@@ -138,42 +138,43 @@ DoubleMLIIVM = R6Class("DoubleMLIIVM",
138138 # ' The `DoubleMLData` object providing the data and specifying the variables
139139 # ' of the causal model.
140140 # '
141- # ' @param ml_g ([`LearnerRegr`][mlr3::LearnerRegr], `character(1)`) \cr
142- # ' An object of the class [mlr3 regression learner][mlr3::LearnerRegr] to
143- # ' pass a learner, possibly with specified parameters, for example
144- # ' `lrn("regr.cv_glmnet", s = "lambda.min")`.
145- # ' Alternatively, a `character(1)` specifying the name of a
146- # ' [mlr3 regression learner][mlr3::LearnerRegr] that is available in
147- # ' [mlr3](https://mlr3.mlr-org.com/index.html) or its extension packages
148- # ' [mlr3learners](https://mlr3learners.mlr-org.com/) or
149- # ' [mlr3extralearners](https://mlr3extralearners.mlr-org.com/),
150- # ' for example `"regr.cv_glmnet"`. \cr
141+ # ' @param ml_g ([`LearnerRegr`][mlr3::LearnerRegr],
142+ # ' [`Learner`][mlr3::Learner], `character(1)`) \cr
143+ # ' A learner of the class [`LearnerRegr`][mlr3::LearnerRegr], which is
144+ # ' available from [mlr3](https://mlr3.mlr-org.com/index.html) or its
145+ # ' extension packages [mlr3learners](https://mlr3learners.mlr-org.com/) or
146+ # ' [mlr3extralearners](https://mlr3extralearners.mlr-org.com/).
147+ # ' Alternatively, a [`Learner`][mlr3::Learner] object with public field
148+ # ' `task_type = "regr"` can be passed, for example of class
149+ # ' [`GraphLearner`][mlr3pipelines::GraphLearner]. The learner can possibly
150+ # ' be passed with specified parameters, for example
151+ # ' `lrn("regr.cv_glmnet", s = "lambda.min")`. \cr
151152 # ' `ml_g` refers to the nuisance function \eqn{g_0(Z,X) = E[Y|X,Z]}.
152153 # '
153- # ' @param ml_m ([`LearnerClassif`][mlr3::LearnerClassif], `character(1)`) \cr
154- # ' An object of the class
155- # ' [mlr3 classification learner][mlr3::LearnerClassif] to pass a learner,
156- # ' possibly with specified parameters, for example
157- # ' `lrn("classif.cv_glmnet", s = "lambda.min")`.
158- # ' Alternatively, a `character(1)` specifying the name of
159- # ' a [mlr3 classification learner ][mlr3::LearnerClassif] that is available
160- # ' in [mlr3](https://mlr3.mlr-org.com/index.html) or its extension packages
161- # ' [mlr3learners](https://mlr3learners.mlr-org.com/) or
162- # ' [mlr3extralearners](https://mlr3extralearners.mlr-org.com/),
163- # ' for example ` "classif.cv_glmnet"`. \cr
154+ # ' @param ml_m ([`LearnerClassif`][mlr3::LearnerClassif],
155+ # ' [`Learner`][mlr3::Learner], `character(1)`) \cr
156+ # ' A learner of the class [`LearnerClassif` ][mlr3::LearnerClassif], which is
157+ # ' available from [mlr3](https://mlr3.mlr-org.com/index.html) or its
158+ # ' extension packages [mlr3learners](https://mlr3learners.mlr-org.com/) or
159+ # ' [mlr3extralearners](https://mlr3extralearners.mlr-org.com/).
160+ # ' Alternatively, a [`Learner` ][mlr3::Learner] object with public field
161+ # ' `task_type = "classif"` can be passed, for example of class
162+ # ' [`GraphLearner`][mlr3pipelines::GraphLearner]. The learner can possibly
163+ # ' be passed with specified parameters, for example
164+ # ' `lrn( "classif.cv_glmnet", s = "lambda.min") `. \cr
164165 # ' `ml_m` refers to the nuisance function \eqn{m_0(X) = E[Z|X]}.
165166 # '
166- # ' @param ml_r ([`LearnerClassif`][mlr3::LearnerClassif], `character(1)`) \cr
167- # ' An object of the class
168- # ' [mlr3 classification learner][mlr3::LearnerClassif] to pass a learner,
169- # ' possibly with specified parameters, for example
170- # ' `lrn("classif.cv_glmnet", s = "lambda.min")`.
171- # ' Alternatively, a `character(1)` specifying the name of a
172- # ' [mlr3 classification learner ][mlr3::LearnerClassif] that is available in
173- # ' [mlr3](https://mlr3.mlr-org.com/index.html) or its extension packages
174- # ' [mlr3learners](https://mlr3learners.mlr-org.com/) or
175- # ' [mlr3extralearners](https://mlr3extralearners.mlr-org.com/),
176- # ' for example ` "classif.cv_glmnet"`. \cr
167+ # ' @param ml_r ([`LearnerClassif`][mlr3::LearnerClassif],
168+ # ' [`Learner`][mlr3::Learner], `character(1)`) \cr
169+ # ' A learner of the class [`LearnerClassif` ][mlr3::LearnerClassif], which is
170+ # ' available from [mlr3](https://mlr3.mlr-org.com/index.html) or its
171+ # ' extension packages [mlr3learners](https://mlr3learners.mlr-org.com/) or
172+ # ' [mlr3extralearners](https://mlr3extralearners.mlr-org.com/).
173+ # ' Alternatively, a [`Learner` ][mlr3::Learner] object with public field
174+ # ' `task_type = "classif"` can be passed, for example of class
175+ # ' [`GraphLearner`][mlr3pipelines::GraphLearner]. The learner can possibly
176+ # ' be passed with specified parameters, for example
177+ # ' `lrn( "classif.cv_glmnet", s = "lambda.min") `. \cr
177178 # ' `ml_r` refers to the nuisance function \eqn{r_0(Z,X) = E[D|X,Z]}.
178179 # '
179180 # ' @param n_folds (`integer(1)`)\cr
0 commit comments