@@ -173,14 +173,14 @@ extract_prediction = function(obj_resampling, learner_class, n_obs,
173173 1 : n_iters ,
174174 function (x ) as.data.table(obj_resampling $ predictions(" train" )[[x ]]))
175175 for (i_iter in 1 : n_iters ) {
176- preds_vec = vector( " numeric" , length = n_obs )
176+ preds_vec = as. numeric(rep( NA , n_obs ) )
177177 f_hat = f_hat_list [[i_iter ]]
178178 preds_vec [f_hat [[ind_name ]]] = f_hat [[resp_name ]]
179179 preds [[i_iter ]] = preds_vec
180180 }
181181 } else {
182182 n_obj_rsmp = length(obj_resampling )
183- preds = vector( " list " , n_obj_rsmp )
183+ preds = as.numeric(rep( NA , n_obs ) )
184184 for (i_obj_rsmp in 1 : n_obj_rsmp ) {
185185 preds_vec = vector(" numeric" , length = n_obs )
186186 f_hat = as.data.table(obj_resampling [[i_obj_rsmp ]]$ prediction(" train" ))
@@ -189,7 +189,7 @@ extract_prediction = function(obj_resampling, learner_class, n_obs,
189189 }
190190 }
191191 } else {
192- preds = vector( " numeric" , length = n_obs )
192+ preds = as. numeric(rep( NA , n_obs ) )
193193 if (testR6(obj_resampling , classes = " ResampleResult" )) obj_resampling = list (obj_resampling )
194194 n_obj_rsmp = length(obj_resampling )
195195 for (i_obj_rsmp in 1 : n_obj_rsmp ) {
0 commit comments