Skip to content

Commit 1596ca9

Browse files
authored
Merge pull request #110 from DoubleML/p-add-vignette
include vignette in package
2 parents d85ce35 + feba247 commit 1596ca9

File tree

7 files changed

+55
-3
lines changed

7 files changed

+55
-3
lines changed

.Rbuildignore

Lines changed: 2 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -6,3 +6,5 @@
66
^README.Rmd
77
^\.github$
88
^codecov\.yml$
9+
^doc$
10+
^Meta$

.github/workflows/deploy_docu.yml

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -76,7 +76,7 @@ jobs:
7676
run: Rscript -e 'pkgdown::build_site(new_process = FALSE)'
7777

7878
- name: Deploy to dev
79-
if: ${{ github.event_name == 'pull_request' || github.event_name == 'push' }}
79+
if: ${{ github.event_name == 'workflow_dispatch' || github.event_name == 'push' }}
8080
uses: JamesIves/github-pages-deploy-action@3.7.1
8181
with:
8282
REPOSITORY_NAME: DoubleML/doubleml.github.io

.gitignore

Lines changed: 2 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -34,3 +34,5 @@ DoubleML.Rproj
3434
# documentation files
3535
docs/
3636
docs
37+
doc
38+
inst/doc

_pkgdown.yml

Lines changed: 14 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -14,14 +14,27 @@ toc:
1414

1515
navbar:
1616
structure:
17-
left: [home, userguide, install, reference]
17+
left: [home, userguide, getstarted, reference, articles]
1818
right: [github]
1919
components:
2020
home: ~
2121
userguide:
2222
text: User Guide
2323
icon: fa fa-file-alt
2424
href: https://docs.doubleml.org/
25+
reference:
26+
text: Reference
27+
href: reference/index.html
28+
getstarted:
29+
text: Get started
30+
href: articles/getstarted.html
31+
articles:
32+
text: Articles
33+
menu:
34+
- text: Install DoubleML
35+
href: articles/install.html
36+
- text: Introduction to Double Machine Learning
37+
href: articles/Introduction_to_DoubleML.html
2538
news:
2639
text: Release Notes
2740
href: https://docs.doubleml.org/stable/release/release.html
@@ -52,4 +65,3 @@ reference:
5265
- make_irm_data
5366
- make_iivm_data
5467
- make_plr_turrell2018
55-

vignettes/.gitignore

Lines changed: 2 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,2 @@
1+
*.html
2+
*.R
Lines changed: 34 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,34 @@
1+
---
2+
title: "DoubleML - An Object-Oriented Implementation of Double Machine Learning in R"
3+
date: "`r Sys.Date()`"
4+
output: rmarkdown::html_vignette
5+
vignette: >
6+
%\VignetteIndexEntry{DoubleML - An Object-Oriented Implementation of Double Machine Learning in R}
7+
%\VignetteEngine{knitr::rmarkdown}
8+
%\VignetteEncoding{UTF-8}
9+
---
10+
11+
# Introduction
12+
13+
The R package `DoubleML` implements the double/debiased machine learning framework of Chernozhukov et al. (2018). It provides functionalities to estimate parameters in causal models based on machine learning methods. The double machine learning framework consist of three key ingredients:
14+
15+
* Neyman orthogonality,
16+
* High-quality machine learning estimation and
17+
* Sample splitting.
18+
19+
Estimation of nuisance components can be performed by various state-of-the-art machine learning methods that are available in the `mlr3` ecosystem (Lang et al., 2019). `DoubleML` makes it possible to perform inference in a variety of causal models, including partially linear and interactive regression models and their extensions to instrumental variable estimation. The object-oriented implementation of `DoubleML` enables a high flexibility for the model specification and makes it easily extendable. This paper serves as an introduction to the double machine learning framework and the R package `DoubleML`. In reproducible code examples with simulated and real data sets, we demonstrate how `DoubleML` users can perform valid inference based on machine learning methods.
20+
21+
# Long Package Vignette
22+
23+
[A long version of this package vignette is available as a preprint via arxiv:2103.09603](https://arxiv.org/abs/2103.09603)
24+
25+
26+
27+
# References:
28+
29+
Bach, P., Chernozhukov, V., Kurz, M. S., and Spindler, M. (2021), DoubleML - An Object-Oriented Implementation of Double Machine Learning in R, arXiv:[2103.09603](https://arxiv.org/abs/2103.09603).
30+
31+
Chernozhukov, V., Chetverikov, D., Demirer, M., Duflo, E., Hansen, C., Newey, W. and Robins, J. (2018), Double/debiased machine learning for treatment and structural parameters. The Econometrics Journal, 21: C1-C68, URL: https://academic.oup.com/ectj/article/21/1/C1/5056401.
32+
33+
Lang, M., Binder, M., Richter, J., Schratz, P., Pfisterer, F., Coors, S., Au, Q., Casalicchio, G., Kotthoff, L. and Bischl, B. (2019), mlr3: A modern object-oriented machine learing framework in R. Journal of Open Source Software, doi:10.21105/joss.01903, URL: https://mlr3.mlr-org.com/.
34+

0 commit comments

Comments
 (0)