASKdTp07p3LlzJvECBQqoYcOGVqlRuHBhtW3b1iT+3//+V0lJSVapYQ0jR47UqVOnjGKffvqp/P39rV7r3r172r17t0nc0dFRrVq1skoNNzc3denSxSS+atUqRUVFZSjXpk2bTO6NJL300ktq3LhxpnuUJDs7O4tvOsjMgwoAAAAAAAAAAAAAgKcHw/8AAAAAAKTTwYMHzcbr1KkjBwcHq9Xp1KmTSez27dvauXOn1WpkRVhYmL777jujWFBQkNq1a5ct9f766y8lJyebxCtVqpSlXfQf1759ezk5ORnFEhMTtWHDhgzlsfR2iG7dumW6t0fVrl1b5cuXN4mfOHFCf/31l1VqAAAAAAAAAAAAAABsD8P/AAAAAACk09mzZ83Gy5Yta9U6ZcuWValSpUziP/74o1XrZMbFixc1ZMgQo1jJkiU1adKkbKtp6b6XK1fOqnW8vLxUt25dk3hG7vvdu3f166+/msQ9PT312muvZam/R7Vu3dpsPCwszGo1AAAAAAAAAAAAAAC2heF/AAAAAADS6c6dO2bj+fPnt3qtV155xSRmbqg8JyUmJuqDDz5QbGxsaszJyUmhoaHy8PDItrq5fd/37Nmj+/fvp+v6LVu2KCEhwSRev359k7cKZEXjxo3NxjP6lgIAAAAAAAAAAAAAwNOD4X8AAAAAANIpMTHRbNzOzs7qtWrWrGkSu3Hjhi5dumT1Wuk1ZcoUHThwwCg2aNAgVa1aNVvrPnz4MFvzP8rcfU9OTtbBgwfTdf2ePXvMxgMDA7PU1+NeeOEFFS5c2CR+4cIFRUZGWrUWAAAAAAAAAAAAAMA2MPwPAAAAAEA6ubu7m43fvn3b6rX8/f3Nxv/44w+r10qP7du3a+7cuUaxV155RT179sz22pbeKhAdHW31Wlm97/v37zcbr1atWqZ7ssRSTks9AAAAAAAAAAAAAACebgz/AwAAAACQTkWKFDEbP3HiRI7VOnbsmNVrPcnNmzf10UcfyWAwpMZ8fHw0a9asbHnrweMs3Yvjx49bvZa7u7vZhw3SUys+Pt7seY6OjhYfKsiK0qVLm40//nYGAAAAAAAAAAAAAMCzgeF/AAAAAADSqUKFCmbjv/32m1JSUqxay9JbBi5fvmzVOk9iMBjUp08f3bx5MzVmZ2enzz77TD4+PjnSg6X7/ueffyomJsbq9fLmzWsSu3Tp0hOvu3DhgpKTk03ixYsXl7Ozs1V6e9Rzzz1nNn7+/Hmr1wIAAAAAAAAAAAAA5D6G/wEAAAAASKdq1arJzc3NJB4VFaWffvrJqrUePHhgNp7Tw/9z5szRjh07jGLvv/++Xn311RzroUSJEipRooRJPCkpScuXL7d6PXP3Pj333dIDApbeXJBVRYsWzVAfAAAAAAAAAAAAAICnG8P/AAAAAACkk6urqxo1amR2bdKkSYqPj7darb1795qNR0ZGWq3Gk/zxxx+aMmWKUaxKlSoaMmRIjvXwt2bNmpmNh4aG6saNG1arc/r0aUVHR5vE01PjypUrZuPZ9YaEQoUKmY3n9AMiAAAAAAAAAAAAAICcwfA/AAAAAAAZ0KNHD7PxM2fOaNSoUVapceDAAfXv39/s2v37961S40liY2P14YcfKikpKTXm7u6u0NBQOTk55UgPj+rcubNcXFxM4lFRUerbt68MBkOWa5w9e1ZdunQxu5aSkvLEhzuioqLMxj09PbPcmzn58uUzG4+OjrbK/QAAAAAAAAAAAAAA2BaG/wEAAAAAyIDKlSurRYsWZteWLl2qiRMnKiUlJVO579y5o08//VRBQUEWd/i35tsF0jJo0CBdvHjRKDZx4kQ999xzOVL/cUWKFFG3bt3Mrm3fvl19+/ZVQkJCpnLHx8dr9uzZaty4sU6fPp3meWmx9GCGu7t7pvp6Eg8PD4trmb0XAAAAAAAAAAAAAADbxfA/AAAAAAAZNH78eBUuXNjs2uzZs9WxY0ddu3Yt3fmOHDmi0aNH6+WXX9bcuXONdtt/XE4MdS9ZskRr1641irVp00atWrXK9tpp6d+/vypUqGB27fvvv1fLli3THN5/3Llz5zR16lTVqlVLEydOfOJw/5PuvaV1R0fHdPeUEWnlzamHRAAAAAAAAAAAAAAAOSd7/voMAAAAAMAzzNvbW0uWLFHr1q0VExNjsr5t2zbVqVNHb7zxhho3bqxKlSqpUKFCsre3161btxQVFaVjx44pIiJCERERJjvsp8XBwcGan4qJkydPavTo0UaxF154QePHj8/Wuunh7OysRYsWKSgoSJcuXTJZP3TokBo0aKDGjRuradOmCggIUNGiReXk5KSoqCjdunVLp0+fVnh4uPbs2aNTp05lqP6T7n1OD/87OTlZXGP4HwAAAAAAAAAAAACePQz/AwAAAACQCWXLltXq1avVuXNnnT9/3mT9wYMH+uGHH/TDDz9kOHfRokVVq1YtrVq1ymTN1dU1M+2mS0JCgj744AOjwXFnZ2fNnTtXefPmzba6GVG4cGGtXr1aXbt21cGDB03Wk5OTtXHjRm3cuDHDub29vfX6669r+fLlSklJMVl/0r239HCAuVzWkNYbIpydnbOlJgAAAAAAAAAAAAAg99jndgMAAAAAADytSpcurY0bN6pjx46yt8/6j9hly5bVZ599pt27dyskJMTsOdk5/D9mzBgdO3bMKDZs2DBVrFgx22pmRpEiRbRq1Sp99NFHcnFxyXI+Pz8/jRs3Tr///rumTZumQoUKmT3vSffe0npiYmKWezQnreH/7Pw+AQAAAAAAAAAAAADkDob/AQAAAADIgnz58mnSpEnavHmz3nrrrQwPXbu6uqpVq1ZasWKFNm/erDZt2sjJyUnJyclmz8+uHfg3bNigxYsXG8UaNmyorl27Zku9rHJxcdGgQYO0fft2devWTZ6enhm63snJSa+//roWLFigXbt26b333kv92pm79y4uLnJyckozZ548eczG79+/n6He0iutvAz/AwAAAAAAAAAAAMCzxzG3GwAAAAAA4FlQpkwZTZs2TZ9++qnCw8O1Z88enT59WpcuXVJcXJwSEhLk7u4uT09P5c+fX5UqVVKNGjVUo0YNswP9d+/eNVunSJEiVu/98uXLGjhwoFGscOHC+uyzz2RnZ2f1etbk5+enMWPGaMSIEfr9998VHh6ukydP6sKFC4qNjVVCQoLc3Nzk6ekpb29vlS9fXtWrV1fNmjXl7e1tNqe5e5+e+54vXz6z8djY2Ix9UulkKa+bm5scHByypSYAAAAAAAAAAAAAIPcw/A8AAAAAgBXlyZNH9evXV/369bOUx9Lwv5+fX5byPs5gMKhPnz6KiYlJjdnb22vmzJnKnz+/VWtlJ0dHRwUGBiowMDBLeRITE5WQkGASL168+BOvLVq0qNl4VFRUlnqyxFLe9PQKAAAAAAAAAAAAAHj62Od2AwAAAAAAwFR0dLTZeLFixaxa54cfftCePXuMYvXr19e//vWvTOe8c+eOxbVHHzKwRZbue3oG6i2dc+XKlSz1ZMnVq1cz1AcAAAAAAAAAAAAA4OnGzv8AAAAAANigEydOmI1XqFDBqnVWr15tEtuyZYvVHzL42+uvv242nidPHi1atEh16tTJlrrpdfz4cbPx8uXLP/HaEiVKmI1fvnxZycnJcnBwyFJvj7t48WKG+gAAAAAAAAAAAAAAPN3Y+R8AAAAAABt0+PBhs/Hq1atbtc6DBw+smi+zEhISdPny5dxuQ0eOHDEbT8999/X1VaFChUziCQkJOnfuXJZ7e9zJkyfNxgMCAqxeCwAAAAAAAAAAAACQ+xj+BwAAAADABv31118msZIlS6pAgQK50M0/h7n7nidPnnS/ccHSQwJ//vlnlvrKSM4aNWpYvRYAAAAAAAAAAAAAIPcx/A8AAAAAgI25fv26Dh48aBKvW7duLnTzz/HgwQP9+uuvJvFatWrJyckpXTksDd7v3r07S709LioqSmfOnDGJ58+fXy+++KJVawEAAAAAAAAAAAAAbAPD/wAAAAAA2Jg1a9YoJSXFJN68eXOr1woICJCdnZ3V82aUq6trrg+tb968WbGxsSbxjNz3Ro0aWcydnJyc6d7M5TMYDCbxJk2aWK0GAAAAAAAAAAAAAMC2OOZ2AwAAAAAA4P8YDAatXLnSJO7j46PAwECr1xs1apRGjRpl1ZyxsbEqV66c2bX169erSpUqVq1nLcuWLTOJOTk56fXXX093Dn9/f1WoUEFHjhwxit+6dUs7duxQ/fr1s9ynJP34449m4y1atLBKfgAAAAAAAAAAAACA7WHnfwAAAAAAbMiKFSt0/Phxk3iHDh1kb/90/BifL18+i2sFChTIwU7Sb/fu3dq6datJvHnz5vL09MxQrlatWpmNf/3115nq7XFnz57V9u3bTeKFCxdW7dq1rVIDAAAAAAAAAAAAAGB7no6pAQAAAAAA/gHu3bunyZMnm8Td3NzUpUuXXOjonyElJUWjR482idvZ2al3794Zzte+fXuzD0Bs375dO3bsyFSPj5o+fboMBoNJvHv37nJwcMhyfgAAAAAAAAAAAACAbWL4HwAAAACALDh9+rSmTZum8+fPZznX4MGDFRkZaRJ/5513lD9//iznf5ZcvXpVM2fO1J9//pnlXJMnT9bRo0dN4k2bNlWpUqUynC9fvnzq1KmT2bXBgwcrNjY2wzn/tm3bNq1Zs8Yknj9/fr3zzjuZzgsAAAAAAAAAAAAAsH0M/wMAAAAAkEFJSUlau3at2rZtq3r16mnGjBlq3bq1zp49m+mcY8eO1erVq03ixYsX18cff5yVdp8ZBoNBv/76q9577z3VqlVLU6ZMUbt27bR///5M55w3b55mz55tEvfw8NDYsWMznbdHjx7y8fExiV+8eFHdu3fXw4cPM5zz7Nmz6tWrl9m1/v37y9XVNcM5AQAAAAAAAAAAAABPD4b/AQAAAADIoO+++049evTQrl27UmPXr19XcHCwIiIiMpQrKipK7733nr766iuz61OnTlXevHnTlWvbtm3y8/NTsWLFjP7z9/dXdHR0hvqyRdu3b9fbb7+tTZs2KTk5WZJ09+5dtW/fXhs2bMhQrnv37mnQoEEaPXq02fWRI0eqSJEime7Vy8tL48ePN7v222+/6a233tLNmzfTnW///v1q3bq12a/jyy+/bPFNAwAAAAAAAAAAAACAZwfD/wAAAAAAZFDr1q3l7+9vEo+MjFRwcLCGDBmiEydOpJnjwoULmjx5surUqaNNmzaZPWfw4MF65ZVX0t1XZGSkUlJSTOLx8fGKi4tLdx5bVbduXQUGBprE4+Li1K1bN73//vs6cOBAmjkiIyMVGhqqOnXqaMmSJWbP6dChgzp06JDlfv/zn/+obdu2ZtciIiL06quv6osvvlBsbKzFHBcuXNCwYcPUsmVL3bhxw2Tdy8tL06dPl52dXZb7BQAAAAAAAAAAAADYNsfcbgAAAAAAgKeNm5ub5s2bp5YtW5rsxG4wGLR48WItXrxYpUuXVunSpVWoUCF5eHjo3r17unr1qo4eParz58+nWaNjx47q06dPNn4WTx8HBwfNmTNHQUFBunDhgsn6unXrtG7dOpUoUUIVK1aUj4+PvLy8FB8fr+vXr+vEiRNPfCijUaNGmjhxotV6njJliq5evaqdO3earMXExGjcuHGaNGmSqlevrtKlS8vLy0vJycmKjIzU4cOHdfz4cYu58+TJo4ULF+r555+3Wr8AAAAAAAAAAAAAANvF8D8AAAAAAJlQqlQpfffdd3r77bd169Yts+ecPHlSJ0+ezFBeOzs79e3bV/3797dGm8+cQoUKafny5XrzzTctPkBx8eJFXbx4McO527dvrwkTJsjBwSGLXf4fJycnzZs3T++//762b99u9pzExERFREQoIiIi3Xnd3d31xRdfqGbNmtZqFQAAAAAAAAAAAABg4+xzuwEAAAAAAJ5WlSpV0vr16xUQEGCVfAULFtRXX32lAQMGyM7Ozio5n0V+fn5at26d6tWrZ5V87u7umjBhgqZOnSonJyer5HyUh4eHFi9erO7du1vl6/r888/rxx9/VP369a3QHQAAAAAAAAAAAADgacHwPwAAAAAAWVC8eHGtXbtWgwcPlru7e6ZyuLi4qFu3bvrtt9/UtGlTK3f4P/b2z9avALy9vbVkyRJNmjRJBQoUyFQOBwcHBQcH67ffflOnTp2s3KFprdGjR2vt2rWqWrVqpnK4urpqwIAB2rJli8qUKWPlDgEAAAAAAAAAAAAAts4xtxsAAAAAAOBp5+joqD59+qhjx45atGiR1q5dq2PHjqV5jbOzsypVqqSWLVuqZcuW8vLyynIffn5+cnFx0YMHD4zivr6+KlKkSJbzZ0SpUqV06tQpo1ihQoXk7e1ttRp2dnbq2LGjWrduraVLlyosLEwHDhyQwWCweI2Dg4PKlSunZs2aqU2bNvL19bVaP+lRtWpVrVu3TuHh4fruu++0ZcsWxcTEWDzf3t5eFSpUUHBwsFq3bm3V+wcAAAAAAAAAAAAAeLow/A8AAAAAgJV4e3vro48+0kcffaSbN2/q6NGjunjxou7evavExER5enrK09NTJUuWVIUKFeTi4mLV+rVr19bZs2d1+PBhNWnSJDXep0+fHN/5f9u2bTlWy83NTV27dlXXrl0VExOjo0eP6ty5c7p7964ePHggDw8PeXp6qnjx4goICJCrq2uO9WZJYGCgAgMDZTAYdObMGR05ckTR0dGKjY2Vs7OzvLy8VKxYMVWtWjXTb5QAAAAAAAAAAAAAADxbGP4HAAAAACAb+Pj4qF699jzz0AAAIABJREFUerlSe+fOnakf+/n5qX379rnSR27w8vJS7dq1Vbt27dxuJV3s7Ozk7+8vf3//3G4FAAAAAAAAAAAAAGDjcnbbPwAAAAAAkO2WLl2a+vHHH38sZ2fnXOwGAAAAAAAAAAAAAABYA8P/AAAAAAA8Q8LDw3XmzBlJUqlSpRQcHJzLHQEAAAAAAAAAAAAAAGtg+B8AAAAAgGfIkiVLUj8eOHCg7O350R8AAAAAAAAAAAAAgGcBEwAAAAAAADwjoqOjtWHDBklSQECA/vOf/+RyRwAAAAAAAAAAAAAAwFoY/gcAAAAA4BmxcuVKPXjwQJI0ePDgXO4GAAAAAAAAAAAAAABYE8P/AAAAAAA8I5YuXSpJCgwM1Kuvvpq7zQAAAAAAAAAAAAAAAKti+B8AAAAAgGdATEyMzp8/ryJFiuiTTz7J7XYAAAAAAAAAAAAAAICVOeZ2AwAAAAAAIOu8vLx0/vz53G4DAAAAAAAAAAAAAABkE3b+BwAAAAAAAAAAAAAAAAAAAADAxjH8DwAAAAAAAAAAAAAAAAAAAACAjWP4HwAAAAAAAAAAAAAAAAAAAAAAG8fwPwAAAAAAAAAAAAAAAAAAAAAANo7hfwAAAAAAAAAAAAAAAAAAAAAAbBzD/wAAAAAAAAAAAAAAAAAAAAAA2DiG/wEAAAAAAAAAAAAAAAAAAAAAsHGOud0AAAAAAAAAANiac+fO6fjx44qJidGdO3eUmJgoDw8PFSpUSOXLl1fJkiVlZ2eXa/3duHFDBw8e1M2bNxUTEyN7e3t5e3vL19dXVatWlZeXV472c/fuXR04cEBnzpxRbGys3NzcVKxYMVWvXl2+vr7ZWjsyMlIrVqzQw4cPZW9vr06dOil//vzZWhMAAAAAAAAAACA3MPwPAAAAAAAAIFcZDAb99NNPWrhwofbt26eEhARJUr58+bR37155eHhkew9JSUnaunWrVq5cqfDwcEVHR6d5fpEiRfTGG2/ovffeU4kSJbK9P0m6fPmyli5dqrCwMJ0/f97ieXZ2dipbtqyCg4PVtm3bbB2EP336tGbMmKGffvop9ev2eC+BgYHq06eP6tata/X6BoNBvXr10u7duyVJZcqUUa9evaxeBwAAAAAAAAAAwBbY53YDAAAAAAAAAP6ZDAaDNm7cqMaNG6tr167auXOn0QB5bGysYmJisrWHlJQUfffdd3r55ZfVuXNnbdiw4YmD/5J07do1ff3113rllVc0atQoxcfHZ1uPt2/f1sCBAxUYGKiZM2emOfgv/e++Hjt2TOPGjVPNmjU1ffp0s4P5WWEwGBQaGqqGDRtqzZo1FvMbDAbt3r1bb775pvr27Wv1+7R48eLUwX8HBwdNnz5dTk5OVq0BAAAAAAAAAABgK9j5HwAAAAAAAECO+nun/5CQEB09ejTX+jh58qT69Omjv/76K9M5EhMTNX/+fG3dulXz589XmTJlrNih9PPPP6tfv36ZfggiISFBISEhWrVqlebNm6dy5cpZpa+hQ4dq8eLFRjFfX1/VrVtXvr6+ioqKUkREhNGDCitXrtSlS5f07bffytXVNcs9XLlyRePHj0897tatm6pWrZrlvAAAAAAAAAAAALaK4X8AAAAAAAAAOcJgMGjTpk0KCQnRkSNHcrWXn3/+Wb1791ZcXJxV8p07d05BQUH65ptv9NJLL1kl59y5czVhwgSlpKRkOdf58+cVFBSkOXPmqGHDhlnKFRoaajT47+TkpOHDh6tz585ydPy/XzkbDAb9+OOPGjRoUOp9joiI0MCBAzV79uws9SDJKO/zzz+vAQMGZDknAAAAAAAAAACALWP4HwAAAAAAAEC2sqWhf0lavXq1+vTpk+ZQvaenpwICAlSyZEl5enpKkq5fv65Lly5p3759Zq+NjY1Vp06dtGrVqizvsP/FF1/o008/tbju4OCggIAAlS9fXvnz51dycrKuX7+uQ4cO6fTp02aviYuLU9euXbVkyRLVrl07U30dP35cU6dONYrNnj1bb7zxhsm5dnZ2atGihfz8/NS6dWs9fPhQ0v/uf9OmTdW0adNM9SBJy5Yt07Zt21LrhISEWOVtAgAAAAAAAAAAALaM4X8AAAAAAAAA2SY5OVlBQUH6448/crsVSdKOHTvUr18/s8P7Dg4OCgoK0ttvv60aNWrI3t7ebI5r165p8eLFmjNnjhITE43WYmNj1b17d23atElubm6Z6nHDhg0WB//z5MmjHj16qHPnzipYsKDZc06cOKHQ0FD98MMPJmsPHz5U165d9eOPP8rf3z/DvU2YMMHoc+7QoYPZwf9HVatWTYMGDTL6nCZOnKgmTZrIwcEhwz1cv35dn3zySepx586drfa2BQAAAAAAAAAAAFtm/q9XAAAAAAAAAGAF9+7dS3Pw38vLS8HBwXJ0zP59Sq5evar333/fZGBfkipWrKiff/5Zs2bN0ksvvWRx8F+SihQpokGDBmndunXy8/MzWT979qzZwfv0iIyM1IABA2QwGEzWSpUqpV9++UUDBw60OPgvSWXKlNGsWbP07bffKl++fCbrd+7cUd++fdN884E5Z8+e1ZYtW1KPXVxc1K9fv3Rd++6778rX19co1/bt2zNU/29DhgzRnTt3JEklSpTQ0KFDM5UHAAAAAAAAAADgacPwPwAAAAAAAIBsY26I3dHRUa+99pq++uorHThwQDNnzlThwoWzvZfBgwcrNjbWJN64cWOFhYWpbNmyGcpXsWJFrVixQkWLFk2N1a5dW3PnztVbb72VqR5HjBiROtj+KH9/f61evVovvPBCunPVr19fK1askLu7u8nagQMHNG/evAz1tnr1aqPjBg0aqEiRIum61tXVVS1atEgzX3qsWrVKv/zyS+rxlClTMv2GBQAAAAAAAAAAgKdN9m+nBQCwSXXr1tWNGzdSjx0cHNS+fXuNGDEiW+u+++67Cg8PTz12dnbWypUrMzxgAeuJi4tT/fr1jQZgKlSooFWrVuViV+n3+++/q3PnziY7dxYsWFCLFi3Siy++mG21ExIS1KFDBx0+fNgo3rRpU82YMSPb6j6NzH2dXnnlFX399de52BUAAABygoODQ+rHFStWVJs2bdSyZUsVKFAgR/sICwvT1q1bTeI1a9bUl19+KWdn50zlLVGihJYtW6ZVq1apZcuW8vf3z3SPERER2rBhg0k8b968Wrhwoby9vTOcs1KlSgoJCVH37t1N1kJCQtSuXTt5enqmK9eOHTuMjl977bUM9dKkSRN99dVXqce7du3K0PU3b97UqFGjUo87dOigunXrZigHAAAAAAAAAADA04yd/wHgH+rRwX9JSk5O1uLFi/Xzzz9na92LFy8aHT98+NDsjobIOTExMSY7Xz7+dbJllStXNrtD6K1btzR27NhsrT1v3jyTwX9Jatu2bbbWfRpdunTJ5AGNM2fO5FI3AAAAyEnu7u6aMWOGNm/erE2bNqlr1645PvifkpKikJAQk3iePHn0+eefZ3rw/28vvviiBg4cmKXBf0maNWuW2fjgwYP1/PPPZzrvf/7zHzVr1swkfvfuXS1YsCBdOQwGg8nPP5UrV85QHxUrVjQ6joyM1PXr19N9/bBhwxQdHS1JKlKkiEaOHJmh+gAAAAAAAAAAAE87hv8BAEbGjBmj27dv53YbSMO3336rzz//PPW/nTt35nZLucrZ2VlDhgwxu7Znzx5t3rw5W+reuHFD8+fPN4m//vrrCgwMzJaaAAAAQHabPHmyihUrpmLFiql48eJatGiRVfK2bdtW5cqVs0quzFi3bp1Onz5tEu/Vq5f8/PxyoSNThw8f1vbt203iJUqU0DvvvJPl/EOGDJG9vemvg+fNm6eEhIQnXn/16lWj8+zt7fXCCy9kqAd3d3eTh7fPnz+frmvXrl1r9FaEyZMny8PDI0P1AQAAAAAAAAAAnnYM/wMAjERFRWnMmDG53QYsiIyM1Lhx4zR79uzU/8aNG5fbbeW6Ro0aqU6dOmbXpkyZoocPH1q95owZM3T//n2jmKurqwYPHmz1WgAAAEBOuXbtWurHBoNBN2/ezMVurMfcQww+Pj764IMPcqEb877//nuz8XfffVdOTk5Zzv/cc8/ptddeM4lHR0dr69atT7z+8Y0C3N3dM/XGBG9vb5P66ak9YsSI1OPg4GA1bNgww7UBAAAAAAAAAACedgz/AwBMbNq0SevXr8/tNmBGYmJiumL/RMOHDzc7EHPhwgV9++23Vq117NgxrVmzxiTevXt3FS1a1Kq1AAAAAGTNtWvXtGfPHpN4q1at5OLikgsdmTIYDFq7dq1J3N7eXq1atbJaHUu5wsLCnnhtfHy80bGbm1umenB3dzc6fvyhanNGjBihW7duSZIKFSqksWPHZqo2AAAAAAAAAADA047hfwCAWZ988knqH9aBp8GLL76oDh06mF2bM2eOyS6VWTFp0iSlpKQYxfz8/NSlSxer1QAAAABgHWvXrjX597sktWnTJhe6MW///v26fv26Sbxq1ary8fGxWp0GDRqYfWh68+bNevDgQZrXOjg4GB0nJydnqoekpCSjY0dHxzTP37Rpk9HDCRMmTJCXl1emagMAAAAAAAAAADztGP4HAJgVExOjUaNG5XYbQIb06tVLBQoUMInfvXtXs2bNskqNLVu2KCIiwiQ+dOhQm9k1FAAAAMD/2b59u0nMz89P5cqVy4VuzNu7d6/ZeGBgoFXruLm5qXLlyibxhIQE/fXXX2le+/iO/ffu3ctUD3FxcUbHefPmtXhuTEyMhg4dmnrcrFkz/fvf/85UXQAAAAAAAAAAgGcBw/8AAIu2bNmiNWvW5HYbQLp5eHjo448/Nru2YsUKnTp1Kkv5k5KSNHXqVJN43bp11bBhwyzlBgAAAGB9BoNBf/zxh0m8UqVKudCNZfv37zcbr169utVrVatWLUM9/K1o0aJGx/fv31dMTEyG6z/+hoNixYpZPHf06NGKjIyUJOXPn1/jx4/PcD0AAAAAAAAAAIBnCcP/AIA0jR8/PvUP7cDToHXr1qpYsaJJPDk5WZMmTcpS7qVLl+rcuXNGMScnJw0fPjxLeQEAAABkjxMnTig2NtYkHhAQkAvdWHbgwAGz8TJlyli9lqWclnr4m4eHh3x9fY1iJ06cyFDtK1eu6O7du6nHDg4Oeu6558yeu3XrVn3//fepx+PGjTP7pjcAAAAAAAAAAIB/Eob/AQBpio2N1YgRI3K7DSDd7OzsNHLkSNnZ2Zms7dy5U9u2bctU3tjYWIWGhprEO3XqpOeffz5TOQEAAABkr2PHjpmNlypVKoc7sezevXtmH7p3cnKSn5+f1etZGrY/f/78E6+tWbOm0XF4eHiGaj9+fkBAgFxdXU3Ou3v3rgYNGpR63LhxYwUFBWWoFgAAAAAAAAAAwLOI4X8AQCpPT0+z8R07dmjlypU53A2QeVWqVFGLFi3Mrk2ePFlJSUkZzhkaGqqYmBijWKFChfTBBx9kqkcAAAAA2e/ixYtm4/ny5cvhTiy7dOmS2XjhwoVlb2/9X98WLVo0Q308qkGDBkbH69evz1DtdevWpZnvb+PGjdO1a9ck/e93FVl9ixsAAAAAAAAAAMCzguF/AECq6dOnq0yZMmbXJk2apKtXr+ZwR0DmDRgwQHnz5jWJnz17VkuXLs1QrosXL2rJkiUm8YEDB5qtAQAAAMA2WBpotzT8f+/ePW3btk0zZ85Ut27dFBQUpIYNG6pmzZoKDAxUo0aN1L59e40cOVIrVqzQjRs3stzj5cuXzcYLFiyY5dzm+Pj4mI3HxMQoLi4uzWubNWsmd3f31OOjR4/q119/TVfd48ePa8uWLanH9vb2atOmjcl5O3bsMPr5a/To0fL19U1XDQAAAAAAAAAAgGedY243AACwHc7OzpoyZYqCg4OVmJhotBYXF6fhw4frv//9r+zs7HKpQyD9fHx89MEHH2jq1Kkma6GhoWrevLm8vLzSlWvq1Kkm/09Ur15dzZs3t0qvAAAAALKHpYfYHx1gj4+P18aNG7Vu3Tpt375dCQkJaeY8duyYtm/fLkmys7NTrVq11LlzZ/373//O1E79UVFRZuPp/Xklo1xdXeXi4qIHDx6YrN2+fdvo3jzOzc1NXbt21WeffZYaGzt2rF566aU0H4xOSkrSiBEjlJKSkhpr1aqV/Pz8jM67d++eBg0alHpcv359tWvXLl2fFwAAAAAAAAAAwD8Bw/8AACNly5ZV7969FRISYrK2e/dufffdd2rfvn0udJYxt27d0tGjR3Xt2jXFxsYqJSVFHh4eKliwoMqWLSs/P79cfYjh2rVr2r9/v65duyaDwaDSpUvr1VdffeJ10dHRJrH4+Hg9fPhQzs7O2dCpZffv39ehQ4d04cIF3blzR5Lk6ekpX19fValSJdsGVTKiU6dOWrlypc6fP28Uj4mJ0ezZszVixIgn5ti3b59+/vlno5i9vb1GjhxpzVbNela/jwEAAJBz7t69qyZNmuj+/fvpPv9RX3zxhRYvXpzmNX//nPLaa6/pl19+yVyj2cTSTvZxcXE6evSoli5dqh9++EGxsbGZym8wGBQeHq7w8HBVrlxZEydOVOXKlTOUIz4+3mw8O98yljdvXrPD/0968EGSevbsqVWrVunixYuSpFOnTqlHjx6aO3eu2QcHHj58qKFDhyo8PDw15uXlpcGDB5ucO2HChNS3Nbi7u2vy5MkW+9i9e7fCwsK0f/9+XblyRffv35eHh4f8/f0VGBio4OBgvfjii0/8fAAAAAAAAAAAAJ4mDP8DAEx07dpVW7du1cGDB03Wpk6dqrp165rszmcLLl26pFWrVmnDhg0mw96P8/b2VuPGjRUUFKRq1aplqW5ERIS6dOmipKSk1Fjv3r3Vq1cvk3N37typL774Qvv27ZPBYDBaW79+vfz9/SVJ/fv317p169JV//bt26pUqVKa5/j4+Gjnzp3pypcWg8GgrVu3atmyZQoPDzfZDf9vdnZ2CggIUOfOndWkSZNM7X5pDU5OTho2bJi6d+9usvb3gywvvPCCxesNBoMmTpxoEm/Xrp3KlStn1V7/9ix9H2e3+Ph4DR48WL/88ovRDqJNmzbVjBkzcqQHAAAAWxcTE6MLFy5k+vr79++n+8GBo0ePZrpOdrE0WN+8eXOzw+9Z8eeff6pFixYaO3asOnXqlO7rLA3cOzk5Wau1dOe2dL8e5e7urrlz56pNmzap3xtbt25VkyZN1KNHD9WvX18+Pj66ffu2wsPD9eWXX+rw4cOp1zs4OCgkJERFixY1yhseHq5vvvkm9Xj48OEqVqyYSf0jR45o6NCh2r9/v8ladHS0fv/9d/3++++aPXu22rRpo1GjRtnEw+kAAAAAAAAAAADWwPA/AMCEg4ODJk+erKCgIJM//N+/f1/Dhg3TokWLcnXH8UfdunVLM2fO1KpVq4wGl9MSHR2t5cuXa/ny5apTp44GDBig8uXLZ6r+1atXTepevnzZ6Pj27dsaM2aMNm3aZDHPo4P0N27cyFQvlty8eTPLOfbt26fx48ena6DHYDDozz//VN++ffWvf/1LU6dOVf78+bPcQ2bUq1dPr776qrZt22YUT0pK0uTJk/Xll19avDYsLMxoSEX63w6Vffv2tXqfz+L3cXZ6+PChevbsabR7qCQVLFhQvXv3zpEeAAAAYPssDbNbGvwvXLiwXnrpJdWoUUMBAQEqVKiQChQoIAcHB0VFRencuXPasWOHwsLCdOXKFZPrExMTNWzYMMXFxenDDz/MUo8ODg7puj4zHB3N/1o4PTv/S1KVKlX0zTffqFu3boqJiZEknT9/XkOGDEnzOhcXF02fPl1NmjQxisfHx2vAgAGpDxfXrl1bHTt2NLl+zZo16t+/f7r6TElJ0fLlyxUREaFFixbl2EPKAAAAAAAAAAAA2Sl3tuEFANi85557Tv379ze7tnfvXi1evDiHOzJv69atatasmVasWJHugenH7dq1S23bttWXX35ptHu4tZw8eVLBwcFpDkzbsri4OA0bNkwdOnTI1E6eO3fuVMeOHRUXF5cN3aXPsGHDzO5suW3bNu3atcvsNQkJCWZ3j+/bt6/Vd43k+zhjEhMT1adPH5PB//z582vhwoVpvs0BAADgn8bT0zPHdj2vUKFCjtTJiPT829jLy0tdunTRhg0btH//fs2dO1ddunRRzZo1VbJkSbm7u8vV1VXFixdX3bp1NXz4cP32228aM2aM8uTJYzbnhAkTtHbt2nT1aGkQPzv+Xf+35ORks/GMvG2gdu3a2rRpkxo1apSu86tWraoff/xRLVu2NFmbPHly6pvPXF1dNW3aNJMNBzZs2KA+ffoYDf6XL19eoaGh2rdvn06fPq1t27apX79+8vDwSD3nwoULevPNN3Xt2rV0f24AAAAAAAAAAAC2ip3/AQAWvf3229q8ebMiIiJM1kJCQvTKK6/oueeey/nG/r9FixZpwoQJqTsDPsrR0VE1a9ZUqVKl5OPjI2dnZ924cUMXL17Url27dP/+faPzExMTFRISopMnT2ry5MkWhy8y6vDhw+rSpUvqTojpVaZMGZ09e9YkHh0dbXZIw8vLK82efX19M1T/b3/88Yf69++vq1evGsUrVKigKlWqqFixYnJxcVFsbKxOnTql8PBwRUdHm+Q5ffq0RowYoc8++yxTfWRVyZIl9e677+rrr782WZs4caLCwsJMdtWcP3++rl+/bhQrX7682rVrZ9XenuXv4+yQnJysgQMH6tdffzWKe3t7a+HChSpVqlQudQYAAGCb8uXLpyNHjqT7/L59+2rlypWpx23atHniv+PfeOMNSdK6desy12Q2sjScL0keHh766KOP1KlTJ7m5uWUor4uLi7p166bq1aurc+fOunXrlsk5Q4YMUa1ateTj45NmLldXV7Px7HyrlqXclnqxpHjx4vrmm290+PBhrVq1Snv37tW5c+cUFxenPHnyqHjx4qpWrZqaN2+uunXrms2xb98+zZ8/P/V48ODBKlmypNE5Fy9e1Mcff2z083CrVq00bdo0ubi4pMZKlSqlAQMGKCgoSB06dEh9m9m1a9fUu3dvrVy50mbeYggAAAAAAAAAAJAZDP8DACyys7PTxIkT1axZM5Nd2+Pj4zV06FAtWbJE9vY5/yKZxYsXa/z48SZxNzc39ezZU23btrW4u2VCQoJ++uknTZs2TTdv3jRaW7dunQwGg0JCQrLc47lz58wOTPv6+qpmzZoqVqyYJOn+/fuKiopSoUKFUs8ZMWKERowYYZLzm2++0YQJE4xiPj4+2rlzZ5b7fdTDhw8VGhqqOXPmpO5Eb29vr+DgYHXt2tVkEONvCQkJmjdvnkJDQ012qdy4caO6du2qihUrWrXX9OrZs6fCwsJ048YNo/ipU6e0fPlytW/fPjV248YNzZs3zyTHiBEjrPr9/qx/H1ubwWDQiBEjtHHjRqO4l5eXFi5cqDJlymRb7X8Se3t7lShRIrfbwD+Yu7t7brcAAHiGWBpmL1asmH744Qf5+fllKX+1atU0f/58BQcHmwzUx8TE6PPPP9cnn3ySZg5LDyg8/rCvNVnKndHh/79VrFgxUz/rJSQkqH///qk/P9aoUUNdunQxOW/MmDG6e/du6nH16tUVEhJi8U0F/v7+mj9/vlq0aJH6poDw8HCFhYUpKCgow30CAAAAAAAAAADYCob/AQBpKlq0qIYPH66hQ4earP3xxx9asGCB2T/MZ6eIiAhNnDjRJF6+fHmFhoaqaNGiaV6fJ08eBQUFqUGDBho8eLC2bt1qtL5+/XqVK1dO3bp1y3SP+/btU0REhNHAdNWqVdWrVy/VqVMn0zsNenh4mMScnZ0z3aclDx78P/buM86q8toD8JoODL1Lk6oIiA1FY0GDPaIQY7l67SWCNViwRRMbKGJEUbFr7Ca2xFhQg70rioqgYEN6bzIwhfvBn1zHcwamnJkzyPN88qz37PUucP+SAf/73avihhtuWPt5s802i+HDh683zFGnTp047bTTomHDhklD7Y8++mjawv/5+flxzjnnxHnnnZewdsMNN8SAAQPW/v5ef/31CWGYAw88MLbbbruUzbMx38eVdfnll8fjjz9eqtaoUaO46667onv37jU6y69Z3bp14/ga/t91AIDqUlaY/dRTT61y8P8nffr0ibPPPjtGjBiRsPbAAw/EOeecEw0bNizz+mR/zouIWLp0aUrm+6WioqJYuXJl0rV1zVkdrrvuupg6dWpE/PhnnFGjRiU8cP3pp5/G888/v/ZzZmZmXHPNNWUG/3/Sq1evOPHEE2PMmDFra9dff73wPwAAAAAAsEGr+aOaAdjg/P73v4/f/va3SddGjx4d06ZNq7FZVqxYEcOGDYvi4uJS9e7du8fdd9+93sD0zzVs2DBGjx4du+++e8JaVX9d06dPj1mzZkXEj6Hzyy+/PB566KHYZZddajwwXVVHHHFEPPbYYxUK7R999NFJw9hvv/12KkersAMPPDC22WabhPqiRYvi5ptvjoiIyZMnxxNPPFFqPT8/P84999yUzeE+rriRI0fGAw88UKrWoEGDuPPOO6Nnz541OgsAABuO1q1bJ6136tQppfuceOKJ0bx584R6QUFBqeB6MmX9/L9gwYKUzFbevvXq1YumTZtWy57JfPzxxzF27Ni1n4cOHRpdu3ZN+N6DDz5Y6vO+++5b7od/Bw8eXOrNCl9++WW89957lZwYAAAAAAAg/YT/ASiXyy+/PJo0aZJQX7VqVZx//vkJIebqcvPNN8fs2bNL1erWrRtjxoyJxo0bV7hfbm5ujBo1KiEQUlhYmPTk+opq3Lhx3HvvvXHooYducKH/OnXqxLXXXhuXXnpppd4ukOw0xe+++67G7pVkMjIy4uKLL044STIi4r777ouJEyfGX//61ygpKSm1NmTIkGjZsmXK5nAfV8zjOX3hAAAgAElEQVSYMWPijjvuKFWrX79+3HnnnbHlllvW+DwAAGw42rZtm7T+y5/5q6pu3boxaNCgpGuvvfbaOq8t6w0EM2fOrPJcFenbrl27atkvmdWrV8fQoUPX/vlwq622ilNOOSXpd8eNG1fqc0VO7m/cuHHstttupWovvvhiBacFAAAAAACoPYT/ASiX5s2bx1/+8pekaxMnTozbb7+92mdYvHhxwsnfERFnnHFGmWGJ8qhfv35ccsklCfU33ngjPvnkk0r3rVOnTtx7770bbDh57NixMWDAgEpfn+zXvWbNmli8eHFVxqqyXr16xcEHH5xQLywsjEMOOSQ+/PDDUvVOnTrFMccck7L93ccVc/fdd8eNN95YqlavXr24/fbbY6uttkrLTAAAbDjKCrQvXbo05Xv9MmT+k0mTJq3zulatWpU6nf4nBQUFCQ8Np8J3332XtF6VP49U1OjRo2Py5MkREZGTkxOjRo2KrKyshO99++23a99GFvHjA93J3nq2Lr/8/jvvvFPheQEAAAAAAGoL4X8Aym3fffeNAw44IOnamDFj4osvvqjW/R999NFYuXJlqVqjRo3iyCOPrHLv/v37x2abbZZQv//++yvdc8iQIdG9e/eqjJVWVQ1+NG3aNGn9l/8O02Ho0KHRsGHDcn33oosuipycnJTt7T4uv4cffjhGjBhRqvZT8H/bbbdNy0wAAGxYyvpZdvr06Snfq1u3bknr6wvwZ2RkRI8ePZKu/RSQT6Wy/uxeUw/XfvbZZ3HTTTet/XzGGWfEFltskfS7v5x10003jfz8/Art98veU6dOrdD1AAAAAAAAtYnwPwAVcskll0TLli0T6oWFhTFs2LAoKiqqtr3/85//JNQOPPDAyMvLS0n/ZKfBv/jii5X6NWVmZsahhx6airE2WLm5uekeoUxNmzaN0047bb3f69+/f+y6664p3dt9XD5PPvlkwttG6tatG7feemv06dMnLTMBALDh2XLLLZM+zFsdofrmzZsnrS9fvny912633XZJ6x999FGVZkrm448/TlqviZ+zi4qKYujQoVFYWBgRPwbzTz/99DK/P2PGjFKfN9100wrv2aFDh1KfFy1aVCseSgcAAAAAAKiM7HQPAMCGpVGjRnHllVfGSSedlLA2adKkGDt2bLlC1RU1Z86cpOGMvffeO2V77L333jF8+PBSteXLl8cHH3wQffv2rVCv5s2bR5MmTVI2G6l35JFHxqOPPlrmqY95eXlxwQUXpHRP93H5PP/883HhhRfGmjVrStUvvPDC2GGHHWp8no3N8gXL46o+F6Z7DAAot8btmsV5r12a7jGoperUqRO9evWKCRMmlKq/8847Kd8rIyMjab08D0b36dMnbr/99oT6m2++GWeddVaVZ/tJcXFxfPDBBwn1zMzMGnm71pgxY+LTTz+NiIjs7Oy47rrr1vmmtV8+OFG/fv0K79mgQYOkfevWrVvhXgAAAAAAAOkm/A9Ahe22225x2GGHxSOPPJKwNnbs2Pjtb38bPXr0SOmeH374YUItMzMzevbsmbI92rRpE82aNYsFCxaUqn/88ccVDk2vK7xA7ZCdnR0XXXRRHHfccUnXBw0aFO3bt0/pnu7j9XvllVfi7LPPjuLi4oS1zz//vMbn2RitKSmJBd/OT/cYAAAp069fv4Tw/4wZM+Lzzz+PLbbYImX7/PJn8J80atRovdf269cv8vLyYtWqVaXq7777bixevDgaN26ckhnfeeedWLp0aUL9N7/5TdKQfCpNmTIlRo8evfbzKaecEr17917nNb98g1ll3phWp06dhNpPbx4AAAAAAADY0GSmewAANkzDhg1LGowuLCyM888/P1avXp3S/ZKdzt6xY8fIz89P6T7JHlqYNm1aSveg9vjNb34TW2+9ddK1Xr16pXw/9/G6vf3223H66aeXGcR55JFHkr45AQCA1Cnr9PoN2YABA5LWn3rqqZTuU9bDql26dFnvtQ0aNIg99tgjoV5YWBj/+te/qjzbT8r6NQ8cODBleyRTXFwcZ5999tq/K+jWrVsMHTp0vdf98nT+H374ocJ7//LtARER9erVq3AfAAAAAACA2kD4H4BKyc/Pj+HDh0dmZuL/lUyZMiVuuummlO43ffr0hFrz5s1TukdZPb///vuU70Pt0bFjx6T1rKyslO/lPi7bhAkTYvDgwQknnf5ccXFxXH755TU4FQDAxmezzTYr9QBA69at0zhNanTv3j0233zzhPpDDz0UBQUFKdvn5ZdfTlrfaqutynX9oEGDktbvuuuuKCkpqexYay1ZsiSeeOKJhHqdOnViv/32q3L/dbn11lvXvn0hMzMzRo0aVa5T/Js0aVLq8+LFiyu895IlS0p9zs7Orva3HAAAAAAAAFQX4X8AKm377bePY489Nuna7bffHhMnTkzZXslO6quO/1hfv379cu3Nr0dNnmzqPk5u0qRJcfLJJ5c6xTM3NzdpSOr9999P+QmtAAD8v8GDB8f3338fM2bMiBkzZsT555+f7pFS4oQTTkiozZ8/P+67776U9F+5cmWZP6futdde5eqx3377JX04+csvv4yHH364KuNFRMTNN98cK1asSKgfccQR0bhx4yr3L8vUqVNj1KhRaz+fcMIJsd1225Xr2l/+fnz55ZcV3v+X17Rr165aHvYGAAAAAACoCcL/AFTJWWedFV27dk2oFxcXx/nnn7/OU7wr4ueh4J/k5+enpPf6eibbGyrDfVzamjVrYtq0aXH88cfH0qVL19Zzc3NjzJgxcfvttyec9BkRMXLkyFr9MAMAALXPIYcckvQtBqNGjYo5c+ZUuf/dd98dCxcuTKh37Ngx+vTpU64eWVlZMWTIkKRrV1xxRcyYMaPS833++edx2223JdRzc3Nj8ODBle67PiUlJXH22WevfcNCx44dY9iwYeW+fosttigV1F+wYEGF32r2y4MJevXqVaHrAQAAAAAAahPhfwCqJC8vL66++urIzs5OWJs2bVpcf/31KdknNzc3oVYdYeaVK1cm1OrUqZPyfdg4uY9Lmzt3bhx99NGxaNGitbWcnJy44YYbol+/ftGoUaM444wzEq6bN29ejBkzpiZHBQBgA5ebmxvnnXdeQn3ZsmVx6qmnRlFRUaV7T5s2Lf72t78lXTvzzDMr1OvQQw+NzTffPKG+ZMmSOOaYY2LJkiUVnm/BggVx4oknxurVqxPWjj/++GjTpk2Fe5bXnXfeGe+//35E/PjWtWuvvTbq1q1b7usbNGgQvXv3LlV79tlnKzTD888/X+rzzjvvXKHrAQAAAAAAahPhfwCqrFevXnHKKackXbvnnnviww8/rPIeyU4yX7ZsWZX7lqdndZzMzsbJfVxaUVFRzJ8/f+3nnJycuP7662OPPfZYWzvssMOShp/uu+++mDp1ao3MCQDAr8Nhhx0Wu+22W0L9rbfeiqFDh0ZJSUmFe86bNy+OO+64pA/19u7dO/7whz9UqF9OTk6MGjWq1Gn3P/n8889j0KBB8fXXX5e739SpU2PgwIHxzTffJKx17NgxzjnnnArNVxHffPNNXH311Ws/H3XUUbHTTjtVuM9BBx1U6vNDDz1U7n9Xn3zySXzyySdrP+fk5MTvfve7Cs8AAAAAAABQWwj/A5ASgwcPjp49eybUS0pK4oILLoiCgoIq9W/ZsmVCbeHChVXqmczPTyD/SatWrVK+Dxsn93HZsrOzY9SoUbHnnnuWqmdlZcWFF16Y8P2ioqK4/PLLa2o8AACqWXFxcRQWFiZdS/Zmq8q69tpro0WLFgn1xx57LE4++eQKnaw/adKkGDhwYEybNi1hLT8/P2666abIzKz4X79us802cdZZZyVdmzJlSuy5555xzTXXxLx588rsMWfOnBgxYkTss88+8dVXXyWs5+XlxejRoyt0Cn9FrFmzJs4555y1/+7atm0bF110UaV6/eEPf4j69euv/TxlypR47LHHynXtVVddVerzgAEDolmzZpWaAwAAAAAAoDbITvcAAPw6ZGdnxzXXXBODBg2K1atXl1r75ptvYtSoUZX+D/0REV26dEmoffXVV7Fy5cqUhhU+//zzhFq3bt1S1p+Nm/s4uaysrBg5cmTss88+Sdd33HHH2HvvvWPcuHGl6m+//XY888wzsf/++9fEmAAAVEGfPn1i1qxZlbr252+G+qXs7Oy49957Y/fddy9Xr7Zt28bf//73+MMf/hArVqwotfbss8/GxIkT4+yzz45BgwZFbm5u0h5z586NW2+9Ne6+++5YtWpVwnpeXl7cdttt0blz53LNlMzQoUPj22+/jX/+858JawUFBTF69Oi48cYbY6uttooePXpEkyZNIiJiwYIFMWnSpPjkk0/KPB0/IyMjRo8eHX369Kn0fOtz7733xltvvbX288iRI0sF+CuiSZMmMXjw4Bg5cuTa2sUXXxzbbLNNdO3atczrbr755nj11VfXfs7Ly4uzzz67UjMAAAAAAADUFsL/AKRM165d409/+lNcffXVCWv33XdfdOvWLZYuXVqp3sneKlBcXByfffZZygILCxcujNmzZyfUe/XqlZL+4D5OlJmZGVdfffV6A/znnXdevPLKKwnhqquvvjp23333qFevXnWOCQBAFVU2+L8+RUVFMWfOnApd07t377jvvvvixBNPTHgT14wZM2Lo0KFx2WWXxY477hjdu3ePpk2brt3no48+ivfffz+Ki4uT9m7YsGHcfPPN5X4YYV2uvfbaiIikDwBE/PimvQkTJsSECRPK3TMnJyeuvvrqGDBgQJXnK8v3339f6sT9ww8/PPr161elnqeeemq88MIL8dFHH0VExPLly2PQoEFx/fXXR//+/Ut9d+XKlTFq1Ki45ZZbStUvuOCC6NixY5XmAAAAAAAASDfhfwBS6thjj42XXnop3n///VL1NWvWxJ///OdK9+3Ro0c0b9485s+fX6r+0ksvpSw0PX78+IRaXl5e9O3bNyX9wX2c6K9//Wu5gkft27eP4447LsaOHVuqPnv27Ljllluc4AkAQIX07ds3nnnmmTj55JNj4sSJCeuLFy+O5557Lp577rly99xqq61izJgxVTrx/+dycnJi9OjRscUWW8SIESOisLCwSv1atGgRY8eOjR133DEl85Xl3HPPXftWhdatW8ell15a5Z45OTlx1113xe9///v45ptvIuLHB5+PPvro6N69e/Tp0ycaNWoUM2bMiPHjx8eSJUtKXX/00UfHSSedVOU5AAAAAAAA0i0z3QMA8OuSmZkZI0aMSPkp3BkZGQmn+UVEPPnkk1UOQPzk8ccfT6j169cv6tatm5L+4D4urXHjxnHooYeW+/t//OMfo1WrVgn1u+++O77++utUjgYAwEagffv28fTTT8eIESOiWbNmle7Trl27GDlyZDz99NMpC/7/3CmnnBIvvvhipd8mkJ2dHSeccEK8+uqr1R78f/jhh+PVV19d+3n48OHRsGHDlPRu1apVPPXUU7HbbruVqk+ePDnuv//+uOmmm+LJJ58sFfzPysqKYcOGlXoTAQAAAAAAwIZM+B+AlGvfvn0MGzYs5X2PPPLIhNrChQvj0UcfrXLvjz/+OOFtBRE/ng5Y2xUXF6d7BCrAffz/8vPzK/T9evXqJT3hv7CwMK644opUjQUAQDXYZJNNqqVvdnZ2lXpnZWXFUUcdFe+++27cdNNNsccee5TrwdnGjRvHQQcdFHfeeWe8+eabccQRR0RmZvX9VWvXrl3jgQceiOeffz6OPvroaNmy5Xqv6datW5x77rnxzjvvxGWXXZayEP66jBs3LiJ+PKn/pJNOir333jul/Zs3bx4PPfRQjB07Nrbeeusyv5eXlxcDBgyIl156Kc4444zIyMhI6RwAAAAAAADpkp3uAQD4dTr88MPjxRdfjNdeey1lPTfffPPYbbfdSp0iGBFx3XXXxZ577pn0RPDyKCoqiksuuSShvu2228b2229fqZ7VJSsrK6G2fPnyNExCZbmPq+bAAw+MBx98MD766KNS9ddffz1eeOGF2GuvvdI0GQAA65LsIdXapE6dOjFw4MAYOHBgFBcXx+TJk2Pq1KmxaNGiWLp0aWRlZUV+fn5ssskm0bVr1+jUqVO1hv3L0qtXrxg+fHgMHz48vvvuu/jkk09iwYIFsWTJksjOzo5GjRpF69atY+utt46mTZvW+Hx33XVXjewzYMCAGDBgQMyYMSM+/PDDmDlzZhQUFESDBg2ic+fOse2229bIww4AAAAAAAA1TfgfgGpz5ZVXxoABA2LJkiUp63nhhRfGW2+9FYWFhWtry5cvj9NOOy3uuuuuaNCgQYV7XnHFFTF58uRStaysrLj00kurPG+q1a9fP6G2fPnymD17drRu3ToNE1EZG/t9XBUZGRlx0UUXxaGHHhpr1qwptTZ8+PDYddddo06dOmmaDgCAX4OsrKzo2bNn9OzZM92jrFOHDh2iQ4cO6R4jrdq2bRtt27ZN9xgAAAAAAAA1puaPpwJgo9GqVav485//nNKenTp1ijPPPDOhPnHixDj++ONjzpw55e61evXq+Mtf/hIPPfRQwtqQIUOie/fuVZq1OpQV8H/qqadqeBKqYmO/j6uqd+/eMXDgwIT6jBkz4rbbbkvDRAAAAAAAAAAAANVP+B+AajVgwIDYZ599UtrzpJNOigMOOCChPnHixNh3333jjjvuiMWLF5d5fVFRUYwfPz4OPPDApIHpffbZJ0499dSUzpwqm222WdStWzehPmbMmLj33ntj6dKlaZiKytiY7+NUGDp0aNSrVy+hfscdd8T06dPTMBEAAAAAAAAAAED1yk73AAD8+v3lL3+JDz74IObPn5+yniNGjIiIiKeffrpU/YcffoiRI0fG3/72t+jTp09sttlm0aJFi8jNzY0FCxbEzJkz4/XXXy8zVL3//vvHNddcExkZGSmbNZVycnJiv/32i8cff7xUffXq1XHVVVfF8OHDo1GjRpGdXfr/4nfbbbcYPnx4TY5KOWys93EqtGzZMgYPHhyjRo0qVV+1alVceeWVMXbs2DRNBgAAAAAAAAAAUD2E/wGodk2bNo3LLrsshgwZkrKeOTk5ce2110aXLl3i5ptvjsLCwlLrRUVF8fbbb8fbb79drn7Z2dkxZMiQGDx4cGRm1u4X4wwZMiReeOGFWLZsWcLamjVrkgbCJ02aVBOjUUEb832cCscee2z84x//iO+++65Uffz48fHKK69Ev3790jQZAAAAAAAAAABA6v36U2EA1Ar9+/eP3//+9yntmZGREUOGDIlHHnkkdtppp0r32XHHHeORRx6JU089dYMITLdv3z5uu+22aNGiRbmv+TWfAF9daur3bGO9j1MhNzc3hg0blnTtyiuvjNWrV9fwRAAAAAAAAAAAANXHyf8AG6lu3brFl19+ufZzgwYNok2bNtW650UXXRRfffVVTJw4MUpKSiIiol69etGqVasq9e3Zs2fcc889MWHChHjyySfjxRdfjPnz56/zmiZNmsRee+0VAwcOjO22265K+3fo0CHq1KkTBQUFa2tbbbVVlXquz7bbbhvjxo2LJ554Il599dWYPHlyLF68OAoKCiIzMzOys7Ojbt260aBBg2jZsmUccsghZfZq0qRJNGvWLBYsWLC21r59+wo9XFDevu3atYuWLVtWqW+qdevWLTIzM9fekxER+fn50aVLlxqd49d+H7dq1Sqys7OjqKhobW3zzTevct8999wzBgwYEE8//XSsWbNmbX3GjBkxefLk6N27d5X3AAAAAAAAAAAAqA0y1vw8JQUAvxLTp0+PKVOmxNy5c2P58uWxZs2aqF+/fjRv3jy6d+8eHTp0cBo+tZ77mHRYNm9pnNPqlHSPAQDl1mzT5nHV1zeke4yN2gEHHBAREU8//XSaJwEANlR+ngAAqsrPEwAAbCyc/A/Ar1L79u2jffv26R4DqsR9DAAAAAAAAAAAwE8y0z0AAAAAAAAAAAAAAACwbsL/AAAAAAAAAAAAAABQywn/AwAAAAAAAAAAAABALSf8DwAAAAAAAAAAAAAAtZzwPwAAAAAAAAAAAAAA1HLC/wAAAAAAAAAAAAAAUMsJ/wMAAAAAAAAAAAAAQC2Xne4BAAAA4NcgOy8nNtmiTWzSo13kN82POg3qRklxSRQsWxkLvp0fsz+fGfO/npvuMalGefl5sUnPdtF68zZRr0l+5NXPi+LVxbFy6Q8x/+t5MWvSjFg8Y2FaZ2zYqlF03L5LNGzdKPKb1o81JWti+YJlsWTmovj6nWnxw+IVaZ0PAAAAAAAAgLIJ/wMAAEAl1W/eIPr+7y7R+4Bto9uum0dWzrr/mL1oxsL47LmP4617X42pr0+poSnXb7Pde8QJ958ajds0KVVfvmBZXNjpzFi1vKDaZ9hn2IAYeOVhkZlZ8y8pXPjd/PhLz3Nj1YpVFb62aYfm0fd/d47eB2wbHXfost75506dHZ8881G8dc8rMf2jbys7coVn3OXEPWL7w3eKll1bl/m9kpKSmPnp9/H2fa/Fm3e/EisWLq+R+QAAAAAAAAAoH+F/AAAAqKAm7ZvFAZf+Pnb4n50jt25u+a9r2zR2OWGP2OWEPeKb96bF4+c/FFPGT6rGSdev0SaN4+RHzogGLRomrNVv1iDqN6tfI+H/dr03TUvwP+LHcHz95g0qFP5v07NdHHDJwbH1oD6RlZ1V7utadm0d/c/YN/qfsW9MeuGTeOKCh+O7D7+uzNjrld+0fgwacXjsfNzukZm1/t/bzMzMaNe7Q/xh5JFx4GWHxPPX/DueG/GvKFpVWC3zAQAAAAAAAFAxwv8AAABQThmZGbHvsANjvwsPirz8OlXq1XH7LjH0pYtj/Jjn45/nPBBFq4tSNGX5ZWRkxPH3nZo0+F/TmrRtsv4v1QI5dXJi4JWHxR6n7b3eNz2sT4+9tozNd98inr7s8XjmyidTNOGPeg/YNo65649Rv1mDSl2fWzc3Blx6cPQ9cue45fd/i5mfTk/pfAAAAAAAAABUXHqO1AMAAIANTH7T+nHmcxfEwCsPq3Lw/+f2OG2fGPzE0MjOy0lZz/La78KDovtve9b4vsk0apO+8H9xUXEsnbt0vd9rtmnzOO+Nv8aef9q/ysH/n2TlZMdBlx8aR91xUmRkZKSk597nHBCDHx9a6eD/z7Xs2jrOe/3S6LXf1imYDAAAAAAAAICqcPI/AAAArEfD1o3jnJf/HK0222Sd35vzxaz49oOvY8msRVG0qijqNc2PVt02ic47do3cenllXtdrv63j2LtPiTuOuDHVo5epy282iwMuPbjG9lufVStWpW3vif/+MApXrl7ndzbZom0MHX9xNGzZqMzvlJSUxKzPvo/pH30bS+csieKi4qjfrEG06dkuOmzXKXLW8YDHLsfvESvmL4vHz3+40r+OiIg9h+4fB19zRJnrxUXF8e37X8X3E7+L5fOXRVZ2ZjTapEls2qdzbLJF26TX1G1YL055/E9xw74j4otXPq/SfAAAAAAAAABUnvA/AAAArEN+swbxpxcvLDP4v2LRinj11hfjzbtfiblfzk76nezc7Ohz+E6xz7kDok3Pdkm/s/3hO8XnL30Sb9z5cqpGL1O9xvlxwgOnRlZ2VrXvVV5XbHNBte9x6N+Oiv5n7leqVriqMJ648JF1Xte8c8s464ULywz+L5m1KMaPGRdv3/daLPp+YdLv5OXnxW+O6xd7nf27aLZpi6Tf2eucA+LzFz+Nz1/8tBy/mkTbDNq+zOD/6h9WxbhR/4mXx4yLZfOSv+Vgkx5tY5/zDoydjt41YS0nLydOeXxoXP2bS2POlJmVmg8AAAAAAACAqslM9wAAAABQW2VkZMSJD5wabXokD+y/ettLcXGXs+LJCx8pM/gfEVG0uije/vtrccW2F8QzVz5R5vcGXnFY5NWvU+W51+eo208qM4D+a1WvSX7scMTOCfXnRvxrnWH2nDo5MeSJodG4TZOEtaLVRfHMVU/GRV3OimeHP1Vm8D/ixzcbjB8zLv665bB4/c7xSb+TmZkZh1x3VGRkZpTjV1Raw9aN46g7To7MzMS/6pk56fu4fOsL4t+X/rPM4H9ExKxJM+KeY2+JG/YbET8sXpGwnt8kP46755TIyKj4fAAAAAAAAABUnfA/AAAAlGHfCw6MHnv3TqivXrk6bj/8hnjglDuThqTLUlxYHE/9+R/x4Kl3JV1v2KpR/Oa4fpWetzz6Dd4ztj14h1K1ivwaNlSDhh8eDVo0LFWbOen7ePaqJ9d53WE3HBNtt+yQUF+xcHmM3ndEPHXxo1FYUFjuOVYtL4j7Tro9nr/mX0nX2/ZqH1v+bpty9/vJ/9x4bOQ3yU+oz/p8Rozc9a8xd2rZD6f80mfPT4zr+l8ZK5f+kLDWqW/X+O2Z+1Z4PgAAAAAAAACqTvgfAAAAyrDTMYlB/OLCorj1kOvj/UffrnTfV255Md598I2kazv8z28q3Xd92vRqH3+49n9L1b6b8E2M2v3yatuzNui4fZfY5YQ9EuoPnHJnFBcWl3ldZlZm9E3ytoCCZStj9D7D44uXJ1V6psfPfzimvjEl6doO/5O457p027V7wgMdET/OedOB18YPiyr+cMf0Cd/EvcffmnRtwKUHR91G9SrcEwAAAAAAAICqEf4HAACAMow54JqY/N/PStX+ee6D8ekzH1W59+MXPBwlJSUJ9U37dI6curlV7v9LOXVz46SHT4/cn/UuWF4Qd/zPjbFySeIJ778WGRkZccRNx0VmVum/Ann3wTdi6uvJw/c/KSkuiWt3vzy+m/BNqfpdR90c337wdZVne+KCh5PWu+3WvUJ99rtwYNL6kxc/GvOmzanwXD+Z8Ph78f4jbyXU6zaqF3uctnel+wIAAAAAAABQOcL/AAAAUIa5X86Ov+15Zdx19M2x6PsF8cl/JsR/b3guJe79+W0AACAASURBVL0XTV8Q3773VUI9Kzsr2vZqn5I9fu7wG46JNj3alao9csa9MeeLWSnfqzbZ7ZT+sWmfzqVqq1YUxGPDHirX9d++/1Vctf1F8eif/h4rFi6Pl295IT7+1wcpmW3q61NiyaxFCfXGbZpEgxYNy9Wj3VabRs99eifU5301N1655cUqz/jERY9ESXHiQyr9z9wvsvNyqtwfAAAAAAAAgPLLTvcAAAAAUNu9c//r8c79r6e874xPp0envl0T6g1bNUrpPn0O3TF2OWGPUrV3H3wj3rznlZTuU9vkN60fB11+aEL9+Wv+HYtnLCx3nzUla+Kl0c/Ff294PtasWZPKEWPmZzOi0SZNEuoNWjWKZfOWrvf6nY7eNWn95ZvGRUlRcZXnm//V3Jj47w9j64F9StXrN28QW+6/dUx44r0q7wEAAAAAAABA+Tj5HwAAANJk2dzk4e46DeumbI9mHVvEkWNPKFWbN21OPDD4rpTtUVv97pLfR37T+qVqS2YtinHX/qdS/VId/I+IWDZ3SdJ63XLeA9sd0jehVlJcEu88kLqHVcrq1eewnVK2BwAAAAAAAADrJ/wPAAAAaZKbn5e0vvqHVSnpn5mdFSc9dHrUa5y/tla0uijuOGJMFCxbmZI9aqsWXVpFv1P2TKj/54ononDl6jRMlFxV7oHOO3aLJu2aJdS/fmdqmQ+WVManz34cRauLEuq9D9gmsnO9VBIAAAAAAACgpgj/AwAAQJo0ads0aX35/GUp6T/wikOiU9+upWpP/fnR+Oa9aSnpX5sNGn54QjB97tTZ8drt49M0UXLJwvsR5bsHuu66edL6F698XqWZfmn1D6uS3jO59fKiw7adUroXAAAAAAAAAGUT/gcAAIA06bxTt4RaSUlJzPhkepV7b7HXlrHXOQeUqk0aNzHGjXy6yr1ru847dYvt/tA3of70Xx+LkqLiNEyUXG69vGjXu31CfcXC5bHo+4Xrvb7zjon3T0TEV29/WeXZfunrd6YmnyHJPQwAAAAAAABA9RD+BwAAgDTo1LdrNG7TJKE+e/LMWLnkhyr1btCyYRx37+DIzPz/P/Yvmb047jr65ir13VD8YeSRCbU5X86Odx96Mw3TlK33gG0jKyc7of7V28mD9r/0y7c6/GTmp99Xaa6kPT9L3rPTDl1SvhcAAAAAAAAAyQn/AwAAQBrs9sf+SesfPPp2lXsf//ch0ah147WfS0pK4p5jx8ayuUur3Lu267Xf1tHlN5sl1J8b/lSsKVmThonKVtY98P6jb6332rz8vKQPjxStLooF38yr8my/NG/qnKT1Fl1bp3wvAAAAAAAAAJIT/gcAAIAatkmPttH3f3dJqBcXFsVb975apd77nDcgeuzdu1TtxeueiUnjJlap74bigEsPTqjN+2puvH3fa2mYpmw99+kdm+/eI6G+YtGKmPDYu+u9vlnHFknri2csjDVrUv+Qw8LpC8qYo3nK9wIAAAAAAAAgOeF/AAAAqEEZmRlx5M3HR1Z2VsLa63e9HAu+nV/p3h136BIHXX5IqdrX706LJy58pNI9NyS99t86Ou3QJaH+wqino6S4JA0TJZdbLy8Ovf7opGvPX/OvWLVi1Xp7NN00eeh+6ZwlVZqtLEtnL05ar9+sQeTVr1MtewIAAAAAAABQmvA/AAAA1KD9LxoY3XbbIqG+fMGyePovj1W6b52GdePEB0+PrJzstbWVS3+IO464MUqKiivdd0MyIMmp/8vmLY03734lDdOU7fAbj4nWm7dJqM/5cnb8d/Rz5erRoEXDpPUfFq2o0mxlKSwojMKC1UnX6jdvUC17AgAAAAAAAFCa8D8AAADUkC1/t00ccEliQD0i4v4/3lGlU9uPuvXEaNG5Zanag0Pujvlfza10zw1Jr/23jo7bJ576/8otL0RhQWEaJkqu3+A9Y+fjdk+oFxcWxV1H3VTuWfPy85LWC5YVVGW8dSqrd27d3GrbEwAAAAAAAID/J/wPAAAANaBd7w5x4oOnRWZW4h/FX77lhZjw+HuV7r3LiXtEn8N2KlV7855X4t0H36h0zw3NfhcclFBbvXJ1jB8zLg3TJNdj795x2Ohjkq49efGj8c2708rdK6eMwH1xYfW95aGs3rn1hP8BAAAAAAAAaoLwPwAAAFSzFl1axRnPDos6DeomrE3+72fxyBn3Vrr3Jlu0jUP/dlSp2uwpM+Ph0++pdM8NTae+XaPrzpsn1N954PVYPn9ZGiZK1Klv1/jjP86MrOyshLW3/v5ajBv5dIX6lRX+LymqzvB/UYVmAQAAAAAAACC1hP8BAACgGjVp1zT+9OKF0WiTJglrMyd9H7cecn2UFJdUqnd2Xk6c+NDpkZdfZ22tcFVh3PE/N8aqFasqPfOGZq+hv0taH3/j8zU8SXLteneI059J/vDHF698HveffHuFe5YV8s/IzKhwr/LKTPLgQkRE0erkDwUAAAAAAAAAkFrC/wAAAFBNmrRrGn966eJotmmLhLX538yL0fuMiB8Wrah0/0P/dlS0692hVO2J8x+K6R99W+meG5pmHVvE1oP6JNS/eOXzmPHJ9DRMVFrbLdvHmeMuiPwm+Qlr3334ddx04LWVCs+v/mF10np2bnaFe5VXVk7y8H9ZswAAAAAAAACQWtX3X4QBAABgI9Zs0+bxp5cujhadWyasLZm9OEbvPTwWz1hY6f7bDNo++p2yZ6naxKc/jJdGP1fpnhui/mftF1lJTqQfPyb9p/6333rTOGvchVG/eYOEtdmTZ8YN+10dBctWVqp34crkgfvc/LxK9SuPvDJ6r/5h43nLBAAAAAAAAEA6Cf8DAABAijXv1DKG/veipCf+L5m1KK7rf2XMnTq70v2bdmgeR91+UqnaohkL457jbq10zw1RXv06sfNx/RLqS2Ytio+efD8NE/2/TbfrFGc+f0HkN62fsDbr8xlxXf8rY9m8pZXuv3LJD0nr9RonvmEgFTKzMiMvv04Zs1TuAQYAAAAAAAAAKkb4HwAAAFKoeaeWcfb4i6Nph+YJa4tnLorrfntFzPliVpX2OP7vg0uFykuKS+Luo2+OFQuWVanvhqbvkTtHnQZ1E+pv3vtqlBSXpGGiH23ap/OPwf8miUH8mZ99H9f1vyKWza188D8iYuH0BUnr9VskvmUgFeq3aJi0XrC8YKO77wAAAAAAAADSJTPdAwAAAMCvxbqC/wu/mx+jdr+8ysH/vv+7S3TbbYtStU+f/SimjJ9U6Z71koTU164lObm+ttj15P4JtZKSknj9jvFpmOZH6wr+T//427jut1UP/kdELPhmXtJ60/bNqty7In0Xfju/WvYDAAAAAAAAIJGT/wEAACAF1hX8n/Pl7Lh+r6ti4XdVD0r3PWLnhFrvA7aNW0serHLvZC7+4Kqk9dUrV8eNv7smvni58g8dVEXHHbpEh206JtS/GD8p5n81t+YHinUH/79+Z2rcsN/V8cPiFSnZa8msxbF65erIrZtbqp5bLy8abdI4lsxanJJ9ftK8c8uk9flfp+f3GgAAAAAAAGBj5OR/AAAAqKLmncsO/s/4dHpc2++ylAT/IyKy6+SkpE9V5dbNjWabJv56a0q/P+6ZtP7W31+r4Ul+tGmfznHWuOTB/ykvT4q/7XVVyoL/P/n+o2+T1ttu2SGl+0REbNKjbdL6tx98nfK9AAAAAAAAAEhO+B8AAACqoHnnlnH2f5MH/7/94OsYtfvlsXR2ak9h39jl1a8T2x3aN6FesLwgJjz+bo3P81Pwv17jxOD/p89+FDfuf3WsWl6Q8n2/evvLpPWO23dO+V4d+yTvOe3NL1K+FwAAAAAAAADJCf8DAABAJa0r+D/19SlxXf8rYsXC5WmY7Ndtu0P6Rl5+nYT6R0+8F6tWrKrRWdYV/P/gn+/EzQNHRWFBYbXsXVbwfvPde6R0n4zMjOi8U7eEeklxSXz99tSU7gUAAAAAAABA2YT/AQAAoBLWFfyf9MIncf0+w6Ng6cqU7/vtB19FSUlJyvtW1KoVBTFnyqy07L3j/+6StP7uQ2/W6Bwdt+9SZvD/rXtfjdsPvyGKC4urbf9J4z6JwoLVCfWuu3ZPOlNldSuj35Txk6JgWervcQAAAAAAAACSy073AAAAALChad65ZZw9/s/RtH2zhLWPnnw/bj/8hihaXVQtez927oPx2LkPprRnnYZ1Y/TiO5OuXbXDxfHt+1+ldL+qaNK+WXTrt0VCfcXC5fH5i5/W2Bwdt+8SZz5/ftJQ/Mu3vBAPnXp3tc9QsGxlfPrsx7HNoO1L1bNzs6PPYTvGq7e+lJJ9+hy+U9L6ew/X7MMWAAAAAAAAABs7J/8DAABABawr+P/ug2/ErYdcX23B/+qyrjcULJ+3tAYnWb8dj9olMjMT/zrj46c+iJKi6jtl/+fWFfx/fuS/ayT4/5N3H3wjaX2P0/eJjIyMKvev26he9D1i54T66pWrY8Lj71W5PwAAAAAAAADlJ/wPAAAA5bSu4P9rd/w37jrq5igpLknDZBuP7Q9Lfgr9B4+9UyP7ryv4/69L/xGPD3uoRub4yYQn3ou5U2cn1Nv0aBe/Ob5flfvvc96AqNOgbkL99Tv+Gz8sXlHl/gAAAAAAAACUn/A/AAAAlEOLLq3KDP6/eP0zcf/Jd8SaNWvSMNnGo2XX1tF2yw4J9VUrCmLyS59V+/4ddyg7+P/o0PviP5c/Ue0z/NKakjXx/DX/Trp28DVHRpMk92t5tenVPvYcun9CvXBVYTx/zdOV7gsAAAAAAABA5Qj/AwAAwHq06NIqhv734qTB//9c8UT8Y+j9aZhq47PNwdsnrU/576QoWlVYrXt33KFLnPlcYvC/pLgk7jv59njp+merdf91efOeV2PGp9MT6vlN8uPUf50TdRvVq3DP+s0bxODH/xQ5eTkJa+NvfD4Wz1hYqVkBAAAAAAAAqLzsdA8AAAAAtdm6gv+PDXswxo10Avov9di7d5z+n/MiM6v0mQOrVhTE+R1Ojx8WrahU320G7ZC0/skzEyrVr7zKCv4XFxbF3ceOjfceerNa91+fkqLi+PsJt8V5b/wlsrKzSq2132rTOPe1S+OWQdfFvGlzytWv1WabxJCnzo6WXVsnrM35cnb865J/pGRuAAAAAAAAACrGyf8AAABQhpZdW8c5r1ySNPg//qZxgv9laLRJ44Tgf0REXn6dqNuwbqV6Nm7bNDrt0CXp2uT/flapnuXRecducda4CxKC/xERT170aNqD/z/55r1p8cwVTyRda9urfVzy8Yg48LJDokHLhmX2aNi6cRx0xaFx8YTh0XrzNgnrhQWr455jbonCgup9ywIAAAAAAAAAyTn5HwAAAMpw3N8HR+M2TZKu7XHq3rHHqXtXy75TX58SI3f7a7X03lD13Ld30vqSWYti7pezq2XPzKzMOPnRM6Juw3pJ1w++5og4+JojqmXvd+5/Pe46+uYKXfP0ZY9H804tY6djdktYy62XF7+7eFDsd8FB8c1702LGJ9Nj+fxlERkRDVo0jHa9O0SHbTslfWgjIqKkpCTuOvqW+OrtLyv16wEAAAAAAACg6oT/AQAAoAwdt09+0nx1a9yuaVr2rc167Lll0vrUN76otj0bbdI4mrRLfOtDTajsPfD3k26PiEj6AEDEjw80dN6xW3TesVu5exatLor7/3hHfPjPdyo1EwAAAAAAAACpkfw4NwAAAKDMU9CpWRkZGdG9f6+ka99//G217bsh/vsvKSqOe44bG/8894EoWl1U5X5LZi+O6/e6Kt6699UUTAcAAAAAAABAVWx4/xUbAAAA2GCVlKyp8DUdtu0Y9Zs3SLr2/cTvqjrSr9ILo/4Tl/UeFp8993Glri8uLIqXRj8bl3Q/O758bXKKpwMAAAAAAACgMrLTPQAAAADUVrM+nxGbbNG2xvedM2VWje85c9L30aZHu1K1JbMWxfIFyyvca8E386KwYHXk1MktVV88c1Es/n5hhfvVaVg3iguLIiun9F9jrFzyQ3z34TcV7ldeyxcsj6Vzl0TDlo2qbY+yzP1ydpV7zPliVtyw/9XRfutNY5eTfhvbDOwTjTZpss5rZk76Pt576M14466XY8msxVWeAQAAAAAAAIDUyVizZk3Fj9wDAAB+lZbNWxrntDol3WMAvxLttto0/jxh+NrPD512d7x88wtpnIhmHVtEh207RoMWDaNek/woKSqJFYuWx+IZi+Kbd6fFioUVf9gj3Zpt2jyu+vqGdI+xUTvggAMiIuLpp59O8yQAwIbKzxMAQFX5eQIAgI2Fk/8BAACAatG9f8+1/zz/67nx2u3/TeM0RPz4VoYF38xL9xgAAAAAAAAAVEJmugcAAAAAfp12PfG3a//53399LIoLi9M4DQAAAAAAAABs2IT/AQAAgJTrtlv3aN29TUREzJz0fbxz3+tpnggAAAAAAAAANmzC/wAAAEDK7XpS/7X//K9L/hFr1qxJ4zQAAAAAAAAAsOET/gcAAABSql6T/Nj24O0jIuLb97+KCY+/l+aJAAAAAAAAAGDDJ/wPAAAApNROx+wWOXVyIyLiyYsfTfM0AAAAAAAAAPDrIPwPAAAApNQuJ+4RERFTXp4Uk8ZNTPM0AAAAAAAAAPDrIPwPAAAApEy9xvnRsmvrWDh9QTxy5r3pHgcAAAAAAAAAfjWy0z0AAAAA8Ovxw+IVcWqdo9M9BgAAAAAAAAD86jj5HwAAAAAAAAAAAAAAajnhfwAAAAAAAAAAAAAAqOWE/wEAAAAAAAAAAAAAoJYT/gcAAAAAAAAAAAAAgFpO+B8AAAAAAAAAAAAAAGo54X8AAAAAAAAAAAAAAKjlhP8BAAAAAAAAAAAAAKCWE/4HAAAAAAAAAAAAAIBaTvgfAAAAAAAAAAAAAABqOeF/AAAAAAAAAAAAAACo5YT/AQAAAAAAAAAAAACglhP+BwAAAAAAAAAAAACAWk74HwAAAAAAAAAAAAAAajnhfwAAAAAAAAAAAAAAqOWE/wEAAAAAAAAAAAAAoJYT/gcAAAAAAAAAAAAAgFpO+B8AAAAAAAAAAAAAAGo54X8AAAAAAAAAAAAAAKjlhP8BAAAAAAAAAAAAAKCWE/4HAAAAAAAAAAAAAIBaTvgfAAAAAAAAAAAAAABqOeF/AAAAAAAAAAAAAACo5YT/AQAAAAAAAAAAAACglhP+BwAAAAAAAAAAAACAWk74HwAAAAAAAAAAAAAAajnhfwAAAAAAAAAAAAAAqOWE/wEAAAAAAAAAAAAAoJYT/gcAAAAAAAAAAAAAgFpO+B8AAAAAAAAAAAAAAGo54X8AAAAAAAAAAAAAAKjlhP8BAAAAAAAAAAAAAKCWE/4HAAAAAAAAAAAAAIBaTvgfAAAAAAAAAAAAAABqOeF/AAAAAAAAAAAAAACo5bLTPQAAAFB7ZGRmRrNNm6d7DAAot8btmqV7BAAAAAAAAIAaIfwPAACsVb9Z/bjq6xvSPQYAAAAAAAAAAPALmekeAAAAAAAAAAAAAAAAWDfhfwAAAAAAAAAAAAAAqOWE/wEAAAAAAAAAAAAAoJYT/gcAAAAAAAAAAAAAgFpO+B8AAAAAAAAAAAAAAGo54X8AAAAAAAAAAAAAAKjlhP8BAAAAAAAAAAAAAKCWE/4HAAAAAAAAAAAAAIBaTvgfAAAAAAAAAAAAAABqOeF/AAAAAAAAAAAAAACo5YT/AQCA/2PvvqOsrK/9Ae9hGOlVEARBsISgKEqMot5cNbYEFRF7TLARgySgVxSixkgINqSIiATFEil6c1GEGIooCholVlSkiAURpQnShqHO/P7Ikl/GcwamnJlzwOdZy7U8+/u+e29ZCcvBz/seAAAAAAAAAAAgwwn/AwAAAAAAAAAAAABAhhP+BwAAAAAAAAAAAACADCf8DwAAAAAAAAAAAAAAGU74HwAAAAAAAAAAAAAAMpzwPwAAAAAAAAAAAAAAZDjhfwAAAAAAAAAAAAAAyHDC/wAAAAAAAAAAAAAAkOGE/wEAAAAAAAAAAAAAIMMJ/wMAAAAAAAAAAAAAQIYT/gcAAAAAAAAAAAAAgAwn/A8AAAAAAAAAAAAAABlO+B8AAAAAAAAAAAAAADKc8D8AAAAAAAAAAAAAAGQ44X8AAAAAAAAAAAAAAMhwwv8AAAAAAAAAAAAAAJDhhP8BAAAAAAAAAAAAACDDCf8DAAAAAAAAAAAAAECGE/4HAAAAAAAAAAAAAIAMJ/wPAAAAAAAAAAAAAAAZTvgfAAAAAAAAAAAAAAAynPA/AAAAAAAAAAAAAABkOOF/AAAAAAAAAAAAAADIcML/AAAAAAAAAAAAAACQ4YT/AQAAAAAAAAAAAAAgwwn/AwAAAAAAAAAAAABAhhP+BwAAAAAAAAAAAACADCf8DwAAAAAAAAAAAAAAGU74HwAAAAAAAAAAAAAAMpzwPwAAAAAAAAAAAAAAZDjhfwAAAAAAAAAAAAAAyHDC/wAAAAAAAAAAAAAAkOGE/wEAAAAAAAAAAAAAIMMJ/wMAAAAAAAAAAAAAQIYT/gcAAAAAAAAAAAAAgAwn/A8AAAAAAAAAAAAAABlO+B8AAAAAAAAAAAAAADKc8D8AAAAAAAAAAAAAAGQ44X8AAAAAAAAAAAAAAMhwwv8AAAAAAAAAAAAAAJDhhP8BAAAAAAAAAAAAACDDCf8DAAAAAAAAAAAAAECGE/4HAAAAAAAAAAAAAIAMJ/wPAAAAAAAAAAAAAAAZTvgfAAAAAAAAAAAAAAAynPA/AAAAAAAAAAAAAABkOOF/AAAAAAAAAAAAAADIcML/AAAAAAAAAAAAAACQ4YT/AQAAAAAAAAAAAAAgwwn/AwAAAAAAAAAAAABAhhP+BwAAAAAAAAAAAACADCf8DwAAAAAAAAAAAAAAGU74HwAAAAAAAAAAAAAAMpzwPwAAAAAAAAAAAAAAZDjhfwAAAAAAAAAAAAAAyHDC/wAAAAAAAAAAAAAAkOGE/wEAAAAAAAAAAAAAIMMJ/wMAAAAAAAAAAAAAQIYT/gcAAAAAAAAAAAAAgAwn/A8AAAAAAAAAAAAAABmucroXAAAAMsemTZvioZEj070G5ah27dpx1dVXp3sNAAAAAAAAAABKSPgfAADYqaCgINauXZvuNQAAAAAAAAAAgO+olO4FAAAAAAAAAAAAAACAXRP+BwAAAAAAAAAAAACADCf8DwAAAAAAAAAAAAAAGU74HwAAAAAAAAAAAAAAMpzwPwAAAAAAAAAAAAAAZDjhfwAAAAAAAAAAAAAAyHDC/wAAAAAAAAAAAAAAkOGE/wEAAAAAAAAAAAAAIMMJ/wMAAAAAAAAAAAAAQIYT/gcAAAAAAAAAAAAAgAwn/A8AAAAAAAAAAAAAABlO+B8AAAAAAAAAAAAAADKc8D8AAAAAAAAAAAAAAGQ44X8AAAAAAAAAAAAAAMhwwv8AAAAAAAAAAAAAAJDhhP8BAAAAAAAAAAAAACDDCf8DAAAAAAAAAAAAAECGE/4HAAAAAAAAAAAAAIAMJ/wPAAAAAAAAAAAAAAAZTvgfAAAAAAAAAAAAAAAynPA/AAAAAAAAAAAAAABkOOF/AAAAAAAAAAAAAADIcML/AAAAAAAAAAAAAACQ4YT/AQAAAAAAAAAAAAAgwwn/AwAAAAAAAAAAAABAhhP+BwAAAAAAAAAAAACADCf8DwAAAAAAAAAAAAAAGU74HwAAAAAAAAAAAAAAMpzwPwAAAAAAAAAAAAAAZLjK6V4AAAAAvq/Wrl0bCxcujMWLF8f69esjNzc3qlatGrVr144DDzwwWrVqFQ0aNEj3mhVu5cqVMWfOnFi1alWsXbs2KlWqFPXq1YtGjRrF0UcfHXXr1k33igAAAAAAAABQ4YT/AQAASLu8vLw45phjYu3atRU+Ozs7O2655Zbo1q1bhcz76KOPYsKECTF9+vSYP3/+bq9v1apVnH766XHRRRfFwQcfXG57ffrppzFy5MiYNm1arFq1KiIisrKyYtCgQXHxxReX29xvLV26NMaNGxcTJ06MxYsXF3ldVlZW/PCHP4wLLrggLrrooqhfv3657wYAAAAAAAAAmUD4HwAAgLT78ssv0xL8j4jYsWNHLFiwoNznvPnmmzFkyJCYOXNmie5buHBhLFy4MIYPHx5nnXVW9OnTJw466KCU7fXZZ5/FfffdFxMmTIgdO3YUOisoKIilS5embFYya9asibvuuiueeuqpyM/P3+31BQUFMX/+/Pjzn/8c9957b3Tv3j1++9vfRtWqVct1TwAAAAAAAABIt0rpXgAAAACWL1+e7hXKzZo1a+K6666L8847r8TB//9UUFAQzz33XJxxxhkxbty4Mu/12WefxXXXXRcnnXRSjB8/PiH4XxGef/75+MlPfhLjxo0rVvD/uzZv3hyDBw+OU089tVjfogAAAAAAAAAAezLhfwAAANJuxYoVaZ3fqFGjcuk7d+7c6NChQ4wfPz4KCgpS0jMvLy9uuummGDx4cKnu/+yzz+L6669Pa+g/ImLEiBFx9dVXp+QbHxYvXhydOnWKF198MQWbAQAAAAAAAEBmqpzuBQAAAKBKlSpRqVKlUr39vayysrLinHPOSXnf119/PX71q19FXl5ekddkZ2fH4YcfHq1bt4599903CgoKYs2aNfHhhx/G/PnzdxnMHzRoUOy7775x+eWXF2ufzz77LIYOHRrPPPNM2gL/3/rLX/4S/fv3L/I8Ozs7jjzyyDjssMOifv36sWPHjli+fHm8//778fHHHye9Z+PGjdG1a9cYO3ZsnHDCCeW1OgAAAAAAAACkjfA/AAAAaXf22WfH2WefXa4z1qxZE23btk14wKBz587Rpk2blM5655134vLLLy8y+N+iRYvo2rVrdOzYMfbdd98i9x09enQ8/PDD8c033yS95k9/+lO0b98+WrVqtct9HnnkkfjTn/6U9tB/RMTkyZOLDP5XrVo1unXrFldePPhNvgAAIABJREFUeWU0aNAg6TULFy6M4cOHx9NPP51wtnXr1ujatWtMmjQpDjnkkJTuDQAAAAAAAADpVindCwAAAEBF+Otf/5oQ/K9fv3707ds3pXO+/vrr6Nq1a+Tm5iacVa9ePW6//faYNWtWXHnllUUG/7/d7brrrouXX345TjvttKTXbNmyJfr167fbnV577bUig/+VKlWKk046KX74wx/utk9ZrVixIm688cYoKChIODv00ENj+vTpcdNNNxUZ/I+IaNWqVdx///0xZsyYqF27dsL5unXr4vrrr0/Lt0gAAAAAAAAAQHkS/gcAAGCv9/nnn8cDDzyQUL/99tujfv36KZtTUFAQPXr0iBUrViScNW3aNCZNmhTXXHNNZGdnF7tngwYN4tFHH41OnTolPX/55Zdj3rx5u93ru37wgx/ELbfcEm+88UaMGzcuOnToUOydSusPf/hDrFu3LqF+yCGHxIQJE+Kggw4qdq9TTjkl/va3v0XNmjUTzt59990YNWpUmXYFAAAAAAAAgEwj/A8AAMBe77bbbovNmzcXqv3Xf/1XXHDBBSmds2zZsnjllVcS6o0aNYqnn346WrduXaq+2dnZMXDgwDjwwAOTnj/77LO7vT8iol69enHllVfG5MmT46WXXorf/va3sf/++5dqp5KaPXt2TJ48OaFeo0aNePzxx6NevXol7nnEEUfE4MGDk54NHjw46YMGAAAAAAAAALCnEv4HAABgrzZt2rR48cUXC9UqV64c/fr1S/msJk2axJgxY6J58+Y7azk5OfHYY49Fs2bNytS7WrVqccMNNyQ9mz179i7vvfbaa+PRRx+Nd999N/r37x9t27Yt0y6lcf/99yet9+nTJ1q2bFnqvmeddVacc845CfUNGzbEY489Vuq+AAAAAAAAAJBphP8BAADYa+Xl5cUf//jHhHqXLl2iVatW5TLz5JNPjhkzZkTPnj2jevXq0bt375SF7c8444zIyclJqM+bN2+X97Vr1y7OPPPMpPdWhLlz58bMmTMT6s2bN48uXbqUuf/vf//7qFQp8Y84Ro0alfCNDwAAAAAAAACwpxL+BwAAYK/1wAMPxNKlSwvV6tWrF7169SrXudWqVYs+ffrEwoULo3v37inrW7t27WjatGlCPS8vLzZu3JiyOak2fvz4pPUrrrgiJQ8ktGjRIk4//fSE+jfffBMzZswoc38AAAAAAAAAyATC/wAAAOyVli1bFiNHjkyo9+jRI+rWrVshOyR7G31Z7bvvvknrGzZsSPmsVCgoKIi///3vCfVKlSpF586dUzanqF4TJ05M2QwAAAAAAAAASCfhfwAAAPZKAwYMiLy8vEK1Jk2axBVXXJGehVJk06ZNSevVqlWr4E2K5+23347ly5cn1I8++uho2LBhyub89Kc/TfotAi+88EJs2bIlZXMAAAAAAAAAIF2E/wEAANjrzJs3L8aPH59Q79WrV1SpUiUNG6VOsiB95cqVo06dOmnYZvfeeOONpPXjjz8+pXOqV68ebdu2Tahv3rw5Pvjgg5TOAgAAAAAAAIB0EP4HAABgr9O/f//Iz88vVDvooIPiwgsvTNNGqfHJJ5/EN998k1Bv1apVZGVlpWGj3Xv77beT1n/0ox+lfFa7du1KtAMAAAAAAAAA7EmE/wEAANirzJw5M2bOnJlQ79mzZ2RnZ6dho9SZMmVK0np5BOlT5d13301ab9WqVcpnFdWzqB0AAAAAAAAAYE8i/A8AAMBe5d57702oHXjggXHeeeelYZvU2bFjRzz55JNJzzp27FjB2xRPbm5urFixIqGek5MTzZo1S/m8Fi1aJK0vXrw45bMAAAAAAAAAoKIJ/wMAALDXeOGFF5K+5b1Hjx5RuXLlNGyUOmPHjk0aYm/ZsmW0b9++4hcqhi+++CJpvXHjxlGpUur/SKJJkyYl2gMAAAAAAAAA9iTC/wAAAOw1hgwZklBr3LhxXHDBBWnYJnVWrFiR9BsNIiJuuummyMrKquCNimfp0qVJ6w0aNCiXeQ0bNkxaX7t2bWzcuLFcZgIAAAAAAABARRH+BwAAYK8wffr0mDNnTkK9a9eukZOTk4aNUiM/Pz969uwZa9asSTg79thjo2PHjmnYqnhWr16dtF63bt1ymVetWrWoUqVK0rNkv34AAAAAAAAAsCcR/gcAAGCvkOyt/zVr1ozLLrssDdukzp133hmvvvpqQr1mzZoxdOjQjH3rf0REXl5e0nqNGjXKbWZRvTdv3lxuMwEAAAAAAACgIgj/AwAAsMebNWtWvPfeewn1yy67LGrXrp2GjVLjySefjBEjRiQ9GzBgQDRv3ryCNyqZogL35flNDEX1LupBBAAAAAAAAADYUwj/AwAAsMcbOXJkQi07OzuuvvrqNGyTGlOnTo3f//73Sc+uu+66OPfccyt4o5IrKnCfnZ1dbjMrV66ctO7N/wAAAAAAAADs6YT/AQAA2KMtWLAgXn755YT6GWecEU2bNq34hVJg1qxZ0b1799i+fXvCWceOHeOmm25Kw1YlV1QQPz8/v9xm7tixI2m9PL9tAAAAAAAAAAAqgvA/AAAAe7SHHnooaf3KK6+s4E1S45VXXomrrroqtmzZknB2yimnxP333x9ZWVlp2KzkqlWrlrS+bdu2cptZVO+idgEAAAAAAACAPYXwPwAAAHuslStXxrPPPptQb9WqVZx44olp2KhsXn755bjiiisiLy8v4ezHP/5xPPzww3vUG+yrVq2atL5p06Zym1lUb+F/AAAAAAAAAPZ0wv8AAADssUaPHp30Dfm/+tWv0rBN2bzwwgtx1VVXxebNmxPOjj322BgzZsweF2CvVatW0vr69evLZd727duTPjgREVG7du1ymQkAAAAAAAAAFUX4HwAAgD3Sjh07Yty4cQn1qlWrRufOndOwUem98MIL8etf/zrpgwzt27ePMWPGRM2aNdOwWdk0adIkaX316tXlMq+ovtWrV4/69euXy0wAAAAAAAAAqCjC/wAAAOyRpk+fHsuXL0+on3XWWVGnTp00bFQ63wb/t27dmnB24oknxujRo6NGjRpp2KzsmjVrlrT+1Vdflcu8ovoecMAB5TIPAAAAAAAAACqS8D8AAAB7pDFjxiStX3bZZRW8SelNnz69yOD/aaedFk888URUr149DZulRqNGjaJq1aoJ9c2bNyd9cKOslixZkrRe1EMIAAAAAAAAALAnEf4HAABgj7NkyZKYOXNmQv3AAw+M4447Lg0bldz06dPjmmuuSRr879ixY4waNSppcH5PkpWVFYcddljSswULFqR83kcffZS03rZt25TPAgAAAAAAAICKJvwPAADAHuepp56K/Pz8hHrnzp3TsE3J7Sr4f/HFF8fw4cMjJycnDZul3o9+9KOk9Tlz5qR81nvvvZe0fswxx6R8FgAAAAAAAABUNOF/AAAA9igFBQXx9NNPJz07//zzK3ibkttV8P/qq6+OQYMGRaVKe8+P60UF71977bWUztmxY0e8/fbbCfVKlSpFu3btUjoLAAAAAAAAANJh70kTAAAA8L0we/bsWLp0aUL96KOPjpYtW6Zho+LbVfD/d7/7XfTr1y+ysrLSsFn5Oemkk6JKlSoJ9TfeeCPWrl2bsjn/+te/Yv369Qn1E044IWrVqpWyOQAAAAAAAACQLsL/AAAA7FHGjx+ftH722WdX8CYl8/zzzxcZ/L/55pvj5ptvTsNW5a9WrVpxyimnJNS3bdsWkyZNStmciRMnJq136tQpZTMAAAAAAAAAIJ2E/wEAANhj5OXlxT/+8Y+kZ2eddVYFb1N8zz//fPzmN79JCP5nZWVF//7943e/+12aNqsY5513XtL6o48+Gvn5+WXuv27dupgwYUJCvWrVqvHzn/+8zP0BAAAAAAAAIBMI/wMAALDHmDFjRmzYsCGh3rZt22jWrFkaNtq9ooL/2dnZMWjQoLjyyivTtFnF+fnPfx4tWrRIqC9atCieeuqpMvd/8MEHIzc3N6H+i1/8IurWrVvm/gAAAAAAAACQCYT/AQAA2GNMnjw5af3000+v4E2Kp6jgf05OTgwfPjwuvvjiNG1WsbKzs6N79+5Jz/r37x9ffvllqXvPnz8/HnrooYT6PvvsE9dee22p+wIAAAAAAABAphH+BwAAYI+wdevWePHFF5OenXrqqRW8ze4VFfyvWrVqjBo1Ks4555w0bZYeF110UbRq1Sqhvm7durj88stj3bp1Je65evXq6Nq1a8KvcUTEVVddFU2aNCnVrgAAAAAAAACQiYT/AQAA2CO88sorsWHDhoT6fvvtF0cccUTK561bty5+8IMfRNOmTQv91axZs5gxY8Yu7y0q+F+jRo144okn4rTTTkv5vpkuJycnBg0aFNnZ2Qln8+fPj/POOy8+++yzYvf7+OOPo1OnTrF48eKEsxYtWsSNN95YlnUBAAAAAAAAIOMI/wMAALBHmDp1atL6CSecEFlZWSmft379+sjNzU2o5+fnx6pVq4q8b8qUKXHNNdckfRv9oEGD4sQTT0zpnqmSl5dXonppHH300XH99dcnPVu4cGGcdtppMWDAgF3++q5YsSLuvvvuOPPMM+PTTz9NOK9SpUoMHTo0qlWrlrK9AQAAAAAAACATVE73AgAAAFAcL730UtL6cccdV8GbFG3NmjXRo0eP2LZtW9Lzbt26Rbdu3cplds+ePaNPnz5JzwYMGBBDhw4tVd8RI0bEiBEjijzv3LlzDBs2rNj9brjhhvj8889j/PjxCWebN2+OoUOHxrBhw6Jt27Zx2GGHRb169SIiYvXq1TFv3rz44IMPIj8/P2nvrKysGDp0aBxzzDHF3gcAAAAAAAAA9hTC/wAAAGS8RYsWxbJly5KeHXvssRW8TdEWLVqU0jfll0RRvz4REV999VVa5hZl4MCBERFJHwCI+Pe3K7z77rvx7rvvFrtnTk5O3HPPPXHOOeeUeB8AAAAAAAAA2BNUSvcCAAAAsDszZ85MWq9SpUoceuihFbxN0Xbs2JHuFfYIOTk5MXTo0LjtttsiJyenzP0aNmwYTz31VFx88cUp2A4AAAAAAAAAMpPwPwAAABlv1qxZSeuHHnpoZGdnV/A2EZUq+XE6Fbp16xYvvPBCnHzyyaW6v3LlynH11VfHrFmzon379qldDgAAAAAAAAAyTOV0LwAAAAC7s3nz5qT1448/vtxm1qtXL+rXrx9r1qwpVM/Kyoqjjjoq6T37779/1KhRI3Jzc8ttr2SysrKiZcuWRZ43adKk3GY3a9asTPcfcsghMXbs2Jg7d26MHTs2pk6dGitXrtzlPYceemh06tQpLrnkkmjcuHGZ5gMAAAAAAADAnkL4HwAAgIz3t7/9rcJn1qxZMz744IPYsmVLHHvssfH1119HRESHDh3i0EMPTXpPy5Yt46OPPqrINYuld+/e0bt373SvsUtt2rSJu+66K+66665YsmRJfPDBB7F69epYt25dVK5cOerUqRONGzeOo446KurXr5/udQEAAAAAAACgwgn/AwAAwC4sXLhwZ/A/Ozs740P0e4PmzZtH8+bN070GAAAAAAAAAGSUSuleAAAAADLZmDFjdv79+eefH4ccckgatwEAAAAAAAAAvq+E/wEAAKAIubm5MXHixIiI2GeffaJXr15p3ggAAAAAAAAA+L4S/gcAAIAiPPvss7Fx48aIiLjsssvigAMOSPNGAAAAAAAAAMD3lfA/AAAAFGHs2LEREVGtWrW47rrr0rwNAAAAAAAAAPB9JvwPAAAAScydOzfee++9iIi4+uqro2HDhmneCAAAAAAAAAD4PhP+BwAAgCTGjBkTERF16tSJa6+9Ns3bAAAAAAAAAADfd8L/AAAAkMR7770XNWvWjL59+0bdunXTvQ4AAAAAAAAA8D1XOd0LAAAAQCaaMmVKulcAAAAAAAAAANjJm/8BAAAAAAAAAAAAACDDCf8DAAAAAAAAAAAAAECGE/4HAAAAAAAAAAAAAIAMJ/wPAAAAAAAAAAAAAAAZTvgfAAAAAAAAAAAAAAAynPA/AAAAAAAAAAAAAABkOOF/AAAAAAAAAAAAAADIcJXTvQAAAAAAUDE2bNgQixYtik8//TTWrVsXGzdujMqVK0eNGjWiUaNG0bJlyzj44IMjJycn3aum1fLly+Odd96JL7/8MjZt2hS1a9eOgw8+ONq1axc1a9Ys19lz5syJl156KfLz86NWrVpxzTXXlOs8AAAAAAAA9hzC/wAAAABQzgoKCmLq1Knx+OOPx1tvvRWbN2+OiIjatWvHG2+8EbVq1Sq32StWrIj//d//jenTp8ecOXMiPz9/l9dXr1492rdvH2eddVZ07NgxqlevXurZb7zxRlx00UWxbdu2UvcorRo1asTYsWPjxz/+cbHvmTlzZgwbNixmz54dBQUFCedVq1aNDh06xA033BAtW7ZM5boREbFmzZro0qVLrF69OiIiLrvsspTPAAAAAAAAYM9VKd0LAAAAAMDeqqCgIKZMmRJnnHFGdO3aNV599dWdwf+IiPXr18fatWvLZfayZcvi+uuvj+OOOy7uueeeeOedd3Yb/I+I2LRpU8yYMSN69eoV7dq1iyFDhkRubm6pdli4cGFagv8REbm5ufHpp58W+9ru3bvHL37xi3j99deTBv8jIjZv3hzPPPNMnHLKKTFq1KhUrhsREbfeeuvO4H/jxo3jD3/4Q8pnAAAAAAAAsOfy5n8AAAAASLFv3/Q/ePDgmDdvXoXPf/zxx6N///6Rl5dXpj4bNmyIgQMHxlNPPRUPPPBAid6iHxGxfPnyMs2vCBs2bIhLLrkk5syZU6jeunXraNeuXdSpUye++uqrePnll3c+qLFt27a4/fbbY/ny5SkL6E+dOjUmTZq08/M999wTtWvXTklvAAAAAAAA9g7C/wAAAACQIgUFBTFt2rQYPHhwfPjhhxU+f/v27fE///M/8cwzzxR5TdOmTeO4446Lgw46KOrUqRNbt26NtWvXxqeffhpvv/120sD+0qVL44ILLoihQ4dGp06dir3PihUrSvXPkSqNGzfe5XlBQUF07969UPC/YcOGMXTo0DjppJMKXbt58+YYOnRoDBs2bOc3A4wYMSJatmwZl112WZn2XLt2bdx88807P3fu3DlOO+20MvUEAAAAAABg7yP8DwAAAABllO7Qf0REfn5+dO/ePf7xj38kPT/77LPjN7/5TbRr126XfWbPnh0jR46M559/vlB9+/bt0aNHj6hevXqcccYZxdqpevXqxVu+HDRq1CiOPfbYXV4zZsyYmDFjxs7PderUiQkTJkTLli0Trq1atWr06dMn6tevH3379t1Zv/322+Pkk0+Opk2blnrXP/7xj7Fy5cqI+PfDB/369St1LwAAAAAAAPZewv8AAAAAUAY7duyITp06xTvvvJPWPYYOHZo0+N+4ceO4//7748QTTyxWn/bt20f79u1j4sSJcdNNN0Vubu7Os/z8/Ljuuuvi+eefj2bNmu22V79+/co9yD516tS4+uqrE+q9e/eOatWqFXnfpk2bYtCgQYVqd955Z9Lg/3/69a9/HbNmzdr50EBeXl4MGTIkBg4cWIrtI1588cV4+umnC+1Qr169UvUCAAAAAABg71Yp3QsAAAAAwJ4sNzd3l8H/unXrxgUXXBCVK5ffezjmzp0bgwcPTqgfcMABMXHixGIH///TueeeG4899lhUrVq1UH39+vXRv3//Uu+aao8++mhC7fjjj4+LL754l/c9++yzsWrVqp2fW7duHeeee26xZvbp06fQ5wkTJsTatWuLde9/2rBhQ6FeZ599dnTo0KHEfQAAAAAAAPh+EP4HAAAAgDIoKChIqFWuXDlOP/30eOihh+Ldd9+NoUOHRuPGjctthzvuuCPy8/ML1XJycuKRRx6JAw44oNR9TzzxxOjVq1dC/bnnnotFixaVum+qPPvss/HPf/6zUK1q1aoxYMCAyMrK2uW9zzzzTKHPl1566W7v+VabNm3iiCOO2Pl58+bNMXny5GJu/f/169cvli1bFhER9erVizvuuKPEPQAAAAAAAPj+KL/XjQF7hP/+7/+OFStWVNi8rKysuO++++JnP/tZhc3cU3zxxRfRsWPH2LRp087agQceGM8//3wat4q48MIL4/333y9U69KlS9x6661p2mjv8Oabb8aVV14Z27Zt21n77//+73j44YfTuNWeaeTIkTFkyJCEwNWRRx4Zo0ePTnhLaSotWrQoLr/88li9enWhet++fePSSy8tt7l7opEjRya8ibZXr15xzTXXpGkjAIDUyc7O3vn3bdq0iQsvvDDOO++82HfffStk/scffxyzZs1KqP/yl7+MNm3alLl/165d45FHHonly5cXqo8fPz5uvvnmMvcvrQ0bNkS/fv0S6j169IiDDjpol/fm5eXFW2+9Vah2xhlnlGj+mWeeGR988MHOz6+++mr84he/KPb9s2bNinHjxu38/Oc//zkaNGhQoh0AAAAAAAD4fvHmf/ieq8jgf8S/34b43bAA//bVV18VCv5HRHz++edp2ub/+27wPyJiwYIFadhk7/LFF18UCv5HRHzyySdp2mbPduqppxYKW33r/fffj1GjRpXr7P79+ycE/+vWresBpyQ+++yzhNqnn36ahk0AAFKvZs2aMWTIkHjhhRdi2rRp0bVr1woL/kdETJw4MWn98ssvT0n/ffbZJ+m/47766qsp6V9aAwcOTPhzjebNm0e3bt12e++HH35Y6GeyevXqRbNmzUo0//DDDy/0OdnPz0XJzc2Nm266aefn008/Pc4777wSzQcAAAAAAOD7R/gfyHgLFy6MBx54IIYNGxbDhg2Lhx9+ONavX5/utYAMccghhxT5ds1HHnmk3B5yevHFF2P27NkJ9Z49e0a9evXKZSYAAGV3zz33RNOmTaNp06ZxwAEHxBNPPJGSvhdddFG0bt06Jb1K6s0330yo7bfffnHooYembEbbtm0TavPmzYv8/PyUzSiJefPmxWOPPZZQv+2224r17V/ffTi1NL9W371n6dKlsWPHjmLde8cdd8TSpUsjIqJOnTpx9913l3g+AAAAAAAA3z+V070AwO6MHj06/u///q9Qbf/994+zzz47TRsBmaZnz57x3HPPxZo1awrVN23aFIMHD4577rknpfO2b98e9957b0L9hz/8YVxyySUpnQUAQGotW7Zs598XFBTEqlWr0rhNaixatCih1rRp05TO2G+//RJqW7duTdvD+bfddltC0P6EE06IDh06FOv+7/7sUJoHeL97z7Zt22LDhg1Rt27dXd73+uuvF3ro5Pbbb4/GjRuXeD4AAAAAAADfP978D1SonJycaNGiRYnu2b59e0Jt69atKdoI2BvUqlUrbrjhhqRnEydOjA8++CCl88aNG5fwptCIfweQsrOzUzoLAAB2Z+3ateU+o6ifw/Py8sp99ndNmTIl4Vu4srKy4rbbbit2j+/uXaNGjRLvUbNmzYTapk2bdjv3xhtvjIKCgoiIOPnkk+Piiy8u8WwAAAAAAAC+n7z5H0jq9ddfj/r166d7DYBiO//88+Opp56KuXPnFqoXFBTEnXfeGU8++WRK5qxfvz6GDx+eUD/77LPjmGOOSckMAAAoifz8/ITaihUrUjoj2bcLRETUrl07pXN2Z9u2bXHnnXcm1M8666w48sgji92ncuXCfyya7MUDxdnlu3JycnZ5z9133x2LFy+OiH8/PDBgwIASzwUAAAAAAOD7y5v/gaQE//lWq1atCn2uVKlStGnTJk3bQNEqVaoUf/jDHyIrKyvh7J133onJkyenZM7w4cMT3qxavXr16N27d0r6AwBASdWtWzeh9tVXX8WSJUtSNmPGjBkJtSZNmpTqjfllMWbMmPj0008L1SpXrlzifx//7lv7c3NzS7xLsnt29evx5ptvxqOPPrrz8y233BJNmzYt8VwAAAAAAAC+v4T/AdilSZMmxcKFC3f+NX/+/OjTp0+614Kkjj766OjYsWPSs4EDB8aWLVvK1P/zzz+PsWPHJtSvvfbaaNSoUZl6AwBAaR166KFJ64899lhK+s+fPz/+9a9/JdR/8pOfpKR/cW3YsCEGDx6cUL/wwgvj4IMPLlGvJk2aFPq8bNmyEu+zfPnyQp/r1q0b1atXT3rt5s2bo1evXju/peH444+PLl26lHgmAAAAAAAA32/C/wDAXuXGG29MGrj58ssv4/HHHy9T73vvvTe2bdtWqNaiRYu44oorytQXAADK4sQTT0xaf/TRR2P27Nll7v/nP/85CgoKEuqXXnppmXuXxAMPPBBr1qwpVKtcuXL06NGjxL2++7DAJ598Etu3by9RjwULFuyy538aNGhQfPLJJxERUa1atRg4cGDSby0DAAAAAACAXRH+BwD2Kvvtt19ce+21Sc9GjhwZq1atKlXfN998M6ZPn55Qv+WWW2KfffYpVU8AAEiFTp06RXZ2dkJ9+/bt8atf/Sqee+65Uvd+/PHHY+bMmQn1M888M3784x+Xum9JrV69Oh599NGEeqdOneLAAw8scb+DDz44GjRosPPzli1b4p133ilRj9dff73Q5+OOOy7pdXPmzImRI0fu/Ny7d+9o0aJFiWYBAAAAAABAhPA/ALAXuuKKK5KGaXJzc2PIkCEl7ldQUBB33XVXQv2UU06Jk046qTQrAgBAyhx44IFx0UUXJT3btGlT/OY3v4lLLrkkpk+fHlu2bCl233/+85/Rv3//hHrjxo1jwIABpd63NB588MHYtGlToVqlSpWiZ8+epe55yimnFPpckocktm3bFtOmTStU++lPf5pw3datW6NXr16xY8eOiIj40Y9+FF27di3FtgAAAAAAACD8DwDshfbZZ5+4+eabk55NmDAh5s+fX6J+EydOjA8//DBhxi233FLqHQEAIJVuu+22aNq0aZHnr7zySlxxxRWhTlkyAAAgAElEQVTRpk2b+OUvfxlDhw6N2bNnx+bNm5Ne//zzz0eXLl0iLy+vUL1u3boxZsyYQm/NL29ff/11/PWvf02od+jQIQ4++OBS973kkksKfX7qqadizZo1xbp37Nix8c033+z83KJFi2jfvn3Cdffdd18sWLAgIiKqVKkSgwcPjkqV/JEsAAAAAAAApeO/NAEAe6WTTz456Vv58/Pz48477yx2n82bNyf9toCrrroqmjdvXqYdAQAgVerUqROjR4+O+vXr7/K6TZs2xUsvvRQDBgyI888/P1q3bh3nnntu3HHHHTFt2rR48cUX43e/+11ceeWVCQ8GNG7cOMaPHx+tW7cuz3+UBA8++GDCQwgREddee22Z+rZv3z6OO+64nZ9zc3Ojb9++u71v+fLlCT8j9OzZM7KysgrV5s6dG8OHD9/5+YYbbohDDjmkTDsDAAAAAADw/VY53QsA7Ep+fn6sXbs2ob5+/foKmb9u3bqYN29eLF26NNavXx/btm2LWrVqRb169eIHP/hBHHTQQWl9Y9+aNWti7ty5sXr16vj666+joKAgatasGc2bN4/DDz886tWrl7bdSuKrr76KefPmxcqVK2Pjxo0REVG7du1o3LhxHHbYYbHffvtVyB7Lli3buceGDRt27tGwYcM47LDDYv/996+QPTLV9u3b45NPPolFixbFN998Exs3bowqVapErVq1onnz5tGqVauoW7duutcs5JZbbonXXnsttm3bVqj+xhtvxPTp0+P000/fbY9HHnkkli9fXqi2//77R7du3VK663cVFBTEkiVLYsGCBfH111/Hxo0bIzs7u9D/NyrybavJLFiwID744INYvXp17LPPPnHcccfF4YcfntadAIDvnw0bNsSZZ54ZmzZtKvb1/+kvf/lLjB49ulj3NmzYMKZPn17iHStKq1atYuLEiXHVVVfFokWLinXP1q1b46233oq33nprl9cde+yxMWLEiGjcuHEqVi22r7/+Op544omEevv27eOoo44qc/9+/frFOeecE1u3bo2IiKeffjqaN28evXr1SgjzR0SsXLkyrrrqqvj666931tq1axcXXHBBoeu2b98eN9xwQ2zfvj0iIo488sgiH1bYsmVLTJ06NaZMmRLvv/9+rFq1KrZv3x7169eP1q1bx8knnxydO3fe7YMdAAAAAAAA7P2E/4GM8NFHH0Xnzp0TArpFueuuu+Kuu+4q8jwrKyv69u0bl1xySYl3WbVqVUyYMCH+8Y9/xIIFC3Z5bY0aNeLUU0+Njh07xk9+8pMSzyqNjRs3xrhx42L69Okxd+7cyM/PT3pdpUqV4sgjj4wLL7wwOnXqFJUrl+63/L59+8aTTz6583NWVlbcfffd0alTp1L1+9ZHH30UzzzzTEyZMiUhWP1dLVq0iHPOOScuvvjiaNiwYZnmftfChQtjwoQJMXny5FixYsUur23UqFF06NAhzjvvvGjVqlVK90iFvLy86NOnT0yfPr3Q/y46dOiQ9M31xZGfnx8zZsyIv//97zFz5sykb9v8T4cffnj87Gc/iwsvvDAjHj5p0aJFdOnSJR555JGEswEDBsRJJ50U++yzT5H3r1y5MkaNGpVQ7927d1SrVi2lu37rnXfeiWeffTamTZuW9OGn/9SiRYvo0KFDdO7cOZo1a1amuQ8++GAMHTp05+fKlSvHww8/HCeccEKh67Zt2xZPP/10PPbYY7F48eJCZ/Xr14/XX3+9THuUxOeffx49e/ZM+L26b9++cemll1bYHgBAeq1duzY+//zzUt+/adOmYj84sGrVqlLPqSgHHXRQTJkyJQYPHhwPPfTQzvB5WVx44YUxcODAUv9cWRajRo1K+nNIqh7GbdOmTdx+++1x66237qwNGTIkZs+eHddcc00cddRRUbt27Vi2bFlMmzYtRo4cGStXrtx5bYMGDWL48OGRnZ1dqO+wYcPiww8/jIiInJycGDx4cMI1ERHPPfdc9OvXL7788suEs+XLl8fy5ct3flNDz549o3v37ml9CQEAAAAAAADpJfwPZIRvvvmm2MH/4igoKChxKGPjxo0xYsSIGDt27G4Dzt/Kzc2NSZMmxaRJk+KII46IG2+8Mdq3b1+alXdr+/bt8fjjj8fDDz+820BwxL9D23PmzIk5c+bEqFGj4p577om2bduWeO4nn3xS6HNBQUF88cUXJe7zrS+++CIGDRoUU6dOjYKCgmLds3jx4hg2bFg88sgjcdVVV0W3bt0iJyen1DtERCxZsiQGDRoU06ZNK/YeK1asiMceeywef/zxOPPMM6NXr17RvHnzMu2RKlu3bo1rr702IXjdoEGD6NGjR6l6vvDCCzFkyJD4+OOPi33Phx9+GB9++GGMGDEiLr/88ujevfsuw/UVoXv37jFp0qSE3xOWLFkSo0ePjquvvrrIe++7776EINixxx4bHTp0SPme8+bNi3vvvTdee+21Yt+zePHiePDBB+Ohhx6Kzp07x3XXXVfqbwNYsmRJoc/bt29PeDBnwYIF0bt371i4cGHSHqn8fXx3li5dGl26dEnYsV27dnHuuedW2B4AAJmoWrVqceutt0ZOTk6hBzxL67333ovJkyfHWWedlTTAXl7y8vKSfitDy5Yt47TTTkvZnCuuuCK2bt0a/fv3jx07dkRExOuvv/7/2LvvqKiurg3gzwxDb9IEBJRixy72FmMhRsWOxhZb7CWWoLHEWLDGWKKxFzQae9QYy2vvNVFjQ4OCBayAAlKnfH+45HO8d2DKBSzPb62s9c4+9+6zGa5m5s0+5+S6sNXDwwPr1q0TfC+MjIzEggULsl8PGTIEZcqU0bpGo9Fg4sSJoguVxbx69QrTp0/HqVOnsHLlStjY2Oh1HxEREREREREREREREX1cuE0UERGAS5cuoVWrVjp3FNTH1atX0aNHD4SHhyMzM1PS+uLj49GzZ0/Mnj1br8b/d0VHR6Nz5874888/Ja3LUNu2bUNISAj27t2rd8P921JTU7Fw4UJ06dIFjx49MrqOLVu2oFWrVgYtQHibRqPBvn370KpVK2zdutXoOqSSlZWFoUOHChpTnJ2dsWbNGvj7+xuULyUlBaNGjcKgQYMMavx/W2pqKhYvXox27doJFpDkNzs7O4waNUp0bPHixUhISBAdi4yMxB9//KEVUygUmDBhgqT1qdVqLFmyBKGhoQY1/r9NqVRi8+bNaNmyJY4cOSJpfW/s2bMHHTt21Nn4n5+ePHmCHj16CBr/K1WqhOXLl7MRioiI6BPj6OiIQoUK5ctcgYGB+TKPqdLT0/Hjjz9qNaCb4vbt2xgwYADq16+PAwcOSJJTH5s2bRL9DtyzZ0/IZDJJ5+rbty82b96M0qVL53qtTCZDmzZt8L///Q9ly5bVGlOpVBg5cmT2/y9QpkwZDB06VJDjxx9/FDT+BwcHY9OmTbh69SoiIyOxc+dOdOzYUetnPX78OHr16pW9SIGIiIiIiIiIiIiIiIg+Ldz5n4jeC+7u7vDy8kJGRoZWPCMjA8nJyYLrLSws4ODgoDOfTCaDn5+fXnPv378fI0eOFN2xWiaToVKlSggMDISrqyusra0RHx+P2NhYnDp1StCEoNFosHbtWty+fRu//vorbG1t9aohJ9u3b8f8+fO1mlzNzMxQsWJFBAYGwsPDAxYWFtl1nThxQrQ5QqlUIiwsDHZ2dmjYsKHJdRlqzpw5WLZsmeiYXC7P/nlcXV1ha2uL+Ph4XL58GefPn4darda6/sqVK+jcuTPWrFmDYsWKGVTHzJkzsWrVKtExS0tL1K5dG76+vnBzc8s+QeLu3bs4c+aM4BlJTU3FuHHjEB0dje+++86gOqSiUqnw3XffCRq+nZycsGbNGpQoUcKgfPHx8ejduzdu3rwpOu7p6YmqVavC398fDg4OyMrKwrNnz3Dt2jX8888/UCqVWtffvn0bXbt2xapVqwQ7XeanVq1aYePGjbh06ZJWPDk5GfPmzcPkyZMF98yYMUPw7H311VcoWbKkZHVlZWVh9OjR+Ouvv0THbW1tUbduXXh7e6Nw4cLIzMzE06dPcevWLfz999+Chp+EhAQMGDAAEyZMQJcuXSSrc8uWLfjhhx8E70dBSEhIQI8ePQQnkJQvXx4rVqyAnZ1dAVVGREREBcXBwQHXr1/X+/pvv/0WW7ZsyX7doUMHzJs3Ly9KKxBRUVHo06cP/vvvP624hYUFWrVqhbp16yIjIwPnz5/H2bNn8fDhQ71zx8TEoEePHmjdujV++uknWFtbS11+NrVajeXLlwvitra2CA0NzZM5a9asiQMHDuDIkSP466+/cOnSJcTFxSE9PR12dnbw9/dH7dq10a5dO53fC5YsWYLLly8DeP3dfc6cOYKT63bv3o0VK1ZoxaZOnYqePXtqxYKCghAUFITg4GD0798/e0HBiRMnMG/ePIwcOVKqH52IiIiIiIiIiIiIiIg+EGz+J6L3gq+vLw4fPiyIq1Qq1K5dW9DMPm7cOHTq1MnkeQ8cOIDhw4cLGmjNzc3x9ddfo3v37nB3dxe9V6lU4tixY5g1axZiYmK0xs6ePYu+fftizZo1gv/Ib6jvv/8++3/b29ujT58+CA0NhbOzs866jhw5gvDwcMHu+Gq1Gt999x327dsHV1dXk+oyxNy5c0Ub/83NzdG7d2907doVbm5uovc+ePAAM2bMwMGDB7XicXFx+Prrr7Ft2za4uLjoVceMGTOwevVqQbxQoUIYMWIEWrRooXPBRkpKSvZCjJSUFK2xFStWQCaT6dxdPq9oNBqMHz8ee/fu1YoXKlQIa9asQalSpQzKl5KSgu7du4vu9l+1alUMGTIENWvW1LnDZkJCAiIiIrB69WqthTwJCQno06cPtm/frvPPU16TyWQYN24cQkNDBQ3sW7duRdeuXbWadw4fPix6koLYjp3G0mg0GDlyJPbv3y8Y8/LywqhRo9C4cWNYWFiI3p+QkIANGzZg6dKlWqeNaDQaTJ48GXK5HF999ZXJde7du1e08b9kyZKoVKkSXFxcoFQqkZycDLk8bw+VSkpKQq9evXD37l2teGBgIFatWgV7e/s8nf9TIZfLUbRo0YIug/IQF8kQEX28Tpw4gb59+yIpKUkrXqtWLfz8889a/45/s1j04cOHOH36NM6cOYOzZ8/i/v37uc6zY8cO3LlzBxs3bsyzUxf2798v+K4NvF6skZef++RyORo1aoRGjRoZfG9UVBR+/vnn7Nf9+/dHxYoVta5JS0vDxIkTtWL9+/cXNP6/LTg4GJMnT8aYMWOyYwsXLkTHjh3h7e1tcJ1ERERERERERERERET04WLzPxG918zMzGBrayto/tfVDGuIqKgohIWFCRr/vby8sGTJklx391YoFGjUqBHq1q2L8PBwbNq0SWv84sWLCA8Px48//mhyrQDQpEkTTJgwIdfmaYVCgSZNmqBWrVoYOnQoTp06pTWenJyM2bNnY+bMmZLUlZt9+/ZhyZIlgrivry8WL14Mf3//HO/38fHBokWLsHr1asycORMajSZ77NGjRxg2bBjWrl2ba9Pxjh07RBv/69ati59++glOTk453m9nZ4fu3bsjODgYQ4cOzd7J8Y3ly5ejbNmy+PLLL3PMI6UpU6Zg+/btWjFHR0esWrUKpUuXNjjfd999J2j8VygUCAsLw9dff53r/c7Ozhg+fDhCQkIwaNAgREdHZ489f/4cI0aMwG+//aZz8UBeK1++PNq2bYutW7dqxVUqFWbMmJF9IoRSqcSsWbME948YMSLHE0cMtWjRItHG/1atWmHSpEm57qLq7OyMwYMHo3nz5ujXrx/u3bunNR4eHo6SJUuiatWqRte4adMm3LhxQ6vxPyQkBH379jX4VAlTvXr1Cn369BGcSlGmTBmsXr1a0t/Np87a2hq9evcu6DKIiIjIQGfOnEGPHj2Qnp6uFW/fvj1++uknnQvTvb29ERoamr2b/puT7g4cOIDDhw8L8r1x9epV9OzZU/BdWCorV64UjXfr1i1P5jOVWq3GyJEjs9+v4sWLY8SIEYLrfvvtN62T/YoUKYKwsLBc83fr1g2bN2/GP//8AwDIzMzEwoULMWPGDIl+AiIiIiIiIiIiIiIiIvoQ5O32rET0wYqLiyvoEvKUWq1GWFgYUlNTteJFihRBREREro3/b7O0tMSkSZPQsWNHwdjvv/+O06dPm1zvqFGjsHDhQoN2Tbezs8Mvv/yCcuXKCcZ27tyJK1eumFxXbhITEwU7GgKAn58f1q1bl2vj/9t69uyJyZMnC+IXLlzA+vXrc7z3yZMnmDRpkiBep04d/Prrr7k2/r/N3d0dK1asQPny5QVjEydOREJCgt65TDF79mzBz21vb4+VK1ciMDDQ4Hx//PGH4PQNhUKB+fPn69X4/7aAgABs2LABxYoV04pfvHgRO3fuNLg2KY0YMUJ0l9BTp07hyJEjAF7/uX174QLweuFA+/btJavj+vXrWLRokSDepk0bzJgxI9fG/7f5+flh7dq18PHx0YpnZWVhzJgxWqcCGOry5cvZ9/v6+uK3337D7Nmz873xPz09Hf379xf8vVWqVCmsXr0ajo6O+VoPERER0fsmLi4Offr0ETTqh4SEYP78+QadSOfl5YXQ0FAsX74cFy5cwJAhQ3QuwD9//rzo51pTRUVFCU7iAoAqVaoYtdA5P6xYsQIXL14E8Pr0gDlz5sDKykpw3YYNG7ReDxw4EJaWlnrNMXz4cK3XO3fuRFpampEVExERERERERERERER0YeIzf9EJKphw4YoVaqUSf9EREQU9I+h08aNG3H9+nWtmFwux9y5cwUNtPqQyWSYOHGiaNN1eHg4lEql0bWOHTsW33zzjVH32traYtq0aTAzM9OKazQa/Pbbb0bXpK958+aJntqwaNEiFC5c2OB8oaGhGDRokCC+ePHiHO+bPn26YKGHm5sb5s+fr3eTxdvs7e3xyy+/wMbGRiuelJSEuXPnGpzPUAsXLsSKFSu0YnZ2dli5cqXoooTcpKSkYPbs2YJ4WFgYGjdubFSNzs7OWLBgARQK7UOG5s6da9KfB1O5uLhg8ODBomMzZszArVu3sHDhQq24TCbDhAkTJD2xYNKkSVq76QOvG9mnTp2a6ykWYjw8PDBv3jzBn/X79+9nn2hgisDAQGzcuBHVqlUzOZehMjMzMXjwYJw/f14rXqJECaxZs8agxTtEREREH6vRo0cLvnv5+vqKfs43hLOzM8aMGYM///wTrq6uotcsXLgQWVlZJs3zrrVr14rGu3TpIuk8UomJidE6PaxXr14ICgoSXBcdHY3bt29nvzYzM0PLli31nqd+/fpan3+TkpIEn5OJiIiIiIiIiIiIiIjo48bmfyLKMw8fPizoEkQplUosXbpUEO/cuTMqVapkdF4zMzNMmTJF0HwbFRWFgwcPGp3X0F3X31WqVCm0a9dOED9w4ABSUlJMyp2T58+fY9u2bYL4oEGDEBAQYHTeIUOGoHHjxihSpAhatmyJyZMn4/fff9d5/Z07d7Bv3z5BfMKECaI7wOvL09NTsOsi8HoH/adPnxqdNzerV6/GL7/8ohWzsbHB8uXLUbFiRaNybt26FfHx8VqxypUro3v37kbXCQClS5dGaGioVuzx48c4dOiQSXlN1bVrV9FnMCYmBiEhIYKmqTZt2hj93oo5fvy4YAd7uVyOqVOnChZLGKJcuXLo1q2bIL5mzRpkZGQYndff3x9r164tkCZ7pVKJESNG4MSJE1rxgIAAREREwNnZOd9rIiIiInrfnD9/XnCKFwDMmjULdnZ2ksxRrlw5rF27VvTzanp6uqQnoKWnp4t+l7Szs0NISIhk80hFo9Fg1KhR2Tvw+/r6YsyYMaLXnjt3Tut1+fLldS6qEKNQKFC3bl2t2NmzZw2smIiIiIiIiIiIiIiIiD5kbP4nok/O/v378fjxY62YmZkZ+vbta3LuwMBA1K9fXxDPj132c9KhQwdBLC0tzaRFCbnZuHGjYPdHe3t7kxczyGQyLFq0CEeOHMFPP/2Ejh07olixYjqvj4iIgEaj0YoVL14cwcHBJtUBAJ06dUKhQoW0YllZWdi4caPJucVs3LgRM2bM0Iq9afyvUqWKUTk1Gg3WrVsniA8ePFiSne7FmtG3b99ucl5TKBQKjBs3Tq9r7e3tMWrUKEnnFzsVpW7duqhQoYLJufv06SNoyEpMTMTu3buNzhkeHi5Z05gh1Go1xowZgwMHDmjF/fz8EBERARcXl3yviYiIiOh9tGHDBkGsSpUqqFOnjqTzVKxYEZ06dRIdS0pKkmyeXbt2CRbkAkDz5s0Fp6+9DyIiInDmzBkAr7+vzp49G9bW1qLXvr3rPwCUKVPG4PlKly6t9ToqKsrgHERERERERERERERERPThYvM/EX1y/vrrL0GsQYMGcHd3lyR/+/btBbGLFy/i+fPnkuQ3RoUKFeDj4yOIX758Oc/m3Lt3ryAWEhKiswkiL6hUKuzfv18QF1sMYQwLCwvRnSfFThow1Y4dO/Djjz9qxaytrbF06VIEBQUZnffatWuCUzo8PT0Fu0kay9/fH/7+/lqxc+fOITMzU5L8xqpTpw4aN26c63WDBw+WtMk8MTERp0+fFsTfPSHBWG5ubmjQoIEgbuwzWbp0aaMXlphq4sSJ+PPPP7Vivr6+iIiIgJubW4HURERERPQ+Etv1v0WLFnkyl67PrampqZLNoetkN7ET7Qraw4cPMW3atOzXXbt2Re3atXO8/m05LWTX5d174uLiDM5BREREREREREREREREHy7hWd1ERBKRqpleSpmZmdk78r2tadOmks3RoEEDWFhYaDU3azQaHD9+HG3btpVsHkMFBQXhwYMHWrHr16/nyVyxsbGiuw9K+T7r4/Lly6I7RjZp0kSyOZo2bYq1a9dqxe7cuYOHDx/C29tbkjn279+PsWPHCk4wGDt2LKpXr25S7mPHjgli9erVMynnuwIDA3H37t3s12lpabhy5QqqVasm6TyGGjNmDE6cOIGMjAzR8eLFi6Nr166SznnixAmo1WqtmLm5uWjDvrGaNm2KQ4cOacXOnz+P9PR0WFlZGZSrePHiktVliGnTpmHz5s2C+NKlS9/Lf7d8bFLiUzAtaGxBl0FERO8o5O2CsBMTC7oMes/ExcUhPj5eEK9UqVKezFehQgWYm5sLTnlTq9VQqVQm57937x7Onz8viHt5eeXYVF9QRo0ahVevXgF4XeP48eNzvP7NtW/Y29sbPOe7p3KlpKQYnIOIiIiIiIiIiIiIiIg+XGz+JyJRx44dg4eHR0GXIbnIyEjRHQnLly8v2Rzm5uYoVaoUrl69qhW/fPlygTb/lyxZUhC7desWVCoVzMzMJJ1L7EQBuVyOcuXKSTpPbi5duiSIOTs7w8vLS7I5ypYtC7lcLmjovnLliiTN/8eOHcPIkSNFG2lu3rxpcv4rV64IYqVKlTI579sKFy4siN2+fbvAm/99fHzQs2dPLFmyRHR80KBBUCik/agk9kyWLl0aFhYWks0h9ucsPT0dkZGRBjeBmZubS1WW3ubOnYuIiAjRsZs3b8LX1zd/C/oEadRqxN8ruNNqiIiISH/Pnj0Tjbu6uubJfObm5nB0dBQ92U6K5v9t27aJxlu1agWZTGZyfimtX78eJ06cyH49a9YsQWP+u5RKpdZrS0tLg+d9d0HvuzmJiIiIiIiIiIiIiIjo4yYv6AKI6P30MTb+AxDdjd7a2hr+/v6SzhMYGCiIvb3zeUEICAgQxDIyMvDy5UvJ5xJ7n319fXNthMiPOsR+N6awtbUVbUa+c+eOybnPnj2LIUOGCHbVfGPTpk2IjIw0aQ6xOp2dnU3K+Ta1Wi26E2VMTIxkc5iiT58+OhtupH5WgPx5Jv39/WFtbS2IS/FM5rVly5bpXIwBvG6oSktLy8eKiIiI6GP0vjWRm0LXKVbp6el5NqeuZnMpFpXrav5v0aKFybmlFBcXhylTpmS/7tixIz777LNc73v3c/q7JwHo4917xD77ExERERERERERERER0ceLO/8T0SflwYMHgpizszPkcmnXQontsvjw4UNJ5zCUg4ODaDwlJUXSZm9A/GfNq50ncyL2+3Zzc5N8HldXV8HiDlN/35cuXcKAAQN0NvMAr3fWnDJlCtavX2/UHGq1GnFxcYL48OHDMXz4cKNy6ktsp9CCYG9vDxcXF9H3QeoTMYD8eSblcjmcnZ0RGxurFS/ov4Nys27dOsyZMyfHa+Li4rBkyZI8fz6JiIjo41ayZEnIZDJoNBoAH/bid1tbW9H406dP82Qxa3p6Ol68eCGIy+Vykz8/X7hwQXSRsI+PDypWrGhSbqmNHj0aycnJAF4/PxMnTtTrPicnJ63XYu9lbt5dwP9uTiIiIiIiIiIiIiIiIvq4ced/IvqkiO1Abm9vL/k8YjnF5s5PuppCkpKSJJ8rv95nY+rIi9MHxHKa8vu+ceMG+vbti9TU1OyYhYWFaMPLxYsXsXPnTqPmefXqVXbDU357n3Zvz8+dXz/UZzKvbdu2DeHh4VoxDw8PFC1aVHDtqlWrcP/+/fwqjYiIiD5CAwYMwMOHDxEbG4vY2FiMGTOmoEsymtjnJQA4c+ZMnsx3+vRp0biu75uG0PW9pnnz5ibnltLmzZtx+PDh7NfTp0+Ho6OjXvcWK1ZM6/Xt27cNnv+///7Tei12Eh0RERERERERERERERF9vNj8T0SflLebqd+QoklBn5xic+cnKysr0XhOO8sbS6yxOy/e59x8aL9vjUaDO3fuoFevXlqLMiwsLLBw4UIsX75cdFfH2bNnG9XYXZDP5PvU/J+fPrRnMq9pNBrs2bMH48eP11qIUqRIEaxfvx7Tp08X3JOZmSlYKEBERET0qbK3t0fJkiUF8V27diErK0vy+bZs2SIa13XSnL40Gg327t0rOtakSZDDyr8AACAASURBVBOTckvp6dOnmDRpUvbr1q1bo2nTpnrfX758ea3X//77r8E1vHtPXpzwQERERERERERERERERO8vNv8T0SfFwsJCEMuLhlixnJaWlpLPY4hXr16JxvNiR/78ep/flzrEGtl1LbbIydOnT9G9e3ckJiZmx8zNzbFgwQI0aNAAjo6OGDp0qOC+Z8+eYeHChQbPZ2ZmJho3NzeHq6trnv3j5uaGypUrG1zvx+BDeybz2vHjxxEWFga1Wp0d8/DwwNq1a+Ht7Y2goCA0a9ZMcN/Ro0e1dlslIiIi+pSJfV568OABfv31V0nnOX78OHbt2iWIW1lZwdnZ2aTc//zzDx4/fiyIOzo6IigoyKTcUvr+++/x4sULAICrqyumTJli0P3Vq1eHQqHIfv3gwQNcu3ZN7/sTExNx7tw5rVjdunUNqoGIiIiIiIiIiIiIiIg+bIrcLyEi+niI7YadnJws+TxiOQti5/u36doZ3tQdGsXY2dkJYm/vZJ9fPrTft1KpxPPnz7Nfm5ubY968eWjYsGF2rGPHjti4cSNu3bqlde+6devQvn17FC9eXO/5dNU4e/Zs0QYiMp2tra2gMf99fibzWkJCgtbrwoULIyIiAj4+PtmxsLAwHDlyBOnp6VrXTps2DXXq1CnwhVVEREREBa1bt25YunSp4PPS3LlzUbx4cTRv3tzkOa5du4ZBgwaJjg0ZMgQHDx40Kb+uXf8bNGig1SxfkHbu3Il9+/Zlv54yZYrBix7s7e3RqFEj7N+/Pzum68QrMZs3b4ZSqcx+HRgYaNB3QCIiIiIiIiIiIiIiIvrwced/IvqkFC5cWBBLSEiARqORdJ63d25/w8PDQ9I5DPXy5UvReF7s/O/u7i6IxcfHSz5PbnT9vqUm9vsWew8MoVAoMGfOHDRu3FgrbmZmhrFjxwquVyqVBu86aW1tLdoQbm1tbVixpLcP+ZnMa25uboiIiICvr69WvEiRIujdu7fg+gcPHmD58uX5VB0RERGR6VQqFbKyskTHxE5u0penpyeGDBkiiGdlZWHAgAGYO3cuMjIyjMqt0WiwadMmdOjQQfRza+XKlTFw4ECjcr9NV/N/nTp1TM4thfj4eIwfPz77dbNmzRASEmJUrh49emi93rhxI6Kjo3O9LykpCYsWLcoxFxEREREREREREREREX382PxPRJ+UgIAAQSw1NRUxMTGSznPz5k1BrESJEpLOYah3d4oHgEKFCuXJbuBi73N0dLTO0wfyilgd169fl3SOjIwM3L17VxA35fdtZmaG2bNnIzg4WHS8Zs2aaNq0qSB+9uxZ7Nmzx6C5xHaJfPbsmUE5SH/+/v6C2I0bNySd4/79+3j16pUgXtB/B+XExcUFERERou8PAHzzzTfw9PQUxJcvX47Y2Ni8Lo+IiIhIL0FBQfDy8tL5T9GiRfHkyRPRexs2bKjzvmLFiuHo0aM5zj106FA0atRIEFepVPjpp5/w+eefY8mSJXj06JFeP0taWhq2bt2KkJAQjBgxQvQkN19fX6xZswYWFhZ65dQlOjpa53fymjVrmpRbKmPHjs1e/FCoUCFMmzbN6Fz169dH3bp1s19nZmaib9++OS4AUavVGDx4sNai+uLFiyM0NNToOoiIiIiIiIiIiIiIiOjDxOZ/IvqklClTBjKZTBD/999/JZtDrVaLNv+XK1dOsjmMIVZT+fLl82QusZ9VrVbj2rVreTKfLoGBgYLYs2fP8PjxY8nmuHXrFpRKpSBu7O9bLpdj5syZ+PLLL3O8LiwsDJaWloL4zJkzkZqaqvd8ZcqUEcSuXr2q9/1kGLHn4saNG6LPkLHEFrgoFAqULl1asjmk5OTkhDVr1ogu1nnD2toao0aNEsTT09NNarwiIiIikpK+jfWGUiqVOhcNvCGXy7Fs2TJ88cUXouMxMTGYMmUKqlWrhjp16qBv376YNm0aFixYgNWrV2PZsmWYM2cOxowZgxYtWqBcuXIYNmwY/vnnH9F8QUFB2LVrF1xdXU3++Y4fPy4ad3Z2Fl2snN/27NmD3bt3Z7+eNGmS6IlehpgzZw4cHR2zX9+4cQOtW7dGVFSU4NrHjx+ja9euOHToUHbM3Nwc8+fPh0KhMKkOIiIiIiIiIiIiIiIi+vCw+Z+IPinOzs6izbdv/0d0U50/f160+bp+/fpG5UtOTja1JCiVStGmjQoVKpicW0zp0qVFmyEOHDiQJ/PpUrt2bdFmCCl/32I7cHp5eRm9y/qkSZPQsmXLXK/z8fFBz549BfHHjx9j8eLFes9Xr149QezQoUNQqVR65yD9ib3fGRkZOHnypGRziD2TlStXhoODg2RzSMXKygpr1qxByZIlc722RYsWqFq1qiB+8OBBnDhxIi/KIyIiIvqgWFlZYcWKFZg8ebJWY/nbNBoNYmJi8Ndff2HRokWYOXMmxo8fj0mTJuHnn3/GunXrcOnSJaSnp+ucIywsDFu3boWLi4skdetq/i9btqwk+U2RmJiIsWPHZr9u1KgR2rdvb3Jeb29vrFy5EtbW1tmxa9eu4bPPPkNoaCh++OEHTJo0Cd27d0fNmjVx7Nix7OvkcjnmzZuHSpUqmVwHERERERERERERERERfXjY/E9En5wmTZoIYocPH0ZCQoIk+bdv3y6IBQYGwsfHx6h8UuyWf+zYMcTHxwvi1apVMzm3Lk2bNhXEdu7cibS0NEnynz59GgsWLEBMTIzOa+zs7FCzZk1BfMuWLZLUoNFosGPHDkFc7GfXR6FChRAaGqr39f369YO7u7sgvnr1akRHR+uVo06dOrCxsdGKPX/+HHv27NG7DtJf8eLF4evrK4hv3rxZkvwpKSnYv3+/IB4cHCxJfqnVr1/foBMJxo0bB7lc+PF16tSpyMzMlLI0IiIiog+STCZD7969cfLkSfTq1Qv29vaS5LWxsUHv3r1x/PhxDBs2DObm5pLkValUOH36tOiY2Cll+W3ixIl49uwZAMDe3h4zZsyQLHetWrWwfft2FCtWLDum0Whw6tQprFy5EsuWLcOhQ4eQlZWVPf7m1KzWrVtLVgcRERERERERERERERF9WNj8T0QfJFN2Je/QoQMsLCy0YllZWVixYoWpZSE2Nla08bZ79+5G59y5c6cpJQEANmzYIIh5eXmhRo0aJufWpXPnzpDJZFqx5ORkrFu3zuTcL168QFhYGBYtWoTg4GB06tRJZ7N7ly5dBLGbN29q7ZxorL179yI2NlYrJpfLRefUh62trUHX29jYYOTIkYJ4VlYWpk6dqlcOa2trtG3bVhCfN2+e6AkWxoiMjESrVq2wbNkyvHr1SpKcH7KuXbsKYseOHUNkZKTJuX///XfBAhs7Ozu0adPG5Nx5wdBnPjAwUPR5jYmJwZo1aySqioiIiMg4np6eeZJXoVAYnNvZ2RlTpkzB5cuXsWzZMoSEhKBo0aKC72g58fb2RuvWrfHrr7/iypUrmDx5Mry8vAwtP0e6FoebmZnl6fdVfajV6uxT4+zs7DBr1iwUKVJE0jkqVKiAQ4cOYezYsTluGODk5IR+/frh+PHjaNSokaQ1EBERERERERERERER0YdFUdAFEBHlxszMTBBLSUkxOp+zszPatWuH33//XSseERGBFi1aoGzZskbnnjx5MtLT07Vi3t7e+PLLL43OuWvXLnTu3BkVKlQw6v49e/bg5MmTgnhoaKjoDtpSCQgIQOPGjXHgwAGt+C+//IJGjRohICDAqLwajQZjx47N3n0RAK5evQq1Wi16/WeffYYSJUrgv//+04r/+OOP2L17t8HNx2+kpKRg2rRpgnjz5s2NPuXBGCEhIdiwYQMuX76sFT958iQOHDggetLFu3r06IFNmzZp7Sj58OFDTJ482eSdLV++fIlhw4YhJiYGkZGRWLVqFcaPH48WLVqYlPdD1rZtWyxevFjrNA6lUonx48dj06ZNon/n6SM2NhaLFi0SxLt27Qo7Ozuj633fjBgxAvv27RP8e2Dx4sUICQmBh4dHAVVGREREn7qLFy8WdAkCVlZWaN68OZo3bw7g9YLsyMhIPHr0CCkpKUhOTkZqaiosLCxgbW0NJycneHt7w8/PD66urnlen52dHW7evJnn8xhDLpfj+vXreT6PtbU1Bg0ahIEDB+LmzZu4du0anj9/DpVKhUKFCqFMmTKoWLGiZKctEBERERERERERERER0YeNO/8T0XtPrGk1KirKpJzDhg1DoUKFtGJKpRLDhg3D48ePjcq5bNkyHD16VBCfMGGC4KQBQ6hUKvTv3x/37t0z+N67d++K7gBvb2+PDh06GF2TvsaMGQMrKyutWGZmJgYNGoQnT54YlXPWrFnZuy++0a1bN52LCeRyOSZMmCCIx8XFYeTIkcjMzDS4hqysLHz33XdaCxCA189qWFiYwflMIZPJMG7cONEdPKdPny5YjCLGx8cHffr0EcT/+OMPzJo1y+jakpKS8M033yAmJiY7lpiYiKdPnxqd82Nga2uLUaNGCeJXr17F5MmTodFoDM6ZkpKCb7/9VrBzapEiRdC/f3+ja30fubi4YODAgYJ4amqqyYtViIiIiD529vb2qFatGkJCQtC5c2f069cPw4cPx6BBg9CrVy+0adMG1apVy5fGf9Imk8lQtmxZhIaGYuDAgRgyZAi6deuGoKAgNv4TERERERERERERERFRNjb/E5GopKSkgi4hm7u7uyB2+PBhk3b/d3JywsSJEwXx+/fvo1u3brhz547eudRqNZYsWYI5c+YIxtq2bYvPPvvM6DrfiI+Px9dff40LFy7ofU9kZCS6d++utbv4G6NHj4aLi4vJdeXG29tbtBk+OjoaXbt2NWgRR2ZmJn744QesWrVKK16qVCkMGzYsx3tr1KiBr776ShA/cuQIhgwZYtDz/qbJ+vDhw4KxCRMmoHDhwnrnkkqFChXQunVrQTw2NhbLli3TK8eAAQNQpkwZQXzlypUYOnQoXrx4YVBNN27cQIcOHXDlyhWteI0aNdCjRw+Dcn2M2rRpI/p3w8aNGzF+/Hi9Fm288fz5c/Tp0wf//vuvVlyhUGDatGmwtrY2tdz3Tvfu3eHr6yuI7927F2fPns3/goiIiIiIiIiIiIiIiIiIiIiIiPIBm/+JSFS1atVQqlSpPPmnXLlyuHnzpt61VKxYURBLSEhAv379cPXqVaN2yQaAL7/8En379hXE79+/j1atWmHOnDk57lCu0Whw4cIFdOzYEXPnzhWMV65cGZMmTTKqtjdGjx4NBwcHAMCjR4/QrVs3TJo0Kcdd8xMSEjB79my0b99esDM9ANSuXTtfdv1/o0uXLmjfvr0gfv/+fbRu3RozZ87M8bQFtVqNo0ePol27dti0aZPWmIuLCxYtWqRXc/O4ceMQFBQkiB89ehRffPEFtmzZgtTUVJ33Z2RkYNeuXWjWrBkOHjwoGO/Zs6doA35+GTFiBGxsbATxFStW4MGDB7neb2lpicWLF8PNzU0wtn//fjRr1gwrV67MdaHEnTt38MMPP6B9+/ZaO/4DQLFixfDzzz9DLufHD5lMhp9++gl+fn6Csa1bt6J58+bYt29fjidTpKSk4LfffkOzZs1w6dIlwfiYMWNQq1YtSet+X5ibm2PMmDGiY1OmTIFSqcznioiIiIiIiIiIiIiIiIiIiIiIiPKeoqALIKJPT1ZWlkE7rbdo0QILFiyAWq3Wil+8eBHt27eHlZUV7OzstMbMzc2xePFi0Z3M3zZy5EioVCqsXLlSUOOyZcuwfPlyVKpUCYGBgXB1dYWtrS3i4+Px5MkTnDp1SufigOrVq2Px4sWwsLDQ++cU07x5c5QuXRr9+vVDZmYmNBoNNmzYgE2bNqFq1aqoWLEiChcujMzMTDx//hzXr1/H33//DZVKJZrPz89P9ISCvDZ58mQAr5ua35aVlYVVq1Zh9erVKFeuHCpUqABXV1c4ODggJSUFd+7cwblz50QXO7i6uiIiIgI+Pj561WBubo6lS5di0KBBgp3B4+PjMX78eEyZMgW1atWCn58fXF1dYWZmhmfPnuHBgwc4efKkzsUBvXr1wujRo/WqI68ULlwYAwYMEPx+MzIyEB4ejiVLluSaw9PTE+vWrUPv3r0RGxurNZaQkIBZs2Zh7ty5qFq1KgIDA+Hm5gZzc3OkpKTg3r17uHLlis5TM7y9vbF69Wq4uroa/0N+ZOzt7bFu3Tr06tULt2/f1hp7+PAhhg0bBltbW9StWxfe3t5wc3ODSqXC8+fPcffuXZw5c0Z0cYBMJsPYsWPRrVu3/PpRCkTDhg1Rt25dnDx5UiseFRWFdevWoWfPngVUGRERERERERERERERERERERERUd5g8z8Rvfd8fHzQpUsXrFu3TnQ8PT0d6enpgnhsbGyuzf8AEBYWBl9fX0yfPl3Q3K3RaHDp0iXRXbV16dKlC0aPHg1LS0u97xEjk8ng4uICd3d3LFu2DMOGDcPLly8BACqVCufPn8f58+f1zle+fHksWbIEzs7OJtVlDDMzM4SHh8PPzw/z5s1DVlaW1rhGo8HVq1dx9epVvfKVL18e8+fPh5eXl0F12NnZYfny5Zg5cybWr18vODUiIyMDR48exdGjR/XKZ2NjgzFjxqBjx44G1ZFXevTogS1btuD+/fta8SNHjuDYsWNo0KBBrjn8/PywceNGfP/994KmauD1go2zZ88KFlDkpEaNGpg3b16BPHvvOzc3N6xfvx4//PAD9u7dKxh/9eoV9u/fr3c+JycnTJ06FY0bN5ayzPfW2LFjERISItjp/5dffkGLFi1ET7IgIiIiIiIiIiIiIiIiIiIiIiL6UMkLugAiIn2EhYWhQ4cOeZY/NDQUO3fuRHBwMGQymVE5AgMDsXr1avzwww8mN/4Dr5t4FYrXa7Rq1aqFbdu2oWrVqgbnsbCwQL9+/bBhwwbJdl039j3q06cPtm7dirp16xp1v42NDYYOHYoNGzYY3Pj/hoWFBSZMmJB92oAxZDIZmjZtih07drw3jf/A659N1wkE4eHhorvEiylcuDBWrlyJ8PBwo99n4HVje3h4OCIiIj7Ixn9jn3NDOTg4YN68eZg3bx78/PyMyqFQKNCuXTv8+eefH1Tjv6nvcUBAADp37iyIv3r1CrNmzTIpNxERERERERERERERERERERER0fuGO/8TfeI8PT3x6NGjfJ3T0tLS4CZ0CwsLTJ06FZ06dcK2bdtw6dIlxMXFISUlBWq1GmZmZrCwsICtrS2cnJwQEBCAKlWqGDRH0aJFsWDBAty+fRt//PEH9u/fj9jY2BzvsbW1xeeff46WLVvqtat6Tjw8PGBjY5N9+kD9+vW1xn18fLB+/Xrs27cP69atw6VLl6BWq3Xm8/LyQvPmzdGlSxd4eHgYXZenp6fWa3Nzc/j7+xudr3Tp0li5ciWuXLmC7du348CBA4iPj8/xHj8/P7Rq1Qrt27eXbCfvNwsqTp48iT///BOHDx9GUlJSjvd4eHggODgYbdu2RenSpU2a393dHQqFQmvH8lKlSpmUEwAaN26Mli1bYvfu3VonG8TGxiIyMhIVKlTQO1f79u3RqlUr7N27F3v27MGpU6dyXUBgZ2eH6tWro3nz5ggODoa5ubnRP0t+KVmypODPure3N1xcXPK1jmbNmqFp06Y4ePAg/vrrLxw/fhxpaWk53uPr64svvvgC7du3h4+Pj0nzFy9eHHK5PPvvFYVCYfQCGTGenp6QyWTZz6WZmRmKFy9uct6hQ4fi7NmzuH37tlb8+PHjUKlUMDMzM3kOIiIiIiIiIiIiIiIiIiIiIiKi94FM83ZnIBERaXny5AkiIyPx6NEjJCcnQ6VSwc7ODs7OzihZsiT8/PwKrLE0ISEB169fx/3797MXQdja2qJIkSIoVaqUyY3A+UWj0eDBgweIjIzEs2fPkJKSAplMBnt7e3h6eqJcuXKSnViQE7VajZiYGNy+fRvx8fFadbi7u6NMmTKChRCfmszMTERFReG///7Dy5cvkZKSAoVCAVtbWxQuXBh+fn7w9fXNPrGCTKNUKnHnzh1ERUUhMTERKSkpMDMzg729PYoUKYKyZcvmy58N+vQkP0vCKPf+BV0GERG9w6WYK6ZFLyjoMohEtWjRAgCwe/fuAq6EiIiIPlT8PEFERESm4ucJIiIiIvpUsDuPiCgH7u7ucHd3L+gyRDk7O6NevXoFXYbJZDIZihYtiqJFixZoHXK5HP7+/iadavCxs7CwQNmyZVG2bNmCLuWToFAoUKpUKUlOhCAiIiIiIiIiIiIiIiIiIiIiIqIPn7ygCyAiIiIiIiIiIiIiIiIiIiIiIiIiIiIiopyx+Z+IiIiIiIiIiIiIiIiIiIiIiIiIiIiI6D3H5n8iIiIiIiIiIiIiIiIiIiIiIiIiIiIiovccm/+JiIiIiIiIiIiIiIiIiIiIiIiIiIiIiN5zbP4nIiIiIiIiIiIiIiIiIiIiIiIiIiIiInrPsfmfiIiIiIiIiIiIiIiIiIiIiIiIiIiIiOg9x+Z/IiIiIiIiIiIiIiIiIiIiIiIiIiIiIqL3nKKgCyAiIiIiIqKCp7A0h2eZIvAs6w1bZ1tY2VtDrVIjPTkN8fee4/HNODyPflqgNdo42cKvegAcizjBzsUeMrkMrxJSkPT4JaLPRyH5aVKB1icFmUwGj9JF4FnWCzZOtrB1tgNkQNrLNCQ+iMfDK/eQ+DAh3+uysLGEZ5kicC9VBLYudrCyt0JWehZSE17h5eMXuHfxLlKeJ+d7Xbo4uDvCt1oAHDwcYetsB41ag5T4ZLyMS0T0uTtIffGqoEskIiIiIiIiIiIiIiIiIiIyGJv/iYiIiIiIPlF2rvao0bUuKrSoghL1SsHMPOeviImxCbi+7wrORBxH1Mlb+VZj7Z4NULNrXXgGekMu132A3ZP/HuPC76dwYvkRvIjN/wZ5YykszVG5TRBqdquHgDolYe1gk+P1T24/woVNZ3B04f+Q/CzvFjzYONmi1tf1UTGkKorXKZnr8/HszhNc3HIWp1YexbM7T/KsLl2ci7qibp+GqNapFgoX99B5nVqtRty1hzi77gROrz6GVwkp+VglERERERERERERERERERGR8WQajUZT0EUQEREREdH7IflZEka59y/oMiiPOfm4oMXEtqj+VR1YWFsYlSPmwh1sH/M7bh25IXF1r1nYWKL5hDZo9G0zmFuaG3SvSqnC8aWHsGPcJqQnpeVJfVIwMzdDo2+b4YvRIa93+DdQeko6/jf7T+ydthNqlVqyumxd7NHyx3ao07MBLGwsjcpx/vfT2PbderyIS5SsLl1sne3QZkYn1On5GeRmuheHiMlMy8T+WX9i34xdUGZk5VGF0nAp5opp0QsKugwiUS1atAAA7N69u4ArISIiog8VP08QERGRqfh5goiIiIg+Fdz5n4iIiIiI6BMhk8vwxegQNBvbCpa2Vibl8q0WgBGHxuPIwv3YOmo9lJlKiaoE/GoUR99NQ+Fc1NWo+80UZmg4qCmqtKuOFZ0X4vbRvFmgYIqAOqXw9ap+cC+he4f63FjZWSFkUgeUb14FS9r+LEmjfY2uddFxXnejFiO8rfpXtVGhRWVsGLQa5347aXJdulRoWQVfr+oHOxd7o+63sLZAy4ntUKNLHSxuOxdx1x5IXCEREREREREREREREREREZF02PxPRERERET0CbB1tsM3G4eiTONykuZtODgYbgHuWNx2riQ7p1fvXAfdV3wDcyvjTiR4m6NHIQzbNwbrB6zE6dXHTM4nlbp9GuKrhT2hsJDmK7lf9QCMOTsZc5tMx5NbcUblkMlk6Di/OxoODtZ5zauEFEQevo646w/xKiEF5lbmcPQoBP+aJVAsyA9m5to/j5W9NXqtHQjPsl7YMXaTUXXlpOmoFmgzvZPBu/2LKVzcA2EnJ2LFVwtxbe9lCaojIiIiIiIiIiIiIiIiIiKSHpv/iYiIiIiIPnIOHoUw6ugEuJf0zPG6J7cf4d7f0Xj5KBHKDCVsnG3hXsIT/jWLw8LGUud95ZpVQo/V/bGi8y8m1VmlXXX0XDsAcrnuZu77l2Lw4HIMkp68BAA4uDvCp5Ivilb2Fb1eYaFAt+XfQJmhxPkNp0yqTwrBo1ui7fSvcrzm5eMXuP9PDOJjniItKQ1mCjM4ejrBo5QnigX5i97j5O2Cb/ePwczaE406AaDL0t6o1+dz0bEn/z3G7knb8PeWs1BlqUSvKeTljCYjv0TDQU0FiwCajWkFjVqDneM3G1yXLo1HfIl2szrrHFcpVbh38S4e/nsfKc+TYaaQw9HTCcWC/OFZxkv0HmsHG/TfPhwLvpiB28duSlYrERERERERERERERERERGRVNj8T0RERERE9BGzdbHH8INjdTb+v0p8heNLD+L06mN4+t9j0WsUFgoEdaqF4O9aokigt+g11TrVws1DV3Fq5VGj6vSvWQI91w4UbfxXKVU4vuQgDsz5C/H3nove71zUFY1HfInPBjQWNJ/L5XJ0X9kXiQ/i8d+JSKPqk0Ktr+vrbPzPTMvEqVVHcWrlETy4fE9nDrcAdzQe3gz1+zcWvFfORV3Re/1g/Pz5VGg0Gr3ravpdC52N/yeWH8amYRHISs/5VIcXsQnYMuI3XNx0Fn03D4Ozj4vW+JdjW+P53ac4teqo3nXpUrlNNZ2N/5mpGfjfnL9wdOH/kPwsSfQaz7JeCA4LQa3u9QRj5pbm6L99BGbWnmj0KQpERERERERERERERERERER5Rfd2ikRERERERPRBk8lk6LN+EIqUFW/YP77sEMYHfIsdYzfpbPwHAGWmEmfXnsDUKt9jT/gfOq9rPbUjLO2sDK7T3NoCvdYNhIW1hWAsMTYBs+r8iI1DI3Q2/gNAwv3n2PztWsysPRGJD+OFc1iao0fEAFja6j7BIC/5VCqGrkv7iI7dPHgNP5QeiY1D1uTY+A8Az+48YrSUvAAAIABJREFUwe+D12Bek2lIiU8WjJdsUAZlmpTXv67Kvmg1JVR0bO+Mnfit34pcG//fFn0uCj81mIznMc8EY6HzusPF103vXGIcPAqh24q+ootE4m48xJRK3+PPiVt1Nv4DwKMbsVjTYzEWNJuB1BevBOO2TrbouaY/ZDKZSbUSERERERERERERERERERFJjc3/REREREREH6kvvg9B2aYVBPHMtEws77QA6/uvFG1+1kWVpcLOCVuwYdAq0XEHd0fU7tnA4DpbTekAtwB3Qfzl4xeYXW8SYi7c0TvXvb+jMavuJCTGJgjGXH3d0Cq8o8H1mUquMMPXq/tDYSE8fO/YkoOYHzwdiQ+ECxZycuvIDcwP/v/mdZVShcs7L2JBsxm48b9/9c7TfnYX0bqu7PobO8ZuMqimN+JjnuHXVj8hPSVdK25lZ6VzAYS+vvqlB2ydbAXxRzdjMbveJDyN0r2I5V3X9/+LnxuFIy0pVTDmV6M4Ph/2hUm1EhERERERERERERERERERSY3N/0RERERERB+pWl8LG/FVWUos7TAPFzefNTrvscUHcX7DKdGx6l/VNiiXq19hfD5U2GStUqqwtP08xIvsIJ+bhPvPsaTdXKiylIKxzwY2EV1okJeajPwSPhWLCeIXN5/FhoGroNFojMp7/59ozP9iBnaM34SxfsOwuM3PuL5f/8b/gDqlUPrzQEE8PSUd6wesNKqmN2KvPsC279YL4mWblEfpRuWMylmiXmlUaVddEE9PTsOikJ+Qmqj/QpY3HlyKQUSvpaJjLSe2g7WjjcE5iYiIiIiIiIiIiIiIiIiI8gqb/4mIiIiIiD5SC1vMQuTh61qxrd9twLU9l03Ovf37jVCr1YJ4sSB/mFtb6J0neHRLmCnMBPEjv+zHndO3ja4v5vwdHJy7RxA3U5jhizEhRuc1lKWtJZqObCGIv3yUiHXfLDc5f8z5O9g7bSdeiJx0kJtaX9cTjZ9cfhgvH70wtTScWHYY9/+JFsSbfd/KqHzNxrYWje8YvxnP7jwxKicAXNp+ARc3nRHErR1t0HBwU6PzEhERERERERERERERERERSY3N/0RERERERB+pp/89xtzG4VjV/VckPozH1b8u4fCCfZLkTnwQj3sX7griZgozeJXz0SuHfWEH1OoubEBPS0rFX1P+MLnGPdN2Iu1lqiBes1s9OHoWMjm/PhoMbAI7V3tBfNvo35GenJYvNehSoUUV0fjpNcckya/RaLBv5i5BvPTngfCuUNSgXN4ViyEwuIIg/uzuUxxbfNDoGt/4Y9wmqFXCxSyNhjWDwtLc5PxERERERERERERERERERERSYPM/ERERERHRR+7cbycxpugQLGw5W9K8sdceiMYd3B31uj+oYy2YWwlPCTgTcRypL16ZVBsApCeliTayKywUqNaptsn59dGgf2NB7P6lGJz77WS+zK+Lk48LHD2ECyBePn6B2Kviv1dj/LPtPF4+Fp4iENSplkF5xBaJAMDRRf+DWqkyqra3Pb/7FP/++Y8gbudqj/JfVjI5PxERERERERERERERERERkRTY/E9ERERERERGSX6aJBq3crDW6/5qHcUbwM+uk64xXleTfZCOuaXkX7MEXP0KC+KnVh3N87lz417SUzQuZeM/AGjUGlz644IgHtShpkF5qnaoIYipVWqcWy/hs6IjV348K0RERERERERERERERERERPpg8z8REREREREZxcLWUjSemZqR672OnoXgV7O4IJ4Ym4B7F++aXNsb9/6ORuLDeEHcr3oAnLydJZtHjNju9lkZWbjw++k8nVcfNk62ovGU58mSz3Xjf1cFMbcAd50LEN7lX7MEnLxdBPHoc1E6F6AY49reK1BmKgXxCi0qQ2GhkGweIiIiIiIiIiIiIiIiIiIiY7H5n4iIiIiIiIzi5CXePK9PA3nxuqUglwu/kv537KbJdb3r9rFInTXkpcCmFQSxu6dv41VCSp7Oqw+dzewajeRz3Tl1SzTuX6uEXvcXryf+e7ot8bOSmZqBmAt3BHELG0sUreIn6VxERERERERERERERERERETGYPM/ERERERERGUWseVutViP26gOj7gWAu+eiTK7rXdHn/jOoBinYOtuhcEkPQfzeP9F5Nqch0pPSRON2rvaSz5XyPBkp8cIFIWInP4jxr6njWTkr/ns1RbSO5y8vnxUiIiIiIiIiIiIiIiIiIiJ9sfmfiIiIiIiIDOZXozgKFXESxB9HxiHtZWru91cXb/yOu5b7wgFDxV1/aFANUvCvVUL0ZIP7f78fzf+JD+NF40XK+eTRfAmCmJeec/nV0PWsiP9eTaH7WQmQfC4iIiIiIiIiIiIiIiIiIiJDsfmfiIiIiIiIDFa/XyPR+N+bz+p1v3tJT9H4k9uPja5Jl6dRT0TjbsXdJZ/rDe8KRUXjj27G5dmchnh0IxbKTKUgXqiIU54sAMhIThfEXHzdcr3P0tZSdJGJMlOJ+JhnktT2tmc6nxXhKQ5ERERERERERERERERERET5jc3/REREREREZBDPsl6o0bWuIK7KUuJMxPFc77e0tYSdq73wfqUKLx8lSlLj217GJUKlVAnidi72sLSzknw+AHDxE29sT3vxKk/mM5QyU4k7p26JjtX7pqHk85lbmQtijp6FYGZuluN9uhYIvIhNgEajkaS2tyU8ED8RwcXXVfK5iIiIiIiIiIiIiIiIiIiIDKUo6AKIiIiIiIjowyGTy9Dl114wUwibtk+uOor4e89zzeFcTLyROuV5MjRq6Ru61So1XsWnwMHdUTDmUswVcdcfSj6nq29h0XjayzTRuK2zHQJql0SxID94VywGezcHWDvawMrBGqpMJdKT0/AiNhGPb8Uh+lwUbh64hlQTFxJc3HwWpRoGCuJ1+3yO40sP4dGNWJPyv2HjZAvPsl6CuFwuh4NHISTqaLgHdD8rSU9eSlKbIO/jF6LxNwtFMlKEJxgQERERERERERERERERERHlFzb/ExERERERkd6+HNcaJeqXEcRT4pOx+8dteuWwd3MQjacm5t2u+KkvXok2/9vpqMVUTj7OovG0pNTs/23taIOgjjVRpV0NlPqsDMzMc/6K7lPJF+WbVwbw+pSE63uv4PAv+3Dz4DWjajyz9gRa/the8L5YWFugz4YhmF5jApQZWUblfsPB3RH9tnwLCxtL0XFLW/H4G/n9rGSlZyErPRPmVhaCMTtXezb/ExERERERERERERERERFRgWLzPxEREREREemlfPPKaPFDO9Gx3/qt0Hs3dgsdDd/pyXnXWJ2eJL7jvoW1sMlbClb21qJxawcbeJQpgnrffI6g0Jo6m+JzY6YwQ4WWVVChZRVc3/8vNg5Zg6dRjw3KkZWWiV0Tt6Drkj6CMe8KRTHwjxFY0XmhUScMyOQy1O3dEK3DO8LO1V7ndbn9/LoWB+Tps5KcLtr8n1fPChERERERERERERERERERkb7Y/E9ERERERES58q5QFH02DIbcTC4YO7r4AC5tv6B3Ll1N1KospdH15UaVpRKvxSZvGrp15Z0Vt0i0sdwUgcEVMPbiVKzpsQSXd1w06N4Tyw6jYsuq2ScKaOX9oiLGXpiKFV0WIub8Hb3yFSrihOqd66DBwCZw9XXL9XrzXBrqdY3r+n1KIb+fFSIiIiIiIiIiIiIiIiIiIn2x+Z+IiIiIiIhy5BbgjqF7R4vuZh95+Do2DY0wKJ+uhm61Um1UffrQ1dCdW/O5sXTtaK+r8f9p1GPcOXUbd87cxoNL95D05CWSnyVBLpfBzs0BnmW9EBhcAdU61Ya9m4PgfmsHG/Tb8i1WdVuECxvPGFTr8q9+wYhD4+BbLUAw5hbgju/PTsGNA1dxcfMZRJ+NQvy958hKy4Stix3sCzvCvYQHStQvjRL1SsO7YjHRBSK6aFQ5/851Pyt52fwvvgglr54VIiIiIiIiIiIiIiIiIiIifbH5n4iIiIiIiHRy8nbG8INj4ejpJBiLu/EQSzvMgzqXBu536WrclsllRtWoD7lCvCFdlZk3pw3o0wCf+DAep9ccx4XfT+PRzVid12W8eob4mGe4tucydozbjC9Gt8QXY1oJ5pCbydFjzQDE33uOu2f+07vWjJR0zGs6Hb3/j707j66yvvoFviEBwhxknidRsCq+ShXrrFVqHVuvb6/VFu1gCw5gcR7rWKvS64jFoXWottaioEiF+mJxqBYUxQFFmQSZZEgIUyAhuX/0yjU950BycsI5JZ/PWq6F+3eevXeS41oC3+c5T5wf+3x7v6Sv2evYfWKvY/epds8vla7bFDP/Mj32/18HJr15ZMvGzdu9Pjvvlbyk9fI6eq8AAAAAAAAAQHVV/3F8AAAA1Cttuu0WF/3P1dG2Z/uEs1ULV8ZdQ26NjUUbatx3y8YtSev5jevu/vS8Rsl7p9qltrZsSt137bKiePzcB+PKPiPjuWuf3m7w/99tXl8aE655OsacOjpK15cmnOc3zo+zHxkWjQoa1WjfTWs3xn0n3R5PjXwsNq3dWKNrkylZsTYmXPPnuKLnhfHoj8fG5+8tSvq6HX3/s/NeSR7+r6v3CgAAAAAAAABUl/A/AAAACdr2bBej/n5tdOzXKeFs7fLiuOu4X0XxkjVp9U4VjG/cvEla/aqjSYreO3ryfLpS9V30zsK4fp/L4rWHXk75VPvqeP+Fd+LRc36b9Kxjv05x+M+OqXHPysrKmHr3i3HNHr+I568fF2uXFdXo+oqtFTH7b+/HQ2feG1f0ujAm3Tw+Nhb/6+aQVJ+EULpu03Z7ltWD9woAAAAAAAAAVFfdPSoPAACA/0jteneIX0y9KukT/9cuK4rfHHNzfDF3edr9Uz1Zvllhs7R77kjT1k1rtEttbdmQPCg+/qqnYsOa9RmZMXPc9Hjlgf+Jw89NDPofO+qEmHr35KisrKxx33UrS2Li9ePihRueiZ6D+kT/Y74WXfbqFh36dYqmhc2iSfMmsWVTWWws2hAbizbEstmfx7w3Po25r34cJSvWJu3ZtHXiz7Zsc1ms+6Jku7ukfq80r/HXVR0N8xpGk+YFKXbZ/o0KAAAAAAAAAFDXhP8BAADYpl3vDjHq5atjtx7tEs6KlxbFb46+KVZ8sqxWM4oWr05ab9GuZa36bk+q3qs/W1Un84qXFkW73h0S6ivnrsjonBdufDYO/uFh0aigcZV6m25tY/dD94xPX/047d6VlZWxcMa8WDhjXm3XjIJWiTdfFC1evcObE9akeq+0r5v3Sov2rZLWS9eXxobV6+pkJgAAAAAAAABUV8NsLwAAAEBu2F7wf82iVTH6yBtrHfyPiFi7rDjKSrck1BsVNI6WHZKHr2ujZftWCeH4iH8FutevqptA95oUNxU0aNggo3OKl6yJDya9m/Ss/zf3zuis2mjeJvFJ/am+R1+1euHKpPXduret9U416VudXQEAAAAAAACgrgn/AwAAsN3g/4pPl8fth98QX8xdnrF5qZ64375vx4zN+FK7PolP4I9IHSzPhNWLkn99TVs3y/is2S99kLTefWDPjM9KR/u+HaNxsyYJ9c/fW7TDa9cuK44tmxJvFGncrEm07lyYkf2+KtV7ZdWCLzI+CwAAAAAAAABqSvgfAACgnmvXJ3Xwf8kHi+OOI26INSnC7OlaNHNh0nrXfbpndE5EROe9uiatf/bW/IzP+tKS9xcnrbfr3T7js5Z/tCRpvbBLm4zPSkf3/+qVtD7vjU+rdf3n736WtN51nx7prpRSyvfK2wsyPgsAAAAAAAAAakr4HwAAoB5r16dDjJqaPPj/2dsLYvSRN0bJ8uKMz53/ZvLgd6+v9834rFQ951czfJ6OBW/OTVqvi5sb1n1RkrRe0Kppxmelo8f+vZLWF6R4D/y71O+VPumulFKvQcl7zvvHJxmfBQAAAAAAAAA1JfwPAABQT20v+D/3tTnxm2Nuig1r1tfJ7PkpwtR7HrlXxmftfuieSetzX5+T8VlfWrXgiyhZsTbJLv0zPquiojJpvXxzWcZnpeO/Tv16Qm35x0uj6PM11bo+VfA+0++VBg0bRJ+D+yXUK7ZWpLyZAwAAAAAAAAB2JuF/AACAemh7wf/Zf3s/7hzyqygt2VRn8xfNXBhFSxLD3+37dowuX+uWsTlte7aLrnsnPm3/i7nLY9nsJRmbk8yHk99LqPU5uF80a9M8o3Natm+ZtL6xaENG56Sjx/69o1P/Lgn1t/78RrV7zJ7yfpSVbkmo735Y/2hWmLnvZb8U/ea8PDtK19XdfwsAAAAAAAAAUF3C/wAAAPVMuz4dYtTL1yQN/r87/q2476Tbo2xTYtg6kyorK+Ptp99MenbQWYdmbM6g/31w0vqMP1U/fJ6uZF9ffuP82P+0AzM6p9u+PZLWl3+yLKNz0nHIj45IWn/rz8l/9smUrtsUH/x1VkI9v3F+DPre4LR3+3ep3yv/yNgMAAAAAAAAAKgN4X8AAIB6ZFvwv3vbhLPpT74eY0+/M8q3lO+UXaY/8XrS+qE/OSqaNG9S6/4N8xrG4ecek3z2k8lnZ9LsKe/FhjXrE+pHnndcRud8bcjApPXP3pqf0Tk11aFfpzj0J0cn1D995aMaf+pCqp/XURcMiQYNGqS131c1bd0sDvr+IQn1LZu2xDvPzKh1fwAAAAAAAADIBOF/AACAemJ7wf9XH5oav/vBmKjYWrHT9vns7QUx5++zE+ot2raMb11+cq37H/KjI6Nd7w4J9VnPvR3LP15a6/47srVsa0z77UsJ9e4De8bAUwZlZEZhlzYx4Lh9EuoVWyvi/YnvZGRGuk6/46zIb5yfUP/rrybUuNc7z86IL+YuT6h32atbfCPFpwvUxJBLT4qClk0T6q89NDU2Fm+odX8AAAAAAAAAyAThfwAAgHqgfd+OKYP/L905Kf5w7kNRWVm50/f66y3jk9aPu+Sk6HlA77T7tupUGKfe8r2kZ5NuTj6zLvzPnX+NzRtKE+r//ZuzolHTxrXuf/xVp0ajJo0S6nNenh3FS4tq1Kv5bi3imxd9OwYcm3gzQU0d+pOjYt+T9k+oL5g+Lz6c/F6N+1VWVMbk255PenbabWdGmyTv6+rqsnf3+OYvvp1QL9tcFpNvm5h2XwAAAAAAAADINOF/AACAXVz7vh3jF1OvThr8f+GmZ+PpX/whC1v9y0cvfZA0DJ7fOD9+/swv0gp1NypoFMPGXRQt2rZMOHv76X/Gwhnz0to1HetXrYu/jX4hod6ud4f4wdif1Kr37ofuGYefe0zSsxdueqbaffoc3C/OeXRY/Prze+P00WfFec9dHANPPiDtvf7ru1+PM+49J6G+taw8nvj5Q2n3/ccjr8SSDxYn1Ju3aR7nPXdxNG3drMY9W7RrGcOeuSjpDRQv3zM5ipesSWtXAAAAAAAAAKgLwv8AAAC7sO0F/8dd9mQ8d+3TWdiqqj/87KEoXbcpob5b97Zx6Wu/rNEnALTqVBgXvXRV9Dm4X8LZ+tXr4o8X/L5Gu9266J4YW/Fkwj+HnXt0tXtMunl80tD6QWcdGqfceHqN9vlSh36d4mdPj4yGeYm/rX/n2Rnx6SsfV6tPxz06x2WvXx+Df3BYNCr41ycRNGrSKM7984g4/OffrNFOeY3y4qTr/1ec+9SIyG+cn3A++faJsfjdz2rU86sqyrfGYz9+ILaWb0046z6wZ1zy6nXRvm/HavfruEfnuOTV66LD7p0SzlZ8ujwn/tsAAAAAAAAAgK8S/gcAANhFddi9U1w87dqkwf+X75sSU26fmIWtEq1ZtCr+dOGjSc926942LvvH9fG/7x4abXu1T9mjaetmcdzFJ8YvP7gt+n5jj4TzioqK+MPPHop1X5TUaLc23ZJ/8kDrzm2q3WNr2db4/Q/HxOYNpQln377qO3HGvWcnDcunsscRA+KSV66LVh1bJ5wVfb46Hv/pg9XuteKTZfHm468m1PMb58eZY34UF/3tytjjyL2iQYMGKXs0K2weh//8m3H97DvixGu+m/SGhPcnvRvPX/eXau+VysIZ82LSTc8mPeu6d/e4dtatcfINp0fLDq1S9mjVqTBOuem/4+p3fhWd9uyScF5WuiUeGXp/lJWW1XpfAAAAAAAAAMik6qcLAAAA+I9yzmPDorBL8pD6UecdF0edd1ydzJ372py4/fDra3TNG4++Eu36dIgTr/luwlleo/w46vwhcdT5Q2Lxuwtj0TsLo2TF2qisqIzmbVtE1691j94H9Y28Rql/izvu0ifjnWdm1PhryZTF734WD3zv7hj+7C8S9jxy+HHR7/AB8fx1f4l3x78VlZWVSXu0690hjr/ylPjG2UckDdhvWLM+7j3pjtiwZn2Ndnti2O+i455doveBfRPO+h+zd/Q/Zu9Yu6woFvxzXqxdURwbVq2L/CaNolXH1tF5r27Rfb+eSff50sIZ8+KB/74rKrZW1GivVCbe8Ey0690hDh56eMJZ42ZN4oSrvxPHX3FKLJwxL5a8vzjWr1oX0SCiZftW0W3fHtFj/94p962oqIjf/fD+mP/mpxnZFQAAAAAAAAAySfgfAABgF9Xr64lh7p2hsNtuaV33/HV/ibxGeXH85aekfE33/XpF9/16VbtnRUVFPH/dX+Kl30xKa6dM+mDSu/HgGffEOY8OiybNC6qcdd27e/x83EWxdnlxzHl5dqz4ZFlsWP2vkH2b7m2jz+B+ScP5XypasibuP3V0fD7rsxrvtWXj5rj7+FvjwkmXRe+Ddk/6mtad28R+pw6qce/3np8ZD515b2zZuLnG127PY//v0w2S3QAQEdEwr2H0Gdwv+gzuV+2e5VvK4w8/eyhm/uWfGdkRAAAAAAAAADJN+B8AAGAXtb2nseeq8Vc+FUs/+DzO/O2Po6BFwY4v2I5NJRvjsR8/EDPHTc/QdrX3zjMzYuXcFfGzv4yMDrt3Sjhv3akwDjzjGzXq+eGLs+L3Z98f674oSXuvjUUbYvRRN8ZZY38Sg39wWNp9vlS2uSxevPW5eOGGZ1J+kkFtVJRvjUfO+W0s+WBxnHrz9yK/ce3+eGPt8uJ48Ht3x6evfpyhDQEAAAAAAAAg8/7zkiAAAADs0qY/+Xpc139UTH/y9bSur6ioiDcffzWu3XNUnQX/Kysq0r728/cWxfX7XBbjr3oqStdtSrvP0g8/j9+e9n/i7m//ulbB/y+VlZbF74feH7897f/EqgVfpNWjoqIiZj33dtywz2Ux8fpxdRL8/6q/jX4hbtj3svjwxVlpXb+1rDz+566/xrX9Rwn+AwAAAAAAAJDzPPkfAABgF7XsoyXReUDXnT53xZxlte5RvLQoHj7rvnj++nFx6E+OigNOHxzterXf7jWrFnwRb/35zXjtoZdj5bwVtd4hImL5nKXRac8uCfWF0+fVqm/55rL4668mxMv3TolB3xscB515aPQevHs0atJou9cVLy2KDyfPiulPvB4fT/2wVjuk8s6zM2LW8zNj8FmHxkFnHhL9jhgQefl5KV9fUVERyz9eGu+Ofyte/93fY9X89G4cSNeKT5bF3d/+dXTfr2cc+tOj479OHRStO7fZ7jVLZ38eM/74j3j9d3+PtcuKd9KmAAAAAAAAAFA7DSrr+jF8AADAf4x1K0vi4o4/z/YakFTrzoXRc1CfaN2pMJq1aR4RERuLNsTa5cWxcMb8KFleNyHuBg0bxBVv3hg9B/WJiIgF0+fFrYOvyficvEZ50X2/XtGhX6do1qZ5NG3dNLaWbY3Skk2xZvHqWDZ7SaxeuDLjc3ekSfMm0XXfHtGpf5doVtg8GjdrHKXrSmNj0YYoXrImFr41P0pL0v8Eg7rQtlf76LF/r2jZvlU0a9M8KsorYkPR+iheUhQLp8+LDWvWZ3vFGmvbs13csuDubK8BSZ144okRETFx4sQsbwIA/Kfy/xMAQG35/wkAAOoLT/4HAADgP8LaZcXx3vMzd/rcFu1aRtd9e2z79wlXP1Unc7aWbY2FM+bFwhm1+1SBTNu8YXPMf+PTmP/Gp9lepdpWL1yZlRslAAAAAAAAAKAuNcz2AgAAAJDLDvnRkZHf+F/3zs95+cP46KUPsrsQAAAAAAAAAFAvCf8DAADAdhz646O2/Xr8VX/O4iYAAAAAAAAAQH0m/A8AAAApDPjm3tG+b8eIiHjv+Zkx/81Ps7wRAAAAAAAAAFBfCf8DAABACof99JiIiKioqIjxVz+V5W0AAAAAAAAAgPpM+B8AAACSaNm+VQw85YCIiHjrqTdjyfuLs7wRAAAAAAAAAFCfCf8DAABAEt8454jIb5wfW8vK4/nr/pLtdQAAAAAAAACAei4/2wsAAABALuo5qE9s2bQlJt38bHwxd3m21wEAAAAAAAAA6jnhfwAAAEjigf++K9srAAAAAAAAAABs0zDbCwAAAAAAAAAAAAAAANsn/A8AAAAAAAAAAAAAADlO+B8AAAAAAAAAAAAAAHKc8D8AAAAAAAAAAAAAAOQ44X8AAAAAAAAAAAAAAMhxwv8AAAAAAAAAAAAAAJDjhP8BAAAAAAAAAAAAACDHCf8DAAAAAAAAAAAAAECOE/4HAAAAAAAAAAAAAIAcJ/wPAAAAAAAAAAAAAAA5TvgfAAAAAAAAAAAAAABynPA/AAAAAAAAAAAAAADkOOF/AAAAAAAAAAAAAADIccL/AAAAAAAAAAAAAACQ44T/AQAAAAAAAAAAAAAgxwn/AwAAAAAAAAAAAABAjhP+BwAAAAAAAAAAAACAHCf8DwAAAAAAAAAAAAAAOU74HwAAAAAAAAAAAAAAcpzwPwAAAAAAAAAAAAAA5DjhfwAAAAAAAAAAAAAAyHHC/wAAAAAAAAAAAAAAkOOE/wEAAAAAAAAAAAAAIMcJ/wMAAAAAAAAAAAAAQI4T/gcAAAAAAAAAAAAAgBwn/A8AAAAAAAAAAAAAADlO+B8AAAAAAAAAAAAAAHKc8D8AAACJ1kbqAAAgAElEQVQAAAAAAAAAAOQ44X8AAAAAAAAAAAAAAMhxwv8AAAAAAAAAAAAAAJDjhP8BAAAAAAAAAAAAACDHCf8DAAAAAAAAAAAAAECOE/4HAAAAAAAAAAAAAIAcJ/wPAAAAAAAAAAAAAAA5Lj/bCwAAALmjQcOG0bZnu2yvAcC/KezWNtsrAAAAAAAAAJBlwv8AAMA2Ldq2iFsW3J3tNQAAAAAAAAAAgH/TMNsLAAAAAAAAAAAAAAAA2yf8DwAAAAAAAAAAAAAAOU74HwAAAAAAAAAAAAAAcpzwPwAAAAAAAAAAAAAA5DjhfwAAAAAAAAAAAAAAyHHC/wAAAAAAAAAAAAAAkOOE/wEAAAAAAAAAAAAAIMcJ/wMAAAAAAAAAAAAAQI4T/gcAAAAAAAAAAAAAgBwn/A8AAAAAAAAAAAAAADlO+B8AAAAAAAAAAAAAAHKc8D8AAAAAAAAAAAAAAOQ44X8AAAAAAAAAAAAAAMhxwv8AAAAAAAAAAAAAAJDjhP8BAAAAAAAAAAAAACDHCf8DAAAAAAAAAAAAAECOE/4HAAAAAAAAAAAAAIAcJ/wPAAAAAAAAAAAAAAA5TvgfAAAAAAAAAAAAAABynPA/AAAAAAAAAAAAAADkOOF/AAAAAAAAAAAAAADIccL/AAAAAAAAAAAAAACQ44T/AQAAAAAAAAAAAAAgxwn/AwAAAAAAAAAAAABAjhP+BwAAAAAAAAAAAACAHCf8DwAAAAAAAAAAAAAAOU74HwAAAAAAAAAAAAAAcpzwPwAAAAAAAAAAAAAA5DjhfwAAAAAAAAAAAAAAyHHC/wAAAAAAAAAAAAAAkOOE/wEAAAAAAAAAAAAAIMcJ/wMAAAAAAAAAAAAAQI4T/gcAAAAAAAAAAAAAgBwn/A8AAAAAAAAAAAAAADlO+B8AAAAAAAAAAAAAAHKc8D8AAAAAAAAAAAAAAOQ44X8AAAAAAAAAAAAAAMhxwv8AAAAAAAAAAAAAAJDjhP8BAAAAAAAAAAAAACDHCf8DAAAAAAAAAAAAAECOE/4HAAAAAAAAAAAAAIAcJ/wPAAAAAAAAAAAAAAA5TvgfAAAAAAAAAAAAAABynPA/AAAAAAAAAAAAAADkOOF/AAAAAAAAAAAAAADIccL/AAAAAAAAAAAAAACQ44T/AQAAAAAAAAAAAAAgxwn/AwAAAAAAAAAAAABAjhP+BwAAAAAAAAAAAACAHCf8DwAAAAAAAAAAAAAAOU74HwAAAAAAAAAAAAAAcpzwPwAAAAAAAAAAAAAA5DjhfwAAAAAAAAAAAAAAyHHC/wAAAAAAAAAAAAAAkOOE/wEAAAAAAAAAAAAAIMcJ/wMAAAAAAAAAAAAAQI4T/gcAAAAAAAAAAAAAgBwn/A8AAAAAAAAAAAAAADlO+B8AAAAAAAAAAAAAAHKc8D8AAAAAAAAAAAAAAOQ44X8AAAAAAAAAAAAAAMhxwv8AAAAAAAAAAAAAAJDjhP8BAAAAAAAAAAAAACDHCf8DAAAAAAAAAAAAAECOE/4HAAAAAAAAAAAAAIAcJ/wPAAAAAAAAAAAAAAA5TvgfAAAAAAAAAAAAAABynPA/AAAAAAAAAAAAAADkOOF/AAAAAAAAAAAAAADIccL/AAAAAAAAAAAAAACQ4/KzvQAAAJA7Nm7cGA+MHZvtNf4jtGrVKn704x9new0AAAAAAAAAAOoJ4X8AAGCbysrKKC4uzvYaAAAAAAAAAADAv2mY7QUAAAAAAAAAAAAAAIDtE/4HAAAAAAAAAAAAAIAcJ/wPAAAAAAAAAAAAAAA5TvgfAAAAAAAAAAAAAABynPA/AAAAAAAAAAAAAADkOOF/AAAAAAAAAAAAAADIccL/AAAAAAAAAAAAAACQ44T/AQAAAAAAAAAAAAAgxwn/AwAAAAAAAAAAAABAjhP+BwAAAAAAAAAAAACAHCf8DwAAAAAAAAAAAAAAOU74HwAAAAAAAAAAAAAAcpzwPwAAAAAAAAAAAAAA5DjhfwAAAAAAAAAAAAAAyHHC/wAAAAAAAAAAAAAAkOOE/wEAAAAAAAAAAAAAIMcJ/wMAAAAAAAAAAAAAQI4T/gcAAAAAAAAAAAAAgBwn/A8AAAAAAAAAAAAAADlO+B8AAAAAAAAAAAAAAHKc8D8AAAAAAAAAAAAAAOQ44X8AAAAAAAAAAAAAAMhxwv8AAAAAAAAAAAAAAJDjhP8BAAAAAAAAAAAAACDHCf8DAAAAAAAAAAAAAECOE/4HAAAAAAAAAAAAAIAcJ/wPAAAAAAAAAAAAAAA5TvgfAAAAAAAAAAAAAABynPA/AAAAAAAAAAAAAADkuPxsLwAAAAA7w4IFC+Ljjz+O4uLiWLt2bZSVlUXLli2jQ4cOsddee0XPnj2jQYMG2V4zZ1VUVMTHH38cn3zySRQVFcW6deuiefPm0aZNm+jbt2987Wtfi/x8f8wAAAAAAAAAAHXF38oDAACwQ+Xl5XHBBRfEpEmTory8vMrZpZdeGiNGjMjSZqmVl5fH1KlT4+mnn4433ngjioqKtvv6zp07x4knnhg/+tGPokePHjtpyx0bP358XHXVVVFcXFyl3qtXr3j99dfrdHZlZWW89tpr8Yc//CGmTZsW69atS/napk2bxiGHHBJnnnlmHHPMMZGXl1enuwEAAAAAAABAfSP8DwAAwA7dcccd8dxzzyU9W7BgwU7eZvsqKiriqaeeijvuuCOWL19e7euWLVsWDz74YDzyyCPxwx/+MK644opo2rRpHW66Yx999FGMGjUqSktLE84WLlxYp7OnT58eV111VcyePbtar9+0aVO89NJL8dJLL0Xv3r3j5ptvjiOOOKJOdwQAAAAAAACA+qRhthcAAAAgt7366qtx3333ZXuNavnkk0/i29/+dlx88cU1Cv5/VVlZWTz88MNx7LHHxpw5czK8YfVt2rQphg0bljT4X5fKysriiiuuiO9+97vVDv7/uwULFsT3v//9uPDCC3f6/gAAAAAAAACwqxL+BwAAIKXVq1fHiBEjoqKiItur7NCUKVPipJNOivfffz8j/RYsWBCnnnpqTJ8+PSP9auqaa66JTz/9dKfOLCoqijPOOCMee+yxqKysrHW/cePGxemnnx6rVq3KwHYAAAAAAAAAUL/lZ3sBAAAAclNlZWWMHDkyVqxYke1VdujZZ5+NCy+8cLs3KbRu3Tr23Xff6NmzZ7Ru3ToiIpYvXx6LFy+Ot956K+m1JSUlMXTo0HjmmWdiwIABdbb/v5swYUL88Y9/3GnzIv71SQM/+MEP4p133kn5msLCwjjggAOid+/e0axZs9i4cWMsWLAg3n777SguLk56zcyZM+Oss86KcePGRfPmzetqfQAAAAAAAADY5Qn/AwAAkNTYsWNj6tSp2V5jh1555ZW46KKLkob38/Ly4tRTT42zzjorBg0aFA0bJv8AvGXLlsXjjz8eY8aMibKysipnJSUlce6558bkyZOjWbNmdfI1fNWiRYvi8ssvr/M5X1VZWRnnn39+yuD/HnvsEaNGjYohQ4ZEo0aNEs7LyspiypQpMXr06JgzZ07C+fvvvx8///nP49FHH035MwAAAAAAAAAAts/fuAMAAJBg1qxZceutt2Z7jR1aunRp/OxnP0sI7EdE7L333jFlypS4++6748ADD9xu6Lxz585x6aWXxsSJE6N79+4J5/Pnz49x48ZldPdkysrKYvjw4VFSUlLns77q8ccfjxdffDHp2dChQ2Py5Mlx4oknJg3+R0Q0atQoTjjhhHjxxRfjnHPOSfqaqVOnxiOPPJKplQEAAAAAAACg3hH+BwAAoIr169fH8OHDqwTq8/Pzd8pT72vqsssuSxqUP+6442LChAnRv3//GvXbe++9489//nN06dJlW+0b3/hG3H///XHGGWfUet8d+fWvf53w9P1WrVrV6cxly5bFLbfckvRs+PDhccstt0Tjxo2r1atx48Zx0003xQUXXJD0/NZbb40lS5akvSsAAAAAAAAA1GfC/wAAAFRx+eWXx8KFC6vU7rzzzvjWt76VnYVSmDBhQkydOjWh/vWvfz3Gjh0bBQUFafXt0aNH/OlPf4qRI0fGtGnT4umnn46TTz458vPza7vydk2bNi1++9vfVqkdffTRMWbMmDqde/vtt8e6desS6kcffXRceeWVafW8/PLL49hjj02ob9iwIW677ba0egIAAAAAAABAfSf8DwAAwDZPPfVUPPvss1VqZ5xxRnznO9+JvLy8LG2VqKKiIn7zm98k1AsKCuKee+6p9pPqU+nbt29ccsklsfvuu9eqT3WtXLkyRowYEZWVldtqHTt2jDvvvDOaNGlSZ3OXLFkSzzzzTEK9WbNmcfvtt0eDBg3S7n377bdHixYtEurjx4+PxYsXp90XAAAAAAAAAOor4X8AAAAiImLu3Llx9dVXV6ntvvvuceONN2Zpo9QmTpwYc+fOTaiff/750b179yxslL7Kysq48MILY+XKldtqDRs2jLvuuivatm1bp7PHjh0bZWVlCfWf/vSn0alTp1r1bt++fZx77rkJ9fLy8oRPOAAAAAAAAAAAdkz4HwAAgNi8eXMMHz48Nm7cuK1WUFAQ999/fzRt2jSLmyX32GOPJdTat28fw4cPz8I2tTNmzJh45ZVXqtSGDx8ehx12WJ3O3bp1a4wfPz6h3qhRozj77LMzMmPo0KFJP4VhwoQJSW86AAAAAAAAAABSE/4HAAAgbrzxxvjwww+r1K655prYa6+9srRRasuWLYt//vOfCfXvfve70aRJkyxslL6ZM2fGbbfdVqW2//77xyWXXFLns1977bVYvXp1Qv2www6LDh06ZGRGu3btkt7EUFRUlHDDAwAAAAAAAACwfcL/AAAA9dyUKVPi97//fZXakCFDMvb090x7/vnno6KiIqF++umnZ2Gb9JWUlMTw4cOjvLx8W61Vq1YxZsyYyM/Pr/P5L7zwQtL6kCFDMjonVb9JkyZldA4AAAAAAAAA7OqE/wEAAOqxpUuXxkUXXVSl1rlz5xg9enSWNtqxadOmJdS6d+8eAwYMyMI26bv00ktj8eLFVWq//vWvo3v37jtl/vTp05PWDz744IzOSdUv1XwAAAAAAAAAIDnhfwAAgHpq69atccEFF0RxcfG2Wl5eXtx7773Rpk2bLG6WWmVlZcycOTOhvs8++2Rhm/Q98cQT8fzzz1epff/734+TTz55p8xfu3ZtzJ07N6FeWFgYffv2zeisPn36RGFhYUJ9/vz5sWbNmozOAgAAAAAAAIBdmfA/AABAPXXnnXfGm2++WaU2YsSIGDx4cJY22rE5c+ZESUlJQn3ffffNwjbp+eSTT+K6666rUuvXr1/ccMMNO22Hd999NyorKxPqe+65Z53MS9X33XffrZN5AAAAAAAAALArEv4HAACoh95888246667qtQOOuigGDlyZJY2qp6PPvooab1fv347eZP0lJaWxvDhw2PTpk3bagUFBTFmzJho2rTpTttj/vz5Set9+vSpk3m9evVKWl+4cGGdzAMAAAAAAACAXZHwPwAAQD2zZs2aOO+882Lr1q3baoWFhXHPPfdEXl5eFjfbsUWLFiWtt2rVaidvkp5f/vKXCTcwXHPNNbHXXnvt1D0WL16ctN6lS5c6mZeqb6o9AAAAAAAAAIBE+dleAAAAgJ1r1KhRsXz58iq1O+64I7p27ZqljaovVVg8Vfh/w4YNMWPGjJg1a1Z88MEHsXLlyli3bl2UlJREfn5+NG/ePDp06BB9+/aNffbZJ4488sjo0KFDnew+adKkePzxx6vUhgwZEmeffXadzNuezz//PGm9Xbt2dTKvffv2NdoDAAAAAAAAAEgk/A8AAFCPPPzwwzFlypQqtaFDh8bxxx+fpY1qZunSpUnrLVq02PbrTZs2xV//+teYOHFiTJs2LUpLS7fb86OPPopp06ZFRESDBg1i8ODBcc4558Txxx8fDRtm5gPzPv/887jkkkuq1Dp37hyjR4/OSP+aWrNmTdJ669at62Reqr6p9gAAAAAAAAAAEgn/AwAA1BMffPBB3HzzzVVqAwYMiGuvvTZLG9Xc+vXrU9Znz54dTz75ZIwbNy5KSkrS6l9ZWRlvvPFGvPHGGzFw4MD41a9+FQMHDqzNylFeXh7nnXdeFBcXb6vl5eXFvffeG23atKlV73Rt3Lgxaf2rN1FkUqq+O7oxAwAAAAAAAAD4/4T/AQAA6oGNGzfGsGHDYvPmzdtqBQUFMWbMmCgoKMjiZjWzadOmpPWTTz65yteWCbNmzYpTTjklrr/++hg6dGjafe6444546623qtRGjBgRgwcPru2KaUsVum/UqFGdzEvVN9XPEwAAAAAAAABIJPwPAABQD1x55ZUxf/78KrUbbrgh9thjjyxtlJ5UYfFUwf9OnTrFgQceGIMGDYp99903OnToEG3bto28vLxYvXp1LFiwIF555ZWYMGFCLFmyJOH6srKyuPLKK2P9+vVx3nnn1Xjf1157Le67774qtYMOOihGjhxZ416ZlCr8n5eXVyfz8vOT//GDJ/8DAAAAAAAAQPUJ/wMAAOzinnnmmXj66aer1E488cQ488wzs7RR+ioqKnb4msLCwjjttNPitNNOi4EDB6Z8Xbdu3aJbt25x2GGHxcUXXxyPPfZY3HrrrUkD6bfcckv06NEjTjrppGrvunr16rjwwgur7FxYWBj33HNPnYXsqyvV/Op8f9OxdevWpPW6+qQBAAAAAAAAANgVCf8DAADswhYsWBBXXHFFlVq3bt3i9ttvz9JGtVNQUJDyrGXLljFixIgYOnRoNGvWrEZ9mzRpEj/96U/jgAMOiHPOOSdWrVqV8JrLL788Bg8eHO3bt99hv8rKyhg5cmSsWLGiSn306NHRtWvXGu1WF5o2bZq0XlZWVifzUvVNtQcAAAAAAAAAkKhhthcAAACgbmzZsiWGDx8e69ev31bLz8+P++67L1q1apXFzdKXKizetWvX+Nvf/hbDhg2rcfD/q/bff/94+OGHkz6Rvri4OO65555q9XnggQdi6tSpVWpDhw6Nb33rW2nvlkmpbqLYuHFjncxL1Vf4HwAAAAAAAACqT/gfAABgF3XLLbfEe++9V6U2atSoGDRoUJY2qr1UYfHzzjsvunfvnpEZgwYNilGjRiU9e+KJJ6KkpGS717/33ntx6623VqkNGDAgrr322ozslwmpbv7Y0deWrnXr1iWtt2zZsk7mAQAAAAAAAMCuSPgfAABgF/TKK6/EQw89VKV2yCGHxPnnn5+ljTKjU6dOSeu9e/fO6Jyf/OQn0a5du4R6aWlpTJ48OeV1paWlMWzYsNiyZcu2WkFBQYwZMybl0/azoUuXLknrq1evrpN5qfp269atTuYBAAAAAAAAwK5I+B8AAGAXU15eHldddVVUVlZWqV955ZXRsGF6vw2srKxM+VT4tWvXptUzHV27dk1ar6ioyOicpk2bxne+852kZ6+++mrK6+6///5YuHBhldr3vve92GOPPdLeZXvf36KiorR6pgrdL1myJK1+O7J06dKk9Ux9WgMAAAAAAAAA1Af52V4AAACAzJo1a1bMnz8/oX7CCSfUybwpU6akDOUfccQR8eSTT2ZsVqrQeqobE2rj8MMPjwcffDChPnv27JTXPPvsswm1Rx99NB599NGM7valvffeO2m9RYsWMWnSpOjbt2/S8x49eiStf/bZZxnb7asWLVqUtC78DwAAAAAAAADV58n/AAAAu5jNmzdne4Vt5s2bl9F+/fv3T1pfvHhxRudERPTr1y9pffny5SmvyZXv/fr162PFihUpz1PdNPDxxx/XyT6ffPJJ0vrAgQPrZB4AAAAAAAAA7IqE/wEAAPiPsc8++0SjRo0S6nURWm/Xrl3S+vr16zM+a2fr27dvtGnTJqH+xRdfxNKlSzM6a+XKlUl7duzY0ZP/AQAAAAAAAKAGhP8BAAD4j1FQUJD0qfX//Oc/Mz6rQYMGSeuNGzfO+KydrUGDBrH//vsnPfvHP/6R0VmpfjaDBg3K6BwAAAAAAAAA2NUJ/wMAAOxievbsGYWFhdleIyL+9aT+TDviiCMSakuWLImPPvooo3NWr16dtN66deuU1+y3334Z3SFdrVu3jh49emz3Nccee2zS+uTJkzO6y0svvZS0PmTIkIzOAQAAAAAAAIBdXX62FwAAACCzunbtGh9++GHG+1533XXx0EMPJdS/+c1vxiOPPJLySfmZdtJJJ8Wdd96ZUJ8wYUIMGDAgY3NS3UzQt2/flNeMHTs2Y/O/9OGHH8Zxxx2X9Oy9996Ltm3bptX3hBNOiKuvvjrKy8ur1KdOnRrFxcUZuYFk06ZNMWXKlIR6QUGB8D8AAAAAAAAA1JAn/wMAAFAtrVq1Slpv06bNTgv+R0T0798/9txzz4T6H//4xygtLc3YnL///e9J6wMHDszYjOpI9X2PiLSD/xERu+22W9JPUSgtLY3HH3887b5fNX78+Fi7dm1C/bjjjosWLVpkZAYAAAAAAAAA1BfC/wAAAPxf9u47Ospq6+P4Lz2kUwUS6SUYiqJIkUtHEJSOcAWugigBRIqI4BUEERCBAApIFQWR3qR7KQJ6adJyKZHeW0hI78m8f/CSxfBMYJJMSJDvZy3X8tnPc/bZE0KYgX3OeeK8++67htjt27dt1rQeHx+vtWvXWrzXtGlTm8yRFwQGBlqMf/fddwoPD89W7qSkJE2dOtXivd69e2crNwAAAAAAAAAAAAAATyOa/wEAAAAAT5yOHTuqaNGihvikSZN08+bNbOefP3++xeb3UqVK6aWXXsp2/ryiTp06Fl9PZGSkPvnkk2zlnjRpki5fvmyIN2rUSFWrVs1WbgAAAAAAAAAAAAAAnkY0/wMAAAAAnjjOzs4aMmSIIR4dHa2+ffsqJSUly7nPnj2ryZMnW7zXv3//LOfNqz777DPZ2dkZ4hs3btSECROylHPDhg2aPn26Ie7o6KihQ4dmKScAAAAAAAAAAAAAAE87mv8BAAAAAI9dmzZt5Ovra/hv3LhxVufo1KmT6tWrZ4jv2bNHgwYNUlpaWqbrCg0NVffu3RUXF2e4V7VqVXXo0CHTOfO6GjVq6J133rF4b8qUKRoxYoSSkpKszvfzzz+rb9++MplMhnt9+vRRQEBAVksFAAAAAAAAAAAAAOCpRvM/AAAAAOCxu379usX4zZs3M5Vn4sSJKly4sCG+cuVKvf/++4qMjLQ614kTJ9SmTRudPXvWcM/d3V3Tp0+Xvf3f82P0p59+Kn9/f4v35s2bp2bNmmndunVKTk7OMMeBAwfUpUsXffzxxxafe/755zVgwACb1QwAAAAAAAAAAAAAwNPGMbcLAAAAAAAgq3x9fbVgwQJ16NBBsbGxZvc2bdqk4OBgffTRR2rbtq2cnZ0t5rh165ZmzZql+fPnKzEx0XDfxcVFs2fPVpkyZXLkNeQFbm5uWrBggVq1aqUbN24Y7p86dUqBgYHy9vbWSy+9pNKlS8vd3V0JCQm6cuWKDh06lOGCDkkqWbKkfvzxR7m4uOTkywAAAAAAAAAAAAAA4G+N5n8AAAAAwBOtatWqWrhwoXr27Knw8HCze1evXtWgQYP0xRdfqFatWvL391eBAgWUkpKimzdv6siRI/rzzz+VmppqMbeXl5dmzJihBg0aPIZXkrt8fX21ZMkSvf3227p48aLFZyIjI7Vt27ZM5S1btqwWLlyoQoUK2aJMAAAAAAAAAAAAAACeWjT/AwAAAACeeDVr1tTGjRv1/vvvKzg42HA/IiJCmzdv1ubNm63OWa1aNU2bNu1vveP/g8qXL6/169erT58+2r17d7bzNWrUSNOmTZO3t7cNqgMAAAAAAAAAAAAA4Olmn9sFAAAAAABwj7191j+mPvvss1q/fr2++uorFSxYMMt5/Pz8NGHCBK1fv/6pavy/p0CBAlqyZIm+/fZbFS1aNEs5ihUrphkzZmjhwoU0/gMAAAAAAAAAAAAAYCPs/A8AAAAAsEqZMmXk6OiolJSU9Ji9vb0qVKiQ6Vxly5bVlStXDPHnn38+WzU6ODioW7du6tixozZv3qwVK1Zo7969io+Pf+g4Hx8f1a9fX61atVLTpk3l4OCQrTpsqUCBAipUqJBu375tFq9YsWKOztuuXTu1bNlSmzdv1tKlS7Vv3z4lJCRk+Lyrq6tq1aqlTp06qXnz5nJ2ds7R+gAAAAAAAAAAAAAAeNrQ/A8AAAAAsErbtm3Vtm1bm+T6+eefZTKZ1LNnT23evFnS3d3i33zzTZvkd3V1VZs2bdSmTRulpqYqJCREZ86c0Z07dxQVFSUHBwe5u7urWLFiKleunEqXLp2tUwdykru7u44ePZorc7u4uKh169Zq3bq1kpOTdezYMZ09e1YRERGKiYmRh4eHfHx8VLZsWVWuXFlOTk65UicAAAAAAAAAAAAAAE8Dmv8BAAAAALkiKSlJ+/fvT78eOHCgXF1dbT6Pg4ODAgICFBAQYPPcTxMnJye98MILeuGFF3K7FAAAAAAAAAAAAAAAnkp5c1tDAAAAAMDf3qZNmxQeHi5JKl26tDp16pTLFQEAAAAAAAAAAAAAAORdNP8DAAAAAHLFTz/9lP7/gwcPlqMjh9MBAAAAAAAAAAAAAABkhOZ/AAAAAMBjd+7cOe3Zs0eSVKlSJbVu3TqXKwIAAAAAAAAAAAAAAMjbaP4HAAAAADx2ixYtSv//IUOGyM7OLherAQAAAAAAAAAAAAAAyPto/gcAAAAAPFZJSUlavny5JOnFF1/Uq6++mssVAQAAAAAAAAAAAAAA5H00/wMAAAAAHqtNmzYpLCxMkjR06NBcrgYAAAAAAAAAAAAAAODJ4JjbBQAAAAAAni5Hjx6Vk5OTOnfurDp16uR2OQAAAAAAAAAAAAAAAE8Emv8BAAAAAI/ViBEjNGLEiNwuAwAAAAAAAAAAAAAA4NPZxpwAACAASURBVIlin9sFAAAAAAAAAAAAAAAAAAAAAACAh6P5HwAAAAAAAAAAAAAAAAAAAACAPI7mfwAAAAAAAAAAAAAAAAAAAAAA8jia/wEAAAAAAAAAAAAAAAAAAAAAyONo/gcAAAAAAAAAAAAAAAAAAAAAII+j+R8AAAAAAAAAAAAAAAAAAAAAgDyO5n8AAAAAAAAAAAAAAAAAAAAAAPI4x9wuAAAAAAAAALkvPDxcp06d0oULFxQVFaX4+Hh5eHjI29tbfn5+qlq1qtzc3HK7zFwXHx+vo0eP6q+//lJkZKRcXFxUtGhRvfDCCypRokSOzh0TE6OFCxcqLi5OdnZ2at++vUqWLJmjcwIAAAAAAAAAAADIO2j+BwAAAAAAyGUmk0mbN2/WDz/8oD///FMJCQmSJC8vL+3fv1+enp45Mu/Zs2e1bNkybdu2TSdPnnzosw4ODgoICFCHDh3Url075c+fP9vzN2jQQKdPn852nsyys7NTjx499MUXX1g95vr165oyZYrWrFmjmJgYi888//zz6t27t15//XVblWpm+PDhWrZsmSSpcOHC6tGjR47MAwAAAAAAAAAAACBvovkfAAAAAAAgl9xr+g8KCtKJEycM96OiohQREWHz5v+QkBCNHTtW27dvl8lksmpMamqqgoODFRwcrLFjx6p3797q27ev8uXLl6UaEhIScqXxX7r7dbf09c7I8uXLNWzYMMXHxz/0uSNHjqhXr15q2LChvv32W5sskLhnx44d6Y3/kjRmzBj5+PjYLD8AAAAAAAAAAACAvI/mfwAAAAAAgMfsUU3/OSUlJUXjxo3TnDlzlJqamuU8CQkJmjx5slasWKE5c+aoSpUqmc5x8+bNLM//OH377bf66quvzGI+Pj5q0KCBihcvrsjISB06dMjs5IQdO3aobdu2WrVqlQoUKJDtGqKjozVkyJD065YtW6ply5bZzgsAAAAAAAAAAADgyULzPwAAAAAAwGNiMpm0ZcsWBQUF6fjx44917jt37qhHjx7av39/hs+UKFFCNWvWVJkyZeTp6amoqChdvXpV+/bt05kzZwzPX758WW3bttU333yjFi1aZKqe3G7+f+aZZx75zNq1a80a/+3s7NS3b18NGDDAcOLBrl271L9/f926dUuSdPr0afXs2VMrVqyQvb19tmodPXq0rl27JknKnz+/xo4dm618AAAAAAAAAAAAAJ5MNP8DAAAAAADksNxs+pekqKgovfXWWwoODrZ4v06dOho8eLBq1qyZYY6jR48qKChIW7duNYvHx8erd+/emj9/vho1amR1TY6OjnJyclJycrLVY2ypVatWD71/+/ZtDR061Cz22WefKTAw0OLz9erV05o1a9SiRQtFRERIkvbt26c5c+aoV69eWa7z999/16JFi9KvR48erUKFCmU5HwAAAAAAAAAAAIAnF83/AAAAAAAAOSg1NVVt2rTRoUOHcmV+k8mkvn37Wmz8d3Jy0hdffKF//etfj8xTrVo1/fjjj1qyZImGDRumpKSk9HspKSkKDAzU6tWrFRAQYFVd1atX14ULF6x+HVmRnJys6tWrKzw83Cxeq1YtNWvW7KFjJ0+erKioqPTr+vXrZ9j4f0/JkiX11VdfmT33zTff6K233pKnp2em64+Li9PHH3+cft20aVO1bds203kAAAAAAAAAAAAA/D1k78xxAAAAAAAAPFRsbOxDG/99fHzUoUMHOTrmzB4N8+fP1/bt2w1xR0dHzZ0716rG//t17txZ8+bNk4uLi1k8NjZW/fv3z7Wd/C1Zs2aNofHfxcVF48ePf+i46OhoLV261Cz24CkAGXn99dfNFkBERERo1apVVlZsbuzYsbp06ZIkydvbW1999VWW8gAAAAAAAAAAAAD4e2DnfwDIotTUVF24cEEXL17UzZs3FRcXp8TERLm6usrd3V2+vr4qXbq0fH19c7tUAAAAALnIZDIZYo6OjmrYsKE6duyopk2bytnZWXv37tWVK1dsOndkZKQmTZpk8d6wYcPUpEmTLOVt1KiRxo4dq48++sgsfvLkSc2YMUP9+/fPUl5bioyM1JdffmmI9+vXT+XKlXvo2I0bNyo+Pj79unLlyqpatapV89rZ2alz584aPnx4emz16tV6++23raz8rn379umHH35Ivx4xYoSKFi2aqRwAAAAAAAAAAAAA/l5o/geATIiOjtamTZv066+/6tChQ4qNjX3kmMKFC6t27dpq0aKF6tWrJwcHh8dQKWylRYsWOnv2bPq1i4uL1q9frxIlSuRiVcCT5d///rdWrFiRfu3s7KzFixercuXKuVgVAACPz/2fASpXrqyOHTuqbdu2KliwYI7PPX/+fEVERBjiVatW1fvvv5+t3J07d9bOnTv1yy+/mMVnzJiht99+Wz4+PtnKn11ff/21bt++bRYrX768+vbt+8ixu3fvNrt+9dVXMzV3s2bNzJr/jxw5otjYWLm7u1s1Pj4+Xh999FH6wpH69eurc+fOmaoBAAAAAAAAAAAAwN+PfW4XAABPgrCwMI0dO1Z169bV8OHDtXv3bqsa/yUpNDRUv/zyiwIDA9WgQQMtWLBASUlJOVwxbOX+xn9JSkxM1PXr13OpGuDJdOnSJbPrpKQk3bhxI5eqAQDg8fPw8NDkyZO1detWbdmyRT179nwsjf+SzBbg3W/gwIGyt8/+Xwt9/vnncnV1NYvFxMRo/vz52c6dHf/73/+0YMECQ3zUqFFydnZ+5PijR4+aXVu76/89vr6+ZosfkpOTdeLECavHf/311zp//rwkyd3dXV9//XWm5gcAAAAAAAAAAADw90TzPwA8wvr169W8eXP9+OOPSkhIyFauW7duacyYMWrevLn27NljowoBAAAA2Mr48ePl6+srX19f+fn5WWwgz4o333xTlSpVskkua50+fTq9gfx+BQsWVOPGjW0yR9GiRfXmm28a4t9//71SUlJsMkdmmUwmDRs2TGlpaWbxpk2bqn79+o8cn5qaqsuXL5vFypcvn+k6Hhxz4cIFq8YdPHhQc+fOTb/+9NNP5efnl+n5AQAAAAAAAAAAAPz90PwPAA8xYcIEffTRR4qKirJp3qtXr6p79+76+uuvDQ0pAAAAAHLP/ac8mUwmhYaG5mI12XPkyBGL8VdeeUUODg42m+ftt982xMLDw/X777/bbI7MWLp0qQ4fPmwWc3Z21ueff27V+KioKCUnJ5vF8ufPn+k6Hhxz586dR45JTEzURx99lP45sXbt2ha/vgAAAAAAAAAAAACeTo65XQAA5FVBQUFmuy1aki9fPlWsWFFlypSRl5eX8uXLp8TERIWFhenChQs6ceKEoWnkHpPJpHnz5un8+fOaOnWqnJ2dc+JlAAAAAHhKnTt3zmLc39/fpvP4+/urfPnyOn36tFn8l19+UYMGDWw616PEx8drwoQJhnjXrl1VunRpq3M8yN3dPdO1eHh4mF3HxcU9ckxQUFD61zFfvnyaOHGi7OzsMj03AAAAAAAAAAAAgL8nmv8BwIJt27Zp1qxZGd6vX7++OnfurHr16snRMeMfpQkJCfr999+1YsUK7dixw+Iz27dv18CBAzV16tSH5gIAAACAzIiMjLQYL1CggM3nqlevnqH5P6PPQDnpu+++040bN8xi7u7u6t+/v9U5LH0uS0lJyfTntQcXgjs5OT30+eDgYM2cOTP9esiQISpVqlSm5gQAAAAAAAAAAADw92af2wUAQF6TmJioMWPGWLzn4+OjWbNmafbs2WrUqNEjmz9cXV3VpEkTzZw5UytXrlRAQIDF57Zu3apNmzZlu3YAAAAAuCejU8hyYif5GjVqGGK3bt3S5cuXbT5XRm7dumXWPH/Pe++9p0KFClmd58Ed+yXrdu1/UGxsrNn1w04PSE5O1qBBg5SSkiJJevHFF9WzZ89MzwkAAAAAAAAAAADg743mfwB4wOrVq3X16lVD3MfHRwsWLFCDBg2ylLdy5cpatmyZunbtarj32muvqWnTplnKCwAAAACWWGpil6Tw8HCbz1WuXDmL8UOHDtl8roxMnDjR0HDv4+OjwMDATOVxc3OTj4+PWezatWuZruf69etm18WLF8/w2alTp+rkyZOSJBcXFwUFBcnenr+2AwAAAAAAAAAAAGCOf0UEgAesWbPGYnzIkCGqWLFitnI7Ojpq+PDh6tevn6S7O24OGDBAU6ZMkaura7ZyAwAAAMD9ihUrZjH+119/Pba57jW057RTp05pyZIlhnjPnj3l6emZ6Xxly5Y1uw4JCcnU+JSUFJ09e/ahOe85ceKEpk2bln49cODADBdTAAAAAAAAAAAAAHi6OeZ2AQCQl8TFxSk4ONgQL1q0qNq1a2ezeT744AN5e3vr2WefzfJJAgAAAADwMAEBARbju3fvVlpamk13ls/olIErV67YbI6HmTRpklJTU81iXl5e6tGjR5byvfzyyzp48GD69d69e9WhQwerxx88eFBJSUnp14ULF7bY/J+SkqJBgwYpOTlZklSlShX17t07SzUDAAAAAAAAAAAA+Ptj538AuE9ISIihYUSSGjZsKDs7O5vO1a1bNxr/AQAAAOSY6tWry83NzRAPCwvT5s2bbTpXYmKixfjjaP4PCQnRhg0bDPHu3bvL29s7SzkbNWpkdr1ly5b0Bn1rrF+/3uy6YcOGFp+bMWOG/ve//0mSnJycFBQUJEdH9uoAAAAAAAAAAAAAYBnN/wBwn7CwMIvxEiVKPOZKAAAAACB78uXLpyZNmli899VXXyk+Pt5mc+3fv99i/ObNmzabIyNBQUEymUxmMVdXV/Xs2TPLOWvXrq1SpUqlX4eHh2vx4sVWjQ0LC9OSJUvMYp07dzY8d+rUKU2ZMiX9ul+/fnruueeyVjAAAAAAAAAAAACApwLN/wBwn4yaX9zd3R9zJQAAAACQfYGBgRbjZ8+e1YgRI2wyx+HDh/XRRx9ZvBcXF2eTOTJy8uRJbdy40RDv1KmTChQokOW8dnZ26tevn1ksKCjIqsUMI0eONHvdtWrVUs2aNc2eSU1N1aBBg9JPTKhUqZI+/PDDLNcLAAAAAAAAAAAA4OnAOeIAcB8vLy+L8Vu3bj3mSrInNTVV586d06lTpxQeHq6YmBi5uLjI09NTJUuW1HPPPScPD48cmz8tLU2XLl3SuXPndPPmTcXGxio5OVkeHh7y9PTUM888o8qVK8vT0zPHashIcnKyjhw5olOnTikqKkpeXl5q3LixihYtapP8CQkJCg4O1q1bt3T79m3Fx8fL3d1dxYsXV8WKFfXss8/aZB5rxMTEKCQkRBcvXlRUVJQSEhLk4eEhb29vlS9fXuXKlZOTk9Njq+dBUVFROnjwoC5evKj4+HgVLVpUr732mlxdXbOcMzU1VefPnzf73nd2dpanp6f8/Pz03HPPydvb24av4skTHh6ukJAQhYaGKiYmRjExMbKzs5O3t7e8vLxUvnx5lSlTRvb2j14jev36de3fv183b95Uw4YNVb58eZvVaTKZdOrUKZ0+fVq3bt1SYmKiPDw8lD9/flWqVElly5a12VwAgL+36OhoNWvWzOom9OjoaLPrmTNnauHChVaNLVy4sP7zn/9kusacVK1aNbVu3Vpr16413Pv5559VoEABffLJJ1b92f+gyMhIffvtt5ozZ45SUlIsPmPL0wUsmTx5smHXf3t7e73//vvZzt2xY0ctWrRIhw4dkiSFhoaqR48e+uGHH1S4cGHD8yaTSRMnTtSqVavSY87Ozho1apTh2Tlz5ujw4cOSJAcHB02aNCnD9+bBwcFauXKl9u/fr0uXLikmJkYeHh4qWbKkXn75ZbVv315VqlTJ9usFAAAAAAAAAAAAkPfR/A8A9/H19bUY37Vrl2HXx7xo9+7dWrt2rbZv367Y2NgMn7Ozs1P16tXVqlUrtW3bVi4uLtmeOy0tTdu3b9fGjRv1xx9/KCIi4qHP29nZqXTp0nrjjTfUoUMHFSlSJEvzvvPOO9qzZ0/6taenp3777TfD4oaIiAjNnTtXy5cvN9S2f/9+TZ06NUvzS3cbztevX69169Zp//796bt3WlKiRAm1bt1aXbt2lY+PT5bnzEh0dLTWrl2r9evX68iRI4ZGqPu5uLjoH//4h9544w01bdpUDg4OWZ43JiZGDRs2VFRUVHrs5Zdfttgod/bsWc2YMUO//vqrkpKSzO7FxcWpS5cumZ5/165d+uWXXx75vS9J/v7+atmypdq1a6dChQpleq57EhMT9dprr+nq1avpsXsNf/ny5cty3uDgYHXv3l0xMTHpsSZNmmj69OlZypeWlqZ9+/Zp7dq1+uOPP6xazOTu7q6aNWuqU6dOqlevnqEZ8MKFC/r666+1Y8cOpaWlSZKOHTumb775Jks1Ppj7p59+0oYNGxQeHp7hc4UKFVKnTp3UtWvXbO3qCwD4+4uIiNDFixezPD4uLs7qhQOhoaFZnicnjRkzRvv27dONGzcM96ZNm6Zjx45p4sSJKlasmFX5jh8/rmXLlmnp0qWGxRIPSkhIyFLN1jh79qzFXf+bN2+uUqVKZTu/g4ODpk+frlatWqX/2h45ckSvvvqqevXqpWbNmqlYsWKKiorS4cOHNWfOHLPPJpL0+eefq3Llyoa6J0yYkH4dGBioatWqGea/dOmSPvvsM23bts1wLyIiQhERETp69KjmzJmjV199VV9++WWGn2kBAAAAAAAAAAAA/D3Q/A8A9ylXrpx8fHwMzeHBwcHauXOn6tevn0uVPdy+ffs0YcIE/e9//7PqeZPJpIMHD+rgwYOaOXOmPv74Y7Vs2TLL82/YsEFBQUG6cuWK1WNMJpPOnTunqVOnasaMGXrvvffUp0+fTO9Ef+nSJbPr6OhoRUREmDX/b9q0SaNGjdKdO3cs5khOTs7UnPfbunWrgoKCdPbsWavr/fbbb7VgwQJ98sknat++fZbnvl9SUpJ++OEHzZ07V5GRkVaNSUxM1NatW7V161aVLl1aAwYMUPPmzbM0f0REhFnjvySzpnjp7iKJadOmafbs2RnuDJvZX4s9e/Zo4sSJOnbsmNVjQkJCFBISohkzZqhLly7q3bt3lk7CCA0NNbzG0NBQhYWFyc/PL9P57jlz5oxZ478knTx5Mku5du7cqbFjx+rChQuZGhcbG6vt27dr+/btKlOmjMaOHasXXnhBkrRkyRKNGTPGsHAjo19Ta4WHh2vy5MlauXKlUlNTH/n87du3NX36dC1evFhBQUGqXbt2tuYHAODvLH/+/Fq0aJHat29vcZHub7/9pldeeUWvv/66Xn31VVWpUkVFihSRvb29bt++rbCwMJ08eVJ79+7V3r17De/BHyY7C0wfZfbs2RYXu9pi1/97SpQooSVLlqhbt266du2apLsnw40ePVqjR4/OcJy9vb3+/e9/65133jGLm0wmDR48OH1RRNmyZTVo0CDD+N9//129evV65KLqe3799VcdPHhQ8+bNU40aNax8dQAAAAAAAAAAAACeNDT/A8B97Ozs9Oqrr2rZsmWGe0OHDtWiRYtUpkyZXKjMsqSkJE2cOFELFix46A7vD3P9+nUNGjRIv//+u0aNGiVnZ2erx0ZERGjw4MHavXt3lua+Jzk5WTNmzNCuXbv0/fffy9vbO1v57jGZTJowYYLmzZtnk3z3S05O1vjx4y3ubG+NyMhIffrppzp+/LiGDx8uOzu7LNdy9uxZDR48WCdOnMhyjvPnz6t///5q2bKlRo0aJU9PzyznsiQqKkoffvihYSfUrEpKStLXX3+tn376Kcvf+/Hx8Zo7d662bNmiiRMn6vnnn7dJbXlBcnKyPv30U/3yyy/ZznXu3Dm99dZb6tKlixISErR8+XKLz2XnBJG1a9dqzJgxVi9cuV94eLjeffddzZ49W3Xr1s1yDQCAvy9vb2+LC3xzQkBAQI7PkVX+/v5avXq1unfvbnFhYGJiolauXKmVK1dmOnfx4sVVq1YtrVq1ynAvOyciPUx4eLhWrFhhiFeuXNnmze/+/v7asmWLRo0apVWrVqWffJSRcuXKacyYMRbfm3z//ffav3+/pLsLBCZNmiRXV1ezZ/7880+98847io+PT4+VLFlSvXv3VsOGDVWoUCHduHFDmzdv1syZM9NPJQgLC1O3bt20atUqPffcc9l92QAAAAAAAAAAAADyIJr/AeABXbt21fLlyw0NxeHh4Xrrrbc0fvz4PHECQFxcnPr06ZNhM7WLi4vq1KmjUqVKqXDhwnJwcNC1a9e0d+9e/fXXX4bnV61apRs3bmjGjBlWNehcuXJF77zzji5fvmzxvqurq2rUqCF/f38VKlRIdnZ2ioyM1KlTp3TgwAGLzVfHjh1Tr1699MMPPxgaYDIrLS1N//73vy02IGXX/v37NXXqVB08eNAsXq5cOVWrVk0lS5aUm5ubIiMjdevWLe3bty/DndcXLVokV1dXDRkyJEu1/PnnnwoMDFR0dLTF+/7+/nrhhRdUqFAheXl5KSwsTDdv3tTvv/+e3iR0vw0bNuj06dOaP3++ChUqlKWaHnTnzh29++67On78uE3yxcTEqHfv3ulNUw/Knz+/XnnlFRUvXlwFCxZUfHy8QkNDdezYMQUHBxt+b1++fFldu3bVlClT1KRJE5vUmJuSkpLUt29f7dq1y+J9Hx8fVatWTRUqVJC3t7fc3NwUGxurO3fu6PTp0zp69KjhFIe0tDTDQhdfX1/VrVtXxYoVk7e3d5Ya76OiovTZZ59py5YtZvFChQqpVq1aKlOmjLy9vRUfH6+bN29q//79Fn9+paamauDAgdqwYYOKFCmS6ToAAH9vXl5emXofMmDAALPFbh07dtSUKVNyorTHrkKFCtq0aZPGjh2rRYsWPbKJ/VH8/f0VGBioNm3aSNJjbf7/8ccf03fPv1+PHj1yZL4CBQpo6tSp+vDDD7Vq1Srt2bNHp0+fVlRUlJydnVW0aFE9//zzev3119W4cWM5Ohr/yu3ixYv66quv0q+7d+9uWKgQERGh3r17mzX+161bV3PmzJGXl1d6rFSpUgoMDFTbtm31r3/9K/0krOjoaPXu3VubN2/Osa89AAAAAAAAAAAAgNxD8z8APKBixYp68803tXTpUsO9O3fu6P3331eTJk3Up0+fXNvZMzk5Wb169bLY/FywYEENHDhQLVu2lJubm8XxBw4c0BdffKFTp06Zxf/73//qww8/1KxZs2Rvb5/h/Pd22rbU+F+kSBH16dNHbdq0ybDZJDExUWvWrNHEiRMNTcaHDx/WzJkzNWDAgAznt8aYMWMMzUcODg564YUXVKlSJXl4eCg5OVnh4eGqXLlypnJPmzYt/f/t7e3VoUMHvfPOOypbtmyGY44dO6YxY8bo0KFDhnvz5s1TrVq1VK9evUzVcfToUfXs2dOsMUi6e4JFu3btFBgYqBIlSlgcm5aWpgMHDmj8+PGGZrhTp06pa9euWrZsmVmDUVbEx8erV69ehjnc3NxUs2ZNlS5dWi4uLkpISFBoaOgjdyhNSkpSz549dfjwYcO9ChUqaMiQIapTp44cHBwsjr9+/brmzp2rn3/+2azZLTk5Wf3799e0adPUsGHDLLzSvGPatGkWG//LlCmjgQMHqmHDhnJycspwfFJSkv7zn/9o0qRJunr1qsVnvvzyS3Xo0CFbJ1bs3btX48aN05UrV9JjAQEB+uCDD9SgQYMMfwbt2bNHQ4cO1Y0bN8ziUVFRmjVrloYPH57lmnCXvb19hj87YM7DwyO3SwCATPPy8tJXX32l7t27a86cOVqzZo3h/eTD5MuXT6+99po6d+6sOnXqpL8fsNSIL0nu7u42qft+iYmJ+uGHHwzx/Pnzq3Xr1jaf735ly5bVxx9/nOlxJpNJgwcPVlxcnKS7O/kPGzbM8FxQUJCuXbuWfl2qVClD4//9nnnmGc2fP1/NmzdXWFiYJOnMmTOaO3eu+vXrl+k6AQAAAAAAAAAAAORtdqYHt78FACg6OlodOnTIcLf2ewICAtSqVSs1a9ZMxYoVezzFSRo9erR++uknQ7xx48b66quvrGrYTkxM1NChQ7Vx40bDvcDAQA0cODDDsYGBgdqxY4ch3qpVK40cOdLqBp8rV66oW7duZs0t0t1TA/7zn/9YtYN3o0aNDA3KL7/8stnCiHz58qlHjx7q0qWLChYsaFVt91SsWDHDexUqVNCYMWNUtWpVq3KlpaVpypQpmjVrluFeqVKltG7dOjk7O1uVKzQ0VO3atdOtW7fM4t7e3po+fbphB9GMpKam6rvvvtO3335ruNegQQPNnDnTqgbvK1euqHHjxmYxZ2dnPffcczpy5Eh6rFixYvrggw/0xhtvyMXFxaoa7zds2DCLO8q+9957GjBggMUdVi05evSoAgMDFR4ebhb39PTUihUrVKpUqUfmsPSaJWnbtm3y8/Ozqg5LVq1aZWgE8/X11fbt2x859uzZs2rVqpVSUlLM4q+//rrGjRtn9feXdPd0kd69e2vv3r1mcVdXVx04cCBTubp165bhSQ3S3d+jgwYNUteuXR+68OieK1euqF27doqMjDSLu7m56cCBA1Z/HwAAYElu7vxfs2ZNs4Vx9+zdu1fPPvtsjsyZkJCgPXv2aN++fTpz5owuX76smJgYJSQkyMPDQ97e3ipQoICqVKmil156SS+99JLF9/uhoaF6/vnnDfG6detaXFidHUuXLtWgQYMM8V69emnEiBE2nctWFixYkP4ez87OTkuXLtUrr7xi9szt27dVo0YNJSUlmY2z9J7zQQsXLtTQoUPTr318fHTw4MFsn6hmrddff12StH79+scyHwAA+Pvh/QQAAMgu3k8AAADgafHo7ioAeAp5enpq3rx5j2w+P378uMaNG6eGDRuqU6dO+v777zPcKdtW9u7da7Hxv1mzZpo6darVO7W7uLho0qRJatWqleHe3LlzUGez1gAAIABJREFUdeLECYvjdu7cabHxv3fv3powYUKmdvb08/PTd999Z9ilPSEhQf/5z3+szvOg+5uM69atq/Xr1+vDDz/MdOP/wzRp0kQrV660uvFfurub9qBBg9S5c2fDvQsXLujHH3+0Otfnn39uaPz38vLS999/b3Xjv3T3NIQPPvjA4mKP3377TStWrLA614OSkpLSG//t7OzUvXt3bdy4UR06dMhS4//WrVstNv737t1bgwcPzlTDd7Vq1TR//nz5+PiYxaOjo/Xpp59mura8YvXq1YbG/+rVq2vChAmZataX7jbST58+3fBzMCEhQVu3bs12rfdUqFBBK1eu1L/+9S+rGv+luz87+vTpY4jHxcXp6NGjNqsNAICngaurqxo2bKihQ4dq7ty52rJli/744w8dPHhQO3fu1C+//KIffvhBH330kerXr5/h+/3o6GiL8ZxYtLBw4UKL8bfeesvmc9nC1atXNWbMmPTrrl27Ghr/JWn58uVmjf9Vq1a1qvFfkjp37qyiRYumX0dERGjTpk3ZqBoAAAAAAAAAAABAXkTzPwBkwM/PTytWrNALL7zwyGdNJpOOHDmi8ePHq1GjRmrfvr1mz56tS5cu2bSm1NRUs6aRe0qXLq0JEybIyckpU/ns7e01btw41a5d2yyekpKi2bNnWxxTqVIlBQYGmu2M3rlzZw0YMCBTc9/j7++vFi1aGOI7d+7MUr77tW/fXnPmzMnWLuyWNG/eXFOnTs10M/U9n376qYoXL26I//zzz7LmQJ6dO3dq27ZthvioUaNUuXLlLNUUGBhosbEoKCgow0Yua9nb22v06NEaOnSo3NzcspQjISFBY8eONcTr16+fre89S7+fDh48qHXr1mUpZ26ztGhmyJAhVjfVP8jDw0PvvvuuIb5ly5Ys5XtQy5YttWzZMpUtWzbTY1u3bm3xVIrz58/bojQAAJBJd+7csRj39fW16TzHjh3T4cOHDfGaNWuqXLlyNp3LVoYMGaKYmBhJd78en332mcXnHnyP1bp1a6vncHJyUsuWLc1itlywCQAAAAAAAAAAACBvoPkfAB7imWee0cKFC/Xxxx/L09PT6nHHjh3TpEmT1LRpU7Vp00Zz5sxRaGhotuvZvn27Tp06ZRazs7PTmDFjsrSTuiQ5Ojpq8uTJKlmypCpUqKAuXbpo8uTJGjFihMXnixQpooEDB2rLli1as2aNRo4cqeHDh2dp7nssNZ1fuHAhWznfeOMNjRkzJstNzw/z1ltvZWqX+Qe5uLho0KBBhvi1a9e0d+/eR46fMWOGIdawYUOLiygyY8SIEYadXMPDw7Vs2bJs5R01apQ6duyYrRyrV682nKrh5uamkSNHZitvkyZN1LRpU0M8o8UveVlaWpquXLliFitUqJBVC5gepl69eobYsWPHspVTutvMFhQUpHz58mVpfP78+S3uJJxR4yEAAMhZf/31l8V4QECATeexdAqalHd3/V+yZIl+++239Ouvv/5aHh4ehucSEhLST826p1GjRpmaq0GDBmbX1ny2AAAAAAAAAAAAAPBkofkfAB7ByclJPXv21K+//qp+/fpZ3LH9YU6ePKmJEyeqQYMG6tOnj4KDg7Ncy4IFCwyx2rVr68UXX8xyTuluE+2vv/6qdevWacSIEWrRooUKFCjwyHGVKlXSP//5z2w1wksyO0XgnrCwsCzny58/v0aOHGlxV/C8olmzZvLy8jLEH7Xj/JEjRwxNQZLUp0+fbNdUtGhRtW3b1hBftGiR0tLSspSzbt26evPNN7NbmsXv/datW2f696MlgYGBhtipU6eeuGapO3fuKCUlxSxmi6+PpRy2WMxkqXE/syz9nEpISMh2XgAAkHkZLQ7M7meV+8XGxmr16tWGuLu7u2HX+7zgxo0bGjVqVPr1m2++aWjQv+fChQtKTk5Ov3Zxccn06Uj+/v6G+WNjYzOVAwAAAAAAAAAAAEDeRvM/AFipQIEC+uCDD7Rt2zbNmzdP7dq1s9i8nZGUlBRt27ZNHTt2VN++fXXt2rVMzR8WFqYDBw4Y4p06dcpUnrzI0qkKMTExWc73xhtvWNxNMy9xdnZWkyZNDHFLjf3327BhgyFWsWJFVa1a1SZ1dejQwRC7evVqlnd6/+c//5ndknTy5EmdO3fOELfFogJJqly5sqFRSpI2b95sk/yPi8lkMsTubyDLKks5srpbv605OzvndgkAAOD//e9//zPESpYsqYIFC9psjl9++cXi54TXXnstz7w/ud8nn3yiqKgoSXdPlXvYqVUPnuDk6+srBweHTM1XvHhxw/ujB0/PAgAAAAAAAAAAAPBky95WzQDwFLK3t1fdunVVt25djRo1Srt379bGjRu1fft2xcXFWZVj69at2r9/v7744gu99tprVo3ZtWuXobnXyclJjRo1yvRryGssNS1nR/ny5W2aL6fUqFFDq1atMoudP39ecXFxcnNzszhm586dhtirr75qs5oqVaokPz8/Q/PRzp07s7TAoFy5ctmu6bfffjPEfH199dxzz2U79z1NmzZVSEiIWWzXrl02y/84+Pj4yNnZWUlJSemxS5cuKSkpKVtN8ufPnzfEihQpkuV8yPtiwmI09qVPc7sMAJng41dQQ3Z/nttl4Cl248YNi4tY//GPf9h0nuXLl1uMW1rAmttWrlyprVu3pl+PGzdO3t7eGT7/4A79lhZIW8Pd3d3s/WB2FlUDAAAAAAAAAAAAyHto/geAbHB2dlbjxo3VuHFjJSQk6LffftPGjRu1c+dOJSQkPHRsVFSUBg4cqOjoaKt2MD98+LAhVrFixSdu5+v4+HhFREQoMjJSd+7c0Z07d7Rjxw6bzuHo+GT88VahQgVDLC0tTSEhIapevbrhXnh4uC5evGiIV6lSxaZ1Va5c2dD8/6gTCTJii18LS9/7tn7NlvJdvXpVoaGhKly4sE3nyimOjo4KCAgw+3rFxsZq69atatGiRZbzbtq0yRB78cUXs5wPeZ8pLU1hF2/ndhkAgCfImjVrlJaWZoi3atXKZnNcvnxZ+/fvN8SLFCmiV155xWbz2EJoaKhGjBiRft2mTRs1a9bsoWNSUlLMrl1cXLI0t6ur60PzAgAAAAAAAAAAAHiyPRndkQDwBHB1dVXz5s3VvHlzxcbGavv27Vq2bJnFBpV7TCaTRowYoYIFC6px48YPzX/27FlDrHLlytmu29auXLmiQ4cO6fTp0zp9+rSuXr2q2NjY9P+Sk5Nzu8Q8o2zZshbjt27dshg/ffq0xXhAQIDNarqXb/PmzWaxc+fO2XSOzDhz5owhlhOv2ZKzZ88+Mc3/ktSiRQvDYolx48bpxRdf1DPPPJPpfCEhIfrpp58McWtPLAEA4ElkZ2eX2yU8UUwmk8Ud+QsXLqzatWvbbJ4VK1ZYPDGsRYsWsre3t9k8tvDpp58qIiJCklSoUCGNHj36kWPy5ctndv3gSQDWenBcRieKAQAAAAAAAAAAAHgy0fwPADnA3d1db7zxht544w2dOnVK06dP15YtWyw2q9xbAFC9enXlz58/w5wP7sQu3W0kyQsiIiK0fPlybd68WceOHcvtcp4Y+fLlk5OTk2FBRHR0tMXnL1++bIjZ29urYMGCNq3L0vfV9evXlZqaKgcHB5vO9Sipqam6du2aIW7rhvwCBQrIzs7O8HvU0u+7vOzNN9/U/Pnzzb5mt27d0j//+U+NHz9eNWrUsDrXrl279PHHHyspKcksXrt2bdWsWdNmNQMAkNdUqFDB7H1B0aJFc7mivG3ZsmUKCQkxxLt06WLTpvyVK1dajL/++us2m8MWfvnlF23cuDH9evTo0SpQoMAjxz34WfDe4oHMSElJMTT/P+wzJgAAAAAAAAAAAIAnD83/AJDDKlSooKlTp+rPP//UsGHDdOnSJcMzt2/f1oIFC9S/f/8M88TExBhinp6eNq01s5KSkvTTTz/pu+++U1RUlNXj8ufPLz8/Pz377LPy8/PT6dOntWPHjhysNO9yd3c3NPZk1Pxv6XvA3d3d5rvTWvq+MplMio2NlZeXl03nepTY2FiLi2Zs/b1vb28vd3d3w9fY0tc8L3N1ddWkSZP0zjvvKDExMT1+9epVde3aVbVr11aLFi30/PPPq3Tp0nJyckp/JikpSefOndPhw4e1YcMGHThwwJDfw8NDI0eOfBwvBQCAXNO7d2/17t07t8t4IsTGxmr8+PGGuJubm959912bzRMcHKzz588b4oULF85TixLDw8P12WefpV+/9tpratWqlVVjS5YsaXZ97do1xcbGyt3d3er5z507p9TU1PRrFxcXFStWzOrxAAAAAAAAAAAAAPI+mv8B4DF56aWXtGzZMr377rs6fvy44f7ixYvVt29fOTpa/tEcHx9viGWmEcTWrl69qr59++rkyZMW75coUUL169dXpUqVVKZMGRUrVkxubm5yc3MzvMaLFy8+tc3/rq6uhtj9Tdv3i4uLM8Ry4nsgo5xxcXGPvfnf0muWcu51P9jsn9H8eVn16tU1a9Ys9e/fX5GRkWb39uzZoz179kiS7OzslC9fPrm4uCghIcHiz5j7eXh4aN68eSpVqlROlQ4AAB6DM2fOaM2aNerQoUO2/1z/5JNPdPPmTUP8X//6l1W73Vtrw4YNFuONGjWy6ekC2fXZZ58pLCxMkuTj46OxY8daPbZ48eIqWLBg+niTyaTg4GDVrl3b6hzBwcFm15UqVcpTXx8AAAAAAAAAAAAA2UfzPwA8Rvnz59e3336r119/3dBUfOfOHR0/flzVqlWzONbZ2dnQnJtbjcnXrl1T165dde3aNcO9Ro0aqU+fPqpSpYrV+RwcHGxZ3hMlNjbWEMtoV3tnZ2dDLCe+BzLK6eLiYvO5HsXSa5Ysf92yy1Lzu6XFGU+C2rVra/Xq1Ro1apR27txp8RmTyaS4uDirvocqV66scePGqUKFCrYuFQAAPAYpKSnatGmTFi5cqD/++EPS3cXHy5cvV5kyZbKUc9SoUVq9erUh7ufnp0GDBmWr3gdt3rzZYrxx48Y2nSc7tmzZorVr16Zfjxw5UkWKFMlUjjp16mjdunXp15s2bcpU8/+WLVvMrl955ZVMzQ8AAAAAAAAAgK2kpaXpwoULOnPmjEJDQxUdHS17e3u5u7vLz89PFStWVNGiRR9bPUlJSTpx4oTOnz+viIgIJSUlycfHR88884yqVaum/PnzP7ZaclNSUpJCQkJ04cIFRUVFKTo6Wk5OTvLy8tKzzz4rf3//p+ZrATzJaP4HgMfM19dXHTp00IIFCwz3Dh8+nGHzv4eHh6E5OTo6OkdqfJiUlBR98MEHhsZ/Dw8PjR8/Xk2aNHnsNT3JMtP8b2m3+5iYGJlMJtnZ2dmspgd3v3/Y/DktozkzqjGrTCaTxZy5ebpGdvn6+mrmzJnq16+ftm7dmqUc/v7+6tSpkzp16vRUL9IBAOBJt3jxYg0dOtQsduPGDXXo0EEzZsxQrVq1rM4VFhamjz/+2NBofs+ECRNs+h7q1KlTOnPmjCHu5OSkevXq2Wye7IiIiNCwYcPSrxs1aqSOHTtmOk+bNm3Mmv/XrFmjoUOHys3N7ZFjb9y4oe3bt5vFWrdunekaAAAAAAAAAADIKpPJpF27dmndunXavXu3IiIiHvp8qVKl1Lx5c3Xo0EHPPvtsjtTz3//+V4sXL9auXbuUmJho8Tk7OztVqlRJb775plq1apWjvSIhISGaNWuWdu7cmd4zVL16dS1evDjH5kxMTNSWLVu0atUqHTx4UElJSRk+a2dnp+eee05t27ZV27Zt5eHhkWN1Acg6mv8BIBfUr1/fYvN/aGhohmOKFCliuH/79m2b1/YoS5Ys0fHjx81iTk5Omjdvnp5//vnHXs+TLCoqSmlpaYa4l5eXxect7RyalpamO3fuqECBAjarKzw83BArUKBAhrvw5yQXFxd5e3srMjLSLB4WFmbTeSIiIiz+WjzOVea2lJycrCVLlmj+/Pm6evXqQ5+1t7eXm5ubPD095e3trQoVKiggIEAvv/yynnvuucdUMQAASE1NVXJyssV7lk4oyoz27dtr7ty5hib6mzdvqkOHDuratau6d++uihUrZpjj4sWL6e8vMlqE/Mknn9i8IX/Tpk0W41WrVs1w0ezj9vnnn+vmzZuS7i7kHT9+fJbyNGnSRH5+frpy5Yqku+95Z82apYEDBz5ybFBQkBISEtKva9SooYCAgCzVAQAAAAAAAABAZm3cuFFTp07VhQsXrB5z4cIFzZw5U3PnzlX79u01ePDgDHtmMuuvv/7SyJEjdejQoUc+azKZdOLECY0cOVLTp0/XsGHD1LJlS5vUcc+5c+f07bffatOmTTKZTGb37v0bg62ZTCatXr1akyZNsrrHzGQy6fjx4zp+/Li+++47DRw4MEsbHgHIWTT/A0AuKF68uMV4VFRUhmPKlStnaLo/duyYTeuyxvz58w2xwMBAGv+z4NSpUxbjvr6+FuNly5a1GD9x4oTq1q1rs7pOnjxpiJUrV85m+TOrTJkyOnz4sFnsxIkTNp0jJCTEYjw3X3dWXb16VX379jX7dXRwcFC9evVUt25d+fv765lnnlH+/Pnl7OycK4s6AAB4Gr300ku6fv16lsY2bNgww3uOjo768ccf1aBBgwyfcXNz09y5c9W2bVvduXPH7J7JZNLChQu1cOFCVahQQRUqVFCRIkXk6emp2NhYXbt2TSdOnHjkX9Z369ZNH374YWZellV27NhhMZ6Z0wpy0rZt27RixYr06+HDh2f4ee9RHB0dNWTIELOv45QpU1SrVi3Vrl07w3Fr167VokWL0q/t7OzMTiIAAAAAAAAAACCn3Lx5U4MHD9b+/fuznCMlJUVLly7V77//runTp6tSpUrZqmnJkiUaPXq0UlJSMj02NDRUgwYN0vbt2zVu3Lhs91RcvXpV06dP15o1a5SampqtXJkRFham/v3768CBA9nK8dlnn+mPP/7Q119/TX8JkIfQ/A8AFiQmJsrFxSXH8me0c6ejY8Y/lgMCArR27VqzWEhIiJKSkh7bm6uQkJD0XSjvcXR0VOfOnR/L/H83lhrY3dzcMmzyL1GihLy8vAyLRIKDg23a/G+prsqVK9ssf2ZVrlzZ0PwfHBxs0zkeXFgj3T3tIKuNW7klMjJS3bp1M9vtv1SpUpo+ffoTuZABAIC/k6w2/j9KSkqKVTvClC9fXosXL1bXrl0z3N3l1KlTGS5QzYidnZ0GDBigjz76KFPjrBEdHW14H3hPjRo1bD5fZkVHR+uTTz5Jv65bt666dOmSrZzt27fXxo0btXnzZkl3f327deumsWPHqmPHjrKzs0t/Njk5WfPmzdO4cePMcvTo0UM1a9bMVh0AAAAAAAAAADzKwYMH9cEHHyg8PNzifS8vL1WrVk2lS5eWm5ubIiMjdeHCBR0+fNjsNNt7rl69qrffflsLFiyQv79/lmoKCgrSrFmzLN4rUqSIXnzxRRUvXlyOjo66ffu2goODdfr0acOz69ev182bNzVnzhzly5cv03Xcvn1bM2fO1JIlSzI8+TmnnD59Wr169TLrHbmnevXqatKkiapUqSI/Pz+5uroqIiJCN27c0Pbt27Vu3TpFRESYjdm0aZNiY2M1c+ZMOTg4PK6XAeAhaP4HgPuYTCYtWLBAU6ZMUcuWLfXll1/myDwZNf4ULFgwwzH16tXT2LFjzWLJycnasWOHmjVrZtP6MmKpKbxYsWIqVKhQtvKGhoZma/zjFh0dbZM8llY9BwQEZPhG2d7eXnXq1ElvBLpn27Zt6tOnj01qunz5ss6ePWuI169f3yb5s+If//iHFi5caBa7dOmSTp8+rfLly9tkjt9++80Qq1evnllz1ZPg+++/N3x4++KLL2j8BwAAkqQqVapow4YNeu+992yymLJQoUIaN26cWrRoYYPqjP773/9muCtPQEBAjsyZGV988UX6Zzs3NzdNnDjRJnmnTp2qf/7zn+lHEcfHx2vgwIGaMmWK6tSpo4IFC+rGjRvatWuXbt26ZTa2adOmGj58uE3qAAAAAAAAAAAgI3/++afee+89xcXFGe69+OKL6tGjh+rXry8nJyfD/fj4eK1atUozZswwbFgUGRmpfv36adWqVfL09MxUTT/99JPFxv+yZcvq448/Vv369WVvb2+4HxISosmTJxt6Rw4cOKAhQ4bom2++sbp/JDo6WrNnz9bChQsz3Bw2J127dk09evQw/PtB1apVNXz4cFWtWtUwpkCBAipTpozq1Kmjfv36adSoUdqwYYPZM7t27dLMmTPVt2/fHK0fgHWMP8kA4CkVFham999/X2PHjlVcXJyWL1+e4UrQ7Nq5c6fF+MMamUuXLq0KFSoY4kuXLrVZXYsWLdKiRYt0584di/ct7RCa3cZ/SdqzZ0+2czxOlnaJz6w7d+5YbDh/6aWXHjquadOmhtixY8cUEhKS7ZokadWqVTKZTGaxQoUKPbKunFSzZk2LH+iWLVtmk/yXLl3Sn3/+aYhndVGNpQ+2j8uxY8cMsbS0tFyoBAAA5FV+fn5at26dPvnkE3l4eGQph4uLi9577z3t3r07xxr/pbt/kWyJj49Prp/QtHv3bv3888/p18OGDdOzzz5rk9weHh5asmSJ2rZtaxa/ePGiFi9erGnTpmnFihWGv7jv0aOH5syZY/EfUgAAAAAAAAAAsJWLFy8qMDDQ0B/h7e2tSZMm6eeff1aTJk0y/PvqfPnyqUuXLlq3bp3q1q1ruH/p0iVNmzYtUzUdPHjQsKmqJL322mtavXq1GjZsaLHxX5L8/f01a9YsDRs2zNDk/+uvv2r27NlW1zFy5EjNnj07Vxr/4+Pj9f777xv+/aBTp05avHixxcb/B3l7eysoKEjvvvuuWbxatWpWjQfweLDzPwD8v27duhl2PA8KCpKbm5u6detms3lu3rypTZs2GeL29vaqUaPGQ8d27dpVI0aMMIv997//1aFDh1S9evVs1fXnn3/qyy+/VFpamsaNG6fGjRtrwoQJcnZ2fui4yMjIbM0bFRWlRYsWZSvH47Z+/Xp98MEH2TrKavny5YZjvezs7NSuXbuHjnv11VdVuHBhw2kJ3333naZOnZrleiQpJiZGy5cvN8T/j737jK6q2v4+/stJ7x0CAQOEDtKlV0XpgqhIE1FA5IpYQCwoIiJcvRQpKh1FEBBEBUQUBenFAgJCqAlNCAmppLfnhX94jPsknCQ7hPL9jHHHuJnrrDnnSSIjgbnX6tOnjxwcSu5HBhcXFz3yyCNatGhRrvhXX32lIUOGqFSpUkXKv3DhQsMDD3fddZfatm2b7z43Nzer8QsXLlh9UMcW6enpVv98sFVwcLAhNnLkSP3nP/9Ry5YtVa5cuRL9WgIAcCcrU6ZMnjeAFYWDg4PKlClT4D0jRozQ448/rsWLF2vt2rU6cuRIvnucnJx0991366GHHtJDDz0kHx+forRtk7z+YrxZs2bFXvt6Nm7cKEmyt7dXp06d9OSTT5qa393dXbNmzVKvXr00c+ZM7d692+pDnfb29mrTpo1eeOEFNWzY0NQeAAAAAAAAANz8Fi5YoISEhJJuA/nw8vLSU/8apL6VZWZmavjw4UpMTMwVL1u2rObPn6/Q0FCbc/n5+enjjz/WoEGDtHfv3lxrn3/+uYYOHSo/P7/r5klPT9fYsWOVlZWVK96mTRtNmTLF5vmegQMHKisrS++//36u+IcffqiOHTsqJCTkujms/duGvb29WrRooZ49e2rHjh1WZ3PM8MEHH+j48eO5Yj169NDbb79t880FV40ePVr29vaKj49Xnz59VKNGDTNbBVBETH8BwP+pVKmSYfhfkiZMmKC4uDgNHz68wD8I/VtaWppeeeUVww/AktSyZcvr/sDavXt3ffjhh4qMjLwWy8nJ0WuvvaZvvvlGLi4uheorNjZWo0ePvjZMkpGRoYMHDxrer6+vr2FvRESEYmJibPph+9+ys7M1ZswYqzcK3MzOnDmjTz/9VE899VSh9p87d04ff/yxId68eXPddddd+e51cnLSE088ocmTJ+eKb9iwQZs2bdK9995bqJ4kacqUKYaHCjw9PdW3b99C5zTLgAED9PnnnystLe1aLDExUePHjy/w097/9Mcff1i9PePpp5/O84nvq3x8fGSxWAxDWLt371abNm0K3MuVK1c0YsQI7dixo8B7r+rfv79Wr16d68GSy5cv65133pH09wMmHh4ecnJyyvfPMzs7Ozk7O8vT01N+fn6qUaOG6tatq7Zt2173gSAAAGCdtZuGSpqvr6+ef/55Pf/884qKitLhw4d15swZJSYmKiMjQ97e3vL29lZISIhq1aolZ2fnG9rf1KlTNXXq1Bta01bjx4/X+PHji71O69at1bp1a0VFRen333/XmTNnlJSUJHd3d4WEhKhhw4by9/cv9j4AAAAAAAAA3JwSEhIUFxdX0m3gDhIXF6eLFy/minl7exd48P8qJycnTZgwQV27dlV6evq1+NXDE/v163fdHJ999plOnDiRKxYYGKj333+/wAd7Dho0SHv27NGWLVuuxdLS0jRp0iTNnj27QLkqVqyonj17qnv37ipdurQkGfo0y8GDB7V48WJD/cIM/l81cuRIM1oDUAwY/geA/zNhwgQdPnxY58+fN6zNmjVLBw8e1Ntvv13gUzWvCg8P1+jRo3XgwAGr60OHDr1uDhcXF7366qt68cUXc8UjIiL08ssva+rUqXlemZWX5ORkDR8+3PC+33jjDUMuaz+kZ2dna8mSJRoxYkSB6mZmZurVV1/VDz/8UKB9N4vJkyerfPnyuv/++wu0LykpSaNGjTJcfSbJ5tNCn3jiCa1atUoRERG54q+//ro+/fRTVatWrUA9SX/fZrB8+XJD/MUXXyzUgx1mK1u2rIYMGWIY9N+4caPmzp2rp59+usDYyI61AAAgAElEQVQ5IyMjNWrUKMPwfp06dfTwww9fd7/FYlHlypV17NixXPHVq1dr+PDhcnd3t7mX06dPa/jw4YZcBVW1alXNmTNHr7zyiuFBDunvh4WsPXx0PVcfSPDx8VHfvn01bNgwHgIAAOA2ExgYWKgHGHFjBAYGqkOHDiXdBgAAAAAAAADgDhcQEKD169dr8uTJ+uabb5STk6Nx48YVavD/qpCQELVu3Vo//vhjrviePXuuO/yfnp6uRYsWGeIvvvhioW8xfuONN7Rz585cBy9u3rxZR48eve5MTuPGjeXr66uePXve0Bt7Z82aZZh/GTVqVKEPkgVwc8v/SFsAuIP4+Pho1qxZ8vb2trq+ZcsWde7cWePHj9fBgwcNPzBZk56erq1bt2r06NHq0qVLnoP/PXr0UKNGjWzqs3PnzurYsaMh/sMPP2j48OEFeqL70qVLeuqppwynkD766KNWT5CvW7eu1R+M582bp127dtlc9+zZs+rXr5/Wrl1r856bTVZWll566SUtW7bM5j1xcXEaPHiw9u3bZ1jr1q2bWrVqZVMeJycnTZw40fBwRmxsrJ544gmr+fOzevXqXDc/XNW8eXP16dOnQLmK09NPP61atWoZ4lOmTNGMGTMM17fl58yZMxowYIDOnDmTK+7m5qZJkyZd99T/q6wNyMXFxWns2LHKycmxKceXX36phx56qMiD/1e1aNFC33//ve655x5T8v1TXFycPvroIz3yyCNWHy4AAAAAAAAAAAAAAAC3t8DAQL333nv64osv9O6776pz585Fztm8eXNDLCws7Lr7vv76a8P8QpkyZdSjR49C93LXXXepU6dOhvj8+fOvu3fgwIF69913b+jgf1hYmH7++edcsXr16ql9+/Y3rAcANxbD/wDwDzVr1tSiRYvyfPIzOTlZS5cu1SOPPKKmTZuqf//+eu211/Tf//5XH3zwgSZPnqzx48frpZdeujbQP2TIEH3zzTd5DibXqlVLY8eOLVCfkyZNUvXq1Q3xn3/+WR07dtSyZct05cqVPPenpKRo6dKlevDBBw2D4g0aNMizH3t7e/Xu3dsQT09P15AhQzR37lyrJ9pfdeHCBU2aNEndunXT/v37r8W7dOmS556bTe/evVW7dm1Jf7/vcePG6cknn9ShQ4fy3JOamqqVK1eqY8eO+v333w3rAQEBGjNmTIH6aNiwod544w1DPDY2Vn369NHYsWN19uzZfHMcPnxYgwYN0muvvWb4/gwJCdG0adNsHoK/EZydnTVr1iz5+/sb1j788EP17NlT27dvz/chgJiYGM2aNUtdu3Y13JxgsVj0v//9T5UrV7a5p759+1o9AX/dunV6/vnn8xyQz8nJ0fbt29W7d2+9/vrrSkpKkvT398KoUaNsrm/N2bNnNWbMGMNDPWY6evSoBg8erJSUlGKrAQAAAAAAAAAAAAAAbl516tTRI488YkquoKAgQ+zy5cvX3ff1118bYg8//LDs7e2L1E+vXr0MsY0bN+Y7F1VSrB1c2r9//xLoBMCN4lDSDQDAzaZWrVpatWqVnn/+ef355595vi4+Pl6//PKLfvnll0LXql+/vj7++GO5u7sXaJ+bm5sWLVqkIUOGGIbOY2NjNW7cOE2cOFFNmjRRaGioAgIC5OzsrLi4OIWFhWn37t3Xho3/3c+8efOsDjNfNWTIEH399de6ePFirnhGRoamTJmiefPmqVmzZqpataq8vb2VnJysS5cu6bffflNYWFiu09AdHR31zjvv6KGHHtK3335boM9BSWnYsKGGDRumvn376vz585KknTt3aufOnapataruuecelS9fXhaLRdHR0YqIiND27dvz/OHfzc1NH374oXx9fQvcS+/evZWRkaF333031+c1JydHK1as0IoVK1S9enXVr19fAQEB8vb2VmxsrC5duqTdu3fn+XBA1apVtWDBgkJff1acypYtq88++0yDBg3ShQsXcq2FhYVp0KBB8vX1VYsWLVS2bFn5+/srPT1dUVFROnr0qH799VerDwc4Ojpq8uTJBX7quWzZsnr66ac1a9Ysw9r333+vLVu2qHnz5qpdu/a1/x5Onjyp3bt3G/4buvvuuzVr1izFxsZq8uTJBerjqmXLlum9997LNZTfokUL9evXTw0aNLD5+yw7O1tXrlzRmTNntGfPHi1duvTa9/tVYWFhWrBggYYPH16oXgEAAAAAAAAAAAAAAKS/5zb+LTU1Nd89kZGRVg/hvP/++4vcT8OGDeXn56eYmJhrsZSUFP3888+m3HRglqysLP3www+5Ys7OzmrXrl0JdQTgRmD4HwCsKF++vJYvX66PP/5YCxcuvO4PkwXl5OSkIUOG6Jlnnsl30D4/fn5+Wrx4sd5++2198803hvX09HRt27ZN27Ztsylfz5499dZbb8nFxSXf13l4eGju3Lnq16+fEhMTDesJCQn6/vvv9f333+ebJzg4WFOmTFH9+vVt6u9mERgYqKCgIC1ZskRDhw7VsWPHrq0dO3Ys18fX4+fnp48//lj16tUrdD+PP/64ypYtqzFjxig2NtawHhYWZtM1aFd17NhR77zzjry8vArdU3ELDQ3VihUrNHr0aO3evduwHhsbq3Xr1tmcLzg4WP/73/8KfeXa8OHDderUKa1fv96wlpqaqk2bNmnTpk157rdYLHrqqaf0wgsvyNHR0erX0RYTJkzQZ599du1jZ2dnTZgwQQ8++GCBc1ksFnl5eal27dqqXbu2evfureeee047duzI9bpPP/1UzzzzjBwc+JESAAAAAAAAAAAAAAAUzj+H7K/y8PDId8/mzZtzHZYp/T2LU7169SL3Y7FY1LhxY23YsCFX/Keffrqphv/37t1r+Ny1aNHiup87ALc2S0k3AAA3KycnJz3//PP6/vvv1b9/f3l6ehY5p6Ojozp06KA1a9ZoxIgRhR78v8rd3V3vv/++PvzwQ4WGhhYqR9myZTVt2jRNmjTpuoP/V1WrVu3aqfIF5eLiosGDB2vdunW33OC/9Pfwv/T352358uVWr/myxQMPPKA1a9YUafD/qvvuu0/r1q3To48+avVJaFtUqFBB06ZN0/Tp02/qwf+rSpcurU8++UTjxo1T6dKlC5XDxcVFTz31lNasWVPowX9JsrOz0+TJkzV06FDZ2dkVaG/dunX1xRdf6OWXXy70106S5s6dm2vw32KxaPr06YUa/LfG3d1dU6dONfw5mJCQoH379plSAwAAAAAAAAAAAAAA3Jn+/PNPQ6xUqVL57rE2r1C3bl3TerI213SzzUhYOzTTjFkkADc3jmkFgOsICgrSm2++qZEjR2rjxo3atm2bdu3apejoaJv2+/j4qGbNmmrbtq26desmPz8/03ts37697r33Xv34449au3attm7dmu9tBRaLRQ0aNFCPHj3UrVs3m4f+/yk0NFQrV67UunXrtGTJEh0+fNjwNO0/ValSRV26dFGvXr3k7+9vWK9Tp44OHDhw7ePg4GCb+qhatarOnz9/7WN3d3dVrly5AO8kf5UqVdKpU6ckSSEhIQoJCclV65133lGvXr00b948bdmyJd/Pu5eXl+677z717dtXderUMa1HSQoICNCECRP0zDPPaPXq1dqwYYNOnjyZ7x5nZ2e1atVKXbp0UYcOHWRvb1/o+r6+vgoMDFRUVNS1WHBw8LWHJYqDnZ2d+vTpo4cffljr1q3Td999p127dikjIyPffTVq1FCnTp3Us2dP0/qzt7fXSy+9pI4dO2rOnDn66aef8uzD2dlZrVu31mOPPaZWrVoZ1n19feXm5qbk5ORrsbvuuivP2ufPn9eMGTNyxXr06GH6FW4+Pj7q0KGDVq1alSseHh6ue+65J9+9oaGh2rt377WPXVxcVLNmzSL39O+8zs7OqlWrVpHzAgAAAAAAAAAAAACAG2fHjh2G2N13353vnv379xti1apVM62nqlWrGmLnz59XVFRUsc7DFIS1z4G1vgHcXhj+BwAbubm5qXv37urevbskKSoqSuHh4Tp37pyuXLmi5ORk2dnZycPDQx4eHvL29lZoaKjKly9/Q/qzWCx64IEH9MADDygjI0MnT57UsWPHFBcXp6SkJDk5OcnLy0shISGqVauW3N3di1zTyclJPXv2VM+ePRUTE6M//vhDkZGRSkhIUHZ2tjw9PVWuXDnVrFnzuj/0rly5slA9zJ49u1D7bPXdd99d9zV33323ZsyYoZSUFP35558KDw9XXFyc0tPT5ebmpsDAQIWGhqpatWqyWIr30p1y5cppxIgRGjFihGJiYnTkyBGdP39eiYmJSk9Pl7u7u3x8fFSlShVVrly5SKfN/5O7u7u2b99uSq6C+uf3YXp6uo4dO6aTJ08qPj4+1/f+1e9Fb2/vYuulZs2amj59ulJTU7Vv3z6dPXtWcXFxysnJkZ+fnypVqqS7774731s/goKCCvSk+FdffWV40KBv376Ffg/5sfZLsrWr9/5t3LhxGjdunOn9FFdeAAAAAAAAAAAAAABwY/z+++9WD7hs3bp1nntSU1N1+vRpQ7xSpUqm9VWhQgWr8SNHjtwUw/85OTk6ePCgIc7wP3D7Y/gfAAopMDBQgYGBaty4cUm3YuDo6Kjq1aurevXqN6ymn5+f6SeN32pcXV3VqFEjNWrUqKRbkfT316RFixYl3cYN5eTkpNq1a6t27dol2oeLi4uaNWumZs2aFXutQ4cOGWJm/jL7T9Zuh8jvQQYAAAAAAAAAAAAAAID8zJgxwxDz9vbWvffem+eev/76Szk5OYZ4UFCQaX2VKlVKFotF2dnZhto3g+joaCUlJRniN8ODCQCKV/EePwwAAIBilZ6ebohduXKlWGpFRkYaYjfqdhMAAAAAAAAAAAAAAHB72bBhg3bt2mWIDxo0KN/DCPMawDdz8N3BwUF+fn42177Rzp8/b4g5OTlxiCNwB+DkfwAAgFtY6dKlDbG9e/eqW7duptfatm1bro/t7e3VsGFD0+sAAAAAAAAAAAAAAIDbW2RkpN566y1DvFy5chowYEC+ey9dumQ17uXlZUpvV3l4eCg6Otqm2jeatYcQ3N3drb42IiJCO3bs0MGDBxUWFqbY2FglJCQoLS1Nbm5u8vb2VoUKFVSzZk21bNlSjRo1kr29fXG/BQCFxPA/AADALaxp06ZavXp1rtjs2bN177335vlLXWFs3bpVhw8fzhVr166d1afcAQAAAAAAAAAAAAAA8pKWlqbhw4crLi4uV9xisei9996Tq6trvvtTUlKsxs2ck5D+Hv63tfaNlpCQYIi5uLhc+/+XL1/Wl19+qW+//VZhYWF55klMTFRiYqLOnTun7du3a+7cuSpTpoz69eunAQMGyNnZuVj6B1B4lpJuAAAAAIXXoUMHw+n/J06c0PDhwxUTE2NKjbCwML322mu5Yo6OjnrppZdMyQ8AAAAAAAAAAAAAAO4MOTk5ev3113XgwAHD2ogRI9SoUaPr5shrAN/R0bHI/V0vX2pqqqk1CstaH7GxsVq/fr1eeukltWnTRlOmTMl38D8vFy5c0OTJk9WlSxf98ssvZrQLwEQM/wMAANzCXFxc9O677xquW9u5c6e6du2qTz/9VImJiYXKnZycrHnz5qlPnz65rrGzs7PT+PHjFRoaWqTeAQAAAAAAAAAAAADAneX999/XunXrDPFOnTpp2LBhNuVIS0uzGndwcChSb7bku5mH/1NTU/Xiiy/q22+/VUZGhmHdx8dHjRs3VqdOndSnTx91795dLVq0yPPGhLNnz2rgwIH68ssvTe8fQOGZ+ycdAAAAbrhWrVpp8uTJeu2113L9cnf58mVNnDhRU6dOVYMGDdSoUSNVqVJFwcHBKlWqlFxdXeXs7Cw7OzulpqbqypUrOnv2rE6dOqVdu3Zp+/bthgcHnJ2dNX78ePXo0eNGv00AAAAAAAAAAAAAAHALmzt3rhYuXGiIN2rUSP/9739tzpPXkH9WVpbh8MSiyMrKMsTMvl2gsLKzs6/7GovFokaNGqlz585q3LixKlWqJDs7O8PrMjIytH37ds2cOVN//vlnrrXMzEy98cYb8vT01AMPPGBa/wAKj+F/AACA20Dnzp1VtWpVTZw4UTt27Mi1lpqaqp07d2rnzp1FqtGmTRu9/PLLqlKlSpHyAAAAAAAAAAAAAACAO8vChQs1ZcoUQ7x69eqaPXu2XFxcbM6V12szMzNNHf7PzMw0xFxdXU3LXxT5fb5cXFzUp08fPfnkkypduvR1czk6Oqpdu3Zq06aNpkyZovnz5+daz87O1pgxY1SnTh0FBQUVuXcARcPwPwAAwG2icuXKWrhwocLCwrRkyRJt3rxZ0dHRRcrp4+OjNm3aqHfv3mrQoIFJnQIly79CoIKqlZFfSIBcPF3l6OKo9JR0pSWmKubsZUWdjNSl4xdLus1C8S3np6AawQqoEChnTxc5uTopPTldKQnJuhwepchjFxR7Lqak2ywxbr7uqtg4VN5lfeXh7yk7i52SYq4o4WK8wveeUOKlhJJuEQAAAAAAAAAAALjtfPLJJ3rvvfcM8cqVK2vBggXy9PQsUL68Bt+TkpLk7OxcqB6tSU5Otrn2jZbX+6xfv76mT59u09D/v1ksFr388stydnbWhx9+mGstISFBH3zwQYFuaABQPBj+BwAAuM1Ur15dEyZMkCQdP35cv/76q8LDw3X27FmdO3dOCQkJSk1NVUpKijIyMuTs7Cw3Nze5ubkpICBAoaGhCg0NVe3atdWgQYM8r8sDiqJq25q67/mOqtauply93CRJ6SnpmlD/NUUeu2BqLTs7O9W4/2417tNc1dvXlm+w33X3JMVc0fFtYfp91R7t++pXpSenmdqTmUJbVFPTx1uqdse68rsr4Lqvj46I0pGNB7Vr8Tad3HG02PvzLuOj9i92VsNHm8i3vL8sFoskae24VVo3fnWx1/cI8FTzJ9uoaf+WKlOr3LX61kQev6hflu3QtnmbFXf+zn1IAgAAAAAAAAAAADDL0qVLNWnSJEO8cuXKWrx4sfz9/Quc08fHx2o8MTFRfn7X//dgWyUmJhpiZuYvCg8PD6vxSZMmFWrw/5+ee+45/fLLL9q7d2+u+Jo1a/TCCy9w+j9QwpjkAgAAuI1VqVJFVapUKek2gGuqtq2pbm89rKptahjWnFyd5F3Gx7ThfzuLnZoNaK0ubz6kgIqlCrTX3c9D9bo3Ur3ujZQSn6xNM7/XxinfKiXeeLJDSanVoY56TOytu+pXKNC+gAqBajXkXrUacq/O/nFaX49ZoUPr95ven1eQjzq++qBaDblXTq5OhnX/CoGm1/wnJzdndXnzId33Qic5OjvatKd0lSB1HfuwOr3eQ1vn/KSvx6xQakJKsfYJAAAAAAAAAAAA3K5Wrlypd955xxCvWrWqPvnkk0IN/ktS2bJlrcajo6MVEhJSqJz/lpOTo5gY44FhedW+0cqUKWOI2dnZmfL+7ezsNHLkSD322GO54llZWdqwYYMGDhxY5BoACo/hfwAAAADFLr+h/+IQfHd5DfxkWIEH461x9XZTlzceUstBbbV02EL9sea3ojdYBG4+7howf4jq92xc5Fzl64bouXWj9dvKPVoydL6S45KKnPN6Q/83QsUmlfX0ihE23YRgjb2Dvdo9+4AaPNxY8/vO0rGfD5vcIQAAAAAAAAAAAHB7W7NmjcaOHaucnJxc8Vq1amnBggXy9fUtdO7g4GCr8cjIyELn/LeYmBhlZGTYXPtGs/YQQk5OjrKzs/O9Dd1W9erVU6VKlXTq1Klc8d27dzP8D5Qwhv8BAAAAFJuqbWqo61sPq1rbmjesZqsh9+qxGU/YfNq7rbzL+Oo/X4/U12+s0HcTvzE1t61KVyurEd+9ooA8Ts3PysxSxN6TOrMvQjGno5Weki5XL1d5BHjqrgYVFdKoopzdXQz7Gj7aRMF1ymta+4mKO288vcIWXkE+6vhKN7V6+r4SG/qXpMZ9W2jA/CFydCl6D95BPnp+w6taOmyBdi7aYkJ3AAAAAAAAAAAAwO1vw4YNevXVV5WdnZ0rXr9+fc2bN0+enp5Fyu/n5ycfHx/FxcXlioeHhxcp7z9FRERYjVeuXNm0GkURFBQkZ2dnpaWl5YrHx8cX+kaFf2vevLlh+P/YsWOm5AZQeAz/AwAAADBdSQz9S1LP//ZWh9EP5vuarIxMnd1/WheO/KXEqHhlpmXKM9BLnqW8VK5uSJ6D9Vf1mPCYMtMytXHKt2a2fl2lKgdp5KYx8i5jPAEjKTZJG6es0/Z5m5UYlZBnDkdXJzV9vKU6vNxNgaGlc60FVSurlza9oUmN31BKfLLNfd0sQ/+S1ODhxnpy8bB8T7I4sy9CZ/dHKCEyXpLkVdpb5etVyPOWCAcnBz0+b4gy0zK19/MdxdE2AAAAAAAAAAAAcNvYvHmzRo0apaysrFzxJk2a6OOPP5a7u7spderWrastW3If4GXmYPrJkycNMV9fX1WoUMG0GkXh4OCgmjVrat++fbniERERpg3/lylTxhCLjY01JTeAwmP4HwAAAICphiwfoUa9mt7wug9Nyn/w/88Nf2jHop91aP1+pSWl5fm6cnVD1KRfC7Ub/kCep8f3/G8fndp9Qid3HC1y37ZwdHXSM6tftDr4/8ea3/TpoLlKupx43TwZKenaNneT9izZod4zn1CLJ9vmWi9dJUgDFz2jj3tOtamv+j3v0VOfPVviQ/+SVKlpFT25+D9WB/+zMrO0dfaP2jjlW10+HW11v99dAWr/Ume1HdZe9o65f1W2WCwasOBpxZ69rOPbwoqlfwAAAAAAAAAAAOBWt337do0YMUIZGRm54q1atdKsWbPk4mK8pbywrA3/79+/37T81nLVq1fPtPxmqFOnjmH4/+DBg2rYsKEp+b29vQ2xf39tAdx4eR+HCAAAAACFUOP+u/NcS72Sqr3Ldiop5oqpNUtXLaOOr1gf/D/682FNaPCaZnR+T7+t3JPv4L8knfvjtL4c/bnG1RqtIz8esvoai71FfWYNLGrbNuv+zqMKrl3eEN+x6Gd9/NBUmwb//yk9OU2LB83Vljk/Gtbq9Wik2p1s+0uryi2r5Tv4f2LHUZ24AQ9IOLo66anP/mO1l9jzMXq/xTgtH/FpnoP/khRzJlpfvLBY7zV/S7HnLhtrODtq4KfD5OzubGrvAAAAAAAAAAAAwO1g7969evbZZ5Wenp4r3r59e3300UemDv5Lfz9Q8G8XL17UqVOnTMm/d+9eQ6x169am5DZLs2bNDLGdO3ealv/KFeO/63t4eJiWH0DhMPwPAAAAwFR2drk/zs7OVtimP7Vo4McaXWaYFvSbpXMHzphaM/LYBcMge3pympY8M19T752gs/tPFzhndPglzer6vg6s+93qevm6IarRvnah+i0I/5AAtX32AUP81K7jWvL0fOXk5BQ697JnF1n9WnR58yGb9tv9+4utvz9v3074Sm9UeVH/a/W2ts/fXOj+bNX9nUcVGFraEI+/GKf/tXpbEb8Yr+TMy+nfwvV+y7cVez7GsBZQIVDd332sSL0CAAAAAAAAAAAAt5t9+/Zp6NChSk1NzRXv0qWLpk+fLicn828Sr1OnjoKDgw3xjRs3Fjn38ePHdfbs2Vwxe3t7dezYsci5zdSiRQt5enrmiu3cuVPx8fGm5A8PDzfEypYta0puAIXH8D8AAAAAU2VnZUuSLh79S1+/sUKvV3xe09q/q92Lt1331P2i+HzYQm2bt0nS/5323nKcts3dVKScmemZmvPodF0M+8vqesNeTYuU3xatht4nR2dHQ3zZc59c+1wXVk52jr56fbkhXqlpFZWudv2/tLlaPzUxRTsXbdGUdu9oTOgLWjN2paJORhapN1sFVCyle0cY/5ItKzNLcx75QJcjogqcM+ZMtGY/PE1ZGZmGtbb/ud/qgwYAAAAAAAAAAADAnejgwYMaMmSIkpOTc8V79uypyZMny8HBodhqd+3a1RBbtWpVkQ5Qk6TVq1cbYi1atJCfn1+R8prNyclJ7du3zxXLyMjQF198YUr+Xbt2GWK1atUyJTeAwmP4HwAAAICplgydr/eav6W3aozSdxO/UezZyze09tJhC/Res7GFOu3fmsy0DK19+0ura5WaVjGlRn7u6d3cEAvfc0JnfjeeslAYh384qKTYJEO8+r01r7t327zNmt93pkYFDdOng+bo2JYjpvRUEB1e6SZ7B3tDfPPM73Vy57FC543Ye1I/TltviNs72Kvjqw8WOi8AAAAAAAAAAABwuwgLC9PgwYOVmJiYK96vXz9NnDhRFkvxjqj279/fcKvAmTNntG7dukLnTEhI0MqVKw3xp556qtA5i9PAgQMNsU8//VRXrlwpUt69e/fqzBnjLfJt2rQpUl4ARcfwPwAAAABT7Vv9i07tPl5i9bfO+Umx52JMzXlg7e9WT4H3LVe8Jzv4lPVVQIVAQzxs85+m1cjOzNK5/RGGePn6Fa67N/LoX/pl+S5lpKSb1k9BeJbyUrMBrQzxlIRkffvOV0XOv37iN0qJTzbEmz7eSt5lfIqcHwAAAAAAAAAAALhVnTx5Uk8++aTi4uJyxQcNGqSxY8fKzs6u2HsoVaqUHnroIUN88uTJhgcSbDVz5kzD3nr16qlZs2aFylfcqlevrtatW+eKRUVFaerUqYXOmZmZqSlTphji/v7+DP8DNwGG/wEAAADgOtKT05QYZfzLISc352KtG1Qj2Go85oy5tynEX4w3xDwDvUytURwaPdZMji5OhviuT7cqOc54m0FBpSakaOcnWwxxBycHqzcyAAAAAAAAAAAAAHeC06dPa+DAgYqJyX0o27PPPqvRo0ff0F6ef/55+fjkPrjr4sWLGj16tLKzswuUa8uWLVqyZEmumMVi0ZgxY4rcZ3F65ZVX5OjomCu2dOlSrV9vvOncFjNnztT+/QFZwikAACAASURBVPsN8WeeecZQB8CNx/A/AAAAANjA0dU4ZJ50uXCnRdjKw9/D+kJOjql1HJ0dDLHifrDBDPc8Zv10jd2fbTetxp4l1nM1yqM2AAAAAAAAAAAAcDs7c+aMnnjiCV26dClX/LHHHtOIESNueD/+/v567bXXDPFNmzZp5MiRSktLsynP1q1b9cILLxgeGBgwYIDq1KljSq/FpXLlynrmmWcM8dGjR+vHH38sUK7Fixdr7ty5hnitWrXUp0+fQvcIwDzGCQ8AAAAAQC7+FQLl7utuiF84fL5Y69pZrF+F6V3W19Q61m4YSIlPNrWG2bzL+Khi08qGeOz5GJ3+9ZRpdU7/Fq7Yc5flW84/V7xi41D5lvNT7LmYPHYCAAAAAAAAAAAULy+vm/8m5zvd7fY1Sk9P1+DBg3XhwgXD2ooVK7RixQrTatnZ2Wn8+PHq1avXdV/bo0cP7d+/X8uWLcsVX79+vcLCwvTyyy+rbdu2sliM52VHRkZq9uzZWrZsmXL+dQhb48aNNXLkyKK9kX+w9iBCenq6srOzrfZWEMOGDdOhQ4e0efPma7GMjAw999xzGjJkiJ599lk5O+d9AFx8fLwmTpyor7/+2rDm7e2tadOmceo/cJNg+B8AAAAArqPp4y2txsM2/VmsdZNikqzGq7auYVqNgIqlVMbK8P+FI8X7YENRVW5ZzepfgB3fcsT0Wse2hKlJvxZWe/hl+S7T6wEAAAAAAAAAANjiqUGDSroF3GEOHz6s06dP35BaOTk5ioyMtPn1b775pmJiYvT999/nip86dUrDhg1TYGCgGjVqpODgYDk4OCg2NlZhYWE6ePCg4bR/SapWrZpmzpwpJyfjDfF5ef/997VgwQKbXy9JUVFRqlHD+r//WiwWffTRR2rXrt1189jb22vatGkaPHiwfv3112vx7OxszZkzRytXrlTPnj3VrFkzhYSEyN3dXUlJSTp58qS2bt2qNWvWKDEx0ZDXy8tLCxYsUEhISIHeF4Diw/A/AAAAAOTD764A3T+yiyGekZahHQt/LtbaFw6fsxqv3Kqagu8ur/MHzxa5Rpth7a3Gw348VOTcxalSsypW46f2nDC9Vvie41aH/ys1q8LwPwAAAAAAAAAAAO4Y1k6uv1nY29vrgw8+0OTJk60O4EdFRem7776zKVebNm00depUeXh4FKiHmBhzbw3Pzs5WbGysza93dXXVokWL9NZbb2n16tWG3ubPn6/58+fbnO/qAxAM/gM3l6LdEwIAAAAAtzE3H3f955uRcvVyM6xtnvm9EiLji7V+7LkYRR6/aIhbLBYN/GSYnNzyvpbRFoGhpdX2P/cb4heP/qXj28KKlLu4VWxc2Wr8r0NFfyDCkPNP6w9h5NUDAAAAAAAAAAAAgBvPYrFo9OjRWrhwoSpWrFjg/T4+Pho/frxmz55d4MH/m4WTk5MmTZqkWbNmqVy5coXK4enpqVGjRmnVqlUM/gM3IYb/AQAAAMCKcnXu0iu73lb5usa/zDh/8IzWjF15Q/rYs2Sb1fhd9SvoxR9fl39IQKHy2lns9OSn1h8gWP3q8kLlvJFKVy1jNR55zPiwRFFdOmH9OtHAyqVNrwUAAAAAAAAAAADcrAICAuTsXLQDymxlsVgKPbzeokULrV27VtOmTVPTpk3l4OCQ7+urVq2q119/XRs3btRjjz0mi6Vwo7V+fn6F2pcXi8Uif3//Qu29//779d1332nKlClq0aKFHB0d8329o6OjGjdurLfeektbtmzRkCFD5OTkVKjaAIpX/n+iAQAAAMAdxre8vzq83FWth94ne0fjr0zR4Zc0o9N7ykjNuCH9/DR9g+59rqM8AjwNa5WaVtFbh97XtnmbtH3eZl04ct7mvL1nPKHQ5lUN8W3zN+mPb34tUs/Fzdnd2ernIyszS/EXbL/20lbxf8UqKzNL9g72ueIe/p5y9nBR2pVU02sCAAAAAAAAAAAAN5vQ0FAdOHCgpNuwiaOjozp37qzOnTsrJSVFBw4c0JkzZxQfH6+srCx5eXkpKChIdevWNW1of/To0Ro9erQpuczg5OSkrl27qmvXrkpPT9fhw4cVHh6u+Ph4JScny9XVVd7e3qpQoYKqVq16y952ANxpGP4HAAAAcMdycHaUu5+7SlUOUoXGoarVoa6qtaspi731kxyObz2iOY9OV2JUwg3rMTUhRUuema9nVr1odd3Z3UXtX+is9i901uXTUTr28xEd3x6mE9uOKvLYBcPr7R3t1W/2ILV4sq1h7eD6/fr8P4vMfgum88vjtoMr0YnKyc4xvV52VraSLl+RV2lvw5p/SID++vOc6TUBAAAAAAAAAAAAmMPV1VVNmjRRkyZNSrqVEuPk5KR69eqpXr16Jd0KgCJi+B8AAADAba/1M+3VZ+bAPIf6ryf+YpzWjlul7fM2KyfH/OHy69m3+hd9+crnevi9vvm+zj8kUM2eCFSzJ1pLkhIuxevk9qM6seOYzu6PUEDFUmr/YmeVrWW8HvPXL3Zr0YCPlJ2ZVSzvwUyegV5W48mxScVWMzkuyerwv0cevQAAAAAAAAAAAAAAAJiN4X8AAAAAt72gamUKNfh/7sAZ/fC/tfr1i93KyijZofgf/rdOSZevqM+HT8rR2dGmPV6lvFW/Z2PV79k4z9dkZ2Vr3fgv9e07X5nVarFzcne2Gk9NTC22mqkJKdZ7cXUqtpoAAAAAAAAAAAAAAAD/VLhjLwEAAADgDuDo6iRnDxe5eLqWdCuSpB0Lf9a7DV7Xie1HTcmXnZWtGZ3fu6UG/6W8B+6zMjKLrWZeD384uTH8DwAAAAAAAAAAAAAAbgyG/wEAAAAgD6WrBKnfx4P0/l8f6YkFQ+V3V0BJt6QLR85r6n0TFHUyssi5LPYWNXu8lcrUDDahsxvHMY/h/+zM7GKrmdfwf169AAAAAAAAAAAAAAAAmI3hfwAAAAC3vejwKGVnF34w3MHJQc2fbKPxYZPVbvgDJnZWcEHVy2r09nEKDC1tSr4m/Vtq7IH39PQXz8u3nJ8pOYtbdqb1QXw7i12x1bQ4WP/1OSu9+G4bAAAAAAAAAAAAAAAA+CeHkm4AAAAAAIrbphkbtGnGBqtrji6OcvN1V0Cl0qrYOFQ12tdW9ftqy8HJ+OuSo4uTes8YqIpNqmjREx8pJzunuFvPpdXT96rXtAFy+tdp85dPR2nnoi26GPaXAiqVUtU2NRXavIpcPF1tymuxWNTwkSaq1bGuPh+2QHuW7iiO9k2TnpxuNW7ta2YWe0frufPqBQAAAAAAAAAAAAAAwGwM/wMAAAC4o2WkZij+QpziL8Tp5I6j+nHaenkEeKrdcx3U/sXOcvFwMexp0q+FLPYWze8784b12euDAbpvRMdcseysbK0b/6U2/HeNsjL+/2n4G/67RhZ7i0IaVVLVNjVUtU0NhbaoKlcvt3xruHi46KnPnlVgaGmtG7+6WN6HGdJTrA/cO7k7F1tN5zxypyenFVtNAAAAAAAAAAAAAACAf2L4HwAAAAD+5Up0ota+tUrb52/W0ytGqFLTKobX3NO7mU7/dkobp3xb7P30mTVQbf/zQK5YenKa5vf7UH9886vVPdlZ2Qrfc0Lhe07o+/fXys5ip5CGlVTj/tqq/1BjhTSsmGe9buMeUcKlBG2d/aOp78MsKfHJVuNuPvk/3FAUrt7Wb1HIqxcAAAAAAAAAAAAAAACzWUq6AQAAAAC4WcWevawp7SboyI+HrK73ePcx+VcILNYe2gxrbxj8z87O1pxHp+c5+G9NTnaOIn45qe8mfqOJ94zRpKZvKuwn6+9LknpN7a9SlYMK3Xdxij172WrcI8Cz2Grmlfvy6ehiqwkAAAAAAAAAAAAAAPBPDP8DAAAAQD4y0zL0cc+pio6IMqw5ODmowyvdiq22b3l/PTK5vyG+cfI6Hfpuf5FyR+w9qWn3T9TXY1ZYXXd0cdJDk3oXqUZxib8Qp4zUdEPc0cVJnqW8TK/nGeglRxcnQzz1SqquRCeaXg8AAAAAAAAAAAAAAMAahv8BAAAA4DrSrqRq1cglVtca92kui33x/GrVdWxPObnmHjq/dOKivn5jpWk1vpv0jX78YL3VtboPNpB3GR/TapkprxP3A0NLm14roFIp6z1YeSAEAAAAAAAAAAAAAACguDD8DwAAAAA22P/1r4o9H2OIu3q5qcI9oabXc3JzVqPHmhniP0xep+zMLFNrfT3mCyXFXDHE7R0dVPOBOqbWMsuZ3yOsxoPvLm96rTI1g63GT/96yvRaAAAAAAAAAAAAAAAAeWH4HwAAAABskJOTo+Nbw6yuBVUva3q9qm1qyMXDJVcsOztbv6/aa3qtjJR0/bpyt9W1Co3Nf7DBDKd2H7caL44HMfLKeWqX9R4AAAAAAAAAAAAAAACKA8P/AAAAAGCjOCsn/0uSR6Cn6bXualDBELscHmX1hH4zhO8+YTXuXdq7WOoV1amdx6zGq7WtaXqtyi2rWY2f2HHU9FoAAAAAAAAAAAAAAAB5YfgfAAAAAGxkZ7G7YbW8gnwMsYTI+GKrl1duZ0/XYqtZFGd+j1CslYcxAkNLq2ytcqbV8Q8JUHDt8ob4pRMXdeHwedPqAAAAAAAAAAAAAAAAXA/D/wAAAABgI5+yflbjybFJptdydHE0xlydTK9zlb2DvdV4SnxysdUsipycHP22crfVtSb9W5pWp1HvZlbjvyzfZVoNAAAAAAAAAAAAAAAAWzD8DwAAAAA2sLPYqWrbGlbXIo9eML1eamKKIeZdxngbgFl8gn2txuMvxBZbzaLau3SH1XjLwe3k7O5c5PwWe4taP32f9dqfW68NAAAAAAAAAAAAAABQXBj+BwAAAHBbaP9SZ004Pk0BlUoVS/46XRvIO8g4fJ+VkanTv4WbXi/61CVDzDvIR6WrlTW9liRVa1vTajx8z8liqWeG07+F6+jPhw1xD39PdXz1wSLnb/FUWwVUNH4//bHmN10M+6vI+QEAAAAAAAAAAAAAAAqC4X8AAAAAtzRHVycNWjpcj07ur8DQ0hq1ZazK1Aw2tYazh4semz7A6tqh7/5QenKaqfUk6dTuE1bjTR9vaXotdz8P3d21viGemZ6pIxsPml7PTN9N/Npq/IGXuymkYcVC5/UK8lGPiY9ZXVv/rvWaAAAAAAAAAAAAAAAAxYnhfwAAAAC3LDdfd72y82017tP8Wsw32E+v7hqvBg83NqWGi5ernvt2tPxDAq2ub53zkyl1/u3Mb+G6fDrKEG//QifTbzd47IMBcnZ3McT3rf5FiVEJptYy25EfD+nP7w8Y4g5ODnpm9UvyLe9f4JyOLo4a9uWL8vD3NKz9tnKPIn65eW9DAAAAAAAAAAAAAAAAty+G/wEAAADcsiz2FnmX8THEXTxdNXTlCxq0dLh8y/kVOn+V1tX16q7xqtKqutX1o5v/1KHv9uebo0zNYM1K+VRzsj/P9b8PUxerbO3yee7LycnRphnfG+JObs569ptR8goyvu/C6PzGQ2rS33ibQHpKur558wtTahS3JUPnKzUxxRD3K++v0dvHFegGAK8gH7344xhValbFsHblcqKWPbeoKK0CAAAAAAAAAAAAAAAUGsP/AAAAAG44RxdHq3EnN+cC5bkSnajpHf6rpNgkq+uN+zTXhBMfaOAnw1TzgTpycLZeN1dvrk5q+GgTDV/7skb9PFZlagRbfV1SbJIWD5l33XyegV5ytFLXwclBHv4e+e7dPOt7/fXnOUO8bK1yGr3tLVVrV/O69fPi5uuuJxYMVffxj1pd/+q15Yo6GVno/Fc5uTnlES/Y1zo/MWeitXzEp1bX/Mr765Wdb6v3jCfkX8H67Q2S5OrtpgdGddW4Q+8rtHlVw3p2draWDJ2vxEs3900IAAAAAAAAAAAAAADg9uVQ0g0AAAAAuL2M2jI2z5Pyr+e5b0fnuXZ1+HrHgp9zxc/9cVpT752gZ9eMkl95f8M+BycHNRvQSs0GtFJGWobOHzijSycilXAxTunJabKzt8jVy1Vuvh4Krl1OQTWCZe9gn2+f6clpmvfYdEWfulSo92mrrIwszXn0A43ePk7ufrkfFAgMLa2XfnpDf6z5TTs/2aJD6/crMz3zujkDKpZSsydaqc2w++UZ6GX1NT/N2KBNMzZcN1eLQW3Vf85gWSwFf668Ua+matSraZ7rx7eFaXKb8Tbn2/XpVgVUKqWub/Y0rNk7Oqjd8A5qN7yDzu6P0Jl9EUqIjFdOdo7c/T0UXKu8KjYJlb1j3r8ifzn6c+1b/YvN/QAAAAAAAAAAAAAAAJiN4X8AAAAApvK1MoBvBovFIt9y1nOf++O0JjV5U0O/eF6VW1bLM4ejs6Mq3BOqCveEFrqPK9GJ+rjnVJ3YfrTQOQriYthfmnb/RA1f+7J8yvoa1us+2FB1H2yo9OQ0nT94VucOnlH8hTilJaYqPTlNTu7OcvV2U6nQ0rqrYUWVqhyUZ63s7GytfWuV1r/7tU29+ZbzL9Tgv025C/F9tPatVbJ3tFenV7vn+Zry9SqofL0KNue8+jn5cer6AvcDAAAAAAAAAAAAAABgJob/AQAAANwWEi7GaXKb8brvxU7qNu4RuXi4mF5j/9e/aumwBUqIjDc9d37O7ovQuw1fV69pA3RP72ZWX+Pk5qyKTSqrYpPKhapxMewvLRk6X8e3hRWl1RL39esr9Nehc+o3e1CRvwdSEpK1eNBc/f7lXpO6AwAAAAAAAAAAAAAAKDyG/wEAAADcNnJycvTj1PXa89l2dXilm1oObidXL7ci5czOzlbYj4f07YSvTD/tPyc7x+bXJkTGa37fmdo0c4N6TOilKm1qmHLq/sWjf+mH/63T7s+2KSsjq8j5bgZ7P9+hYz8f1sPv91Xjvi0KvD87O1t7l+7Ql6M/v+EPegAAAAAAAAAAAAAAAOSF4X8AAAAApoo9e1kBFQJNz5udna2Y09E2vTYxKkGrRi3VN2+uVMNHmqjugw1VtU0NeQR42rQ/OS5J4btPKGzTn/pl+U7FnospdN9x52OVmpgiF0/XXPH0lHSdP3i2wPlO7Tquqfe9K59gP93Tu5nu7lJf5eqGyN3X3ab9memZOvfHaR3bckS/rdqjiL0nC9zDVbHnLis7O9uUhxD+7XL4pSLtj/srVgv6f6i1b3+ploPbqeGjTa/7fRkdfkm/frFb2+dvVtTJyCLVBwAAAAAAAAAAAAAAMJtdTk6O7UdNAgAAALitJUYlaFTpZ0q6jWITUKmUSlctI7+7/OXi6SpHVydlZWQqPTldKfHJij17WdHhUYo5HS2zf1Vy9/PQ5MjZstj/PSj/w+R1+nL056bl97srQGVqBsvdz0MuXq5y9XKVvaO9MlIzlHYlVfEX4hQdfkmXjl9URmqGaXVvJd5lfBTSqJK8g3zk9n8PSyTHJin+YpwifjmlhItxJdxh4fiHBGhi+IySbgPAHaxr166SpHXr1pVwJwAA4FbFzxMAAKCo+HkCAAAAdwpO/gcAAABwx4g+dUnRp4p2onxhVW1b49rgf0p8sjb8d42p+WPORCvmjG03I9yp4i/E6cDa30u6DQAAAAAAAAAAAAAAgEKxlHQDAAAAAHAnaDXkvmv//8dp65UUc6UEuwEAAAAAAAAAAAAAAMCthuF/AAAAAChm/iEBqnF/bUlSYlSCNk5dX8IdAQAAAAAAAAAAAAAA4FbD8D8AAAAAFLOWQ+6VxfL3r18b3lujtCupJdwRAAAAAAAAAAAAAAAAbjUM/wMAAABAMbLYW9R8YBtJUuy5y/r5w40l3BEAAAAAAAAAAAAAAABuRQz/AwAAAEAxqtOtgXzK+kqSvp3wlTLTMkq4IwAAAAAAAAAAAAAAANyKHEq6AQAAAAC4nbUacq8kKfL4Re1Y8HPJNgMAAAAAAAAAAAAAxSw7O1sRERE6ceKEoqKilJiYKIvFInd3d5UrV07VqlVTUFDQDesnPT1dhw8fVnh4uOLi4pSeni4fHx+VLl1adevWla+v7w3rpSTEx8fr+PHjioiIUGJiolJSUuTi4iIvLy+FhISoSpUq8vHxKek2AdiI4X8AAAAAKEYV7gnVlehELXt2obKzsku6HQAAAAAAAAAAAAAwXU5OjrZu3aq1a9dq27ZtiouLy/f1FSpUUMeOHfXII4+ofPnyxdLPzp07tWzZMm3dulVpaWlWX2dnZ6caNWqoV69eevDBB+Xu7m56L1eFhYVpzpw52rJli5KSkiRJDRo00LJly0yvlZCQoC+//FIbNmzQgQMHlJ2d979VX/0cdOzYUT179lRgYKDp/QAwj11OTk5OSTcBAAAA4OaQGJWgUaWfKek2ABSAf0iAJobPKOk2ANzBunbtKklat25dCXcCAABuVfw8AQAAioqfJwCgZK1fv17Tp09XREREgfc6ODjo4Ycf1qhRo+Tl5WVKP0ePHtW4ceP0+++/F2hfYGCgXnvtNXXp0sWUPq46deqUZs6cqe+++07/HtkNDg7Wpk2bTKuVmpqq+fPna8GCBUpOTi7wficnJ/Xv31/PPvusPDw8TOsLgHksJd0AAAAAAAAAAAAAAAAAAAAAbi2RkZF6/PHH9eKLLxZq8F+SMjMztWLFCvXo0UNHjhwpck/Lly9Xz549Czz4L0lRUVF66aWXNHLkSKWnpxe5l/Pnz+v1119X165dtX79esPgv9mOHz+uHj16aObMmYUa/Jek9PR0LVy4UN27d9ehQ4dM7hCAGRxKugEAAAAAAAAAAAAAAAAAAADcOn777TcNHz5cMTExVte9vLxUt25dVaxYUW5uboqPj1dERIT27dun1NRUw+vPnz+vJ554QosXL1b16tUL1dPUqVM1Z84cq2ulSpVSw4YNVbZsWTk4OCg6OloHDhzQ8ePHDa9dt26dIiMjNW/ePLm6uha4j+joaM2ePVvLly9XRkZGgfcXxm+//abBgwdbHfqvUqWKOnXqpEaNGql8+fJycXFRUlKSoqKidODAAf3000/au3dvrj3nzp3TgAEDNH/+fDVo0OCGvAcAtmH4HwAAAAAAAAAAAAAAAAAAADb59ddfNWTIEKuD5g0bNtRTTz2lNm3ayNHR0bCekpKi1atX66OPPlJ0dHSutfj4eD333HNavXq1PD09C9TTkiVLrA7+h4aG6uWXX1abNm1ksVgM62FhYf+PvfsMr6rM/se9kkCo0psUAQuCKAhiGxXGLgoqjl/sHStYsOvo2AvOMDoUZbCNFXtDEPUnKqIIonCJBRFUsNKjhBqS/F/415l4TiDJOcgJ3vc717P32ivx0uTsfPaz4/bbb4833nijRP29996LSy+9NIYMGRJZWVllmmHZsmUxcuTIeOihh2LlypXlmj8Vc+bMSfrvo1GjRnHVVVdFz549E85p0KBBtGrVKrp27Ronn3xyfPzxx3HFFVfEZ5999usxy5cvj/79+8dzzz0XTZs23eBfB1A2if8nAwAAAAAAAAAAAIDfmDt3bpx11lkJQfO6devG4MGD49FHH4399tsvafA/IqJGjRpx3HHHxejRo2PPPfdMWJ83b14MGzasXDO9//77cfPNNyfUe/bsGc8++2zsvffeSYP/ERHt27ePf//733HFFVckhPxfeeWVGDlyZJnnuPbaa2PkyJG/a/C/oKAgLrjggli+fHmJepcuXWLMmDFJg//JdOzYMZ566qno0aNHifqSJUvimmuuSdu8QOrs/A8AAAAAAAAAAACVzG17XRd53yze2GOwDvVaNoxL39p0gtNr166NAQMGxLJly0rUmzdvHvfcc09stdVWZe7VoEGDuOuuu+K0006LKVOmlFh79NFH48wzz4wGDRqst8+aNWvib3/7WxQWFpao9+jRIwYPHhw5OTllmufkk0+OwsLCuO2220rUhw8fHgcddFC0bt16vT2Shf5zcnJijz32iCOOOCLefvvtePLJJ8s0T1k99thjMWvWrBK1Nm3axF133RX16tUrV6/c3NwYMmRI9OnTJ7744otf66+//nq8//77sdNOO6VlZiA1wv8AAAAAAAAAAABQyeR9szgWz120scfgDyQvLy9++OGHErW6deuWO/j/i9zc3LjxxhujV69esWbNml/ra9asiZdeeimOO+649fZ46KGHYvbs2SVqjRs3jttuu63Mwf9fnHbaaTF58uR48803f62tXr06brnllhgxYkS5erVt2zaOOOKIOOyww6Jp06YREQlzpqqoqCjuvffehPqtt94a9evXr1DP6tWrx2WXXRZnnnlmifqTTz4p/A8ZIvl7TAAAAAAAAAAAAADg/9eoUaMYO3ZsHH744ZGVlRUREddee22Fgv+/aN26dXTv3j2hPnny5PWeu2bNmrj//vsT6gMHDiz3rve/uOqqq6Jq1aolaq+//np89tln6z13l112iSOPPDIeffTRGDduXJxxxhm/Bv83hKlTp8b3339fotapU6fo0qVLSn332muvhIcHJkyYkFJPIH2E/wEAAAAAAAAAAABYr8aNG8egQYPiiSeeiJtuuikOPvjglHv+6U9/SqjNnDlzvec999xzsXDhwhK1zTffPA4//PAKz7LFFltEz549E+r33HPPes89+eST46abbvrddsh/7733EmrJvpfllZOTE506dSpRW7x4ccyfPz/l3kDqhP8BAAAAAAAAAAAAKLNOnTrFkUcemZZezZo1S6gtXrx4vec999xzCbW//OUvkZOTk9I8ffv2Tai9+uqrsWLFipT6ptucOXMSaptvvnlaejds2DChtmjRorT0BlIj/A8AAAAAAAAAAADARlG1atWE2qpVq9Z5zvz58+ODDz5IqO+///4pz7PTTjtFgwYNStRWrlwZb7zxRsq90+nHH39MqBUWFqald7Lv/+rVq9PSG0iN8D8AAAAAAAAAAAAAG8WSJUsSarVr117nOa+//noUFxeXqDVo0CDat2+f8jzZ2dmxyy67dCgpbAAAIABJREFUJNRfe+21lHtvaN98801a+sycOTOhVrdu3bT0BlIj/A8AAAAAAAAAAADARvHxxx8n1Jo0abLOc6ZNm5ZQ69y5c9pm6tKlS5muuTE1bNgwoTZx4sSU+86ePTu++OKLErXq1atH69atU+4NpE74HwAAAAAAAAAAAICN4u23306o7bDDDus8Z/r06Qm1bbfdNm0ztWvXLqH27bffxsKFC9N2jVR16NAhoTZr1qwYO3ZsSn3vvvvuhFqPHj2iSpUqKfUF0kP4HwAAAAAAAAAAAIDf3QcffBBz5sxJqHfv3r3Uc1atWhVz585NqG+55ZZpm6tNmzZJ659++mnarpGqP//5z0nrf/vb3+KDDz6oUM933nknnn/++YT6ySefXKF+QPoJ/wMAAAAAAAAAAADwuxsyZEhCrW7durHPPvuUes53330XxcXFCfVmzZqlba4mTZpEdnZixPa7775L2zVS1bZt29hzzz0T6suWLYsTTzwxbr/99liyZEmZ+y1atCiuvPLKhO/tEUccEV27dk15XiA9hP8BAAAAAAAAAAAA+F2NGzcuJk2alFA/7bTTIjc3t9TzSgvgN27cOG2zValSJRo0aFDma28sl19+eVSrVi2hXlBQECNGjIgePXpEv3794v77748PP/ww1q5dm7TP/Pnz4/jjj4/vv/++RH2HHXaIq6++eoPMDlRMlY09AAAAAAAAAAAAAAB/HPPnz49rrrkmod6yZcs48cQT13nuggULktbr1KmTltl+Ubt27Vi0aFGZrr2xbLPNNnH99dfH5ZdfnvRtCGvWrIm33nor3nrrrYiIqFmzZnTp0iW6desW3bp1i+bNm8c777wTd9xxRyxevLjEudtvv32MHDkyatas+bt8LUDZCP8DAAAAAAAAAAAA8LtYvXp1DBgwIPLy8krUs7OzY9CgQVGjRo11nr9y5cqk9Vq1aqVtxoifw/9lvfbGdPjhh0dWVlZcddVVsWbNmnUeu2LFinj77bfj7bffXudx++67b/z9739P+/cUSF32xh4AAAAAAAAAAAAAgE1fcXFxXHnllfHhhx8mrJ133nnRrVu39fYoLYBftWrVlOdbX79Vq1al9Rrpcthhh8VTTz0VnTp1SrnXOeecE8OHDxf8hwwl/A8AAAAAAAAAAADABnfbbbfFiy++mFDv2bNnnH322WXqsXr16qT1KlWqpDRbWfplavg/ImLbbbeNBx54IJo0aZJSn48++ihmzJiRpqmAdBP+BwAAAAAAAAAAAGCDGjlyZNx3330J9W7dusWtt95a5j6lhfwLCwsrPFtZ+6X77QLpNHPmzDjqqKNiwYIFKfWZMGFC/N///V+ceeaZ8fXXX6dpOiBd0vuYEwAAAAAAAAAAAAD8j/vuuy8GDx6cUG/fvn2MGDEiqlevXuZepR27du3ayMnJqfCMyfr9Vo0aNdLWP52eeuqpuO6662LNmjW/1jbbbLM4/vjjY++99461a9fG+++/H5MnT44PPvggVqxYsd6eb7zxRkyePDluvvnmOPjggzfk+EA5CP8DAAAAAAAAAAAAsEH85z//iUGDBiXUt95667j33ntjs802K1e/0sL/y5cvj2rVqlVoxmSSBeTL85DC72XYsGExdOjQErUdd9wxhgwZEk2bNv21ttNOO8UZZ5wRa9eujRkzZsTkyZNjypQpMW3atFIfBli5cmVceOGF8eOPP8YxxxyzQb8OoGyE/wEAAAAAAAAAAABIu0ceeSRuueWWhPrWW28dDz74YDRs2LDcPevVq5e0vmzZsmjQoEG5+5Vm2bJlCbV09k+HBx54ICH4v9dee8XQoUNLfUtBlSpVokuXLtGlS5c466yzoqCgICZNmhTPP/98jBs3LuGNB8XFxXHDDTdEmzZtYvfdd99gXwtQNtkbewAAAAAAAAAAAAAANi1PPvlk3HDDDQn1du3aVTj4HxHRvHnzpPVFixZVqF8yxcXFsWTJkjJfe2OYMWNG/P3vfy9Ra9WqVdxxxx2lBv+TqVq1anTv3j0GDx4cY8aMiS5duiQcU1hYGNdcc02sWbMm5bmB1Aj/AwAAAAAAAAAAAJA2L7zwQvztb3+L4uLiEvWOHTumFPyPiGjRokXS+vz58yvc87eWLFkSBQUFZb72xnDrrbeWmDErKysGDx4ctWvXrnDPNm3axIMPPph0h/+5c+fGyy+/XOHeQHoI/wMAAAAAAAAAAACQFuPGjYvLL788ioqKStS7dOkSDzzwQNSvXz+l/g0aNIh69eol1L/88suU+v6vr776Kml96623Tts1UvHxxx/H1KlTS9T22Wef6Ny5c8q9c3NzY9CgQVG9evWEtRdffDHl/kBqhP8BAAAAAAAAAAAASNnrr78eF198cRQWFpao77rrrnHvvffGZpttlpbrJAu5z5o1Ky29IyLmzJmTUKtfv360adMmbddIxSuvvJJQO+yww9LWv2nTpnHAAQck1KdPn562awAVI/wPAAAAAAAAAAAAQEomTpwY5513XhQUFJSo77XXXjFy5MioVatW2q6VLPyfzmB6sl477rhj2vqn6qOPPkqodenSJa3X2HnnnRNqeXl5kZ+fn9brAOUj/A8AAAAAAAAAAABAhU2ZMiX69+8fa9asKVHfb7/94s4774zq1aun9Xp77bVXQu2HH36IL774Ii39p0yZklDr3r17Wnqnw/z580v8c3Z2djRu3Dit12jatGnS+vLly9N6HaB8hP8BAAAAAAAAAAAAqJBp06bFmWeeGatWrSpRP+SQQ+Jf//pX5Obmpv2anTp1ihYtWiTUX3311ZR7f/755/H111+XqOXk5MRBBx2Ucu90+e3bFYqLixNqqSouLk5aT+cbHIDyE/4HAAAAAAAAAAAAoNxmzJgRp59+eqxYsaJE/Ygjjoh//OMfUaVKlQ127V69eiXUnnrqqVJD62X1zDPPJNT22GOPaNCgQUp906lRo0Yl/rm4uDgWLlyY1mv88MMPCbVatWpF7dq103odoHyE/wEAAAAAAAAAAAAol5kzZ0a/fv1i2bJlJerHHXdc3HzzzZGdvWEjqscff3zCWwXmzZsXL774YoV7/vTTT/Hkk08m1E899dQK99wQmjVrllCbNGlSWq/xzjvvJNQ6d+6c1msA5Sf8DwAAAAAAAAAAAECZzZkzJ0455ZTIy8srUT/ttNPib3/7W2RlZW3wGZo0aRJ9+vRJqP/jH/9IeCChrIYOHZpw7o477hi77757hfptKLvttltC7cknn0z5rQe/+O677+KNN95IqB9wwAFp6Q9U3IZ7nwoAAFDpZGVnR8PWjdZ/IJAx6rVsuLFHAAAAAAAA4A9k7ty5cfLJJ8eSJUtK1Pv37x/nnXfe7zrL+eefHy+//HKJhxB++OGHuPTSS2P48OHlevvAm2++GQ8//HCJWnZ2dvz1r39N27zpcsABB8R1110XBQUFv9amT58eo0aNimOPPTal3oWFhXH11VfH6tWrS9Tr1asXvXv3Tqk3kDrhfwAA4Fe1G9aOm78csrHHAAAAAAAAACADzZs3L0466aRYsGBBifpRRx31uwf/IyIaNmwYV1xxRVx22WUl6uPHj4+LLroobr311qhWrdp6+0yYMCEuuOCCKCoqKlE/8cQTo1OnTmmdOR3q1q0bJ5xwQtx3330l6jfeeGPUrFkzDj/88Ar1Xb16dVxyySUxceLEhLVLLrkkateuXaG+QPoI/wMAAAAAAAAAAACwTmvWrIl+/frF999/n7D2+OOPx+OPP562a2VlZcX1118fffv2Xe+xhx9++K+73v+vsWPHxsyZM+OSSy6JP//5z0nfAjB//vwYMWJEjBo1KoqLi0us7bLLLnHRRRel9oX8j9/upB/x8/e0qKioXG8o+MX5558f48ePj6+++urXWmFhYVx22WUxfvz4uPDCC6NNmzZl6lVcXBwTJkyIm266KebOnZuw/pe//CWOPPLIcs8IpJ/wPwAAAAAAAAAAAFQy9Vo23NgjsB6b2r+jTz75JGkwfEMoLi6O+fPnl/n4q6++OpYsWRIvv/xyifoXX3wRZ599djRu3Di6desWLVq0iCpVqsTSpUtj5syZMWPGjITd/iMitt122xg6dGjk5uaWeYbbbrst7r333jIfHxGxcOHC6NChQ9K17OzsuPPOO2PvvfdOul69evW455574tRTT4158+aVWHv55Zfj5Zdfji5dusSee+4Z7du3jy222CJq164dNWrUiFWrVsVPP/0Uc+bMiRkzZsTLL78c3377bdLr9OnTJ6677rpyfV3AhiP8DwAAAAAAAAAAAJXMpW9ds7FH4A8m2c71mSInJyfuuOOO+Mc//pE0gL9w4cJ46aWXytSrR48e8c9//jNq165drhmWLFlSruPXp6ioKJYuXbrOY1q1ahWjRo2KgQMHxpQpUxLWp02bFtOmTavQ9WvWrBkXXnhhnHDCCRU6H9gwyv+eEAAAAAAAAAAAAADIINnZ2XHppZfGfffdF23bti33+fXq1Yvrr78+RowYUe7g/8bUqFGjeOihh+L222+PVq1apdwvNzc3jjrqqBgzZozgP2QgO/8DAAAAAAAAAAAAsE6NGjWKatWq/S5vAMjOzo6WLVtW6Nw99tgjRo8eHa+++mo8/vjjMXXq1Fi7dm2px7dr1y6OPPLI6NOnT9SpU6eiI0eDBg0qfG4y2dnZ0bBhwzIff/DBB0fPnj1j6tSpMXr06HjnnXfim2++ieLi4vWeW6tWrejSpUvsu+++cdBBB6X9awHSJ6u4LP9VAwAAAAAk0atXr4iIePHFFzfyJABAZeX3CQAgVX6fAGBdVq5cGR9++GHMmzcvfvzxxygsLIw6depEs2bNonPnzpt00D0/Pz9mzpwZP/zwQ+Tn50d+fn6sXr06qlevHrVq1YrNN988WrZsGW3bto3s7OyNPS5QBnb+BwAAAAAAAAAAAGCTVKNGjdh1111j11133dij/O5q164d3bp129hjAGnkMR0AAAAAAAAAAAAAAMhwwv8AAAAAAAAAAAAAAJDhhP8BAAAAAAAAAAAAACDDCf8DAAAAAAAAAAAAAECGE/4HAAAAAAAAAAAAAIAMJ/wPAAAAAAAAAAAAAAAZTvgfAAAAAAAAAAAAAAAynPA/AAAAAAAAAAAAAABkOOF/AAAAAAAAAAAAAADIcML/AAAAAAAAAAAAAACQ4YT/AQAAAAAAAAAAAAAgwwn/AwAAAAAAAAAAAABAhhP+BwAAAAAAAAAAAACADCf8DwAAAAAAAAAAAAAAGU74HwAAAAAAAAAAAAAAMpzwPwAAAAAAAAAAAAAAZDjhfwAAAAAAAAAAAAAAyHDC/wAAAAAAAAAAAAAAkOGE/wEAAAAAAAAAAAAAIMMJ/wMAAAAAAAAAAAAAQIYT/gcAAAAAAAAAAAAAgAwn/A8AAAAAAAAAAAAAABlO+B8AAAAAAAAAAAAAADKc8D8AAAAAAAAAAAAAAGQ44X8AAAAAAAAAAAAAAMhwwv8AAAAAAAAAAAAAAJDhhP8BAAAAAAAAAAAAACDDCf8DAAAAAAAAAAAAAECGE/4HAAAAAAAAAAAAAIAMJ/wPAAAAAAAAAAAAAAAZTvgfAAAAAAAAAAAAAAAynPA/AAAAAAAAAAAAAABkOOF/AAAAAAAAAAAAAADIcML/AAAAAAAAAAAAAACQ4YT/AQAAAAAAAAAAAAAgwwn/AwAAAAAAAAAAAABAhhP+BwAAAAAAAAAAAACADCf8DwAAAAAAAAAAAAAAGU74HwAAAAAAAAAAAAAAMpzwPwAAAAAAAAAAAAAAZDjhfwAAAAAAAAAAAAAAyHDC/wAAAAAAAAAAAAAAkOGE/wEAAAAAAAAAAAAAIMMJ/wMAAAAAAAAAAAAAQIYT/gcAAAAAAAAAAAAAgAwn/A8AAAAAAAAAAAAAABlO+B8AAAAAAAAAAAAAADKc8D8AAAAAAAAAAAAAAGQ44X8AAAAAAAAAAAAAAMhwwv8AAAAAAAAAAAAAAJDhhP8BAAAAAAAAAAAAACDDCf8DAAAAAAAAAAAAAECGE/4HAAAAAAAAAAAAAIAMl1VcXFy8sYcAAAAAACqnpUuXRkRE/fr1N/IkAEBl5fcJACBVfp8AAOCPQvgfAAAAAAAAAAAAAAAyXPbGHgAAAAAAAAAAAAAAAFg34X8AAAAAAAAAAAAAAMhwwv8AAAAAAAAAAAAAAJDhhP8BAAAAAAAAAAAAACDDCf8DAAAAAAAAAAAAAECGE/4HAAAAAAAAAAAAAIAMJ/wPAAAAAAAAAAAAAAAZTvgfAAAAAAAAAAAAAAAynPA/AAAAAAAAAAAAAABkOOF/AAAAAAAAAAAAAADIcML/AAAAAAAAAAAAAACQ4YT/AQAAAAAAAAAAAAAgwwn/AwAAAAAAAAAAAABAhhP+BwAAAAAAAAAAAACADCf8DwAAAAAAAAAAAAAAGU74HwAAAAAAAAAAAAAAMpzwPwAAAAAAAAAAAAAAZDjhfwAAAAAAAAAAAAAAyHDC/wAAAAAAAAAAAAAAkOGE/wEAAAAAAAAAAAAAIMMJ/wMAAAAAAAAAAAAAQIYT/gcAAAAAAAAAAAAAgAwn/A8AAAAAAAAAAAAAABlO+B8AAAAAAAAAAAAAADKc8D8AAAAAAAAAAAAAAGQ44X8AAAAAAAAAAAAAAMhwwv8AAAAAAAAAAAAAAJDhhP8BAAAAAAAAAAAAACDDCf8DAAAAAAAAAAAAAECGE/4HAAAAAAAAAAAAAIAMJ/wPAAAAAAAAAAAAAAAZTvgfAAAAAAAAAAAAAAAynPA/AAAAAAAAAAAAAABkOOF/AAAAAAAAAAAAAADIcML/AAAAAAAAAAAAAACQ4YT/AQAAAAAAAAAAAAAgwwn/AwAAAAAAAAAAAABAhhP+BwAAAAAAAAAAAACADCf8DwAAAAAAAAAAAAAAGU74HwAAAAAAAAAAAAAAMpzwPwAAAAAAAAAAAAAAZDjhfwAAAAAAAAAAAAAAyHDC/wAAAAAAAAAAAAAAkOGE/wEAAAAAAAAAAAAAIMMJ/wMAAAAAAAAAAAAAQIYT/gcAAAAAAAAAAAAAgAwn/A8AAAAAAAAAAAAAABlO+B8AAAAAAAAAAAAAADKc8D8AAAAAAAAAAAAAAGQ44X8AAAAAAAAAAAAAAMhwwv8AAAAAAAAAAAAAAJDhhP8BAAAAAAAAAAAAACDDCf8DAAAAAAAAAAAAAECGE/4HAAAAAAAAAAAAAIAMJ/wPAAAAAAAAAAAAAAAZTvgfAAAAAAAAAAAAAAAynPA/AAAAAAAAAAAAAABkOOF/AAAAAAAAAAAAAADIcML/AAAAAAAAAAAAAACQ4YT/AQAAAAAAAAAAAAAgwwn/AwAAAAAAAAAAAABAhquysQcAAAB+X0VFRTFr1qyYPXt25OXlRX5+ftSsWTPq1asXbdu2jQ4dOkSVKj4qAFA5FBUVxdy5c+Orr76K77//PpYvXx4FBQVRs2bNqFWrVrRo0SK22GKLaNmy5cYeNb788sv49NNPIy8vL3766aeoXr161KtXL1q2bBk77LBDVKtWbWOPmJK8vLz48MMPY8GCBZGXlxdFRUVRr169aNSoUXTq1CkaNWq0sUf8lVkBKM3cuXNj1qxZv/68Xrt2bdSuXTsaN24c7du3j1atWkVWVtZGmW3hwoUxY8aMWLRoUeTl5UV2dnbUq1cvmjRpEp07d466detulLnSZfXq1TFjxoz45ptvIi8vL1atWhV16tSJ+vXrR4cOHaJNmzYbe8RfmRWA31q6dGnMnj075s6dG/n5+bFy5cqoVatW1KlTJ1q0aBEdO3aMmjVrbuwxI8L9iUz6HG1WAFJVUFAQX375ZcyePTuWLl0a+fn5kZWVFbVq1YqmTZtG27ZtY8stt9xo9zIiIvLz82PGjBnx/fffR15eXhQUFETdunWjYcOG0bFjx2jevPlGmy0dKlP+wqybjj/uVw4AAH8gxcXF8e6778Zjjz0WEydOjPz8/FKPrVGjRuy2227Rt2/f6NGjR+Tk5PyOkwLA+hUUFMT48eNj7Nix8e6770ZeXt56z2ncuHHsvPPOcfDBB0ePHj0iNzf3d5g04sMPP4zHHnssxo8fH0uXLi31uKpVq0bXrl3j//7v/+LAAw/83eZL1ZIlS+Lpp5+OF154IT7//PMoLi4u9djWrVtHr169om/fvtGsWbPfccqfmRWAZNauXRsTJkyI5557LiZPnrze3yuaNWsWBx10UBx//PHRqlWrDT7ft99+G08++WSMGTMm5s2bV+pxWVlZsc0228Thhx8eRxxxRNSvX3+Dz5YOq1evjpdeeimefvrpmDZtWhQUFJR6bIMGDWLfffeNo48+OrbffvvfccqfmRWA3/ryyy/jmWeeiTfeeCNmzZq1zmNzcnKiffv2cfjhh8ehhx4a9erV+52m/Jn7E/+1sT9HmxVg0/Tuu+/GAw88EJMnT47ly5dHRES1atXiueeeiy233DKt18rPz48xY8bEa6+9Fu+++26sXr16ncfXr18//vSnP8Vhhx0We+655+/y9//8/Px4/vnn49lnn41PPvkkCgsLSz22adOm0bNnzzjqqKPS/r3aUCpT/sKsm6as4nX9ZgYAAFR6U6dOjRtuuCFmzpxZ7nPbtGkTV199dey5554bYDIAKJ/Vq1fHo48+GnfffXcsXry4wn0aNWoUp512Whx77LFRvXr1NE74X7NmzYobbrghpkyZUu5zGzduHJdddln07t17A0yWHitWrIg777wz/vOf/6wzTJZMTk5OHH300TFw4MDYbLPNNtCE/2VWAJIpKiqKp59+OoYMGRILFiwo9/lVq1aNo48+Oi666KKoUaNG2udbunRpDB48OJ5++ukoKioq17nVqlWL008/Pc4444yM3bm3uLg4nnnmmRg8eHCFfq/bY4894uqrr462bdtugOlKMisAvzVr1qwYPHhwvPnmm+sMQ5emWrVq0a9fvzjjjDM22H2JX7g/UTqf+UtXmWYF2NjefffdGDZsWLz33ntJ1x988MHYdddd03KtpUuXxogRI+Kpp55aZyh6Xdq0aRMDBw6Mgw46KC0z/VZBQUE88MADceedd/76EER5HHLIIXHZZZdF06ZNN8B06VGZ8hdm3XQJ/wMAwCaqoKAgbrrppnjssccq9AeI/3XYYYfFDTfckLGhAQA2fVOmTIkrrrgivvnmm7T1bN26ddx8883RrVu3tPUsLi6O4cOHx1133RVr165Nqdeee+4Z//znP6Nu3bppmi49pk+fHhdccEF8//33KfVp1KhRDB48OHbbbbc0TZbIrAAkM3v27Lj00kvj448/TrlXmzZtYtiwYbHNNtukYbKfvfbaa3HllVeW6e1G67LFFlvEsGHDYtttt03TZOmxcOHCOP/88+P9999PqU/VqlXj4osvjpNPPjk9gyVhVgD+19q1a2Pw4MHxwAMPrHP32rJq0aJFDB06NDp27JiG6Upyf6LsfOYvqTLNCrAxrS/0/4t0hf+feOKJGDx4cMr3Cn5x0EEHxY033pjWB7W++OKLOO+88+Lzzz9PqU+tWrXihhtuiEMOOSRNk6VHZcpfmHXTz7XkXHvttddu7CEAAID0ysvLi7POOitefvnltPT77LPPYtKkSbHPPvtEzZo109ITAMqiuLg4hg0bFldeeWX89NNPae39448/xgsvvBDNmzePDh06pNxv1apVcfHFF8ejjz5a7h16k5k3b168+uqr0b1796hXr17K/dLhhRdeiAEDBsSPP/6Ycq8VK1bEmDFjokmTJrHddtulYbqSzLphZgWo7MaPHx+nn356fPvtt2npl5eXF6NHj46uXbtG8+bNU+53zz33xNVXXx0rV65Mudcvv+u0b98+2rRpk3K/dPj000/jpJNOilmzZqXcq6ioKCZOnBgLFy6MvfbaK7Kzs9Mw4X+ZdcPMClBZ5eXlRb9+/WLs2LGlhpJatmwZ++67b/Ts2TP233//6Nq1a7Ru3TpWrlwZS5cuTTh+2bJl8cILL8SWW24ZW221VdpmdX+ifHzm/6/KNCvAxjJ58uS44oorYvjw4fHdd9+t9/g+ffpEy5YtK3y9lStXxuWXXx7//ve/Y9WqVRXu81uzZ8+Ot99+Ow488MC0vIlo0qRJcdppp6X88FjEz2HwV155JSIidtlll5T7pUNlyl+Y9Y+Ra7HzPwAAbGJWrVoVJ5xwQnz44YelHlO3bt3o0qVLtG7dOmrUqBErV66MuXPnxrRp09Z5U7djx47x0EMPRa1atTbE6ABQwtq1a+Oyyy6LF198cZ3HVatWLbbbbrto27Zt1K9fP6pUqRKLFy+OxYsXx4cffhiLFy9e5/lZWVlx++23R8+ePSs8a1FRUQwYMCBee+21Uo+pUaNGdO3aNbbccsuoVatWrF69Or755puYPn16LFy4sNTzmjdvHo8//ng0adKkwvOlw7hx4+KCCy5Y584rHTp0iA4dOkSjRo0iImLRokXx6aefxqefflrqOVlZWXHbbbfFoYceatYMnxWgshs9enRceuml6wzB1alTJ7bffvto1apV1KlTJyIiFixYEN98801Mmzat1HM322yzeOSRR1LaZf++++6LQYMGlbqek5MT22+/fbRv3z7q168fa9eujQULFsRHH30UX3zxRannVa1aNe6999607DSYii+//DKOPvrode5S2KJFi+jcuXM0a9YscnNz48cff4w5c+bEtGnToqCgoNTz+vbtGzfccINZM3xWgMpq2bJlcdJJJ5X61qBdd901zjvvvHW+WXDGjBkxfPjweP311xPWqlSpEnfeeWf06NEj5Vndn/hZpnyONqv7E8CmY/LkyTFs2LCYMmVKuc5LZef//Pz8OO2002L69OnrPK558+ax/fbbx+abbx41atSIH3/88df7GPn5+es8t2vXrvHQQw9FlSpVKjRjRMT7778fp5xySqx68zcZAAAgAElEQVRevbrUY9q2bRs77LBDNGnSJKpUqRJLly6Nzz77LGbMmLHONyoNHDgwzjrrrArPlg6VKX9h1g0zayYS/gcAgE1IcXFxDBgwIP7f//t/Sde33nrrOPfcc2PfffeNqlWrJqwXFBTE+PHjY+jQoaW+jq9Hjx4xYsQIO78BsEEVFRXFJZdcUmrwPycnJ/bff//o06dP7L777qW+wrOoqCimT58ezzzzTDz99NOlBvaqV68eo0ePji222KJC8954443x0EMPJV3bfPPNo3///tG7d++kO+gUFRXFpEmTYujQoTFt2rSkPTp27BiPPPJI1KhRo0LzpWratGlx0kknJb15n5OTE8ccc0yccsoppe5g9O2338b9998fo0aNirVr1yasV61aNe6///7YeeedzZqhswJUdm+//XaceeaZSYPOOTk50atXr+jbt2907dq11M+78+fPj1GjRsU999yTtE+bNm3i2WefrdDOYq+88kqcd955ScNW1atXj1NPPTWOP/74aNiwYdLzP//887j77rvj+eefT7pep06deOyxx9K6q3B5LFmyJI466qiYN29e0vXu3btH//79Y8cdd0y6np+fH0899VTcddddpYbcL7roojjjjDPMmqGzAlRWxcXFceaZZ8abb76ZsFa1atX461//Gsccc0yZ+z311FNx7bXXJvwuUbNmzRg1alS0b98+pXndn8icz9Fm3TCzAmwM559/fowbN65C51Y0/L9q1aro169fvPfee0nXq1evHn369Im+ffuW+oaVwsLCGD9+fNxzzz3rfIDgrLPOioEDB5Z7xoiIuXPnRt++fUv9TNm7d+8488wzY5tttkm6vnjx4njkkUfivvvuS/oWxKysrBg8eHAccsghFZovVZUpf2HWDTNrphL+BwCATcioUaPi2muvTbp27LHHxhVXXBG5ubnr7bNmzZoYNGhQPPzww0nXr7rqqjjhhBNSGRUA1umtt96Kfv36JV3bf//945JLLonWrVuXq+fMmTPjiiuuiE8++STp+t577x0jRowo96wTJkyI008/PenaAQccELfcckvUrl17vX2Ki4tj5MiRcfvttycN/p1yyilx+eWXl3u+VK1cuTJ69+4dX3/9dcJakyZNYvjw4dGpU6cy9ZoxY0b0798/5s+fn7DWokWLGD16dEo7sZh1w8wKUNn98MMP0atXr1i2bFnC2nbbbReDBg2Kdu3albnfJ598EgMGDIhvv/02Ye26666Lo48+ulzzLViwIA455JD46aefEta22mqruPPOO6NNmzZl6jVhwoS48MILk36tnTp1iscff3yj/NFz4MCBMXbs2IR61apV49prr40jjzyyTH0WLVoU559/fkydOjVhrUqVKvHkk0+WGnow68adFaCyeuihh+LGG29MqFepUiWGDx8ef/7zn8vd880334wBAwbEmjVrStS33XbbePrpp5MGnMrC/YnM+RxtVvcngE3LzjvvnPQze8TPD/DtvffeMXHixKQ7kVc0/H/llVfG008/nXTtgAMOiKuuuiqaNm1apl7FxcXx8MMPx6BBg5JuZpCbmxvjxo2LFi1alGvGoqKiOPbYY5M+NFi7du345z//WeY3G82dOzfOOeecmD17dtJeY8eOLfPXm06VKX9h1kSbcq4l59rSvoMAAEClMn/+/Ojfv3/CHwwiIvr16xdXXnll5OTklKlXTk5O9OjRI9auXZv0D79Tp06NQw89NDbbbLOU5waAZDbffPOYOXNmfPXVV7/W6tatG4MHD45zzz036tWrV+6ejRo1ioMPPjgmTZoUCxYsSFifO3duHHLIIVG/fv0y91y+fHmcccYZSQN2hxxySNx+++2lvpXgt7KysqJbt27RuHHjeP311xPWZ8yYEd27d//db3APHjw46Q6HjRo1ilGjRpUrLNm0adM44IAD4qWXXorly5eXWFu2bFmsWLEiunfvbtYMmxWgshs4cGDSXcD22WefuOeee8r9s7Vx48axzz77xKuvvhr5+fkREbHrrrvGxRdfHL179y53uP7yyy9P+nDilltuGaNGjYpmzZqVuVfr1q1jjz32iBdffDHhD/rz58+POnXqlLoL/IYyfvz4uOOOOxLqOTk5MXTo0HLt3lezZs3o3bt3fPDBBwkPXxQVFcVHH30URx55ZIUfcDDrhpkVoLL66aefYsCAAUl3Q7/kkkuiT58+Ferbpk2baNKkSYwfP75EffHixZGbm1uh3dHdn8isz9FmdX8C2LSMHDmyxN/gs7KyYtddd41zzz03brrppujdu3dMmDAh6SYBffr0KfXNKaV54YUX4l//+ldCPTs7Oy677LK48sory/RA3//O27lz52jXrl28+uqrCW9ILiwsjKysrNhrr73KNefDDz8cTzzxREK9Zs2a8Z///KdcDz3Uq1cvevXqFW+88UYsWbKkxNqaNWti7ty50atXr3LNl6rKlL8w6x8v1+IODQAAbCLuuOOOX0MH/6t79+5x8cUXV6jnwIEDY++9906or1ixIukNBwBIl9zc3BgyZMivO+httdVW8cwzz8T++++fUt86derE3XffnTTgX1xcXO5X995///3x3XffJdTbt28ft956a4UCUkcddVQcf/zxCfXCwsIYNGhQuful4uuvv44HH3wwoZ6TkxNDhgyJVq1albtnixYtYtiwYVGlSpWEtUcffTTmzp1r1gyaFaCyGzNmTEyYMCGh3rVr1/jXv/5V5hDcb7Vq1Sruv//+OOecc+Kll16KBx98MA4++OCk/x9el/feey9eeeWVhHrNmjVjxIgRFXrgsWPHjnHLLbckXRs6dGipuxVuCIWFhXHrrbcmXbvgggtin332KXfP3NzcGDZsWGy++eYJax9//HE899xz5e4ZYdYNNStAZfbwww8n3cG3Y8eOcfLJJ6fU+8gjj4yDDz44oX733Xcnveb6uD+ROZ+jzer+BLDp+SWI3KZNm7jgggti/Pjx8eCDD0afPn02yBtNnn322aT1a665Jk455ZQK991vv/3i1FNPTbo2ZsyYpG/8KU1+fn4MGTIk6dpNN91U5rfG/K+6devGXXfdlfTBhvHjx8e7775b7p6pqEz5C7P+8XItwv8AALAJ+O6772L06NEJ9Zo1a8aNN94YWVlZFe594403Jr1p8eKLL8Y333xT4b4AsD65ubkxdOjQ+Otf/xqjRo0q9+44pWnQoEGpN7inT59e5j4rVqyIhx56KKGenZ0dt956a5leSVqaSy+9NJo3b55Qf++995LuXrKh3H333VFYWJhQP+GEE2KnnXaqcN/OnTsnDUoUFhbGyJEjK9TTrBtmVoDKrKioKIYNG5ZQr169evz9739P6Wd1RETbtm3j/PPPjy233LLCPUaMGJG0PnDgwGjdunWF+x544IHRs2fPhHp+fn6pr0LfEF566aWkAa+OHTtGv379Kty3Tp06cd111yVdGzlyZMIuhmVh1g0zK0Bl9vzzzyet9+/fPy1vQ7n88sujevXqJWrLly9Peq9hXdyfyKzP0WZ1fwLY9Fx//fXx2GOPxcsvvxxnn3120p+N6TRo0KA48MADS9ROOumkOProo1PuffbZZ0fNmjUT6gsXLizxJub1eeSRR5JuLrD//vsnfcCxrFq1ahUXXXRR0rXS7qFsCJUpf2HWn/3Rci3C/wAAsAm4//77o6CgIKF+0kknpfzq3UaNGiXdQWDt2rVx3333pdQbANYnNzc3TjzxxKhbt25a++63335J6z/88EOZezzxxBORl5eXUO/Vq1d06NChwrNFRFSrVi3OPffcpGt33313Sr3LatGiRUl3GKpVq1acc845Kfc/66yzku7g8/zzz8f8+fPL1cus/5XOWQEqu3HjxsUXX3yRUD/jjDPS9lBhKj799NOYOHFiQr1ly5ZxzDHHpNz/wgsvTBpMfOCBB2L16tUp9y+L0n5vueSSS1IOTfbo0SN22WWXhPpXX32V9G0K62PWn6V7VoDKas6cOUkDcA0aNPj1LYWpatq0afTp0yeh/vDDD8fatWvL3Mf9idT8UT/zV6ZZATa2Aw88MLp06fK7Xa9JkyYxZMiQGDlyZLRt2za22267Cu+I/ls1atSIHj16JF379NNPy9RjzZo18cADDyTUs7Oz0zJn3759Y4sttkioT5o0KWbMmJFy/7KoTPkLs/7sj5ZrEf4HAIBKrrCwMF588cWEetWqVeO4445LyzWOPfbYqFq1akJ9zJgxST+cAUCmKy3wt2rVqjL3KG0HwGQ7m1VEr169omHDhgn1t956K5YsWZKWa6zL2LFjY82aNQn1I444Ii0PY2y22WZxxBFHJNQLCgpi7Nix5epl1v9K56wAld2oUaMSao0aNYrTTz99I0yT6LnnnktaP/7445N+Bi+vLbbYIukrz/Py8uLNN99Muf/6zJw5M2bOnJlQb9euXey+++5pucZJJ52UtF7a97Y0Zi0pXbMCVGalBct22223yMnJSdt1jj322ITa0qVLY9KkSWXu4f5Eav6on/kr06wAf1Q9evSIcePGxTPPPJPy2wv/V7t27ZLWFy9eXKbz33rrraTH9ujRI9q0aZPKaBERUaVKlVJzDqX93pNOlSl/YdaS/ki5FuF/AACo5CZNmpT0Bvuf/vSnaNy4cVqu0bBhw9hjjz0S6nl5efHOO++k5RoA8HsqbbfbevXqlen8L7/8Mj755JOE+tZbbx0dO3ZMabZf5ObmxkEHHZRQLywsjJdeeikt11iX0v4Qe+ihh6btGqX1GjNmTLn6mLVsvco7K0BlNn/+/Jg6dWpC/dBDD03rH8wrqri4OOnP8+zs7Ojdu3farrMxfyaU9jPvsMMOS9s1evToEXXq1EmoT5w4MX766acy9zFrSemaFaAy+/LLL5PWSwvLVVS7du1iq622SqiXNRzt/kR6/BE/81emWQH+6LKystLaL9lDfRHx/7F351FWVWf+uN8qqCookEkGEUEZBBFQUYk/jUElGhziEOcB1KjRaOMUTcygxiEaNa35xnTsRAxGjcaIM2LA2WjS0YAiKuIAIoqKSDFUUUBBUb8/XCaae06Nt4Zb9Txr9Vrd+5yz9+eSdO1z9n3vPlFWVlar65viufSb3/xm4pvtZsyYEZs2bcraOElyqf5C1i9rS3Utiv8BACDHpb1y/etf/3pWx0nrb+bMmVkdBwCawuuvv57YnvSFe5Lmnn/Txs+WpUuXxpw5czLae/fuHTvssEPWxhk1alTiq1xfffXV+Oijj2rVh6yZspEVINf95S9/Sfwy+LDDDmuGNJnmzJkTS5cuzWjfcccdo2fPnlkbZ+zYsYk7nj3zzDOJO71mU9p6QTbvlwoKCmLs2LEZ7Rs2bIinnnqq1v3I+mXZygqQy9J+7NS9e/esj5VUoPTcc8/V6lrrE9nR1p75cykrANm3du3axPaOHTvWeG3ac2FBQUHstddeDc72uZ49e8aOO+6Y0b5s2bJ46aWXsjZOkua+v6pL/YWste+vtdW1KP4HAIAcl7STYUTEV77ylayOk9bf7NmzszoOADSFtFfD7r777rW6vqnm35133jmxYG/u3LmxcePGrI71RbNnz46qqqqM9mx/voiIMWPGpGaoDVmTNTQrQK5LKpjr169fDBs2rBnSZGqqe4ni4uIYOXJkRvu6detSfwyZDcuXL49FixZltPfu3TsGDhyY1bF22223xPbaFgPImqyhWQFy3YYNGxLbs73zbsRnz/7/admyZfHBBx/UeK31iexpS8/8uZQVgOz7+OOPE9tr82bkN954I8rLyzPaR44cGcXFxQ3O9kVpz6WNPYfkUv2FrLXvr7Xdeyj+BwCAHLZ69epYuHBhRnvXrl2z/qXvNttsk/jAv2jRolixYkVWxwKAxjR37tzE4v8ePXrE+PHja7y+qqoqXnnllcRjSTvRNETHjh1j6NChGe3l5eXx5ptvZnWsL0ra/S0i+58vImKnnXaqU4banidrw7IC5LK0uTqpCL65tPY54eWXX05sb4zPl9ZnWobanidrw7IC5LrOnTsntjfGWvigQYMS29PWHj5nfSK72tIzfy5lBSD70v4Gb7fddjVe29qfS3Op/kLWZG2lrkXxPwAA5LC5c+cm7s6y7bbbNsp4Q4YMSc0BALlgyZIlcfbZZ0dlZWXGsUmTJkVhYWGNfSxatChWrVqV0d63b9/YbLPNspLzi9Lm35qKABoibW5vjHuMhn4+WZM1x39vAFqKt99+O0pLSzPaR4wY0QxpkqX9PU4qqmuo1n4vMXDgwGjfvn1G+zvvvBNr1qyp8XpZkzU0K0Cu22KLLRLb33777SYb66233qr2OusT2dWWnvlzKSsA2bV06dLEeaBTp061mgeacg5J67MxaxNyqf5C1nRtoa5F8T8AAOSwpFe9R3z2a+bGMGDAgMT2xYsXN8p4AJBNL7zwQhx99NGJr7TdY4894vjjj69VP21h/n333XcT27O9A0tExNZbb53YXtvPJ2uyhmYFyGVpu88OHjy4iZMkW7NmTSxbtiyjvaCgIPr165f18ZpjTmjK+6XCwsLEoslNmzbFBx98UOP1siZraFaAXJe28+3f//732LRpU1bH6tSpU2J7TX9vrU9kV1t65s+lrABk1z333JO4OdL48eOjXbt2NV6fNoc0xv1Hv379En+Uvnz58igrK8v6eBG5dX8la7q2UNei+B8AAHLYkiVLEtv79u3bKOOl9ZuWAwBaggULFsSFF14YJ510Unz66acZx0eMGBG//vWvIy8vr1b9tfb5d82aNbFy5cqM9nbt2kWvXr2yPl7v3r0Tv1RYuXJljQv4sqZrSFaAXJdWKNcYO+DWR9oc3rt378jPz/5Xd2m7CTfms3zafwYt8X5J1nTWgYC2bMcdd4zi4uKM9pKSknjiiSeyOtb69esT2z/88MNqr7M+kV1t5Zk/l7ICkF3Lly+PP/zhD4nHjjjiiFr10ZT3H/n5+dG7d+865WioXLq/kjVdW1jPyPxZDAAAkDPSHk4233zzRhmvZ8+eie01fQkBAE1l3bp1UVJSEu+99168/PLL8eyzz8acOXNSzx8/fnz8/Oc/T91lL0lLmX8ba5EybV7v3r17rXb+qav27dtHt27dYvny5YlZhg4dmnqtrOkakhUg19W1+H/NmjXx0ksvxWuvvRbz5s2LTz/9NMrKyqK0tDTatWsXxcXF0bt37xg4cGCMGDEi9txzzwYVRqXNCWlzfkOlZf284Kpz585ZHzPtM7bE9QpZ01kHAtqyjh07xt577x2PPvpoxrEbbrghvva1r0XHjh2zMtbs2bMT2z/55JNqr7M+kV1t5Zk/l7ICkF1XX3114g+v9txzz9h1111rvL68vDzxB2QRjbem0bNnz8S568MPP4xhw4ZlfbyWcn9Vm+duWdO1hfUMxf8AAJDDVqxYkdjetWvXRhmvS5cuie0lJSWNMh4ApLn++uvj5ptvrvf1/fv3jwsvvDD233//Ol+bNv+mzZMNldZvWo6GSpvXG+vzRXxWjJn0JXBN9xiyVq++WQFy3ccff5zY/sUi97Vr18bjjz8eM2bMiOeffz51x93PvfXWW/H8889HREReXl6MGTMmJkyYEPvtt1+dd+tv6jmhQ4cOUVhYGBUVFRnHVqxYkfXi/6qqqpxZr5C1etaBgLbulFNOSSz+f/fdd+Oqq66Kn/3sZw0eY+7cufHjH/848djatWurvdb6RPa1hWf+XMoKQPY8+OCD8cgjj2S0FxYWxkUXXVSrPtL+bhcVFUVRUVGD8qVp6ufSXHruljVdW1jPUPwPAAA5rLy8PLG9LrsX10VaQcC6desaZTwASLNgwYJ6XbfzzjvHqaeeGuPGjatzod7nWvv8m1Zc0FifLyL9M9ZUiClr9eqbFSDXrVmzJrV9/vz5MXXq1HjooYeitLS0Xv1XVVXFiy++GC+++GKMHDkyLrvsshg1alStr2+OOaFTp06Jxf+NMSdUV6jYWJ8xrd+a7pdkrV59swK0FqNGjYqDDjoopk+fnnFs6tSp0b179zj//PPrtb6wevXq+O1vfxu33XZbbNy4MfGcmor/rU9kX1t45s+lrABkx6uvvhqXXXZZ4rHzzz+/1m9haa71jCSNdf+RS/dXsqZrC3Utiv8BACCHpS2Mtm/fOLf6af22pockAFq3devWRVlZWaxdu7bei4pp829BQUFDoqVq6vk3rd/Gur+ISP+3q6nQQdbq1TcrQK5L+zt39NFHJxbAN8Rrr70Wxx13XPz4xz+O448/vlbXNMeckNZ3Y8wJ1d2jNNZnTJvzarpfkrV69c0K0JpceumlMWvWrFi6dGnGsZtvvjnmzZsXV199dfTp06dW/c2fPz/uv//+uO+++6KsrKzac2sqjLY+kX1t4Zk/l7IC0HAfffRRnHnmmYl/c/fee+/49re/Xeu+WtIc0lj3H7lUfyFrurZQ16L4HwAAcljaw0m7du0aZby28JAEQOs2b968uOiii+KnP/1pHHvssXHGGWdEjx496tRHa59/W1JBYn2L4GStvm/3bkBrl/Z3Lq3wv0+fPrHLLrvE6NGjY+TIkdGrV6/o3r17tG/fPpYvXx6LFy+O559/Ph599NH48MMPM67fsGFDXH755VFWVhann356vfM1x5fljbHbanV9trQvdWWtnnsJgIhu3brFLbfcEhMnToyVK1dmHH/++edj3333jQMOOCDGjRsXI0aMiF69ekV+fn4sX748li9fHm+++WbMmjUrXnzxxfjggw9qPXZNbxSwPpF9beGZP5eyAtAwJSUlccopp8SyZcsyjg0ZMiSuv/76yMvLq3V/TV3AXV3fTX3/0RLvr2RN1xbuPRT/AwBADkt7GKqqqmqU8SorKxPbG2snIQBI079//wZdv27duvjDH/4Q9913X1xxxRVx4IEH1vratEXDTZs2NShTmqaef5v680VEbNy4MbG9sLCw2utkrV59swLkurS584u6desWhxxySBxyyCExatSo1PP69esX/fr1i9133z3OPffcuOuuu+KGG25I/ML7+uuvj/79+8cBBxxQ7dgtaU5ojPuJ6r643bRpU6N8sVvf+yVZq2cdCOAzQ4cOjTvvvDPOOuuseO+99zKOV1RUxEMPPRQPPfRQnfvu27dv7LrrrjFt2rSMYx07dqz2WusT2dcWnvlzKSsA9VdaWhqnnnpqLFy4MONYr1694re//W107ty5Tn2mPXe2lvWMiNyqv5A1XVtYz1D8DwAAOSxt8T9tN8OGSnu4rulLCADIth/96Efxox/9KPHY2rVrY+XKlbFo0aKYO3duPPfcczF79uzEBejS0tI4//zzY968eXHhhRfWauwOHToktm/YsKH2H6AOmnr+berPF5H+GdOy1HRc1s/UNytArqvu71znzp3jzDPPjOOPPz6Ki4vr1G9hYWGcfPLJMXr06DjzzDNj+fLlGedcdtllMWbMmOjZs2ed87WWOaG6e5QNGzY0SpF62r9dTfdLslavvlkBWqMhQ4bEfffdF//93/8d99xzT4OL3IYOHRqnnnpqHHTQQRERicX/Le050/pEOlmrZ30CoGl9Xvg/b968jGNdunSJW265pV4bLKXN+c0xhzTW/Ucu1V/Imq4t1LVU/44wAACgRUtbGF27dm2jjFdeXl6nHADQHDp27Bh9+/aN3XffPc4444z44x//GE888URMnDgxdXezyZMnx3XXXVer/lv7/NvUn6+6vmtaiJW1evXNCpDr0v7mbrnllvHQQw/FaaedVufC/y/acccd4ze/+U3ibmErV66M3/3ud/XK11rmhKKiotRjafc1DZX2+Wq6X5K1evXNCtBabbbZZnH55ZfHww8/HEceeWSd59GOHTvGIYccErfddls8/PDDcdhhh0VBQUHqDwk6depUbX/WJ7KvLTzz51JWAOpu5cqVcdJJJ8Urr7yScay4uDh+97vfxXbbbVevvtOeS5tjDmkt9x8Nub+SNV1bqGux8z8AAOSwtFfxlZaWNsp4ZWVlie2bbbZZo4wHANnSr1+/uPjii+Ooo46Kc845JxYtWpRxzu9///vYYYcdYv/996+2r7T5d/Xq1dmImqGp59+0fhvr80Wk37vU9NphWatX36wAuS6tiOg73/lObLXVVlkZY/To0XH22WfHDTfckHHsz3/+c5xzzjmpf/ubek7YuHFj6pepjTEnFBYWRlFRUaxfvz7jWGlpafTo0SPrY6bNeTXdL8lavfpmBWjttt1227jqqqvi0ksvjRdeeCFmz54dCxYsiCVLlkRZWVmsX78+OnXqFF27do1u3brFiBEjYvTo0TF69OjEgv60v7dbbLFFtTmsT2RfW3jmz6WsANTNihUr4tvf/na88cYbGceKi4tj8uTJsfPOO9e7/7Q5pLy8PDZu3Ji6+VJDNPVzaS7VX8iari3UtSj+BwCAHNa3b9/E9pKSkkYZL63fLbfcslHGA4BsGzZsWNxzzz0xYcKEeOuttzKOX3rppbHnnntW++Vj2vy7YsWKrOX8oqaef9OKC1asWBFVVVWRl5eX1fGqqqpS/+369etX7bWypmtIVoBc17t378T2rbfeOqvjnHjiiXHbbbfF8uXLv9S+fv36ePLJJ+Owww5LvC5tTmjqZ/ni4uJGKRiP+Ox+KenHliUlJVn/zyEi/T6sNvdLsqZrSFaAtqCoqCjGjh0bY8eObVA/acVJNT27WZ9oOc/RsqazPgHQNFasWBEnnXRSvPnmmxnHOnXqFJMnT45ddtmlQWNsvvnmUVhYGBUVFRnHSkpKUtdjGqKp7z9yqf5C1nRtoa4lv7kDAAAA9Ze2MPrhhx82yngfffRRnXIAQEvUtWvXuPnmmxN3+Fi1alXcdddd1V7f2uff3r17R2FhYUZ7RUVFRnFjNpSUlCR+WVCbgkRZ0zUkK0CuS5sjN23alNVxOnbsGAcffHDisb///e+p16TvPe8AACAASURBVKXl+/jjj7OSq7b9NuYXnmmfMe2+pqEacr8kazrrQABNY+XKlYntNc3V1ieyq6088+dSVgBqp7rC/y5dusSUKVMaXPgfEZGXl5d6f9JYz6VpaxrZerPjf8ql+ytZ07WF9QzF/wAAkMPSHmrff//9Rhkvrd/GergGgMbSt2/f+K//+q/EYw8++GC117b2+be6BfzFixdnfby0z1ebRVhZ0zUkK0CuS/t72xivEt9jjz0S2994443Ua3r37h1FRUUZ7evWrYulS5dmLdvnmuNZPq3vxpjzNm3aFEuWLKlTjtqcI2vDsgJQe2+//XZi+3bbbVftddYnsqutPPPnUlYAalZSUpJa+N+jR4+4/fbbY6eddsraeE35XLps2bJYt25dRntj/oAsl+6vZE3XFupaFP8DAEAO23777RPb33rrrUYZb8GCBYntI0eObJTxAKAxHXXUUVFQUJDRvmDBgmoL74YNGxbt2rXLaF+8eHHiQnRDNcf8O2LEiMT2xrjHeOeddxLba/v5ZE3W0KwAuWzo0KGJ7R988EHWxxo8eHBi+yeffJJ6TV5eXgwfPjzxWGuZE5pyvWLJkiWJ92D9+vWrVTGArMkamhWA2ps3b15i++jRo6u9zvpEdrWlZ/5cygpAupKSkjj55JMTC//79OkTf/zjH1PXH+qrKZ9LW/t6RkTD7q9kTdcW6loU/wMAQA4bOHBgdOvWLaN92bJlqa/Aq69PP/008fVovXr1alW/kAag7ejcuXPql53vvvtu6nXFxcUxbNiwjPZNmzbFa6+9lrV8ERGVlZWJRQDt27ePHXbYIatjfVHaTkCvvvpq1sdK67OmIofPyZqsoVkBctmIESMSf+DXGF8obr755onta9asqfa61j4n5NLnkzWZewmAppP03N+/f/8af2xlfSK72tI8nUtZAUhWXeH/VlttFXfeeWfqhgUN0drnkFyqv5A1WVupa1H8DwAAOSwvLy/1Afsf//hHVseaNWtWYvvOO++c1XEAoCn16dMnsb2kpKTa69IWl1944YUGZ/qiefPmRXl5eUb7dtttFx07dszqWF/UVJ8vImL27NmJ7bW9x5A1WUOzAuSyoqKixJ3t0v42NkR+fvJXbUk/PviippoTKisrY86cORnt+fn5qesJ2TB06NDo3LlzRvvixYsTv4BtiIauV8iazDoQQNNYunRpzJ07N6N9jz32qNX11ieypy098+dSVgAyVVf4P2jQoLjrrruif//+jTJ22hwyZ86cqKioyOpYzTGH5FL9hazJ2sp6huJ/AADIcfvss09i+1NPPZXVcZ555pnE9q9//etZHQcAmlJVVVW9rkubf5988smGxMnQXPPviBEjonfv3hnt77//flZ3Tf7ggw/i7bffzmgfMGBAbLvttrXqQ9ZM2cgKkOv23HPPjLYPP/ww8Yvxhkj7wWDXrl2rvW7PPfeMwsLCjPbZs2fHqlWrspIt4rMvPEtLSzPad9ttt8Qi8mzJz8+PvfbaK/FYU9wv5eXlxbhx42p1vazJGpoVgNqZPn16bNq0KaP9wAMPrNX11ieyo6098+dSVgC+rLrC/+HDh8edd96ZuulRNvTo0SOxiHvt2rXxt7/9LWvjrF27NrEovLi4OP6//+//y9o4SXKp/kLWTG2lrkXxPwAA5Ljx48dH+/btM9qfffbZrBUMrFu3LvHLgg4dOrS6hyQA2palS5cmttdUsLf77rtHjx49Mtpff/31WLBgQVayRUQ8+uijie0HHXRQ1sZIkp+fHwcccEDisYcffjhr42Tj88maqbn+ewPQkqT9vU37G1lfaT8mGDhwYLXXde7cOcaOHZvRvmHDhqxmnD59emJ7U8wJaUWL2Zzz5syZE0uWLMlo33nnnaNv37617kfWL8tWVgCqV1VVFQ888EBGe8+ePeMrX/lKrfqwPpEdbe2ZP5eyAvBvJSUlcdJJJyWuRey0005x++23J94XZFtTPJc+9dRTsW7duoz2fffdNzp06JC1cZLkUv2FrF/WlupaFP8DAECO6969e+KOhuvWrYu77747K2NMmzYtVq9endE+bty4Rt0pEAAa08qVK2PevHmJx2oq2Gvfvn3ql6S33XZbg7NFRPzf//1fLFy4MKN9xx13jK233jorY1Tn4IMPTmyfOnVqrFmzpsH9b9y4MfVeJW3sNLL+WzazAuSyoUOHJu4mOnXq1Fi/fn3WxnnuuecS20eOHFnjtWl/l++4447EHYDravXq1TFt2rSM9qKiovjGN77R4P5rMnbs2OjWrVtG+yuvvBIvv/xyVsa48847E9vrOufJ+mXZygpA9e6///7EXdaPPvroyM+vXTmP9YmW9Rwt679ZnwDIrs8L/5PuHXbbbbeYMmVKdOnSpUmyHHjggYlF3I899lh8+OGHWRmjOZ9Lc6n+QtYva0t1LYr/AQCgFTjllFMS22+55ZYoKSlpUN8VFRXxv//7v4nHTj311Ab1DQBpKisr49prr41DDz20wXNZmoceeig2bNiQ0d6rV6/Ycssta7z+5JNPjnbt2mW033fffVnZXe9Xv/pVYvtpp53W4L5rY9SoUYk7Da5cuTJuvvnmBvd/3333Je4ou88++8TgwYPr1Jes/5bNrAC57sQTT8xoW758efzpT3/KSv/r1q1L3Vl/3LhxNV6/3377xYABAzLaFyxYEPfdd1+D891yyy1RXl6e0X700UfX+JajbCgsLIwJEyYkHvvFL37R4P4XLFiQ+O/fs2fP+Na3vlWnvmT9t2xmBSDdmjVr4pe//GVGe3FxceI9THWsTzRMW33mz6WsAG1ddYX/e+21V0yePDk6derUZHl69eqVWIS/cePGuOGGGxrc//PPPx+zZ8/OaB82bFh87Wtfa3D/tZFL9Reyfqat1bUo/gcAgFZgt912i9GjR2e0r169On760582qO9f//rXiQu0Y8eOrdVOhgBQVyUlJfHtb387pkyZEvPnz48TTzwxli5dmtUxPvroo7jxxhsTj+2///616mPAgAGJu+tt3LgxfvjDHyb+sKC27r777sSdW7fddtvYb7/96t1vXX33u99NbP/9738fr776ar37/eSTT1K/BDjrrLPq1aesjZMVIJcddthh0adPn4z2X//61/HJJ580uP877rgjVqxYkdE+YMCAxGf0/9SuXbv4zne+k3jsuuuua9BueW+++WZMmTIlo72goKDJCvUiIiZOnJhYgDB79uy4/fbb693vpk2b4uKLL47KysqMYyeffHJ06NChzn3K2jhZAVqThQsXxo033hiLFy9ucF+XXnppLFu2LKP92GOPje7du9epL+sTLes5WlbrEwDZVF3h//777x+/+c1voqioqMlznX766YlvKpo2bVo8+eST9e63vLw8Lr/88sRj3/3udyMvL6/efddFLtVfyPqZtlbXovgfAABaie9///uJD7uPPfZY6s48NZk5c2ZMnjw5o719+/ZxwQUX1KtPAKjO+++/H0cccUS88MIL/2p7++234/DDD49//vOfWRnj448/jlNOOSXKysoyjuXn58fRRx9d677OPffcxCKouXPnxiWXXBJVVVV1zvfSSy/F1VdfnXjswgsvbLLF7YiIr371q4mvYd2wYUNMmjSpXkWJ69ati7PPPjtWrlyZcWz8+PGxww47yNqCsgLkssLCwjj33HMz2svKyuKCCy6IjRs31rvvd999N2666abEY3UpaPrWt74V2267bUb76tWr47vf/W7iq8prUlJSEpMmTUos9Js4cWJsscUWde6zvrp16xann3564rHrrrsunnvuuXr1e/XVV8dLL72U0d6vX7844YQT6tWnrI2TFSDXbdy4Mf7yl7/ESSedFAcccED85je/iQkTJsSiRYvq3ec111wTjzzySEZ7v379YtKkSfXq0/pEy3mOltX6BEC2VFf4f/jhh8cNN9wQBQUFzZAsYtCgQXHkkUcmHvvBD34Q8+bNq3OflZWV8f3vfz/xh5Y77rhjrTduypZcqr+Qte3VtSj+BwCAVmKXXXZJ/SL2pptuip/97GdRUVFR6/6mTp0aF1xwQeKXAqeddlpst9129c4KAGkqKioSX+356aefxoknnhhXXnll4g67tfXYY4/F0UcfHQsXLkw8fthhh8XQoUNr3d+AAQMSiwojIh544IE477zzEn9kkObpp5+OU089NdavX59x7OCDD46999671n0999xzMXz48Bg2bNiX/mennXZK/AI2zRVXXBHFxcUZ7R9//HEcd9xxddoJ7pNPPomTTz455syZk3GsW7ducemll9a6L1mbLitALjviiCPiq1/9akb7iy++GD/+8Y9j06ZNde7z008/jTPPPDPKy8szjo0YMSIOPfTQWvdVUFAQV199dbRr1y7j2JtvvhnHH398vPfee7Xub+HChXHcccclflG+9dZbp963JFm9enWMHj06415i+PDh8eyzz9a6n9NOOy223377jPYNGzbEWWedFQ888ECt+6qoqIhLL7007rjjjsTjV155ZeL8KmvzZgXIZffee2+cd9558Y9//ONfbUuXLo0JEybUeZOCkpKSOOuss+LWW29NPH7llVcmvtmlNqxPtKznaFmtTwA0VHWF/yeccELqWkJT+sEPfpD4xsWysrI46aST4q9//Wut+yotLY2zzz47nnjiiYxjBQUFcdVVVyW+aSDNcccdl3HvMWzYsLj++utr3Ucu1V/I2vbqWtpddtlllzV3CAAAIDvGjBkTTz/9dCxfvjzj2Ny5c+Pxxx+PHj16xDbbbJO6GDB79uy45JJL4g9/+ENiEcSoUaPi2muvbfbFBABapx49esSoUaNixowZUVlZ+aVjVVVVMXfu3Ljrrrti6dKl0blz5+jdu3eNC76lpaXxyCOPxJVXXhlTpkyJNWvWJJ7Xr1+/uPHGG6Njx451yrzjjjvGSy+9FB988EHGsXfeeSemTZsWnTp1isGDB0f79u0T+5g/f378/Oc/jxtuuCFxl96tttoq/ud//qdO2WbPnp24UL5x48Y47rjjokuXLrXqp0uXLtG7d+/EV/WWlZXF/fffHyUlJTFo0KDo2rVrYh+rV6+OO+64Iy644ILE3RHz8vLiuuuua/Dub7I2TlaAXDdmzJiYPn16RrH+m2++GW+99VbsueeeUVRUVKu+5s+fH6eddlri393i4uK49dZbo3v37nXK16dPn6iqqooXX3wx41hJSUlMnTo11q9fH0OGDEktwP7kk0/i5ptvjh/+8IeJawKFhYVx0003Rf/+/Wuda9myZfH73/8+o72qqir22GOPGD58eK36yc/Pj5133jkefvjhjPucysrKeOKJJ2Lu3LnRv3//6Nu3b2IfFRUVMXPmzDj//PPj+eefTzxn4sSJMWHChFplkrVpswLkskGDBsXjjz+esRFBeXl5PPDAA7Fs2bLYaqutYvPNN0/t4/33348pU6bE97///XjzzTcTzzn//PPj8MMPb1BW6xMt5zla1sbJCtBSVVVVxd133x1Lly7NOHbAAQfENttsU6f+SkpKYsKECfHOO+9kHNtnn33iuuuua9I38KQpKiqKYcOGxfTp0zPqCtavXx/Tpk2L9957L7bZZpvUe6W1a9fG/fffH+edd17qD84uuuii+PrXv16nbDfddFOUlpZmtA8YMCD23XffWveTS/UXsjZO1pYqr6o+7/YCAABarI8++iiOOeaYxMWFz3Xp0iV23nnn2HrrraO4uDjWr18fS5YsiVdeeSU+/vjj1Ov69+8ff/7zn6v9IgMAsuHvf/97nHvuubF69epqz+vQoUMMHz48+vfvH5tvvnl06NAhNm7cGKWlpbFixYp4880347333qvx9fbdunWL2267rd47gJSWlsbxxx+fuAvP5zp27Bg777xzDBo0KDp37hwVFRWxdOnSePXVV6vd0bdbt25x9913x8CBA+uU6f77748f/ehHiceefPLJ2GqrrerU369+9au46aabqj1nu+22i+233z569uwZ+fn5sWLFinj77bdj7ty5sXHjxtTrLrroojjllFPqlEfWps8KkMtee+21mDhxYuJu/VtuuWVMmjQpDj744CgsLEy8ftmyZTFlypT44x//mLj72OfF9V/72tfqnfGiiy6KBx98MPV4fn5+jBo1KoYNGxbdu3ePqqqqKCkpifnz58e8efNS32KQl5cXv/zlL+OAAw6oU54PPvgg9cv1n//853UuUHz++efjjDPOqHbu2nLLLWPHHXeMvn37RlFRUZSVlcWiRYvi5Zdfrna34q9//evxP//zP3XaBVDWps8KkKsWLFgQxx9/fLW71A8ZMiSGDBkSvXr1is6dO0d5eXl89NFHMX/+/MQ38nzRscceG5dffnlWslqf+ExLeY6WtXGyAjS1448/PmbPnp31fvPy8uLKK6+Mo4466kvt559/fjz66KNZH68mffr0qdNu/Z+799574yc/+Um15wwcODBGjRoVvXv3jvbt20dpaWksWLAg5syZE+vWrUu9bsKECXHJJZfUOdO4ceNiyZIlGe3f+ta34pprrqlTX7lUfyFr42RtiRT/AwBAK7RgwYI444wz4v33389anwMHDozJkyfXaZdAAGiIBQsWxDnnnJO4u0029evXLyZPnhyDBw9uUD9Lly6NM888M15//fUsJYvo1atX/O///m+MGjWqztdm+8v1iIjrr78+br755jpflyYvLy/OOeecOOuss7LW5+dkbZysALls1qxZMWnSpIydez/XtWvXGDNmTAwdOjS6d+8elZWV8cknn8TcuXPj5Zdfzngr0ec222yzuOGGG2Ls2LENyrdhw4a4+OKLq/0BQF0VFBTEFVdcUa+dhLNd/B8R8dhjj8UPfvCDWLt2bZ2vTTNu3Li44YYb6vz2pprI2jhZAXLV66+/Ht/5zncSdyetr7y8vDjrrLPi7LPPzuruvdYn6s4z/2dyKStAU0orJM+GSZMmxdlnn/2ltn333Ter3/PXRdpbimpy5513xtVXX13tj8Hq6thjj42f/vSn9fpBejaL/yNyq/5C1rZR12KbBgAAaIUGDx4cU6dOjT322CMr/Y0dOzbuueeeVv+ABEDLMnjw4HjggQfitNNOi4KCgqz3n5eXF0ceeWQ8/PDDDS78j/hsV5y77rorvvnNb2Yh3WevJL333nvr9cV6Y7ngggviF7/4RRQXFze4r06dOsX/+3//r9G+AJbVF+sA/2nXXXeNe++9N0aMGJF4fNWqVfHEE0/ETTfdFFdddVVcc801MWXKlJg1a1Zq4f/IkSPj3nvvbXDhf8RnhfrXXntt/OAHP8jKvU/Pnj3j1ltvrVeRfmP5xje+EX/605/qVeT3n/Lz8+OMM86I3/zmN41SoC5r42QFyFUjRoyIqVOnpt5H1NXmm28eN954Y5xzzjlZLfyPsD5RV575/y2XsgK0Zmlv9mvJTjjhhJg8eXL06NGjwX0VFBTExRdfHJdffnmLeRNdLtVfyNo26lpaxv9nAAAAWde9e/e49dZb4xe/+EX06dOnXn1sscUW8ctf/jImT54cXbp0yXJCAKhZYWFhfP/7348ZM2bEEUccEUVFRQ3us3379jF+/Ph48MEH46qrrorOnTtnIelnOnToENdff31Mnjw5Bg4cWK8+unXrFpdeemncc889scUWW2Qt2xc1ZMH8kEMOiRkzZtS7iCAvLy8OOeSQmDlzZuy///71zlEbsgLwn7baaquYOnVqXH755Q36Qrpfv37xs5/9LKZOnRrbbLNN9gJGxKmnnhoPP/xw7LnnnvW6vn379nHiiSfGjBkzYsyYMVnN9rmG3EsMHz48pk+fHpMmTYoOHTrUq4/Ro0fH1KlT43vf+16jFgLICsAX9evXL+655544//zzo1OnTvXqo7CwME4++eSYOXNmfOMb38hywn+zPlEzz/zJcikrAC3LHnvsETNmzIgJEyZEu3bt6tXHXnvtFdOnT4+JEydmOd1nGvKjy1yqv5C19curqqqqau4QAABA46qoqIjHH3887r///vjnP/8Z69evTz23qKgoxowZE0cccUTsu+++UVhY2IRJAaB6q1atiunTp8czzzwTs2bNijVr1tTquh49esROO+0Ue+65ZxxwwAFZ2X2mJpWVlfHcc8/FvffeG3/729+ivLw89dyCgoLYYYcd4vDDD48DDzwwKzusvfDCC3HaaadFRUXFl9p79eoVf/3rX7NS0PXuu+/G1KlTY8aMGTW+9rhfv35x4IEHxlFHHRVbb711g8euK1kB+E/r16+Pxx9/PB588MGYNWtWrF27ttrzu3XrFl/96lfjwAMPjH322afeX2TXxbx58+Kee+6JJ554IpYtW1btuYMHD45vfvObccQRR9T7y9IvKisri3333TdWrFjxpfa8vLyYPn16Vt6ctGLFinjooYfioYceivnz51e7u2G3bt1i7733jqOOOip23XXXBo9dV7IC8EUrV66MP/3pT/Hoo4/GW2+9Ve25BQUFMXLkyPjmN78ZBx98cHTt2rWJUn7G+sSXNfdztKwAuef444+P2bNnZ73fvLy8uOqqq+KII474Uvupp54azz//fNbHq8k222wTM2fOzEpfS5cujXvvvTceeeSRWLhwYbXn9urVK/bbb784+uijY/jw4VkZP+3f8LLLLovjjjuuwf3nUv2FrK2T4n8AAGhjNmzYEG+88UYsXLgwVq1aFWvWrIlOnTpF165dY9CgQTF8+PAoKCho7pgAUKONGzfGe++9F4sWLYqlS5dGeXl5rF+/PgoLC6NDhw7RpUuX2HLLLWOrrbaKvn37NmvWysrKePvtt+Ptt9+OlStXRllZWXTs2DG6du0a/fv3j5EjR9Z7h9aavPHGG3HYYYf96/++9NJL44QTTsj6OEuXLo3XXnstPv3001i1alVERHTt2jV69uwZo0aNit69e2d9zPqSFYD/9PlcvWDBgli5cmWUlpZGfn5+dOrUKfr06RODBw+Orbfeull3Q3///fdj3rx5UVJSEqtXr4527dpF165do3fv3rHDDjtE9+7dG2XcioqK2HvvvWP58uURETF+/Pi48cYbsz5OWVlZzJ07Nz788MNYvXp1VFRUxGabbRbdu3ePYcOGxaBBgxq0Q182yQrAF3366acxf/78+OCDD6K0tDQ2btwYXbp0iS5dusSAAQNi+PDhLaYYyfpEy3qOlhWAtmDFihUxd+7c+OSTT2LVqlVRWVkZXbp0iR49esT2228f/fv3b5Rxq6qqYtKkSfHEE09ExGe7wz/22GNZecP0F+VS/YWsrYfifwAAAABoxaZMmRLXXnttRHy2C9uMGTNaTNEBANDyvfbaa//ahbBdu3Yxbdq0rOz6DwC0LdYnAICmVFFREWPHjv3XGw2vvPLKOProo5s5FWRH821PAgAAAAA0unvuuedf//vZZ5/ti3UAoE6+eC9x6KGHKvwHAOrF+gQA0JQee+yxfxX+b7PNNnH44Yc3cyLIHsX/AAAAANBKvfjii/Huu+9GRMTgwYPj0EMPbeZEAEAuWbNmTTzyyCMREVFQUBCTJk1q5kQAQC6yPgEANLU///nP//rfzz777Gjfvn0zpoHsUvwPAAAAAK3UFxe3zz333MjPtxwIANTe9OnTY82aNRERccwxx0S/fv2aOREAkIusTwAATWnRokXx4osvRkTEsGHD4qCDDmrmRJBd7qYBAAAAoBVauXJlPPbYYxERMWLEiBg/fnwzJwIAcs3nhXodO3aMM888s5nTAAC5yPoEANDUvvjDw/POOy/y8vKaMQ1kn+J/AAAAAGiFHnzwwaioqIiIiPPPP7+Z0wAAueaNN96I1157LSIiJk6cGD179mzmRABALrI+AQA0pYqKinjwwQcjImL06NExbty4Zk4E2af4HwAAAABaoXvuuSciIr7yla/E1772tWZOAwDkmrvvvjsiIrp06RKnnXZaM6cBAHKV9QkAoCk98cQTUVJSEhF+eEjr1b65AwAAAAAA2bVq1apYvHhxbLHFFvGTn/ykueMAADno1VdfjU6dOsWPf/zj6Nq1a3PHAQBykPUJAKCpvfrqq1FQUBBHHHFE7Lbbbs0dBxpFXlVVVVVzhwAAAAAAAAAAAAAAANLlN3cAAAAAAAAAAAAAAACgeor/AQAAAAAAAAAAAACghVP8DwAAAAAAAAAAAAAALZzifwAAAAAAAAAAAAAAaOEU/wMAAAAAAAAAAAAAQAun+B8AAAAAAAAAAAAAAFo4xf8AAAAAAAAAAAAAANDCKf4HAAAAAAAAAAAAAIAWTvE/AAAAAAAAAAAAAAC0cIr/AQAAAAAAAAAAAACghVP8DwAAAAAAAAAAAAAALZzifwAAAAAAAAAAAAAAaOEU/wMAAAAAAAAAAAAAQAun+B8AAAAAAAAAAAAAAFo4xf8AAAAAAAAAAAAAANDCKf4HAAAAAAAAAAAAAIAWTvE/AAAAAAAAAAAAAAC0cIr/AQAAAAAAAAAAAACghVP8DwAAAAAAAAAAAAAALZzifwAAAAAAAAAAAAAAaOEU/wMAAAAAAAAAAAAAQAun+B8AAAAAAAAAAAAAAFo4xf8AAAAAAAAAAAAAANDCKf4HAAAAAAAAAAAAAIAWTvE/AAAAAAAAAAAAAAC0cIr/AQAAAAAAAAAAAACghVP8DwAAAAAAAAAAAAAALZzifwAAAAAAAAAAAAAAaOEU/wMAAAAAAAAAAAAAQAun+B8AAAAAAAAAAAAAAFo4xf8AAAAAAAAAAAAAANDCKf4HAAAAAAAAAAAAAIAWTvE/AAAAAAAAAAAAAAC0cIr/AQAAAAAAAAAAAACghVP8DwAAAAAAAAAAAAAALZzifwAAAAAAAAAAAAAAaOEU/wMAAAAAAAAAAAAAQAun+B8AAAAAAAAAAAAAAFo4xf8AAAAAAAAAAAAAANDCKf4HAAAAAAAAAAAAAIAWTvE/a2V3YgAAFBJJREFUAAAAAAAAAAAAAAC0cIr/AQAAAAAAAAAAAACghVP8DwAAAAAAAAAAAAAALZzifwAAAAAAAAAAAAAAaOEU/wMAAAAAAAAAAAAAQAun+B8AAAAAAAAAAAAAAFo4xf8AAAAAAAAAAAAAANDCKf4HAAAAAAAAAAAAAIAWTvE/AAAAAAAAAAAAAAC0cIr/AQAAAAAAAAAAAACghVP8DwAAAAAAAAAAAAAALZzifwAAAAAAAAAAAAAAaOEU/wMAAAAAAAAAAAAAQAun+B8AAAAAAAAAAAAAAFo4xf8AAAAAAAAAAAAAANDCKf4HAAAAAAAAAAAAAIAWTvE/AAAAAAAAAAAAAAC0cIr/AQAAAAAAAAAAAACghVP8DwAAAAAAAAAAAAAALZzifwAAAAAAAAAAAAAAaOEU/wMAAAAAAAAAAAAAQAun+B8AAAAAAAAAAAAAAFo4xf8AAAAAAAAAAAAAANDCtW/uAAAAQMtwxhlnxLPPPhtVVVXNHeVfunXrFrfffnsMGzas2TI8++yzMWnSpKioqEg9p2vXrjFt2rTo06dPEyYDAAAAAAAAAKAtsfM/AAAQERHPPPNMiyr8j4hYuXJlzJs3r1kzvPrqq9UW/kdErFq1Kt57770mSgQAAAAAAAAAQFuk+B8AAGjRmvsHCbUdv7lzAgAAAAAAAADQuin+BwAAAAAAAAAAAACAFk7xPwAAAAAAAAAAAAAAtHCK/wEAAAAAAAAAAAAAoIVT/A8AAAAAAAAAAAAAAC2c4n8AACAiInbYYYfmjpChuLg4Bg0a1KwZ8vNr99hUUFDQyEkAAAAAAAAAAGjL2jd3AAAAoGWYOnVqna+ZNWtWnHDCCbU6t2vXrvH0009Hp06d6jxOcxozZkxsttlmUVpamng8Pz8/dtppp9h+++2bOBkAAAAAAAAAAG2J4n8AAKDetthii1qf27lz55wr/I+I+MpXvhKzZs1q7hgAAAAAAAAAALRx+c0dAAAAAAAAAAAAAAAAqJ7ifwAAAAAAAAAAAAAAaOEU/wMAAAAAAAAAAAAAQAvXvrkDAAAANIfKysp45ZVX4o033ojS0tLo06dPjB8/PoqLi5s7WobFixfHvHnz4uOPP47y8vIoKiqKzTffPIYOHRrbbbdd5Oc3zu+6Kyoq4p133on3338/li1bFuXl5VFZWRnFxcXRpUuX2HrrrWPw4MHRtWvXRhkfAAAAAAAAAIB/U/wPAADknPXr18cBBxwQS5YsST2nV69eMX369IzC9PXr18cdd9wRt99+eyxduvRLx+bNmxc/+clPvtT2xhtvxPHHHx/l5eWpY3Xu3DmmTZsWW265ZeLx//qv/4qnn346KisrE48XFhbGD3/4wzjhhBP+1bZp06a4995749Zbb42FCxemjt29e/c4+OCD49RTT40tttgi9bzaWr16dUyfPj3+8pe/xJw5c2L9+vXVnp+Xlxfbb7997LXXXnHkkUdGv379GpwBAAAAAAAAAIBMiv8BAICc8+mnn1Zb+B8RsWzZsvjoo4++VPz/xhtvxDnnnBOLFy9OvKa0tDSjbf78+dUW/kdElJWVxQcffJBa/P/UU0/Fpk2bUq+vqKiI//u///tX8f/8+fPjkksuiblz51Y7bkTEihUr4vbbb48///nPcc4558Qpp5xSrzcBlJeXx+9+97u44447Ys2aNbW+rqqqKl5//fV4/fXX47e//W3st99+ceGFF8aAAQPqnAEAAAAAAAAAgHR1rwgBAABoZlVVVXU+b+rUqXHMMcekFv5nc6z/VF3h/3+e8+ijj8YxxxxTq8L/L1q/fn384he/iPPOOy8qKirqdO3rr78ehxxySPz2t7+tU+H/f9q0aVPMnDkzDjzwwLjllltq/W8HAAAAAAAAAEDNFP8DAACt3p133hkXX3xxrF+/vrmjpFq2bFn893//d3zve9+LdevW1bufmTNnxoUXXljrwvt//vOfMWHChHj//ffrPeZ/2rBhw79+iLBx48as9QsAAAAAAAAA0JYp/gcAAFq1J598Mq666qrmjlGjuXPnxuTJk7OyW/7MmTPjrrvuqvG8JUuWxKRJk6K8vLzBYyaZMWNG/OQnP2mUvgEAAAAAAAAA2hrF/wAAQKs1efLkuOCCC6KysrK5o9RLt27dYujQodG/f/8oKiqq07XXX399fPjhh9Wec+WVV8bKlStr1V+HDh1iwIABMWTIkOjWrVvk5eXV6roHH3wwHn744VqdCwAAAAAAAABAuvbNHQAAAKCxTJ8+vbkj1Fl+fn4cddRRMXHixNh2223/1b5+/fr461//Gr/85S9jwYIFNfazZs2auPHGG+Oaa65JPP7mm2/G008/XW0fBQUFceyxx8aRRx4Z22233ZeOrVq1Kp555pm4//774x//+Ee1/TzwwANxyCGH1JgZAAAAAAAAAIB0dv4HAABoITp16hRTpkyJK6644kuF/xERRUVFsd9++8WDDz4Y48aNq1V/M2bMiLKyssRjjz76aLXXtmvXLv7whz/ExRdfnFH4HxHRtWvXOPTQQ+O2226LX/3qV9GlS5eMc4qKimLixIlx3XXX1SovAAAAAAAAAADp7PwPAAC0KTvssEMMHz48unfvHmvWrInS0tJYsGBBvPPOO9GnT59mzXbttdfG7rvvXu05hYWF8atf/SoOPvjgWLRoUbXnrl27NqZNmxbHHXdcxrE5c+ZUe+3uu+8eu+66a42ZIyL233//6NevX5xyyimxevXq6NChQxxzzDFx2mmnRe/evWvVBwAAAAAAAAAA1VP8DwAAtAnjx4+P733ve7HNNtskHq+qqoq8vLymDfUFQ4cOjf32269W5xYWFsb3vve9OOecc2o895lnnkks/l+2bFmdM1Zn1KhRcdddd8Xf/va3OOigg6JXr15Z7R8AAAAAAAAAoK1T/A8AALRq7dq1i6uvvjoOO+ywas9rzsL/iM+K/+tin332ic6dO0dZWVm1573++uuJ7VVVVdVe9/e//z2eeuqpGDduXK0zbbvttrHtttvW+nwAAAAAAAAAAGovv7kDAAAANKYrrriixsL/lqCgoKBO5xcWFsZuu+1W43nLli2LTz75JKO9Z8+e1V63adOmOOuss+L000+Phx56KLEPAAAAAAAAAACajp3/AQCAVmvkyJFx5JFHNneMRjNkyJB48sknazzv7bffjt69e3+pbccdd4wXX3yx2uuqqqri2WefjWeffTYiIgYMGBC77rpr7LLLLrHLLrvEwIED6x8eAAAAAAAAAIA6UfwPAAC0WrvvvntzR2hUW2+9da3OW7VqVUbb/vvvH5MnT67TeIsXL47FixfH/fffHxERm2++eey6664xZsyYGDt2bK3zAAAAAAAAAABQd4r/AQCAVquoqKi5IzSqzTbbrFbnlZWVZbSNHDky9t1333jiiSfqPf7y5ctj5syZMXPmzIiIGDRoUBx99NFxxBFHRJcuXerdLwAAAAAAAAAAmfKbOwAAAAD107Fjx1qdV1pamth+5ZVXRv/+/bOWZ+HChXHNNdfEPvvsE3fccUdUVlZmrW8AAAAAAAAAgLZO8T8AAECOys+v3SPdunXrEtt79OgRd9xxR4wYMSKbsaKsrCx+9rOfxemnnx5r1qzJat8AAAAAAAAAAG2V4n8AAIActXbt2lqdV1hYmHqsb9++8ac//SnOP//86NSpU7aiRUTE888/H9/5zndiw4YNWe0XAAAAAAAAAKAtUvwPAACQo2q7q35xcXG1x4uKiuK73/1uPPPMM3HJJZfEDjvsUOu3CtRk9uzZceONN2alLwAAAAAAAACAtqx9cwcAAACgfpYsWVKr83r06FGr87p06RITJkyICRMmxKpVq+Kf//xnvPzyyzF37tx4/fXXa/1jg/902223xYQJE6JPnz71uh4AAAAAAAAAAMX/AAAAOeu9996r1Xn1Kbrv2rVr7LvvvrHvvvtGRMSmTZti4cKF8eqrr8bcuXNj1qxZ8dZbb9Wqr/Xr18cjjzwSp556ap1zAAAAAAAAAADwGcX/AAAAOerll1+u1XmDBg1q8Fj5+fkxZMiQGDJkSHzrW9+KiIjFixfH7bffHnfddVdUVlZWe/0LL7yg+B8A+P/bu3uQrN4+gOO/W+1fmaXdlmVCS6D0IoQUNFWU0RJBJWRTBdHQ69DUyxCVUWRtEREISQ1RQ1BLDRG0RkNRm1hDkmGiiKhp+gwNPVHarVZe/+f5fMZzrnNdP0fhe84NAAAAAADAJORN9QAAAACMX2tra05f/l+0aFGUlJSMuWZgYCA6OjrGPcPixYvj1KlTcebMmV+u/fDhw7j3BwAAAAAAAADgG/E/AADAv9CtW7dyWrdq1apR7/X29sb169dj7dq1sX79+nj69OmEZtm+fXvMmjVrzDUDAwMT2hsAAAAAAAAAgK/E/wAAAAl48eJFtLe357S2paUl7t69m9PajRs3/nCtv78/mpqaora2Nq5cuRJdXV0xODgYR48ejefPn49r7oiIwcHBGBoaGnNNaWnpuPcFAAAAAAAAAOAb8T8AAEAC3r17F7t27YpXr16Nua69vT0OHDiQ05f0i4uLY926dd9da21tjdra2rh48WJ0dnZ+d6+/vz/27NkTN27ciOHh4Zxnv3z58i/nWbZsWc77AQAAAAAAAADwI/E/AABAIt6/fx/19fXR0NAQLS0t393r7u6O27dvx9atW+Pt27c57VdfXx8zZ8787tqMGTOip6dn1GcGBwejsbExduzYEffu3Rv11wg+ffoUDx48iPr6+rh58+YvZ9m8eXNOMwMAAAAAAAAA8HMFUz0AAAAA3wwNDUVzc3M0NzdHSUlJlJWVRU9PT3z8+DG+fPmS8z5z586Nffv2/XC9vLw8Dh8+HJcuXRrz+Tdv3sTJkycj4usvCMybNy+mT58enz9/jo6Ojujq6sp5lpqamli9enXO6wEAAAAAAAAA+JH4HwAAIFFdXV3jiuz/29mzZ2POnDk/vbd37954+fJlPHr0KKe9uru7o7u7e0JzFBUVxblz5yb0LAAAAAAAAAAA3+RN9QAAAAB8/bp+aWnpb9nr4MGDsWnTplHv5+fnR2NjY2zZsuW3nDeawsLCuHr1aixZsuSPngMAAAAAAAAA8P9A/A8AAJCAtWvXxsOHD2PNmjWT2ufQoUNx5MiRX677559/4vLly3H69OmYPXv2pM78maqqqrhz586k/x4AAAAAAAAAAL4S/wMAABOWyWSm5Ny8vNz+lcnPz/9rZxUUFEzqnIKCgshms9HU1BT79++PadOmjev5srKyuHbtWhw+fHhcz+3atSseP34cu3fvjqKionE9+zMLFy6MhoaGuH//flRWVk56PwAAAAAAAAAAvhL/AwAAE5bNZqOsrCyntTU1Nb/t3Pnz58fy5cvHXLNgwYJYt27dpM+qrq6O0tLSUe/n5eXF0qVLo6qqatJnRXx9YeHYsWPx6NGj2LlzZ2Sz2THXV1ZWxvHjx+Px48exYcOGCZ2ZzWbjxIkT8ezZszh//nxs3rw5SkpKcn6+vLw86urqoqmpKZ48eRJ1dXU5vzQBAAAAAAAAAEBuMiMjIyNTPQQAAMD/slxeDNi2bVtcuHDhh+vDw8Px+vXraG1tjc7Ozujr64vCwsKoqKiIFStWxMKFC//EyDEyMhJtbW3x9u3baGtri97e3ujr64v8/PyYNWtWFBUVRXl5eVRVVUVxcfEfmQEAAAAAAAAAgG8KpnoAAAAARpeXlxfV1dVRXV39V8/NZDJRUVERFRUVf/VcAAAAAAAAAAB+Lm+qBwAAAAAAAAAAAAAAAMYm/gcAAAAAAAAAAAAAgMSJ/wEAAAAAAAAAAAAAIHHifwAAAAAAAAAAAAAASJz4HwAAAAAAAAAAAAAAEif+BwAAAAAAAAAAAACAxIn/AQAAEpDJZKZ6BAAAAAAAAAAAEib+BwAA+MNWrlw55v1MJhOVlZV/aRoAAAAAAAAAAP6NMiMjIyNTPQQAAAAAAAAAAAAAADA6X/4HAAAAAAAAAAAAAIDEif8BAAAAAAAAAAAAACBx4n8AAAAAAAAAAAAAAEic+B8AAAAAAAAAAAAAABIn/gcAAAAAAAAAAAAAgMSJ/wEAAAAAAAAAAAAAIHHifwAAAAAAAAAAAAAASJz4HwAAAAAAAAAAAAAAEif+BwAAAAAAAAAAAACAxIn/AQAAAAAAAAAAAAAgceJ/AAAAAAAAAAAAAABInPgfAAAAAAAAAAAAAAASJ/4HAAAAAAAAAAAAAIDEif8BAAAAAAAAAAAAACBx4n8AAAAAAAAAAAAAAEic+B8AAAAAAAAAAAAAABIn/gcAAAAAAAAAAAAAgMSJ/wEAAAAAAAAAAAAAIHHifwAAAAAAAAAAAAAASJz4HwAAAAAAAAAAAAAAEif+BwAAAAAAAAAAAACAxIn/AQAAAAAAAAAAAAAgceJ/AAAAAAAAAAAAAABInPgfAAAAAAAAAAAAAAASJ/4HAAAAAAAAAAAAAIDEif8BAAAAAAAAAAAAACBx4n8AAAAAAAAAAAAAAEic+B8AAAAAAAAAAAAAABIn/gcAAAAAAAAAAAAAgMSJ/wEAAAAAAAAAAAAAIHHifwAAAAAAAAAAAAAASJz4HwAAAAAAAAAAAAAAEif+BwAAAAAAAAAAAACAxIn/AQAAAAAAAAAAAAAgceJ/AAAAAAAAAAAAAABInPgfAAAAAAAAAAAAAAASJ/4HAAAAAAAAAAAAAIDEif8BAAAAAAAAAAAAACBx4n8AAAAAAAAAAAAAAEic+B8AAAAAAAAAAAAAABIn/gcAAAAAAAAAAAAAgMSJ/wEAAAAAAAAAAAAAIHHifwAAAAAAAAAAAAAASNx/AN3HepdQuFJmAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "fig, ax = rick.charts.stacked_chart(district_cond, xlab = 'Trips', lab1 = '2016', lab2 = '2018', percent = True)" + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": {}, + "outputs": [], + "source": [ + "pass_data = {'cat': ['PTC','Taxi', 'Trip Making Population'],\n", + " 'TTC Pass': [22,16,16],\n", + " }\n", + "\n", + "transit_pass = pd.DataFrame(pass_data,columns= ['cat', 'TTC Pass'])\n", + "transit_pass = transit_pass .reindex(index=transit_pass .index[::-1])" + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
catTTC Pass
2Trip Making Population16
1Taxi16
0PTC22
\n", + "
" + ], + "text/plain": [ + " cat TTC Pass\n", + "2 Trip Making Population 16\n", + "1 Taxi 16\n", + "0 PTC 22" + ] + }, + "execution_count": 16, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "transit_pass" + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAC44AAAQVCAYAAABHMnXfAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAABFNAAARTQBrsa1HQAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzs3XuY1nWd//H3DMNwmuEMKgKiSB4Qyn6aUeguVmoyBVSkBmwt2uaqV7saWaSZuYphl+EpaTfFw6qZuBpmgWdrYRXMpQAFgURBDgICDjPDYZi5f3/sda1rcw9xuOe+5/74eFxX/3w+93y/r/7xGi6f3JZkMplMAAAAAAAAAAAAAACQrNJCDwAAAAAAAAAAAAAAoGUJxwEAAAAAAAAAAAAAEiccBwAAAAAAAAAAAABInHAcAAAAAAAAAAAAACBxwnEAAAAAAAAAAAAAgMQJxwEAAAAAAAAAAAAAEiccBwAAAAAAAAAAAABInHAcAAAAAAAAAAAAACBxwnEAAAAAAAAAAAAAgMQJxwEAAAAAAAAAAAAAEiccBwAAAAAAAAAAAABInHAcAAAAAAAAAAAAACBxwnEAAAAAAAAAAAAAgMQJxwEAAAAAAAAAAAAAEiccBwAAAAAAAAAAAABInHAcAAAAAAAAAAAAACBxwnEAAAAAAAAAAAAAgMQJxwEAAAAAAAAAAAAAEiccBwAAAAAAAAAAAABInHAcAAAAAAAAAAAAACBxwnEAAAAAAAAAAAAAgMQJxwEAAAAAAAAAAAAAEiccBwAAAAAAAAAAAABInHAcAAAAAAAAAAAAACBxwnEAAAAAAAAAAAAAgMQJxwEAAAAAAAAAAAAAEiccBwAAAAAAAAAAAABInHAcAAAAAAAAAAAAACBxwnEAAAAAAAAAAAAAgMQJxwEAAAAAAAAAAAAAEiccBwAAAAAAAAAAAABInHAcAAAAAAAAAAAAACBxwnEAAAAAAAAAAAAAgMQJxwEAAAAAAAAAAAAAEiccBwAAAAAAAAAAAABInHAcAAAAAAAAAAAAACBxwnEAAAAAAAAAAAAAgMQJxwEAAAAAAAAAAAAAEiccBwAAAAAAAAAAAABInHAcAAAAAAAAAAAAACBxwnEAAAAAAAAAAAAAgMQJxwEAAAAAAAAAAAAAEiccBwAAAAAAAAAAAABInHAcAAAAAAAAAAAAACBxwnEAAAAAAAAAAAAAgMQJxwEAAAAAAAAAAAAAEiccBwAAAAAAAAAAAABInHAcAAAAAAAAAAAAACBxwnEAAAAAAAAAAAAAgMQJxwEAAAAAAAAAAAAAEiccBwAAAAAAAAAAAABInHAcAAAAAAAAAAAAACBxwnEAAAAAAAAAAAAAgMQJxwEAAACAFrF169bYunVroWcAAEXM7xMAwMHy+wQAwHtKMplMptAjAAAAAID0VFVVRUTE448/XuAlAECx8vsEAHCw/D4BAPAe3zgOAAAAAAAAAAAAAJA44TgAAAAAAAAAAAAAQOKE4wAAAAAAAAAAAAAAiROOAwAAAAAAAAAAAAAkTjgOAAAAAAAAAAAAAJA44TgAAAAAAAAAAAAAQOKE4wAAAAAAAAAAAAAAiROOAwAAAAAAAAAAAAAkTjgOAAAAAAAAAAAAAJA44TgAAAAAAAAAAAAAQOKE4wAAAAAAAAAAAAAAiROOAwAAAAAAAAAAAAAkTjgOAAAAAAAAAAAAAJA44TgAAAAAAAAAAAAAQOKE4wAAAAAAAAAAAAAAiROOAwAAAAAAAAAAAAAkTjgOAAAAAAAAAAAAAJA44TgAAAAAAAAAAAAAQOKE4wAAAAAAAAAAAAAAiROOAwAAAAAAAAAAAAAkTjgOAAAAAAAAAAAAAJA44TgAAAAAAAAAAAAAQOKE4wAAAAAAAAAAAAAAiSsr9AAAAAAAIE29e/cu9AQAoMj5fQIAOFh+nwAAeE9JJpPJFHoEAAAAAAAAAAAAAAAtp7TQAwAAAAAAAAAAAAAAaFnCcQAAAAAAAAAAAACAxAnHAQAAAAAAAAAAAAASJxwHAAAAAAAAAAAAAEiccBwAAAAAAAAAAAAAIHFlhR4AAAAUh5p3amLKSd8r9AwAAAAAAAAAWrGufXvE5f/5g0LPALIQjgMAAPsk09gY77y5udAzAAAAAAAAAAA4AKWFHgAAAAAAAAAAAAAAQMsSjgMAAAAAAAAAAAAAJE44DgAAAAAAAAAAAACQOOE4AAAAAAAAAAAAAEDihOMAAAAAAAAAAAAAAIkTjgMAAAAAAAAAAAAAJE44DgAAAAAAAAAAAACQOOE4AAAAAAAAAAAAAEDihOMAAAAAAAAAAAAAAIkTjgMAAAAAAAAAAAAAJE44DgAAAAAAAAAAAACQOOE4AAAAAAAAAAAAAEDihOMAAAAAAAAAAAAAAIkTjgMAAAAAAAAAAAAAJE44DgAAAAAAAAAAAACQOOE4AAAAAAAAAAAAAEDihOMAAAAAAAAAAAAAAIkTjgMAAAAAAAAAAAAAJE44DgAAAAAAAAAAAACQOOE4AAAAAAAAAAAAAEDihOMAAAAAAAAAAAAAAIkTjgMAAAAAAAAAAAAAJE44DgAAAAAAAAAAAACQOOE4AAAAAAAAAAAAAEDihOMAAAAAAAAAAAAAAIkTjgMAAAAAAAAAAAAAJE44DgAAAAAAAAAAAACQOOE4AAAAAAAAAAAAAEDihOMAAAAAAAAAAAAAAIkTjgMAAAAAAAAAAAAAJE44DgAAAAAAAAAAAACQOOE4AAAAAAAAAAAAAEDihOMAAAAAAAAAAAAAAIkTjgMAAAAAAAAAAAAAJE44DgAAAAAAAAAAAACQOOE4AAAAAAAAAAAAAEDihOMAAAAAAAAAAAAAAIkTjgMAAAAAAAAAAAAAJE44DgAAAAAAAAAAAACQOOE4AAAAAAAAAAAAAEDihOMAAAAAAAAAAAAAAIkTjgMAAAAAAAAAAAAAJE44DgAAAAAAAAAAAACQOOE4AAAAAAAAAAAAAEDihOMAAAAAAAAAAAAAAIkTjgMAAAAAAAAAAAAAJE44DgAAAAAAAAAAAACQOOE4AAAAAAAAAAAAAEDiygo9AAAAAAAAAAAAACAfytq1jcOO6xOHHd83OnXvFO0rO0RjQ2Ps3L4j3nlzc2xYui42r9qY911d+3SLw4f0i+79e0b7zh2ibfu2satmZ9S8UxMbV2yItYvXxO66XXnfBaRFOA4AAAAAAAAAAAAkq6JnZZwyfngMrfpoDDr1mGjTdu/p5Na1W+KVOX+KF+75fayc+1qL7Tr29MHx0bGnxNCRJ0a3vj32+tk9u/fEqvkr4+WH58eC++dF7ZaaFtsFpKskk8lkCj0CAABo/bZvqo5Jh1xY6BkAAAAAAAAA+6Rbvx5R9YMvxMfO+2SUdyg/oGe88dKf45Hv/iJee+7VnO06ZfzwOPPyz8XhJ/Q7oJ/fXbcrnr31iZh9/azYWb0jZ7typccRPWPKqlsKPQPIQjgOAADsE+E4AAAAAAAAUAxKSkvirO98Pj77vVHRrlP7nDzzudueiIcn3R97du854Gf0OaFfjP/Z+THwEx/KyabNb2yKO79yW7z+4oqcPC9XhOPQepUWegAAAAAAAAAAAABALnTqXhH/NGdyjL7unJxF4xERIy45M/7x0cuirF3bA/r5k8/7REx+8ZqcReMRET0H9IpLn7kiBp85NGfPBNJWVugBAAAAAAAAAAAAAAer86FdY9Lz349DPnTYXj/39vL18ebLq+Ld9Vtjz6490bF7pzhk0GFx1MePjvKO7Zr9uRM++5H42l0Xxh1fuXW/dp0xqSq+eMNX9vqZnTU7480/vB7rl66Nuq21Ud6xPDr37hJHnnJ09Bp4SLM/V96hPC585LK44ZM/iDV/fHO/dgEfPMJxAAAAAAAAAAAAoKh16lEZlz79vWaj8dqttfH7f306/uuu38XGFRuyfqasvCxOOndYnPntz0WfwX2zfubkc4fF0mcWx7w7n9+nXX970Wf2Go2v+P3SeOaWObH4N3+MPbvqs37mkGP6xKf+6awYfv7fRpu2TbPP8g7l8Q8P/VP8cMh3mn0GQERESSaTyRR6BAAA0Ppt31Qdkw65sNAzAAAAAAAAAN6npKQkvjn7O3H8GUOz3v/+356JR7/7YNRtq92n57Vp2yaqrvpCnH3FmKz31W+/G1cOujR21ezc63M+9DfHxT8/9b1oU9amyd3mVRvjF5fcHUtm/3GfNkVE9DtxQJx/38Vx2HGHZ71/ZPIv4ompv97n57WUHkf0jCmrbin0DCCL0kIPAAAAAAAAAAAAADhQZ03+fNZofPeO3fHzc2+J+y+8c5+j8YiIhvqGmPX9mfHAxTOy3nc+pEt84u//Zq/PqOhZGefff0nWaHzZM0viuv93xX5F4xERaxa+ETf+7b/E2iVrst5/+p/PjtI2slCgef4JAQAAAAAAAAAAABStYV9tGnE31O+Jfx17U/zhoRcP+Lm/m/50LHhgXta7j533ib3+7PFnDI2ufbo1OX/t+Vfj1pE37FfI/n9t31QdPz/3ltize0+Tu86HdInjPn3CAT0X+GAQjgMAAAAAAAAAAABF67aqG2LZs6+87+zhbz8QS367f9/onc0jkx+MxsbGJudHnHRUtO1Q3uzPLXhgXjx06b2xo7ruf882r9oYt4++MWv0vT/Wv7o2XrzvP7PeDTrtuIN6NpC2skIPAACAXKmvr48VK1bEG2+8EdXV1VFdXR2ZTCYqKiqid+/eMWjQoOjfv3+Ulvr7kwAAAAAAAACp2LhiQ0z79HVxyvjhMWbKOfHWn1bHs7fMycmzt655J9586fU48pSj33fepqxNHH5Cv3jjpT83+7PP3DwnXp45P8beOD6Gfu6jMePvpsfO6h052fXfDy+I4RNHNDnv++EjcvJ8IE3CcQCAHDrttNPi7bffPuCfLykpiYqKiqisrIyKioro1atXHHfccTF48OAYMmRI9OvX74CfvWrVqhgzZkzs2JGbP4QejGHDhsXdd9+dk2dt2LAhHn/88XjiiSdi6dKlUV9fv9fPd+vWLU499dSoqqqK0047LUpKSnKyAwAAAAAAAIDCmn/f3Jh/39ycP3ftkjVNwvGIiM6HdPmrP7tt3db4+Xm3RklJSWQymdxtWrwm6/m+bAI+uITjAAA5dDDReEREJpOJ7du3x/bt2yMiYvny5TFv3rz/vR86dGiMHj06Ro4cGV27dt2vZ2/cuLFVROMREatXrz7oZ6xatSqmTZsWTz755H794Xrr1q3x2GOPxWOPPRb9+vWLiy66KEaPHu1byAEAAAAAAADIavvG6qzn7Tt32Odn5DIaj4jYvvHdrOf7swn44FHHAAAUkUWLFsU111wTp59+esyYMeOvfrt2iurr62Pq1KlRVVUVTzzxxEH94XrNmjUxefLkGDNmTCxdujSHKwEAAAAAAABIRXmndlnPd9ftyvOS97Tr1D7reSE3Aa2fcBwAoAjV1tbG1KlTY9SoUfHqq68Wek7erF+/PsaPHx8zZsyIPXv25Oy5y5Yti7Fjx8a9996bs2cCAAAAAAAAkIZuh3fPel6zeXuel7yna9/sm2oLuAlo/coKPQAAgAP35z//OcaNGxe33357DBs2bK+f7dKlS7Rt27ZVfEt579699/tn1q5dG+PGjYv169fv9XMdO3aME044IY444ojo3LlzlJWVxbZt22LdunWxcOHCqKmpyfpz9fX1cd1118XatWtj8uTJ+70PAAAAAAAAgDQdNWxQk7PGxsZYu3hNAdb8j4FZNkVEvLV4dZ6XAMVEOA4AkAezZ8+Oo4466q9+bs+ePVFbWxu1tbWxZs2aWLFiRbz88svx/PPPR11dXdafqauri4suuigefPDBOOaYY5p99rHHHhtLliw5oP3PPPNMXHTRRU3Ojz/++HjooYeibdu2B/TcfbVx48b42te+ttdofMSIEXHeeefFsGHDory8POtnGhoa4oUXXoi77ror5s6dm/Uzd999d7Rv3z4uvfTSnGwHAAAAAAAAoHgdecrR0bVPtybnG5atix3vZv/3+Plw4piTs56//sKKPC8BiolwHAAgD/YlGo+IKCsriy5dukSXLl2iT58+ccopp8T48eNj586dMXPmzLjtttti27ZtTX6urq4uJk2aFI8++miUleX+V7yKiopmz1s6Gm9sbIxJkybF6tXZ/1b04YcfHlOnTo2TT87+h+L/q02bNjF8+PAYPnx4PPHEE/GDH/wgtm7d2uRzP/vZz2LQoEFRVVV10PsBAAAAAAAAKF6nfeNTWc9ffujFPC95T88je8dxnxnS5Hzn9h2x+Dd/LMAioFiUFnoAAAB/Xfv27WPChAkxe/bsGDx4cNbPLF++PB555JE8L2t5d911V8yfPz/r3Yknnhi/+tWv9ika/0tnnnlmPPjgg3HooYdmvb/66qtjw4YN+/1cAAAAAAAAANJw2PGHxynjhzc5b6jfEy/c8/sCLPofo687J0rbNM0///DQi7G7blcBFgHFQjgOAFBEunfvHvfee2/07ds36/2///u/53lRy3r77bfj5ptvznr3oQ99KO68887o3LnzAT9/wIABcc8990SnTp2a3G3fvr3ZdwMAAAAAAACQtpLSkhh3+8RoU9amyd3cGc/HO29uLsCqiOM+MyROPndYk/P6nbvjN//yaAEWAcVEOA4AUGQqKiriiiuuyHq3fPnyeP311/O8qOVMnz49du1q+rehO3ToED/96U+zBt/7a8CAAXHVVVdlvZs1a1asW7fuoN8BAAAAAAAAQHE5+4rRMei045qc17yzPR6/+j8KsCiislfn+Pu7L8x699RPfhtbVhcmZgeKh3AcAKAIjRgxInr16pX17qWXXsrzmpaxYcOGePjhh7PeXXzxxdG/f/+cvWvUqFFx7LHHNjlvaGiIxx57LGfvAQAAAAAAAKD1GzLyxKi66otZ7+77xh1R/fa7eV4U0aZtm/jGw/8cXQ7r1uTuzZdXxa8LFLMDxUU4DgBQhEpKSuLUU0/Nerdy5co8r2kZjz76aNTX1zc579mzZ0yYMCGn7yopKYmvf/3rWe/mzZuX03cBAAAAAAAA0Hr1Hdo/Lnjgkiht0zSvfH76U7HwkcJ8mduEn/9DDDq16Rei1W6tjTu+cms07mkowCqg2AjHAQCK1OGHH571fP369Xle0jJmzZqV9fycc86J9u3b5/x9I0aMiPLy8ibnS5YsicbGxpy/DwAAAAAAAIDWpdfAQ+Kbs78T7Ss7NLlb9uwr8ctv3lOAVRFf/PFXYtjfNf1yuYY9DfHzc2+JjSs2FGAVUIzKCj0AAIAD06NHj6zndXV1eV6Se0uXLo1Vq1ZlvRs9enSLvLNTp07xqU99KubNmxfdunWL7t27R9euXaNPnz4t8j4AAAAAAAAAWo9ufbvHpU9/L7oc1q3J3bpX34p/HXtTNDbk/0vHRn5/TJzxraqsdw9+855Y+tTiPC8CiplwHACgSO3evbvQE1rM/Pnzs54PHDgw+vfv32Lvvemmm1rs2QAAAAAAAAC0Tt36do9Ln7kyehzRq8nd5jc2xc1n/ijqttbmfddZ3/18fP6HY7PezbpqZvz+Z0/neRFQ7ITjAABFasuWLVnPO3bsmOcluffyyy9nPR82bFielwAAAAAAAACQsh5H9IxLn7kyeh3Vu8nduxu2xc1nXB/b1mb/9/MtaeT3xzQbjT897bfx22sfzfMiIAXCcQCAIrVkyZKs54ceemiel+TewoULs54PGTIkz0sAAAAAAAAASFXPI3vHZc9ekfWbxt9dvzV+8qnrYuPKDXnf9flrxsbIK8dkvXv6pt/GzG/dl+dFQCqE4wAARaiuri4WLFiQ9e7oo4/O85rcqq2tjU2bNmW9O+aYY/K8BgAAAAAAAIAU9Tyyd3zruSuje/+eTe62rdsaPzn92nh7+fq87xr1L2Pj7CuyR+NP/eQ38fCk+/O8CEiJcBwAoAjNmDEjdu/enfXupJNOyvOa3FqzZk2zd/369cvjEgAAAAAAAABStLdofMvqzTHt01MK8k3je4vG50x9LB6d/GCeFwGpEY4DABSZZcuWxR133JH1buDAgUX/jeNvvfVW1vPKysqoqKjI8xoAAAAAAAAAUrK3aPztFRvips9MiS2rN+d9196i8V9d+cuYPWVWnhcBKRKOAwAUkSVLlsQFF1wQO3bsyHo/bty4PC/KvW3btmU979q1a56XAAAAAAAAAJCSnkf1jm89mz0aX7tkTdx0xvVRvSH7v7NuSaOu/XKc/b3RTc4bGxtj5mX3xbO3zMn7JiBNwnEAgCKwZcuWuPPOO+Puu++OPXv2ZP3MgAEDYuzYsXlelns7d+7Met65c+c8LwEAAAAAAAAgFXuLxt98eVXcfOb1UbulJu+7mo3GGxrjvm/cEfNmPJ/3TUC6hOMAAHmwefPm6Nmz6R8+s6mtrY2amppYt25dvPLKKzF//vx47rnnor6+vtmfadu2bUydOjXKy8tzNblg6urqsp6n8P8NAAAAAAAAgPzbWzS+cu5rcWvVDbGzOvt/+bslNReNN9TviRl/Nz3+8MsX8r4JSJtwHAAgDz75yU+22LPLysrihhtuiI985CMt9o58ai6QLyvzqysAAAAAAAAA+2dv0firTy2O20ffGPU7dud9V3PReP3O3fFvX74lFj3+33nfBKRPfQMAUMR69+4dP/rRj1o0TM+3du3aZT1vaGjI8xIAAAAAAAAAilnPo3rHt577fnTv16PJ3R9/9Yf4+bm3xJ7de/K+a/R158RnJ49qcr6zZmdMH31jLHv2lbxvAj4YhOMAAEWopKQkvvzlL8e3v/3tqKysLPScnOrQoUPW8+a+iRwAAAAAAAAA/tLeovEFD8yLu746PRobGvO+q7lovG5bbdw68oZ4/YUVed8EfHAIxwEAikjPnj1j1KhRMXbs2DjyyCMLPadFNBeO19TU5HkJAAAAAAAAAMVob9H4f97xbNz/jTsjk8nkfVdz0fj2TdVx81k/ijUL38j7JuCDRTgOANDKlJWVRUVFRVRWVkbnzp3jqKOOiiFDhvzv/9q2bVvoiS2qR4+mf3CPiNi2bVuelwAAAAAAAABQbHoNPCQue/bKrNH40zf9NmZedl8BVkWMnnJOfPa7TaPxrWu3xM1nXB/rl64twCrgg0Y4DgCQBy+++GJ069at0DOKQt++fbOeb9u2LXbt2hXt2rXL8yIAAAAAAAAAisHeovHfXPtoPHbVzAKsaj4a37xqY0z7zJTY/PrGAqwCPohKCz0AAOCDQDS+7/r16xclJSVNzjOZTLz11lsFWAQAAAAAAABAa7e3aPw/vvNAwaLxMdefmzUa3/DauvjxadeIxoG8Eo4DANCqlJeXN/ut4ytWrMjzGgAAAAAAAABau95HHxqTfndV1mj8uZ8+GU/++PECrIr44g1fibO+8/km57t37I6bPjMltq3dUoBVwAdZWaEHAADAX/roRz8aa9asaXK+aNGiOOusswqwCAAAAAAAAIDW6u/v/cfo2if7fwl8xMVnxIiLz2iR966c+1r8+LQfZr0bfObQOGNSVda78g7l8aPVt7XIpsaGxrjl7Kmx9KnFLfJ8oLj5xnEAAFqdk046Kev5iy++mOclAAAAAAAAALR2A04eWJD3du3bvdm7Iwq0qbRNabMRPYBwHACAVufjH/941vNXX301Nm7c2KLv/tOf/hQTJ06Mm2++OebOnRs1NTUt+j4AAAAAAAAADk5pm9aXQrbGTQD+yQQAQKvTv3//GDp0aJPzTCYTs2bNatF333777TFv3ry4/fbb4/zzz4+PfexjMXPmzBZ9JwAAAAAAAAAAtDThOAAArdLo0aOznv/iF7+I+vr6FnnnypUr43e/+937zhoaGqJz584t8j4AAAAAAAAADt76pWsL8t63X1vf7N3GFRuiYU9DHtf8j/qdu+OdNzfn/b1AcSgr9AAAAMimqqoqbrzxxqitrX3f+dq1a+Ohhx6KcePG5fydU6ZMiUwm876zrl27xogRI3L+LgAAAAAAAABy4+rB3y70hCYWPDAvFjwwr9AzAN7HN44DANAqdenSJb761a9mvZs2bVps2LAhp+/79a9/HfPmNf1D+4QJE6K8vDyn7wIAAAAAAAAAgHwTjgMA0GpNnDgxunbt2uR8+/btcckll8TOnTtz8p5ly5bFVVdd1eS8V69ezcbrAAAAAAAAAABQTITjAAC0WpWVlXHllVdmvVu8eHF8/etfj5qamoN6x9KlS+OCCy6Iurq6JneTJ0+OysrKg3o+AAAAAAAAAAC0BsJxAABatc997nNRVVWV9W7BggUxZsyYeOmll/b7uZlMJmbOnBnjxo2LTZs2Nbn/whe+ECNHjtzv5wIAAAAAAAAAQGtUVugBAADw1/zwhz+M1atXx6JFi5rcrV69OsaPHx/Dhw+P8847L0499dRo165ds8+qq6uLOXPmxP333x9LlizJ+pmTTjoprr766lzNBwAAAAAAAACAghOOAwDQ6lVUVMQdd9wREyZMiNdeey3rZ+bOnRtz586N8vLyGDx4cAwYMCC6desW7dq1i7q6uqiuro7ly5fH8uXLo76+vtl3nXjiiTF9+vS9xucAAAAAAAAAAFBshOMAABSFLl26xH333ReXX355PPfcc81+bvfu3bFw4cJYuHDhfr/j7LPPjuuvvz7at29/MFMBAAAAAAAAAKDVKS30AAAA2FedO3eO6dOnx+WXXx4dO3bM2XMrKyvj2muvjWnTponGAQAAAAAAAABIknAcAICiUlJSEueff348+eSTcc4550Tbtm0P+Fnl5eVx7rnnxpNPPhljx47N4UoAAAAAAAAAAGhdygo9AAAgJUcffXSsXLnyfWdDhw4t0JrcOfTQQ6Njx45RV1f3vvMjjzyyQIsievXqFddcc01cdtllMWfOnJg9e3YsWrSoyca/VFpaGh/+8Ifj9NNPjy996UvRvXv3PC0GAAAAAAAAAIDCKclkMplCjwAAgFxobGyMVatWxcqVK6O6ujqqq6tj165d0bFjx+jSpUsMGDAgBg0aFBUVFYWeWpS2b6qOSYdcWOgZAAAAAAAAALRiPY7oGVNW3VLoGUAWvnEcAIBklJaWxsD/r/ihAAAgAElEQVSBA2PgwIGFngIAAAAAAAAAAK1KaaEHAAAAAAAAAAAAAADQsoTjAAAAAAAAAAAAAACJE44DAAAAAAAAAAAAACROOA4AAAAAAAAAAAAAkDjhOAAAAAAAAAAAAABA4oTjAAAAAAAAAAAAAACJE44DAAAAAAAAAAAAACROOA4AAAAAAAAAAAAAkDjhOAAAAAAAAAAAAABA4oTjAAAAAAAAAAAAAACJE44DAAAAAAAAAAAAACROOA4AAAAAAAAAAAAAkDjhOAAAAAAAAAAAAABA4oTjAAAAAAAAAAAAAACJE44DAAAAAAAAAAAAACROOA4AAAAAAAAAAAAAkDjhOAAAAAAAAAAAAABA4oTjAAAAAAAAAAAAAACJE44DAAAAAAAAAAAAACROOA4AAAAAAAAAAAAAkDjhOAAAAAAAAAAAAABA4oTjAAAAAAAAAAAAAACJE44DAAAAAAAAAAAAACROOA4AAAAAAAAAAAAAkDjhOAAAAAAAAAAAAABA4oTjAAAAAAAAAAAAAACJE44DAAAAAAAAAAAAACROOA4AAAAAAAAAAAAAkDjhOAAAAAAAAAAAAABA4oTjAAAAAAAAAAAAAACJE44DAAAAAAAAAAAAACROOA4AAAAAAAAAAAAAkDjhOAAAAAAAAAAAAABA4oTjAAAAAAAAAAAAAACJE44DAAAAAAAAAAAAACROOA4AAAAAAAAAAAAAkDjhOAAAAAAAAAAAAABA4oTjAAAAAAAAAAAAAACJE44DAAAAAAAAAAAAACROOA4AAAAAAAAAAAAAkDjhOAAAAAAAAAAAAABA4oTjAAAAAAAAAAAAAACJE44DAAAAAAAAAAAAACROOA4AAAAAAAAAAAAAkDjhOAAAAAAAAAAAAABA4oTjAAAAAAAAAAAAAACJE44DAAAAAAAAAAAAACROOA4AAAAAAAAAAAAAkDjhOAAAAAAAAAAAAABA4oTjAAAAAAAAAAAAAACJE44DAAAAAAAAAAAAACROOA4AAAAAAAAAAAAAkDjhOAAAAAAAAAAAAABA4oTjAAAAAAAAAAAAAACJE44DAAAAAAAAAAAAACROOA4AAAAAAAAAAAAAkDjhOAAAAAAAAAAAAABA4oTjAAAAAAAAAAAAAACJE44DAAAAAAAAAAAAACSurNADAACA4lBSWho9juhZ6BkAAAAAAAAAtGJd+/Yo9ASgGSWZTCZT6BEAAAAAAAAAAAAAALSc0kIPAAAAAAAAAAAAAACgZQnHAQAAAAAAAAAAAAASJxwHAAAAAAAAAAAAAEiccBwAAAAAAAAAAAAAIHHCcQAAAAAAAAAAAACAxAnHAQAAAIAWMXHixJg4cWKhZwAARczvEwDAwfL7BADAe8oKPQAAAAAASNPGjRsLPQEAKHJ+nwAADtb/Z+9O46usz4SPXwkJCSFsoqgsIloRBKq0TkUfrVbbqQu244Jr21FGO7hU0RYriq2ooKKI1No+PiOVB6podXBaoB07uBR0tLJoFVTCJvAIshq2BBJInhfzkZl4DpDlhAN3vt9Xct33+d/X+fgmH/x5x88TAAD/zRvHAQAAAAAAAAAAAAASTjgOAAAAAAAAAAAAAJBwwnEAAAAAAAAAAAAAgIQTjgMAAAAAAAAAAAAAJJxwHAAAAAAAAAAAAAAg4YTjAAAAAAAAAAAAAAAJJxwHAAAAAAAAAAAAAEg44TgAAAAAAAAAAAAAQMIJxwEAAAAAAAAAAAAAEk44DgAAAAAAAAAAAACQcMJxAAAAAAAAAAAAAICEE44DAAAAAAAAAAAAACSccBwAAAAAAAAAAAAAIOGE4wAAAAAAAAAAAAAACSccBwAAAAAAAAAAAABIOOE4AAAAAAAAAAAAAEDCCccBAAAAAAAAAAAAABJOOA4AAAAAAAAAAAAAkHDCcQAAAAAAAAAAAACAhBOOAwAAAAAAAAAAAAAknHAcAAAAAAAAAAAAACDhhOMAAAAAAAAAAAAAAAknHAcAAAAAAAAAAAAASDjhOAAAAAAAAAAAAABAwgnHAQAAAAAAAAAAAAASTjgOAAAAAAAAAAAAAJBwwnEAAAAAAAAAAAAAgIQTjgMAAAAAAAAAAAAAJJxwHAAAAAAAAAAAAAAg4YTjAAAAAAAAAAAAAAAJJxwHAAAAAAAAAAAAAEg44TgAAAAAAAAAAAAAQMIJxwEAAAAAAAAAAAAAEk44DgAAAAAAAAAAAACQcMJxAAAAAAAAAAAAAICEE44DAAAAAAAAAAAAACSccBwAAAAAAAAAAAAAIOGE4wAAAAAAAAAAAAAACSccBwAAAAAAAAAAAABIOOE4AAAAAAAAAAAAAEDCCccBAAAAAAAAAAAAABJOOA4AAAAAAAAAAAAAkHDCcQAAAAAAAAAAAACAhBOOAwAAAAAAAAAAAAAknHAcAAAAAAAAAAAAACDhhOMAAAAAAAAAAAAAAAknHAcAAAAAAAAAAAAASDjhOAAAAAAAAAAAAABAwgnHAQAAAAAAAAAAAAASTjgOAAAAAAAAAAAAAJBwedleAAAAAABIpg4dOmR7BQDgAOfnCQAAAIDMyamurq7O9hIAAAAAAAAAAACZ1r9//4iImDp1apY3AQDIvtxsLwAAAAAAAAAAAAAAQOMSjgMAAAAAAAAAAAAAJJxwHAAAAAAAAAAAAAAg4YTjAAAAAAAAAAAAAAAJJxwHAAAAAAAAAAAAAEi4vGwvAAAAHBi2rN8SI0+8I9trAAAAAADQiNp2bh+3zfx5ttcAAAAagXAcAAColeqqqli/bF221wAAAAAAAAAAoB5ys70AAAAAAAAAAAAAAACNSzgOAAAAAAAAAAAAAJBwwnEAAAAAAAAAAAAAgIQTjgMAAAAAAAAAAAAAJJxwHAAAAAAAAAAAAAAg4YTjAAAAAAAAAAAAAAAJJxwHAAAAAAAAAAAAAEg44TgAAAAAAAAAAAAAQMIJxwEAAAAAAAAAAAAAEk44DgAAAAAAAAAAAACQcMJxAAAAAAAAAAAAAICEE44DAAAAAAAAAAAAACSccBwAAAAAAAAAAAAAIOGE4wAAAAAAAAAAAAAACSccBwAAAAAAAAAAAABIOOE4AAAAAAAAAAAAAEDCCccBAAAAAAAAAAAAABJOOA4AAAAAAAAAAAAAkHDCcQAAAAAAAAAAAACAhBOOAwAAAAAAAAAAAAAknHAcAAAAAAAAAAAAACDhhOMAAAAAAAAAAAAAAAknHAcAAAAAAAAAAAAASDjhOAAAAAAAAAAAAABAwgnHAQAAAAAAAAAAAAASTjgOAAAAAAAAAAAAAJBwwnEAAAAAAAAAAAAAgIQTjgMAAAAAAAAAAAAAJJxwHAAAAAAAAAAAAAAg4YTjAAAAAAAAAAAAAAAJJxwHAAAAAAAAAAAAAEg44TgAAAAAAAAAAAAAQMIJxwEAAAAAAAAAAAAAEk44DgAAAAAAAAAAAACQcMJxAAAAAAAAAAAAAICEE44DAAAAAAAAAAAAACSccBwAAAAAAAAAAAAAIOGE4wAAAAAAAAAAAAAACSccBwAAAAAAAAAAAABIOOE4AAAAAAAAAAAAAEDCCccBAAAAAAAAAAAAABJOOA4AAAAAAAAAAAAAkHDCcQAAAAAAAAAAAACAhBOOAwAAAAAAAAAAAAAknHAcAAAAAAAAAAAAACDhhOMAAAAAAAAAAAAAAAknHAcAAAAAAAAAAAAASLi8bC8AAAAAAAAAAHAga9f5oOhywpFRfHCrKGrXMvIL86N8U3lsXrMxPnl/RawuWRXVVdXZXhMAAGjihOMAAAAAAAAAwAGn+xnHxVk3nx3HfuO4aNG6KCIiKsor4r6+Q2N1yap98vxTrjo9en6zd7Tt2G6P925euyneeXFWvPb4n+OT91c0+m4AAADpCMcBAAAAAAAAgANG9zOOi/N/flF0P71nyrXmLZpHm8PbNmo4fsI/nBgXPnB5HNr98Fp/ptUhrePrPzwrTr3mGzFr0pvx3OAJsXX95kbbEQAAIB3hOAAAAAAAAACw39tTML4vtO3YLq4af130/Gbvep+Rm5sbJ135v6LHmcfFv1z2WCyc+VEGNwQAANgz4TgAAAAAAAAAsN/qfnrP6P/zi+LYM47L2g7dTvpSXDf5lmhzeLuMnNfm8HZx85+HxrgrfxnvTJ6VkTMBAAD2RjgOAAAAAAAAAOx39odg/PM9bvrTTyO/sPlu79m2ZVssm70k1iz6NMo2bImqndXR5rC2cdAR7eNLp/WIvOapeUZ+QX7809M3xi/7PxQfvTyvMb8CAABARAjHAQAAAAAAAID9zLXP3hQnXtIv22tEpz5d4roXb91tNP7u72fHjP89PT58eX5U7diZ9p6idi3jlKtOj/PvvigKW7WocS2/ID+ueebGuOf422PTp6UZ3x8AAOB/ys32AgAAAAAAAAAA/1PPb/XZ7bVtW7bF25P+M7Zu2NKoOxS0LIjr/+3HUdS2Zcq1tUvWxKjThsevL3gk5r/03m6j8YiIss+2xvQxf4x7Txgay+cuTbne6pDWceZN387o7gAAAOl44zgAAAAAAAAAsF/Jyan556qqqih57cN4c8KMeOdf347tW7fHra8Mi2PPOK7RdrjooSvj4G4dUuZL3loYj503Kso+21qn89YtXRNjvjUybn1lWHQ5vmtERHw8a3HMeOLlePuZNzKyMwAAwJ4IxwEAAAAAAACA/UrVzqqIiPh0wcp4a+LMeGvi6/HZivX77PlH9TsmTvvhmSnz1SWr4rFzR0VZad2i8c+VfbY1xv79/XHmzWfHO5NnpX0DOQAAQGMRjgMAAAAAAAAA+5Xf/vOTsXFlaSx5a2FWnt//5xdFbm5ujVlVVVU89Y+/rnc0/rnNazfF74f9rkFnAAAA1IdwHAAAAAAAAADYr7wzeVbWnn3k3x0dvb795ZT5f47/Syz966IsbAQAAJAZuXu/BQAAAAAAAACgaTj9um+mzCq3V8a/DX0uC9sAAABkjnAcAAAAAAAAACAi8gryo+8Ff5cyf2/K3Ni8dlMWNgIAAMicvGwvAACQNG+++WZce+21UVlZme1V4uKLL44RI0Zke40Dwm9/+9sYOXJk7Ny5c9fs8MMPj6lTp0ZxcXEWNwMAAAAAYF/pfc7x0aJNUcr8rQkzs7ANAABAZnnjOABAhq1atWq/iMYjIpYvX57tFQ4Y8+bNqxGNR/zXv8vS0tIsbQQAAAAAwL523Le/nDKr3FYR81/6Wxa2AQAAyCzhOAAAAAAAAABARBx9cveU2cp5/y92Vu5MczcAAMCBRTgOAAAAAAAAADR5ha1aRMdenVPmy+YuzcI2AAAAmSccBwDIsHbt2kWzZs2yvUZERHTo0CHbKwAAAAAAwAGhY+/OkdssNaP49MNPsrANAABA5uVlewEAgKT5xje+ER988EG9PjthwoQYMWJEyvyss86KX/7yl5Gb6//729dycnKyvQIAAAAAAPvAwd3Sv4ylrLRsH28CAADQOITjAAD7keLi4rTz1q1bi8YbWffu3SMnJyeqq6t3zTp16hTt27fP4lYAAAAAAOwrB3c7JO28fGP6cDyveV4cdfIx0fXEo+KIr3SLdp3aRWGbomjRpigiIrZvLo/NazfH6pJVseLdj+ODl96L9cvWNdr+AAAAeyMcBwCAiBg4cGAMHDgw22sAAAAAAJAl7bqkf5HItk3lu/45N69Z9Dmvb5w44KTo079vtGhdtNdze5zZa9c/L5uzNF57/M/x16dfj52VOxu+NAAAQB0IxwEAAAAAAACAJq+wuDDtvKBVizj4qA5x6jXfiFOuOj3aHNa23s/o+tVu8Y+/+ec4+/bvxKQbn4oPp8+r91kAAAB1JRwHAAAAAAAAAJq85kUFaefXTrox8gubZ/RZh3Y/PG7699vjTyN/H1N+/kJUV1dn9HwAAIB0hOMAAAAAAAAAQJPXvCh9HL67aHzz2k2x+I2SWPyfJbH07UWxcWVpbFqzMXZsq4ziQ1pH+yMPiZ7f7B1fHXBSdDyuc8rnc3Nz47xhF0Txwa3imet/k9HvAgAAkI5wHAAAAAAAAABo8nKb5e71nm1btsXs596MtybMjEWvL9jtm8JLP9kQpZ9siMVvLIhp90yOk753agx45HtR3L5Vyr2nD/pmrF28Ov5j9LQGfwcAAIA9EY4DAAAAAAAAAE1eRXnFbq9VbquI6WP+FH9+eGqUfba1TudWV1fHWxNnxpI3F8aN026LQ485LOWe7953Scz707ux6oNP6rw3AABAbQnHAQBIa8OGDbF48eJYvnx5bN68OcrLy6OgoCBatWoV7dq1i2OPPTa6dOmS7TUBAAAAACAjKsrSh+NlpVvjkTPvixXvLmvQ+WsWfRqPnftgDH37vmjZrmWNa/kF+fEP910av77wkQY9AwAAYE+E4wAA7LJkyZJ44YUXYsaMGbFw4cK93t+2bds47bTT4vLLL4+vfvWrdXrWqFGjYty4cTVmrVu3jocffjhOP/30Op31RevWrYurr746SkpKds0OOeSQmDFjRuTmpv9Vo7Nnz46rr746Kir++z8MnHzyyTF+/PgG7QIAAAAAwIGhYuv2tPOZ/+flBkfjn1u7eHVMuuE3cc0zP0q5dsI/nBiHdj88VpesysizAAAAvih9NQMAQJPy8ccfx6BBg+Lcc8+NcePG1Soaj4goLS2NKVOmxBVXXBHf+973YsWKFbV+5gUXXBCFhYU1Zps2bYohQ4bEypUr67T/Fw0dOrRGNB4Rcccdd+w2Go+IWL58eY1o/PMZAAAAAABNQ+mqz9LO1yxandHnzHr2zfh/76X/++cTL+2X0WcBAAD8T8JxAIAmbvz48XH++efHq6++GtXV1fU+Z9asWfGd73wnZsyYUav7jznmmBg2bFjKfOPGjfGTn/wkdu7cWa89JkyYkLLDZZddFueee269zgMAAAAAoGnYsGxd2nlObk7Gn/X6uFfTznue1TvjzwIAAPhcXrYXAAAgO6qrq2PYsGHxwgsv7PaeHj16xPHHHx9dunSJFi1axJYtW2LlypUxZ86cWLRoUcr9ZWVlcdNNN8VTTz0Vffv23esOAwYMiLfeeiumTp1aYz5nzpx47LHHYvDgwXX6TiUlJfHwww/XmPXs2TPuvPPOOp0DAAAAAEDTs3434XiLNkUZf9aH//F+2nnn47tm/FkAAACfE44DADRRI0eOTBuNN2vWLAYMGBADBw6Mrl13/xfU77zzTjz44IPxzjvv1JiXl5fHbbfdFtOmTYvmzZvvdY/hw4fH+++/H8uWLasxf+KJJ6Jfv37Rr1/tfi1nRUVF/PjHP47t27fvmhUXF8fYsWNrtQcAAAAAAE3bJ+8vTzs/uFuHjD9r9YJVUbWzKnKb1fxF8S3aFEVBy4LYvnX7bj4JAABQf7l7vwUAgKR56aWXYsKECSnzLl26xPPPPx/Dhw/fYzQeEdG3b994+umn46KLLkq5tnz58njmmWdqtUtxcXGMGTMm8vPza8yrqqpiyJAhsWHDhlqd89BDD0VJSUmN2b333rvX7wEAAAAAABERG1eVxoblqW8d79S7S8afVV1dHVvWb057rbB1i4w/DwAAIEI4DgDQ5FRVVcW9996bMu/Zs2f87ne/i169etX6rGbNmsW9994bxx9/fMq1KVOm1PqcXr16xW233ZYyX7NmTQwdOjSqq6v3+PmZM2fGxIkTa8wuv/zyOPfcc2u9AwAAAAAALHlzYcqs64ndIq8gP83dDVNdlf7vvnds35HxZwEAAEQIxwEAmpzc3NwYPHhwnHLKKZGXlxcRER07doxx48bFQQcdVOfzmjVrFoMHD06Zz58/P9avX1/rc37wgx/EWWedlTJ/7bXXYvz48bv93IYNG1Li8uOOOy7uuOOOWj8bAAAAAAAiIub/+b2UWX5h8zjuW30y+pyc3JwoatcyZV5VVRVlpVsz+iwAAIDPCccBAJqgiy++OJ566qmYOXNm3H///fHkk09G+/bt633e1772tWjVqlWNWXV1dXz88cd1Ouf++++Pjh07psxHjx4d8+bNS/uZO++8M9auXbvrz8XFxTF27Nho3rx5nZ4NAAAAAADvvjg7dlSkvvH7xEtPzuhzDuvRMfLTvMV87eI1u30TOQAAQEMJxwEAmrCDDjooLrzwwjj66KMbdE5eXl506tQpZb5hw4Y6ndOmTZsYPXr0rjehf66ysjJuvfXW2LJlS435pEmT4pVXXqkxu+++++KII46o03MBAAAAACAioqx0a3yQ5q3jX7n4a9H6sLYZe06vs49PO182e0nGngEAAPBFwnEAADKidevWKbMvht618ZWvfCVuvvnmlPmyZcvi7rvv3vXnxYsXx4MPPljjniuuuCLOOeecOj8TAAAAAAA+98ov/j1lll+QH2f/9PyMPeOUf/x62vl7U+Zk7BkAAABfJBwHACAjqqtTf3VmulltXHvttXHqqaemzKdMmRKTJ0+OioqKGDJkSJSXl++61qtXrxg6dGi9ngcAAAAAAJ/7cPq8WPr24pT5Gdd/Kzr16dLg87864KTo1Cf1N2eWbyqLd38vHAcAABqPcBwAgDrZsWNHbNiwIRYvXhxz5syJl19+OcaPHx/z58/P2DNycnJi1KhRccghh6RcGz58eAwaNKjG84qLi+PRRx+N5s2bZ2wHAAAAAACarheHTkqZNcvPi2ufvSkKigvrfW7xwa3ikjE/SHtt+iN/jMryinqfDQAAsDd52V4AAID9S1lZWcyaNStKSkpi4cKFsWTJkti0aVNs3bo1tm7dWuMt342pffv28fDDD8fVV18dVVVVu+bbtm2LN954o8a9I0aMiCOOSH07CwAAAAAA1MeCVz+ImU++Eqddc2aN+eE9O8Wgf70lfvXdh6NyW2WdzixoWRDXTb412nZsl3Jtw/J18R+jpzVoZwAAgL0RjgMAENXV1TF9+vSYMmVKzJgxY5/F4XvTr1+/uO666+Lxxx/f7T1XXnllnH322ftwKwAAAAAA9gf5hflp582LCjJy/gs/fjqOObVHHNajY435cd/qEze/NDSevPyxKF35Wa3OOuiIg+OHv7s5un3t6JRrO3fsjCevfDy2b92ekb0BAAB2RzgOANDEzZo1Kx544IGYN29erT9TWFgYnTp1is6dO0eXLl2iRYsWMX78+KisrNvbVWrjhhtuiL/+9a8xe/bslGvNmjWLIUOGZPyZAAAAAABk10/+8rM45rQe9frsj6bdtttrVVVV8dt/fjLeGPfaXs/Ztrk8fnHOA3HbG8NT3hJ+zGk94q53H4g/jngxZv7Lq1FRlj76btGmKM64/lvx7dvOjxZtitLv88MnY/EbC/a6DwAAQEMJxwEAmqiqqqp46KGH4je/+U3a60VFRXHqqafGiSeeGN26dYuuXbtGq1atoqioKAoLC1PunzNnTsydOzfjezZr1izOP//8tOH4zp07Y8qUKXHJJZdk/LkAAAAAAGRPuy7tG+Xc3NzcaNe59mevX7YuHv37kXHDH4bEIUd1qHGt+OBWccmYH8R37r0kFs38KJa/83FsWbc5oro6Wh3aJo7o2y26n9Ez8gvSvxm9cntlPD1oXLz5f2c06DsBAADUlnAcAKCJuuOOO+LFF19MmR9xxBExaNCgOP/886N58+a1Pi8vr3F+tFy3bl386le/2u31kSNHRt++feOYY45plOcDAAAAANC0rfrgk7j/a8Pin56+MXp9+8sp1wuLC6P3OSdE73NOqPWZq0tWxbjvPR7LZi/J5KoAAAB7lJvtBQAA2PfGjx+fNhq/5JJLYtq0aXHRRRfVKRpvLDt27IhbbrklVq9evdt7ysvLY/DgwVFeXr4PNwMAAAAAoCnZumFL/OKcB+KJS8bG2iVr6n3OpjUb419/+kwM73ObaBwAANjnvHEcAKCJWbduXYwdOzZl/v3vfz+GDRuWhY1276GHHoq33367xqxjx46xcuXKGrNFixbFPffcE/fff/++XA8AAAAAgEby2Yr1cfCRh2T83KqqqtiwbF29Pz/3hb/Guy/Oit7nnBD9fnBa9Pxm7yhq23KPn9m2uTw+enl+zJ38dsz53Vuxo2JHvZ8PAADQEMJxAIAm5tlnn42ysrIasyOPPDJ++tOfZmmj9KZNmxbjx4+vMTvnnHPigQceiAEDBkRJSUmNa5MnT45+/frFd7/73X24JQAAAAAAjeHh0+/J9gq7VbWzKt6bOjfemzo3IiIOPbZjdOrTJYrbF0eLtkWRk5MT2zZvi02flsaqDz+J1SWfRtWOnVneGgAAQDgOANDkvPzyyymzSy+9NPLz87OwTXolJSUpbz/v2rVr3HfffVFYWBijR4+Oiy++OLZv317jnrvvvjv69OkTRx111L5cFwAAAACAJmz1gpWxesHKvd8IAACQZbnZXgAAgH2nsrIyFi5cmDL/8pe/3OCz16xZ0+AzIiI2b94cN954Y423ohcUFMTYsWOjuLg4IiK6d++e9g3pZWVlMXjw4JSgHAAAAAAAAAAAmjrhOABAE1JaWhqVlZUp8/bt2zfo3E8++SRWrFjRoDMiIqqrq2PIkCGxbNmyGvOhQ4dGz549a8yuvPLKOPPMM1POWLBgQYwYMaLBuwAAAAAAAAAAQJIIxwEAiE2bNjXo80888UTs3LmzwXs8/vjj8eqrr9aYnXfeeXH55ZenvX/EiBHRoUOHlPlzzz0Xf/zjHxu8DwAAAAAAAAAAJIVwHACgCWnXrl3k5OSkzOfOnVvvM6dPnx7PPfdcQ9aKiIi//OUv8fjjj9eYHXnkkXHPPffs9jMHHXRQjBo1Ku13uuuuu2L58uUN3gsAAAAAAAAAAJJAOA4A0ITk5eVF165dU+aTJk2KioqKOp83ffr0uOWWWxq814oVK2LIkCFRVVW1a1ZQUBBjx46N4uLiPX725JNPjmuuuSZlvmXLlhg8eHC9vhcAAAAAAAAAACSNcBwAoIn5+te/njJbtrZbE3YAACAASURBVGzZHt/s/UWVlZXxyCOPxI9+9KMGh9nbtm2LG2+8MTZu3Fhjfuedd0aPHj1qdcbNN98cffr0SZnPnz8/Ro0a1aD9AAAAAAAAAAAgCYTjAABNzGWXXRbNmjVLmT///PNxzTXXxMcff7zbz1ZUVMTkyZOjf//+8cQTT+x6Q3ivXr3iyCOPrNc+d911V3z00Uc1Zv37949LL7201mfk5+fH6NGjo6ioKOXaxIkTY/r06fXaDQAAAAAAAAAAkiIv2wsAALBvHX300XHFFVfExIkTU67NnDkzzj777Ojbt2+ccMIJ0aFDh8jJyYn169fHggUL4u23347y8vIanznzzDNjzJgxcffdd+8xOk9n4sSJ8Yc//KHGrFu3bnV6+/nnunbtGj/72c/i9ttvT7k2dOjQ6NmzZ3Tq1KnO5wIAAAAAAAAAQBIIxwEAmqDbb789li5dGq+//nrKterq6pg7d27MnTt3j2fk5eXFDTfcEIMGDYrc3Lr/IpvZs2fHgw8+WGNWWFgYY8eOjZYtW9b5vIiICy64IF5//fWYOnVqjfmmTZvilltuiaeffjry8/PrdTYAAAAAAAAAABzI6l74AABwwMvLy4tf//rX8f3vf79enz/ppJNi8uTJcf311++KxnNycmr9+c8++ywGDx4clZWVNebDhg2LY489tl47fW748OHRuXPnlPnf/va3GDNmTIPOBgAAAAAAAACAA5VwHABgP9K5c+e0b8Tu1q1bxp/VvHnzGDZsWDz//PNx3nnnRWFh4R7vb9u2bVx44YXx7LPPxoQJE1IC7969e9eIx/Py8uKwww5Le9bcuXOjtLR0158LCgriqquuigEDBjTgG/2X4uLiePTRR6Njx44p1yZNmhTl5eVpP3fooYdGXl7NX8jTvXv3Bu8DAAAAAAAAAAD7g5zq6urqbC8BAED2VVZWxrx582Lp0qWxcePGKC8vjxYtWkSHDh3iS1/6UnTv3r1ObxUneTav3RQ/OXRQttcAAAAAAKARte96cIxc+otsrwEZ079//4iImDp1apY3AQDIvry93wIAQFOQn58fffv2jb59+2Z7FQAAAAAAAAAAIMNys70AAAAAAAAAAAAAAACNSzgOAAAAAAAAAAAAAJBwwnEAAAAAAAAAAAAAgIQTjgMAAAAAAAAAAAAAJJxwHAAAAAAAAAAAAAAg4YTjAAAAAAAAAAAAAAAJJxwHAAAAAAAAAAAAAEg44TgAAAAAAAAAAAAAQMIJxwEAAAAAAAAAAAAAEk44DgAAAAAAAAAAAACQcMJxAAAAAAAAAAAAAICEE44DAAAAAAAAAAAAACSccBwAAAAAAAAAAAAAIOGE4wAAAAAAAAAAAAAACSccBwAAAAAAAAAAAABIOOE4AAAAAAAAAAAAAEDCCccBAAAAAAAAAAAAABJOOA4AAAAAAAAAAAAAkHDCcQAAAAAAAAAAAACAhBOOAwAAAAAAAAAAAAAknHAcAAAAAAAAAAAAACDhhOMAAAAAAAAAAAAAAAknHAcAAAAAAAAAAAAASDjhOAAAAAAAAAAAAABAwgnHAQAAAAAAAAAAAAASTjgOAAAAAAAAAAAAAJBwwnEAAAAAAAAAAAAAgIQTjgMAAAAAAAAAAAAAJJxwHAAAAAAAAAAAAAAg4YTjAAAAAAAAAAAAAAAJJxwHAAAAAAAAAAAAAEg44TgAAAAAAAAAAAAAQMIJxwEAAAAAAAAAAAAAEk44DgAAAAAAAAAAAACQcMJxAAAAAAAAAAAAAICEE44DAAAAAAAAAAAAACSccBwAAAAAAAAAAAAAIOGE4wAAAAAAAAAAAAAACSccBwAAAAAAAAAAAABIOOE4AAAAAAAAAAAAAEDCCccBAAAAAAAAAAAAABJOOA4AAAAAAAAAAAAAkHDCcQAAAAAAAAAAAACAhBOOAwAAAAAAAAAAAAAknHAcAAAAAAAAAAAAACDhhOMAAAAAAAAAAAAAAAknHAcAAAAAAAAAAAAASDjhOAAAAAAAAAAAAABAwgnHAQAAAAAAAAAAAAASTjgOAAAAAAAAAAAAAJBwwnEAAAAAAAAAAAAAgIQTjgMAAAAAAAAAAAAAJJxwHAAAAAAAAAAAAAAg4YTjAAAAAAAAAAAAAAAJJxwHAAAAAAAAAAAAAEg44TgAAAAAAAAAAAAAQMIJxwEAAAAAAAAAAAAAEk44DgAAAAAAAAAAAACQcHnZXgAAADgw5OTmRvuuB2d7DQAAAAAAGlHbzu2zvQIAANBIhOMAAECtFLcvjpFLf5HtNQAAAAAAAAAAqIfcbC8AAAAAAAAAAAAAAEDjEo4DAAAAAAAAAAAAACSccBwAAAAAAAAAAAAAIOGE4wAAAAAAAAAAAAAACSccBwAAAAAAAAAAAABIOOE4AAAAANAoBg4cGAMHDsz2GgDAAczPEwAAAACZk5ftBQAAAACAZFqzZk22VwAADnB+ngAAAADIHG8cBwAAAAAAAAAAAABIOOE4AAAAAAAAAAAAAEDCCccBAAAAAAAAAAAAABJOOA4AAAAAAAAAAAAAkHDCcQAAAAAAAAAAAACAhBOOAwAAAAAAAAAAAAAknHAcAAAAAAAAAAAAACDhhOMAAAAAAAAAAAAAAAknHAcAAAAAAAAAAAAASDjhOAAAAAAAAAAAAABAwgnHAQAAAAAAAAAAAAASTjgOAAAAAAAAAAAAAJBwwnEAAAAAAAAAAAAAgIQTjgMAAAAAAAAAAAAAJJxwHAAAAAAAAAAAAAAg4YTjAAAAAAAAAAAAAAAJJxwHAAAAAAAAAAAAAEg44TgAAAAAAAAAAAAAQMIJxwEAAAAAAAAAAAAAEk44DgAAAAAAAAAAAACQcMJxAAAAAAAAAAAAAICEE44DAAAAAAAAAAAAACSccBwAAAAA+P/s3XlYlPX+//EXmwKyiytqaqloarmUZpZZapvlWtpp0VJzqzQ7dlroq5ZkuVSadWzRPJrlClpqVmiuB7fcM8J9QVMU2UGWmd8f/fQ03jcKzMDA+HxcV9cV73vuz+cNzNwqvO73AAAAAAAAAAAAwMURHAcAAAAAAAAAAAAAAAAAAAAAF0dwHAAAAAAAAAAAAAAAAAAAAABcHMFxAAAAAAAAAAAAAAAAAAAAAHBxBMcBAAAAAAAAAAAAAAAAAAAAwMURHAcAAAAAAAAAAAAAAAAAAAAAF0dwHAAAAAAAAAAAAAAAAAAAAABcHMFxAAAAAAAAAAAAAAAAAAAAAHBxBMcBAAAAAAAAAAAAAAAAAAAAwMURHAcAAAAAAAAAAAAAAAAAAAAAF0dwHAAAAAAAAAAAAAAAAAAAAABcHMFxAAAAAAAAAAAAAAAAAAAAAHBxBMcBAAAAAAAAAAAAAAAAAAAAwMURHAcAAAAAAAAAAAAAAAAAAAAAF0dwHAAAAAAAAAAAAAAAAAAAAABcHMFxAAAAAAAAAAAAAAAAAAAAAHBxBMcBAAAAAAAAAAAAAAAAAAAAwMURHAcAAAAAAAAAAAAAAAAAAAAAF0dwHAAAAAAAAAAAAAAAAAAAAABcHMFxAAAAAAAAAAAAAAAAAAAAAHBxBMcBAAAAAAAAAAAAAAAAAAAAwMURHAcAAAAAAAAAAAAAAAAAAAAAF0dwHAAAAAAAAAAAAAAAAAAAAABcHMFxAAAAAAAAAAAAAAAAAAAAAHBxBMcBAAAAAAAAAAAAAAAAAAAAwMURHAcAAAAAAAAAAAAAAAAAAAAAF0dwHAAAAAAAAAAAAAAAAAAAAABcHMFxAAAAAAAAAAAAAAAAAAAAAHBxns5uAAAAAAAAAIBrqlq1qrNbAAAA5Rx/nwAAAAAAAHAcN6vVanV2EwAAAAAAAAAAAAAAAADgaF27dpUkLV++3MmdAAAAOJ+7sxsAAAAAAAAAAAAAAAAAAAAAAJQsguMAAAAAAAAAAAAAAAAAAAAA4OIIjgMAAAAAAAAAAAAAAAAAAACAiyM4DgAAAAAAAAAAAAAAAAAAAAAujuA4AAAAAAAAAAAAAAAAAAAAALg4T2c3AAAAAKB8SD+frndbv+HsNgAAAAAAAAAAJSioVmW9umGMs9sAAAAAUAIIjgMAAAAoFKvFovPHzjm7DQAAAAAAAAAAAAAAABSDu7MbAAAAAAAAAAAAAAAAAAAAAACULILjAAAAAAAAAAAAAAAAAAAAAODiCI4DAAAAAAAAAAAAAAAAAAAAgIsjOA4AAAAAAAAAAAAAAAAAAAAALo7gOAAAAAAAAAAAAAAAAAAAAAC4OILjAAAAAAAAAAAAAAAAAAAAAODiCI4DAAAAAAAAAAAAAAAAAAAAgIsjOA4AAAAAAAAAAAAAAAAAAAAALo7gOAAAAAAAAAAAAAAAAAAAAAC4OILjAAAAAAAAAAAAAAAAAAAAAODiCI4DAAAAAAAAAAAAAAAAAAAAgIsjOA4AAAAAAAAAAAAAAAAAAAAALo7gOAAAAAAAAAAAAAAAAAAAAAC4OILjAAAAAAAAAAAAAAAAAAAAAODiCI4DAAAAAAAAAAAAAAAAAAAAgIsjOA4AAAAAAAAAAAAAAAAAAAAALo7gOAAAAAAAAAAAAAAAAAAAAAC4OILjAAAAAAAAAAAAAAAAAAAAAODiCI4DAAAAAAAAAAAAAAAAAAAAgIsjOA4AAAAAAAAAAAAAAAAAAAAALo7gOAAAAAAAAAAAAAAAAAAAAAC4OILjAAAAAAAAAAAAAAAAAAAAAODiCI4DAAAAAAAAAAAAAAAAAAAAgIsjOA4AAAAAAAAAAAAAAAAAAAAALo7gOAAAAAAAAAAAAAAAAAAAAAC4OILjAAAAAAAAAAAAAAAAAAAAAODiCI4DAAAAAAAAAAAAAAAAAAAAgIsjOA4AAAAAAAAAAAAAAAAAAAAALo7gOAAAAAAAAAAAAAAAAAAAAAC4OILjAAAAAAAAAAAAAAAAAAAAAODiCI4DAAAAAAAAAAAAAAAAAAAAgIsjOA4AAAAAAAAAAAAAAAAAAAAALo7gOAAAAAAAAAAAAAAAAAAAAAC4OILjAAAAAAAAAAAAAAAAAAAAAODiCI4DAAAAAAAAAAAAAAAAAAAAgIsjOA4AAAAAAAAAAAAAAAAAAAAALo7gOAAAAAAAAAAAAAAAAAAAAAC4OILjAAAAAAAAAAAAAAAAAAAAAODiCI4DAAAAAAAAAAAAAAAAAAAAgIsjOA4AAAAAAAAAAAAAAAAAAAAALo7gOAAAAAAAAAAAAAAAAAAAAAC4OILjAAAAAAAAAAAAAAAAAAAAAODiCI4DAAAAAAAAAAAAAAAAAAAAgIsjOA4AAAAAAAAAAAAAAAAAAAAALo7gOAAAAAAAAAAAAAAAAAAAAAC4OILjAAAAAAAAAAAAAAAAAAAAAODiCI4DAAAAAAAAAAAAAAAAAAAAgIvzdHYDAAAAAAAAAAAAAAAA5VlwrRDVvrWu/EL95RtcSV7eXspKzVLa2RQl7D2hM/GnZbVYnd0mAAAAgOscwXEAAAAAAAAAAAAAAFDuNLynie4b8YAadWwinwBfSVJOVo7Gt3hdZ+JPl8r+7fp3UONOTRVUM/iqj01LTNXO6G1a+8lPSth7osR7AwAAAAAzBMcBAAAAAAAAAAAAAEC50fCeJnpkTC817NDYcKyCTwUF1ggq0eD4rd1bq+d7T6hawxqFPse/SoDufv4+tR/YUdu+jdWCkXOUcT6txHoEAAAAADMExwEAAAAAAAAAAAAAQJl3tcB4aQiqGaz+s4eqcaemxV7D3d1dbZ68U+H3NtEXfT/WgQ1xDuwQAAAAAK6O4DgAAAAAAAAAAAAAACizGnZorK5jeqnRPU2c1kO9NjdpaNTLCqwR7JD1AmsEa8RPr2vmk9O1M2qbQ9YEAAAAgGshOA4AAAAAAAAAAAAAAMqcshAYv9THSz/8S17eFQp8THZ6to5tP6yzB/9UZlK6LPlWBVYPUkidyrrprnB5VjDGM7wqemnAvBc0veskxa3eV5KfAgAAAABIIjgOAAAAAAAAAAAAAADKmEHzX1Lrx9s6uw2FNautodGjCgyN71q2XetnxOj31b/Jkpdv+hjf4Epq17+DHhnbS97+PjbHvCp6aeA3L+jtW15T6p/JDu8fAAAAAP7O3dkNAAAAAAAAAAAAAAAA/F3jzs0KPJadnq2t3/5XGUnpJdpDxUoVNWzpK/INqmQ4lnj4rCbeNU7/7vGBfvtxT4GhcUnKvJChmA9X6p1bX9fxHUcMx/2rBOjel+53aO8AAAAAYIaJ4wAAAAAAAAAAAAAAoExxc7P92GKxKH7t74qds147l2zVxYyLGrUmQo3uaVJiPfSa9KRC61U11A9vPqCPH56ozAsZRVrv3JGz+rDzuxq1JkK1b7lBknR02yGt/2y1tn6zySE9AwAAAMDVEBwHAAAAAAAAAAAAAABliiXfIkn6849T2jx3gzbP3agLJ86X2v712zbQXc/fa6ifiT+tjx+aqMzkooXGL8m8kKGpXSbo3hEPaGfUNtMJ5AAAAABQUgiOAwAAAAAAAAAAAACAMuXrwV8q5VSyDm8+4JT9u47pJXd3d5uaxWLRV/3+XezQ+CVpialaFrHQrjUAAAAAoDgIjgMAAAAAAAAAAAAAgDJlZ9Q2p+1d97YbdfP9zQ31/85epyNbDjqhIwAAAABwDPdrPwQAAAAAAAAAAAAAAOD60GFoJ0Mt92Kulr6+wAndAAAAAIDjlOuJ47GxsRo0aJByc3Od3Yp69+6tyMhIp+ydk5Oj+++/X6dOnbpcc3d31+jRo/Xcc885pSdnat++vRITE02Pde3aVVOmTCnVfrZs2aLBgwcrKyvLcMzNzU3vvfeeunfvXqo92SszM1MdO3ZUcnLy5VpwcLDWrFkjX1/fUu2F53/Zlpqaqg4dOigzM7PYa7i7u8vPz0/+/v7y9/dX9erV1bhxY918881q3ry5qlWr5sCOUd6cOHFC3bp1U0bG/94SMjg4WKtXr1alSpWc2FnZMnHiRM2cOdOmFh4ermXLljmpIwAAAAAAAAAAyibPil5q0eM2Q33P9zuUlpjqhI4AAAAAwHHKdXD89OnTZSI0LknHjx932t5nz561Cc1KksViUXx8vJM6cq6CQuOStHLlSr3yyiuqWbNmqfUze/Zs09C4JFmtVp04caLUenGUpKQkm9C4JF24cEFJSUmlHhzn+V+2paam2hUal/76fqampio19a8fxMXFxWnt2rWS/rr5ok2bNurRo4e6dOlS6s8/ON+pU6dsQuPSX9ejCxcuEBz/m7179xpqcXFxTugEAAAAAAAAAICyremDt8gn0Pg7p81zNjihGwAAAABwrHIdHAeKymKxKDo6WsOHDy+V/c6dO6f169eXyl7A9chqtWrz5s3avHmzJk6cqH/+85/q0aOH3NzcnN0aUGwJCQlaunSpLBaLJMnLy0s9evRguj4AAAAAAAAAAKWgyf3NDbXc7Bz99uNuJ3QDAAAAAI5FcBzXnejoaA0bNqxUgqXLli1TXl5eie8DQDp//rxef/11LVy4UJMnT1atWrWc3RJQLN99952mTZtmU3Nzc9PgwYOd1BEAAAAAAAAAANePG+9oaKid2ndS+bn5TugGAAAAABzL3dkN2CM4OFgeHh7ObkOSVLVqVWe3gEI6ceKEtm3bVip7RUVFlco+AP5n586deuyxxxQXF+fsVoBiMbvhKCcnxwmdAAAAAAAAAABwffH291HNm43DiY7tOOKEbgAAAADA8cr1xPGOHTtq//79xTp3zpw5ioyMNNTvu+8+TZ8+Xe7u5TpTL0mlMlG7vIqOjtbtt99eonvs3r1bBw8eLNE9UDCe/2VbpUqVFBMTo5CQkGs+Njc3VxkZGUpLS9OxY8d08OBBbd68WRs3blRubq7pOUlJSRo4cKCioqK4sQcAAAAAAAAAAACFUrNpLbl7GLMCf/6e4IRuAAAAAMDxyn86upj8/PxM6wEBAeUuNB4SEqIqVarY1Dw9PdW4cWMndVT2rVq1ShkZGSW6x5IlS0p0ffyF53/5FBQUVKjQuCR5eXkpKChItWvXVvv27dW/f3/NmDFDsbGxeuGFF+Tr62t6XmJiot58801Htg2UW40aNTLUmjVr5oROAAAAAAAAAAAou0LrmQ8kykzOLOVOAAAAAKBklOuJ4/iLr6+vNm7c6Ow2ypXMzEytWrVKvXr1KpH1s7OztXLlyhJZG7Z4/l+//P399eKLL6pbt2569tlndfLkScNj1q9fr02bNunOO+90QodA2REREaGIiAhntwEAAAAAAAAAQJkWWq+KaT0rxTw47lnBU/XvaKAbWtdXnZb1FBwWLO9AX/kE/jX46GJaltIS03Qm/rRO7Dqq/T/u0flj50qsfwAAAAC4FoLjuG5FRUWVWHD8559/VlpaWomsDcBWnTp1NG/ePHXt2tX0dTd37lyC4wAAAAAAAAAAALim4NqVTevZqVmX/9/d00PNHm6h1o+1UbOuLeQTYP7uuH8Xfu/Nl///2K9HtPaTn7Rl3kbl5+bb3zQAAAAAFIG7sxsAnOXXX3/V8ePHS2TtJUuWGGoVK1Yskb0ASNWrV9eIESNMj23YsEEZGRml3BEAAAAAAAAAAADKG28/b9N6RX8fhdavqu7v9tF7xz/WsOhRuv0fdxYqNH6lG1rVU79ZgzVm70Q17tTU3pYBAAAAoEgIjuO60LJlS0PNarUqKirK4XslJCRo8+bNNjVvb2/17dvX4XsB+J8ePXrIy8vLUM/Ly9POnTud0BEAAAAAAAAAAADKkwq+5sPABn37giIPfqQHX+umwOpBDtmrWsMaemnVa3r07cfk5ubmkDUBAAAA4Fo8nd0AUBqefvpp7dixw1BfunSpXnrpJbm7O+4eiujoaFmtVptaly5d5O/v77A9ABj5+fmpZcuW2rJli+HYwYMH1b59eyd0BQAAAAAAAAAAgPKigm8F07qXt3k9LTFVhzbF69B/43Vk60GlnEpW6tkU5WXnyq9KgCrXraLGnZqq1WNtVLNJLcP57u7uejiih/xC/fXNsFkO/VwAAAAAwAzBcVwXmjdvrptuukkHDx60qZ8+fVqxsbG68847HbKP1WpVdHS0od6zZ09t377dIXsAKFhYWJhp/fTp06XcCQAAAAAAAAAAAMobd49rDxzLTs/W9gWx2jxngw5u/MMwVOyS5IQkJSck6dCmP7Ti7Si1eaq9HvvgKflVNg4c6zCkkxIPndHPU1bY/TkAAAAAwNUQHC+jcnNztWvXLsXHxys1NVUBAQG67777VL16dWe3pj///FN79uxRUlKSUlJS5OHhocDAQNWvX1/h4eGqVKmSs1s01bNnT02cONFQj4qKclhwfMuWLTp58qRNLSwsTG3bti2V4HhmZqYOHTqko0ePKjk5WZmZmXJzc1NAQIACAgJUv359NWjQQB4eHiXeiyvLzs7W3r17L3+dLRaLAgMDVaVKFbVo0UIhISElun9SUpLi4uKUmJio9PR0paeny83NTYGBgQoICFCDBg1Uv379Qk3SP336tLZu3aozZ86oY8eOatCgQYn2XtIqV65sWs/MzHTI+vn5+Tpy5Iji4+OVlJSk9PR0VahQQf7+/qpVq5aaNGmiwMBAh+xVHGlpadq5c6fOnDmjlJQUWSwW+fn5qXbt2mrSpEmBXx+Ys1gsOn78uA4fPqwzZ84oIyNDubm58vPzk7+/v6pVq6amTZs6/B0lkpOTDbXU1FSH7lES0tPTFRcXp2PHjik1NVXZ2dny8/NTYGCgGjRooJtuukleXl5O73Hv3r2Xe5SkoKAgVa9eXS1atODdQQAAAAAAAADgOpeTlVPgsdzsHMV8+IN+mrxcmRcyirSu1WrV5rkbdDj2gF5Y8aqqNTD+3r/b+Me174ddOr0/och9AwAAAEBhERwvJf3791dsbOzlj/39/bV27Vr5+fnZPC45OVlffvmlFi1aZAiObd26VVOnTjVdf9CgQVq/fv3ljz09PTVz5ky1bdv2mr11795dv//+++WPK1eurFWrVikgIOByLSkpSQsXLlR0dLSOHj1a4FpeXl6688471bt3b3Xq1Elubm7X3L+0dOvWTR988IHy8vJs6jExMUpLS3NIWCwqKspQ69mzZ4l+HS5cuKCoqCitWbNGu3btMnx+V/Lx8VHLli312GOPqVOnTk4P8f3d9OnT9cUXXyg7O/tyrWrVqlq3bt1VQ9D2PP87d+6s48ePX/7Yz89Pa9euNX0+bNq0SfPmzdOGDRuUk1PwD41uvvlm9e/fXw8//LBDQvoWi0VbtmzRsmXLtGnTJp09e/aa51SqVElt2rRRnz59dPfddxu+fkePHtXEiRP1yy+/yGKxSJL27dunadOm2d2vM13t+2KP9evX67vvvtOaNWuUkXH1HwSGh4fr4YcfVs+ePRUaGmrXvpGRkZo7d+7lSRUVK1bUZ599pjvuuOPyY3JycrRixQotWLBAe/bsUX5+foHrNWvWTN26ddNjjz0mb2/vYvU0atQorVjxv2kXFStW1OzZs9WyZctirSf9dTPGQw89pISE//0gtGrVqvrpp5/k4+NT7HWLw2KxaM2aNVq5cqU2bdpkGuL+Ozc3N9WrV0+PPPKIevfurapVqxZqn5SUFN1zzz2Fvqlhzpw5mjNnzlUfM3jwYI0aNcr02PLly/Xqq6/aPD969+6tyMjIQu1fkLS0NC1btkzLly/Xrl27CpyqIv31XLnrrrv0yCOPqHPnznZdH9PT09WxY0ebQH3NmjX1yy+/GB5rtVr1448/asGCBdq6dWuBf066u7urVatWGjBggDp27Fjs3gAAAAAAAAAA5VdOpvnvmjKTM/TBveN1Ytcxu9Y/e/BPffzQ+3p963hVCrYdyOZV0Uvdx/fRv3t+YNceAAAAAHA1BMdLyd+DqdJfQavk5GSb4PgPP/ygcePG6cKFC6Zr5ObmFrj+oUOHbD7Oy8vTqVOnCtXb30PjknT+/HklJCRcLhTv5wAAIABJREFUDo7Pnz9fkyZNUnp6+jXXys3N1dq1a7V27Vo1adJEkZGRatKkSaH6KGmhoaG6++67tWbNGpt6dna2VqxYob59+9q1fnp6un766Sebmpubm3r06GHXugVJS0vTtGnTtHDhQpug9bVkZWVp06ZN2rRpk8LCwhQZGWkTQnWWDz/8UDNmzLCpeXh46M0337zm5Gx7nv9XvjbT09OVkpJiExyPi4vTO++8U+ip8b/99ptGjx6tb7/9Vh999JGqVatWqPPMrFu3Tu++++5Vb9gwk5GRoTVr1mjNmjWqX7++3n33XbVo0ULSX6/pyMhIQ8j6WjcdlAdJSUmmdV9f32KtFxsbq8mTJ2vfvn2FPicuLk5xcXH69NNP9eSTT2ro0KGGm4SKstbfg7gXL17UH3/8cfk1u337dr3xxhs6dqxwP6Tcu3ev9u7dq88++0yvvfaaunbtWuSedu3aZfPxxYsXdfToUbuC4+fOnbMJjUvS2bNndf78edWqVavY6xbVihUr9MEHHxjeOeJqrFarDh8+rKlTp+rTTz/VoEGDNGzYsGvelJOWluawSfiXXO2mkiNHjhhuKrjy+lcUOTk5mj17tr788kulpKQU6pyLFy8qJiZGMTExqlevnkaOHKkHHnigWPsnJycbprCbXfe3bNmi8ePHKz4+/pprWiwWbdu2Tdu2bVOnTp00YcIEm5voAAAAAAAAAACuLyfjoml9w+er7Q6NX5J46Iy+HT5LA7950XDs1u6tVa1hDZ2JP+2QvQAAAADgSldPY6JUWK1WTZw4USNHjiwwNO4MFotF48aN05gxYwoVGr/S/v379fjjj2vhwoUl0F3x9OrVy7RuNim8qFauXKmsrCybWtu2bRUWFmb32leKjY3VAw88oDlz5hQpNH6lhIQEPfvss5o+fboDuyu6zz//3DQ0PmnSpGKHCh0hJydHH3zwgXr27Fno0Pjf7dixQ3379tW5c+eKfG5ubq5Gjx6t559/vsih8SsdPnxY//jHPzR+/HhFRERozJgxppO5K1asaNc+ZUFBAe8aNWoUaZ2cnByNHz9ezz77bJFC43+XlZWlL7/8Ut27dzeErR1h6dKl6t+/f6FD43+XmJioV155RREREVedUH69SE5O1sCBAzVq1KgihcavlJubq08//VR9+/YtdJi6PDp06JD69OmjKVOmFPvzPHLkiEaMGKFRo0YpLS3NwR3+dRPQm2++qWeeeaZQofErxcTEqF+/fg4P9wMAAAAAAAAAyrbk0+a/rz978IxD99k2P1Yn95gPeGnd59rvqgwAAAAAxcXEcSezWCx68803HRJcdqScnBy99tprWrZs2eWal5eXWrVqpaZNm6pKlSqyWq06e/asDh06pM2bN+viRePd17m5uXrrrbeUm5urJ598sjQ/BVMdOnRQSEiIYSrx7t27dejQId14443FXtvse9izZ89ir1eQxYsXa8yYMQVOh65Ro4Zuu+021atXTwEBAcrKytL58+e1e/du7d692xAStVqt+vjjj+Xv769+/fo5vN9rmTt3rqZMmWJTc3d313vvvaeHH3641Pu55NixYxo5cqT2799vU69fv75atWqlOnXqyNfXV+np6Tp27JhiY2N1+rTxzv9Tp07ppZde0jfffFPovXNycjR8+HCtX7/e9HhQUJBuueUWNWzYUIGBgfL19VVGRoYuXLigAwcOaPfu3YZJvBaLRXPnzrWphYWFqX379qpRo4YCAwPVvn37QvdYFh07dkxHjhwxPVaU13Z6erqGDh2qrVu3mh4PDg7WnXfeqZo1a6py5crKyspSYmKi9u3bpz179thMCJekEydO6KmnntJHH32kTp06Ff4TKoDFYtH8+fM1duxYm73Cw8PVsmVL1apVS15eXjp//rxOnjypjRs3Kjk52XStRYsWKTMzU1OmTJGbm5vdvZVHJ0+eVP/+/XXixAnT497e3rrtttsUHh6u0NBQubm5KSUlRfHx8dq2bZvp13bfvn0aPHiwZs+eLW9vb9N1g4KCdMMNNygjI8OmnpeXZ7qmp6engoKCCvw83NzcdNNNN13tU3WI7du3a8iQIQWGvcPDw9WiRQuFhoYqICBA58+f15kzZ7Rx40YlJiYaHr9ixQodOHBAX331lUJDQx3S4969ezVy5EjDTQBNmjTRrbfeqrCwMHl7eystLU0HDx7Uf//7X9N3K9i/f7/GjBmjSZMmOaQvAAAAAAAAAEDZl3TMfCCUm7vjf4+yceYv6jvV+PvZxvc11Yp3oh2+HwAAAABIBMedLjIy0hA49vDwUIsWLdS4cWP5+fkpNzdXSUlJatq0aan11b9//8tTNj08PNSvXz8NGDCgwFBXZmamFi9erOnTp5tOH42MjFSjRo3UunXrEu37Wry8vPToo49q9uzZhmNRUVEaPXp0sdY9fPiwdu7caVPz9/dXly5dirVeQX788Ue99dZbslgshmPt27fX0KFDr/o1PnnypD755BPTkPvEiRN11113qX79+g7t+WqWLFmiyMhIm5q7u7veffddPfroo6XWx5Wio6M1e/Zsm0n7Dz74oAYPHqzGjRubnpOfn6/FixcrMjLScBPFr7/+qpiYmEKHhqdPn24aGq9fv75efvlldezYUV5eXgWen5OTo59//llTpkxRQkKC6WPGjx+v3r17u1RY+Mqp9Zd4enqqRYsWhVojJydHAwcONLyeJalhw4Z69dVX1a5dO3l4eJief/r0aX355Zf65ptvbF6nubm5GjFihKZPn66OHTsWqpeCfPzxxzZTkDt27KiXX35ZjRo1Mn18fn6+1q1bp4kTJ5oG61esWKFGjRpp8ODBdvVVHiUlJWnAgAGmofGqVatq2LBh6t69u3x8fEzPv3jxopYuXarJkycbbtbYuXOnZsyYoZEjR5qe6+fnp59++sn0WI8ePQw3rTz33HN65ZVXCvNplZjdu3dr4MCBhnfXcHNzU8+ePTVkyBDVqVPH9FyLxaJt27bp/fff12+//WZzLD4+Xk899ZQWLlyogIAAu3r8/PPPNW3aNOXm5kr66+8wvXv31oABA3TDDTeYnnPx4kXNmjVL06ZNM/z5+v333+vZZ59VkyZN7OoLAAAAAAAAAFA+nC8gOO4T6OvwvX7/ea9pvdYt5j/PBgAAAABHcHd2A9ez119/XV9//fXlj318fDR8+HBt2LBB8+bNU0REhEaOHKnRo0drwoQJpTqx+1IoMSwsTN9++63+9a9/XXUSqK+vr5555hmtWrVKt956q+F4fn6+Ro8erezs7BLrubAKmgK+bNkywzTuwjILYj/00EMFTpotjpMnT+r11183hNp8fX01adIkzZw585rB/Fq1amnChAmKjIw0BIbz8vI0efJkh/V7LStWrFBERITNxGQ3Nze988476tGjR6n1YWb69OmXQ+O1a9fW3Llz9dFHHxUYGpf+Cif26dNHU6dONQ1jz58/v1B7Hzp0SDNnzjTUu3btqmXLlqlLly5XDY1LUoUKFfTwww9r+fLlatvW+FZ23t7e6tatm0uFxjds2KDoaPPJC+3atZOfn1+h1hkzZoxpaHzQoEGKjo7WXXfdVWBoXPpr4v9bb72l+fPnKyQkxOZYXl6eRo8eraNHjxaql4Jcuj57e3vrvffe04wZMwoMjUt/PTfvvfdeff/99+rbt6/pY6ZOnaq4uDi7+iqP3njjDdPvx6OPPqpVq1bpiSeeKDA0LkkVK1ZUnz59FB0drZo1axqOf/XVVzp79myR+zJ7vlaoUKHI6zhSYmKiXnjhBUNoPDAwUHPnztW7775bYGhc+uumoDZt2mjRokV68cUXDcePHDmi0aNHGyb2F9WUKVMuh8abNGmiqKgovf322wWGxqW/vo9Dhw5VRESE4ZjVatWCBQvs6gkAAAAAAAAAUH4k7D1uWg+tV9Xhe53547Qs+caBYT6BvqpYqaLD9wMAAAAAieC4U23duvXy/7dv317Lly/XSy+9pMqVKzuxq/8JDQ3Vf/7zH91yyy2FPickJESzZ8/W7bffbjh26tQp00nfpa1Ro0am09sTExO1YcOGIq+Xn5+vpUuXGuq9e/cuVn8FmTRpkjIyMmxqgYGB+s9//lPk6dy9e/fWs88+a6ivW7dOaWlpdvVZGKtXr9arr75qE4J3c3PTuHHjHP51s8elsLbZ87kgHTt21H333Weob9++XTk5Odc8Pzo6Wnl5eTa1li1batKkSUUOjvr6+uqTTz5R1aq2P8jKzs5WTExMkdYqy9atW6cXXnihwMBpYW+6iYmJMb0JZOjQofrnP/8pT8/Cv0nHLbfcoq+++kpBQUE29bS0NL3xxhuFXqcgHh4e+uCDD4p0k4WXl5fGjRun5557znAsPz9fEydOtLuv8mTdunX65ZdfDPWhQ4dq0qRJqlSpUqHXqlWrlv79738bbirIzs7Wzz//bHevZcGYMWMMIfiAgADNmjVLt912W6HX8fDw0AsvvKCXX37ZcGzt2rVavHix3b1K0rPPPquFCxcqPDy80Oc8+eSTpjcI/fe//3VITwAAAAAAAACAsi/ldLKSjhunjoc1re3wvaxWq9LPm/9u1jug4ME2AAAAAGAPguNlQK9evfTFF1+oVq1azm7lMjc3N02dOlW1axf9H8A+Pj6aPHmyAgMDDcdmz55dqPBsSSto6rhZaPRaNmzYoMTERJtagwYN1Lx582L1VpAnnnhCXbt2vRxm9PLy0qefflrsfYYPH26YpJuXl6eNGzfa3evVbNq0SSNHjjSEo9966y316dOnRPcuLA8PD7355puaMmVKkcKjl3Tv3t1Qy8rK0pkzZ655rlnI9NVXX5W7e/Eu135+fhowYICh/uOPPxZrvbLk9OnTeuONN/T8888X+G4Gt912m+65555rrpWdna13333XUO/QoYNGjhxZrP7Cw8MVGRlpqP/666/6/vvvi7XmJS+99JLpDQqF8c9//lMtWrQw1Ddt2qT9+/fb1Vd50rhxYw0ZMkR169a9XOvbt69d3++HHnrIUF+3bl1xWywz1q1bp9WrVxvq48aNM70RqzCGDBli+hz+4IMP7LqBycfHRx999JFee+21a747gxmz6/eJEycMf2YBAAAAAAAAAFzX4dgDhtoNrevJs2LRf+58LVaL+WCkvIv8XBoAAABAySA47mSPPPKIIiMjix0KLSn33nuvWrduXezzq1WrZjpN9MKFC2Vi0nHXrl1NpzevWbNGFy5cKNJaZmHzgoLp9mjbtq2mTJmi2NhYffLJJ/rss8/s+h75+fmZTtI+evSoHV1e3fbt2zV8+HDDzQMRERGFngpdGt555x0988wzxT6/WbNmpvWkpKSrnmexWHTy5EmbWmhoqGnItyjuvvtuQ23fvn12rWmvjIwMZWVlFeqxVqtV6enp+vPPP7V161bNmjVLAwYM0L333qslS5YUeF5gYKAmTJhQqD2io6OVkJBgU/P19dXYsWMLdX5BOnXqpM6dOxvqn3/+ebHXrFy5sunU8MLy8PBQZGSk3NzcDMcWLFhQ7HXLm6pVq+rll1/Wjz/+qKVLl2rs2LF666237FrTLAhdktfU0vLpp58aah07djQNyhfF//3f/xluzklKStLChQuLveaMGTP04IMPFvt8syC81WpVcnJysdcEAAAAAAAAAJQvv/20x1Dz8q6gJp3NfwdYXG7ubvINNg6xslgsykzOMDkDAAAAAOxXttLK15ng4GCNHTvWNLznbF26dLF7jW7dusnPz89QLwvB8cDAQHXq1MlQz83N1fLlywu9TlJSktasWWNT8/T01KOPPmp3jwWpWLGiOnXqpDvvvNPutW644QZD7fz583ava2bv3r0aPHiwISz8+uuv6+mnny6RPYvL3un/ISEhpvWCpmJfcuHCBcNU25o1a9rVS0FrXDklv7QlJyfr1ltvVaNGja75X3h4uFq1aqUOHTro6aef1vvvv6+NGzfKYrEUuL6vr68+/fTTQr9rwpw5cwy1bt26OeTrP2TIEEMtPj5emzdvLtZ6HTp0ML3xpShuvPFGtWnTxlA3myp9PWjcuLGeeOIJeXp62rXO36eXX1JS19TSsmvXLu3atctQHzZsmN1rV69eXT169DDU582bd9XX99U46/oNAAAAAAAAAHAdu6K3Ky/HOPG7dZ87HLpP9fCa8jKZYp546GyBk8gBAAAAwF4Ex53okUceMQ1WlwXVq1e3ew1fX1/TqZ9btmyxe21H6NWrl2ndbIJ4Qb7//nvl5uba1Dp06KDQ0FC7eistAQEBhlpGhuPvXv/jjz80cOBApaen29RHjx6t/v37O3w/ZytuqNdqNf4A6MrnV3GYreHj42P3umVVvXr1NG/evEJP5P/99991+PBhQ/3xxx93SD9NmzZVeHi4ob5q1apirVejRg17W5Jkfg1MTEzUoUOHHLL+9cjf399Qu/K6V96sWLHCUGvUqJGaN2/ukPV79+5tqCUkJDjtXRHsvSkDAAAAAAAAAFD+ZSZnaL/J1PGWvW9XQPUgh+1z8wO3mNaPbTf+3goAAAAAHIXguBM1aNDA2S0UyFFT0Fu0aGGonTt3TqdOnXLI+vZo166daUB+//79iouLK9QaZiHznj172t1baTELKpvV7HHkyBE999xzSk5Otql37dpVAwcOdOhe5V1QUJAhtHj8+HHl5OTYte6RI0cMtapVq9q1Zlnk5eWloUOH6rvvvlOTJk0Kfd7atWsNtbCwsCKtcS2dO3c21NavX1+stUry+iz99e4AKB5HXz/LgnXr1hlqjnhXkksaN25sOiXcbF8AAAAAAAAAAErLmmnGAUBeFb30wL8ecdge7frdbVrf8/2vDtsDAAAAAK5EcNyJPD09nd1CiWvWrJlp/fjx46XciZG7u7u6d+9uemzJkiXXPN8sYF65cmXdc889jmjPoaxWq1JSUnTs2DHt3r1b69at0+LFi00nyTrSyZMn1b9/f507d85wLD4+Xvn5+SW6f3nj6empm2++2aaWkZGhmJgYu9b94YcfDLVWrVrZtWZZEhYWphdffFExMTEaOXJkkScG79y501Ar6NpVXGbrJSQkKDEx0aH7FEXt2rUVFGScilEWrs/lQVZWlk6fPq24uDjFxsZq5cqVmjZtmrPbcqikpCQdO3bMUHf066Np06aG2q5duxy6BwAAAAAAAAAARfF7zD4d2Wp8l9Z7hnVWWLPadq/f6rE2CmtWx1DPSs3UrmUExwEAAACUHNdPLsOp6tata1pPSEgo3UYK0LNnT82YMcNQX758uV599VV5eXkVeK5ZuLxbt25OuSHAYrFo586diouLU3x8vA4ePKjz588rIyNDGRkZysrKksViKdWezpw5o/79++vPP/80PR4fH6/58+frySefLNW+yrqHHnrIEGSeMGGCWrVqpWrVqhV5vbi4OH399deG+oMPPljsHp3By8tL/v7+8vf3V2BgoBo0aKBmzZqpefPmatKkiV1TuA8ePGioXRngt1dB6x06dEhVqlRx6F5FUbduXUNAt6xcn53t5MmT2rFjhw4cOKADBw4oISHh8jU1IyNDubm5zm6xxB04cMC0XhKvj1WrbCe3HD7M23ACAAAAAAAAAJwr+vVvNWp1hE3Nw8tTg+a/pAlt3tLF9OxiresX6q/HP3zG9FjMByuVm2XfuxEDAAAAwNUQHEeJqlChgipUqKCcHNt/3GZkZDipI1s33HCDbrvtNm3bts2mnpSUpLVr16pz586m5+Xk5Gj58uWGes+ePUukz4Ls2bNHUVFR+vnnn02nejtLUlKS+vfvrxMnTlz1cVOnTtWDDz6okJCQUuqs7Hv88cf11Vdf6dSpU5drZ8+e1RNPPKH3339ft912W6HXWr9+vUaPHm14/d1xxx1q06aNw3oujuDgYK1bt04VK1Z0ah/5+fk2X+tLHB3mDgkJkZubm6xWq0395MmTDt2nqPz8/Ay1snJ9dobk5GQtWrRIq1at0r59+5zdjtOZXcPd3d1VuXJlh+4TGhpqqJ0+fVr5+fny8PBw6F4AAAAAAAAAABTWH7/s14Yv1+iugffa1Gs0DtOQJS/r026TlZtdtEEzFStV1NCoUQqqGWw4lnT8nH6eUrLvGA0AAAAA7s5uAK7P39/fUMvKynJCJ+YKCnubTRS/ZPXq1UpOTrapNW/eXA0aNHBobwU5ceKEXn75ZT322GP69ttvCxUa9/DwUFhYmNq2bavevXtr+PDhqlGjhsN7S01N1XPPPWeYFnv77bcbHpuSkqIpU6Y4vIfyzNvbW1OmTDEEqhMSEvTUU0+pf//+WrhwoeLj4w0Tj3NychQXF6dvv/1WTz31lAYNGmR4nvr5+Wns2LEl/Wlck6+vr9ND49JfIekrw9yS+XXLHu7u7qpUqZKhnp6e7tB9iqqsX59LS05OjmbNmqXOnTtr8uTJhQ6NBwcHq1mzZnrooYf0/PPPq2PHjiXcaekye35WqlTJrgn/Zsyeh1ar9bq+iQEAAAAAAAAAUDhe3ubvIF3B1zG/h1r8yjz9GWccQtSkczON+PF10wB4QULqhOrl1RG6qX0jw7H8vHx9+eQnuphx0a5+AQAAAOBamDiOEufubrw/wSyo6SwPPPCA3nnnHWVmZtrUN2zYoHPnzplOQo2KijLUSmva+PLlyxUREWEa7vT09FTLli3Vrl073XjjjapXr56CgoLk6+srX19fQ9gvPz9fM2bMcFhv6enpGjVqlH7//Xeb+rBhwzRixAj169dPmzdvtjm2ZMkS9enTR82bN3dYH+Vdy5Yt9dlnn2nEiBFKSUmxORYbG6vY2FhJkpubm3x8fFSxYkVlZ2dfM/Dr5+enmTNnqm7duiXVerlz5ev+ErOQt70qVapkCOIWtH9pMZvmXJauz6UhISFBw4cPN1y3LqlTp446dOigxo0bq379+qpRo8bla6qnp+1fo44dO6ZffvmlNNouFWbPz5J6bRS0f0BAgMP3AwAAAAAAAACUD/9c939qcFd4sc59ccWrBR6zWCz6evCX2jRz7TXXyU7L0rQH39Orm8YZQuIN7grXW7ve08rIaG344hflZJqHvn0CfXXPsM66/9VH5BPoa97P81/q0KY/rtkPAAAAANiL4DhKnNnEUh8fHyd0Ys7X11cPPPCAIQyel5enZcuWacCAATb1M2fOaNOmTTY1b29vde3atcR7Xbx4sSIiIgzBTn9/fz3zzDN65plnFBQUVOj1rgw92uv555/XmTNnbGqDBw/WiBEjJElvvvmmunfvrvz8/MvHrVarxo0bp0WLFpneZHC9uuOOOxQdHa1x48Zp3bp1po+xWq3KzMwsVPi4adOmmjBhgho2bOjoVsu1ChUqmNZLYtKxWbDf29vb4fsURVpamqFWlq7PJe3UqVN66qmndOqUcVLIvffeq2HDhqlZs2aFXs8siF+emb0+SuJmh4LWLAvvSgAAAAAAAAAAcJ7g2pVLZF13d3cF1yr82uePndNHXd7V8O9Gq0r9qjbH/EL99fiHz+jRdx7XwQ1xOr7zqNLPpUlWq/yrBapOi3pqeE9jeVU0n4yeezFX84bMVOx/1tv1OQEAAABAYREcR4nKy8szDUuWxMRSe/Tq1ct0inh0dLQhOL506VKb4LMkderUSf7+/iXa4549ezR27FhDaLxFixaaOnWqqlWrVqL7F8aVofHnnntOo0aNuvxxw4YN1adPH33zzTc2j9u3b58WLVqkPn36lEqf5UVYWJhmzJihF198UTExMcVaIzw8XH369FGfPn1cLtTqCAVdi8xueLGH1Wo1XdPZ10Kz4LizeyoteXl5euGFFwyhcT8/P73//vvq1KmTkzorO8yeC+np6bJarYZ3sLBHQa+36+W5CAAAAAAAAAAo+07vT9CE2yM0YN4Luvl+4zspe/t5q+mDt6rpg7cWes0z8ac186lPdGz7YUe2CgAAAABXRXAcJerKIPElNWvWLOVOrq5169aqW7eujh49alM/cOCA9uzZo+bN//ePf7OAee/evUu6RY0bN065ubk2tWbNmmnOnDkFTk12pn79+ulf//qXof7SSy9pxYoVSklJsal/+OGHeuCBBxQYGFhaLZZpubm5mj9/vr766islJCRc9bHu7u7y9fWVv7+/AgMD1bBhQ9188826/fbb1aRJk1LquHyqWLGiAgMDDc/H8+fPO3Sf5ORkWSwWQ7169eoO3aeozK7RNWrUcEInpW/+/Pn67bffbGpeXl6aOXOmbr218D/UdWVVq1Y11CwWiy5cuKCQkBCH7ZOUlGSohYSElMk/2wAAAAAAAAAA16+MpHRNe/A9tezdRj3fe8IwfbywUs+m6OcpK7T6ox+Un5t/7RMAAAAAwIEIjqNEXRnKu6R27dql3Mm19ejRQx9++KGhHhUVdTk4vn37dkO4PCwsTG3bti3R3rZt26Z9+/bZ1Dw8PPThhx+WyWDd008/rTfeeMP0WHBwsF588UWNHz/epn7hwgV9+OGHGjt2bCl0WLYlJCRo+PDh+v333y/XPDw8dPfdd6t9+/YKDw9XtWrVFBwcrAoVKpTJ50B5Ur9+fe3cudOmtn//fofuERcXZ1q/6aabHLpPUSQnJ5velFCnTh0ndFP6vvrqK0NtyJAhhMb/5sYbbzSt79+/X+3bt3fYPn+/1l3izNcGAAAAAAAAAKBsuHDivELrVnH4uhaLRUnHzhX7/B2Lt2hX9DY1ffBWtX3mLjXu1FS+QVd/F83stCzFrf5NO6K26teFm5WXk1fs/QEAAADAHgTHUaLMguP+/v4KCwtzQjdX1717d02dOtUwFXjFihV64403VKFCBdNp4927d5ebm1uJ9hYTE2Oo3X333WUygP/EE08oIiLimo9ZsGCBDhw4YFNfsGCBHn/88et6SnZKSoqefvppm0Bv3bp19cknnxCkLCFNmzY1BMf37Nnj0D3MroUhISFOffeFgsLxjRqhYSOaAAAgAElEQVQ1KuVOSl9cXJxOnjxpU/P09FTfvn2d1FHZVKdOHQUEBCg1NdWmvmfPHocGx82ei02bNnXY+gAAAAAAAACA8mlyh7ed3UKBLPkW7Vm+Q3uW75AkVWtUU2HNasuvsp98gnzl5uam7LRspf6ZrNO/J+hM/J+y5DFdHAAAAIDzuTu7Abg2s8Bz69at5e5e9p561atX15133mmop6amKiYmRpmZmfrhhx9sjrm5ualHjx4l3ptZqK5Zs2Z2r5uYmGj3Gn/3yCOPaMyYMdd8nKenp+lEcovForfffltWq9WhfZUns2bNMkyBfvvttwmNl6C77rrLUDt+/LjhxgZ7rF271lC7++67S/ymk6v5+eefDTV/f//r4sYNs2tqjRo1FBoaate6jr6mOpu7u7vatWtnqK9evdphe5w4cUKHDh0y1Dt06OCwPQAAAAAAAAAAKGln/jilHYu3aP1nq/Xj+99r1Xvfae0nP2nHkq06vT+B0DgAAACAMqPspXfhMnbt2qWDBw8a6mbh7LKiZ8+epvX58+dryZIlyszMtKnffvvtpTL12yyMaG/A0Wq1asuWLXatcaVBgwYVOgjbrl073XfffYb6zp07FR0d7dC+ypN9+/YZaldOwYdjtWnTRv7+/ob6woULHbL+8ePHtX37dkP9/vvvd8j6xXHx4kUtX77cUL/jjjuKdWPPldfGsu7cOePbT9p7TZWk2NhYu9coazp37myo7du3T3FxcQ5ZPyoqynCzUGhoqFq3bu2Q9QEAAAAAAAAAAAAAAAD8D8FxlJjPP//cUPPy8tLDDz/shG4Kp1OnTgoMDDTUt2zZovHjxxvqvXr1Ko22TKWkpNh1/sqVK3X06FHHNPP/VapUqUiPf+2111ShQgVDfcqUKUpLS3NUW+VKWFiYofbKK6/o66+/1tGjR5WXl+eErlybt7e3evfubahHR0fr7Nmzdq8/a9YsQzC2Tp06uueee+xeu7i+/fZbpaamGurdunW75rk+Pj6G2qlTp+zqZ+nSpXad7wj2XlNTU1M1b948B3VjlJ/vnEkkXbp0UZUqVQz1f//733avnZ6erkWLFhnqTzzxhDw9Pe1eHwAAAAAAAAAAAAAAAIAtUjkwdebMGbvOX7VqlVavXm2od+nSRSEhIXatXZIqVKigrl27Fir85+fnV2oTg0NCQnTkyBGb2o4dO4q93okTJzRu3Dh727JbnTp11K9fP33xxRc29XPnzmnq1KmKiIj4f+zdeXSV5dU34J2EJBCmAEGUQZlRwQHEapVKtbYq4tjiEicoAsVWllVxKlototYKKEN9FWetilotVlQc6rtaUVARtRVFUbCIAyAkkjBIgHx/+JW38ZwgJOckcLyutfyDfT9n3zsKJ0fye+6njiarO2eccUY89thjUV5evqW2cuXKuPrqqyMiIisrKxo1ahR5eXlbPd09Kysr8vPzo3HjxtG8efPYa6+9Yr/99osf/vCHScP633VnnXVWPPDAA/HVV19tqZWWlsaYMWNiypQp1e771ltvxUMPPZRQHz58eLVO9o6o+fvzJ598EhMnTkyo77bbbtG3b99vfX2y9/DqPr2goqIiJkyYkPRGo3Rq1qxZQu2jjz6KVatWVet71ObNm2P06NFJTzKvjpycnIRaWVlZSnpvr7y8vBg0aFCMGzeuUn3mzJnxwgsvxBFHHFHt3uPHj094okbjxo3jtNNOq3ZPAAAAAAAAAACgak4cJ6nRo0fHU089Va3Xvvvuu3HllVcm1HNycuLcc8+t6Whpt62niB977LFRv379NE/ztU6dOiXUZs2alRAm3xaLFy+OM888s8an66bKiBEjkp5m++CDD8Z7771XBxPVra5du8att96a9N9JxNdB29LS0li5cmV88cUXVf6zYsWKWLp0abz77rvx0ksvxe233x4jR46MH/zgBzFx4sTYsGFDLX9lO7bWrVvHsGHDEurPPfdctUPNy5Yti1GjRsXmzZsr1ffdd98aPa3gkUceieuuuy7hFPNt8eWXX8bIkSNj7dq1CWu/+tWvIjc391t7dOvWLaH29ttvxxtvvLFds6xZsyZ+/etf13poPCL5e+rmzZvjT3/603b32rhxY1x88cXx7LPPpmK0iPj6xqRv+uCDD1LWf3sNGjQo2rdvn1D/zW9+U+336RkzZsS0adMS6ueff/4OfYMZAAAAAAAAAADszATHSWrDhg1xwQUXxIQJEyqdwPttXn/99Rg8eHCUlJQkrJ1xxhnRsWPHVI6ZFt27d08ajPymk08+uRam+VqyU4DLy8vjwgsv3K5TaJ988skYMGBAfPbZZ6kcr0YaNWoUF1xwQUJ948aNMXbs2DqYqO4deuih8cwzz8SBBx6Y8t4lJSVx8803x89+9rOEk36/64YPHx7du3dPqI8fPz4mTZoUmzZt2uZeS5YsibPOOiuWLFlSqV5QUBDXXXddtU8b/4+77747zjnnnO06ffzzzz+Pn//85zF//vyEtR49emzze9phhx2WtH7ZZZdFaWnpNvWYN29enHzyyTFz5sxtuj7V9ttvvygsLEyo33bbbTF79uxt7vPxxx/H6aefHk888UQqx4tdd901oTZ37tz49NNPU7rPtsrLy4trr7024caC4uLiGDRo0HbfNPDYY4/FxRdfnHBTxSGHHBIDBw6s8bwAAAAAAAAAAEByguNUqaKiIm699dY47rjj4qmnntpqgPyTTz6J3/72t3H66acnDY1369YtRo0alc5xU+rbApSdOnWK/fffv5am+Tqo2bZt24T6/Pnz46c//elWg44VFRUxe/bsGDx4cFxwwQVbgp1FRUVx0EEHpW3m7XHSSSfFPvvsk1B/9dVXUx7I3Bl8/PHHMXr06Jg7d27a9njvvfdi6NChsW7durTtsbPJz8+PKVOmRIsWLRLW/vjHP8bJJ58cs2bN2mqAfNWqVTFlypTo379/fPTRR5XWsrOz44YbbojOnTunZN7//d//jX79+sUdd9wRq1atqvK61atXxx133BHHHHNM0tB4QUFBjB8/PnJycrZp3z59+kTXrl0T6osXL46BAwfGO++8U+VrFy5cGKNGjYrTTjtty7+f3NzcGD16dK09wSHi6ydgnHrqqQn1DRs2xLBhw2Lq1KlJT2X/j88++yyuu+66OO644+LNN9/cUj/22GNTMt++++6bUCsvL4/hw4fHK6+8sl03MaTKAQccEJdffnlCvbi4OAYOHBi//e1v4+OPP95qj3feeSfOPvvsuOyyyxK+hj322CNuvPHGGt9UAQAAAAAAAAAAVK1eXQ/Ajql+/fqxfv36iIj497//Heeff340atQo+vTpE23bto2WLVvG+vXr44svvog333wz/vWvf1XZq127djF16tTIy8urrfFr7Pjjj49x48ZFeXl50vXaPG084uvTXi+55JIYOXJkwtpHH30UgwcPjo4dO8b3vve9aNu2bdSvXz9WrVoVS5YsidmzZ8fKlSsrvaZ9+/Zx++23x2uvvRavvPJKbX0ZVcrKyorRo0fHwIEDo6KiotLaH/7whzjiiCOiYcOGdTRd7XrwwQfj+uuvrxToPvTQQ+P000+PXr16RbNmzbapz+bNm6OsrCyWLFkSr7zyStx///3xySefVLpmwYIFcccdd8S5556b0q9hZ9a6deu477774uyzz044mX/BggVx9tlnR7NmzeLQQw+N1q1bR4sWLWLDhg2xYsWKeO+992Lu3LlJQ725ubkxbty4OPLII2s8Y35+fmzYsCEqKiqirKws/vCHP8SECRPi4IMPjo4dO0arVq0iKysrvvjii1i4cGHMmTOnyvey/Pz8uPnmm6N9+/bbvH92dnb85je/ibPPPjvha124cGGcfPLJ0atXr+jdu3cUFRXFxo0bY+nSpTF37tx47733Kl1fVFQUEydOjN69e8ekSZO2fN+pDcOGDYvp06fH559/XqleXl4e48ePj9tuuy2+//3vR9euXaNp06axdu3aWL58ebz++uuxYMGCSu9Vubm5cfXVV8dJJ50UTz75ZI1nO+KII6JRo0YJT5RYuHBhnHXWWZGbmxtNmjSJrKysLWvZ2dkxduzYpE+oSJVTTz01ysvL45prrqn09VdUVMRDDz0UDz30UOy5557Rs2fPKCoqiqZNm0ZxcXEsX7485syZU2WwvGvXrnHHHXckPQUeAAAAAAAAAABIHcFxkpo8eXK8++67MWnSpNi4cWNERJSVlcXMmTO3q0/37t1jypQpseuuu6ZjzLRp3rx5HH744fHss88mrNWrVy9OOOGEWp/pJz/5SYwcOTImT56cdH3RokWxaNGib+1z9NFHx9ixY6Nx48bx2muvpXrMauvZs2f0798/4YTx5cuXx5QpU+KSSy6po8lqz9ixY+O+++7b8uv8/PwYO3ZsHH/88dvdKzs7O5o0aRI9evSIHj16xKmnnhojR46Ml156qdJ199xzT4wYMSLq1fPt4D86deoUDz30UFx88cUxZ86chPXi4uKYMWPGNvdr06ZN3HDDDXHAAQekZL5BgwZF796945JLLoni4uKIiNi4cWPMmjUrZs2atc19WrRoETfeeGO1njzw/e9/P0aPHh1jxoxJWKuoqIjXX389Xn/99a326Nu3b1x33XVJT3ivDY0aNYqpU6fG6aefvuVJDP9t9erV8cwzz8Qzzzyz1T5t2rSJ8ePHR8+ePVM628iRI+O6665Lul5eXp5wQ1DE16e+pzM4HhFx5plnRuvWrWP06NFbfv/9twULFsSCBQu2ud/RRx8dV199dTRp0iSVYwIAAAAAAAAAAElk1/UApM9/n0S6vfLz8+MXv/hF3H///dG5c+ftfn39+vXjF7/4RUybNi1at25d7TnqUlWniv/gBz+Ili1b1vI0Xzv33HNj7Nix0aBBg+1+7R577BFTpkyJiRMnRuPGjSOiZr9Hkqlpv4suuigKCgoS6vfdd198+OGHtTpLbZs6dWql0Hh2dnZMnDixWqHxZBo2bBgTJkzY8t/+P1avXh1vvPFGSvbIJK1atYq77747rrrqqmjVqlW1etSvXz+GDBkSf/3rX1MWGo/4+gkEffv2jccffzx++MMfVqvHUUcdFdOnT69WaPw/Tj/99LjpppuiUaNG2/W6XXfdNcaNGxdTp05Na2h8W94DunXrtuWU7O1Vv379GDp0aMyYMSOlofH/GDx4cPzyl7/crvey2nrf+9GPfhQzZsyIAQMGRG5ubrV6tG/fPm688caYOHGi0DgAAAAAAAAAANSS72xwvG3btknDTh06dEjLfl27dq3064YNG1YrkF2Vb4az69evH7vvvnuN++6///4xY8aMmDx5chx88MGRl5e31evbtWsXI0aMiGeffTYuuOCCb70+HXr06FHp1w0bNozCwsLt7nPYYYfFoYceWimI17x58/jlL39Zrbk6deqU8HsuPz8/9tprr+3qM2DAgHj66adjyJAh0axZs61em5+fH3379o2bbropnn766fjxj39cab1bt26Rn59fqdamTZtvnaFJkyYJAeRddtnlW+f5Nq1atYpRo0Yl/L4pLy+PF198scrX1eT3/zf/bBYUFKTkhPxv/vlu1qxZtG/fPum1n3zySUyaNKlS7cQTT4zDDz+8xnP8t8LCwjjqqKMS6osXL07pPv+tWbNmScPB++67b9r2TJWsrKwYOHBgPP/883HdddfFYYcdtk0h2b322isuuOCCeP755+OSSy7Z7mD1tmrVqlXceuut8eijj0b//v2/NXzbtGnTGDBgQDz66KMxadKk2GWXXWo8wzHHHLPl/ahp06ZVXpednR29evWKsWPHxnPPPRfHHXdcwjXf/HPcpEmTbXrvLioqSngf2573o06dOsUjjzwS1113XXTv3v1bw9ddunSJX//61/HCCy8kvdnlm7+3t+U9tSrnnXdePPXUUzFkyJDYb7/9orCwMOrVqxdZWVlRr169KCgoiBYtWkSnTp3i8MMP3+qNBLvuumtkZ//fx76srKyE97/tUVRUFGPHjo2ZM2fGr371q+jUqdO3viY/Pz+OPPLIuPHGG+Opp56Kfv36VXv/Zs2aJdzE1axZs2p9v/9mj2++Z7Vt2zYlf14AAAAAAAAAAKCuZVVUVFTU9RDUrW7duiXU7r333qQn0a5fvz7efPPN+Oyzz2LVqlVRXl4ejRs3jlatWsXee++9054uvrOqqKiIDz/8MN59990oKSmJ0tLSyM3NjRYtWkSHDh2ie/fudRLeZ/tMmTIlJk+eXKn25z//OfbZZ5+U73XvvffGNddcU6l2/vnnx4gRI1K+VybasGFDvP/++/Hhhx/Gl19+GWvWrIm8vLxo0qRJtG3bNvbee++tBqi315lnnhmvvvpqpdq5554bI0eOTLh28+bN8c4778TixYujuLg41qxZsyVY3K1bt+jYsWPk5OSkbLZk+8+fPz8WLlwYxcXFsWHDhmjSpEnsvvvuse+++6b030s6rVq1Kt56661YtmxZrF69OjZv3hyNGzfe8t+3rp44sTNYtWpVvPvuu/HJJ59EaWlpbNiwYcvNW126dInOnTtX+4RydhylK1bHqFa+ZwAAAAAAZLIWexTFtYsnffuFsJPo379/RETMmDGjjicBAKh79ep6AHYu9evXj4MPPriux+D/y8rKis6dO6f09Hpq39tvv51Q69ixY1r2ShYcdnPBtsvLy4sePXokPNlgR5CdnV2ns2VnZ8c+++yTlhsealPz5s1Tftr/d0Xz5s3j0EMPresxAAAAAAAAAACAKmTX9QAA33UbNmxIqJWVlaVlr2XLliXU2rVrl5a9AAAAAAAAAAAAgB2H4DhAHWvVqlVC7dVXX03LXi+++GKlX+fk5MQBBxyQlr0AAAAAAAAAAACAHYfgOEAdO/jggxNqt9xyS6xZsyal+/zjH/+Id955p1Lt8MMPj+bNm6d0HwAAAAAAAAAAAGDHIzgOUMeOOuqohFPHP/jggzj33HNj1apVKdljwYIFcdlll1Wq5ebmxgUXXJCS/gAAAAAAAAAAAMCOTXAcoI7Vr18/rrnmmsjJyalUf/nll6N///5xzz33RGlpabV6r127Nm677bYYOHBgfPHFF1vqWVlZMWbMmOjUqVONZgcAAAAAAAAAAAB2DvXqegAAIn7wgx/EuHHj4rLLLov169dvqa9cuTKuvfbamDBhQvTq1St69+4dXbp0iTZt2sQuu+wSDRo0iPz8/MjKyor169dHWVlZfPzxx7Fo0aKYPXt2zJo1KyF0np+fH2PGjIkTTzyxtr9MAAAAAAAAAAAAoI4IjgPsIPr16xddu3aNa6+9Nl566aVKa+vXr4+XX345Xn755Rrt0bdv37jooouiS5cuNeoDAAAAAAAAAAAA7Fyy63oA6t7uu+9e6df169ePXXbZpY6mge+2zp07x5133hmPP/54DBgwIIqKimrcs7CwME444YR48MEHY+rUqULjO5Fvvj9nZWVFu3bt6mgaAAAAAAAAAAAAdmZZFRUVFXU9BABVW7hwYcydOzcWL14cH3/8cSxdujRWr14d69evj3Xr1kV5eXnk5+dHQUFBFBQURFFRUXTq1Ck6deoUPXr0iF69ekW9eh4wAUDNla5YHaNajajrMQAAAAAASKMWexTFtYsn1fUYkDL9+/ePiIgZM2bU8SQAAHVPkhBgB9elSxenhAMAAAAAAAAAAAA1kl3XAwAAAAAAAAAAAAAAkF6C4wAAAAAAAAAAAAAAGU5wHAAAAAAAAAAAAAAgwwmOAwAAAAAAAAAAAABkOMFxAAAAAAAAAAAAAIAMJzgOAAAAAAAAAAAAAJDhBMcBAAAAAAAAAAAAADKc4DgAAAAAAAAAAAAAQIYTHAcAAAAAAAAAAAAAyHCC4wAAAAAAAAAAAAAAGU5wHAAAAAAAAAAAAAAgwwmOAwAAAAAAAAAAAABkOMFxAAAAAAAAAAAAAIAMJzgOAAAAAAAAAAAAAJDhBMcBAAAAAAAAAAAAADKc4DgAAAAAAAAAAAAAQIYTHAcAAAAAAAAAAAAAyHCC4wAAAAAAAAAAAAAAGU5wHAAAAAAAAAAAAAAgwwmOAwAAAAAAAAAAAABkOMFxAAAAAAAAAAAAAIAMJzgOAAAAAAAAAAAAAJDhBMcBAAAAAAAAAAAAADKc4DgAAAAAAAAAAAAAQIYTHAcAAAAAAAAAAAAAyHCC4wAAAAAAAAAAAAAAGU5wHAAAAAAAAAAAAAAgwwmOAwAAAAAAAAAAAABkOMFxAAAAAAAAAAAAAIAMJzgOAAAAAAAAAAAAAJDhBMcBAAAAAAAAAAAAADKc4DgAAAAAAAAAAAAAQIYTHAcAAAAAAAAAAAAAyHCC4wAAAAAAAAAAAAAAGU5wHAAAAAAAAAAAAAAgwwmOAwAAAAAAAAAAAABkOMFxAAAAAAAAAAAAAIAMJzgOAAAAAAAAAAAAAJDhBMcBAAAAAAAAAAAAADKc4DgAAAAAAAAAAAAAQIYTHAcAAAAAAAAAAAAAyHCC4wAAAAAAAAAAAAAAGU5wHAAAAAAAAAAAAAAgwwmOAwAAAAAAAAAAAABkOMFxAAAAAAAAAAAAAIAMJzgOAAAAAAAAAAAAAJDhBMcBAAAAAAAAAAAAADKc4DgAAAAAAAAAAAAAQIYTHAcAAAAAAAAAAAAAyHD16noAAABg55CVnR0t9iiq6zEAAAAAAEijwrYt6noEAAAgTQTHAQCAbdKoRaO4dvGkuh4DAAAAAAAAAIBqyK7rAQAAAAAAAAAAAAAASC/BcQAAAAAAAAAAAACADCc4DgAAAAAAAAAAAACQ4QTHAQAAAAAAAAAAAAAynOA4AAAAAAAAAAAAAECGExwHAAAAANJiyJAhMWTIkLoeAwDYifk8AQAAAJA69ep6AAAAAAAgMy1fvryuRwAAdnI+TwAAAACkjhPHAQAAAAAAAAAAAAAynOA4AAAAAAAAAAAAAECGExwHAAAAAAAAAAAAAMhwguMAAAAAAAAAAAAAABlOcBwAAAAAAAAAAAAAIMMJjgMAAAAAAAAAAAAAZDjBcQAAAAAAAAAAAACADCc4DgAAAAAAAAAAAACQ4QTHAQAAAAAAAAAAAAAynOA4AAAAAAAAAAAAAECGExwHAAAAAAAAAAAAAMhwguMAAAAAAAAAAAAAABlOcBwAAAAAAAAAAAAAIMMJjgMAAAAAAAAAAAAAZDjBcQAAAAAAAAAAAACADCc4DgAAAAAAAAAAAACQ4QTHAQAAAAAAAAAAAAAynOA4AAAAAAAAAAAAAECGExwHAAAAAAAAAAAAAMhwguMAAAAAAAAAAAAAABlOcBwAAAAAAAAAAAAAIMMJjgMAAAAAAAAAAAAAZDjBcQAAAAAAAAAAAACADJdVUVFRUddDAAAAAACZp7i4OCIimjVrVseTAAA7K58nAICa8nkCAOD/CI4DAAAAAAAAAAAAAGS47LoeAAAAAAAAAAAAAACA9BIcBwAAAAAAAAAAAADIcILjAAAAAAAAAAAAAAAZTnAcAAAAAAAAAAAAACDDCY4DAAAAAAAAAAAAAGQ4wXEAAAAAAAAAAAAAgAwnOA4AAAAAAAAAAAAAkOEExwEAAAAAAAAAAAAAMpzgOAAAAAAAAAAAAABAhhMcBwAAAAAAAAAAAADIcILjAAAAAAAAAAAAAAAZTnAcAAAAAAAAAAAAACDDCY4DAAAAAAAAAAAAAGQ4wXEAAAAAAAAAAAAAgAwnOA4AAAAAAAAAAAAAkOEExwEAAAAAAAAAAAAAMpzgOAAAAAAAAAAAAABAhhMcBwAAAAAAAAAAAADIcILjAAAAAAAAAAAAAAAZTnAcAAAAAAAAAAAAACDDCY4DAAAAAAAAAAAAAGQ4wXEAAAAAAAAAAAAAgAwnOA4AAAAAAAAAAAAAkOEExwEAAAAAAAAAAAAAMpzgOAAAAAAAAAAAAABAhhMcBwAAAAAAAAAAAADIcILjAAAAAAAAAAAAAAAZTnAcAAAAAAAAAAAAACDDCY4DAAAAAAAAAAAAAGQ4wXEAAAAAAAAAAAAAgAwnOA4AAAAAAAAAAAAAkOEExwEAAAAAAAAAAAAAMpzgOAAAAAAAAAAAAABAhhMcBwAAAAAAAAAAAADIcILjAAAAAAAAAAAAAAAZTnAcAAAAAAAAAAAAACDDCY4DAAAAAAAAAAAAAGQ4wXEAAAAAAAAAAAAAgAwnOA4AAAAAAAAAAAAAkOEExwEAAAAAAAAAAAAAMpzgOAAAAAAAAAAAAABAhhMcBwAAAAAAAAAAAADIcILjAAAAAAAAAAAAAAAZTnAcAAAAAAAAAAAAACDDCY4DAAAAAAAAAAAAAGQ4wXEAAAAAAAAAAAAAgAwnOA4AAAAAAAAAAAAAkOEExwEAAAAAAAAAAAAAMpzgOAAAAAAAAAAAAABAhhMcBwAAAAAAAAAAAADIcILjAAAAAAAAAAAAAAAZTnAcAAAAAAAAAAAAACDDCY4DAAAAAAAAAAAAAGQ4wXEAAAAAAAAAAAAAgAwnOA4AAAAAAAAAAAAAkOEExwEAAAAAAAAAAAAAMpzgOAAAAAAAAAAAAABAhhMcBwAAAAAAAAAAAADIcILjAAAAAAAAAAAAAAAZTnAcAAAAAAAAAAAAACDD1avrAQAAgB3H5s2b4/33348PPvggSkpKoqysLAoKCqKwsDA6dOgQe+21V9Sr538jAIBv9+9//zvef//9KCkpidWrV8fGjRujUaNG0bJly9hzzz2jXbt2kZWVVddjAgAAAMS6deti0aJFsWjRoigpKYk1a9ZEdnZ2NGjQIFq0aBHt27ePjh07Rv369et6VACAGpH4AACA77iKioqYM2dOTJs2LWbNmhVlZWVVXtugQYM4+OCD45RTTom+fftGTk5OLU4KAOzINm7cGP/4xz9i+vTp8corr0RJSclWr991113j6KOPjjPOOCPatWtXS1MCAJmovLw8Fk2az40AACAASURBVC9eHB988EEUFxdHWVlZZGVlRcOGDaNVq1bRoUOH6Nixo5vWAGAHNmfOnLjnnnvilVdeiTVr1kRERH5+fkyfPj06duyYlj1Xr14df/nLX+Jvf/tbzJs3L8rLy7d6fV5eXvTs2TOOPPLIOP7446OwsDAtcwEApFNWRUVFRV0PAQAA1I25c+fG1VdfHQsWLNju17Zv3z6uuOKK6NOnTxomAwB2Fps3b45HH300Jk2aFMuXL9/u1+fm5sapp54aF154YTRo0CANEwIAtaU2A19lZWXx5JNPxt/+9reYM2dOfPXVV1u9vlmzZnHIIYfECSecEH369HEzPADsIObMmRNTpkyJ1157Len6vffeGwcddFBK9/zyyy9jypQp8cgjj8S6deuq1SMvLy8GDhwYI0aMiObNm6d0PgCAdBIcBwCA76Dy8vK45pprYtq0aVHT/yU44YQT4uqrr478/PwUTQcA7Cw++OCDuPjii2P+/Pk17tW+ffuYMmVKdOnSJQWTAQC1qTYDX8XFxXHLLbfEn//8560+NW1r2rdvH+eff34cffTRKZkJANh+3/b54T9SHRx/5pln4re//e23PiltWxUWFsY111wTRx55ZEr6AQCkm+A4AAB8x5SUlMTIkSPj1VdfTVnP/fffP26++eZo0aJFynoCADu2F154IUaNGrXlNNFUaNy4cdxyyy3Ru3fvlPUEANKntgNfDz/8cIwfPz5lQa+jjz46xo4dG40bN05JPwDg273yyisxZcqUbf4ZRSqD4+PGjYvbbrutyvWioqI48MADo2PHjlFYWBibNm2KL7/8MpYuXRpvvPFGLF26tMrXjho1KoYNG5aSOQEA0qleXQ8AAADUnvXr18ewYcPin//8Z5XXNG3aNHr27Bl77LFHNGjQINatWxf//ve/44033ogvv/wy6WvefPPNGDZsWNx3333RsGHDdI0PAOwgnnjiibj44otj8+bNVV7TpEmT6NGjR7Rr1y6aNGkSERHLly/f8sPWZK8tLS2NESNGxP333x/dunVL2/wAQM1sb+CrptatWxeXX355zJgxI6V9Z86cGR9//HHceeedUVhYmNLeAEBltf354Zt+//vfx1133ZV07ZBDDomhQ4fGIYccEllZWVX2WLBgQdx9990xffr0hKe5jhs3Lho0aBBnnHFGSucGAEg1J44DAMB3REVFRZx77rnx/PPPJ13v3LlzjBw5Mn70ox9Fbm5uwnp5eXm88MILMXny5Fi4cGHSHn379o1bbrklsrOzUzo7ALDjeOmll+IXv/hFlJeXJ6zl5ORE//7945RTTolevXpV+Zlg2bJl8eCDD8btt9+etE/79u3jL3/5SxQUFKR8fgCg+qob+KrJSaFlZWVx9tlnx5tvvrnV61q3bh09evSI3XbbLRo0aFDpdNCysrKtvrZXr15x3333Rb16ztwCgHQ477zzYubMmdV6bSpOHJ8+fXpccsklCfXGjRvHmDFjol+/ftvVb/bs2XHRRRfFihUrKtVzc3PjgQceiH333bdG8wIApJPgOAAAfEc8+OCDcdVVVyVdO+200+Kyyy6LvLy8b+2zYcOGuP766+NPf/pT0vXLL788zjzzzJqMCgDsoD7//PPo379/lJaWJqztvffecf3110fXrl23ud8777wT5557bnzyyScJa7/73e/i1FNPrdG8AEDq1EXga/369TF06NB47bXXkq7Xr18/TjrppDjllFNi7733TnrNpk2b4oUXXojbb799q+HzESNGxPnnn7/dMwIA3+7AAw+M1atXJ10rKCiIww8/PGbNmpX0qac1DY4vX748jjrqqFi7dm2letOmTePuu++u8jPEt1m4cGGcccYZUVJSUqm+7777xsMPP7zVk8sBAOqSYwABAOA7YNmyZTFu3Lika0OHDo0rr7xym0LjERF5eXlxxRVXxIgRI5KuT5gwIT799NNqzwoA7LiuuOKKpKHxI444IqZNm7ZdofGIr8Pm99xzT+y2225bagcddFDceOON8bOf/azG8wIAqfPyyy9XuVZQUBDHHntsNG3aNKV7jhkzpsrQ+E9+8pN49tln46qrrtpq4CsnJyd+/OMfx7Rp0+Lyyy9P+pS1iIg777wz6c1sAEDNffNMy6ysrDjooIPi97//fcyaNSsmTJgQ3bp1S8vekydPTgiNR0Rcf/311Q6NR0R06dIlrrzyyoT6P//5z3jxxRer3RcAIN0ExwEA4DvgpptuSvpY5sMOOyxGjRpVrZ7nn39+HH744Qn1tWvXxsSJE6vVEwDYcT355JPxj3/8I6Heq1evmDhxYuTn51erb7t27eKuu+6KX/7yl/H000/HvffeG/369Yt69erVdGQAIIVqO/D117/+NR599NGEenZ2dlx66aUxefLkaNWq1Tb3y8rKijPPPDNuuummpOHxDRs2xL333lujmQGA5HJyciIion379vHrX/86Xnjhhbj33nvjpJNOioYNG6Zt39LS0nj88ccT6ocffnjSn29sr379+sU+++yTUJ8+fXqNewMApIvgOAAAZLhPP/00nnjiiYR6QUFBjB07tkaPSxw7dmzSv9SdMWNGLF26tNp9AYAdy+bNm2PKlCkJ9fr168cNN9ywzU8uqUqHDh3ivPPOi44dO9aoDwCQPrUd+PrLX/6StH7llVfGz3/+82r3PfLII2PIkCFJ15588smEgDwAUHNjxoyJadOmxTPPPBPnnHNOtG7dulb2fe655+Krr75KqA8cODBlexxzzDEJtTlz5qSsPwBAqgmOAwBAhrvrrruivLw8oT5o0KDtOpkrmaKioqQ/rN24cWPceeedNeoNAOw4Zs6cGYsWLUqoDx8+PNq2bVsHEwEAta22A1/XX399HHXUUZVqgwYNilNPPbXGvc8555woKChIqK9YsSI++uijGvcHACo76qijomfPnrW+77x58xJqOTk5ceCBB6Zsj2Qnjq9cuTKWLVuWsj0AAFJJcBwAADLYpk2bYsaMGQn13NzcOP3001Oyx2mnnZb0Ec9PPvlk0sA6ALDzefDBBxNqRUVFMWzYsDqYBgCoC7Ud+Npll11i0qRJMXXq1OjQoUPsvffeMWrUqJT0btCgQfTt2zfp2rvvvpuSPQCAuvfhhx8m1AoLC5PeQFZdRUVFSesrV65M2R4AAKkkOA4AABls9uzZsWrVqoT6IYccEi1btkzJHi1atIhDDz00oV5SUhIvv/xySvYAAOrOsmXLYu7cuQn1448/PvLy8upgIgDgu6Rv374xc+bMeOyxx1L62aNr165J60JeAJA5SkpKEmpZWVkp3WPDhg1J6+vWrUvpPgAAqSI4DgAAGezZZ59NWv/Rj36U0n2q6vfMM8+kdB8AoPY9/fTTsXnz5oT6iSeeWAfTAADfVakOebVo0SJpvaysLKX7AAB1J9nfZ5SUlFQZ9q6ORYsWJa03btw4ZXsAAKSS4DgAAGSwZKeDRkR873vfS+k+VfV7/fXXU7oPAFD7XnzxxYRamzZtolu3bnUwDQBAalR1CmiDBg1qeRIAIF0KCwsTahs3box58+albI+///3vCbXc3Nxo3759yvYAAEglwXEAAMhQq1evTnrSRdOmTaNDhw4p3at9+/ZJ/wL2o48+iuLi4pTuBQDUnoqKinjrrbcS6j169KiDaQAAUufzzz9PWk/29xsAwM6pU6dOSev3339/SvqvXLky6ZNXe/XqFXl5eSnZAwAg1QTHAQAgQ/3zn/+MioqKhHqXLl3Ssl/nzp2rnAMA2DktXLgwSktLE+rdu3evg2kAAFLnzTffTFrfc889a3kSACBdDj744KT1Z599Np544oka97/pppuSPsVkwIABNe4NAJAuguMAAJChPvroo6T1dD0ecffdd09aX7JkSVr2AwDS77333ktar+rELgCAncGyZcuS3ujesGHDtN1wDwDUviOOOCIaN26cdO3SSy+N+++/P+kBPNvi73//ezz88MMJ9e7du8exxx5brZ4AALVBcBwAADLUJ598krS+2267pWW/qvpWNQcAsONbunRp0npVP3QFANgZPPzww7Fp06aE+lFHHRU5OTl1MBEAkA6NGjWKIUOGJF3buHFjjBkzJgYMGBAzZsyItWvXbnPf999/Py699NKEekFBQdxwww2RnS2OBQDsuOrV9QAAAEB6VBXYbtGiRVr2KyoqSlr/9NNP07IfAJB+2xscX7NmTcybNy/efvvteOedd+KLL76IsrKyKC0tjZycnCgoKIhddtklOnToEN27d48+ffpEy5Yt0/klAABUsnLlyrj77ruTrv30pz+t3WEAgLQbNmxYPP/88zF//vyk6//617/iwgsvjNzc3OjZs2f07t07DjjggNh///2jUaNGCde/9dZbMXz48CgpKalUz8vLi5tvvtlT2gCAHZ7gOAAAZKji4uKk9aZNm6ZlvyZNmiStr1q1Ki37AQDp9/nnnyet//cPTtetWxfPPfdczJw5M2bNmhVfffXVVnu+//77MWvWrIiIyMrKigMPPDDOOOOM+PGPf+xELgAg7a699tooKytLqPfp0yd69+5dBxMBAOmUm5sb//M//xNnnHFGLFmypMrrysvL49VXX41XX301IiJycnJizz33jAMOOCB69eoVTZo0ieeffz4efvjh2LhxY6XXNm7cOKZMmRIHH3xwWr8WAIBUEBwHAIAMVdVjFRs2bJiW/ZKdvBERsX79+rTsBwCk35o1a6qsL1iwIB555JF4/PHHo7S0tFr9KyoqtvxQtkePHnHVVVfFPvvsU5ORAQCqNH369JgxY0ZCPS8vLy655JI6mAgAqA2tWrWKBx98MEaOHBnz5s3bptds2rQp5s+fH/Pnz4977723yuu6dOkSEydOdNI4ALDTcIQPAABkqKpO+6xXLz33j1bVV3AcAHZe69atS1o/5ZRT4oQTTog//elP1Q6Nf9Pbb78dAwcOjAceeCAl/QAA/tu//vWvuOqqq5KunX/++dG1a9faHQgAqFVFRUVx3333xUUXXRQNGjRISc9DDz00HnnkEaFxAGCn4sRxAADIUFUFtnNyctKyn+A4AGSeqr6Pb9iwIWm9VatWccABB0TPnj2jR48e0bJly2jWrFnUq1cvVq5cGUuWLIlZs2bFU089FZ9++mnC68vLy+N3v/tdlJWVxfDhw1P6tQAA312fffZZnHPOOUlvivvhD38YP//5z+tgKgCgttWrVy+GDh0aTZs2jcsvv7zG/RYtWhRPPPFEnHjiiZGXl5eCCQEA0k9wHAAAMlRVAfGKioq07Ldp06ak9dzc3LTsBwCkX1Xf3/9bYWFhHH/88XH88cfHPvvsU+V1bdq0iTZt2sT3v//9OO+88+KBBx6ICRMmJH1Kyvjx46Ndu3ZxzDHH1Gh+AIBVq1bFkCFDYsWKFQlrnTt3jvHjx0dWVlYdTAYA1LZNmzbFHXfcEZMmTUpJv88++yyuuOKKmDRpUlx44YVx0kknpaQvAEA6CY4DAECGqupRi1WdEFpTGzdu3K45AIAdX/369atca9SoUZxzzjlx2mmnRUFBwXb1zcvLi8GDB0fPnj3jnHPOiZUrVyZcc9VVV8WBBx4YRUVF2z03AEBERGlpaZx99tmxaNGihLWWLVvGLbfcEo0aNaqDyQCA2rZ8+fI477zzYt68eZXq2dnZceSRR8Zhhx0W9erVizfeeCNeffXVWLx48Tb3XrFiRVx66aXx+OOPx4QJE6J58+apHh8AIGUExwEAIENVFfRK9ljmVFi7du12zQEA7Piq+j7eunXruO+++6Jt27Y16r/ffvvFH//4xzjzzDOjvLy80lpJSUnceuutMXr06BrtAQB8N/0nNP7OO+8krDVp0iRuv/32aNeuXR1MBgDUtgULFsTw4cNj2bJllerdunWLP/zhD7Hnnntuqf3n1PAVK1bEa6+9Fq+88kq89tpr8eGHH37rPrNnz44BAwbEPffcU+O/MwEASJfsuh4AAABIj6pOzCotLU3LfmVlZUnrjRs3Tst+AED6VfXkkGHDhqXsB6A9e/aMkSNHJl176KGH0vbZBQDIXCUlJTFo0KB46623EtYKCgri1ltvrRQQAwAy1wcffBCDBw9OCI336dMnHnjggSo/E7Rs2TL69esXv/vd7+Kpp56Kl19+OW688cY4/vjjt/pzj6VLl8bQoUPjyy+/TOnXAQCQKoLjAACQoXbbbbek9VWrVqVlv6r6tm7dOi37AQDpt8suuySt77HHHind56yzzooWLVok1L/66qv429/+ltK9AIDMVlxcHIMHD4758+cnrBUUFMRtt90WvXr1qoPJAIDaVlZWFuecc04UFxdXqvfq1StuvfXWKg/gSaZFixbRr1+/uOGGG+Lvf/97XHzxxdGwYcOk1y5evDiuv/76Gs0OAJAuguMAAJCh2rRpk7T+6aefpmW/zz77bLvmAAB2fFV9H9+8eXNK92nQoEEcd9xxSddefvnllO4FAGSu4uLiGDRoULz77rsJaw0bNozbb789evfuXQeTAQB1Ydy4cbFkyZJKtcLCwrjxxhujXr161e7bsGHDOPvss+Ovf/1rtG/fPuk1jz32WCxYsKDaewAApIvgOAAAZKi2bdsmrX/88cdp2a+qvlXNAQDs+Kp6ckhpaWnK9zrkkEOS1pMFvwAAvuk/ofH33nsvYa1JkyZx5513xgEHHFAHkwEAdWHp0qXxyCOPJNQvvvji2HXXXVOyR9u2beOuu+6Kxo0bJ6xVVFTEtGnTUrIPAEAqCY4DAECG2nvvvZPW3/9/7d1/dJb1eT/wKwkkmgAJQQiSAgIaRMEyhTlPNygUhu2KlUIHKK6dOLsq0la6nU3taafosVXssT3VOnpoBUU98agdVRurCNa5TmFWHOjUiKJBIYiEhB8Bknz/6Hc9o3kSniRPeODm9frz+nzu67rCXyR5537eeKNb5lVXV6esjx49ulvmAQDdr6KiImX9/fffz/isESNGpKxv374947MAgGTZuXNnm6Hx0tLSWL58eYwdOzYLmwEA2fLoo4/GoUOHDquVlZXFxRdfnNE5gwYNiiuvvDLl2XPPPZfRWQAAmSA4DgAACTVs2LAoKSlpVa+trY0PP/wwo7N27NgRH3zwQat6//79vXEcAI5jZ599dvTs2bNVvTv+EK1fv34p63v27Mn4LAAgOXbu3Blf+cpXUobGy8rK4r777otRo0ZlYTMAIJvWrl3bqvaXf/mXkZeXl/FZM2bMSFmvqamJjz76KOPzAAC6QnAcAAASKicnp823af32t7/N6Kx169alrJ977rkZnQMAHF0FBQUpg1br16/P+Kzc3NQ/qkwVXAcAiGg/NP6JT3wi7r///jY/1QQASK6mpqaU/z/ork9I7d+/f5SXl6c8q62t7ZaZAACdJTgOAAAJNmnSpJT11atXZ3TOmjVrUtY/85nPZHQOAHD0/fmf/3mr2tatW1P+ArYrdu7cmbJeXFyc0TkAQDK0FxofPnx4rFy5MgYPHpyFzQCAbKurq4sDBw60qp9yyindNtMnqQEAxwvBcQAASLBp06ZFjx49WtXXrl0bdXV1GZmxf//+eOaZZ1rVTzrpJMFxAEiAz372synrTzzxREbntBVEHzZsWEbnAADHv/ZC46NGjYr7778/ysrKsrAZAHAsSBUaj/j97zO6S1NTU8p67969u20mAEBnCI4DAECC9e3bN+VbQvfv3x8PPvhgRmasWrUqdu/e3ao+efLk6NWrV0ZmAADZU1FREWeccUaremVlZTQ2NmZszm9+85uU9e76GGkA4Pi0c+fO+PKXv5wyND527NhYvnx5lJaWZmEzAOBYUVRUlLJeW1vbbTO3bduWst6/f/9umwkA0BmC4wAAkHCXX355yvpPf/rT2LlzZ5d6HzhwIO6+++6UZ/Pnz+9SbwDg2PE3f/M3rWofffRRPPDAAxnpv3///nj88cdTnk2ePDkjMwCA49//hsbfeOONVmfnn39+LFu2LPr06ZOFzQCAY0nv3r2jpKSkVf3FF1/slnnV1dWxY8eOVvWhQ4dG3759u2UmAEBnCY4DAEDCnX/++fEnf/Inreq7d++O73znO13q/aMf/Shqampa1SdMmODtoACQIBdffHGUlZW1qv/oRz+K7du3d7n/ihUr4uOPP25VHzJkSMr/xwAAJ572QuMTJ06MpUuXtvl2UQDgxPPJT36yVW3NmjVRV1eX8VmPPvpoyvqECRMyPgsAoKsExwEA4ATwD//wD5GTk9Oq/tRTT8Wdd97ZqZ5VVVWxdOnSVvUePXrEokWLOtUTADg25efnx9e//vVW9YaGhli0aFEcOnSo0703b94cd911V8qzq666qtN9AYDkaC80fuGFF8aPf/zjKCgoyMJmAMCxaurUqa1qe/fujdtuuy2jc9566634+c9/3qqek5MTc+fOzegsAIBMEBwHAIATwHnnnReXXnppyrO77rorFi9eHAcOHEi7X2VlZSxatChaWlpanV1xxRVx5plndnpXAODYNHPmzPjUpz7Vqv7iiy/GddddF83NzR3uuWPHjvja174We/fubXV29tlnxxe+8IVO7QoAJEd7ofEvfvGLcccdd0TPnj2zsBkAcCz7/Oc/H6ecckqremVlZdx7770ZmfH+++/H1772tTh48GCrs5kzZ8aIESMyMgcAIJMExwEA4ASxaNGiqKioSHm2YsWKmDFjRjz55JMpf8D5v9avXx/z58+PG264IeW9MWPGxNVXX52xnQGAY8vixYtT/tL1F7/4RSxcuDB2796ddq/XX389Lrnkkti8eXOrs8LCwrjjjjsiN9ePLwHgRNZeaPzSSy+NW265JfLy8rKwGQCQSS0tLdHY2JjybP/+/Z3qefLJJ8c//uM/pjy75ZZbYvHixdHQ0NCp3hERq1evjrlz58aWLVtanQ0ePLjN2QAA2ZbTkuoVgQAAQCJ98MEHMXv27Ni2bVubd/r06RPnnntuDB06NAoLC6OxsTFqamrilVdeiQ8//LDN5wYPHhwPPfRQ9OvXrztWBwCOEf/93/8dl112Wcq3hA8aNCgWLFgQ06dPj/z8/JTP19bWxrJly+K+++5L+Ykn+fn5cdddd8Vf/MVfZHx3AKD7tLS0xOzZs+OVV15pdfav//qvMXHixA7127lzZ8ybNy+qq6tbnU2aNCnuvvvuyMnJ6fS+AMDRc8kll8T69esz3jcnJyduuumm+NKXvtTmne985zvx4IMPpjzr379/zJkzJ6ZPnx5Dhw494ryDBw/GmjVr4sEHH4znn38+5Z3S0tJYuXJlDBs2LL0vAgDgKBMcBwCAE0x1dXV89atfjffeey9jPYcNGxZLly6NwYMHZ6wnAHDsWrduXSxYsCA+/vjjlOfFxcUxfvz4qKioiL59+0ZTU1Ns3749NmzYEC+//HI0NTWlfK53795xxx13xIQJE7pzfQCgE4524Oub3/xmPPHEExmfdyRlZWXx3HPPHfW5AJBkkydPjpqamm7pvWDBgrjmmmvaPG9ubo4bb7wxHnjggXb7lJeXx8iRI2PYsGHRu3fvKCoqipaWlqivr4+PP/44Xn/99di0aVPKP6T/X8OHD4977rknhgwZ0umvBwCgu/XI9gIAAMDRNWLEiKisrIxrr702XnjhhS73mzBhQixZsiT69OmTge0AgOPBuHHj4uGHH46FCxfGxo0bW53X1dXF008/HU8//XTaPUePHh1LliyJ0047LYObAgCZ0t6nkHVFS0tLyt6vvvpqt8w7kvY+pQ0AOP7k5ubGd7/73TjvvPPi+9//fmzfvj3lvZqamk6H2/Py8mLevHnxjW98IwoLC7uyLgBAt8vN9gIAAMDR17dv3/jZz34Wt912W5SVlXWqx8CBA+MHP/hBLF26VGgcAE5An/jEJ6KysjL+5V/+JUpLSzvdp7y8PBYvXhyVlZVC4wDAHzQ3N2d7BQAgQaZPnx5VVVVx9dVXd+nnGP9Xz549Y8aMGbFq1aq47rrrhMYBgOOCN44DAMAJ7KKLLooLL7wwfv3rX8cjjzwSL730UjQ2NrZ5v6CgIMaPHx8zZ86MKVOmRH5+/lHcFgA41uTl5cWcOXNixowZ8etf/zoee+yxWLduXezbt6/d50pKSuJTn/pUfO5zn4tJkyZFXl7eUdoYAAAAONoGDhzY6bd5tycnJycGDRqU9v3CwsJYuHBhXHXVVfHCCy/Ek08+GS+//HK8++67af/RWv/+/WPs2LHx6U9/OqZOnRrFxcWdXR8AICtyWlpaWrK9BAAAcGw4ePBgvPbaa/H2229HXV1d7NmzJ4qKiqK4uDiGDx8eo0aNip49e2Z7TQDgGNbU1BRvvvlmVFdXx65du6K+vj5yc3OjqKgoysrKYsSIETF06NDIzfVhiABwPLnkkkti/fr1Ge+bk5MTN998c8ycOfOw+vz58+P555/P+LwjOe2006KqquqozwUAsmffvn3x5ptvxtatW6OhoSEaGhpi79690aNHjygoKIji4uIoLy+PwYMHx8CBA7O9LgBAlwiOAwAAAAAAAAAAAAAknNf6AAAAAAAAAAAAAAAknOA4AAAAAAAAAAAAAEDCCY4DAAAAAAAAAAAAACSc4DgAAAAAAAAAAAAAQMIJjgMAAAAAAAAAAAAAJJzgOAAAAAAAAAAAAABAwgmOAwAAAAAAAAAAAAAknOA4AAAAAAAAAAAAAEDCCY4DAAAAAAAAAAAAACSc4DgAAAAAAAAAAAAAQMIJjgMAAAAAAAAAAAAAJJzgOAAAAAAAAAAAAABAwgmOAwAAAAAAAAAAAAAknOA4AAAAAAAAAAAAAEDCCY4DAAAAAAAAAAAAACSc4DgAAAAAAAAAAAAAQMIJjgMAAAAAAAAAAAAAJJzgOAAAAAAAAAAAAABAwgmOAwAAAAAAAAAAAAAknOA4AAAAAAAAAAAAAEDCCY4DAAAAAAAAAAAAACScmvzqmAAAFR1JREFU4DgAAAAAAAAAAAAAQMIJjgMAAAAAAAAAAAAAJJzgOAAAAAAAAAAAAABAwgmOAwAAAAAAAAAAAAAknOA4AAAAAAAAAAAAAEDCCY4DAAAAAAAAAAAAACSc4DgAAAAAAAAAAAAAQMIJjgMAAAAAAAAAAAAAJJzgOAAAAAAAAAAAAABAwgmOAwAAAAAAAAAAAAAknOA4AAAAAAAAAAAAAEDCCY4DAAAAAAAAAAAAACSc4DgAAAAAAAAAAAAAQMIJjgMAAAAAAAAAAAAAJJzgOAAAAAAAAAAAAABAwgmOAwAAAAAAAAAAAAAknOA4AAAAAAAAAAAAAEDCCY4DAAAAAAAAAAAAACSc4DgAAAAAAAAAAAAAQMIJjgMAAAAAAAAAAAAAJJzgOAAAAAAAAAAAAABAwgmOAwAAAAAAAAAAAAAknOA4AAAAAAAAAAAAAEDCCY4DAAAAAAAAAAAAACSc4DgAAAAAAAAAAAAAQMIJjgMAAAAAAAAAAAAAJJzgOAAAAAAAAAAAAABAwgmOAwAAAAAAAAAAAAAknOA4AAAAAAAAAAAAAEDCCY4DAAAAAAAAAAAAACSc4DgAAAAAAAAAAAAAQMIJjgMAAAAAAAAAAAAAJJzgOAAAAAAAAAAAAABAwgmOAwAAAAAAAAAAAAAknOA4AAAAAAAAAAAAAEDCCY4DAAAAAAAAAAAAACSc4DgAAAAAAAAAAAAAQMIJjgMAAAAAAAAAAAAAJJzgOAAAAAAAAAAAAABAwgmOAwAAAAAAAAAAAAAknOA4AAAAAAAAAAAAAEDCCY4DAAAAAAAAAAAAACSc4DgAAAAAAAAAAAAAQMIJjgMAAAAAAAAAAAAAJJzgOAAAAAAAAAAAAABAwgmOAwAAAAAAAAAAAAAknOA4AAAAAAAAAAAAAEDCCY4DAAAAAAAAAAAAACSc4DgAAAAAAAAAAAAAQMIJjgMAAAAAAAAAAAAAJFyPbC8AAAAc+7761a/G2rVro6WlJdur/EFJSUksX748Ro4cmbUd1q5dGwsWLIgDBw60eae4uDhWrVoVZWVlR3EzAAAAAAAAAIDDeeM4AABwRGvWrDmmQuMREbt27YpNmzZldYdXX3213dB4RERdXV28++67R2kjAAAAAAAAAIDUBMcBAIDjVrbD7OnOz/aeAAAAAAAAAACC4wAAAAAAAAAAAAAACSc4DgAAAAAAAAAAAACQcILjAAAAAAAAAAAAAAAJJzgOAAAAAAAAAAAAAJBwguMAAMARnXPOOdleoZXCwsIYPnx4VnfIzU3vW6qePXt28yYAAAAAAAAAAO3rke0FAACAY19lZWWHn1m3bl1ceumlad0tLi6OZ599NoqKijo8J5vGjx8fvXv3jvr6+pTnubm5MXbs2DjrrLOO8mYAAAAAAAAAAIcTHAcAALrFwIED077bq1ev4y40HhHxp3/6p7Fu3bpsrwEAAAAAAAAAcETpfa46AAAAAAAAAAAAAADHLcFxAAAAAAAAAAAAAICEExwHAAAAAAAAAAAAAEi4HtleAAAA4FjT1NQUr7zySrz22mtRX18fZWVlMW3atCgsLMz2aq1s2bIlNm3aFB9++GHs3bs3CgoKol+/flFRURFnnnlm5OZ2z98LHzhwIN5666147733ora2Nvbu3RtNTU1RWFgYffr0iaFDh8aIESOiuLi4W+YDAAAAAAAAAB0jOA4AACRKY2NjfPazn42ampo27/Tv3z8ef/zxVqHmxsbGWLFiRSxfvjy2bdt22NmmTZvi+uuvP6z22muvxSWXXBJ79+5tc1avXr1i1apVMWjQoJTnV199dTz77LPR1NSU8jw/Pz/+6Z/+KS699NI/1Jqbm+Phhx+On/3sZ/H222+3Obtv374xffr0mD9/fgwcOLDNe+navXt3PP744/Hkk0/G7373u2hsbGz3fk5OTpx11lkxceLEmDVrVpSXl3d5BwAAAAAAAACgcwTHAQCARNmxY0e7ofGIiNra2vjggw8OC46/9tprsXDhwtiyZUvKZ+rr61vVXn/99XZD4xERDQ0N8f7777cZHF+9enU0Nze3+fyBAwfiP/7jP/4QHH/99dfj29/+dmzYsKHduRERH3/8cSxfvjweeuihWLhwYVx++eWdegP53r1745577okVK1bEnj170n6upaUlNm7cGBs3boyf/OQnMXXq1PjWt74VQ4YM6fAOAAAAAAAAAEDXdM9nlgMAAGRJS0tLh+9VVlbG7Nmz2wyNZ3LWH2svNP7Hd5544omYPXt2WqHx/6uxsTFuu+22+MY3vhEHDhzo0LMbN26Miy66KH7yk590KDT+x5qbm6Oqqio+97nPxU9/+tO0/+0AAAAAAAAAgMwQHAcAAE5o999/f9xwww3R2NiY7VXaVFtbG7fffntce+21sX///k73qaqqim9961tph7ZfeumlmDdvXrz33nudnvnHDh48+IcQ+6FDhzLWFwAAAAAAAABon+A4AABwwnrmmWfi5ptvzvYaR7Rhw4ZYunRpRt7SXVVVFStXrjzivZqamliwYEHs3bu3yzNT+dWvfhXXX399t/QGAAAAAAAAAFoTHAcAAE5IS5cujUWLFkVTU1O2V+mUkpKSqKioiMGDB0dBQUGHnl2yZEls3bq13Ts33XRT7Nq1K61+J510UgwZMiROP/30KCkpiZycnLSee+yxx+Lf/u3f0roLAAAAAAAAAHRNj2wvAAAAkA2PP/54tlfosNzc3PjSl74Ul112WZxxxhl/qDc2NsZzzz0XP/jBD6K6uvqIffbs2RM//OEP49Zbb015/j//8z/x7LPPttujZ8+eMWfOnJg1a1aceeaZh53V1dXFmjVr4pFHHonf/va37fZ59NFH46KLLjrizgAAAAAAAABA13jjOAAAwHGgqKgoli1bFjfeeONhofGIiIKCgpg6dWo89thjMXny5LT6/epXv4qGhoaUZ0888US7z+bl5cXPf/7zuOGGG1qFxiMiiouL4wtf+ELce++9ceedd0afPn1a3SkoKIjLLrssvv/976e1LwAAAAAAAADQNd44DgAA8P+dc845MWrUqOjbt2/s2bMn6uvro7q6Ot56660oKyvL6m7f+9734oILLmj3Tn5+ftx5550xffr0eOedd9q9u2/fvli1alXMnTu31dnvfve7dp+94IILYty4cUfcOSLiwgsvjPLy8rj88stj9+7dcdJJJ8Xs2bPjiiuuiAEDBqTVAwAAAAAAAADoOsFxAADghDdt2rS49tpr47TTTkt53tLSEjk5OUd3qf+joqIipk6dmtbd/Pz8uPbaa2PhwoVHvLtmzZqUwfHa2toO79ieMWPGxMqVK+Pf//3f46/+6q+if//+Ge0PAAAAAAAAAByZ4DgAAHDCysvLi1tuuSUuvvjidu9lMzQe8fvgeEdMmjQpevXqFQ0NDe3e27hxY8p6S0tLu8+98MILsXr16pg8eXLaO51xxhlxxhlnpH0fAAAAAAAAAMis3GwvAAAAkC033njjEUPjx4KePXt26H5+fn6cf/75R7xXW1sb27dvb1U/5ZRT2n2uubk5rrrqqrjyyivjF7/4RcoeAAAAAAAAAMCxxRvHAQCAE9Lo0aNj1qxZ2V6j25x++unxzDPPHPHem2++GQMGDDis9slPfjJefPHFdp9raWmJtWvXxtq1ayMiYsiQITFu3Lg477zz4rzzzothw4Z1fnkAAAAAAAAAIOMExwEAgBPSBRdckO0VutXQoUPTuldXV9eqduGFF8bSpUs7NG/Lli2xZcuWeOSRRyIiol+/fjFu3LgYP358TJgwIe19AAAAAAAAAIDuITgOAACckAoKCrK9Qrfq3bt3WvcaGhpa1UaPHh1TpkyJp59+utPzP/roo6iqqoqqqqqIiBg+fHj89V//dcycOTP69OnT6b4AAAAAAAAAQOfkZnsBAAAAMu/kk09O6159fX3K+k033RSDBw/O2D5vv/123HrrrTFp0qRYsWJFNDU1Zaw3AAAAAAAAAHBkguMAAAAJlJub3rd7+/fvT1kvLS2NFStWxNlnn53JtaKhoSEWL14cV155ZezZsyejvQEAAAAAAACAtgmOAwAAJNC+ffvSupefn9/m2amnnhoPPPBAfPOb34yioqJMrRYREc8//3z83d/9XRw8eDCjfQEAAAAAAACA1ATHAQAAEijdt3kXFha2e15QUBB///d/H2vWrIlvf/vbcc4556T9NvMjWb9+ffzwhz/MSC8AAAAAAAAAoH09sr0AAAAAmVdTU5PWvdLS0rTu9enTJ+bNmxfz5s2Lurq6eOmll+Lll1+ODRs2xMaNG9MOqv+xe++9N+bNmxdlZWWdeh4AAAAAAAAASI/gOAAAQAK9++67ad3rTGC7uLg4pkyZElOmTImIiObm5nj77bfj1VdfjQ0bNsS6devijTfeSKtXY2Nj/PKXv4z58+d3eA8AAAAAAAAAIH2C4wAAAAn08ssvp3Vv+PDhXZ6Vm5sbp59+epx++ukxY8aMiIjYsmVLLF++PFauXBlNTU3tPv+f//mfguMAAAAAAAAA0M1ys70AAAAAmbV58+a03jg+aNCgKCkpafdOY2Nj7Nixo8M7DBkyJG644Ya48cYbj3j3ww8/7HB/AAAAAAAAAKBjBMcBAAAS5r777kvr3rhx49o827NnT9xzzz0xYcKE+PSnPx1r1qzp1C5f/OIXo6ioqN07jY2NneoNAAAAAAAAAKRPcBwAAOAY91//9V+xbdu2tO5WV1dHZWVlWnc/85nPtKrt378/li1bFlOmTIk77rgjdu3aFQcPHoyvf/3rsW7dug7tHRFx8ODBOHToULt3+vXr1+G+AAAAAAAAAEDHCI4DAAAc4959992YO3duvPrqq+3e27ZtW1x11VVpvcG7uLg4Jk6ceFht8+bNMWXKlPje974XO3fuPOxs//798ZWvfCWWLl0azc3Nae++ZMmSI+5z1llnpd0PAAAAAAAAAOgcwXEAAIDjQE1NTcyZMyduvvnmqK6uPuysrq4u7r///rjooovinXfeSavfnDlz4uSTTz6sdtJJJ0V9fX2bzxw8eDBuv/32mDlzZjz88MNtvgX9o48+ilWrVsWcOXPi3nvvPeIu06ZNS2tnAAAAAAAAAKDzemR7AQAAANJz6NChWL58eSxfvjxKSkpiwIABUV9fH9u3b4+mpqa0+/Tt2zeuuOKKVvVTTz01rrnmmrjtttvafX7Tpk1x/fXXR8Tv31x+yimnREFBQRw4cCB27NgRu3btSnuXc889N8aPH5/2fQAAAAAAAACgcwTHAQAAjkO7du3qUED7/7rpppuiT58+Kc/+9m//NjZs2BBVVVVp9aqrq4u6urpO7dGrV69YvHhxp54FAAAAAAAAADomN9sLAAAA0L7i4uLo169fRnpdffXVMXXq1DbP8/Ly4vbbb4/Pf/7zGZnXlsLCwvjxj38cI0aM6NY5AAAAAAAAAMDvCY4DAAAc4yZMmBC//OUv48/+7M+61GfBggWxcOHCI97Lz8+PJUuWxHe/+93o3bt3l2amMnLkyHjooYe6/PUAAAAAAAAAAOkTHAcAALpFTk5OVubm5qb3bU5eXt5Rm9WjR48uzenRo0eUlpbGsmXL4sorr4yePXt26PkBAwbE3XffHddcc02Hnps7d2489dRT8eUvfzl69erVoWdTGThwYNx8883x2GOPRUVFRZf7AQAAAAAAAADpExwHAAC6RWlpaQwYMCCtu+eee27G5vbv3z/OPvvsdu+UlZXFxIkTuzxrzJgx0a9fvzbPc3NzY9SoUTFy5Mguz4r4fdh90aJFUVVVFbNnz47S0tJ271dUVMQ///M/x1NPPRWTJ0/u1MzS0tK47rrr4je/+U3ccsstMW3atCgpKUn7+VNPPTVmzZoVy5Yti9WrV8esWbPSDtwDAAAAAAAAAJmT09LS0pLtJQAAAE5U6YTKZ8yYEbfeemurenNzc2zcuDE2b94cO3fujH379kVhYWGUl5fH6NGjY+DAgd2xcrS0tMTWrVvjnXfeia1bt8aePXti3759kZeXF0VFRdGrV6849dRTY+TIkVFcXNwtOwAAAAAAAAAAHdO1z0sHAAAga3Jzc2PMmDExZsyYozo3JycnysvLo7y8/KjOBQAAAAAAAAA6z+eDAwAAAAAAAAAAAAAknOA4AAAAAAAAAAAAAEDCCY4DAAAAAAAAAAAAACSc4DgAAAAAAAAAAAAAQMIJjgMAAAAAAAAAAAAAJJzgOAAAAAAAAAAAAABAwgmOAwAAHONycnKyvQIAAAAAAAAAcJwTHAcAAMiisWPHtnuek5MTFRUVR2kbAAAAAAAAACCpclpaWlqyvQQAAAAAAAAAAAAAAN3HG8cBAAAAAAAAAAAAABJOcBwAAAAAAAAAAAAAIOEExwEAAAAAAAAAAAAAEk5wHAAAAAAAAAAAAAAg4QTHAQAAAAAAAAAAAAASTnAcAAAAAAAAAAAAACDhBMcBAAAAAAAAAAAAABJOcBwAAAAAAAAAAAAAIOEExwEAAAAAAAAAAAAAEk5wHAAAAAAAAAAAAAAg4QTHAQAAAAAAAAAAAAASTnAcAAAAAAAAAAAAACDhBMcBAAAAAAAAAAAAABJOcBwAAAAAAAAAAAAAIOEExwEAAAAAAAAAAAAAEk5wHAAAAAAAAAAAAAAg4QTHAQAAAAAAAAAAAAASTnAcAAAAAAAAAAAAACDhBMcBAAAAAAAAAAAAABJOcBwAAAAAAAAAAAAAIOEExwEAAAAAAAAAAAAAEk5wHAAAAAAAAAAAAAAg4QTHAQAAAAAAAAAAAAASTnAcAAAAAAAAAAAAACDhBMcBAAAAAAAAAAAAABJOcBwAAAAAAAAAAAAAIOEExwEAAAAAAAAAAAAAEk5wHAAAAAAAAAAAAAAg4QTHAQAAAAAAAAAAAAASTnAcAAAAAAAAAAAAACDhBMcBAAAAAAAAAAAAABJOcBwAAAAAAAAAAAAAIOEExwEAAAAAAAAAAAAAEk5wHAAAAAAAAAAAAAAg4QTHAQAAAAAAAAAAAAASTnAcAAAAAAAAAAAAACDhBMcBAAAAAAAAAAAAABJOcBwAAAAAAAAAAAAAIOEExwEAAAAAAAAAAAAAEk5wHAAAAAAAAAAAAAAg4QTHAQAAAAAAAAAAAAASTnAcAAAAAAAAAAAAACDhBMcBAAAAAAAAAAAAABJOcBwAAAAAAAAAAAAAIOH+H7JBw9N8663IAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "fig, ax = rick.charts.bar_chart(transit_pass, xlab='Trips')" + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
catTTC Pass
2Trip Making Population16
1Taxi16
0PTC22
\n", + "
" + ], + "text/plain": [ + " cat TTC Pass\n", + "2 Trip Making Population 16\n", + "1 Taxi 16\n", + "0 PTC 22" + ] + }, + "execution_count": 18, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "transit_pass" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.5.2" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/charts/rick.py b/charts/rick.py new file mode 100644 index 0000000..39b8bb8 --- /dev/null +++ b/charts/rick.py @@ -0,0 +1,592 @@ +# -*- coding: utf-8 -*- +""" +Version 0.8.0 + + +""" +from psycopg2 import connect +import psycopg2.sql as pg +import pandas.io.sql as pandasql +import matplotlib as mpl +import matplotlib.pyplot as plt +import matplotlib.patches as patches +import matplotlib.ticker as ticker +import geopandas as gpd +import os +import shapely +import seaborn as sns +from shapely.geometry import Point +import matplotlib.font_manager as font_manager +import numpy as np + +class font: + """ + Class defining the global font variables for all functions. + + """ + + leg_font = font_manager.FontProperties(family='Libre Franklin',size=9) + normal = 'Libre Franklin' + semibold = 'Libre Franklin SemiBold' + + +class colour: + """ + Class defining the global colour variables for all functions. + + """ + purple = '#660159' + grey = '#7f7e7e' + light_grey = '#777777' + cmap = 'YlOrRd' + +class geo: + """ + Class for additional gis layers needed for the cloropleth map. + + """ + + def ttc(con): + """Function to return the TTC subway layer. + + Parameters + ------------ + con : SQL connection object + Connection object needed to connect to the RDS + + Returns + -------- + gdf + Geopandas Dataframe of the Subway Layer + + """ + query = ''' + + SELECT * FROM gis.subway_to + + ''' + ttc = gpd.GeoDataFrame.from_postgis(query, con, geom_col='geom') + ttc = ttc.to_crs({'init' :'epsg:3857'}) + + for index, row in ttc.iterrows(): + rotated = shapely.affinity.rotate(row['geom'], angle=-17, origin = Point(0, 0)) + ttc.loc[index, 'geom'] = rotated + + return ttc + + def island(con): + + """Function to return a layer of the Toronto island. Since the island is classified in the same neighbourhood as the waterfront, in some cases its not completely accurate to show the island shares the same data as the waterfront. + + Parameters + ------------ + con : SQL connection object + Connection object needed to connect to the RDS + + Returns + -------- + gdf + Geopandas Dataframe of the Toronto island. + + """ + + query = ''' + + SELECT + geom + FROM tts.zones_tts06 + WHERE gta06 = 81 + + ''' + + island = gpd.GeoDataFrame.from_postgis(query, con, geom_col='geom') + island = island.to_crs({'init' :'epsg:3857'}) + + for index, row in island.iterrows(): + rotated = shapely.affinity.rotate(row['geom'], angle=-17, origin = Point(0, 0)) + island.loc[index, 'geom'] = rotated + + return island + +class charts: + """ + Class defining all the charting functions. + + """ + + global func + def func(): + + """Function to set global settings for the charts class. + + """ + + sns.set(font_scale=1.5) + mpl.rc('font',family='Libre Franklin') + + def chloro_map(con, df, lower, upper, title, **kwargs): + """Creates a chloropleth map + + Parameters + ----------- + con : SQL connection object + Connection object needed to connect to the RDS + df : GeoPandas Dataframe + Data for the chloropleth map. The data must only contain 2 columns; the first column has to be the geom column and the second has to be the data that needs to be mapped. + lower : int + Lower bound for colourmap + upper : int + Upper bound for the colourmap + title : str + Legend label + subway : boolean, optional, default: False + True to display subway on the map + island : boolean, optional, defailt: True + False to grey out the Toronto island + cmap : str, optional, default: YlOrRd + Matplotlib colourmap to use for the map + unit : str, optional + Unit to append to the end of the legend tick + nbins : int, optional, defualt: 2 + Number of ticks in the colourmap + + Returns + -------- + fig + Matplotlib fig object + ax + Matplotlib ax object + + """ + + func() + subway = kwargs.get('subway', False) + island = kwargs.get('island', True) + cmap = kwargs.get('cmap', colour.cmap) + unit = kwargs.get('unit', None) + nbins = kwargs.get('nbins', 2) + + df.columns = ['geom', 'values'] + light = '#d9d9d9' + + fig, ax = plt.subplots() + fig.set_size_inches(6.69,3.345) + + ax.set_yticklabels([]) + ax.set_xticklabels([]) + ax.set_axis_off() + + mpd = df.plot(column='values', ax=ax, vmin=lower, vmax=upper, cmap = cmap, edgecolor = 'w', linewidth = 0.5) + + if island == False: + island_grey = geo.island(con) + island_grey.plot(ax=ax, edgecolor = 'w', linewidth = 4, color = light) + island_grey.plot(ax=ax, edgecolor = 'w', linewidth = 0, color = light) + + if subway == True: + ttc_df = geo.ttc(con) + line = ttc_df.plot( ax=ax, linewidth =4, color = 'w', alpha =0.6) # ttc subway layer + line = ttc_df.plot( ax=ax, linewidth =2, color = 'k', alpha =0.4) # ttc subway layer + + + props = dict(boxstyle='round', facecolor='w', alpha=0) + plt.text(0.775, 0.37, title, transform=ax.transAxes, wrap = True, fontsize=7, fontname = font.semibold, + verticalalignment='bottom', bbox=props, fontweight = 'bold') # Adding the Legend Title + + + cax = fig.add_axes([0.718, 0.16, 0.01, 0.22]) # Size of colorbar + + rect = patches.Rectangle((0.76, 0.01),0.235,0.43,linewidth=0.5, transform=ax.transAxes, edgecolor=light,facecolor='none') + ax.add_patch(rect) + + ax.margins(0.1) + + sm = plt.cm.ScalarMappable(cmap=cmap, norm=plt.Normalize(vmin=lower, vmax=upper)) + sm._A = [] + cbr = fig.colorbar(sm, cax=cax) + cbr.outline.set_linewidth(0) + tick_locator = ticker.MaxNLocator(nbins=nbins) + cbr.locator = tick_locator + cbr.update_ticks() + cbr.ax.yaxis.set_tick_params(width=0.5) + cbr.ax.tick_params(labelsize=6) # Formatting for Colorbar Text + for l in cbr.ax.yaxis.get_ticklabels(): + l.set_family(font.normal) + + if unit is not None: + if 0 < upper < 10: + ax.text(0.829, 0.32, unit, transform=ax.transAxes, wrap = True, fontsize=6, fontname = font.normal, verticalalignment='bottom', ha = 'left') + elif 10 <= upper < 100: + ax.text(0.839, 0.32, unit, transform=ax.transAxes, wrap = True, fontsize=6, fontname = font.normal, verticalalignment='bottom', ha = 'left') + elif 100 <= upper < 1000: + ax.text(0.851, 0.32, unit, transform=ax.transAxes, wrap = True, fontsize=6, fontname = font.normal, verticalalignment='bottom', ha = 'left') + elif 1000 <= upper < 100000: + ax.text(0.862, 0.32, unit, transform=ax.transAxes, wrap = True, fontsize=6, fontname = font.normal, verticalalignment='bottom', ha = 'left') + else: + pass + + + return fig, ax + + def line_chart(data, ylab, xlab, **kwargs): + """Creates a line chart. x axis must be modified manually + + Parameters + ----------- + data : array like or scalar + Data for the line chart. + ylab : str + Label for the y axis. + xlab : str + Label for the x axis. + ymax : int, optional, default is the max y value + The max value of the y axis + ymin : int, optional, default is 0 + The minimum value of the y axis + baseline : array like or scalar, optional, default is None + Data for another line representing the baseline. + yinc : int, optional + The increment of ticks on the y axis. + + Returns + -------- + fig + Matplotlib fig object + ax + Matplotlib ax object + props + Dictionary of the text annotation properties + + """ + + func() + ymax = kwargs.get('ymax', int(data.max())) + ymin = kwargs.get('ymin', 0) + baseline = kwargs.get('baseline', None) + + delta = (ymax - ymin)/4 + i = 0 + while True: + delta /= 10 + i += 1 + if delta < 10: + break + yinc = kwargs.get('yinc', int(round(delta+1)*pow(10,i))) + + fig, ax =plt.subplots() + ax.plot(data ,linewidth=3, color = colour.purple) + if baseline is not None: + ax.plot(baseline ,linewidth=3, color = colour.grey) + + plt.grid() + ax.yaxis.set_major_formatter(mpl.ticker.StrMethodFormatter('{x:,.0f}')) + + ax.set_facecolor('xkcd:white') + + plt.xlabel(xlab, fontsize=9, fontweight = 'bold', horizontalalignment='right', x=0, labelpad=10, + fontname = font.normal) + ax.grid(color='k', linestyle='-', linewidth=0.2) + plt.ylabel(ylab, fontsize=9, fontweight = 'bold', + horizontalalignment='right', y=1.0, + labelpad=10, fontname = font.normal) + fig.set_size_inches(6.1, 4.1) + plt.xticks(fontsize=9, fontname = font.normal) + plt.yticks(range(ymin, ymax + yinc, yinc), fontsize =9, + fontname = font.normal) + + props = dict(boxstyle='round, pad=0.4',edgecolor=colour.purple, + linewidth = 2, facecolor = 'w', alpha=1) + + ax.set_ylim([ymin, ymax]) + fig.patch.set_facecolor('w') + + return fig, ax, props + + def tow_chart(data, ylab, **kwargs): + """Creates a 7 day time of week line chart. Each data point represents 1 hour out of 168 hours. + + Parameters + ----------- + data : array like or scalar + Data for the tow chart. Data must only have 168 entries, with row 0 representing Monday at midnight. + ylab : str + Label for the y axis. + ymax : int, optional, default is the max y value + The max value of the y axis + ymin : int, optional, default is 0 + The minimum value of the y axis + yinc : int, optional + The increment of ticks on the y axis. + + Returns + -------- + fig + Matplotlib fig object + ax + Matplotlib ax object + props + Dictionary of the text annotation properties + + """ + func() + ymax = kwargs.get('ymax', None) + ymin = kwargs.get('ymin', 0) + + + ymax_flag = True + if ymax == None: + ymax = int(data.max()) + ymax_flag = False + + delta = (ymax - ymin)/3 + i = 0 + while True: + delta /= 10 + i += 1 + if delta < 10: + break + yinc = kwargs.get('yinc', int(round(delta+1)*pow(10,i))) + + if ymax_flag == True: + upper = ymax + else: + upper = int(3*yinc+ymin) + + fig, ax =plt.subplots() + ax.plot(data, linewidth = 2.5, color = colour.purple) + + plt.grid() + ax.set_facecolor('xkcd:white') + + plt.xlabel('Time of week', fontname = font.normal, fontsize=9, horizontalalignment='left', x=0, labelpad=3, fontweight = 'bold') + ax.set_ylim([ymin,upper]) + + ax.grid(color='k', linestyle='-', linewidth=0.2) + plt.ylabel(ylab, fontname = font.normal, fontsize=9, horizontalalignment='right', y=1, labelpad=7, fontweight = 'bold') + fig.set_size_inches(6.1, 1.8) + + + ax.yaxis.set_major_formatter(mpl.ticker.StrMethodFormatter('{x:,.0f}')) + plt.yticks(range(ymin,upper+int(0.1*yinc), yinc), fontsize =9, fontname = font.normal) + + ax.set_xticks(range(0,180,12)) + ax.set_xticklabels(['0','12','0','12', + '0','12','0','12', + '0','12','0','12','0','12'], fontname = font.normal, fontsize = 7, color = colour.light_grey) + + ax.xaxis.set_minor_locator(ticker.FixedLocator(list(range(12,180,24)))) + ax.xaxis.set_minor_formatter(ticker.FixedFormatter(['Monday','Tuesday', + 'Wednesday','Thursday', + 'Friday','Saturday','Sunday'])) + ax.tick_params(axis='x', which='minor', colors = 'k', labelsize=9, pad =14) + + props = dict(boxstyle='round, pad=0.3',edgecolor=colour.purple, linewidth = 1.5, facecolor = 'w', alpha=1) + + ax.set_xlim([0,167]) + return fig, ax, props + + def stacked_chart(data_in, xlab, lab1, lab2, **kwargs): + """Creates a stacked bar chart comparing 2 sets of data + + Parameters + ----------- + data : dataframe + Data for the stacked bar chart. The dataframe must have 3 columns, the first representing the y ticks, the second representing the baseline, and the third representing the next series of data. + xlab : str + Label for the x axis. + lab1 : str + Label in the legend for the baseline + lab2 : str + Label in the legend fot the next data series + xmax : int, optional, default is the max s value + The max value of the y axis + xmin : int, optional, default is 0 + The minimum value of the x axis + precision : int, optional, default is -1 + Decimal places in the annotations + percent : boolean, optional, default is False + Whether the annotations should be formatted as percentages + + xinc : int, optional + The increment of ticks on the x axis. + + Returns + -------- + fig + Matplotlib fig object + ax + Matplotlib ax object + + """ + + func() + data = data_in.copy(deep=True) + + data.columns = ['name', 'values1', 'values2'] + + xmin = kwargs.get('xmin', 0) + xmax = kwargs.get('xmax', None) + precision = kwargs.get('precision', -1) + percent = kwargs.get('percent', False) + + xmax_flag = True + if xmax == None: + xmax = int(max(data[['values1', 'values2']].max())) + xmax_flag = False + + delta = (xmax - xmin)/4 + i = 0 + while True: + delta /= 10 + i += 1 + if delta < 10: + break + xinc = kwargs.get('xinc', int(round(delta+1)*pow(10,i))) + + if xmax_flag == True: + upper = xmax + else: + upper = int(4*xinc+xmin) + + ind = np.arange(len(data)) + + fig, ax = plt.subplots() + fig.set_size_inches(6.1, len(data)) + ax.grid(color='k', linestyle='-', linewidth=0.25) + + p1 = ax.barh(ind+0.4, data['values1'], 0.4, align='center', color = colour.grey) + p2 = ax.barh(ind, data['values2'], 0.4, align='center', color = colour.purple) + ax.xaxis.set_major_formatter(mpl.ticker.StrMethodFormatter('{x:,.0f}')) + + ax.xaxis.grid(True) + ax.yaxis.grid(False) + ax.set_yticks(ind+0.4/2) + ax.set_xlim(0,upper) + ax.set_yticklabels(data['name']) + ax.set_xlabel(xlab, horizontalalignment='left', x=0, labelpad=10, fontname = font.normal, fontsize=10, fontweight = 'bold') + + ax.set_facecolor('xkcd:white') + j=0 + + if precision < 1: + data[['values1', 'values2']] = data[['values1', 'values2']].astype(int) + for i in data['values2']: + if i < 0.1*upper: + ax.annotate(str(format(round(i,precision), ',')), xy=(i-0.015*upper, j-0.05), ha = 'right', color = 'w', fontname = font.normal, fontsize=10) + else: + ax.annotate(str(format(round(i,precision), ',')), xy=(i-0.015*upper, j-0.05), ha = 'right', color = 'w', fontname = font.normal, fontsize=10) + j=j+1 + j=0.4 + for i in data['values1']: + if i < 0.1*upper: + ax.annotate(str(format(round(i,precision), ',')), xy=(i+0.015*upper, j-0.05), ha = 'left', color = 'k', fontname = font.normal, fontsize=10) + else: + ax.annotate(str(format(round(i,precision), ',')), xy=(i-0.015*upper, j-0.05), ha = 'right', color = 'w', fontname = font.normal, fontsize=10) + j=j+1 + + + ax.legend((p1[0], p2[0]), (lab1, lab2), loc=4, frameon=False, prop=font.leg_font) + plt.xticks(range(xmin,upper+int(0.1*xinc), xinc), fontname = font.normal, fontsize =10) + plt.yticks( fontname = font.normal, fontsize =10) + + if percent == True: + data_yoy = data + data_yoy['percent'] = (data['values2']-data['values1'])*100/data['values1'] + j=0.15 + for index, row in data_yoy.iterrows(): + ax.annotate('+'+str(format(int(round(row['percent'],0)), ','))+'%', xy=(max(row[['values1', 'values2']]) + 0.03*upper, j), + color = 'k', fontname = font.normal, fontsize=10) + j=j+1 + + + return fig, ax + + def bar_chart(data_in, xlab,**kwargs): + """Creates a bar chart + + Parameters + ----------- + data : dataframe + Data for the bar chart. The dataframe must have 2 columns, the first representing the y ticks, and the second representing the data + xlab : str + Label for the x axis. + xmax : int, optional, default is the max s value + The max value of the y axis + xmin : int, optional, default is 0 + The minimum value of the x axis + precision : int, optional, default is -1 + Decimal places in the annotations + + xinc : int, optional + The increment of ticks on the x axis. + + Returns + -------- + fig + Matplotlib fig object + ax + Matplotlib ax object + + """ + func() + data = data_in.copy(deep=True) + + data.columns = ['name', 'values1'] + + xmin = kwargs.get('xmin', 0) + xmax = kwargs.get('xmax', None) + precision = kwargs.get('precision', 0) + + xmax_flag = True + if xmax == None: + xmax = data['values1'].max() + xmax_flag = False + + delta = (xmax - xmin)/4 + i = 0 + while True: + if delta < 10: + break + delta /= 10 + i += 1 + xinc = kwargs.get('xinc', int(round(delta+1)*pow(10,i))) + + if xmax_flag == True: + upper = xmax + else: + upper = int(4*xinc+xmin) + + ind = np.arange(len(data)) + + fig, ax = plt.subplots() + fig.set_size_inches(6.1, len(data)*0.7) + ax.grid(color='k', linestyle='-', linewidth=0.25) + p2 = ax.barh(ind, data['values1'], 0.75, align='center', color = colour.purple) + ax.xaxis.set_major_formatter(mpl.ticker.StrMethodFormatter('{x:,.0f}')) + + ax.xaxis.grid(True) + ax.yaxis.grid(False) + ax.set_yticks(ind) + ax.set_xlim(0,upper) + ax.set_yticklabels(data['name']) + ax.set_xlabel(xlab, horizontalalignment='left', x=0, labelpad=10, fontname = font.normal, fontsize=10, fontweight = 'bold') + + ax.set_facecolor('xkcd:white') + j=0 + + if precision < 1: + data['values1'] = data['values1'].astype(int) + + j=0 + for i in data['values1']: + if i < 0.1*upper: + ax.annotate(str(format(round(i,precision), ',')), xy=(i+0.015*upper, j-0.05), ha = 'left', color = 'k', fontname = font.normal, fontsize=10) + else: + ax.annotate(str(format(round(i,precision), ',')), xy=(i-0.015*upper, j-0.05), ha = 'right', color = 'w', fontname = font.normal, fontsize=10) + j=j+1 + + + plt.xticks(range(xmin,upper+int(0.1*xinc), xinc), fontname = font.normal, fontsize =10) + plt.yticks( fontname = font.normal, fontsize =10) + + return fig, ax diff --git a/charts/setup.py b/charts/setup.py new file mode 100644 index 0000000..61bf0b2 --- /dev/null +++ b/charts/setup.py @@ -0,0 +1,17 @@ +from setuptools import setup, find_packages + +setup( + name='rick', + version='0.2.1', + description='Standardized matplotlib charts and graphs', + packages=find_packages(), + install_requires=[ + 'matplotlib', + 'psycopg2-binary', + 'geopandas', + 'pandas', + 'shapely', + 'seaborn' + ], + python_requires='>=3' +) diff --git a/charts/sphinx/Makefile b/charts/sphinx/Makefile new file mode 100644 index 0000000..a4e06d0 --- /dev/null +++ b/charts/sphinx/Makefile @@ -0,0 +1,20 @@ +# Minimal makefile for Sphinx documentation +# + +# You can set these variables from the command line. +SPHINXOPTS = +SPHINXBUILD = sphinx-build +SPHINXPROJ = VFHCharts +SOURCEDIR = . +BUILDDIR = _build + +# Put it first so that "make" without argument is like "make help". +help: + @$(SPHINXBUILD) -M help "$(SOURCEDIR)" "$(BUILDDIR)" $(SPHINXOPTS) $(O) + +.PHONY: help Makefile + +# Catch-all target: route all unknown targets to Sphinx using the new +# "make mode" option. $(O) is meant as a shortcut for $(SPHINXOPTS). +%: Makefile + @$(SPHINXBUILD) -M $@ "$(SOURCEDIR)" "$(BUILDDIR)" $(SPHINXOPTS) $(O) \ No newline at end of file diff --git a/charts/sphinx/_build/doctrees/auto_examples/index.doctree b/charts/sphinx/_build/doctrees/auto_examples/index.doctree new file mode 100644 index 0000000..b561e63 Binary files /dev/null and b/charts/sphinx/_build/doctrees/auto_examples/index.doctree differ diff --git a/charts/sphinx/_build/doctrees/auto_examples/plot_bar.doctree b/charts/sphinx/_build/doctrees/auto_examples/plot_bar.doctree new file mode 100644 index 0000000..54b30cc Binary files /dev/null and b/charts/sphinx/_build/doctrees/auto_examples/plot_bar.doctree differ diff --git a/charts/sphinx/_build/doctrees/auto_examples/plot_chloropleth.doctree b/charts/sphinx/_build/doctrees/auto_examples/plot_chloropleth.doctree new file mode 100644 index 0000000..f983652 Binary files /dev/null and b/charts/sphinx/_build/doctrees/auto_examples/plot_chloropleth.doctree differ diff --git a/charts/sphinx/_build/doctrees/auto_examples/plot_line.doctree b/charts/sphinx/_build/doctrees/auto_examples/plot_line.doctree new file mode 100644 index 0000000..b5945b7 Binary files /dev/null and b/charts/sphinx/_build/doctrees/auto_examples/plot_line.doctree differ diff --git a/charts/sphinx/_build/doctrees/auto_examples/plot_stacked.doctree b/charts/sphinx/_build/doctrees/auto_examples/plot_stacked.doctree new file mode 100644 index 0000000..ffe9c43 Binary files /dev/null and b/charts/sphinx/_build/doctrees/auto_examples/plot_stacked.doctree differ diff --git a/charts/sphinx/_build/doctrees/auto_examples/plot_tow.doctree b/charts/sphinx/_build/doctrees/auto_examples/plot_tow.doctree new file mode 100644 index 0000000..e91afdd Binary files /dev/null and b/charts/sphinx/_build/doctrees/auto_examples/plot_tow.doctree differ diff --git a/charts/sphinx/_build/doctrees/auto_examples/sg_execution_times.doctree b/charts/sphinx/_build/doctrees/auto_examples/sg_execution_times.doctree new file mode 100644 index 0000000..e8ff650 Binary files /dev/null and b/charts/sphinx/_build/doctrees/auto_examples/sg_execution_times.doctree differ diff --git a/charts/sphinx/_build/doctrees/code.doctree b/charts/sphinx/_build/doctrees/code.doctree new file mode 100644 index 0000000..06e7704 Binary files /dev/null and b/charts/sphinx/_build/doctrees/code.doctree differ diff --git a/charts/sphinx/_build/doctrees/environment.pickle b/charts/sphinx/_build/doctrees/environment.pickle new file mode 100644 index 0000000..b175810 Binary files /dev/null and b/charts/sphinx/_build/doctrees/environment.pickle differ diff --git a/charts/sphinx/_build/doctrees/index.doctree b/charts/sphinx/_build/doctrees/index.doctree new file mode 100644 index 0000000..70da01d Binary files /dev/null and b/charts/sphinx/_build/doctrees/index.doctree differ diff --git a/charts/sphinx/auto_examples/auto_examples_jupyter.zip b/charts/sphinx/auto_examples/auto_examples_jupyter.zip new file mode 100644 index 0000000..f916ef6 Binary files /dev/null and b/charts/sphinx/auto_examples/auto_examples_jupyter.zip differ diff --git a/charts/sphinx/auto_examples/auto_examples_python.zip b/charts/sphinx/auto_examples/auto_examples_python.zip new file mode 100644 index 0000000..f96e527 Binary files /dev/null and b/charts/sphinx/auto_examples/auto_examples_python.zip differ diff --git a/charts/sphinx/auto_examples/images/sphx_glr_plot_bar_001.png b/charts/sphinx/auto_examples/images/sphx_glr_plot_bar_001.png new file mode 100644 index 0000000..3a0dda6 Binary files /dev/null and b/charts/sphinx/auto_examples/images/sphx_glr_plot_bar_001.png differ diff --git a/charts/sphinx/auto_examples/images/sphx_glr_plot_chloropleth_001.png b/charts/sphinx/auto_examples/images/sphx_glr_plot_chloropleth_001.png new file mode 100644 index 0000000..9727001 Binary files /dev/null and b/charts/sphinx/auto_examples/images/sphx_glr_plot_chloropleth_001.png differ diff --git a/charts/sphinx/auto_examples/images/sphx_glr_plot_line_001.png b/charts/sphinx/auto_examples/images/sphx_glr_plot_line_001.png new file mode 100644 index 0000000..fdcbb46 Binary files /dev/null and b/charts/sphinx/auto_examples/images/sphx_glr_plot_line_001.png differ diff --git a/charts/sphinx/auto_examples/images/sphx_glr_plot_line_002.png b/charts/sphinx/auto_examples/images/sphx_glr_plot_line_002.png new file mode 100644 index 0000000..b0a45aa Binary files /dev/null and b/charts/sphinx/auto_examples/images/sphx_glr_plot_line_002.png differ diff --git a/charts/sphinx/auto_examples/images/sphx_glr_plot_stacked_001.png b/charts/sphinx/auto_examples/images/sphx_glr_plot_stacked_001.png new file mode 100644 index 0000000..c89691b Binary files /dev/null and b/charts/sphinx/auto_examples/images/sphx_glr_plot_stacked_001.png differ diff --git a/charts/sphinx/auto_examples/images/sphx_glr_plot_tow_001.png b/charts/sphinx/auto_examples/images/sphx_glr_plot_tow_001.png new file mode 100644 index 0000000..0a8ad9f Binary files /dev/null and b/charts/sphinx/auto_examples/images/sphx_glr_plot_tow_001.png differ diff --git a/charts/sphinx/auto_examples/images/thumb/sphx_glr_plot_bar_thumb.png b/charts/sphinx/auto_examples/images/thumb/sphx_glr_plot_bar_thumb.png new file mode 100644 index 0000000..341e305 Binary files /dev/null and b/charts/sphinx/auto_examples/images/thumb/sphx_glr_plot_bar_thumb.png differ diff --git a/charts/sphinx/auto_examples/images/thumb/sphx_glr_plot_chloropleth_thumb.png b/charts/sphinx/auto_examples/images/thumb/sphx_glr_plot_chloropleth_thumb.png new file mode 100644 index 0000000..a06e992 Binary files /dev/null and b/charts/sphinx/auto_examples/images/thumb/sphx_glr_plot_chloropleth_thumb.png differ diff --git a/charts/sphinx/auto_examples/images/thumb/sphx_glr_plot_line_thumb.png b/charts/sphinx/auto_examples/images/thumb/sphx_glr_plot_line_thumb.png new file mode 100644 index 0000000..24d14ec Binary files /dev/null and b/charts/sphinx/auto_examples/images/thumb/sphx_glr_plot_line_thumb.png differ diff --git a/charts/sphinx/auto_examples/images/thumb/sphx_glr_plot_stacked_thumb.png b/charts/sphinx/auto_examples/images/thumb/sphx_glr_plot_stacked_thumb.png new file mode 100644 index 0000000..efe19cf Binary files /dev/null and b/charts/sphinx/auto_examples/images/thumb/sphx_glr_plot_stacked_thumb.png differ diff --git a/charts/sphinx/auto_examples/images/thumb/sphx_glr_plot_tow_thumb.png b/charts/sphinx/auto_examples/images/thumb/sphx_glr_plot_tow_thumb.png new file mode 100644 index 0000000..16f550a Binary files /dev/null and b/charts/sphinx/auto_examples/images/thumb/sphx_glr_plot_tow_thumb.png differ diff --git a/charts/sphinx/auto_examples/index.rst b/charts/sphinx/auto_examples/index.rst new file mode 100644 index 0000000..3df34af --- /dev/null +++ b/charts/sphinx/auto_examples/index.rst @@ -0,0 +1,139 @@ +:orphan: + + + +.. _sphx_glr_auto_examples: + +Gallery of Charts +================== + +Below is a gallery of example charts for each charting function in rick.charts. + + +.. raw:: html + +
+ +.. only:: html + + .. figure:: /auto_examples/images/thumb/sphx_glr_plot_bar_thumb.png + + :ref:`sphx_glr_auto_examples_plot_bar.py` + +.. raw:: html + +
+ + +.. toctree:: + :hidden: + + /auto_examples/plot_bar + +.. raw:: html + +
+ +.. only:: html + + .. figure:: /auto_examples/images/thumb/sphx_glr_plot_tow_thumb.png + + :ref:`sphx_glr_auto_examples_plot_tow.py` + +.. raw:: html + +
+ + +.. toctree:: + :hidden: + + /auto_examples/plot_tow + +.. raw:: html + +
+ +.. only:: html + + .. figure:: /auto_examples/images/thumb/sphx_glr_plot_stacked_thumb.png + + :ref:`sphx_glr_auto_examples_plot_stacked.py` + +.. raw:: html + +
+ + +.. toctree:: + :hidden: + + /auto_examples/plot_stacked + +.. raw:: html + +
+ +.. only:: html + + .. figure:: /auto_examples/images/thumb/sphx_glr_plot_chloropleth_thumb.png + + :ref:`sphx_glr_auto_examples_plot_chloropleth.py` + +.. raw:: html + +
+ + +.. toctree:: + :hidden: + + /auto_examples/plot_chloropleth + +.. raw:: html + +
+ +.. only:: html + + .. figure:: /auto_examples/images/thumb/sphx_glr_plot_line_thumb.png + + :ref:`sphx_glr_auto_examples_plot_line.py` + +.. raw:: html + +
+ + +.. toctree:: + :hidden: + + /auto_examples/plot_line +.. raw:: html + +
+ + + +.. only :: html + + .. container:: sphx-glr-footer + :class: sphx-glr-footer-gallery + + + .. container:: sphx-glr-download + + :download:`Download all examples in Python source code: auto_examples_python.zip ` + + + + .. container:: sphx-glr-download + + :download:`Download all examples in Jupyter notebooks: auto_examples_jupyter.zip ` + + +.. only:: html + + .. rst-class:: sphx-glr-signature + + `Gallery generated by Sphinx-Gallery `_ diff --git a/charts/sphinx/auto_examples/plot_bar.ipynb b/charts/sphinx/auto_examples/plot_bar.ipynb new file mode 100644 index 0000000..809b2df --- /dev/null +++ b/charts/sphinx/auto_examples/plot_bar.ipynb @@ -0,0 +1,72 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": false + }, + "outputs": [], + "source": [ + "%matplotlib inline" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\nBar Chart\n==================\n\nMakes an example of a bar chart.\n\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": false + }, + "outputs": [], + "source": [ + "from sqlalchemy import create_engine\nimport matplotlib.pyplot as plt\nimport matplotlib as mpl\nimport pandas as pd \nimport configparser\nfrom psycopg2 import connect\nimport psycopg2.sql as pg\nimport pandas.io.sql as pandasql\nimport numpy as np \nimport datetime\nimport math\nimport rick\nimport geopandas as gpd\nimport os\nimport shapely\nfrom shapely.geometry import Point\nos.environ[\"PROJ_LIB\"]=r\"C:\\Users\\rliu4\\AppData\\Local\\Continuum\\anaconda3\\Library\\share\"\nimport importlib\nimport matplotlib.ticker as ticker\nimport matplotlib.font_manager as font_manager" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Data Collection\n----------------\n\nThis creates a test dataframe to use\n\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": false + }, + "outputs": [], + "source": [ + "pass_data = {'cat': ['PTC','Taxi', 'Trip Making Population'],\n 'TTC Pass': [22,16,16],\n }\n\ntransit_pass = pd.DataFrame(pass_data,columns= ['cat', 'TTC Pass'])\ntransit_pass = transit_pass .reindex(index=transit_pass .index[::-1])\n\nfig, ax = rick.charts.bar_chart(transit_pass, xlab='Trips')" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.6.4" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} \ No newline at end of file diff --git a/charts/sphinx/auto_examples/plot_bar.py b/charts/sphinx/auto_examples/plot_bar.py new file mode 100644 index 0000000..fa7c407 --- /dev/null +++ b/charts/sphinx/auto_examples/plot_bar.py @@ -0,0 +1,41 @@ +""" +Bar Chart +================== + +Makes an example of a bar chart. +""" + +from sqlalchemy import create_engine +import matplotlib.pyplot as plt +import matplotlib as mpl +import pandas as pd +import configparser +from psycopg2 import connect +import psycopg2.sql as pg +import pandas.io.sql as pandasql +import numpy as np +import datetime +import math +import rick +import geopandas as gpd +import os +import shapely +from shapely.geometry import Point +os.environ["PROJ_LIB"]=r"C:\Users\rliu4\AppData\Local\Continuum\anaconda3\Library\share" +import importlib +import matplotlib.ticker as ticker +import matplotlib.font_manager as font_manager + +################################ +#Data Collection +#---------------- +# +#This creates a test dataframe to use +pass_data = {'cat': ['PTC','Taxi', 'Trip Making Population'], + 'TTC Pass': [22,16,16], + } + +transit_pass = pd.DataFrame(pass_data,columns= ['cat', 'TTC Pass']) +transit_pass = transit_pass .reindex(index=transit_pass .index[::-1]) + +fig, ax = rick.charts.bar_chart(transit_pass, xlab='Trips') \ No newline at end of file diff --git a/charts/sphinx/auto_examples/plot_bar.py.md5 b/charts/sphinx/auto_examples/plot_bar.py.md5 new file mode 100644 index 0000000..173dec7 --- /dev/null +++ b/charts/sphinx/auto_examples/plot_bar.py.md5 @@ -0,0 +1 @@ +be7a35fbbb8848ab2f0bb41f068c9e81 \ No newline at end of file diff --git a/charts/sphinx/auto_examples/plot_bar.rst b/charts/sphinx/auto_examples/plot_bar.rst new file mode 100644 index 0000000..c20872e --- /dev/null +++ b/charts/sphinx/auto_examples/plot_bar.rst @@ -0,0 +1,101 @@ +.. note:: + :class: sphx-glr-download-link-note + + Click :ref:`here ` to download the full example code +.. rst-class:: sphx-glr-example-title + +.. _sphx_glr_auto_examples_plot_bar.py: + + +Bar Chart +================== + +Makes an example of a bar chart. + + +.. code-block:: default + + + from sqlalchemy import create_engine + import matplotlib.pyplot as plt + import matplotlib as mpl + import pandas as pd + import configparser + from psycopg2 import connect + import psycopg2.sql as pg + import pandas.io.sql as pandasql + import numpy as np + import datetime + import math + import rick + import geopandas as gpd + import os + import shapely + from shapely.geometry import Point + os.environ["PROJ_LIB"]=r"C:\Users\rliu4\AppData\Local\Continuum\anaconda3\Library\share" + import importlib + import matplotlib.ticker as ticker + import matplotlib.font_manager as font_manager + + + + + + + +Data Collection +---------------- + +This creates a test dataframe to use + + +.. code-block:: default + + pass_data = {'cat': ['PTC','Taxi', 'Trip Making Population'], + 'TTC Pass': [22,16,16], + } + + transit_pass = pd.DataFrame(pass_data,columns= ['cat', 'TTC Pass']) + transit_pass = transit_pass .reindex(index=transit_pass .index[::-1]) + + fig, ax = rick.charts.bar_chart(transit_pass, xlab='Trips') + + +.. image:: /auto_examples/images/sphx_glr_plot_bar_001.png + :class: sphx-glr-single-img + + + + + +.. rst-class:: sphx-glr-timing + + **Total running time of the script:** ( 0 minutes 27.838 seconds) + + +.. _sphx_glr_download_auto_examples_plot_bar.py: + + +.. only :: html + + .. container:: sphx-glr-footer + :class: sphx-glr-footer-example + + + + .. container:: sphx-glr-download + + :download:`Download Python source code: plot_bar.py ` + + + + .. container:: sphx-glr-download + + :download:`Download Jupyter notebook: plot_bar.ipynb ` + + +.. only:: html + + .. rst-class:: sphx-glr-signature + + `Gallery generated by Sphinx-Gallery `_ diff --git a/charts/sphinx/auto_examples/plot_chloropleth.ipynb b/charts/sphinx/auto_examples/plot_chloropleth.ipynb new file mode 100644 index 0000000..6ca3186 --- /dev/null +++ b/charts/sphinx/auto_examples/plot_chloropleth.ipynb @@ -0,0 +1,126 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": false + }, + "outputs": [], + "source": [ + "%matplotlib inline" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\nChloropleth Map\n==================\n\nMakes an example of a chloropleth map.\n\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": false + }, + "outputs": [], + "source": [ + "from sqlalchemy import create_engine\nimport matplotlib.pyplot as plt\nimport matplotlib as mpl\nimport pandas as pd \nimport configparser\nfrom psycopg2 import connect\nimport psycopg2.sql as pg\nimport pandas.io.sql as pandasql\nimport numpy as np \nimport datetime\nimport math\nimport rick\nimport geopandas as gpd\nimport os\nimport shapely\nfrom shapely.geometry import Point\nos.environ[\"PROJ_LIB\"]=r\"C:\\Users\\rliu4\\AppData\\Local\\Continuum\\anaconda3\\Library\\share\"\nimport importlib\nimport matplotlib.ticker as ticker\nimport matplotlib.font_manager as font_manager\nCONFIG = configparser.ConfigParser()\nCONFIG.read(r'C:\\Users\\rliu4\\Documents\\Python\\config.cfg')\ndbset = CONFIG['DBSETTINGS']\ncon = connect(**dbset)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Data Collection\n----------------\n\nThis Section grabs and formats the data.\n\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": false + }, + "outputs": [], + "source": [ + "query = '''\n\nWITH sum AS (\nSELECT extract(month from pickup_datetime) as mon, extract(year from pickup_datetime) as yr, extract(week from pickup_datetime) as wk, pickup_neighbourhood, \nsum(count) as count FROM ptc.trip_data_agg_neighbourhood\nGROUP BY pickup_datetime, pickup_neighbourhood\n\n), ward1 AS (\n\nSELECT avg(count) as count, pickup_neighbourhood from sum\nWHERE (yr=2018 AND mon IN (9))\nGROUP BY pickup_neighbourhood\nORDER BY count\n), ward2 AS (\n\nSELECT avg(count) as count, pickup_neighbourhood from sum\nWHERE (yr=2016 AND mon IN (10))\nGROUP BY pickup_neighbourhood\nORDER BY count\n)\n\nSELECT pickup_neighbourhood, geom, (b.count - a.count)/(a.count)*100 as growth FROM ward2 a \nLEFT JOIN ward1 b USING ( pickup_neighbourhood)\nLEFT JOIN gis.neighbourhood ON area_s_cd::integer=pickup_neighbourhood\n\n'''" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Rotates data 17 degrees to orient Toronto perpendicularly\n\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": false + }, + "outputs": [], + "source": [ + "data = gpd.GeoDataFrame.from_postgis(query, con, geom_col='geom')\ndata = data.to_crs({'init' :'epsg:3857'})\n\nfor index, row in data.iterrows():\n rotated = shapely.affinity.rotate(row['geom'], angle=-17, origin = Point(0, 0))\n data.at[index, 'geom'] = rotated" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The function only needs these columns, in this order\n\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": false + }, + "outputs": [], + "source": [ + "data=data[['geom', 'growth']]" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Calls the Function\n\n\n\n\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": false + }, + "outputs": [], + "source": [ + "fig, ax = rick.charts.chloro_map(con, data, subway = True, lower = 0, upper = 300, title = 'Growth in Trips', \n island = False, unit = '%', nbins = 3)" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.6.4" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} \ No newline at end of file diff --git a/charts/sphinx/auto_examples/plot_chloropleth.py b/charts/sphinx/auto_examples/plot_chloropleth.py new file mode 100644 index 0000000..600cdce --- /dev/null +++ b/charts/sphinx/auto_examples/plot_chloropleth.py @@ -0,0 +1,86 @@ +""" +Chloropleth Map +================== + +Makes an example of a chloropleth map. +""" + + +from sqlalchemy import create_engine +import matplotlib.pyplot as plt +import matplotlib as mpl +import pandas as pd +import configparser +from psycopg2 import connect +import psycopg2.sql as pg +import pandas.io.sql as pandasql +import numpy as np +import datetime +import math +import rick +import geopandas as gpd +import os +import shapely +from shapely.geometry import Point +os.environ["PROJ_LIB"]=r"C:\Users\rliu4\AppData\Local\Continuum\anaconda3\Library\share" +import importlib +import matplotlib.ticker as ticker +import matplotlib.font_manager as font_manager +CONFIG = configparser.ConfigParser() +CONFIG.read(r'C:\Users\rliu4\Documents\Python\config.cfg') +dbset = CONFIG['DBSETTINGS'] +con = connect(**dbset) + +################################ +#Data Collection +#---------------- +# +#This Section grabs and formats the data. +query = ''' + +WITH sum AS ( +SELECT extract(month from pickup_datetime) as mon, extract(year from pickup_datetime) as yr, extract(week from pickup_datetime) as wk, pickup_neighbourhood, +sum(count) as count FROM ptc.trip_data_agg_neighbourhood +GROUP BY pickup_datetime, pickup_neighbourhood + +), ward1 AS ( + +SELECT avg(count) as count, pickup_neighbourhood from sum +WHERE (yr=2018 AND mon IN (9)) +GROUP BY pickup_neighbourhood +ORDER BY count +), ward2 AS ( + +SELECT avg(count) as count, pickup_neighbourhood from sum +WHERE (yr=2016 AND mon IN (10)) +GROUP BY pickup_neighbourhood +ORDER BY count +) + +SELECT pickup_neighbourhood, geom, (b.count - a.count)/(a.count)*100 as growth FROM ward2 a +LEFT JOIN ward1 b USING ( pickup_neighbourhood) +LEFT JOIN gis.neighbourhood ON area_s_cd::integer=pickup_neighbourhood + +''' +################################ +# Rotates data 17 degrees to orient Toronto perpendicularly +data = gpd.GeoDataFrame.from_postgis(query, con, geom_col='geom') +data = data.to_crs({'init' :'epsg:3857'}) + +for index, row in data.iterrows(): + rotated = shapely.affinity.rotate(row['geom'], angle=-17, origin = Point(0, 0)) + data.at[index, 'geom'] = rotated + +################################ +#The function only needs these columns, in this order +data=data[['geom', 'growth']] + + +################################ +# Calls the Function +# +# +# +fig, ax = rick.charts.chloro_map(con, data, subway = True, lower = 0, upper = 300, title = 'Growth in Trips', + island = False, unit = '%', nbins = 3) + diff --git a/charts/sphinx/auto_examples/plot_chloropleth.py.md5 b/charts/sphinx/auto_examples/plot_chloropleth.py.md5 new file mode 100644 index 0000000..505f194 --- /dev/null +++ b/charts/sphinx/auto_examples/plot_chloropleth.py.md5 @@ -0,0 +1 @@ +ac70101036e76be6fb6fecd1270b730b \ No newline at end of file diff --git a/charts/sphinx/auto_examples/plot_chloropleth.rst b/charts/sphinx/auto_examples/plot_chloropleth.rst new file mode 100644 index 0000000..afc09fb --- /dev/null +++ b/charts/sphinx/auto_examples/plot_chloropleth.rst @@ -0,0 +1,174 @@ +.. note:: + :class: sphx-glr-download-link-note + + Click :ref:`here ` to download the full example code +.. rst-class:: sphx-glr-example-title + +.. _sphx_glr_auto_examples_plot_chloropleth.py: + + +Chloropleth Map +================== + +Makes an example of a chloropleth map. + + +.. code-block:: default + + + + from sqlalchemy import create_engine + import matplotlib.pyplot as plt + import matplotlib as mpl + import pandas as pd + import configparser + from psycopg2 import connect + import psycopg2.sql as pg + import pandas.io.sql as pandasql + import numpy as np + import datetime + import math + import rick + import geopandas as gpd + import os + import shapely + from shapely.geometry import Point + os.environ["PROJ_LIB"]=r"C:\Users\rliu4\AppData\Local\Continuum\anaconda3\Library\share" + import importlib + import matplotlib.ticker as ticker + import matplotlib.font_manager as font_manager + CONFIG = configparser.ConfigParser() + CONFIG.read(r'C:\Users\rliu4\Documents\Python\config.cfg') + dbset = CONFIG['DBSETTINGS'] + con = connect(**dbset) + + + + + + + +Data Collection +---------------- + +This Section grabs and formats the data. + + +.. code-block:: default + + query = ''' + + WITH sum AS ( + SELECT extract(month from pickup_datetime) as mon, extract(year from pickup_datetime) as yr, extract(week from pickup_datetime) as wk, pickup_neighbourhood, + sum(count) as count FROM ptc.trip_data_agg_neighbourhood + GROUP BY pickup_datetime, pickup_neighbourhood + + ), ward1 AS ( + + SELECT avg(count) as count, pickup_neighbourhood from sum + WHERE (yr=2018 AND mon IN (9)) + GROUP BY pickup_neighbourhood + ORDER BY count + ), ward2 AS ( + + SELECT avg(count) as count, pickup_neighbourhood from sum + WHERE (yr=2016 AND mon IN (10)) + GROUP BY pickup_neighbourhood + ORDER BY count + ) + + SELECT pickup_neighbourhood, geom, (b.count - a.count)/(a.count)*100 as growth FROM ward2 a + LEFT JOIN ward1 b USING ( pickup_neighbourhood) + LEFT JOIN gis.neighbourhood ON area_s_cd::integer=pickup_neighbourhood + + ''' + + + + + + +Rotates data 17 degrees to orient Toronto perpendicularly + + +.. code-block:: default + + data = gpd.GeoDataFrame.from_postgis(query, con, geom_col='geom') + data = data.to_crs({'init' :'epsg:3857'}) + + for index, row in data.iterrows(): + rotated = shapely.affinity.rotate(row['geom'], angle=-17, origin = Point(0, 0)) + data.at[index, 'geom'] = rotated + + + + + + + +The function only needs these columns, in this order + + +.. code-block:: default + + data=data[['geom', 'growth']] + + + + + + + + +Calls the Function + + + + + +.. code-block:: default + + fig, ax = rick.charts.chloro_map(con, data, subway = True, lower = 0, upper = 300, title = 'Growth in Trips', + island = False, unit = '%', nbins = 3) + + + + +.. image:: /auto_examples/images/sphx_glr_plot_chloropleth_001.png + :class: sphx-glr-single-img + + + + + +.. rst-class:: sphx-glr-timing + + **Total running time of the script:** ( 0 minutes 18.050 seconds) + + +.. _sphx_glr_download_auto_examples_plot_chloropleth.py: + + +.. only :: html + + .. container:: sphx-glr-footer + :class: sphx-glr-footer-example + + + + .. container:: sphx-glr-download + + :download:`Download Python source code: plot_chloropleth.py ` + + + + .. container:: sphx-glr-download + + :download:`Download Jupyter notebook: plot_chloropleth.ipynb ` + + +.. only:: html + + .. rst-class:: sphx-glr-signature + + `Gallery generated by Sphinx-Gallery `_ diff --git a/charts/sphinx/auto_examples/plot_line.ipynb b/charts/sphinx/auto_examples/plot_line.ipynb new file mode 100644 index 0000000..9919a2c --- /dev/null +++ b/charts/sphinx/auto_examples/plot_line.ipynb @@ -0,0 +1,126 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": false + }, + "outputs": [], + "source": [ + "%matplotlib inline" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\nLine Chart\n==================\n\nMakes an example of a line chart, with an additional baseline plot and custom formatted x axis.\n\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": false + }, + "outputs": [], + "source": [ + "from sqlalchemy import create_engine\nimport matplotlib.pyplot as plt\nimport matplotlib as mpl\nimport pandas as pd \nimport configparser\nfrom psycopg2 import connect\nimport psycopg2.sql as pg\nimport pandas.io.sql as pandasql\nimport numpy as np \nimport datetime\nimport math\nimport rick\nimport geopandas as gpd\nimport os\nimport shapely\nfrom shapely.geometry import Point\nos.environ[\"PROJ_LIB\"]=r\"C:\\Users\\rliu4\\AppData\\Local\\Continuum\\anaconda3\\Library\\share\"\nimport importlib\nimport matplotlib.ticker as ticker\nimport matplotlib.font_manager as font_manager\n\n\nCONFIG = configparser.ConfigParser()\nCONFIG.read(r'C:\\Users\\rliu4\\Documents\\Python\\config.cfg')\ndbset = CONFIG['DBSETTINGS']\ncon = connect(**dbset)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Data Collection\n----------------\n\nThis Section grabs and formats the data.\n\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": false + }, + "outputs": [], + "source": [ + "query='''\nWITH daily_ave AS (\n\nSELECT * FROM ptc.daily_trips\n), total AS (\nSELECT extract(month from pickup_datetime) as mon,\nextract(year from pickup_datetime) as yr,\n\nCASE WHEN extract(year from pickup_datetime) = 2018 AND extract(month from pickup_datetime) IN (3) THEN 108321\nWHEN extract(year from pickup_datetime) = 2018 AND extract(month from pickup_datetime) IN (11) THEN 161733 ELSE\navg(count)::integer END as count FROM daily_ave\nGROUP BY extract(month from pickup_datetime), extract(year from pickup_datetime)\nORDER BY extract(year from pickup_datetime), extract(month from pickup_datetime)\n)\n\n\nSELECT \nCASE WHEN mon = 1 THEN to_char(to_timestamp (mon::text, 'MM'), 'Mon')||' '||yr::text \nWHEN mon = 9 AND yr = 2016 THEN to_char(to_timestamp (mon::text, 'MM'), 'Mon')||' '||yr::text \nELSE to_char(to_timestamp (mon::text, 'MM'), 'Mon')\nEND AS period, \ncount FROM total\n'''\ntotal=pandasql.read_sql(query, con)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Gets the baseline data (to be graphed in grey)\n\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": false + }, + "outputs": [], + "source": [ + "query='''\nWITH daily_ave AS (\n\nSELECT * FROM ptc.daily_trips\n), total AS (\nSELECT extract(month from pickup_datetime) as mon,\nextract(year from pickup_datetime) as yr,\n\nCASE WHEN extract(year from pickup_datetime) = 2018 AND extract(month from pickup_datetime) IN (3) THEN 108321\nWHEN extract(year from pickup_datetime) = 2018 AND extract(month from pickup_datetime) IN (11) THEN 161733 ELSE\navg(count)::integer END as count FROM daily_ave\nGROUP BY extract(month from pickup_datetime), extract(year from pickup_datetime)\nORDER BY extract(year from pickup_datetime), extract(month from pickup_datetime)\n)\n\n\nSELECT \nCASE WHEN mon = 1 THEN to_char(to_timestamp (mon::text, 'MM'), 'Mon')||' '||yr::text \nWHEN mon = 9 AND yr = 2016 THEN to_char(to_timestamp (mon::text, 'MM'), 'Mon')||' '||yr::text \nELSE to_char(to_timestamp (mon::text, 'MM'), 'Mon')\nEND AS period, \ncount/2 as count FROM total\n'''\ntotal2=pandasql.read_sql(query, con)\n\nfig, ax, props = rick.charts.line_chart(total['count'], 'Trips', 'Time', baseline = total2['count'])" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Adds annotations\n\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": false + }, + "outputs": [], + "source": [ + "fig.text(0.94, 0.96, '176,000', transform=ax.transAxes, wrap = True, fontsize=9, fontname = 'Libre Franklin',\n verticalalignment='top', ha = 'center', bbox=props, color = '#660159')" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Adds custom x axis\n\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": false + }, + "outputs": [], + "source": [ + "month_lst2 = ['Sept\\n2016', 'Jan\\n2017', 'May', 'Sept',\n 'Jan\\n2018', 'May', 'Sept', \n 'Jan\\n2019','May',]\nplt.xticks(range(0,35,4), month_lst2, fontsize=9, fontname = 'Libre Franklin')" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.6.4" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} \ No newline at end of file diff --git a/charts/sphinx/auto_examples/plot_line.py b/charts/sphinx/auto_examples/plot_line.py new file mode 100644 index 0000000..5566d4c --- /dev/null +++ b/charts/sphinx/auto_examples/plot_line.py @@ -0,0 +1,106 @@ +""" +Line Chart +================== + +Makes an example of a line chart, with an additional baseline plot and custom formatted x axis. +""" + +from sqlalchemy import create_engine +import matplotlib.pyplot as plt +import matplotlib as mpl +import pandas as pd +import configparser +from psycopg2 import connect +import psycopg2.sql as pg +import pandas.io.sql as pandasql +import numpy as np +import datetime +import math +import rick +import geopandas as gpd +import os +import shapely +from shapely.geometry import Point +os.environ["PROJ_LIB"]=r"C:\Users\rliu4\AppData\Local\Continuum\anaconda3\Library\share" +import importlib +import matplotlib.ticker as ticker +import matplotlib.font_manager as font_manager + + +CONFIG = configparser.ConfigParser() +CONFIG.read(r'C:\Users\rliu4\Documents\Python\config.cfg') +dbset = CONFIG['DBSETTINGS'] +con = connect(**dbset) +################################ +#Data Collection +#---------------- +# +#This Section grabs and formats the data. + +query=''' +WITH daily_ave AS ( + +SELECT * FROM ptc.daily_trips +), total AS ( +SELECT extract(month from pickup_datetime) as mon, +extract(year from pickup_datetime) as yr, + +CASE WHEN extract(year from pickup_datetime) = 2018 AND extract(month from pickup_datetime) IN (3) THEN 108321 +WHEN extract(year from pickup_datetime) = 2018 AND extract(month from pickup_datetime) IN (11) THEN 161733 ELSE +avg(count)::integer END as count FROM daily_ave +GROUP BY extract(month from pickup_datetime), extract(year from pickup_datetime) +ORDER BY extract(year from pickup_datetime), extract(month from pickup_datetime) +) + + +SELECT +CASE WHEN mon = 1 THEN to_char(to_timestamp (mon::text, 'MM'), 'Mon')||' '||yr::text +WHEN mon = 9 AND yr = 2016 THEN to_char(to_timestamp (mon::text, 'MM'), 'Mon')||' '||yr::text +ELSE to_char(to_timestamp (mon::text, 'MM'), 'Mon') +END AS period, +count FROM total +''' +total=pandasql.read_sql(query, con) +################################ +#Gets the baseline data (to be graphed in grey) + + + +query=''' +WITH daily_ave AS ( + +SELECT * FROM ptc.daily_trips +), total AS ( +SELECT extract(month from pickup_datetime) as mon, +extract(year from pickup_datetime) as yr, + +CASE WHEN extract(year from pickup_datetime) = 2018 AND extract(month from pickup_datetime) IN (3) THEN 108321 +WHEN extract(year from pickup_datetime) = 2018 AND extract(month from pickup_datetime) IN (11) THEN 161733 ELSE +avg(count)::integer END as count FROM daily_ave +GROUP BY extract(month from pickup_datetime), extract(year from pickup_datetime) +ORDER BY extract(year from pickup_datetime), extract(month from pickup_datetime) +) + + +SELECT +CASE WHEN mon = 1 THEN to_char(to_timestamp (mon::text, 'MM'), 'Mon')||' '||yr::text +WHEN mon = 9 AND yr = 2016 THEN to_char(to_timestamp (mon::text, 'MM'), 'Mon')||' '||yr::text +ELSE to_char(to_timestamp (mon::text, 'MM'), 'Mon') +END AS period, +count/2 as count FROM total +''' +total2=pandasql.read_sql(query, con) + +fig, ax, props = rick.charts.line_chart(total['count'], 'Trips', 'Time', baseline = total2['count']) + +################################ +#Adds annotations +fig.text(0.94, 0.96, '176,000', transform=ax.transAxes, wrap = True, fontsize=9, fontname = 'Libre Franklin', + verticalalignment='top', ha = 'center', bbox=props, color = '#660159') +################################ +#Adds custom x axis +month_lst2 = ['Sept\n2016', 'Jan\n2017', 'May', 'Sept', + 'Jan\n2018', 'May', 'Sept', + 'Jan\n2019','May',] +plt.xticks(range(0,35,4), month_lst2, fontsize=9, fontname = 'Libre Franklin') + diff --git a/charts/sphinx/auto_examples/plot_line.py.md5 b/charts/sphinx/auto_examples/plot_line.py.md5 new file mode 100644 index 0000000..28129a2 --- /dev/null +++ b/charts/sphinx/auto_examples/plot_line.py.md5 @@ -0,0 +1 @@ +34d2ce556b9095b518b49be14c46875f \ No newline at end of file diff --git a/charts/sphinx/auto_examples/plot_line.rst b/charts/sphinx/auto_examples/plot_line.rst new file mode 100644 index 0000000..af24062 --- /dev/null +++ b/charts/sphinx/auto_examples/plot_line.rst @@ -0,0 +1,197 @@ +.. note:: + :class: sphx-glr-download-link-note + + Click :ref:`here ` to download the full example code +.. rst-class:: sphx-glr-example-title + +.. _sphx_glr_auto_examples_plot_line.py: + + +Line Chart +================== + +Makes an example of a line chart, with an additional baseline plot and custom formatted x axis. + + +.. code-block:: default + + + from sqlalchemy import create_engine + import matplotlib.pyplot as plt + import matplotlib as mpl + import pandas as pd + import configparser + from psycopg2 import connect + import psycopg2.sql as pg + import pandas.io.sql as pandasql + import numpy as np + import datetime + import math + import rick + import geopandas as gpd + import os + import shapely + from shapely.geometry import Point + os.environ["PROJ_LIB"]=r"C:\Users\rliu4\AppData\Local\Continuum\anaconda3\Library\share" + import importlib + import matplotlib.ticker as ticker + import matplotlib.font_manager as font_manager + + + CONFIG = configparser.ConfigParser() + CONFIG.read(r'C:\Users\rliu4\Documents\Python\config.cfg') + dbset = CONFIG['DBSETTINGS'] + con = connect(**dbset) + + + + + + +Data Collection +---------------- + +This Section grabs and formats the data. + + +.. code-block:: default + + + query=''' + WITH daily_ave AS ( + + SELECT * FROM ptc.daily_trips + ), total AS ( + SELECT extract(month from pickup_datetime) as mon, + extract(year from pickup_datetime) as yr, + + CASE WHEN extract(year from pickup_datetime) = 2018 AND extract(month from pickup_datetime) IN (3) THEN 108321 + WHEN extract(year from pickup_datetime) = 2018 AND extract(month from pickup_datetime) IN (11) THEN 161733 ELSE + avg(count)::integer END as count FROM daily_ave + GROUP BY extract(month from pickup_datetime), extract(year from pickup_datetime) + ORDER BY extract(year from pickup_datetime), extract(month from pickup_datetime) + ) + + + SELECT + CASE WHEN mon = 1 THEN to_char(to_timestamp (mon::text, 'MM'), 'Mon')||' '||yr::text + WHEN mon = 9 AND yr = 2016 THEN to_char(to_timestamp (mon::text, 'MM'), 'Mon')||' '||yr::text + ELSE to_char(to_timestamp (mon::text, 'MM'), 'Mon') + END AS period, + count FROM total + ''' + total=pandasql.read_sql(query, con) + + + + + + +Gets the baseline data (to be graphed in grey) + + +.. code-block:: default + + + + + query=''' + WITH daily_ave AS ( + + SELECT * FROM ptc.daily_trips + ), total AS ( + SELECT extract(month from pickup_datetime) as mon, + extract(year from pickup_datetime) as yr, + + CASE WHEN extract(year from pickup_datetime) = 2018 AND extract(month from pickup_datetime) IN (3) THEN 108321 + WHEN extract(year from pickup_datetime) = 2018 AND extract(month from pickup_datetime) IN (11) THEN 161733 ELSE + avg(count)::integer END as count FROM daily_ave + GROUP BY extract(month from pickup_datetime), extract(year from pickup_datetime) + ORDER BY extract(year from pickup_datetime), extract(month from pickup_datetime) + ) + + + SELECT + CASE WHEN mon = 1 THEN to_char(to_timestamp (mon::text, 'MM'), 'Mon')||' '||yr::text + WHEN mon = 9 AND yr = 2016 THEN to_char(to_timestamp (mon::text, 'MM'), 'Mon')||' '||yr::text + ELSE to_char(to_timestamp (mon::text, 'MM'), 'Mon') + END AS period, + count/2 as count FROM total + ''' + total2=pandasql.read_sql(query, con) + + fig, ax, props = rick.charts.line_chart(total['count'], 'Trips', 'Time', baseline = total2['count']) + + + + +.. image:: /auto_examples/images/sphx_glr_plot_line_001.png + :class: sphx-glr-single-img + + + + +Adds annotations + + +.. code-block:: default + + fig.text(0.94, 0.96, '176,000', transform=ax.transAxes, wrap = True, fontsize=9, fontname = 'Libre Franklin', + verticalalignment='top', ha = 'center', bbox=props, color = '#660159') + + + + + + +Adds custom x axis + + +.. code-block:: default + + month_lst2 = ['Sept\n2016', 'Jan\n2017', 'May', 'Sept', + 'Jan\n2018', 'May', 'Sept', + 'Jan\n2019','May',] + plt.xticks(range(0,35,4), month_lst2, fontsize=9, fontname = 'Libre Franklin') + + + + +.. image:: /auto_examples/images/sphx_glr_plot_line_002.png + :class: sphx-glr-single-img + + + + + +.. rst-class:: sphx-glr-timing + + **Total running time of the script:** ( 0 minutes 1.126 seconds) + + +.. _sphx_glr_download_auto_examples_plot_line.py: + + +.. only :: html + + .. container:: sphx-glr-footer + :class: sphx-glr-footer-example + + + + .. container:: sphx-glr-download + + :download:`Download Python source code: plot_line.py ` + + + + .. container:: sphx-glr-download + + :download:`Download Jupyter notebook: plot_line.ipynb ` + + +.. only:: html + + .. rst-class:: sphx-glr-signature + + `Gallery generated by Sphinx-Gallery `_ diff --git a/charts/sphinx/auto_examples/plot_stacked.ipynb b/charts/sphinx/auto_examples/plot_stacked.ipynb new file mode 100644 index 0000000..1538a15 --- /dev/null +++ b/charts/sphinx/auto_examples/plot_stacked.ipynb @@ -0,0 +1,72 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": false + }, + "outputs": [], + "source": [ + "%matplotlib inline" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\nStacked Bar Chart\n==================\n\nMakes an example of a stacked bar chart.\n\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": false + }, + "outputs": [], + "source": [ + "from sqlalchemy import create_engine\nimport matplotlib.pyplot as plt\nimport matplotlib as mpl\nimport pandas as pd \nimport configparser\nfrom psycopg2 import connect\nimport psycopg2.sql as pg\nimport pandas.io.sql as pandasql\nimport numpy as np \nimport datetime\nimport math\nimport rick\nimport geopandas as gpd\nimport os\nimport shapely\nfrom shapely.geometry import Point\nos.environ[\"PROJ_LIB\"]=r\"C:\\Users\\rliu4\\AppData\\Local\\Continuum\\anaconda3\\Library\\share\"\nimport importlib\nimport matplotlib.ticker as ticker\nimport matplotlib.font_manager as font_manager\n\n\nCONFIG = configparser.ConfigParser()\nCONFIG.read(r'C:\\Users\\rliu4\\Documents\\Python\\config.cfg')\ndbset = CONFIG['DBSETTINGS']\ncon = connect(**dbset)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Data Collection\n----------------\n\nThis Section grabs and formats the data.\n\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": false + }, + "outputs": [], + "source": [ + "query = ''' \n\nWITH sum AS (\n\nSELECT pickup_datetime, sum(count) as count, extract(month from pickup_datetime) as mon, extract(year from pickup_datetime) as yr, area_name FROM ptc.trip_data_agg_ward_25\nLEFT JOIN gis.ward_community_lookup ON pickup_ward2018 = area_short\n\nWHERE pickup_datetime > '2016-09-30'\nGROUP BY pickup_datetime, area_name\n), collect AS (\nSELECT area_name, avg(count) as count, mon, yr from sum\ngroup by area_name, mon, yr)\n\n,tot1 AS (\n\nSELECT area_name, avg(count) as count FROM collect\nWHERE (yr =2016 AND mon IN (10))\nGROUP BY area_name\n), tot2 AS (\n\nSELECT area_name, avg(count) as count FROM collect\nWHERE (yr =2018 AND mon IN (9)) \nGROUP BY area_name\n)\nSELECT SPLIT_PART(area_name, 'Community', 1) as area_name,\nb.count as count1, a.count as count2 FROM tot1 b\nLEFT JOIN tot2 a USING (area_name)\nORDER BY count1 ASC\n'''\n\ndistrict_cond = pandasql.read_sql(query, con)\n\nfig, ax = rick.charts.stacked_chart(district_cond, xlab = 'Trips', lab1 = '2016', lab2 = '2018', percent = True)" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.6.4" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} \ No newline at end of file diff --git a/charts/sphinx/auto_examples/plot_stacked.py b/charts/sphinx/auto_examples/plot_stacked.py new file mode 100644 index 0000000..eba03ff --- /dev/null +++ b/charts/sphinx/auto_examples/plot_stacked.py @@ -0,0 +1,71 @@ +""" +Stacked Bar Chart +================== + +Makes an example of a stacked bar chart. +""" + +from sqlalchemy import create_engine +import matplotlib.pyplot as plt +import matplotlib as mpl +import pandas as pd +import configparser +from psycopg2 import connect +import psycopg2.sql as pg +import pandas.io.sql as pandasql +import numpy as np +import datetime +import math +import rick +import geopandas as gpd +import os +import shapely +from shapely.geometry import Point +os.environ["PROJ_LIB"]=r"C:\Users\rliu4\AppData\Local\Continuum\anaconda3\Library\share" +import importlib +import matplotlib.ticker as ticker +import matplotlib.font_manager as font_manager + + +CONFIG = configparser.ConfigParser() +CONFIG.read(r'C:\Users\rliu4\Documents\Python\config.cfg') +dbset = CONFIG['DBSETTINGS'] +con = connect(**dbset) +################################ +#Data Collection +#---------------- +# +#This Section grabs and formats the data. +query = ''' + +WITH sum AS ( + +SELECT pickup_datetime, sum(count) as count, extract(month from pickup_datetime) as mon, extract(year from pickup_datetime) as yr, area_name FROM ptc.trip_data_agg_ward_25 +LEFT JOIN gis.ward_community_lookup ON pickup_ward2018 = area_short + +WHERE pickup_datetime > '2016-09-30' +GROUP BY pickup_datetime, area_name +), collect AS ( +SELECT area_name, avg(count) as count, mon, yr from sum +group by area_name, mon, yr) + +,tot1 AS ( + +SELECT area_name, avg(count) as count FROM collect +WHERE (yr =2016 AND mon IN (10)) +GROUP BY area_name +), tot2 AS ( + +SELECT area_name, avg(count) as count FROM collect +WHERE (yr =2018 AND mon IN (9)) +GROUP BY area_name +) +SELECT SPLIT_PART(area_name, 'Community', 1) as area_name, +b.count as count1, a.count as count2 FROM tot1 b +LEFT JOIN tot2 a USING (area_name) +ORDER BY count1 ASC +''' + +district_cond = pandasql.read_sql(query, con) + +fig, ax = rick.charts.stacked_chart(district_cond, xlab = 'Trips', lab1 = '2016', lab2 = '2018', percent = True) \ No newline at end of file diff --git a/charts/sphinx/auto_examples/plot_stacked.py.md5 b/charts/sphinx/auto_examples/plot_stacked.py.md5 new file mode 100644 index 0000000..3a527f6 --- /dev/null +++ b/charts/sphinx/auto_examples/plot_stacked.py.md5 @@ -0,0 +1 @@ +bc4ba97e19d6118abff095676cf5f856 \ No newline at end of file diff --git a/charts/sphinx/auto_examples/plot_stacked.rst b/charts/sphinx/auto_examples/plot_stacked.rst new file mode 100644 index 0000000..238000d --- /dev/null +++ b/charts/sphinx/auto_examples/plot_stacked.rst @@ -0,0 +1,131 @@ +.. note:: + :class: sphx-glr-download-link-note + + Click :ref:`here ` to download the full example code +.. rst-class:: sphx-glr-example-title + +.. _sphx_glr_auto_examples_plot_stacked.py: + + +Stacked Bar Chart +================== + +Makes an example of a stacked bar chart. + + +.. code-block:: default + + + from sqlalchemy import create_engine + import matplotlib.pyplot as plt + import matplotlib as mpl + import pandas as pd + import configparser + from psycopg2 import connect + import psycopg2.sql as pg + import pandas.io.sql as pandasql + import numpy as np + import datetime + import math + import rick + import geopandas as gpd + import os + import shapely + from shapely.geometry import Point + os.environ["PROJ_LIB"]=r"C:\Users\rliu4\AppData\Local\Continuum\anaconda3\Library\share" + import importlib + import matplotlib.ticker as ticker + import matplotlib.font_manager as font_manager + + + CONFIG = configparser.ConfigParser() + CONFIG.read(r'C:\Users\rliu4\Documents\Python\config.cfg') + dbset = CONFIG['DBSETTINGS'] + con = connect(**dbset) + + + + + + +Data Collection +---------------- + +This Section grabs and formats the data. + + +.. code-block:: default + + query = ''' + + WITH sum AS ( + + SELECT pickup_datetime, sum(count) as count, extract(month from pickup_datetime) as mon, extract(year from pickup_datetime) as yr, area_name FROM ptc.trip_data_agg_ward_25 + LEFT JOIN gis.ward_community_lookup ON pickup_ward2018 = area_short + + WHERE pickup_datetime > '2016-09-30' + GROUP BY pickup_datetime, area_name + ), collect AS ( + SELECT area_name, avg(count) as count, mon, yr from sum + group by area_name, mon, yr) + + ,tot1 AS ( + + SELECT area_name, avg(count) as count FROM collect + WHERE (yr =2016 AND mon IN (10)) + GROUP BY area_name + ), tot2 AS ( + + SELECT area_name, avg(count) as count FROM collect + WHERE (yr =2018 AND mon IN (9)) + GROUP BY area_name + ) + SELECT SPLIT_PART(area_name, 'Community', 1) as area_name, + b.count as count1, a.count as count2 FROM tot1 b + LEFT JOIN tot2 a USING (area_name) + ORDER BY count1 ASC + ''' + + district_cond = pandasql.read_sql(query, con) + + fig, ax = rick.charts.stacked_chart(district_cond, xlab = 'Trips', lab1 = '2016', lab2 = '2018', percent = True) + + +.. image:: /auto_examples/images/sphx_glr_plot_stacked_001.png + :class: sphx-glr-single-img + + + + + +.. rst-class:: sphx-glr-timing + + **Total running time of the script:** ( 0 minutes 3.557 seconds) + + +.. _sphx_glr_download_auto_examples_plot_stacked.py: + + +.. only :: html + + .. container:: sphx-glr-footer + :class: sphx-glr-footer-example + + + + .. container:: sphx-glr-download + + :download:`Download Python source code: plot_stacked.py ` + + + + .. container:: sphx-glr-download + + :download:`Download Jupyter notebook: plot_stacked.ipynb ` + + +.. only:: html + + .. rst-class:: sphx-glr-signature + + `Gallery generated by Sphinx-Gallery `_ diff --git a/charts/sphinx/auto_examples/plot_tow.ipynb b/charts/sphinx/auto_examples/plot_tow.ipynb new file mode 100644 index 0000000..f85cbb7 --- /dev/null +++ b/charts/sphinx/auto_examples/plot_tow.ipynb @@ -0,0 +1,72 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": false + }, + "outputs": [], + "source": [ + "%matplotlib inline" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\nTime of Week Chart\n==================\n\nMakes an example of a time of week chart.\n\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": false + }, + "outputs": [], + "source": [ + "from sqlalchemy import create_engine\nimport matplotlib.pyplot as plt\nimport matplotlib as mpl\nimport pandas as pd \nimport configparser\nfrom psycopg2 import connect\nimport psycopg2.sql as pg\nimport pandas.io.sql as pandasql\nimport numpy as np \nimport datetime\nimport math\nimport rick\nimport geopandas as gpd\nimport os\nimport shapely\nfrom shapely.geometry import Point\nos.environ[\"PROJ_LIB\"]=r\"C:\\Users\\rliu4\\AppData\\Local\\Continuum\\anaconda3\\Library\\share\"\nimport importlib\nimport matplotlib.ticker as ticker\nimport matplotlib.font_manager as font_manager\n\n\nCONFIG = configparser.ConfigParser()\nCONFIG.read(r'C:\\Users\\rliu4\\Documents\\Python\\config.cfg')\ndbset = CONFIG['DBSETTINGS']\ncon = connect(**dbset)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Data Collection\n----------------\n\nThis Section grabs and formats the data.\n\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": false + }, + "outputs": [], + "source": [ + "query = '''\n\nWITH sum AS (\n\nSELECT pickup_datetime, hr, sum(count) as count, extract(month from pickup_datetime) as mon, extract(year from pickup_datetime) as yr,\nextract(dow from pickup_datetime) as dow FROM ptc.trip_data_agg_ward_25\n\n\nWHERE pickup_datetime > '2018-08-31'\nGROUP BY pickup_datetime, hr\n\n)\n, collect AS (\nSELECT avg(count) as count, hr, dow from sum\ngroup by hr, dow)\n\nSELECT period_name, period_uid, count, hr, CASE WHEN dow = 0 THEN 7 ELSE dow END AS dow, \nCASE WHEN swatch IS NULL THEN '#999999' ELSE swatch END AS swatch\nFROM collect\nLEFT JOIN ptc.period_lookup_simple ON dow=period_dow AND hr=period_hr\nLEFT JOIN ptc.periods_simple USING (period_uid)\nORDER BY dow, hr\n\n'''\ncount_18 = pandasql.read_sql(query,con)\n\nfig, ax, prop = rick.charts.tow_chart(data = count_18['count'], ylab='Trips', ymax = 14000, yinc= 3500)" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.6.4" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} \ No newline at end of file diff --git a/charts/sphinx/auto_examples/plot_tow.py b/charts/sphinx/auto_examples/plot_tow.py new file mode 100644 index 0000000..3d6daf6 --- /dev/null +++ b/charts/sphinx/auto_examples/plot_tow.py @@ -0,0 +1,65 @@ +""" +Time of Week Chart +================== + +Makes an example of a time of week chart. +""" + +from sqlalchemy import create_engine +import matplotlib.pyplot as plt +import matplotlib as mpl +import pandas as pd +import configparser +from psycopg2 import connect +import psycopg2.sql as pg +import pandas.io.sql as pandasql +import numpy as np +import datetime +import math +import rick +import geopandas as gpd +import os +import shapely +from shapely.geometry import Point +os.environ["PROJ_LIB"]=r"C:\Users\rliu4\AppData\Local\Continuum\anaconda3\Library\share" +import importlib +import matplotlib.ticker as ticker +import matplotlib.font_manager as font_manager + + +CONFIG = configparser.ConfigParser() +CONFIG.read(r'C:\Users\rliu4\Documents\Python\config.cfg') +dbset = CONFIG['DBSETTINGS'] +con = connect(**dbset) +################################ +#Data Collection +#---------------- +# +#This Section grabs and formats the data. +query = ''' + +WITH sum AS ( + +SELECT pickup_datetime, hr, sum(count) as count, extract(month from pickup_datetime) as mon, extract(year from pickup_datetime) as yr, +extract(dow from pickup_datetime) as dow FROM ptc.trip_data_agg_ward_25 + + +WHERE pickup_datetime > '2018-08-31' +GROUP BY pickup_datetime, hr + +) +, collect AS ( +SELECT avg(count) as count, hr, dow from sum +group by hr, dow) + +SELECT period_name, period_uid, count, hr, CASE WHEN dow = 0 THEN 7 ELSE dow END AS dow, +CASE WHEN swatch IS NULL THEN '#999999' ELSE swatch END AS swatch +FROM collect +LEFT JOIN ptc.period_lookup_simple ON dow=period_dow AND hr=period_hr +LEFT JOIN ptc.periods_simple USING (period_uid) +ORDER BY dow, hr + +''' +count_18 = pandasql.read_sql(query,con) + +fig, ax, prop = rick.charts.tow_chart(data = count_18['count'], ylab='Trips', ymax = 14000, yinc= 3500) \ No newline at end of file diff --git a/charts/sphinx/auto_examples/plot_tow.py.md5 b/charts/sphinx/auto_examples/plot_tow.py.md5 new file mode 100644 index 0000000..32dc751 --- /dev/null +++ b/charts/sphinx/auto_examples/plot_tow.py.md5 @@ -0,0 +1 @@ +94f4f1b477459194ce0ff8a46acc07ad \ No newline at end of file diff --git a/charts/sphinx/auto_examples/plot_tow.rst b/charts/sphinx/auto_examples/plot_tow.rst new file mode 100644 index 0000000..967cc39 --- /dev/null +++ b/charts/sphinx/auto_examples/plot_tow.rst @@ -0,0 +1,125 @@ +.. note:: + :class: sphx-glr-download-link-note + + Click :ref:`here ` to download the full example code +.. rst-class:: sphx-glr-example-title + +.. _sphx_glr_auto_examples_plot_tow.py: + + +Time of Week Chart +================== + +Makes an example of a time of week chart. + + +.. code-block:: default + + + from sqlalchemy import create_engine + import matplotlib.pyplot as plt + import matplotlib as mpl + import pandas as pd + import configparser + from psycopg2 import connect + import psycopg2.sql as pg + import pandas.io.sql as pandasql + import numpy as np + import datetime + import math + import rick + import geopandas as gpd + import os + import shapely + from shapely.geometry import Point + os.environ["PROJ_LIB"]=r"C:\Users\rliu4\AppData\Local\Continuum\anaconda3\Library\share" + import importlib + import matplotlib.ticker as ticker + import matplotlib.font_manager as font_manager + + + CONFIG = configparser.ConfigParser() + CONFIG.read(r'C:\Users\rliu4\Documents\Python\config.cfg') + dbset = CONFIG['DBSETTINGS'] + con = connect(**dbset) + + + + + + +Data Collection +---------------- + +This Section grabs and formats the data. + + +.. code-block:: default + + query = ''' + + WITH sum AS ( + + SELECT pickup_datetime, hr, sum(count) as count, extract(month from pickup_datetime) as mon, extract(year from pickup_datetime) as yr, + extract(dow from pickup_datetime) as dow FROM ptc.trip_data_agg_ward_25 + + + WHERE pickup_datetime > '2018-08-31' + GROUP BY pickup_datetime, hr + + ) + , collect AS ( + SELECT avg(count) as count, hr, dow from sum + group by hr, dow) + + SELECT period_name, period_uid, count, hr, CASE WHEN dow = 0 THEN 7 ELSE dow END AS dow, + CASE WHEN swatch IS NULL THEN '#999999' ELSE swatch END AS swatch + FROM collect + LEFT JOIN ptc.period_lookup_simple ON dow=period_dow AND hr=period_hr + LEFT JOIN ptc.periods_simple USING (period_uid) + ORDER BY dow, hr + + ''' + count_18 = pandasql.read_sql(query,con) + + fig, ax, prop = rick.charts.tow_chart(data = count_18['count'], ylab='Trips', ymax = 14000, yinc= 3500) + + +.. image:: /auto_examples/images/sphx_glr_plot_tow_001.png + :class: sphx-glr-single-img + + + + + +.. rst-class:: sphx-glr-timing + + **Total running time of the script:** ( 0 minutes 1.408 seconds) + + +.. _sphx_glr_download_auto_examples_plot_tow.py: + + +.. only :: html + + .. container:: sphx-glr-footer + :class: sphx-glr-footer-example + + + + .. container:: sphx-glr-download + + :download:`Download Python source code: plot_tow.py ` + + + + .. container:: sphx-glr-download + + :download:`Download Jupyter notebook: plot_tow.ipynb ` + + +.. only:: html + + .. rst-class:: sphx-glr-signature + + `Gallery generated by Sphinx-Gallery `_ diff --git a/charts/sphinx/auto_examples/sg_execution_times.rst b/charts/sphinx/auto_examples/sg_execution_times.rst new file mode 100644 index 0000000..b94b955 --- /dev/null +++ b/charts/sphinx/auto_examples/sg_execution_times.rst @@ -0,0 +1,14 @@ + +:orphan: + +.. _sphx_glr_auto_examples_sg_execution_times: + +Computation times +================= +**00:33.929** total execution time for **auto_examples** files: + +- **00:27.838**: :ref:`sphx_glr_auto_examples_plot_bar.py` (``plot_bar.py``) +- **00:03.557**: :ref:`sphx_glr_auto_examples_plot_stacked.py` (``plot_stacked.py``) +- **00:01.408**: :ref:`sphx_glr_auto_examples_plot_tow.py` (``plot_tow.py``) +- **00:01.126**: :ref:`sphx_glr_auto_examples_plot_line.py` (``plot_line.py``) +- **00:00.000**: :ref:`sphx_glr_auto_examples_plot_chloropleth.py` (``plot_chloropleth.py``) diff --git a/charts/sphinx/code.rst b/charts/sphinx/code.rst new file mode 100644 index 0000000..01cb60b --- /dev/null +++ b/charts/sphinx/code.rst @@ -0,0 +1,5 @@ +Auto Generated Documentation +============================ + +.. automodule:: rick + :members: \ No newline at end of file diff --git a/charts/sphinx/conf.py b/charts/sphinx/conf.py new file mode 100644 index 0000000..9a284ea --- /dev/null +++ b/charts/sphinx/conf.py @@ -0,0 +1,176 @@ +#!/usr/bin/env python3 +# -*- coding: utf-8 -*- +# +# VFH Charts documentation build configuration file, created by +# sphinx-quickstart on Tue Jul 16 16:26:10 2019. +# +# This file is execfile()d with the current directory set to its +# containing dir. +# +# Note that not all possible configuration values are present in this +# autogenerated file. +# +# All configuration values have a default; values that are commented out +# serve to show the default. + +# If extensions (or modules to document with autodoc) are in another directory, +# add these directories to sys.path here. If the directory is relative to the +# documentation root, use os.path.abspath to make it absolute, like shown here. + +import sys, os + +sys.path.insert(0, os.path.abspath('.')) + + +# -- General configuration ------------------------------------------------ + +# If your documentation needs a minimal Sphinx version, state it here. +# +# needs_sphinx = '1.0' + +# Add any Sphinx extension module names here, as strings. They can be +# extensions coming with Sphinx (named 'sphinx.ext.*') or your custom +# ones. +extensions = ['sphinx.ext.autodoc', + 'sphinx.ext.doctest', + 'sphinx.ext.viewcode', 'sphinx.ext.coverage', 'sphinx.ext.napoleon', 'sphinx_gallery.gen_gallery'] + +sphinx_gallery_conf = { + 'examples_dirs': 'example', # path to your example scripts + 'gallery_dirs': 'auto_examples', # path where to save gallery generated examples +} + +# Add any paths that contain templates here, relative to this directory. +templates_path = ['_templates'] + +# The suffix(es) of source filenames. +# You can specify multiple suffix as a list of string: +# +# source_suffix = ['.rst', '.md'] +source_suffix = '.rst' + +# The master toctree document. +master_doc = 'index' + +# General information about the project. +project = 'VFH Charts' +copyright = '2019, Rick Liu' +author = 'Rick Liu' + +# The version info for the project you're documenting, acts as replacement for +# |version| and |release|, also used in various other places throughout the +# built documents. +# +# The short X.Y version. +version = '0.7.1' +# The full version, including alpha/beta/rc tags. +release = '2019-07-16' + +# The language for content autogenerated by Sphinx. Refer to documentation +# for a list of supported languages. +# +# This is also used if you do content translation via gettext catalogs. +# Usually you set "language" from the command line for these cases. +language = None + +# List of patterns, relative to source directory, that match files and +# directories to ignore when looking for source files. +# This patterns also effect to html_static_path and html_extra_path +exclude_patterns = ['_build', 'Thumbs.db', '.DS_Store'] + +# The name of the Pygments (syntax highlighting) style to use. +pygments_style = 'sphinx' + +# If true, `todo` and `todoList` produce output, else they produce nothing. +todo_include_todos = False + + +# -- Options for HTML output ---------------------------------------------- + +# The theme to use for HTML and HTML Help pages. See the documentation for +# a list of builtin themes. +# +html_theme = 'alabaster' + +# Theme options are theme-specific and customize the look and feel of a theme +# further. For a list of options available for each theme, see the +# documentation. +# +# html_theme_options = {} + +# Add any paths that contain custom static files (such as style sheets) here, +# relative to this directory. They are copied after the builtin static files, +# so a file named "default.css" will overwrite the builtin "default.css". +html_static_path = ['_static'] + +# Custom sidebar templates, must be a dictionary that maps document names +# to template names. +# +# This is required for the alabaster theme +# refs: http://alabaster.readthedocs.io/en/latest/installation.html#sidebars +html_sidebars = { + '**': [ + 'relations.html', # needs 'show_related': True theme option to display + 'searchbox.html', + ] +} + + +# -- Options for HTMLHelp output ------------------------------------------ + +# Output file base name for HTML help builder. +htmlhelp_basename = 'VFHChartsdoc' + + +# -- Options for LaTeX output --------------------------------------------- + +latex_elements = { + # The paper size ('letterpaper' or 'a4paper'). + # + # 'papersize': 'letterpaper', + + # The font size ('10pt', '11pt' or '12pt'). + # + # 'pointsize': '10pt', + + # Additional stuff for the LaTeX preamble. + # + # 'preamble': '', + + # Latex figure (float) alignment + # + # 'figure_align': 'htbp', +} + +# Grouping the document tree into LaTeX files. List of tuples +# (source start file, target name, title, +# author, documentclass [howto, manual, or own class]). +latex_documents = [ + (master_doc, 'VFHCharts.tex', 'VFH Charts Documentation', + 'Rick Liu', 'manual'), +] + + +# -- Options for manual page output --------------------------------------- + +# One entry per manual page. List of tuples +# (source start file, name, description, authors, manual section). +man_pages = [ + (master_doc, 'vfhcharts', 'VFH Charts Documentation', + [author], 1) +] + + +# -- Options for Texinfo output ------------------------------------------- + +# Grouping the document tree into Texinfo files. List of tuples +# (source start file, target name, title, author, +# dir menu entry, description, category) +texinfo_documents = [ + (master_doc, 'VFHCharts', 'VFH Charts Documentation', + author, 'VFHCharts', 'One line description of project.', + 'Miscellaneous'), +] + + + diff --git a/charts/sphinx/example/README.txt b/charts/sphinx/example/README.txt new file mode 100644 index 0000000..ca994dd --- /dev/null +++ b/charts/sphinx/example/README.txt @@ -0,0 +1,4 @@ +Gallery of Charts +================== + +Below is a gallery of example charts for each charting function in rick.charts. \ No newline at end of file diff --git a/charts/sphinx/example/plot_bar.py b/charts/sphinx/example/plot_bar.py new file mode 100644 index 0000000..fa7c407 --- /dev/null +++ b/charts/sphinx/example/plot_bar.py @@ -0,0 +1,41 @@ +""" +Bar Chart +================== + +Makes an example of a bar chart. +""" + +from sqlalchemy import create_engine +import matplotlib.pyplot as plt +import matplotlib as mpl +import pandas as pd +import configparser +from psycopg2 import connect +import psycopg2.sql as pg +import pandas.io.sql as pandasql +import numpy as np +import datetime +import math +import rick +import geopandas as gpd +import os +import shapely +from shapely.geometry import Point +os.environ["PROJ_LIB"]=r"C:\Users\rliu4\AppData\Local\Continuum\anaconda3\Library\share" +import importlib +import matplotlib.ticker as ticker +import matplotlib.font_manager as font_manager + +################################ +#Data Collection +#---------------- +# +#This creates a test dataframe to use +pass_data = {'cat': ['PTC','Taxi', 'Trip Making Population'], + 'TTC Pass': [22,16,16], + } + +transit_pass = pd.DataFrame(pass_data,columns= ['cat', 'TTC Pass']) +transit_pass = transit_pass .reindex(index=transit_pass .index[::-1]) + +fig, ax = rick.charts.bar_chart(transit_pass, xlab='Trips') \ No newline at end of file diff --git a/charts/sphinx/example/plot_chloropleth.py b/charts/sphinx/example/plot_chloropleth.py new file mode 100644 index 0000000..600cdce --- /dev/null +++ b/charts/sphinx/example/plot_chloropleth.py @@ -0,0 +1,86 @@ +""" +Chloropleth Map +================== + +Makes an example of a chloropleth map. +""" + + +from sqlalchemy import create_engine +import matplotlib.pyplot as plt +import matplotlib as mpl +import pandas as pd +import configparser +from psycopg2 import connect +import psycopg2.sql as pg +import pandas.io.sql as pandasql +import numpy as np +import datetime +import math +import rick +import geopandas as gpd +import os +import shapely +from shapely.geometry import Point +os.environ["PROJ_LIB"]=r"C:\Users\rliu4\AppData\Local\Continuum\anaconda3\Library\share" +import importlib +import matplotlib.ticker as ticker +import matplotlib.font_manager as font_manager +CONFIG = configparser.ConfigParser() +CONFIG.read(r'C:\Users\rliu4\Documents\Python\config.cfg') +dbset = CONFIG['DBSETTINGS'] +con = connect(**dbset) + +################################ +#Data Collection +#---------------- +# +#This Section grabs and formats the data. +query = ''' + +WITH sum AS ( +SELECT extract(month from pickup_datetime) as mon, extract(year from pickup_datetime) as yr, extract(week from pickup_datetime) as wk, pickup_neighbourhood, +sum(count) as count FROM ptc.trip_data_agg_neighbourhood +GROUP BY pickup_datetime, pickup_neighbourhood + +), ward1 AS ( + +SELECT avg(count) as count, pickup_neighbourhood from sum +WHERE (yr=2018 AND mon IN (9)) +GROUP BY pickup_neighbourhood +ORDER BY count +), ward2 AS ( + +SELECT avg(count) as count, pickup_neighbourhood from sum +WHERE (yr=2016 AND mon IN (10)) +GROUP BY pickup_neighbourhood +ORDER BY count +) + +SELECT pickup_neighbourhood, geom, (b.count - a.count)/(a.count)*100 as growth FROM ward2 a +LEFT JOIN ward1 b USING ( pickup_neighbourhood) +LEFT JOIN gis.neighbourhood ON area_s_cd::integer=pickup_neighbourhood + +''' +################################ +# Rotates data 17 degrees to orient Toronto perpendicularly +data = gpd.GeoDataFrame.from_postgis(query, con, geom_col='geom') +data = data.to_crs({'init' :'epsg:3857'}) + +for index, row in data.iterrows(): + rotated = shapely.affinity.rotate(row['geom'], angle=-17, origin = Point(0, 0)) + data.at[index, 'geom'] = rotated + +################################ +#The function only needs these columns, in this order +data=data[['geom', 'growth']] + + +################################ +# Calls the Function +# +# +# +fig, ax = rick.charts.chloro_map(con, data, subway = True, lower = 0, upper = 300, title = 'Growth in Trips', + island = False, unit = '%', nbins = 3) + diff --git a/charts/sphinx/example/plot_line.py b/charts/sphinx/example/plot_line.py new file mode 100644 index 0000000..5566d4c --- /dev/null +++ b/charts/sphinx/example/plot_line.py @@ -0,0 +1,106 @@ +""" +Line Chart +================== + +Makes an example of a line chart, with an additional baseline plot and custom formatted x axis. +""" + +from sqlalchemy import create_engine +import matplotlib.pyplot as plt +import matplotlib as mpl +import pandas as pd +import configparser +from psycopg2 import connect +import psycopg2.sql as pg +import pandas.io.sql as pandasql +import numpy as np +import datetime +import math +import rick +import geopandas as gpd +import os +import shapely +from shapely.geometry import Point +os.environ["PROJ_LIB"]=r"C:\Users\rliu4\AppData\Local\Continuum\anaconda3\Library\share" +import importlib +import matplotlib.ticker as ticker +import matplotlib.font_manager as font_manager + + +CONFIG = configparser.ConfigParser() +CONFIG.read(r'C:\Users\rliu4\Documents\Python\config.cfg') +dbset = CONFIG['DBSETTINGS'] +con = connect(**dbset) +################################ +#Data Collection +#---------------- +# +#This Section grabs and formats the data. + +query=''' +WITH daily_ave AS ( + +SELECT * FROM ptc.daily_trips +), total AS ( +SELECT extract(month from pickup_datetime) as mon, +extract(year from pickup_datetime) as yr, + +CASE WHEN extract(year from pickup_datetime) = 2018 AND extract(month from pickup_datetime) IN (3) THEN 108321 +WHEN extract(year from pickup_datetime) = 2018 AND extract(month from pickup_datetime) IN (11) THEN 161733 ELSE +avg(count)::integer END as count FROM daily_ave +GROUP BY extract(month from pickup_datetime), extract(year from pickup_datetime) +ORDER BY extract(year from pickup_datetime), extract(month from pickup_datetime) +) + + +SELECT +CASE WHEN mon = 1 THEN to_char(to_timestamp (mon::text, 'MM'), 'Mon')||' '||yr::text +WHEN mon = 9 AND yr = 2016 THEN to_char(to_timestamp (mon::text, 'MM'), 'Mon')||' '||yr::text +ELSE to_char(to_timestamp (mon::text, 'MM'), 'Mon') +END AS period, +count FROM total +''' +total=pandasql.read_sql(query, con) +################################ +#Gets the baseline data (to be graphed in grey) + + + +query=''' +WITH daily_ave AS ( + +SELECT * FROM ptc.daily_trips +), total AS ( +SELECT extract(month from pickup_datetime) as mon, +extract(year from pickup_datetime) as yr, + +CASE WHEN extract(year from pickup_datetime) = 2018 AND extract(month from pickup_datetime) IN (3) THEN 108321 +WHEN extract(year from pickup_datetime) = 2018 AND extract(month from pickup_datetime) IN (11) THEN 161733 ELSE +avg(count)::integer END as count FROM daily_ave +GROUP BY extract(month from pickup_datetime), extract(year from pickup_datetime) +ORDER BY extract(year from pickup_datetime), extract(month from pickup_datetime) +) + + +SELECT +CASE WHEN mon = 1 THEN to_char(to_timestamp (mon::text, 'MM'), 'Mon')||' '||yr::text +WHEN mon = 9 AND yr = 2016 THEN to_char(to_timestamp (mon::text, 'MM'), 'Mon')||' '||yr::text +ELSE to_char(to_timestamp (mon::text, 'MM'), 'Mon') +END AS period, +count/2 as count FROM total +''' +total2=pandasql.read_sql(query, con) + +fig, ax, props = rick.charts.line_chart(total['count'], 'Trips', 'Time', baseline = total2['count']) + +################################ +#Adds annotations +fig.text(0.94, 0.96, '176,000', transform=ax.transAxes, wrap = True, fontsize=9, fontname = 'Libre Franklin', + verticalalignment='top', ha = 'center', bbox=props, color = '#660159') +################################ +#Adds custom x axis +month_lst2 = ['Sept\n2016', 'Jan\n2017', 'May', 'Sept', + 'Jan\n2018', 'May', 'Sept', + 'Jan\n2019','May',] +plt.xticks(range(0,35,4), month_lst2, fontsize=9, fontname = 'Libre Franklin') + diff --git a/charts/sphinx/example/plot_stacked.py b/charts/sphinx/example/plot_stacked.py new file mode 100644 index 0000000..eba03ff --- /dev/null +++ b/charts/sphinx/example/plot_stacked.py @@ -0,0 +1,71 @@ +""" +Stacked Bar Chart +================== + +Makes an example of a stacked bar chart. +""" + +from sqlalchemy import create_engine +import matplotlib.pyplot as plt +import matplotlib as mpl +import pandas as pd +import configparser +from psycopg2 import connect +import psycopg2.sql as pg +import pandas.io.sql as pandasql +import numpy as np +import datetime +import math +import rick +import geopandas as gpd +import os +import shapely +from shapely.geometry import Point +os.environ["PROJ_LIB"]=r"C:\Users\rliu4\AppData\Local\Continuum\anaconda3\Library\share" +import importlib +import matplotlib.ticker as ticker +import matplotlib.font_manager as font_manager + + +CONFIG = configparser.ConfigParser() +CONFIG.read(r'C:\Users\rliu4\Documents\Python\config.cfg') +dbset = CONFIG['DBSETTINGS'] +con = connect(**dbset) +################################ +#Data Collection +#---------------- +# +#This Section grabs and formats the data. +query = ''' + +WITH sum AS ( + +SELECT pickup_datetime, sum(count) as count, extract(month from pickup_datetime) as mon, extract(year from pickup_datetime) as yr, area_name FROM ptc.trip_data_agg_ward_25 +LEFT JOIN gis.ward_community_lookup ON pickup_ward2018 = area_short + +WHERE pickup_datetime > '2016-09-30' +GROUP BY pickup_datetime, area_name +), collect AS ( +SELECT area_name, avg(count) as count, mon, yr from sum +group by area_name, mon, yr) + +,tot1 AS ( + +SELECT area_name, avg(count) as count FROM collect +WHERE (yr =2016 AND mon IN (10)) +GROUP BY area_name +), tot2 AS ( + +SELECT area_name, avg(count) as count FROM collect +WHERE (yr =2018 AND mon IN (9)) +GROUP BY area_name +) +SELECT SPLIT_PART(area_name, 'Community', 1) as area_name, +b.count as count1, a.count as count2 FROM tot1 b +LEFT JOIN tot2 a USING (area_name) +ORDER BY count1 ASC +''' + +district_cond = pandasql.read_sql(query, con) + +fig, ax = rick.charts.stacked_chart(district_cond, xlab = 'Trips', lab1 = '2016', lab2 = '2018', percent = True) \ No newline at end of file diff --git a/charts/sphinx/example/plot_tow.py b/charts/sphinx/example/plot_tow.py new file mode 100644 index 0000000..3d6daf6 --- /dev/null +++ b/charts/sphinx/example/plot_tow.py @@ -0,0 +1,65 @@ +""" +Time of Week Chart +================== + +Makes an example of a time of week chart. +""" + +from sqlalchemy import create_engine +import matplotlib.pyplot as plt +import matplotlib as mpl +import pandas as pd +import configparser +from psycopg2 import connect +import psycopg2.sql as pg +import pandas.io.sql as pandasql +import numpy as np +import datetime +import math +import rick +import geopandas as gpd +import os +import shapely +from shapely.geometry import Point +os.environ["PROJ_LIB"]=r"C:\Users\rliu4\AppData\Local\Continuum\anaconda3\Library\share" +import importlib +import matplotlib.ticker as ticker +import matplotlib.font_manager as font_manager + + +CONFIG = configparser.ConfigParser() +CONFIG.read(r'C:\Users\rliu4\Documents\Python\config.cfg') +dbset = CONFIG['DBSETTINGS'] +con = connect(**dbset) +################################ +#Data Collection +#---------------- +# +#This Section grabs and formats the data. +query = ''' + +WITH sum AS ( + +SELECT pickup_datetime, hr, sum(count) as count, extract(month from pickup_datetime) as mon, extract(year from pickup_datetime) as yr, +extract(dow from pickup_datetime) as dow FROM ptc.trip_data_agg_ward_25 + + +WHERE pickup_datetime > '2018-08-31' +GROUP BY pickup_datetime, hr + +) +, collect AS ( +SELECT avg(count) as count, hr, dow from sum +group by hr, dow) + +SELECT period_name, period_uid, count, hr, CASE WHEN dow = 0 THEN 7 ELSE dow END AS dow, +CASE WHEN swatch IS NULL THEN '#999999' ELSE swatch END AS swatch +FROM collect +LEFT JOIN ptc.period_lookup_simple ON dow=period_dow AND hr=period_hr +LEFT JOIN ptc.periods_simple USING (period_uid) +ORDER BY dow, hr + +''' +count_18 = pandasql.read_sql(query,con) + +fig, ax, prop = rick.charts.tow_chart(data = count_18['count'], ylab='Trips', ymax = 14000, yinc= 3500) \ No newline at end of file diff --git a/charts/sphinx/index.rst b/charts/sphinx/index.rst new file mode 100644 index 0000000..9bde69a --- /dev/null +++ b/charts/sphinx/index.rst @@ -0,0 +1,25 @@ +.. VFH Charts documentation master file, created by + sphinx-quickstart on Tue Jul 16 16:26:10 2019. + You can adapt this file completely to your liking, but it should at least + contain the root `toctree` directive. + +Repeatable Information Charts Kit README +========================================== + +This module was inspired by charts created for the VFH Bylaw Review Report. There was a need to develop a standardized brand and design language for everything BDITTO produces, so this module aims to produce a regularized set of charts and maps that are consistent with previous charts we create. All of the chart/map producing functions returns a matplotlib fig and ax object so that the figure can be further modified using matplotlib functions. + +.. toctree:: + :maxdepth: 2 + :caption: Contents: + + code + auto_examples/index + + + +Indices and tables +================== + +* :ref:`genindex` +* :ref:`modindex` +* :ref:`search` diff --git a/charts/sphinx/make b/charts/sphinx/make new file mode 100644 index 0000000..efcea11 --- /dev/null +++ b/charts/sphinx/make @@ -0,0 +1,38 @@ +Running Sphinx v2.1.2 +loading pickled environment... done +generating gallery... +generating gallery for auto_examples... [ 50%] plot_chloropleth.py generating gallery for auto_examples... [100%] plot_line.py +computation time summary: + - example\plot_line.py: 0 sec + - example\plot_chloropleth.py: 0 sec +building [mo]: targets for 0 po files that are out of date +building [html]: targets for 0 source files that are out of date +updating environment: [] 0 added, 2 changed, 0 removed +reading sources... [ 50%] auto_examples/index reading sources... [100%] auto_examples/plot_chloropleth +looking for now-outdated files... none found +pickling environment... done +checking consistency... done +preparing documents... done +writing output... [ 33%] auto_examples/index writing output... [ 66%] auto_examples/plot_chloropleth writing output... [100%] index +generating indices... genindex py-modindex +highlighting module code... [100%] rick +writing additional pages... search +copying images... [ 33%] auto_examples/images/thumb/sphx_glr_plot_chloropleth_thumb.png copying images... [ 66%] auto_examples/images/thumb/sphx_glr_plot_line_thumb.png copying images... [100%] auto_examples/images/sphx_glr_plot_chloropleth_001.png +copying downloadable files... [ 16%] auto_examples/plot_line.py copying downloadable files... [ 33%] auto_examples/plot_line.ipynb copying downloadable files... [ 50%] auto_examples/auto_examples_python.zip copying downloadable files... [ 66%] auto_examples/auto_examples_jupyter.zip copying downloadable files... [ 83%] auto_examples/plot_chloropleth.py copying downloadable files... [100%] auto_examples/plot_chloropleth.ipynb +copying static files... done +copying extra files... done +dumping search index in English (code: en) ... done +dumping object inventory... done +build succeeded. + +The HTML pages are in _build\html. + +Sphinx-gallery successfully executed 0 out of 0 files subselected by: + + gallery_conf["filename_pattern"] = '\\\\plot' + gallery_conf["ignore_pattern"] = '__init__\\.py' + +after excluding 2 files that had previously been run (based on MD5). + +embedding documentation hyperlinks... +embedding documentation hyperlinks for auto_examples... [ 25%] index.html embedding documentation hyperlinks for auto_examples... [ 50%] plot_chloropleth.html embedding documentation hyperlinks for auto_examples... [ 75%] plot_line.html embedding documentation hyperlinks for auto_examples... [100%] sg_execution_times.html diff --git a/charts/sphinx/make.bat b/charts/sphinx/make.bat new file mode 100644 index 0000000..3f81752 --- /dev/null +++ b/charts/sphinx/make.bat @@ -0,0 +1,36 @@ +@ECHO OFF + +pushd %~dp0 + +REM Command file for Sphinx documentation + +if "%SPHINXBUILD%" == "" ( + set SPHINXBUILD=sphinx-build +) +set SOURCEDIR=. +set BUILDDIR=_build +set SPHINXPROJ=VFHCharts + +if "%1" == "" goto help + +%SPHINXBUILD% >NUL 2>NUL +if errorlevel 9009 ( + echo. + echo.The 'sphinx-build' command was not found. Make sure you have Sphinx + echo.installed, then set the SPHINXBUILD environment variable to point + echo.to the full path of the 'sphinx-build' executable. Alternatively you + echo.may add the Sphinx directory to PATH. + echo. + echo.If you don't have Sphinx installed, grab it from + echo.http://sphinx-doc.org/ + exit /b 1 +) + +%SPHINXBUILD% -M %1 %SOURCEDIR% %BUILDDIR% %SPHINXOPTS% +goto end + +:help +%SPHINXBUILD% -M help %SOURCEDIR% %BUILDDIR% %SPHINXOPTS% + +:end +popd diff --git a/docs/.buildinfo b/docs/.buildinfo new file mode 100644 index 0000000..2c35fee --- /dev/null +++ b/docs/.buildinfo @@ -0,0 +1,4 @@ +# Sphinx build info version 1 +# This file hashes the configuration used when building these files. When it is not found, a full rebuild will be done. +config: 1c275954e7230feb7ad6ce4c29ebd80d +tags: 645f666f9bcd5a90fca523b33c5a78b7 diff --git a/docs/_downloads/21be591842209cda4c2f74d548884a33/plot_line.py b/docs/_downloads/21be591842209cda4c2f74d548884a33/plot_line.py new file mode 100644 index 0000000..5566d4c --- /dev/null +++ b/docs/_downloads/21be591842209cda4c2f74d548884a33/plot_line.py @@ -0,0 +1,106 @@ +""" +Line Chart +================== + +Makes an example of a line chart, with an additional baseline plot and custom formatted x axis. +""" + +from sqlalchemy import create_engine +import matplotlib.pyplot as plt +import matplotlib as mpl +import pandas as pd +import configparser +from psycopg2 import connect +import psycopg2.sql as pg +import pandas.io.sql as pandasql +import numpy as np +import datetime +import math +import rick +import geopandas as gpd +import os +import shapely +from shapely.geometry import Point +os.environ["PROJ_LIB"]=r"C:\Users\rliu4\AppData\Local\Continuum\anaconda3\Library\share" +import importlib +import matplotlib.ticker as ticker +import matplotlib.font_manager as font_manager + + +CONFIG = configparser.ConfigParser() +CONFIG.read(r'C:\Users\rliu4\Documents\Python\config.cfg') +dbset = CONFIG['DBSETTINGS'] +con = connect(**dbset) +################################ +#Data Collection +#---------------- +# +#This Section grabs and formats the data. + +query=''' +WITH daily_ave AS ( + +SELECT * FROM ptc.daily_trips +), total AS ( +SELECT extract(month from pickup_datetime) as mon, +extract(year from pickup_datetime) as yr, + +CASE WHEN extract(year from pickup_datetime) = 2018 AND extract(month from pickup_datetime) IN (3) THEN 108321 +WHEN extract(year from pickup_datetime) = 2018 AND extract(month from pickup_datetime) IN (11) THEN 161733 ELSE +avg(count)::integer END as count FROM daily_ave +GROUP BY extract(month from pickup_datetime), extract(year from pickup_datetime) +ORDER BY extract(year from pickup_datetime), extract(month from pickup_datetime) +) + + +SELECT +CASE WHEN mon = 1 THEN to_char(to_timestamp (mon::text, 'MM'), 'Mon')||' '||yr::text +WHEN mon = 9 AND yr = 2016 THEN to_char(to_timestamp (mon::text, 'MM'), 'Mon')||' '||yr::text +ELSE to_char(to_timestamp (mon::text, 'MM'), 'Mon') +END AS period, +count FROM total +''' +total=pandasql.read_sql(query, con) +################################ +#Gets the baseline data (to be graphed in grey) + + + +query=''' +WITH daily_ave AS ( + +SELECT * FROM ptc.daily_trips +), total AS ( +SELECT extract(month from pickup_datetime) as mon, +extract(year from pickup_datetime) as yr, + +CASE WHEN extract(year from pickup_datetime) = 2018 AND extract(month from pickup_datetime) IN (3) THEN 108321 +WHEN extract(year from pickup_datetime) = 2018 AND extract(month from pickup_datetime) IN (11) THEN 161733 ELSE +avg(count)::integer END as count FROM daily_ave +GROUP BY extract(month from pickup_datetime), extract(year from pickup_datetime) +ORDER BY extract(year from pickup_datetime), extract(month from pickup_datetime) +) + + +SELECT +CASE WHEN mon = 1 THEN to_char(to_timestamp (mon::text, 'MM'), 'Mon')||' '||yr::text +WHEN mon = 9 AND yr = 2016 THEN to_char(to_timestamp (mon::text, 'MM'), 'Mon')||' '||yr::text +ELSE to_char(to_timestamp (mon::text, 'MM'), 'Mon') +END AS period, +count/2 as count FROM total +''' +total2=pandasql.read_sql(query, con) + +fig, ax, props = rick.charts.line_chart(total['count'], 'Trips', 'Time', baseline = total2['count']) + +################################ +#Adds annotations +fig.text(0.94, 0.96, '176,000', transform=ax.transAxes, wrap = True, fontsize=9, fontname = 'Libre Franklin', + verticalalignment='top', ha = 'center', bbox=props, color = '#660159') +################################ +#Adds custom x axis +month_lst2 = ['Sept\n2016', 'Jan\n2017', 'May', 'Sept', + 'Jan\n2018', 'May', 'Sept', + 'Jan\n2019','May',] +plt.xticks(range(0,35,4), month_lst2, fontsize=9, fontname = 'Libre Franklin') + diff --git a/docs/_downloads/2a9f10257a1c8ac13ce765fc62d69803/plot_stacked.ipynb b/docs/_downloads/2a9f10257a1c8ac13ce765fc62d69803/plot_stacked.ipynb new file mode 100644 index 0000000..1538a15 --- /dev/null +++ b/docs/_downloads/2a9f10257a1c8ac13ce765fc62d69803/plot_stacked.ipynb @@ -0,0 +1,72 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": false + }, + "outputs": [], + "source": [ + "%matplotlib inline" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\nStacked Bar Chart\n==================\n\nMakes an example of a stacked bar chart.\n\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": false + }, + "outputs": [], + "source": [ + "from sqlalchemy import create_engine\nimport matplotlib.pyplot as plt\nimport matplotlib as mpl\nimport pandas as pd \nimport configparser\nfrom psycopg2 import connect\nimport psycopg2.sql as pg\nimport pandas.io.sql as pandasql\nimport numpy as np \nimport datetime\nimport math\nimport rick\nimport geopandas as gpd\nimport os\nimport shapely\nfrom shapely.geometry import Point\nos.environ[\"PROJ_LIB\"]=r\"C:\\Users\\rliu4\\AppData\\Local\\Continuum\\anaconda3\\Library\\share\"\nimport importlib\nimport matplotlib.ticker as ticker\nimport matplotlib.font_manager as font_manager\n\n\nCONFIG = configparser.ConfigParser()\nCONFIG.read(r'C:\\Users\\rliu4\\Documents\\Python\\config.cfg')\ndbset = CONFIG['DBSETTINGS']\ncon = connect(**dbset)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Data Collection\n----------------\n\nThis Section grabs and formats the data.\n\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": false + }, + "outputs": [], + "source": [ + "query = ''' \n\nWITH sum AS (\n\nSELECT pickup_datetime, sum(count) as count, extract(month from pickup_datetime) as mon, extract(year from pickup_datetime) as yr, area_name FROM ptc.trip_data_agg_ward_25\nLEFT JOIN gis.ward_community_lookup ON pickup_ward2018 = area_short\n\nWHERE pickup_datetime > '2016-09-30'\nGROUP BY pickup_datetime, area_name\n), collect AS (\nSELECT area_name, avg(count) as count, mon, yr from sum\ngroup by area_name, mon, yr)\n\n,tot1 AS (\n\nSELECT area_name, avg(count) as count FROM collect\nWHERE (yr =2016 AND mon IN (10))\nGROUP BY area_name\n), tot2 AS (\n\nSELECT area_name, avg(count) as count FROM collect\nWHERE (yr =2018 AND mon IN (9)) \nGROUP BY area_name\n)\nSELECT SPLIT_PART(area_name, 'Community', 1) as area_name,\nb.count as count1, a.count as count2 FROM tot1 b\nLEFT JOIN tot2 a USING (area_name)\nORDER BY count1 ASC\n'''\n\ndistrict_cond = pandasql.read_sql(query, con)\n\nfig, ax = rick.charts.stacked_chart(district_cond, xlab = 'Trips', lab1 = '2016', lab2 = '2018', percent = True)" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.6.4" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} \ No newline at end of file diff --git a/docs/_downloads/31f32a41483cb2a88aa2f260f665b07f/auto_examples_python.zip b/docs/_downloads/31f32a41483cb2a88aa2f260f665b07f/auto_examples_python.zip new file mode 100644 index 0000000..f96e527 Binary files /dev/null and b/docs/_downloads/31f32a41483cb2a88aa2f260f665b07f/auto_examples_python.zip differ diff --git a/docs/_downloads/380b7dbff02945ad10807fc2f42a3fae/plot_tow.ipynb b/docs/_downloads/380b7dbff02945ad10807fc2f42a3fae/plot_tow.ipynb new file mode 100644 index 0000000..f85cbb7 --- /dev/null +++ b/docs/_downloads/380b7dbff02945ad10807fc2f42a3fae/plot_tow.ipynb @@ -0,0 +1,72 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": false + }, + "outputs": [], + "source": [ + "%matplotlib inline" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\nTime of Week Chart\n==================\n\nMakes an example of a time of week chart.\n\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": false + }, + "outputs": [], + "source": [ + "from sqlalchemy import create_engine\nimport matplotlib.pyplot as plt\nimport matplotlib as mpl\nimport pandas as pd \nimport configparser\nfrom psycopg2 import connect\nimport psycopg2.sql as pg\nimport pandas.io.sql as pandasql\nimport numpy as np \nimport datetime\nimport math\nimport rick\nimport geopandas as gpd\nimport os\nimport shapely\nfrom shapely.geometry import Point\nos.environ[\"PROJ_LIB\"]=r\"C:\\Users\\rliu4\\AppData\\Local\\Continuum\\anaconda3\\Library\\share\"\nimport importlib\nimport matplotlib.ticker as ticker\nimport matplotlib.font_manager as font_manager\n\n\nCONFIG = configparser.ConfigParser()\nCONFIG.read(r'C:\\Users\\rliu4\\Documents\\Python\\config.cfg')\ndbset = CONFIG['DBSETTINGS']\ncon = connect(**dbset)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Data Collection\n----------------\n\nThis Section grabs and formats the data.\n\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": false + }, + "outputs": [], + "source": [ + "query = '''\n\nWITH sum AS (\n\nSELECT pickup_datetime, hr, sum(count) as count, extract(month from pickup_datetime) as mon, extract(year from pickup_datetime) as yr,\nextract(dow from pickup_datetime) as dow FROM ptc.trip_data_agg_ward_25\n\n\nWHERE pickup_datetime > '2018-08-31'\nGROUP BY pickup_datetime, hr\n\n)\n, collect AS (\nSELECT avg(count) as count, hr, dow from sum\ngroup by hr, dow)\n\nSELECT period_name, period_uid, count, hr, CASE WHEN dow = 0 THEN 7 ELSE dow END AS dow, \nCASE WHEN swatch IS NULL THEN '#999999' ELSE swatch END AS swatch\nFROM collect\nLEFT JOIN ptc.period_lookup_simple ON dow=period_dow AND hr=period_hr\nLEFT JOIN ptc.periods_simple USING (period_uid)\nORDER BY dow, hr\n\n'''\ncount_18 = pandasql.read_sql(query,con)\n\nfig, ax, prop = rick.charts.tow_chart(data = count_18['count'], ylab='Trips', ymax = 14000, yinc= 3500)" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.6.4" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} \ No newline at end of file diff --git a/docs/_downloads/445cbc804a8295cbf474c4d0c1b0e4b7/auto_examples_jupyter.zip b/docs/_downloads/445cbc804a8295cbf474c4d0c1b0e4b7/auto_examples_jupyter.zip new file mode 100644 index 0000000..f916ef6 Binary files /dev/null and b/docs/_downloads/445cbc804a8295cbf474c4d0c1b0e4b7/auto_examples_jupyter.zip differ diff --git a/docs/_downloads/4ac604494bc2591bf2516ad6b2550a56/plot_chloropleth.py b/docs/_downloads/4ac604494bc2591bf2516ad6b2550a56/plot_chloropleth.py new file mode 100644 index 0000000..600cdce --- /dev/null +++ b/docs/_downloads/4ac604494bc2591bf2516ad6b2550a56/plot_chloropleth.py @@ -0,0 +1,86 @@ +""" +Chloropleth Map +================== + +Makes an example of a chloropleth map. +""" + + +from sqlalchemy import create_engine +import matplotlib.pyplot as plt +import matplotlib as mpl +import pandas as pd +import configparser +from psycopg2 import connect +import psycopg2.sql as pg +import pandas.io.sql as pandasql +import numpy as np +import datetime +import math +import rick +import geopandas as gpd +import os +import shapely +from shapely.geometry import Point +os.environ["PROJ_LIB"]=r"C:\Users\rliu4\AppData\Local\Continuum\anaconda3\Library\share" +import importlib +import matplotlib.ticker as ticker +import matplotlib.font_manager as font_manager +CONFIG = configparser.ConfigParser() +CONFIG.read(r'C:\Users\rliu4\Documents\Python\config.cfg') +dbset = CONFIG['DBSETTINGS'] +con = connect(**dbset) + +################################ +#Data Collection +#---------------- +# +#This Section grabs and formats the data. +query = ''' + +WITH sum AS ( +SELECT extract(month from pickup_datetime) as mon, extract(year from pickup_datetime) as yr, extract(week from pickup_datetime) as wk, pickup_neighbourhood, +sum(count) as count FROM ptc.trip_data_agg_neighbourhood +GROUP BY pickup_datetime, pickup_neighbourhood + +), ward1 AS ( + +SELECT avg(count) as count, pickup_neighbourhood from sum +WHERE (yr=2018 AND mon IN (9)) +GROUP BY pickup_neighbourhood +ORDER BY count +), ward2 AS ( + +SELECT avg(count) as count, pickup_neighbourhood from sum +WHERE (yr=2016 AND mon IN (10)) +GROUP BY pickup_neighbourhood +ORDER BY count +) + +SELECT pickup_neighbourhood, geom, (b.count - a.count)/(a.count)*100 as growth FROM ward2 a +LEFT JOIN ward1 b USING ( pickup_neighbourhood) +LEFT JOIN gis.neighbourhood ON area_s_cd::integer=pickup_neighbourhood + +''' +################################ +# Rotates data 17 degrees to orient Toronto perpendicularly +data = gpd.GeoDataFrame.from_postgis(query, con, geom_col='geom') +data = data.to_crs({'init' :'epsg:3857'}) + +for index, row in data.iterrows(): + rotated = shapely.affinity.rotate(row['geom'], angle=-17, origin = Point(0, 0)) + data.at[index, 'geom'] = rotated + +################################ +#The function only needs these columns, in this order +data=data[['geom', 'growth']] + + +################################ +# Calls the Function +# +# +# +fig, ax = rick.charts.chloro_map(con, data, subway = True, lower = 0, upper = 300, title = 'Growth in Trips', + island = False, unit = '%', nbins = 3) + diff --git a/docs/_downloads/843c61231a396b66e17c11e1b2c89e18/plot_bar.ipynb b/docs/_downloads/843c61231a396b66e17c11e1b2c89e18/plot_bar.ipynb new file mode 100644 index 0000000..809b2df --- /dev/null +++ b/docs/_downloads/843c61231a396b66e17c11e1b2c89e18/plot_bar.ipynb @@ -0,0 +1,72 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": false + }, + "outputs": [], + "source": [ + "%matplotlib inline" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\nBar Chart\n==================\n\nMakes an example of a bar chart.\n\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": false + }, + "outputs": [], + "source": [ + "from sqlalchemy import create_engine\nimport matplotlib.pyplot as plt\nimport matplotlib as mpl\nimport pandas as pd \nimport configparser\nfrom psycopg2 import connect\nimport psycopg2.sql as pg\nimport pandas.io.sql as pandasql\nimport numpy as np \nimport datetime\nimport math\nimport rick\nimport geopandas as gpd\nimport os\nimport shapely\nfrom shapely.geometry import Point\nos.environ[\"PROJ_LIB\"]=r\"C:\\Users\\rliu4\\AppData\\Local\\Continuum\\anaconda3\\Library\\share\"\nimport importlib\nimport matplotlib.ticker as ticker\nimport matplotlib.font_manager as font_manager" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Data Collection\n----------------\n\nThis creates a test dataframe to use\n\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": false + }, + "outputs": [], + "source": [ + "pass_data = {'cat': ['PTC','Taxi', 'Trip Making Population'],\n 'TTC Pass': [22,16,16],\n }\n\ntransit_pass = pd.DataFrame(pass_data,columns= ['cat', 'TTC Pass'])\ntransit_pass = transit_pass .reindex(index=transit_pass .index[::-1])\n\nfig, ax = rick.charts.bar_chart(transit_pass, xlab='Trips')" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.6.4" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} \ No newline at end of file diff --git a/docs/_downloads/995c7f269ee840d69de9ff09442efe38/plot_bar.py b/docs/_downloads/995c7f269ee840d69de9ff09442efe38/plot_bar.py new file mode 100644 index 0000000..fa7c407 --- /dev/null +++ b/docs/_downloads/995c7f269ee840d69de9ff09442efe38/plot_bar.py @@ -0,0 +1,41 @@ +""" +Bar Chart +================== + +Makes an example of a bar chart. +""" + +from sqlalchemy import create_engine +import matplotlib.pyplot as plt +import matplotlib as mpl +import pandas as pd +import configparser +from psycopg2 import connect +import psycopg2.sql as pg +import pandas.io.sql as pandasql +import numpy as np +import datetime +import math +import rick +import geopandas as gpd +import os +import shapely +from shapely.geometry import Point +os.environ["PROJ_LIB"]=r"C:\Users\rliu4\AppData\Local\Continuum\anaconda3\Library\share" +import importlib +import matplotlib.ticker as ticker +import matplotlib.font_manager as font_manager + +################################ +#Data Collection +#---------------- +# +#This creates a test dataframe to use +pass_data = {'cat': ['PTC','Taxi', 'Trip Making Population'], + 'TTC Pass': [22,16,16], + } + +transit_pass = pd.DataFrame(pass_data,columns= ['cat', 'TTC Pass']) +transit_pass = transit_pass .reindex(index=transit_pass .index[::-1]) + +fig, ax = rick.charts.bar_chart(transit_pass, xlab='Trips') \ No newline at end of file diff --git a/docs/_downloads/be9952544ac3b41f0ea2f1580b7d53bf/plot_chloropleth.ipynb b/docs/_downloads/be9952544ac3b41f0ea2f1580b7d53bf/plot_chloropleth.ipynb new file mode 100644 index 0000000..6ca3186 --- /dev/null +++ b/docs/_downloads/be9952544ac3b41f0ea2f1580b7d53bf/plot_chloropleth.ipynb @@ -0,0 +1,126 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": false + }, + "outputs": [], + "source": [ + "%matplotlib inline" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\nChloropleth Map\n==================\n\nMakes an example of a chloropleth map.\n\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": false + }, + "outputs": [], + "source": [ + "from sqlalchemy import create_engine\nimport matplotlib.pyplot as plt\nimport matplotlib as mpl\nimport pandas as pd \nimport configparser\nfrom psycopg2 import connect\nimport psycopg2.sql as pg\nimport pandas.io.sql as pandasql\nimport numpy as np \nimport datetime\nimport math\nimport rick\nimport geopandas as gpd\nimport os\nimport shapely\nfrom shapely.geometry import Point\nos.environ[\"PROJ_LIB\"]=r\"C:\\Users\\rliu4\\AppData\\Local\\Continuum\\anaconda3\\Library\\share\"\nimport importlib\nimport matplotlib.ticker as ticker\nimport matplotlib.font_manager as font_manager\nCONFIG = configparser.ConfigParser()\nCONFIG.read(r'C:\\Users\\rliu4\\Documents\\Python\\config.cfg')\ndbset = CONFIG['DBSETTINGS']\ncon = connect(**dbset)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Data Collection\n----------------\n\nThis Section grabs and formats the data.\n\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": false + }, + "outputs": [], + "source": [ + "query = '''\n\nWITH sum AS (\nSELECT extract(month from pickup_datetime) as mon, extract(year from pickup_datetime) as yr, extract(week from pickup_datetime) as wk, pickup_neighbourhood, \nsum(count) as count FROM ptc.trip_data_agg_neighbourhood\nGROUP BY pickup_datetime, pickup_neighbourhood\n\n), ward1 AS (\n\nSELECT avg(count) as count, pickup_neighbourhood from sum\nWHERE (yr=2018 AND mon IN (9))\nGROUP BY pickup_neighbourhood\nORDER BY count\n), ward2 AS (\n\nSELECT avg(count) as count, pickup_neighbourhood from sum\nWHERE (yr=2016 AND mon IN (10))\nGROUP BY pickup_neighbourhood\nORDER BY count\n)\n\nSELECT pickup_neighbourhood, geom, (b.count - a.count)/(a.count)*100 as growth FROM ward2 a \nLEFT JOIN ward1 b USING ( pickup_neighbourhood)\nLEFT JOIN gis.neighbourhood ON area_s_cd::integer=pickup_neighbourhood\n\n'''" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Rotates data 17 degrees to orient Toronto perpendicularly\n\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": false + }, + "outputs": [], + "source": [ + "data = gpd.GeoDataFrame.from_postgis(query, con, geom_col='geom')\ndata = data.to_crs({'init' :'epsg:3857'})\n\nfor index, row in data.iterrows():\n rotated = shapely.affinity.rotate(row['geom'], angle=-17, origin = Point(0, 0))\n data.at[index, 'geom'] = rotated" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The function only needs these columns, in this order\n\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": false + }, + "outputs": [], + "source": [ + "data=data[['geom', 'growth']]" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Calls the Function\n\n\n\n\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": false + }, + "outputs": [], + "source": [ + "fig, ax = rick.charts.chloro_map(con, data, subway = True, lower = 0, upper = 300, title = 'Growth in Trips', \n island = False, unit = '%', nbins = 3)" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.6.4" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} \ No newline at end of file diff --git a/docs/_downloads/c16f50786857748d9212f35a207c7f3e/plot_tow.py b/docs/_downloads/c16f50786857748d9212f35a207c7f3e/plot_tow.py new file mode 100644 index 0000000..3d6daf6 --- /dev/null +++ b/docs/_downloads/c16f50786857748d9212f35a207c7f3e/plot_tow.py @@ -0,0 +1,65 @@ +""" +Time of Week Chart +================== + +Makes an example of a time of week chart. +""" + +from sqlalchemy import create_engine +import matplotlib.pyplot as plt +import matplotlib as mpl +import pandas as pd +import configparser +from psycopg2 import connect +import psycopg2.sql as pg +import pandas.io.sql as pandasql +import numpy as np +import datetime +import math +import rick +import geopandas as gpd +import os +import shapely +from shapely.geometry import Point +os.environ["PROJ_LIB"]=r"C:\Users\rliu4\AppData\Local\Continuum\anaconda3\Library\share" +import importlib +import matplotlib.ticker as ticker +import matplotlib.font_manager as font_manager + + +CONFIG = configparser.ConfigParser() +CONFIG.read(r'C:\Users\rliu4\Documents\Python\config.cfg') +dbset = CONFIG['DBSETTINGS'] +con = connect(**dbset) +################################ +#Data Collection +#---------------- +# +#This Section grabs and formats the data. +query = ''' + +WITH sum AS ( + +SELECT pickup_datetime, hr, sum(count) as count, extract(month from pickup_datetime) as mon, extract(year from pickup_datetime) as yr, +extract(dow from pickup_datetime) as dow FROM ptc.trip_data_agg_ward_25 + + +WHERE pickup_datetime > '2018-08-31' +GROUP BY pickup_datetime, hr + +) +, collect AS ( +SELECT avg(count) as count, hr, dow from sum +group by hr, dow) + +SELECT period_name, period_uid, count, hr, CASE WHEN dow = 0 THEN 7 ELSE dow END AS dow, +CASE WHEN swatch IS NULL THEN '#999999' ELSE swatch END AS swatch +FROM collect +LEFT JOIN ptc.period_lookup_simple ON dow=period_dow AND hr=period_hr +LEFT JOIN ptc.periods_simple USING (period_uid) +ORDER BY dow, hr + +''' +count_18 = pandasql.read_sql(query,con) + +fig, ax, prop = rick.charts.tow_chart(data = count_18['count'], ylab='Trips', ymax = 14000, yinc= 3500) \ No newline at end of file diff --git a/docs/_downloads/cc961dc436f413969336b8bd7f359ab4/plot_line.ipynb b/docs/_downloads/cc961dc436f413969336b8bd7f359ab4/plot_line.ipynb new file mode 100644 index 0000000..9919a2c --- /dev/null +++ b/docs/_downloads/cc961dc436f413969336b8bd7f359ab4/plot_line.ipynb @@ -0,0 +1,126 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": false + }, + "outputs": [], + "source": [ + "%matplotlib inline" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\nLine Chart\n==================\n\nMakes an example of a line chart, with an additional baseline plot and custom formatted x axis.\n\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": false + }, + "outputs": [], + "source": [ + "from sqlalchemy import create_engine\nimport matplotlib.pyplot as plt\nimport matplotlib as mpl\nimport pandas as pd \nimport configparser\nfrom psycopg2 import connect\nimport psycopg2.sql as pg\nimport pandas.io.sql as pandasql\nimport numpy as np \nimport datetime\nimport math\nimport rick\nimport geopandas as gpd\nimport os\nimport shapely\nfrom shapely.geometry import Point\nos.environ[\"PROJ_LIB\"]=r\"C:\\Users\\rliu4\\AppData\\Local\\Continuum\\anaconda3\\Library\\share\"\nimport importlib\nimport matplotlib.ticker as ticker\nimport matplotlib.font_manager as font_manager\n\n\nCONFIG = configparser.ConfigParser()\nCONFIG.read(r'C:\\Users\\rliu4\\Documents\\Python\\config.cfg')\ndbset = CONFIG['DBSETTINGS']\ncon = connect(**dbset)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Data Collection\n----------------\n\nThis Section grabs and formats the data.\n\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": false + }, + "outputs": [], + "source": [ + "query='''\nWITH daily_ave AS (\n\nSELECT * FROM ptc.daily_trips\n), total AS (\nSELECT extract(month from pickup_datetime) as mon,\nextract(year from pickup_datetime) as yr,\n\nCASE WHEN extract(year from pickup_datetime) = 2018 AND extract(month from pickup_datetime) IN (3) THEN 108321\nWHEN extract(year from pickup_datetime) = 2018 AND extract(month from pickup_datetime) IN (11) THEN 161733 ELSE\navg(count)::integer END as count FROM daily_ave\nGROUP BY extract(month from pickup_datetime), extract(year from pickup_datetime)\nORDER BY extract(year from pickup_datetime), extract(month from pickup_datetime)\n)\n\n\nSELECT \nCASE WHEN mon = 1 THEN to_char(to_timestamp (mon::text, 'MM'), 'Mon')||' '||yr::text \nWHEN mon = 9 AND yr = 2016 THEN to_char(to_timestamp (mon::text, 'MM'), 'Mon')||' '||yr::text \nELSE to_char(to_timestamp (mon::text, 'MM'), 'Mon')\nEND AS period, \ncount FROM total\n'''\ntotal=pandasql.read_sql(query, con)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Gets the baseline data (to be graphed in grey)\n\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": false + }, + "outputs": [], + "source": [ + "query='''\nWITH daily_ave AS (\n\nSELECT * FROM ptc.daily_trips\n), total AS (\nSELECT extract(month from pickup_datetime) as mon,\nextract(year from pickup_datetime) as yr,\n\nCASE WHEN extract(year from pickup_datetime) = 2018 AND extract(month from pickup_datetime) IN (3) THEN 108321\nWHEN extract(year from pickup_datetime) = 2018 AND extract(month from pickup_datetime) IN (11) THEN 161733 ELSE\navg(count)::integer END as count FROM daily_ave\nGROUP BY extract(month from pickup_datetime), extract(year from pickup_datetime)\nORDER BY extract(year from pickup_datetime), extract(month from pickup_datetime)\n)\n\n\nSELECT \nCASE WHEN mon = 1 THEN to_char(to_timestamp (mon::text, 'MM'), 'Mon')||' '||yr::text \nWHEN mon = 9 AND yr = 2016 THEN to_char(to_timestamp (mon::text, 'MM'), 'Mon')||' '||yr::text \nELSE to_char(to_timestamp (mon::text, 'MM'), 'Mon')\nEND AS period, \ncount/2 as count FROM total\n'''\ntotal2=pandasql.read_sql(query, con)\n\nfig, ax, props = rick.charts.line_chart(total['count'], 'Trips', 'Time', baseline = total2['count'])" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Adds annotations\n\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": false + }, + "outputs": [], + "source": [ + "fig.text(0.94, 0.96, '176,000', transform=ax.transAxes, wrap = True, fontsize=9, fontname = 'Libre Franklin',\n verticalalignment='top', ha = 'center', bbox=props, color = '#660159')" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Adds custom x axis\n\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": false + }, + "outputs": [], + "source": [ + "month_lst2 = ['Sept\\n2016', 'Jan\\n2017', 'May', 'Sept',\n 'Jan\\n2018', 'May', 'Sept', \n 'Jan\\n2019','May',]\nplt.xticks(range(0,35,4), month_lst2, fontsize=9, fontname = 'Libre Franklin')" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.6.4" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} \ No newline at end of file diff --git a/docs/_downloads/e0de26bd19cb293b54b1f9747d9c4ad5/plot_stacked.py b/docs/_downloads/e0de26bd19cb293b54b1f9747d9c4ad5/plot_stacked.py new file mode 100644 index 0000000..eba03ff --- /dev/null +++ b/docs/_downloads/e0de26bd19cb293b54b1f9747d9c4ad5/plot_stacked.py @@ -0,0 +1,71 @@ +""" +Stacked Bar Chart +================== + +Makes an example of a stacked bar chart. +""" + +from sqlalchemy import create_engine +import matplotlib.pyplot as plt +import matplotlib as mpl +import pandas as pd +import configparser +from psycopg2 import connect +import psycopg2.sql as pg +import pandas.io.sql as pandasql +import numpy as np +import datetime +import math +import rick +import geopandas as gpd +import os +import shapely +from shapely.geometry import Point +os.environ["PROJ_LIB"]=r"C:\Users\rliu4\AppData\Local\Continuum\anaconda3\Library\share" +import importlib +import matplotlib.ticker as ticker +import matplotlib.font_manager as font_manager + + +CONFIG = configparser.ConfigParser() +CONFIG.read(r'C:\Users\rliu4\Documents\Python\config.cfg') +dbset = CONFIG['DBSETTINGS'] +con = connect(**dbset) +################################ +#Data Collection +#---------------- +# +#This Section grabs and formats the data. +query = ''' + +WITH sum AS ( + +SELECT pickup_datetime, sum(count) as count, extract(month from pickup_datetime) as mon, extract(year from pickup_datetime) as yr, area_name FROM ptc.trip_data_agg_ward_25 +LEFT JOIN gis.ward_community_lookup ON pickup_ward2018 = area_short + +WHERE pickup_datetime > '2016-09-30' +GROUP BY pickup_datetime, area_name +), collect AS ( +SELECT area_name, avg(count) as count, mon, yr from sum +group by area_name, mon, yr) + +,tot1 AS ( + +SELECT area_name, avg(count) as count FROM collect +WHERE (yr =2016 AND mon IN (10)) +GROUP BY area_name +), tot2 AS ( + +SELECT area_name, avg(count) as count FROM collect +WHERE (yr =2018 AND mon IN (9)) +GROUP BY area_name +) +SELECT SPLIT_PART(area_name, 'Community', 1) as area_name, +b.count as count1, a.count as count2 FROM tot1 b +LEFT JOIN tot2 a USING (area_name) +ORDER BY count1 ASC +''' + +district_cond = pandasql.read_sql(query, con) + +fig, ax = rick.charts.stacked_chart(district_cond, xlab = 'Trips', lab1 = '2016', lab2 = '2018', percent = True) \ No newline at end of file diff --git a/docs/_images/sphx_glr_plot_bar_001.png b/docs/_images/sphx_glr_plot_bar_001.png new file mode 100644 index 0000000..3a0dda6 Binary files /dev/null and b/docs/_images/sphx_glr_plot_bar_001.png differ diff --git a/docs/_images/sphx_glr_plot_bar_thumb.png b/docs/_images/sphx_glr_plot_bar_thumb.png new file mode 100644 index 0000000..341e305 Binary files /dev/null and b/docs/_images/sphx_glr_plot_bar_thumb.png differ diff --git a/docs/_images/sphx_glr_plot_chloropleth_001.png b/docs/_images/sphx_glr_plot_chloropleth_001.png new file mode 100644 index 0000000..9727001 Binary files /dev/null and b/docs/_images/sphx_glr_plot_chloropleth_001.png differ diff --git a/docs/_images/sphx_glr_plot_chloropleth_thumb.png b/docs/_images/sphx_glr_plot_chloropleth_thumb.png new file mode 100644 index 0000000..a06e992 Binary files /dev/null and b/docs/_images/sphx_glr_plot_chloropleth_thumb.png differ diff --git a/docs/_images/sphx_glr_plot_line_001.png b/docs/_images/sphx_glr_plot_line_001.png new file mode 100644 index 0000000..fdcbb46 Binary files /dev/null and b/docs/_images/sphx_glr_plot_line_001.png differ diff --git a/docs/_images/sphx_glr_plot_line_002.png b/docs/_images/sphx_glr_plot_line_002.png new file mode 100644 index 0000000..b0a45aa Binary files /dev/null and b/docs/_images/sphx_glr_plot_line_002.png differ diff --git a/docs/_images/sphx_glr_plot_line_thumb.png b/docs/_images/sphx_glr_plot_line_thumb.png new file mode 100644 index 0000000..24d14ec Binary files /dev/null and b/docs/_images/sphx_glr_plot_line_thumb.png differ diff --git a/docs/_images/sphx_glr_plot_stacked_001.png b/docs/_images/sphx_glr_plot_stacked_001.png new file mode 100644 index 0000000..c89691b Binary files /dev/null and b/docs/_images/sphx_glr_plot_stacked_001.png differ diff --git a/docs/_images/sphx_glr_plot_stacked_thumb.png b/docs/_images/sphx_glr_plot_stacked_thumb.png new file mode 100644 index 0000000..efe19cf Binary files /dev/null and b/docs/_images/sphx_glr_plot_stacked_thumb.png differ diff --git a/docs/_images/sphx_glr_plot_tow_001.png b/docs/_images/sphx_glr_plot_tow_001.png new file mode 100644 index 0000000..0a8ad9f Binary files /dev/null and b/docs/_images/sphx_glr_plot_tow_001.png differ diff --git a/docs/_images/sphx_glr_plot_tow_thumb.png b/docs/_images/sphx_glr_plot_tow_thumb.png new file mode 100644 index 0000000..16f550a Binary files /dev/null and b/docs/_images/sphx_glr_plot_tow_thumb.png differ diff --git a/docs/_modules/index.html b/docs/_modules/index.html new file mode 100644 index 0000000..98e321e --- /dev/null +++ b/docs/_modules/index.html @@ -0,0 +1,74 @@ + + + + + + + Overview: module code — VFH Charts 2019-07-16 documentation + + + + + + + + + + + + + + + + + + + +
+
+
+
+ +

All modules for which code is available

+ + +
+
+
+ +
+
+ + + + + + + \ No newline at end of file diff --git a/docs/_modules/rick.html b/docs/_modules/rick.html new file mode 100644 index 0000000..4e872d1 --- /dev/null +++ b/docs/_modules/rick.html @@ -0,0 +1,666 @@ + + + + + + + rick — VFH Charts 2019-07-16 documentation + + + + + + + + + + + + + + + + + + + +
+
+
+
+ +

Source code for rick

+# -*- coding: utf-8 -*-
+"""
+Version 0.8.0 
+
+
+"""
+from psycopg2 import connect
+import psycopg2.sql as pg
+import pandas.io.sql as pandasql
+import matplotlib as mpl
+import matplotlib.pyplot as plt
+import matplotlib.patches as patches
+import matplotlib.ticker as ticker
+import geopandas as gpd
+import os
+import shapely
+import seaborn as sns
+from shapely.geometry import Point
+import matplotlib.font_manager as font_manager
+import numpy as np
+
+#shapely workaround for windows
+#os.environ["PROJ_LIB"]=r"C:\Users\rliu4\AppData\Local\Continuum\anaconda3\Library\share"
+
+
[docs]class font: + """ + Class defining the global font variables for all functions. + + """ + + leg_font = font_manager.FontProperties(family='Libre Franklin',size=9) + normal = 'Libre Franklin' + semibold = 'Libre Franklin SemiBold'
+ + +
[docs]class colour: + """ + Class defining the global colour variables for all functions. + + """ + purple = '#660159' + grey = '#7f7e7e' + light_grey = '#777777' + cmap = 'YlOrRd'
+ +
[docs]class geo: + """ + Class for additional gis layers needed for the cloropleth map. + + """ + +
[docs] def ttc(con): + """Function to return the TTC subway layer. + + Parameters + ------------ + con : SQL connection object + Connection object needed to connect to the RDS + + Returns + -------- + gdf + Geopandas Dataframe of the Subway Layer + + """ + query = ''' + + SELECT * FROM gis.subway_to + + ''' + ttc = gpd.GeoDataFrame.from_postgis(query, con, geom_col='geom') + ttc = ttc.to_crs({'init' :'epsg:3857'}) + + for index, row in ttc.iterrows(): + rotated = shapely.affinity.rotate(row['geom'], angle=-17, origin = Point(0, 0)) + ttc.loc[index, 'geom'] = rotated + + return ttc
+ +
[docs] def island(con): + + """Function to return a layer of the Toronto island. Since the island is classified in the same neighbourhood as the waterfront, in some cases its not completely accurate to show the island shares the same data as the waterfront. + + Parameters + ------------ + con : SQL connection object + Connection object needed to connect to the RDS + + Returns + -------- + gdf + Geopandas Dataframe of the Toronto island. + + """ + + query = ''' + + SELECT + geom + FROM tts.zones_tts06 + WHERE gta06 = 81 + + ''' + + island = gpd.GeoDataFrame.from_postgis(query, con, geom_col='geom') + island = island.to_crs({'init' :'epsg:3857'}) + + for index, row in island.iterrows(): + rotated = shapely.affinity.rotate(row['geom'], angle=-17, origin = Point(0, 0)) + island.loc[index, 'geom'] = rotated + + return island
+ +
[docs]class charts: + """ + Class defining all the charting functions. + + """ + + global func + def func(): + + """Function to set global settings for the charts class. + + """ + + sns.set(font_scale=1.5) + mpl.rc('font',family='Libre Franklin') + +
[docs] def chloro_map(con, df, lower, upper, title, **kwargs): + """Creates a chloropleth map + + Parameters + ----------- + con : SQL connection object + Connection object needed to connect to the RDS + df : GeoPandas Dataframe + Data for the chloropleth map. The data must only contain 2 columns; the first column has to be the geom column and the second has to be the data that needs to be mapped. + lower : int + Lower bound for colourmap + upper : int + Upper bound for the colourmap + title : str + Legend label + subway : boolean, optional, default: False + True to display subway on the map + island : boolean, optional, defailt: True + False to grey out the Toronto island + cmap : str, optional, default: YlOrRd + Matplotlib colourmap to use for the map + unit : str, optional + Unit to append to the end of the legend tick + nbins : int, optional, defualt: 2 + Number of ticks in the colourmap + + Returns + -------- + fig + Matplotlib fig object + ax + Matplotlib ax object + + """ + + func() + subway = kwargs.get('subway', False) + island = kwargs.get('island', True) + cmap = kwargs.get('cmap', colour.cmap) + unit = kwargs.get('unit', None) + nbins = kwargs.get('nbins', 2) + + df.columns = ['geom', 'values'] + light = '#d9d9d9' + + fig, ax = plt.subplots() + fig.set_size_inches(6.69,3.345) + + ax.set_yticklabels([]) + ax.set_xticklabels([]) + ax.set_axis_off() + + mpd = df.plot(column='values', ax=ax, vmin=lower, vmax=upper, cmap = cmap, edgecolor = 'w', linewidth = 0.5) + + if island == False: + island_grey = geo.island(con) + island_grey.plot(ax=ax, edgecolor = 'w', linewidth = 4, color = light) + island_grey.plot(ax=ax, edgecolor = 'w', linewidth = 0, color = light) + + if subway == True: + ttc_df = geo.ttc(con) + line = ttc_df.plot( ax=ax, linewidth =4, color = 'w', alpha =0.6) # ttc subway layer + line = ttc_df.plot( ax=ax, linewidth =2, color = 'k', alpha =0.4) # ttc subway layer + + + props = dict(boxstyle='round', facecolor='w', alpha=0) + plt.text(0.775, 0.37, title, transform=ax.transAxes, wrap = True, fontsize=7, fontname = font.semibold, + verticalalignment='bottom', bbox=props, fontweight = 'bold') # Adding the Legend Title + + + cax = fig.add_axes([0.718, 0.16, 0.01, 0.22]) # Size of colorbar + + rect = patches.Rectangle((0.76, 0.01),0.235,0.43,linewidth=0.5, transform=ax.transAxes, edgecolor=light,facecolor='none') + ax.add_patch(rect) + + ax.margins(0.1) + + sm = plt.cm.ScalarMappable(cmap=cmap, norm=plt.Normalize(vmin=lower, vmax=upper)) + sm._A = [] + cbr = fig.colorbar(sm, cax=cax) + cbr.outline.set_linewidth(0) + tick_locator = ticker.MaxNLocator(nbins=nbins) + cbr.locator = tick_locator + cbr.update_ticks() + cbr.ax.yaxis.set_tick_params(width=0.5) + cbr.ax.tick_params(labelsize=6) # Formatting for Colorbar Text + for l in cbr.ax.yaxis.get_ticklabels(): + l.set_family(font.normal) + + if unit is not None: + if 0 < upper < 10: + ax.text(0.829, 0.32, unit, transform=ax.transAxes, wrap = True, fontsize=6, fontname = font.normal, verticalalignment='bottom', ha = 'left') + elif 10 <= upper < 100: + ax.text(0.839, 0.32, unit, transform=ax.transAxes, wrap = True, fontsize=6, fontname = font.normal, verticalalignment='bottom', ha = 'left') + elif 100 <= upper < 1000: + ax.text(0.851, 0.32, unit, transform=ax.transAxes, wrap = True, fontsize=6, fontname = font.normal, verticalalignment='bottom', ha = 'left') + elif 1000 <= upper < 100000: + ax.text(0.862, 0.32, unit, transform=ax.transAxes, wrap = True, fontsize=6, fontname = font.normal, verticalalignment='bottom', ha = 'left') + else: + pass + + + return fig, ax
+ +
[docs] def line_chart(data, ylab, xlab, **kwargs): + """Creates a line chart. x axis must be modified manually + + Parameters + ----------- + data : array like or scalar + Data for the line chart. + ylab : str + Label for the y axis. + xlab : str + Label for the x axis. + ymax : int, optional, default is the max y value + The max value of the y axis + ymin : int, optional, default is 0 + The minimum value of the y axis + baseline : array like or scalar, optional, default is None + Whether another line representing the baseline needs to be plotted + yinc : int, optional + The increment of ticks on the y axis. + + Returns + -------- + fig + Matplotlib fig object + ax + Matplotlib ax object + props + Dictionary of the text annotation properties + + """ + + func() + ymax = kwargs.get('ymax', int(data.max())) + ymin = kwargs.get('ymin', 0) + baseline = kwargs.get('baseline', None) + + delta = (ymax - ymin)/4 + i = 0 + while True: + delta /= 10 + i += 1 + if delta < 10: + break + yinc = kwargs.get('yinc', int(round(delta+1)*pow(10,i))) + + fig, ax =plt.subplots() + ax.plot(data ,linewidth=3, color = colour.purple) + ax.plot(baseline ,linewidth=3, color = colour.grey) + + plt.grid() + ax.yaxis.set_major_formatter(mpl.ticker.StrMethodFormatter('{x:,.0f}')) + + ax.set_facecolor('xkcd:white') + + plt.xlabel(xlab, fontsize=9, fontweight = 'bold', horizontalalignment='right', x=0, labelpad=10, + fontname = font.normal) + ax.grid(color='k', linestyle='-', linewidth=0.2) + plt.ylabel(ylab, fontsize=9, fontweight = 'bold', horizontalalignment='right', y=1.0, + labelpad=10, fontname = font.normal) + fig.set_size_inches(6.1, 4.1) + plt.xticks(fontsize=9, fontname = font.normal) + plt.yticks(range(ymin,int(4.1*yinc), yinc), fontsize =9, fontname = font.normal) + + props = dict(boxstyle='round, pad=0.4',edgecolor=colour.purple, linewidth = 2, facecolor = 'w', alpha=1) + + ax.set_ylim([ymin,int(4*yinc+ymin)]) + fig.patch.set_facecolor('w') + + return fig, ax, props
+ +
[docs] def tow_chart(data, ylab, **kwargs): + """Creates a 7 day time of week line chart. Each data point represents 1 hour out of 168 hours. + + Parameters + ----------- + data : array like or scalar + Data for the tow chart. Data must only have 168 entries, with row 0 representing Monday at midnight. + ylab : str + Label for the y axis. + ymax : int, optional, default is the max y value + The max value of the y axis + ymin : int, optional, default is 0 + The minimum value of the y axis + yinc : int, optional + The increment of ticks on the y axis. + + Returns + -------- + fig + Matplotlib fig object + ax + Matplotlib ax object + props + Dictionary of the text annotation properties + + """ + func() + ymax = kwargs.get('ymax', None) + ymin = kwargs.get('ymin', 0) + + + ymax_flag = True + if ymax == None: + ymax = int(data.max()) + ymax_flag = False + + delta = (ymax - ymin)/3 + i = 0 + while True: + delta /= 10 + i += 1 + if delta < 10: + break + yinc = kwargs.get('yinc', int(round(delta+1)*pow(10,i))) + + if ymax_flag == True: + upper = ymax + else: + upper = int(3*yinc+ymin) + + fig, ax =plt.subplots() + ax.plot(data, linewidth = 2.5, color = colour.purple) + + plt.grid() + ax.set_facecolor('xkcd:white') + + plt.xlabel('Time of week', fontname = font.normal, fontsize=9, horizontalalignment='left', x=0, labelpad=3, fontweight = 'bold') + ax.set_ylim([ymin,upper]) + + ax.grid(color='k', linestyle='-', linewidth=0.2) + plt.ylabel(ylab, fontname = font.normal, fontsize=9, horizontalalignment='right', y=1, labelpad=7, fontweight = 'bold') + fig.set_size_inches(6.1, 1.8) + + + ax.yaxis.set_major_formatter(mpl.ticker.StrMethodFormatter('{x:,.0f}')) + plt.yticks(range(ymin,upper+int(0.1*yinc), yinc), fontsize =9, fontname = font.normal) + + ax.set_xticks(range(0,180,12)) + ax.set_xticklabels(['0','12','0','12', + '0','12','0','12', + '0','12','0','12','0','12'], fontname = font.normal, fontsize = 7, color = colour.light_grey) + + ax.xaxis.set_minor_locator(ticker.FixedLocator(list(range(12,180,24)))) + ax.xaxis.set_minor_formatter(ticker.FixedFormatter(['Monday','Tuesday', + 'Wednesday','Thursday', + 'Friday','Saturday','Sunday'])) + ax.tick_params(axis='x', which='minor', colors = 'k', labelsize=9, pad =14) + + props = dict(boxstyle='round, pad=0.3',edgecolor=colour.purple, linewidth = 1.5, facecolor = 'w', alpha=1) + + ax.set_xlim([0,167]) + return fig, ax, props
+ +
[docs] def stacked_chart(data_in, xlab, lab1, lab2, **kwargs): + """Creates a stacked bar chart comparing 2 sets of data + + Parameters + ----------- + data : dataframe + Data for the stacked bar chart. The dataframe must have 3 columns, the first representing the y ticks, the second representing the baseline, and the third representing the next series of data. + xlab : str + Label for the x axis. + lab1 : str + Label in the legend for the baseline + lab2 : str + Label in the legend fot the next data series + xmax : int, optional, default is the max s value + The max value of the y axis + xmin : int, optional, default is 0 + The minimum value of the x axis + precision : int, optional, default is -1 + Decimal places in the annotations + percent : boolean, optional, default is False + Whether the annotations should be formatted as percentages + + xinc : int, optional + The increment of ticks on the x axis. + + Returns + -------- + fig + Matplotlib fig object + ax + Matplotlib ax object + + """ + + func() + data = data_in.copy(deep=True) + + data.columns = ['name', 'values1', 'values2'] + + xmin = kwargs.get('xmin', 0) + xmax = kwargs.get('xmax', None) + precision = kwargs.get('precision', -1) + percent = kwargs.get('percent', False) + + xmax_flag = True + if xmax == None: + xmax = int(max(data[['values1', 'values2']].max())) + xmax_flag = False + + delta = (xmax - xmin)/4 + i = 0 + while True: + delta /= 10 + i += 1 + if delta < 10: + break + xinc = kwargs.get('xinc', int(round(delta+1)*pow(10,i))) + + if xmax_flag == True: + upper = xmax + else: + upper = int(4*xinc+xmin) + + ind = np.arange(len(data)) + + fig, ax = plt.subplots() + fig.set_size_inches(6.1, len(data)) + ax.grid(color='k', linestyle='-', linewidth=0.25) + + p1 = ax.barh(ind+0.4, data['values1'], 0.4, align='center', color = colour.grey) + p2 = ax.barh(ind, data['values2'], 0.4, align='center', color = colour.purple) + ax.xaxis.set_major_formatter(mpl.ticker.StrMethodFormatter('{x:,.0f}')) + + ax.xaxis.grid(True) + ax.yaxis.grid(False) + ax.set_yticks(ind+0.4/2) + ax.set_xlim(0,upper) + ax.set_yticklabels(data['name']) + ax.set_xlabel(xlab, horizontalalignment='left', x=0, labelpad=10, fontname = font.normal, fontsize=10, fontweight = 'bold') + + ax.set_facecolor('xkcd:white') + j=0 + + if precision < 1: + data[['values1', 'values2']] = data[['values1', 'values2']].astype(int) + for i in data['values2']: + if i < 0.1*upper: + ax.annotate(str(format(round(i,precision), ',')), xy=(i-0.015*upper, j-0.05), ha = 'right', color = 'w', fontname = font.normal, fontsize=10) + else: + ax.annotate(str(format(round(i,precision), ',')), xy=(i-0.015*upper, j-0.05), ha = 'right', color = 'w', fontname = font.normal, fontsize=10) + j=j+1 + j=0.4 + for i in data['values1']: + if i < 0.1*upper: + ax.annotate(str(format(round(i,precision), ',')), xy=(i+0.015*upper, j-0.05), ha = 'left', color = 'k', fontname = font.normal, fontsize=10) + else: + ax.annotate(str(format(round(i,precision), ',')), xy=(i-0.015*upper, j-0.05), ha = 'right', color = 'w', fontname = font.normal, fontsize=10) + j=j+1 + + + ax.legend((p1[0], p2[0]), (lab1, lab2), loc=4, frameon=False, prop=font.leg_font) + plt.xticks(range(xmin,upper+int(0.1*xinc), xinc), fontname = font.normal, fontsize =10) + plt.yticks( fontname = font.normal, fontsize =10) + + if percent == True: + data_yoy = data + data_yoy['percent'] = (data['values2']-data['values1'])*100/data['values1'] + j=0.15 + for index, row in data_yoy.iterrows(): + ax.annotate('+'+str(format(int(round(row['percent'],0)), ','))+'%', xy=(max(row[['values1', 'values2']]) + 0.03*upper, j), + color = 'k', fontname = font.normal, fontsize=10) + j=j+1 + + + return fig, ax
+ +
[docs] def bar_chart(data_in, xlab,**kwargs): + """Creates a bar chart + + Parameters + ----------- + data : dataframe + Data for the bar chart. The dataframe must have 2 columns, the first representing the y ticks, and the second representing the data + xlab : str + Label for the x axis. + xmax : int, optional, default is the max s value + The max value of the y axis + xmin : int, optional, default is 0 + The minimum value of the x axis + precision : int, optional, default is -1 + Decimal places in the annotations + + xinc : int, optional + The increment of ticks on the x axis. + + Returns + -------- + fig + Matplotlib fig object + ax + Matplotlib ax object + + """ + func() + data = data_in.copy(deep=True) + + data.columns = ['name', 'values1'] + + xmin = kwargs.get('xmin', 0) + xmax = kwargs.get('xmax', None) + precision = kwargs.get('precision', 0) + + xmax_flag = True + if xmax == None: + xmax = data['values1'].max() + xmax_flag = False + + delta = (xmax - xmin)/4 + i = 0 + while True: + if delta < 10: + break + delta /= 10 + i += 1 + xinc = kwargs.get('xinc', int(round(delta+1)*pow(10,i))) + + if xmax_flag == True: + upper = xmax + else: + upper = int(4*xinc+xmin) + + ind = np.arange(len(data)) + + fig, ax = plt.subplots() + fig.set_size_inches(6.1, len(data)*0.7) + ax.grid(color='k', linestyle='-', linewidth=0.25) + p2 = ax.barh(ind, data['values1'], 0.75, align='center', color = colour.purple) + ax.xaxis.set_major_formatter(mpl.ticker.StrMethodFormatter('{x:,.0f}')) + + ax.xaxis.grid(True) + ax.yaxis.grid(False) + ax.set_yticks(ind) + ax.set_xlim(0,upper) + ax.set_yticklabels(data['name']) + ax.set_xlabel(xlab, horizontalalignment='left', x=0, labelpad=10, fontname = font.normal, fontsize=10, fontweight = 'bold') + + ax.set_facecolor('xkcd:white') + j=0 + + if precision < 1: + data['values1'] = data['values1'].astype(int) + + j=0 + for i in data['values1']: + if i < 0.1*upper: + ax.annotate(str(format(round(i,precision), ',')), xy=(i+0.015*upper, j-0.05), ha = 'left', color = 'k', fontname = font.normal, fontsize=10) + else: + ax.annotate(str(format(round(i,precision), ',')), xy=(i-0.015*upper, j-0.05), ha = 'right', color = 'w', fontname = font.normal, fontsize=10) + j=j+1 + + + plt.xticks(range(xmin,upper+int(0.1*xinc), xinc), fontname = font.normal, fontsize =10) + plt.yticks( fontname = font.normal, fontsize =10) + + return fig, ax
+
+ +
+
+
+ +
+
+ + + + + + + \ No newline at end of file diff --git a/docs/_sources/auto_examples/index.rst.txt b/docs/_sources/auto_examples/index.rst.txt new file mode 100644 index 0000000..3df34af --- /dev/null +++ b/docs/_sources/auto_examples/index.rst.txt @@ -0,0 +1,139 @@ +:orphan: + + + +.. _sphx_glr_auto_examples: + +Gallery of Charts +================== + +Below is a gallery of example charts for each charting function in rick.charts. + + +.. raw:: html + +
+ +.. only:: html + + .. figure:: /auto_examples/images/thumb/sphx_glr_plot_bar_thumb.png + + :ref:`sphx_glr_auto_examples_plot_bar.py` + +.. raw:: html + +
+ + +.. toctree:: + :hidden: + + /auto_examples/plot_bar + +.. raw:: html + +
+ +.. only:: html + + .. figure:: /auto_examples/images/thumb/sphx_glr_plot_tow_thumb.png + + :ref:`sphx_glr_auto_examples_plot_tow.py` + +.. raw:: html + +
+ + +.. toctree:: + :hidden: + + /auto_examples/plot_tow + +.. raw:: html + +
+ +.. only:: html + + .. figure:: /auto_examples/images/thumb/sphx_glr_plot_stacked_thumb.png + + :ref:`sphx_glr_auto_examples_plot_stacked.py` + +.. raw:: html + +
+ + +.. toctree:: + :hidden: + + /auto_examples/plot_stacked + +.. raw:: html + +
+ +.. only:: html + + .. figure:: /auto_examples/images/thumb/sphx_glr_plot_chloropleth_thumb.png + + :ref:`sphx_glr_auto_examples_plot_chloropleth.py` + +.. raw:: html + +
+ + +.. toctree:: + :hidden: + + /auto_examples/plot_chloropleth + +.. raw:: html + +
+ +.. only:: html + + .. figure:: /auto_examples/images/thumb/sphx_glr_plot_line_thumb.png + + :ref:`sphx_glr_auto_examples_plot_line.py` + +.. raw:: html + +
+ + +.. toctree:: + :hidden: + + /auto_examples/plot_line +.. raw:: html + +
+ + + +.. only :: html + + .. container:: sphx-glr-footer + :class: sphx-glr-footer-gallery + + + .. container:: sphx-glr-download + + :download:`Download all examples in Python source code: auto_examples_python.zip ` + + + + .. container:: sphx-glr-download + + :download:`Download all examples in Jupyter notebooks: auto_examples_jupyter.zip ` + + +.. only:: html + + .. rst-class:: sphx-glr-signature + + `Gallery generated by Sphinx-Gallery `_ diff --git a/docs/_sources/auto_examples/plot_bar.rst.txt b/docs/_sources/auto_examples/plot_bar.rst.txt new file mode 100644 index 0000000..c20872e --- /dev/null +++ b/docs/_sources/auto_examples/plot_bar.rst.txt @@ -0,0 +1,101 @@ +.. note:: + :class: sphx-glr-download-link-note + + Click :ref:`here ` to download the full example code +.. rst-class:: sphx-glr-example-title + +.. _sphx_glr_auto_examples_plot_bar.py: + + +Bar Chart +================== + +Makes an example of a bar chart. + + +.. code-block:: default + + + from sqlalchemy import create_engine + import matplotlib.pyplot as plt + import matplotlib as mpl + import pandas as pd + import configparser + from psycopg2 import connect + import psycopg2.sql as pg + import pandas.io.sql as pandasql + import numpy as np + import datetime + import math + import rick + import geopandas as gpd + import os + import shapely + from shapely.geometry import Point + os.environ["PROJ_LIB"]=r"C:\Users\rliu4\AppData\Local\Continuum\anaconda3\Library\share" + import importlib + import matplotlib.ticker as ticker + import matplotlib.font_manager as font_manager + + + + + + + +Data Collection +---------------- + +This creates a test dataframe to use + + +.. code-block:: default + + pass_data = {'cat': ['PTC','Taxi', 'Trip Making Population'], + 'TTC Pass': [22,16,16], + } + + transit_pass = pd.DataFrame(pass_data,columns= ['cat', 'TTC Pass']) + transit_pass = transit_pass .reindex(index=transit_pass .index[::-1]) + + fig, ax = rick.charts.bar_chart(transit_pass, xlab='Trips') + + +.. image:: /auto_examples/images/sphx_glr_plot_bar_001.png + :class: sphx-glr-single-img + + + + + +.. rst-class:: sphx-glr-timing + + **Total running time of the script:** ( 0 minutes 27.838 seconds) + + +.. _sphx_glr_download_auto_examples_plot_bar.py: + + +.. only :: html + + .. container:: sphx-glr-footer + :class: sphx-glr-footer-example + + + + .. container:: sphx-glr-download + + :download:`Download Python source code: plot_bar.py ` + + + + .. container:: sphx-glr-download + + :download:`Download Jupyter notebook: plot_bar.ipynb ` + + +.. only:: html + + .. rst-class:: sphx-glr-signature + + `Gallery generated by Sphinx-Gallery `_ diff --git a/docs/_sources/auto_examples/plot_chloropleth.rst.txt b/docs/_sources/auto_examples/plot_chloropleth.rst.txt new file mode 100644 index 0000000..afc09fb --- /dev/null +++ b/docs/_sources/auto_examples/plot_chloropleth.rst.txt @@ -0,0 +1,174 @@ +.. note:: + :class: sphx-glr-download-link-note + + Click :ref:`here ` to download the full example code +.. rst-class:: sphx-glr-example-title + +.. _sphx_glr_auto_examples_plot_chloropleth.py: + + +Chloropleth Map +================== + +Makes an example of a chloropleth map. + + +.. code-block:: default + + + + from sqlalchemy import create_engine + import matplotlib.pyplot as plt + import matplotlib as mpl + import pandas as pd + import configparser + from psycopg2 import connect + import psycopg2.sql as pg + import pandas.io.sql as pandasql + import numpy as np + import datetime + import math + import rick + import geopandas as gpd + import os + import shapely + from shapely.geometry import Point + os.environ["PROJ_LIB"]=r"C:\Users\rliu4\AppData\Local\Continuum\anaconda3\Library\share" + import importlib + import matplotlib.ticker as ticker + import matplotlib.font_manager as font_manager + CONFIG = configparser.ConfigParser() + CONFIG.read(r'C:\Users\rliu4\Documents\Python\config.cfg') + dbset = CONFIG['DBSETTINGS'] + con = connect(**dbset) + + + + + + + +Data Collection +---------------- + +This Section grabs and formats the data. + + +.. code-block:: default + + query = ''' + + WITH sum AS ( + SELECT extract(month from pickup_datetime) as mon, extract(year from pickup_datetime) as yr, extract(week from pickup_datetime) as wk, pickup_neighbourhood, + sum(count) as count FROM ptc.trip_data_agg_neighbourhood + GROUP BY pickup_datetime, pickup_neighbourhood + + ), ward1 AS ( + + SELECT avg(count) as count, pickup_neighbourhood from sum + WHERE (yr=2018 AND mon IN (9)) + GROUP BY pickup_neighbourhood + ORDER BY count + ), ward2 AS ( + + SELECT avg(count) as count, pickup_neighbourhood from sum + WHERE (yr=2016 AND mon IN (10)) + GROUP BY pickup_neighbourhood + ORDER BY count + ) + + SELECT pickup_neighbourhood, geom, (b.count - a.count)/(a.count)*100 as growth FROM ward2 a + LEFT JOIN ward1 b USING ( pickup_neighbourhood) + LEFT JOIN gis.neighbourhood ON area_s_cd::integer=pickup_neighbourhood + + ''' + + + + + + +Rotates data 17 degrees to orient Toronto perpendicularly + + +.. code-block:: default + + data = gpd.GeoDataFrame.from_postgis(query, con, geom_col='geom') + data = data.to_crs({'init' :'epsg:3857'}) + + for index, row in data.iterrows(): + rotated = shapely.affinity.rotate(row['geom'], angle=-17, origin = Point(0, 0)) + data.at[index, 'geom'] = rotated + + + + + + + +The function only needs these columns, in this order + + +.. code-block:: default + + data=data[['geom', 'growth']] + + + + + + + + +Calls the Function + + + + + +.. code-block:: default + + fig, ax = rick.charts.chloro_map(con, data, subway = True, lower = 0, upper = 300, title = 'Growth in Trips', + island = False, unit = '%', nbins = 3) + + + + +.. image:: /auto_examples/images/sphx_glr_plot_chloropleth_001.png + :class: sphx-glr-single-img + + + + + +.. rst-class:: sphx-glr-timing + + **Total running time of the script:** ( 0 minutes 18.050 seconds) + + +.. _sphx_glr_download_auto_examples_plot_chloropleth.py: + + +.. only :: html + + .. container:: sphx-glr-footer + :class: sphx-glr-footer-example + + + + .. container:: sphx-glr-download + + :download:`Download Python source code: plot_chloropleth.py ` + + + + .. container:: sphx-glr-download + + :download:`Download Jupyter notebook: plot_chloropleth.ipynb ` + + +.. only:: html + + .. rst-class:: sphx-glr-signature + + `Gallery generated by Sphinx-Gallery `_ diff --git a/docs/_sources/auto_examples/plot_line.rst.txt b/docs/_sources/auto_examples/plot_line.rst.txt new file mode 100644 index 0000000..af24062 --- /dev/null +++ b/docs/_sources/auto_examples/plot_line.rst.txt @@ -0,0 +1,197 @@ +.. note:: + :class: sphx-glr-download-link-note + + Click :ref:`here ` to download the full example code +.. rst-class:: sphx-glr-example-title + +.. _sphx_glr_auto_examples_plot_line.py: + + +Line Chart +================== + +Makes an example of a line chart, with an additional baseline plot and custom formatted x axis. + + +.. code-block:: default + + + from sqlalchemy import create_engine + import matplotlib.pyplot as plt + import matplotlib as mpl + import pandas as pd + import configparser + from psycopg2 import connect + import psycopg2.sql as pg + import pandas.io.sql as pandasql + import numpy as np + import datetime + import math + import rick + import geopandas as gpd + import os + import shapely + from shapely.geometry import Point + os.environ["PROJ_LIB"]=r"C:\Users\rliu4\AppData\Local\Continuum\anaconda3\Library\share" + import importlib + import matplotlib.ticker as ticker + import matplotlib.font_manager as font_manager + + + CONFIG = configparser.ConfigParser() + CONFIG.read(r'C:\Users\rliu4\Documents\Python\config.cfg') + dbset = CONFIG['DBSETTINGS'] + con = connect(**dbset) + + + + + + +Data Collection +---------------- + +This Section grabs and formats the data. + + +.. code-block:: default + + + query=''' + WITH daily_ave AS ( + + SELECT * FROM ptc.daily_trips + ), total AS ( + SELECT extract(month from pickup_datetime) as mon, + extract(year from pickup_datetime) as yr, + + CASE WHEN extract(year from pickup_datetime) = 2018 AND extract(month from pickup_datetime) IN (3) THEN 108321 + WHEN extract(year from pickup_datetime) = 2018 AND extract(month from pickup_datetime) IN (11) THEN 161733 ELSE + avg(count)::integer END as count FROM daily_ave + GROUP BY extract(month from pickup_datetime), extract(year from pickup_datetime) + ORDER BY extract(year from pickup_datetime), extract(month from pickup_datetime) + ) + + + SELECT + CASE WHEN mon = 1 THEN to_char(to_timestamp (mon::text, 'MM'), 'Mon')||' '||yr::text + WHEN mon = 9 AND yr = 2016 THEN to_char(to_timestamp (mon::text, 'MM'), 'Mon')||' '||yr::text + ELSE to_char(to_timestamp (mon::text, 'MM'), 'Mon') + END AS period, + count FROM total + ''' + total=pandasql.read_sql(query, con) + + + + + + +Gets the baseline data (to be graphed in grey) + + +.. code-block:: default + + + + + query=''' + WITH daily_ave AS ( + + SELECT * FROM ptc.daily_trips + ), total AS ( + SELECT extract(month from pickup_datetime) as mon, + extract(year from pickup_datetime) as yr, + + CASE WHEN extract(year from pickup_datetime) = 2018 AND extract(month from pickup_datetime) IN (3) THEN 108321 + WHEN extract(year from pickup_datetime) = 2018 AND extract(month from pickup_datetime) IN (11) THEN 161733 ELSE + avg(count)::integer END as count FROM daily_ave + GROUP BY extract(month from pickup_datetime), extract(year from pickup_datetime) + ORDER BY extract(year from pickup_datetime), extract(month from pickup_datetime) + ) + + + SELECT + CASE WHEN mon = 1 THEN to_char(to_timestamp (mon::text, 'MM'), 'Mon')||' '||yr::text + WHEN mon = 9 AND yr = 2016 THEN to_char(to_timestamp (mon::text, 'MM'), 'Mon')||' '||yr::text + ELSE to_char(to_timestamp (mon::text, 'MM'), 'Mon') + END AS period, + count/2 as count FROM total + ''' + total2=pandasql.read_sql(query, con) + + fig, ax, props = rick.charts.line_chart(total['count'], 'Trips', 'Time', baseline = total2['count']) + + + + +.. image:: /auto_examples/images/sphx_glr_plot_line_001.png + :class: sphx-glr-single-img + + + + +Adds annotations + + +.. code-block:: default + + fig.text(0.94, 0.96, '176,000', transform=ax.transAxes, wrap = True, fontsize=9, fontname = 'Libre Franklin', + verticalalignment='top', ha = 'center', bbox=props, color = '#660159') + + + + + + +Adds custom x axis + + +.. code-block:: default + + month_lst2 = ['Sept\n2016', 'Jan\n2017', 'May', 'Sept', + 'Jan\n2018', 'May', 'Sept', + 'Jan\n2019','May',] + plt.xticks(range(0,35,4), month_lst2, fontsize=9, fontname = 'Libre Franklin') + + + + +.. image:: /auto_examples/images/sphx_glr_plot_line_002.png + :class: sphx-glr-single-img + + + + + +.. rst-class:: sphx-glr-timing + + **Total running time of the script:** ( 0 minutes 1.126 seconds) + + +.. _sphx_glr_download_auto_examples_plot_line.py: + + +.. only :: html + + .. container:: sphx-glr-footer + :class: sphx-glr-footer-example + + + + .. container:: sphx-glr-download + + :download:`Download Python source code: plot_line.py ` + + + + .. container:: sphx-glr-download + + :download:`Download Jupyter notebook: plot_line.ipynb ` + + +.. only:: html + + .. rst-class:: sphx-glr-signature + + `Gallery generated by Sphinx-Gallery `_ diff --git a/docs/_sources/auto_examples/plot_stacked.rst.txt b/docs/_sources/auto_examples/plot_stacked.rst.txt new file mode 100644 index 0000000..238000d --- /dev/null +++ b/docs/_sources/auto_examples/plot_stacked.rst.txt @@ -0,0 +1,131 @@ +.. note:: + :class: sphx-glr-download-link-note + + Click :ref:`here ` to download the full example code +.. rst-class:: sphx-glr-example-title + +.. _sphx_glr_auto_examples_plot_stacked.py: + + +Stacked Bar Chart +================== + +Makes an example of a stacked bar chart. + + +.. code-block:: default + + + from sqlalchemy import create_engine + import matplotlib.pyplot as plt + import matplotlib as mpl + import pandas as pd + import configparser + from psycopg2 import connect + import psycopg2.sql as pg + import pandas.io.sql as pandasql + import numpy as np + import datetime + import math + import rick + import geopandas as gpd + import os + import shapely + from shapely.geometry import Point + os.environ["PROJ_LIB"]=r"C:\Users\rliu4\AppData\Local\Continuum\anaconda3\Library\share" + import importlib + import matplotlib.ticker as ticker + import matplotlib.font_manager as font_manager + + + CONFIG = configparser.ConfigParser() + CONFIG.read(r'C:\Users\rliu4\Documents\Python\config.cfg') + dbset = CONFIG['DBSETTINGS'] + con = connect(**dbset) + + + + + + +Data Collection +---------------- + +This Section grabs and formats the data. + + +.. code-block:: default + + query = ''' + + WITH sum AS ( + + SELECT pickup_datetime, sum(count) as count, extract(month from pickup_datetime) as mon, extract(year from pickup_datetime) as yr, area_name FROM ptc.trip_data_agg_ward_25 + LEFT JOIN gis.ward_community_lookup ON pickup_ward2018 = area_short + + WHERE pickup_datetime > '2016-09-30' + GROUP BY pickup_datetime, area_name + ), collect AS ( + SELECT area_name, avg(count) as count, mon, yr from sum + group by area_name, mon, yr) + + ,tot1 AS ( + + SELECT area_name, avg(count) as count FROM collect + WHERE (yr =2016 AND mon IN (10)) + GROUP BY area_name + ), tot2 AS ( + + SELECT area_name, avg(count) as count FROM collect + WHERE (yr =2018 AND mon IN (9)) + GROUP BY area_name + ) + SELECT SPLIT_PART(area_name, 'Community', 1) as area_name, + b.count as count1, a.count as count2 FROM tot1 b + LEFT JOIN tot2 a USING (area_name) + ORDER BY count1 ASC + ''' + + district_cond = pandasql.read_sql(query, con) + + fig, ax = rick.charts.stacked_chart(district_cond, xlab = 'Trips', lab1 = '2016', lab2 = '2018', percent = True) + + +.. image:: /auto_examples/images/sphx_glr_plot_stacked_001.png + :class: sphx-glr-single-img + + + + + +.. rst-class:: sphx-glr-timing + + **Total running time of the script:** ( 0 minutes 3.557 seconds) + + +.. _sphx_glr_download_auto_examples_plot_stacked.py: + + +.. only :: html + + .. container:: sphx-glr-footer + :class: sphx-glr-footer-example + + + + .. container:: sphx-glr-download + + :download:`Download Python source code: plot_stacked.py ` + + + + .. container:: sphx-glr-download + + :download:`Download Jupyter notebook: plot_stacked.ipynb ` + + +.. only:: html + + .. rst-class:: sphx-glr-signature + + `Gallery generated by Sphinx-Gallery `_ diff --git a/docs/_sources/auto_examples/plot_tow.rst.txt b/docs/_sources/auto_examples/plot_tow.rst.txt new file mode 100644 index 0000000..967cc39 --- /dev/null +++ b/docs/_sources/auto_examples/plot_tow.rst.txt @@ -0,0 +1,125 @@ +.. note:: + :class: sphx-glr-download-link-note + + Click :ref:`here ` to download the full example code +.. rst-class:: sphx-glr-example-title + +.. _sphx_glr_auto_examples_plot_tow.py: + + +Time of Week Chart +================== + +Makes an example of a time of week chart. + + +.. code-block:: default + + + from sqlalchemy import create_engine + import matplotlib.pyplot as plt + import matplotlib as mpl + import pandas as pd + import configparser + from psycopg2 import connect + import psycopg2.sql as pg + import pandas.io.sql as pandasql + import numpy as np + import datetime + import math + import rick + import geopandas as gpd + import os + import shapely + from shapely.geometry import Point + os.environ["PROJ_LIB"]=r"C:\Users\rliu4\AppData\Local\Continuum\anaconda3\Library\share" + import importlib + import matplotlib.ticker as ticker + import matplotlib.font_manager as font_manager + + + CONFIG = configparser.ConfigParser() + CONFIG.read(r'C:\Users\rliu4\Documents\Python\config.cfg') + dbset = CONFIG['DBSETTINGS'] + con = connect(**dbset) + + + + + + +Data Collection +---------------- + +This Section grabs and formats the data. + + +.. code-block:: default + + query = ''' + + WITH sum AS ( + + SELECT pickup_datetime, hr, sum(count) as count, extract(month from pickup_datetime) as mon, extract(year from pickup_datetime) as yr, + extract(dow from pickup_datetime) as dow FROM ptc.trip_data_agg_ward_25 + + + WHERE pickup_datetime > '2018-08-31' + GROUP BY pickup_datetime, hr + + ) + , collect AS ( + SELECT avg(count) as count, hr, dow from sum + group by hr, dow) + + SELECT period_name, period_uid, count, hr, CASE WHEN dow = 0 THEN 7 ELSE dow END AS dow, + CASE WHEN swatch IS NULL THEN '#999999' ELSE swatch END AS swatch + FROM collect + LEFT JOIN ptc.period_lookup_simple ON dow=period_dow AND hr=period_hr + LEFT JOIN ptc.periods_simple USING (period_uid) + ORDER BY dow, hr + + ''' + count_18 = pandasql.read_sql(query,con) + + fig, ax, prop = rick.charts.tow_chart(data = count_18['count'], ylab='Trips', ymax = 14000, yinc= 3500) + + +.. image:: /auto_examples/images/sphx_glr_plot_tow_001.png + :class: sphx-glr-single-img + + + + + +.. rst-class:: sphx-glr-timing + + **Total running time of the script:** ( 0 minutes 1.408 seconds) + + +.. _sphx_glr_download_auto_examples_plot_tow.py: + + +.. only :: html + + .. container:: sphx-glr-footer + :class: sphx-glr-footer-example + + + + .. container:: sphx-glr-download + + :download:`Download Python source code: plot_tow.py ` + + + + .. container:: sphx-glr-download + + :download:`Download Jupyter notebook: plot_tow.ipynb ` + + +.. only:: html + + .. rst-class:: sphx-glr-signature + + `Gallery generated by Sphinx-Gallery `_ diff --git a/docs/_sources/auto_examples/sg_execution_times.rst.txt b/docs/_sources/auto_examples/sg_execution_times.rst.txt new file mode 100644 index 0000000..b94b955 --- /dev/null +++ b/docs/_sources/auto_examples/sg_execution_times.rst.txt @@ -0,0 +1,14 @@ + +:orphan: + +.. _sphx_glr_auto_examples_sg_execution_times: + +Computation times +================= +**00:33.929** total execution time for **auto_examples** files: + +- **00:27.838**: :ref:`sphx_glr_auto_examples_plot_bar.py` (``plot_bar.py``) +- **00:03.557**: :ref:`sphx_glr_auto_examples_plot_stacked.py` (``plot_stacked.py``) +- **00:01.408**: :ref:`sphx_glr_auto_examples_plot_tow.py` (``plot_tow.py``) +- **00:01.126**: :ref:`sphx_glr_auto_examples_plot_line.py` (``plot_line.py``) +- **00:00.000**: :ref:`sphx_glr_auto_examples_plot_chloropleth.py` (``plot_chloropleth.py``) diff --git a/docs/_sources/code.rst.txt b/docs/_sources/code.rst.txt new file mode 100644 index 0000000..01cb60b --- /dev/null +++ b/docs/_sources/code.rst.txt @@ -0,0 +1,5 @@ +Auto Generated Documentation +============================ + +.. automodule:: rick + :members: \ No newline at end of file diff --git a/docs/_sources/index.rst.txt b/docs/_sources/index.rst.txt new file mode 100644 index 0000000..9bde69a --- /dev/null +++ b/docs/_sources/index.rst.txt @@ -0,0 +1,25 @@ +.. VFH Charts documentation master file, created by + sphinx-quickstart on Tue Jul 16 16:26:10 2019. + You can adapt this file completely to your liking, but it should at least + contain the root `toctree` directive. + +Repeatable Information Charts Kit README +========================================== + +This module was inspired by charts created for the VFH Bylaw Review Report. There was a need to develop a standardized brand and design language for everything BDITTO produces, so this module aims to produce a regularized set of charts and maps that are consistent with previous charts we create. All of the chart/map producing functions returns a matplotlib fig and ax object so that the figure can be further modified using matplotlib functions. + +.. toctree:: + :maxdepth: 2 + :caption: Contents: + + code + auto_examples/index + + + +Indices and tables +================== + +* :ref:`genindex` +* :ref:`modindex` +* :ref:`search` diff --git a/docs/_static/alabaster.css b/docs/_static/alabaster.css new file mode 100644 index 0000000..be65b13 --- /dev/null +++ b/docs/_static/alabaster.css @@ -0,0 +1,693 @@ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +@import url("basic.css"); + +/* -- page layout ----------------------------------------------------------- */ + +body { + font-family: 'goudy old style', 'minion pro', 'bell mt', Georgia, 'Hiragino Mincho Pro', serif; + font-size: 17px; + background-color: #fff; + color: #000; + margin: 0; + padding: 0; +} + + +div.document { + width: 940px; + margin: 30px auto 0 auto; +} + +div.documentwrapper { + float: left; + width: 100%; +} + +div.bodywrapper { + margin: 0 0 0 220px; +} + +div.sphinxsidebar { + width: 220px; + font-size: 14px; + line-height: 1.5; +} + +hr { + border: 1px solid #B1B4B6; +} + +div.body { + background-color: #fff; + color: #3E4349; + padding: 0 30px 0 30px; +} + +div.body > .section { + text-align: left; +} + +div.footer { + width: 940px; + margin: 20px auto 30px auto; + font-size: 14px; + color: #888; + text-align: right; +} + +div.footer a { + color: #888; +} + +p.caption { + font-family: inherit; + font-size: inherit; +} + + +div.relations { + display: none; +} + + +div.sphinxsidebar a { + color: #444; + text-decoration: none; + border-bottom: 1px dotted #999; +} + +div.sphinxsidebar a:hover { + border-bottom: 1px solid #999; +} + +div.sphinxsidebarwrapper { + padding: 18px 10px; +} + +div.sphinxsidebarwrapper p.logo { + padding: 0; + margin: -10px 0 0 0px; + text-align: center; +} + +div.sphinxsidebarwrapper h1.logo { + margin-top: -10px; + text-align: center; + margin-bottom: 5px; + text-align: left; +} + +div.sphinxsidebarwrapper h1.logo-name { + margin-top: 0px; +} + +div.sphinxsidebarwrapper p.blurb { + margin-top: 0; + font-style: normal; +} + +div.sphinxsidebar h3, +div.sphinxsidebar h4 { + font-family: 'Garamond', 'Georgia', serif; + color: #444; + font-size: 24px; + font-weight: normal; + margin: 0 0 5px 0; + padding: 0; +} + +div.sphinxsidebar h4 { + font-size: 20px; +} + +div.sphinxsidebar h3 a { + color: #444; +} + +div.sphinxsidebar p.logo a, +div.sphinxsidebar h3 a, +div.sphinxsidebar p.logo a:hover, +div.sphinxsidebar h3 a:hover { + border: none; +} + +div.sphinxsidebar p { + color: #555; + margin: 10px 0; +} + +div.sphinxsidebar ul { + margin: 10px 0; + padding: 0; + color: #000; +} + +div.sphinxsidebar ul li.toctree-l1 > a { + font-size: 120%; +} + +div.sphinxsidebar ul li.toctree-l2 > a { + font-size: 110%; +} + +div.sphinxsidebar input { + border: 1px solid #CCC; + font-family: 'goudy old style', 'minion pro', 'bell mt', Georgia, 'Hiragino Mincho Pro', serif; + font-size: 1em; +} + +div.sphinxsidebar hr { + border: none; + height: 1px; + color: #AAA; + background: #AAA; + + text-align: left; + margin-left: 0; + width: 50%; +} + +/* -- body styles ----------------------------------------------------------- */ + +a { + color: #004B6B; + text-decoration: underline; +} + +a:hover { + color: #6D4100; + text-decoration: underline; +} + +div.body h1, +div.body h2, +div.body h3, +div.body h4, +div.body h5, +div.body h6 { + font-family: 'Garamond', 'Georgia', serif; + font-weight: normal; + margin: 30px 0px 10px 0px; + padding: 0; +} + +div.body h1 { margin-top: 0; padding-top: 0; font-size: 240%; } +div.body h2 { font-size: 180%; } +div.body h3 { font-size: 150%; } +div.body h4 { font-size: 130%; } +div.body h5 { font-size: 100%; } +div.body h6 { font-size: 100%; } + +a.headerlink { + color: #DDD; + padding: 0 4px; + text-decoration: none; +} + +a.headerlink:hover { + color: #444; + background: #EAEAEA; +} + +div.body p, div.body dd, div.body li { + line-height: 1.4em; +} + +div.admonition { + margin: 20px 0px; + padding: 10px 30px; + background-color: #EEE; + border: 1px solid #CCC; +} + +div.admonition tt.xref, div.admonition code.xref, div.admonition a tt { + background-color: #FBFBFB; + border-bottom: 1px solid #fafafa; +} + +div.admonition p.admonition-title { + font-family: 'Garamond', 'Georgia', serif; + font-weight: normal; + font-size: 24px; + margin: 0 0 10px 0; + padding: 0; + line-height: 1; +} + +div.admonition p.last { + margin-bottom: 0; +} + +div.highlight { + background-color: #fff; +} + +dt:target, .highlight { + background: #FAF3E8; +} + +div.warning { + background-color: #FCC; + border: 1px solid #FAA; +} + +div.danger { + background-color: #FCC; + border: 1px solid #FAA; + -moz-box-shadow: 2px 2px 4px #D52C2C; + -webkit-box-shadow: 2px 2px 4px #D52C2C; + box-shadow: 2px 2px 4px #D52C2C; +} + +div.error { + background-color: #FCC; + border: 1px solid #FAA; + -moz-box-shadow: 2px 2px 4px #D52C2C; + -webkit-box-shadow: 2px 2px 4px #D52C2C; + box-shadow: 2px 2px 4px #D52C2C; +} + +div.caution { + background-color: #FCC; + border: 1px solid #FAA; +} + +div.attention { + background-color: #FCC; + border: 1px solid #FAA; +} + +div.important { + background-color: #EEE; + border: 1px solid #CCC; +} + +div.note { + background-color: #EEE; + border: 1px solid #CCC; +} + +div.tip { + background-color: #EEE; + border: 1px solid #CCC; +} + +div.hint { + background-color: #EEE; + border: 1px solid #CCC; +} + +div.seealso { + background-color: #EEE; + border: 1px solid #CCC; +} + +div.topic { + background-color: #EEE; +} + +p.admonition-title { + display: inline; +} + +p.admonition-title:after { + content: ":"; +} + +pre, tt, code { + font-family: 'Consolas', 'Menlo', 'Deja Vu Sans Mono', 'Bitstream Vera Sans Mono', monospace; + font-size: 0.9em; +} + +.hll { + background-color: #FFC; + margin: 0 -12px; + padding: 0 12px; + display: block; +} + +img.screenshot { +} + +tt.descname, tt.descclassname, code.descname, code.descclassname { + font-size: 0.95em; +} + +tt.descname, code.descname { + padding-right: 0.08em; +} + +img.screenshot { + -moz-box-shadow: 2px 2px 4px #EEE; + -webkit-box-shadow: 2px 2px 4px #EEE; + box-shadow: 2px 2px 4px #EEE; +} + +table.docutils { + border: 1px solid #888; + -moz-box-shadow: 2px 2px 4px #EEE; + -webkit-box-shadow: 2px 2px 4px #EEE; + box-shadow: 2px 2px 4px #EEE; +} + +table.docutils td, table.docutils th { + border: 1px solid #888; + padding: 0.25em 0.7em; +} + +table.field-list, table.footnote { + border: none; + -moz-box-shadow: none; + -webkit-box-shadow: none; + box-shadow: none; +} + +table.footnote { + margin: 15px 0; + width: 100%; + border: 1px solid #EEE; + background: #FDFDFD; + font-size: 0.9em; +} + +table.footnote + table.footnote { + margin-top: -15px; + border-top: none; +} + +table.field-list th { + padding: 0 0.8em 0 0; +} + +table.field-list td { + padding: 0; +} + +table.field-list p { + margin-bottom: 0.8em; +} + +/* Cloned from + * https://github.com/sphinx-doc/sphinx/commit/ef60dbfce09286b20b7385333d63a60321784e68 + */ +.field-name { + -moz-hyphens: manual; + -ms-hyphens: manual; + -webkit-hyphens: manual; + hyphens: manual; +} + +table.footnote td.label { + width: .1px; + padding: 0.3em 0 0.3em 0.5em; +} + +table.footnote td { + padding: 0.3em 0.5em; +} + +dl { + margin: 0; + padding: 0; +} + +dl dd { + margin-left: 30px; +} + +blockquote { + margin: 0 0 0 30px; + padding: 0; +} + +ul, ol { + /* Matches the 30px from the narrow-screen "li > ul" selector below */ + margin: 10px 0 10px 30px; + padding: 0; +} + +pre { + background: #EEE; + padding: 7px 30px; + margin: 15px 0px; + line-height: 1.3em; +} + +div.viewcode-block:target { + background: #ffd; +} + +dl pre, blockquote pre, li pre { + margin-left: 0; + padding-left: 30px; +} + +tt, code { + background-color: #ecf0f3; + color: #222; + /* padding: 1px 2px; */ +} + +tt.xref, code.xref, a tt { + background-color: #FBFBFB; + border-bottom: 1px solid #fff; +} + +a.reference { + text-decoration: none; + border-bottom: 1px dotted #004B6B; +} + +/* Don't put an underline on images */ +a.image-reference, a.image-reference:hover { + border-bottom: none; +} + +a.reference:hover { + border-bottom: 1px solid #6D4100; +} + +a.footnote-reference { + text-decoration: none; + font-size: 0.7em; + vertical-align: top; + border-bottom: 1px dotted #004B6B; +} + +a.footnote-reference:hover { + border-bottom: 1px solid #6D4100; +} + +a:hover tt, a:hover code { + background: #EEE; +} + + +@media screen and (max-width: 870px) { + + div.sphinxsidebar { + display: none; + } + + div.document { + width: 100%; + + } + + div.documentwrapper { + margin-left: 0; + margin-top: 0; + margin-right: 0; + margin-bottom: 0; + } + + div.bodywrapper { + margin-top: 0; + margin-right: 0; + margin-bottom: 0; + margin-left: 0; + } + + ul { + margin-left: 0; + } + + li > ul { + /* Matches the 30px from the "ul, ol" selector above */ + margin-left: 30px; + } + + .document { + width: auto; + } + + .footer { + width: auto; + } + + .bodywrapper { + margin: 0; + } + + .footer { + width: auto; + } + + .github { + display: none; + } + + + +} + + + +@media screen and (max-width: 875px) { + + body { + margin: 0; + padding: 20px 30px; + } + + div.documentwrapper { + float: none; + background: #fff; + } + + div.sphinxsidebar { + display: block; + float: none; + width: 102.5%; + margin: 50px -30px -20px -30px; + padding: 10px 20px; + background: #333; + color: #FFF; + } + + div.sphinxsidebar h3, div.sphinxsidebar h4, div.sphinxsidebar p, + div.sphinxsidebar h3 a { + color: #fff; + } + + div.sphinxsidebar a { + color: #AAA; + } + + div.sphinxsidebar p.logo { + display: none; + } + + div.document { + width: 100%; + margin: 0; + } + + div.footer { + display: none; + } + + div.bodywrapper { + margin: 0; + } + + div.body { + min-height: 0; + padding: 0; + } + + .rtd_doc_footer { + display: none; + } + + .document { + width: auto; + } + + .footer { + width: auto; + } + + .footer { + width: auto; + } + + .github { + display: none; + } +} + + +/* misc. */ + +.revsys-inline { + display: none!important; +} + +/* Make nested-list/multi-paragraph items look better in Releases changelog + * pages. Without this, docutils' magical list fuckery causes inconsistent + * formatting between different release sub-lists. + */ +div#changelog > div.section > ul > li > p:only-child { + margin-bottom: 0; +} + +/* Hide fugly table cell borders in ..bibliography:: directive output */ +table.docutils.citation, table.docutils.citation td, table.docutils.citation th { + border: none; + /* Below needed in some edge cases; if not applied, bottom shadows appear */ + -moz-box-shadow: none; + -webkit-box-shadow: none; + box-shadow: none; +} \ No newline at end of file diff --git a/docs/_static/basic.css b/docs/_static/basic.css new file mode 100644 index 0000000..c41d718 --- /dev/null +++ b/docs/_static/basic.css @@ -0,0 +1,763 @@ +/* + * basic.css + * ~~~~~~~~~ + * + * Sphinx stylesheet -- basic theme. + * + * :copyright: Copyright 2007-2019 by the Sphinx team, see AUTHORS. + * :license: BSD, see LICENSE for details. + * + */ + +/* -- main layout ----------------------------------------------------------- */ + +div.clearer { + clear: both; +} + +/* -- relbar ---------------------------------------------------------------- */ + +div.related { + width: 100%; + font-size: 90%; +} + +div.related h3 { + display: none; +} + +div.related ul { + margin: 0; + padding: 0 0 0 10px; + list-style: none; +} + +div.related li { + display: inline; +} + +div.related li.right { + float: right; + margin-right: 5px; +} + +/* -- sidebar --------------------------------------------------------------- */ + +div.sphinxsidebarwrapper { + padding: 10px 5px 0 10px; +} + +div.sphinxsidebar { + float: left; + width: 230px; + margin-left: -100%; + font-size: 90%; + word-wrap: break-word; + overflow-wrap : break-word; +} + +div.sphinxsidebar ul { + list-style: none; +} + +div.sphinxsidebar ul ul, +div.sphinxsidebar ul.want-points { + margin-left: 20px; + list-style: square; +} + +div.sphinxsidebar ul ul { + margin-top: 0; + margin-bottom: 0; +} + +div.sphinxsidebar form { + margin-top: 10px; +} + +div.sphinxsidebar input { + border: 1px solid #98dbcc; + font-family: sans-serif; + font-size: 1em; +} + +div.sphinxsidebar #searchbox form.search { + overflow: hidden; +} + +div.sphinxsidebar #searchbox input[type="text"] { + float: left; + width: 80%; + padding: 0.25em; + box-sizing: border-box; +} + +div.sphinxsidebar #searchbox input[type="submit"] { + float: left; + width: 20%; + border-left: none; + padding: 0.25em; + box-sizing: border-box; +} + + +img { + border: 0; + max-width: 100%; +} + +/* -- search page ----------------------------------------------------------- */ + +ul.search { + margin: 10px 0 0 20px; + padding: 0; +} + +ul.search li { + padding: 5px 0 5px 20px; + background-image: url(file.png); + background-repeat: no-repeat; + background-position: 0 7px; +} + +ul.search li a { + font-weight: bold; +} + +ul.search li div.context { + color: #888; + margin: 2px 0 0 30px; + text-align: left; +} + +ul.keywordmatches li.goodmatch a { + font-weight: bold; +} + +/* -- index page ------------------------------------------------------------ */ + +table.contentstable { + width: 90%; + margin-left: auto; + margin-right: auto; +} + +table.contentstable p.biglink { + line-height: 150%; +} + +a.biglink { + font-size: 1.3em; +} + +span.linkdescr { + font-style: italic; + padding-top: 5px; + font-size: 90%; +} + +/* -- general index --------------------------------------------------------- */ + +table.indextable { + width: 100%; +} + +table.indextable td { + text-align: left; + vertical-align: top; +} + +table.indextable ul { + margin-top: 0; + margin-bottom: 0; + list-style-type: none; +} + +table.indextable > tbody > tr > td > ul { + padding-left: 0em; +} + +table.indextable tr.pcap { + height: 10px; +} + +table.indextable tr.cap { + margin-top: 10px; + background-color: #f2f2f2; +} + +img.toggler { + margin-right: 3px; + margin-top: 3px; + cursor: pointer; +} + +div.modindex-jumpbox { + border-top: 1px solid #ddd; + border-bottom: 1px solid #ddd; + margin: 1em 0 1em 0; + padding: 0.4em; +} + +div.genindex-jumpbox { + border-top: 1px solid #ddd; + border-bottom: 1px solid #ddd; + margin: 1em 0 1em 0; + padding: 0.4em; +} + +/* -- domain module index --------------------------------------------------- */ + +table.modindextable td { + padding: 2px; + border-collapse: collapse; +} + +/* -- general body styles --------------------------------------------------- */ + +div.body { + min-width: 450px; + max-width: 800px; +} + +div.body p, div.body dd, div.body li, div.body blockquote { + -moz-hyphens: auto; + -ms-hyphens: auto; + -webkit-hyphens: auto; + hyphens: auto; +} + +a.headerlink { + visibility: hidden; +} + +a.brackets:before, +span.brackets > a:before{ + content: "["; +} + +a.brackets:after, +span.brackets > a:after { + content: "]"; +} + +h1:hover > a.headerlink, +h2:hover > a.headerlink, +h3:hover > a.headerlink, +h4:hover > a.headerlink, +h5:hover > a.headerlink, +h6:hover > a.headerlink, +dt:hover > a.headerlink, +caption:hover > a.headerlink, +p.caption:hover > a.headerlink, +div.code-block-caption:hover > a.headerlink { + visibility: visible; +} + +div.body p.caption { + text-align: inherit; +} + +div.body td { + text-align: left; +} + +.first { + margin-top: 0 !important; +} + +p.rubric { + margin-top: 30px; + font-weight: bold; +} + +img.align-left, .figure.align-left, object.align-left { + clear: left; + float: left; + margin-right: 1em; +} + +img.align-right, .figure.align-right, object.align-right { + clear: right; + float: right; + margin-left: 1em; +} + +img.align-center, .figure.align-center, object.align-center { + display: block; + margin-left: auto; + margin-right: auto; +} + +img.align-default, .figure.align-default { + display: block; + margin-left: auto; + margin-right: auto; +} + +.align-left { + text-align: left; +} + +.align-center { + text-align: center; +} + +.align-default { + text-align: center; +} + +.align-right { + text-align: right; +} + +/* -- sidebars -------------------------------------------------------------- */ + +div.sidebar { + margin: 0 0 0.5em 1em; + border: 1px solid #ddb; + padding: 7px 7px 0 7px; + background-color: #ffe; + width: 40%; + float: right; +} + +p.sidebar-title { + font-weight: bold; +} + +/* -- topics ---------------------------------------------------------------- */ + +div.topic { + border: 1px solid #ccc; + padding: 7px 7px 0 7px; + margin: 10px 0 10px 0; +} + +p.topic-title { + font-size: 1.1em; + font-weight: bold; + margin-top: 10px; +} + +/* -- admonitions ----------------------------------------------------------- */ + +div.admonition { + margin-top: 10px; + margin-bottom: 10px; + padding: 7px; +} + +div.admonition dt { + font-weight: bold; +} + +div.admonition dl { + margin-bottom: 0; +} + +p.admonition-title { + margin: 0px 10px 5px 0px; + font-weight: bold; +} + +div.body p.centered { + text-align: center; + margin-top: 25px; +} + +/* -- tables ---------------------------------------------------------------- */ + +table.docutils { + border: 0; + border-collapse: collapse; +} + +table.align-center { + margin-left: auto; + margin-right: auto; +} + +table.align-default { + margin-left: auto; + margin-right: auto; +} + +table caption span.caption-number { + font-style: italic; +} + +table caption span.caption-text { +} + +table.docutils td, table.docutils th { + padding: 1px 8px 1px 5px; + border-top: 0; + border-left: 0; + border-right: 0; + border-bottom: 1px solid #aaa; +} + +table.footnote td, table.footnote th { + border: 0 !important; +} + +th { + text-align: left; + padding-right: 5px; +} + +table.citation { + border-left: solid 1px gray; + margin-left: 1px; +} + +table.citation td { + border-bottom: none; +} + +th > p:first-child, +td > p:first-child { + margin-top: 0px; +} + +th > p:last-child, +td > p:last-child { + margin-bottom: 0px; +} + +/* -- figures --------------------------------------------------------------- */ + +div.figure { + margin: 0.5em; + padding: 0.5em; +} + +div.figure p.caption { + padding: 0.3em; +} + +div.figure p.caption span.caption-number { + font-style: italic; +} + +div.figure p.caption span.caption-text { +} + +/* -- field list styles ----------------------------------------------------- */ + +table.field-list td, table.field-list th { + border: 0 !important; +} + +.field-list ul { + margin: 0; + padding-left: 1em; +} + +.field-list p { + margin: 0; +} + +.field-name { + -moz-hyphens: manual; + -ms-hyphens: manual; + -webkit-hyphens: manual; + hyphens: manual; +} + +/* -- hlist styles ---------------------------------------------------------- */ + +table.hlist td { + vertical-align: top; +} + + +/* -- other body styles ----------------------------------------------------- */ + +ol.arabic { + list-style: decimal; +} + +ol.loweralpha { + list-style: lower-alpha; +} + +ol.upperalpha { + list-style: upper-alpha; +} + +ol.lowerroman { + list-style: lower-roman; +} + +ol.upperroman { + list-style: upper-roman; +} + +li > p:first-child { + margin-top: 0px; +} + +li > p:last-child { + margin-bottom: 0px; +} + +dl.footnote > dt, +dl.citation > dt { + float: left; +} + +dl.footnote > dd, +dl.citation > dd { + margin-bottom: 0em; +} + +dl.footnote > dd:after, +dl.citation > dd:after { + content: ""; + clear: both; +} + +dl.field-list { + display: flex; + flex-wrap: wrap; +} + +dl.field-list > dt { + flex-basis: 20%; + font-weight: bold; + word-break: break-word; +} + +dl.field-list > dt:after { + content: ":"; +} + +dl.field-list > dd { + flex-basis: 70%; + padding-left: 1em; + margin-left: 0em; + margin-bottom: 0em; +} + +dl { + margin-bottom: 15px; +} + +dd > p:first-child { + margin-top: 0px; +} + +dd ul, dd table { + margin-bottom: 10px; +} + +dd { + margin-top: 3px; + margin-bottom: 10px; + margin-left: 30px; +} + +dt:target, span.highlighted { + background-color: #fbe54e; +} + +rect.highlighted { + fill: #fbe54e; +} + +dl.glossary dt { + font-weight: bold; + font-size: 1.1em; +} + +.optional { + font-size: 1.3em; +} + +.sig-paren { + font-size: larger; +} + +.versionmodified { + font-style: italic; +} + +.system-message { + background-color: #fda; + padding: 5px; + border: 3px solid red; +} + +.footnote:target { + background-color: #ffa; +} + +.line-block { + display: block; + margin-top: 1em; + margin-bottom: 1em; +} + +.line-block .line-block { + margin-top: 0; + margin-bottom: 0; + margin-left: 1.5em; +} + +.guilabel, .menuselection { + font-family: sans-serif; +} + +.accelerator { + text-decoration: underline; +} + +.classifier { + font-style: oblique; +} + +.classifier:before { + font-style: normal; + margin: 0.5em; + content: ":"; +} + +abbr, acronym { + border-bottom: dotted 1px; + cursor: help; +} + +/* -- code displays --------------------------------------------------------- */ + +pre { + overflow: auto; + overflow-y: hidden; /* fixes display issues on Chrome browsers */ +} + +span.pre { + -moz-hyphens: none; + -ms-hyphens: none; + -webkit-hyphens: none; + hyphens: none; +} + +td.linenos pre { + padding: 5px 0px; + border: 0; + background-color: transparent; + color: #aaa; +} + +table.highlighttable { + margin-left: 0.5em; +} + +table.highlighttable td { + padding: 0 0.5em 0 0.5em; +} + +div.code-block-caption { + padding: 2px 5px; + font-size: small; +} + +div.code-block-caption code { + background-color: transparent; +} + +div.code-block-caption + div > div.highlight > pre { + margin-top: 0; +} + +div.code-block-caption span.caption-number { + padding: 0.1em 0.3em; + font-style: italic; +} + +div.code-block-caption span.caption-text { +} + +div.literal-block-wrapper { + padding: 1em 1em 0; +} + +div.literal-block-wrapper div.highlight { + margin: 0; +} + +code.descname { + background-color: transparent; + font-weight: bold; + font-size: 1.2em; +} + +code.descclassname { + background-color: transparent; +} + +code.xref, a code { + background-color: transparent; + font-weight: bold; +} + +h1 code, h2 code, h3 code, h4 code, h5 code, h6 code { + background-color: transparent; +} + +.viewcode-link { + float: right; +} + +.viewcode-back { + float: right; + font-family: sans-serif; +} + +div.viewcode-block:target { + margin: -1px -10px; + padding: 0 10px; +} + +/* -- math display ---------------------------------------------------------- */ + +img.math { + vertical-align: middle; +} + +div.body div.math p { + text-align: center; +} + +span.eqno { + float: right; +} + +span.eqno a.headerlink { + position: relative; + left: 0px; + z-index: 1; +} + +div.math:hover a.headerlink { + visibility: visible; +} + +/* -- printout stylesheet --------------------------------------------------- */ + +@media print { + div.document, + div.documentwrapper, + div.bodywrapper { + margin: 0 !important; + width: 100%; + } + + div.sphinxsidebar, + div.related, + div.footer, + #top-link { + display: none; + } +} \ No newline at end of file diff --git a/docs/_static/broken_example.png b/docs/_static/broken_example.png new file mode 100644 index 0000000..4fea24e Binary files /dev/null and b/docs/_static/broken_example.png differ diff --git a/docs/_static/custom.css b/docs/_static/custom.css new file mode 100644 index 0000000..2a924f1 --- /dev/null +++ b/docs/_static/custom.css @@ -0,0 +1 @@ +/* This file intentionally left blank. */ diff --git a/docs/_static/doctools.js b/docs/_static/doctools.js new file mode 100644 index 0000000..b33f87f --- /dev/null +++ b/docs/_static/doctools.js @@ -0,0 +1,314 @@ +/* + * doctools.js + * ~~~~~~~~~~~ + * + * Sphinx JavaScript utilities for all documentation. + * + * :copyright: Copyright 2007-2019 by the Sphinx team, see AUTHORS. + * :license: BSD, see LICENSE for details. + * + */ + +/** + * select a different prefix for underscore + */ +$u = _.noConflict(); + +/** + * make the code below compatible with browsers without + * an installed firebug like debugger +if (!window.console || !console.firebug) { + var names = ["log", "debug", "info", "warn", "error", "assert", "dir", + "dirxml", "group", "groupEnd", "time", "timeEnd", "count", "trace", + "profile", "profileEnd"]; + window.console = {}; + for (var i = 0; i < names.length; ++i) + window.console[names[i]] = function() {}; +} + */ + +/** + * small helper function to urldecode strings + */ +jQuery.urldecode = function(x) { + return decodeURIComponent(x).replace(/\+/g, ' '); +}; + +/** + * small helper function to urlencode strings + */ +jQuery.urlencode = encodeURIComponent; + +/** + * This function returns the parsed url parameters of the + * current request. Multiple values per key are supported, + * it will always return arrays of strings for the value parts. + */ +jQuery.getQueryParameters = function(s) { + if (typeof s === 'undefined') + s = document.location.search; + var parts = s.substr(s.indexOf('?') + 1).split('&'); + var result = {}; + for (var i = 0; i < parts.length; i++) { + var tmp = parts[i].split('=', 2); + var key = jQuery.urldecode(tmp[0]); + var value = jQuery.urldecode(tmp[1]); + if (key in result) + result[key].push(value); + else + result[key] = [value]; + } + return result; +}; + +/** + * highlight a given string on a jquery object by wrapping it in + * span elements with the given class name. + */ +jQuery.fn.highlightText = function(text, className) { + function highlight(node, addItems) { + if (node.nodeType === 3) { + var val = node.nodeValue; + var pos = val.toLowerCase().indexOf(text); + if (pos >= 0 && + !jQuery(node.parentNode).hasClass(className) && + !jQuery(node.parentNode).hasClass("nohighlight")) { + var span; + var isInSVG = jQuery(node).closest("body, svg, foreignObject").is("svg"); + if (isInSVG) { + span = document.createElementNS("http://www.w3.org/2000/svg", "tspan"); + } else { + span = document.createElement("span"); + span.className = className; + } + span.appendChild(document.createTextNode(val.substr(pos, text.length))); + node.parentNode.insertBefore(span, node.parentNode.insertBefore( + document.createTextNode(val.substr(pos + text.length)), + node.nextSibling)); + node.nodeValue = val.substr(0, pos); + if (isInSVG) { + var rect = document.createElementNS("http://www.w3.org/2000/svg", "rect"); + var bbox = node.parentElement.getBBox(); + rect.x.baseVal.value = bbox.x; + rect.y.baseVal.value = bbox.y; + rect.width.baseVal.value = bbox.width; + rect.height.baseVal.value = bbox.height; + rect.setAttribute('class', className); + addItems.push({ + "parent": node.parentNode, + "target": rect}); + } + } + } + else if (!jQuery(node).is("button, select, textarea")) { + jQuery.each(node.childNodes, function() { + highlight(this, addItems); + }); + } + } + var addItems = []; + var result = this.each(function() { + highlight(this, addItems); + }); + for (var i = 0; i < addItems.length; ++i) { + jQuery(addItems[i].parent).before(addItems[i].target); + } + return result; +}; + +/* + * backward compatibility for jQuery.browser + * This will be supported until firefox bug is fixed. + */ +if (!jQuery.browser) { + jQuery.uaMatch = function(ua) { + ua = ua.toLowerCase(); + + var match = /(chrome)[ \/]([\w.]+)/.exec(ua) || + /(webkit)[ \/]([\w.]+)/.exec(ua) || + /(opera)(?:.*version|)[ \/]([\w.]+)/.exec(ua) || + /(msie) ([\w.]+)/.exec(ua) || + ua.indexOf("compatible") < 0 && /(mozilla)(?:.*? rv:([\w.]+)|)/.exec(ua) || + []; + + return { + browser: match[ 1 ] || "", + version: match[ 2 ] || "0" + }; + }; + jQuery.browser = {}; + jQuery.browser[jQuery.uaMatch(navigator.userAgent).browser] = true; +} + +/** + * Small JavaScript module for the documentation. + */ +var Documentation = { + + init : function() { + this.fixFirefoxAnchorBug(); + this.highlightSearchWords(); + this.initIndexTable(); + if (DOCUMENTATION_OPTIONS.NAVIGATION_WITH_KEYS) { + this.initOnKeyListeners(); + } + }, + + /** + * i18n support + */ + TRANSLATIONS : {}, + PLURAL_EXPR : function(n) { return n === 1 ? 0 : 1; }, + LOCALE : 'unknown', + + // gettext and ngettext don't access this so that the functions + // can safely bound to a different name (_ = Documentation.gettext) + gettext : function(string) { + var translated = Documentation.TRANSLATIONS[string]; + if (typeof translated === 'undefined') + return string; + return (typeof translated === 'string') ? translated : translated[0]; + }, + + ngettext : function(singular, plural, n) { + var translated = Documentation.TRANSLATIONS[singular]; + if (typeof translated === 'undefined') + return (n == 1) ? singular : plural; + return translated[Documentation.PLURALEXPR(n)]; + }, + + addTranslations : function(catalog) { + for (var key in catalog.messages) + this.TRANSLATIONS[key] = catalog.messages[key]; + this.PLURAL_EXPR = new Function('n', 'return +(' + catalog.plural_expr + ')'); + this.LOCALE = catalog.locale; + }, + + /** + * add context elements like header anchor links + */ + addContextElements : function() { + $('div[id] > :header:first').each(function() { + $('\u00B6'). + attr('href', '#' + this.id). + attr('title', _('Permalink to this headline')). + appendTo(this); + }); + $('dt[id]').each(function() { + $('\u00B6'). + attr('href', '#' + this.id). + attr('title', _('Permalink to this definition')). + appendTo(this); + }); + }, + + /** + * workaround a firefox stupidity + * see: https://bugzilla.mozilla.org/show_bug.cgi?id=645075 + */ + fixFirefoxAnchorBug : function() { + if (document.location.hash && $.browser.mozilla) + window.setTimeout(function() { + document.location.href += ''; + }, 10); + }, + + /** + * highlight the search words provided in the url in the text + */ + highlightSearchWords : function() { + var params = $.getQueryParameters(); + var terms = (params.highlight) ? params.highlight[0].split(/\s+/) : []; + if (terms.length) { + var body = $('div.body'); + if (!body.length) { + body = $('body'); + } + window.setTimeout(function() { + $.each(terms, function() { + body.highlightText(this.toLowerCase(), 'highlighted'); + }); + }, 10); + $('') + .appendTo($('#searchbox')); + } + }, + + /** + * init the domain index toggle buttons + */ + initIndexTable : function() { + var togglers = $('img.toggler').click(function() { + var src = $(this).attr('src'); + var idnum = $(this).attr('id').substr(7); + $('tr.cg-' + idnum).toggle(); + if (src.substr(-9) === 'minus.png') + $(this).attr('src', src.substr(0, src.length-9) + 'plus.png'); + else + $(this).attr('src', src.substr(0, src.length-8) + 'minus.png'); + }).css('display', ''); + if (DOCUMENTATION_OPTIONS.COLLAPSE_INDEX) { + togglers.click(); + } + }, + + /** + * helper function to hide the search marks again + */ + hideSearchWords : function() { + $('#searchbox .highlight-link').fadeOut(300); + $('span.highlighted').removeClass('highlighted'); + }, + + /** + * make the url absolute + */ + makeURL : function(relativeURL) { + return DOCUMENTATION_OPTIONS.URL_ROOT + '/' + relativeURL; + }, + + /** + * get the current relative url + */ + getCurrentURL : function() { + var path = document.location.pathname; + var parts = path.split(/\//); + $.each(DOCUMENTATION_OPTIONS.URL_ROOT.split(/\//), function() { + if (this === '..') + parts.pop(); + }); + var url = parts.join('/'); + return path.substring(url.lastIndexOf('/') + 1, path.length - 1); + }, + + initOnKeyListeners: function() { + $(document).keyup(function(event) { + var activeElementType = document.activeElement.tagName; + // don't navigate when in search box or textarea + if (activeElementType !== 'TEXTAREA' && activeElementType !== 'INPUT' && activeElementType !== 'SELECT') { + switch (event.keyCode) { + case 37: // left + var prevHref = $('link[rel="prev"]').prop('href'); + if (prevHref) { + window.location.href = prevHref; + return false; + } + case 39: // right + var nextHref = $('link[rel="next"]').prop('href'); + if (nextHref) { + window.location.href = nextHref; + return false; + } + } + } + }); + } +}; + +// quick alias for translations +_ = Documentation.gettext; + +$(document).ready(function() { + Documentation.init(); +}); diff --git a/docs/_static/documentation_options.js b/docs/_static/documentation_options.js new file mode 100644 index 0000000..b810979 --- /dev/null +++ b/docs/_static/documentation_options.js @@ -0,0 +1,10 @@ +var DOCUMENTATION_OPTIONS = { + URL_ROOT: document.getElementById("documentation_options").getAttribute('data-url_root'), + VERSION: '2019-07-16', + LANGUAGE: 'None', + COLLAPSE_INDEX: false, + FILE_SUFFIX: '.html', + HAS_SOURCE: true, + SOURCELINK_SUFFIX: '.txt', + NAVIGATION_WITH_KEYS: false +}; \ No newline at end of file diff --git a/docs/_static/file.png b/docs/_static/file.png new file mode 100644 index 0000000..a858a41 Binary files /dev/null and b/docs/_static/file.png differ diff --git a/docs/_static/gallery.css b/docs/_static/gallery.css new file mode 100644 index 0000000..cc43d0e --- /dev/null +++ b/docs/_static/gallery.css @@ -0,0 +1,192 @@ +/* +Sphinx-Gallery has compatible CSS to fix default sphinx themes +Tested for Sphinx 1.3.1 for all themes: default, alabaster, sphinxdoc, +scrolls, agogo, traditional, nature, haiku, pyramid +Tested for Read the Docs theme 0.1.7 */ +.sphx-glr-thumbcontainer { + background: #fff; + border: solid #fff 1px; + -moz-border-radius: 5px; + -webkit-border-radius: 5px; + border-radius: 5px; + box-shadow: none; + float: left; + margin: 5px; + min-height: 230px; + padding-top: 5px; + position: relative; +} +.sphx-glr-thumbcontainer:hover { + border: solid #b4ddfc 1px; + box-shadow: 0 0 15px rgba(142, 176, 202, 0.5); +} +.sphx-glr-thumbcontainer a.internal { + bottom: 0; + display: block; + left: 0; + padding: 150px 10px 0; + position: absolute; + right: 0; + top: 0; +} +/* Next one is to avoid Sphinx traditional theme to cover all the +thumbnail with its default link Background color */ +.sphx-glr-thumbcontainer a.internal:hover { + background-color: transparent; +} + +.sphx-glr-thumbcontainer p { + margin: 0 0 .1em 0; +} +.sphx-glr-thumbcontainer .figure { + margin: 10px; + width: 160px; +} +.sphx-glr-thumbcontainer img { + display: inline; + max-height: 160px; + width: 160px; +} +.sphx-glr-thumbcontainer[tooltip]:hover:after { + background: rgba(0, 0, 0, 0.8); + -webkit-border-radius: 5px; + -moz-border-radius: 5px; + border-radius: 5px; + color: #fff; + content: attr(tooltip); + left: 95%; + padding: 5px 15px; + position: absolute; + z-index: 98; + width: 220px; + bottom: 52%; +} +.sphx-glr-thumbcontainer[tooltip]:hover:before { + border: solid; + border-color: #333 transparent; + border-width: 18px 0 0 20px; + bottom: 58%; + content: ''; + left: 85%; + position: absolute; + z-index: 99; +} + +.highlight-pytb pre { + background-color: #ffe4e4; + border: 1px solid #f66; + margin-top: 10px; + padding: 7px; +} + +.sphx-glr-script-out { + color: #888; + margin: 0; +} +p.sphx-glr-script-out { + padding-top: 0.7em; +} +.sphx-glr-script-out .highlight { + background-color: transparent; + margin-left: 2.5em; + margin-top: -2.1em; +} +.sphx-glr-script-out .highlight pre { + background-color: #fafae2; + border: 0; + max-height: 30em; + overflow: auto; + padding-left: 1ex; + margin: 0px; + word-break: break-word; +} +.sphx-glr-script-out + p { + margin-top: 1.8em; +} +blockquote.sphx-glr-script-out { + margin-left: 0pt; +} + +div.sphx-glr-footer { + text-align: center; +} + +div.binder-badge { + margin: 1em auto; + vertical-align: middle; +} + +div.sphx-glr-download { + margin: 1em auto; + vertical-align: middle; +} + +div.sphx-glr-download a { + background-color: #ffc; + background-image: linear-gradient(to bottom, #FFC, #d5d57e); + border-radius: 4px; + border: 1px solid #c2c22d; + color: #000; + display: inline-block; + font-weight: bold; + padding: 1ex; + text-align: center; +} + +div.sphx-glr-download code.download { + display: inline-block; + white-space: normal; + word-break: normal; + overflow-wrap: break-word; + /* border and background are given by the enclosing 'a' */ + border: none; + background: none; +} + +div.sphx-glr-download a:hover { + box-shadow: inset 0 1px 0 rgba(255,255,255,.1), 0 1px 5px rgba(0,0,0,.25); + text-decoration: none; + background-image: none; + background-color: #d5d57e; +} + +.sphx-glr-example-title > :target::before { + display: block; + content: ""; + margin-top: -50px; + height: 50px; + visibility: hidden; +} + +ul.sphx-glr-horizontal { + list-style: none; + padding: 0; +} +ul.sphx-glr-horizontal li { + display: inline; +} +ul.sphx-glr-horizontal img { + height: auto !important; +} + +.sphx-glr-single-img { + margin: auto; + display: block; + max-width: 100%; +} + +.sphx-glr-multi-img { + max-width: 42%; + height: auto; +} + +p.sphx-glr-signature a.reference.external { + -moz-border-radius: 5px; + -webkit-border-radius: 5px; + border-radius: 5px; + padding: 3px; + font-size: 75%; + text-align: right; + margin-left: auto; + display: table; +} diff --git a/docs/_static/jquery-3.2.1.js b/docs/_static/jquery-3.2.1.js new file mode 100644 index 0000000..d2d8ca4 --- /dev/null +++ b/docs/_static/jquery-3.2.1.js @@ -0,0 +1,10253 @@ +/*! + * jQuery JavaScript Library v3.2.1 + * https://jquery.com/ + * + * Includes Sizzle.js + * https://sizzlejs.com/ + * + * Copyright JS Foundation and other contributors + * Released under the MIT license + * https://jquery.org/license + * + * Date: 2017-03-20T18:59Z + */ +( function( global, factory ) { + + "use strict"; + + if ( typeof module === "object" && typeof module.exports === "object" ) { + + // For CommonJS and CommonJS-like environments where a proper `window` + // is present, execute the factory and get jQuery. + // For environments that do not have a `window` with a `document` + // (such as Node.js), expose a factory as module.exports. + // This accentuates the need for the creation of a real `window`. + // e.g. var jQuery = require("jquery")(window); + // See ticket #14549 for more info. + module.exports = global.document ? + factory( global, true ) : + function( w ) { + if ( !w.document ) { + throw new Error( "jQuery requires a window with a document" ); + } + return factory( w ); + }; + } else { + factory( global ); + } + +// Pass this if window is not defined yet +} )( typeof window !== "undefined" ? window : this, function( window, noGlobal ) { + +// Edge <= 12 - 13+, Firefox <=18 - 45+, IE 10 - 11, Safari 5.1 - 9+, iOS 6 - 9.1 +// throw exceptions when non-strict code (e.g., ASP.NET 4.5) accesses strict mode +// arguments.callee.caller (trac-13335). But as of jQuery 3.0 (2016), strict mode should be common +// enough that all such attempts are guarded in a try block. +"use strict"; + +var arr = []; + +var document = window.document; + +var getProto = Object.getPrototypeOf; + +var slice = arr.slice; + +var concat = arr.concat; + +var push = arr.push; + +var indexOf = arr.indexOf; + +var class2type = {}; + +var toString = class2type.toString; + +var hasOwn = class2type.hasOwnProperty; + +var fnToString = hasOwn.toString; + +var ObjectFunctionString = fnToString.call( Object ); + +var support = {}; + + + + function DOMEval( code, doc ) { + doc = doc || document; + + var script = doc.createElement( "script" ); + + script.text = code; + doc.head.appendChild( script ).parentNode.removeChild( script ); + } +/* global Symbol */ +// Defining this global in .eslintrc.json would create a danger of using the global +// unguarded in another place, it seems safer to define global only for this module + + + +var + version = "3.2.1", + + // Define a local copy of jQuery + jQuery = function( selector, context ) { + + // The jQuery object is actually just the init constructor 'enhanced' + // Need init if jQuery is called (just allow error to be thrown if not included) + return new jQuery.fn.init( selector, context ); + }, + + // Support: Android <=4.0 only + // Make sure we trim BOM and NBSP + rtrim = /^[\s\uFEFF\xA0]+|[\s\uFEFF\xA0]+$/g, + + // Matches dashed string for camelizing + rmsPrefix = /^-ms-/, + rdashAlpha = /-([a-z])/g, + + // Used by jQuery.camelCase as callback to replace() + fcamelCase = function( all, letter ) { + return letter.toUpperCase(); + }; + +jQuery.fn = jQuery.prototype = { + + // The current version of jQuery being used + jquery: version, + + constructor: jQuery, + + // The default length of a jQuery object is 0 + length: 0, + + toArray: function() { + return slice.call( this ); + }, + + // Get the Nth element in the matched element set OR + // Get the whole matched element set as a clean array + get: function( num ) { + + // Return all the elements in a clean array + if ( num == null ) { + return slice.call( this ); + } + + // Return just the one element from the set + return num < 0 ? this[ num + this.length ] : this[ num ]; + }, + + // Take an array of elements and push it onto the stack + // (returning the new matched element set) + pushStack: function( elems ) { + + // Build a new jQuery matched element set + var ret = jQuery.merge( this.constructor(), elems ); + + // Add the old object onto the stack (as a reference) + ret.prevObject = this; + + // Return the newly-formed element set + return ret; + }, + + // Execute a callback for every element in the matched set. + each: function( callback ) { + return jQuery.each( this, callback ); + }, + + map: function( callback ) { + return this.pushStack( jQuery.map( this, function( elem, i ) { + return callback.call( elem, i, elem ); + } ) ); + }, + + slice: function() { + return this.pushStack( slice.apply( this, arguments ) ); + }, + + first: function() { + return this.eq( 0 ); + }, + + last: function() { + return this.eq( -1 ); + }, + + eq: function( i ) { + var len = this.length, + j = +i + ( i < 0 ? len : 0 ); + return this.pushStack( j >= 0 && j < len ? [ this[ j ] ] : [] ); + }, + + end: function() { + return this.prevObject || this.constructor(); + }, + + // For internal use only. + // Behaves like an Array's method, not like a jQuery method. + push: push, + sort: arr.sort, + splice: arr.splice +}; + +jQuery.extend = jQuery.fn.extend = function() { + var options, name, src, copy, copyIsArray, clone, + target = arguments[ 0 ] || {}, + i = 1, + length = arguments.length, + deep = false; + + // Handle a deep copy situation + if ( typeof target === "boolean" ) { + deep = target; + + // Skip the boolean and the target + target = arguments[ i ] || {}; + i++; + } + + // Handle case when target is a string or something (possible in deep copy) + if ( typeof target !== "object" && !jQuery.isFunction( target ) ) { + target = {}; + } + + // Extend jQuery itself if only one argument is passed + if ( i === length ) { + target = this; + i--; + } + + for ( ; i < length; i++ ) { + + // Only deal with non-null/undefined values + if ( ( options = arguments[ i ] ) != null ) { + + // Extend the base object + for ( name in options ) { + src = target[ name ]; + copy = options[ name ]; + + // Prevent never-ending loop + if ( target === copy ) { + continue; + } + + // Recurse if we're merging plain objects or arrays + if ( deep && copy && ( jQuery.isPlainObject( copy ) || + ( copyIsArray = Array.isArray( copy ) ) ) ) { + + if ( copyIsArray ) { + copyIsArray = false; + clone = src && Array.isArray( src ) ? src : []; + + } else { + clone = src && jQuery.isPlainObject( src ) ? src : {}; + } + + // Never move original objects, clone them + target[ name ] = jQuery.extend( deep, clone, copy ); + + // Don't bring in undefined values + } else if ( copy !== undefined ) { + target[ name ] = copy; + } + } + } + } + + // Return the modified object + return target; +}; + +jQuery.extend( { + + // Unique for each copy of jQuery on the page + expando: "jQuery" + ( version + Math.random() ).replace( /\D/g, "" ), + + // Assume jQuery is ready without the ready module + isReady: true, + + error: function( msg ) { + throw new Error( msg ); + }, + + noop: function() {}, + + isFunction: function( obj ) { + return jQuery.type( obj ) === "function"; + }, + + isWindow: function( obj ) { + return obj != null && obj === obj.window; + }, + + isNumeric: function( obj ) { + + // As of jQuery 3.0, isNumeric is limited to + // strings and numbers (primitives or objects) + // that can be coerced to finite numbers (gh-2662) + var type = jQuery.type( obj ); + return ( type === "number" || type === "string" ) && + + // parseFloat NaNs numeric-cast false positives ("") + // ...but misinterprets leading-number strings, particularly hex literals ("0x...") + // subtraction forces infinities to NaN + !isNaN( obj - parseFloat( obj ) ); + }, + + isPlainObject: function( obj ) { + var proto, Ctor; + + // Detect obvious negatives + // Use toString instead of jQuery.type to catch host objects + if ( !obj || toString.call( obj ) !== "[object Object]" ) { + return false; + } + + proto = getProto( obj ); + + // Objects with no prototype (e.g., `Object.create( null )`) are plain + if ( !proto ) { + return true; + } + + // Objects with prototype are plain iff they were constructed by a global Object function + Ctor = hasOwn.call( proto, "constructor" ) && proto.constructor; + return typeof Ctor === "function" && fnToString.call( Ctor ) === ObjectFunctionString; + }, + + isEmptyObject: function( obj ) { + + /* eslint-disable no-unused-vars */ + // See https://github.com/eslint/eslint/issues/6125 + var name; + + for ( name in obj ) { + return false; + } + return true; + }, + + type: function( obj ) { + if ( obj == null ) { + return obj + ""; + } + + // Support: Android <=2.3 only (functionish RegExp) + return typeof obj === "object" || typeof obj === "function" ? + class2type[ toString.call( obj ) ] || "object" : + typeof obj; + }, + + // Evaluates a script in a global context + globalEval: function( code ) { + DOMEval( code ); + }, + + // Convert dashed to camelCase; used by the css and data modules + // Support: IE <=9 - 11, Edge 12 - 13 + // Microsoft forgot to hump their vendor prefix (#9572) + camelCase: function( string ) { + return string.replace( rmsPrefix, "ms-" ).replace( rdashAlpha, fcamelCase ); + }, + + each: function( obj, callback ) { + var length, i = 0; + + if ( isArrayLike( obj ) ) { + length = obj.length; + for ( ; i < length; i++ ) { + if ( callback.call( obj[ i ], i, obj[ i ] ) === false ) { + break; + } + } + } else { + for ( i in obj ) { + if ( callback.call( obj[ i ], i, obj[ i ] ) === false ) { + break; + } + } + } + + return obj; + }, + + // Support: Android <=4.0 only + trim: function( text ) { + return text == null ? + "" : + ( text + "" ).replace( rtrim, "" ); + }, + + // results is for internal usage only + makeArray: function( arr, results ) { + var ret = results || []; + + if ( arr != null ) { + if ( isArrayLike( Object( arr ) ) ) { + jQuery.merge( ret, + typeof arr === "string" ? + [ arr ] : arr + ); + } else { + push.call( ret, arr ); + } + } + + return ret; + }, + + inArray: function( elem, arr, i ) { + return arr == null ? -1 : indexOf.call( arr, elem, i ); + }, + + // Support: Android <=4.0 only, PhantomJS 1 only + // push.apply(_, arraylike) throws on ancient WebKit + merge: function( first, second ) { + var len = +second.length, + j = 0, + i = first.length; + + for ( ; j < len; j++ ) { + first[ i++ ] = second[ j ]; + } + + first.length = i; + + return first; + }, + + grep: function( elems, callback, invert ) { + var callbackInverse, + matches = [], + i = 0, + length = elems.length, + callbackExpect = !invert; + + // Go through the array, only saving the items + // that pass the validator function + for ( ; i < length; i++ ) { + callbackInverse = !callback( elems[ i ], i ); + if ( callbackInverse !== callbackExpect ) { + matches.push( elems[ i ] ); + } + } + + return matches; + }, + + // arg is for internal usage only + map: function( elems, callback, arg ) { + var length, value, + i = 0, + ret = []; + + // Go through the array, translating each of the items to their new values + if ( isArrayLike( elems ) ) { + length = elems.length; + for ( ; i < length; i++ ) { + value = callback( elems[ i ], i, arg ); + + if ( value != null ) { + ret.push( value ); + } + } + + // Go through every key on the object, + } else { + for ( i in elems ) { + value = callback( elems[ i ], i, arg ); + + if ( value != null ) { + ret.push( value ); + } + } + } + + // Flatten any nested arrays + return concat.apply( [], ret ); + }, + + // A global GUID counter for objects + guid: 1, + + // Bind a function to a context, optionally partially applying any + // arguments. + proxy: function( fn, context ) { + var tmp, args, proxy; + + if ( typeof context === "string" ) { + tmp = fn[ context ]; + context = fn; + fn = tmp; + } + + // Quick check to determine if target is callable, in the spec + // this throws a TypeError, but we will just return undefined. + if ( !jQuery.isFunction( fn ) ) { + return undefined; + } + + // Simulated bind + args = slice.call( arguments, 2 ); + proxy = function() { + return fn.apply( context || this, args.concat( slice.call( arguments ) ) ); + }; + + // Set the guid of unique handler to the same of original handler, so it can be removed + proxy.guid = fn.guid = fn.guid || jQuery.guid++; + + return proxy; + }, + + now: Date.now, + + // jQuery.support is not used in Core but other projects attach their + // properties to it so it needs to exist. + support: support +} ); + +if ( typeof Symbol === "function" ) { + jQuery.fn[ Symbol.iterator ] = arr[ Symbol.iterator ]; +} + +// Populate the class2type map +jQuery.each( "Boolean Number String Function Array Date RegExp Object Error Symbol".split( " " ), +function( i, name ) { + class2type[ "[object " + name + "]" ] = name.toLowerCase(); +} ); + +function isArrayLike( obj ) { + + // Support: real iOS 8.2 only (not reproducible in simulator) + // `in` check used to prevent JIT error (gh-2145) + // hasOwn isn't used here due to false negatives + // regarding Nodelist length in IE + var length = !!obj && "length" in obj && obj.length, + type = jQuery.type( obj ); + + if ( type === "function" || jQuery.isWindow( obj ) ) { + return false; + } + + return type === "array" || length === 0 || + typeof length === "number" && length > 0 && ( length - 1 ) in obj; +} +var Sizzle = +/*! + * Sizzle CSS Selector Engine v2.3.3 + * https://sizzlejs.com/ + * + * Copyright jQuery Foundation and other contributors + * Released under the MIT license + * http://jquery.org/license + * + * Date: 2016-08-08 + */ +(function( window ) { + +var i, + support, + Expr, + getText, + isXML, + tokenize, + compile, + select, + outermostContext, + sortInput, + hasDuplicate, + + // Local document vars + setDocument, + document, + docElem, + documentIsHTML, + rbuggyQSA, + rbuggyMatches, + matches, + contains, + + // Instance-specific data + expando = "sizzle" + 1 * new Date(), + preferredDoc = window.document, + dirruns = 0, + done = 0, + classCache = createCache(), + tokenCache = createCache(), + compilerCache = createCache(), + sortOrder = function( a, b ) { + if ( a === b ) { + hasDuplicate = true; + } + return 0; + }, + + // Instance methods + hasOwn = ({}).hasOwnProperty, + arr = [], + pop = arr.pop, + push_native = arr.push, + push = arr.push, + slice = arr.slice, + // Use a stripped-down indexOf as it's faster than native + // https://jsperf.com/thor-indexof-vs-for/5 + indexOf = function( list, elem ) { + var i = 0, + len = list.length; + for ( ; i < len; i++ ) { + if ( list[i] === elem ) { + return i; + } + } + return -1; + }, + + booleans = "checked|selected|async|autofocus|autoplay|controls|defer|disabled|hidden|ismap|loop|multiple|open|readonly|required|scoped", + + // Regular expressions + + // http://www.w3.org/TR/css3-selectors/#whitespace + whitespace = "[\\x20\\t\\r\\n\\f]", + + // http://www.w3.org/TR/CSS21/syndata.html#value-def-identifier + identifier = "(?:\\\\.|[\\w-]|[^\0-\\xa0])+", + + // Attribute selectors: http://www.w3.org/TR/selectors/#attribute-selectors + attributes = "\\[" + whitespace + "*(" + identifier + ")(?:" + whitespace + + // Operator (capture 2) + "*([*^$|!~]?=)" + whitespace + + // "Attribute values must be CSS identifiers [capture 5] or strings [capture 3 or capture 4]" + "*(?:'((?:\\\\.|[^\\\\'])*)'|\"((?:\\\\.|[^\\\\\"])*)\"|(" + identifier + "))|)" + whitespace + + "*\\]", + + pseudos = ":(" + identifier + ")(?:\\((" + + // To reduce the number of selectors needing tokenize in the preFilter, prefer arguments: + // 1. quoted (capture 3; capture 4 or capture 5) + "('((?:\\\\.|[^\\\\'])*)'|\"((?:\\\\.|[^\\\\\"])*)\")|" + + // 2. simple (capture 6) + "((?:\\\\.|[^\\\\()[\\]]|" + attributes + ")*)|" + + // 3. anything else (capture 2) + ".*" + + ")\\)|)", + + // Leading and non-escaped trailing whitespace, capturing some non-whitespace characters preceding the latter + rwhitespace = new RegExp( whitespace + "+", "g" ), + rtrim = new RegExp( "^" + whitespace + "+|((?:^|[^\\\\])(?:\\\\.)*)" + whitespace + "+$", "g" ), + + rcomma = new RegExp( "^" + whitespace + "*," + whitespace + "*" ), + rcombinators = new RegExp( "^" + whitespace + "*([>+~]|" + whitespace + ")" + whitespace + "*" ), + + rattributeQuotes = new RegExp( "=" + whitespace + "*([^\\]'\"]*?)" + whitespace + "*\\]", "g" ), + + rpseudo = new RegExp( pseudos ), + ridentifier = new RegExp( "^" + identifier + "$" ), + + matchExpr = { + "ID": new RegExp( "^#(" + identifier + ")" ), + "CLASS": new RegExp( "^\\.(" + identifier + ")" ), + "TAG": new RegExp( "^(" + identifier + "|[*])" ), + "ATTR": new RegExp( "^" + attributes ), + "PSEUDO": new RegExp( "^" + pseudos ), + "CHILD": new RegExp( "^:(only|first|last|nth|nth-last)-(child|of-type)(?:\\(" + whitespace + + "*(even|odd|(([+-]|)(\\d*)n|)" + whitespace + "*(?:([+-]|)" + whitespace + + "*(\\d+)|))" + whitespace + "*\\)|)", "i" ), + "bool": new RegExp( "^(?:" + booleans + ")$", "i" ), + // For use in libraries implementing .is() + // We use this for POS matching in `select` + "needsContext": new RegExp( "^" + whitespace + "*[>+~]|:(even|odd|eq|gt|lt|nth|first|last)(?:\\(" + + whitespace + "*((?:-\\d)?\\d*)" + whitespace + "*\\)|)(?=[^-]|$)", "i" ) + }, + + rinputs = /^(?:input|select|textarea|button)$/i, + rheader = /^h\d$/i, + + rnative = /^[^{]+\{\s*\[native \w/, + + // Easily-parseable/retrievable ID or TAG or CLASS selectors + rquickExpr = /^(?:#([\w-]+)|(\w+)|\.([\w-]+))$/, + + rsibling = /[+~]/, + + // CSS escapes + // http://www.w3.org/TR/CSS21/syndata.html#escaped-characters + runescape = new RegExp( "\\\\([\\da-f]{1,6}" + whitespace + "?|(" + whitespace + ")|.)", "ig" ), + funescape = function( _, escaped, escapedWhitespace ) { + var high = "0x" + escaped - 0x10000; + // NaN means non-codepoint + // Support: Firefox<24 + // Workaround erroneous numeric interpretation of +"0x" + return high !== high || escapedWhitespace ? + escaped : + high < 0 ? + // BMP codepoint + String.fromCharCode( high + 0x10000 ) : + // Supplemental Plane codepoint (surrogate pair) + String.fromCharCode( high >> 10 | 0xD800, high & 0x3FF | 0xDC00 ); + }, + + // CSS string/identifier serialization + // https://drafts.csswg.org/cssom/#common-serializing-idioms + rcssescape = /([\0-\x1f\x7f]|^-?\d)|^-$|[^\0-\x1f\x7f-\uFFFF\w-]/g, + fcssescape = function( ch, asCodePoint ) { + if ( asCodePoint ) { + + // U+0000 NULL becomes U+FFFD REPLACEMENT CHARACTER + if ( ch === "\0" ) { + return "\uFFFD"; + } + + // Control characters and (dependent upon position) numbers get escaped as code points + return ch.slice( 0, -1 ) + "\\" + ch.charCodeAt( ch.length - 1 ).toString( 16 ) + " "; + } + + // Other potentially-special ASCII characters get backslash-escaped + return "\\" + ch; + }, + + // Used for iframes + // See setDocument() + // Removing the function wrapper causes a "Permission Denied" + // error in IE + unloadHandler = function() { + setDocument(); + }, + + disabledAncestor = addCombinator( + function( elem ) { + return elem.disabled === true && ("form" in elem || "label" in elem); + }, + { dir: "parentNode", next: "legend" } + ); + +// Optimize for push.apply( _, NodeList ) +try { + push.apply( + (arr = slice.call( preferredDoc.childNodes )), + preferredDoc.childNodes + ); + // Support: Android<4.0 + // Detect silently failing push.apply + arr[ preferredDoc.childNodes.length ].nodeType; +} catch ( e ) { + push = { apply: arr.length ? + + // Leverage slice if possible + function( target, els ) { + push_native.apply( target, slice.call(els) ); + } : + + // Support: IE<9 + // Otherwise append directly + function( target, els ) { + var j = target.length, + i = 0; + // Can't trust NodeList.length + while ( (target[j++] = els[i++]) ) {} + target.length = j - 1; + } + }; +} + +function Sizzle( selector, context, results, seed ) { + var m, i, elem, nid, match, groups, newSelector, + newContext = context && context.ownerDocument, + + // nodeType defaults to 9, since context defaults to document + nodeType = context ? context.nodeType : 9; + + results = results || []; + + // Return early from calls with invalid selector or context + if ( typeof selector !== "string" || !selector || + nodeType !== 1 && nodeType !== 9 && nodeType !== 11 ) { + + return results; + } + + // Try to shortcut find operations (as opposed to filters) in HTML documents + if ( !seed ) { + + if ( ( context ? context.ownerDocument || context : preferredDoc ) !== document ) { + setDocument( context ); + } + context = context || document; + + if ( documentIsHTML ) { + + // If the selector is sufficiently simple, try using a "get*By*" DOM method + // (excepting DocumentFragment context, where the methods don't exist) + if ( nodeType !== 11 && (match = rquickExpr.exec( selector )) ) { + + // ID selector + if ( (m = match[1]) ) { + + // Document context + if ( nodeType === 9 ) { + if ( (elem = context.getElementById( m )) ) { + + // Support: IE, Opera, Webkit + // TODO: identify versions + // getElementById can match elements by name instead of ID + if ( elem.id === m ) { + results.push( elem ); + return results; + } + } else { + return results; + } + + // Element context + } else { + + // Support: IE, Opera, Webkit + // TODO: identify versions + // getElementById can match elements by name instead of ID + if ( newContext && (elem = newContext.getElementById( m )) && + contains( context, elem ) && + elem.id === m ) { + + results.push( elem ); + return results; + } + } + + // Type selector + } else if ( match[2] ) { + push.apply( results, context.getElementsByTagName( selector ) ); + return results; + + // Class selector + } else if ( (m = match[3]) && support.getElementsByClassName && + context.getElementsByClassName ) { + + push.apply( results, context.getElementsByClassName( m ) ); + return results; + } + } + + // Take advantage of querySelectorAll + if ( support.qsa && + !compilerCache[ selector + " " ] && + (!rbuggyQSA || !rbuggyQSA.test( selector )) ) { + + if ( nodeType !== 1 ) { + newContext = context; + newSelector = selector; + + // qSA looks outside Element context, which is not what we want + // Thanks to Andrew Dupont for this workaround technique + // Support: IE <=8 + // Exclude object elements + } else if ( context.nodeName.toLowerCase() !== "object" ) { + + // Capture the context ID, setting it first if necessary + if ( (nid = context.getAttribute( "id" )) ) { + nid = nid.replace( rcssescape, fcssescape ); + } else { + context.setAttribute( "id", (nid = expando) ); + } + + // Prefix every selector in the list + groups = tokenize( selector ); + i = groups.length; + while ( i-- ) { + groups[i] = "#" + nid + " " + toSelector( groups[i] ); + } + newSelector = groups.join( "," ); + + // Expand context for sibling selectors + newContext = rsibling.test( selector ) && testContext( context.parentNode ) || + context; + } + + if ( newSelector ) { + try { + push.apply( results, + newContext.querySelectorAll( newSelector ) + ); + return results; + } catch ( qsaError ) { + } finally { + if ( nid === expando ) { + context.removeAttribute( "id" ); + } + } + } + } + } + } + + // All others + return select( selector.replace( rtrim, "$1" ), context, results, seed ); +} + +/** + * Create key-value caches of limited size + * @returns {function(string, object)} Returns the Object data after storing it on itself with + * property name the (space-suffixed) string and (if the cache is larger than Expr.cacheLength) + * deleting the oldest entry + */ +function createCache() { + var keys = []; + + function cache( key, value ) { + // Use (key + " ") to avoid collision with native prototype properties (see Issue #157) + if ( keys.push( key + " " ) > Expr.cacheLength ) { + // Only keep the most recent entries + delete cache[ keys.shift() ]; + } + return (cache[ key + " " ] = value); + } + return cache; +} + +/** + * Mark a function for special use by Sizzle + * @param {Function} fn The function to mark + */ +function markFunction( fn ) { + fn[ expando ] = true; + return fn; +} + +/** + * Support testing using an element + * @param {Function} fn Passed the created element and returns a boolean result + */ +function assert( fn ) { + var el = document.createElement("fieldset"); + + try { + return !!fn( el ); + } catch (e) { + return false; + } finally { + // Remove from its parent by default + if ( el.parentNode ) { + el.parentNode.removeChild( el ); + } + // release memory in IE + el = null; + } +} + +/** + * Adds the same handler for all of the specified attrs + * @param {String} attrs Pipe-separated list of attributes + * @param {Function} handler The method that will be applied + */ +function addHandle( attrs, handler ) { + var arr = attrs.split("|"), + i = arr.length; + + while ( i-- ) { + Expr.attrHandle[ arr[i] ] = handler; + } +} + +/** + * Checks document order of two siblings + * @param {Element} a + * @param {Element} b + * @returns {Number} Returns less than 0 if a precedes b, greater than 0 if a follows b + */ +function siblingCheck( a, b ) { + var cur = b && a, + diff = cur && a.nodeType === 1 && b.nodeType === 1 && + a.sourceIndex - b.sourceIndex; + + // Use IE sourceIndex if available on both nodes + if ( diff ) { + return diff; + } + + // Check if b follows a + if ( cur ) { + while ( (cur = cur.nextSibling) ) { + if ( cur === b ) { + return -1; + } + } + } + + return a ? 1 : -1; +} + +/** + * Returns a function to use in pseudos for input types + * @param {String} type + */ +function createInputPseudo( type ) { + return function( elem ) { + var name = elem.nodeName.toLowerCase(); + return name === "input" && elem.type === type; + }; +} + +/** + * Returns a function to use in pseudos for buttons + * @param {String} type + */ +function createButtonPseudo( type ) { + return function( elem ) { + var name = elem.nodeName.toLowerCase(); + return (name === "input" || name === "button") && elem.type === type; + }; +} + +/** + * Returns a function to use in pseudos for :enabled/:disabled + * @param {Boolean} disabled true for :disabled; false for :enabled + */ +function createDisabledPseudo( disabled ) { + + // Known :disabled false positives: fieldset[disabled] > legend:nth-of-type(n+2) :can-disable + return function( elem ) { + + // Only certain elements can match :enabled or :disabled + // https://html.spec.whatwg.org/multipage/scripting.html#selector-enabled + // https://html.spec.whatwg.org/multipage/scripting.html#selector-disabled + if ( "form" in elem ) { + + // Check for inherited disabledness on relevant non-disabled elements: + // * listed form-associated elements in a disabled fieldset + // https://html.spec.whatwg.org/multipage/forms.html#category-listed + // https://html.spec.whatwg.org/multipage/forms.html#concept-fe-disabled + // * option elements in a disabled optgroup + // https://html.spec.whatwg.org/multipage/forms.html#concept-option-disabled + // All such elements have a "form" property. + if ( elem.parentNode && elem.disabled === false ) { + + // Option elements defer to a parent optgroup if present + if ( "label" in elem ) { + if ( "label" in elem.parentNode ) { + return elem.parentNode.disabled === disabled; + } else { + return elem.disabled === disabled; + } + } + + // Support: IE 6 - 11 + // Use the isDisabled shortcut property to check for disabled fieldset ancestors + return elem.isDisabled === disabled || + + // Where there is no isDisabled, check manually + /* jshint -W018 */ + elem.isDisabled !== !disabled && + disabledAncestor( elem ) === disabled; + } + + return elem.disabled === disabled; + + // Try to winnow out elements that can't be disabled before trusting the disabled property. + // Some victims get caught in our net (label, legend, menu, track), but it shouldn't + // even exist on them, let alone have a boolean value. + } else if ( "label" in elem ) { + return elem.disabled === disabled; + } + + // Remaining elements are neither :enabled nor :disabled + return false; + }; +} + +/** + * Returns a function to use in pseudos for positionals + * @param {Function} fn + */ +function createPositionalPseudo( fn ) { + return markFunction(function( argument ) { + argument = +argument; + return markFunction(function( seed, matches ) { + var j, + matchIndexes = fn( [], seed.length, argument ), + i = matchIndexes.length; + + // Match elements found at the specified indexes + while ( i-- ) { + if ( seed[ (j = matchIndexes[i]) ] ) { + seed[j] = !(matches[j] = seed[j]); + } + } + }); + }); +} + +/** + * Checks a node for validity as a Sizzle context + * @param {Element|Object=} context + * @returns {Element|Object|Boolean} The input node if acceptable, otherwise a falsy value + */ +function testContext( context ) { + return context && typeof context.getElementsByTagName !== "undefined" && context; +} + +// Expose support vars for convenience +support = Sizzle.support = {}; + +/** + * Detects XML nodes + * @param {Element|Object} elem An element or a document + * @returns {Boolean} True iff elem is a non-HTML XML node + */ +isXML = Sizzle.isXML = function( elem ) { + // documentElement is verified for cases where it doesn't yet exist + // (such as loading iframes in IE - #4833) + var documentElement = elem && (elem.ownerDocument || elem).documentElement; + return documentElement ? documentElement.nodeName !== "HTML" : false; +}; + +/** + * Sets document-related variables once based on the current document + * @param {Element|Object} [doc] An element or document object to use to set the document + * @returns {Object} Returns the current document + */ +setDocument = Sizzle.setDocument = function( node ) { + var hasCompare, subWindow, + doc = node ? node.ownerDocument || node : preferredDoc; + + // Return early if doc is invalid or already selected + if ( doc === document || doc.nodeType !== 9 || !doc.documentElement ) { + return document; + } + + // Update global variables + document = doc; + docElem = document.documentElement; + documentIsHTML = !isXML( document ); + + // Support: IE 9-11, Edge + // Accessing iframe documents after unload throws "permission denied" errors (jQuery #13936) + if ( preferredDoc !== document && + (subWindow = document.defaultView) && subWindow.top !== subWindow ) { + + // Support: IE 11, Edge + if ( subWindow.addEventListener ) { + subWindow.addEventListener( "unload", unloadHandler, false ); + + // Support: IE 9 - 10 only + } else if ( subWindow.attachEvent ) { + subWindow.attachEvent( "onunload", unloadHandler ); + } + } + + /* Attributes + ---------------------------------------------------------------------- */ + + // Support: IE<8 + // Verify that getAttribute really returns attributes and not properties + // (excepting IE8 booleans) + support.attributes = assert(function( el ) { + el.className = "i"; + return !el.getAttribute("className"); + }); + + /* getElement(s)By* + ---------------------------------------------------------------------- */ + + // Check if getElementsByTagName("*") returns only elements + support.getElementsByTagName = assert(function( el ) { + el.appendChild( document.createComment("") ); + return !el.getElementsByTagName("*").length; + }); + + // Support: IE<9 + support.getElementsByClassName = rnative.test( document.getElementsByClassName ); + + // Support: IE<10 + // Check if getElementById returns elements by name + // The broken getElementById methods don't pick up programmatically-set names, + // so use a roundabout getElementsByName test + support.getById = assert(function( el ) { + docElem.appendChild( el ).id = expando; + return !document.getElementsByName || !document.getElementsByName( expando ).length; + }); + + // ID filter and find + if ( support.getById ) { + Expr.filter["ID"] = function( id ) { + var attrId = id.replace( runescape, funescape ); + return function( elem ) { + return elem.getAttribute("id") === attrId; + }; + }; + Expr.find["ID"] = function( id, context ) { + if ( typeof context.getElementById !== "undefined" && documentIsHTML ) { + var elem = context.getElementById( id ); + return elem ? [ elem ] : []; + } + }; + } else { + Expr.filter["ID"] = function( id ) { + var attrId = id.replace( runescape, funescape ); + return function( elem ) { + var node = typeof elem.getAttributeNode !== "undefined" && + elem.getAttributeNode("id"); + return node && node.value === attrId; + }; + }; + + // Support: IE 6 - 7 only + // getElementById is not reliable as a find shortcut + Expr.find["ID"] = function( id, context ) { + if ( typeof context.getElementById !== "undefined" && documentIsHTML ) { + var node, i, elems, + elem = context.getElementById( id ); + + if ( elem ) { + + // Verify the id attribute + node = elem.getAttributeNode("id"); + if ( node && node.value === id ) { + return [ elem ]; + } + + // Fall back on getElementsByName + elems = context.getElementsByName( id ); + i = 0; + while ( (elem = elems[i++]) ) { + node = elem.getAttributeNode("id"); + if ( node && node.value === id ) { + return [ elem ]; + } + } + } + + return []; + } + }; + } + + // Tag + Expr.find["TAG"] = support.getElementsByTagName ? + function( tag, context ) { + if ( typeof context.getElementsByTagName !== "undefined" ) { + return context.getElementsByTagName( tag ); + + // DocumentFragment nodes don't have gEBTN + } else if ( support.qsa ) { + return context.querySelectorAll( tag ); + } + } : + + function( tag, context ) { + var elem, + tmp = [], + i = 0, + // By happy coincidence, a (broken) gEBTN appears on DocumentFragment nodes too + results = context.getElementsByTagName( tag ); + + // Filter out possible comments + if ( tag === "*" ) { + while ( (elem = results[i++]) ) { + if ( elem.nodeType === 1 ) { + tmp.push( elem ); + } + } + + return tmp; + } + return results; + }; + + // Class + Expr.find["CLASS"] = support.getElementsByClassName && function( className, context ) { + if ( typeof context.getElementsByClassName !== "undefined" && documentIsHTML ) { + return context.getElementsByClassName( className ); + } + }; + + /* QSA/matchesSelector + ---------------------------------------------------------------------- */ + + // QSA and matchesSelector support + + // matchesSelector(:active) reports false when true (IE9/Opera 11.5) + rbuggyMatches = []; + + // qSa(:focus) reports false when true (Chrome 21) + // We allow this because of a bug in IE8/9 that throws an error + // whenever `document.activeElement` is accessed on an iframe + // So, we allow :focus to pass through QSA all the time to avoid the IE error + // See https://bugs.jquery.com/ticket/13378 + rbuggyQSA = []; + + if ( (support.qsa = rnative.test( document.querySelectorAll )) ) { + // Build QSA regex + // Regex strategy adopted from Diego Perini + assert(function( el ) { + // Select is set to empty string on purpose + // This is to test IE's treatment of not explicitly + // setting a boolean content attribute, + // since its presence should be enough + // https://bugs.jquery.com/ticket/12359 + docElem.appendChild( el ).innerHTML = "" + + ""; + + // Support: IE8, Opera 11-12.16 + // Nothing should be selected when empty strings follow ^= or $= or *= + // The test attribute must be unknown in Opera but "safe" for WinRT + // https://msdn.microsoft.com/en-us/library/ie/hh465388.aspx#attribute_section + if ( el.querySelectorAll("[msallowcapture^='']").length ) { + rbuggyQSA.push( "[*^$]=" + whitespace + "*(?:''|\"\")" ); + } + + // Support: IE8 + // Boolean attributes and "value" are not treated correctly + if ( !el.querySelectorAll("[selected]").length ) { + rbuggyQSA.push( "\\[" + whitespace + "*(?:value|" + booleans + ")" ); + } + + // Support: Chrome<29, Android<4.4, Safari<7.0+, iOS<7.0+, PhantomJS<1.9.8+ + if ( !el.querySelectorAll( "[id~=" + expando + "-]" ).length ) { + rbuggyQSA.push("~="); + } + + // Webkit/Opera - :checked should return selected option elements + // http://www.w3.org/TR/2011/REC-css3-selectors-20110929/#checked + // IE8 throws error here and will not see later tests + if ( !el.querySelectorAll(":checked").length ) { + rbuggyQSA.push(":checked"); + } + + // Support: Safari 8+, iOS 8+ + // https://bugs.webkit.org/show_bug.cgi?id=136851 + // In-page `selector#id sibling-combinator selector` fails + if ( !el.querySelectorAll( "a#" + expando + "+*" ).length ) { + rbuggyQSA.push(".#.+[+~]"); + } + }); + + assert(function( el ) { + el.innerHTML = "" + + ""; + + // Support: Windows 8 Native Apps + // The type and name attributes are restricted during .innerHTML assignment + var input = document.createElement("input"); + input.setAttribute( "type", "hidden" ); + el.appendChild( input ).setAttribute( "name", "D" ); + + // Support: IE8 + // Enforce case-sensitivity of name attribute + if ( el.querySelectorAll("[name=d]").length ) { + rbuggyQSA.push( "name" + whitespace + "*[*^$|!~]?=" ); + } + + // FF 3.5 - :enabled/:disabled and hidden elements (hidden elements are still enabled) + // IE8 throws error here and will not see later tests + if ( el.querySelectorAll(":enabled").length !== 2 ) { + rbuggyQSA.push( ":enabled", ":disabled" ); + } + + // Support: IE9-11+ + // IE's :disabled selector does not pick up the children of disabled fieldsets + docElem.appendChild( el ).disabled = true; + if ( el.querySelectorAll(":disabled").length !== 2 ) { + rbuggyQSA.push( ":enabled", ":disabled" ); + } + + // Opera 10-11 does not throw on post-comma invalid pseudos + el.querySelectorAll("*,:x"); + rbuggyQSA.push(",.*:"); + }); + } + + if ( (support.matchesSelector = rnative.test( (matches = docElem.matches || + docElem.webkitMatchesSelector || + docElem.mozMatchesSelector || + docElem.oMatchesSelector || + docElem.msMatchesSelector) )) ) { + + assert(function( el ) { + // Check to see if it's possible to do matchesSelector + // on a disconnected node (IE 9) + support.disconnectedMatch = matches.call( el, "*" ); + + // This should fail with an exception + // Gecko does not error, returns false instead + matches.call( el, "[s!='']:x" ); + rbuggyMatches.push( "!=", pseudos ); + }); + } + + rbuggyQSA = rbuggyQSA.length && new RegExp( rbuggyQSA.join("|") ); + rbuggyMatches = rbuggyMatches.length && new RegExp( rbuggyMatches.join("|") ); + + /* Contains + ---------------------------------------------------------------------- */ + hasCompare = rnative.test( docElem.compareDocumentPosition ); + + // Element contains another + // Purposefully self-exclusive + // As in, an element does not contain itself + contains = hasCompare || rnative.test( docElem.contains ) ? + function( a, b ) { + var adown = a.nodeType === 9 ? a.documentElement : a, + bup = b && b.parentNode; + return a === bup || !!( bup && bup.nodeType === 1 && ( + adown.contains ? + adown.contains( bup ) : + a.compareDocumentPosition && a.compareDocumentPosition( bup ) & 16 + )); + } : + function( a, b ) { + if ( b ) { + while ( (b = b.parentNode) ) { + if ( b === a ) { + return true; + } + } + } + return false; + }; + + /* Sorting + ---------------------------------------------------------------------- */ + + // Document order sorting + sortOrder = hasCompare ? + function( a, b ) { + + // Flag for duplicate removal + if ( a === b ) { + hasDuplicate = true; + return 0; + } + + // Sort on method existence if only one input has compareDocumentPosition + var compare = !a.compareDocumentPosition - !b.compareDocumentPosition; + if ( compare ) { + return compare; + } + + // Calculate position if both inputs belong to the same document + compare = ( a.ownerDocument || a ) === ( b.ownerDocument || b ) ? + a.compareDocumentPosition( b ) : + + // Otherwise we know they are disconnected + 1; + + // Disconnected nodes + if ( compare & 1 || + (!support.sortDetached && b.compareDocumentPosition( a ) === compare) ) { + + // Choose the first element that is related to our preferred document + if ( a === document || a.ownerDocument === preferredDoc && contains(preferredDoc, a) ) { + return -1; + } + if ( b === document || b.ownerDocument === preferredDoc && contains(preferredDoc, b) ) { + return 1; + } + + // Maintain original order + return sortInput ? + ( indexOf( sortInput, a ) - indexOf( sortInput, b ) ) : + 0; + } + + return compare & 4 ? -1 : 1; + } : + function( a, b ) { + // Exit early if the nodes are identical + if ( a === b ) { + hasDuplicate = true; + return 0; + } + + var cur, + i = 0, + aup = a.parentNode, + bup = b.parentNode, + ap = [ a ], + bp = [ b ]; + + // Parentless nodes are either documents or disconnected + if ( !aup || !bup ) { + return a === document ? -1 : + b === document ? 1 : + aup ? -1 : + bup ? 1 : + sortInput ? + ( indexOf( sortInput, a ) - indexOf( sortInput, b ) ) : + 0; + + // If the nodes are siblings, we can do a quick check + } else if ( aup === bup ) { + return siblingCheck( a, b ); + } + + // Otherwise we need full lists of their ancestors for comparison + cur = a; + while ( (cur = cur.parentNode) ) { + ap.unshift( cur ); + } + cur = b; + while ( (cur = cur.parentNode) ) { + bp.unshift( cur ); + } + + // Walk down the tree looking for a discrepancy + while ( ap[i] === bp[i] ) { + i++; + } + + return i ? + // Do a sibling check if the nodes have a common ancestor + siblingCheck( ap[i], bp[i] ) : + + // Otherwise nodes in our document sort first + ap[i] === preferredDoc ? -1 : + bp[i] === preferredDoc ? 1 : + 0; + }; + + return document; +}; + +Sizzle.matches = function( expr, elements ) { + return Sizzle( expr, null, null, elements ); +}; + +Sizzle.matchesSelector = function( elem, expr ) { + // Set document vars if needed + if ( ( elem.ownerDocument || elem ) !== document ) { + setDocument( elem ); + } + + // Make sure that attribute selectors are quoted + expr = expr.replace( rattributeQuotes, "='$1']" ); + + if ( support.matchesSelector && documentIsHTML && + !compilerCache[ expr + " " ] && + ( !rbuggyMatches || !rbuggyMatches.test( expr ) ) && + ( !rbuggyQSA || !rbuggyQSA.test( expr ) ) ) { + + try { + var ret = matches.call( elem, expr ); + + // IE 9's matchesSelector returns false on disconnected nodes + if ( ret || support.disconnectedMatch || + // As well, disconnected nodes are said to be in a document + // fragment in IE 9 + elem.document && elem.document.nodeType !== 11 ) { + return ret; + } + } catch (e) {} + } + + return Sizzle( expr, document, null, [ elem ] ).length > 0; +}; + +Sizzle.contains = function( context, elem ) { + // Set document vars if needed + if ( ( context.ownerDocument || context ) !== document ) { + setDocument( context ); + } + return contains( context, elem ); +}; + +Sizzle.attr = function( elem, name ) { + // Set document vars if needed + if ( ( elem.ownerDocument || elem ) !== document ) { + setDocument( elem ); + } + + var fn = Expr.attrHandle[ name.toLowerCase() ], + // Don't get fooled by Object.prototype properties (jQuery #13807) + val = fn && hasOwn.call( Expr.attrHandle, name.toLowerCase() ) ? + fn( elem, name, !documentIsHTML ) : + undefined; + + return val !== undefined ? + val : + support.attributes || !documentIsHTML ? + elem.getAttribute( name ) : + (val = elem.getAttributeNode(name)) && val.specified ? + val.value : + null; +}; + +Sizzle.escape = function( sel ) { + return (sel + "").replace( rcssescape, fcssescape ); +}; + +Sizzle.error = function( msg ) { + throw new Error( "Syntax error, unrecognized expression: " + msg ); +}; + +/** + * Document sorting and removing duplicates + * @param {ArrayLike} results + */ +Sizzle.uniqueSort = function( results ) { + var elem, + duplicates = [], + j = 0, + i = 0; + + // Unless we *know* we can detect duplicates, assume their presence + hasDuplicate = !support.detectDuplicates; + sortInput = !support.sortStable && results.slice( 0 ); + results.sort( sortOrder ); + + if ( hasDuplicate ) { + while ( (elem = results[i++]) ) { + if ( elem === results[ i ] ) { + j = duplicates.push( i ); + } + } + while ( j-- ) { + results.splice( duplicates[ j ], 1 ); + } + } + + // Clear input after sorting to release objects + // See https://github.com/jquery/sizzle/pull/225 + sortInput = null; + + return results; +}; + +/** + * Utility function for retrieving the text value of an array of DOM nodes + * @param {Array|Element} elem + */ +getText = Sizzle.getText = function( elem ) { + var node, + ret = "", + i = 0, + nodeType = elem.nodeType; + + if ( !nodeType ) { + // If no nodeType, this is expected to be an array + while ( (node = elem[i++]) ) { + // Do not traverse comment nodes + ret += getText( node ); + } + } else if ( nodeType === 1 || nodeType === 9 || nodeType === 11 ) { + // Use textContent for elements + // innerText usage removed for consistency of new lines (jQuery #11153) + if ( typeof elem.textContent === "string" ) { + return elem.textContent; + } else { + // Traverse its children + for ( elem = elem.firstChild; elem; elem = elem.nextSibling ) { + ret += getText( elem ); + } + } + } else if ( nodeType === 3 || nodeType === 4 ) { + return elem.nodeValue; + } + // Do not include comment or processing instruction nodes + + return ret; +}; + +Expr = Sizzle.selectors = { + + // Can be adjusted by the user + cacheLength: 50, + + createPseudo: markFunction, + + match: matchExpr, + + attrHandle: {}, + + find: {}, + + relative: { + ">": { dir: "parentNode", first: true }, + " ": { dir: "parentNode" }, + "+": { dir: "previousSibling", first: true }, + "~": { dir: "previousSibling" } + }, + + preFilter: { + "ATTR": function( match ) { + match[1] = match[1].replace( runescape, funescape ); + + // Move the given value to match[3] whether quoted or unquoted + match[3] = ( match[3] || match[4] || match[5] || "" ).replace( runescape, funescape ); + + if ( match[2] === "~=" ) { + match[3] = " " + match[3] + " "; + } + + return match.slice( 0, 4 ); + }, + + "CHILD": function( match ) { + /* matches from matchExpr["CHILD"] + 1 type (only|nth|...) + 2 what (child|of-type) + 3 argument (even|odd|\d*|\d*n([+-]\d+)?|...) + 4 xn-component of xn+y argument ([+-]?\d*n|) + 5 sign of xn-component + 6 x of xn-component + 7 sign of y-component + 8 y of y-component + */ + match[1] = match[1].toLowerCase(); + + if ( match[1].slice( 0, 3 ) === "nth" ) { + // nth-* requires argument + if ( !match[3] ) { + Sizzle.error( match[0] ); + } + + // numeric x and y parameters for Expr.filter.CHILD + // remember that false/true cast respectively to 0/1 + match[4] = +( match[4] ? match[5] + (match[6] || 1) : 2 * ( match[3] === "even" || match[3] === "odd" ) ); + match[5] = +( ( match[7] + match[8] ) || match[3] === "odd" ); + + // other types prohibit arguments + } else if ( match[3] ) { + Sizzle.error( match[0] ); + } + + return match; + }, + + "PSEUDO": function( match ) { + var excess, + unquoted = !match[6] && match[2]; + + if ( matchExpr["CHILD"].test( match[0] ) ) { + return null; + } + + // Accept quoted arguments as-is + if ( match[3] ) { + match[2] = match[4] || match[5] || ""; + + // Strip excess characters from unquoted arguments + } else if ( unquoted && rpseudo.test( unquoted ) && + // Get excess from tokenize (recursively) + (excess = tokenize( unquoted, true )) && + // advance to the next closing parenthesis + (excess = unquoted.indexOf( ")", unquoted.length - excess ) - unquoted.length) ) { + + // excess is a negative index + match[0] = match[0].slice( 0, excess ); + match[2] = unquoted.slice( 0, excess ); + } + + // Return only captures needed by the pseudo filter method (type and argument) + return match.slice( 0, 3 ); + } + }, + + filter: { + + "TAG": function( nodeNameSelector ) { + var nodeName = nodeNameSelector.replace( runescape, funescape ).toLowerCase(); + return nodeNameSelector === "*" ? + function() { return true; } : + function( elem ) { + return elem.nodeName && elem.nodeName.toLowerCase() === nodeName; + }; + }, + + "CLASS": function( className ) { + var pattern = classCache[ className + " " ]; + + return pattern || + (pattern = new RegExp( "(^|" + whitespace + ")" + className + "(" + whitespace + "|$)" )) && + classCache( className, function( elem ) { + return pattern.test( typeof elem.className === "string" && elem.className || typeof elem.getAttribute !== "undefined" && elem.getAttribute("class") || "" ); + }); + }, + + "ATTR": function( name, operator, check ) { + return function( elem ) { + var result = Sizzle.attr( elem, name ); + + if ( result == null ) { + return operator === "!="; + } + if ( !operator ) { + return true; + } + + result += ""; + + return operator === "=" ? result === check : + operator === "!=" ? result !== check : + operator === "^=" ? check && result.indexOf( check ) === 0 : + operator === "*=" ? check && result.indexOf( check ) > -1 : + operator === "$=" ? check && result.slice( -check.length ) === check : + operator === "~=" ? ( " " + result.replace( rwhitespace, " " ) + " " ).indexOf( check ) > -1 : + operator === "|=" ? result === check || result.slice( 0, check.length + 1 ) === check + "-" : + false; + }; + }, + + "CHILD": function( type, what, argument, first, last ) { + var simple = type.slice( 0, 3 ) !== "nth", + forward = type.slice( -4 ) !== "last", + ofType = what === "of-type"; + + return first === 1 && last === 0 ? + + // Shortcut for :nth-*(n) + function( elem ) { + return !!elem.parentNode; + } : + + function( elem, context, xml ) { + var cache, uniqueCache, outerCache, node, nodeIndex, start, + dir = simple !== forward ? "nextSibling" : "previousSibling", + parent = elem.parentNode, + name = ofType && elem.nodeName.toLowerCase(), + useCache = !xml && !ofType, + diff = false; + + if ( parent ) { + + // :(first|last|only)-(child|of-type) + if ( simple ) { + while ( dir ) { + node = elem; + while ( (node = node[ dir ]) ) { + if ( ofType ? + node.nodeName.toLowerCase() === name : + node.nodeType === 1 ) { + + return false; + } + } + // Reverse direction for :only-* (if we haven't yet done so) + start = dir = type === "only" && !start && "nextSibling"; + } + return true; + } + + start = [ forward ? parent.firstChild : parent.lastChild ]; + + // non-xml :nth-child(...) stores cache data on `parent` + if ( forward && useCache ) { + + // Seek `elem` from a previously-cached index + + // ...in a gzip-friendly way + node = parent; + outerCache = node[ expando ] || (node[ expando ] = {}); + + // Support: IE <9 only + // Defend against cloned attroperties (jQuery gh-1709) + uniqueCache = outerCache[ node.uniqueID ] || + (outerCache[ node.uniqueID ] = {}); + + cache = uniqueCache[ type ] || []; + nodeIndex = cache[ 0 ] === dirruns && cache[ 1 ]; + diff = nodeIndex && cache[ 2 ]; + node = nodeIndex && parent.childNodes[ nodeIndex ]; + + while ( (node = ++nodeIndex && node && node[ dir ] || + + // Fallback to seeking `elem` from the start + (diff = nodeIndex = 0) || start.pop()) ) { + + // When found, cache indexes on `parent` and break + if ( node.nodeType === 1 && ++diff && node === elem ) { + uniqueCache[ type ] = [ dirruns, nodeIndex, diff ]; + break; + } + } + + } else { + // Use previously-cached element index if available + if ( useCache ) { + // ...in a gzip-friendly way + node = elem; + outerCache = node[ expando ] || (node[ expando ] = {}); + + // Support: IE <9 only + // Defend against cloned attroperties (jQuery gh-1709) + uniqueCache = outerCache[ node.uniqueID ] || + (outerCache[ node.uniqueID ] = {}); + + cache = uniqueCache[ type ] || []; + nodeIndex = cache[ 0 ] === dirruns && cache[ 1 ]; + diff = nodeIndex; + } + + // xml :nth-child(...) + // or :nth-last-child(...) or :nth(-last)?-of-type(...) + if ( diff === false ) { + // Use the same loop as above to seek `elem` from the start + while ( (node = ++nodeIndex && node && node[ dir ] || + (diff = nodeIndex = 0) || start.pop()) ) { + + if ( ( ofType ? + node.nodeName.toLowerCase() === name : + node.nodeType === 1 ) && + ++diff ) { + + // Cache the index of each encountered element + if ( useCache ) { + outerCache = node[ expando ] || (node[ expando ] = {}); + + // Support: IE <9 only + // Defend against cloned attroperties (jQuery gh-1709) + uniqueCache = outerCache[ node.uniqueID ] || + (outerCache[ node.uniqueID ] = {}); + + uniqueCache[ type ] = [ dirruns, diff ]; + } + + if ( node === elem ) { + break; + } + } + } + } + } + + // Incorporate the offset, then check against cycle size + diff -= last; + return diff === first || ( diff % first === 0 && diff / first >= 0 ); + } + }; + }, + + "PSEUDO": function( pseudo, argument ) { + // pseudo-class names are case-insensitive + // http://www.w3.org/TR/selectors/#pseudo-classes + // Prioritize by case sensitivity in case custom pseudos are added with uppercase letters + // Remember that setFilters inherits from pseudos + var args, + fn = Expr.pseudos[ pseudo ] || Expr.setFilters[ pseudo.toLowerCase() ] || + Sizzle.error( "unsupported pseudo: " + pseudo ); + + // The user may use createPseudo to indicate that + // arguments are needed to create the filter function + // just as Sizzle does + if ( fn[ expando ] ) { + return fn( argument ); + } + + // But maintain support for old signatures + if ( fn.length > 1 ) { + args = [ pseudo, pseudo, "", argument ]; + return Expr.setFilters.hasOwnProperty( pseudo.toLowerCase() ) ? + markFunction(function( seed, matches ) { + var idx, + matched = fn( seed, argument ), + i = matched.length; + while ( i-- ) { + idx = indexOf( seed, matched[i] ); + seed[ idx ] = !( matches[ idx ] = matched[i] ); + } + }) : + function( elem ) { + return fn( elem, 0, args ); + }; + } + + return fn; + } + }, + + pseudos: { + // Potentially complex pseudos + "not": markFunction(function( selector ) { + // Trim the selector passed to compile + // to avoid treating leading and trailing + // spaces as combinators + var input = [], + results = [], + matcher = compile( selector.replace( rtrim, "$1" ) ); + + return matcher[ expando ] ? + markFunction(function( seed, matches, context, xml ) { + var elem, + unmatched = matcher( seed, null, xml, [] ), + i = seed.length; + + // Match elements unmatched by `matcher` + while ( i-- ) { + if ( (elem = unmatched[i]) ) { + seed[i] = !(matches[i] = elem); + } + } + }) : + function( elem, context, xml ) { + input[0] = elem; + matcher( input, null, xml, results ); + // Don't keep the element (issue #299) + input[0] = null; + return !results.pop(); + }; + }), + + "has": markFunction(function( selector ) { + return function( elem ) { + return Sizzle( selector, elem ).length > 0; + }; + }), + + "contains": markFunction(function( text ) { + text = text.replace( runescape, funescape ); + return function( elem ) { + return ( elem.textContent || elem.innerText || getText( elem ) ).indexOf( text ) > -1; + }; + }), + + // "Whether an element is represented by a :lang() selector + // is based solely on the element's language value + // being equal to the identifier C, + // or beginning with the identifier C immediately followed by "-". + // The matching of C against the element's language value is performed case-insensitively. + // The identifier C does not have to be a valid language name." + // http://www.w3.org/TR/selectors/#lang-pseudo + "lang": markFunction( function( lang ) { + // lang value must be a valid identifier + if ( !ridentifier.test(lang || "") ) { + Sizzle.error( "unsupported lang: " + lang ); + } + lang = lang.replace( runescape, funescape ).toLowerCase(); + return function( elem ) { + var elemLang; + do { + if ( (elemLang = documentIsHTML ? + elem.lang : + elem.getAttribute("xml:lang") || elem.getAttribute("lang")) ) { + + elemLang = elemLang.toLowerCase(); + return elemLang === lang || elemLang.indexOf( lang + "-" ) === 0; + } + } while ( (elem = elem.parentNode) && elem.nodeType === 1 ); + return false; + }; + }), + + // Miscellaneous + "target": function( elem ) { + var hash = window.location && window.location.hash; + return hash && hash.slice( 1 ) === elem.id; + }, + + "root": function( elem ) { + return elem === docElem; + }, + + "focus": function( elem ) { + return elem === document.activeElement && (!document.hasFocus || document.hasFocus()) && !!(elem.type || elem.href || ~elem.tabIndex); + }, + + // Boolean properties + "enabled": createDisabledPseudo( false ), + "disabled": createDisabledPseudo( true ), + + "checked": function( elem ) { + // In CSS3, :checked should return both checked and selected elements + // http://www.w3.org/TR/2011/REC-css3-selectors-20110929/#checked + var nodeName = elem.nodeName.toLowerCase(); + return (nodeName === "input" && !!elem.checked) || (nodeName === "option" && !!elem.selected); + }, + + "selected": function( elem ) { + // Accessing this property makes selected-by-default + // options in Safari work properly + if ( elem.parentNode ) { + elem.parentNode.selectedIndex; + } + + return elem.selected === true; + }, + + // Contents + "empty": function( elem ) { + // http://www.w3.org/TR/selectors/#empty-pseudo + // :empty is negated by element (1) or content nodes (text: 3; cdata: 4; entity ref: 5), + // but not by others (comment: 8; processing instruction: 7; etc.) + // nodeType < 6 works because attributes (2) do not appear as children + for ( elem = elem.firstChild; elem; elem = elem.nextSibling ) { + if ( elem.nodeType < 6 ) { + return false; + } + } + return true; + }, + + "parent": function( elem ) { + return !Expr.pseudos["empty"]( elem ); + }, + + // Element/input types + "header": function( elem ) { + return rheader.test( elem.nodeName ); + }, + + "input": function( elem ) { + return rinputs.test( elem.nodeName ); + }, + + "button": function( elem ) { + var name = elem.nodeName.toLowerCase(); + return name === "input" && elem.type === "button" || name === "button"; + }, + + "text": function( elem ) { + var attr; + return elem.nodeName.toLowerCase() === "input" && + elem.type === "text" && + + // Support: IE<8 + // New HTML5 attribute values (e.g., "search") appear with elem.type === "text" + ( (attr = elem.getAttribute("type")) == null || attr.toLowerCase() === "text" ); + }, + + // Position-in-collection + "first": createPositionalPseudo(function() { + return [ 0 ]; + }), + + "last": createPositionalPseudo(function( matchIndexes, length ) { + return [ length - 1 ]; + }), + + "eq": createPositionalPseudo(function( matchIndexes, length, argument ) { + return [ argument < 0 ? argument + length : argument ]; + }), + + "even": createPositionalPseudo(function( matchIndexes, length ) { + var i = 0; + for ( ; i < length; i += 2 ) { + matchIndexes.push( i ); + } + return matchIndexes; + }), + + "odd": createPositionalPseudo(function( matchIndexes, length ) { + var i = 1; + for ( ; i < length; i += 2 ) { + matchIndexes.push( i ); + } + return matchIndexes; + }), + + "lt": createPositionalPseudo(function( matchIndexes, length, argument ) { + var i = argument < 0 ? argument + length : argument; + for ( ; --i >= 0; ) { + matchIndexes.push( i ); + } + return matchIndexes; + }), + + "gt": createPositionalPseudo(function( matchIndexes, length, argument ) { + var i = argument < 0 ? argument + length : argument; + for ( ; ++i < length; ) { + matchIndexes.push( i ); + } + return matchIndexes; + }) + } +}; + +Expr.pseudos["nth"] = Expr.pseudos["eq"]; + +// Add button/input type pseudos +for ( i in { radio: true, checkbox: true, file: true, password: true, image: true } ) { + Expr.pseudos[ i ] = createInputPseudo( i ); +} +for ( i in { submit: true, reset: true } ) { + Expr.pseudos[ i ] = createButtonPseudo( i ); +} + +// Easy API for creating new setFilters +function setFilters() {} +setFilters.prototype = Expr.filters = Expr.pseudos; +Expr.setFilters = new setFilters(); + +tokenize = Sizzle.tokenize = function( selector, parseOnly ) { + var matched, match, tokens, type, + soFar, groups, preFilters, + cached = tokenCache[ selector + " " ]; + + if ( cached ) { + return parseOnly ? 0 : cached.slice( 0 ); + } + + soFar = selector; + groups = []; + preFilters = Expr.preFilter; + + while ( soFar ) { + + // Comma and first run + if ( !matched || (match = rcomma.exec( soFar )) ) { + if ( match ) { + // Don't consume trailing commas as valid + soFar = soFar.slice( match[0].length ) || soFar; + } + groups.push( (tokens = []) ); + } + + matched = false; + + // Combinators + if ( (match = rcombinators.exec( soFar )) ) { + matched = match.shift(); + tokens.push({ + value: matched, + // Cast descendant combinators to space + type: match[0].replace( rtrim, " " ) + }); + soFar = soFar.slice( matched.length ); + } + + // Filters + for ( type in Expr.filter ) { + if ( (match = matchExpr[ type ].exec( soFar )) && (!preFilters[ type ] || + (match = preFilters[ type ]( match ))) ) { + matched = match.shift(); + tokens.push({ + value: matched, + type: type, + matches: match + }); + soFar = soFar.slice( matched.length ); + } + } + + if ( !matched ) { + break; + } + } + + // Return the length of the invalid excess + // if we're just parsing + // Otherwise, throw an error or return tokens + return parseOnly ? + soFar.length : + soFar ? + Sizzle.error( selector ) : + // Cache the tokens + tokenCache( selector, groups ).slice( 0 ); +}; + +function toSelector( tokens ) { + var i = 0, + len = tokens.length, + selector = ""; + for ( ; i < len; i++ ) { + selector += tokens[i].value; + } + return selector; +} + +function addCombinator( matcher, combinator, base ) { + var dir = combinator.dir, + skip = combinator.next, + key = skip || dir, + checkNonElements = base && key === "parentNode", + doneName = done++; + + return combinator.first ? + // Check against closest ancestor/preceding element + function( elem, context, xml ) { + while ( (elem = elem[ dir ]) ) { + if ( elem.nodeType === 1 || checkNonElements ) { + return matcher( elem, context, xml ); + } + } + return false; + } : + + // Check against all ancestor/preceding elements + function( elem, context, xml ) { + var oldCache, uniqueCache, outerCache, + newCache = [ dirruns, doneName ]; + + // We can't set arbitrary data on XML nodes, so they don't benefit from combinator caching + if ( xml ) { + while ( (elem = elem[ dir ]) ) { + if ( elem.nodeType === 1 || checkNonElements ) { + if ( matcher( elem, context, xml ) ) { + return true; + } + } + } + } else { + while ( (elem = elem[ dir ]) ) { + if ( elem.nodeType === 1 || checkNonElements ) { + outerCache = elem[ expando ] || (elem[ expando ] = {}); + + // Support: IE <9 only + // Defend against cloned attroperties (jQuery gh-1709) + uniqueCache = outerCache[ elem.uniqueID ] || (outerCache[ elem.uniqueID ] = {}); + + if ( skip && skip === elem.nodeName.toLowerCase() ) { + elem = elem[ dir ] || elem; + } else if ( (oldCache = uniqueCache[ key ]) && + oldCache[ 0 ] === dirruns && oldCache[ 1 ] === doneName ) { + + // Assign to newCache so results back-propagate to previous elements + return (newCache[ 2 ] = oldCache[ 2 ]); + } else { + // Reuse newcache so results back-propagate to previous elements + uniqueCache[ key ] = newCache; + + // A match means we're done; a fail means we have to keep checking + if ( (newCache[ 2 ] = matcher( elem, context, xml )) ) { + return true; + } + } + } + } + } + return false; + }; +} + +function elementMatcher( matchers ) { + return matchers.length > 1 ? + function( elem, context, xml ) { + var i = matchers.length; + while ( i-- ) { + if ( !matchers[i]( elem, context, xml ) ) { + return false; + } + } + return true; + } : + matchers[0]; +} + +function multipleContexts( selector, contexts, results ) { + var i = 0, + len = contexts.length; + for ( ; i < len; i++ ) { + Sizzle( selector, contexts[i], results ); + } + return results; +} + +function condense( unmatched, map, filter, context, xml ) { + var elem, + newUnmatched = [], + i = 0, + len = unmatched.length, + mapped = map != null; + + for ( ; i < len; i++ ) { + if ( (elem = unmatched[i]) ) { + if ( !filter || filter( elem, context, xml ) ) { + newUnmatched.push( elem ); + if ( mapped ) { + map.push( i ); + } + } + } + } + + return newUnmatched; +} + +function setMatcher( preFilter, selector, matcher, postFilter, postFinder, postSelector ) { + if ( postFilter && !postFilter[ expando ] ) { + postFilter = setMatcher( postFilter ); + } + if ( postFinder && !postFinder[ expando ] ) { + postFinder = setMatcher( postFinder, postSelector ); + } + return markFunction(function( seed, results, context, xml ) { + var temp, i, elem, + preMap = [], + postMap = [], + preexisting = results.length, + + // Get initial elements from seed or context + elems = seed || multipleContexts( selector || "*", context.nodeType ? [ context ] : context, [] ), + + // Prefilter to get matcher input, preserving a map for seed-results synchronization + matcherIn = preFilter && ( seed || !selector ) ? + condense( elems, preMap, preFilter, context, xml ) : + elems, + + matcherOut = matcher ? + // If we have a postFinder, or filtered seed, or non-seed postFilter or preexisting results, + postFinder || ( seed ? preFilter : preexisting || postFilter ) ? + + // ...intermediate processing is necessary + [] : + + // ...otherwise use results directly + results : + matcherIn; + + // Find primary matches + if ( matcher ) { + matcher( matcherIn, matcherOut, context, xml ); + } + + // Apply postFilter + if ( postFilter ) { + temp = condense( matcherOut, postMap ); + postFilter( temp, [], context, xml ); + + // Un-match failing elements by moving them back to matcherIn + i = temp.length; + while ( i-- ) { + if ( (elem = temp[i]) ) { + matcherOut[ postMap[i] ] = !(matcherIn[ postMap[i] ] = elem); + } + } + } + + if ( seed ) { + if ( postFinder || preFilter ) { + if ( postFinder ) { + // Get the final matcherOut by condensing this intermediate into postFinder contexts + temp = []; + i = matcherOut.length; + while ( i-- ) { + if ( (elem = matcherOut[i]) ) { + // Restore matcherIn since elem is not yet a final match + temp.push( (matcherIn[i] = elem) ); + } + } + postFinder( null, (matcherOut = []), temp, xml ); + } + + // Move matched elements from seed to results to keep them synchronized + i = matcherOut.length; + while ( i-- ) { + if ( (elem = matcherOut[i]) && + (temp = postFinder ? indexOf( seed, elem ) : preMap[i]) > -1 ) { + + seed[temp] = !(results[temp] = elem); + } + } + } + + // Add elements to results, through postFinder if defined + } else { + matcherOut = condense( + matcherOut === results ? + matcherOut.splice( preexisting, matcherOut.length ) : + matcherOut + ); + if ( postFinder ) { + postFinder( null, results, matcherOut, xml ); + } else { + push.apply( results, matcherOut ); + } + } + }); +} + +function matcherFromTokens( tokens ) { + var checkContext, matcher, j, + len = tokens.length, + leadingRelative = Expr.relative[ tokens[0].type ], + implicitRelative = leadingRelative || Expr.relative[" "], + i = leadingRelative ? 1 : 0, + + // The foundational matcher ensures that elements are reachable from top-level context(s) + matchContext = addCombinator( function( elem ) { + return elem === checkContext; + }, implicitRelative, true ), + matchAnyContext = addCombinator( function( elem ) { + return indexOf( checkContext, elem ) > -1; + }, implicitRelative, true ), + matchers = [ function( elem, context, xml ) { + var ret = ( !leadingRelative && ( xml || context !== outermostContext ) ) || ( + (checkContext = context).nodeType ? + matchContext( elem, context, xml ) : + matchAnyContext( elem, context, xml ) ); + // Avoid hanging onto element (issue #299) + checkContext = null; + return ret; + } ]; + + for ( ; i < len; i++ ) { + if ( (matcher = Expr.relative[ tokens[i].type ]) ) { + matchers = [ addCombinator(elementMatcher( matchers ), matcher) ]; + } else { + matcher = Expr.filter[ tokens[i].type ].apply( null, tokens[i].matches ); + + // Return special upon seeing a positional matcher + if ( matcher[ expando ] ) { + // Find the next relative operator (if any) for proper handling + j = ++i; + for ( ; j < len; j++ ) { + if ( Expr.relative[ tokens[j].type ] ) { + break; + } + } + return setMatcher( + i > 1 && elementMatcher( matchers ), + i > 1 && toSelector( + // If the preceding token was a descendant combinator, insert an implicit any-element `*` + tokens.slice( 0, i - 1 ).concat({ value: tokens[ i - 2 ].type === " " ? "*" : "" }) + ).replace( rtrim, "$1" ), + matcher, + i < j && matcherFromTokens( tokens.slice( i, j ) ), + j < len && matcherFromTokens( (tokens = tokens.slice( j )) ), + j < len && toSelector( tokens ) + ); + } + matchers.push( matcher ); + } + } + + return elementMatcher( matchers ); +} + +function matcherFromGroupMatchers( elementMatchers, setMatchers ) { + var bySet = setMatchers.length > 0, + byElement = elementMatchers.length > 0, + superMatcher = function( seed, context, xml, results, outermost ) { + var elem, j, matcher, + matchedCount = 0, + i = "0", + unmatched = seed && [], + setMatched = [], + contextBackup = outermostContext, + // We must always have either seed elements or outermost context + elems = seed || byElement && Expr.find["TAG"]( "*", outermost ), + // Use integer dirruns iff this is the outermost matcher + dirrunsUnique = (dirruns += contextBackup == null ? 1 : Math.random() || 0.1), + len = elems.length; + + if ( outermost ) { + outermostContext = context === document || context || outermost; + } + + // Add elements passing elementMatchers directly to results + // Support: IE<9, Safari + // Tolerate NodeList properties (IE: "length"; Safari: ) matching elements by id + for ( ; i !== len && (elem = elems[i]) != null; i++ ) { + if ( byElement && elem ) { + j = 0; + if ( !context && elem.ownerDocument !== document ) { + setDocument( elem ); + xml = !documentIsHTML; + } + while ( (matcher = elementMatchers[j++]) ) { + if ( matcher( elem, context || document, xml) ) { + results.push( elem ); + break; + } + } + if ( outermost ) { + dirruns = dirrunsUnique; + } + } + + // Track unmatched elements for set filters + if ( bySet ) { + // They will have gone through all possible matchers + if ( (elem = !matcher && elem) ) { + matchedCount--; + } + + // Lengthen the array for every element, matched or not + if ( seed ) { + unmatched.push( elem ); + } + } + } + + // `i` is now the count of elements visited above, and adding it to `matchedCount` + // makes the latter nonnegative. + matchedCount += i; + + // Apply set filters to unmatched elements + // NOTE: This can be skipped if there are no unmatched elements (i.e., `matchedCount` + // equals `i`), unless we didn't visit _any_ elements in the above loop because we have + // no element matchers and no seed. + // Incrementing an initially-string "0" `i` allows `i` to remain a string only in that + // case, which will result in a "00" `matchedCount` that differs from `i` but is also + // numerically zero. + if ( bySet && i !== matchedCount ) { + j = 0; + while ( (matcher = setMatchers[j++]) ) { + matcher( unmatched, setMatched, context, xml ); + } + + if ( seed ) { + // Reintegrate element matches to eliminate the need for sorting + if ( matchedCount > 0 ) { + while ( i-- ) { + if ( !(unmatched[i] || setMatched[i]) ) { + setMatched[i] = pop.call( results ); + } + } + } + + // Discard index placeholder values to get only actual matches + setMatched = condense( setMatched ); + } + + // Add matches to results + push.apply( results, setMatched ); + + // Seedless set matches succeeding multiple successful matchers stipulate sorting + if ( outermost && !seed && setMatched.length > 0 && + ( matchedCount + setMatchers.length ) > 1 ) { + + Sizzle.uniqueSort( results ); + } + } + + // Override manipulation of globals by nested matchers + if ( outermost ) { + dirruns = dirrunsUnique; + outermostContext = contextBackup; + } + + return unmatched; + }; + + return bySet ? + markFunction( superMatcher ) : + superMatcher; +} + +compile = Sizzle.compile = function( selector, match /* Internal Use Only */ ) { + var i, + setMatchers = [], + elementMatchers = [], + cached = compilerCache[ selector + " " ]; + + if ( !cached ) { + // Generate a function of recursive functions that can be used to check each element + if ( !match ) { + match = tokenize( selector ); + } + i = match.length; + while ( i-- ) { + cached = matcherFromTokens( match[i] ); + if ( cached[ expando ] ) { + setMatchers.push( cached ); + } else { + elementMatchers.push( cached ); + } + } + + // Cache the compiled function + cached = compilerCache( selector, matcherFromGroupMatchers( elementMatchers, setMatchers ) ); + + // Save selector and tokenization + cached.selector = selector; + } + return cached; +}; + +/** + * A low-level selection function that works with Sizzle's compiled + * selector functions + * @param {String|Function} selector A selector or a pre-compiled + * selector function built with Sizzle.compile + * @param {Element} context + * @param {Array} [results] + * @param {Array} [seed] A set of elements to match against + */ +select = Sizzle.select = function( selector, context, results, seed ) { + var i, tokens, token, type, find, + compiled = typeof selector === "function" && selector, + match = !seed && tokenize( (selector = compiled.selector || selector) ); + + results = results || []; + + // Try to minimize operations if there is only one selector in the list and no seed + // (the latter of which guarantees us context) + if ( match.length === 1 ) { + + // Reduce context if the leading compound selector is an ID + tokens = match[0] = match[0].slice( 0 ); + if ( tokens.length > 2 && (token = tokens[0]).type === "ID" && + context.nodeType === 9 && documentIsHTML && Expr.relative[ tokens[1].type ] ) { + + context = ( Expr.find["ID"]( token.matches[0].replace(runescape, funescape), context ) || [] )[0]; + if ( !context ) { + return results; + + // Precompiled matchers will still verify ancestry, so step up a level + } else if ( compiled ) { + context = context.parentNode; + } + + selector = selector.slice( tokens.shift().value.length ); + } + + // Fetch a seed set for right-to-left matching + i = matchExpr["needsContext"].test( selector ) ? 0 : tokens.length; + while ( i-- ) { + token = tokens[i]; + + // Abort if we hit a combinator + if ( Expr.relative[ (type = token.type) ] ) { + break; + } + if ( (find = Expr.find[ type ]) ) { + // Search, expanding context for leading sibling combinators + if ( (seed = find( + token.matches[0].replace( runescape, funescape ), + rsibling.test( tokens[0].type ) && testContext( context.parentNode ) || context + )) ) { + + // If seed is empty or no tokens remain, we can return early + tokens.splice( i, 1 ); + selector = seed.length && toSelector( tokens ); + if ( !selector ) { + push.apply( results, seed ); + return results; + } + + break; + } + } + } + } + + // Compile and execute a filtering function if one is not provided + // Provide `match` to avoid retokenization if we modified the selector above + ( compiled || compile( selector, match ) )( + seed, + context, + !documentIsHTML, + results, + !context || rsibling.test( selector ) && testContext( context.parentNode ) || context + ); + return results; +}; + +// One-time assignments + +// Sort stability +support.sortStable = expando.split("").sort( sortOrder ).join("") === expando; + +// Support: Chrome 14-35+ +// Always assume duplicates if they aren't passed to the comparison function +support.detectDuplicates = !!hasDuplicate; + +// Initialize against the default document +setDocument(); + +// Support: Webkit<537.32 - Safari 6.0.3/Chrome 25 (fixed in Chrome 27) +// Detached nodes confoundingly follow *each other* +support.sortDetached = assert(function( el ) { + // Should return 1, but returns 4 (following) + return el.compareDocumentPosition( document.createElement("fieldset") ) & 1; +}); + +// Support: IE<8 +// Prevent attribute/property "interpolation" +// https://msdn.microsoft.com/en-us/library/ms536429%28VS.85%29.aspx +if ( !assert(function( el ) { + el.innerHTML = ""; + return el.firstChild.getAttribute("href") === "#" ; +}) ) { + addHandle( "type|href|height|width", function( elem, name, isXML ) { + if ( !isXML ) { + return elem.getAttribute( name, name.toLowerCase() === "type" ? 1 : 2 ); + } + }); +} + +// Support: IE<9 +// Use defaultValue in place of getAttribute("value") +if ( !support.attributes || !assert(function( el ) { + el.innerHTML = ""; + el.firstChild.setAttribute( "value", "" ); + return el.firstChild.getAttribute( "value" ) === ""; +}) ) { + addHandle( "value", function( elem, name, isXML ) { + if ( !isXML && elem.nodeName.toLowerCase() === "input" ) { + return elem.defaultValue; + } + }); +} + +// Support: IE<9 +// Use getAttributeNode to fetch booleans when getAttribute lies +if ( !assert(function( el ) { + return el.getAttribute("disabled") == null; +}) ) { + addHandle( booleans, function( elem, name, isXML ) { + var val; + if ( !isXML ) { + return elem[ name ] === true ? name.toLowerCase() : + (val = elem.getAttributeNode( name )) && val.specified ? + val.value : + null; + } + }); +} + +return Sizzle; + +})( window ); + + + +jQuery.find = Sizzle; +jQuery.expr = Sizzle.selectors; + +// Deprecated +jQuery.expr[ ":" ] = jQuery.expr.pseudos; +jQuery.uniqueSort = jQuery.unique = Sizzle.uniqueSort; +jQuery.text = Sizzle.getText; +jQuery.isXMLDoc = Sizzle.isXML; +jQuery.contains = Sizzle.contains; +jQuery.escapeSelector = Sizzle.escape; + + + + +var dir = function( elem, dir, until ) { + var matched = [], + truncate = until !== undefined; + + while ( ( elem = elem[ dir ] ) && elem.nodeType !== 9 ) { + if ( elem.nodeType === 1 ) { + if ( truncate && jQuery( elem ).is( until ) ) { + break; + } + matched.push( elem ); + } + } + return matched; +}; + + +var siblings = function( n, elem ) { + var matched = []; + + for ( ; n; n = n.nextSibling ) { + if ( n.nodeType === 1 && n !== elem ) { + matched.push( n ); + } + } + + return matched; +}; + + +var rneedsContext = jQuery.expr.match.needsContext; + + + +function nodeName( elem, name ) { + + return elem.nodeName && elem.nodeName.toLowerCase() === name.toLowerCase(); + +}; +var rsingleTag = ( /^<([a-z][^\/\0>:\x20\t\r\n\f]*)[\x20\t\r\n\f]*\/?>(?:<\/\1>|)$/i ); + + + +var risSimple = /^.[^:#\[\.,]*$/; + +// Implement the identical functionality for filter and not +function winnow( elements, qualifier, not ) { + if ( jQuery.isFunction( qualifier ) ) { + return jQuery.grep( elements, function( elem, i ) { + return !!qualifier.call( elem, i, elem ) !== not; + } ); + } + + // Single element + if ( qualifier.nodeType ) { + return jQuery.grep( elements, function( elem ) { + return ( elem === qualifier ) !== not; + } ); + } + + // Arraylike of elements (jQuery, arguments, Array) + if ( typeof qualifier !== "string" ) { + return jQuery.grep( elements, function( elem ) { + return ( indexOf.call( qualifier, elem ) > -1 ) !== not; + } ); + } + + // Simple selector that can be filtered directly, removing non-Elements + if ( risSimple.test( qualifier ) ) { + return jQuery.filter( qualifier, elements, not ); + } + + // Complex selector, compare the two sets, removing non-Elements + qualifier = jQuery.filter( qualifier, elements ); + return jQuery.grep( elements, function( elem ) { + return ( indexOf.call( qualifier, elem ) > -1 ) !== not && elem.nodeType === 1; + } ); +} + +jQuery.filter = function( expr, elems, not ) { + var elem = elems[ 0 ]; + + if ( not ) { + expr = ":not(" + expr + ")"; + } + + if ( elems.length === 1 && elem.nodeType === 1 ) { + return jQuery.find.matchesSelector( elem, expr ) ? [ elem ] : []; + } + + return jQuery.find.matches( expr, jQuery.grep( elems, function( elem ) { + return elem.nodeType === 1; + } ) ); +}; + +jQuery.fn.extend( { + find: function( selector ) { + var i, ret, + len = this.length, + self = this; + + if ( typeof selector !== "string" ) { + return this.pushStack( jQuery( selector ).filter( function() { + for ( i = 0; i < len; i++ ) { + if ( jQuery.contains( self[ i ], this ) ) { + return true; + } + } + } ) ); + } + + ret = this.pushStack( [] ); + + for ( i = 0; i < len; i++ ) { + jQuery.find( selector, self[ i ], ret ); + } + + return len > 1 ? jQuery.uniqueSort( ret ) : ret; + }, + filter: function( selector ) { + return this.pushStack( winnow( this, selector || [], false ) ); + }, + not: function( selector ) { + return this.pushStack( winnow( this, selector || [], true ) ); + }, + is: function( selector ) { + return !!winnow( + this, + + // If this is a positional/relative selector, check membership in the returned set + // so $("p:first").is("p:last") won't return true for a doc with two "p". + typeof selector === "string" && rneedsContext.test( selector ) ? + jQuery( selector ) : + selector || [], + false + ).length; + } +} ); + + +// Initialize a jQuery object + + +// A central reference to the root jQuery(document) +var rootjQuery, + + // A simple way to check for HTML strings + // Prioritize #id over to avoid XSS via location.hash (#9521) + // Strict HTML recognition (#11290: must start with <) + // Shortcut simple #id case for speed + rquickExpr = /^(?:\s*(<[\w\W]+>)[^>]*|#([\w-]+))$/, + + init = jQuery.fn.init = function( selector, context, root ) { + var match, elem; + + // HANDLE: $(""), $(null), $(undefined), $(false) + if ( !selector ) { + return this; + } + + // Method init() accepts an alternate rootjQuery + // so migrate can support jQuery.sub (gh-2101) + root = root || rootjQuery; + + // Handle HTML strings + if ( typeof selector === "string" ) { + if ( selector[ 0 ] === "<" && + selector[ selector.length - 1 ] === ">" && + selector.length >= 3 ) { + + // Assume that strings that start and end with <> are HTML and skip the regex check + match = [ null, selector, null ]; + + } else { + match = rquickExpr.exec( selector ); + } + + // Match html or make sure no context is specified for #id + if ( match && ( match[ 1 ] || !context ) ) { + + // HANDLE: $(html) -> $(array) + if ( match[ 1 ] ) { + context = context instanceof jQuery ? context[ 0 ] : context; + + // Option to run scripts is true for back-compat + // Intentionally let the error be thrown if parseHTML is not present + jQuery.merge( this, jQuery.parseHTML( + match[ 1 ], + context && context.nodeType ? context.ownerDocument || context : document, + true + ) ); + + // HANDLE: $(html, props) + if ( rsingleTag.test( match[ 1 ] ) && jQuery.isPlainObject( context ) ) { + for ( match in context ) { + + // Properties of context are called as methods if possible + if ( jQuery.isFunction( this[ match ] ) ) { + this[ match ]( context[ match ] ); + + // ...and otherwise set as attributes + } else { + this.attr( match, context[ match ] ); + } + } + } + + return this; + + // HANDLE: $(#id) + } else { + elem = document.getElementById( match[ 2 ] ); + + if ( elem ) { + + // Inject the element directly into the jQuery object + this[ 0 ] = elem; + this.length = 1; + } + return this; + } + + // HANDLE: $(expr, $(...)) + } else if ( !context || context.jquery ) { + return ( context || root ).find( selector ); + + // HANDLE: $(expr, context) + // (which is just equivalent to: $(context).find(expr) + } else { + return this.constructor( context ).find( selector ); + } + + // HANDLE: $(DOMElement) + } else if ( selector.nodeType ) { + this[ 0 ] = selector; + this.length = 1; + return this; + + // HANDLE: $(function) + // Shortcut for document ready + } else if ( jQuery.isFunction( selector ) ) { + return root.ready !== undefined ? + root.ready( selector ) : + + // Execute immediately if ready is not present + selector( jQuery ); + } + + return jQuery.makeArray( selector, this ); + }; + +// Give the init function the jQuery prototype for later instantiation +init.prototype = jQuery.fn; + +// Initialize central reference +rootjQuery = jQuery( document ); + + +var rparentsprev = /^(?:parents|prev(?:Until|All))/, + + // Methods guaranteed to produce a unique set when starting from a unique set + guaranteedUnique = { + children: true, + contents: true, + next: true, + prev: true + }; + +jQuery.fn.extend( { + has: function( target ) { + var targets = jQuery( target, this ), + l = targets.length; + + return this.filter( function() { + var i = 0; + for ( ; i < l; i++ ) { + if ( jQuery.contains( this, targets[ i ] ) ) { + return true; + } + } + } ); + }, + + closest: function( selectors, context ) { + var cur, + i = 0, + l = this.length, + matched = [], + targets = typeof selectors !== "string" && jQuery( selectors ); + + // Positional selectors never match, since there's no _selection_ context + if ( !rneedsContext.test( selectors ) ) { + for ( ; i < l; i++ ) { + for ( cur = this[ i ]; cur && cur !== context; cur = cur.parentNode ) { + + // Always skip document fragments + if ( cur.nodeType < 11 && ( targets ? + targets.index( cur ) > -1 : + + // Don't pass non-elements to Sizzle + cur.nodeType === 1 && + jQuery.find.matchesSelector( cur, selectors ) ) ) { + + matched.push( cur ); + break; + } + } + } + } + + return this.pushStack( matched.length > 1 ? jQuery.uniqueSort( matched ) : matched ); + }, + + // Determine the position of an element within the set + index: function( elem ) { + + // No argument, return index in parent + if ( !elem ) { + return ( this[ 0 ] && this[ 0 ].parentNode ) ? this.first().prevAll().length : -1; + } + + // Index in selector + if ( typeof elem === "string" ) { + return indexOf.call( jQuery( elem ), this[ 0 ] ); + } + + // Locate the position of the desired element + return indexOf.call( this, + + // If it receives a jQuery object, the first element is used + elem.jquery ? elem[ 0 ] : elem + ); + }, + + add: function( selector, context ) { + return this.pushStack( + jQuery.uniqueSort( + jQuery.merge( this.get(), jQuery( selector, context ) ) + ) + ); + }, + + addBack: function( selector ) { + return this.add( selector == null ? + this.prevObject : this.prevObject.filter( selector ) + ); + } +} ); + +function sibling( cur, dir ) { + while ( ( cur = cur[ dir ] ) && cur.nodeType !== 1 ) {} + return cur; +} + +jQuery.each( { + parent: function( elem ) { + var parent = elem.parentNode; + return parent && parent.nodeType !== 11 ? parent : null; + }, + parents: function( elem ) { + return dir( elem, "parentNode" ); + }, + parentsUntil: function( elem, i, until ) { + return dir( elem, "parentNode", until ); + }, + next: function( elem ) { + return sibling( elem, "nextSibling" ); + }, + prev: function( elem ) { + return sibling( elem, "previousSibling" ); + }, + nextAll: function( elem ) { + return dir( elem, "nextSibling" ); + }, + prevAll: function( elem ) { + return dir( elem, "previousSibling" ); + }, + nextUntil: function( elem, i, until ) { + return dir( elem, "nextSibling", until ); + }, + prevUntil: function( elem, i, until ) { + return dir( elem, "previousSibling", until ); + }, + siblings: function( elem ) { + return siblings( ( elem.parentNode || {} ).firstChild, elem ); + }, + children: function( elem ) { + return siblings( elem.firstChild ); + }, + contents: function( elem ) { + if ( nodeName( elem, "iframe" ) ) { + return elem.contentDocument; + } + + // Support: IE 9 - 11 only, iOS 7 only, Android Browser <=4.3 only + // Treat the template element as a regular one in browsers that + // don't support it. + if ( nodeName( elem, "template" ) ) { + elem = elem.content || elem; + } + + return jQuery.merge( [], elem.childNodes ); + } +}, function( name, fn ) { + jQuery.fn[ name ] = function( until, selector ) { + var matched = jQuery.map( this, fn, until ); + + if ( name.slice( -5 ) !== "Until" ) { + selector = until; + } + + if ( selector && typeof selector === "string" ) { + matched = jQuery.filter( selector, matched ); + } + + if ( this.length > 1 ) { + + // Remove duplicates + if ( !guaranteedUnique[ name ] ) { + jQuery.uniqueSort( matched ); + } + + // Reverse order for parents* and prev-derivatives + if ( rparentsprev.test( name ) ) { + matched.reverse(); + } + } + + return this.pushStack( matched ); + }; +} ); +var rnothtmlwhite = ( /[^\x20\t\r\n\f]+/g ); + + + +// Convert String-formatted options into Object-formatted ones +function createOptions( options ) { + var object = {}; + jQuery.each( options.match( rnothtmlwhite ) || [], function( _, flag ) { + object[ flag ] = true; + } ); + return object; +} + +/* + * Create a callback list using the following parameters: + * + * options: an optional list of space-separated options that will change how + * the callback list behaves or a more traditional option object + * + * By default a callback list will act like an event callback list and can be + * "fired" multiple times. + * + * Possible options: + * + * once: will ensure the callback list can only be fired once (like a Deferred) + * + * memory: will keep track of previous values and will call any callback added + * after the list has been fired right away with the latest "memorized" + * values (like a Deferred) + * + * unique: will ensure a callback can only be added once (no duplicate in the list) + * + * stopOnFalse: interrupt callings when a callback returns false + * + */ +jQuery.Callbacks = function( options ) { + + // Convert options from String-formatted to Object-formatted if needed + // (we check in cache first) + options = typeof options === "string" ? + createOptions( options ) : + jQuery.extend( {}, options ); + + var // Flag to know if list is currently firing + firing, + + // Last fire value for non-forgettable lists + memory, + + // Flag to know if list was already fired + fired, + + // Flag to prevent firing + locked, + + // Actual callback list + list = [], + + // Queue of execution data for repeatable lists + queue = [], + + // Index of currently firing callback (modified by add/remove as needed) + firingIndex = -1, + + // Fire callbacks + fire = function() { + + // Enforce single-firing + locked = locked || options.once; + + // Execute callbacks for all pending executions, + // respecting firingIndex overrides and runtime changes + fired = firing = true; + for ( ; queue.length; firingIndex = -1 ) { + memory = queue.shift(); + while ( ++firingIndex < list.length ) { + + // Run callback and check for early termination + if ( list[ firingIndex ].apply( memory[ 0 ], memory[ 1 ] ) === false && + options.stopOnFalse ) { + + // Jump to end and forget the data so .add doesn't re-fire + firingIndex = list.length; + memory = false; + } + } + } + + // Forget the data if we're done with it + if ( !options.memory ) { + memory = false; + } + + firing = false; + + // Clean up if we're done firing for good + if ( locked ) { + + // Keep an empty list if we have data for future add calls + if ( memory ) { + list = []; + + // Otherwise, this object is spent + } else { + list = ""; + } + } + }, + + // Actual Callbacks object + self = { + + // Add a callback or a collection of callbacks to the list + add: function() { + if ( list ) { + + // If we have memory from a past run, we should fire after adding + if ( memory && !firing ) { + firingIndex = list.length - 1; + queue.push( memory ); + } + + ( function add( args ) { + jQuery.each( args, function( _, arg ) { + if ( jQuery.isFunction( arg ) ) { + if ( !options.unique || !self.has( arg ) ) { + list.push( arg ); + } + } else if ( arg && arg.length && jQuery.type( arg ) !== "string" ) { + + // Inspect recursively + add( arg ); + } + } ); + } )( arguments ); + + if ( memory && !firing ) { + fire(); + } + } + return this; + }, + + // Remove a callback from the list + remove: function() { + jQuery.each( arguments, function( _, arg ) { + var index; + while ( ( index = jQuery.inArray( arg, list, index ) ) > -1 ) { + list.splice( index, 1 ); + + // Handle firing indexes + if ( index <= firingIndex ) { + firingIndex--; + } + } + } ); + return this; + }, + + // Check if a given callback is in the list. + // If no argument is given, return whether or not list has callbacks attached. + has: function( fn ) { + return fn ? + jQuery.inArray( fn, list ) > -1 : + list.length > 0; + }, + + // Remove all callbacks from the list + empty: function() { + if ( list ) { + list = []; + } + return this; + }, + + // Disable .fire and .add + // Abort any current/pending executions + // Clear all callbacks and values + disable: function() { + locked = queue = []; + list = memory = ""; + return this; + }, + disabled: function() { + return !list; + }, + + // Disable .fire + // Also disable .add unless we have memory (since it would have no effect) + // Abort any pending executions + lock: function() { + locked = queue = []; + if ( !memory && !firing ) { + list = memory = ""; + } + return this; + }, + locked: function() { + return !!locked; + }, + + // Call all callbacks with the given context and arguments + fireWith: function( context, args ) { + if ( !locked ) { + args = args || []; + args = [ context, args.slice ? args.slice() : args ]; + queue.push( args ); + if ( !firing ) { + fire(); + } + } + return this; + }, + + // Call all the callbacks with the given arguments + fire: function() { + self.fireWith( this, arguments ); + return this; + }, + + // To know if the callbacks have already been called at least once + fired: function() { + return !!fired; + } + }; + + return self; +}; + + +function Identity( v ) { + return v; +} +function Thrower( ex ) { + throw ex; +} + +function adoptValue( value, resolve, reject, noValue ) { + var method; + + try { + + // Check for promise aspect first to privilege synchronous behavior + if ( value && jQuery.isFunction( ( method = value.promise ) ) ) { + method.call( value ).done( resolve ).fail( reject ); + + // Other thenables + } else if ( value && jQuery.isFunction( ( method = value.then ) ) ) { + method.call( value, resolve, reject ); + + // Other non-thenables + } else { + + // Control `resolve` arguments by letting Array#slice cast boolean `noValue` to integer: + // * false: [ value ].slice( 0 ) => resolve( value ) + // * true: [ value ].slice( 1 ) => resolve() + resolve.apply( undefined, [ value ].slice( noValue ) ); + } + + // For Promises/A+, convert exceptions into rejections + // Since jQuery.when doesn't unwrap thenables, we can skip the extra checks appearing in + // Deferred#then to conditionally suppress rejection. + } catch ( value ) { + + // Support: Android 4.0 only + // Strict mode functions invoked without .call/.apply get global-object context + reject.apply( undefined, [ value ] ); + } +} + +jQuery.extend( { + + Deferred: function( func ) { + var tuples = [ + + // action, add listener, callbacks, + // ... .then handlers, argument index, [final state] + [ "notify", "progress", jQuery.Callbacks( "memory" ), + jQuery.Callbacks( "memory" ), 2 ], + [ "resolve", "done", jQuery.Callbacks( "once memory" ), + jQuery.Callbacks( "once memory" ), 0, "resolved" ], + [ "reject", "fail", jQuery.Callbacks( "once memory" ), + jQuery.Callbacks( "once memory" ), 1, "rejected" ] + ], + state = "pending", + promise = { + state: function() { + return state; + }, + always: function() { + deferred.done( arguments ).fail( arguments ); + return this; + }, + "catch": function( fn ) { + return promise.then( null, fn ); + }, + + // Keep pipe for back-compat + pipe: function( /* fnDone, fnFail, fnProgress */ ) { + var fns = arguments; + + return jQuery.Deferred( function( newDefer ) { + jQuery.each( tuples, function( i, tuple ) { + + // Map tuples (progress, done, fail) to arguments (done, fail, progress) + var fn = jQuery.isFunction( fns[ tuple[ 4 ] ] ) && fns[ tuple[ 4 ] ]; + + // deferred.progress(function() { bind to newDefer or newDefer.notify }) + // deferred.done(function() { bind to newDefer or newDefer.resolve }) + // deferred.fail(function() { bind to newDefer or newDefer.reject }) + deferred[ tuple[ 1 ] ]( function() { + var returned = fn && fn.apply( this, arguments ); + if ( returned && jQuery.isFunction( returned.promise ) ) { + returned.promise() + .progress( newDefer.notify ) + .done( newDefer.resolve ) + .fail( newDefer.reject ); + } else { + newDefer[ tuple[ 0 ] + "With" ]( + this, + fn ? [ returned ] : arguments + ); + } + } ); + } ); + fns = null; + } ).promise(); + }, + then: function( onFulfilled, onRejected, onProgress ) { + var maxDepth = 0; + function resolve( depth, deferred, handler, special ) { + return function() { + var that = this, + args = arguments, + mightThrow = function() { + var returned, then; + + // Support: Promises/A+ section 2.3.3.3.3 + // https://promisesaplus.com/#point-59 + // Ignore double-resolution attempts + if ( depth < maxDepth ) { + return; + } + + returned = handler.apply( that, args ); + + // Support: Promises/A+ section 2.3.1 + // https://promisesaplus.com/#point-48 + if ( returned === deferred.promise() ) { + throw new TypeError( "Thenable self-resolution" ); + } + + // Support: Promises/A+ sections 2.3.3.1, 3.5 + // https://promisesaplus.com/#point-54 + // https://promisesaplus.com/#point-75 + // Retrieve `then` only once + then = returned && + + // Support: Promises/A+ section 2.3.4 + // https://promisesaplus.com/#point-64 + // Only check objects and functions for thenability + ( typeof returned === "object" || + typeof returned === "function" ) && + returned.then; + + // Handle a returned thenable + if ( jQuery.isFunction( then ) ) { + + // Special processors (notify) just wait for resolution + if ( special ) { + then.call( + returned, + resolve( maxDepth, deferred, Identity, special ), + resolve( maxDepth, deferred, Thrower, special ) + ); + + // Normal processors (resolve) also hook into progress + } else { + + // ...and disregard older resolution values + maxDepth++; + + then.call( + returned, + resolve( maxDepth, deferred, Identity, special ), + resolve( maxDepth, deferred, Thrower, special ), + resolve( maxDepth, deferred, Identity, + deferred.notifyWith ) + ); + } + + // Handle all other returned values + } else { + + // Only substitute handlers pass on context + // and multiple values (non-spec behavior) + if ( handler !== Identity ) { + that = undefined; + args = [ returned ]; + } + + // Process the value(s) + // Default process is resolve + ( special || deferred.resolveWith )( that, args ); + } + }, + + // Only normal processors (resolve) catch and reject exceptions + process = special ? + mightThrow : + function() { + try { + mightThrow(); + } catch ( e ) { + + if ( jQuery.Deferred.exceptionHook ) { + jQuery.Deferred.exceptionHook( e, + process.stackTrace ); + } + + // Support: Promises/A+ section 2.3.3.3.4.1 + // https://promisesaplus.com/#point-61 + // Ignore post-resolution exceptions + if ( depth + 1 >= maxDepth ) { + + // Only substitute handlers pass on context + // and multiple values (non-spec behavior) + if ( handler !== Thrower ) { + that = undefined; + args = [ e ]; + } + + deferred.rejectWith( that, args ); + } + } + }; + + // Support: Promises/A+ section 2.3.3.3.1 + // https://promisesaplus.com/#point-57 + // Re-resolve promises immediately to dodge false rejection from + // subsequent errors + if ( depth ) { + process(); + } else { + + // Call an optional hook to record the stack, in case of exception + // since it's otherwise lost when execution goes async + if ( jQuery.Deferred.getStackHook ) { + process.stackTrace = jQuery.Deferred.getStackHook(); + } + window.setTimeout( process ); + } + }; + } + + return jQuery.Deferred( function( newDefer ) { + + // progress_handlers.add( ... ) + tuples[ 0 ][ 3 ].add( + resolve( + 0, + newDefer, + jQuery.isFunction( onProgress ) ? + onProgress : + Identity, + newDefer.notifyWith + ) + ); + + // fulfilled_handlers.add( ... ) + tuples[ 1 ][ 3 ].add( + resolve( + 0, + newDefer, + jQuery.isFunction( onFulfilled ) ? + onFulfilled : + Identity + ) + ); + + // rejected_handlers.add( ... ) + tuples[ 2 ][ 3 ].add( + resolve( + 0, + newDefer, + jQuery.isFunction( onRejected ) ? + onRejected : + Thrower + ) + ); + } ).promise(); + }, + + // Get a promise for this deferred + // If obj is provided, the promise aspect is added to the object + promise: function( obj ) { + return obj != null ? jQuery.extend( obj, promise ) : promise; + } + }, + deferred = {}; + + // Add list-specific methods + jQuery.each( tuples, function( i, tuple ) { + var list = tuple[ 2 ], + stateString = tuple[ 5 ]; + + // promise.progress = list.add + // promise.done = list.add + // promise.fail = list.add + promise[ tuple[ 1 ] ] = list.add; + + // Handle state + if ( stateString ) { + list.add( + function() { + + // state = "resolved" (i.e., fulfilled) + // state = "rejected" + state = stateString; + }, + + // rejected_callbacks.disable + // fulfilled_callbacks.disable + tuples[ 3 - i ][ 2 ].disable, + + // progress_callbacks.lock + tuples[ 0 ][ 2 ].lock + ); + } + + // progress_handlers.fire + // fulfilled_handlers.fire + // rejected_handlers.fire + list.add( tuple[ 3 ].fire ); + + // deferred.notify = function() { deferred.notifyWith(...) } + // deferred.resolve = function() { deferred.resolveWith(...) } + // deferred.reject = function() { deferred.rejectWith(...) } + deferred[ tuple[ 0 ] ] = function() { + deferred[ tuple[ 0 ] + "With" ]( this === deferred ? undefined : this, arguments ); + return this; + }; + + // deferred.notifyWith = list.fireWith + // deferred.resolveWith = list.fireWith + // deferred.rejectWith = list.fireWith + deferred[ tuple[ 0 ] + "With" ] = list.fireWith; + } ); + + // Make the deferred a promise + promise.promise( deferred ); + + // Call given func if any + if ( func ) { + func.call( deferred, deferred ); + } + + // All done! + return deferred; + }, + + // Deferred helper + when: function( singleValue ) { + var + + // count of uncompleted subordinates + remaining = arguments.length, + + // count of unprocessed arguments + i = remaining, + + // subordinate fulfillment data + resolveContexts = Array( i ), + resolveValues = slice.call( arguments ), + + // the master Deferred + master = jQuery.Deferred(), + + // subordinate callback factory + updateFunc = function( i ) { + return function( value ) { + resolveContexts[ i ] = this; + resolveValues[ i ] = arguments.length > 1 ? slice.call( arguments ) : value; + if ( !( --remaining ) ) { + master.resolveWith( resolveContexts, resolveValues ); + } + }; + }; + + // Single- and empty arguments are adopted like Promise.resolve + if ( remaining <= 1 ) { + adoptValue( singleValue, master.done( updateFunc( i ) ).resolve, master.reject, + !remaining ); + + // Use .then() to unwrap secondary thenables (cf. gh-3000) + if ( master.state() === "pending" || + jQuery.isFunction( resolveValues[ i ] && resolveValues[ i ].then ) ) { + + return master.then(); + } + } + + // Multiple arguments are aggregated like Promise.all array elements + while ( i-- ) { + adoptValue( resolveValues[ i ], updateFunc( i ), master.reject ); + } + + return master.promise(); + } +} ); + + +// These usually indicate a programmer mistake during development, +// warn about them ASAP rather than swallowing them by default. +var rerrorNames = /^(Eval|Internal|Range|Reference|Syntax|Type|URI)Error$/; + +jQuery.Deferred.exceptionHook = function( error, stack ) { + + // Support: IE 8 - 9 only + // Console exists when dev tools are open, which can happen at any time + if ( window.console && window.console.warn && error && rerrorNames.test( error.name ) ) { + window.console.warn( "jQuery.Deferred exception: " + error.message, error.stack, stack ); + } +}; + + + + +jQuery.readyException = function( error ) { + window.setTimeout( function() { + throw error; + } ); +}; + + + + +// The deferred used on DOM ready +var readyList = jQuery.Deferred(); + +jQuery.fn.ready = function( fn ) { + + readyList + .then( fn ) + + // Wrap jQuery.readyException in a function so that the lookup + // happens at the time of error handling instead of callback + // registration. + .catch( function( error ) { + jQuery.readyException( error ); + } ); + + return this; +}; + +jQuery.extend( { + + // Is the DOM ready to be used? Set to true once it occurs. + isReady: false, + + // A counter to track how many items to wait for before + // the ready event fires. See #6781 + readyWait: 1, + + // Handle when the DOM is ready + ready: function( wait ) { + + // Abort if there are pending holds or we're already ready + if ( wait === true ? --jQuery.readyWait : jQuery.isReady ) { + return; + } + + // Remember that the DOM is ready + jQuery.isReady = true; + + // If a normal DOM Ready event fired, decrement, and wait if need be + if ( wait !== true && --jQuery.readyWait > 0 ) { + return; + } + + // If there are functions bound, to execute + readyList.resolveWith( document, [ jQuery ] ); + } +} ); + +jQuery.ready.then = readyList.then; + +// The ready event handler and self cleanup method +function completed() { + document.removeEventListener( "DOMContentLoaded", completed ); + window.removeEventListener( "load", completed ); + jQuery.ready(); +} + +// Catch cases where $(document).ready() is called +// after the browser event has already occurred. +// Support: IE <=9 - 10 only +// Older IE sometimes signals "interactive" too soon +if ( document.readyState === "complete" || + ( document.readyState !== "loading" && !document.documentElement.doScroll ) ) { + + // Handle it asynchronously to allow scripts the opportunity to delay ready + window.setTimeout( jQuery.ready ); + +} else { + + // Use the handy event callback + document.addEventListener( "DOMContentLoaded", completed ); + + // A fallback to window.onload, that will always work + window.addEventListener( "load", completed ); +} + + + + +// Multifunctional method to get and set values of a collection +// The value/s can optionally be executed if it's a function +var access = function( elems, fn, key, value, chainable, emptyGet, raw ) { + var i = 0, + len = elems.length, + bulk = key == null; + + // Sets many values + if ( jQuery.type( key ) === "object" ) { + chainable = true; + for ( i in key ) { + access( elems, fn, i, key[ i ], true, emptyGet, raw ); + } + + // Sets one value + } else if ( value !== undefined ) { + chainable = true; + + if ( !jQuery.isFunction( value ) ) { + raw = true; + } + + if ( bulk ) { + + // Bulk operations run against the entire set + if ( raw ) { + fn.call( elems, value ); + fn = null; + + // ...except when executing function values + } else { + bulk = fn; + fn = function( elem, key, value ) { + return bulk.call( jQuery( elem ), value ); + }; + } + } + + if ( fn ) { + for ( ; i < len; i++ ) { + fn( + elems[ i ], key, raw ? + value : + value.call( elems[ i ], i, fn( elems[ i ], key ) ) + ); + } + } + } + + if ( chainable ) { + return elems; + } + + // Gets + if ( bulk ) { + return fn.call( elems ); + } + + return len ? fn( elems[ 0 ], key ) : emptyGet; +}; +var acceptData = function( owner ) { + + // Accepts only: + // - Node + // - Node.ELEMENT_NODE + // - Node.DOCUMENT_NODE + // - Object + // - Any + return owner.nodeType === 1 || owner.nodeType === 9 || !( +owner.nodeType ); +}; + + + + +function Data() { + this.expando = jQuery.expando + Data.uid++; +} + +Data.uid = 1; + +Data.prototype = { + + cache: function( owner ) { + + // Check if the owner object already has a cache + var value = owner[ this.expando ]; + + // If not, create one + if ( !value ) { + value = {}; + + // We can accept data for non-element nodes in modern browsers, + // but we should not, see #8335. + // Always return an empty object. + if ( acceptData( owner ) ) { + + // If it is a node unlikely to be stringify-ed or looped over + // use plain assignment + if ( owner.nodeType ) { + owner[ this.expando ] = value; + + // Otherwise secure it in a non-enumerable property + // configurable must be true to allow the property to be + // deleted when data is removed + } else { + Object.defineProperty( owner, this.expando, { + value: value, + configurable: true + } ); + } + } + } + + return value; + }, + set: function( owner, data, value ) { + var prop, + cache = this.cache( owner ); + + // Handle: [ owner, key, value ] args + // Always use camelCase key (gh-2257) + if ( typeof data === "string" ) { + cache[ jQuery.camelCase( data ) ] = value; + + // Handle: [ owner, { properties } ] args + } else { + + // Copy the properties one-by-one to the cache object + for ( prop in data ) { + cache[ jQuery.camelCase( prop ) ] = data[ prop ]; + } + } + return cache; + }, + get: function( owner, key ) { + return key === undefined ? + this.cache( owner ) : + + // Always use camelCase key (gh-2257) + owner[ this.expando ] && owner[ this.expando ][ jQuery.camelCase( key ) ]; + }, + access: function( owner, key, value ) { + + // In cases where either: + // + // 1. No key was specified + // 2. A string key was specified, but no value provided + // + // Take the "read" path and allow the get method to determine + // which value to return, respectively either: + // + // 1. The entire cache object + // 2. The data stored at the key + // + if ( key === undefined || + ( ( key && typeof key === "string" ) && value === undefined ) ) { + + return this.get( owner, key ); + } + + // When the key is not a string, or both a key and value + // are specified, set or extend (existing objects) with either: + // + // 1. An object of properties + // 2. A key and value + // + this.set( owner, key, value ); + + // Since the "set" path can have two possible entry points + // return the expected data based on which path was taken[*] + return value !== undefined ? value : key; + }, + remove: function( owner, key ) { + var i, + cache = owner[ this.expando ]; + + if ( cache === undefined ) { + return; + } + + if ( key !== undefined ) { + + // Support array or space separated string of keys + if ( Array.isArray( key ) ) { + + // If key is an array of keys... + // We always set camelCase keys, so remove that. + key = key.map( jQuery.camelCase ); + } else { + key = jQuery.camelCase( key ); + + // If a key with the spaces exists, use it. + // Otherwise, create an array by matching non-whitespace + key = key in cache ? + [ key ] : + ( key.match( rnothtmlwhite ) || [] ); + } + + i = key.length; + + while ( i-- ) { + delete cache[ key[ i ] ]; + } + } + + // Remove the expando if there's no more data + if ( key === undefined || jQuery.isEmptyObject( cache ) ) { + + // Support: Chrome <=35 - 45 + // Webkit & Blink performance suffers when deleting properties + // from DOM nodes, so set to undefined instead + // https://bugs.chromium.org/p/chromium/issues/detail?id=378607 (bug restricted) + if ( owner.nodeType ) { + owner[ this.expando ] = undefined; + } else { + delete owner[ this.expando ]; + } + } + }, + hasData: function( owner ) { + var cache = owner[ this.expando ]; + return cache !== undefined && !jQuery.isEmptyObject( cache ); + } +}; +var dataPriv = new Data(); + +var dataUser = new Data(); + + + +// Implementation Summary +// +// 1. Enforce API surface and semantic compatibility with 1.9.x branch +// 2. Improve the module's maintainability by reducing the storage +// paths to a single mechanism. +// 3. Use the same single mechanism to support "private" and "user" data. +// 4. _Never_ expose "private" data to user code (TODO: Drop _data, _removeData) +// 5. Avoid exposing implementation details on user objects (eg. expando properties) +// 6. Provide a clear path for implementation upgrade to WeakMap in 2014 + +var rbrace = /^(?:\{[\w\W]*\}|\[[\w\W]*\])$/, + rmultiDash = /[A-Z]/g; + +function getData( data ) { + if ( data === "true" ) { + return true; + } + + if ( data === "false" ) { + return false; + } + + if ( data === "null" ) { + return null; + } + + // Only convert to a number if it doesn't change the string + if ( data === +data + "" ) { + return +data; + } + + if ( rbrace.test( data ) ) { + return JSON.parse( data ); + } + + return data; +} + +function dataAttr( elem, key, data ) { + var name; + + // If nothing was found internally, try to fetch any + // data from the HTML5 data-* attribute + if ( data === undefined && elem.nodeType === 1 ) { + name = "data-" + key.replace( rmultiDash, "-$&" ).toLowerCase(); + data = elem.getAttribute( name ); + + if ( typeof data === "string" ) { + try { + data = getData( data ); + } catch ( e ) {} + + // Make sure we set the data so it isn't changed later + dataUser.set( elem, key, data ); + } else { + data = undefined; + } + } + return data; +} + +jQuery.extend( { + hasData: function( elem ) { + return dataUser.hasData( elem ) || dataPriv.hasData( elem ); + }, + + data: function( elem, name, data ) { + return dataUser.access( elem, name, data ); + }, + + removeData: function( elem, name ) { + dataUser.remove( elem, name ); + }, + + // TODO: Now that all calls to _data and _removeData have been replaced + // with direct calls to dataPriv methods, these can be deprecated. + _data: function( elem, name, data ) { + return dataPriv.access( elem, name, data ); + }, + + _removeData: function( elem, name ) { + dataPriv.remove( elem, name ); + } +} ); + +jQuery.fn.extend( { + data: function( key, value ) { + var i, name, data, + elem = this[ 0 ], + attrs = elem && elem.attributes; + + // Gets all values + if ( key === undefined ) { + if ( this.length ) { + data = dataUser.get( elem ); + + if ( elem.nodeType === 1 && !dataPriv.get( elem, "hasDataAttrs" ) ) { + i = attrs.length; + while ( i-- ) { + + // Support: IE 11 only + // The attrs elements can be null (#14894) + if ( attrs[ i ] ) { + name = attrs[ i ].name; + if ( name.indexOf( "data-" ) === 0 ) { + name = jQuery.camelCase( name.slice( 5 ) ); + dataAttr( elem, name, data[ name ] ); + } + } + } + dataPriv.set( elem, "hasDataAttrs", true ); + } + } + + return data; + } + + // Sets multiple values + if ( typeof key === "object" ) { + return this.each( function() { + dataUser.set( this, key ); + } ); + } + + return access( this, function( value ) { + var data; + + // The calling jQuery object (element matches) is not empty + // (and therefore has an element appears at this[ 0 ]) and the + // `value` parameter was not undefined. An empty jQuery object + // will result in `undefined` for elem = this[ 0 ] which will + // throw an exception if an attempt to read a data cache is made. + if ( elem && value === undefined ) { + + // Attempt to get data from the cache + // The key will always be camelCased in Data + data = dataUser.get( elem, key ); + if ( data !== undefined ) { + return data; + } + + // Attempt to "discover" the data in + // HTML5 custom data-* attrs + data = dataAttr( elem, key ); + if ( data !== undefined ) { + return data; + } + + // We tried really hard, but the data doesn't exist. + return; + } + + // Set the data... + this.each( function() { + + // We always store the camelCased key + dataUser.set( this, key, value ); + } ); + }, null, value, arguments.length > 1, null, true ); + }, + + removeData: function( key ) { + return this.each( function() { + dataUser.remove( this, key ); + } ); + } +} ); + + +jQuery.extend( { + queue: function( elem, type, data ) { + var queue; + + if ( elem ) { + type = ( type || "fx" ) + "queue"; + queue = dataPriv.get( elem, type ); + + // Speed up dequeue by getting out quickly if this is just a lookup + if ( data ) { + if ( !queue || Array.isArray( data ) ) { + queue = dataPriv.access( elem, type, jQuery.makeArray( data ) ); + } else { + queue.push( data ); + } + } + return queue || []; + } + }, + + dequeue: function( elem, type ) { + type = type || "fx"; + + var queue = jQuery.queue( elem, type ), + startLength = queue.length, + fn = queue.shift(), + hooks = jQuery._queueHooks( elem, type ), + next = function() { + jQuery.dequeue( elem, type ); + }; + + // If the fx queue is dequeued, always remove the progress sentinel + if ( fn === "inprogress" ) { + fn = queue.shift(); + startLength--; + } + + if ( fn ) { + + // Add a progress sentinel to prevent the fx queue from being + // automatically dequeued + if ( type === "fx" ) { + queue.unshift( "inprogress" ); + } + + // Clear up the last queue stop function + delete hooks.stop; + fn.call( elem, next, hooks ); + } + + if ( !startLength && hooks ) { + hooks.empty.fire(); + } + }, + + // Not public - generate a queueHooks object, or return the current one + _queueHooks: function( elem, type ) { + var key = type + "queueHooks"; + return dataPriv.get( elem, key ) || dataPriv.access( elem, key, { + empty: jQuery.Callbacks( "once memory" ).add( function() { + dataPriv.remove( elem, [ type + "queue", key ] ); + } ) + } ); + } +} ); + +jQuery.fn.extend( { + queue: function( type, data ) { + var setter = 2; + + if ( typeof type !== "string" ) { + data = type; + type = "fx"; + setter--; + } + + if ( arguments.length < setter ) { + return jQuery.queue( this[ 0 ], type ); + } + + return data === undefined ? + this : + this.each( function() { + var queue = jQuery.queue( this, type, data ); + + // Ensure a hooks for this queue + jQuery._queueHooks( this, type ); + + if ( type === "fx" && queue[ 0 ] !== "inprogress" ) { + jQuery.dequeue( this, type ); + } + } ); + }, + dequeue: function( type ) { + return this.each( function() { + jQuery.dequeue( this, type ); + } ); + }, + clearQueue: function( type ) { + return this.queue( type || "fx", [] ); + }, + + // Get a promise resolved when queues of a certain type + // are emptied (fx is the type by default) + promise: function( type, obj ) { + var tmp, + count = 1, + defer = jQuery.Deferred(), + elements = this, + i = this.length, + resolve = function() { + if ( !( --count ) ) { + defer.resolveWith( elements, [ elements ] ); + } + }; + + if ( typeof type !== "string" ) { + obj = type; + type = undefined; + } + type = type || "fx"; + + while ( i-- ) { + tmp = dataPriv.get( elements[ i ], type + "queueHooks" ); + if ( tmp && tmp.empty ) { + count++; + tmp.empty.add( resolve ); + } + } + resolve(); + return defer.promise( obj ); + } +} ); +var pnum = ( /[+-]?(?:\d*\.|)\d+(?:[eE][+-]?\d+|)/ ).source; + +var rcssNum = new RegExp( "^(?:([+-])=|)(" + pnum + ")([a-z%]*)$", "i" ); + + +var cssExpand = [ "Top", "Right", "Bottom", "Left" ]; + +var isHiddenWithinTree = function( elem, el ) { + + // isHiddenWithinTree might be called from jQuery#filter function; + // in that case, element will be second argument + elem = el || elem; + + // Inline style trumps all + return elem.style.display === "none" || + elem.style.display === "" && + + // Otherwise, check computed style + // Support: Firefox <=43 - 45 + // Disconnected elements can have computed display: none, so first confirm that elem is + // in the document. + jQuery.contains( elem.ownerDocument, elem ) && + + jQuery.css( elem, "display" ) === "none"; + }; + +var swap = function( elem, options, callback, args ) { + var ret, name, + old = {}; + + // Remember the old values, and insert the new ones + for ( name in options ) { + old[ name ] = elem.style[ name ]; + elem.style[ name ] = options[ name ]; + } + + ret = callback.apply( elem, args || [] ); + + // Revert the old values + for ( name in options ) { + elem.style[ name ] = old[ name ]; + } + + return ret; +}; + + + + +function adjustCSS( elem, prop, valueParts, tween ) { + var adjusted, + scale = 1, + maxIterations = 20, + currentValue = tween ? + function() { + return tween.cur(); + } : + function() { + return jQuery.css( elem, prop, "" ); + }, + initial = currentValue(), + unit = valueParts && valueParts[ 3 ] || ( jQuery.cssNumber[ prop ] ? "" : "px" ), + + // Starting value computation is required for potential unit mismatches + initialInUnit = ( jQuery.cssNumber[ prop ] || unit !== "px" && +initial ) && + rcssNum.exec( jQuery.css( elem, prop ) ); + + if ( initialInUnit && initialInUnit[ 3 ] !== unit ) { + + // Trust units reported by jQuery.css + unit = unit || initialInUnit[ 3 ]; + + // Make sure we update the tween properties later on + valueParts = valueParts || []; + + // Iteratively approximate from a nonzero starting point + initialInUnit = +initial || 1; + + do { + + // If previous iteration zeroed out, double until we get *something*. + // Use string for doubling so we don't accidentally see scale as unchanged below + scale = scale || ".5"; + + // Adjust and apply + initialInUnit = initialInUnit / scale; + jQuery.style( elem, prop, initialInUnit + unit ); + + // Update scale, tolerating zero or NaN from tween.cur() + // Break the loop if scale is unchanged or perfect, or if we've just had enough. + } while ( + scale !== ( scale = currentValue() / initial ) && scale !== 1 && --maxIterations + ); + } + + if ( valueParts ) { + initialInUnit = +initialInUnit || +initial || 0; + + // Apply relative offset (+=/-=) if specified + adjusted = valueParts[ 1 ] ? + initialInUnit + ( valueParts[ 1 ] + 1 ) * valueParts[ 2 ] : + +valueParts[ 2 ]; + if ( tween ) { + tween.unit = unit; + tween.start = initialInUnit; + tween.end = adjusted; + } + } + return adjusted; +} + + +var defaultDisplayMap = {}; + +function getDefaultDisplay( elem ) { + var temp, + doc = elem.ownerDocument, + nodeName = elem.nodeName, + display = defaultDisplayMap[ nodeName ]; + + if ( display ) { + return display; + } + + temp = doc.body.appendChild( doc.createElement( nodeName ) ); + display = jQuery.css( temp, "display" ); + + temp.parentNode.removeChild( temp ); + + if ( display === "none" ) { + display = "block"; + } + defaultDisplayMap[ nodeName ] = display; + + return display; +} + +function showHide( elements, show ) { + var display, elem, + values = [], + index = 0, + length = elements.length; + + // Determine new display value for elements that need to change + for ( ; index < length; index++ ) { + elem = elements[ index ]; + if ( !elem.style ) { + continue; + } + + display = elem.style.display; + if ( show ) { + + // Since we force visibility upon cascade-hidden elements, an immediate (and slow) + // check is required in this first loop unless we have a nonempty display value (either + // inline or about-to-be-restored) + if ( display === "none" ) { + values[ index ] = dataPriv.get( elem, "display" ) || null; + if ( !values[ index ] ) { + elem.style.display = ""; + } + } + if ( elem.style.display === "" && isHiddenWithinTree( elem ) ) { + values[ index ] = getDefaultDisplay( elem ); + } + } else { + if ( display !== "none" ) { + values[ index ] = "none"; + + // Remember what we're overwriting + dataPriv.set( elem, "display", display ); + } + } + } + + // Set the display of the elements in a second loop to avoid constant reflow + for ( index = 0; index < length; index++ ) { + if ( values[ index ] != null ) { + elements[ index ].style.display = values[ index ]; + } + } + + return elements; +} + +jQuery.fn.extend( { + show: function() { + return showHide( this, true ); + }, + hide: function() { + return showHide( this ); + }, + toggle: function( state ) { + if ( typeof state === "boolean" ) { + return state ? this.show() : this.hide(); + } + + return this.each( function() { + if ( isHiddenWithinTree( this ) ) { + jQuery( this ).show(); + } else { + jQuery( this ).hide(); + } + } ); + } +} ); +var rcheckableType = ( /^(?:checkbox|radio)$/i ); + +var rtagName = ( /<([a-z][^\/\0>\x20\t\r\n\f]+)/i ); + +var rscriptType = ( /^$|\/(?:java|ecma)script/i ); + + + +// We have to close these tags to support XHTML (#13200) +var wrapMap = { + + // Support: IE <=9 only + option: [ 1, "" ], + + // XHTML parsers do not magically insert elements in the + // same way that tag soup parsers do. So we cannot shorten + // this by omitting or other required elements. + thead: [ 1, "", "
" ], + col: [ 2, "", "
" ], + tr: [ 2, "", "
" ], + td: [ 3, "", "
" ], + + _default: [ 0, "", "" ] +}; + +// Support: IE <=9 only +wrapMap.optgroup = wrapMap.option; + +wrapMap.tbody = wrapMap.tfoot = wrapMap.colgroup = wrapMap.caption = wrapMap.thead; +wrapMap.th = wrapMap.td; + + +function getAll( context, tag ) { + + // Support: IE <=9 - 11 only + // Use typeof to avoid zero-argument method invocation on host objects (#15151) + var ret; + + if ( typeof context.getElementsByTagName !== "undefined" ) { + ret = context.getElementsByTagName( tag || "*" ); + + } else if ( typeof context.querySelectorAll !== "undefined" ) { + ret = context.querySelectorAll( tag || "*" ); + + } else { + ret = []; + } + + if ( tag === undefined || tag && nodeName( context, tag ) ) { + return jQuery.merge( [ context ], ret ); + } + + return ret; +} + + +// Mark scripts as having already been evaluated +function setGlobalEval( elems, refElements ) { + var i = 0, + l = elems.length; + + for ( ; i < l; i++ ) { + dataPriv.set( + elems[ i ], + "globalEval", + !refElements || dataPriv.get( refElements[ i ], "globalEval" ) + ); + } +} + + +var rhtml = /<|&#?\w+;/; + +function buildFragment( elems, context, scripts, selection, ignored ) { + var elem, tmp, tag, wrap, contains, j, + fragment = context.createDocumentFragment(), + nodes = [], + i = 0, + l = elems.length; + + for ( ; i < l; i++ ) { + elem = elems[ i ]; + + if ( elem || elem === 0 ) { + + // Add nodes directly + if ( jQuery.type( elem ) === "object" ) { + + // Support: Android <=4.0 only, PhantomJS 1 only + // push.apply(_, arraylike) throws on ancient WebKit + jQuery.merge( nodes, elem.nodeType ? [ elem ] : elem ); + + // Convert non-html into a text node + } else if ( !rhtml.test( elem ) ) { + nodes.push( context.createTextNode( elem ) ); + + // Convert html into DOM nodes + } else { + tmp = tmp || fragment.appendChild( context.createElement( "div" ) ); + + // Deserialize a standard representation + tag = ( rtagName.exec( elem ) || [ "", "" ] )[ 1 ].toLowerCase(); + wrap = wrapMap[ tag ] || wrapMap._default; + tmp.innerHTML = wrap[ 1 ] + jQuery.htmlPrefilter( elem ) + wrap[ 2 ]; + + // Descend through wrappers to the right content + j = wrap[ 0 ]; + while ( j-- ) { + tmp = tmp.lastChild; + } + + // Support: Android <=4.0 only, PhantomJS 1 only + // push.apply(_, arraylike) throws on ancient WebKit + jQuery.merge( nodes, tmp.childNodes ); + + // Remember the top-level container + tmp = fragment.firstChild; + + // Ensure the created nodes are orphaned (#12392) + tmp.textContent = ""; + } + } + } + + // Remove wrapper from fragment + fragment.textContent = ""; + + i = 0; + while ( ( elem = nodes[ i++ ] ) ) { + + // Skip elements already in the context collection (trac-4087) + if ( selection && jQuery.inArray( elem, selection ) > -1 ) { + if ( ignored ) { + ignored.push( elem ); + } + continue; + } + + contains = jQuery.contains( elem.ownerDocument, elem ); + + // Append to fragment + tmp = getAll( fragment.appendChild( elem ), "script" ); + + // Preserve script evaluation history + if ( contains ) { + setGlobalEval( tmp ); + } + + // Capture executables + if ( scripts ) { + j = 0; + while ( ( elem = tmp[ j++ ] ) ) { + if ( rscriptType.test( elem.type || "" ) ) { + scripts.push( elem ); + } + } + } + } + + return fragment; +} + + +( function() { + var fragment = document.createDocumentFragment(), + div = fragment.appendChild( document.createElement( "div" ) ), + input = document.createElement( "input" ); + + // Support: Android 4.0 - 4.3 only + // Check state lost if the name is set (#11217) + // Support: Windows Web Apps (WWA) + // `name` and `type` must use .setAttribute for WWA (#14901) + input.setAttribute( "type", "radio" ); + input.setAttribute( "checked", "checked" ); + input.setAttribute( "name", "t" ); + + div.appendChild( input ); + + // Support: Android <=4.1 only + // Older WebKit doesn't clone checked state correctly in fragments + support.checkClone = div.cloneNode( true ).cloneNode( true ).lastChild.checked; + + // Support: IE <=11 only + // Make sure textarea (and checkbox) defaultValue is properly cloned + div.innerHTML = ""; + support.noCloneChecked = !!div.cloneNode( true ).lastChild.defaultValue; +} )(); +var documentElement = document.documentElement; + + + +var + rkeyEvent = /^key/, + rmouseEvent = /^(?:mouse|pointer|contextmenu|drag|drop)|click/, + rtypenamespace = /^([^.]*)(?:\.(.+)|)/; + +function returnTrue() { + return true; +} + +function returnFalse() { + return false; +} + +// Support: IE <=9 only +// See #13393 for more info +function safeActiveElement() { + try { + return document.activeElement; + } catch ( err ) { } +} + +function on( elem, types, selector, data, fn, one ) { + var origFn, type; + + // Types can be a map of types/handlers + if ( typeof types === "object" ) { + + // ( types-Object, selector, data ) + if ( typeof selector !== "string" ) { + + // ( types-Object, data ) + data = data || selector; + selector = undefined; + } + for ( type in types ) { + on( elem, type, selector, data, types[ type ], one ); + } + return elem; + } + + if ( data == null && fn == null ) { + + // ( types, fn ) + fn = selector; + data = selector = undefined; + } else if ( fn == null ) { + if ( typeof selector === "string" ) { + + // ( types, selector, fn ) + fn = data; + data = undefined; + } else { + + // ( types, data, fn ) + fn = data; + data = selector; + selector = undefined; + } + } + if ( fn === false ) { + fn = returnFalse; + } else if ( !fn ) { + return elem; + } + + if ( one === 1 ) { + origFn = fn; + fn = function( event ) { + + // Can use an empty set, since event contains the info + jQuery().off( event ); + return origFn.apply( this, arguments ); + }; + + // Use same guid so caller can remove using origFn + fn.guid = origFn.guid || ( origFn.guid = jQuery.guid++ ); + } + return elem.each( function() { + jQuery.event.add( this, types, fn, data, selector ); + } ); +} + +/* + * Helper functions for managing events -- not part of the public interface. + * Props to Dean Edwards' addEvent library for many of the ideas. + */ +jQuery.event = { + + global: {}, + + add: function( elem, types, handler, data, selector ) { + + var handleObjIn, eventHandle, tmp, + events, t, handleObj, + special, handlers, type, namespaces, origType, + elemData = dataPriv.get( elem ); + + // Don't attach events to noData or text/comment nodes (but allow plain objects) + if ( !elemData ) { + return; + } + + // Caller can pass in an object of custom data in lieu of the handler + if ( handler.handler ) { + handleObjIn = handler; + handler = handleObjIn.handler; + selector = handleObjIn.selector; + } + + // Ensure that invalid selectors throw exceptions at attach time + // Evaluate against documentElement in case elem is a non-element node (e.g., document) + if ( selector ) { + jQuery.find.matchesSelector( documentElement, selector ); + } + + // Make sure that the handler has a unique ID, used to find/remove it later + if ( !handler.guid ) { + handler.guid = jQuery.guid++; + } + + // Init the element's event structure and main handler, if this is the first + if ( !( events = elemData.events ) ) { + events = elemData.events = {}; + } + if ( !( eventHandle = elemData.handle ) ) { + eventHandle = elemData.handle = function( e ) { + + // Discard the second event of a jQuery.event.trigger() and + // when an event is called after a page has unloaded + return typeof jQuery !== "undefined" && jQuery.event.triggered !== e.type ? + jQuery.event.dispatch.apply( elem, arguments ) : undefined; + }; + } + + // Handle multiple events separated by a space + types = ( types || "" ).match( rnothtmlwhite ) || [ "" ]; + t = types.length; + while ( t-- ) { + tmp = rtypenamespace.exec( types[ t ] ) || []; + type = origType = tmp[ 1 ]; + namespaces = ( tmp[ 2 ] || "" ).split( "." ).sort(); + + // There *must* be a type, no attaching namespace-only handlers + if ( !type ) { + continue; + } + + // If event changes its type, use the special event handlers for the changed type + special = jQuery.event.special[ type ] || {}; + + // If selector defined, determine special event api type, otherwise given type + type = ( selector ? special.delegateType : special.bindType ) || type; + + // Update special based on newly reset type + special = jQuery.event.special[ type ] || {}; + + // handleObj is passed to all event handlers + handleObj = jQuery.extend( { + type: type, + origType: origType, + data: data, + handler: handler, + guid: handler.guid, + selector: selector, + needsContext: selector && jQuery.expr.match.needsContext.test( selector ), + namespace: namespaces.join( "." ) + }, handleObjIn ); + + // Init the event handler queue if we're the first + if ( !( handlers = events[ type ] ) ) { + handlers = events[ type ] = []; + handlers.delegateCount = 0; + + // Only use addEventListener if the special events handler returns false + if ( !special.setup || + special.setup.call( elem, data, namespaces, eventHandle ) === false ) { + + if ( elem.addEventListener ) { + elem.addEventListener( type, eventHandle ); + } + } + } + + if ( special.add ) { + special.add.call( elem, handleObj ); + + if ( !handleObj.handler.guid ) { + handleObj.handler.guid = handler.guid; + } + } + + // Add to the element's handler list, delegates in front + if ( selector ) { + handlers.splice( handlers.delegateCount++, 0, handleObj ); + } else { + handlers.push( handleObj ); + } + + // Keep track of which events have ever been used, for event optimization + jQuery.event.global[ type ] = true; + } + + }, + + // Detach an event or set of events from an element + remove: function( elem, types, handler, selector, mappedTypes ) { + + var j, origCount, tmp, + events, t, handleObj, + special, handlers, type, namespaces, origType, + elemData = dataPriv.hasData( elem ) && dataPriv.get( elem ); + + if ( !elemData || !( events = elemData.events ) ) { + return; + } + + // Once for each type.namespace in types; type may be omitted + types = ( types || "" ).match( rnothtmlwhite ) || [ "" ]; + t = types.length; + while ( t-- ) { + tmp = rtypenamespace.exec( types[ t ] ) || []; + type = origType = tmp[ 1 ]; + namespaces = ( tmp[ 2 ] || "" ).split( "." ).sort(); + + // Unbind all events (on this namespace, if provided) for the element + if ( !type ) { + for ( type in events ) { + jQuery.event.remove( elem, type + types[ t ], handler, selector, true ); + } + continue; + } + + special = jQuery.event.special[ type ] || {}; + type = ( selector ? special.delegateType : special.bindType ) || type; + handlers = events[ type ] || []; + tmp = tmp[ 2 ] && + new RegExp( "(^|\\.)" + namespaces.join( "\\.(?:.*\\.|)" ) + "(\\.|$)" ); + + // Remove matching events + origCount = j = handlers.length; + while ( j-- ) { + handleObj = handlers[ j ]; + + if ( ( mappedTypes || origType === handleObj.origType ) && + ( !handler || handler.guid === handleObj.guid ) && + ( !tmp || tmp.test( handleObj.namespace ) ) && + ( !selector || selector === handleObj.selector || + selector === "**" && handleObj.selector ) ) { + handlers.splice( j, 1 ); + + if ( handleObj.selector ) { + handlers.delegateCount--; + } + if ( special.remove ) { + special.remove.call( elem, handleObj ); + } + } + } + + // Remove generic event handler if we removed something and no more handlers exist + // (avoids potential for endless recursion during removal of special event handlers) + if ( origCount && !handlers.length ) { + if ( !special.teardown || + special.teardown.call( elem, namespaces, elemData.handle ) === false ) { + + jQuery.removeEvent( elem, type, elemData.handle ); + } + + delete events[ type ]; + } + } + + // Remove data and the expando if it's no longer used + if ( jQuery.isEmptyObject( events ) ) { + dataPriv.remove( elem, "handle events" ); + } + }, + + dispatch: function( nativeEvent ) { + + // Make a writable jQuery.Event from the native event object + var event = jQuery.event.fix( nativeEvent ); + + var i, j, ret, matched, handleObj, handlerQueue, + args = new Array( arguments.length ), + handlers = ( dataPriv.get( this, "events" ) || {} )[ event.type ] || [], + special = jQuery.event.special[ event.type ] || {}; + + // Use the fix-ed jQuery.Event rather than the (read-only) native event + args[ 0 ] = event; + + for ( i = 1; i < arguments.length; i++ ) { + args[ i ] = arguments[ i ]; + } + + event.delegateTarget = this; + + // Call the preDispatch hook for the mapped type, and let it bail if desired + if ( special.preDispatch && special.preDispatch.call( this, event ) === false ) { + return; + } + + // Determine handlers + handlerQueue = jQuery.event.handlers.call( this, event, handlers ); + + // Run delegates first; they may want to stop propagation beneath us + i = 0; + while ( ( matched = handlerQueue[ i++ ] ) && !event.isPropagationStopped() ) { + event.currentTarget = matched.elem; + + j = 0; + while ( ( handleObj = matched.handlers[ j++ ] ) && + !event.isImmediatePropagationStopped() ) { + + // Triggered event must either 1) have no namespace, or 2) have namespace(s) + // a subset or equal to those in the bound event (both can have no namespace). + if ( !event.rnamespace || event.rnamespace.test( handleObj.namespace ) ) { + + event.handleObj = handleObj; + event.data = handleObj.data; + + ret = ( ( jQuery.event.special[ handleObj.origType ] || {} ).handle || + handleObj.handler ).apply( matched.elem, args ); + + if ( ret !== undefined ) { + if ( ( event.result = ret ) === false ) { + event.preventDefault(); + event.stopPropagation(); + } + } + } + } + } + + // Call the postDispatch hook for the mapped type + if ( special.postDispatch ) { + special.postDispatch.call( this, event ); + } + + return event.result; + }, + + handlers: function( event, handlers ) { + var i, handleObj, sel, matchedHandlers, matchedSelectors, + handlerQueue = [], + delegateCount = handlers.delegateCount, + cur = event.target; + + // Find delegate handlers + if ( delegateCount && + + // Support: IE <=9 + // Black-hole SVG instance trees (trac-13180) + cur.nodeType && + + // Support: Firefox <=42 + // Suppress spec-violating clicks indicating a non-primary pointer button (trac-3861) + // https://www.w3.org/TR/DOM-Level-3-Events/#event-type-click + // Support: IE 11 only + // ...but not arrow key "clicks" of radio inputs, which can have `button` -1 (gh-2343) + !( event.type === "click" && event.button >= 1 ) ) { + + for ( ; cur !== this; cur = cur.parentNode || this ) { + + // Don't check non-elements (#13208) + // Don't process clicks on disabled elements (#6911, #8165, #11382, #11764) + if ( cur.nodeType === 1 && !( event.type === "click" && cur.disabled === true ) ) { + matchedHandlers = []; + matchedSelectors = {}; + for ( i = 0; i < delegateCount; i++ ) { + handleObj = handlers[ i ]; + + // Don't conflict with Object.prototype properties (#13203) + sel = handleObj.selector + " "; + + if ( matchedSelectors[ sel ] === undefined ) { + matchedSelectors[ sel ] = handleObj.needsContext ? + jQuery( sel, this ).index( cur ) > -1 : + jQuery.find( sel, this, null, [ cur ] ).length; + } + if ( matchedSelectors[ sel ] ) { + matchedHandlers.push( handleObj ); + } + } + if ( matchedHandlers.length ) { + handlerQueue.push( { elem: cur, handlers: matchedHandlers } ); + } + } + } + } + + // Add the remaining (directly-bound) handlers + cur = this; + if ( delegateCount < handlers.length ) { + handlerQueue.push( { elem: cur, handlers: handlers.slice( delegateCount ) } ); + } + + return handlerQueue; + }, + + addProp: function( name, hook ) { + Object.defineProperty( jQuery.Event.prototype, name, { + enumerable: true, + configurable: true, + + get: jQuery.isFunction( hook ) ? + function() { + if ( this.originalEvent ) { + return hook( this.originalEvent ); + } + } : + function() { + if ( this.originalEvent ) { + return this.originalEvent[ name ]; + } + }, + + set: function( value ) { + Object.defineProperty( this, name, { + enumerable: true, + configurable: true, + writable: true, + value: value + } ); + } + } ); + }, + + fix: function( originalEvent ) { + return originalEvent[ jQuery.expando ] ? + originalEvent : + new jQuery.Event( originalEvent ); + }, + + special: { + load: { + + // Prevent triggered image.load events from bubbling to window.load + noBubble: true + }, + focus: { + + // Fire native event if possible so blur/focus sequence is correct + trigger: function() { + if ( this !== safeActiveElement() && this.focus ) { + this.focus(); + return false; + } + }, + delegateType: "focusin" + }, + blur: { + trigger: function() { + if ( this === safeActiveElement() && this.blur ) { + this.blur(); + return false; + } + }, + delegateType: "focusout" + }, + click: { + + // For checkbox, fire native event so checked state will be right + trigger: function() { + if ( this.type === "checkbox" && this.click && nodeName( this, "input" ) ) { + this.click(); + return false; + } + }, + + // For cross-browser consistency, don't fire native .click() on links + _default: function( event ) { + return nodeName( event.target, "a" ); + } + }, + + beforeunload: { + postDispatch: function( event ) { + + // Support: Firefox 20+ + // Firefox doesn't alert if the returnValue field is not set. + if ( event.result !== undefined && event.originalEvent ) { + event.originalEvent.returnValue = event.result; + } + } + } + } +}; + +jQuery.removeEvent = function( elem, type, handle ) { + + // This "if" is needed for plain objects + if ( elem.removeEventListener ) { + elem.removeEventListener( type, handle ); + } +}; + +jQuery.Event = function( src, props ) { + + // Allow instantiation without the 'new' keyword + if ( !( this instanceof jQuery.Event ) ) { + return new jQuery.Event( src, props ); + } + + // Event object + if ( src && src.type ) { + this.originalEvent = src; + this.type = src.type; + + // Events bubbling up the document may have been marked as prevented + // by a handler lower down the tree; reflect the correct value. + this.isDefaultPrevented = src.defaultPrevented || + src.defaultPrevented === undefined && + + // Support: Android <=2.3 only + src.returnValue === false ? + returnTrue : + returnFalse; + + // Create target properties + // Support: Safari <=6 - 7 only + // Target should not be a text node (#504, #13143) + this.target = ( src.target && src.target.nodeType === 3 ) ? + src.target.parentNode : + src.target; + + this.currentTarget = src.currentTarget; + this.relatedTarget = src.relatedTarget; + + // Event type + } else { + this.type = src; + } + + // Put explicitly provided properties onto the event object + if ( props ) { + jQuery.extend( this, props ); + } + + // Create a timestamp if incoming event doesn't have one + this.timeStamp = src && src.timeStamp || jQuery.now(); + + // Mark it as fixed + this[ jQuery.expando ] = true; +}; + +// jQuery.Event is based on DOM3 Events as specified by the ECMAScript Language Binding +// https://www.w3.org/TR/2003/WD-DOM-Level-3-Events-20030331/ecma-script-binding.html +jQuery.Event.prototype = { + constructor: jQuery.Event, + isDefaultPrevented: returnFalse, + isPropagationStopped: returnFalse, + isImmediatePropagationStopped: returnFalse, + isSimulated: false, + + preventDefault: function() { + var e = this.originalEvent; + + this.isDefaultPrevented = returnTrue; + + if ( e && !this.isSimulated ) { + e.preventDefault(); + } + }, + stopPropagation: function() { + var e = this.originalEvent; + + this.isPropagationStopped = returnTrue; + + if ( e && !this.isSimulated ) { + e.stopPropagation(); + } + }, + stopImmediatePropagation: function() { + var e = this.originalEvent; + + this.isImmediatePropagationStopped = returnTrue; + + if ( e && !this.isSimulated ) { + e.stopImmediatePropagation(); + } + + this.stopPropagation(); + } +}; + +// Includes all common event props including KeyEvent and MouseEvent specific props +jQuery.each( { + altKey: true, + bubbles: true, + cancelable: true, + changedTouches: true, + ctrlKey: true, + detail: true, + eventPhase: true, + metaKey: true, + pageX: true, + pageY: true, + shiftKey: true, + view: true, + "char": true, + charCode: true, + key: true, + keyCode: true, + button: true, + buttons: true, + clientX: true, + clientY: true, + offsetX: true, + offsetY: true, + pointerId: true, + pointerType: true, + screenX: true, + screenY: true, + targetTouches: true, + toElement: true, + touches: true, + + which: function( event ) { + var button = event.button; + + // Add which for key events + if ( event.which == null && rkeyEvent.test( event.type ) ) { + return event.charCode != null ? event.charCode : event.keyCode; + } + + // Add which for click: 1 === left; 2 === middle; 3 === right + if ( !event.which && button !== undefined && rmouseEvent.test( event.type ) ) { + if ( button & 1 ) { + return 1; + } + + if ( button & 2 ) { + return 3; + } + + if ( button & 4 ) { + return 2; + } + + return 0; + } + + return event.which; + } +}, jQuery.event.addProp ); + +// Create mouseenter/leave events using mouseover/out and event-time checks +// so that event delegation works in jQuery. +// Do the same for pointerenter/pointerleave and pointerover/pointerout +// +// Support: Safari 7 only +// Safari sends mouseenter too often; see: +// https://bugs.chromium.org/p/chromium/issues/detail?id=470258 +// for the description of the bug (it existed in older Chrome versions as well). +jQuery.each( { + mouseenter: "mouseover", + mouseleave: "mouseout", + pointerenter: "pointerover", + pointerleave: "pointerout" +}, function( orig, fix ) { + jQuery.event.special[ orig ] = { + delegateType: fix, + bindType: fix, + + handle: function( event ) { + var ret, + target = this, + related = event.relatedTarget, + handleObj = event.handleObj; + + // For mouseenter/leave call the handler if related is outside the target. + // NB: No relatedTarget if the mouse left/entered the browser window + if ( !related || ( related !== target && !jQuery.contains( target, related ) ) ) { + event.type = handleObj.origType; + ret = handleObj.handler.apply( this, arguments ); + event.type = fix; + } + return ret; + } + }; +} ); + +jQuery.fn.extend( { + + on: function( types, selector, data, fn ) { + return on( this, types, selector, data, fn ); + }, + one: function( types, selector, data, fn ) { + return on( this, types, selector, data, fn, 1 ); + }, + off: function( types, selector, fn ) { + var handleObj, type; + if ( types && types.preventDefault && types.handleObj ) { + + // ( event ) dispatched jQuery.Event + handleObj = types.handleObj; + jQuery( types.delegateTarget ).off( + handleObj.namespace ? + handleObj.origType + "." + handleObj.namespace : + handleObj.origType, + handleObj.selector, + handleObj.handler + ); + return this; + } + if ( typeof types === "object" ) { + + // ( types-object [, selector] ) + for ( type in types ) { + this.off( type, selector, types[ type ] ); + } + return this; + } + if ( selector === false || typeof selector === "function" ) { + + // ( types [, fn] ) + fn = selector; + selector = undefined; + } + if ( fn === false ) { + fn = returnFalse; + } + return this.each( function() { + jQuery.event.remove( this, types, fn, selector ); + } ); + } +} ); + + +var + + /* eslint-disable max-len */ + + // See https://github.com/eslint/eslint/issues/3229 + rxhtmlTag = /<(?!area|br|col|embed|hr|img|input|link|meta|param)(([a-z][^\/\0>\x20\t\r\n\f]*)[^>]*)\/>/gi, + + /* eslint-enable */ + + // Support: IE <=10 - 11, Edge 12 - 13 + // In IE/Edge using regex groups here causes severe slowdowns. + // See https://connect.microsoft.com/IE/feedback/details/1736512/ + rnoInnerhtml = /\s*$/g; + +// Prefer a tbody over its parent table for containing new rows +function manipulationTarget( elem, content ) { + if ( nodeName( elem, "table" ) && + nodeName( content.nodeType !== 11 ? content : content.firstChild, "tr" ) ) { + + return jQuery( ">tbody", elem )[ 0 ] || elem; + } + + return elem; +} + +// Replace/restore the type attribute of script elements for safe DOM manipulation +function disableScript( elem ) { + elem.type = ( elem.getAttribute( "type" ) !== null ) + "/" + elem.type; + return elem; +} +function restoreScript( elem ) { + var match = rscriptTypeMasked.exec( elem.type ); + + if ( match ) { + elem.type = match[ 1 ]; + } else { + elem.removeAttribute( "type" ); + } + + return elem; +} + +function cloneCopyEvent( src, dest ) { + var i, l, type, pdataOld, pdataCur, udataOld, udataCur, events; + + if ( dest.nodeType !== 1 ) { + return; + } + + // 1. Copy private data: events, handlers, etc. + if ( dataPriv.hasData( src ) ) { + pdataOld = dataPriv.access( src ); + pdataCur = dataPriv.set( dest, pdataOld ); + events = pdataOld.events; + + if ( events ) { + delete pdataCur.handle; + pdataCur.events = {}; + + for ( type in events ) { + for ( i = 0, l = events[ type ].length; i < l; i++ ) { + jQuery.event.add( dest, type, events[ type ][ i ] ); + } + } + } + } + + // 2. Copy user data + if ( dataUser.hasData( src ) ) { + udataOld = dataUser.access( src ); + udataCur = jQuery.extend( {}, udataOld ); + + dataUser.set( dest, udataCur ); + } +} + +// Fix IE bugs, see support tests +function fixInput( src, dest ) { + var nodeName = dest.nodeName.toLowerCase(); + + // Fails to persist the checked state of a cloned checkbox or radio button. + if ( nodeName === "input" && rcheckableType.test( src.type ) ) { + dest.checked = src.checked; + + // Fails to return the selected option to the default selected state when cloning options + } else if ( nodeName === "input" || nodeName === "textarea" ) { + dest.defaultValue = src.defaultValue; + } +} + +function domManip( collection, args, callback, ignored ) { + + // Flatten any nested arrays + args = concat.apply( [], args ); + + var fragment, first, scripts, hasScripts, node, doc, + i = 0, + l = collection.length, + iNoClone = l - 1, + value = args[ 0 ], + isFunction = jQuery.isFunction( value ); + + // We can't cloneNode fragments that contain checked, in WebKit + if ( isFunction || + ( l > 1 && typeof value === "string" && + !support.checkClone && rchecked.test( value ) ) ) { + return collection.each( function( index ) { + var self = collection.eq( index ); + if ( isFunction ) { + args[ 0 ] = value.call( this, index, self.html() ); + } + domManip( self, args, callback, ignored ); + } ); + } + + if ( l ) { + fragment = buildFragment( args, collection[ 0 ].ownerDocument, false, collection, ignored ); + first = fragment.firstChild; + + if ( fragment.childNodes.length === 1 ) { + fragment = first; + } + + // Require either new content or an interest in ignored elements to invoke the callback + if ( first || ignored ) { + scripts = jQuery.map( getAll( fragment, "script" ), disableScript ); + hasScripts = scripts.length; + + // Use the original fragment for the last item + // instead of the first because it can end up + // being emptied incorrectly in certain situations (#8070). + for ( ; i < l; i++ ) { + node = fragment; + + if ( i !== iNoClone ) { + node = jQuery.clone( node, true, true ); + + // Keep references to cloned scripts for later restoration + if ( hasScripts ) { + + // Support: Android <=4.0 only, PhantomJS 1 only + // push.apply(_, arraylike) throws on ancient WebKit + jQuery.merge( scripts, getAll( node, "script" ) ); + } + } + + callback.call( collection[ i ], node, i ); + } + + if ( hasScripts ) { + doc = scripts[ scripts.length - 1 ].ownerDocument; + + // Reenable scripts + jQuery.map( scripts, restoreScript ); + + // Evaluate executable scripts on first document insertion + for ( i = 0; i < hasScripts; i++ ) { + node = scripts[ i ]; + if ( rscriptType.test( node.type || "" ) && + !dataPriv.access( node, "globalEval" ) && + jQuery.contains( doc, node ) ) { + + if ( node.src ) { + + // Optional AJAX dependency, but won't run scripts if not present + if ( jQuery._evalUrl ) { + jQuery._evalUrl( node.src ); + } + } else { + DOMEval( node.textContent.replace( rcleanScript, "" ), doc ); + } + } + } + } + } + } + + return collection; +} + +function remove( elem, selector, keepData ) { + var node, + nodes = selector ? jQuery.filter( selector, elem ) : elem, + i = 0; + + for ( ; ( node = nodes[ i ] ) != null; i++ ) { + if ( !keepData && node.nodeType === 1 ) { + jQuery.cleanData( getAll( node ) ); + } + + if ( node.parentNode ) { + if ( keepData && jQuery.contains( node.ownerDocument, node ) ) { + setGlobalEval( getAll( node, "script" ) ); + } + node.parentNode.removeChild( node ); + } + } + + return elem; +} + +jQuery.extend( { + htmlPrefilter: function( html ) { + return html.replace( rxhtmlTag, "<$1>" ); + }, + + clone: function( elem, dataAndEvents, deepDataAndEvents ) { + var i, l, srcElements, destElements, + clone = elem.cloneNode( true ), + inPage = jQuery.contains( elem.ownerDocument, elem ); + + // Fix IE cloning issues + if ( !support.noCloneChecked && ( elem.nodeType === 1 || elem.nodeType === 11 ) && + !jQuery.isXMLDoc( elem ) ) { + + // We eschew Sizzle here for performance reasons: https://jsperf.com/getall-vs-sizzle/2 + destElements = getAll( clone ); + srcElements = getAll( elem ); + + for ( i = 0, l = srcElements.length; i < l; i++ ) { + fixInput( srcElements[ i ], destElements[ i ] ); + } + } + + // Copy the events from the original to the clone + if ( dataAndEvents ) { + if ( deepDataAndEvents ) { + srcElements = srcElements || getAll( elem ); + destElements = destElements || getAll( clone ); + + for ( i = 0, l = srcElements.length; i < l; i++ ) { + cloneCopyEvent( srcElements[ i ], destElements[ i ] ); + } + } else { + cloneCopyEvent( elem, clone ); + } + } + + // Preserve script evaluation history + destElements = getAll( clone, "script" ); + if ( destElements.length > 0 ) { + setGlobalEval( destElements, !inPage && getAll( elem, "script" ) ); + } + + // Return the cloned set + return clone; + }, + + cleanData: function( elems ) { + var data, elem, type, + special = jQuery.event.special, + i = 0; + + for ( ; ( elem = elems[ i ] ) !== undefined; i++ ) { + if ( acceptData( elem ) ) { + if ( ( data = elem[ dataPriv.expando ] ) ) { + if ( data.events ) { + for ( type in data.events ) { + if ( special[ type ] ) { + jQuery.event.remove( elem, type ); + + // This is a shortcut to avoid jQuery.event.remove's overhead + } else { + jQuery.removeEvent( elem, type, data.handle ); + } + } + } + + // Support: Chrome <=35 - 45+ + // Assign undefined instead of using delete, see Data#remove + elem[ dataPriv.expando ] = undefined; + } + if ( elem[ dataUser.expando ] ) { + + // Support: Chrome <=35 - 45+ + // Assign undefined instead of using delete, see Data#remove + elem[ dataUser.expando ] = undefined; + } + } + } + } +} ); + +jQuery.fn.extend( { + detach: function( selector ) { + return remove( this, selector, true ); + }, + + remove: function( selector ) { + return remove( this, selector ); + }, + + text: function( value ) { + return access( this, function( value ) { + return value === undefined ? + jQuery.text( this ) : + this.empty().each( function() { + if ( this.nodeType === 1 || this.nodeType === 11 || this.nodeType === 9 ) { + this.textContent = value; + } + } ); + }, null, value, arguments.length ); + }, + + append: function() { + return domManip( this, arguments, function( elem ) { + if ( this.nodeType === 1 || this.nodeType === 11 || this.nodeType === 9 ) { + var target = manipulationTarget( this, elem ); + target.appendChild( elem ); + } + } ); + }, + + prepend: function() { + return domManip( this, arguments, function( elem ) { + if ( this.nodeType === 1 || this.nodeType === 11 || this.nodeType === 9 ) { + var target = manipulationTarget( this, elem ); + target.insertBefore( elem, target.firstChild ); + } + } ); + }, + + before: function() { + return domManip( this, arguments, function( elem ) { + if ( this.parentNode ) { + this.parentNode.insertBefore( elem, this ); + } + } ); + }, + + after: function() { + return domManip( this, arguments, function( elem ) { + if ( this.parentNode ) { + this.parentNode.insertBefore( elem, this.nextSibling ); + } + } ); + }, + + empty: function() { + var elem, + i = 0; + + for ( ; ( elem = this[ i ] ) != null; i++ ) { + if ( elem.nodeType === 1 ) { + + // Prevent memory leaks + jQuery.cleanData( getAll( elem, false ) ); + + // Remove any remaining nodes + elem.textContent = ""; + } + } + + return this; + }, + + clone: function( dataAndEvents, deepDataAndEvents ) { + dataAndEvents = dataAndEvents == null ? false : dataAndEvents; + deepDataAndEvents = deepDataAndEvents == null ? dataAndEvents : deepDataAndEvents; + + return this.map( function() { + return jQuery.clone( this, dataAndEvents, deepDataAndEvents ); + } ); + }, + + html: function( value ) { + return access( this, function( value ) { + var elem = this[ 0 ] || {}, + i = 0, + l = this.length; + + if ( value === undefined && elem.nodeType === 1 ) { + return elem.innerHTML; + } + + // See if we can take a shortcut and just use innerHTML + if ( typeof value === "string" && !rnoInnerhtml.test( value ) && + !wrapMap[ ( rtagName.exec( value ) || [ "", "" ] )[ 1 ].toLowerCase() ] ) { + + value = jQuery.htmlPrefilter( value ); + + try { + for ( ; i < l; i++ ) { + elem = this[ i ] || {}; + + // Remove element nodes and prevent memory leaks + if ( elem.nodeType === 1 ) { + jQuery.cleanData( getAll( elem, false ) ); + elem.innerHTML = value; + } + } + + elem = 0; + + // If using innerHTML throws an exception, use the fallback method + } catch ( e ) {} + } + + if ( elem ) { + this.empty().append( value ); + } + }, null, value, arguments.length ); + }, + + replaceWith: function() { + var ignored = []; + + // Make the changes, replacing each non-ignored context element with the new content + return domManip( this, arguments, function( elem ) { + var parent = this.parentNode; + + if ( jQuery.inArray( this, ignored ) < 0 ) { + jQuery.cleanData( getAll( this ) ); + if ( parent ) { + parent.replaceChild( elem, this ); + } + } + + // Force callback invocation + }, ignored ); + } +} ); + +jQuery.each( { + appendTo: "append", + prependTo: "prepend", + insertBefore: "before", + insertAfter: "after", + replaceAll: "replaceWith" +}, function( name, original ) { + jQuery.fn[ name ] = function( selector ) { + var elems, + ret = [], + insert = jQuery( selector ), + last = insert.length - 1, + i = 0; + + for ( ; i <= last; i++ ) { + elems = i === last ? this : this.clone( true ); + jQuery( insert[ i ] )[ original ]( elems ); + + // Support: Android <=4.0 only, PhantomJS 1 only + // .get() because push.apply(_, arraylike) throws on ancient WebKit + push.apply( ret, elems.get() ); + } + + return this.pushStack( ret ); + }; +} ); +var rmargin = ( /^margin/ ); + +var rnumnonpx = new RegExp( "^(" + pnum + ")(?!px)[a-z%]+$", "i" ); + +var getStyles = function( elem ) { + + // Support: IE <=11 only, Firefox <=30 (#15098, #14150) + // IE throws on elements created in popups + // FF meanwhile throws on frame elements through "defaultView.getComputedStyle" + var view = elem.ownerDocument.defaultView; + + if ( !view || !view.opener ) { + view = window; + } + + return view.getComputedStyle( elem ); + }; + + + +( function() { + + // Executing both pixelPosition & boxSizingReliable tests require only one layout + // so they're executed at the same time to save the second computation. + function computeStyleTests() { + + // This is a singleton, we need to execute it only once + if ( !div ) { + return; + } + + div.style.cssText = + "box-sizing:border-box;" + + "position:relative;display:block;" + + "margin:auto;border:1px;padding:1px;" + + "top:1%;width:50%"; + div.innerHTML = ""; + documentElement.appendChild( container ); + + var divStyle = window.getComputedStyle( div ); + pixelPositionVal = divStyle.top !== "1%"; + + // Support: Android 4.0 - 4.3 only, Firefox <=3 - 44 + reliableMarginLeftVal = divStyle.marginLeft === "2px"; + boxSizingReliableVal = divStyle.width === "4px"; + + // Support: Android 4.0 - 4.3 only + // Some styles come back with percentage values, even though they shouldn't + div.style.marginRight = "50%"; + pixelMarginRightVal = divStyle.marginRight === "4px"; + + documentElement.removeChild( container ); + + // Nullify the div so it wouldn't be stored in the memory and + // it will also be a sign that checks already performed + div = null; + } + + var pixelPositionVal, boxSizingReliableVal, pixelMarginRightVal, reliableMarginLeftVal, + container = document.createElement( "div" ), + div = document.createElement( "div" ); + + // Finish early in limited (non-browser) environments + if ( !div.style ) { + return; + } + + // Support: IE <=9 - 11 only + // Style of cloned element affects source element cloned (#8908) + div.style.backgroundClip = "content-box"; + div.cloneNode( true ).style.backgroundClip = ""; + support.clearCloneStyle = div.style.backgroundClip === "content-box"; + + container.style.cssText = "border:0;width:8px;height:0;top:0;left:-9999px;" + + "padding:0;margin-top:1px;position:absolute"; + container.appendChild( div ); + + jQuery.extend( support, { + pixelPosition: function() { + computeStyleTests(); + return pixelPositionVal; + }, + boxSizingReliable: function() { + computeStyleTests(); + return boxSizingReliableVal; + }, + pixelMarginRight: function() { + computeStyleTests(); + return pixelMarginRightVal; + }, + reliableMarginLeft: function() { + computeStyleTests(); + return reliableMarginLeftVal; + } + } ); +} )(); + + +function curCSS( elem, name, computed ) { + var width, minWidth, maxWidth, ret, + + // Support: Firefox 51+ + // Retrieving style before computed somehow + // fixes an issue with getting wrong values + // on detached elements + style = elem.style; + + computed = computed || getStyles( elem ); + + // getPropertyValue is needed for: + // .css('filter') (IE 9 only, #12537) + // .css('--customProperty) (#3144) + if ( computed ) { + ret = computed.getPropertyValue( name ) || computed[ name ]; + + if ( ret === "" && !jQuery.contains( elem.ownerDocument, elem ) ) { + ret = jQuery.style( elem, name ); + } + + // A tribute to the "awesome hack by Dean Edwards" + // Android Browser returns percentage for some values, + // but width seems to be reliably pixels. + // This is against the CSSOM draft spec: + // https://drafts.csswg.org/cssom/#resolved-values + if ( !support.pixelMarginRight() && rnumnonpx.test( ret ) && rmargin.test( name ) ) { + + // Remember the original values + width = style.width; + minWidth = style.minWidth; + maxWidth = style.maxWidth; + + // Put in the new values to get a computed value out + style.minWidth = style.maxWidth = style.width = ret; + ret = computed.width; + + // Revert the changed values + style.width = width; + style.minWidth = minWidth; + style.maxWidth = maxWidth; + } + } + + return ret !== undefined ? + + // Support: IE <=9 - 11 only + // IE returns zIndex value as an integer. + ret + "" : + ret; +} + + +function addGetHookIf( conditionFn, hookFn ) { + + // Define the hook, we'll check on the first run if it's really needed. + return { + get: function() { + if ( conditionFn() ) { + + // Hook not needed (or it's not possible to use it due + // to missing dependency), remove it. + delete this.get; + return; + } + + // Hook needed; redefine it so that the support test is not executed again. + return ( this.get = hookFn ).apply( this, arguments ); + } + }; +} + + +var + + // Swappable if display is none or starts with table + // except "table", "table-cell", or "table-caption" + // See here for display values: https://developer.mozilla.org/en-US/docs/CSS/display + rdisplayswap = /^(none|table(?!-c[ea]).+)/, + rcustomProp = /^--/, + cssShow = { position: "absolute", visibility: "hidden", display: "block" }, + cssNormalTransform = { + letterSpacing: "0", + fontWeight: "400" + }, + + cssPrefixes = [ "Webkit", "Moz", "ms" ], + emptyStyle = document.createElement( "div" ).style; + +// Return a css property mapped to a potentially vendor prefixed property +function vendorPropName( name ) { + + // Shortcut for names that are not vendor prefixed + if ( name in emptyStyle ) { + return name; + } + + // Check for vendor prefixed names + var capName = name[ 0 ].toUpperCase() + name.slice( 1 ), + i = cssPrefixes.length; + + while ( i-- ) { + name = cssPrefixes[ i ] + capName; + if ( name in emptyStyle ) { + return name; + } + } +} + +// Return a property mapped along what jQuery.cssProps suggests or to +// a vendor prefixed property. +function finalPropName( name ) { + var ret = jQuery.cssProps[ name ]; + if ( !ret ) { + ret = jQuery.cssProps[ name ] = vendorPropName( name ) || name; + } + return ret; +} + +function setPositiveNumber( elem, value, subtract ) { + + // Any relative (+/-) values have already been + // normalized at this point + var matches = rcssNum.exec( value ); + return matches ? + + // Guard against undefined "subtract", e.g., when used as in cssHooks + Math.max( 0, matches[ 2 ] - ( subtract || 0 ) ) + ( matches[ 3 ] || "px" ) : + value; +} + +function augmentWidthOrHeight( elem, name, extra, isBorderBox, styles ) { + var i, + val = 0; + + // If we already have the right measurement, avoid augmentation + if ( extra === ( isBorderBox ? "border" : "content" ) ) { + i = 4; + + // Otherwise initialize for horizontal or vertical properties + } else { + i = name === "width" ? 1 : 0; + } + + for ( ; i < 4; i += 2 ) { + + // Both box models exclude margin, so add it if we want it + if ( extra === "margin" ) { + val += jQuery.css( elem, extra + cssExpand[ i ], true, styles ); + } + + if ( isBorderBox ) { + + // border-box includes padding, so remove it if we want content + if ( extra === "content" ) { + val -= jQuery.css( elem, "padding" + cssExpand[ i ], true, styles ); + } + + // At this point, extra isn't border nor margin, so remove border + if ( extra !== "margin" ) { + val -= jQuery.css( elem, "border" + cssExpand[ i ] + "Width", true, styles ); + } + } else { + + // At this point, extra isn't content, so add padding + val += jQuery.css( elem, "padding" + cssExpand[ i ], true, styles ); + + // At this point, extra isn't content nor padding, so add border + if ( extra !== "padding" ) { + val += jQuery.css( elem, "border" + cssExpand[ i ] + "Width", true, styles ); + } + } + } + + return val; +} + +function getWidthOrHeight( elem, name, extra ) { + + // Start with computed style + var valueIsBorderBox, + styles = getStyles( elem ), + val = curCSS( elem, name, styles ), + isBorderBox = jQuery.css( elem, "boxSizing", false, styles ) === "border-box"; + + // Computed unit is not pixels. Stop here and return. + if ( rnumnonpx.test( val ) ) { + return val; + } + + // Check for style in case a browser which returns unreliable values + // for getComputedStyle silently falls back to the reliable elem.style + valueIsBorderBox = isBorderBox && + ( support.boxSizingReliable() || val === elem.style[ name ] ); + + // Fall back to offsetWidth/Height when value is "auto" + // This happens for inline elements with no explicit setting (gh-3571) + if ( val === "auto" ) { + val = elem[ "offset" + name[ 0 ].toUpperCase() + name.slice( 1 ) ]; + } + + // Normalize "", auto, and prepare for extra + val = parseFloat( val ) || 0; + + // Use the active box-sizing model to add/subtract irrelevant styles + return ( val + + augmentWidthOrHeight( + elem, + name, + extra || ( isBorderBox ? "border" : "content" ), + valueIsBorderBox, + styles + ) + ) + "px"; +} + +jQuery.extend( { + + // Add in style property hooks for overriding the default + // behavior of getting and setting a style property + cssHooks: { + opacity: { + get: function( elem, computed ) { + if ( computed ) { + + // We should always get a number back from opacity + var ret = curCSS( elem, "opacity" ); + return ret === "" ? "1" : ret; + } + } + } + }, + + // Don't automatically add "px" to these possibly-unitless properties + cssNumber: { + "animationIterationCount": true, + "columnCount": true, + "fillOpacity": true, + "flexGrow": true, + "flexShrink": true, + "fontWeight": true, + "lineHeight": true, + "opacity": true, + "order": true, + "orphans": true, + "widows": true, + "zIndex": true, + "zoom": true + }, + + // Add in properties whose names you wish to fix before + // setting or getting the value + cssProps: { + "float": "cssFloat" + }, + + // Get and set the style property on a DOM Node + style: function( elem, name, value, extra ) { + + // Don't set styles on text and comment nodes + if ( !elem || elem.nodeType === 3 || elem.nodeType === 8 || !elem.style ) { + return; + } + + // Make sure that we're working with the right name + var ret, type, hooks, + origName = jQuery.camelCase( name ), + isCustomProp = rcustomProp.test( name ), + style = elem.style; + + // Make sure that we're working with the right name. We don't + // want to query the value if it is a CSS custom property + // since they are user-defined. + if ( !isCustomProp ) { + name = finalPropName( origName ); + } + + // Gets hook for the prefixed version, then unprefixed version + hooks = jQuery.cssHooks[ name ] || jQuery.cssHooks[ origName ]; + + // Check if we're setting a value + if ( value !== undefined ) { + type = typeof value; + + // Convert "+=" or "-=" to relative numbers (#7345) + if ( type === "string" && ( ret = rcssNum.exec( value ) ) && ret[ 1 ] ) { + value = adjustCSS( elem, name, ret ); + + // Fixes bug #9237 + type = "number"; + } + + // Make sure that null and NaN values aren't set (#7116) + if ( value == null || value !== value ) { + return; + } + + // If a number was passed in, add the unit (except for certain CSS properties) + if ( type === "number" ) { + value += ret && ret[ 3 ] || ( jQuery.cssNumber[ origName ] ? "" : "px" ); + } + + // background-* props affect original clone's values + if ( !support.clearCloneStyle && value === "" && name.indexOf( "background" ) === 0 ) { + style[ name ] = "inherit"; + } + + // If a hook was provided, use that value, otherwise just set the specified value + if ( !hooks || !( "set" in hooks ) || + ( value = hooks.set( elem, value, extra ) ) !== undefined ) { + + if ( isCustomProp ) { + style.setProperty( name, value ); + } else { + style[ name ] = value; + } + } + + } else { + + // If a hook was provided get the non-computed value from there + if ( hooks && "get" in hooks && + ( ret = hooks.get( elem, false, extra ) ) !== undefined ) { + + return ret; + } + + // Otherwise just get the value from the style object + return style[ name ]; + } + }, + + css: function( elem, name, extra, styles ) { + var val, num, hooks, + origName = jQuery.camelCase( name ), + isCustomProp = rcustomProp.test( name ); + + // Make sure that we're working with the right name. We don't + // want to modify the value if it is a CSS custom property + // since they are user-defined. + if ( !isCustomProp ) { + name = finalPropName( origName ); + } + + // Try prefixed name followed by the unprefixed name + hooks = jQuery.cssHooks[ name ] || jQuery.cssHooks[ origName ]; + + // If a hook was provided get the computed value from there + if ( hooks && "get" in hooks ) { + val = hooks.get( elem, true, extra ); + } + + // Otherwise, if a way to get the computed value exists, use that + if ( val === undefined ) { + val = curCSS( elem, name, styles ); + } + + // Convert "normal" to computed value + if ( val === "normal" && name in cssNormalTransform ) { + val = cssNormalTransform[ name ]; + } + + // Make numeric if forced or a qualifier was provided and val looks numeric + if ( extra === "" || extra ) { + num = parseFloat( val ); + return extra === true || isFinite( num ) ? num || 0 : val; + } + + return val; + } +} ); + +jQuery.each( [ "height", "width" ], function( i, name ) { + jQuery.cssHooks[ name ] = { + get: function( elem, computed, extra ) { + if ( computed ) { + + // Certain elements can have dimension info if we invisibly show them + // but it must have a current display style that would benefit + return rdisplayswap.test( jQuery.css( elem, "display" ) ) && + + // Support: Safari 8+ + // Table columns in Safari have non-zero offsetWidth & zero + // getBoundingClientRect().width unless display is changed. + // Support: IE <=11 only + // Running getBoundingClientRect on a disconnected node + // in IE throws an error. + ( !elem.getClientRects().length || !elem.getBoundingClientRect().width ) ? + swap( elem, cssShow, function() { + return getWidthOrHeight( elem, name, extra ); + } ) : + getWidthOrHeight( elem, name, extra ); + } + }, + + set: function( elem, value, extra ) { + var matches, + styles = extra && getStyles( elem ), + subtract = extra && augmentWidthOrHeight( + elem, + name, + extra, + jQuery.css( elem, "boxSizing", false, styles ) === "border-box", + styles + ); + + // Convert to pixels if value adjustment is needed + if ( subtract && ( matches = rcssNum.exec( value ) ) && + ( matches[ 3 ] || "px" ) !== "px" ) { + + elem.style[ name ] = value; + value = jQuery.css( elem, name ); + } + + return setPositiveNumber( elem, value, subtract ); + } + }; +} ); + +jQuery.cssHooks.marginLeft = addGetHookIf( support.reliableMarginLeft, + function( elem, computed ) { + if ( computed ) { + return ( parseFloat( curCSS( elem, "marginLeft" ) ) || + elem.getBoundingClientRect().left - + swap( elem, { marginLeft: 0 }, function() { + return elem.getBoundingClientRect().left; + } ) + ) + "px"; + } + } +); + +// These hooks are used by animate to expand properties +jQuery.each( { + margin: "", + padding: "", + border: "Width" +}, function( prefix, suffix ) { + jQuery.cssHooks[ prefix + suffix ] = { + expand: function( value ) { + var i = 0, + expanded = {}, + + // Assumes a single number if not a string + parts = typeof value === "string" ? value.split( " " ) : [ value ]; + + for ( ; i < 4; i++ ) { + expanded[ prefix + cssExpand[ i ] + suffix ] = + parts[ i ] || parts[ i - 2 ] || parts[ 0 ]; + } + + return expanded; + } + }; + + if ( !rmargin.test( prefix ) ) { + jQuery.cssHooks[ prefix + suffix ].set = setPositiveNumber; + } +} ); + +jQuery.fn.extend( { + css: function( name, value ) { + return access( this, function( elem, name, value ) { + var styles, len, + map = {}, + i = 0; + + if ( Array.isArray( name ) ) { + styles = getStyles( elem ); + len = name.length; + + for ( ; i < len; i++ ) { + map[ name[ i ] ] = jQuery.css( elem, name[ i ], false, styles ); + } + + return map; + } + + return value !== undefined ? + jQuery.style( elem, name, value ) : + jQuery.css( elem, name ); + }, name, value, arguments.length > 1 ); + } +} ); + + +function Tween( elem, options, prop, end, easing ) { + return new Tween.prototype.init( elem, options, prop, end, easing ); +} +jQuery.Tween = Tween; + +Tween.prototype = { + constructor: Tween, + init: function( elem, options, prop, end, easing, unit ) { + this.elem = elem; + this.prop = prop; + this.easing = easing || jQuery.easing._default; + this.options = options; + this.start = this.now = this.cur(); + this.end = end; + this.unit = unit || ( jQuery.cssNumber[ prop ] ? "" : "px" ); + }, + cur: function() { + var hooks = Tween.propHooks[ this.prop ]; + + return hooks && hooks.get ? + hooks.get( this ) : + Tween.propHooks._default.get( this ); + }, + run: function( percent ) { + var eased, + hooks = Tween.propHooks[ this.prop ]; + + if ( this.options.duration ) { + this.pos = eased = jQuery.easing[ this.easing ]( + percent, this.options.duration * percent, 0, 1, this.options.duration + ); + } else { + this.pos = eased = percent; + } + this.now = ( this.end - this.start ) * eased + this.start; + + if ( this.options.step ) { + this.options.step.call( this.elem, this.now, this ); + } + + if ( hooks && hooks.set ) { + hooks.set( this ); + } else { + Tween.propHooks._default.set( this ); + } + return this; + } +}; + +Tween.prototype.init.prototype = Tween.prototype; + +Tween.propHooks = { + _default: { + get: function( tween ) { + var result; + + // Use a property on the element directly when it is not a DOM element, + // or when there is no matching style property that exists. + if ( tween.elem.nodeType !== 1 || + tween.elem[ tween.prop ] != null && tween.elem.style[ tween.prop ] == null ) { + return tween.elem[ tween.prop ]; + } + + // Passing an empty string as a 3rd parameter to .css will automatically + // attempt a parseFloat and fallback to a string if the parse fails. + // Simple values such as "10px" are parsed to Float; + // complex values such as "rotate(1rad)" are returned as-is. + result = jQuery.css( tween.elem, tween.prop, "" ); + + // Empty strings, null, undefined and "auto" are converted to 0. + return !result || result === "auto" ? 0 : result; + }, + set: function( tween ) { + + // Use step hook for back compat. + // Use cssHook if its there. + // Use .style if available and use plain properties where available. + if ( jQuery.fx.step[ tween.prop ] ) { + jQuery.fx.step[ tween.prop ]( tween ); + } else if ( tween.elem.nodeType === 1 && + ( tween.elem.style[ jQuery.cssProps[ tween.prop ] ] != null || + jQuery.cssHooks[ tween.prop ] ) ) { + jQuery.style( tween.elem, tween.prop, tween.now + tween.unit ); + } else { + tween.elem[ tween.prop ] = tween.now; + } + } + } +}; + +// Support: IE <=9 only +// Panic based approach to setting things on disconnected nodes +Tween.propHooks.scrollTop = Tween.propHooks.scrollLeft = { + set: function( tween ) { + if ( tween.elem.nodeType && tween.elem.parentNode ) { + tween.elem[ tween.prop ] = tween.now; + } + } +}; + +jQuery.easing = { + linear: function( p ) { + return p; + }, + swing: function( p ) { + return 0.5 - Math.cos( p * Math.PI ) / 2; + }, + _default: "swing" +}; + +jQuery.fx = Tween.prototype.init; + +// Back compat <1.8 extension point +jQuery.fx.step = {}; + + + + +var + fxNow, inProgress, + rfxtypes = /^(?:toggle|show|hide)$/, + rrun = /queueHooks$/; + +function schedule() { + if ( inProgress ) { + if ( document.hidden === false && window.requestAnimationFrame ) { + window.requestAnimationFrame( schedule ); + } else { + window.setTimeout( schedule, jQuery.fx.interval ); + } + + jQuery.fx.tick(); + } +} + +// Animations created synchronously will run synchronously +function createFxNow() { + window.setTimeout( function() { + fxNow = undefined; + } ); + return ( fxNow = jQuery.now() ); +} + +// Generate parameters to create a standard animation +function genFx( type, includeWidth ) { + var which, + i = 0, + attrs = { height: type }; + + // If we include width, step value is 1 to do all cssExpand values, + // otherwise step value is 2 to skip over Left and Right + includeWidth = includeWidth ? 1 : 0; + for ( ; i < 4; i += 2 - includeWidth ) { + which = cssExpand[ i ]; + attrs[ "margin" + which ] = attrs[ "padding" + which ] = type; + } + + if ( includeWidth ) { + attrs.opacity = attrs.width = type; + } + + return attrs; +} + +function createTween( value, prop, animation ) { + var tween, + collection = ( Animation.tweeners[ prop ] || [] ).concat( Animation.tweeners[ "*" ] ), + index = 0, + length = collection.length; + for ( ; index < length; index++ ) { + if ( ( tween = collection[ index ].call( animation, prop, value ) ) ) { + + // We're done with this property + return tween; + } + } +} + +function defaultPrefilter( elem, props, opts ) { + var prop, value, toggle, hooks, oldfire, propTween, restoreDisplay, display, + isBox = "width" in props || "height" in props, + anim = this, + orig = {}, + style = elem.style, + hidden = elem.nodeType && isHiddenWithinTree( elem ), + dataShow = dataPriv.get( elem, "fxshow" ); + + // Queue-skipping animations hijack the fx hooks + if ( !opts.queue ) { + hooks = jQuery._queueHooks( elem, "fx" ); + if ( hooks.unqueued == null ) { + hooks.unqueued = 0; + oldfire = hooks.empty.fire; + hooks.empty.fire = function() { + if ( !hooks.unqueued ) { + oldfire(); + } + }; + } + hooks.unqueued++; + + anim.always( function() { + + // Ensure the complete handler is called before this completes + anim.always( function() { + hooks.unqueued--; + if ( !jQuery.queue( elem, "fx" ).length ) { + hooks.empty.fire(); + } + } ); + } ); + } + + // Detect show/hide animations + for ( prop in props ) { + value = props[ prop ]; + if ( rfxtypes.test( value ) ) { + delete props[ prop ]; + toggle = toggle || value === "toggle"; + if ( value === ( hidden ? "hide" : "show" ) ) { + + // Pretend to be hidden if this is a "show" and + // there is still data from a stopped show/hide + if ( value === "show" && dataShow && dataShow[ prop ] !== undefined ) { + hidden = true; + + // Ignore all other no-op show/hide data + } else { + continue; + } + } + orig[ prop ] = dataShow && dataShow[ prop ] || jQuery.style( elem, prop ); + } + } + + // Bail out if this is a no-op like .hide().hide() + propTween = !jQuery.isEmptyObject( props ); + if ( !propTween && jQuery.isEmptyObject( orig ) ) { + return; + } + + // Restrict "overflow" and "display" styles during box animations + if ( isBox && elem.nodeType === 1 ) { + + // Support: IE <=9 - 11, Edge 12 - 13 + // Record all 3 overflow attributes because IE does not infer the shorthand + // from identically-valued overflowX and overflowY + opts.overflow = [ style.overflow, style.overflowX, style.overflowY ]; + + // Identify a display type, preferring old show/hide data over the CSS cascade + restoreDisplay = dataShow && dataShow.display; + if ( restoreDisplay == null ) { + restoreDisplay = dataPriv.get( elem, "display" ); + } + display = jQuery.css( elem, "display" ); + if ( display === "none" ) { + if ( restoreDisplay ) { + display = restoreDisplay; + } else { + + // Get nonempty value(s) by temporarily forcing visibility + showHide( [ elem ], true ); + restoreDisplay = elem.style.display || restoreDisplay; + display = jQuery.css( elem, "display" ); + showHide( [ elem ] ); + } + } + + // Animate inline elements as inline-block + if ( display === "inline" || display === "inline-block" && restoreDisplay != null ) { + if ( jQuery.css( elem, "float" ) === "none" ) { + + // Restore the original display value at the end of pure show/hide animations + if ( !propTween ) { + anim.done( function() { + style.display = restoreDisplay; + } ); + if ( restoreDisplay == null ) { + display = style.display; + restoreDisplay = display === "none" ? "" : display; + } + } + style.display = "inline-block"; + } + } + } + + if ( opts.overflow ) { + style.overflow = "hidden"; + anim.always( function() { + style.overflow = opts.overflow[ 0 ]; + style.overflowX = opts.overflow[ 1 ]; + style.overflowY = opts.overflow[ 2 ]; + } ); + } + + // Implement show/hide animations + propTween = false; + for ( prop in orig ) { + + // General show/hide setup for this element animation + if ( !propTween ) { + if ( dataShow ) { + if ( "hidden" in dataShow ) { + hidden = dataShow.hidden; + } + } else { + dataShow = dataPriv.access( elem, "fxshow", { display: restoreDisplay } ); + } + + // Store hidden/visible for toggle so `.stop().toggle()` "reverses" + if ( toggle ) { + dataShow.hidden = !hidden; + } + + // Show elements before animating them + if ( hidden ) { + showHide( [ elem ], true ); + } + + /* eslint-disable no-loop-func */ + + anim.done( function() { + + /* eslint-enable no-loop-func */ + + // The final step of a "hide" animation is actually hiding the element + if ( !hidden ) { + showHide( [ elem ] ); + } + dataPriv.remove( elem, "fxshow" ); + for ( prop in orig ) { + jQuery.style( elem, prop, orig[ prop ] ); + } + } ); + } + + // Per-property setup + propTween = createTween( hidden ? dataShow[ prop ] : 0, prop, anim ); + if ( !( prop in dataShow ) ) { + dataShow[ prop ] = propTween.start; + if ( hidden ) { + propTween.end = propTween.start; + propTween.start = 0; + } + } + } +} + +function propFilter( props, specialEasing ) { + var index, name, easing, value, hooks; + + // camelCase, specialEasing and expand cssHook pass + for ( index in props ) { + name = jQuery.camelCase( index ); + easing = specialEasing[ name ]; + value = props[ index ]; + if ( Array.isArray( value ) ) { + easing = value[ 1 ]; + value = props[ index ] = value[ 0 ]; + } + + if ( index !== name ) { + props[ name ] = value; + delete props[ index ]; + } + + hooks = jQuery.cssHooks[ name ]; + if ( hooks && "expand" in hooks ) { + value = hooks.expand( value ); + delete props[ name ]; + + // Not quite $.extend, this won't overwrite existing keys. + // Reusing 'index' because we have the correct "name" + for ( index in value ) { + if ( !( index in props ) ) { + props[ index ] = value[ index ]; + specialEasing[ index ] = easing; + } + } + } else { + specialEasing[ name ] = easing; + } + } +} + +function Animation( elem, properties, options ) { + var result, + stopped, + index = 0, + length = Animation.prefilters.length, + deferred = jQuery.Deferred().always( function() { + + // Don't match elem in the :animated selector + delete tick.elem; + } ), + tick = function() { + if ( stopped ) { + return false; + } + var currentTime = fxNow || createFxNow(), + remaining = Math.max( 0, animation.startTime + animation.duration - currentTime ), + + // Support: Android 2.3 only + // Archaic crash bug won't allow us to use `1 - ( 0.5 || 0 )` (#12497) + temp = remaining / animation.duration || 0, + percent = 1 - temp, + index = 0, + length = animation.tweens.length; + + for ( ; index < length; index++ ) { + animation.tweens[ index ].run( percent ); + } + + deferred.notifyWith( elem, [ animation, percent, remaining ] ); + + // If there's more to do, yield + if ( percent < 1 && length ) { + return remaining; + } + + // If this was an empty animation, synthesize a final progress notification + if ( !length ) { + deferred.notifyWith( elem, [ animation, 1, 0 ] ); + } + + // Resolve the animation and report its conclusion + deferred.resolveWith( elem, [ animation ] ); + return false; + }, + animation = deferred.promise( { + elem: elem, + props: jQuery.extend( {}, properties ), + opts: jQuery.extend( true, { + specialEasing: {}, + easing: jQuery.easing._default + }, options ), + originalProperties: properties, + originalOptions: options, + startTime: fxNow || createFxNow(), + duration: options.duration, + tweens: [], + createTween: function( prop, end ) { + var tween = jQuery.Tween( elem, animation.opts, prop, end, + animation.opts.specialEasing[ prop ] || animation.opts.easing ); + animation.tweens.push( tween ); + return tween; + }, + stop: function( gotoEnd ) { + var index = 0, + + // If we are going to the end, we want to run all the tweens + // otherwise we skip this part + length = gotoEnd ? animation.tweens.length : 0; + if ( stopped ) { + return this; + } + stopped = true; + for ( ; index < length; index++ ) { + animation.tweens[ index ].run( 1 ); + } + + // Resolve when we played the last frame; otherwise, reject + if ( gotoEnd ) { + deferred.notifyWith( elem, [ animation, 1, 0 ] ); + deferred.resolveWith( elem, [ animation, gotoEnd ] ); + } else { + deferred.rejectWith( elem, [ animation, gotoEnd ] ); + } + return this; + } + } ), + props = animation.props; + + propFilter( props, animation.opts.specialEasing ); + + for ( ; index < length; index++ ) { + result = Animation.prefilters[ index ].call( animation, elem, props, animation.opts ); + if ( result ) { + if ( jQuery.isFunction( result.stop ) ) { + jQuery._queueHooks( animation.elem, animation.opts.queue ).stop = + jQuery.proxy( result.stop, result ); + } + return result; + } + } + + jQuery.map( props, createTween, animation ); + + if ( jQuery.isFunction( animation.opts.start ) ) { + animation.opts.start.call( elem, animation ); + } + + // Attach callbacks from options + animation + .progress( animation.opts.progress ) + .done( animation.opts.done, animation.opts.complete ) + .fail( animation.opts.fail ) + .always( animation.opts.always ); + + jQuery.fx.timer( + jQuery.extend( tick, { + elem: elem, + anim: animation, + queue: animation.opts.queue + } ) + ); + + return animation; +} + +jQuery.Animation = jQuery.extend( Animation, { + + tweeners: { + "*": [ function( prop, value ) { + var tween = this.createTween( prop, value ); + adjustCSS( tween.elem, prop, rcssNum.exec( value ), tween ); + return tween; + } ] + }, + + tweener: function( props, callback ) { + if ( jQuery.isFunction( props ) ) { + callback = props; + props = [ "*" ]; + } else { + props = props.match( rnothtmlwhite ); + } + + var prop, + index = 0, + length = props.length; + + for ( ; index < length; index++ ) { + prop = props[ index ]; + Animation.tweeners[ prop ] = Animation.tweeners[ prop ] || []; + Animation.tweeners[ prop ].unshift( callback ); + } + }, + + prefilters: [ defaultPrefilter ], + + prefilter: function( callback, prepend ) { + if ( prepend ) { + Animation.prefilters.unshift( callback ); + } else { + Animation.prefilters.push( callback ); + } + } +} ); + +jQuery.speed = function( speed, easing, fn ) { + var opt = speed && typeof speed === "object" ? jQuery.extend( {}, speed ) : { + complete: fn || !fn && easing || + jQuery.isFunction( speed ) && speed, + duration: speed, + easing: fn && easing || easing && !jQuery.isFunction( easing ) && easing + }; + + // Go to the end state if fx are off + if ( jQuery.fx.off ) { + opt.duration = 0; + + } else { + if ( typeof opt.duration !== "number" ) { + if ( opt.duration in jQuery.fx.speeds ) { + opt.duration = jQuery.fx.speeds[ opt.duration ]; + + } else { + opt.duration = jQuery.fx.speeds._default; + } + } + } + + // Normalize opt.queue - true/undefined/null -> "fx" + if ( opt.queue == null || opt.queue === true ) { + opt.queue = "fx"; + } + + // Queueing + opt.old = opt.complete; + + opt.complete = function() { + if ( jQuery.isFunction( opt.old ) ) { + opt.old.call( this ); + } + + if ( opt.queue ) { + jQuery.dequeue( this, opt.queue ); + } + }; + + return opt; +}; + +jQuery.fn.extend( { + fadeTo: function( speed, to, easing, callback ) { + + // Show any hidden elements after setting opacity to 0 + return this.filter( isHiddenWithinTree ).css( "opacity", 0 ).show() + + // Animate to the value specified + .end().animate( { opacity: to }, speed, easing, callback ); + }, + animate: function( prop, speed, easing, callback ) { + var empty = jQuery.isEmptyObject( prop ), + optall = jQuery.speed( speed, easing, callback ), + doAnimation = function() { + + // Operate on a copy of prop so per-property easing won't be lost + var anim = Animation( this, jQuery.extend( {}, prop ), optall ); + + // Empty animations, or finishing resolves immediately + if ( empty || dataPriv.get( this, "finish" ) ) { + anim.stop( true ); + } + }; + doAnimation.finish = doAnimation; + + return empty || optall.queue === false ? + this.each( doAnimation ) : + this.queue( optall.queue, doAnimation ); + }, + stop: function( type, clearQueue, gotoEnd ) { + var stopQueue = function( hooks ) { + var stop = hooks.stop; + delete hooks.stop; + stop( gotoEnd ); + }; + + if ( typeof type !== "string" ) { + gotoEnd = clearQueue; + clearQueue = type; + type = undefined; + } + if ( clearQueue && type !== false ) { + this.queue( type || "fx", [] ); + } + + return this.each( function() { + var dequeue = true, + index = type != null && type + "queueHooks", + timers = jQuery.timers, + data = dataPriv.get( this ); + + if ( index ) { + if ( data[ index ] && data[ index ].stop ) { + stopQueue( data[ index ] ); + } + } else { + for ( index in data ) { + if ( data[ index ] && data[ index ].stop && rrun.test( index ) ) { + stopQueue( data[ index ] ); + } + } + } + + for ( index = timers.length; index--; ) { + if ( timers[ index ].elem === this && + ( type == null || timers[ index ].queue === type ) ) { + + timers[ index ].anim.stop( gotoEnd ); + dequeue = false; + timers.splice( index, 1 ); + } + } + + // Start the next in the queue if the last step wasn't forced. + // Timers currently will call their complete callbacks, which + // will dequeue but only if they were gotoEnd. + if ( dequeue || !gotoEnd ) { + jQuery.dequeue( this, type ); + } + } ); + }, + finish: function( type ) { + if ( type !== false ) { + type = type || "fx"; + } + return this.each( function() { + var index, + data = dataPriv.get( this ), + queue = data[ type + "queue" ], + hooks = data[ type + "queueHooks" ], + timers = jQuery.timers, + length = queue ? queue.length : 0; + + // Enable finishing flag on private data + data.finish = true; + + // Empty the queue first + jQuery.queue( this, type, [] ); + + if ( hooks && hooks.stop ) { + hooks.stop.call( this, true ); + } + + // Look for any active animations, and finish them + for ( index = timers.length; index--; ) { + if ( timers[ index ].elem === this && timers[ index ].queue === type ) { + timers[ index ].anim.stop( true ); + timers.splice( index, 1 ); + } + } + + // Look for any animations in the old queue and finish them + for ( index = 0; index < length; index++ ) { + if ( queue[ index ] && queue[ index ].finish ) { + queue[ index ].finish.call( this ); + } + } + + // Turn off finishing flag + delete data.finish; + } ); + } +} ); + +jQuery.each( [ "toggle", "show", "hide" ], function( i, name ) { + var cssFn = jQuery.fn[ name ]; + jQuery.fn[ name ] = function( speed, easing, callback ) { + return speed == null || typeof speed === "boolean" ? + cssFn.apply( this, arguments ) : + this.animate( genFx( name, true ), speed, easing, callback ); + }; +} ); + +// Generate shortcuts for custom animations +jQuery.each( { + slideDown: genFx( "show" ), + slideUp: genFx( "hide" ), + slideToggle: genFx( "toggle" ), + fadeIn: { opacity: "show" }, + fadeOut: { opacity: "hide" }, + fadeToggle: { opacity: "toggle" } +}, function( name, props ) { + jQuery.fn[ name ] = function( speed, easing, callback ) { + return this.animate( props, speed, easing, callback ); + }; +} ); + +jQuery.timers = []; +jQuery.fx.tick = function() { + var timer, + i = 0, + timers = jQuery.timers; + + fxNow = jQuery.now(); + + for ( ; i < timers.length; i++ ) { + timer = timers[ i ]; + + // Run the timer and safely remove it when done (allowing for external removal) + if ( !timer() && timers[ i ] === timer ) { + timers.splice( i--, 1 ); + } + } + + if ( !timers.length ) { + jQuery.fx.stop(); + } + fxNow = undefined; +}; + +jQuery.fx.timer = function( timer ) { + jQuery.timers.push( timer ); + jQuery.fx.start(); +}; + +jQuery.fx.interval = 13; +jQuery.fx.start = function() { + if ( inProgress ) { + return; + } + + inProgress = true; + schedule(); +}; + +jQuery.fx.stop = function() { + inProgress = null; +}; + +jQuery.fx.speeds = { + slow: 600, + fast: 200, + + // Default speed + _default: 400 +}; + + +// Based off of the plugin by Clint Helfers, with permission. +// https://web.archive.org/web/20100324014747/http://blindsignals.com/index.php/2009/07/jquery-delay/ +jQuery.fn.delay = function( time, type ) { + time = jQuery.fx ? jQuery.fx.speeds[ time ] || time : time; + type = type || "fx"; + + return this.queue( type, function( next, hooks ) { + var timeout = window.setTimeout( next, time ); + hooks.stop = function() { + window.clearTimeout( timeout ); + }; + } ); +}; + + +( function() { + var input = document.createElement( "input" ), + select = document.createElement( "select" ), + opt = select.appendChild( document.createElement( "option" ) ); + + input.type = "checkbox"; + + // Support: Android <=4.3 only + // Default value for a checkbox should be "on" + support.checkOn = input.value !== ""; + + // Support: IE <=11 only + // Must access selectedIndex to make default options select + support.optSelected = opt.selected; + + // Support: IE <=11 only + // An input loses its value after becoming a radio + input = document.createElement( "input" ); + input.value = "t"; + input.type = "radio"; + support.radioValue = input.value === "t"; +} )(); + + +var boolHook, + attrHandle = jQuery.expr.attrHandle; + +jQuery.fn.extend( { + attr: function( name, value ) { + return access( this, jQuery.attr, name, value, arguments.length > 1 ); + }, + + removeAttr: function( name ) { + return this.each( function() { + jQuery.removeAttr( this, name ); + } ); + } +} ); + +jQuery.extend( { + attr: function( elem, name, value ) { + var ret, hooks, + nType = elem.nodeType; + + // Don't get/set attributes on text, comment and attribute nodes + if ( nType === 3 || nType === 8 || nType === 2 ) { + return; + } + + // Fallback to prop when attributes are not supported + if ( typeof elem.getAttribute === "undefined" ) { + return jQuery.prop( elem, name, value ); + } + + // Attribute hooks are determined by the lowercase version + // Grab necessary hook if one is defined + if ( nType !== 1 || !jQuery.isXMLDoc( elem ) ) { + hooks = jQuery.attrHooks[ name.toLowerCase() ] || + ( jQuery.expr.match.bool.test( name ) ? boolHook : undefined ); + } + + if ( value !== undefined ) { + if ( value === null ) { + jQuery.removeAttr( elem, name ); + return; + } + + if ( hooks && "set" in hooks && + ( ret = hooks.set( elem, value, name ) ) !== undefined ) { + return ret; + } + + elem.setAttribute( name, value + "" ); + return value; + } + + if ( hooks && "get" in hooks && ( ret = hooks.get( elem, name ) ) !== null ) { + return ret; + } + + ret = jQuery.find.attr( elem, name ); + + // Non-existent attributes return null, we normalize to undefined + return ret == null ? undefined : ret; + }, + + attrHooks: { + type: { + set: function( elem, value ) { + if ( !support.radioValue && value === "radio" && + nodeName( elem, "input" ) ) { + var val = elem.value; + elem.setAttribute( "type", value ); + if ( val ) { + elem.value = val; + } + return value; + } + } + } + }, + + removeAttr: function( elem, value ) { + var name, + i = 0, + + // Attribute names can contain non-HTML whitespace characters + // https://html.spec.whatwg.org/multipage/syntax.html#attributes-2 + attrNames = value && value.match( rnothtmlwhite ); + + if ( attrNames && elem.nodeType === 1 ) { + while ( ( name = attrNames[ i++ ] ) ) { + elem.removeAttribute( name ); + } + } + } +} ); + +// Hooks for boolean attributes +boolHook = { + set: function( elem, value, name ) { + if ( value === false ) { + + // Remove boolean attributes when set to false + jQuery.removeAttr( elem, name ); + } else { + elem.setAttribute( name, name ); + } + return name; + } +}; + +jQuery.each( jQuery.expr.match.bool.source.match( /\w+/g ), function( i, name ) { + var getter = attrHandle[ name ] || jQuery.find.attr; + + attrHandle[ name ] = function( elem, name, isXML ) { + var ret, handle, + lowercaseName = name.toLowerCase(); + + if ( !isXML ) { + + // Avoid an infinite loop by temporarily removing this function from the getter + handle = attrHandle[ lowercaseName ]; + attrHandle[ lowercaseName ] = ret; + ret = getter( elem, name, isXML ) != null ? + lowercaseName : + null; + attrHandle[ lowercaseName ] = handle; + } + return ret; + }; +} ); + + + + +var rfocusable = /^(?:input|select|textarea|button)$/i, + rclickable = /^(?:a|area)$/i; + +jQuery.fn.extend( { + prop: function( name, value ) { + return access( this, jQuery.prop, name, value, arguments.length > 1 ); + }, + + removeProp: function( name ) { + return this.each( function() { + delete this[ jQuery.propFix[ name ] || name ]; + } ); + } +} ); + +jQuery.extend( { + prop: function( elem, name, value ) { + var ret, hooks, + nType = elem.nodeType; + + // Don't get/set properties on text, comment and attribute nodes + if ( nType === 3 || nType === 8 || nType === 2 ) { + return; + } + + if ( nType !== 1 || !jQuery.isXMLDoc( elem ) ) { + + // Fix name and attach hooks + name = jQuery.propFix[ name ] || name; + hooks = jQuery.propHooks[ name ]; + } + + if ( value !== undefined ) { + if ( hooks && "set" in hooks && + ( ret = hooks.set( elem, value, name ) ) !== undefined ) { + return ret; + } + + return ( elem[ name ] = value ); + } + + if ( hooks && "get" in hooks && ( ret = hooks.get( elem, name ) ) !== null ) { + return ret; + } + + return elem[ name ]; + }, + + propHooks: { + tabIndex: { + get: function( elem ) { + + // Support: IE <=9 - 11 only + // elem.tabIndex doesn't always return the + // correct value when it hasn't been explicitly set + // https://web.archive.org/web/20141116233347/http://fluidproject.org/blog/2008/01/09/getting-setting-and-removing-tabindex-values-with-javascript/ + // Use proper attribute retrieval(#12072) + var tabindex = jQuery.find.attr( elem, "tabindex" ); + + if ( tabindex ) { + return parseInt( tabindex, 10 ); + } + + if ( + rfocusable.test( elem.nodeName ) || + rclickable.test( elem.nodeName ) && + elem.href + ) { + return 0; + } + + return -1; + } + } + }, + + propFix: { + "for": "htmlFor", + "class": "className" + } +} ); + +// Support: IE <=11 only +// Accessing the selectedIndex property +// forces the browser to respect setting selected +// on the option +// The getter ensures a default option is selected +// when in an optgroup +// eslint rule "no-unused-expressions" is disabled for this code +// since it considers such accessions noop +if ( !support.optSelected ) { + jQuery.propHooks.selected = { + get: function( elem ) { + + /* eslint no-unused-expressions: "off" */ + + var parent = elem.parentNode; + if ( parent && parent.parentNode ) { + parent.parentNode.selectedIndex; + } + return null; + }, + set: function( elem ) { + + /* eslint no-unused-expressions: "off" */ + + var parent = elem.parentNode; + if ( parent ) { + parent.selectedIndex; + + if ( parent.parentNode ) { + parent.parentNode.selectedIndex; + } + } + } + }; +} + +jQuery.each( [ + "tabIndex", + "readOnly", + "maxLength", + "cellSpacing", + "cellPadding", + "rowSpan", + "colSpan", + "useMap", + "frameBorder", + "contentEditable" +], function() { + jQuery.propFix[ this.toLowerCase() ] = this; +} ); + + + + + // Strip and collapse whitespace according to HTML spec + // https://html.spec.whatwg.org/multipage/infrastructure.html#strip-and-collapse-whitespace + function stripAndCollapse( value ) { + var tokens = value.match( rnothtmlwhite ) || []; + return tokens.join( " " ); + } + + +function getClass( elem ) { + return elem.getAttribute && elem.getAttribute( "class" ) || ""; +} + +jQuery.fn.extend( { + addClass: function( value ) { + var classes, elem, cur, curValue, clazz, j, finalValue, + i = 0; + + if ( jQuery.isFunction( value ) ) { + return this.each( function( j ) { + jQuery( this ).addClass( value.call( this, j, getClass( this ) ) ); + } ); + } + + if ( typeof value === "string" && value ) { + classes = value.match( rnothtmlwhite ) || []; + + while ( ( elem = this[ i++ ] ) ) { + curValue = getClass( elem ); + cur = elem.nodeType === 1 && ( " " + stripAndCollapse( curValue ) + " " ); + + if ( cur ) { + j = 0; + while ( ( clazz = classes[ j++ ] ) ) { + if ( cur.indexOf( " " + clazz + " " ) < 0 ) { + cur += clazz + " "; + } + } + + // Only assign if different to avoid unneeded rendering. + finalValue = stripAndCollapse( cur ); + if ( curValue !== finalValue ) { + elem.setAttribute( "class", finalValue ); + } + } + } + } + + return this; + }, + + removeClass: function( value ) { + var classes, elem, cur, curValue, clazz, j, finalValue, + i = 0; + + if ( jQuery.isFunction( value ) ) { + return this.each( function( j ) { + jQuery( this ).removeClass( value.call( this, j, getClass( this ) ) ); + } ); + } + + if ( !arguments.length ) { + return this.attr( "class", "" ); + } + + if ( typeof value === "string" && value ) { + classes = value.match( rnothtmlwhite ) || []; + + while ( ( elem = this[ i++ ] ) ) { + curValue = getClass( elem ); + + // This expression is here for better compressibility (see addClass) + cur = elem.nodeType === 1 && ( " " + stripAndCollapse( curValue ) + " " ); + + if ( cur ) { + j = 0; + while ( ( clazz = classes[ j++ ] ) ) { + + // Remove *all* instances + while ( cur.indexOf( " " + clazz + " " ) > -1 ) { + cur = cur.replace( " " + clazz + " ", " " ); + } + } + + // Only assign if different to avoid unneeded rendering. + finalValue = stripAndCollapse( cur ); + if ( curValue !== finalValue ) { + elem.setAttribute( "class", finalValue ); + } + } + } + } + + return this; + }, + + toggleClass: function( value, stateVal ) { + var type = typeof value; + + if ( typeof stateVal === "boolean" && type === "string" ) { + return stateVal ? this.addClass( value ) : this.removeClass( value ); + } + + if ( jQuery.isFunction( value ) ) { + return this.each( function( i ) { + jQuery( this ).toggleClass( + value.call( this, i, getClass( this ), stateVal ), + stateVal + ); + } ); + } + + return this.each( function() { + var className, i, self, classNames; + + if ( type === "string" ) { + + // Toggle individual class names + i = 0; + self = jQuery( this ); + classNames = value.match( rnothtmlwhite ) || []; + + while ( ( className = classNames[ i++ ] ) ) { + + // Check each className given, space separated list + if ( self.hasClass( className ) ) { + self.removeClass( className ); + } else { + self.addClass( className ); + } + } + + // Toggle whole class name + } else if ( value === undefined || type === "boolean" ) { + className = getClass( this ); + if ( className ) { + + // Store className if set + dataPriv.set( this, "__className__", className ); + } + + // If the element has a class name or if we're passed `false`, + // then remove the whole classname (if there was one, the above saved it). + // Otherwise bring back whatever was previously saved (if anything), + // falling back to the empty string if nothing was stored. + if ( this.setAttribute ) { + this.setAttribute( "class", + className || value === false ? + "" : + dataPriv.get( this, "__className__" ) || "" + ); + } + } + } ); + }, + + hasClass: function( selector ) { + var className, elem, + i = 0; + + className = " " + selector + " "; + while ( ( elem = this[ i++ ] ) ) { + if ( elem.nodeType === 1 && + ( " " + stripAndCollapse( getClass( elem ) ) + " " ).indexOf( className ) > -1 ) { + return true; + } + } + + return false; + } +} ); + + + + +var rreturn = /\r/g; + +jQuery.fn.extend( { + val: function( value ) { + var hooks, ret, isFunction, + elem = this[ 0 ]; + + if ( !arguments.length ) { + if ( elem ) { + hooks = jQuery.valHooks[ elem.type ] || + jQuery.valHooks[ elem.nodeName.toLowerCase() ]; + + if ( hooks && + "get" in hooks && + ( ret = hooks.get( elem, "value" ) ) !== undefined + ) { + return ret; + } + + ret = elem.value; + + // Handle most common string cases + if ( typeof ret === "string" ) { + return ret.replace( rreturn, "" ); + } + + // Handle cases where value is null/undef or number + return ret == null ? "" : ret; + } + + return; + } + + isFunction = jQuery.isFunction( value ); + + return this.each( function( i ) { + var val; + + if ( this.nodeType !== 1 ) { + return; + } + + if ( isFunction ) { + val = value.call( this, i, jQuery( this ).val() ); + } else { + val = value; + } + + // Treat null/undefined as ""; convert numbers to string + if ( val == null ) { + val = ""; + + } else if ( typeof val === "number" ) { + val += ""; + + } else if ( Array.isArray( val ) ) { + val = jQuery.map( val, function( value ) { + return value == null ? "" : value + ""; + } ); + } + + hooks = jQuery.valHooks[ this.type ] || jQuery.valHooks[ this.nodeName.toLowerCase() ]; + + // If set returns undefined, fall back to normal setting + if ( !hooks || !( "set" in hooks ) || hooks.set( this, val, "value" ) === undefined ) { + this.value = val; + } + } ); + } +} ); + +jQuery.extend( { + valHooks: { + option: { + get: function( elem ) { + + var val = jQuery.find.attr( elem, "value" ); + return val != null ? + val : + + // Support: IE <=10 - 11 only + // option.text throws exceptions (#14686, #14858) + // Strip and collapse whitespace + // https://html.spec.whatwg.org/#strip-and-collapse-whitespace + stripAndCollapse( jQuery.text( elem ) ); + } + }, + select: { + get: function( elem ) { + var value, option, i, + options = elem.options, + index = elem.selectedIndex, + one = elem.type === "select-one", + values = one ? null : [], + max = one ? index + 1 : options.length; + + if ( index < 0 ) { + i = max; + + } else { + i = one ? index : 0; + } + + // Loop through all the selected options + for ( ; i < max; i++ ) { + option = options[ i ]; + + // Support: IE <=9 only + // IE8-9 doesn't update selected after form reset (#2551) + if ( ( option.selected || i === index ) && + + // Don't return options that are disabled or in a disabled optgroup + !option.disabled && + ( !option.parentNode.disabled || + !nodeName( option.parentNode, "optgroup" ) ) ) { + + // Get the specific value for the option + value = jQuery( option ).val(); + + // We don't need an array for one selects + if ( one ) { + return value; + } + + // Multi-Selects return an array + values.push( value ); + } + } + + return values; + }, + + set: function( elem, value ) { + var optionSet, option, + options = elem.options, + values = jQuery.makeArray( value ), + i = options.length; + + while ( i-- ) { + option = options[ i ]; + + /* eslint-disable no-cond-assign */ + + if ( option.selected = + jQuery.inArray( jQuery.valHooks.option.get( option ), values ) > -1 + ) { + optionSet = true; + } + + /* eslint-enable no-cond-assign */ + } + + // Force browsers to behave consistently when non-matching value is set + if ( !optionSet ) { + elem.selectedIndex = -1; + } + return values; + } + } + } +} ); + +// Radios and checkboxes getter/setter +jQuery.each( [ "radio", "checkbox" ], function() { + jQuery.valHooks[ this ] = { + set: function( elem, value ) { + if ( Array.isArray( value ) ) { + return ( elem.checked = jQuery.inArray( jQuery( elem ).val(), value ) > -1 ); + } + } + }; + if ( !support.checkOn ) { + jQuery.valHooks[ this ].get = function( elem ) { + return elem.getAttribute( "value" ) === null ? "on" : elem.value; + }; + } +} ); + + + + +// Return jQuery for attributes-only inclusion + + +var rfocusMorph = /^(?:focusinfocus|focusoutblur)$/; + +jQuery.extend( jQuery.event, { + + trigger: function( event, data, elem, onlyHandlers ) { + + var i, cur, tmp, bubbleType, ontype, handle, special, + eventPath = [ elem || document ], + type = hasOwn.call( event, "type" ) ? event.type : event, + namespaces = hasOwn.call( event, "namespace" ) ? event.namespace.split( "." ) : []; + + cur = tmp = elem = elem || document; + + // Don't do events on text and comment nodes + if ( elem.nodeType === 3 || elem.nodeType === 8 ) { + return; + } + + // focus/blur morphs to focusin/out; ensure we're not firing them right now + if ( rfocusMorph.test( type + jQuery.event.triggered ) ) { + return; + } + + if ( type.indexOf( "." ) > -1 ) { + + // Namespaced trigger; create a regexp to match event type in handle() + namespaces = type.split( "." ); + type = namespaces.shift(); + namespaces.sort(); + } + ontype = type.indexOf( ":" ) < 0 && "on" + type; + + // Caller can pass in a jQuery.Event object, Object, or just an event type string + event = event[ jQuery.expando ] ? + event : + new jQuery.Event( type, typeof event === "object" && event ); + + // Trigger bitmask: & 1 for native handlers; & 2 for jQuery (always true) + event.isTrigger = onlyHandlers ? 2 : 3; + event.namespace = namespaces.join( "." ); + event.rnamespace = event.namespace ? + new RegExp( "(^|\\.)" + namespaces.join( "\\.(?:.*\\.|)" ) + "(\\.|$)" ) : + null; + + // Clean up the event in case it is being reused + event.result = undefined; + if ( !event.target ) { + event.target = elem; + } + + // Clone any incoming data and prepend the event, creating the handler arg list + data = data == null ? + [ event ] : + jQuery.makeArray( data, [ event ] ); + + // Allow special events to draw outside the lines + special = jQuery.event.special[ type ] || {}; + if ( !onlyHandlers && special.trigger && special.trigger.apply( elem, data ) === false ) { + return; + } + + // Determine event propagation path in advance, per W3C events spec (#9951) + // Bubble up to document, then to window; watch for a global ownerDocument var (#9724) + if ( !onlyHandlers && !special.noBubble && !jQuery.isWindow( elem ) ) { + + bubbleType = special.delegateType || type; + if ( !rfocusMorph.test( bubbleType + type ) ) { + cur = cur.parentNode; + } + for ( ; cur; cur = cur.parentNode ) { + eventPath.push( cur ); + tmp = cur; + } + + // Only add window if we got to document (e.g., not plain obj or detached DOM) + if ( tmp === ( elem.ownerDocument || document ) ) { + eventPath.push( tmp.defaultView || tmp.parentWindow || window ); + } + } + + // Fire handlers on the event path + i = 0; + while ( ( cur = eventPath[ i++ ] ) && !event.isPropagationStopped() ) { + + event.type = i > 1 ? + bubbleType : + special.bindType || type; + + // jQuery handler + handle = ( dataPriv.get( cur, "events" ) || {} )[ event.type ] && + dataPriv.get( cur, "handle" ); + if ( handle ) { + handle.apply( cur, data ); + } + + // Native handler + handle = ontype && cur[ ontype ]; + if ( handle && handle.apply && acceptData( cur ) ) { + event.result = handle.apply( cur, data ); + if ( event.result === false ) { + event.preventDefault(); + } + } + } + event.type = type; + + // If nobody prevented the default action, do it now + if ( !onlyHandlers && !event.isDefaultPrevented() ) { + + if ( ( !special._default || + special._default.apply( eventPath.pop(), data ) === false ) && + acceptData( elem ) ) { + + // Call a native DOM method on the target with the same name as the event. + // Don't do default actions on window, that's where global variables be (#6170) + if ( ontype && jQuery.isFunction( elem[ type ] ) && !jQuery.isWindow( elem ) ) { + + // Don't re-trigger an onFOO event when we call its FOO() method + tmp = elem[ ontype ]; + + if ( tmp ) { + elem[ ontype ] = null; + } + + // Prevent re-triggering of the same event, since we already bubbled it above + jQuery.event.triggered = type; + elem[ type ](); + jQuery.event.triggered = undefined; + + if ( tmp ) { + elem[ ontype ] = tmp; + } + } + } + } + + return event.result; + }, + + // Piggyback on a donor event to simulate a different one + // Used only for `focus(in | out)` events + simulate: function( type, elem, event ) { + var e = jQuery.extend( + new jQuery.Event(), + event, + { + type: type, + isSimulated: true + } + ); + + jQuery.event.trigger( e, null, elem ); + } + +} ); + +jQuery.fn.extend( { + + trigger: function( type, data ) { + return this.each( function() { + jQuery.event.trigger( type, data, this ); + } ); + }, + triggerHandler: function( type, data ) { + var elem = this[ 0 ]; + if ( elem ) { + return jQuery.event.trigger( type, data, elem, true ); + } + } +} ); + + +jQuery.each( ( "blur focus focusin focusout resize scroll click dblclick " + + "mousedown mouseup mousemove mouseover mouseout mouseenter mouseleave " + + "change select submit keydown keypress keyup contextmenu" ).split( " " ), + function( i, name ) { + + // Handle event binding + jQuery.fn[ name ] = function( data, fn ) { + return arguments.length > 0 ? + this.on( name, null, data, fn ) : + this.trigger( name ); + }; +} ); + +jQuery.fn.extend( { + hover: function( fnOver, fnOut ) { + return this.mouseenter( fnOver ).mouseleave( fnOut || fnOver ); + } +} ); + + + + +support.focusin = "onfocusin" in window; + + +// Support: Firefox <=44 +// Firefox doesn't have focus(in | out) events +// Related ticket - https://bugzilla.mozilla.org/show_bug.cgi?id=687787 +// +// Support: Chrome <=48 - 49, Safari <=9.0 - 9.1 +// focus(in | out) events fire after focus & blur events, +// which is spec violation - http://www.w3.org/TR/DOM-Level-3-Events/#events-focusevent-event-order +// Related ticket - https://bugs.chromium.org/p/chromium/issues/detail?id=449857 +if ( !support.focusin ) { + jQuery.each( { focus: "focusin", blur: "focusout" }, function( orig, fix ) { + + // Attach a single capturing handler on the document while someone wants focusin/focusout + var handler = function( event ) { + jQuery.event.simulate( fix, event.target, jQuery.event.fix( event ) ); + }; + + jQuery.event.special[ fix ] = { + setup: function() { + var doc = this.ownerDocument || this, + attaches = dataPriv.access( doc, fix ); + + if ( !attaches ) { + doc.addEventListener( orig, handler, true ); + } + dataPriv.access( doc, fix, ( attaches || 0 ) + 1 ); + }, + teardown: function() { + var doc = this.ownerDocument || this, + attaches = dataPriv.access( doc, fix ) - 1; + + if ( !attaches ) { + doc.removeEventListener( orig, handler, true ); + dataPriv.remove( doc, fix ); + + } else { + dataPriv.access( doc, fix, attaches ); + } + } + }; + } ); +} +var location = window.location; + +var nonce = jQuery.now(); + +var rquery = ( /\?/ ); + + + +// Cross-browser xml parsing +jQuery.parseXML = function( data ) { + var xml; + if ( !data || typeof data !== "string" ) { + return null; + } + + // Support: IE 9 - 11 only + // IE throws on parseFromString with invalid input. + try { + xml = ( new window.DOMParser() ).parseFromString( data, "text/xml" ); + } catch ( e ) { + xml = undefined; + } + + if ( !xml || xml.getElementsByTagName( "parsererror" ).length ) { + jQuery.error( "Invalid XML: " + data ); + } + return xml; +}; + + +var + rbracket = /\[\]$/, + rCRLF = /\r?\n/g, + rsubmitterTypes = /^(?:submit|button|image|reset|file)$/i, + rsubmittable = /^(?:input|select|textarea|keygen)/i; + +function buildParams( prefix, obj, traditional, add ) { + var name; + + if ( Array.isArray( obj ) ) { + + // Serialize array item. + jQuery.each( obj, function( i, v ) { + if ( traditional || rbracket.test( prefix ) ) { + + // Treat each array item as a scalar. + add( prefix, v ); + + } else { + + // Item is non-scalar (array or object), encode its numeric index. + buildParams( + prefix + "[" + ( typeof v === "object" && v != null ? i : "" ) + "]", + v, + traditional, + add + ); + } + } ); + + } else if ( !traditional && jQuery.type( obj ) === "object" ) { + + // Serialize object item. + for ( name in obj ) { + buildParams( prefix + "[" + name + "]", obj[ name ], traditional, add ); + } + + } else { + + // Serialize scalar item. + add( prefix, obj ); + } +} + +// Serialize an array of form elements or a set of +// key/values into a query string +jQuery.param = function( a, traditional ) { + var prefix, + s = [], + add = function( key, valueOrFunction ) { + + // If value is a function, invoke it and use its return value + var value = jQuery.isFunction( valueOrFunction ) ? + valueOrFunction() : + valueOrFunction; + + s[ s.length ] = encodeURIComponent( key ) + "=" + + encodeURIComponent( value == null ? "" : value ); + }; + + // If an array was passed in, assume that it is an array of form elements. + if ( Array.isArray( a ) || ( a.jquery && !jQuery.isPlainObject( a ) ) ) { + + // Serialize the form elements + jQuery.each( a, function() { + add( this.name, this.value ); + } ); + + } else { + + // If traditional, encode the "old" way (the way 1.3.2 or older + // did it), otherwise encode params recursively. + for ( prefix in a ) { + buildParams( prefix, a[ prefix ], traditional, add ); + } + } + + // Return the resulting serialization + return s.join( "&" ); +}; + +jQuery.fn.extend( { + serialize: function() { + return jQuery.param( this.serializeArray() ); + }, + serializeArray: function() { + return this.map( function() { + + // Can add propHook for "elements" to filter or add form elements + var elements = jQuery.prop( this, "elements" ); + return elements ? jQuery.makeArray( elements ) : this; + } ) + .filter( function() { + var type = this.type; + + // Use .is( ":disabled" ) so that fieldset[disabled] works + return this.name && !jQuery( this ).is( ":disabled" ) && + rsubmittable.test( this.nodeName ) && !rsubmitterTypes.test( type ) && + ( this.checked || !rcheckableType.test( type ) ); + } ) + .map( function( i, elem ) { + var val = jQuery( this ).val(); + + if ( val == null ) { + return null; + } + + if ( Array.isArray( val ) ) { + return jQuery.map( val, function( val ) { + return { name: elem.name, value: val.replace( rCRLF, "\r\n" ) }; + } ); + } + + return { name: elem.name, value: val.replace( rCRLF, "\r\n" ) }; + } ).get(); + } +} ); + + +var + r20 = /%20/g, + rhash = /#.*$/, + rantiCache = /([?&])_=[^&]*/, + rheaders = /^(.*?):[ \t]*([^\r\n]*)$/mg, + + // #7653, #8125, #8152: local protocol detection + rlocalProtocol = /^(?:about|app|app-storage|.+-extension|file|res|widget):$/, + rnoContent = /^(?:GET|HEAD)$/, + rprotocol = /^\/\//, + + /* Prefilters + * 1) They are useful to introduce custom dataTypes (see ajax/jsonp.js for an example) + * 2) These are called: + * - BEFORE asking for a transport + * - AFTER param serialization (s.data is a string if s.processData is true) + * 3) key is the dataType + * 4) the catchall symbol "*" can be used + * 5) execution will start with transport dataType and THEN continue down to "*" if needed + */ + prefilters = {}, + + /* Transports bindings + * 1) key is the dataType + * 2) the catchall symbol "*" can be used + * 3) selection will start with transport dataType and THEN go to "*" if needed + */ + transports = {}, + + // Avoid comment-prolog char sequence (#10098); must appease lint and evade compression + allTypes = "*/".concat( "*" ), + + // Anchor tag for parsing the document origin + originAnchor = document.createElement( "a" ); + originAnchor.href = location.href; + +// Base "constructor" for jQuery.ajaxPrefilter and jQuery.ajaxTransport +function addToPrefiltersOrTransports( structure ) { + + // dataTypeExpression is optional and defaults to "*" + return function( dataTypeExpression, func ) { + + if ( typeof dataTypeExpression !== "string" ) { + func = dataTypeExpression; + dataTypeExpression = "*"; + } + + var dataType, + i = 0, + dataTypes = dataTypeExpression.toLowerCase().match( rnothtmlwhite ) || []; + + if ( jQuery.isFunction( func ) ) { + + // For each dataType in the dataTypeExpression + while ( ( dataType = dataTypes[ i++ ] ) ) { + + // Prepend if requested + if ( dataType[ 0 ] === "+" ) { + dataType = dataType.slice( 1 ) || "*"; + ( structure[ dataType ] = structure[ dataType ] || [] ).unshift( func ); + + // Otherwise append + } else { + ( structure[ dataType ] = structure[ dataType ] || [] ).push( func ); + } + } + } + }; +} + +// Base inspection function for prefilters and transports +function inspectPrefiltersOrTransports( structure, options, originalOptions, jqXHR ) { + + var inspected = {}, + seekingTransport = ( structure === transports ); + + function inspect( dataType ) { + var selected; + inspected[ dataType ] = true; + jQuery.each( structure[ dataType ] || [], function( _, prefilterOrFactory ) { + var dataTypeOrTransport = prefilterOrFactory( options, originalOptions, jqXHR ); + if ( typeof dataTypeOrTransport === "string" && + !seekingTransport && !inspected[ dataTypeOrTransport ] ) { + + options.dataTypes.unshift( dataTypeOrTransport ); + inspect( dataTypeOrTransport ); + return false; + } else if ( seekingTransport ) { + return !( selected = dataTypeOrTransport ); + } + } ); + return selected; + } + + return inspect( options.dataTypes[ 0 ] ) || !inspected[ "*" ] && inspect( "*" ); +} + +// A special extend for ajax options +// that takes "flat" options (not to be deep extended) +// Fixes #9887 +function ajaxExtend( target, src ) { + var key, deep, + flatOptions = jQuery.ajaxSettings.flatOptions || {}; + + for ( key in src ) { + if ( src[ key ] !== undefined ) { + ( flatOptions[ key ] ? target : ( deep || ( deep = {} ) ) )[ key ] = src[ key ]; + } + } + if ( deep ) { + jQuery.extend( true, target, deep ); + } + + return target; +} + +/* Handles responses to an ajax request: + * - finds the right dataType (mediates between content-type and expected dataType) + * - returns the corresponding response + */ +function ajaxHandleResponses( s, jqXHR, responses ) { + + var ct, type, finalDataType, firstDataType, + contents = s.contents, + dataTypes = s.dataTypes; + + // Remove auto dataType and get content-type in the process + while ( dataTypes[ 0 ] === "*" ) { + dataTypes.shift(); + if ( ct === undefined ) { + ct = s.mimeType || jqXHR.getResponseHeader( "Content-Type" ); + } + } + + // Check if we're dealing with a known content-type + if ( ct ) { + for ( type in contents ) { + if ( contents[ type ] && contents[ type ].test( ct ) ) { + dataTypes.unshift( type ); + break; + } + } + } + + // Check to see if we have a response for the expected dataType + if ( dataTypes[ 0 ] in responses ) { + finalDataType = dataTypes[ 0 ]; + } else { + + // Try convertible dataTypes + for ( type in responses ) { + if ( !dataTypes[ 0 ] || s.converters[ type + " " + dataTypes[ 0 ] ] ) { + finalDataType = type; + break; + } + if ( !firstDataType ) { + firstDataType = type; + } + } + + // Or just use first one + finalDataType = finalDataType || firstDataType; + } + + // If we found a dataType + // We add the dataType to the list if needed + // and return the corresponding response + if ( finalDataType ) { + if ( finalDataType !== dataTypes[ 0 ] ) { + dataTypes.unshift( finalDataType ); + } + return responses[ finalDataType ]; + } +} + +/* Chain conversions given the request and the original response + * Also sets the responseXXX fields on the jqXHR instance + */ +function ajaxConvert( s, response, jqXHR, isSuccess ) { + var conv2, current, conv, tmp, prev, + converters = {}, + + // Work with a copy of dataTypes in case we need to modify it for conversion + dataTypes = s.dataTypes.slice(); + + // Create converters map with lowercased keys + if ( dataTypes[ 1 ] ) { + for ( conv in s.converters ) { + converters[ conv.toLowerCase() ] = s.converters[ conv ]; + } + } + + current = dataTypes.shift(); + + // Convert to each sequential dataType + while ( current ) { + + if ( s.responseFields[ current ] ) { + jqXHR[ s.responseFields[ current ] ] = response; + } + + // Apply the dataFilter if provided + if ( !prev && isSuccess && s.dataFilter ) { + response = s.dataFilter( response, s.dataType ); + } + + prev = current; + current = dataTypes.shift(); + + if ( current ) { + + // There's only work to do if current dataType is non-auto + if ( current === "*" ) { + + current = prev; + + // Convert response if prev dataType is non-auto and differs from current + } else if ( prev !== "*" && prev !== current ) { + + // Seek a direct converter + conv = converters[ prev + " " + current ] || converters[ "* " + current ]; + + // If none found, seek a pair + if ( !conv ) { + for ( conv2 in converters ) { + + // If conv2 outputs current + tmp = conv2.split( " " ); + if ( tmp[ 1 ] === current ) { + + // If prev can be converted to accepted input + conv = converters[ prev + " " + tmp[ 0 ] ] || + converters[ "* " + tmp[ 0 ] ]; + if ( conv ) { + + // Condense equivalence converters + if ( conv === true ) { + conv = converters[ conv2 ]; + + // Otherwise, insert the intermediate dataType + } else if ( converters[ conv2 ] !== true ) { + current = tmp[ 0 ]; + dataTypes.unshift( tmp[ 1 ] ); + } + break; + } + } + } + } + + // Apply converter (if not an equivalence) + if ( conv !== true ) { + + // Unless errors are allowed to bubble, catch and return them + if ( conv && s.throws ) { + response = conv( response ); + } else { + try { + response = conv( response ); + } catch ( e ) { + return { + state: "parsererror", + error: conv ? e : "No conversion from " + prev + " to " + current + }; + } + } + } + } + } + } + + return { state: "success", data: response }; +} + +jQuery.extend( { + + // Counter for holding the number of active queries + active: 0, + + // Last-Modified header cache for next request + lastModified: {}, + etag: {}, + + ajaxSettings: { + url: location.href, + type: "GET", + isLocal: rlocalProtocol.test( location.protocol ), + global: true, + processData: true, + async: true, + contentType: "application/x-www-form-urlencoded; charset=UTF-8", + + /* + timeout: 0, + data: null, + dataType: null, + username: null, + password: null, + cache: null, + throws: false, + traditional: false, + headers: {}, + */ + + accepts: { + "*": allTypes, + text: "text/plain", + html: "text/html", + xml: "application/xml, text/xml", + json: "application/json, text/javascript" + }, + + contents: { + xml: /\bxml\b/, + html: /\bhtml/, + json: /\bjson\b/ + }, + + responseFields: { + xml: "responseXML", + text: "responseText", + json: "responseJSON" + }, + + // Data converters + // Keys separate source (or catchall "*") and destination types with a single space + converters: { + + // Convert anything to text + "* text": String, + + // Text to html (true = no transformation) + "text html": true, + + // Evaluate text as a json expression + "text json": JSON.parse, + + // Parse text as xml + "text xml": jQuery.parseXML + }, + + // For options that shouldn't be deep extended: + // you can add your own custom options here if + // and when you create one that shouldn't be + // deep extended (see ajaxExtend) + flatOptions: { + url: true, + context: true + } + }, + + // Creates a full fledged settings object into target + // with both ajaxSettings and settings fields. + // If target is omitted, writes into ajaxSettings. + ajaxSetup: function( target, settings ) { + return settings ? + + // Building a settings object + ajaxExtend( ajaxExtend( target, jQuery.ajaxSettings ), settings ) : + + // Extending ajaxSettings + ajaxExtend( jQuery.ajaxSettings, target ); + }, + + ajaxPrefilter: addToPrefiltersOrTransports( prefilters ), + ajaxTransport: addToPrefiltersOrTransports( transports ), + + // Main method + ajax: function( url, options ) { + + // If url is an object, simulate pre-1.5 signature + if ( typeof url === "object" ) { + options = url; + url = undefined; + } + + // Force options to be an object + options = options || {}; + + var transport, + + // URL without anti-cache param + cacheURL, + + // Response headers + responseHeadersString, + responseHeaders, + + // timeout handle + timeoutTimer, + + // Url cleanup var + urlAnchor, + + // Request state (becomes false upon send and true upon completion) + completed, + + // To know if global events are to be dispatched + fireGlobals, + + // Loop variable + i, + + // uncached part of the url + uncached, + + // Create the final options object + s = jQuery.ajaxSetup( {}, options ), + + // Callbacks context + callbackContext = s.context || s, + + // Context for global events is callbackContext if it is a DOM node or jQuery collection + globalEventContext = s.context && + ( callbackContext.nodeType || callbackContext.jquery ) ? + jQuery( callbackContext ) : + jQuery.event, + + // Deferreds + deferred = jQuery.Deferred(), + completeDeferred = jQuery.Callbacks( "once memory" ), + + // Status-dependent callbacks + statusCode = s.statusCode || {}, + + // Headers (they are sent all at once) + requestHeaders = {}, + requestHeadersNames = {}, + + // Default abort message + strAbort = "canceled", + + // Fake xhr + jqXHR = { + readyState: 0, + + // Builds headers hashtable if needed + getResponseHeader: function( key ) { + var match; + if ( completed ) { + if ( !responseHeaders ) { + responseHeaders = {}; + while ( ( match = rheaders.exec( responseHeadersString ) ) ) { + responseHeaders[ match[ 1 ].toLowerCase() ] = match[ 2 ]; + } + } + match = responseHeaders[ key.toLowerCase() ]; + } + return match == null ? null : match; + }, + + // Raw string + getAllResponseHeaders: function() { + return completed ? responseHeadersString : null; + }, + + // Caches the header + setRequestHeader: function( name, value ) { + if ( completed == null ) { + name = requestHeadersNames[ name.toLowerCase() ] = + requestHeadersNames[ name.toLowerCase() ] || name; + requestHeaders[ name ] = value; + } + return this; + }, + + // Overrides response content-type header + overrideMimeType: function( type ) { + if ( completed == null ) { + s.mimeType = type; + } + return this; + }, + + // Status-dependent callbacks + statusCode: function( map ) { + var code; + if ( map ) { + if ( completed ) { + + // Execute the appropriate callbacks + jqXHR.always( map[ jqXHR.status ] ); + } else { + + // Lazy-add the new callbacks in a way that preserves old ones + for ( code in map ) { + statusCode[ code ] = [ statusCode[ code ], map[ code ] ]; + } + } + } + return this; + }, + + // Cancel the request + abort: function( statusText ) { + var finalText = statusText || strAbort; + if ( transport ) { + transport.abort( finalText ); + } + done( 0, finalText ); + return this; + } + }; + + // Attach deferreds + deferred.promise( jqXHR ); + + // Add protocol if not provided (prefilters might expect it) + // Handle falsy url in the settings object (#10093: consistency with old signature) + // We also use the url parameter if available + s.url = ( ( url || s.url || location.href ) + "" ) + .replace( rprotocol, location.protocol + "//" ); + + // Alias method option to type as per ticket #12004 + s.type = options.method || options.type || s.method || s.type; + + // Extract dataTypes list + s.dataTypes = ( s.dataType || "*" ).toLowerCase().match( rnothtmlwhite ) || [ "" ]; + + // A cross-domain request is in order when the origin doesn't match the current origin. + if ( s.crossDomain == null ) { + urlAnchor = document.createElement( "a" ); + + // Support: IE <=8 - 11, Edge 12 - 13 + // IE throws exception on accessing the href property if url is malformed, + // e.g. http://example.com:80x/ + try { + urlAnchor.href = s.url; + + // Support: IE <=8 - 11 only + // Anchor's host property isn't correctly set when s.url is relative + urlAnchor.href = urlAnchor.href; + s.crossDomain = originAnchor.protocol + "//" + originAnchor.host !== + urlAnchor.protocol + "//" + urlAnchor.host; + } catch ( e ) { + + // If there is an error parsing the URL, assume it is crossDomain, + // it can be rejected by the transport if it is invalid + s.crossDomain = true; + } + } + + // Convert data if not already a string + if ( s.data && s.processData && typeof s.data !== "string" ) { + s.data = jQuery.param( s.data, s.traditional ); + } + + // Apply prefilters + inspectPrefiltersOrTransports( prefilters, s, options, jqXHR ); + + // If request was aborted inside a prefilter, stop there + if ( completed ) { + return jqXHR; + } + + // We can fire global events as of now if asked to + // Don't fire events if jQuery.event is undefined in an AMD-usage scenario (#15118) + fireGlobals = jQuery.event && s.global; + + // Watch for a new set of requests + if ( fireGlobals && jQuery.active++ === 0 ) { + jQuery.event.trigger( "ajaxStart" ); + } + + // Uppercase the type + s.type = s.type.toUpperCase(); + + // Determine if request has content + s.hasContent = !rnoContent.test( s.type ); + + // Save the URL in case we're toying with the If-Modified-Since + // and/or If-None-Match header later on + // Remove hash to simplify url manipulation + cacheURL = s.url.replace( rhash, "" ); + + // More options handling for requests with no content + if ( !s.hasContent ) { + + // Remember the hash so we can put it back + uncached = s.url.slice( cacheURL.length ); + + // If data is available, append data to url + if ( s.data ) { + cacheURL += ( rquery.test( cacheURL ) ? "&" : "?" ) + s.data; + + // #9682: remove data so that it's not used in an eventual retry + delete s.data; + } + + // Add or update anti-cache param if needed + if ( s.cache === false ) { + cacheURL = cacheURL.replace( rantiCache, "$1" ); + uncached = ( rquery.test( cacheURL ) ? "&" : "?" ) + "_=" + ( nonce++ ) + uncached; + } + + // Put hash and anti-cache on the URL that will be requested (gh-1732) + s.url = cacheURL + uncached; + + // Change '%20' to '+' if this is encoded form body content (gh-2658) + } else if ( s.data && s.processData && + ( s.contentType || "" ).indexOf( "application/x-www-form-urlencoded" ) === 0 ) { + s.data = s.data.replace( r20, "+" ); + } + + // Set the If-Modified-Since and/or If-None-Match header, if in ifModified mode. + if ( s.ifModified ) { + if ( jQuery.lastModified[ cacheURL ] ) { + jqXHR.setRequestHeader( "If-Modified-Since", jQuery.lastModified[ cacheURL ] ); + } + if ( jQuery.etag[ cacheURL ] ) { + jqXHR.setRequestHeader( "If-None-Match", jQuery.etag[ cacheURL ] ); + } + } + + // Set the correct header, if data is being sent + if ( s.data && s.hasContent && s.contentType !== false || options.contentType ) { + jqXHR.setRequestHeader( "Content-Type", s.contentType ); + } + + // Set the Accepts header for the server, depending on the dataType + jqXHR.setRequestHeader( + "Accept", + s.dataTypes[ 0 ] && s.accepts[ s.dataTypes[ 0 ] ] ? + s.accepts[ s.dataTypes[ 0 ] ] + + ( s.dataTypes[ 0 ] !== "*" ? ", " + allTypes + "; q=0.01" : "" ) : + s.accepts[ "*" ] + ); + + // Check for headers option + for ( i in s.headers ) { + jqXHR.setRequestHeader( i, s.headers[ i ] ); + } + + // Allow custom headers/mimetypes and early abort + if ( s.beforeSend && + ( s.beforeSend.call( callbackContext, jqXHR, s ) === false || completed ) ) { + + // Abort if not done already and return + return jqXHR.abort(); + } + + // Aborting is no longer a cancellation + strAbort = "abort"; + + // Install callbacks on deferreds + completeDeferred.add( s.complete ); + jqXHR.done( s.success ); + jqXHR.fail( s.error ); + + // Get transport + transport = inspectPrefiltersOrTransports( transports, s, options, jqXHR ); + + // If no transport, we auto-abort + if ( !transport ) { + done( -1, "No Transport" ); + } else { + jqXHR.readyState = 1; + + // Send global event + if ( fireGlobals ) { + globalEventContext.trigger( "ajaxSend", [ jqXHR, s ] ); + } + + // If request was aborted inside ajaxSend, stop there + if ( completed ) { + return jqXHR; + } + + // Timeout + if ( s.async && s.timeout > 0 ) { + timeoutTimer = window.setTimeout( function() { + jqXHR.abort( "timeout" ); + }, s.timeout ); + } + + try { + completed = false; + transport.send( requestHeaders, done ); + } catch ( e ) { + + // Rethrow post-completion exceptions + if ( completed ) { + throw e; + } + + // Propagate others as results + done( -1, e ); + } + } + + // Callback for when everything is done + function done( status, nativeStatusText, responses, headers ) { + var isSuccess, success, error, response, modified, + statusText = nativeStatusText; + + // Ignore repeat invocations + if ( completed ) { + return; + } + + completed = true; + + // Clear timeout if it exists + if ( timeoutTimer ) { + window.clearTimeout( timeoutTimer ); + } + + // Dereference transport for early garbage collection + // (no matter how long the jqXHR object will be used) + transport = undefined; + + // Cache response headers + responseHeadersString = headers || ""; + + // Set readyState + jqXHR.readyState = status > 0 ? 4 : 0; + + // Determine if successful + isSuccess = status >= 200 && status < 300 || status === 304; + + // Get response data + if ( responses ) { + response = ajaxHandleResponses( s, jqXHR, responses ); + } + + // Convert no matter what (that way responseXXX fields are always set) + response = ajaxConvert( s, response, jqXHR, isSuccess ); + + // If successful, handle type chaining + if ( isSuccess ) { + + // Set the If-Modified-Since and/or If-None-Match header, if in ifModified mode. + if ( s.ifModified ) { + modified = jqXHR.getResponseHeader( "Last-Modified" ); + if ( modified ) { + jQuery.lastModified[ cacheURL ] = modified; + } + modified = jqXHR.getResponseHeader( "etag" ); + if ( modified ) { + jQuery.etag[ cacheURL ] = modified; + } + } + + // if no content + if ( status === 204 || s.type === "HEAD" ) { + statusText = "nocontent"; + + // if not modified + } else if ( status === 304 ) { + statusText = "notmodified"; + + // If we have data, let's convert it + } else { + statusText = response.state; + success = response.data; + error = response.error; + isSuccess = !error; + } + } else { + + // Extract error from statusText and normalize for non-aborts + error = statusText; + if ( status || !statusText ) { + statusText = "error"; + if ( status < 0 ) { + status = 0; + } + } + } + + // Set data for the fake xhr object + jqXHR.status = status; + jqXHR.statusText = ( nativeStatusText || statusText ) + ""; + + // Success/Error + if ( isSuccess ) { + deferred.resolveWith( callbackContext, [ success, statusText, jqXHR ] ); + } else { + deferred.rejectWith( callbackContext, [ jqXHR, statusText, error ] ); + } + + // Status-dependent callbacks + jqXHR.statusCode( statusCode ); + statusCode = undefined; + + if ( fireGlobals ) { + globalEventContext.trigger( isSuccess ? "ajaxSuccess" : "ajaxError", + [ jqXHR, s, isSuccess ? success : error ] ); + } + + // Complete + completeDeferred.fireWith( callbackContext, [ jqXHR, statusText ] ); + + if ( fireGlobals ) { + globalEventContext.trigger( "ajaxComplete", [ jqXHR, s ] ); + + // Handle the global AJAX counter + if ( !( --jQuery.active ) ) { + jQuery.event.trigger( "ajaxStop" ); + } + } + } + + return jqXHR; + }, + + getJSON: function( url, data, callback ) { + return jQuery.get( url, data, callback, "json" ); + }, + + getScript: function( url, callback ) { + return jQuery.get( url, undefined, callback, "script" ); + } +} ); + +jQuery.each( [ "get", "post" ], function( i, method ) { + jQuery[ method ] = function( url, data, callback, type ) { + + // Shift arguments if data argument was omitted + if ( jQuery.isFunction( data ) ) { + type = type || callback; + callback = data; + data = undefined; + } + + // The url can be an options object (which then must have .url) + return jQuery.ajax( jQuery.extend( { + url: url, + type: method, + dataType: type, + data: data, + success: callback + }, jQuery.isPlainObject( url ) && url ) ); + }; +} ); + + +jQuery._evalUrl = function( url ) { + return jQuery.ajax( { + url: url, + + // Make this explicit, since user can override this through ajaxSetup (#11264) + type: "GET", + dataType: "script", + cache: true, + async: false, + global: false, + "throws": true + } ); +}; + + +jQuery.fn.extend( { + wrapAll: function( html ) { + var wrap; + + if ( this[ 0 ] ) { + if ( jQuery.isFunction( html ) ) { + html = html.call( this[ 0 ] ); + } + + // The elements to wrap the target around + wrap = jQuery( html, this[ 0 ].ownerDocument ).eq( 0 ).clone( true ); + + if ( this[ 0 ].parentNode ) { + wrap.insertBefore( this[ 0 ] ); + } + + wrap.map( function() { + var elem = this; + + while ( elem.firstElementChild ) { + elem = elem.firstElementChild; + } + + return elem; + } ).append( this ); + } + + return this; + }, + + wrapInner: function( html ) { + if ( jQuery.isFunction( html ) ) { + return this.each( function( i ) { + jQuery( this ).wrapInner( html.call( this, i ) ); + } ); + } + + return this.each( function() { + var self = jQuery( this ), + contents = self.contents(); + + if ( contents.length ) { + contents.wrapAll( html ); + + } else { + self.append( html ); + } + } ); + }, + + wrap: function( html ) { + var isFunction = jQuery.isFunction( html ); + + return this.each( function( i ) { + jQuery( this ).wrapAll( isFunction ? html.call( this, i ) : html ); + } ); + }, + + unwrap: function( selector ) { + this.parent( selector ).not( "body" ).each( function() { + jQuery( this ).replaceWith( this.childNodes ); + } ); + return this; + } +} ); + + +jQuery.expr.pseudos.hidden = function( elem ) { + return !jQuery.expr.pseudos.visible( elem ); +}; +jQuery.expr.pseudos.visible = function( elem ) { + return !!( elem.offsetWidth || elem.offsetHeight || elem.getClientRects().length ); +}; + + + + +jQuery.ajaxSettings.xhr = function() { + try { + return new window.XMLHttpRequest(); + } catch ( e ) {} +}; + +var xhrSuccessStatus = { + + // File protocol always yields status code 0, assume 200 + 0: 200, + + // Support: IE <=9 only + // #1450: sometimes IE returns 1223 when it should be 204 + 1223: 204 + }, + xhrSupported = jQuery.ajaxSettings.xhr(); + +support.cors = !!xhrSupported && ( "withCredentials" in xhrSupported ); +support.ajax = xhrSupported = !!xhrSupported; + +jQuery.ajaxTransport( function( options ) { + var callback, errorCallback; + + // Cross domain only allowed if supported through XMLHttpRequest + if ( support.cors || xhrSupported && !options.crossDomain ) { + return { + send: function( headers, complete ) { + var i, + xhr = options.xhr(); + + xhr.open( + options.type, + options.url, + options.async, + options.username, + options.password + ); + + // Apply custom fields if provided + if ( options.xhrFields ) { + for ( i in options.xhrFields ) { + xhr[ i ] = options.xhrFields[ i ]; + } + } + + // Override mime type if needed + if ( options.mimeType && xhr.overrideMimeType ) { + xhr.overrideMimeType( options.mimeType ); + } + + // X-Requested-With header + // For cross-domain requests, seeing as conditions for a preflight are + // akin to a jigsaw puzzle, we simply never set it to be sure. + // (it can always be set on a per-request basis or even using ajaxSetup) + // For same-domain requests, won't change header if already provided. + if ( !options.crossDomain && !headers[ "X-Requested-With" ] ) { + headers[ "X-Requested-With" ] = "XMLHttpRequest"; + } + + // Set headers + for ( i in headers ) { + xhr.setRequestHeader( i, headers[ i ] ); + } + + // Callback + callback = function( type ) { + return function() { + if ( callback ) { + callback = errorCallback = xhr.onload = + xhr.onerror = xhr.onabort = xhr.onreadystatechange = null; + + if ( type === "abort" ) { + xhr.abort(); + } else if ( type === "error" ) { + + // Support: IE <=9 only + // On a manual native abort, IE9 throws + // errors on any property access that is not readyState + if ( typeof xhr.status !== "number" ) { + complete( 0, "error" ); + } else { + complete( + + // File: protocol always yields status 0; see #8605, #14207 + xhr.status, + xhr.statusText + ); + } + } else { + complete( + xhrSuccessStatus[ xhr.status ] || xhr.status, + xhr.statusText, + + // Support: IE <=9 only + // IE9 has no XHR2 but throws on binary (trac-11426) + // For XHR2 non-text, let the caller handle it (gh-2498) + ( xhr.responseType || "text" ) !== "text" || + typeof xhr.responseText !== "string" ? + { binary: xhr.response } : + { text: xhr.responseText }, + xhr.getAllResponseHeaders() + ); + } + } + }; + }; + + // Listen to events + xhr.onload = callback(); + errorCallback = xhr.onerror = callback( "error" ); + + // Support: IE 9 only + // Use onreadystatechange to replace onabort + // to handle uncaught aborts + if ( xhr.onabort !== undefined ) { + xhr.onabort = errorCallback; + } else { + xhr.onreadystatechange = function() { + + // Check readyState before timeout as it changes + if ( xhr.readyState === 4 ) { + + // Allow onerror to be called first, + // but that will not handle a native abort + // Also, save errorCallback to a variable + // as xhr.onerror cannot be accessed + window.setTimeout( function() { + if ( callback ) { + errorCallback(); + } + } ); + } + }; + } + + // Create the abort callback + callback = callback( "abort" ); + + try { + + // Do send the request (this may raise an exception) + xhr.send( options.hasContent && options.data || null ); + } catch ( e ) { + + // #14683: Only rethrow if this hasn't been notified as an error yet + if ( callback ) { + throw e; + } + } + }, + + abort: function() { + if ( callback ) { + callback(); + } + } + }; + } +} ); + + + + +// Prevent auto-execution of scripts when no explicit dataType was provided (See gh-2432) +jQuery.ajaxPrefilter( function( s ) { + if ( s.crossDomain ) { + s.contents.script = false; + } +} ); + +// Install script dataType +jQuery.ajaxSetup( { + accepts: { + script: "text/javascript, application/javascript, " + + "application/ecmascript, application/x-ecmascript" + }, + contents: { + script: /\b(?:java|ecma)script\b/ + }, + converters: { + "text script": function( text ) { + jQuery.globalEval( text ); + return text; + } + } +} ); + +// Handle cache's special case and crossDomain +jQuery.ajaxPrefilter( "script", function( s ) { + if ( s.cache === undefined ) { + s.cache = false; + } + if ( s.crossDomain ) { + s.type = "GET"; + } +} ); + +// Bind script tag hack transport +jQuery.ajaxTransport( "script", function( s ) { + + // This transport only deals with cross domain requests + if ( s.crossDomain ) { + var script, callback; + return { + send: function( _, complete ) { + script = jQuery( " + + + + + + + + + + + + + + + + + +
+
+
+
+ + + + +
+
+
+ +
+
+ + + + + + + \ No newline at end of file diff --git a/docs/auto_examples/plot_bar.html b/docs/auto_examples/plot_bar.html new file mode 100644 index 0000000..9e3e73b --- /dev/null +++ b/docs/auto_examples/plot_bar.html @@ -0,0 +1,136 @@ + + + + + + + Bar Chart — VFH Charts 2019-07-16 documentation + + + + + + + + + + + + + + + + + + + + + +
+
+
+
+ + +
+

Bar Chart

+

Makes an example of a bar chart.

+
from sqlalchemy import create_engine
+import matplotlib.pyplot as plt
+import matplotlib as mpl
+import pandas as pd
+import configparser
+from psycopg2 import connect
+import psycopg2.sql as pg
+import pandas.io.sql as pandasql
+import numpy as np
+import datetime
+import math
+import rick
+import geopandas as gpd
+import os
+import shapely
+from shapely.geometry import Point
+os.environ["PROJ_LIB"]=r"C:\Users\rliu4\AppData\Local\Continuum\anaconda3\Library\share"
+import importlib
+import matplotlib.ticker as ticker
+import matplotlib.font_manager as font_manager
+
+
+
+

Data Collection

+

This creates a test dataframe to use

+
pass_data = {'cat': ['PTC','Taxi',  'Trip Making Population'],
+        'TTC Pass': [22,16,16],
+        }
+
+transit_pass = pd.DataFrame(pass_data,columns= ['cat', 'TTC Pass'])
+transit_pass  = transit_pass .reindex(index=transit_pass .index[::-1])
+
+fig, ax = rick.charts.bar_chart(transit_pass, xlab='Trips')
+
+
+../_images/sphx_glr_plot_bar_001.png +

Total running time of the script: ( 0 minutes 27.838 seconds)

+ +

Gallery generated by Sphinx-Gallery

+
+
+ + +
+
+
+ +
+
+ + + + + + + \ No newline at end of file diff --git a/docs/auto_examples/plot_chloropleth.html b/docs/auto_examples/plot_chloropleth.html new file mode 100644 index 0000000..09c0831 --- /dev/null +++ b/docs/auto_examples/plot_chloropleth.html @@ -0,0 +1,176 @@ + + + + + + + Chloropleth Map — VFH Charts 2019-07-16 documentation + + + + + + + + + + + + + + + + + + + + + +
+
+
+
+ + +
+

Chloropleth Map

+

Makes an example of a chloropleth map.

+
from sqlalchemy import create_engine
+import matplotlib.pyplot as plt
+import matplotlib as mpl
+import pandas as pd
+import configparser
+from psycopg2 import connect
+import psycopg2.sql as pg
+import pandas.io.sql as pandasql
+import numpy as np
+import datetime
+import math
+import rick
+import geopandas as gpd
+import os
+import shapely
+from shapely.geometry import Point
+os.environ["PROJ_LIB"]=r"C:\Users\rliu4\AppData\Local\Continuum\anaconda3\Library\share"
+import importlib
+import matplotlib.ticker as ticker
+import matplotlib.font_manager as font_manager
+CONFIG = configparser.ConfigParser()
+CONFIG.read(r'C:\Users\rliu4\Documents\Python\config.cfg')
+dbset = CONFIG['DBSETTINGS']
+con = connect(**dbset)
+
+
+
+

Data Collection

+

This Section grabs and formats the data.

+
query = '''
+
+WITH sum AS (
+SELECT extract(month from pickup_datetime) as mon, extract(year from pickup_datetime) as yr, extract(week from pickup_datetime) as wk, pickup_neighbourhood,
+sum(count) as count  FROM ptc.trip_data_agg_neighbourhood
+GROUP BY   pickup_datetime, pickup_neighbourhood
+
+), ward1 AS  (
+
+SELECT  avg(count) as count, pickup_neighbourhood from sum
+WHERE (yr=2018 AND mon IN (9))
+GROUP BY pickup_neighbourhood
+ORDER BY count
+), ward2 AS  (
+
+SELECT avg(count) as count, pickup_neighbourhood from sum
+WHERE (yr=2016 AND mon IN (10))
+GROUP BY pickup_neighbourhood
+ORDER BY count
+)
+
+SELECT pickup_neighbourhood,  geom, (b.count - a.count)/(a.count)*100 as growth FROM ward2 a
+LEFT JOIN ward1 b USING ( pickup_neighbourhood)
+LEFT JOIN gis.neighbourhood ON area_s_cd::integer=pickup_neighbourhood
+
+'''
+
+
+

Rotates data 17 degrees to orient Toronto perpendicularly

+
data = gpd.GeoDataFrame.from_postgis(query, con, geom_col='geom')
+data = data.to_crs({'init' :'epsg:3857'})
+
+for index, row in data.iterrows():
+    rotated = shapely.affinity.rotate(row['geom'], angle=-17, origin = Point(0, 0))
+    data.at[index, 'geom'] = rotated
+
+
+

The function only needs these columns, in this order

+
data=data[['geom', 'growth']]
+
+
+

Calls the Function

+
fig, ax = rick.charts.chloro_map(con, data, subway = True, lower = 0, upper = 300, title = 'Growth in Trips',
+                                       island = False,  unit = '%', nbins = 3)
+
+
+../_images/sphx_glr_plot_chloropleth_001.png +

Total running time of the script: ( 0 minutes 18.050 seconds)

+ +

Gallery generated by Sphinx-Gallery

+
+
+ + +
+
+
+ +
+
+ + + + + + + \ No newline at end of file diff --git a/docs/auto_examples/plot_line.html b/docs/auto_examples/plot_line.html new file mode 100644 index 0000000..e50e557 --- /dev/null +++ b/docs/auto_examples/plot_line.html @@ -0,0 +1,198 @@ + + + + + + + Line Chart — VFH Charts 2019-07-16 documentation + + + + + + + + + + + + + + + + + + + + +
+
+
+
+ + +
+

Line Chart

+

Makes an example of a line chart, with an additional baseline plot and custom formatted x axis.

+
from sqlalchemy import create_engine
+import matplotlib.pyplot as plt
+import matplotlib as mpl
+import pandas as pd
+import configparser
+from psycopg2 import connect
+import psycopg2.sql as pg
+import pandas.io.sql as pandasql
+import numpy as np
+import datetime
+import math
+import rick
+import geopandas as gpd
+import os
+import shapely
+from shapely.geometry import Point
+os.environ["PROJ_LIB"]=r"C:\Users\rliu4\AppData\Local\Continuum\anaconda3\Library\share"
+import importlib
+import matplotlib.ticker as ticker
+import matplotlib.font_manager as font_manager
+
+
+CONFIG = configparser.ConfigParser()
+CONFIG.read(r'C:\Users\rliu4\Documents\Python\config.cfg')
+dbset = CONFIG['DBSETTINGS']
+con = connect(**dbset)
+
+
+
+

Data Collection

+

This Section grabs and formats the data.

+
query='''
+WITH daily_ave AS (
+
+SELECT * FROM ptc.daily_trips
+), total AS  (
+SELECT  extract(month from pickup_datetime) as mon,
+extract(year from pickup_datetime) as yr,
+
+CASE WHEN extract(year from pickup_datetime) = 2018 AND extract(month from pickup_datetime) IN (3) THEN 108321
+WHEN extract(year from pickup_datetime) = 2018 AND extract(month from pickup_datetime) IN (11) THEN 161733 ELSE
+avg(count)::integer END as count FROM daily_ave
+GROUP BY extract(month from pickup_datetime), extract(year from pickup_datetime)
+ORDER BY extract(year from pickup_datetime), extract(month from pickup_datetime)
+)
+
+
+SELECT
+CASE WHEN mon = 1 THEN to_char(to_timestamp (mon::text, 'MM'), 'Mon')||' '||yr::text
+WHEN mon = 9 AND yr = 2016 THEN to_char(to_timestamp (mon::text, 'MM'), 'Mon')||' '||yr::text
+ELSE to_char(to_timestamp (mon::text, 'MM'), 'Mon')
+END AS period,
+count FROM total
+'''
+total=pandasql.read_sql(query, con)
+
+
+

Gets the baseline data (to be graphed in grey)

+
query='''
+WITH daily_ave AS (
+
+SELECT * FROM ptc.daily_trips
+), total AS  (
+SELECT  extract(month from pickup_datetime) as mon,
+extract(year from pickup_datetime) as yr,
+
+CASE WHEN extract(year from pickup_datetime) = 2018 AND extract(month from pickup_datetime) IN (3) THEN 108321
+WHEN extract(year from pickup_datetime) = 2018 AND extract(month from pickup_datetime) IN (11) THEN 161733 ELSE
+avg(count)::integer END as count FROM daily_ave
+GROUP BY extract(month from pickup_datetime), extract(year from pickup_datetime)
+ORDER BY extract(year from pickup_datetime), extract(month from pickup_datetime)
+)
+
+
+SELECT
+CASE WHEN mon = 1 THEN to_char(to_timestamp (mon::text, 'MM'), 'Mon')||' '||yr::text
+WHEN mon = 9 AND yr = 2016 THEN to_char(to_timestamp (mon::text, 'MM'), 'Mon')||' '||yr::text
+ELSE to_char(to_timestamp (mon::text, 'MM'), 'Mon')
+END AS period,
+count/2 as count FROM total
+'''
+total2=pandasql.read_sql(query, con)
+
+fig, ax, props = rick.charts.line_chart(total['count'], 'Trips', 'Time', baseline = total2['count'])
+
+
+../_images/sphx_glr_plot_line_001.png +

Adds annotations

+
fig.text(0.94, 0.96, '176,000', transform=ax.transAxes, wrap = True, fontsize=9, fontname = 'Libre Franklin',
+         verticalalignment='top', ha = 'center', bbox=props, color = '#660159')
+
+
+

Adds custom x axis

+
month_lst2 = ['Sept\n2016',  'Jan\n2017',  'May',  'Sept',
+               'Jan\n2018', 'May',  'Sept',
+              'Jan\n2019','May',]
+plt.xticks(range(0,35,4), month_lst2, fontsize=9, fontname = 'Libre Franklin')
+
+
+../_images/sphx_glr_plot_line_002.png +

Total running time of the script: ( 0 minutes 1.126 seconds)

+ +

Gallery generated by Sphinx-Gallery

+
+
+ + +
+
+
+ +
+
+ + + + + + + \ No newline at end of file diff --git a/docs/auto_examples/plot_stacked.html b/docs/auto_examples/plot_stacked.html new file mode 100644 index 0000000..8bac52b --- /dev/null +++ b/docs/auto_examples/plot_stacked.html @@ -0,0 +1,167 @@ + + + + + + + Stacked Bar Chart — VFH Charts 2019-07-16 documentation + + + + + + + + + + + + + + + + + + + + + +
+
+
+
+ + +
+

Stacked Bar Chart

+

Makes an example of a stacked bar chart.

+
from sqlalchemy import create_engine
+import matplotlib.pyplot as plt
+import matplotlib as mpl
+import pandas as pd
+import configparser
+from psycopg2 import connect
+import psycopg2.sql as pg
+import pandas.io.sql as pandasql
+import numpy as np
+import datetime
+import math
+import rick
+import geopandas as gpd
+import os
+import shapely
+from shapely.geometry import Point
+os.environ["PROJ_LIB"]=r"C:\Users\rliu4\AppData\Local\Continuum\anaconda3\Library\share"
+import importlib
+import matplotlib.ticker as ticker
+import matplotlib.font_manager as font_manager
+
+
+CONFIG = configparser.ConfigParser()
+CONFIG.read(r'C:\Users\rliu4\Documents\Python\config.cfg')
+dbset = CONFIG['DBSETTINGS']
+con = connect(**dbset)
+
+
+
+

Data Collection

+

This Section grabs and formats the data.

+
query = '''
+
+WITH sum AS (
+
+SELECT pickup_datetime, sum(count) as count, extract(month from pickup_datetime) as mon, extract(year from pickup_datetime) as yr, area_name FROM ptc.trip_data_agg_ward_25
+LEFT JOIN gis.ward_community_lookup ON pickup_ward2018 = area_short
+
+WHERE pickup_datetime > '2016-09-30'
+GROUP BY pickup_datetime, area_name
+), collect AS (
+SELECT area_name, avg(count) as count, mon, yr from sum
+group by area_name,  mon, yr)
+
+,tot1 AS (
+
+SELECT area_name, avg(count) as count FROM collect
+WHERE (yr =2016 AND mon IN (10))
+GROUP BY area_name
+), tot2 AS (
+
+SELECT area_name, avg(count) as count FROM collect
+WHERE (yr =2018 AND mon IN (9))
+GROUP BY area_name
+)
+SELECT SPLIT_PART(area_name, 'Community', 1) as area_name,
+b.count as count1, a.count as count2 FROM tot1 b
+LEFT JOIN tot2 a USING (area_name)
+ORDER BY count1 ASC
+'''
+
+district_cond = pandasql.read_sql(query, con)
+
+fig, ax = rick.charts.stacked_chart(district_cond, xlab = 'Trips', lab1 = '2016', lab2 = '2018', percent = True)
+
+
+../_images/sphx_glr_plot_stacked_001.png +

Total running time of the script: ( 0 minutes 3.557 seconds)

+ +

Gallery generated by Sphinx-Gallery

+
+
+ + +
+
+
+ +
+
+ + + + + + + \ No newline at end of file diff --git a/docs/auto_examples/plot_tow.html b/docs/auto_examples/plot_tow.html new file mode 100644 index 0000000..c689dc2 --- /dev/null +++ b/docs/auto_examples/plot_tow.html @@ -0,0 +1,161 @@ + + + + + + + Time of Week Chart — VFH Charts 2019-07-16 documentation + + + + + + + + + + + + + + + + + + + + + +
+
+
+
+ + +
+

Time of Week Chart

+

Makes an example of a time of week chart.

+
from sqlalchemy import create_engine
+import matplotlib.pyplot as plt
+import matplotlib as mpl
+import pandas as pd
+import configparser
+from psycopg2 import connect
+import psycopg2.sql as pg
+import pandas.io.sql as pandasql
+import numpy as np
+import datetime
+import math
+import rick
+import geopandas as gpd
+import os
+import shapely
+from shapely.geometry import Point
+os.environ["PROJ_LIB"]=r"C:\Users\rliu4\AppData\Local\Continuum\anaconda3\Library\share"
+import importlib
+import matplotlib.ticker as ticker
+import matplotlib.font_manager as font_manager
+
+
+CONFIG = configparser.ConfigParser()
+CONFIG.read(r'C:\Users\rliu4\Documents\Python\config.cfg')
+dbset = CONFIG['DBSETTINGS']
+con = connect(**dbset)
+
+
+
+

Data Collection

+

This Section grabs and formats the data.

+
query = '''
+
+WITH sum AS (
+
+SELECT pickup_datetime, hr, sum(count) as count, extract(month from pickup_datetime) as mon, extract(year from pickup_datetime) as yr,
+extract(dow from pickup_datetime) as dow FROM ptc.trip_data_agg_ward_25
+
+
+WHERE pickup_datetime > '2018-08-31'
+GROUP BY pickup_datetime, hr
+
+)
+, collect AS (
+SELECT  avg(count) as count, hr, dow from sum
+group by hr, dow)
+
+SELECT period_name, period_uid, count, hr, CASE WHEN dow = 0 THEN 7 ELSE dow END AS dow,
+CASE WHEN swatch IS NULL THEN '#999999' ELSE swatch END AS swatch
+FROM collect
+LEFT JOIN ptc.period_lookup_simple ON dow=period_dow AND hr=period_hr
+LEFT JOIN ptc.periods_simple USING (period_uid)
+ORDER BY dow, hr
+
+'''
+count_18 = pandasql.read_sql(query,con)
+
+fig, ax, prop = rick.charts.tow_chart(data = count_18['count'], ylab='Trips', ymax = 14000, yinc= 3500)
+
+
+../_images/sphx_glr_plot_tow_001.png +

Total running time of the script: ( 0 minutes 1.408 seconds)

+ +

Gallery generated by Sphinx-Gallery

+
+
+ + +
+
+
+ +
+
+ + + + + + + \ No newline at end of file diff --git a/docs/auto_examples/sg_execution_times.html b/docs/auto_examples/sg_execution_times.html new file mode 100644 index 0000000..932a576 --- /dev/null +++ b/docs/auto_examples/sg_execution_times.html @@ -0,0 +1,86 @@ + + + + + + + Computation times — VFH Charts 2019-07-16 documentation + + + + + + + + + + + + + + + + + + + +
+
+
+
+ +
+

Computation times

+

00:33.929 total execution time for auto_examples files:

+ +
+ + +
+
+
+ +
+
+ + + + + + + \ No newline at end of file diff --git a/docs/code.html b/docs/code.html new file mode 100644 index 0000000..087148c --- /dev/null +++ b/docs/code.html @@ -0,0 +1,281 @@ + + + + + + + Auto Generated Documentation — VFH Charts 2019-07-16 documentation + + + + + + + + + + + + + + + + + + + + + +
+
+
+
+ +
+

Auto Generated Documentation

+

Version 0.8.0

+
+
+class rick.charts[source]
+

Class defining all the charting functions.

+
+
+bar_chart(xlab, **kwargs)[source]
+

Creates a bar chart

+
+
Parameters
+
    +
  • data (dataframe) – Data for the bar chart. The dataframe must have 2 columns, the first representing the y ticks, and the second representing the data

  • +
  • xlab (str) – Label for the x axis.

  • +
  • xmax (int, optional, default is the max s value) – The max value of the y axis

  • +
  • xmin (int, optional, default is 0) – The minimum value of the x axis

  • +
  • precision (int, optional, default is -1) – Decimal places in the annotations

  • +
  • xinc (int, optional) – The increment of ticks on the x axis.

  • +
+
+
Returns
+

    +
  • fig – Matplotlib fig object

  • +
  • ax – Matplotlib ax object

  • +
+

+
+
+
+ +
+
+chloro_map(df, lower, upper, title, **kwargs)[source]
+

Creates a chloropleth map

+
+
Parameters
+
    +
  • con (SQL connection object) – Connection object needed to connect to the RDS

  • +
  • df (GeoPandas Dataframe) – Data for the chloropleth map. The data must only contain 2 columns; the first column has to be the geom column and the second has to be the data that needs to be mapped.

  • +
  • lower (int) – Lower bound for colourmap

  • +
  • upper (int) – Upper bound for the colourmap

  • +
  • title (str) – Legend label

  • +
  • subway (boolean, optional, default: False) – True to display subway on the map

  • +
  • island (boolean, optional, defailt: True) – False to grey out the Toronto island

  • +
  • cmap (str, optional, default: YlOrRd) – Matplotlib colourmap to use for the map

  • +
  • unit (str, optional) – Unit to append to the end of the legend tick

  • +
  • nbins (int, optional, defualt: 2) – Number of ticks in the colourmap

  • +
+
+
Returns
+

    +
  • fig – Matplotlib fig object

  • +
  • ax – Matplotlib ax object

  • +
+

+
+
+
+ +
+
+line_chart(ylab, xlab, **kwargs)[source]
+

Creates a line chart. x axis must be modified manually

+
+
Parameters
+
    +
  • data (array like or scalar) – Data for the line chart.

  • +
  • ylab (str) – Label for the y axis.

  • +
  • xlab (str) – Label for the x axis.

  • +
  • ymax (int, optional, default is the max y value) – The max value of the y axis

  • +
  • ymin (int, optional, default is 0) – The minimum value of the y axis

  • +
  • baseline (array like or scalar, optional, default is None) – Whether another line representing the baseline needs to be plotted

  • +
  • yinc (int, optional) – The increment of ticks on the y axis.

  • +
+
+
Returns
+

    +
  • fig – Matplotlib fig object

  • +
  • ax – Matplotlib ax object

  • +
  • props – Dictionary of the text annotation properties

  • +
+

+
+
+
+ +
+
+stacked_chart(xlab, lab1, lab2, **kwargs)[source]
+

Creates a stacked bar chart comparing 2 sets of data

+
+
Parameters
+
    +
  • data (dataframe) – Data for the stacked bar chart. The dataframe must have 3 columns, the first representing the y ticks, the second representing the baseline, and the third representing the next series of data.

  • +
  • xlab (str) – Label for the x axis.

  • +
  • lab1 (str) – Label in the legend for the baseline

  • +
  • lab2 (str) – Label in the legend fot the next data series

  • +
  • xmax (int, optional, default is the max s value) – The max value of the y axis

  • +
  • xmin (int, optional, default is 0) – The minimum value of the x axis

  • +
  • precision (int, optional, default is -1) – Decimal places in the annotations

  • +
  • percent (boolean, optional, default is False) – Whether the annotations should be formatted as percentages

  • +
  • xinc (int, optional) – The increment of ticks on the x axis.

  • +
+
+
Returns
+

    +
  • fig – Matplotlib fig object

  • +
  • ax – Matplotlib ax object

  • +
+

+
+
+
+ +
+
+tow_chart(ylab, **kwargs)[source]
+

Creates a 7 day time of week line chart. Each data point represents 1 hour out of 168 hours.

+
+
Parameters
+
    +
  • data (array like or scalar) – Data for the tow chart. Data must only have 168 entries, with row 0 representing Monday at midnight.

  • +
  • ylab (str) – Label for the y axis.

  • +
  • ymax (int, optional, default is the max y value) – The max value of the y axis

  • +
  • ymin (int, optional, default is 0) – The minimum value of the y axis

  • +
  • yinc (int, optional) – The increment of ticks on the y axis.

  • +
+
+
Returns
+

    +
  • fig – Matplotlib fig object

  • +
  • ax – Matplotlib ax object

  • +
  • props – Dictionary of the text annotation properties

  • +
+

+
+
+
+ +
+ +
+
+class rick.colour[source]
+

Class defining the global colour variables for all functions.

+
+ +
+
+class rick.font[source]
+

Class defining the global font variables for all functions.

+
+ +
+
+rick.func()
+

Function to set global settings for the charts class.

+
+ +
+
+class rick.geo[source]
+

Class for additional gis layers needed for the cloropleth map.

+
+
+island()[source]
+

Function to return a layer of the Toronto island. Since the island is classified in the same neighbourhood as the waterfront, in some cases its not completely accurate to show the island shares the same data as the waterfront.

+
+
Parameters
+

con (SQL connection object) – Connection object needed to connect to the RDS

+
+
Returns
+

Geopandas Dataframe of the Toronto island.

+
+
Return type
+

gdf

+
+
+
+ +
+
+ttc()[source]
+

Function to return the TTC subway layer.

+
+
Parameters
+

con (SQL connection object) – Connection object needed to connect to the RDS

+
+
Returns
+

Geopandas Dataframe of the Subway Layer

+
+
Return type
+

gdf

+
+
+
+ +
+ +
+ + +
+
+
+ +
+
+ + + + + + + \ No newline at end of file diff --git a/docs/genindex.html b/docs/genindex.html new file mode 100644 index 0000000..f196877 --- /dev/null +++ b/docs/genindex.html @@ -0,0 +1,174 @@ + + + + + + + + Index — VFH Charts 2019-07-16 documentation + + + + + + + + + + + + + + + + + + + +
+
+
+
+ + +

Index

+ +
+ B + | C + | F + | G + | I + | L + | R + | S + | T + +
+

B

+ + +
+ +

C

+ + + +
+ +

F

+ + + +
+ +

G

+ + +
+ +

I

+ + +
+ +

L

+ + +
+ +

R

+ + +
+ +

S

+ + +
+ +

T

+ + + +
+ + + +
+
+
+ +
+
+ + + + + + + \ No newline at end of file diff --git a/docs/index.html b/docs/index.html new file mode 100644 index 0000000..f90d159 --- /dev/null +++ b/docs/index.html @@ -0,0 +1,98 @@ + + + + + + + Repeatable Information Charts Kit README — VFH Charts 2019-07-16 documentation + + + + + + + + + + + + + + + + + + + + +
+
+
+
+ +
+

Repeatable Information Charts Kit README

+

This module was inspired by charts created for the VFH Bylaw Review Report. There was a need to develop a standardized brand and design language for everything BDITTO produces, so this module aims to produce a regularized set of charts and maps that are consistent with previous charts we create. All of the chart/map producing functions returns a matplotlib fig and ax object so that the figure can be further modified using matplotlib functions.

+ +
+
+

Indices and tables

+ +
+ + +
+
+
+ +
+
+ + + + + + + \ No newline at end of file diff --git a/docs/objects.inv b/docs/objects.inv new file mode 100644 index 0000000..48d644b Binary files /dev/null and b/docs/objects.inv differ diff --git a/docs/py-modindex.html b/docs/py-modindex.html new file mode 100644 index 0000000..14783d3 --- /dev/null +++ b/docs/py-modindex.html @@ -0,0 +1,96 @@ + + + + + + + Python Module Index — VFH Charts 2019-07-16 documentation + + + + + + + + + + + + + + + + + + + + + + + + +
+
+
+
+ + +

Python Module Index

+ +
+ r +
+ + + + + + + +
 
+ r
+ rick +
+ + +
+
+
+ +
+
+ + + + + + + \ No newline at end of file diff --git a/docs/search.html b/docs/search.html new file mode 100644 index 0000000..0147877 --- /dev/null +++ b/docs/search.html @@ -0,0 +1,89 @@ + + + + + + + Search — VFH Charts 2019-07-16 documentation + + + + + + + + + + + + + + + + + + + + + + + + +
+
+
+
+ +

Search

+
+ +

+ Please activate JavaScript to enable the search + functionality. +

+
+

+ From here you can search these documents. Enter your search + words into the box below and click "search". Note that the search + function will automatically search for all of the words. Pages + containing fewer words won't appear in the result list. +

+
+ + + +
+ +
+ +
+ +
+
+
+ +
+
+ + + + + + + \ No newline at end of file diff --git a/docs/searchindex.js b/docs/searchindex.js new file mode 100644 index 0000000..d202c41 --- /dev/null +++ b/docs/searchindex.js @@ -0,0 +1 @@ +Search.setIndex({docnames:["auto_examples/index","auto_examples/plot_bar","auto_examples/plot_chloropleth","auto_examples/plot_line","auto_examples/plot_stacked","auto_examples/plot_tow","auto_examples/sg_execution_times","code","index"],envversion:{"sphinx.domains.c":1,"sphinx.domains.changeset":1,"sphinx.domains.citation":1,"sphinx.domains.cpp":1,"sphinx.domains.javascript":1,"sphinx.domains.math":2,"sphinx.domains.python":1,"sphinx.domains.rst":1,"sphinx.domains.std":1,"sphinx.ext.viewcode":1,sphinx:56},filenames:["auto_examples\\index.rst","auto_examples\\plot_bar.rst","auto_examples\\plot_chloropleth.rst","auto_examples\\plot_line.rst","auto_examples\\plot_stacked.rst","auto_examples\\plot_tow.rst","auto_examples\\sg_execution_times.rst","code.rst","index.rst"],objects:{"":{rick:[7,0,0,"-"]},"rick.charts":{bar_chart:[7,2,1,""],chloro_map:[7,2,1,""],line_chart:[7,2,1,""],stacked_chart:[7,2,1,""],tow_chart:[7,2,1,""]},"rick.geo":{island:[7,2,1,""],ttc:[7,2,1,""]},rick:{charts:[7,1,1,""],colour:[7,1,1,""],font:[7,1,1,""],func:[7,3,1,""],geo:[7,1,1,""]}},objnames:{"0":["py","module","Python module"],"1":["py","class","Python class"],"2":["py","method","Python method"],"3":["py","function","Python function"]},objtypes:{"0":"py:module","1":"py:class","2":"py:method","3":"py:function"},terms:{"boolean":7,"case":[3,5,7],"class":7,"default":7,"function":[0,2,7,8],"import":[1,2,3,4,5],"int":7,"null":5,"return":[7,8],"true":[2,3,4,7],AND:[2,3,4,5],RDS:7,THEN:[3,5],The:[2,7],There:8,USING:[2,4,5],WITH:[2,3,4,5],accur:7,add:3,addit:[3,7],affin:2,aim:8,all:[0,7,8],anaconda3:[1,2,3,4,5],angl:2,annot:[3,7],anoth:7,appdata:[1,2,3,4,5],append:7,area_nam:4,area_s_cd:2,area_short:4,arrai:7,asc:4,auto:8,auto_exampl:6,auto_examples_jupyt:0,auto_examples_python:0,avg:[2,3,4,5],axi:[3,7],bar:[0,6,7],bar_chart:[1,7],baselin:[3,7],bbox:3,bditto:8,below:0,bound:7,brand:8,bylaw:8,call:2,can:8,cat:1,center:3,cfg:[2,3,4,5],chart:[2,6,7],chloro_map:[2,7],chloropleth:[0,6,7],classifi:7,click:[1,2,3,4,5],cloropleth:7,cmap:7,code:[0,1,2,3,4,5],color:3,colour:7,colourmap:7,column:[1,2,7],commun:4,compar:7,complet:7,con:[2,3,4,5,7],config:[2,3,4,5],configpars:[1,2,3,4,5],connect:[1,2,3,4,5,7],consist:8,contain:7,content:8,continuum:[1,2,3,4,5],count1:4,count2:4,count:[2,3,4,5],count_18:5,creat:[1,7,8],create_engin:[1,2,3,4,5],custom:3,dai:7,daily_av:3,daily_trip:3,data:7,datafram:[1,7],datetim:[1,2,3,4,5],dbset:[2,3,4,5],decim:7,defailt:7,defin:7,defualt:7,degre:2,design:8,develop:8,dictionari:7,displai:7,district_cond:4,document:[2,3,4,5,8],dow:5,download:[0,1,2,3,4,5],each:[0,7],els:[3,5],end:[3,5,7],entri:7,environ:[1,2,3,4,5],epsg:2,everyth:8,exampl:[0,1,2,3,4,5],execut:6,extract:[2,3,4,5],fals:[2,7],fig:[1,2,3,4,5,7,8],figur:8,file:6,first:7,font:7,font_manag:[1,2,3,4,5],fontnam:3,fontsiz:3,format:[2,3,4,5,7],fot:7,franklin:3,from:[1,2,3,4,5],from_postgi:2,full:[1,2,3,4,5],func:7,further:8,galleri:[1,2,3,4,5,8],gdf:7,gener:[0,1,2,3,4,5,8],geo:7,geodatafram:2,geom:[2,7],geom_col:2,geometri:[1,2,3,4,5],geopanda:[1,2,3,4,5,7],get:3,gis:[2,4,7],global:7,gpd:[1,2,3,4,5],grab:[2,3,4,5],graph:3,grei:[3,7],group:[2,3,4,5],growth:2,has:7,have:7,here:[1,2,3,4,5],hour:7,importlib:[1,2,3,4,5],increment:7,index:[1,2,8],init:2,inspir:8,integ:[2,3],ipynb:[1,2,3,4,5],island:[2,7],iterrow:2,its:7,jan:3,join:[2,4,5],jupyt:[0,1,2,3,4,5],kwarg:7,lab1:[4,7],lab2:[4,7],label:7,languag:8,layer:7,left:[2,4,5],legend:7,libr:3,librari:[1,2,3,4,5],like:7,line:[0,6,7],line_chart:[3,7],local:[1,2,3,4,5],lower:[2,7],mai:3,make:[1,2,3,4,5],manual:7,map:[0,6,7,8],math:[1,2,3,4,5],matplotlib:[1,2,3,4,5,7,8],max:7,midnight:7,minimum:7,minut:[1,2,3,4,5],modifi:[7,8],modul:8,mon:[2,3,4,5],mondai:7,month:[2,3,4,5],month_lst2:3,mpl:[1,2,3,4,5],must:7,n2016:3,n2017:3,n2018:3,n2019:3,nbin:[2,7],need:[2,7,8],neighbourhood:[2,7],next:7,none:7,notebook:[0,1,2,3,4,5],number:7,numpi:[1,2,3,4,5],object:[7,8],onli:[2,7],option:7,order:[2,3,4,5],orient:2,origin:2,out:7,page:8,panda:[1,2,3,4,5],pandasql:[1,2,3,4,5],paramet:7,pass:1,pass_data:1,percent:[4,7],percentag:7,period:3,period_dow:5,period_hr:5,period_lookup_simpl:5,period_nam:5,period_uid:5,periods_simpl:5,perpendicularli:2,pickup_datetim:[2,3,4,5],pickup_neighbourhood:2,pickup_ward2018:4,place:7,plot:[3,7],plot_bar:[1,6],plot_chloropleth:[2,6],plot_lin:[3,6],plot_stack:[4,6],plot_tow:[5,6],plt:[1,2,3,4,5],point:[1,2,3,4,5,7],popul:1,precis:7,previou:8,produc:8,proj_lib:[1,2,3,4,5],prop:[3,5,7],properti:7,psycopg2:[1,2,3,4,5],ptc:[1,2,3,4,5],pyplot:[1,2,3,4,5],python:[0,1,2,3,4,5],queri:[2,3,4,5],rang:3,read:[2,3,4,5],read_sql:[3,4,5],regular:8,reindex:1,report:8,repres:7,review:8,rick:[0,1,2,3,4,5,7],rliu4:[1,2,3,4,5],rotat:2,row:[2,7],run:[1,2,3,4,5],same:7,scalar:7,script:[1,2,3,4,5],search:8,second:[1,2,3,4,5,7],section:[2,3,4,5],select:[2,3,4,5],sept:3,seri:7,set:[7,8],shape:[1,2,3,4,5],share:[1,2,3,4,5,7],should:7,show:7,sinc:7,some:7,sourc:[0,1,2,3,4,5,7],sphinx:[0,1,2,3,4,5],split_part:4,sql:[1,2,3,4,5,7],sqlalchemi:[1,2,3,4,5],stack:[0,6,7],stacked_chart:[4,7],standard:8,str:7,subwai:[2,7],sum:[2,4,5],swatch:5,taxi:1,test:1,text:[3,7],thi:[1,2,3,4,5,8],third:7,tick:7,ticker:[1,2,3,4,5],time:[0,1,2,3,4,7],titl:[2,7],to_char:3,to_cr:2,to_timestamp:3,top:3,toronto:[2,7],tot1:4,tot2:4,total2:3,total:[1,2,3,4,5,6],tow:7,tow_chart:[5,7],transax:3,transform:3,transit_pass:1,trip:[1,2,3,4,5],trip_data_agg_neighbourhood:2,trip_data_agg_ward_25:[4,5],ttc:[1,7],type:7,unit:[2,7],upper:[2,7],use:[1,7],user:[1,2,3,4,5],using:8,valu:7,variabl:7,version:7,verticalalign:3,vfh:8,ward1:2,ward2:2,ward_community_lookup:4,waterfront:7,week:[0,2,6,7],when:[3,5],where:[2,4,5],whether:7,wrap:3,xinc:7,xlab:[1,4,7],xmax:7,xmin:7,xtick:3,year:[2,3,4,5],yinc:[5,7],ylab:[5,7],ylorrd:7,ymax:[5,7],ymin:7,zip:0},titles:["Gallery of Charts","Bar Chart","Chloropleth Map","Line Chart","Stacked Bar Chart","Time of Week Chart","Computation times","Auto Generated Documentation","Repeatable Information Charts Kit README"],titleterms:{auto:7,bar:[1,4],chart:[0,1,3,4,5,8],chloropleth:2,collect:[1,2,3,4,5],comput:6,data:[1,2,3,4,5],document:7,galleri:0,gener:7,indic:8,inform:8,kit:8,line:3,map:2,readm:8,repeat:8,stack:4,tabl:8,time:[5,6],week:5}}) \ No newline at end of file