|
21 | 21 | HessianAdjointVectorProduct |
22 | 22 | OnEvent |
23 | 23 | end |
| 24 | + |
| 25 | + properties (Dependent) |
| 26 | + JacobianMatrix |
| 27 | + JacobianFunction |
| 28 | + MassMatrix |
| 29 | + MassFunction |
| 30 | + end |
24 | 31 |
|
25 | 32 | methods |
26 | 33 | function obj = RHS(F, varargin) |
|
33 | 40 | obj.(f) = extras.(f); |
34 | 41 | end |
35 | 42 | end |
36 | | - |
37 | | - function newRHS = subsref(obj, vs) |
38 | | - if strcmp(vs(1).type, '()') |
39 | | - newF = @(t, y) subsref(obj.F(t, y), vs); |
40 | | - |
41 | | - newJac = []; |
42 | | - if ~isempty(obj.Jacobian) |
43 | | - newJac = @(t, y) subsref(obj.Jacobian(t, y), vs); |
44 | | - end |
45 | | - newJacvp = []; |
46 | | - if ~isempty(obj.JacobianVectorProduct) |
47 | | - newJacvp = @(t, y, v) subsref(obj.JacobianVectorProduct(t, y, v), vs); |
48 | | - end |
49 | | - |
50 | | - vectorized = obj.Vectorized; |
51 | | - |
52 | | - newRHS = otp.RHS(newF, ... |
53 | | - 'Jacobian', newJac, ... |
54 | | - 'JacobianVectorProduct', newJacvp, ... |
55 | | - 'Vectorized', vectorized); |
56 | | - else |
57 | | - newRHS = builtin('subsref', obj, vs); |
58 | | - end |
| 43 | + |
| 44 | + function mat = get.JacobianMatrix(obj) |
| 45 | + mat = obj.prop2Matrix(obj.Jacobian); |
59 | 46 | end |
60 | | - |
61 | | - function newRHS = plus(obj, other) |
62 | | - objF = obj.F; |
63 | | - otherF = other.F; |
64 | | - newF = @(t, y) objF(t, y) + otherF(t, y); |
65 | | - newRHS = otp.RHS(newF); |
| 47 | + |
| 48 | + function fun = get.JacobianFunction(obj) |
| 49 | + fun = obj.prop2Function(obj.Jacobian); |
| 50 | + end |
| 51 | + |
| 52 | + function mat = get.MassMatrix(obj) |
| 53 | + mat = obj.prop2Matrix(obj.Mass); |
| 54 | + end |
| 55 | + |
| 56 | + function fun = get.MassFunction(obj) |
| 57 | + fun = obj.prop2Function(obj.Mass); |
| 58 | + end |
| 59 | + |
| 60 | + function obj = uplus(obj) |
| 61 | + end |
| 62 | + |
| 63 | + function newRHS = uminus(obj) |
| 64 | + newRHS = mtimes(-1, obj); |
66 | 65 | end |
67 | 66 |
|
68 | | - function newRHS = vertcat(varargin) |
69 | | - newF = @(t, y) []; |
70 | | - newJac = @(t, y) []; |
71 | | - newJacvp = @(t, y, v) []; |
| 67 | + function newRHS = plus(obj1, obj2) |
| 68 | + newRHS = applyOp(obj1, obj2, @plus, 2); |
| 69 | + end |
72 | 70 |
|
73 | | - for i = 1:numel(varargin) |
74 | | - oldRHS = varargin{i}; |
75 | | - oldF = oldRHS.F; |
| 71 | + function newRHS = minus(obj1, obj2) |
| 72 | + newRHS = applyOp(obj1, obj2, @minus, 2); |
| 73 | + end |
76 | 74 |
|
77 | | - newF = @(t, y) [newF(t, y); oldF(t, y)]; |
| 75 | + function newRHS = mtimes(obj1, obj2) |
| 76 | + newRHS = applyOp(obj1, obj2, @mtimes, 1); |
| 77 | + end |
78 | 78 |
|
79 | | - oldJac = oldRHS.Jacbobian; |
80 | | - if ~isempty(oldJac) |
81 | | - newJac = @(t, y) [newJac(t, y); oldJac(t, y)]; |
82 | | - end |
| 79 | + function newRHS = times(obj1, obj2) |
| 80 | + newRHS = applyOp(obj1, obj2, @times, 1); |
| 81 | + end |
83 | 82 |
|
84 | | - oldJacvp = oldRHS.JacobianVectorProduct; |
85 | | - if ~isempty(oldJacvp) |
86 | | - newJacvp = @(t, y, v) [newJacvp(t, y, v); oldJacvp(t, y, v)]; |
87 | | - end |
| 83 | + function newRHS = rdivide(obj1, obj2) |
| 84 | + newRHS = applyOp(obj1, obj2, @rdivide, 1); |
| 85 | + end |
88 | 86 |
|
89 | | - end |
| 87 | + function newRHS = ldivide(obj1, obj2) |
| 88 | + newRHS = applyOp(obj1, obj2, @ldivide, 1); |
| 89 | + end |
90 | 90 |
|
91 | | - |
| 91 | + function newRHS = mrdivide(obj1, obj2) |
| 92 | + newRHS = applyOp(obj1, obj2, @mrdivide, 1); |
| 93 | + end |
92 | 94 |
|
93 | | - vectorized = obj.Vectorized; |
| 95 | + function newRHS = mldivide(obj1, obj2) |
| 96 | + newRHS = applyOp(obj1, obj2, @mldivide, 1); |
| 97 | + end |
94 | 98 |
|
95 | | - newRHS = otp.RHS(newF, ... |
96 | | - 'Jacobian', newJac, ... |
97 | | - 'JacobianVectorProduct', newJacvp, ... |
98 | | - 'Vectorized', vectorized); |
| 99 | + function newRHS = power(obj1, obj2) |
| 100 | + newRHS = applyOp(obj1, obj2, @power, 0); |
99 | 101 | end |
100 | 102 |
|
101 | | - function s = size(~) |
102 | | - s = [1, 1]; |
| 103 | + function newRHS = mpower(obj1, obj2) |
| 104 | + newRHS = applyOp(obj1, obj2, @mpower, 0); |
103 | 105 | end |
104 | 106 |
|
105 | 107 | function opts = odeset(obj, varargin) |
|
118 | 120 | end |
119 | 121 |
|
120 | 122 | end |
121 | | - |
122 | | - methods (Static) |
123 | | - function newRHS = empty(obj, other) |
124 | | - error(''); |
| 123 | + |
| 124 | + methods (Access = private) |
| 125 | + function mat = prop2Matrix(~, prop) |
| 126 | + if isa(prop, 'function_handle') |
| 127 | + mat = []; |
| 128 | + else |
| 129 | + mat = prop; |
| 130 | + end |
| 131 | + end |
| 132 | + |
| 133 | + function fun = prop2Function(~, prop) |
| 134 | + if isa(prop, 'function_handle') || isempty(prop) |
| 135 | + fun = prop; |
| 136 | + else |
| 137 | + fun = @(varargin) prop; |
| 138 | + end |
| 139 | + end |
| 140 | + |
| 141 | + function newRHS = applyOp(obj1, obj2, op, differentiability) |
| 142 | + % Events and NonNegative practically cannot be supported and are |
| 143 | + % always unset. |
| 144 | + |
| 145 | + % Mass matrices introduce several difficulties. When singular, it |
| 146 | + % makes it infeasible to update InitialSlope, and therefore, it is |
| 147 | + % always unset. To avoid issues with two RHS' having different mass |
| 148 | + % matrices, only the primary RHS is used. |
| 149 | + [~, ~, props.Mass] = getProp(obj1, obj2, 'Mass'); |
| 150 | + [~, ~, props.MassSingular] = getProp(obj1, obj2, 'MassSingular'); |
| 151 | + [~, ~, props.MStateDependence] = getProp(obj1, obj2, ... |
| 152 | + 'MStateDependence'); |
| 153 | + [~, ~, props.MvPattern] = getProp(obj1, obj2, 'MvPattern'); |
| 154 | + |
| 155 | + % Merge derivatives |
| 156 | + props.Jacobian = mergeProp(obj1, obj2, op, differentiability, ... |
| 157 | + 'Jacobian'); |
| 158 | + props.JacobianVectorProduct = mergeProp(obj1, obj2, op, ... |
| 159 | + differentiability, 'JacobianVectorProduct'); |
| 160 | + props.JacobianAdjointVectorProduct = mergeProp(obj1, obj2, op, ... |
| 161 | + differentiability, 'JacobianAdjointVectorProduct'); |
| 162 | + props.PartialDerivativeParameters = mergeProp(obj1, obj2, op, ... |
| 163 | + differentiability, 'PartialDerivativeParameters'); |
| 164 | + props.PartialDerivativeTime = mergeProp(obj1, obj2, op, ... |
| 165 | + differentiability, 'PartialDerivativeTime'); |
| 166 | + props.HessianVectorProduct = mergeProp(obj1, obj2, op, ... |
| 167 | + differentiability, 'HessianVectorProduct'); |
| 168 | + props.HessianAdjointVectorProduct = mergeProp(obj1, obj2, op, ... |
| 169 | + differentiability, 'HessianAdjointVectorProduct'); |
| 170 | + |
| 171 | + % JPattern requirs a special merge function |
| 172 | + if differentiability == 2 |
| 173 | + patternOp = @or; |
| 174 | + else |
| 175 | + patternOp = @(j1, j2) op(j1 ~= 0, j2 ~=0) ~= 0; |
| 176 | + end |
| 177 | + props.JPattern = mergeProp(obj1, obj2, patternOp, ... |
| 178 | + differentiability, 'JPattern'); |
| 179 | + |
| 180 | + % Vectorization |
| 181 | + [v1, v2, vPrimary, numRHS] = getProp(obj1, obj2, 'Vectorized'); |
| 182 | + if numRHS == 1 || strcmp({v1, v2}, 'on') |
| 183 | + props.Vectorized = vPrimary; |
| 184 | + end |
| 185 | + |
| 186 | + newRHS = otp.RHS(mergeProp(obj1, obj2, op, inf, 'F'), props); |
| 187 | + end |
| 188 | + |
| 189 | + function [obj1, obj2, primary, numRHS] = getProp(obj1, obj2, prop) |
| 190 | + numRHS = 1; |
| 191 | + |
| 192 | + if isa(obj1, 'otp.RHS') |
| 193 | + obj1 = obj1.(prop); |
| 194 | + if isa(obj2, 'otp.RHS') |
| 195 | + obj2 = obj2.(prop); |
| 196 | + numRHS = 2; |
| 197 | + end |
| 198 | + primary = obj1; |
| 199 | + else |
| 200 | + obj2 = obj2.(prop); |
| 201 | + primary = obj2; |
| 202 | + end |
| 203 | + end |
| 204 | + |
| 205 | + function p = mergeProp(obj1, obj2, op, differentiability, prop) |
| 206 | + [p1, p2, pPrimary, numRHS] = getProp(obj1, obj2, prop); |
| 207 | + |
| 208 | + if isempty(p1) || isempty(p2) || numRHS > differentiability |
| 209 | + p = []; |
| 210 | + elseif numRHS == differentiability - 1 |
| 211 | + p = pPrimary; |
| 212 | + elseif isa(p1, 'function_handle') |
| 213 | + if isa(p2, 'function_handle') |
| 214 | + p = @(varargin) op(p1(varargin{:}), p2(varargin{:})); |
| 215 | + else |
| 216 | + p = @(varargin) op(p1(varargin{:}), p2); |
| 217 | + end |
| 218 | + elseif isa(p2, 'function_handle') |
| 219 | + p = @(varargin) op(p1, p2(varargin{:})); |
| 220 | + else |
| 221 | + p = op(p1, p2); |
| 222 | + end |
125 | 223 | end |
126 | 224 | end |
127 | 225 | end |
0 commit comments