diff --git a/.gitignore b/.gitignore index d6e4a0c..62293e8 100644 --- a/.gitignore +++ b/.gitignore @@ -130,8 +130,7 @@ dmypy.json .scikit-mol.code-workspace.swp scikit-mol.code-workspace -notebooks/25747817 -*.ipynb + # test data tests/data/ diff --git a/.pre-commit-config.yaml b/.pre-commit-config.yaml index 11326b6..d03dc45 100644 --- a/.pre-commit-config.yaml +++ b/.pre-commit-config.yaml @@ -20,4 +20,5 @@ repos: args: [ --fix ] types_or: [ python, pyi ] # Run the formatter. - - id: ruff-format \ No newline at end of file + - id: ruff-format + \ No newline at end of file diff --git a/Makefile b/Makefile index 0e7119d..5b26e8e 100644 --- a/Makefile +++ b/Makefile @@ -1,13 +1,6 @@ sync-notebooks: + uv run jupytext --set-formats docs//notebooks//ipynb,docs//notebooks//scripts//py:percent --sync docs/notebooks/*.ipynb uv run ruff format "docs/notebooks/" - uv run jupytext --sync "docs/notebooks/*.ipynb" run-notebooks: - # Execute the notebooks, gives a .nbconvert.ipynb extension - jupyter nbconvert --to notebook --execute *ipynb - # move the .nbconvert.ipynb to the original .ipynb - for file in *.nbconvert.ipynb; do - fname=${file/.nbconvert.ipynb/}; - rm $fname.ipynb - mv $file $fname.ipynb - done \ No newline at end of file + uv run jupytext --execute docs/notebooks/*ipynb \ No newline at end of file diff --git a/docs/contributing.md b/docs/contributing.md index 5095a71..45b04a4 100644 --- a/docs/contributing.md +++ b/docs/contributing.md @@ -94,11 +94,14 @@ Scikit-Learn has a check_estimator that we should strive to get to work, some cl ## Notebooks Another way of contributing is by providing notebooks with examples on how to use the project to build models together with Scikit-Learn and other tools. There are .ipynb files in the `docs/notebooks` and .py files in the `script` subfolder as the first are useful for online rendering in the documentation, whereas the latter is useful for sub version control. -If you want to create new notebook you can create .ipynb file, and then you run `make sync-notebooks` to create the corresponding .py file for the commit. + +If you want to create new notebook you can first create .ipynb file, and then you run `make sync-notebooks` to create the corresponding .py file for the commit. + +If you updated any of the existing py/ipynb files, you can run `make sync-notebooks` to update the outdated file in the pair. The .py files are used for nice diffs, and the .ipynb files are used for rendering in the documentation. `make sync-notebooks` will sync all the notebooks with the .py files in the `scripts` folder. -`make run-notebooks` will sync, run and save the notebooks, expects an ipython kernel with scikit-mol installed called Python3. +`make run-notebooks` will sync, run and save the notebooks, expects an ipython kernel with scikit-mol installed. ## Documentation diff --git a/docs/notebooks/01_basic_usage.ipynb b/docs/notebooks/01_basic_usage.ipynb index 719369c..3968cf3 100644 --- a/docs/notebooks/01_basic_usage.ipynb +++ b/docs/notebooks/01_basic_usage.ipynb @@ -25,10 +25,10 @@ "id": "2c8cad03", "metadata": { "execution": { - "iopub.execute_input": "2024-11-24T09:27:16.292725Z", - "iopub.status.busy": "2024-11-24T09:27:16.292083Z", - "iopub.status.idle": "2024-11-24T09:27:16.306663Z", - "shell.execute_reply": "2024-11-24T09:27:16.304935Z" + "iopub.execute_input": "2025-05-08T16:22:29.627872Z", + "iopub.status.busy": "2025-05-08T16:22:29.627571Z", + "iopub.status.idle": "2025-05-08T16:22:29.632065Z", + "shell.execute_reply": "2025-05-08T16:22:29.631373Z" } }, "outputs": [], @@ -42,10 +42,10 @@ "id": "8d5b2333", "metadata": { "execution": { - "iopub.execute_input": "2024-11-24T09:27:16.313611Z", - "iopub.status.busy": "2024-11-24T09:27:16.313028Z", - "iopub.status.idle": "2024-11-24T09:27:16.510254Z", - "shell.execute_reply": "2024-11-24T09:27:16.509620Z" + "iopub.execute_input": "2025-05-08T16:22:29.634712Z", + "iopub.status.busy": "2025-05-08T16:22:29.634423Z", + "iopub.status.idle": "2025-05-08T16:22:29.845389Z", + "shell.execute_reply": "2025-05-08T16:22:29.844169Z" } }, "outputs": [], @@ -78,10 +78,10 @@ "id": "0a625dda", "metadata": { "execution": { - "iopub.execute_input": "2024-11-24T09:27:16.513123Z", - "iopub.status.busy": "2024-11-24T09:27:16.512856Z", - "iopub.status.idle": "2024-11-24T09:27:17.089043Z", - "shell.execute_reply": "2024-11-24T09:27:17.088357Z" + "iopub.execute_input": "2025-05-08T16:22:29.850211Z", + "iopub.status.busy": "2025-05-08T16:22:29.848822Z", + "iopub.status.idle": "2025-05-08T16:22:30.986417Z", + "shell.execute_reply": "2025-05-08T16:22:30.984810Z" } }, "outputs": [ @@ -118,10 +118,10 @@ "id": "9a801d0f", "metadata": { "execution": { - "iopub.execute_input": "2024-11-24T09:27:17.091942Z", - "iopub.status.busy": "2024-11-24T09:27:17.091571Z", - "iopub.status.idle": "2024-11-24T09:27:17.098501Z", - "shell.execute_reply": "2024-11-24T09:27:17.097922Z" + "iopub.execute_input": "2025-05-08T16:22:30.991850Z", + "iopub.status.busy": "2025-05-08T16:22:30.990911Z", + "iopub.status.idle": "2025-05-08T16:22:31.011512Z", + "shell.execute_reply": "2025-05-08T16:22:31.010309Z" } }, "outputs": [ @@ -130,7 +130,8 @@ "text/html": [ "
MorganFingerprintTransformer(radius=3)
In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.
" + "
MorganFingerprintTransformer(radius=3)
In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.
" ], "text/plain": [ "MorganFingerprintTransformer(radius=3)" @@ -561,10 +572,10 @@ "id": "500dc6f7", "metadata": { "execution": { - "iopub.execute_input": "2024-11-24T09:27:17.101153Z", - "iopub.status.busy": "2024-11-24T09:27:17.100929Z", - "iopub.status.idle": "2024-11-24T09:27:17.105319Z", - "shell.execute_reply": "2024-11-24T09:27:17.104586Z" + "iopub.execute_input": "2025-05-08T16:22:31.015226Z", + "iopub.status.busy": "2025-05-08T16:22:31.014511Z", + "iopub.status.idle": "2025-05-08T16:22:31.022448Z", + "shell.execute_reply": "2025-05-08T16:22:31.021051Z" } }, "outputs": [ @@ -572,7 +583,7 @@ "data": { "text/plain": [ "{'fpSize': 2048,\n", - " 'parallel': False,\n", + " 'n_jobs': None,\n", " 'radius': 3,\n", " 'safe_inference_mode': False,\n", " 'useBondTypes': True,\n", @@ -605,10 +616,10 @@ "id": "3a27b07a", "metadata": { "execution": { - "iopub.execute_input": "2024-11-24T09:27:17.107710Z", - "iopub.status.busy": "2024-11-24T09:27:17.107495Z", - "iopub.status.idle": "2024-11-24T09:27:17.111268Z", - "shell.execute_reply": "2024-11-24T09:27:17.110754Z" + "iopub.execute_input": "2025-05-08T16:22:31.026293Z", + "iopub.status.busy": "2025-05-08T16:22:31.025546Z", + "iopub.status.idle": "2025-05-08T16:22:31.032975Z", + "shell.execute_reply": "2025-05-08T16:22:31.031700Z" } }, "outputs": [ @@ -641,10 +652,10 @@ "id": "0f141920", "metadata": { "execution": { - "iopub.execute_input": "2024-11-24T09:27:17.113572Z", - "iopub.status.busy": "2024-11-24T09:27:17.113344Z", - "iopub.status.idle": "2024-11-24T09:27:17.117356Z", - "shell.execute_reply": "2024-11-24T09:27:17.116845Z" + "iopub.execute_input": "2025-05-08T16:22:31.036752Z", + "iopub.status.busy": "2025-05-08T16:22:31.036118Z", + "iopub.status.idle": "2025-05-08T16:22:31.043904Z", + "shell.execute_reply": "2025-05-08T16:22:31.042561Z" } }, "outputs": [ @@ -675,10 +686,10 @@ "id": "481e527f", "metadata": { "execution": { - "iopub.execute_input": "2024-11-24T09:27:17.119855Z", - "iopub.status.busy": "2024-11-24T09:27:17.119584Z", - "iopub.status.idle": "2024-11-24T09:27:17.124520Z", - "shell.execute_reply": "2024-11-24T09:27:17.124025Z" + "iopub.execute_input": "2025-05-08T16:22:31.047228Z", + "iopub.status.busy": "2025-05-08T16:22:31.046700Z", + "iopub.status.idle": "2025-05-08T16:22:31.054569Z", + "shell.execute_reply": "2025-05-08T16:22:31.053275Z" } }, "outputs": [ @@ -690,7 +701,7 @@ " [1, 0, 0, ..., 0, 0, 0],\n", " [0, 0, 0, ..., 0, 0, 1],\n", " [1, 1, 0, ..., 0, 0, 0],\n", - " [1, 1, 0, ..., 0, 0, 0]], dtype=uint8)" + " [1, 1, 0, ..., 0, 0, 0]], shape=(6, 256), dtype=uint8)" ] }, "execution_count": 8, @@ -717,10 +728,10 @@ "id": "7773a5a0", "metadata": { "execution": { - "iopub.execute_input": "2024-11-24T09:27:17.126934Z", - "iopub.status.busy": "2024-11-24T09:27:17.126713Z", - "iopub.status.idle": "2024-11-24T09:27:17.131063Z", - "shell.execute_reply": "2024-11-24T09:27:17.130539Z" + "iopub.execute_input": "2025-05-08T16:22:31.057901Z", + "iopub.status.busy": "2025-05-08T16:22:31.057134Z", + "iopub.status.idle": "2025-05-08T16:22:31.064119Z", + "shell.execute_reply": "2025-05-08T16:22:31.063046Z" } }, "outputs": [ @@ -745,10 +756,10 @@ "id": "fa484453", "metadata": { "execution": { - "iopub.execute_input": "2024-11-24T09:27:17.133328Z", - "iopub.status.busy": "2024-11-24T09:27:17.133133Z", - "iopub.status.idle": "2024-11-24T09:27:17.137378Z", - "shell.execute_reply": "2024-11-24T09:27:17.136857Z" + "iopub.execute_input": "2025-05-08T16:22:31.067178Z", + "iopub.status.busy": "2025-05-08T16:22:31.066755Z", + "iopub.status.idle": "2025-05-08T16:22:31.074756Z", + "shell.execute_reply": "2025-05-08T16:22:31.073587Z" } }, "outputs": [ @@ -756,12 +767,12 @@ "name": "stdout", "output_type": "stream", "text": [ - "[[]\n", - " []\n", - " []\n", - " []\n", - " []\n", - " []]\n" + "[[]\n", + " []\n", + " []\n", + " []\n", + " []\n", + " []]\n" ] } ], @@ -771,6 +782,9 @@ } ], "metadata": { + "jupytext": { + "formats": "docs//notebooks//ipynb,docs//notebooks//scripts//py:percent" + }, "kernelspec": { "display_name": "Python 3.9.4 ('rdkit')", "language": "python", @@ -786,7 +800,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.10.12" + "version": "3.12.6" } }, "nbformat": 4, diff --git a/docs/notebooks/02_descriptor_transformer.ipynb b/docs/notebooks/02_descriptor_transformer.ipynb index 90c082b..f8c69b3 100644 --- a/docs/notebooks/02_descriptor_transformer.ipynb +++ b/docs/notebooks/02_descriptor_transformer.ipynb @@ -16,10 +16,10 @@ "id": "81745b1f", "metadata": { "execution": { - "iopub.execute_input": "2024-11-24T09:27:18.828147Z", - "iopub.status.busy": "2024-11-24T09:27:18.827339Z", - "iopub.status.idle": "2024-11-24T09:27:19.887178Z", - "shell.execute_reply": "2024-11-24T09:27:19.886482Z" + "iopub.execute_input": "2025-05-08T16:22:32.631647Z", + "iopub.status.busy": "2025-05-08T16:22:32.631311Z", + "iopub.status.idle": "2025-05-08T16:22:34.194489Z", + "shell.execute_reply": "2025-05-08T16:22:34.193202Z" }, "lines_to_next_cell": 0 }, @@ -45,10 +45,10 @@ "id": "dd9a2ad0", "metadata": { "execution": { - "iopub.execute_input": "2024-11-24T09:27:19.890505Z", - "iopub.status.busy": "2024-11-24T09:27:19.889986Z", - "iopub.status.idle": "2024-11-24T09:27:19.896597Z", - "shell.execute_reply": "2024-11-24T09:27:19.896028Z" + "iopub.execute_input": "2025-05-08T16:22:34.198567Z", + "iopub.status.busy": "2025-05-08T16:22:34.197421Z", + "iopub.status.idle": "2025-05-08T16:22:34.206453Z", + "shell.execute_reply": "2025-05-08T16:22:34.205342Z" } }, "outputs": [ @@ -56,7 +56,7 @@ "name": "stdout", "output_type": "stream", "text": [ - "There are 210 available descriptors\n", + "There are 217 available descriptors\n", "The first five descriptor names: ['MaxAbsEStateIndex', 'MaxEStateIndex', 'MinAbsEStateIndex', 'MinEStateIndex', 'qed']\n" ] } @@ -82,28 +82,16 @@ "id": "4431a910", "metadata": { "execution": { - "iopub.execute_input": "2024-11-24T09:27:19.899516Z", - "iopub.status.busy": "2024-11-24T09:27:19.899244Z", - "iopub.status.idle": "2024-11-24T09:27:20.125197Z", - "shell.execute_reply": "2024-11-24T09:27:20.123935Z" + "iopub.execute_input": "2025-05-08T16:22:34.210875Z", + "iopub.status.busy": "2025-05-08T16:22:34.210262Z", + "iopub.status.idle": "2025-05-08T16:22:34.353857Z", + "shell.execute_reply": "2025-05-08T16:22:34.352652Z" } }, "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - "[10:27:19] DEPRECATION WARNING: please use MorganGenerator\n", - "[10:27:19] DEPRECATION WARNING: please use MorganGenerator\n", - "[10:27:19] DEPRECATION WARNING: please use MorganGenerator\n", - "[10:27:19] DEPRECATION WARNING: please use MorganGenerator\n", - "[10:27:19] DEPRECATION WARNING: please use MorganGenerator\n", - "[10:27:19] DEPRECATION WARNING: please use MorganGenerator\n" - ] - }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAh8AAAGdCAYAAACyzRGfAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAABprElEQVR4nO2de5gU5Zn276rqw5yYGY4zjIKiomAUo2hwojnpRORTV1c2G/1MYowbNwbdFZK44fqiJuZANLtqdFE3LkGzCTExu+iaRDygYoyAipooKgdFQYYZQJjz9Knq/f6oequrjzPdXdVdzdy/65prZqqqq97unun3rue5n+dVhBAChBBCCCFlQq30AAghhBAytqD4IIQQQkhZofgghBBCSFmh+CCEEEJIWaH4IIQQQkhZofgghBBCSFmh+CCEEEJIWaH4IIQQQkhZCVR6AOkYhoHOzk6MGzcOiqJUejiEEEIIGQVCCPT396OtrQ2qmj+24Tvx0dnZiWnTplV6GIQQQggpgl27duHwww/Pe4zvxMe4ceMAmINvbGys8GgIIYQQMhr6+vowbdo0ex7Ph+/Eh0y1NDY2UnwQQgghVcZoLBM0nBJCCCGkrBQkPnRdxw033IAZM2agtrYWRx99NL7//e/DuTCuEAI33ngjpk6ditraWnR0dGDbtm2uD5wQQggh1UlB4uOWW27BPffcg3//93/HW2+9hVtuuQW33nor7rrrLvuYW2+9FXfeeSfuvfdebNy4EfX19Zg/fz4ikYjrgyeEEEJI9aEIZ9hiBM4//3y0tLRgxYoV9raFCxeitrYWv/zlLyGEQFtbG77xjW/gm9/8JgCgt7cXLS0tuP/++3HJJZeMeI2+vj40NTWht7eXng9CCCGkSihk/i4o8vHxj38ca9euxdatWwEAf/nLX/D8889jwYIFAIAdO3agq6sLHR0d9mOampowb948rF+/vtDnQQghhJBDkIKqXb797W+jr68Ps2bNgqZp0HUdP/zhD3HZZZcBALq6ugAALS0tKY9raWmx96UTjUYRjUbt3/v6+gp6AoQQQgipLgqKfPz2t7/Fr371K6xatQqvvPIKHnjgAfzrv/4rHnjggaIHsGzZMjQ1NdlfbDBGCCGEHNoUJD6+9a1v4dvf/jYuueQSnHjiifjiF7+IxYsXY9myZQCA1tZWAEB3d3fK47q7u+196SxduhS9vb32165du4p5HoQQQgipEgoSH0NDQxn92jVNg2EYAIAZM2agtbUVa9eutff39fVh48aNaG9vz3rOcDhsNxRjYzFCCCHk0Kcgz8cFF1yAH/7wh5g+fTo+8pGP4NVXX8Vtt92Gr3zlKwDMrmbXXXcdfvCDH2DmzJmYMWMGbrjhBrS1teGiiy7yYvyEEEIIqTIKEh933XUXbrjhBnz961/H3r170dbWhn/8x3/EjTfeaB9z/fXXY3BwEFdddRV6enpw5plnYs2aNaipqXF98IQQQgipPgrq81EO2OeDEEIIqT486/Mx5hACeGkF8L6jR8nwQeDAu5UbEyGEEFLlUHzkY/9W4A9LgEcWJbf98u+Au04F+rP3LSGEEEJIfig+8hEdML/3fmBGQYQAujcDQgf6Ois7NkIIIaRKKchwOuYQZgkx9CgQGwCgAInh1H2EEEIIKQiKj3w4BcbgPgBK9n2EEEIIGTUUH/lIER/7AcWRpTL08o+HEEIIOQSg+MhHhvhwRj4oPgghhJBioPjIR3raxSk+GPkghBBCioLiIx/5xAc9H4QQQkhRUHzkg2kXQgghxHUoPvLi6Dw/tD91l8HIByGEEFIMFB/5yCi1zbGPEEIIIaOG4iMfzjX3BtMiH0y7EEIIIUVB8ZGPdM+HMw3DahdCCCGkKCg+8uEUH0P7UyMhjHwQQgghRUHxkQ+n+DASufcRQgghZNRwVdt85BMYrHYhhBBCioLiIx/5xAfTLoQQQkhRUHzkw+nxSIeGU0IIIaQoKD7ykTfywbQLIYQQUgwUH/lg2oUQQghxHYqPfDDtQgghhLgOxUc+mHYhhBBCXIfiIx/ZBIai5d5HCCGEkBGh+MiHFBhaOLmtfrL5nWkXQgghpCgoPvIhxUfDlOS2cS3WPooPQgghpBgoPvJiGU6d4qOh1dpVBWmXXS8CT3wHiA1WeiSEEEKIDdd2yYcd+WgBjj7L9HvUTzK3VUPaZd0twPangGnzgNkXVHo0hBBCCABGPvIjxYeiAl9cDXzhd+bPQHWkXeKR1O+EEEKID6D4yIctPpTkNtWqdqmGheXk+KshRUQIIWTMQPGRD9lkTHG8THbkoxomdGv8VTFWQgghY4WCxMeRRx4JRVEyvhYtWgQAiEQiWLRoESZOnIiGhgYsXLgQ3d3dngy8LDjTLhK7z0cVpF0Y+SCEEOJDChIfL730Evbs2WN/PfnkkwCAz33ucwCAxYsX49FHH8VDDz2EdevWobOzExdffLH7oy4X2cSHnXapIvGBPG3iCSGEkDJTULXL5MmTU37/8Y9/jKOPPhqf+tSn0NvbixUrVmDVqlU466yzAAArV67E7NmzsWHDBpx++unujbpcMPJBCCGEuE7Rno9YLIZf/vKX+MpXvgJFUbBp0ybE43F0dHTYx8yaNQvTp0/H+vXrXRls2cnq+bDMp9UwoVN8EEII8SFF9/l4+OGH0dPTgy9/+csAgK6uLoRCITQ3N6cc19LSgq6urpzniUajiEaj9u99fX3FDsl98qZdqmBCp/gghBDiQ4qOfKxYsQILFixAW1tbSQNYtmwZmpqa7K9p06aVdD5XYdqFEEIIcZ2ixMf777+Pp556Cv/wD/9gb2ttbUUsFkNPT0/Ksd3d3Whtbc15rqVLl6K3t9f+2rVrVzFD8gZ70s7S56MaJnSZNhI0nBJCCPEPRYmPlStXYsqUKTjvvPPsbXPnzkUwGMTatWvtbVu2bMHOnTvR3t6e81zhcBiNjY0pX74hW5MxGQWppmqXahBKhBBCxgwFez4Mw8DKlStx+eWXIxBIPrypqQlXXnkllixZggkTJqCxsRHXXnst2tvbq7PSBchhOGXahRBCCCmFgsXHU089hZ07d+IrX/lKxr7bb78dqqpi4cKFiEajmD9/Pu6++25XBloRshpOGfkghBBCSqFg8XHOOedA5PAQ1NTUYPny5Vi+fHnJA/MFeQ2nVeCjEGyvTgghxH9wbZe85FvbhZEPQgghpBgoPvJxqLRXp/gghBDiIyg+8sE+H4QQQojrUHzkI1upbVX2+aiCsRJCCBkzUHzkI2vkoxqrXarAHEsIIWTMQPGRj3xNxqohmsC0CyGEEB9C8ZGPbE3GqirtwsgHIYQQ/0HxkY9DJu1SBUKJEELImIHiIx9sr04IIYS4DsVHPqq9zwdY7UIIIcR/UHzkw560nYbTavR8VMFYCSGEjBkoPvKR1fOhpO7zMxQfhBBCfAjFRz6qPe3CJmOEEEJ8CMVHPg6Z9uostSWEEOIfKD7yUfXt1Zl2IYQQ4j8oPvKRtdSWfT4IIYSQUqD4yAv7fBBCCCFuQ/GRj6yGU67tQgghhJQCxUc+si4sJ6tdqmBCp/gghBDiQyg+8pFvbZeqSLuw1JYQQoj/oPjIRzX3+RACbK9OCCHEj1B85CNvnw+fT+jO3h7s80EIIcRHUHzko5rTLiniiOKDEEKIf6D4yEe+JmN+N5w6xYffozSEEELGFBQf+cjXZKyaIh8UH4QQQnwExUc+somPammvTvFBCCHEp1B85MOetJ19PqqkvTrFByGEEJ9C8ZGPal7VluKDEEKIT6H4yEe+Ph9+n9ApPgghhPgUio985It8+L3axVleS/FBCCHER1B85COr+LD8H75Pu7DJGCGEEH9C8ZGPqm6vzrQLIYQQf1Kw+Ni9eze+8IUvYOLEiaitrcWJJ56Il19+2d4vhMCNN96IqVOnora2Fh0dHdi2bZurgy4fstQ2y6q2fp/QKT4IIYT4lILEx8GDB3HGGWcgGAzisccew5tvvol/+7d/w/jx4+1jbr31Vtx555249957sXHjRtTX12P+/PmIRCKuD95z8vb5YOSDEEIIKYZAIQffcsstmDZtGlauXGlvmzFjhv2zEAJ33HEHvvOd7+DCCy8EAPziF79AS0sLHn74YVxyySUuDbtMZGuvzj4fhBBCSEkUFPn43//9X5x66qn43Oc+hylTpuDkk0/GfffdZ+/fsWMHurq60NHRYW9ramrCvHnzsH79+qznjEaj6OvrS/nyDfmqXSD8beSk+CCEEOJTChIf7777Lu655x7MnDkTjz/+OK6++mr80z/9Ex544AEAQFdXFwCgpaUl5XEtLS32vnSWLVuGpqYm+2vatGnFPA9vyGc4de73IxQfhBBCfEpB4sMwDJxyyin40Y9+hJNPPhlXXXUVvvrVr+Lee+8tegBLly5Fb2+v/bVr166iz+U6+UptAX+nXig+CCGE+JSCxMfUqVNx/PHHp2ybPXs2du7cCQBobW0FAHR3d6cc093dbe9LJxwOo7GxMeXLN+RNu8DfptMU8eHj9BAhhJAxR0Hi44wzzsCWLVtStm3duhVHHHEEANN82trairVr19r7+/r6sHHjRrS3t7sw3DJT1WkXNhkjhBDiTwqqdlm8eDE+/vGP40c/+hH+/u//Hi+++CJ+9rOf4Wc/+xkAQFEUXHfddfjBD36AmTNnYsaMGbjhhhvQ1taGiy66yIvxe0u2Ultn5MPXaRe2VyeEEOJPChIfp512GlavXo2lS5fi5ptvxowZM3DHHXfgsssus4+5/vrrMTg4iKuuugo9PT0488wzsWbNGtTU1Lg+eM+xJ+0spbZAFaVdKD4IIYT4h4LEBwCcf/75OP/883PuVxQFN998M26++eaSBuYLrOjB3oEYplibIjpgyyg/Ly5H8UEIIcSncG2XPMQSCQDAT59+x9725fuTreR9PalTfBBCCPEpFB950HUzrbJ3IGZve7t7ALqogpVtKT4IIYT4FIqPfFiT9lDcTL8IITAQScBAFbRYp/gghBDiUwr2fIwprEk7rgPRhA4hgIQhLPGhM/JBCCGEFAHFR17MiIcBBYNRHcIyoOoy8uHnSZ1NxgghhPgUio98WBO4ARWD0YQ9h+tVkXZhnw9CCCH+hOIjH44JfMAhPoTs++HnSZ1pF0IIIT6F4iMf6ZEPa3NVRD7AyAchhBB/QvGRB8UWH4oZ+bC2V5/nw8fjJIQQMuag+MiHQ3wMRnUI24AqxYePIx8UH4QQQnwKxUdezElb2GmXZPWL+QPFByGEEFIoFB/5EEmxwbQLIYQQ4g4UH3lQhLPPRwKGpT4MoZoL3fp5Uk8ZG/t8EEII8Q8UH3lJVrsMxJKlttWXdqH4IIQQ4h8oPvIhpOcDKZEPnYZTQgghpGgoPvKg2OLDrHYxRHq1i48ndXY4JYQQ4lMoPvLhEBtmh9O0tV2qJu1C8UEIIcQ/UHzkQYGzz0fCEfmQ7dX9LD4Y+SCEEOJPKD7yIdLFB6zfZeTDx5M6Ix+EEEJ8CsVHHmSprbDTLuZ29vkghBBCiofiIy9WmkXkMpz6Oe1C8UEIIcSfUHzkQclIu1Rre3X2+SCEEOIfKD7yoECmXZSUJmNMuxBCCCHFo1Z6AL7GEflwBg+YdiGEEEKKh+IjD6pjVVsnuqiGPh8stSWEEOJPKD5y4Zi8bY9H+u9+ntQZ+SCEEOJTKD5y4ZiwM8UHPR+EEEJIsVB85CKP+GB7dUIIIaR4KD5y4Ui7pHs+qsJwCqfng6W2hBBC/APFRy4c0YL0qduotsgHBAUIIYQQ30DxkYuUtEtatUu1eT4Aig9CCCG+oSDx8d3vfheKoqR8zZo1y94fiUSwaNEiTJw4EQ0NDVi4cCG6u7tdH3RZyOv5qLJql2y/E0IIIRWi4MjHRz7yEezZs8f+ev755+19ixcvxqOPPoqHHnoI69atQ2dnJy6++GJXB1w2UtIuSfERDqhJD0jVpF2y/E4IIYRUiILbqwcCAbS2tmZs7+3txYoVK7Bq1SqcddZZAICVK1di9uzZ2LBhA04//fTSR1tOcqRdmuuC0IerIe2Slmbx81gJIYSMKQqOfGzbtg1tbW046qijcNlll2Hnzp0AgE2bNiEej6Ojo8M+dtasWZg+fTrWr1+f83zRaBR9fX0pX74gR9qlqTbo8Hww8kEIIYQUSkHiY968ebj//vuxZs0a3HPPPdixYwc+8YlPoL+/H11dXQiFQmhubk55TEtLC7q6unKec9myZWhqarK/pk2bVtQTcR1H5CAcTAaImmqDVVjtkuV3QgghpEIUlHZZsGCB/fOcOXMwb948HHHEEfjtb3+L2traogawdOlSLFmyxP69r6/PJwIkKT4awkEMxWMALPEhpOGU4oMQQggplJJKbZubm3Hsscdi+/btaG1tRSwWQ09PT8ox3d3dWT0iknA4jMbGxpQvX+CYrBvrQsmfU9IuPp7QKT4IIYT4lJLEx8DAAN555x1MnToVc+fORTAYxNq1a+39W7Zswc6dO9He3l7yQMuONVnrQsG4mlxpFx9P6DScEkII8SkFpV2++c1v4oILLsARRxyBzs5O3HTTTdA0DZdeeimamppw5ZVXYsmSJZgwYQIaGxtx7bXXor29vfoqXQB7sjagorEmaG9urg1VqeGUTcYIIYT4g4LExwcffIBLL70UH374ISZPnowzzzwTGzZswOTJkwEAt99+O1RVxcKFCxGNRjF//nzcfffdngzcc2zxkR75CCSrX2g4JYQQQgqmIPHx4IMP5t1fU1OD5cuXY/ny5SUNyhdYk7WAgsbaZOSjqS6Ig/R8EEIIIUXDtV1ykSPtUj19Puj5IIQQ4k8K7nA6ZnCkXSbUB3HMlAaoCtBc5/B8MO1CCCGEFAzFRy6syIEBBQFVxWP//AkAwJau/uRaL342cWaIDR+PlRBCyJiC4iMXtrBQoKkKgpoZ7dBUpUrSLox8EEII8Sf0fOTCkXZRk0u7IOAUH0y7EEIIIQVD8ZELp/hwqA9NVRxpF4oPQgghpFAoPnLhqHbRlKT4CKgqdFEFpbbpHg8/+1MIIYSMKSg+cuHo86E6xIemMe1CCCGElALFRy5ypF2CqpJc28XPEzrFByGEEJ9C8ZELR9rFaTjVVMVury6MRCVGNjrYZIwQQohPofjISbLPh6ameT6sl034elVbRj4IIYT4E4qPXDg8H0qa58OwxQc9H4QQQkihUHzkwkpbCKGkVbskDacGxQchhBBSMBQfuXAYTjXHq6Q5DacUH4QQQkjBUHzkwiE+UtIuCtMuhBBCSClQfOQiR5MxVa1W8cEmY4QQQvwBxUcunE3G0l8lRbMO8bP4YKktIYQQf0LxkYuUheWU1H2WGhF+ntCZdiGEEOJTKD5yIWSfDzWlzwcAKGo1pF24tgshhBB/QvGRCzvtgszIh5V2YbULIYQQUjgUH7mwxYeaU3z4O/JB8UEIIcSfUHzkQiTbq6dlXWzPh68ndIoPQgghPoXiIxcpTcYY+SCEEELcguIjF85ql3TxoVqeD0HxQQghhBQKxUcu8ng+ZLVLdRlOWe1CCCHEH1B85MKZdkkXH7Laxc/RBEY+CCGE+BSKj5xYq9pCQXqxi512MXw8oVN8EEII8SkUH7nIZzitBs9HOhQfhBBCfALFRy6ca7tkpF1YaksIIYQUC8VHLmTkQ6jQ0l4lVauCyAfFByGEEJ9C8ZGLlCZjbK9OCCGEuEVJ4uPHP/4xFEXBddddZ2+LRCJYtGgRJk6ciIaGBixcuBDd3d2ljrP85FnVVlED5nc/T+gUH4QQQnxK0eLjpZdewn/8x39gzpw5KdsXL16MRx99FA899BDWrVuHzs5OXHzxxSUPtOw4PB/phlOV7dUJIYSQoilKfAwMDOCyyy7Dfffdh/Hjx9vbe3t7sWLFCtx2220466yzMHfuXKxcuRIvvPACNmzY4Nqgy4Id+VAzSm0Vq9pFqSrPB5uMEUII8QdFiY9FixbhvPPOQ0dHR8r2TZs2IR6Pp2yfNWsWpk+fjvXr12c9VzQaRV9fX8qXLxCyzwfylNr6OJqQMTaKD0IIIf4gUOgDHnzwQbzyyit46aWXMvZ1dXUhFAqhubk5ZXtLSwu6urqynm/ZsmX43ve+V+gwvMcR+UjvcKpZ5S/+jnykiQ0/CyVCCCFjioIiH7t27cI///M/41e/+hVqampcGcDSpUvR29trf+3atcuV85aMw3CqpOddLMOpr1MZ9HwQQgjxKQWJj02bNmHv3r045ZRTEAgEEAgEsG7dOtx5550IBAJoaWlBLBZDT09PyuO6u7vR2tqa9ZzhcBiNjY0pX35A5DWcVoPng5EPQggh/qSgtMvZZ5+N119/PWXbFVdcgVmzZuFf/uVfMG3aNASDQaxduxYLFy4EAGzZsgU7d+5Ee3u7e6MuA4ahQ4OZdkm3fCQNpz6e0Bn5IIQQ4lMKEh/jxo3DCSeckLKtvr4eEydOtLdfeeWVWLJkCSZMmIDGxkZce+21aG9vx+mnn+7eqMuAMBx9PtR0z4clPuDjCZ3igxBCiE8p2HA6ErfffjtUVcXChQsRjUYxf/583H333W5fxnOc4iPdcFpVpbZqADASFB+EEEJ8Q8ni49lnn035vaamBsuXL8fy5ctLPXVFEZawyLawnKpVUYdTig9CCCE+g2u75MAwZJ8PBWraqyQjH6qfJ3Sn+AD8XZlDCCFkTEHxkYMUz0d6nw+1ijwfShU0RCOEEDKmoPjIgcjTZEyxDafCvxEFOS6/dmMdPggceLfSoyCEEFIBKD5yIIyk5yO9x5iMfAAADJ+aTu20i0/Fx39dDPz7acDAvkqPhBBCSJmh+MiBs8lYeodTRQs6DvS7+Aik/u4Xet43jbAD2dvuE0IIOXSh+MiB9HwIJfMlkmu7WAeWa0gFItMuPhUfRiL1OyGEkDEDxUcODDvykfkSqRrTLiUjXzfDZ+MihBDiORQfuTCSaZd0ZJ8P8wC/iw+/Rj6k+PAg8pGIAT8/F3jiO+6fGwC6NwPL5wFv/q8353/1V8Dd7cDB97w5fzpv/Lf5fPZtKc/1CCFjHoqPHAi7VDVTfKQYTv02qUt8Lz4s0eGFeNu/Fdi5Hnjt1+6fGwDeeRrY9zbwlkfi443/Bva+Cbz3vDfnT2fzw+bzeffZ8lyPEDLmofjIQT7PhxpwRD78mjbIEB+VG0pWhIeRD6/9JNV+/ozrefheEEJIFig+cmBHPrKkXQJOz4fv0y4+9HwIkRyPF54Z+Z549Zztydqj997L1ybr9Tx+PoQQkgbFRw7yVruoChLC2u7XD2zZZMyPHU6dr5kXr5/Xd/Jeiw878lGmvy1WHhFCygzFRw6SC8tlvkQBVYEhIyJ+mtSd+Nnz4ZzkvIgcVXtapOxplzKLHULImIfiIwcy8pHdcKrAkC+d79MuPhQfztfME8+H12kRPfW72xgen7/S1yOEjHkoPnJhV7tki3yo0OH3tIuPPR9OweFJ2sVRSePF2juHXOSDhlNCSHmh+MiBsCet7JEPW3z4aVJ3IirY4XToALDxZ+b3bBgeRz6cd/BePG8aTgkhpCQoPnKQz3AaUJVk8zHfio8Kpl1eWgE89i3gxZ9l32+USRwA1ZnWoeGUEHKIQ/GRi3xpF02porRLBcRHpMf8PtyTfX9K2sXDPh9en/+QSbvQcEoIKS8UHzlwrmqbTornw68mvQzPRxm7jI00eaYYTj0stfXq/Iec4dQo7/UIIWMeio9cGLkjH6nVLn5Nu0jPRwUMpyOJD0Y+Rjh/mQ2gTLsQQsoMxUcO7MhHjrSLwbRLbuzJLJ5jv9eGUyP7z24hhalXrfXLbQCl4ZQQUmYoPnKRx/ORWu3i0w9se/yViHyMMJl5bjit9sgHDaeEkEMbio8c5FvVNqAqMIS1vWoWlquE+BiN54Npl7KfP+f1fCqkCSGHHBQfuTCkQXOkyIffxYffPR80nGZAwykh5BCH4iMHcm2XXB1O2V4937VHiHzQcDrC+Wk4JYQc2lB85CJP2iWl2sWvoep08YEKlNrqucSH0xDqRWTiUDGclkkw0nBKCCkzFB+5sJekz97h1PeGU1SwvfpId+7lWtsl3xjcOP8h5/lg5IMQUh4oPnIgRqh2qZ726mOxyRjFR2HXY+SDEFJeKD5yYff5yEy7BDXnqrY+FB9OoeH7yIeHa6+k/+wWXhpOhUi+V2UznJbZ4EoIGfNQfOTCmgCUauzz4RQaFW0ylkt8OPt8eB358LCaxvNKHaZdCCGHJhQfuci3sJzDcGrkMlVWkmoSH15HPrwUN550Z3W+NjScEkIOTQoSH/fccw/mzJmDxsZGNDY2or29HY899pi9PxKJYNGiRZg4cSIaGhqwcOFCdHd3uz7ociDyGE41TYFheT50X6ZdKi0+Ckm7eDAuz5uYeRn58DgllY4QbDJGCCk7BYmPww8/HD/+8Y+xadMmvPzyyzjrrLNw4YUXYvPmzQCAxYsX49FHH8VDDz2EdevWobOzExdffLEnA/ecETqc6lUT+ahAM7SR+nyww+nI5/bq/Ok4/y6YdiGElInAyIckueCCC1J+/+EPf4h77rkHGzZswOGHH44VK1Zg1apVOOusswAAK1euxOzZs7Fhwwacfvrp7o26HBj5PR9Mu+RhxD4fju2epEXKaDgVIqtALRqvU0aVvh4hhKAEz4eu63jwwQcxODiI9vZ2bNq0CfF4HB0dHfYxs2bNwvTp07F+/fqc54lGo+jr60v58gf5PB8qdGFu13Wfp10qsrBcpT0fZWzf7vbr6rVwyrhemSMthBCCIsTH66+/joaGBoTDYXzta1/D6tWrcfzxx6OrqwuhUAjNzc0px7e0tKCrqyvn+ZYtW4ampib7a9q0aQU/CU/IYzhVFTjSLjmWja8kWSMf5ezzMZLnw+s+H+WspnF5wva6B0qlr0cIIShCfBx33HF47bXXsHHjRlx99dW4/PLL8eabbxY9gKVLl6K3t9f+2rVrV9HncpU84kNRFOhWREH4Mu3i7PNRicjHCIZMrye8chlO03925dxljkR4HSUihJAsFOT5AIBQKIRjjjkGADB37ly89NJL+OlPf4rPf/7ziMVi6OnpSYl+dHd3o7W1Nef5wuEwwuFw4SP3mjziAwAMmJO6XjWRj0qkXXK8Np57Pqp44bqyi48K9BUhhIx5Su7zYRgGotEo5s6di2AwiLVr19r7tmzZgp07d6K9vb3Uy5QfGT1Qc4gPO/LhR/FR6Q6nlfZ8lDGy4rZ4ouGUEDIGKCjysXTpUixYsADTp09Hf38/Vq1ahWeffRaPP/44mpqacOWVV2LJkiWYMGECGhsbce2116K9vb36Kl0AewJXkb2SQVfMl87/1S4VSLuMVGpbTkNotZ2fhlNCyBigIPGxd+9efOlLX8KePXvQ1NSEOXPm4PHHH8dnP/tZAMDtt98OVVWxcOFCRKNRzJ8/H3fffbcnA/cce20XLetuQ9EA4dfIhyNlpFSgz8dIno9yVrtUW1qnooZTH1ZuEUIOSQoSHytWrMi7v6amBsuXL8fy5ctLGpQvkGu7qNkjH9LzIRI+vFvMKj58uqqtF6KIhlP/Xo8QQsC1XXKijGQ4tdIuwo8f2PaErlQo8iGbjI3CcFpthlCvz0/DKSFkDEDxkRMZ+cghPlRpOI2VbUSjJiXyoaRuKwcF9Pkwqs2TAaS+lq4bTj08d9br0XBKCCk/FB+5sNIUSk7PhxX58LPhtGJpFzmJiew+AocoGY5EPbw+vBEfXhpmy913g2kXQkgFoPjIgZJnYTmgGsVHBdIu6T9LHGMRXosDGk4LuB4Np4SQ8kDxkQtpOM3h+ZBVMCJXI62KYkU5fCE+srw+Xt9t03Dq3+sRQggoPvLgmMCzICMfOVdurSSiwuJjpMnfMWF7HvlwaULVDes1FcJTcaMnaDglhBz6UHzkQBH5DadCdg71Y+TDmTIqt/gwjNRrZREXwuO7bV131zdx2xNbcPLNT+C9/YOZr6OLaZ3rf/cXLH5wk+PcZXjPaDjNTTl9UoSMMSg+ciHyRz6SaRcffmBX0vORPoFlERfCZXGQTiTqqEBy4fzPb9+PvkgCr+/uzXw+Lo7/+W37MTAccZy7zGkXYXDClfzlN8BPjgZ2bqz0SAg5JKH4yEl+z4dhRz58GKpO6VFS5lLb9NcjS68PI2XC83+H04SVckkYRhbx4d7444aAhvxRI9fJEIs+FNOV4J21wNCHwPt/rvRICDkkofjIwUhpF8gSXLZXTyV98soyORspvgYPxuWyjyGhi+T3jOfn3mStZ4iPMkc+ynXNakD27+HrQYgnUHzkQLFXtc3R50MNWj/48MMpxfMhIx9lCqePYjJzNhZTPK9GcUF8WAIpYQhvIx+6gQDSPBhev2+jEItjEnlT4cebC0IOASg+cmJOOGqOtItip118GKb2VeQji+HU+YHugclROM7phicnGfkwPDWcJnQBFenn9/h9S399aDo1sdcnovggxAsoPnJgp11yNBmzIyJ+/HDyleE0m+fDGflwf7JzRlPcaAIXtyIfcT1b5MNF8WGkRT4A7yMRHj6fqkamXRj5IMQTKD5yItMuOV4imXbxZZ+PSkY+Rk5LpAgCjzuQurF2jB358NBwKoRAXBfQlLT3yWsxQMNpdqToYBqKEE+g+MiB9HyoucSH5udqF+t7Rfp8FCY+FC/Eh+O5Gi7cucYt8RH30HAqm5hp6WkXzyMf9HxkZaSVmQkhJUHxkRNnuWoWLM+H4kWpaKlki3ygUobT/E3GvBAfbqddbMNp1rSLO++/LOetfNrFh3/PlcCudqH4IMQLApUegF9RRljbRdHMtIsn1RqlUtG0y8h37iniw5P26rrjRxdLbQ0DMNJEnEvjj+uWwZmGU39gV7v48P+bkEMAio8cKFakQMlRaps0nPrww8lPno8sYWuhOwyn6Xf6LqCkVLu4YDjVHYZTj6pdpMAJlD3tQsNpVljtQoinUHzkQEY+cnk+FC1kfvfjh7WfxEfWheWS21Qvql2c4kN3wXBqOEptPfJIyIqajMgHDaeVgX0+CPEUej5yoIywqq2imZEP/3s+Kt1kLJvnwxn5cF8UuRn5EELYZlCzyZg3k3Uy8lFuzwcNp1lhh1NCPIXiIwcjRz5Mz4fqZ/GBClS7jGJhOaQYTt1//ZzRqFINpwmHx8P0fHgzWVeu2oWG06yw2oUQT6H4yInl+cgR+VBtw6kPw9S+6nCaxfPhOEb1YFxOQVNqh1MZkbB/9sgjIX0lGeKDhtPKYPf5oPggxAsoPnKQNJzmEB9Wqa2vIx++9Xw40y7C9cXlFOdzLfFOPu4Ym2k49WaylhEWTal0qS3FBwB2OCXEYyg+cpBc1TZ7tYsS8HPaRfpV/NBkLMtkln6My3fbqotru6REPjzscJoz8kHDaWWwq118+P9NyCEAxUcOlNGmXfwYps5qOK1U2iXLh/dofCHFIgRUuGc4TeiG4+dyGE7Z4dQXsNqFEE+h+MiBrMJQtVziw0y7aH6MfDgrdSrt+cj24e1lqD/9eZacdklGPuIeltrKLqpaRrWLx+KWhtPssMMpIZ5C8ZEDubaLomRPu6h22sXvkY9Kp10yJzPFZYGQ//qlpl0ckQ/DS8NpjmoXr/++aDjNxNBhC3h2OCXEEyg+ciCbPeU0nFad+ChTn4/ReAgyPB8uCiOX0yJxPS3y4ZXh1BYfNJxWHGe0jpEPQjyB4iMH0vOhqUrW/dLzkTFZ+IGKej5GEcavpsiHke758MhwatBw6hucgoOeD0I8geIjJ9I3wbRLQWRMzpkf3hmL8bnq+UiPTJRqOB2pyZjbkQ8aTitOSuSDrwchXkDxkQPVSlPk6nCqBaoh8lGJUtuRJ7OMCiFXIx/unjvu8HzEs1a7uGQ4ta6T2V6dhtOyozPyQYjXFCQ+li1bhtNOOw3jxo3DlClTcNFFF2HLli0px0QiESxatAgTJ05EQ0MDFi5ciO7ublcHXQ7sapccfT40q9pFheF6k6ySqaTnYxSRgQzx4Wb0KG3yVEp8bzLbq3tkOLWuoyo0nFYcR7RO0PNBiCcUJD7WrVuHRYsWYcOGDXjyyScRj8dxzjnnYHBw0D5m8eLFePTRR/HQQw9h3bp16OzsxMUXX+z6wL0m2eE0u+dDC4STv/jtbtFXTcZGE/lwU3x4mHbxsMOpbsjIR6XXdqH4sMtsAcTjFB+EeEGgkIPXrFmT8vv999+PKVOmYNOmTfjkJz+J3t5erFixAqtWrcJZZ50FAFi5ciVmz56NDRs24PTTT3dv5B6jjhT5CDpeOiMOIFSGUY0SP3k+soStvRUfaZGPEp93iuE0a6mtWx1Oc3k+aDgtO87yWqZdCPGEkjwfvb29AIAJEyYAADZt2oR4PI6Ojg77mFmzZmH69OlYv3591nNEo1H09fWlfPmBZOQjV9olmPzFd5EPH4mPLK9NhknX1Q6nqefOMLcWSGrkoxyG03KX2tJwmoEj1eLL5RMIOQQoWnwYhoHrrrsOZ5xxBk444QQAQFdXF0KhEJqbm1OObWlpQVdXV9bzLFu2DE1NTfbXtGnTih2SewgBFTIHnz3tEgg6Ih1+u1sUWTqcQpTH95FRRpvN8+GhryHteqW2vx/ZcOrWwnK50i40nJYdR7TDnx2MCal+ihYfixYtwhtvvIEHH3ywpAEsXboUvb299teuXbtKOp8rOCbpXE3GAoEADGEJE7+FZrNFPoDyiI9RRT48nPAy0i6l9vko18Jylthlh9PK4/h/Nldd5mtCiNsU5PmQXHPNNfj973+P5557Docffri9vbW1FbFYDD09PSnRj+7ubrS2tmY9VzgcRjgczrqvciQnnFyej4CqIA4NYST8d7eYrcmYvd3j6uqi2qt71+HUzciHl4bT3KW2NJyWnfQKFz0O5PgcIIQUR0EzkRAC11xzDVavXo2nn34aM2bMSNk/d+5cBINBrF271t62ZcsW7Ny5E+3t7e6MuBw4JkdVy/6hE9RU6LD2+Vp8qJnbvWQUTcak5yMigtkf4+L1S458pLdX9yjyISMsGZEPzw2nZb5eNZAeyWS5LSGuU1DkY9GiRVi1ahUeeeQRjBs3zvZxNDU1oba2Fk1NTbjyyiuxZMkSTJgwAY2Njbj22mvR3t5eVZUuzg/knGkXTUFCajc/iw+kRz48Jj2KkWUyk0vexxBEDeLuhvrTDaclp13Sq1288XzE9Vyej3JHPnz2t1wJ0sWH39KqhBwCFCQ+7rnnHgDApz/96ZTtK1euxJe//GUAwO233w5VVbFw4UJEo1HMnz8fd999tyuDLRuOSVrL0V49qKpI+D7yofgg8pH+u2GbeaPyz8+DDqe6UKApouT29/H0Ph9SbCiq+Xq6Xe2ieHP+nMjX3r6ez/6WK0F6pIOvCSGuU5D4EKMwLNbU1GD58uVYvnx50YOqOM5JOk/kw067+O3OyB6/D8WHQwzEINMu7vf5iCGIWsRK7/PhrHZxGk61MJAY9m5hOXn+chlOy3W9aoCRD0I8h2u7ZMMZ+dDypV0063CffThlLbVFecSHcExmQJb8uUN8iEDGtpIxZErHan/vYrWLEIAhxxqwSq1dM5ym9fmQ5y9X2sW+HsWHs8MpAHo+CPEAio9sOMVHjshHUFWREKb40BM+C8v6wXAaqLF+z129YUc+PFjbJWp1nNWgl1Ri7BQfAGBIMWU/P3fee91I63Ca6/VzG1Hm61UDGV16ffb/TcghAMVHNgo0nOqJWNZjKkZFxccId+4paRfvPB8xZ0axhOftTLsAgNAdaRfH9Uolw3Bqn79MkY9yXa8aYLULIZ5D8ZENMXKfj6CmImFNcHrCbx9OudIuZWwylisyYHjs+bDETVS40/7eaTgFAENPF1dep13KZDgtV5qnGsjW54MQ4ioUH9kYtfiQkQ+ffWDnbTLmMXbkQ4qP3J6PuCeRD2k4dS78V/wEnkgrHbbTLi5HCrIaToHyGk6B8q0B5GOM9EgmIx+EuA7FRzZG4fnQ1GS1i7/TLgrsXh8+8nwkhIqEMF9bwxPDqTuRj0Ra5EN4bjiVHoxyGU7LbHCtAjL+n+n5IMR1KD6yYU3ShlCg5qh2AeAQHz67M0ppMub4jnKkXUaYzKzfdSQ7xCbcfP2yRT5KEAiZaRdvIh+JtMiH0MplOE2PVNFwmojT80GI11B8ZEOKDyhQsy9qCwDQrQZkhm/TLtbgpfioSOQju+FUhwbd+vMTbt5ZyshHiufDvbSLPVaXPRnxtCZjhlbmUttyXa8KMOLR1A30fBDiOhQf2XCID03JrT4MS3zo6X0BKk2uyEc5+3wE8vf5SDgiH256ZgyZ1oEGXa467KLhVGR4WtxeWE5GPsptOGW1iyTj/5mvCSGuQ/GRDWuSFlCg5BEfuhXa91/kQ1a7VDLyUWv9nn0tFAOqHfkwXPxwlykw3XH+kiIfOUtt3Y0UpC8sZ6juekpyYhtO5fVoODXS0y6MfBDiOhQfWZAGSAEFWp68i2GnXRj5sBmpdNMRmZDVQoaLaRddd6Z1Sl97J73JWDLy4W41SrLPhyXO1HIbThn5kBjs80GI51B8ZMGwJhwDal7Phy0+/PaBXVHxkZ6WyO75MKDCkOLDRcOp4Yh82Av/lWQ4TYt8eNSUS1a72JGPcqVdaDjNQCTo+SDEayg+sqDbqQEFat7Ih0y7+OzDKaf4KGe1S47J2Y58JMWB3bjLBXQ9eX5DlhiXlHZJe828MpxagjeQnnYpl+eDhlOb9P/njEgIIaRkKD6yUaDh1HcfTs6F5QC7zYcvql0M+do6Ih8uhrVlCkeHlox8uJl28ShSoNultlbaqGxpFxpO00n/f/ZdHx9CDgEoPrIgfQMCCtS84sOMfLhaKuoGvvB8jBD5EFqyyZiLkQ9hi4+kuHGz1NarSEF6kzFd9WDRvWzI50fDqY1IExu+62BMyCEAxUcWhOPuPEeDU/M4io/c184R+ZB3lTpUwGpd7+brJ9MuulDdiXzkLLX1wnAqEFAs8aEw8lEx0iMfcUY+CHEbio8sGEYy7ZIv8iFUv6Zd/NBkLPtklnBEJqBanhkXxYcz8mGX2rpoOM1cBdalPh+GgOroQJsol+cjvS8LDacQerrng+KDELeh+MhCSqkt0y6Fke75SHttkn04NHvRPuHi3XYysqJBF26kXdIMpx6thZLQhV1mCwC64sGKv9nwqHqnqjHS0i7pfT8IISVD8ZEFw9FkLF+1i1Cl+Cj9zig+eNC9apQMw6l/Ih9GQvbhUKFo8vVz0fPh6KDqTtolPfLhjeE0rhu22RQAEhVKu2x6bz+e2Nzl7TX9jiVgpSeJhlNC3IfiIwtCT6Zd8h6nSM9CaRPQ7q2vArcejVfvvryk89jYIqMSaZf8fT4S8oMdKhRPIh/muZwdVEsRCLK9up3B8spwaojkirZwpF28NJw6zbSW+ND1BJ7Zss+7a1YD1t/QEMzXxHdpVUIOASg+siA9H2Kkl0dWJJRYKtq1bROCio6p+18o6Tw2fmoyJvSUiI4UBwIaIMWbi6kFmQJTtIBDfJRSamu+ZrXBtIZlTsOpCxErM/KRfH/idtrFw8iH89xW2iUAHdH4GPd9WP/PESk+GPkgxHUoPrJg2F04R4h8uFStoUeHAACtYh8ig30lncscULr4sJ5HWZqMpaVdnNvg8HwoKgwPql1kFEVRA3Z79VLEjax2scVH+loo5gWKPr/zOimRD2vdIE89H86oiuVhUWEgkhjb4kOxxMewMF8T4bcmgoQcAlB8ZEGmXUaKfAjVnbtTIzZk/9z57hslnQtAhTucphlOnduQ7OkhoEHxMvKhJiMfpYTN41bko8YSH4rIL66KJWEkPR+6UOx1b7wQH/c99y5+9Me3ckQ+DAzHxrr4YNqFEK+h+MjCaCMfsk9FqZOPcIiPg+9vLulc5gkr2ecjLS0BZI18GIqWNOy6mFqQQsaZdimlSZQd+QhJ8ZHWxwQoWSAIIRDXhd1aPQENCeHO31a2a936+Nv42XPvortnMLnDer806IjEx3ajMSUt7ZJeeksIKR2KjyzYd+d5ymwB2H0qSl71Mp4UH/Hut0s7FwCgktUuaZ4PIFV86EnxkRRvbla7mNdStYBd7aK70F5dpl0yDKdA6ZEv6+3SZIMxx4q/bhtOY7phm2iHog4vg/V8NBgYHuOeD5VpF0I8h+IjC8JOT4xWfJT4Ye0QH8GD20s7F+CPJmPOyVnPknZRVIfh1P3Ih6oFXFk1V5baJg2nMvLhiOyUKBBkIzM77QIVcVG6WTYbzpRKNCpXb1UALWiNwUCkVPHR3wWkrwxbRaSnXYSLaw8RQkwoPrLgbK+eD8X6wFZKDMsq8WH75/FD75V0LgD+qHbRgra4cE6gwo58BDyJfMCOfGiOPg2lG05rrLSLKrJFPkobv4yu2Ou6QLXHjvS1ZUrEGdWIxKy/WzVgC+mSxcfB94Hbjgd+61LZeAWQ77FMu6S3WyeElA7FRxacHU7zIiMforS7U0VPio82fXfpC1n5ocmYY0JLTbskIx9Klv2lYlfOKAG7D4sbhtPaoPkaKjLKoQaSr2uJ40/YkQ+n+FBcOXc6KZGPmJV2UZNlzwGlRM/H/m1mJGjvm6UMs6JI8WGnXSg+CHEdio8sODuc5sWltIuWiNg/1yhxdO0sMfWSHvmQz6OckQ9Fyyo+pDgQHnk+5LmEFjB9JSht7Zj0UlvbcJoirkpNu5jXCNhpFw1xjwynzshHUnwko1Alez7ilonVkUqsNjTp+bAjH2w5T4jbUHxkwS61VUZKu5iTj1JiTlhzRD4AYP97fy3pfL7wfKha1snZMJziw53IUQrWuVRVtcWHXuTkIYSwUyKy1NZOu6iBrGmlYpCNzEKqea2E0/PhsuE0NfIh0y6ae2kXWbkVq17xoVqvufR8lGwoJ4RkQPGRBSFG5/mQHU6VEicITTcjHzLPP9z5Vknnq2iTMWdaQsusBnJGPhQ78uGeKJJ+HaEEk4bTIsWHc1G5mozIh1M8lej5sCIfITX5d+dZ2sUhLGIy8uGIQmnQEU0YMNIX1BstzshHOf7ePECD9HzIFvoUH4S4TcHi47nnnsMFF1yAtrY2KIqChx9+OGW/EAI33ngjpk6ditraWnR0dGDbtm1ujbcsjNbzkYx8lDZBBA1TfOwKHGGe78MSXy8/rGqrjpB2yeEJKRX5XiiOyEfR4kPPFB+qLa40QHWnEZisdglbp0sIZ9rFZcOpI/IRi2c3nAJANFHkde2IhwDiw3kP9SsBYa0/pJrl4grTLoS4TsHiY3BwECeddBKWL1+edf+tt96KO++8E/feey82btyI+vp6zJ8/H5FIJOvxfkTePWOEPh92tUvJ4sMsSzzQOBsAMG5gR0nnq5j4EGJEw6kt7ByRj1IjRynYpb7JtIhRpIE37pj4pedDRX5PSzHICIuMfJiltmWMfKia3ZBNio+ifR9OwVGNvg+RbHNvBOrMbYx8EOI6gUIfsGDBAixYsCDrPiEE7rjjDnznO9/BhRdeCAD4xS9+gZaWFjz88MO45JJLShttmRCjNJzakY8SJ8+wMIWZaD0ROPhHTIl/UNL5Kic+HOd3mBidkQFZOSAUzX79XDWcWmNQVIfhtMjJwxn5qA1lqXZxzXAqPR8GoJviI2Z40+fD6eeIOyIfMUNBLZKm16J9H3FH19TYIFA/qciRVghHZYsI1gLR0m8uCCGZuOr52LFjB7q6utDR0WFva2pqwrx587B+/fqsj4lGo+jr60v5qjSjXdVWtSIfasniw4x81EyeAQBoEv3J6Esx2KW2ZTacOidhVUuu+uv8QJftz1UNqhQnLkY+kmkXzVFqW9z5ZQmsogAhTYW5Io2j2sUtw6nt+TC/69AQN6RPx13D6VDWtIuGiG5eTy018uE0mlZj2kV3dH0N1gIo3VBOCMnEVfHR1dUFAGhpaUnZ3tLSYu9LZ9myZWhqarK/pk2b5uaQisM2LY6u2kUtsVpDio+GSYcBAIKKjshwCSHrSkU+nJNwrlLbLNUuXqRdFC1oi49ixYFMhwRVFQFNTVl1Nlc1TynXSYoPZ4dTl6tdUiIfScNpxBI7pUc+nOJjMPdxfsUhNJRQPYDS/78JIZlUvNpl6dKl6O3ttb927dpV6SGNOu0iIx9KCR9OhiFQA1N8jJvYBsPK9Q/2HSj6nBVrMuac5HN4PoSMQqiaw7DrYuTDTrtoEKo7htOApiCoKVnEhzvlsDLCEnSU2sZk5MNl8RFxRD4S8aQ/ZzhhXk9TBABRvPiIOdMuVej5cPytqCEZ+aD4IMRtXBUfra2tAIDu7u6U7d3d3fa+dMLhMBobG1O+Ko0tPkaIfKjW5KmV8OEUiUURVszH19Y3YkAxP/BKEx8+iHzk8nw4DKmqB5EPKQRVh+FUFCk+pOE0oCoIqKq99op5IfcNp2ElWWob98jzkRL5SCTTLlHHZcxeH0X+raREPqpQfFiRj7jQEAqZfT4Y+SDEfVwVHzNmzEBrayvWrl1rb+vr68PGjRvR3t7u5qU8RYy21DZgRT5Q/OQ5PJS8U6ypG4chmKHeyMDBos+Zs88HPO67INIiA1ZkKKXPh6MDqqJ5UO1inUvRAhBKwLpmaZGPoKYikBH5cN9wGrSqXRLQEC1DtUsikax2iTieWgB6CZEPh+CIVWHaxfJ8xBGg+CDEQwqudhkYGMD27cn23zt27MBrr72GCRMmYPr06bjuuuvwgx/8ADNnzsSMGTNwww03oK2tDRdddJGb4/YUY5SeD80Fw2lkaMC8plCgBmswrNYDxj5EB3qKPmdSBKQbTj0WH3KiVFRT8GSLDOiOyIfmTpM2JzKFo6oBR9qluPNLUWCmXdI9H+4bToOK5fkQWrLaRejm+zZC2fdocRpO4ylpl+TfulpKi3Wnz6MaIx/W32cCGsK2+HA39UUIKUJ8vPzyy/jMZz5j/75kyRIAwOWXX477778f119/PQYHB3HVVVehp6cHZ555JtasWYOamhr3Ru01RtrknQPVinxoJdwZRYdN8RFRwqhTFES0esAAEkM9RZ+z4mkXKTqyiQ/5Qa5pUD2IfKiOyEeyg2pphtOAqpqpF2eES3VvbRq7vboi+3woiDt1ojCSQqdEnBENXaZdFA3DjpcoUEraJSXyUYXiQ6ZdoKEmzMgHIV5RsPj49Kc/DZHnDlpRFNx88824+eabSxpYJRFyMhzhblOKj1LujGLD5p1iFCHUAYgF6oE4kBjqLfqclRMfjh4YQPbJ2VEKK1e1dfXO0jqX6lhYThQpDmwjqBX5kGWoyciOO6XCcmG5oN1kTEPUcETdDD15rRJxdjhNJJJiccipq0qKfFR3tUsiFkUAZtolbImPUm4uCCHZqXi1ix+R2mqkPh8y7ZISji+QmBX5iCpmZCgRHAcAMCLVKD5k2sWaKLP0+YDd5yNoG3YVF8clhYyZdinN8yFFgaYq0FQFAWePD+d3lxaWk2mXBDREdYfwddH34RQVup5sMhZxhFoC0BEdo9UuiYRZeZaAZkdrKT4IcR+Kjywke1F4n3ZJREzxEVPNuywpPkSkv+hzVmxVWzvyIcVHtj4fUnyotvhwM/Jhl9oG3Ei7yMiHZThV5Oua/vxcinw4q12EM/LhovhwRD502/OhIpIw7IUNNRgpxxVElVe7xK2W83GhobZGRj7o+SDEbSg+sqDFzIk/otbnP06KjxKqXRJR8wM6bi1iJcJmqbESdaHTa8aqtpX3fNg9UdQgNBn5KOH1S0euvaKlRD6KTbs4+3w4Sm3l83LZcBpQkn0+orrjX9PFyS818pF8vyJxAzrkyrYGIokirmnoQMKxhlMVVrsk4pnVLnKVW0KIe1B8ZCEQM1MeQ2pD3uNk2iVQiviImB/QCVt8mJEPNeZG5KPca7vk8nw4Prwd7dUVDyIf0hyoBgJQpDgots+HrHZJN5zK5mIuG06Dinkec20XxwEuNhrLmnZRNAzH9eTicoqO4VgRfyvp7dSrMvJhpl10JYBgKATA+v/2ulKMkDEGxUc2hnsAALFgU97DtGDpkQ/DyosnNFN8qDXmNQPxKhQfduQjd1pCcVSjaAG5Uqybng/DGkIA0EozhNrt1W3DqTUBpYsrlwyngZS1XZB839wUHw5RoTo8LJG4joRjZduiIh/pYqMKIx+61ftEVwIIBMPJHexySoirUHxkI9IDADBqmvMeFgiUfmckxYeumZ1NtVpTfIQSboqPcqVd5J27hnuefQcRu0tnFsOpFnBtYT4ndtpFCyQNr8WmXZyltpoz8uGu4VSXkQ/IJmOqGQ1x6fxOnKW2SQOtjHxo1nY9pQ37qEkXG1UY+ZBpFx0aAsFQcofOxeUIcROKjyxoUTPtotQ25z8u4KhULnKCE5b4MAKm+AjUm9cM6yXcNeaMfJSnyVhfTOCWNW9jy97hlO1AMvKhqlrScOpi5EMaTtVAEKqVHil2bY6Eo8lYQHWW2nplODXPYwjV9IG45CmRCCEwFEueK+lh0SzPh9uRj+oTH7oUH0oQASuyCSBVQBNCSobiIwtBy/Oh1U/Ie5wrYdm4FB9m2iVkiY8aT8RHeSIfcjn4/cPWBOYUH/aqs4FkqbKLkQ85oWqBZOSjVMNpUFMRzBb5sNMi7hhONUepbVx3RD5cen1iugFDZo4UR4m4lXZxio+iql3SxUYV9vmQaRdDSRpOrR0VGhEhhyYUH1kIJ8xKk+CI4sN5Z1Ss+DCjAyJQBwCoaRgPAKgTboiPcpfamq+BLBP9UHauck7+MjKhanbkyM3IhxQymhYsee2YlIXlnO3VbcOpO5EP23BqiRsDqpnyUd31fEQcfo/xdaFk5EPR0sSHXlyH03SxUYWRD0OKDzWAYCBgrzLNyAch7kLxkYVa3fRbhMdNzHtcIJAUH6LInLCSsFITQTPtUjuuGQDQIEr44K6w4TRmiY9BuV6I47WR1SiKFkTAEh+lGHbTkUJG05IdVIv2fDgjH6qSEikwv7tsOHWU2iZ04Zq4kchKl6CmYFxNIOX5DMd16CJZaltUh1MpNqTXZiTPx+5XgJ9+FNj8cOHX8ghn2iWoqYhDVkxRfBDiJhQfWWgwTPFR2zQp73HBQNKQlkgU9+GkWeJDCZmRj7pGM9oSVuKIRooUIBVuMhaz0i7yTjrV8yGrUbzxfEjDaSAYtMWHUmQTOOfCcgFNRcDyZAi3O5xa19HsUtu0tItLng8pKGqCGmqCWorhNKPapRjxIcVG/eTU33Ox9XHg4A5g8+rCr+URhvV/LNQAQgEVCUt8FHtzQQjJDsVHOvFhhGB+0IxrGinyodpdIaVLvlBUS3yolvhoGDfe3jfYd7Coc9rG0gr1+ZCeD/nBnc1wqmlBu0mbCuFYzK+U6wt7QtW0YHLhOpeqXaRIslc7di3tYkVYINd2sdIuLhtOpdm0NqihNqSlGE6H4wYM6+MgAL048SGrXeot0T5S2mVov/X9w8Kv5RGGbv4fCzWAoJYUH/Ei/78JIdmh+EhDHzIn/IRQMa55BM+HptjliUVHPgyzI6QUH1oggEFhmk+HihYfla12kSW2ychHlj4fgWTaxRybC6kFh7jSAoFk2qXYPh/OheVU1RY2QnHXcBq3Ix/JheW8MJxKQVEb0lAb1JLt4tUAonHdnmg1pchVbdMjH0Y8f7picF/qdx8gIx+GGkQ4oCJurb1Z7M0FISQ7FB9pDPaYH4R9qENzXTjvsUE1mRPWixQfQd0UH1o42cp9UDGFyPBAHvEx3AP84RvAzo2Z+zIiH+Vtry5FR0Iummw4PR9y1VnN7vPhfKwb1wes7rNqiYbTtIXlZKTA9ciHvI4d+VAsz4e7hlPZYKw2qKEupCU9H1aHU8NZ7VJS5GNy5rZsDFqRDx+JD2EZToXl+ZCCTI9HKzksQg45KD7SGOg1Q8D9aEAokP/lUVXFnmj1Iu+MAkam+Biy1pSJ5hMfb/8BeOk/gae/n7mvwqW2ukxFWd+dwkx1pF2CAS3jsW5cHzAjH3Lhv2LFh3NhuaCWNJwKu8+HS4ZT6zqa3WRMg254ZzitDZmej/RSW9c8HzVNybHn831I0TF0wDelrMJKu0ALQFMVpl0I8QiKjzQiveYH4oA6blTHy7v7eJGRj5AlPgI1dckxWGvKxAZ7cz9woNv8vn9r5r6KpV3MCSsBDYc119rt5/uHkouNKUgaTjVnB0mXIx+BQNA2tBYtPuy25woURbFXnbXTLq4ZTq3rQIo3zRQkLhtOUzwfwTTPRyzZ4VSDjmjCgGEU+PciPR6hOiBYn7otG3bEQwDDBwq7lkfYxlKrYifBtAshnkDxkUa03/wQjARGJz70EtMuIWGGc0M1yUXsYgHzZ91aYyYr0qQ30G2vRWNT4VJbHSqa64KYOM4UVH1DyQXH7D4cgQACmtPz4Ybh1NE6PBCAqpa2cJ1tONXM1y9krb1ip11sQ2hpkQndSE+7qBDCcR2XxIft+bAMpynVLolkh1MpgqKJAt8TGeUI1tml44gP4h//62V03LYutXGZHgeGHZE9n6RepPgQVkpQV0r7/yaEZIfiI434kCk+YoHGUR2vWxOEbE5UKGFbfCTTLvGgKT6M4dyRj54Pu5K/fLg9dWe6+AhaUZWd672NfliTZAIaJtSHMKnRfE79g87Ih1zyPoiApjke6sKHu0MEBIIBFyIfScMpkBQfRnraxS3DqUN8AI4Ii0uGUzn514RM8SGrdwxFQyxh2CkGuYBewb4Pp/iwDNTd+w/g8c3d2L53AG919SWPTa9w8Yn4QFrkQ2fkgxBPoPhIwxg078biofwr2krsD6dE4ROQEAJhWOKjLhn5SATNqIsRyb24XP+B7uQv+7aknVjesVpG07lfBrQw8O4zwGurCh7nqBHJDp3NdSFMaTLFx/7+QTuELyMfaiCAQEBLliq7kPOXd6e6UBDUAlADpUU+4o5SWwAIqemeD3dLbWUaJCk+XDacxpOG09qg5kjzWALa+h62nmfBvo8saZfX3u20d3f2JCNgGWJDmk8rjIx8KHbkw3yP9SJvLggh2aH4SMdKYRg1oxUf5kRUzJ17JG6gzhIf4dqk+DBCpvhQIrkjH4FIMkcu9qX5PtKrXSbNROyT3zZ3rfk2Bv7yCAbffAKIlrBybjZsz4eK8XVBHH+YWao8HInh96/vAeDoQBoIIOgoVXYjrC19Nzqsvhx2k7HiUjrOheUAIKjkiHyU3OHU8sHYkQ+rsZVHhtM6WWprXS9uVyeZ32usyxYsPmR79WC9Hfl4e2cyQpdffPgk8iErs6wGghQfhHgDxUcaSrTH/KF2fN7jJHIi0vXCP5yGY3HUKubjahyRD4TNlI8ayy0OQtFkvjzS9VbqzrQOp79+cSeOX3MMXjOOghLtQ8PqL6H+t5/DwX89JTNqUgq250NDc10ItTVmqXIQCdzx1FYkdMOx5H0QmqNaKF5E5CgdPZG8flBT7WoXec1CSbZXl2kXK02B9MiHSwvLISneAEeExa0OpxlNxizxYbVVl9er0YpMu6REPkzxsas7GdHo7Emm3zCYnnbxR+RDkZEPK+1i/3/H6fkgxE0oPtKQK9qqdaMTH/LOyChi8hweGrB/1kLJahelxhQfgXhu8VGb6LF/Fvu2pe50eD6EELjvT+8iITQsiX8dG4zZeN04EvtEE8bH98JYMR/Y9VLBY8+Kw/Mxvi4INE8DAJygvY939w3gkdc6oVpjCwSCCKqqPdEaLrSvlnenOlQEVAWa5SlxLe2iSI9EuuG0RPEhS23lOK3zGi4bTjPaq1vt3BNWR1phRXJqLfFRcKOxFM+HmXYJi6Tg2O2IfOgDe1Memv57xbAiH0pAig/r/5vt1QlxFYqPNEJxa0XbuvzdTSWGnXYpPPIRHXY0YAomxYdWa6Z8gomB9IeYJKKocyw8VzOwM2mUM/Rk+FvV8NcPevHuvkGEAypW3/hlnPbd9Tj+u6/h2ua78ZpxNNTIQWDV5zIrZorBSHo+xteFgOkfBwK1aMEBHKfswk/XbnMsea9BVRW7sZXuQuQjkUh6JjRVsZuYFV3tkmY4lWkXHemG09IqdWQzM7t9uyojEdJw6k6Vkt1kLGQ2GZPXkwsBStETtsVHoZEP6+8uVG//PdciiqMmm0LEmXbp3W96QSLCfI8iPQ4PUwVRDLnwoZl2keKj2D4+hJDsUHykUZOwVrRtzL+ui0SGZY0iDJPRYVNcRBFKdrMEEKgzxUcol/iwKnISQsWAqDFXij2ww9y3/Skg0gvUTgAmHYvVr+4GAJzzkVY01Qbtbp2fOnk2Lo39P3wQmG6WPG64u+DxZyAjH0LF+PoQEKwBZnwCAHBe7RvYeWAoufaKzKmX2J7eSTLyoUFRFMfaMaV1OJWltkHVElcZhlN3Ih/2OOXdtstpl5RSW4fhNC5k5MO8bo1apPhwRD6EJT7qEMUXTz8CQKr4GLCqtbaJwwAAiX5/RD5UK/IhU3aGysgHIV5A8ZGGXNE2PG504kMvISwrIx9RpLZxD9WbKZ8aI3tramEtyHUQDXhHtJkb91vejZdXmt8/+n8RV4J49C/mHebFJx+Wco7z50zFMGqwbPhvzQ3r77ZFTdHIDqcy7QIAx3QAAP6u6W0Aybv7oFUG62bkQ9dTq0W0gEy7FGk4tURBQDUnZ7nkvRyzW4ZT6fmwx2md176OBx1Oa4OOyIe1Fo9iXTekpR4/amzPRz16Eub736jFcOFHzb+9g0Nxu9FZvM+MdGwVZmpOHfKJ50OKD02mXazvFB+EuEpg5EMODXbu7cV1K9bYvx8zpQE/uOgEhKy7WoQbgJpmNIgBQAEamguMfBQxecYjlvhQU8VHuKEZAFCXQ3wMHtyLBgAHxTi8I9pwEt41O5327ga2PW6e86QvYu2b3fhwMIZJDSF8YuaklHNMm1CHj05rxh93nYYDE47DhP4twHM/AU7/OlDTaLbILhRHk7HxdVb3Ukt8TO19DTPGGQhYvSZk91O7iZMLpbYyeiLfE82aQLSSDaepng/dZcNpstrFWjtG9Sby4exwWuNoMiZXIUZG5KMA0SaEo9qlDnsjGsYDOKxeYEJ9CONqAuiPJNDZE8ExUxpssbEd0wEAoag/VraVaRfViszZ7wWbjBHiKmNGfCi97+F/olclN+wCcJfzABWJz/0XAtYEM278lFGdV+aERRF3RglLfMSVVPFRO86MfNQ7fB3Q4xjeux21rbMwcKALDQB6lEa8o7cBGhDtehth/b8AYWBrzUk454537IdecFKbnTpwcv6cqXhtVw++P3gRbsctZuplw92IK0FEv/AHNBw9r6DnE08kEESywykAYOLRwISjoBx4FzfN2Qf1VZl2Sb27L0a8pWOvSGqdUzYZs9cwKRC7+Zcd+UhtAubWqrayz4f0piiycR3cNpymLyxndTK1xIeMfIQ1wzq+ANGWiCa9KaE67B5UcByA1lrzHIc11+Ltrn509gzjmCkNCMfMKJvWejywDwjrQ0B8ONkZtUKowop8BFPFh2CpLSGuMmbSLlMaa2FoYRhaGAk1jIgIIiKCEFqNeccnDIjn7wAAREUATeNG1+FUmgOL8XzY4kOtSdle12iaXeuUqN1Z8dX/XITa/zgdW/+8GkO9Zn58ONCMnrojAQChN/8bYt2tAIB/7/uEfa7Wxho7557O+XPaEAqoWD00B3/UP4aICCImNARFHP2/u6bgcH8kavYsMRQNDWGHrj3mswCAT6h/sSfwcNAUXLbnw41qFz2Z9gHMihogmeopFCkKpOE0kNHnQ0Y+SjOEpqddkpEPdw2nkVhq2kVLS7vI5xO2Ih/RQsSHcwG5YD3etwq1JoXNc7Q1m6Jid88wInEdTUYPAODo405EzCr19UO5rfR8SE+SsNIuxdxcEEJyM2YiH+GWY4EbLFObIfB/730Br+zswTlHt+DaY3tw4pqFCHaaJaf9Sj0mZYkUZEP2RhBF9PnQrRx5QksVHw1NyUqbgZ4P0Tx5Ksbt2wQAOPj2OjQ3WAvPhcejb/wpGPwgjHqrWdkuYzKexGn4+ZdPxaeOnWLftWejtakGj15zJt7ZNwDgF3gawIfdu/E3f7oAU4e3Yv8zd2PS2deO+vlEYzGMAxAIhKAojuvO/Czw4n9Ae/v3gNW6W050QlEBAQi9dF+Dbk0QMpUjO5wWnXZJK7UNKqnixnXDqfSOqKl+GC9KbVPFh4x8mNeVbeRT1mIZCVnpooUgVA3v9pnnaA6aY29rNv/GO3uGsWPPfsxWzL/X444+Gh/+qQlTccBsNGaVZ1eCwa3P4tj4FkABpk472tyoFR/ZJITkZsyIDyeqquDmC0/ABf/+PJ54sxtPvCnw5/BEHKaYeecBZRwmjXAOSTLtMroP6u17B7D8me148s1unKNvw6cDmeIjGAxhLyZgCg5g78630TSxBVMTHwAAwj3vQIdpMk3UTMSk1uk4/Z3l+OiEGHYdHMYeMRHfufCjOGtWy6jGc1zrOBzX6lhE78Sp+MWbV+JLB+5C3Z+XAfFOIFADnPIlYMKMvOeKWY2YQqG0P6ujPg00Twd6dia3WRO63eHUlT4f5kQnrEk7aJfautPhNGCX2npjOJXr3sj0h+HSwnWSIRn5sDwfUnwMxq3Ii9UXRYqPSKKQyIdVyRKsw64DwzgYCwIhoN4SGc7Ix85dvZgNIIYgDmuZgl2iEVOVA4j07UXNYTnO7zUD+6D9zz9AUwTWBM7CubM/DsCRdqH4IMRVxkzaJZ0TDmvC0gWzcGxLA6ZNqMMa/WP2vmFtdCvaAsleDKOJfCx/Zjs+e/s6rH51NwaiCXtF27q6zOt1h0wjXu+uzTi49wPUw2zWNH7oPSjDljmvbgKOmdKAftThTwea8Z6Yiq9+5nh8sf3IUY8/G+2f+yZeN2aYhtcNdwPP34bIvWcBXW/kfVwsZr4GQStfbqMFgU9+K3WbnVpwr9pFej5k5EMLmtcIKnpRC+qlG06D6Z4Ptw2naZEP3eXIRyStvbpsMtZn/ekqmox8WJ6PWAGiLZ7s8fFGZy+GrAou1UrHHGaJj86eYezp3AUAGAqOR1NdCL2qaW7u2duJEXn/BWD56cC2p8zfh3uA+88Hnrgh50PWbd2Hc25fhxd35KnmemQRaiL7sNU4DK+e8B17s7A6ncIFQ/QhSzwC/OrvgUeu8XbhSlIS27r78X9++if8btMHlR4KAA/Fx/Lly3HkkUeipqYG8+bNw4svvujVpYrmqk8ejScWfwpPf+PT+Mu4T9nbI4HRV3ok74zyfzi9s28Atz25FUIAnz2+Bb/7x9Ox9AxTdExryYyzDDYeBQDQ927B3vc229un6p0IDZvrYGj1k3BsS1K4XH/ucfjm/ONGPfZczJzajLVz/hU/TVyM5Ym/wVvGdNTEDiD6n+cCa78PPPMjYOsTGR80duTDqmRJ4aRLzeiHRFYJoXjPTDqGISMflvgIOCIwRUQ/4umltshlOHVnYTnFSIt8uCg+hBAppbZBTbWfz0DUEj+aFGvWwnKFRD5kmW2wFps7ezEsy8ct8SEjH+/tH8Jrb5urMIu6yQCAaMhMM/Yf2JP/GoYB/OEbwL63gD8sMRvrvXAX8N6fgBfuBHa/kvGQuG7gOw+/jq3dA7jh4TfsBQ5TeHcdsO1xxBDAovg/44zjk3+ncoG5YtKqY4ZNK80qu1f/y+wzRHzJD/7wFt7c04fvPboZvUOVj+R5Ij5+85vfYMmSJbjpppvwyiuv4KSTTsL8+fOxd68/GgmlE9RULLzoYnSLZgBAIjQ6syngEB8jTBA/WbMFhqHja0d2477Jv8Opqz+JphdvN3dmK2udeKy5q2c7+jvftjeHFB1Th8yeHqGmKZg7fTz+6axjcNelJ+Prnz5m1OMeiX+6+Gyc90934exrluOPp67AJmMmwol+4E//Cqy7BVj1OYiVC4DXfwe89Siw+xXErchHOBTKPGF69MP2fLgnPmT0RKYrAoHkOIop5U2kNRmTZlm5Eq9rq9qmp10sESAjOG4YTuO6gG5NvDVB6/Wx0iu9MZl2SfV8RArxfDgajL2xuw/DwhIfsVTx0dUXQTBiGkubJrUCAPRaU3xHe7qQl83/A+x90/y5533gzz8FNt6b3P/MjzIe8tDLH2DXATMltKW7H394PU3gCAE880MAwK8SZ2NXYDo+NsPR3VhGPlyKPh1yxIaAP92W/P2ZHzL64UM2vX8A67aaN639kQT+8/l3Kzwij8THbbfdhq9+9au44oorcPzxx+Pee+9FXV0dfv7zn3txOVf41HEt+GvjWQCAWEPb6B8o8/55JrdN7x2AeOtRPB76F3y7azGw8R6g7wMg1ACcsBA4458yHlN/2GwAwITI+9D3bU/ZV2elYOqapkBVFSw55zhccFIBYx4FqqrgmCkNmNXaiCUXnIYXPv6fuDX+93gg8Vk8lPgkIiIIZed64L+vBH7zBeC+z2BK718AAKFs4gMwox+zzgdO/oK9aqhhG3ZduLvX08VHMvIRL6I9dnp79YBXfT6sCIuMfCTTLu71+XCWzdZa4kP2LemNSvFhTrTFRT7MtIsI1WOzI+0i0zEt48KQ3ueJMJcwUBumWN/NCIg+kGdlWz0BPPtj8+fJ5v8Gnv4+EBsAJh5jRtK2Pwns3Gg/JBLXcdfT5rpHx7aYJu3brQUObbavBXZtREIN4+7E36D9qIm2OANgimYguXwBSeWl+4DBvUDTNHM1485XgS1/rPSoSBr/9oS58rn8P/j58ztwYLCy0TzXDaexWAybNm3C0qVL7W2qqqKjowPr16/POD4ajSJqlWgCQF9fn9tDGjWnfuU2PPfYcZjd8aVRP0bmhJt2P40/3///oAZroYoEtL2v47C+19As+nACBP4jZH14hRuBWecBs/8GOPosswV5FqYcdSLwNDBV78LBHvMD1BAKVCV5VzFu4uhMpaWiKAquPfejeOukf0N3XwQ79g/i7D88j6vV1TilZg8m4wAmJ7owOfIeAKAml/jQgsAlv0rZJKzURd3G2/Haq/9V0jjrY/tTzhl0pH+23Pm3ySXqR8n3h2MwggIznvg5UBPERwZeBQC8vmcAdz/wEk4aehfXAhjsfBPbbj23uEEL4GcB8+9fGzA9D6olaP+6ux8zAHT9+Zfoeum54s5vYRgC9wVjUBQg+NtfAFAwTZhRgF091vUtw+kRe5/BfcHNCG9X8dqtWVJoWRif2IcjALyxN479AzHUy/Lx4R5g1SUIAHigdh8icQOzA3vMoqd6M+JR09wC7AYO/3A9XsvxOtYagzgusg39aiNuqP0+btS+hgm6+X7/NHAFTq5/Hp8ceAz7fvEl7A6Zxuh4wsDNw3HU1KmYN2kiXujdj3iPwGu3Bu1o1rTodkwE8BvMxz6Mx6eOnZxyXRmFmr7/TznHNpY5NvJX1AH4efAStNTtxnm9q3DwoWvxfviuER9LyoMhBK4YiOHKkIKPT5iIvw71oC+SwHsPPIgJX7+/YuNyXXzs378fuq6jpSV1YmxpacHbb7+dcfyyZcvwve99z+1hFMX48ePxyf/77YIeY9RPAT4EZsffAt57K/MA625vGGEkPnY1xn1mMVDbPOJ5p7TNwKCoQb0Swcyh1wAF2BKchdmJ5DWaJ7YWNNZSmT21EbOnNuLTx5n9Q6799UQkBgSOVXbhifC/JMfVMPpGUUPhyUAcmJnYBiS2jfyAUTAcNieQUKgGPWhAMwZwUqSIlXtlXNAq0pHB+LcH6vDUW3vRpSi4NgzUGwP46FCmsB418kbb0qdaUyuwS+DtgXpcGARaE7vRmthd/PnTr2PeBKHB+nVX3FpFucmMnjUMf4DPah+YAmEIBfH6gOlBam07HOipBRLDwNbHAACfkGOQ+nmimSYcP/14YDMwET2YOMLreFf0PDy8NYZa7UIsC67AS8axuP39I3EYGvB0+ClTBCcc6RsNgAHgHeDT8vdo6jkHRA3+bej/QFOVjCox+Zq0Yh9ah/JEZsYw7xhT8cMP5qABM3Fm+GGM1z/E+FL+H4j7yP/9HcA86/d3u7swEE2k9mQqI4oQ7iboOjs7cdhhh+GFF15Ae3u7vf3666/HunXrsHHjxpTjs0U+pk2bht7eXjQ2jt57USmGB/vxxpP3w9j/DgIDewAjbnaabjoSjcd9ChOmHQddAE0TWzCucXxB5972g1PNSdnihRnX4uM7zDuKIRGGdsMehANarod7ztbufry68yAA4FMbv4rW/RsAAMa5t0I9/R9HdY4De3fjnRdWu5J2Acw71aM//reYMMWs2XzvrZex983niz7flMYwjpxorsoaTRj4yz6B9yd9EoYaBIRAy/71qBsewaswCg4fX2f2wphwNHqmnIa1b+2FiA+hrftZBBIFKoA8zJhcj8kNZkqkdziOV/sb0T1xHsbXhXDWMU0IbH8cRqQXW7sG0BcpLNVgqEF0tnwKiWATzpw5CW1DW4Cuv9r7+yMJ7OuP4KjJDabP6dgFQCAEYRh4fd3/IHIgvws/HqzH7tYO0ydkvfYHm45HLNQMABjf+yaae1NvcGpDGk5oa4SiKDCEwBu7+zIWzDvQfAJ6G4/FMVMaMPeI1NWsY9EINj/7G8QHDhb0WowZFAVdk9oxXGveCDX2v4OJB/9S4UGRdIKaihMOa0RQUyGEwOObuzHnmGlo+/ilrl6nr68PTU1No5q/XRcfsVgMdXV1+N3vfoeLLrrI3n755Zejp6cHjzzySN7HFzL4Q52Xb/s7nNr3JAAgJgJ4/+JHMXP1AgBAJyah7bvv5Ht4edn6BLDqc+bP590GnHZlZcdDCCGkrBQyf7tuOA2FQpg7dy7Wrl1rbzMMA2vXrk2JhJCRSUyYaf+8R5uKaceeBMNa/rxfLWLhNy85pgOYaI03VF/ZsRBCCPE1niR7lixZgssvvxynnnoqPvaxj+GOO+7A4OAgrrjiCi8ud8gSbp0FvGf+fLBmGo6orcdudQoOE90YDjZXcmiZqCrwdz8H/vobs6KFEEIIyYEn4uPzn/889u3bhxtvvBFdXV346Ec/ijVr1mSYUEl+Jh75EcC0USDSZDr499ccgcOGuxELFeYfKQtT55hfhBBCSB48s7lec801uOaaa7w6/Zhg6oyPICFUBBQD2iSzMmCo+Vhg+EXoDeWtdCGEEELcYsyu7VINBMO1+CBwOABgwpEfBQDMvPBfsH76VTj6/G9WcGSEEEJI8YzJVW2ricDC+/DGuy/jhFM+AwCY1Dodk77ykwqPihBCCCkeig+fc/jxp+Pw40+v9DAIIYQQ12DahRBCCCFlheKDEEIIIWWF4oMQQgghZYXigxBCCCFlheKDEEIIIWWF4oMQQgghZYXigxBCCCFlheKDEEIIIWWF4oMQQgghZYXigxBCCCFlheKDEEIIIWWF4oMQQgghZYXigxBCCCFlxXer2gohAAB9fX0VHgkhhBBCRouct+U8ng/fiY/+/n4AwLRp0yo8EkIIIYQUSn9/P5qamvIeo4jRSJQyYhgGOjs7MW7cOCiK4uq5+/r6MG3aNOzatQuNjY2unpu4D9+v6oLvV3XB96t6qJb3SgiB/v5+tLW1QVXzuzp8F/lQVRWHH364p9dobGz09RtIUuH7VV3w/aou+H5VD9XwXo0U8ZDQcEoIIYSQskLxQQghhJCyMqbERzgcxk033YRwOFzpoZBRwPeruuD7VV3w/aoeDsX3yneGU0IIIYQc2oypyAchhBBCKg/FByGEEELKCsUHIYQQQsoKxQchhBBCysqYER/Lly/HkUceiZqaGsybNw8vvvhipYdEAHz3u9+FoigpX7NmzbL3RyIRLFq0CBMnTkRDQwMWLlyI7u7uCo54bPHcc8/hggsuQFtbGxRFwcMPP5yyXwiBG2+8EVOnTkVtbS06Ojqwbdu2lGMOHDiAyy67DI2NjWhubsaVV16JgYGBMj6LscNI79eXv/zljP+3c889N+UYvl/lYdmyZTjttNMwbtw4TJkyBRdddBG2bNmScsxoPv927tyJ8847D3V1dZgyZQq+9a1vIZFIlPOpFMWYEB+/+c1vsGTJEtx000145ZVXcNJJJ2H+/PnYu3dvpYdGAHzkIx/Bnj177K/nn3/e3rd48WI8+uijeOihh7Bu3Tp0dnbi4osvruBoxxaDg4M46aSTsHz58qz7b731Vtx555249957sXHjRtTX12P+/PmIRCL2MZdddhk2b96MJ598Er///e/x3HPP4aqrrirXUxhTjPR+AcC5556b8v/261//OmU/36/ysG7dOixatAgbNmzAk08+iXg8jnPOOQeDg4P2MSN9/um6jvPOOw+xWAwvvPACHnjgAdx///248cYbK/GUCkOMAT72sY+JRYsW2b/rui7a2trEsmXLKjgqIoQQN910kzjppJOy7uvp6RHBYFA89NBD9ra33npLABDr168v0wiJBIBYvXq1/bthGKK1tVX85Cc/sbf19PSIcDgsfv3rXwshhHjzzTcFAPHSSy/Zxzz22GNCURSxe/fuso19LJL+fgkhxOWXXy4uvPDCnI/h+1U59u7dKwCIdevWCSFG9/n3xz/+UaiqKrq6uuxj7rnnHtHY2Cii0Wh5n0CBHPKRj1gshk2bNqGjo8PepqoqOjo6sH79+gqOjEi2bduGtrY2HHXUUbjsssuwc+dOAMCmTZsQj8dT3rtZs2Zh+vTpfO98wI4dO9DV1ZXy/jQ1NWHevHn2+7N+/Xo0Nzfj1FNPtY/p6OiAqqrYuHFj2cdMgGeffRZTpkzBcccdh6uvvhoffvihvY/vV+Xo7e0FAEyYMAHA6D7/1q9fjxNPPBEtLS32MfPnz0dfXx82b95cxtEXziEvPvbv3w9d11PeHABoaWlBV1dXhUZFJPPmzcP999+PNWvW4J577sGOHTvwiU98Av39/ejq6kIoFEJzc3PKY/je+QP5HuT73+rq6sKUKVNS9gcCAUyYMIHvYQU499xz8Ytf/AJr167FLbfcgnXr1mHBggXQdR0A369KYRgGrrvuOpxxxhk44YQTAGBUn39dXV1Z///kPj/ju1VtydhiwYIF9s9z5szBvHnzcMQRR+C3v/0tamtrKzgyQg49LrnkEvvnE088EXPmzMHRRx+NZ599FmeffXYFRza2WbRoEd54440Uv9uhziEf+Zg0aRI0TctwCHd3d6O1tbVCoyK5aG5uxrHHHovt27ejtbUVsVgMPT09KcfwvfMH8j3I97/V2tqaYexOJBI4cOAA30MfcNRRR2HSpEnYvn07AL5fleCaa67B73//ezzzzDM4/PDD7e2j+fxrbW3N+v8n9/mZQ158hEIhzJ07F2vXrrW3GYaBtWvXor29vYIjI9kYGBjAO++8g6lTp2Lu3LkIBoMp792WLVuwc+dOvnc+YMaMGWhtbU15f/r6+rBx40b7/Wlvb0dPTw82bdpkH/P000/DMAzMmzev7GMmqXzwwQf48MMPMXXqVAB8v8qJEALXXHMNVq9ejaeffhozZsxI2T+az7/29na8/vrrKYLxySefRGNjI44//vjyPJFiqbTjtRw8+OCDIhwOi/vvv1+8+eab4qqrrhLNzc0pDmFSGb7xjW+IZ599VuzYsUP8+c9/Fh0dHWLSpEli7969Qgghvva1r4np06eLp59+Wrz88suivb1dtLe3V3jUY4f+/n7x6quvildffVUAELfddpt49dVXxfvvvy+EEOLHP/6xaG5uFo888oj461//Ki688EIxY8YMMTw8bJ/j3HPPFSeffLLYuHGjeP7558XMmTPFpZdeWqmndEiT7/3q7+8X3/zmN8X69evFjh07xFNPPSVOOeUUMXPmTBGJROxz8P0qD1dffbVoamoSzz77rNizZ4/9NTQ0ZB8z0udfIpEQJ5xwgjjnnHPEa6+9JtasWSMmT54sli5dWomnVBBjQnwIIcRdd90lpk+fLkKhkPjYxz4mNmzYUOkhESHE5z//eTF16lQRCoXEYYcdJj7/+c+L7du32/uHh4fF17/+dTF+/HhRV1cn/vZv/1bs2bOngiMeWzzzzDMCQMbX5ZdfLoQwy21vuOEG0dLSIsLhsDj77LPFli1bUs7x4YcfiksvvVQ0NDSIxsZGccUVV4j+/v4KPJtDn3zv19DQkDjnnHPE5MmTRTAYFEcccYT46le/mnETxverPGR7nwCIlStX2seM5vPvvffeEwsWLBC1tbVi0qRJ4hvf+IaIx+NlfjaFowghRLmjLYQQQggZuxzyng9CCCGE+AuKD0IIIYSUFYoPQgghhJQVig9CCCGElBWKD0IIIYSUFYoPQgghhJQVig9CCCGElBWKD0IIIYSUFYoPQgghhJQVig9CCCGElBWKD0IIIYSUFYoPQgghhJSV/w8IUrtoucfnOgAAAABJRU5ErkJggg==", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAh8AAAGdCAYAAACyzRGfAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAAaiNJREFUeJztvXt8G+WZ9n/NjA4+xXaOdgwJhGPCGVIILrTbpi4hCyyUvC3w0l1KWdjSwC5JKe/mtwVaegjQXaC0IbR9swG2TSm8b4GFt4RCKKFAkkI4JxASCDjg2CEBn63jPL8/Zp7RjDSSLWkkjeLr+/noY2skzzzSyPNcuu/rvh9FCCFACCGEEFIm1EoPgBBCCCHjC4oPQgghhJQVig9CCCGElBWKD0IIIYSUFYoPQgghhJQVig9CCCGElBWKD0IIIYSUFYoPQgghhJSVQKUHkI6u6+jq6sKECROgKEqlh0MIIYSQMSCEwMDAANra2qCquWMbvhMfXV1dmDFjRqWHQQghhJAC2LVrFw488MCcz/Gd+JgwYQIAY/CNjY0VHg0hhBBCxkJ/fz9mzJhhzeO58J34kKmWxsZGig9CCCGkyhiLZYKGU0IIIYSUlbzERzKZxPXXX49Zs2ahtrYWhx56KH74wx/CvjCuEAI33HADpk+fjtraWnR0dGD79u2eD5wQQggh1Ule4uOWW27BypUr8Ytf/AJvvfUWbrnlFtx66634+c9/bj3n1ltvxZ133om7774bmzZtQn19PRYsWIBIJOL54AkhhBBSfSjCHrYYhbPPPhstLS1YtWqVtW3RokWora3Fb37zGwgh0NbWhu985zu49tprAQB9fX1oaWnBPffcgwsvvHDUY/T396OpqQl9fX30fBBCCCFVQj7zd16Rj89+9rNYt24d3nnnHQDAa6+9hueeew4LFy4EAOzcuRPd3d3o6Oiw/qapqQnz5s3Dhg0b8n0dhBBCCNkPyava5V//9V/R39+P2bNnQ9M0JJNJ/PjHP8bFF18MAOju7gYAtLS0OP6upaXFeiydaDSKaDRq3e/v78/rBRBCCCGkusgr8vHAAw/gt7/9LdasWYOXX34Z9957L/793/8d9957b8EDWL58OZqamqwbG4wRQggh+zd5iY/vfve7+Nd//VdceOGFOPbYY/H3f//3WLJkCZYvXw4AaG1tBQD09PQ4/q6np8d6LJ1ly5ahr6/Puu3atauQ10EIIYSQKiEv8TE8PJzRr13TNOi6DgCYNWsWWltbsW7dOuvx/v5+bNq0Ce3t7a77DIfDVkMxNhYjhBBC9n/y8nycc845+PGPf4yZM2fi6KOPxiuvvILbbrsN3/zmNwEYXc2uueYa/OhHP8Lhhx+OWbNm4frrr0dbWxvOO++8UoyfEEIIIVVGXuLj5z//Oa6//np8+9vfxp49e9DW1oZ/+qd/wg033GA957rrrsPQ0BCuuOIK9Pb24vTTT8fatWtRU1Pj+eAJIYQQUn3k1eejHLDPByGEEFJ9lKzPx7ijtxN47nYg0mfc13Wg+w0gGa/suAghhJAqhuIjF8//DHjq+8Cra4z7Wx8C7j4deGZ5RYdFCCGEVDMUH7mIDho/+z40fvZsNX72shyYEEIIKRSKj1wIo4QYw/uMn0MfO7cTQgghJG8oPnIhRcbQXuOnFCEiWZnxEEIIIfsBFB+5sCIfpviQIkSn+CCEEEIKheIjF1bkw4x4SBHCtAshhBBSMBQfucgW+aD4IIQQQgqG4iMnZv+1+LDR6yPSa9xn2oUQQggpGIqPXNibv+7dbtvOyAchhBBSKBQfubCLjI/ftm1n5IMQQggpFIqPXNjFx563Ur8z7UIIIYQUDMVHLhyRj23u2wkhhBCSFxQfubB7Pig+CCGEEE+g+MiFXWT0daZ+Z9qFEEIIKRiKj1xki3Aw8kEIIYQUDMVHLrKKD0Y+CCGEkEKh+MgFIx+EEEKI51B8FAI9H4QQQkjBUHzkgpEPQgghxHMoPnJB8UEIIYR4DsVHLrKJDKZdCCGEkIKh+MgFq10IIYQQz6H4yIW9w6ljO9MuhBBCSKFQfOQiXWRoYeMn0y6EEEJIwVB85EKKj1CD8bOhxbmdEEIIIXlD8ZELKTLqpxo/G6Y5t/uVrleAJ/4NiPRVeiSEEEJIBhQfuZCej9lnAY0HAnPONu77Pe3yl/8ANvwC2La20iMhhBBCMqD4yIWMcBzWASzdAhx+hrnd5+IjHjF+JkYqOw5CCCHEBYqPnJiRD0V1/vR72kWO2/fjJIQQMh6h+MiFnLwt8aEZP/2edpHjzlYqTAghhFSQvMTHwQcfDEVRMm6LFy8GAEQiESxevBiTJ09GQ0MDFi1ahJ6enpIMvCxY4kMxfqqac7tfscSHz8dJCCFkXJKX+HjxxRexe/du6/bkk08CAL761a8CAJYsWYJHH30UDz74INavX4+uri6cf/753o+6XGREPhTndr/CyAchhBAfE8jnyVOnTnXcv/nmm3HooYfib/7mb9DX14dVq1ZhzZo1mD9/PgBg9erVmDNnDjZu3IhTTz3Vu1GXi6pNu9DzQQghxL8U7PmIxWL4zW9+g29+85tQFAWbN29GPB5HR0eH9ZzZs2dj5syZ2LBhgyeDLTsizXDKtAshhBBSNHlFPuw8/PDD6O3txTe+8Q0AQHd3N0KhEJqbmx3Pa2lpQXd3d9b9RKNRRKNR635/f3+hQ/KejMiHrHbxe+SD4oMQQoh/KTjysWrVKixcuBBtbW1FDWD58uVoamqybjNmzChqf55ieSZMrwfTLoQQQkjRFCQ+PvjgAzz11FP4x3/8R2tba2srYrEYent7Hc/t6elBa2tr1n0tW7YMfX191m3Xrl2FDKk0ZKt2gfC3mZORD0IIIT6mIPGxevVqTJs2DWeddZa1be7cuQgGg1i3bp21bdu2bejs7ER7e3vWfYXDYTQ2NjpuviFb2sX+mB+xxuZjgUQIIWTckrfnQ9d1rF69GpdccgkCgdSfNzU14bLLLsPSpUsxadIkNDY24uqrr0Z7e3t1VroAyNrhFDBSL1YkxGcw8kEIIcTH5C0+nnrqKXR2duKb3/xmxmO33347VFXFokWLEI1GsWDBAtx1112eDLQiVHvkw89jJIQQMm7JW3ycccYZEFn8DjU1NVixYgVWrFhR9MB8QVbPB/xd8cImY4QQQnwM13bJRbYmY4DPK15Y7UIIIcS/UHzkomrTLhQfhBBC/AvFRy6ydTgF/D2x0/NBCCHEx1B85CJdfKRXu/gVig9CCCE+huIjF+mTt6LA6nbq54mdhlNCCCE+huIjF+meD8C2uBwjH4QQQkghUHzkwk18KFWwsi0Np4QQQnwMxUdO0jwf9t/p+SCEEEIKguIjF1WfdqHngxBCiP+g+MhFzrSLjyd2pl0IIYT4GIqPXKS3V7f/zrQLIYQQUhAUH7mo+rQLxQchhBD/QfGRDXtaxc1w6ueJ3Rqbj1NDhBBCxi0UH9nIKj7MyIef0y5cWI4QQoiPofjIhn3itns+mHYhhBBCioLiIxuOidtuOK2itIufx0gIIWTcQvGRDUfkw63JmI8ndooPQgghPobiIxvZxEdVpV1oOCWEEOI/KD6yUs3VLjScEkII8S8UH9nImnapgmoXig9CCCE+huIjG6NWu/h4YmfahRBCiI+h+MjGaIbTqvB8+FggEUIIGbdQfGRjtA6nrHYhhBBCCoLiIxvZxEdVpV18PEZCCCHjFoqPbGTzfDDtQgghhBQFxUc23Fa0Baqj2oVruxBCCPExFB/ZsCZuxbm9qtIurHYhhBDiPyg+spE18uHztItdcPhZIBFCCBm3UHxkxZzEs4kPv6ZdHIKDkQ9CCCH+g+IjG6NGPnw6sdvFByMfhBBCfAjFRzayiQ+/LyxH8UEIIcTnUHxkwxIfaYZTv1e70PNBCCHE5+QtPj766CN8/etfx+TJk1FbW4tjjz0WL730kvW4EAI33HADpk+fjtraWnR0dGD79u2eDrosiFE8H36d2Bn5IIQQ4nPyEh+ffvopTjvtNASDQTz++OPYunUr/uM//gMTJ060nnPrrbfizjvvxN13341Nmzahvr4eCxYsQCQS8XzwJSVb5INpF0IIIaQoAvk8+ZZbbsGMGTOwevVqa9usWbOs34UQuOOOO/C9730P5557LgDgvvvuQ0tLCx5++GFceOGFHg27DIwW+fBt2sUuPnxqiiWEEDKuySvy8d///d/4zGc+g69+9auYNm0aTjzxRPz617+2Ht+5cye6u7vR0dFhbWtqasK8efOwYcMG131Go1H09/c7br5g1GoXn0YVGPkghBDic/ISH++99x5WrlyJww8/HE888QSuvPJK/PM//zPuvfdeAEB3dzcAoKWlxfF3LS0t1mPpLF++HE1NTdZtxowZhbwO76nWDqeMfBBCCPE5eYkPXddx0kkn4Sc/+QlOPPFEXHHFFbj88stx9913FzyAZcuWoa+vz7rt2rWr4H15ymhru/hWfLDahRBCiL/JS3xMnz4dRx11lGPbnDlz0NnZCQBobW0FAPT09Die09PTYz2WTjgcRmNjo+PmC0ZLu/jV8wGKD0IIIf4mL/Fx2mmnYdu2bY5t77zzDg466CAAhvm0tbUV69atsx7v7+/Hpk2b0N7e7sFwy0kWwymrXQghhJCiyKvaZcmSJfjsZz+Ln/zkJ/ja176Gv/71r/jVr36FX/3qVwAARVFwzTXX4Ec/+hEOP/xwzJo1C9dffz3a2tpw3nnnlWL8paNq0y4UH4QQQvxNXuLj5JNPxkMPPYRly5bhpptuwqxZs3DHHXfg4osvtp5z3XXXYWhoCFdccQV6e3tx+umnY+3ataipqfF88CUla4dT875f0y4UH4QQQnxOXuIDAM4++2ycffbZWR9XFAU33XQTbrrppqIGVnFM4+ZIQkBL6AgFjAjIUAKoB/w7sVN8EEII8Tlc2yUb5sS9ZyCGh1/5CADw5NYe/OGV3Y7HfQdLbQkhhPgcio9smBO3DgUf9Y4AAN7a3Q8dfk+72AUHxQchhBD/QfGRDTOCoEPFUDQBABiKJqDLt4zVLoQQQkhBUHxkw5y4BRQMxUzxEbOLD59O7BQfhBBCfA7FRzbs4iNqRDmGokkk4fMmY+xwSgghxOdQfGTDSrsoWdIuPp3YGfkghBDicyg+spIynDrTLqbh1K8TO8UHIYQQn0PxkQ0r7aJaaZfBaki7cG0XQgghPofiIxsuaZdhpl0IIYSQoqH4yIZp3BRAKu0STUAXMu3i08iHQ3xUbhiEEEJINig+suHo8yHTLgn/p10Y+SCEEOJzKD6ykdbnQwiB4ViSaRdCCCGkSCg+smFrry4E0DcSR0IXrHYhhBBCioTiIxu2tAsA9PRHAaAK0i723yk+CCGE+A+Kj2xYaReDPQMRAGDahRBCCCkSio9spEU+9piRj1Taxa+RD4oPQggh/obiIxs2wykA7BmolrQLxQchhBB/Q/GRFdNwKqT4qMK0Cxt9EEII8SEUH9mwVbsA9rRLFYkPQfFBCCHEf1B8ZCMj7WJEPph2IYQQQoqD4iMbWTwfvu/zwYXlCCGE+ByKj2xk9PkwPR9Cpl0Y+SCEEEIKgeIjG2mej0jcmMiZdiGEEEKKg+IjG1bkQ3Fs9n3aRTDtQgghxN9QfGTD8nw43yKZhhFMuxBCCCEFQfGRjbT26pJU2sWnEztLbQkhhPgcio9spBlOJTLtInzr+XCsLEcBQgghxHdQfGTFaTiVVFXaBaD4IIQQ4jsoPrIh3MVHVaVd3O4TQgghFYbiIxtpTcYk/k+7UHwQQgjxNxQf2cgqPsy0C8UHIYQQUhB5iY/vf//7UBTFcZs9e7b1eCQSweLFizF58mQ0NDRg0aJF6Onp8XzQZSFLn49kNS0s53afEEIIqTB5Rz6OPvpo7N6927o999xz1mNLlizBo48+igcffBDr169HV1cXzj//fE8HXDayVrv4vL16OhQfhBBCfEYg7z8IBNDa2pqxva+vD6tWrcKaNWswf/58AMDq1asxZ84cbNy4Eaeeemrxoy0npuE0Pe2iqZrxS7WkXTI6lRBCCCGVJe/Ix/bt29HW1oZDDjkEF198MTo7OwEAmzdvRjweR0dHh/Xc2bNnY+bMmdiwYUPW/UWjUfT39ztuvkBGPkRKfIQCKgIBQ68Jv0YUmHYhhBDic/ISH/PmzcM999yDtWvXYuXKldi5cyc+97nPYWBgAN3d3QiFQmhubnb8TUtLC7q7u7Puc/ny5WhqarJuM2bMKOiFeI6L4bQ+pEFRq2hhObf7hBBCSIXJK+2ycOFC6/fjjjsO8+bNw0EHHYQHHngAtbW1BQ1g2bJlWLp0qXW/v7/fHwLEZjgNBVTEEjrqwwGImOZ43HewyRghhBCfU1SpbXNzM4444gjs2LEDra2tiMVi6O3tdTynp6fH1SMiCYfDaGxsdNx8ga3JWGONodHqQwGoKqtdCCGEkGIoSnwMDg7i3XffxfTp0zF37lwEg0GsW7fOenzbtm3o7OxEe3t70QMtN8JKu6iYUBMEANSHNcD3htO0SAfFByGEEJ+RV9rl2muvxTnnnIODDjoIXV1duPHGG6FpGi666CI0NTXhsssuw9KlSzFp0iQ0Njbi6quvRnt7e/VVusAQHwqMyMcEGfkIB6Ao1ZZ28ek4CSGEjFvyEh8ffvghLrroIuzbtw9Tp07F6aefjo0bN2Lq1KkAgNtvvx2qqmLRokWIRqNYsGAB7rrrrpIMvNQIPWU4nWBLuyRUn/f5oPgghBDic/ISH/fff3/Ox2tqarBixQqsWLGiqEH5AblqrQ4FE8Iy7RJAv2q8ZYpfJ3UaTgkhhPgcru2SBaGnmoyl0i42z4dvxQc9H4QQQvwNxUcWhK29+smzJkFTFcw9aCJUzXjLFKZdCCGEkILIu736eEHY+nyce0Ib/u74NtQENTz+F1nt4tNJneKDEEKIz6H4yIaeEh+qoiAYMCMeZtpFgV8ndaZdCCGE+BumXbKg26pdNCXVYl21PB/Vknah4ZQQQoi/oPjIhikuBBTYtAeUqqt28ek4CSGEjFsoPrIgRKraRbGpDyvt4tdJneKDEEKIz6H4yILVZExxvkVybRcFwp8pjQyx4cMxEkIIGddQfGTBWtslTXzIyAcAf67vwsgHIYQQn0PxkQUZ+VCgOLZrmmZ/UjmHNDbSAx1+HCMhhJBxDcVHNkSq2sWOotmqk/1Y8cLIByGEEJ9D8ZEFmXZBhueDaRdCCCGkGCg+smBVu2QxnBoP+nBip/gghBDicyg+siGjGunio+rSLqx2IYQQ4i8oPrKQSrs4PR+OtIsfJ3ZGPgghhPgcio9sWIZT51uk2dMufvR8ZKzt4kOBRAghZFxD8ZEFWWqbHvnQNA1JYW6rirQLIx+EEEL8BcVHVmTEwPkWBTQFSbnNjxM7xQchhBCfQ/GRBau9upqedlFSqRg/pl3S0ywUH4QQQnwGxUc2rEk7LfKh2iMffhQfjHwQQgjxNxQf2TAnbSXd86Ey7UIIIYQUA8VHFlILyznFR0BVUi3XdR9O7BQfhBBCfA7FRzakdyKjw6nf0y4stSWEEOJvKD6ykcPzocvIhx+jChljovgghBDiLyg+smB1OM2odlGh+7rahWkXQggh/obiIxvWpJ3p+fB32oXigxBCiL+h+MiGrHZx6fNRVWkXP46REELIuIbiIxumUVMobp4PmXbx4cTOJmOEEEJ8DsVHFqTnQ8lYWE5BUvi4z0fGwnJ+HCMhhJDxDMVHFhSrz0fm2i6ptAs9H4QQQki+UHxkQZjpC0VN73DKahdCCCGkGIoSHzfffDMURcE111xjbYtEIli8eDEmT56MhoYGLFq0CD09PcWOs/yMqdrFhxN7hvhgnw9CCCH+omDx8eKLL+KXv/wljjvuOMf2JUuW4NFHH8WDDz6I9evXo6urC+eff37RAy07OatdqqnUluKDEEKIvyhIfAwODuLiiy/Gr3/9a0ycONHa3tfXh1WrVuG2227D/PnzMXfuXKxevRovvPACNm7c6Nmgy4LVXl1zbHZWu1SD+PBhdIYQQsi4piDxsXjxYpx11lno6OhwbN+8eTPi8bhj++zZszFz5kxs2LDBdV/RaBT9/f2Omy+Qk7biUu1iGU59GFVgqS0hhBCfE8j3D+6//368/PLLePHFFzMe6+7uRigUQnNzs2N7S0sLuru7Xfe3fPly/OAHP8h3GKVHpl2clg8E7IbTqki7UHwQQgjxF3lFPnbt2oV/+Zd/wW9/+1vU1NR4MoBly5ahr6/Puu3atcuT/RaLYkU+nGkXjWkXQgghpCjyEh+bN2/Gnj17cNJJJyEQCCAQCGD9+vW48847EQgE0NLSglgsht7eXsff9fT0oLW11XWf4XAYjY2NjpsvsDwfmX0+/F3twrQLIYQQf5NX2uVLX/oS3njjDce2Sy+9FLNnz8b/+l//CzNmzEAwGMS6deuwaNEiAMC2bdvQ2dmJ9vZ270ZdFmTaJdPzkWCTMUIIIaRg8hIfEyZMwDHHHOPYVl9fj8mTJ1vbL7vsMixduhSTJk1CY2Mjrr76arS3t+PUU0/1btTlQEYQ1Mw+H7FqSrukt1snhBBCKkzehtPRuP3226GqKhYtWoRoNIoFCxbgrrvu8vowpSeX50P4eFVbru1CCCHE5xQtPp555hnH/ZqaGqxYsQIrVqwodtcVRbGqXdIjH6rPPR9sMkYIIcTfcG2XrGT3fLDahRBCCCkcio9sZKt2Ue2r2vpwYqf4IIQQ4nMoPrJhrWrr1uG0GpqM+VAgffoBMLSv0qMghBBSYSg+sqDAvb16QLMvLOejiV1iVemYRlm/jDE6ANx1KvCfCyo9EkIIIRWG4iMboso9H2rAeb/SDO0F4sNAb2elR0IIIaTCUHxkQZFpF9dqF2Ob7kvxISMfAef9SiPfKz1R2XEQQgipOBQfWZGej+xruwjdJ1EFO1bkw2dpF+mPEUn/CCJCCCEVgeIjC1afDxfDqRQfuh+/xfs17WJ/r7weUzIOrP5bYO0yb/cLAPEI8L87gKdKsPJydBD41ReAZ27xft/p6Drwm/8BPLy49McihJBRoPjIShbDqa3aRU/6Me2S1pnVL1EGe4rK63TVvh3AB88Dr67xdr8AsGcr8OGLwGv3e7/v3a8BXa8Ar5dg3+kM9gA7ngRe/W3pj0UIIaNA8ZEF6flQ0zwfjsiHn8WHryMfHr9vct+l8OCU0qtijbsMETTrGMKIghBCSAWh+MhCKu2S5vlQUmu7+NNw6lPxYR+H15OtbvOTeI0ow77LIQbs4/djfxpCyLiC4iMrchJ3vkWqqkBXpOHUh54PubCc6rNeJKVMu1RrdKKcFUCO99+Pn1tCyHiC4iMLMtmSXmoLAAJGNET3Y/jar5EP+4TntfiwIgilTLuU4H0sZcQm27HSfyeEkApA8ZENc9JWFS3zMVOQCF96PtL6fMAnhtNShv2lsClFGW9JIx+V8HyU6XiEEJIDio8spNqru0Q+FBn58KP4GIeRD/v+vH69cn/7lefDJ58JQsi4heIjC1a1i5oj8uFn8aGU2fMR6Qc2/QoY6HZ/XC+l4bSE3+oZ+SCEEM+h+MiCksVwCqQiH74WH+WOfLx2P/D4d4Hnf+b+eClLbUUZzKxCL0FKp4RRlWzHAuj5IIRUHIqPbMi1XVzFh6x28eFFvFJru0R6jZ8jve6Pl0MgACWOqpSqPwkjH4SQ8QXFRxYUubaL4vIWMfKRyWgTadk8HyWMqpRq3+X4HLHPByHER1B8ZEGmXdw8H/6OfFRoYbnRelaUUiA4hI3Hr7ekURW57zJ0HS2l+COEkDyh+MiCNJy6VbtYkQ8/Vg1UTHyMEvkoZYdTUQ6BgNKlXYDSRyPY54MQ4iMoPrKQiny4pV3MyIef+3yUe2G50dZXqda0Sym9EqKMJlB2OCWE+AiKjyxYng+3tItaDWmXMns+5HEqknYp4cRayv4Y5TSB0vNBCPERFB9ZUHJUu/g67YL0ahefpF3KUTVS8n2XMKVT8rQLq10IIf6B4iMLMu3iWu0iBYmvIx9+83yU0HNQ0jLeEqZGymkCdUSH/CiaCSHjCYqPLMi0i5Yr8uFr8VHuyMcoZaNlqRpBdZbaAqUXH0y7EEJ8BMVHFtSx9PnwY9olQ3yUy3AqxUc89+NAdZlCy5V2KXUqhIZTQoiPoPhwwzZhuxlOFaZdXI47Wp+PEqYYSlk1Usp0RVk9Hyy1JYT4B4oPN2yTmaK69fmQi7b58CJuLSw3jjwfVRv5KKMJlIZTQoiPoPhwwzZhu3U4VawOp35Ou8hx+6XPR5lKbb0WW/b90fNBCCGeQPHhhiPy4VbtYvop/Bi+llqjYobTMfT5qKYIQtn2Xc5SWx9+bgkh44q8xMfKlStx3HHHobGxEY2NjWhvb8fjjz9uPR6JRLB48WJMnjwZDQ0NWLRoEXp6ejwfdMmxRz5cS22ryXDqE/FRtaW2ZSrjpeeDEDKOyEt8HHjggbj55puxefNmvPTSS5g/fz7OPfdcbNmyBQCwZMkSPProo3jwwQexfv16dHV14fzzzy/JwEuKzXDq1l5dRkMUP4avK9bhNA/DaTV1OK3WBmYZx2K1CyHEPwTyefI555zjuP/jH/8YK1euxMaNG3HggQdi1apVWLNmDebPnw8AWL16NebMmYONGzfi1FNP9W7UpcaedtHcPB/mNj9+g7TEh+q8X2ry8XxU09ou7PNBCCGeU7DnI5lM4v7778fQ0BDa29uxefNmxONxdHR0WM+ZPXs2Zs6ciQ0bNmTdTzQaRX9/v+NWceziQ8kUH3JiZ9rFxn7bXr1KoyqVPBYhhIxC3uLjjTfeQENDA8LhML71rW/hoYcewlFHHYXu7m6EQiE0Nzc7nt/S0oLu7u6s+1u+fDmampqs24wZM/J+EZ5jm7A1t3fIFCTVkXYpd5OxbJ4Pey+OEi7+VlWeD/b5IISMT/IWH0ceeSReffVVbNq0CVdeeSUuueQSbN26teABLFu2DH19fdZt165dBe/LMxzVLi6RD82Y2BVf5s5NsVH2Ph/jwfPBDqeEEOIFeXk+ACAUCuGwww4DAMydOxcvvvgifvazn+GCCy5ALBZDb2+vI/rR09OD1tbWrPsLh8MIh8P5j7yUOAynbmmXIABGPpzHNd+L5FhKbasoguDwSnjdQ4SeD0LI+KToPh+6riMajWLu3LkIBoNYt26d9di2bdvQ2dmJ9vb2Yg9TZmziw6XUVlF9HPkYj6va7hd9PtjhlBAyfsgr8rFs2TIsXLgQM2fOxMDAANasWYNnnnkGTzzxBJqamnDZZZdh6dKlmDRpEhobG3H11Vejvb29uipdAGvC1oUCVXNpry7Fh/DZRdwe5fCz4bSkVSNer79SpnVj6PkghIwj8hIfe/bswT/8wz9g9+7daGpqwnHHHYcnnngCX/7ylwEAt99+O1RVxaJFixCNRrFgwQLcddddJRl4SZHiAwpUJVN8KKbnQ/XbRdwuNMoe+TCPk1V8lHISr9LoBKtdCCHjlLzEx6pVq3I+XlNTgxUrVmDFihVFDarimBO2gALNbWE5K/Lhs4u4Q3xUKPIBYQiN9OZsJZ3Ey7T+iuf7LqEgy3Usv31uCSHjDq7t4oYj8pH5sIx8+DvtUubIhyP14fK+lHISr9boBD0fhJBxCsWHG+YkLrKkXWS1i+q3b5C+iHzAdXITyRJO4uzzkd+xmHYhhFQYig83rMiH6io+VOn58F3kwyY0rD4f5Woyllt8jERjtsfZ4TRjf/R8EELGERQfbtjSLq6eD62KIh8ol/jI3cFUlKvJGD0fWY7FPh+EEP9A8eGGzXDqmnWxIh8+u4hXtNol9zdrYdsmsjUiK/jY1drhlKvaEkLGJxQfbtg8H26RD4Xiw+XY9sktnvmwbfLTfb62S1K3RYsck7Z372VSF/R8EELGLRQfrhiTT7Y+H6qZ0lDhs2+QPjac2tuuex35SCZsYqfISXxb9wBOuOlPWPnMu8aGEkQMOvcN46QfPondvUO2fZfT8+Gzz221US4fFSH7MRQfbozaZMzwfGh+i3zYKbv4yD1JC9t7pSe9fd8iMZv4KHISf21XLwYiCWx4b5+xoQReiTc+6kPfSBzDkWhqY6kFQSnXqBlPvLgK+OlhQPeblR4JIVUNxYcbjmqXzIfVQBUYTiu1qm3679a21OTqddrFyzLeuJlaSSRdOrZ6NO6EeQylnIKAkQ9v2PEUMLwX2LWx0iMhpKqh+HDDMpwit+cDfhUfSoUNp27VLiU0nI7W4CwPEknh+FkKr0Tc3Lfq4bhHpZTt7ccTSbNk3OvPMCHjDIoPNyzxkaXPh4x8yFbifkEKDUUBoDi3lfzYo0yktm2ilH0+ioxGxc2IR9xtrRqPxi2jKirKKAgY+fCGpJniczFVE0LGDsWHG8JmOHWJfGim58N4ko8uQpb4UGHVCJfDGyfE6JNbCSMfXkZVZKWLVfFSgjVREnoFIh/s8+EN8jwlffR/T0gVQvHhxihru8jIh/EkH32LdIgP1bmtHMeVuHyLVxyltqWLfCSLTbuYwiBupV1K4Plwi3yUvNSWHU49wYp88D0kpBgoPtywGU41l7RLIGBbDNhX4sOcMMstPtIvxKMsLCe8fs/skY9EcfuWaZeU4dR7z4d75IN9PqoCnWkXQryA4sMN2WRMKFBcPR+h1B0/XcgrFflIFxOjrWpbQsNpsVEVy3Cqly7yYRlOy+r5YIdTT0gy7UKIF1B8uCAnsGzVLkFNgy7M7X66CFUs7ZI2cbq9J/bohMcTreLwfBR3PqTRVEZAStEfQ0ZVNNDzUXUw8kGIJ1B8uCDFR7Y+HwFNRRxmKaufvkXaS20rGvlw8XyUNO3iXSVNMplmOC1BxMBKu1TM8+Gjz2y1wVJbQjyB4sMF3W44dVEfAU1B0pfiw7+eD6WUngPba9SLnBQyDael8HyYkY+KeT58VB5ebcjPl5/+7wmpQig+XBB6amE5tz4fQVVFQr51froI2ft8KGXs85G34dTjtIvwLvJhGU5d+3x4Ve1Cz0fVwrQLIZ5A8eGCPe3iWu3i18gHXCIf5Wj0MQbDqVLCnhaOlE6xkY/0Dqcl8ErIqEqAno/qQ3qKmHYhpCgoPlwQNsOpi/ZAUFN8HvmwNxkrg/hIn8xGFR/eRmMUD82sMu2Sinx4nxpJ6pXu8+Gjz2y1wcgHIZ5A8eGCrssOp6prtUtAVZGA2evDTxdy35TaZk6k9p4WwuuJ1vYaizWzJqyF5Uq4tosuIx/2tEup13Zhnw9PYKktIZ5A8eGC0OXaLu6eDyPt4ufIR7mrXfKNfHj7nqkOz4dHaRddQIylbXxBx9ChQIeq2KJSpTaBssOpN1iRDx/93xNShVB8uKAL6flwb68eUFUkhPR8+OhCXrHIx1jER+nMlV7u2+rvATMFUwKvRCIpoCHtvJTc81HGFM/+ihC29uoUH4QUA8WHCzLyocO9w6k98iFk3b8f8E3aJfPCbE+72KtTvMCxv2L7fOjC+XspVrXVXcQHPR/+R0/CMnAz7UJIUVB8uKBbIXCXsAeMUtu46flIFrmWiKdUqs9HhuE0d5Mxzw2nHno+4jbxEU8/tx72+Sh75IOej+Kxm0xpOCWkKCg+XEhVu7i/PfbIRzLho4uQJT4q3eE08z1xtBL3+Fu+6mHaJWFPu8TTXpeHpbaZ4qPEgoCltsVjj3aw1JaQoqD4cMGqdnGrs4UhPhJmn4+kn8Kv9rQLylhqO5rnIy3SoXg5+QkB1cN+GVaVC4B4Ii2l5qHh1CHGgDI0GaPhtGiYuiLEMyg+3BCy2sX97QmqairyEfep+LAiH34QH6VJXwDIjOwU3efD3qq9NAKhMp6PMnZT3V9JMu1CiFdQfLig20pt3VDVVIdT3VdpF/vCcuVsrz6KuEibWD2NfKQfu8h9J2yej0T6ufVKfFSi2oXf2ovHLjj8FPEkpAqh+HDBaoKVJe0CwGoy5tu0i5+qXdLueys+vI1OxJM5xIdXpbauhlN6PnyPI/JBAUdIMeQlPpYvX46TTz4ZEyZMwLRp03Deeedh27ZtjudEIhEsXrwYkydPRkNDAxYtWoSenh5PB11qxCiRDwDQFTPy4SfjWaXEx2jt1fXyRT6Uoj0fqfcro5LJowknnhTQlDEsxucl9HwUj+09FH760kFIFZKX+Fi/fj0WL16MjRs34sknn0Q8HscZZ5yBoaEh6zlLlizBo48+igcffBDr169HV1cXzj//fM8HXkqsVW2V7G9PSnz46SJUoVLb0TwfaWNQPPV8pKd4inu9jj4fJSq1Tbp6Pkp4noRw7p/iozBsPX1GItEKDoSQ6ieQz5PXrl3ruH/PPfdg2rRp2Lx5Mz7/+c+jr68Pq1atwpo1azB//nwAwOrVqzFnzhxs3LgRp556qncjLyH6KKW2AKD72fNRcfGRW4wo6ZUeXh67yKhK3GbMzEipeRb5KHPaZQwdaMkYsH0e/PWlg5DqoyjPR19fHwBg0qRJAIDNmzcjHo+jo6PDes7s2bMxc+ZMbNiwwXUf0WgU/f39jlulEWLsaRd/9fnwq+fDOfmpJfR8FJ92sXs+vI2qWPt1i3yUUhBkRIcY+SgI2zlSWO1CSFEULD50Xcc111yD0047DccccwwAoLu7G6FQCM3NzY7ntrS0oLu723U/y5cvR1NTk3WbMWNGoUPyjNGajAGArgTM5/roW6QlPmAzy5aj1DZfw6mHgsjjfdsNp8mS9vkoY6ntGNrfkzFgi3aoHi8RQMh4o2DxsXjxYrz55pu4//77ixrAsmXL0NfXZ9127dpV1P68QNg7hWbB8nywvXrmMdJD0qUstc3Yd3HnI2lLu4iS9vkoYyokI+1Shs/E/ogt2qFSwBFSFHl5PiRXXXUVHnvsMTz77LM48MADre2tra2IxWLo7e11RD96enrQ2trquq9wOIxwOFzIMEpGKvKRXXwIVQOSPnO9u6VdAEOU5BBSRTNan4+Spl28jXw40i7plUyeRT7c0i4lFASMfHiD7X/dUwFNyDgkr8iHEAJXXXUVHnroITz99NOYNWuW4/G5c+ciGAxi3bp11rZt27ahs7MT7e3t3oy4DMjIR+5qF0O3+cp45hb5AEof/Ri1w2ladCJ94i3q2N62brcbTjPMxB72+QiUM/KRfv45cRaG7Rwx7UJIceQV+Vi8eDHWrFmDRx55BBMmTLB8HE1NTaitrUVTUxMuu+wyLF26FJMmTUJjYyOuvvpqtLe3V02lCzDGyIeZdhG+7fOhpG3XSnfcPD0fpY18FLuwnM3zkRH58G5hOZWej+rDVmqrUXwQUhR5iY+VK1cCAL7whS84tq9evRrf+MY3AAC33347VFXFokWLEI1GsWDBAtx1112eDLZc5BP58KfhtNyRj1EmN3NijQsNQSUJFcK7VJDwLqUjhHC0V89oIOdZe3UdAaWM1S4Z5ch66VNx+yP2tAuE8b6qJRT1hOzH5CU+xBgWKaupqcGKFSuwYsWKggdVaYR1sc5xcVZ9HPmAUl7xkbG4m/ukHUMAQZlu0JOAVpDlKOexivF82BuMAW7iwyPPh+4S+Sin5wPw7v0fT6S/j8k4xQchBcK1XdyQfT5yRD6EGfnw1eqWvol8uBtO43at69U3/Qwza+H7TWSIj9L0x0joosyeD5dx0/eRPyVqOkfIeITiwwXdivDkqnYx0y5+jHwoKhxjH0PEqihGba8uIx/BjG1eHTsmjG+gxZhZ40nn31pmYjXoOFYxCCGQtEU+klLEltTzYe5btb3/nDjzJ/2Lhp++eBBSZVB8uKGPHvmAKiMffrqI2/qTVCLyYU3S7umKmCPy4dFkmyZsivF82M2mAJCUkY+AWQruwZhlE7OAFB9qyNx3GTwfgXDmNjJmMsrq/fTFg5Aqg+LDBTEG8WFFPvwkPipWamu+B4Ea533rcWOii4oSfPNOEzYqRMH+ifS0ixVm17wTCNJXolmRD++iKlmR45avw76NjJmMpRQY+SCkYCg+XBBj+fYsIx9++vZTKc+H3H8gyyRt3nd4Prwak+5dSieRJlr09IiBB6kR2UdEdjhNRT5KKD7kuO3ioxydb/czMtrt+6nHDyFVBsWHGw7vRJanKD5Mu1jjTk+7lNrzkTvyIauHEtCgC8X1OcUeOyaKT+mkp12sahcPIx/yGDLykZCRj3L0+dCCsLxAfvrcVgl6PJq2ge8hIYVC8eHCWPp8QDNL7Px0AcrZZKyE6GnfrNPeEzmJJ6EiIT9ynnk+jNfmiHwUeE7SDaeWmdjhlSi2fbuMfKSJj5J6Pswxq5rNq0TPR75kpl189L9PSJVB8eGCsCaYXH0+ypCrz5cM8aE4t5eKUSIfSZv40OVHzrNqF+n5KD7tkt7nw/LzaHbxUdyEk9DTIx9lSLvIMStaqi8FJ868YdqFEO+g+HBBjKHPh2JexBU/mc7shlP7z7KJD/eqkGTCHvnwePKzNTBL35Yv8fS0i/W67F4Jb9q3a4qZirKnXUqVHpNjVgOpyAf7fORNxlo/fvrfJ6TKoPhww5yslRztpxXNz54PKT7k+Evs+bAMp1J8pEc+jIu0bo98eNXR08My3nTDKWSprYeRj5Th1PgZV+wRmxKJRKsUWjOiH4C/InZVgp4R+fDR/z4hVQbFhwtWqW2ut8dMu/hqae0M8VGpyId72iUhNCQt8eHNhVtWpCSFhoQobt8ZkQ+rz4e9RNWjyIdMu3jgVRkVq8mYPe3io89tlZDR58NPXzwIqTIoPlwQSEtfuOHHJmP2ahegjOJDTtLung894WI49Ui0SRNgEkpK2Hjk+bDC6pp3zbkSuSIfpRIEcr/0fBQF0y6EeAfFhxty8sqRdlHNtIvip2+QIs0o6xPPhxWdcKRdvHnfUpU0GpJF+kkS6dUuVn8M79rCJ6wOp3K9mzJEPuj58ITMDqcUH4QUCsWHG/pYSm1lO28ffYOsmOF0tMiHjE54bzi1V9IkixQ28fRql6SbV6LYahfjXMi1XRxelVIJAlfPh48+t1WCSKZ5PvgeElIwFB8uCGuyzlHtIiMfvhIf2TwfpTacphkz074RyqqRJDTowltB5Ix8FCc+0iMfKa9EwLP+GOlru8RLsd5NOo7XIcUHO5zmCz0fhHgHxYcb6d4JFxTVh2mXdK+KUu4+H1lKbZOptIvnhlO3yEfB7dXTPR/eeyWkr0S1DKcaUl1HSxz5UFR6PoohTXxkiBFCyJih+HBBWJNOrshH8auoek7Fql1yp12ELe1SbHQiHauSBqoHno+0tIuMajm8EsW9l7KLasrzoZXevCzHTM9HUaSLjWQ8luWZhJDRoPjIRQ7xoQXMVVSZdrFFPrK0V7dFEIqNTqQjfRm6B8Ima58P1bZQX7GeD1PgqIq5qq1QUtEIej78TVp1S0bHU0LImKH4cENPm8RdUKw+H8VfxONDnxa9DwAu6aJypV1GMZzajJtSIAiPGjTpVuSjeGGT3uejFJ6PjFJbUYb1VmyvQ5hC50ePvQk9Pc1EcqKkfWYpPggpHIoPN8zJS+TyfFiRj+ImjFceug3Bnx6M1x//30XtB0Dl0i7pS7antQqXzboUNWClRpIeiw8dKpKiuMhHMj3yIYWlh54P6SuRhtOkUErfddS2toswj7Wjuxd7h6I5/ohkkBb5SCQYPSKkUCg+XJDVLkqOheU0jzwf8V0vAwBi76wraj8AKthkLG1hOcAxkQp50bZFPnSPxIcwhU1C2Mt4vYp8eO+VsNIuVrWLWvq0i9XnQ4Nuig8NOqJxVrzkg2J6PqLC+Cww8kFI4VB8uJHeL8MFVYoPFDdhqIkRAEDD4PtF7QeAD/p8uK+BIhyRD2NMGcuTF3po8zhC0WwNzIprMqaphnizUmoerokiDadBc2G5uChDBYqtvbp8jwLQEYnTdJoPinl+IjAifBkdTwkhY4biwwUhJ3E1l/gwvv1oRXo+1KQR+m6Jf1jUfgD4YFXbmsxtSPk7FM0W+fAoxWBvBFZs63aZEqkNpgkNR4lqsZ4P4xghVd5XS+L5iMSTWPrAq/h/r+92lAzLyIcKHRFGPvJCEYbYGIEhsjMWmiOEjBmKDzfG0GRMNSs7ik27aMkIAGAi+tG/b09R+6pctUvuyIduMzzqVuTDW8+H4sG+ZdqlJmjsR3GU2nrk+TAjH2HVlnYpQQXKi+9/gj+8/BF+8ecdtmqXgC3ykUQkwchHPsjIx4hg5IOQYqH4cEGx+iLkEh9m5KPItEswOWL9vnvn60XtK3NtlzJVuwg38WH3fKQMj9Jw6pnnQ7dHPoozs0rDaTiQ1gVU1bzzfJiRj6Bq/Iw7Sm29O09DUeM9GI4lHJ4P+f6rTLvkjSyrj8jIB5uMEVIwFB9u5GU4LW7CCOipioP+D98qal9ZIx8oU58PNWD7Fh93eTzlOfCq2kU2hFO11Lf6QicFGfmoDRmvQbEvyObV2i7mMWTkw0i7eB/5GDGFxUgs6Xj/kw7PRxGf3f6ucbewmiojH/R8EFI0FB8uiPRJ3AXZZCyA4iaMkIhYvyf3vFPUvjLFR5n7fDj6Ydg8H3bDoxIw/8TbahdFDViej2SB6QTZg0N6Pizx4Si1LbLDqfn3ZmYHMVEaz8dIzDjOSDxp61uTEh+qolsCJW96tgC3zQEeWezFUKsGGfkYEUbkg+3VCSkcig9XRq920YKm56PYtItImdZCfTuL2lfm2i5lrnZRVFfxYf/mLVcK9i7tEjd3bY+qFDYpJDI8HynR5J3nwzScKrJEWCmJ50MKi0g86YhMJYTN81Go+Ph4m/nz7WKHWVVY4sOMfFB8EFI4FB9u6KN7PmTaJQC9KENn2Bb5mDjyQcH7AVDBtV1c1kBxeD6kOAmUQHzIhnCBov0k0o9Rkx75KIXnQzE9H/ZqFw/7fEhhEU+KtA6z9j4fBR4vPmz8jA0XO8yqQjOrXej5IKR4KD5cGUPaJejNUug1tshHW3J3cVUglWoyZvdGuEUIknbPh2YOyaOJ1krpqLZql0IjH8b7lCk+7J6PYpuMybSL8TMmlJTI9bjUNnVMW+TD9DEVVWorRUd8vIkP00cjGPkgpFgoPtwwIx9KLvEhW4kDGW2Xx34YgRqkDKdhJY7uziJ8H5XucGqPENg9H9LAqwas9t7eGU5tZaSWn6TADqdpfT6cng9vVp612qubkY9Yifp8jMRs4iNufj4VFQlhvLaimozFx6v4cDYZg0efYULGI3mLj2effRbnnHMO2traoCgKHn74YcfjQgjccMMNmD59Ompra9HR0YHt27d7Nd6yoCBtEnch4Ih8FHYRikajCJirm36sTAIA7H1/S0H7AlD5DqdZDKeOahcZQfDqwm0zs6ZSOsVGPqTnw95e3Zv3MtXhVC4sp1iCrBSeD8Am9NSA4TGBGfkotM/HeEy7CGGZy2WTsfFW7UOIl+QtPoaGhnD88cdjxYoVro/feuutuPPOO3H33Xdj06ZNqK+vx4IFCxCJRFyf70fEGNqrB7I01MqHkeEB6/fdtUcAAIZ3bytoXwAqX+2S1XCaqkiRAiFZYHQi89j2yIf0fBTX4VSmXawGcmqW11UASSvyIReWs5lZPfR82MVHIpFaWyduM5zKipi8keIjGS3dYnh+w/Y6Y4pZ7VJgxJMQAgRGf4qThQsXYuHCha6PCSFwxx134Hvf+x7OPfdcAMB9992HlpYWPPzww7jwwguLG225MMVHrrRLIFC85yMyMgjAWNl0uPkIYHgjlE/fLWhfAHJEPgrf5ZiwG041lxRCCapGrF3bGoGJIhetk5UoMu0iF3/z0vMhe4kE5aq2UKErmuGE8TDyYU+pWD4iW7VLUZEPe8QjPgyEJxQ6zOrBJjT0QI3xP8XIByEF46nnY+fOneju7kZHR4e1rampCfPmzcOGDRtc/yYajaK/v99xqzRj6XAaCKjWhbzQSSNmio+oEgLqpxr7jfYVtC8AmZEPlLnD6ShpF0VNLemuezTRypbXihKAbh670H3LPh8ZkQ8vPR9y8TolJT5SaRfvzpPd82GlXRR75KMYz8eI++/7MzahkdTqjF/GS9SHkBLgqfjo7u4GALS0tDi2t7S0WI+ls3z5cjQ1NVm3GTNmeDmkAhm92iWoqlbZYqFLa8dGjG+QEYSh1TQCAAKJwYL2BcAHpba2Sdr+rVCmXbSU4VR4lHYRQu5bs16vKDDykVrbJVWOCsBZxeNRqW3AFvmQEZvSez40o507DPETLbTaJT6U+j02lP15+xP2cxM0FlBUmHYhpGAqXu2ybNky9PX1Wbddu3ZVeki2tEsOw6mmIG6KD6uaIE9iEePCHVNqEKhrAgCEq1J8uEzStou1rBoxIh8Bc0jeRj6cno9C13ZxNhmz1u1xpIu8ER+qJT40K2Ljrecjdc51u+dDT722giMf6WmX8UDS+IKhCwWaKT68FIuEjDc8FR+tra0AgJ6eHsf2np4e67F0wuEwGhsbHbdKI9MuuTwfQU21WlUnCu0rYYmPMAL1pvhIFvFNMmNhuTJHPhyGU9vEZlt/RVjRCa8Mp7KMV7NFVQqNfDjbq6ciH5rnfT6ksClV5MPeQMy+qnBMNyMfRVW7jN+0Sxya1d2YkQ9CCsdT8TFr1iy0trZi3bp11rb+/n5s2rQJ7e3tXh6qtIyh2kVTldQqqoWKj6ghNOJqGKG6ZgBAjSjim2TF0y7ung975ENRZZMxjyIftmXvLfFRoEBIpKddlNSaKF55PmRqR0Y+Eqbh1Nh3aapdhM3zERMy8qE7fCF5MS7TLsb/eAIagpb4YOSDkELJu9plcHAQO3bssO7v3LkTr776KiZNmoSZM2fimmuuwY9+9CMcfvjhmDVrFq6//nq0tbXhvPPO83LcJWb0yEdAVSzPRyJemOcjaV64E2oNahomAgDqhQeRj4p2OM0hPrSg1QjMK/Ehj63aUiOFt1c33qdQQIWqlMrzYexTmll1pDqzlqrJmL29uqyu1YrpcDouIx/Ge5iAhgDFByFFk7f4eOmll/DFL37Rur906VIAwCWXXIJ77rkH1113HYaGhnDFFVegt7cXp59+OtauXYuamhrvRl1irLSLnHDcnqPYIh8Fltwlo8aFO6HVoG5CMwCgXoxA6DqUHJU22alAkzEhRu1wKsWHqmmp1+XRRKs4zKxS2BTX5yOgKgioKgKung9v+nykIh+pdFGp+nwIh/iweT48KbUdH5EPkYxBARBHAKGQ0efDiroRQvImb/HxhS98IdWEywVFUXDTTTfhpptuKmpgFcXyfOR+mrWQWYHrsehR4yKe0GpQ12hEPgKKjuHhAdQ1NOW/w4w+H/IFlLDRh13YOAynqYnNEh9qAEItTiBkHj/VwMyqdikwFy/TLgFNQUBTsvT58KbDqT3yIT9Hperz4fB8JFOeD2+qXcaH4TQejyEEKT6MRSVVRj4IKZiKV7v4EUVO4jkiH0BKfBQa+RBmpYCu1aKuvhFJswxyuL+3oP1l93yUUHzYRUTWyIcp5rTUJO5V2kW1ldoWK2ykMAioqhH9sJdce9bnw6ykMsedEN57PuJJ3fKWAE7PR1R4UO0yDtMucTO1mhCaFflQGfkgpGAoPlwZ3fMBALpcS6RAw6m8cItADRRVxZBiNC8aGvi0sP1leD7K0GTMPhkrGqAGM7YrNl+GTGUpHkc+VHt0osj26gFNQVBTbZEP71qgy8Xr3D0f3kxm6aJC2Na/kVYQDaIw8aHrzvLacZJ2ScaNBSDj0BAOU3wQUiwUHy7U6sYFNRmoz/k8K/JRYJ8PYYoPPVgLABiGIT6iQ70F7a8i1S72yXi0Ph+BoOdpFyli1EDq2IVGVaQfI6ip0FTF5vnI0rm1oGOYwtbm+bAiHx6dp5F0UWGrRoqYpbYBJYlIQs+ZQnUlkbZG0ziJfCRiRuQjaTeceujRIWS8QfHhQm3SaPQVD+X2XSRNg2OhaRc1YV64A4b4GFFN8TFYYIv1SogP+2ScJe0iv+Vrqs1w6tGF217GmxIfxaVdNDUt8qGkuqcW3+fDGflIItUvxqu0S4aXw2oTryKaTK1qm9SFIz0zJtKbio2TUltZ0ZZUAtA0I7qnMfJBSMFQfLhQpxurzQbN8tdsFNtRU5Hiw4x8RDQj0hIfLjTtUoFqF/uEmaUfhvR8qIGgzbjptecjCCguDc7yQAqDoKoaplPXyEexC8uZkQ9LfGieG06zRT6EqiFiig/52vKueEkXH+Ml8pFIiQ81YEQ+mHYhpHAoPlyo143IR82EKTmfp1vVLoVGPowQthIyIh4xU3wkRgpcXK8ikQ9j8hKKirv/shPDci5ziXyommaYTgHPFlGT6QtNK74cVvbgCGgKAqoCVZHGY9XztV2kIEtChW4tAOhN5COjeZh5juJ6Ksoiozp5+z7Sq1vGSXv1pD3yEWDkg5BiofhIJz6CEAwx0dA8OedTU5GPwsSHljS+Napm5CMRNJYm14sWH2VsMmZO9DpU3Pz429iye9ixHQBUyLSLvVmXt5EPVQumohMFTuLWcvdaep8P7zwfVrWLuZ8kVKtfTKkiHzLKEhepst6g2b0173LbdIPpOEm7yC7Gds+HtfYPISRvKD7SECNGyiMpFDQ2Ned8rvR8FBr5COiGg14LG5GPRLDBGEOkSPGRsbZLKft8mFUbphDbN2JekN08H4Gg0Y8D3lW7KI4Op7LPR2H7loZTzUy7aA7Ph1cLy8m0iz3yIT0fpTKcGvdjumJFPsKq8Vrzjnykp1nGSdpFrlydVIMIBI1qF42GU0IKhuIjjZGBTwAA/ahHc13urqyiyJ4VgaSRdtHCRrpFhIzIhxItVHxkaTJWhsiHnNT2jZjHsk3SMsSvBTRLfHiVYrAiH4GAIUBQeNvrVJ8PBQFNta1qG7CEjXd9PlLvW9LrUlsz7RJQTXOpSIkPmeIJWuIjz8/GOE+76EoAWsD4DAfAtAshhULxkcZQ3z4AhviQS6tnQ65TUqjhNKiniY+wIT7U2EBB+8vwfKAc4iNlnARgte92Rj5Mw6kW9LzPhxQ2RtrFyMUX2149qBlNxhyr2lqiyZsOp3I/SWEznHrl+TCjGc11zpLQqK4gIZxpl4woyWhkGE5HER9P3gDcfToQHczvOD5DTxhRSl0J2NIuemmjioTsx1B8pDHctxcAMKQ2QBmlv3pqCffC0i4hYVzQgmbaRalpBABo8UIv1NmqXUrf4TRhds50+xZveT4CASiatxOtldLRNCiacexC+i8IIay0izScOsSHR1U6luHUFjGSnW299nxMrDPEWEp8pKIsUnzkn3YxxUbAjAqO1l791TVA9xtA18v5HcdnyCUUhJoSHwCAAv/3CRnvUHykETPTLiPahFGfK2RfiUIjH1J81BqRD63W6CsSTBRo4qtgnw85qSXg0ufDqkixeT48GlMqpROEYnVXzV98SFEAGKW2QU11ej48KrU1jiNspbZ2w6k3gkymUibWmyWh5uuIJlMRqoBSqOfDFBv1U837OTwfug4MG5FEDO3N7zg+Q08aaRdh83wYD1B8EFIIFB9pxIYM8RELjC4+UmmXwi5ANcK4oIVqnOIjlCgw8lHBDqdxIcVHZsMszYp8aFA1KT68+ZavWdUuqUqaQvadsDXb0syF5ZyeD48iH0kdqm2hP8PzISMfXokPYz+T6pxVGVGb4TQgIx+JAj0fdWYlWK726iOfpj57UoRUKdJULpQAAsGg/YEKjYiQ6obiI42k2do8Fmwc9bnWEu4FRD50XaAGRuQjVGtUuYTqjGPW6KNEPjasADbe7TKgypXaptIucn2VlCDThIx8hGwCwePIhxYw1ncBCqoaidv+JqC6pF086POh6wK6QGq/MN6vhNeeD9Nwmhn5sImPQvt8WJEPswdOrrTLsC3aUfWRD1N8aAGEQva0C8UHIYUQqPQA/IaI9AIAkuHRl7QXRawlEkkkLfFRY6ZdwmZH1dpc4iPSBzzx/xm/H/c1oG6SbUCVazImxYf1MxG3Plzym3fAHvnwqsOpi5+k2MhHUFMRUBRoVpMx26J1RUQnpMCx94dIQrXeM689H021QShKSmjYIx+pPh8Fio86U3wkRgyxp7p8j7ELjuHqFh9STAsliFAggKQwPx9MuxBSEIx8pKGY4kOEm0d9rox8FGI6G4lEEVKMC3/YjHzUNBiCp07k+DZpv6Dv25E2oCziA2UwnEJDTVC1vhX2DxuVPEIImy8jFZ1Q4I0g0hyej8L9JFb/DcVY2yWk2d4zRfXE82H1EXFEPrxf20WKj7qQhtqglupmmkhFpuQY8q52iaVFPgBDgLixH0U+hEy7aEEENdXyNsn+H4SQ/KD4SEMze2yodc2jPlcUMSFFRlLRDdlkrGaCEfmoRwR6tmXhhz9J/Z4hPmS1S2U6nE6sC2Fig9GtdWDYmJCSurC+eQfspbYepRhkF1Kj2qX4yIfsjRFWbe+ZR54P2UE1I/LhUp5cDLLPR01QRW1QS63jYku7aFa1S74dTk2hUZta92hoaAALbn8W3/qvzc7nOiIf1e35EDLCoQYRDKiImyJOLjhHCMkPio80QnFjRVmtLveicgCsb8OigNBrbMRmKjXLFic0GikUVREYHnJf2Va3XdDFx9udD6Y3GTPXjMGuv+Y9vjEjZORDRVNtEJMbjWMOmJGPRFK31kgJBAPG4nJIlcgWhc2noQVCRq8PFBj5sMSHmZZQbZEPR5+PwsedkKvmpkU+4vBWJMpoRm1QQ4098mEXHwV7PkzRHJ5grcb84rZd2NYzgCe2diNmN7DaP6tDHxfyUnyDkBEOLYigplg+nTjFByEFQfGRRjgxthVtAaQmpGxRihxETPExgrAVqQjX1CFuNoEa6ndf2Xbg0x7r95Hut50PpqddTrrEGOO2PwJvPZr3GMeEVWqrYWJdCFMbDf/K3v5h6LpA3NZ6PhAIpbqQejHR2iIFAU2DKiMfBUQQ4rZF5QAglB75UIpPjVhNzMyog4ACUULPR01QQ21IsyJPI0kgKaT4MKMhhXY4DdZZ4nbzjo8AGNq3pz+Seq4t7ZIcqG7xYXk71ACCaqo8OhGj+CCkECg+0qhNyhVtcy8qB8AWis8/8hE30y4xpJzziqpiUDEu6JEBd/Ex0pe6iIu96ZGPtLVdWo9BbN5VxhD/37UYfOP/YeSdPwNe5qmtDqcqmuuCmHOAEb0ZjkTx5Fs91oJcgGE41UyB4Enkw7aPQDAE1ezzUYifJGnrbgoAIXt/OY/6fEjxEZYfG9PE6laeXAwymlEbMnw4VpQjkfrGntpWoOE0WGsIEACv7+y2Hv6oN+X/iA/ssX7XIp96tnZNRTB9XYoWhKqm3sdEges6ETLeofhIo14Y4qOucXTxIaymVgV8044YF/Go6lw/ZkSKD7PkN51Yf0p8hAc+cE5YaZGPe194H8f++QTs1FugDnaj4f/+T9SuOQ89d37R6R0pBof4CKG+1mjAFEQCd67bjpjt4qwFglBkasSLFUFt77vd81GIsJFtzzVVrn1i24e91LaI6IRMu0g/iSU+dK87nBr7rw0ahlMZ5RhJwFrELhX5KFB8hOot8REdSS0HsLsvJT4ivSnxoUA3+n5UK/LcmGnDpDScMu1CSEFQfNhJxlEHI2zc0DxllCejqGXWE1Ej8hFXwo7tI6qRtogOuns+koMp415AjwG9nakHbeJDCIH/fH4nogjhmvhivKQfgTf0g9EvatHS/ybEPWcBA90oGluH0+a6INB0IADgaLUTW7r68PSW3dZTFTUA1VyUS/Uk7WJrZBYM2jwfBXQ4NT0fQVN8hEyfig7VSIt54PmIW8cwfsr2/F57PqThtDaooSagWg3FRhKpKItasOfDFBfBWuMGWCXjANDVm0q7JAfTUi1VVG67u28E27pTokoxIx/yM5ZQ6PkgpBgoPmxEBlIT+4TmfNIuBUx2UnykRT6ipvhIDLuLD4ykVQ3YK15ig9a4XvuwDx/sG0ZtUMNvbvw2Tvz+X3HIv23G18UP0SOaoezZCvzff8x73BlYbcI1Yy2RmZ8FtBDalL04RNmNVc/aUkNKqs+HF2mXpK3BU1ALWp6PQvadsDwfTsOpjE54sbaLPEaNFB/mv1/c88iH6fkIaagLpvJHw8lU5EO+R/l7PkzDabDeiH4AqEMUUycYItoe+QhE0qJrVVJuK4TA1365Aef8/Dl8PGAIK6uCSjPSpLqZdmGpLSGFQfFhY6jXuDgOiFpMqA2P8mwAWuGRj2TUCF+ni49YwBQfI+7iQ4sYoeuYaUy1xEfPVuDjt41v6G0n4pFXDRPgl49qwYSaIDRVQX04gJmz5+KC2PVIKEHg/b8AO/+S99gd2JqMNdeGDBPizHYAwPzgm/hkwNYDQtWgmREE1YM+H/F4mp8kUHgPEavaRRpOzWiBnKxTQrPwcctjyB4iuvleyLJNr/t81AQ01NvMKyPxlFdBRp6KiXzEVeN/pBYxfO0zRsRrt4x86Dpq4r0AgA+FGUWsksjH3sEYdn0yglhSx5Yu8/9Qd0Y+kors80HPByGFQPFhY8hc0XZAGX1FWwCpplaFiI+YcRHXNafISQSNhmN6pN/170LRXgDAFjELABDv2WY88Mp/GT+POBPJuql47HUj3XHuCW2Ov//bY6fjfTEdj2nzjQ3rb8l77A5sfT6azVVUcaix7wsnbrdERhIKoCjQAtLwWPxEK1teJ4RqVLuY50MrKPLh7PORSo2ki49iIh+m+FCcJdFeez6stEtIQ72th/FIUliltqnIR6Gejzp8GjfO94wJAp85yDAad/WZ4iPSa/UX2a4fAAAQ6WkYn7K9J5Vu2bHHiCaqUnwEjMhHUmHkg5BiGDft1Tv39OGaVWut+8cd2IQbzj4KqhQZdZMwYlaYDKkNY9qnXEW1kKZWwixZTGq1ju1JU3wgi/ioTfQCADbrh+NEdQeiPdsQTESB1+4HAMSP/zrWv70HHw9E0VwXxOcOn+r4+y8eOQ21QQ23Dp6Fv6t7Gur7fwHe/iPQeiwwYXoqmjNWbB1Om82FzHDofOCpG3Ho0CuYGPya8bqgQQOK6sWRTiKRSvkENAVaEfuWhlPZ50P6JKy1ajzs8yHLeC3Phyy19WptF1ufj1rb6RxKpFYfVgoptRXCkXb5JBbANACzGhVMbzYieDLtMtTbg3oA/aIWu4VZAWVu8zvb96R68LxjChH5BUP2qZGLSibjjHwQUgjjRnwofe/jD9ErUhveBfAz2xPCTcDsKwEAEW30FW0BQLHWKcl/0rDER8CZdtFD5oJ20dS3r8ienQg3TYESakCDboiSl8WRAB6H9sm7Rh+PkU/QH5yCk+6LIyFeAgAsPGY6QgFncKs2pOGLs6fij28k8Zj6Rfyd/ifg/osAAHsaj8G0f1mfnwCxGU4nyshHyzFA/TQoQ3tw9WEfAzttVRYB79IuCfNbZxIqQqpimVkLiapYhtP0tIuHng9pOE0XHzEr8lG8+IgndSvCUhvUIE8JAIzEbeJDRj7yKbVNRGG16g/WYk9UxWwABzQITG8yRHTvcBwjsSR2f/QhDgPQpzQhFpoE6NUkPgZsv8vIhxQfMvJhio8CV7QmZLwzbtIu0xproWth6FoYcSWMiAgighBEoMYIf0f7MP3d3wMAYoExig/r23ABE5KZOxcBZ+QDNcaxtZhxAdz74TYEVpyEd24/G4j0Wf0ZBqadBACojfQAfzBE1X0jpyFhekGmNIRxyWcPcj30eScYYfCfDJ6DnXoLIiIIXSiY1v8mdj+9Mq+Xoeup6EOTnOlUFTj0iwCAM0JvAEgJNWk49SLtkrQiHyoURUkJm4LWdpGeDxn5sFW7AJ6u7RKSgQ5zApPnzAvxYU+j1IRU1Gqp9OFQHEgKZ5M3maIZE3HbmkPBOuweMl5Ia42OxpoA6kPGvrv6RrCnx/AcRYITIeoM83asfw+qgXd6UpGPHT2DEEJAsdIuxmdcnjud1S6EFMS4iXyEW44ArjcufvFEEmfe/ize3zeM/zlvJi4PrsWsl36ExsGdxuOh0Ve0BWwTagHfhhW5GFda5EOtMY4dNNu8f/jG85ii6Dh4ZAuSA3ugARgUNTj8kMPx+ouzcJy6E0jGMCTCuD85Hz867xhcePIMaxJ148tHteB3l5+KT4djeAtfxlsA9v55Bf7hk59jwoZbgNMudq6Wm4NINIo6GCWczbW2pcYPnQ+8/nuEd64DAISDxkU7YEUnio98JJOpyAeQEjZqIZEPueKs6uxwmhIfxTcCk11UZYdTuc+YfCs88HzIlIuqACFNRV0g9T6PJFKeD5lGiCTyOA9SfGghDCaA7ogKBIAp4SQURUFbcy227xnE7t4IBvYanqNk7SQE6qcCg4AYrA7D6Q5b2mUgmsBHbz6LI+NvAQrQcsAhAFIRMZ2RD0IKYtyIDzvhgIZ/O+soXH7fS1izqRPPKlPxnM33qYfHJj6QZ1+JLV19+NlT2/Hcjr1You/F/ACsRk2S0GQjWtEYMb45RvcY1SxhJY5db2/CDAC9aMDJB0/E+c//AMfWfYqhWBK7E404v30Ovn6qe7TDjqIoaD/UWUr8fst38dYvHsEcdKLv3gvRNGsu0HYicOxXUwvVuTASjaEOgKpqzhTP7LONxcdkYyk1LfLhRamtzfMBwPJ8FJLSSU+7aGZ6wVvPR3qfD2OfMQ89HxFTydQENSiKYnk+ktAQievW61EKMZzaWqu/vbsfI8L4p5F9Pqab4qOrbwSBXmMZgMCEaahpbAF2u5Te+pB9g1F8MhSDogBtTbXo792H+kevRUDR8ZR2Or509OcAALpiej9oOCWkIMZN2iWdjjnTcOlpB+PwaQ2INhyIN/SDrcdEbfOY9mF16xxD2uWnT7yNs+58Dn/a2oPhWNK6YE9qdgqdyQcdBQCYnuiCnkxC+/Q967HB7c8BAPqURhzZOgEJBPDK8FS8k2jFqUfNwvfOPmpM43bj4GlN2HDEdQCApp5NwMa7gD9cjsgf/y21YJ0LI1Hj4iuNpBbhBuDUxan7SvECIR3Z50M3q0YCRVTSZBhOzchHUla7KMWnRtI7nMoKGi/7fNjNpgBQEzD2rUNFJJE0qo5MFOiIxJMQOc6vA7moXKgeW3f3YximYjdNqG1NRhSvq3cECXMtl9qJLWiYPN0YSzyPDqeDHwP/eSaw/lbjfjIO3H8x8Id/yvl5dOO1Xb04845n8cSW0ZvqyZTL3zbuxL8HVuKR0PcwMdaFXfpUPD/ne1DMz4csk2bkw4W3HgXu+izw0ebRn0vKxoefDuPcFc9j9fM7Kz0UACUUHytWrMDBBx+MmpoazJs3D3/9awlXVi0ARVFw4zlH48mlf4OHvv1ZPCVOsR5Txyg+rDD/KBPS2939uOuZdwEAf3d8Gx799qlYdITxtwdOc0Ygph88GzGhoVaJ4eOP3kP9UKqDaf0e4595SGvCjEl1VqThb49txV0Xn2StS1Iof3fe13CdsgQrEn+HNQmjXLbmxRWI/f4bwJ9/Avz116lqB5No1BBRgaBLEO2Uy4GwaaA1J9qgmXYJKHrek0g6sseCFfkwzYDFeD5ShlNnVKWYbraSuLWwnLPDaUyXKZ3iBZl9UTkAqAuYERxFQySeTL0eAAHo0EXKCDv6C0j1+Nja1W8simjbLk2n//1aF8IxI8oxaWobJk01xMeEZO/YX+Nf/gPo3AA8sxzY9y7w2u+Atx8DXr8f2Pb42PYBo2HYDx7dgre7B3DjI1sQHcVgu2PPAA7Ax7gj+n20D/4Jh6jdGBZh/Et8MebNPji1X0t8eFMevd8QjwB//C6wZwuwdlnR/+PEO2770zt4bVcvbn78beyxLwBZIUoiPn7/+99j6dKluPHGG/Hyyy/j+OOPx4IFC7Bnjz8NZwdOrEPDCV+x7gfrx7CiLVLiY7S0y78/8Q4UoWPJobtxZ8O9OPb+k1H3nln2W+OMfASDIezWjIv1x+9vwdT4R9ZjbVFDwESDzQhqKn76P47DtWccgTsvPLFo4QEYJtV/++6/4UtXrcDBl/4aP1ENI2vo7YeNfiB/vBbJn51kiJC3HgXeewYRKT7SIx8AUNtsCBAgI+0CAKJIg6VuriYsO4XKResK8ZNI8SE9H5mGU3PSLiI1kpSeDzPtosjIh1CK3rdkxNbjAwBqzGEnoZppl9TnRM13cTlb2mWrLe0ivSCy3Pa9j4cwCUZVVm1zC6a1GgZnDTpEpHf04wx0A5tXG78LHXjmZuDZf089vv7mMU9qz+3Yi5c7jWN290fwwEsf5nz+9j2DWBp8EEHE8enE43BFbAn+Jno7XsURaD/UtuSCmTITjHw4eeW/gAFzSYVdm4D3nqnocIjBzr1DeNhsPBlN6Pjls++N8helpyTi47bbbsPll1+OSy+9FEcddRTuvvtu1NXV4T//8z9LcThPuOBvO/AujC6N4Smj+yYAQDGd71qOtMvLH3wCbdtjeCr0XfzLR98xLqrD+4DaScDJ/wgcc37G33xSMxMAMLjzJUxBr7VdLo2eqDHE0bknHICr5h+e01yaL011QcxubcRnD52C//FPN+Aq9d9wb+LLuC/xZXTqU6ENdQN/vBb4/deB+87FQe8/aIwt6CI+AKD9KuDgzwEn/j0AIGh7XrLIb41W5EOmdOT5KKjU1tle3XqvrchH8WkXa20X03Aqvz1HrchH8d+iI2lpl1qzm6qsqEnYIh8yujPmihdTZIhgLd7uHsCIXJHZ3N7WlKrcmqKa5ap1U9A2uQn9wnisb98Y1hN6/k4gEQGajf8DvPEA0PsBUDfFaOu++zXgnSdG3Y0QAj97ymjvP2OScfyVf96RM/oR+fA1fEV9HgDQ+8Wf4E/6yfgYzThhRjOaalOfXXnuBDucpkhEgeduN35vNq+h629h9MMH/OLpHdBF6v/gt5s+sJYOqBSeG05jsRg2b96MZcuWWdtUVUVHRwc2bNiQ8fxoNGqF7gGgv9+9uVapaawNofur92H91hfwuVPOGNPfaOa3+CmJ3Xh+1XVQahqhQoe6921M730ZU/R9OBoCvwyZF6iaZuCoc4Gjv2JMyFn6aUSaDgGGX0DTh0+7Pi5qxhaZKZYjWibgx99dglc6P0U8KXDJI6/gy4MPY2HoNUwNDOPA+PtoiBjfclzTLoBRNfONx6y7cv0VANhy+zlW6qEQasyKoPQeIgFFx6u3npnXvmbHkvh1MIHpXTXAmiYcsc94XSMJgX+890VMjnfjFgB6bBiv57lvyUzzGIf1makr0z/Q1RcFVCAx9CneLHDfkrqEcYyJg0FgzSQc1m/4LBIi5f2Q3BX6OSK6il133YkudfSOvhMTe3EQgDc+TiCW0CHCZteOj98B1lyIE2MJ/DporD10qNpttASpn4xwQMMepQmNGMHu/7oc749Syn7UyGaEANwevhIdtX/AsSMvAgAeqDkfjcFenNn3AD554Cp0hg/LuR9dF/inoRiuDCn4bMtkvDjyCaLDOl6/9RYEA+6CffHQe1AVgU9nnYPpcz4LVVkLXQCfP8LZrE+Kj9b3HsSrt27M/caNExqS/Tgs+hE+0abg1oYf4oe9lyHYuQFv3volJJTQ6DsgpUEAC4eiODMInDJlErYlBtA3Ekfnfb/H1MX3VGxYnouPvXv3IplMoqWlxbG9paUFb7/9dsbzly9fjh/84AdeD6Mgjjh6Lo44eu6Yn18/2QgnT0YfTtv1y8wnmNfzEYQQP2UxGucvBWoaR91vYOoRwG7giNhWQAE6lQMwU6TSL0r9GFbc9Yim2iC+cOQ0AMDs1s/jgl8G8au+c1CHCDaGr0KjYnzrbaipybUbi9q6BvSjHo0YwvEj3viABoKGb6ZhQjOGRRh1ShQnDGcK3VHRAAwCeAdoNjd1J5vx1Ft70IAIbgoHEVbihe3bfgyzQEKdYKTXPozVIxFWEVASxe3bfowogHcAOc3vEc0AgOb6WiA0CRj5BJ9TXjWem2f6d+ugsddJ02cB3QBiA8A7j6MewJellhQA1CDQZEQv9tXMxIxIN+bE3rRefy4264fjZx/MxLPK2fi/oZewD424setU1CGK08P/jUnJjzFpeAzt2uV4dgKfl/djyD4GBYiJAGrOvBE1QQ3HHtiMNz7sRccc5/Us2dAK9AIH6R/ioOHcqZzxxm2Rc3D/jgCODMzHpYEncMwIjacVR2rtTuAUANCA9/Z0YzCaQEO4MkWvihiz1X1sdHV14YADDsALL7yA9vZ2a/t1112H9evXY9OmTY7nu0U+ZsyYgb6+PjQ2jj5RVxKh63hj/R8w/MFLCPTvgpIYgRACsbrpqJ/9BUw9+DjoABont6CxcezRirc3/QmzH/+qdf/FpjNwWN8GTIQRyn7uhJ/i9POuyPbnJeWToRj+/PYeJHQdJ2y9BUfu/A0AIDHv2wgsXD6mfezc+iI+fut5bwakqjj4lHMw7QBjrZt3X38B+7YXJmqCmoo5bY2oCagQQuCdj0fwdv0piNQYYm9i7xY0928rargBTcHs1kbU1YSBw76MDT0qOj8ZwuRPX0PjwLtF7VuiqQpmt05AvXlR2blvGG+Gjsdw3QGYe9AkHIYPgQ//in2DMbz78eAoe3Oiq0F0tXweyVAz/ubIqZi27yXgk1T+uMc0srU01gDTjgYONMT83u5OvLfhkTGlrYSiYve00xENG+/75E9fQyQ0CUP1MwAATf3vYFLvm2Mab1BTccwBjQhqKnQhsKWr3/LFZGPyYXNx6PFGSe3uvhF090Vw4kzn/+/wYB+2PvN76NFht12MW2LBRnzUOh9QVGjJCA7oXgctWdnwPjGuCXOmT0BdKAAhBNZu6cFxh87AAadd5Olx+vv70dTUNKb523PxEYvFUFdXh//zf/4PzjvvPGv7JZdcgt7eXjzyyCM5/z6fwe+v9H7cheYVc6z7G2Z+C827n8Wc+FYAwIufvwcnz/9Ktj8vH/veBX4+F4AAPvvPwBk/rPSICCGEVIh85m/PDaehUAhz587FunXrrG26rmPdunWOSAjJTvOU6eizrYIRnHYoBuoPtu7XT5xWgVG5MPlQ4PAvG7+HqmHVDkIIIX6gJMmepUuX4pJLLsFnPvMZnHLKKbjjjjswNDSESy+9tBSH2/9QFHQHZ6Apbnhkmg6Yjb2f7IIsfGma1Fq5saVz1m3AxpXASf9Q6ZEQQgipEkoiPi644AJ8/PHHuOGGG9Dd3Y0TTjgBa9euzTChkuwM1B8M9Brio2XWHAx+3AmYqfXmKT56H5tnAGf+pNKjIIQQUkWUzOZ61VVX4aqrrirV7vd7kpMOA3qBXkxAc/NUTDnkeOAFoA/1aKpvqPTwCCGEkIIZlwvLVQP1M48H3gN2h2ahGcCMw47FpqNvQM2kA3B8pQdHCCGEFAHFh085+nPn443ejzD12C9a2+Z99TsVHBEhhBDiDRQfPkXRAjj2vCWVHgYhhBDiOSVb1ZYQQgghxA2KD0IIIYSUFYoPQgghhJQVig9CCCGElBWKD0IIIYSUFYoPQgghhJQVig9CCCGElBWKD0IIIYSUFYoPQgghhJQVig9CCCGElBWKD0IIIYSUFYoPQgghhJQVig9CCCGElBXfrWorhAAA9Pf3V3gkhBBCCBkrct6W83gufCc+BgYGAAAzZsyo8EgIIYQQki8DAwNoamrK+RxFjEWilBFd19HV1YUJEyZAURRP993f348ZM2Zg165daGxs9HTfpHh4fvwPz5G/4fnxN/v7+RFCYGBgAG1tbVDV3K4O30U+VFXFgQceWNJjNDY27pcnfn+B58f/8Bz5G54ff7M/n5/RIh4SGk4JIYQQUlYoPgghhBBSVsaV+AiHw7jxxhsRDocrPRTiAs+P/+E58jc8P/6G5yeF7wynhBBCCNm/GVeRD0IIIYRUHooPQgghhJQVig9CCCGElBWKD0IIIYSUlXEjPlasWIGDDz4YNTU1mDdvHv76179Wekjjlu9///tQFMVxmz17tvV4JBLB4sWLMXnyZDQ0NGDRokXo6emp4Ij3b5599lmcc845aGtrg6IoePjhhx2PCyFwww03YPr06aitrUVHRwe2b9/ueM4nn3yCiy++GI2NjWhubsZll12GwcHBMr6K/ZfRzs83vvGNjP+nM8880/Ecnp/SsXz5cpx88smYMGECpk2bhvPOOw/btm1zPGcs17TOzk6cddZZqKurw7Rp0/Dd734XiUSinC+lrIwL8fH73/8eS5cuxY033oiXX34Zxx9/PBYsWIA9e/ZUemjjlqOPPhq7d++2bs8995z12JIlS/Doo4/iwQcfxPr169HV1YXzzz+/gqPdvxkaGsLxxx+PFStWuD5+66234s4778Tdd9+NTZs2ob6+HgsWLEAkErGec/HFF2PLli148skn8dhjj+HZZ5/FFVdcUa6XsF8z2vkBgDPPPNPx//S73/3O8TjPT+lYv349Fi9ejI0bN+LJJ59EPB7HGWecgaGhIes5o13TkskkzjrrLMRiMbzwwgu49957cc899+CGG26oxEsqD2IccMopp4jFixdb95PJpGhraxPLly+v4KjGLzfeeKM4/vjjXR/r7e0VwWBQPPjgg9a2t956SwAQGzZsKNMIxy8AxEMPPWTd13VdtLa2ip/+9KfWtt7eXhEOh8Xvfvc7IYQQW7duFQDEiy++aD3n8ccfF4qiiI8++qhsYx8PpJ8fIYS45JJLxLnnnpv1b3h+ysuePXsEALF+/XohxNiuaX/84x+Fqqqiu7vbes7KlStFY2OjiEaj5X0BZWK/j3zEYjFs3rwZHR0d1jZVVdHR0YENGzZUcGTjm+3bt6OtrQ2HHHIILr74YnR2dgIANm/ejHg87jhfs2fPxsyZM3m+KsDOnTvR3d3tOB9NTU2YN2+edT42bNiA5uZmfOYzn7Ge09HRAVVVsWnTprKPeTzyzDPPYNq0aTjyyCNx5ZVXYt++fdZjPD/lpa+vDwAwadIkAGO7pm3YsAHHHnssWlparOcsWLAA/f392LJlSxlHXz72e/Gxd+9eJJNJx0kFgJaWFnR3d1doVOObefPm4Z577sHatWuxcuVK7Ny5E5/73OcwMDCA7u5uhEIhNDc3O/6G56syyPc81/9Pd3c3pk2b5ng8EAhg0qRJPGdl4Mwzz8R9992HdevW4ZZbbsH69euxcOFCJJNJADw/5UTXdVxzzTU47bTTcMwxxwDAmK5p3d3drv9j8rH9Ed+takv2fxYuXGj9ftxxx2HevHk46KCD8MADD6C2traCIyOk+rjwwgut34899lgcd9xxOPTQQ/HMM8/gS1/6UgVHNv5YvHgx3nzzTYeHjbiz30c+pkyZAk3TMpzFPT09aG1trdCoiJ3m5mYcccQR2LFjB1pbWxGLxdDb2+t4Ds9XZZDvea7/n9bW1gzzdiKRwCeffMJzVgEOOeQQTJkyBTt27ADA81MurrrqKjz22GP485//jAMPPNDaPpZrWmtrq+v/mHxsf2S/Fx+hUAhz587FunXrrG26rmPdunVob2+v4MiIZHBwEO+++y6mT5+OuXPnIhgMOs7Xtm3b0NnZyfNVAWbNmoXW1lbH+ejv78emTZus89He3o7e3l5s3rzZes7TTz8NXdcxb968so95vPPhhx9i3759mD59OgCen1IjhMBVV12Fhx56CE8//TRmzZrleHws17T29na88cYbDpH45JNPorGxEUcddVR5Xki5qbTjtRzcf//9IhwOi3vuuUds3bpVXHHFFaK5udnhLCbl4zvf+Y545plnxM6dO8Xzzz8vOjo6xJQpU8SePXuEEEJ861vfEjNnzhRPP/20eOmll0R7e7tob2+v8Kj3XwYGBsQrr7wiXnnlFQFA3HbbbeKVV14RH3zwgRBCiJtvvlk0NzeLRx55RLz++uvi3HPPFbNmzRIjIyPWPs4880xx4oknik2bNonnnntOHH744eKiiy6q1Evar8h1fgYGBsS1114rNmzYIHbu3CmeeuopcdJJJ4nDDz9cRCIRax88P6XjyiuvFE1NTeKZZ54Ru3fvtm7Dw8PWc0a7piUSCXHMMceIM844Q7z66qti7dq1YurUqWLZsmWVeEllYVyIDyGE+PnPfy5mzpwpQqGQOOWUU8TGjRsrPaRxywUXXCCmT58uQqGQOOCAA8QFF1wgduzYYT0+MjIivv3tb4uJEyeKuro68ZWvfEXs3r27giPev/nzn/8sAGTcLrnkEiGEUW57/fXXi5aWFhEOh8WXvvQlsW3bNsc+9u3bJy666CLR0NAgGhsbxaWXXioGBgYq8Gr2P3Kdn+HhYXHGGWeIqVOnimAwKA466CBx+eWXZ3yx4vkpHW7nBoBYvXq19ZyxXNPef/99sXDhQlFbWyumTJkivvOd74h4PF7mV1M+FCGEKHe0hRBCCCHjl/3e80EIIYQQf0HxQQghhJCyQvFBCCGEkLJC8UEIIYSQskLxQQghhJCyQvFBCCGEkLJC8UEIIYSQskLxQQghhJCyQvFBCCGEkLJC8UEIIYSQskLxQQghhJCyQvFBCCGEkLLy/wPQWSYvnY2ogwAAAABJRU5ErkJggg==", "text/plain": [ "
" ] @@ -134,10 +122,10 @@ "id": "6caa9a54", "metadata": { "execution": { - "iopub.execute_input": "2024-11-24T09:27:20.131216Z", - "iopub.status.busy": "2024-11-24T09:27:20.130932Z", - "iopub.status.idle": "2024-11-24T09:27:20.135202Z", - "shell.execute_reply": "2024-11-24T09:27:20.134644Z" + "iopub.execute_input": "2025-05-08T16:22:34.357638Z", + "iopub.status.busy": "2025-05-08T16:22:34.356566Z", + "iopub.status.idle": "2025-05-08T16:22:34.363282Z", + "shell.execute_reply": "2025-05-08T16:22:34.362201Z" } }, "outputs": [ @@ -171,10 +159,10 @@ "id": "78fc5691", "metadata": { "execution": { - "iopub.execute_input": "2024-11-24T09:27:20.138477Z", - "iopub.status.busy": "2024-11-24T09:27:20.138022Z", - "iopub.status.idle": "2024-11-24T09:27:20.151081Z", - "shell.execute_reply": "2024-11-24T09:27:20.150278Z" + "iopub.execute_input": "2025-05-08T16:22:34.366550Z", + "iopub.status.busy": "2025-05-08T16:22:34.366050Z", + "iopub.status.idle": "2025-05-08T16:22:34.372939Z", + "shell.execute_reply": "2025-05-08T16:22:34.371839Z" } }, "outputs": [ @@ -198,15 +186,18 @@ { "cell_type": "code", "execution_count": null, - "id": "4796a16e", + "id": "310a2a0d", "metadata": {}, "outputs": [], "source": [] } ], "metadata": { + "jupytext": { + "formats": "docs//notebooks//ipynb,docs//notebooks//scripts//py:percent" + }, "kernelspec": { - "display_name": "Python 3.9.4 ('rdkit')", + "display_name": ".venv", "language": "python", "name": "python3" }, @@ -220,7 +211,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.10.12" + "version": "3.12.6" } }, "nbformat": 4, diff --git a/docs/notebooks/03_example_pipeline.ipynb b/docs/notebooks/03_example_pipeline.ipynb index 10b5edc..cacfa7d 100644 --- a/docs/notebooks/03_example_pipeline.ipynb +++ b/docs/notebooks/03_example_pipeline.ipynb @@ -18,10 +18,10 @@ "id": "79139b10", "metadata": { "execution": { - "iopub.execute_input": "2024-11-24T09:27:21.863626Z", - "iopub.status.busy": "2024-11-24T09:27:21.863272Z", - "iopub.status.idle": "2024-11-24T09:27:22.718519Z", - "shell.execute_reply": "2024-11-24T09:27:22.717789Z" + "iopub.execute_input": "2025-05-08T16:22:35.876773Z", + "iopub.status.busy": "2025-05-08T16:22:35.876261Z", + "iopub.status.idle": "2025-05-08T16:22:36.754601Z", + "shell.execute_reply": "2025-05-08T16:22:36.753459Z" } }, "outputs": [], @@ -42,16 +42,16 @@ "id": "17a9cdd7", "metadata": { "execution": { - "iopub.execute_input": "2024-11-24T09:27:22.722219Z", - "iopub.status.busy": "2024-11-24T09:27:22.721369Z", - "iopub.status.idle": "2024-11-24T09:27:22.727326Z", - "shell.execute_reply": "2024-11-24T09:27:22.726709Z" + "iopub.execute_input": "2025-05-08T16:22:36.758840Z", + "iopub.status.busy": "2025-05-08T16:22:36.758015Z", + "iopub.status.idle": "2025-05-08T16:22:36.767668Z", + "shell.execute_reply": "2025-05-08T16:22:36.766504Z" }, "lines_to_next_cell": 0 }, "outputs": [], "source": [ - "csv_file = \"../tests/data/SLC6A4_active_excapedb_subset.csv\" # Hmm, maybe better to download directly\n", + "csv_file = \"../../tests/data/SLC6A4_active_excapedb_subset.csv\" # Hmm, maybe better to download directly\n", "data = pd.read_csv(csv_file)" ] }, @@ -71,10 +71,10 @@ "id": "a3ec0a23", "metadata": { "execution": { - "iopub.execute_input": "2024-11-24T09:27:22.729951Z", - "iopub.status.busy": "2024-11-24T09:27:22.729732Z", - "iopub.status.idle": "2024-11-24T09:27:22.769704Z", - "shell.execute_reply": "2024-11-24T09:27:22.768854Z" + "iopub.execute_input": "2025-05-08T16:22:36.770992Z", + "iopub.status.busy": "2025-05-08T16:22:36.770360Z", + "iopub.status.idle": "2025-05-08T16:22:36.828093Z", + "shell.execute_reply": "2025-05-08T16:22:36.826677Z" }, "lines_to_next_cell": 0 }, @@ -106,10 +106,10 @@ "id": "4eb8f0fa", "metadata": { "execution": { - "iopub.execute_input": "2024-11-24T09:27:22.772861Z", - "iopub.status.busy": "2024-11-24T09:27:22.772534Z", - "iopub.status.idle": "2024-11-24T09:27:23.182612Z", - "shell.execute_reply": "2024-11-24T09:27:23.181966Z" + "iopub.execute_input": "2025-05-08T16:22:36.830959Z", + "iopub.status.busy": "2025-05-08T16:22:36.830663Z", + "iopub.status.idle": "2025-05-08T16:22:37.516946Z", + "shell.execute_reply": "2025-05-08T16:22:37.515550Z" } }, "outputs": [], @@ -127,10 +127,10 @@ "id": "99edec0f", "metadata": { "execution": { - "iopub.execute_input": "2024-11-24T09:27:23.185612Z", - "iopub.status.busy": "2024-11-24T09:27:23.185269Z", - "iopub.status.idle": "2024-11-24T09:27:23.190844Z", - "shell.execute_reply": "2024-11-24T09:27:23.190290Z" + "iopub.execute_input": "2025-05-08T16:22:37.521222Z", + "iopub.status.busy": "2025-05-08T16:22:37.520115Z", + "iopub.status.idle": "2025-05-08T16:22:37.527537Z", + "shell.execute_reply": "2025-05-08T16:22:37.526440Z" } }, "outputs": [], @@ -154,10 +154,10 @@ "id": "a27d6ff9", "metadata": { "execution": { - "iopub.execute_input": "2024-11-24T09:27:23.193426Z", - "iopub.status.busy": "2024-11-24T09:27:23.193188Z", - "iopub.status.idle": "2024-11-24T09:27:23.198881Z", - "shell.execute_reply": "2024-11-24T09:27:23.198225Z" + "iopub.execute_input": "2025-05-08T16:22:37.531062Z", + "iopub.status.busy": "2025-05-08T16:22:37.530349Z", + "iopub.status.idle": "2025-05-08T16:22:37.539115Z", + "shell.execute_reply": "2025-05-08T16:22:37.538026Z" } }, "outputs": [ @@ -191,10 +191,10 @@ "id": "634ca919", "metadata": { "execution": { - "iopub.execute_input": "2024-11-24T09:27:23.201230Z", - "iopub.status.busy": "2024-11-24T09:27:23.201013Z", - "iopub.status.idle": "2024-11-24T09:27:23.265644Z", - "shell.execute_reply": "2024-11-24T09:27:23.264698Z" + "iopub.execute_input": "2025-05-08T16:22:37.542129Z", + "iopub.status.busy": "2025-05-08T16:22:37.541844Z", + "iopub.status.idle": "2025-05-08T16:22:37.609556Z", + "shell.execute_reply": "2025-05-08T16:22:37.608271Z" }, "lines_to_next_cell": 0 }, @@ -206,6 +206,18 @@ "Train score is :1.00\n", "Test score is :0.55\n" ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n", + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n", + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n" + ] } ], "source": [ @@ -228,10 +240,10 @@ "id": "f4431aab", "metadata": { "execution": { - "iopub.execute_input": "2024-11-24T09:27:23.269015Z", - "iopub.status.busy": "2024-11-24T09:27:23.268218Z", - "iopub.status.idle": "2024-11-24T09:27:23.280889Z", - "shell.execute_reply": "2024-11-24T09:27:23.279967Z" + "iopub.execute_input": "2025-05-08T16:22:37.613501Z", + "iopub.status.busy": "2025-05-08T16:22:37.613074Z", + "iopub.status.idle": "2025-05-08T16:22:37.625937Z", + "shell.execute_reply": "2025-05-08T16:22:37.624623Z" } }, "outputs": [ @@ -264,10 +276,10 @@ "id": "a908097d", "metadata": { "execution": { - "iopub.execute_input": "2024-11-24T09:27:23.284650Z", - "iopub.status.busy": "2024-11-24T09:27:23.283862Z", - "iopub.status.idle": "2024-11-24T09:27:23.298454Z", - "shell.execute_reply": "2024-11-24T09:27:23.297546Z" + "iopub.execute_input": "2025-05-08T16:22:37.630016Z", + "iopub.status.busy": "2025-05-08T16:22:37.629320Z", + "iopub.status.idle": "2025-05-08T16:22:37.640274Z", + "shell.execute_reply": "2025-05-08T16:22:37.639075Z" } }, "outputs": [ @@ -296,10 +308,10 @@ "id": "0124653c", "metadata": { "execution": { - "iopub.execute_input": "2024-11-24T09:27:23.302185Z", - "iopub.status.busy": "2024-11-24T09:27:23.301318Z", - "iopub.status.idle": "2024-11-24T09:27:23.307070Z", - "shell.execute_reply": "2024-11-24T09:27:23.306539Z" + "iopub.execute_input": "2025-05-08T16:22:37.643282Z", + "iopub.status.busy": "2025-05-08T16:22:37.642781Z", + "iopub.status.idle": "2025-05-08T16:22:37.655561Z", + "shell.execute_reply": "2025-05-08T16:22:37.652513Z" } }, "outputs": [ @@ -332,10 +344,10 @@ "id": "63c8ef60", "metadata": { "execution": { - "iopub.execute_input": "2024-11-24T09:27:23.309849Z", - "iopub.status.busy": "2024-11-24T09:27:23.309649Z", - "iopub.status.idle": "2024-11-24T09:27:23.317613Z", - "shell.execute_reply": "2024-11-24T09:27:23.316837Z" + "iopub.execute_input": "2025-05-08T16:22:37.659747Z", + "iopub.status.busy": "2025-05-08T16:22:37.658755Z", + "iopub.status.idle": "2025-05-08T16:22:37.669836Z", + "shell.execute_reply": "2025-05-08T16:22:37.668406Z" } }, "outputs": [ @@ -347,20 +359,22 @@ " ('pipe',\n", " Pipeline(steps=[('mol_transformer', MorganFingerprintTransformer()),\n", " ('Regressor', Ridge())]))],\n", + " 'transform_input': None,\n", " 'verbose': False,\n", " 'smiles_transformer': SmilesToMolTransformer(),\n", " 'pipe': Pipeline(steps=[('mol_transformer', MorganFingerprintTransformer()),\n", " ('Regressor', Ridge())]),\n", - " 'smiles_transformer__parallel': False,\n", + " 'smiles_transformer__n_jobs': None,\n", " 'smiles_transformer__safe_inference_mode': False,\n", " 'pipe__memory': None,\n", " 'pipe__steps': [('mol_transformer', MorganFingerprintTransformer()),\n", " ('Regressor', Ridge())],\n", + " 'pipe__transform_input': None,\n", " 'pipe__verbose': False,\n", " 'pipe__mol_transformer': MorganFingerprintTransformer(),\n", " 'pipe__Regressor': Ridge(),\n", " 'pipe__mol_transformer__fpSize': 2048,\n", - " 'pipe__mol_transformer__parallel': False,\n", + " 'pipe__mol_transformer__n_jobs': None,\n", " 'pipe__mol_transformer__radius': 2,\n", " 'pipe__mol_transformer__safe_inference_mode': False,\n", " 'pipe__mol_transformer__useBondTypes': True,\n", @@ -388,8 +402,11 @@ } ], "metadata": { + "jupytext": { + "formats": "docs//notebooks//ipynb,docs//notebooks//scripts//py:percent" + }, "kernelspec": { - "display_name": "Python 3.9.4 ('rdkit')", + "display_name": ".venv", "language": "python", "name": "python3" }, @@ -403,7 +420,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.10.12" + "version": "3.12.6" } }, "nbformat": 4, diff --git a/docs/notebooks/04_standardizer.ipynb b/docs/notebooks/04_standardizer.ipynb index d32b9b3..f326ea1 100644 --- a/docs/notebooks/04_standardizer.ipynb +++ b/docs/notebooks/04_standardizer.ipynb @@ -6,7 +6,7 @@ "metadata": {}, "source": [ "# Molecule standardization\n", - "When building machine learning models of molecules, it is important to standardize the molecules. We often don't want different predictions just because things are drawn in slightly different forms, such as protonated or deprotonated carboxylic acids. Scikit-mol provides a very basic standardize transformer based on the molvs implementation in RDKit" + "When building machine learning models of molecules, it is important to standardize the molecules. We often don't want different predictions just because things are drawn in slightly different forms, such as protonated or deprotanted carboxylic acids. Scikit-mol provides a very basic standardize transformer based on the molvs implementation in RDKit" ] }, { @@ -15,10 +15,10 @@ "id": "d40bdabe", "metadata": { "execution": { - "iopub.execute_input": "2024-11-24T09:27:25.092168Z", - "iopub.status.busy": "2024-11-24T09:27:25.091775Z", - "iopub.status.idle": "2024-11-24T09:27:25.972589Z", - "shell.execute_reply": "2024-11-24T09:27:25.971827Z" + "iopub.execute_input": "2025-05-08T16:22:39.191239Z", + "iopub.status.busy": "2025-05-08T16:22:39.189891Z", + "iopub.status.idle": "2025-05-08T16:22:40.514182Z", + "shell.execute_reply": "2025-05-08T16:22:40.512920Z" } }, "outputs": [], @@ -45,17 +45,17 @@ "id": "5a45dfd5", "metadata": { "execution": { - "iopub.execute_input": "2024-11-24T09:27:25.975743Z", - "iopub.status.busy": "2024-11-24T09:27:25.975328Z", - "iopub.status.idle": "2024-11-24T09:27:25.984915Z", - "shell.execute_reply": "2024-11-24T09:27:25.984323Z" + "iopub.execute_input": "2025-05-08T16:22:40.518530Z", + "iopub.status.busy": "2025-05-08T16:22:40.517654Z", + "iopub.status.idle": "2025-05-08T16:22:40.537037Z", + "shell.execute_reply": "2025-05-08T16:22:40.535847Z" } }, "outputs": [ { "data": { "text/plain": [ - "array([], dtype=object)" + "array([], dtype=object)" ] }, "metadata": {}, @@ -64,7 +64,7 @@ { "data": { "text/plain": [ - "array([], dtype=object)" + "array([], dtype=object)" ] }, "metadata": {}, @@ -102,10 +102,10 @@ "id": "d13141c6", "metadata": { "execution": { - "iopub.execute_input": "2024-11-24T09:27:25.987910Z", - "iopub.status.busy": "2024-11-24T09:27:25.987688Z", - "iopub.status.idle": "2024-11-24T09:27:26.003398Z", - "shell.execute_reply": "2024-11-24T09:27:26.002776Z" + "iopub.execute_input": "2025-05-08T16:22:40.540032Z", + "iopub.status.busy": "2025-05-08T16:22:40.539703Z", + "iopub.status.idle": "2025-05-08T16:22:40.560979Z", + "shell.execute_reply": "2025-05-08T16:22:40.560007Z" } }, "outputs": [ @@ -140,7 +140,7 @@ "source": [ "Some of the molecules were desalted and neutralized.\n", "\n", - "A typical usecase would be to add the standardizer to a pipeline for prediction" + "A typical use case would be to add the standardizer to a pipeline for prediction" ] }, { @@ -149,10 +149,10 @@ "id": "a376a759", "metadata": { "execution": { - "iopub.execute_input": "2024-11-24T09:27:26.006132Z", - "iopub.status.busy": "2024-11-24T09:27:26.005882Z", - "iopub.status.idle": "2024-11-24T09:27:26.034347Z", - "shell.execute_reply": "2024-11-24T09:27:26.033821Z" + "iopub.execute_input": "2025-05-08T16:22:40.565099Z", + "iopub.status.busy": "2025-05-08T16:22:40.564746Z", + "iopub.status.idle": "2025-05-08T16:22:40.603278Z", + "shell.execute_reply": "2025-05-08T16:22:40.602109Z" }, "lines_to_next_cell": 2 }, @@ -194,7 +194,7 @@ "id": "f0d071fb", "metadata": {}, "source": [ - "As we can see, the predictions with the standardizer and without are different. The two first molecules were benzoic acid and sodium benzoate, which with the standardized pipeline is predicted as the same, but differently with the nonstandardized pipeline. Wheter we want to make the prediction on the parent compound, or predict the exact form, will of course depend on the use-case, but now there is at least a way to handle it easily in pipelined predictors.\n", + "As we can see, the predictions with the standardizer and without are different. The two first molecules were benzoic acid and sodium benzoate, which with the standardized pipeline is predicted as the same, but differently with the nonstandardized pipeline. Whether we want to make the prediction on the parent compound, or predict the exact form, will of course depend on the use-case, but now there is at least a way to handle it easily in pipelined predictors.\n", "\n", "The example also demonstrate another feature. We created the ridge regressor before creating the two pipelines. Fitting one of the pipelines thus also updated the object in the other pipeline. This can be useful for building inference pipelines that takes in SMILES molecules, but rather do the fitting on already converted and standardized molecules. However, be aware that the crossvalidation classes of scikit-learn may clone the estimators internally when doing the search loop, which would break this interdependence, and necessitate the rebuilding of the inference pipeline.\n", "\n", @@ -207,10 +207,10 @@ "id": "50f71bca", "metadata": { "execution": { - "iopub.execute_input": "2024-11-24T09:27:26.037572Z", - "iopub.status.busy": "2024-11-24T09:27:26.036950Z", - "iopub.status.idle": "2024-11-24T09:27:26.056194Z", - "shell.execute_reply": "2024-11-24T09:27:26.055013Z" + "iopub.execute_input": "2025-05-08T16:22:40.606383Z", + "iopub.status.busy": "2025-05-08T16:22:40.605699Z", + "iopub.status.idle": "2025-05-08T16:22:40.631525Z", + "shell.execute_reply": "2025-05-08T16:22:40.630106Z" } }, "outputs": [ @@ -231,6 +231,9 @@ } ], "metadata": { + "jupytext": { + "formats": "docs//notebooks//ipynb,docs//notebooks//scripts//py:percent" + }, "kernelspec": { "display_name": "Python 3.9.4 ('rdkit')", "language": "python", @@ -246,7 +249,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.10.12" + "version": "3.12.6" } }, "nbformat": 4, diff --git a/docs/notebooks/05_smiles_sanitization.ipynb b/docs/notebooks/05_smiles_sanitization.ipynb index 2b0bb99..d663a1c 100644 --- a/docs/notebooks/05_smiles_sanitization.ipynb +++ b/docs/notebooks/05_smiles_sanitization.ipynb @@ -15,10 +15,10 @@ "id": "612aa974", "metadata": { "execution": { - "iopub.execute_input": "2024-11-24T09:27:27.545695Z", - "iopub.status.busy": "2024-11-24T09:27:27.545293Z", - "iopub.status.idle": "2024-11-24T09:27:28.079174Z", - "shell.execute_reply": "2024-11-24T09:27:28.078490Z" + "iopub.execute_input": "2025-05-08T16:22:41.856567Z", + "iopub.status.busy": "2025-05-08T16:22:41.856271Z", + "iopub.status.idle": "2025-05-08T16:22:42.443540Z", + "shell.execute_reply": "2025-05-08T16:22:42.442130Z" }, "lines_to_next_cell": 2 }, @@ -27,7 +27,7 @@ "import pandas as pd\n", "from rdkit.Chem import PandasTools\n", "\n", - "csv_file = \"../tests/data/SLC6A4_active_excapedb_subset.csv\" # Hmm, maybe better to download directly\n", + "csv_file = \"../../tests/data/SLC6A4_active_excapedb_subset.csv\" # Hmm, maybe better to download directly\n", "data = pd.read_csv(csv_file)" ] }, @@ -45,10 +45,10 @@ "id": "b09cfd6b", "metadata": { "execution": { - "iopub.execute_input": "2024-11-24T09:27:28.082222Z", - "iopub.status.busy": "2024-11-24T09:27:28.081921Z", - "iopub.status.idle": "2024-11-24T09:27:28.086003Z", - "shell.execute_reply": "2024-11-24T09:27:28.085450Z" + "iopub.execute_input": "2025-05-08T16:22:42.448114Z", + "iopub.status.busy": "2025-05-08T16:22:42.447423Z", + "iopub.status.idle": "2025-05-08T16:22:42.454532Z", + "shell.execute_reply": "2025-05-08T16:22:42.453410Z" } }, "outputs": [], @@ -62,10 +62,10 @@ "id": "e20fb5cc", "metadata": { "execution": { - "iopub.execute_input": "2024-11-24T09:27:28.088449Z", - "iopub.status.busy": "2024-11-24T09:27:28.088211Z", - "iopub.status.idle": "2024-11-24T09:27:28.130818Z", - "shell.execute_reply": "2024-11-24T09:27:28.130102Z" + "iopub.execute_input": "2025-05-08T16:22:42.458752Z", + "iopub.status.busy": "2025-05-08T16:22:42.457870Z", + "iopub.status.idle": "2025-05-08T16:22:42.522970Z", + "shell.execute_reply": "2025-05-08T16:22:42.521865Z" }, "lines_to_next_cell": 2 }, @@ -81,12 +81,11 @@ "name": "stderr", "output_type": "stream", "text": [ - "[10:27:28] Explicit valence for atom # 1 N, 4, is greater than permitted\n" + "[18:22:42] Explicit valence for atom # 1 N, 4, is greater than permitted\n" ] } ], "source": [ - "\n", "PandasTools.AddMoleculeColumnToFrame(data, smilesCol=\"SMILES\")\n", "print(f\"Dataset contains {data.ROMol.isna().sum()} unparsable mols\")" ] @@ -105,10 +104,10 @@ "id": "3dbd50b3", "metadata": { "execution": { - "iopub.execute_input": "2024-11-24T09:27:28.133745Z", - "iopub.status.busy": "2024-11-24T09:27:28.133507Z", - "iopub.status.idle": "2024-11-24T09:27:28.508377Z", - "shell.execute_reply": "2024-11-24T09:27:28.507130Z" + "iopub.execute_input": "2025-05-08T16:22:42.526969Z", + "iopub.status.busy": "2025-05-08T16:22:42.526369Z", + "iopub.status.idle": "2025-05-08T16:22:43.317088Z", + "shell.execute_reply": "2025-05-08T16:22:43.316227Z" } }, "outputs": [ @@ -123,14 +122,14 @@ "name": "stderr", "output_type": "stream", "text": [ - "[10:27:28] Explicit valence for atom # 1 N, 4, is greater than permitted\n" + "[18:22:43] Explicit valence for atom # 1 N, 4, is greater than permitted\n" ] } ], "source": [ - "from scikit_mol.utilities import CheckSmilesSanitazion\n", + "from scikit_mol.utilities import CheckSmilesSanitization\n", "\n", - "smileschecker = CheckSmilesSanitazion()\n", + "smileschecker = CheckSmilesSanitization()\n", "\n", "smiles_list_valid, y_valid, smiles_errors, y_errors = smileschecker.sanitize(\n", " list(data.SMILES), list(data.pXC50)\n", @@ -142,7 +141,7 @@ "id": "c888d7da", "metadata": {}, "source": [ - "Now the smiles_list_valid should be all valid and the y_values filtered as well. Errors are returned, but also accesible after the call to .sanitize() in the .errors property" + "Now the smiles_list_valid should be all valid and the y_values filtered as well. Errors are returned, but also accessible after the call to .sanitize() in the .errors property" ] }, { @@ -151,10 +150,10 @@ "id": "5af5ea3d", "metadata": { "execution": { - "iopub.execute_input": "2024-11-24T09:27:28.511261Z", - "iopub.status.busy": "2024-11-24T09:27:28.510945Z", - "iopub.status.idle": "2024-11-24T09:27:28.522024Z", - "shell.execute_reply": "2024-11-24T09:27:28.521232Z" + "iopub.execute_input": "2025-05-08T16:22:43.320958Z", + "iopub.status.busy": "2025-05-08T16:22:43.320157Z", + "iopub.status.idle": "2025-05-08T16:22:43.335067Z", + "shell.execute_reply": "2025-05-08T16:22:43.333676Z" } }, "outputs": [ @@ -221,10 +220,10 @@ "id": "84db07cc", "metadata": { "execution": { - "iopub.execute_input": "2024-11-24T09:27:28.524982Z", - "iopub.status.busy": "2024-11-24T09:27:28.524717Z", - "iopub.status.idle": "2024-11-24T09:27:28.569119Z", - "shell.execute_reply": "2024-11-24T09:27:28.568473Z" + "iopub.execute_input": "2025-05-08T16:22:43.339302Z", + "iopub.status.busy": "2025-05-08T16:22:43.338668Z", + "iopub.status.idle": "2025-05-08T16:22:43.391019Z", + "shell.execute_reply": "2025-05-08T16:22:43.389989Z" } }, "outputs": [ @@ -239,7 +238,7 @@ "name": "stderr", "output_type": "stream", "text": [ - "[10:27:28] Explicit valence for atom # 1 N, 4, is greater than permitted\n" + "[18:22:43] Explicit valence for atom # 1 N, 4, is greater than permitted\n" ] }, { @@ -292,6 +291,9 @@ } ], "metadata": { + "jupytext": { + "formats": "docs//notebooks//ipynb,docs//notebooks//scripts//py:percent" + }, "kernelspec": { "display_name": "Python 3.9.4 ('rdkit')", "language": "python", @@ -307,7 +309,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.10.12" + "version": "3.12.6" } }, "nbformat": 4, diff --git a/docs/notebooks/06_hyperparameter_tuning.ipynb b/docs/notebooks/06_hyperparameter_tuning.ipynb index c6c8bb0..363b5b3 100644 --- a/docs/notebooks/06_hyperparameter_tuning.ipynb +++ b/docs/notebooks/06_hyperparameter_tuning.ipynb @@ -16,10 +16,10 @@ "id": "51aa3d62", "metadata": { "execution": { - "iopub.execute_input": "2024-11-24T09:27:30.230310Z", - "iopub.status.busy": "2024-11-24T09:27:30.230076Z", - "iopub.status.idle": "2024-11-24T09:27:31.452867Z", - "shell.execute_reply": "2024-11-24T09:27:31.452127Z" + "iopub.execute_input": "2025-05-08T16:22:44.604531Z", + "iopub.status.busy": "2025-05-08T16:22:44.604218Z", + "iopub.status.idle": "2025-05-08T16:22:46.163842Z", + "shell.execute_reply": "2025-05-08T16:22:46.162418Z" } }, "outputs": [], @@ -53,10 +53,10 @@ "id": "adbc1868", "metadata": { "execution": { - "iopub.execute_input": "2024-11-24T09:27:31.455770Z", - "iopub.status.busy": "2024-11-24T09:27:31.455436Z", - "iopub.status.idle": "2024-11-24T09:27:31.459245Z", - "shell.execute_reply": "2024-11-24T09:27:31.458654Z" + "iopub.execute_input": "2025-05-08T16:22:46.167928Z", + "iopub.status.busy": "2025-05-08T16:22:46.166905Z", + "iopub.status.idle": "2025-05-08T16:22:46.173404Z", + "shell.execute_reply": "2025-05-08T16:22:46.172138Z" } }, "outputs": [], @@ -71,7 +71,7 @@ " url = \"https://ndownloader.figshare.com/files/25747817\"\n", " urllib.request.urlretrieve(url, csv_file)\n", "else:\n", - " csv_file = \"../tests/data/SLC6A4_active_excapedb_subset.csv\"" + " csv_file = \"../../tests/data/SLC6A4_active_excapedb_subset.csv\"" ] }, { @@ -88,10 +88,10 @@ "id": "9a283f12", "metadata": { "execution": { - "iopub.execute_input": "2024-11-24T09:27:31.461622Z", - "iopub.status.busy": "2024-11-24T09:27:31.461384Z", - "iopub.status.idle": "2024-11-24T09:27:31.500359Z", - "shell.execute_reply": "2024-11-24T09:27:31.499764Z" + "iopub.execute_input": "2025-05-08T16:22:46.177164Z", + "iopub.status.busy": "2025-05-08T16:22:46.176440Z", + "iopub.status.idle": "2025-05-08T16:22:46.233488Z", + "shell.execute_reply": "2025-05-08T16:22:46.232374Z" } }, "outputs": [ @@ -104,7 +104,6 @@ } ], "source": [ - "\n", "data = pd.read_csv(csv_file)\n", "\n", "PandasTools.AddMoleculeColumnToFrame(data, smilesCol=\"SMILES\")\n", @@ -125,16 +124,15 @@ "id": "303b83de", "metadata": { "execution": { - "iopub.execute_input": "2024-11-24T09:27:31.502982Z", - "iopub.status.busy": "2024-11-24T09:27:31.502779Z", - "iopub.status.idle": "2024-11-24T09:27:31.507447Z", - "shell.execute_reply": "2024-11-24T09:27:31.506962Z" + "iopub.execute_input": "2025-05-08T16:22:46.236917Z", + "iopub.status.busy": "2025-05-08T16:22:46.236251Z", + "iopub.status.idle": "2025-05-08T16:22:46.243264Z", + "shell.execute_reply": "2025-05-08T16:22:46.242175Z" }, "lines_to_next_cell": 2 }, "outputs": [], "source": [ - "\n", "mol_list_train, mol_list_test, y_train, y_test = train_test_split(\n", " data.ROMol, data.pXC50, random_state=42\n", ")" @@ -154,13 +152,22 @@ "id": "1383d0fc", "metadata": { "execution": { - "iopub.execute_input": "2024-11-24T09:27:31.509953Z", - "iopub.status.busy": "2024-11-24T09:27:31.509731Z", - "iopub.status.idle": "2024-11-24T09:27:31.830576Z", - "shell.execute_reply": "2024-11-24T09:27:31.829874Z" + "iopub.execute_input": "2025-05-08T16:22:46.247777Z", + "iopub.status.busy": "2025-05-08T16:22:46.246787Z", + "iopub.status.idle": "2025-05-08T16:22:46.614634Z", + "shell.execute_reply": "2025-05-08T16:22:46.613399Z" } }, - "outputs": [], + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n" + ] + } + ], "source": [ "# Probably the recommended way would be to prestandardize the data if there's no changes to the transformer,\n", "# and then add the standardizer in the inference pipeline.\n", @@ -185,16 +192,15 @@ "id": "51c74711", "metadata": { "execution": { - "iopub.execute_input": "2024-11-24T09:27:31.833379Z", - "iopub.status.busy": "2024-11-24T09:27:31.833155Z", - "iopub.status.idle": "2024-11-24T09:27:31.836541Z", - "shell.execute_reply": "2024-11-24T09:27:31.835939Z" + "iopub.execute_input": "2025-05-08T16:22:46.618057Z", + "iopub.status.busy": "2025-05-08T16:22:46.617207Z", + "iopub.status.idle": "2025-05-08T16:22:46.622371Z", + "shell.execute_reply": "2025-05-08T16:22:46.621207Z" }, "lines_to_next_cell": 2 }, "outputs": [], "source": [ - "\n", "moltransformer = MorganFingerprintTransformer()\n", "regressor = Ridge()\n", "\n", @@ -215,10 +221,10 @@ "id": "4c6b833f", "metadata": { "execution": { - "iopub.execute_input": "2024-11-24T09:27:31.838854Z", - "iopub.status.busy": "2024-11-24T09:27:31.838668Z", - "iopub.status.idle": "2024-11-24T09:27:31.841636Z", - "shell.execute_reply": "2024-11-24T09:27:31.841130Z" + "iopub.execute_input": "2025-05-08T16:22:46.625354Z", + "iopub.status.busy": "2025-05-08T16:22:46.625058Z", + "iopub.status.idle": "2025-05-08T16:22:46.629915Z", + "shell.execute_reply": "2025-05-08T16:22:46.628829Z" }, "title": "Now hyperparameter tuning" }, @@ -244,10 +250,10 @@ "id": "0af1003b", "metadata": { "execution": { - "iopub.execute_input": "2024-11-24T09:27:31.843922Z", - "iopub.status.busy": "2024-11-24T09:27:31.843728Z", - "iopub.status.idle": "2024-11-24T09:27:31.849777Z", - "shell.execute_reply": "2024-11-24T09:27:31.849273Z" + "iopub.execute_input": "2025-05-08T16:22:46.633716Z", + "iopub.status.busy": "2025-05-08T16:22:46.632911Z", + "iopub.status.idle": "2025-05-08T16:22:46.641844Z", + "shell.execute_reply": "2025-05-08T16:22:46.640881Z" }, "title": "Which keys do we have?" }, @@ -255,7 +261,7 @@ { "data": { "text/plain": [ - "dict_keys(['memory', 'steps', 'verbose', 'morganfingerprinttransformer', 'ridge', 'morganfingerprinttransformer__fpSize', 'morganfingerprinttransformer__parallel', 'morganfingerprinttransformer__radius', 'morganfingerprinttransformer__safe_inference_mode', 'morganfingerprinttransformer__useBondTypes', 'morganfingerprinttransformer__useChirality', 'morganfingerprinttransformer__useCounts', 'morganfingerprinttransformer__useFeatures', 'ridge__alpha', 'ridge__copy_X', 'ridge__fit_intercept', 'ridge__max_iter', 'ridge__positive', 'ridge__random_state', 'ridge__solver', 'ridge__tol'])" + "dict_keys(['memory', 'steps', 'transform_input', 'verbose', 'morganfingerprinttransformer', 'ridge', 'morganfingerprinttransformer__fpSize', 'morganfingerprinttransformer__n_jobs', 'morganfingerprinttransformer__radius', 'morganfingerprinttransformer__safe_inference_mode', 'morganfingerprinttransformer__useBondTypes', 'morganfingerprinttransformer__useChirality', 'morganfingerprinttransformer__useCounts', 'morganfingerprinttransformer__useFeatures', 'ridge__alpha', 'ridge__copy_X', 'ridge__fit_intercept', 'ridge__max_iter', 'ridge__positive', 'ridge__random_state', 'ridge__solver', 'ridge__tol'])" ] }, "execution_count": 8, @@ -264,7 +270,6 @@ } ], "source": [ - "\n", "optimization_pipe.get_params().keys()" ] }, @@ -282,15 +287,14 @@ "id": "c2d541b3", "metadata": { "execution": { - "iopub.execute_input": "2024-11-24T09:27:31.852166Z", - "iopub.status.busy": "2024-11-24T09:27:31.851946Z", - "iopub.status.idle": "2024-11-24T09:27:31.856126Z", - "shell.execute_reply": "2024-11-24T09:27:31.855622Z" + "iopub.execute_input": "2025-05-08T16:22:46.645249Z", + "iopub.status.busy": "2025-05-08T16:22:46.644964Z", + "iopub.status.idle": "2025-05-08T16:22:46.651276Z", + "shell.execute_reply": "2025-05-08T16:22:46.650210Z" } }, "outputs": [], "source": [ - "\n", "param_dist = {\n", " \"ridge__alpha\": loguniform(1e-2, 1e3),\n", " \"morganfingerprinttransformer__fpSize\": [256, 512, 1024, 2048, 4096],\n", @@ -316,10 +320,10 @@ "id": "f2c91783", "metadata": { "execution": { - "iopub.execute_input": "2024-11-24T09:27:31.858429Z", - "iopub.status.busy": "2024-11-24T09:27:31.858216Z", - "iopub.status.idle": "2024-11-24T09:27:31.862461Z", - "shell.execute_reply": "2024-11-24T09:27:31.861795Z" + "iopub.execute_input": "2025-05-08T16:22:46.655212Z", + "iopub.status.busy": "2025-05-08T16:22:46.654913Z", + "iopub.status.idle": "2025-05-08T16:22:46.662196Z", + "shell.execute_reply": "2025-05-08T16:22:46.661226Z" }, "title": "From https://scikit-learn.org/stable/auto_examples/model_selection/plot_randomized_search.html#sphx-glr-auto-examples-model-selection-plot-randomized-search-py" }, @@ -355,10 +359,10 @@ "id": "79a70a0f", "metadata": { "execution": { - "iopub.execute_input": "2024-11-24T09:27:31.864936Z", - "iopub.status.busy": "2024-11-24T09:27:31.864708Z", - "iopub.status.idle": "2024-11-24T09:27:36.221386Z", - "shell.execute_reply": "2024-11-24T09:27:36.220369Z" + "iopub.execute_input": "2025-05-08T16:22:46.665390Z", + "iopub.status.busy": "2025-05-08T16:22:46.665100Z", + "iopub.status.idle": "2025-05-08T16:22:49.120359Z", + "shell.execute_reply": "2025-05-08T16:22:49.119269Z" } }, "outputs": [ @@ -366,7 +370,7 @@ "name": "stdout", "output_type": "stream", "text": [ - "Runtime: 4.35 for 25 iterations)\n" + "Runtime: 2.45 for 25 iterations)\n" ] } ], @@ -388,10 +392,10 @@ "id": "b6160cb3", "metadata": { "execution": { - "iopub.execute_input": "2024-11-24T09:27:36.224876Z", - "iopub.status.busy": "2024-11-24T09:27:36.224667Z", - "iopub.status.idle": "2024-11-24T09:27:36.232647Z", - "shell.execute_reply": "2024-11-24T09:27:36.231571Z" + "iopub.execute_input": "2025-05-08T16:22:49.124324Z", + "iopub.status.busy": "2025-05-08T16:22:49.123579Z", + "iopub.status.idle": "2025-05-08T16:22:49.130023Z", + "shell.execute_reply": "2025-05-08T16:22:49.128965Z" }, "lines_to_next_cell": 0 }, @@ -401,16 +405,16 @@ "output_type": "stream", "text": [ "Model with rank: 1\n", - "Mean validation score: 0.563 (std: 0.115)\n", - "Parameters: {'morganfingerprinttransformer__fpSize': 1024, 'morganfingerprinttransformer__radius': 2, 'morganfingerprinttransformer__useCounts': False, 'morganfingerprinttransformer__useFeatures': False, 'ridge__alpha': 6.855244257973563}\n", + "Mean validation score: 0.459 (std: 0.117)\n", + "Parameters: {'morganfingerprinttransformer__fpSize': 1024, 'morganfingerprinttransformer__radius': 3, 'morganfingerprinttransformer__useCounts': False, 'morganfingerprinttransformer__useFeatures': True, 'ridge__alpha': np.float64(11.211371939288233)}\n", "\n", "Model with rank: 2\n", - "Mean validation score: 0.527 (std: 0.086)\n", - "Parameters: {'morganfingerprinttransformer__fpSize': 512, 'morganfingerprinttransformer__radius': 2, 'morganfingerprinttransformer__useCounts': False, 'morganfingerprinttransformer__useFeatures': False, 'ridge__alpha': 13.611425709525077}\n", + "Mean validation score: 0.427 (std: 0.130)\n", + "Parameters: {'morganfingerprinttransformer__fpSize': 512, 'morganfingerprinttransformer__radius': 2, 'morganfingerprinttransformer__useCounts': True, 'morganfingerprinttransformer__useFeatures': False, 'ridge__alpha': np.float64(22.96332964984786)}\n", "\n", "Model with rank: 3\n", - "Mean validation score: 0.466 (std: 0.149)\n", - "Parameters: {'morganfingerprinttransformer__fpSize': 2048, 'morganfingerprinttransformer__radius': 4, 'morganfingerprinttransformer__useCounts': False, 'morganfingerprinttransformer__useFeatures': True, 'ridge__alpha': 1.383163758398022}\n", + "Mean validation score: 0.426 (std: 0.166)\n", + "Parameters: {'morganfingerprinttransformer__fpSize': 4096, 'morganfingerprinttransformer__radius': 2, 'morganfingerprinttransformer__useCounts': True, 'morganfingerprinttransformer__useFeatures': False, 'ridge__alpha': np.float64(23.874114087368742)}\n", "\n" ] } @@ -441,10 +445,10 @@ "id": "4daaf106", "metadata": { "execution": { - "iopub.execute_input": "2024-11-24T09:27:36.236805Z", - "iopub.status.busy": "2024-11-24T09:27:36.235794Z", - "iopub.status.idle": "2024-11-24T09:27:36.394539Z", - "shell.execute_reply": "2024-11-24T09:27:36.393590Z" + "iopub.execute_input": "2025-05-08T16:22:49.133255Z", + "iopub.status.busy": "2025-05-08T16:22:49.132589Z", + "iopub.status.idle": "2025-05-08T16:22:49.294436Z", + "shell.execute_reply": "2025-05-08T16:22:49.293304Z" } }, "outputs": [ @@ -452,8 +456,18 @@ "name": "stdout", "output_type": "stream", "text": [ - "No Standardization 0.6389\n", - "With Standardization 0.6389\n" + "No Standardization 0.4921\n", + "With Standardization 0.4921\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n", + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n" ] } ], @@ -487,10 +501,10 @@ "id": "92105568", "metadata": { "execution": { - "iopub.execute_input": "2024-11-24T09:27:36.397490Z", - "iopub.status.busy": "2024-11-24T09:27:36.397082Z", - "iopub.status.idle": "2024-11-24T09:27:36.411965Z", - "shell.execute_reply": "2024-11-24T09:27:36.411400Z" + "iopub.execute_input": "2025-05-08T16:22:49.297625Z", + "iopub.status.busy": "2025-05-08T16:22:49.297285Z", + "iopub.status.idle": "2025-05-08T16:22:49.318086Z", + "shell.execute_reply": "2025-05-08T16:22:49.316957Z" } }, "outputs": [ @@ -498,8 +512,8 @@ "name": "stdout", "output_type": "stream", "text": [ - "Predictions with no standardization: [5.89126045 5.97721234 5.97721234 6.03427056 6.03951076]\n", - "Predictions with standardization: [5.89126045 5.89126045 5.89126045 5.89126045 5.89126045]\n" + "Predictions with no standardization: [6.36710496 6.49711427 6.49711427 6.28330625 6.72697401]\n", + "Predictions with standardization: [6.36710496 6.36710496 6.36710496 6.36710496 6.36710496]\n" ] } ], @@ -538,6 +552,9 @@ } ], "metadata": { + "jupytext": { + "formats": "docs//notebooks//ipynb,docs//notebooks//scripts//py:percent" + }, "kernelspec": { "display_name": "Python 3.9.4 ('rdkit')", "language": "python", @@ -553,7 +570,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.10.12" + "version": "3.12.6" } }, "nbformat": 4, diff --git a/docs/notebooks/07_parallel_transforms.ipynb b/docs/notebooks/07_parallel_transforms.ipynb index 816fa4e..d4d913c 100644 --- a/docs/notebooks/07_parallel_transforms.ipynb +++ b/docs/notebooks/07_parallel_transforms.ipynb @@ -1,5 +1,13 @@ { "cells": [ + { + "cell_type": "code", + "execution_count": null, + "id": "6f68fb8e", + "metadata": {}, + "outputs": [], + "source": [] + }, { "cell_type": "markdown", "id": "87ed8373", @@ -703,8 +711,11 @@ } ], "metadata": { + "jupytext": { + "formats": "docs//notebooks//ipynb,docs//notebooks//scripts//py:percent" + }, "kernelspec": { - "display_name": ".venv", + "display_name": "Python 3.9.4 ('rdkit')", "language": "python", "name": "python3" }, diff --git a/docs/notebooks/08_external_library_skopt.ipynb b/docs/notebooks/08_external_library_skopt.ipynb index 4657741..7fbf8d5 100644 --- a/docs/notebooks/08_external_library_skopt.ipynb +++ b/docs/notebooks/08_external_library_skopt.ipynb @@ -769,7 +769,6 @@ } ], "source": [ - "\n", "pipe_gp = gp_minimize(objective, search_space, n_calls=10, random_state=0)\n", "\"Best score=%.4f\" % pipe_gp.fun" ] @@ -852,8 +851,11 @@ } ], "metadata": { + "jupytext": { + "formats": "docs//notebooks//ipynb,docs//notebooks//scripts//py:percent" + }, "kernelspec": { - "display_name": "vscode", + "display_name": ".venv", "language": "python", "name": "python3" }, @@ -867,7 +869,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.10.12" + "version": "3.12.6" } }, "nbformat": 4, diff --git a/docs/notebooks/09_Combinatorial_Method_Usage_with_FingerPrint_Transformers.ipynb b/docs/notebooks/09_Combinatorial_Method_Usage_with_FingerPrint_Transformers.ipynb index e11c62e..69156e1 100644 --- a/docs/notebooks/09_Combinatorial_Method_Usage_with_FingerPrint_Transformers.ipynb +++ b/docs/notebooks/09_Combinatorial_Method_Usage_with_FingerPrint_Transformers.ipynb @@ -27,10 +27,10 @@ "id": "b705b5c9", "metadata": { "execution": { - "iopub.execute_input": "2024-11-24T09:27:55.508365Z", - "iopub.status.busy": "2024-11-24T09:27:55.507967Z", - "iopub.status.idle": "2024-11-24T09:27:56.807362Z", - "shell.execute_reply": "2024-11-24T09:27:56.806654Z" + "iopub.execute_input": "2025-05-08T16:22:50.685069Z", + "iopub.status.busy": "2025-05-08T16:22:50.684787Z", + "iopub.status.idle": "2025-05-08T16:22:52.211375Z", + "shell.execute_reply": "2025-05-08T16:22:52.210158Z" }, "lines_to_next_cell": 2 }, @@ -70,10 +70,10 @@ "id": "34b2618a", "metadata": { "execution": { - "iopub.execute_input": "2024-11-24T09:27:56.810246Z", - "iopub.status.busy": "2024-11-24T09:27:56.809941Z", - "iopub.status.idle": "2024-11-24T09:27:56.851202Z", - "shell.execute_reply": "2024-11-24T09:27:56.850568Z" + "iopub.execute_input": "2025-05-08T16:22:52.215818Z", + "iopub.status.busy": "2025-05-08T16:22:52.214649Z", + "iopub.status.idle": "2025-05-08T16:22:52.271743Z", + "shell.execute_reply": "2025-05-08T16:22:52.270511Z" } }, "outputs": [ @@ -97,7 +97,7 @@ " url = \"https://ndownloader.figshare.com/files/25747817\"\n", " urllib.request.urlretrieve(url, csv_file)\n", "else:\n", - " csv_file = \"../tests/data/SLC6A4_active_excapedb_subset.csv\"\n", + " csv_file = \"../../tests/data/SLC6A4_active_excapedb_subset.csv\"\n", "\n", "# Parse Database\n", "data = pd.read_csv(csv_file)\n", @@ -112,9 +112,9 @@ "metadata": {}, "source": [ "## Build Pipeline:\n", - "In this stage we will build the Pipeline consisting of the featurization part (finger print transformers) and the model part (Ridge Regression).\n", + "In this stage we will build the Pipeline consisting of the featurization part (fingerprint transformers) and the model part (Ridge Regression).\n", "\n", - "Note that the featurization in this section is an hyperparameter, living in `param_grid`, and the `\"fp_transformer\"` string is just a placeholder, being replaced during pipeline execution.\n", + "Note that the featurization in this section is a hyperparameter, living in `param_grid`, and the `\"fp_transformer\"` string is just a placeholder, being replaced during pipeline execution.\n", "\n", "This way we can define multiple different scenarios in `param_grid`, that allow us to rapidly explore different combinations of settings and methodologies." ] @@ -125,10 +125,10 @@ "id": "e06042cc", "metadata": { "execution": { - "iopub.execute_input": "2024-11-24T09:27:56.854051Z", - "iopub.status.busy": "2024-11-24T09:27:56.853508Z", - "iopub.status.idle": "2024-11-24T09:27:56.863947Z", - "shell.execute_reply": "2024-11-24T09:27:56.863371Z" + "iopub.execute_input": "2025-05-08T16:22:52.275673Z", + "iopub.status.busy": "2025-05-08T16:22:52.274777Z", + "iopub.status.idle": "2025-05-08T16:22:52.289345Z", + "shell.execute_reply": "2025-05-08T16:22:52.288093Z" } }, "outputs": [ @@ -151,7 +151,6 @@ } ], "source": [ - "\n", "regressor = Ridge()\n", "optimization_pipe = Pipeline(\n", " [\n", @@ -204,18 +203,2034 @@ "id": "f1cf66df", "metadata": { "execution": { - "iopub.execute_input": "2024-11-24T09:27:56.866817Z", - "iopub.status.busy": "2024-11-24T09:27:56.866251Z", - "iopub.status.idle": "2024-11-24T09:28:28.265183Z", - "shell.execute_reply": "2024-11-24T09:28:28.264595Z" + "iopub.execute_input": "2025-05-08T16:22:52.293059Z", + "iopub.status.busy": "2025-05-08T16:22:52.292608Z", + "iopub.status.idle": "2025-05-08T16:23:24.403914Z", + "shell.execute_reply": "2025-05-08T16:23:24.402481Z" } }, "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n", + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n", + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n", + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n", + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n", + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n", + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n", + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n", + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n", + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n", + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n", + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n", + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n", + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n", + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n", + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n", + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n", + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n", + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n", + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n", + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n", + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n", + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n", + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n", + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n", + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n", + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n", + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n", + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n", + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n", + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n", + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n", + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n", + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n", + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n", + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n", + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n", + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n", + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n", + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n", + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n", + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n", + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n", + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n", + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n", + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n", + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n", + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n", + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n", + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n", + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n", + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n", + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n", + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n", + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n", + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n", + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n", + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n", + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n", + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n", + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n", + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n", + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n", + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n", + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n", + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n", + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n", + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n", + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n", + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n", + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n", + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n", + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n", + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n", + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n", + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n", + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n", + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n", + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n", + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n", + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n", + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n", + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n", + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n", + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n", + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n", + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n", + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n", + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n", + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n", + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n", + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n", + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n", + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n", + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n", + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n", + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n", + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n", + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n", + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n", + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n", + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n", + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n", + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n", + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n", + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n", + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n", + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n", + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n", + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n", + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n", + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n", + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n", + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n", + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n", + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n", + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n", + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n", + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n", + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n", + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n", + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n", + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n", + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n", + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n", + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n", + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n", + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n", + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n", + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n", + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n", + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n", + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n", + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n", + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n", + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n", + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n", + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n", + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n", + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n", + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n", + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n", + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n", + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n", + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n", + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n", + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n", + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n", + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n", + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n", + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n", + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n", + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n", + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n", + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n", + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n", + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n", + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n", + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n", + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n", + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n", + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n", + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n", + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n", + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n", + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n", + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n", + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n", + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n", + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n", + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n", + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n", + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n", + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n", + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n", + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n", + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n", + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n", + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n", + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n", + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n", + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n", + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n", + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n", + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n", + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n", + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n", + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n", + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n", + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n", + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n", + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n", + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n", + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n", + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n", + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n", + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n", + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n", + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n", + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n", + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n", + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n", + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n", + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n", + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n", + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n", + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n", + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n", + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n", + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n", + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n", + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n", + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n", + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n", + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n", + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n", + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n", + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n", + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n", + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n", + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n", + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n", + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n", + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n", + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n", + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n", + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n", + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n", + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n", + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n", + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n", + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n", + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n", + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n", + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n", + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n", + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n", + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n", + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n", + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n", + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n", + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n", + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n", + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n", + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n", + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n", + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n", + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n", + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n", + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n", + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n", + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n", + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n", + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n", + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n", + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n", + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n", + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n", + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n", + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n", + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n", + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n", + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n", + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n", + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n", + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n", + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n", + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n", + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n", + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n", + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n", + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n", + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n", + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n", + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n", + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n", + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n", + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n", + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n", + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n", + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n", + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n", + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n", + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n", + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n", + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n", + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n", + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n", + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n", + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n", + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n", + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n", + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n", + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n", + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n", + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n", + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n", + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n", + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n", + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n", + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n", + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n", + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n", + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n", + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n", + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n", + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n", + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n", + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n", + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n", + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n", + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n", + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n", + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n", + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n", + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n", + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n", + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n", + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n", + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n", + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n", + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n", + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n", + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n", + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n", + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n", + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n", + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n", + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n", + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n", + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n", + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n", + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n", + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n", + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n", + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n", + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n", + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n", + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n", + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n", + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n", + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n", + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n", + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n", + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n", + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n", + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n", + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n", + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n", + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n", + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n", + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n", + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n", + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n", + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n", + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n", + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n", + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n", + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n", + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n", + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n", + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n", + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n", + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n", + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n", + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n", + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n", + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n", + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n", + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n", + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n", + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n", + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n", + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n", + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n", + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n", + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n", + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n", + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n", + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n", + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n", + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n", + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n", + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n", + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n", + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n", + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n", + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n", + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n", + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n", + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n", + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n", + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n", + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n", + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n", + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n", + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n", + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n", + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n", + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n", + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n", + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n", + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n", + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n", + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n", + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n", + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n", + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n", + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n", + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n", + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n", + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n", + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n", + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n", + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n", + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n", + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n", + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n", + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n", + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n", + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n", + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n", + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n", + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n", + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n", + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n", + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n", + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n", + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n", + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n", + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n", + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n", + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n", + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n", + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n", + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n", + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n", + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n", + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n", + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n", + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n", + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n", + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n", + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n", + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n", + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n", + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n", + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n", + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n", + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n", + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n", + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n", + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n", + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n", + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n", + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n", + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n", + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n", + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n", + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n", + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n", + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n", + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n", + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n", + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n", + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n", + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n", + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n", + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n", + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n", + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n", + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n", + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n", + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n", + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n", + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n", + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n", + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n", + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n", + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n", + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n", + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n", + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n", + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n", + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n", + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n", + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n", + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n", + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n", + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n", + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n", + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n", + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n", + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n", + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n", + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n", + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n", + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n", + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n", + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n", + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n", + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n", + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n", + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n", + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n", + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n", + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n", + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n", + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n", + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n", + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n", + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n", + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n", + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n", + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n", + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n", + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n", + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n", + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n", + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n", + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n", + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n", + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n", + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n", + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n", + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n", + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n", + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n", + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n", + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n", + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n", + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n" + ] + }, { "name": "stdout", "output_type": "stream", "text": [ - "Runtime: 31.39\n" + "Runtime: 32.10\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n", + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n" ] } ], @@ -243,7 +2258,7 @@ "source": [ "## Analysis\n", "\n", - "Now let's investigate our results from the training stage. Which one is the best finger print method for this data set? Which parameters are optimal?" + "Now let's investigate our results from the training stage. Which one is the best fingerprint method for this data set? Which parameters are optimal?" ] }, { @@ -252,10 +2267,10 @@ "id": "f80006f8", "metadata": { "execution": { - "iopub.execute_input": "2024-11-24T09:28:28.268630Z", - "iopub.status.busy": "2024-11-24T09:28:28.268131Z", - "iopub.status.idle": "2024-11-24T09:28:28.320208Z", - "shell.execute_reply": "2024-11-24T09:28:28.319598Z" + "iopub.execute_input": "2025-05-08T16:23:24.408236Z", + "iopub.status.busy": "2025-05-08T16:23:24.407494Z", + "iopub.status.idle": "2025-05-08T16:23:24.478389Z", + "shell.execute_reply": "2025-05-08T16:23:24.477178Z" } }, "outputs": [ @@ -301,10 +2316,10 @@ " \n", " \n", " 0\n", - " 0.011822\n", - " 0.001013\n", - " 0.003596\n", - " 0.001311\n", + " 0.011185\n", + " 0.003272\n", + " 0.003625\n", + " 0.000579\n", " MorganFingerprintTransformer()\n", " 256.0\n", " 0.100\n", @@ -320,10 +2335,10 @@ " \n", " \n", " 1\n", - " 0.010119\n", - " 0.000152\n", - " 0.002832\n", - " 0.000070\n", + " 0.009765\n", + " 0.000383\n", + " 0.003377\n", + " 0.000101\n", " MorganFingerprintTransformer()\n", " 256.0\n", " 0.325\n", @@ -339,10 +2354,10 @@ " \n", " \n", " 2\n", - " 0.010302\n", - " 0.000429\n", - " 0.003310\n", - " 0.000967\n", + " 0.009901\n", + " 0.000303\n", + " 0.003631\n", + " 0.000097\n", " MorganFingerprintTransformer()\n", " 256.0\n", " 0.550\n", @@ -358,10 +2373,10 @@ " \n", " \n", " 3\n", - " 0.010192\n", - " 0.000159\n", - " 0.002859\n", - " 0.000089\n", + " 0.010876\n", + " 0.000710\n", + " 0.003938\n", + " 0.000378\n", " MorganFingerprintTransformer()\n", " 256.0\n", " 0.775\n", @@ -377,10 +2392,10 @@ " \n", " \n", " 4\n", - " 0.010103\n", - " 0.000126\n", - " 0.002868\n", - " 0.000119\n", + " 0.010237\n", + " 0.000522\n", + " 0.003698\n", + " 0.000063\n", " MorganFingerprintTransformer()\n", " 256.0\n", " 1.000\n", @@ -415,10 +2430,10 @@ " \n", " \n", " 60\n", - " 0.100754\n", - " 0.006501\n", - " 0.025367\n", - " 0.001743\n", + " 0.101976\n", + " 0.002168\n", + " 0.026431\n", + " 0.002031\n", " MACCSKeysFingerprintTransformer()\n", " NaN\n", " 0.100\n", @@ -434,10 +2449,10 @@ " \n", " \n", " 61\n", - " 0.118554\n", - " 0.022440\n", - " 0.036584\n", - " 0.023911\n", + " 0.101812\n", + " 0.003023\n", + " 0.026544\n", + " 0.001390\n", " MACCSKeysFingerprintTransformer()\n", " NaN\n", " 0.325\n", @@ -453,10 +2468,10 @@ " \n", " \n", " 62\n", - " 0.097552\n", - " 0.001638\n", - " 0.025571\n", - " 0.001753\n", + " 0.102681\n", + " 0.001273\n", + " 0.026926\n", + " 0.001608\n", " MACCSKeysFingerprintTransformer()\n", " NaN\n", " 0.550\n", @@ -472,10 +2487,10 @@ " \n", " \n", " 63\n", - " 0.098300\n", - " 0.001744\n", - " 0.025552\n", - " 0.001695\n", + " 0.100703\n", + " 0.004015\n", + " 0.026171\n", + " 0.001515\n", " MACCSKeysFingerprintTransformer()\n", " NaN\n", " 0.775\n", @@ -491,10 +2506,10 @@ " \n", " \n", " 64\n", - " 0.098103\n", - " 0.001473\n", - " 0.025320\n", - " 0.001673\n", + " 0.101780\n", + " 0.001939\n", + " 0.027233\n", + " 0.001860\n", " MACCSKeysFingerprintTransformer()\n", " NaN\n", " 1.000\n", @@ -515,17 +2530,17 @@ ], "text/plain": [ " mean_fit_time std_fit_time mean_score_time std_score_time \\\n", - "0 0.011822 0.001013 0.003596 0.001311 \n", - "1 0.010119 0.000152 0.002832 0.000070 \n", - "2 0.010302 0.000429 0.003310 0.000967 \n", - "3 0.010192 0.000159 0.002859 0.000089 \n", - "4 0.010103 0.000126 0.002868 0.000119 \n", + "0 0.011185 0.003272 0.003625 0.000579 \n", + "1 0.009765 0.000383 0.003377 0.000101 \n", + "2 0.009901 0.000303 0.003631 0.000097 \n", + "3 0.010876 0.000710 0.003938 0.000378 \n", + "4 0.010237 0.000522 0.003698 0.000063 \n", ".. ... ... ... ... \n", - "60 0.100754 0.006501 0.025367 0.001743 \n", - "61 0.118554 0.022440 0.036584 0.023911 \n", - "62 0.097552 0.001638 0.025571 0.001753 \n", - "63 0.098300 0.001744 0.025552 0.001695 \n", - "64 0.098103 0.001473 0.025320 0.001673 \n", + "60 0.101976 0.002168 0.026431 0.002031 \n", + "61 0.101812 0.003023 0.026544 0.001390 \n", + "62 0.102681 0.001273 0.026926 0.001608 \n", + "63 0.100703 0.004015 0.026171 0.001515 \n", + "64 0.101780 0.001939 0.027233 0.001860 \n", "\n", " param_fp_transformer param_fp_transformer__fpSize \\\n", "0 MorganFingerprintTransformer() 256.0 \n", @@ -611,17 +2626,17 @@ "id": "a6041579", "metadata": { "execution": { - "iopub.execute_input": "2024-11-24T09:28:28.324000Z", - "iopub.status.busy": "2024-11-24T09:28:28.323259Z", - "iopub.status.idle": "2024-11-24T09:28:28.574471Z", - "shell.execute_reply": "2024-11-24T09:28:28.573892Z" + "iopub.execute_input": "2025-05-08T16:23:24.481751Z", + "iopub.status.busy": "2025-05-08T16:23:24.481189Z", + "iopub.status.idle": "2025-05-08T16:23:24.710744Z", + "shell.execute_reply": "2025-05-08T16:23:24.709653Z" }, "lines_to_next_cell": 2 }, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABJQAAAMbCAYAAAAb68/GAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAADUr0lEQVR4nOzdeXgNd+P+8ftkjyWESOxB7bXVrna1ldoeWopaWh7aqrZaVVprfauLqu5atbWltqJoUYKqfaeKqn2NLZIQkpDM7w+/zCOyyCSROUffr+vKxTkzc859ljmZc2fmMw7DMAwBAAAAAAAAaeRmdwAAAAAAAAC4FgolAAAAAAAAWEKhBAAAAAAAAEsolAAAAAAAAGAJhRIAAAAAAAAsoVACAAAAAACAJRRKAAAAAAAAsIRCCQAAAAAAAJZQKAEAAAAAAMASCiUAACxYu3atHA6HHA5Hpt92wu2uXbs202/7Xq5fv67hw4erXLly8vX1NbPs3r37vtzf/XwekdioUaPkcDjUqFEju6MgjaZNm6Y6derIz8/PXE8mTpxodywAABKhUAIAGyV80UvuJ1u2bCpVqpR69uypjRs32h01kVGjRmnUqFE6fvx4hm7nzsdbrly5e86/bdu2RMv06tUrQ/eP/+ncubPGjh2rgwcPyuFwKCgoSEFBQfL09EzT8o0aNUrxvXznD6XGg2X69OkaNWpUukrQO0vF9Pxk9PPHWX300Ud69tlntXnzZt24cUOBgYEKCgpS9uzZ7Y72wEjr51VyP/zeAYD/8bA7AADgtqCgIPP/8fHxCgsL0+HDh3X48GF99913GjlypEaNGmVfwDuMHj1a0u2N8mLFimXKbR48eFCbNm1SnTp1Upxn6tSpmXJfSOzgwYNaunSpJGnOnDl66qmn0n1bnp6eypMnT4rTE6Zly5ZNZcqUSff9IO0CAgJUpkwZFS1aNNNve/r06fr9998lyXJZ6OXllehz705hYWG6efNmqu8nd3d3S/fnKj788ENJ0sCBAzV+/Pg0l7pIuzx58iT73ouNjdWVK1ckSf7+/vLy8koyT65cue57PgBwFRRKAOAkQkNDE12Oi4vT5s2b9fLLL2vHjh0aPXq0mjdvrkcffdSmhPdPsWLFdPz4cfMwj+RER0dr9uzZcjgcKlq0qE6cOJHFKR9cf/75pyQpb968GSqTJOnRRx9N094qNWvW1MGDBzN0X0ibAQMGaMCAAXbHSOLRRx9N8rmXoFGjRvr999/T/H56UFy8eFHnz5+XJPXt25cy6T5ZsGBBstevXbtWjRs3Nudhj0oASB2HvAGAk3J3d1fdunW1aNEi87qff/7ZvkD3UY8ePeRwODRnzhxdv3492XkWLFig8PBwNWzYMNP2isJtCc95jhw5bE4C/Lvd+fnH+ggAcHYUSgDg5AoXLqy8efNKkq5du5bifFevXtV7772nOnXqKE+ePPL29laRIkXUpUsXbdq0KcXlrly5ohEjRqhq1ary8/OTl5eX8ufPr0qVKql///4KCQkx5+3Vq1eiQZQbN26caGyJ9BY9xYsXV8OGDRUZGamffvop2XkSDnfr3bt3mm5z165d6tGjh4KDg+Xj4yN/f389+uijmjhxomJiYlJd9uDBg+rWrZvy588vHx8flShRQi+99JK558C9pPe1yKjo6GhNnDhRjz76qPz9/eXj46Pg4GD16NEj2cG1E8bwShgT5MSJE1k2Vkhqg3JPnz490ftpx44deuqpp1SgQAF5e3urRIkSGjRokHloSkrWrVunNm3aKCAgQL6+vipTpozeeustXbt2Lcl9JOfixYt6++239cgjjyhXrlzme+G5557TX3/9labHtWvXLnXr1k2FCxeWp6dnoj0eihUrJofDoenTp+vq1asaOnSoypQpI19fXwUEBKh9+/basmVLivnuHMT9woULGjRokEqXLq1s2bIlel5TG5Q7YZ1OeK3nz5+vRo0aKU+ePMqWLZuqVKmiTz75RPHx8YmWS3j+Eg53Gz16dJaNcWTlOQ4NDdVnn32mdu3aqVy5csqVK5d8fX1VsmRJ9enTJ8XXUUr/c3OnOXPm6PHHHzfHI8udO7dKlSqltm3b6osvvlB0dHSix3Tn+7F48eKpfrauXbtWTz75pAoVKiRvb28FBAToscce07Rp0xQXF5dsnrvfCz/99JOaN2+uwMBAubm5mYdV3/3Yp0+frjp16ihXrlzy9/dX06ZNtW7dOvN2b926pc8++0zVqlWTn5+fcuXKpVatWmnnzp0pPjfS7cO7Z86cqVatWikoKEheXl7Kly+fmjdvrh9//FGGYSS73J3rzrVr1zRixAhVrFhROXPmvC/vveXLl8vhcMjDw0Nnz55Ndd769esn+fy8+z27fft2derUSQUKFJCPj49KliypwYMHKzw8PNXbjo2N1ZdffqnGjRsrICDA/H3drl07LVu2LKMPEwCsMwAAthk5cqQhyUjt4/j06dPmPJ988kmy8+zatcsoXLiwOZ+7u7uRM2dO87LD4TDefffdJMudOnXKKFq0qDmfm5ub4e/vb7i7u5vXNWzY0Jx/4MCBRlBQkDnN39/fCAoKMn+qV69u6fEn3M60adOMGTNmGJKMxo0bJ5nv+PHjhsPhMHLmzGlERUUZDRs2NCQZPXv2TPZ2J0yYYDgcDvP2c+XKZXh6epqXK1WqZJw9ezbZZZctW2Z4e3ub8+bIkcPw8fExJBkFChQwpk6dmuprlt7X4s7nY82aNWl6/u50+vRpo0KFCuZteHp6Grly5Ur02n766aeJlvnwww+NoKAgw8/Pz5znztdz4MCBab7/hNfkzvdLatasWZPi8zht2jRDkhEcHGzMnDnTfO1y5cpluLm5mcs9/PDDxtWrV5O9/U8//TTJe8DLy8uQZJQrV874+OOPzftIzsqVK43cuXMnej6zZ89uXvby8jJmzJiR6uOaP3++md3Pz8/w8fFJ9PwEBwcbkowJEyYYZcqUMW834fVIeE2mTJmSbMaEeSZPnmyulz4+Pub7LUHC50xyr03Pnj3NdenFF1807/POxy7J6NGjR6LlZs+ebQQFBZmPL3v27IneO0FBQcbJkyeTzZ0Wqb2frDzHCY9PkuHh4WHkyZPH8PDwMK/z9vY25s+fn2yG9D43CXr37p1ovhw5chjZsmVLdN2xY8cMwzCMDRs2GEFBQUZAQIA5LSAgIMXP1ldffTXRZ0ru3LkTfW43adLEiIyMTJLpzvfCoEGDzOUTPvdHjhyZ5LEn/N/DwyPRZ5mHh4exZMkSIzo62mjevLn5/r1zPcmWLZuxffv2ZJ+fy5cvGw0aNEj0fNz5mSXJaNu2rRETE5Nk2YR1Z/z48Ubp0qXN+054bRKeV6vufG/d+TkcHx9vFC9e3JBkvPPOOykuf+DAAXP5DRs2JHu7ixYtMj+L/Pz8zP8nfB6llP348ePGww8/nOh1v/v56t+/f7oeNwCkF4USANgotULp1q1bxsaNG40aNWoYkozAwEDjypUrSeY7e/asERgYaEgy/vOf/xjbt283YmNjDcMwjPPnzxvDhw83v0AtXLgw0bLPPfecIckoVqyYsWrVKuPWrVvmfR8/ftz46quvjCFDhiS5z4wUH8ndzrRp04yoqCgjZ86chsPhMI4ePZpovlGjRhmSjD59+hiGYaRaKC1ZssS83Xbt2pm3FRMTY3z33XfmF6JHH33UfLwJTp06ZX6Zr1SpkrFlyxbDMAwjLi7OWLZsmVG4cOFEXybvlpHX4s7nw+rzeuvWLaNWrVrmF7IffvjB/BJ25MgR44knnjC/gPz6669Jlr+zwEmv+1EoZcuWzfD29jb69OljlhNRUVHG559/bpYIw4cPT7L8hg0bzOKpWbNmxt9//20YhmHcvHnTmDdvnpEnTx7D398/xce8d+9ew9fX15Bk9O3b19i/f7/5Xjlx4oTxwgsvmF+ot23bluLjypEjh9GqVSvjwIED5vRDhw6Z/0/4UpwrVy7D39/fmDt3rnHz5k3DMAxj//795nPq4eFh7NixI0nOO++nTJkyRkhIiBEXF2cYhmE+ZsNIW6Hk7+9veHl5GRMmTDAiIiIMwzCMS5cuGX369DHvJyQkJMnyCRkTiojMktZC6V7P8TvvvGN8+OGHxp9//mk+t3Fxcca+ffuMbt26mWXYmTNnktxPRp6bP/74wyyg3n//fePy5cvmtEuXLhkrVqwwevbsmeR+jx07lqRsuttnn31mzvPf//7XOHfunGEYhnHt2jXj448/Nj9jOnfunGTZhPdCjhw5DEnGkCFDjAsXLhiGYRjR0dHG8ePHEz323LlzG76+vsbXX39tXL9+3TAMwzh48KBRrVo183fHgAEDjDx58hhz5841YmNjjfj4eGP79u3GQw89ZEgy6tatmyTHrVu3zNe4SpUqxpIlS4yoqCjzccyYMcP8LH3llVeSLJ+w7uTIkcPInz+/sXDhQvOz9tSpU+ZtWZVSoWQYhvHee++Zjzk+Pj7Z5RNKugoVKqR4u7ly5TIaNWpk7N+/3zCM259Lc+bMMT+TatSokeR307Vr14yyZcsakoxGjRoZa9euNaKjow3DMIzw8HBjwoQJ5ms6ceLEdD12AEgPCiUAsNGdhdKdf9nPly+f+ddmPz8/o1u3buaG/t2effZZQ5LRtWvXFO9nwoQJhiSjcuXKia4vV66cIcmYNWuWpdz3o1AyDMP8gjZixAhznvj4eKNYsWKJ/uKbWqGU8Jjq16+fZKPcMAxj8eLF5v3Omzcv0bTnn3/ekGTkzZvXOH/+fJJl//zzz0R7Ot0tI6/Fnc+H1ed19uzZ5rIrVqxIMv3mzZtm4XT3Fx3DyNxCydPTM8meKgk/pUuXNudPS6GU0mtsGP/74layZMkk0x577DFDklG+fHnzS9edVq9enWiPgLs1adLEkGQMHTo0xcc7cOBAs7S8052Pq2bNmsm+BxMkfCmWZKxatSrJ9OvXrxulSpUyJBmtWrVKMj1hWT8/P+PUqVMp3k9aCqU718O7JZQHCYXunewulO71HN9L69atDSn5vU4y8ty8//77hiSjefPmlvLcq1C6fv26kSdPHkOS8fTTTyd7G59++ql5G3fvHXTn75xBgwalmOPOx/7DDz8kmX748GFzuiTjjz/+SDJPSEiIOf3u9+d3331nSDLKli1rhIeHJ5th+/bthsPhMLy8vJJ8HiesO+7u7sbOnTtTfBxWpVYoXbhwwdybaPny5UmWjY6ONvcwu3tv0Dtvt3Tp0mY5d6eVK1ea88ydOzfRtDFjxpjrQ0JxdrcFCxYY0u092xLKUwC43xhDCQCcxPnz582fixcvmmNgXL9+XREREcmO3xMdHa1Zs2ZJkoYMGZLibffo0UOStGfPnkS3kzt3bknSuXPnMuthZMizzz4rSZoxY4Y5dsaaNWt0/PhxlSlT5p5nuNu7d68OHDggSXr77beTPa14mzZtVLNmTUnSjz/+aF5vGIbmzJkjSerfv78CAwOTLFuhQgV16tQp2fvO6GuREQm569Spo+bNmyeZ7uHhoZEjR0qS9u3bZ57V7X64efNmovfy3T9Wvf3228le365dO0nS4cOHEw1kHBYWptWrV0uSBg8eLG9v7yTLNm7cWPXr10/2do8fP67Vq1fLw8NDr7/+eoq5El7HVatWpThezeDBg9N0avu6devqscceS3K9r6+vBg8eLOn2GC4RERHJLv/MM8+ocOHC97yf1BQpUkQ9e/ZMdlrbtm0l3V6/nE1an+OUtG7dWpK0fv36FOdJz3OT8Nl652d5Zli5cqXCwsIkyRzv6G4vvPCCChQoIEnmZ9Ld3NzcUv2cSlC0aFF17do1yfUPPfSQSpYsKen2mEH16tVLMk/Dhg3N9e/u52fKlCmSpOeff165cuVK9r6rVaumhx9+WLGxsVqzZk2y87Rs2VKPPPLIPR9HZsiXL586duwoSfrmm2+STF+4cKEuXbokX19fPfPMMynezuDBg+Xr65vk+qZNm5q/42bPnp1oWsLzNWjQoBTP/Ne+fXv5+fnp0qVL2rFjR9oeFABkEIUSADgJ4/Zeo+bPjRs3tGvXLvXs2VNLly5VgwYNEp3xTbo9WHHCoK7NmzdX/vz5k/15+OGHzWVOnDhh/v+JJ56QJL355pv673//q+XLlysyMvL+P9gU1KlTR2XLltWJEyfMwcCtDMa9fft2SbcLlIYNG6Y4X7NmzRLNL0nHjh0zv6g1adIkxWVTmpbR1yIjEh5H06ZNU5yncePG5hfvOx93ZmvYsGGS93LCz70GnL1bnjx5zC+tdytYsKD5/zsH5961a5dZRqb2HkjpdOAbNmyQdHuw4PLly6f4OrZs2VKSFBUVpcuXLyd7W3Xr1k35wd0hLe+3+Pj4FAc4Tuv9pKZGjRrJDpAu/e+5Tlg/nElaHvuePXv0wgsvqFKlSvLz85Obm5s5QPILL7wgSTp9+nSKy6fnuXnsscfk4+OjXbt2qX79+poyZYqOHTuW1oeVooR1t0iRIipdunSy87i7u5vvm5TW9ZIlSyZbmt+tevXqKT72oKAgSbefn5RyBAQESEq8jsbFxWnz5s2SbpdiKa1j+fPn199//y0p5c/KzHjvW9G/f39J0pIlS5IU5JMnT5YkPfXUU2ahmJy0rO93vm5nzpwxH/9zzz2X4nNVoEAB88QdmfW7BQDuxcPuAACA5Pn4+KhKlSr69ttvFRYWpoULF6pXr146efKk/Pz8JCnR2WbSuvfHnXtzDB48WHv27NHcuXM1efJkTZ48WQ6HQw8//LBatmypPn36qEyZMpn7wO6hd+/eGjJkiKZNm6aaNWtqwYIFcnd3N/cISc2FCxckSQEBAcnumZIgYW+OhPnv/n+hQoXuuezdMvpaZERC9tRy+/j4KCAgQOfPn0/0WJ1Zzpw5U5zm4fG/TZibN2+a/7948aL5/ztLp7ul9FwlvI7x8fEZfh3T8oU9tSx3T0vpdUvr/aQmLc/1nc+zs7jXY//888/18ssvm2diczgcypUrl/n5cOPGDUVGRioqKirF20jPc/PQQw/p22+/Vf/+/bVp0ybz7I758uVT48aN1bVrV7Vt2zbFsiYlaVnXpeQ/4+6U1vdMWh671ecnLCzMPNPmvc7UmCCj61hmadCggcqXL6/9+/dr2rRpevPNNyXd3lMyYS+qfv36pXobaVnf73zd7vzdcunSpTTlzKzfLQBwL+yhBAAuoG/fvpKkiIgI/frrr+b1dx5KcePGjRT3DLnz5849Mzw9PTVnzhzt3r1bI0aMUJMmTZQtWzbt27dP48eP18MPP6yPPvooyx6ndPvwHXd3dy1cuFCTJk3SjRs31LJlS/MQDmeV0dcCmc/ql3Xpf69jUFBQml5DwzCSPaW7pAwdimVFVt2PM0rtsR84cECvvPKK4uPj9eSTT2rr1q2Kjo7WlStXFBoaqtDQUE2YMEGSUjw9fUZ069ZNJ06c0KRJk9S5c2cVKVJEFy9e1Ny5c9W+fXs1bNjQtj1C7XzP3PlZuWzZsjStYykd3mfH40jYS+nbb7813zcJ/69QoYLq1KmTqfd35/N14MCBND1fvXr1ytQMAJASCiUAcAHBwcHm/+88bCJ//vzm/zOyi3vlypU1evRohYSEKDw8XKtWrVKDBg0UFxdn7sWUVQoUKKCWLVvqxo0bGj58uKS0He4m/e+v1ZcuXTL/Ap6chMNb7vzr9p3/P3PmTIrLpjQts16L9EjIntphO9HR0eahWVn9V/2slC9fPvP/d/5l/273eh0vXbqU6l4rmSmt77cH+XW7H+bPn6+4uDiVK1dOs2fPVo0aNeTl5ZVontDQ0PuaIU+ePOrXr59mz56tkydP6vDhw3rzzTflcDj0xx9/pFiUpCQt6/qd053xPZM3b15zzyVXPDSrR48eypYtm44cOaLVq1fr5s2bmj59uqR7750kpW19v/N1s/N3CwDcC4USALiAO788ZM+e3fz/nV+QlixZkin35eHhoccee0y//PKLvL29ZRiGVq1alWiehD0/7sdf9aX/Dc4dGxurgIAAc+Dbe6levbok6datW/r9999TnC/h8dw59kfx4sWVJ08eSUpxAFhJ5oDPd7sfr0VaJTzuhHGnkrN27VrdunVLUspjnjwIHnnkEfP9uXbt2hTnS2lawpgscXFxWrZsWWbHS1Zq77eEaW5ublk2+LAVbm63NyXv12dBRpw6dUrS7cI8Iefd7v5su98eeughjRs3zhzoeuXKlZaWT1jXT58+rUOHDiU7T1xcnPm+ccZ13dPT0zwxQlZ/VmaGXLly6emnn5Z0e3DuhPGUfH191b1793sun5b1PeF1lqRixYqZh8K54vMF4MFGoQQALuDOM/XcuaGZPXt284vJ+++/r5MnT6Z6O3cPHJvaXjze3t7m4QR3fxlLGMPJ6iDLadWmTRsNHjxYr732miZOnJjiWW3uVqlSJZUvX16SNHbs2GTPrvTrr79qy5YtkmR+KZBul2RPPfWUJGnSpEnJjlWxf/9+zZ8/P9n7zuhrkRFdunSRJG3atEm//fZbkum3bt3SmDFjJN0+U12FChUy7b6dTZ48edS4cWNJ0kcffaTY2Ngk86xbt05//PFHssuXKlXKPBTxrbfeSvHMagky43Vcv359sgVXdHS0echpixYtUh3o1y73+7MgIxLOHvbnn38mW3gtW7Ys1dIxI1L7bJVknuUrpaIrJc2aNVPevHklpXyWt6+//trcO+/Ozzhn8t///lfS7c/jOw/jTo4zDgafcNjbokWL9MEHH0i692DcCcaPH2+ewOFOa9asMU8K0Llz50TTEg57nzJlinbt2pXq7Tvj8wXgwUWhBABOLDQ0VG+//bZmzJghSapdu3aS8RneffddFSxYUJcuXVKdOnX0/fff6+rVq+b0ixcv6qefflKHDh2SfLkIDg7W0KFDtXnz5kRfgA4fPqxu3brp+vXrcnNzU4sWLRItl1BIzJw5874M/unp6akPPvhA48ePV7du3Swt+/7770uS/vjjD3Xq1Mk8RPDmzZuaOXOm+Rw8+uijat++faJlhw4dqpw5c+rSpUtq1qyZeaYdwzD022+/6fHHH1e2bNlSvO+MvBYZ0bFjR9WqVUvS7S81s2bNMgfBPXbsmDp27GgOCpzw5edBNnr0aDkcDu3bt09t27bVP//8I+l2sbZgwQJ17NhR/v7+KS7/2WefKUeOHDp06JBq166tn3/+OdEXwDNnzuj777/XY489lqZTr99Lrly51LFjR82fP9/ci+zgwYNq3bq1Dh48KHd3d7MQdDYJnwW//vprqofy2CHhTHx//fWXXnzxRfOLdlRUlL7++mt16tTJLGcy24ABA/TUU0/pp59+SjTA8rVr1zRp0iR99913kqTWrVtbul1fX1+zSPrxxx/Vv39/c/D469ev69NPP9Urr7wi6XYpUa1atYw/mPuge/fuatq0qQzDUIcOHTR27NhEh6hGRUVpzZo1evHFF1WiRAkbkyavevXqqlatmmJjY80/UKTlcDdJOnfunFq3bm2ewe7WrVuaP3++OnXqJEmqWrWq/vOf/yRa5rXXXlPFihUVHR2txo0b6/PPP090dsnw8HAtW7ZMPXr0UP369TPjIQJA2hgAANuMHDnSkGRIMoKCghL95MqVy5wmyahYsaJx5syZZG9n//79RunSpc153dzcjDx58hjZs2dPdBtNmzZNtNyd09zc3Ax/f3/Dx8fHvM7hcBgff/xxkvv7/vvvzXk8PT2NQoUKGcHBwUbdunUtPf6E25g2bZql5Ro2bGhIMnr27Jns9AkTJhgOh8O8/dy5cxteXl5pei6XLl1qeHt7m/PmzJnT8PX1NSQZBQoUMKZOnWpOS056X4s7n481a9ZYej4MwzBOnz5tPPzww+ZteHl5Gblz506U45NPPkl22WnTphmSjODgYMv3myDhNWnYsGGa5l+zZk2Kz2Na8hw7dsxc/tixY0mmf/zxx4me79y5c5uva4UKFczpZcqUSfb2169fb+TPn99c3t3d3cibN6/5Xkj46dOnT5of192Cg4MNScaECROMMmXKGJIMb2/vROu+w+Ewvvnmm2SXT+v7JeFzJrnXpmfPnqmuS4aR+utx6NAh8zPDzc3NCAoKMoKDg43g4GDj1KlTqeZKTWrvJyvPcZcuXZK8D9zd3Q1JRrVq1YzPPvssxceWkecmYdmEnxw5ciRaHyUZ9erVM65du5ZouXu9rxO8+uqrid4j/v7+hoeHh3ld48aNjcjIyCTLpfZesPrYE16jkSNHpjhPwns8uc/4iIgI44knnkj0nPj5+Rm5c+dO9Pnt4eFh6XYz4s731r3Wq2+//dact0KFCmm+3UWLFhmenp6GJCNXrlyJft8ULVrUOHr0aLK3cebMGaN27dqJXvfcuXMbfn5+iZ7DkiVLpvfhA4Bl7KEEAE7i/PnziX6uX7+u/Pnzq0WLFpo8ebK2b9+e4mnQy5Urp7179+rrr79W8+bNFRAQoMjISBmGoZIlS+rJJ5/UN998o7lz5yZa7rffftPQoUNVv359FSlSRDdu3JAklSxZUr1799a2bdvMv3bfqXv37vr+++9Vr149ZcuWTefOndOJEyfuOVBsVnn11Ve1fft2de/eXUWKFNH169fl6+ur2rVr6+OPP9a2bdtSfC5bt26tnTt3qkuXLgoMDFRsbKyCgoI0YMAA7dq1S8WLF0/1vtP7WmRUoUKFtH37dk2YMEG1a9eWr6+vrl+/riJFiuiZZ57Rjh07NHDgwEy9T2f2yiuvaO3atWrVqpX8/f0VHR2tYsWK6e2339bmzZvNQ6BSOkSlbt26OnTokMaPH68GDRood+7cCg8Pl7u7u8qVK6fu3btr5syZmjhxYoaz+vv7a+vWrXrzzTdVtGhRxcTEKE+ePGrTpo02bNhgHu7ijEqVKqU1a9aobdu2ypcvny5fvqwTJ07oxIkT5t5Wdkp4jSpVqiRvb2/FxcWpYsWKGjdunDZs2KAcOXLcl/sdPny4Pv30U3Xo0EFly5aVh4eHrl27psDAQDVr1kxTp07V2rVrE42JZ8WECRO0evVqdezYUUFBQbp27Zpy5sypxo0ba+rUqVq5cqVy5syZyY8qc/n5+WnJkiX69ddf1blzZ/O9f/36dRUqVEjNmzfXuHHjzD15nE2nTp3M8drSuneSJLVr104bN25Ux44d5ePjI8MwVLx4cb322mvavXt3ir9jChYsqPXr1+vHH39U27ZtVaBAAV2/fl2xsbEqVqyY2rRpo4kTJ2rdunWZ8vgAIC0cRsIWFQAAwL9Et27dNGvWLD377LOaMmWKLRmKFSumEydOaNq0aZzmG3AxP/30kzp16iRfX1+dPXs21fGT1q5da47txlcvAA8S9lACAAD/KocOHdKCBQsk/W+cHQCw4rPPPpN0e+BzZxwwHwCyAoUSAAB44IwYMUKff/65Tp48qfj4eEm3B/qdM2eOGjdurOjoaJUtWzbJwOwAcC/ffPONfv/9d7m5uWnQoEF2xwEA23jYHQAAACCz7d27Vz///LNeeukleXp6KmfOnAoPDzfLpUKFCmnevHny9PS0OSkAV7B582Z16dJFERERCg8PlyS98MILevjhh+0NBgA2olACAAAPnFdffVUFCxbUxo0bde7cOYWFhSlnzpwqXbq0nnjiCQ0YMEB58uSxOyYAFxEdHa0TJ07I3d1dJUqUUM+ePTVs2DC7YwGArRiUGwAAAAAAAJYwhhIAAAAAAAAs4ZC3dIiPj9fZs2eVM2dOORwOu+MAAAAAAABkCsMwdPXqVRUsWFBubinvh0ShlA5nz55VkSJF7I4BAAAAAABwX5w6dUqFCxdOcTqFUjrkzJlT0u0n18/Pz+Y0AAAAAAAAmSMyMlJFihQxu4+UUCilQ8Jhbn5+fhRKAAAAAADggXOvIX4YlBsAAAAAAACWUCgBAAAAAADAEgolAAAAAAAAWEKhBAAAAAAAAEsolAAAAAAAAGAJhRIAAAAAAAAsoVACAAAAAACAJRRKAAAAAAAAsIRCCQAAAAAAAJZQKAEAAAAAAMASCiUAAAAAAABYQqEEAAAAAAAASyiUAAAAAAAAYAmFEgAAAAAAACyhUAIAAAAAAIAlFEoAAAAAAPxLRUVFyeFwyOFwKCoqyu44cCEUSgAAAAAAALCEQgkAAAAAAACWUCgBAAAAAADAEgolAAAAAAAAWEKhBAAAAAAAAEsolAAAAAAAAGAJhRIAAAAAAAAsoVACAAAAAACAJRRKAAAAAAAAsIRCCQAAAAAAAJZQKAEAAAAAAMASCiUAAAAAAABYQqEEAAAAAAAASyiUAAAAAAAAYAmFEgAAAAAAACyhUAIAAAAAAIAlFEoAAAAAAACwhEIJAAAAAAAAllAoAQAAAAAAwBIKJQAAAAAAAFhCoQQAAAAAAABLKJQAAAAAAABgCYUSAAAAAAAALKFQAgAAAAAAgCUUSgAAAAAAALCEQgkAAAAAAACWUCgBAAAAAADAEgolAAAAAAAAWEKhBAAAAAAAAEsolAAAAAAAAGAJhRIAAAAAAAAsoVACAAAAAACAJRRKAAAAAAAAsIRCCQAAAAAAAJZQKAEAAAAAAMASCiUAAAAAAABYQqEEAAAAAAAASyiUAAAAAAAAYAmFEgAAAAAAACyhUAIAAAAAAIAlFEoAAAAAAACwhEIJAAAAAAAAllAoAQAAAAAAwJIHolD64osvVKxYMfn4+KhWrVraunVrqvOHh4frxRdfVIECBeTt7a3SpUvr119/zaK0AAAAAAAArs3D7gAZNWfOHA0aNEiTJk1SrVq1NHHiRLVo0UJ///23AgMDk8wfGxurZs2aKTAwUPPnz1ehQoV04sQJ5c6dO+vDAwAAAAAAuCCHYRiG3SEyolatWqpRo4Y+//xzSVJ8fLyKFCmil156SW+++WaS+SdNmqQPP/xQBw8elKenZ7ruMzIyUrly5VJERIT8/PwylB8AAAAAALtERUUpR44ckqRr164pe/bsNieC3dLaebj0HkqxsbHasWOHhg4dal7n5uampk2batOmTckus3jxYtWpU0cvvviifv75Z+XLl09du3bVkCFD5O7unuwyMTExiomJMS9HRkZm7gMBAAAAAKRLsTd/sTuCS4uPjTb/X274crl5+diYxvUdf6+13RGyjEuPoXTp0iXFxcUpKCgo0fVBQUEKDQ1NdpmjR49q/vz5iouL06+//qrhw4fro48+0tixY1O8n3HjxilXrlzmT5EiRTL1cQAAAAAAALgSly6U0iM+Pl6BgYH65ptvVK1aNXXu3FlvvfWWJk2alOIyQ4cOVUREhPlz6tSpLEwMAAAAAADgXFz6kLeAgAC5u7vr/Pnzia4/f/688ufPn+wyBQoUkKenZ6LD28qVK6fQ0FDFxsbKy8sryTLe3t7y9vbO3PAAAAAAAAAuyqX3UPLy8lK1atUUEhJiXhcfH6+QkBDVqVMn2WXq1q2rw4cPKz4+3rzu0KFDKlCgQLJlEgAAAAAAABJz6UJJkgYNGqTJkydrxowZOnDggJ5//nlFRUWpd+/ekqQePXokGrT7+eefV1hYmF5++WUdOnRIv/zyi9599129+OKLdj0EAAAAAAAAl+LSh7xJUufOnXXx4kWNGDFCoaGhqlKlipYvX24O1H3y5Em5uf2vNytSpIhWrFihV199VZUqVVKhQoX08ssva8iQIXY9BAAAAAAAAJfi8oWSJA0YMEADBgxIdtratWuTXFenTh1t3rz5PqcCAAAAAAB4MLn8IW8AAAAAAADIWhRKAAAAAAAAsIRCCQAAAAAAAJZQKAEAAAAAAMASCiUAAAAAAABYQqEEAAAAAAAASyiUAAAAAAAAYAmFEgAAAAAAACyhUAIAAAAAAIAlFEoAAAAAAACwhEIJAAAAAAAAllAoAQAAAAAAwBIKJQAAAAAAAFhCoQQAAAAAAABLKJQAAAAAAABgCYUSAAAAAAAALKFQAgAAAAAAgCUUSgAAAAAAALCEQgkAAAAAAACWUCgBAAAAAADAEgolAAAAAAAAWEKhBAAAAAAAAEsolAAAAAAAAGAJhRIAAAAAAAAsoVACAAAAAACAJRRKAAAAAAAAsIRCCQAAAAAAAJZQKAEAAAAAAMASCiUAAAAAAABYQqEEAAAAAAAASyiUAAAAAAAAYAmFEgAAAAAAACyhUAIAAAAAAIAlFEoAAAAAAACwhEIJAAAAAAAAllAoAQAAAAAAwBIKJQAAAAAAAFhCoQQAAAAAAABLKJQAAAAAAABgiYfdAQAAAAAAgD3cvHwUPGSp3THggthDCQAAAAAAAJZQKAEAAAAAAMASCiUAAAAAAABYQqEEAAAAAAAASyiUAAAAAAAAYAmFEgAAAAAAACyhUAIAAAAAAIAlFEoAAAAAAACwhEIJAAAAAAAAllAoAQAAAAAAwBIKJQAAAAAAAFhCoQQAAAAAAABLKJQAAAAAAABgCYUSAAAAgAdGVFSUHA6HHA6HoqKi7I4DAA8sCiUAAAAAAABYQqEEAAAAAAAASyiUAAAAAAAAYAmFEgAAAAAAACx5IAqlL774QsWKFZOPj49q1aqlrVu3pmm52bNny+FwqH379vc3IAAAAAAAwAPE5QulOXPmaNCgQRo5cqR27typypUrq0WLFrpw4UKqyx0/flyvv/666tevn0VJAQAAAAAAHgwuXyhNmDBBffv2Ve/evVW+fHlNmjRJ2bJl09SpU1NcJi4uTt26ddPo0aNVokSJLEwLAAAAAADg+ly6UIqNjdWOHTvUtGlT8zo3Nzc1bdpUmzZtSnG5MWPGKDAwUM8991ya7icmJkaRkZGJfgAAAAAAAP6tXLpQunTpkuLi4hQUFJTo+qCgIIWGhia7zPr16zVlyhRNnjw5zfczbtw45cqVy/wpUqRIhnIDAAAAAAC4MpculKy6evWqnnnmGU2ePFkBAQFpXm7o0KGKiIgwf06dOnUfUwIAAAAAADg3D7sDZERAQIDc3d11/vz5RNefP39e+fPnTzL/kSNHdPz4cbVp08a8Lj4+XpLk4eGhv//+Ww899FCS5by9veXt7Z3J6QEAAFIXFRWlHDlySJKuXbum7Nmz25wIAADgtgztobRw4UI99dRTqlSpkkqWLGlef/DgQX3wwQc6c+ZMhgOmxsvLS9WqVVNISIh5XXx8vEJCQlSnTp0k85ctW1Z//vmndu/ebf60bdtWjRs31u7duzmUDQAAAAAAIA3StYdSfHy8nn76ac2fP1+S5Ovrqxs3bpjT/f399dZbbykuLk5Dhw7NnKQpGDRokHr27Knq1aurZs2amjhxoqKiotS7d29JUo8ePVSoUCGNGzdOPj4+qlChQqLlc+fOLUlJrgcAAAAAAEDy0rWH0scff6x58+apX79+unLlil5//fVE04OCglS/fn398ssvmRIyNZ07d9b48eM1YsQIValSRbt379by5cvNgbpPnjypc+fO3fccAIB7i4qKksPhkMPhUFRUlN1xAAAAAKRTuvZQmj59umrUqKEvv/xSkuRwOJLMU7JkySwplCRpwIABGjBgQLLT1q5dm+qy06dPz/xAAAAAAAAAD7B07aF0+PBh1a9fP9V58ubNq8uXL6crFAAAAAAAAJxXugolX19fRUREpDrPiRMnzPGJAAAAAAAA8OBIV6H0yCOPaMWKFYqOjk52elhYmJYvX67atWtnKBwAAAAAAACcT7oKpYEDB+r06dPq2LGjTp8+nWjakSNH1KFDB0VERGjgwIGZEhIAAAAAAADOI12Dcrdr105DhgzR+++/r+DgYGXPnl2SFBgYqMuXL8swDA0fPlxNmjTJ1LAAAAAAAACwX7r2UJKkcePGacWKFXriiSeULVs2ubu7Kz4+Xi1bttSyZcs0evTozMwJAAAAAAAAJ5GuPZROnjwpLy8vNWvWTM2aNcvsTAAAAAAAAHBi6dpDqXjx4ho2bFhmZwEAAAAAAIALSFeh5O/vr7x582Z2FgAAAAAAALiAdBVK9evX15YtWzI7CwAAAAAAAFxAugqlcePGae/evRozZoxu3bqV2ZkAAAAAAADgxNI1KPcHH3ygihUravTo0fr6669VuXJlBQUFyeFwJJrP4XBoypQpmRIUAAAAAAAAziFdhdL06dPN/587d07nzp1Ldj4KJQAAAAAAgAdPugqlY8eOZXYOAAAAAAAAuIh0FUrBwcGZnQMAAAAAAAAuIl2DcgMAAAAAAODfK0OF0syZM9WsWTPly5dP3t7eypcvn5o3b65Zs2ZlVj4AAAAAAAA4mXQd8hYXF6ennnpKixYtkmEY8vHxUcGCBXX+/HmtWrVKISEh+umnnzRv3jy5ubETFAAAAAAAwIMkXW3Pp59+qoULF6pu3brasGGDrl+/rmPHjun69evauHGj6tWrp0WLFumzzz7L7LwAAAAAAACwWboKpRkzZqh06dIKCQlRnTp1Ek2rXbu2Vq1apdKlS2vatGmZEhIAAAAAAADOI12F0qFDh9S2bVt5enomO93T01Nt2rTRoUOHMhQOAAAAAAAAziddYyh5eXkpKioq1XmioqLk5eWVrlAAAADAv1WxN3+xO4JLi4+NNv9fbvhyuXn52JjG9R1/r7XdEQA4qXTtofTII49o7ty5Onv2bLLTz507p7lz56pq1aoZCgcAAAAAAADnk65CadCgQbp8+bKqV6+ujz76SNu3b9epU6e0fft2jR8/XtWqVVNYWJgGDRqU2XkBAAAAAABgs3Qd8tamTRuNHz9eb775pt54441E0wzDkIeHh8aPH68nnngiU0ICAAAAAADAeaSrUJJu76XUvn17zZw5U7t371ZkZKT8/Pz0yCOPqGvXripRokRm5gQAAAAAAICTSHehJEklSpTQ8OHDMysLAAAAAAAAXEC6xlACAAAAAADAv1e6CqWPPvpIAQEBKZ7l7ezZs8qXL58+/fTTDIUDAAAAAACA80lXoTRv3jxVrlxZBQsWTHZ6wYIFVaVKFc2ePTtD4QAAAAAAAOB80lUo/fPPP3r44YdTnefhhx/WP//8k65QAAAAAAAAcF7pKpRu3Lih7NmzpzqPj4+Prl27lq5QAAAAAAAAcF7pKpSKFi2qjRs3pjrPpk2bVLhw4XSFAgAAAAAAgPNKV6HUunVrrV+/XlOnTk12+rfffqv169erTZs2GQoHAAAAAAAA5+ORnoXefPNN/fjjj+rbt69++OEHNWvWTIUKFdKZM2f022+/ad26dSpYsKCGDh2a2XkBAAAAAABgs3QVSvny5dOaNWvUvXt3rV27VmvXrpXD4ZBhGJKkGjVqaObMmcqXL1+mhgUAAK6l2Ju/2B3BpcXHRpv/Lzd8udy8fGxM4/qOv9fa7ggAADww0lUoSVKZMmW0bds2bdu2TVu3blVERIRy586tmjVrqnr16pmZEQAAAAAAAE4k3YVSgho1aqhGjRqZkQUAAAAAAAAuIMOF0p2OHz+ulStXysfHRx06dFCOHDky8+YBAAAAAADgBNJ1lrd3331XxYsX15UrV8zr1q5dqwoVKqh///7q1auXqlatqrCwsEwLCgAAAAAAAOeQrkJp0aJFKlasmPz9/c3rhgwZovj4eI0ePVrPP/+8Dh8+rIkTJ2ZWTgAAAAAAADiJdB3ydvz4cT355JPm5bNnz2rbtm167bXX9Pbbb0uS/v77by1cuFBjxozJnKQA4AQ4Y1XGcMaqzMUZqwAAAGCXdO2hFBkZqdy5c5uX161bJ4fDoTZt2pjXVa1aVSdPnsxwQAAAAAAAADiXdBVKQUFBOnHihHl55cqV8vb2Vq1atczroqOj5XA4Mp4QAAAAAAAATiVdh7zVqFFDP//8s5YuXSofHx/NmTNHjRs3lre3tznPsWPHVLBgwUwLCgAAAAAAAOeQrj2Uhg0bplu3bqldu3Zq0aKFoqOjNWzYMHN6TEyM1q1bl2iPJQAAAAAAADwY0rWHUtWqVbV582Z9//33kqSnnnpKNWvWNKfv2rVLjRs3VteuXTMnJQAAAAAAAJxGugolSapcubIqV66c7LTatWtr4cKF6Q4FAAAAAAAA55WuQ94AAAAAAADw70WhBAAAAAAAAEsolAAAAAAAAGAJhRIAAAAAAAAsoVACAAAAAACAJRRKAAAAAAAAsIRCCQAAAAAAAJZ4ZGTh0NBQ7dixQ+Hh4YqLi0t2nh49emTkLgAAAAAAAOBk0lUoRUdHq2/fvpo9e7bi4+OTnccwDDkcDgolAAAAAACAB0y6CqU333xTM2fOVOnSpfX000+rcOHC8vDI0M5OGfLFF1/oww8/VGhoqCpXrqzPPvtMNWvWTHbeyZMn67vvvtO+ffskSdWqVdO7776b4vwAAAAAAABILF0t0Ny5c1W+fHnt2LFD3t7emZ3Jkjlz5mjQoEGaNGmSatWqpYkTJ6pFixb6+++/FRgYmGT+tWvX6umnn9ajjz4qHx8fvf/++2revLn++usvFSpUyIZHAAAAACCzuHn5KHjIUrtjAMADL12DcoeHh6tly5a2l0mSNGHCBPXt21e9e/dW+fLlNWnSJGXLlk1Tp05Ndv6ZM2fqhRdeUJUqVVS2bFl9++23io+PV0hISBYnBwAAAAAAcE3pKpTKlCmj8+fPZ3YWy2JjY7Vjxw41bdrUvM7NzU1NmzbVpk2b0nQb169f182bN5UnT577FRMAAAAAAOCBkq5CafDgwfr55591+PDhzM5jyaVLlxQXF6egoKBE1wcFBSk0NDRNtzFkyBAVLFgwUSl1t5iYGEVGRib6AQAAAAAA+LdK1xhKhQsXVosWLVSzZk298sorqlq1qvz8/JKdt0GDBhkKeD+99957mj17ttauXSsfH58U5xs3bpxGjx6dhckAAAAAAACcV7oKpUaNGsnhcMgwDI0aNUoOhyPFeePi4tId7l4CAgLk7u6e5PC78+fPK3/+/KkuO378eL333ntatWqVKlWqlOq8Q4cO1aBBg8zLkZGRKlKkSPqDAwAAAAAAuLB0FUojRoxItUTKKl5eXqpWrZpCQkLUvn17STIH2B4wYECKy33wwQf6v//7P61YsULVq1e/5/14e3s7xQDkAAAAAAAAziBdhdKoUaMyOUb6DRo0SD179lT16tVVs2ZNTZw4UVFRUerdu7ckqUePHipUqJDGjRsnSXr//fc1YsQIzZo1S8WKFTPHWsqRI4dy5Mhh2+MAAAAAAABwFekqlJxJ586ddfHiRY0YMUKhoaGqUqWKli9fbg7UffLkSbm5/W/s8a+++kqxsbHq1KlTotsZOXKkUxVlAAAAAAAAzsrlCyVJGjBgQIqHuK1duzbR5ePHj9//QAAAAAAAAA8wt3vPkrxTp06pX79+euihh+Tr6yt3d/ckPx4eD0RfBQAAAAAAgDukq/E5evSoatWqpStXrujhhx9WTEyMgoOD5ePjo6NHj+rmzZuqXLmycufOnclxAQAAAAAAYLd07aE0evRoRUREKCQkRHv27JEk9e7dWwcOHNDx48fVtm1bRUVFaf78+ZkaFgAAAAAAAPZLV6G0atUqtWrVSg0bNjSvMwxDklSgQAHNmTNHkjRs2LBMiAgAAAAAAABnkq5C6dKlSypbtqx52cPDQ9evXzcve3t7q1mzZlq6dGnGEwIAAAAAAMCppKtQCggIUFRUVKLLd589zcPDQ+Hh4RnJBgAAAAAAACeUrkG5S5UqpSNHjpiXa9asqRUrVujo0aMqUaKELl68qPnz5+uhhx7KtKAAAAD/Nm5ePgoewh7fAADA+aRrD6XHH39ca9asMfdAeuWVV3T16lVVqlRJNWrUUOnSpRUaGqqXXnopM7MCAAAAAADACaSrUHr++ee1du1aubu7S5IaNWqk2bNnKzg4WPv27VNQUJA+/fRT9e3bN1PDAgAAAAAAwH7pOuTNz89PtWrVSnTdk08+qSeffDJTQgEAAAAAAMB5pWsPJQAAAAAAAPx7ZahQWrhwoZ566ilVqlRJJUuWNK8/ePCgPvjgA505cybDAQEAAAAAAOBc0nXIW3x8vJ5++mnNnz9fkuTr66sbN26Y0/39/fXWW28pLi5OQ4cOzZykgJOJiopSjhw5JEnXrl1T9uzZbU4EAAAAAEDWSNceSh9//LHmzZunfv366cqVK3r99dcTTQ8KClL9+vX1yy+/ZEpIAAAAAAAAOI90FUrTp09XjRo19OWXX8rPz08OhyPJPCVLltSxY8cyHBAAAAAAAADOJV2F0uHDh1W/fv1U58mbN68uX76crlAAAAAAAABwXukaQ8nX11cRERGpznPixAnlzp07PTcPAHhAuXn5KHjIUrtjAAAAAMigdO2h9Mgjj2jFihWKjo5OdnpYWJiWL1+u2rVrZygcAAAAAAAAnE+6CqWBAwfq9OnT6tixo06fPp1o2pEjR9ShQwdFRERo4MCBmRISAAAAAAAAziNdh7y1a9dOQ4YM0fvvv6/g4GDzdOmBgYG6fPmyDMPQ8OHD1aRJk0wNCwAAAAAAAPulaw8lSRo3bpxWrFihJ554QtmyZZO7u7vi4+PVsmVLLVu2TKNHj87MnAAAAAAAAHAS6dpDKUGzZs3UrFmzzMoCAAAAAAAAF5DuPZQAAAAAAADw75ShPZTi4uJ0+vRpnT17Vjdv3kx2ngYNGmTkLgAAAAAAAOBk0lUoxcfH691339Unn3yisLCwVOeNi4tLVzAAAAAAAAA4p3QVSkOHDtWHH36owMBA9e7dWwUKFJCHR4Z2dgIAAAAAAICLSFcLNGPGDJUpU0bbtm1Tjhw5MjsTAAAAAAAAnFi6BuW+du2aWrduTZkEAAAAAADwL5SuQqlSpUo6e/ZsZmcBAAAAAACAC0hXofTWW29p0aJF2rlzZ2bnAQAAAAAAgJNL1xhKrVu31vTp0/X444+rbdu2qly5svz8/JKdt0ePHhkKCAAAAAAAAOeSrkIpJiZGS5Ys0aVLlzRlyhRJksPhSDSPYRhyOBwUSgAAAAAAAA+YdBVKgwYN0syZM1WpUiV16tRJBQoUkIdHum4KAAAAAAAALiZdLdC8efNUrVo1bdq0iSIJAAAAAADgXyZdg3JHR0ercePGlEkAAAAAAAD/QukqlKpVq6bDhw9ndhYAAAAAAAC4gHQVSu+++66WL1+upUuXZnYeAAAAAAAAOLl0HbO2cuVKNWrUSO3atVOTJk1UuXJl+fn5JZnP4XBo+PDhGQ4JAAAAAAAA55GuQmnUqFHm/0NCQhQSEpLsfBRKAAAAAAAAD550FUpr1qzJ7BwAAAAAAABwEekqlBo2bJjZOQAAAAAAAOAi0jUoNwAAAAAAAP69KJQAAAAAAABgCYUSAAAAAAAALKFQAgAAAAAAgCUUSgAAAAAAALCEQgkAAAAAAACWUCgBAAAAAADAEgolAAAAAAAAWEKhBAAAAAAAAEsolAAAAAAAAGAJhRIAAAAAAAAsoVACAAAAAACAJRRKAAAAAAAAsIRCCQAAAAAAAJZQKAEAAAAAAMASCiUAAAAAAABYQqEEAAAAAAAASx6IQumLL75QsWLF5OPjo1q1amnr1q2pzj9v3jyVLVtWPj4+qlixon799dcsSgoAAAAAAOD6XL5QmjNnjgYNGqSRI0dq586dqly5slq0aKELFy4kO//GjRv19NNP67nnntOuXbvUvn17tW/fXvv27cvi5AAAAAAAAK7J5QulCRMmqG/fvurdu7fKly+vSZMmKVu2bJo6dWqy83/yySdq2bKlBg8erHLlyumdd95R1apV9fnnn2dxcgAAAAAAANfk0oVSbGysduzYoaZNm5rXubm5qWnTptq0aVOyy2zatCnR/JLUokWLFOcHAAAAAABAYh52B8iIS5cuKS4uTkFBQYmuDwoK0sGDB5NdJjQ0NNn5Q0NDU7yfmJgYxcTEmJcjIyMzkBoAAAAAAMC1uXShlFXGjRun0aNH2x0j0xV78xe7I7i0+Nho8//lhi+Xm5ePjWlc3/H3WtsdIU1cJSfgLFhnAOtYbwBrWGcAe7j0IW8BAQFyd3fX+fPnE11//vx55c+fP9ll8ufPb2l+SRo6dKgiIiLMn1OnTmU8PAAAAAAAgIty6ULJy8tL1apVU0hIiHldfHy8QkJCVKdOnWSXqVOnTqL5JWnlypUpzi9J3t7e8vPzS/QDAAAAAADwb+Xyh7wNGjRIPXv2VPXq1VWzZk1NnDhRUVFR6t27tySpR48eKlSokMaNGydJevnll9WwYUN99NFHat26tWbPnq3t27frm2++sfNhAAAAAAAAuAyXL5Q6d+6sixcvasSIEQoNDVWVKlW0fPlyc+DtkydPys3tfztiPfroo5o1a5befvttDRs2TKVKldKiRYtUoUIFux4CAAAAAACAS3EYhmHYHcLVREZGKleuXIqIiHDpw98YlDtj4mOjderjTpKkIq/OZ1DuDGIwRQAAAACwX1o7D5ceQwkAAAAAAABZj0IJAAAAAAAAllAoAQAAAAAAwBIKJQAAAAAAAFhCoQQAAAAAAABLKJQAAAAAAABgCYUSAAAAAAAALKFQAgAAAAAAgCUUSgAAAAAAALCEQgkAAAAAAACWUCgBAAAAAADAEgolAAAAAAAAWEKhBAAAAAAAAEsolAAAAAAAAGAJhRIAAAAAAAAsoVACAAAAAACAJQ7DMAy7Q7iayMhI5cqVSxEREfLz87M7DmwSFRWlHDlySJKuXbum7Nmz25wIAAAAAICMSWvnwR5KAAAAAAAAsIRCCQAAAAAAAJZQKAEAAAAAAMASCiUAAAAAAABYQqEEAAAAAAAASyiUAAAAAAAAYAmFEgAAAAAAACyhUAIAAAAAAIAlFEoAAAAAAACwhEIJAAAAAAAAllAoAQAAAAAAwBIKJQAAAAAAAFhCoQQAAAAAAABLKJQAAAAAAABgCYUSAAAAAAAALKFQAgAAAAAAgCUUSgAAAAAAALCEQgkAAAAAAACWUCgBAAAAAADAEgolAAAAAAAAWEKhBAAAAAAAAEsolAAAAAAAAGAJhRIAAAAAAAAsoVACAAAAAACAJRRKAAAAAAAAsIRCCQAAAAAAAJZQKAEAAAAAAMASCiUAAAAAAABYQqEEAAAAAAAASyiUAAAAAAAAYAmFEgAAAAAAACyhUAIAAAAAAIAlFEoAAAAAAACwhEIJAAAAAAAAllAoAQAAAAAAwBIKJQAAAAAAAFhCoQQAAAAAAABLKJQAAAAAAABgCYUSAAAAAAAALKFQAgAAAAAAgCUUSgAAAAAAALDEpQulsLAwdevWTX5+fsqdO7eee+45Xbt2LdX5X3rpJZUpU0a+vr4qWrSoBg4cqIiIiCxMDQAAAAAA4NpculDq1q2b/vrrL61cuVJLly7VunXr9N///jfF+c+ePauzZ89q/Pjx2rdvn6ZPn67ly5frueeey8LUAAAAAAAArs1hGIZhd4j0OHDggMqXL69t27apevXqkqTly5erVatWOn36tAoWLJim25k3b566d++uqKgoeXh4pGmZyMhI5cqVSxEREfLz80v3Y4Bri4qKUo4cOSRJ165dU/bs2W1OBAAAAABAxqS183DZPZQ2bdqk3Llzm2WSJDVt2lRubm7asmVLmm8n4QlKa5kEAAAAAADwb+eyLUpoaKgCAwMTXefh4aE8efIoNDQ0Tbdx6dIlvfPOO6keJidJMTExiomJMS9HRkZaDwwAAAAAAPCAcLo9lN588005HI5Ufw4ePJjh+4mMjFTr1q1Vvnx5jRo1KtV5x40bp1y5cpk/RYoUyfD9AwAAAAAAuCqn20PptddeU69evVKdp0SJEsqfP78uXLiQ6Ppbt24pLCxM+fPnT3X5q1evqmXLlsqZM6cWLlwoT0/PVOcfOnSoBg0aZF6OjIykVAIAAAAAAP9aTlco5cuXT/ny5bvnfHXq1FF4eLh27NihatWqSZJWr16t+Ph41apVK8XlIiMj1aJFC3l7e2vx4sXy8fG55315e3vL29s77Q8CAAAAAADgAeZ0h7ylVbly5dSyZUv17dtXW7du1YYNGzRgwAB16dLFPMPbmTNnVLZsWW3dulXS7TKpefPmioqK0pQpUxQZGanQ0FCFhoYqLi7OzocDAAAAAADgMpxuDyUrZs6cqQEDBuixxx6Tm5ubOnbsqE8//dScfvPmTf3999+6fv26JGnnzp3mGeBKliyZ6LaOHTumYsWKZVl2AAAAAAAAV+UwDMOwO4SriYyMVK5cuRQRESE/Pz+748AmUVFRypEjhyTp2rVryp49u82JAAAAAADImLR2Hi57yBsAAAAAAADsQaEEAAAAAAAASyiUAAAAAAAAYAmFEgAAAAAAACyhUAIAAAAAAIAlFEoAAAAAAACwhEIJAAAAAAAAllAoAQAAAAAAwBIKJQAAAAAAAFhCoQQAAAAAAABLKJQAAAAAAABgCYUSAAAAAAAALKFQAgAAAAAAgCUUSgAAAAAAALCEQgkAAAAAAACWUCgBAAAAAADAEgolAAAAAAAAWEKhBAAAAAAAAEsolAAAAAAAAGAJhRIAAAAAAAAs8bA7AOCqsmfPLsMw7I4BAAAAAECWYw8lAAAAAAAAWEKhBAAAAAAAAEsolAAAAAAAAGAJhRIAAAAAAAAsoVACAAAAAACAJRRKAAAAAAAAsIRCCQAAAAAAAJZQKAEAAAAAAMASCiUAAAAAAABYQqEEAAAAAAAASyiUAAAAAAAAYAmFEgAAAAAAACyhUAIAAAAAAIAlFEoAAAAAAACwhEIJAAAAAAAAlnjYHcAVGYYhSYqMjLQ5CQAAAAAAQOZJ6DoSuo+UUCilw9WrVyVJRYoUsTkJAAAAAABA5rt69apy5cqV4nSHca/KCUnEx8fr7NmzypkzpxwOh91xYKPIyEgVKVJEp06dkp+fn91xAJfAegNYwzoDWMd6A1jDOoM7GYahq1evqmDBgnJzS3mkJPZQSgc3NzcVLlzY7hhwIn5+fnzwAhax3gDWsM4A1rHeANawziBBansmJWBQbgAAAAAAAFhCoQQAAAAAAABLKJSADPD29tbIkSPl7e1tdxTAZbDeANawzgDWsd4A1rDOID0YlBsAAAAAAACWsIcSAAAAAAAALKFQAgAAAAAAgCUUSgAAAAAAALCEQgkAAAAAAACWUCgBAAAAAADAEgolAAAAAAAAWOJhdwAAAAAkLyIiQtmyZZOnp6fdUQCndePGDW3dulWnT5/WpUuXlC1bNuXLl08VK1bUQw89ZHc8AHhgUSgB6XTixIkkGy5ly5aVj4+P3dEAAC7o2rVrmjdvnkJCQrRhwwadPXtWt27dkiTlzJlTFStWVKNGjdSuXTtVr17d5rSAvW7cuKHZs2dr+vTp2rx5s7muGIYhh8NhzlegQAF16NBB//3vf1WxYkW74gJO6fr169q4caM2bNiQbCHbsGFDlSxZ0u6YcGIOwzAMu0MArmLNmjWaPn26QkJCdO7cuSTTPT09Vb16dXXo0EG9evVS3rx5bUgJOJejR49q9erVqW6sNGjQQF5eXnZHBWxx6tQpjR07Vj/++KOuXbsmSfL391dQUJDy5MmjGzduKCwsTKdPn1ZcXJwcDoeqVKmiQYMGqVu3bjanB7JWbGysJk6cqPfee0/h4eHKli2bqlWrpurVqydZZ/7++29t2bJFx44dk8PhUJMmTTR+/HhVrlzZ7ocB2GrTpk2aNGmS5s+fr+joaKVUCTgcDpUrV079+/dXjx495Ofnl8VJ4ewolIA0mDt3rkaOHKlDhw7JMAwVKVIkxQ2XXbt2KSYmRt7e3urevbvGjBmjAgUK2P0QgCxlGIZmz56tSZMmaf369eZ1yXE4HPL391evXr304osvqnjx4lkZFbDVm2++qU8//VRxcXF6/PHH9dRTT6lOnTrJrgfXr1/Xjh079Ntvv2nWrFk6duyYqlatqsmTJ+uRRx6xIT2Q9YoVK6YzZ86oXbt26t69u1q3bn3PQ0KPHj2q77//XjNmzNDJkyc1efJk9e7dO4sSA87jr7/+0uDBg7VixQq5u7urUaNGqlOnTorfazZv3qzVq1fr5MmTyps3r4YPH64XXnhBHh4c6ITbKJSAe6hdu7a2bt2qqlWrqnv37nryySdVqFChFOe/efOm1q1bpx9++EELFixQfHy8vvvuO3Xo0CELUwP2Wb58ud544w3t27dPAQEBat++faobK1u2bNFvv/2mjRs3ytPTUy+88IKGDx8uf39/ux8KcN/lzp1bAwcO1CuvvKI8efJYWnbVqlUaM2aMmjZtqhEjRtynhIBzeeaZZzRixAiVKlXK8rJxcXGaPn263NzcKJTwr+Th4aHg4GC9+uqr6tKliwICAtK03O+//67Jkydrzpw5GjVqlN566637nBSugkIJuIcGDRpo1KhRatKkieVlw8PD9dFHHykgIEAvv/zyfUgHOB83NzfVq1dPb7zxhlq2bJnmv2KdOHFCkydP1ueff65BgwbxBRn/CleuXMlweZoZtwEAePBNmTJFPXv2TPceRv/8849Onz6txo0bZ3IyuCoKJQBApgoJCdFjjz2W7uXDw8N17NgxDuEBAAAAnBiFEgAAAAAAACxxszsAAADAv9Xs2bMztPypU6e0YcOGTEoDOL+WLVtq27Zt6Vo2KipK7733nr744otMTgW4hqioKKe4DTw4KJSAe+jfv7/OnDmT7uVnz56tmTNnZmIiwLmdPHkyw7eRkXUOcCXdu3dXpUqVNGPGDF27di3Ny23fvl39+vVTqVKltGbNmvuYEHAuFy9eVO3atdW4cWNNmzZNERER91xm8+bNGjBggIKDg/XOO+8oKCgoC5ICzqd48eL68MMP01UKbdq0SS1bttSECRPuQzK4Kg55A+6hUKFCCgsLU5cuXdSjR480DUJ39uxZzZo1S1OnTtXff/+tr7/+Wn369MmCtID9vL291adPH73++uvJnvo8JTdv3tT8+fM1duxYde7cmUG58a+wa9cuDRo0SL///ruyZcumli1bqlatWqpWrZqCgoKUO3duRUdHJzor4sqVK/XPP//Iz89PQ4cO1csvvyxvb2+7HwqQZWbMmKHRo0fr+PHjcnNzU5kyZVJcZ7Zv366rV6/K3d1dXbp00dixY1W0aFG7HwJgi1deeUVfffWVvLy89J///EedOnVS7dq1lS9fviTz3rp1S3v27NHKlSs1c+ZM7d+/X+XLl9e0adNUvXp1G9LDGVEoAfdw48YNffDBB/roo48UFRWlPHnyqGbNmqlu7B84cEDx8fGqV6+ePvzwQ9WqVcvuhwFkmYkTJ2rs2LG6cuWK6tWrZ26sVKlSRZ6enonmPX36tPkFef78+bpy5YpatGihTz/9VCVLlrTpEQBZb/Xq1frqq6+0ePFi3bx5Uw6HI9n5DMNQiRIl1K9fP/Xp04ezu+FfyzAM/frrr5o2bZrWrl2rsLCwJPO4ubmpUqVK6tChg/r06aMCBQrYkBRwLv/884/eeecdzZs3T7GxsZJu/wH97u81x44dU0xMjAzDUPny5TVo0CD16tVLbm4c5IT/oVAC0ujq1av67rvvNG3aNO3evVvx8fGSZG70J6xKefLkUbt27dS/f3/VqFHDtryAncLDwzVhwgRNmTJF586dk8PhkJubm3Lnzp1oYyU6OlrS7fWoRYsWeu2119SkSROb0wP2CQ8P1++//66NGzfq9OnTunz5snx9fZUvXz5VrFhRDRs2VKVKleyOCTidAwcOJFlnHn74YeXKlcvuaIBTCgsL06xZsxQSEqKNGzfq4sWL5jRPT09VqFBBDRs2VIcOHVS/fn0bk8KZUSgB6RAeHq5NmzYlu7FfsWJFu+MBTiMuLk7Lli0zN1ZS+oLcrl07BQcH2x0XAADgX+nmzZvmNhpFLNKKQgkAAMBJjBkzRsWLF9czzzxjdxTAJZQoUUKPP/44Z24D0uHkyZPy8vJS/vz57Y4CF8UBkIBFTZo00fDhw+2OAbiMdevWaffu3XbHAFzC2LFj9eeff9odA3AZly5dkp+fn90xAJdUvHhxDRs2zO4YcGEUSoBFW7ZsUVxcnN0xAJfRuHFjffPNN3bHAFxC0aJFFR4ebncMwGVUqlRJhw4dsjsG4JL8/f2VN29eu2PAhVEoARaVLVtWJ06csDsG4DICAwPl4+NjdwzAJXTp0kXLly9XRESE3VEAlzBkyBAtWbJEa9assTsK4HLq16+vLVu22B0DLowxlACLpk+frgEDBmjr1q0qX7683XEAp9ejRw/t27dPO3bsSPFU6ABui4mJUceOHXXu3DmNGTNGNWrUUGBgoN2xAKf13Xffae7cuVqxYoXat2+vGjVqKCgoKNnfNz169LAhIeC8Dh48qNq1a2vQoEEaNmyYPDw87I4EF0OhBFi0bt06ffDBB1q3bp369euX6oZLgwYNbEgIOJezZ8+qTp06at68ud5//33lyZPH7kiA03J3d5ckGYaRagHrcDh069atrIoFOC03Nzc5HA7d/ZXmzvUnYX1iyAIgsWeffVb//POPNm7cqPz586ty5crJfq9xOByaMmWKTSnhzCiUAIvu3nBJbYOfDRfg9kD2ly9f1r59++Tl5aXixYunuLESEhJiU0rAOTRq1CjNe/JxiA8gzZgxI83z9uzZ8z4mAVyPm1vaRsChkEVKKJQAi0aNGpXmjf2RI0fe5zSA82NjBQAAwPlYGRc2ODj4PiaBq6JQAgAAAAAAgCWc5Q0AAMDJxMbG6tdff9WECRP0zjvvmNdHR0frwoULio+PtzEd4HwWLlyop556SpUqVVLJkiXN6w8ePKgPPvhAZ86csTEd4BrCwsJ06tQpu2PAhVAoAem0a9cuvfHGG2rbtq2aNm1qXn/ixAnNnTtXYWFhNqYDnNO1a9e0c+dO/fHHH3ZHAZzW4sWLVbRoUbVp00avv/66Ro0aZU7bu3evChQooNmzZ9sXEHAi8fHx6ty5szp16qSffvpJR48e1bFjx8zp/v7+euutt/Tdd9/ZmBJwXhEREXr55ZcVFBSkfPnyqXjx4ua0LVu2qFWrVtqxY4eNCeHMKJSAdHjjjTdUvXp1jR8/XkuXLk00MKphGOratau+//57GxMCzuX48eNq166d/P39VaNGDTVu3NictmHDBpUvX15r1661LyDgJDZs2KBOnTrJ29tbn3zyibp27Zpoes2aNVWyZEn99NNPNiUEnMvHH3+sefPmqV+/frpy5Ypef/31RNODgoJUv359/fLLLzYlBJxXWFiYatWqpc8++0xFihRRuXLlEp0xsVKlStqwYYNmzpxpY0o4MwolwKJp06Zp/PjxeuKJJ7R3714NHTo00fRixYqpZs2aWrx4sU0JAedy8uRJ1a5dW7/++qvatWunOnXqJNpYqVWrli5duqQff/zRxpSAc3jnnXeUO3du7dixQwMGDFCpUqWSzFO9enXt2bPHhnSA85k+fbpq1KihL7/8Un5+fsmeOKVkyZKJ9loCcNuoUaN06NAhzZ49W9u3b9eTTz6ZaLqvr68aNmyo1atX25QQzo5CCbDoyy+/VLly5fTTTz+pQoUK8vLySjJP2bJl9c8//9iQDnA+I0eO1JUrV/T7779r/vz5atasWaLpHh4eql+/vjZs2GBTQsB5bNmyRe3atVNAQECK8xQpUkShoaFZmApwXocPH1b9+vVTnSdv3ry6fPlyFiUCXMfixYv1xBNP6KmnnkpxnmLFiun06dNZmAquhEIJsGj//v1q1qyZPDw8UpwnKChIFy5cyMJUgPNasWKFOnTooEcffTTFeYKDgxkwFZAUExMjPz+/VOcJDw+XmxubcIB0ew+KiIiIVOc5ceKEcufOnTWBABdy7tw5lS9fPtV5vL29FRUVlUWJ4GrYGgEs8vDwUGxsbKrznD17Vjly5MiiRIBzCwsLU7FixVKdxzAMxcTEZE0gwImVKFFC27ZtS3WeTZs2qWzZslmUCHBujzzyiFasWKHo6Ohkp4eFhWn58uWqXbt2FicDnF/evHnveVa3gwcPqkCBAlmUCK6GQgmwqGLFilq9erXi4uKSnX79+nWtWrVK1apVy+JkgHMKCgq65yGgf/75p4oWLZpFiQDn1bFjR23YsEHTpk1Ldvr48eO1b98+de7cOYuTAc5p4MCBOn36tDp27JjksJwjR46oQ4cOioiI0MCBA21KCDivBg0a6Oeff07xkLb9+/dr+fLlic5oDdyJQgmw6Nlnn9WhQ4fUv3//JHtUREZGqlevXgoNDVXfvn1tSgg4l2bNmmnp0qXau3dvstP/+OMPrV69Wq1atcriZIDzGTx4sMqVK6c+ffqoWbNmCgkJkXT77KL169fXkCFDVKVKFQ0YMMDmpIBzaNeunYYMGaJly5YpODhYH330kSQpMDBQpUuX1h9//KG3335bTZo0sTkp4HzeeustxcXFqW7dupo5c6YuXbokSTpw4ICmTJmiJk2ayNvbW4MHD7Y5KZyVw7jzVDsA0qRr166aPXu2cuTIody5c+vMmTOqVq2aDhw4oKioKPXq1UtTp061OybgFI4fP64qVapIuv1l+eDBg5o1a5aWLl2qjRs3asKECcqePbv27NnDLtWApCtXrmjAgAGaO3duor1hHQ6HnnrqKX355Zfy9/e3MSHgfFauXKnPP/9cW7ZsUVhYmPz8/FSrVi0NHDhQLVq0sDse4LQWL16sZ555RteuXZN0exgCh8MhwzCUM2dO/fjjj/zRDymiUALSafLkyfr888+1b98+8xTo5cqV08CBA9WvXz+b0wHOZcuWLerSpYtOnDhhbqQk/Fu0aFHNnz9f1atXtzsm4FQuX76sbdu2mV+Oa9SooaCgILtjAQAeMGFhYZoxY0aSQrZ3796pnnUUoFACMujGjRu6cuWK/Pz8GIgbSMWtW7e0ZMmSJBsr7dq1k5eXl93xAAAAAFhAoQQAAADApcXFxen06dM6e/asbt68mew8DRo0yOJUAPBg87A7AODK4uPjdf78+RQ3XDhrFQDAqmPHjumTTz7Rnj17Uvxy7HA4dOTIERvSAc4lPj5e7777rj755BOFhYWlOm9KZ+gF/u127959z985w4cPtyEZnB2FEpAOP/zwg8aPH6/9+/enuHHicDh069atLE4GOCfDMPTzzz/fc2NlypQpNqQDnMfy5cvVvn17xcbGytPTU4GBgfLwSLq5xg7mwG1Dhw7Vhx9+qMDAQPXu3VsFChRIdp0BkNSFCxfUtWtXrVmzRlLKv1solJASDnkDLBo/fryGDBkiT09P1atXL9UNl2nTpmVxOsD5HD58WE888YT++eefVL8EOxwO/nqMf73KlSvr8OHDmj59ujp27Cg3Nze7IwFOLX/+/PL399e2bdsYyxKw6Mknn9RPP/2kVq1aqUuXLql+r2nYsGEWp4MroFACLAoODpZhGNq4caMKFy5sdxzA6bVo0UIrV67U888/r6effjrVjZXg4OAsTgc4F19fX3Xv3l2TJ0+2OwrgEnLkyKH+/ftr/PjxdkcBXE7CGURDQkLsjgIXxf6ggEUXL15Uv379KJOANPrjjz/Utm1bffHFF3ZHAZxe/vz55ePjY3cMwGVUqlRJZ8+etTsG4JI8PT1VrVo1u2PAhbEfNWBR6dKldeXKFbtjAC4jZ86cKlmypN0xAJfQtWtXLVu2TNHR0XZHAVzCW2+9pUWLFmnnzp12RwFcTv369bV79267Y8CFccgbYNGMGTP0yiuvaPfu3RyeA6RB9+7ddfToUW3cuNHuKIDTu3nzpjp06KCrV6/q3XffVeXKlRkXBriHuXPn6qWXXlLbtm1VuXJl+fn5JTtfjx49sjgZ4NwOHDigunXrasyYMRowYIDdceCCKJSAdPjwww81ceJEvfDCC6luuDRo0CCLkwHO59y5c6pTp46efPJJvfPOOxzOA9zDb7/9pi5duigiIiLFeTiTKHBbTEyM+vTpo1mzZpknfnA4HInmMQyDEz8AKfjrr79Uv359BQQEqFKlSsl+r+FMvEgJhRKQDsOHD9fHH3+sGzdupDofGy7AbX///bfq1KmjuLg4lSpVKsWNFQaFxL/dnDlz1K1bN8XHx6tEiRKpDmKfcJpn4N/sxRdf1FdffaVKlSqpU6dOqa4zPXv2zOJ0gHM7duyYmjdvriNHjqQ6H4UsUkKhBFg0YsQI/d///Z/y5cunJ554ItUNl5EjR2ZxOsD57Nq1S82aNVNYWFiq87GxAkgPP/ywQkNDtXz5ctWoUcPuOIDTCwwMVHBwsDZt2pTi9hiA5D3xxBP69ddfORMv0o1PXcCiqVOnqnTp0tq2bRvjWgBp8Morryg8PFzvv/++ubHi7u5udyzAKR07dky9e/emTALSKDo6Wo0bN6ZMAtJh3bp1atOmDWfiRbrxyQtYdOXKFXXp0oUyCUijHTt2qHPnzho8eLDdUQCnV6RIEfbUAyyoVq2aDh8+bHcMwCV5e3urdOnSdseAC3OzOwDgaipWrKhz587ZHQNwGX5+fgoKCrI7BuAS+vbtqyVLltzzEFEAt7377rtavny5li5dancUwOU0a9aMs/AiQxhDCbBoyZIl6tKli/744w9VrVrV7jiA03v++ee1adMm7dy5U25u/B0DSM3x48f16quv6uDBg3r77bdTPZNo0aJFszgd4HzGjBmjzZs3a8WKFWrSpEmK64zD4dDw4cNtSAg4r7Nnz6pevXrq2LEjZ+JFulAoARZ99913WrBggZYvX65nnnkm1Y39Hj16ZHE6wPlERkaqWbNmKlGihMaPH69ChQrZHQlwWm5ubnI4HOZpzlPicDh069atLEwGOKe0/qGCEz8ASTVp0kRXrlzR3r17lSNHDs7EC8solACL7tzYT3D3Rn/CFwE2XACpRIkSio2NNQ8V9ff3T3Fj5V6nrQUedL169Uq1SLrTtGnT7nMawPn9/vvvaZ63YcOG9zEJ4HooZJFRDMoNWMQGPGBNfHy8PD09Ex2ek9zfMvj7BiBNnz7d7giAS3E4HPLz81OVKlXsjgK4nPj4eLsjwMWxhxJg0cmTJ+Xl5aX8+fPbHQUA8IApUaKEWrVqpc8//9zuKIBLcHd3V79+/fTll1/aHQVwOWPGjFHx4sX1zDPP2B0FLorRUQGLihcvrrfeesvuGIDLePbZZ/Xxxx/bHQNwCZcuXVLOnDntjgG4jMDAQAYSBtJp7Nix+vPPP+2OARdGoQRY5O/vrzx58tgdA3AZs2bN0oULF+yOAbiESpUq6dChQ3bHAFxGs2bNtHbtWg6bBtKhaNGiCg8PtzsGXBiFEmBR/fr1tWXLFrtjAC7joYceMgfkBpC6IUOGaMmSJVqzZo3dUQCX8N577+ny5cv673//q7CwMLvjAC6lS5cuWr58uSIiIuyOAhfFGEqARQcPHlTt2rU1aNAgDRs2TB4ejG0PpOajjz7Se++9p927d6tQoUJ2xwGc2nfffae5c+dqxYoVat++vWrUqKGgoKBkz/zWo0cPGxICzqVJkya6fPmy9u3bJy8vLxUvXjzZdYbTngNJxcTEqGPHjjp37pzGjBmjGjVqKDAw0O5YcCEUSoBFzz77rP755x9t3LhR+fPnV+XKlVPccJkyZYpNKQHncfz4cQ0YMEB//vmn3njjjVS/IN95Jjjg38jNzU0OhyPJ4Tt3ri+GYXAKZ+D/47TnQPq5u7tL+t/vlZQ4HA7dunUrq2LBhVAoARax4QJYc+cXZDZWgNTNmDEjzfP27NnzPiYBADzoGjVqlOq22Z04FBvJoVACLDpx4kSa5w0ODr6PSQDX0KtXrzRvrEybNu0+pwEAAACQGSiUAAAAADwQoqKiFBkZKT8/P2XPnt3uOADwQGM0YQAAACdz/PhxzZw5U7t37za/HFepUkXdunVTsWLF7I4HOJXY2Fh9+OGHmj59uo4ePWpeX6JECfXu3Vuvv/66vLy8bEwIOL8zZ84k+Z3DyVRwL+yhBKTTzJkzNX369EQfvI888oh69eqlrl272h0PcEobNmxIsrFSt25du2MBTuWTTz7RG2+8oVu3biUZnNvT01MffPCBXn75ZZvSAc7lxo0beuyxx7Rlyxa5u7urRIkSKlCggEJDQ3XkyBHFxcWpVq1aCgkJka+vr91xAadz+PBhPf/881q9enWSaY899pi+/PJLlSxZ0oZkcAUUSoBFcXFxeuqpp7Ro0SIZhiEfHx8FBQXp/Pnzio6OlsPhUPv27TVv3rw0D+ANPOg2btyo3r176/Dhw5ISn02kVKlSmjZtmurUqWNnRMApLF26VG3btlVAQIBeffVVNW7c2PxyvGbNGk2YMEGXL1/W4sWL1bp1a7vjArYbNWqUxowZo86dO+uDDz5QkSJFzGmnT5/WG2+8odmzZ2vkyJEaOXKkjUkB53Pq1CnVqFFDFy5cUNmyZdWgQQPzd866det04MABBQUFaevWrYnWLSABhRJg0ccff6zXXntN9erV0/vvv5/oS/DmzZs1ZMgQrV+/XhMmTOAvyICkv/76S7Vq1dL169fVrFmzJF+Qf/vtN+XIkUObN29W+fLl7Y4L2KpJkybau3evdu/ercKFCyeZfurUKT3yyCOqXLmyQkJCbEgIOJdy5cope/bs2r59e4rz1KhRQ9euXdOBAweyMBng/Pr06aOpU6fqyy+/VL9+/ZKcROXrr7/W888/r+eee06TJ0+2KSWcGYUSYFGVKlUUHR2tP//8U56enkmm37x5U5UqVZK3t7d2796d9QEBJ9O5c2ctXLhQixcvVsuWLZNMX758udq2bav//Oc/mj17tg0JAeeRO3dudevWTV988UWK87zwwguaNWuWwsPDsy4Y4KR8fX316quv6t13301xnqFDh2rixIm6ceNGFiYDnF+RIkVUtWpV/fzzzynO065dO+3YsUOnT5/OwmRwFRyPA1h06NAhtW3bNtkySbo9vkWbNm106NChLE4GOKe1a9eqU6dOyZZJktSyZUt16tRJa9asyeJkgPOJjY2955mpcuTIodjY2CxKBDi3bNmy6eLFi6nOc/HiRWXLli2LEgGu48KFC6pQoUKq81SoUOGe6xj+vSiUAIu8vLwUFRWV6jxRUVGcTQT4/yIiIlS8ePFU5ylevLgiIiKyKBHgvEqXLq0lS5bo1q1byU6/deuWli5dqtKlS2dxMsA51a5dW7Nnz9Zff/2V7PT9+/drzpw5jNMHJCNfvnzav39/qvPs379f+fLly6JEcDUUSoBFjzzyiObOnauzZ88mO/3cuXOaO3euqlatmsXJAOdUsGBBbd68OdV5tmzZooIFC2ZRIsB59ejRQ3///bdatGihHTt2JJq2fft2Pf744/r777/Vs2dPmxICzmXYsGGKjo5WjRo19NJLL2n+/Pn6448/NH/+fA0YMEA1atRQTEyMhg4dandUwOm0aNFCixcv1pQpU5KdPnXqVC1ZsiTFvcwBxlACLFqyZInatWun/Pnz67XXXlPDhg3Ns7ytXbtWEyZM0Pnz5/Xzzz/riSeesDsuYLtXXnlFn332mYYNG6a33npLPj4+5rTo6GiNGzdOY8eO1cCBA/Xxxx/bmBSwX1xcnDp27KjFixfL4XAoW7ZsCgwM1IULF3T9+nUZhqF27drpp59+4kyiwP83b9489e3bV5GRkYkGFTYMQ7ly5dLkyZPVqVMnGxMCzunkyZOqXr26Ll++rPLlyyf6XrNu3Tr99ddfCggI0Pbt2znLG5JFoQSkw4QJE/Tmm28qLi4u0fWGYcjDw0Pvv/++Xn31VZvSAc7l8uXLqlWrlo4dO6a8efOqZs2a5sbKtm3bdPHiRZUoUUJbt25Vnjx57I4LOIXvvvtOM2bM0O7duxUZGSk/Pz898sgj6tmzp5555hm74wFO5+rVq/r555+1a9euROtMu3btlDNnTrvjAU7r0KFD6t+/v9auXZtkWuPGjfXVV19xmDVSRKEEpNPRo0c1c+bMJBv7Xbt2VYkSJeyOBziVS5cu6Y033tDs2bMVHR1tXu/j46Onn35a77//vgICAmxMCNhj7969yp8/vwIDA+2OAriEQYMGqWXLlmrevLmk23tY5M6dW35+fjYnA1zbqVOnEn2vqVKlCnsl4Z4olIB7+PTTT1W7dm3VrFnT7iiAy7t586YOHjxobqyULVs2xTMmAv8G7u7uGjlypEaMGCFJatKkiXr16qUePXrYnAxwTm5ubho1apS5zty9DgFIWdWqVdW/f3/997//lXR7b9gqVaqoUqVKNieDq+Lge+AeXnnlFS1fvty87O7urnfeecfGRIBzy5Mnjz744APz8pgxY7Ru3TpJkqenpypWrKi6deuqYsWKlEn413N3d090+PTatWt1/Phx+wIBTi5Hjhy6fv26eZm/jQNpt3v3boWGhpqXe/XqpUWLFtkXCC7Pw+4AgLPz9fVVTEyMedkwDDZegFREREQkOqxt1KhRGjVqlBo0aGBjKsA5FS5cWLt377Y7BuAySpUqpQULFqhDhw4qUKCAJCk8PFwnT56857JFixa93/EApxYQEKBLly7ZHQMPEAol4B6KFy+uFStWaODAgQoKCpKkRGcQAZBYUFCQTp8+bXcMwCW0adNGn332mcqVK2d+OZ4+fXqyg6PeyeFwKCQkJAsSAs7l9ddfV/fu3fXoo4+a133yySf65JNPUl3O4XDo1q1b9zse4NQqV66s77//XoUKFTJ/5+zevVvffffdPZflUGwkhzGUgHv49NNP9corr5glkmEYaSqU2HDBv1WHDh20fPly9erVSwUKFNCoUaPUqFEjNWrUKNXlHA6Hhg8fnjUhASdx9epVDR48WL/88ovOnj0rKW2H8DgcjiRnGgX+LTZv3qxffvlFZ86c0fTp01W5cmVVqVLlnstNmzbt/ocDnNiOHTvUqlUrXbx4UQ6HI03faxLm4XcOkkOhBKTB7NmzzY39NWvWKDg4WMWKFbvncmvWrLn/4QAnc/jwYbVr104HDhyQJHOD5V7YWAGSDjgMIHWsM4A1V69e1datW3XmzBn16tVL7du3V7t27e65XM+ePbMgHVwNhRJgERsuwL3Fx8fr2LFjOnPmjBo1aqRevXqlaUOkYcOGWZAOcF69e/dWhw4d1LZtW7ujAC7h999/V7FixRQcHGx3FMDl8L0GGUWhBFg0Y8YMValSRZUrV7Y7CuASihcvrldffVUDBw60OwoA4F8iMjJSW7ZskY+Pj+rVq8f4lwBwH1AoAZnEMAwdPnxYPj4+KlKkiN1xAAAu6M8//9S2bdvUqVMn+fn5SZJu3LihQYMGafHixfL19dXrr7+u/v3725wUcA6TJ0/WDz/8oEWLFsnf31+StGfPHj3++OM6f/68JKlOnTr67bfflC1bNjujAk4pPj5ebm5uia7btGmTli5dKh8fH/Xu3VuFCxe2KR2cndu9ZwFwpwULFqhHjx66cuWKed3x48dVqVIllS1bVsWKFVOXLl0YCwb4/65evaqjR4/q5s2bia6fM2eOunXrpueee047d+60KR3gXMaOHavhw4crZ86c5nXDhg3T119/ratXr+rUqVN68cUXtXLlShtTAs7j+++/V0xMjFkmSdJrr72mCxcuqHfv3mrVqpU2bdqkr776ysaUgHN69dVXlS1bNoWHh5vXzZ8/X/Xr19e4ceM0cuRIVa1albP3IkXsoQRY1KxZM50/f1579+41r+vQoYN+/vlnNWnSRJcvX9bevXs1adIk9e3b18akgHN4/vnn9cMPP+j8+fPmX4e/+uorDRgwwBys29fXVzt27FDZsmXtjArYrnjx4qpbt65++OEHSdKtW7cUEBCgsmXLau3atQoLC1PVqlVVvXp1LV261Oa0gP3y58+vdu3a6euvv5YkXb58WYGBgerbt68mTZokSapdu7ZiY2P54wVwlypVqqhgwYL69ddfzevKly+v8+fP65NPPlFoaKiGDh2qF198URMnTrQvKJwWeygBFu3fv181a9Y0L1+9elW//PKLOnfurFWrVmnr1q0qV66cpk6damNKwHn8/vvvatq0aaJDDd577z0VKlRI69at09y5c2UYhj788EMbUwLO4eLFi4kOm962bZsiIyPVv39/+fj4qGDBgmrXrp327NljY0rAeYSHhytfvnzm5T/++EOS9J///Me8rl69ejp+/HhWRwOc3qlTp1SqVCnz8rFjx3Tw4EENHDhQ3bt31+uvv65WrVpp+fLlNqaEM6NQAiwKCwtT/vz5zcvr16/XrVu39PTTT0uSPD091axZMx05csSuiIBTOXfunIoXL25ePnDggE6dOqWBAweqXr166tSpk9q2bat169bZmBJwDh4eHoqJiTEvr127Vg6HQ40bNzavy5s3ry5dumRHPMDp5M2bV+fOnTMvh4SEyN3dXXXr1jWvMwwjyWHXAKSoqChlz57dvPz777/L4XDo8ccfN68rX748h7whRRRKgEV+fn66fPmyeXnNmjVyc3NT/fr1zes8PT0VFRVlRzzA6cTExMjLy8u8nLCx0rx5c/O6EiVK6MyZM3bEA5xKsWLFtGbNGvPyvHnzVLx48USnRD9z5ozy5s1rRzzA6VSqVEk///yz9u3bp8OHD2vWrFmqW7duoi/Jx48fV4ECBWxMCTinggUL6u+//zYvL1++XDly5FC1atXM6yIjI+Xt7W1HPLgACiXAorJly2rJkiW6fPmywsPDNWvWLFWrVi3RYJAnTpxQUFCQjSkB51G4cOFEY44tXbpUefLkUaVKlczrLl++rBw5ctgRD3AqzzzzjPbs2aNatWqpQYMG2rNnj7p27Zponr179yY6RAH4N3vjjTd05coVVa5cWWXKlFF4eLgGDRpkTo+Pj9f69esTfUEGcFvDhg31yy+/6PPPP9e3336rBQsWqEWLFnJ3dzfnOXLkCGd5Q4o87A4AuJqBAwfqySefVOHChc09kcaOHZtons2bN6tq1ao2JQScy+OPP64vvvhCr7/+unx8fLR8+XL16NEj0TyHDh1S0aJFbUoIOI8BAwZo69atmj9/vgzDUKtWrTRs2DBz+l9//aU9e/Zo9OjRNqYEnEfjxo21ePFiTZs2TZLUpUsXtWnTxpy+YcMGFSxYMNGYSgBue+utt7Ro0SK9/PLLMgxD2bNn16hRo8zpV69e1bp169SrVy/bMsK5cZY3IB2++uorTZkyRdLtDZfXX3/dnPb777+rffv2eu+999SvXz+7IgJOIzQ0VI8++qg5IGqBAgW0ZcsW869dFy5cUOHChTVgwABNmDDBxqSA84iMjJTD4VDOnDkTXX/p0iWdOXNGxYoVU65cuWxKBwB4UJw7d04//fSTJKlNmzaJDrHeuXOnvv/+e3Xt2lU1atSwKyKcGIUSAOC+u3HjhkJCQiRJDRo0kJ+fnzlt//79WrlypVq0aKGyZcvaFREAAACABRRKAAAATigqKkrh4eGKi4tLdjqHiQL/s3XrVm3bti3FdcbhcGj48OE2JAOABxeFEpBOoaGh2rFjR6ob+3ePEwMAwL1MmTJFH330UaIz79zN4XDo1q1bWZgKcE5hYWFq3769NmzYoNS+1jgcjhS314B/s4sXL2ratGn3LGQT9jQH7sSg3IBF0dHR6tu3r2bPnq34+Phk5zEMQw6Hg0IJ+P/279+vzz///J4bK0eOHLEhHeA8vvrqK7344ovy8PBQgwYNVLhwYXl4sLkGpGTQoEFav369GjVqpJ49e7LOABbs3btXTZo00ZUrV+5ZyALJYQ8lwKJXXnlFn376qUqXLq2nn3461Q2Xnj17ZnE6wPn8/vvvatmypWJiYuTh4aGgoKAU15ljx45lcTrAuZQpU0ZXrlzR+vXrVbp0abvjAE4vICBAJUuW1KZNm/jSC1jUrFkzhYSE6O2339Zzzz2nwoULy93d3e5YcCHU94BFc+fOVfny5bVjxw55e3vbHQdwem+++aZu3bqlb7/9Vj179mRDBUjFiRMn1KdPH8okII1u3LihBg0aUCYB6bBp0ya1b99eY8aMsTsKXJSb3QEAVxMeHq6WLVtSJgFptGfPHnXp0kXPPvssZRJwDwUKFGCcF8CCKlWq6Pjx43bHAFySl5eXHnroIbtjwIVRKAEWlSlTRufPn7c7BuAysmfPrsDAQLtjAC6hZ8+eWrZsmaKiouyOAriEkSNHavHixdq8ebPdUQCX07BhQ23fvt3uGHBhjKEEWDRr1iz1799fO3fuVMmSJe2OAzi9nj176sCBA9q6davdUQCnd+vWLT399NM6c+aM3nvvPVWtWlU5cuSwOxbgtL777jv9/PPPWrp0qbp166aqVavKz88v2Xk5WQqQ2JEjR1S7dm0NGTJEr7/+ut1x4IIolACL1q1bp88++0whISF65ZVXUt1wadCgQRanA5zPhQsXVK9ePbVs2VLvvfeesmXLZnckwGklHBaacLbQlDgcDt26dSurYgFOy83NTQ6HI9EZqu5edxLWJw4nBRJ79tlndezYMa1bt07FixdXlSpVkv1e43A4NGXKFBsSwtlRKAEW3b3hktoGPxsugNSkSROFh4drz549yp49u0qXLp3ixkpISIgNCQHn0ahRozQPLrxmzZr7nAZwfjNmzEjzvJx9F0jMzS1tI+BQyCIlFEqARaNGjUrzxv7IkSPvcxrA+bGxAgAA4HxOnDiR5nmDg4PvYxK4KgolAAAAAAAAWOJhdwAAAAAAyKi4uDhdunRJMTExyU4vWrRoFicCgAcbhRIAAIATiYuL09y5c7Vq1SqdPXs22S/HjDkG/M+OHTs0bNgwrVu3TrGxscnOw0D2QMqio6O1bdu2FH/nSJwlEcmjUALS4dSpUxo7dqy5sZ/cxgsbLkBip0+f1po1a1L9gjx8+HAbkgHOIyoqSs2bN9fmzZvNM1Pdffaqe50BDvg32b17t+rXry8PDw81b95cS5YsUeXKlZU/f37t3LlTFy9eVKNGjRj/BUjBF198oeHDhysiIiLZ6Qm/cyiUkBwKJcCio0ePqlatWrpy5YoefvhhxcTEKDg4WD4+Pjp69Khu3rypypUrK3fu3HZHBZzG4MGD9cknnyQadPvOL8UJ/6dQwr/d2LFjtWnTJo0ZM0YvvPCCAgICNGrUKPXr10/r1q3TsGHDVLVqVc2cOdPuqIBTeOeddyRJW7ZsUbly5eTm5qYOHTpoxIgRunHjhl577TXNnz9fU6dOtTkp4HwWLFigl156SRUrVtTw4cP12muvqX379qpVq5bWrVunZcuWqWPHjnriiSfsjgonlbZT7wAwjR49WhEREQoJCdGePXskSb1799aBAwd0/PhxtW3bVlFRUZo/f77NSQHnMHnyZH300Udq3Lix5s+fL8Mw1LNnT/3444/q37+/PDw89OSTT2r16tV2RwVst2DBAtWuXVtvv/228uTJY14fFBSkJ598UmvWrNGqVav04Ycf2pgScB7r169X27ZtVa5cOfO6hL36fH199fnnn6tgwYIaNmyYXREBpzVx4kQFBgZq06ZNevXVVyVJVapU0ZAhQ/TLL7/ohx9+0KJFi9jDDymiUAIsWrVqlVq1aqWGDRua1yVsuBQoUEBz5syRJDZcgP/vm2++UbFixbRs2TJ16NBBklSsWDF17txZX3zxhX777TctXLhQFy9etDkpYL+TJ0+qdu3a5mU3N7dEh4gWLlxYrVu31owZM+yIBzidiIgIlShRwrzs6empa9eumZfd3NzUqFEjxhwDkrF37161bdtW2bJlM6+7c2/yrl27qkmTJhozZowd8eACKJQAiy5duqSyZcualz08PHT9+nXzsre3t5o1a6alS5faEQ9wOgcPHlTLli3l5va/Xzl3ji/WsGFDtW7dWuPHj7cjHuBUsmfPnmhdyZUrl86dO5donvz58+vkyZNZHQ1wSoGBgbpy5Yp5OX/+/Prnn38SzRMdHZ1oWw3AbTdv3lS+fPnMy76+vgoPD080T+XKlbVz584sTgZXQaEEWBQQEKCoqKhEl48fP55oHg8PjyQfxsC/2Z1jimXPnl2XL19ONL1MmTL666+/sjgV4HyCg4MTlUUVKlTQ6tWrzb2UDMNQSEiIChQoYFdEwKmUL19ef//9t3m5bt26+u2337Rp0yZJ0oEDBzR37txEfwwEcFvBggUT/dEiODhYu3btSjTPiRMn5OHB0MtIHoUSYFGpUqV05MgR83LNmjW1YsUKHT16VJJ08eJFzZ8/Xw899JBdEQGnUqhQIZ0+fdq8/NBDD2nLli2J5tm3b5+yZ8+e1dEAp/PYY49pzZo15l58PXv21MmTJ1WnTh0NHjxY9erV0+7du9WxY0ebkwLOoXXr1lq3bp35pXjIkCEyDEP16tVTvnz5VLFiRYWHhzMUAZCMGjVqJNr7qGXLltqwYYPGjRunv/76S19//bUWLFigGjVq2JgSzsxh3HkuWgD39P7772vUqFE6d+6ccufOrbVr1+qxxx6Tr6+vypUrp8OHDysyMlKTJk1S37597Y4L2O65557TH3/8oUOHDkmSRo4cqbFjx6pPnz5q27at1q9frw8++EAdO3bU3LlzbU4L2Ouff/7RggUL1KNHD3MvpJdeeklffvmlOV5fx44dNWPGjERjXgD/Vjdv3lRYWJj8/f3l5eUlSdq4caP+7//+T0ePHlVwcLBeeukltW7d2uakgPNZuHChhg37f+3dd1QUZ/s+8GsWRCyAFRSQZmwYBY1iQQGx+xpii2KhiFGTaBI1URNjwRJbUBM16huliDVqElsUDQQFsaPYwEYRC0VBQFEQlv394Zf9SSju+srOrFyfc3JOZubec64/HObZe595nlk4fPgwrKys8PDhQ3To0EH5Q6BCoYCRkREiIiLQpk0bkdOSFLGhRKSmnJwcxMXFwdbWFgYGBgCA3bt3w9fXt8TAZdKkSSInJZKGY8eOYdmyZdiwYQMsLS3x9OlTODs74+LFixAEAQqFAlZWVggPD+cuIkTlePjwofIZ06hRI7HjEBHRO+rx48fYtGmT8pnj4eEBMzMzsWORRLGhREREGldQUIB9+/YhPj4elpaW+PDDD/nKGxGABQsWwNraGh4eHmJHIdIKNjY26N+/P3755RexoxBpneTkZOjp6fGHCnpjXF2LSE2urq5wdHTEwoULxY5CpBUiIiJgaGgIe3t75blq1aph2LBh4oUikqhFixZhypQpYscg0hqPHj2CoaGh2DGItJK1tTW8vLwQEBAgdhTSUlyUm0hNZ86cgVwuFzsGkdbo0aMHfv31V7FjEGkFCwsL7hJKpIa2bdsq1+gjIvXUrVsX9evXFzsGaTE2lIjU1LJlS9y5c0fsGERaw9jYGPr6+mLHINIK7u7uCAkJQXZ2tthRiLTCzJkzceDAAYSHh4sdhUjrdO/evdTOu0Tq4BpKRGoKCgrC5MmTcfbsWdja2oodh0jyPD09cfXqVURHR0MQBLHjEElafn4+hg4dipSUFCxYsAAdO3aEsbGx2LGIJCs4OBi7du3CkSNHMGjQIHTs2BEmJiZlPm88PT1FSEgkXdevX0fnzp0xbdo0zJo1C7q6XBGH1MOGEpGaIiIisHz5ckRERGDixIkVDlycnJxESEgkLQ8ePECXLl3Qp08fLFu2DPXq1RM7EpGkBAcHw97eHm3btoWOjg6Al1s1V9SAFQQBhYWFmopIJCmurq4YO3YsPDw8IJPJlDuGvurV+6f4fuKSBUQl+fj44NatWzh58iQaNWoEOzu7Mr/XCIIAf39/kVKSlLGhRKQCHx8fDBo0CG5ubqUGLhUN+DlwoaoqOTkZderUgaGhIVxdXZGRkYGrV69CT08P1tbW5Q5WwsLCREpMJB6ZTIb58+djzpw5cHFxUXkmH1/xoapKJpPB19cXc+fORVBQkMr3jJeXVyUnI5I+HR0d+Pr6Ys6cOZDJVFsBhw1ZKg/ntBGpICgoCFZWVnBzc8PcuXP52g7Ra1hbWysHK8eOHVOez8/Px/Xr13H9+vVSn+F9RVVZ8Y8Ur94vRPR63t7eYkcg0ioKhUL5zElMTBQ5DWk7NpSI1OTr6yt2BCLJe3WwUlRUJHIaIiIiIvo3S0tLsSOQluMub0REREREREREpBbOUCIiIiISWUxMDIKDg9X6DHesoqosKChIrVdEuU4f0f/HZQbobeGi3EQqkMlksLe3h729vcqf4W4IVJXJZDJMmTIFU6ZMUetzFhYWlROISMKKN3tQFXesoqpO1YWEX8V7hugldZ85AHcWpfKxoUSkAg5ciNTDwQqR6mQyGVxcXODs7KzW5+bNm1dJiYikrfhHi6+++kqtz3G9GKKX94+RkRHq1Kmj1ue4gDeVha+8EanI29ub280SqcHCwgJWVlZixyDSCi4uLpg7d67YMYi0Rp06ddggInpDU6dO5TOH3go2lIhUZGVlpfavx0RV2dixYzlYISIiIiJ6R3GXNyIiIiIiIiIiUgsbSkREREREREREpBY2lIiIiIhE5OXlpdYuokRVXXh4uHJdy4iICCQnJ1dYf/fuXURERGgiGhFRlcKGEpEKAgMD8dFHHwEAkpOTkZOTU2H9kydPXju4IXqXWVpaqr17CFFVFRgYCDc3NwCAjY0NVq9eXWH9L7/8AhsbG01EI5IkZ2dn5YLcPXr0QFBQUIX1wcHB6NGjhwaSEUlfUVGRco3LBQsWvLbZGhkZiQULFmgiGmkhNpSIVODl5QU7OzsAgLW1NX7++ecK61evXg1ra2tNRCOSpMTERHz55ZcAAB8fH+zfv7/C+oMHD8LHx0cT0YgkLSkpCVlZWRXWZGVl4c6dO5oJRCRxCoXitTVFRUUQBEEDaYi0i6+vL44dO1ZhTUREBObPn6+ZQKR12FAiUpNCoXjt4EWVwQ1RVREUFISYmJgKay5duoTNmzdrJhCRlsvOzkb16tXFjkGkNW7dugUjIyOxYxBppRcvXkBHR0fsGCRRumIHIHoX3bt3DwYGBmLHINIaeXl50NXlI4mqpn+/bpCUlFTmKwhyuRx3797Ftm3b0Lx5c03FI5Kcf89o3bt3L5KSkkrVFd8zERER6N+/v4bSEWmXimbvvXjxApGRkTA2NtZgItImHL0TqeDf7w2XNzW0eOCyc+dOdO7cWQPJiLRDeYMVhUKBu3fv4vDhwzA1NdVwKiJpcHFxUd4jgiBg8+bN5c7YUygUEAQBS5cu1WREIkl5dc0kQRAQExNT7kxYQRDQsWNHrFq1SjPhiCTu32vwrVq1CoGBgaXq5HI5Hj16hLy8PIwfP15T8UjLCAq+m0P0WjLZ/387VBCE177SZmpqij///BMdO3as7GhEkiSTyZRfkIu/AFdEoVBg5syZWLJkiSbiEUmKr6+v8tmyYMECODs7w8XFpVSdjo4O6tWrhx49eqBVq1aaD0okEcVriCkUCtjY2GDKlCn46quvStXp6Oigbt26qFWrlqYjEkmWlZWVclyWnJwMQ0PDMjdSKX7muLq6Ys6cObyPqExsKBGp4Pjx4wBeDlxcXV3h7e2t3K72VcV/eFu2bFmiCUVU1bw64yIiIgIWFhawsrIqVffqYGX8+PF8R5+qvB49emDs2LHw9PQUOwqRVti8eTPatWuHtm3bih2FSOvIZDL4+voqd30jUhcbSkRqmj9/Pnr06AEnJyexoxBpBQ5WiIiIiKTnzp07qFOnDhetpzfGhhIRERGRBOXm5iIrKwtyubzM6xYWFhpORCRdZ8+exblz58q9ZwRBwJw5c0RIRkT07mJDiegNpaamIjo6usLBPl9ZICIidfn7+2PFihW4ceNGuTWCIKCwsFCDqYikKTMzE4MGDUJUVFSFa1wKglDueI2oKnv48CECAwNf25ANCwsTIR1JHXd5I1JT8U4HO3fuRFFRUZk1xYsQs6FE9FJsbCzWrl372sFKfHy8COmIpGP9+vWYNGkSdHV14eTkBHNzc+jqcrhGVJ5p06bhxIkTcHFxgZeXF+8ZIjVcvnwZrq6uePz48WsbskRl4QwlIjVNmTIFq1evRvPmzTFy5MgKBy5lLdxNVNUcP34c/fr1Q35+PnR1dWFiYlLuPZOYmKjhdETS0qJFCzx+/BgnTpxA8+bNxY5DJHkNGjTAe++9h1OnTvFLL5GaevfujbCwMMyePRvjxo2Dubk5N0ghtbB9T6SmXbt2wdbWFtHR0ahevbrYcYgk79tvv0VhYSE2bdoELy8vDlSIKnDnzh188sknbCYRqej58+dwcnJiM4noDZw6dQqDBg3CggULxI5CWor7mhOpKSsrC/369WMziUhFly5dgru7O3x8fNhMInqNxo0bc50XIjXY29sjKSlJ7BhEWklPTw9NmzYVOwZpMTaUiNTUokULpKWliR2DSGvUqlULxsbGYscg0gpeXl44fPgwcnNzxY5CpBXmzZuH/fv34/Tp02JHIdI6zs7OOH/+vNgxSItxDSUiNW3fvh2ffvopLly4gPfee0/sOESS5+Xlhbi4OJw9e1bsKESSV1hYiJEjR+L+/ftYunQp2rdvj9q1a4sdi0iygoODsW/fPhw8eBCjR49G+/btYWhoWGYtN0shKik+Ph6dO3fGzJkz8c0334gdh7QQG0pEaoqIiMCaNWsQFhaGKVOmVDhwcXJy0nA6IulJT09Ht27d0K9fPyxduhQ1a9YUOxKRZBW/Flq8W2h5BEFAYWGhpmIRSZZMJoMgCCV2qPr3vVN8P/F1UqKSfHx8kJiYiIiICFhbW8Pe3r7M7zWCIMDf31+EhCR1bCgRqenfA5eKBvwcuBABrq6uyMrKwqVLl1CrVi00b9683MFKWFiYCAmJpMPFxUXlxYXDw8MrOQ2R9G3evFnlWu6+S1SSTKbaCjhsyFJ52FAiUpOvr6/Kg/158+ZVchoi6eNghYiIiEh67ty5o3KtpaVlJSYhbcWGEhERERERERERqYW7vBERERERERERkVp0xQ5AREREVFX5+PhAEAQsXrwYJiYm8PHxUelzXCCVqiqZTAaZTIbY2Fg0b95cubbl63Ahe6KXmwsBgIODA/T19ZXHquBmQ1QWvvJG9Bo2NjYQBAGhoaGwtraGjY2NSp8TBAHx8fGVnI5IeoKDgwEAgwcPhoGBgfJYFdzSmaqa4i/DcXFxyi/HquCaY1RVFS9cv2XLFpibm3MheyI1lPXMUfX+4TOHysIZSkSvUVRUVOIP7b+Py8NeLVVV3t7eEAQBnTt3hoGBgfK4IsVbOrOhRFVNYmIiAMDMzKzEMRGV7dixYxUeE1H55s6dC0EQ0KBBgxLHRG+KM5SIiOitCgoKgiAIGDJkCAwMDJTHquCWzkREpI6IiAgYGhrC3t5e7ChERFUOG0pEakpOToaenh4aNWokdhQiInrH2NjYoH///vjll1/EjkKkFXR0dDBx4kSsW7dO7ChEWmfBggWwtraGh4eH2FFIS3GXNyI1WVtbY9asWWLHINIaPj4+WLVqldgxiLTCo0ePYGhoKHYMIq1hbGwMfX19sWMQaaVFixbhypUrYscgLcaGEpGa6tati/r164sdg0hrbN++Henp6WLHINIKbdu2xc2bN8WOQaQ1evfujWPHjnHtSqI3YGFhgaysLLFjkBZjQ4lITd27d8eZM2fEjkGkNZo2bYqUlBSxYxBphZkzZ+LAgQPcjYpIRUuXLkVGRgYmTJiAzMxMseMQaRV3d3eEhIQgOztb7CikpbiGEpGarl+/js6dO2PatGmYNWsWdHW5WSJRRVasWIGlS5ciJiZGuZMVEZUtODgYu3btwpEjRzBo0CB07NgRJiYmZS5sz10RiQBXV1dkZGTg6tWr0NPTg7W1dZn3jCAICAsLEyklkTTl5+dj6NChSElJwYIFC9CxY0cYGxuLHYu0CBtKRGry8fHBrVu3cPLkSTRq1Ah2dnblDlz8/f1FSkkkHUlJSZg8eTKuXLmCGTNmVPgF2cLCQoSERNIhk8kgCEKp13devV8UCgUEQYBcLtd0PCLJkclUe+GC9wxRaTo6OgD+/3OlPIIgoLCwUFOxSIuwoUSkJg5ciNTz6hdkDlaIKrZ582aVa728vCoxCRERvetcXFwqHJu9iq9iU1nYUCJS0507d1SutbS0rMQkRNrB29tb5cFKYGBgJachIiIiIqK3gQ0lIiIiIiJ6JyQkJCA7OxtGRkawsbEROw4R0TuNqwkT/Y8KCwvx5MkTGBgYcIFuIiJ6Ky5cuIDNmzfj4sWLyi/H7du3h6enJ9q3by92PCJJyc7Oxty5cxEcHIycnBzleUNDQ3h5eWH+/PkwMjISMSGR9F28eLHEM6ddu3Zo166d2LFI4jhDiegNyOVyrF69GkFBQbh27ZpybZjWrVtj7NixmDx5MptLRP+Sn5+PQ4cOlRqsDBgwANWrVxc7HpFkTJ8+HatWrUJRUVGpazKZDNOmTcPy5ctFSEYkPenp6ejevTtu3bqFOnXqwN7eHiYmJkhLS0NMTAyysrLQrFkzREZGcvcqojKcO3cO48ePx5UrVwCUXKC7TZs22LRpEzp06CBmRJIwNpSI1PT06VP07dsXp0+fhkwmQ5MmTZQDl7t376KoqAhdunTBkSNHUKtWLbHjEknC/v37MWHCBDx8+LDE7lWCIMDY2Bi//vorPvzwQxETEknD2rVr8eWXX6JFixaYPXs2unfvrnzGREREYNGiRbh16xbWrFmDzz//XOy4RKIbN24cAgMD8e233+L7778vMfbKzc3FokWLsGzZMvj4+GDTpk0iJiWSngsXLsDJyQnPnj1Dz549Sz1z/vnnH9SqVQuRkZGwt7cXOy5JEBtKRGqaNm0afvrpJ4waNQqLFy8usc15cnIyvvvuO+zYsQNTp07FihUrRExKJA1hYWHo168fdHR04OHhUWqwsnXrVsjlchw5cgSurq5ixyUSla2tLXJzc3H16lUYGBiUup6dnY02bdqgdu3aiI2NFSEhkbQYGxujbdu2CA0NLbfG1dUVV69eRXp6ugaTEUlf3759cezYMRw8eBC9e/cudf3IkSP48MMP4erqipCQEBESktSxoUSkJnNzc5iamuLs2bPl1nTs2BEpKSm4d++eBpMRSVO3bt1w+fJlnDx5Eu+//36p65cvX4ajoyPs7e0RGRkpQkIi6ahRowY+++wzrFy5styaqVOnYsOGDXj+/LkGkxFJU61atTB16lQsWrSo3Jrvv/8eP//8M54+farBZETSZ2BggI8++ghbt24tt2bUqFE4ePBgifXJiIrJxA5ApG0yMjLQq1evCmt69eqFzMxMDSUikraLFy9ixIgRZTaTAKBt27YYPnw4Lly4oOFkRNKj6hovJiYmlZyESDu8//77SEpKqrAmKSmp3GcQUVWmq6sLS0vLCmusra2ho6OjoUSkbdhQIlJTs2bNXjtl+uHDh3jvvfc0lIhI2mrWrImGDRtWWGNsbIyaNWtqKBGRdI0cORK///57uTMpcnJy8Pvvv2PkyJEaTkYkTbNmzcKePXvKfeXt6NGj2LNnD77//nsNJyOSvq5du+LMmTMV1pw+fRrdunXTUCLSNnzljUhN/v7+mDJlCk6fPo3WrVuXun7lyhV06dIFq1evho+PjwgJiaRl5MiRiI+Pf+1ros2aNcP27ds1mIxIevLz8zF8+HDcunULc+fORbdu3ZRrjkVGRmLhwoVo3rw5du3aBT09PbHjEokuODgYe/bswV9//YXevXuXumdCQ0MxcOBADB06tNRnPT09RUhMJB2xsbFwdHTEpEmTMGvWrBI/7j179gyLFi3Chg0bEBUVhVatWomYlKSKDSUiNUVERGDFihU4evQovLy8Sg1cgoOD0bdvX0ybNq3UZ52cnERITCSu+/fvw9HREU5OTvjhhx/QpEkT5bW7d+9i1qxZOHHiBKKiomBqaipiUiLxFb9W8Oq2za8q77wgCCgsLKz0fERSI5PJIAgCXveV5tX7pvg+ksvllR2PSNJ8fHwQHx+PEydOoE6dOmjXrp3ye83FixeRlZWF7t27w8bGpsTnBEGAv7+/SKlJSthQIlLTvwcu/x6g/PvcqzhwoarI1dUVjx8/xuXLl6GjowMLCwvlYCU5ORlyuRxt27ZF3bp1S3xOEASEhYWJlJpIHC4uLuU+Q14nPDz8Lachkr6goKA3vme8vLzechoi7SKTvdkKOGzIUjE2lIjU5Ovr+8YDl3nz5r3lNETSx8EKERERkfTcuXPnjT/7usW8qWpgQ4mIiIhIIoKDg2FiYoK+ffuKHYVIK7i6usLR0RELFy4UOwoRUZXDXd6I1OTj44NVq1aJHYNIayQnJyM1NVXsGERaYdy4cQgJCRE7BpHWOHPmDGezEr0hHR0djB49WuwYpMXYUCJS0/bt25Geni52DCKtYW1tjVmzZokdg0grNG7cmItrE6mhZcuW/9NrO0RVmaGhYYnNUojUxYYSkZqaNm2KlJQUsWMQaY26deuifv36Yscg0gpubm74+++/kZ+fL3YUIq3wxRdfYN++fYiNjRU7CpHWcXBwwKVLl8SOQVqMaygRqWnFihVYunQpYmJiYGZmJnYcIskbPHgwMjIyEBERIXYUIsnLzs6Gq6srGjVqhOXLl6N169ZiRyKStIiICCxfvhwRERGYOHEiOnbsCBMTkzI3UHFychIhIZF0nTp1Ci4uLti4cSM8PT3FjkNaiA0lIjUlJSVh8uTJuHLlCmbMmFHhwMXCwkKEhETScv36dXTu3BnTpk3DrFmzoKurK3YkIsmysbFBfn6+ct0xfX19GBsbl3rGCIKA+Ph4MSISSYpMJoMgCCj+SlPRTrxca4mopAULFiAqKgqhoaFo3759ud9rBEHAnDlzREpJUsaGEpGaXh24VDRoEQSB62AQ4eVC9rdu3cLJkyfRqFEj2NnZlTtY8ff3FyklkTRYWVlV+Gx5VWJiYiWnIZI+X19fle+ZefPmVXIaIu0ik6m2Ao4gCGzIUpnYUCJSk7e3t8oDl8DAwEpOQyR9HKwQERERSc/x48dVrnV2dq7EJKSt2FAiIqJKpc7uO5aWlpWYhIiIiIiI3hY2lIiIiIgkKDY2FtevX0dubi48PDzEjkMkaRcvXsSOHTtw/fp1PHv2DKGhoQBe/qhx5swZ9OrVC/Xq1RM5JRHRu0W19xCIqJTU1FSsW7cOX375JcaNG6c8//DhQ5w9exbPnz8XMR2RdGVmZuLu3btixyCSrHPnzsHe3h5t2rTBxx9/DG9vb+W1iIgI1KxZE/v37xcvIJHEzJgxAx06dICfnx8OHjyI8PBw5TWFQoFRo0Zhy5YtIiYkkq7CwkKsWrUKDg4OMDQ0LLF5SkxMDD7//HPcvHlTxIQkZWwoEb2BdevWwdraGpMnT8batWsRFBSkvJaeno4uXbpg69at4gUkkpjs7Gx89dVXMDExQcOGDWFtba28dubMGQwYMADR0dEiJiSShmvXrsHV1RWJiYmYOnUq+vfvX+J69+7d0aBBA+zevVukhETSEhgYCD8/PwwcOBCXL1/Gd999V+K6lZUVHBwc2IQlKsPz58/Ro0cPfPPNN7hz5w4MDQ3x6gtM1tbWCAwMRHBwsIgpScrYUCJS04EDBzB58mS0adMG+/fvx2effVbieuvWrdG2bVvs3btXnIBEEpOZmYlOnTphzZo1aNKkCVq1alVisNK2bVtERUVh27ZtIqYkkobiXaiio6Ph5+eHjh07lrguCAK6dOmCc+fOiRGPSHLWrVuHVq1a4ffff8f7778PPT29UjUtW7bErVu3REhHJG2LFy9GVFQUlixZgtTUVHzyySclrhsZGcHZ2RlHjhwRKSFJHRtKRGr68ccfYWFhgfDwcAwcOBDGxsalatq0aYPY2FgR0hFJj6+vL27evImdO3fi/Pnz+Pjjj0tcr1GjBpydnfHPP/+IlJBIOo4fP46hQ4fivffeK7fGwsICKSkpGkxFJF2xsbHo3bt3idd0/s3ExATp6ekaTEWkHX777Tf06NEDM2bMgCAIZe5kbWNjg+TkZBHSkTZgQ4lITTExMfjPf/6DWrVqlVtjZmaGtLQ0DaYikq79+/dj4MCBGD58eLk1VlZWuHfvngZTEUnTkydPyvyh4lXPnz+HXC7XUCIiadPV1cWLFy8qrHnw4AFq166toURE2iM5ORkdOnSosMbAwADZ2dkaSkTahg0lIjUVFRWhWrVqFdakp6ejevXqGkpEJG0pKSmwtbWtsKZ69erIzc3VUCIi6WrSpAmuXLlSYc2FCxfQtGlTDSUikrY2bdrgn3/+KbfJWrzj2wcffKDhZETSZ2Bg8NrZe/Hx8WjYsKGGEpG2YUOJSE0tWrRAZGRkudcLCwsRERGBNm3aaDAVkXTVr1//tbu6Xb9+HY0bN9ZQIiLpGjhwII4eParc8vzfdu3ahdOnT2PQoEGaDUYkUT4+Prh58yY+/fRT5Ofnl7iWk5MDb29vpKamYvz48SIlJJKuzp0748CBA8jKyirz+t27d3Ho0CE4OTlpNhhpDTaUiNQ0evRoXLx4EfPnzy91TS6X45tvvkFCQgI8PT1FSEckPU5OTti3b1+5r7TFxsYiJCQEvXr10nAyIumZNWsWTE1NMWDAAIwfPx7nz58H8HLhYQ8PD4waNQpWVlaYNm2ayEmJpMHHxwfu7u7w9/dHw4YN4e/vDwBwcHCAmZkZ9uzZAy8vLwwbNkzkpETSM336dDx+/Bg9e/ZEVFQUCgsLAbyc2RcWFoa+ffuisLCQzxwql6B4dasdInqtgoIC9OnTBxEREWjatCn09fVx7do1DB06FOfPn0dSUhL69OmDw4cPl7mwHVFVc+XKFTg4OMDY2BiLFy/G6dOnsW7dOly9ehUnT57E999/j6dPn+LixYto1qyZ2HGJRJeQkAAPDw+cOnWq1LVOnTphx44dsLKy0nwwIgnbuHEj1q5di6tXryp3Em3VqhW+/PJLTJw4UeR0RNK1fv16fPXVV2W+Nqqjo4N169aV2v2NqBgbSkRv4MWLF5g/fz42bNiAx48fK88bGhris88+w/z588vctpaoqtq/fz88PDzw9OlTAIBCoYAgCFAoFDAwMMCOHTswYMAAkVMSSUtMTAxOnz6NzMxMGBoaolOnTujYsaPYsYgk7fnz53j8+DEMDQ25EDeRiuLi4rBhwwacOXOmxDPn888/R+vWrcWORxLGhhLR/0ChUODGjRvKP7ytWrWCjo6O2LGIJCkzMxObN28uNVgZO3YsGjRoIHY8IiIiIiJSAxtKRERERERERESkFl2xAxARERHRSz4+Pq+tkclkMDQ0RIsWLTBw4ECYmZlpIBmRNMlksteuWSkIgvKeGTx4ML744gvUqFFDQwmJpCsiIuK1NcXPnPfeew81a9bUQCrSJpyhRKQmGxub19a8OtgfPHgwhg8froFkRNIUHBz82ppX75kWLVpoIBWRNL365bisIVrx2mPFdHV1MXfuXMyePVtjGYmkxMXFBdnZ2bh06RJ0dHRgYWEBExMTpKWlITk5GXK5HHZ2dpDL5YiPj0deXh7ef/99REZGwtDQUOz4RKJSpSH7am3v3r3x448/cl0lUmJDiUhNVlZWKCwsxIMHDwC8HMw3aNAAjx49Um61aWpqipycHDx9+hSCIKBnz544ePAgF+qmKkmdwQoAtGzZEmvWrIGrq2slpiKSpsTEREyZMgVnz57FV199BUdHR+WX46ioKKxevRoODg74/vvvcenSJSxatAh3797F9u3bMWLECLHjE2ncvXv30K1bN7i4uGDRokUwNzdXXrt//z5mz56NY8eO4cSJEzAyMsI333yDX3/9FTNmzMDSpUtFTE4kPl9fX5w9exYhISFo0aIFunbtqnzmnDp1CtevX0f//v3RtGlTXLhwASdPnoSRkRHOnDmD5s2bix2fJIANJSI1ZWVloXfv3jAyMsKiRYvQqVMn5S/GZ86cwZw5c5CdnY2jR4/i0aNHmDp1Kg4dOoRFixbhu+++Ezs+kcZt3rwZf/zxBw4cOIA+ffqU+oJ89OhRuLm5wcnJCRcuXMBvv/0GHR0dREZGckcrqnKWLl2Kn376CZcuXYKJiUmp66mpqbC3t8e0adMwY8YM3L9/H7a2trC3t8fx48dFSEwkLnd3dyQnJ+PkyZPl1jg6OsLCwgI7duxAUVER2rZti4KCAty4cUODSYmkJzIyEr1798aGDRvg7e1d6vrmzZvx2Wef4ejRo+jWrRu2bt0KT09PjBkzRqUZ6PTuY0OJSE0TJ07EqVOnEBMTA5lMVuq6XC5Hu3bt0LVrV2zYsAF5eXmwtbWFgYEBLl26JEJiInHt3bsXI0eOxKFDh9CjR49S148dO4YBAwZg586dcHNzw/Hjx9GzZ0989NFH+P3330VITCSeZs2aoX///li9enW5NV988QVCQkJw69YtAMDo0aPx119/ISsrS0MpiaSjQYMGmDhxIn744Ydya2bNmoWNGzfi4cOHAIDPPvsMQUFBeP78uaZiEkmSi4sLGjZsiN27d5db8/HHH+Phw4c4duwYAMDV1RU3b97EvXv3NJSSpKz0t2EiqtC+ffswYMCAMptJAKCjo4MBAwZg3759AAB9fX24urri9u3bmoxJJBmLFy/G8OHDy2wmAS8HMx9//DEWLVoEAHB2dka/fv1w4sQJTcYkkoR79+6hevXqFdbo6+uXGMhbWFggLy+vsqMRSVJeXh5SUlIqrElJSSnRPDIwMICuLvcmIoqOjn7t2pUtWrRAdHS08tje3l7ZnCViQ4lITTk5OcjJyamwJjs7G9nZ2crjBg0aVHYsIsm6du1aiTUtymJubo5r164pj21tbTnbgqokMzMz7N27t9wGUV5eHvbu3VtiZ7f09HTUrVtXUxGJJKV9+/bYuXMnTp06Veb1M2fO4LfffsMHH3ygPJeQkFDmK6VEVY2enh5iYmIqrLl48SKqVaumPJbL5ahVq1YlJyNtwYYSkZpsbW2xY8cOJCQklHk9ISEBO3fuhK2trfJccnIyGjZsqKmIRJJSu3ZtREZGVlgTGRmJ2rVrK49zc3NhYGBQ2dGIJGfcuHGIj49Ht27dsH//fmRkZAAAMjIysH//fnTr1g0JCQnw8fFRfiYyMhJ2dnZiRSYS1cKFC1FYWIju3btjyJAhWLFiBbZs2YIVK1ZgyJAh6NatG+RyORYsWAAAePr0KY4cOQJnZ2eRkxOJr1evXjh8+DCWLVuGgoKCEtcKCgrw448/IiQkBH369FGej42NhYWFhaajkkRxDSUiNf3xxx8YNmwYateujU8++QSOjo4wNjZGeno6oqKi4O/vj6dPn2L37t0YMmQIXrx4AVNTU/Tp0wfbt28XOz6Rxk2YMAH+/v6YOHEi5s+fX6K5+ujRI8ybNw8bNmzAuHHj8OuvvwJ4uYBqYWEhzpw5I1ZsIlHI5XKMHTsWW7duVe6OKJPJUFRUBABQKBQYNWoUgoODIZPJkJaWhqVLl6Jfv37o27evmNGJRHP06FFMmDABycnJAKDcLAV4+Urohg0b0K9fPwDAs2fPcOvWLZiZmXEGOVV5d+7cQZcuXZCWlgZjY2N06NBB+b0mOjpaef706dOwtLREamoq3n//fXz22WdYuHCh2PFJAthQInoDAQEBmDJlCp4+fVpiO3SFQoHatWtj5cqV+OSTTwC83BXu+PHjaN26Nd577z2xIhOJJiMjA05OToiLi0P16tXx3nvvKQcrt2/fRn5+Plq2bInIyEjUr18fqampGDBgALy9vfHll1+KHZ9IFP/88w+2bNmCy5cvIycnB4aGhrCzs8Po0aPRs2dPseMRSU5RURFOnDiBS5culbhnunXrVu66l0QEPHjwADNnzsSePXuQn5+vPF+9enUMGzYMS5Ysee3SBVR1saFE9Iays7Oxb9++UgOXjz76CEZGRmLHI5KU3NxcLF26FNu2bUNSUpLyvJWVFUaPHo2ZM2eWeOWNiIiIiDTnxYsXuHHjhvJ7TYsWLaCnpyd2LJI4NpSIiEijnjx5ohyscJ0kIiIiIiLtxIYSERERkcSkpqYiOjoaWVlZkMvlZdZ4enpqOBWRND18+BCBgYE4d+5cufeMIAgICwsTIR0R0buLDSWiN/DixQvs3bv3tQMXf39/EdIRSVdubm6FX5C5awhVdXl5eRg/fjx27typXIj73xQKBQRBKPc+IqpKLl++DFdXVzx+/BgVfa3hPUNUttDQUKxcuVL5vaasZ48gCCgsLBQhHUmdrtgBiLTNnTt30Lt3b8THx7924MKGEtFL/v7+WLFiBW7cuFFuDQcrRMC3336Lbdu2oXnz5hg5ciTMzc2hq8vhGlF5vv76a2RmZmL27NkYN24czM3NoaOjI3YsIq3w+++/Y8SIESgqKoKlpSVatmzJZw6phTOUiNQ0ZMgQ7N27Fx4eHvDx8alwsG9paanhdETSs379ekyaNAm6urpwdHSs8J4JDAzUcDoiaTE1NUW9evUQHR2N6tWrix2HSPJq166NPn364I8//hA7CpHWsbOzQ0JCAvbt2wdXV1ex45AWYvuRSE3//PMPevbsic2bN4sdhUgr/PTTT2jQoAFOnDiB5s2bix2HSNKysrIwatQoNpOIVKSnp4emTZuKHYNIK924cQMeHh5sJtEbk4kdgEjbFBUVoV27dmLHINIad+7cwfDhw9lMIlJBixYtkJaWJnYMIq3h7OyM8+fPix2DSCvVr18fNWvWFDsGaTE2lIjU1KlTJ8TFxYkdg0hrNG7cmAuhEqlo+vTp2LdvH27fvi12FCKt4Ofnh6tXr8LPz0/sKERaZ9iwYQgNDeUalvTGuIYSkZqio6Ph5OSEzZs3Y9iwYWLHIZI8X19fBAUF4dq1a6hVq5bYcYgkLSIiAmvWrEFYWBimTJmC9u3bw9DQsMxaJycnDacjkh4fHx8kJiYiIiIC1tbWsLe3L/Oe4WYpRKXl5uaiT58+aNSoEVatWsXddkltbCgRqWnBggU4e/YsDh8+DGdn53IH+4IgYM6cOSIkJJKWwsJCjBw5Evfv38fSpUvRvn171K5dW+xYRJIkk8kgCIJyF1FBEMqt5cw/opf3jCoEQeA9Q/QvNjY2KCgowIMHDwAAderUgZGRUak6QRAQHx+v6XikBdhQIlITBy5E6inevlmhUFT45VgQBE65pirP19e3wvvkVfPmzavkNETSd+fOHZVrufsuUUlWVlYqP3MSExMrOQ1pIzaUiNR0/PhxlWudnZ0rMQmRdnBxcVF5sBIeHl7JaYiIiIiI6G1gQ4mIiIiIiIiIiNSiK3YAIiIiIiIiVURERAAAHBwcoK+vrzxWBReyJyJ6uzhDieg1kpOTAQBmZmbQ0dFRHquCOyUQEVFFbGxsIAgCQkNDYW1tDRsbG5U+xwVSqaoqXrg+Li4OzZs3Vx6rgmtbUlW3YMECCIKASZMmoV69eliwYIFKn+NmQ1QeNpSIXuNNBy5cYJiqKh8fHwiCgMWLF8PExAQ+Pj4qfY5bOlNVVLwg6j///ANra2sukEr0GsUL13/xxReoV68eF7InUkNZ32tUwc2GqDxsKBG9hre3NwRBwNKlS2FiYqI8VkVgYGAlpyOSHg5WiIiIiKSneHOhTp06QV9fn5sN0f+MDSUiInqrirdwNjMzg66uLrd0JnqN1atXo3PnznBwcBA7CpFWaN++PT799FNMmDBBeS49PR2pqalo27atiMmIpC8nJwf6+vrQ09MTOwq9A1T72ZioihsyZAh27dpV4tyLFy+Qk5MjUiIi6bK0tER2djYyMzOVx6r+R1QVTZkyBSEhISXO/fe//0X79u1FSkQkbTExMUhNTS1xbv369WjXrp1IiYi0R926dbFs2bIS586cOYPVq1eLlIi0GRtKRCrYu3cvrl+/XuLckiVLULduXZESEUlbu3btsGHDhhLnjhw5gmnTpomUiEi7pKam4tKlS2LHICKid4xCocC/X1IKCQnB1KlTRUpE2owNJSIieuvKepv69OnT+Pnnn0VIQ0REREREbxsbSkREREREREREpBY2lIiIiIiIiIiISC26YgcgIiIiqupyc3ORnp6uPH769CkA4OHDh2W+QgoAxsbGGslGJEUnTpzA8uXLSxwDwI8//ljuPTNjxgyNZCMiqirYUCJS0dWrV0vs9Hb16lUAwO7du8sduAwfPlwj2YiISLv5+fnBz8+vxDmFQoFGjRqVWS8IAgoLCzURjUiSQkNDERoaWur8zJkzy6wXBIENJaL/s3XrVpw+fVp5fPv2bQDAgAEDyqwXBAF//fWXRrKRdhEU5X0TJiIlmUwGQRBKnCu+df59vviaIAiQy+UayUckNTKZDA0aNECDBg2U5x49eoSMjAy0aNGizM8IgoBr165pKiKRZLi4uJT5LHmd8PDwSkhDJH2bN29+o895eXm95SRE2kcmU3/VG36vofKwoUSkgvnz57/R5+bNm/eWkxBphzcZrABAUVHRW05CRERERMXu3LnzRp+ztLR8y0noXcCGEhERERERaSUfHx+0adMGU6dOFTsKEVGVw13eiIiIiIhIK23fvr3EgvZERKQ5XJSbSE1PnjzBw4cP0aRJE1SrVk15/rfffsP+/fuhr6+PSZMmoX379iKmJJIOHx8fDBo0CG5ubuXWHDx4EH/88QcCAgI0mIxImh4+fIjAwECcO3cOWVlZZa5bIQgCwsLCREhHJC1NmzZFSkqK2DGItFpqaiqio6PLfeYAgKenp4ZTkTbgK29Eavrss8+wdetWpKWloWbNmgCA9evXY/LkycqFumvUqIHo6Gi0bNlSzKhEkiCTyeDr64u5c+eWW/PDDz9g7ty5XPCRqrzLly/D1dUVjx8/LncHUYALpBIVW7FiBZYuXYqYmBiYmZmJHYdIq+Tl5WH8+PHYuXNnuetYcrMhqghnKBGp6fjx4+jVq5eymQQAS5cuhZmZGbZv347U1FR4enrixx9/hL+/v4hJibRHXl4edHX5SCL6+uuvkZmZidmzZ2PcuHEwNzeHjo6O2LGIJGvo0KEIDw9H165dMWPGDHTs2BEmJiZl7pxoYWEhQkIi6fr222+xbds2NG/eHCNHjoS5uTnHY6QW/mshUlNKSgr69eunPI6Li8Pdu3exfPlydOvWDQCwZ88eREREiBWRSHLK2xJdoVDg7t27OHz4MExNTTWcikh6Tp06hUGDBmHBggViRyHSCjY2NhAEAQqFAl9++WW5dYIgoLCwUIPJiKRv165dsLW1RXR0NKpXry52HNJCbCgRqSk/Px96enrK4+PHj0MQBPTp00d5zsbGBvv37xcjHpEkyGSyEk0kX19f+Pr6lluvUCgwc+ZMDSQjkjY9PT00bdpU7BhEWsPT07PcHy2IqGJZWVkYNWoUm0n0xthQIlKTubk5Ll++rDw+ePAg6tWrh7Zt2yrPZWRkoHbt2mLEI5IEJycn5QA/IiICFhYWsLKyKlWno6ODevXqwdXVFePHj9dwSiLpcXZ2xvnz58WOQaQ1goKCxI5ApLVatGiBtLQ0sWOQFmNDiUhN/fv3xy+//IJvvvkG+vr6CAkJKbXrwc2bN/mePlVpx44dU/6/TCbD2LFjK1yUm4he8vPzQ+fOneHn54dvvvlG7DhERPQOmz59Oj799FPcvn0b7733nthxSAtxlzciNaWmpqJr165ISkoCADRu3BhnzpyBubk5ACA9PR3m5uaYPHkyVq5cKWJSIiLSNj4+PkhMTERERASsra1hb28PQ0PDUnWCIHDjByIi+p9ERERgzZo1CAsLw5QpU9C+ffsynznAy9nnRP/GhhLRG3j+/DnCwsIAvPzj+uof3tjYWPz999/o27cvWrZsKVZEIiLSQjKZTKU6buFMVZWrqysEQcDmzZthbm4OV1dXlT4nCIJy7EZELxWveVncEqhoPTI+c6gsbCgREdFb5ePjA0EQsHjxYpiYmMDHx0elz3HGBRFw584dlWstLS0rMQmRNBV/AY6Li0Pz5s3ZhCX6H/j6+qq8qP28efMqOQ1pIzaUiNTUv39/TJgwAW5ubtDR0RE7DpHkcLBPRERERPTuY0OJSE3FX5aNjY3h7e2NcePGcRE7olcUz7AwMzODrq4uZ1wQEREREb2D2FAiUlNCQgI2btyI4OBgpKSkQBAEuLi4YPz48RgyZAj09PTEjkikldLS0mBiYiJ2DCJJ2LZtG4KCghATE4OcnBwYGhqiXbt28Pb2xqhRo8SOR0RERMSGEtGbksvlOHjwIDZt2oSQkBAUFRWhbt268PT0xCeffAJbW1uxIxKJZv369fjss89Urk9LS0OPHj0QGxtbiamIpE8ul2P48OHYu3cvFAoF9PX1YWJigrS0NOTl5UEQBAwaNAi7d+9W+XVSoqogLy8P586dw4MHD5Cfn19mjaenp4ZTEUnf3bt3sWjRIoSGhuLBgwd48eJFqRpBEFBYWChCOpI6NpSI3oKUlBQEBAQgMDAQiYmJAIAuXbpg/PjxGDFiBPT19UVOSKRZurq62LZtG0aMGPHa2kePHsHZ2RnXr1/nGkpU5a1atQpff/01unXrhmXLlqFLly7Ka6dPn8bMmTNx4sQJrFy5El999ZWISYmk45dffsGcOXOQnZ1d5nWFQsF1+ojKkJCQgE6dOuHx48do3bo1rly5AktLS+jr6yMhIQEFBQWws7NDnTp1EB4eLnZckiD+tEX0FjRu3BgzZ87EkiVL0LhxYygUCpw8eRI+Pj4wNzfHjz/+iKKiIrFjEmlMo0aN4OXlhaNHj1ZY9+jRI7i6uiIuLg6ff/65htIRSdfmzZvRvHlzhIWFlWgmAUDnzp0RGhqK5s2bIzAwUKSERNLyxx9/4IsvvkCTJk3g5+cHhUKBjz76CIsXL0a/fv2gUCgwdOhQBAQEiB2VSHLmz5+P7OxshIWF4dKlSwCAsWPHIi4uDklJSXBzc0Nubi727NkjclKSKjaUiP5HN2/exIwZM2Bubg53d3dkZmbCw8MDoaGhWLZsGWrXro1vv/0WM2fOFDsqkcYcPXoUtWvXxtChQ3H69OkyazIyMtCrVy9cvXoVn376KdasWaPhlETSc/PmTbi5uaFatWplXq9WrRo+/PBD3Lx5U8PJiKTpp59+grGxMU6dOoWpU6cCAOzt7TFz5kz89ddf2Lp1K/bu3ctNH4jKEBoaigEDBsDZ2Vl5rvgFpsaNG+O3334DAMyaNUuUfCR9bCgRvYG8vDxs2bIFzs7OaNWqFfz8/FCvXj2sWLEC9+/fx+bNm+Hq6opvvvkGN27cgKOjI4KDg8WOTaQxtra2OHToEABg4MCBuHbtWonrjx8/Ru/evXH58mWMHz8e69atEyMmkeTo6ekhNze3wprc3FxuAEH0fy5fvgw3NzfUrFlTee7VV9tGjRoFV1dXLFiwQIx4RJL26NEjtGzZUnmsq6uLZ8+eKY+rV6+O3r174+DBg2LEIy3AhhKRmiZPngxTU1N4e3vjzJkzGDFiBMLDwxEbG4spU6agbt26JeqrV6+Ovn374tGjRyIlJhKHg4MD9u7di9zcXPTt2xdJSUkAgKysLPTu3RsxMTHw8fHBf//7X3GDEklIu3btsGvXLjx48KDM6ykpKdi1axfat2+v4WRE0lRQUICGDRsqj2vUqIGsrKwSNXZ2drhw4YKGkxFJX4MGDUr8iNGgQQPleK2Yrq5uqXuKqBgbSkRqWrduHerXr4+lS5fi3r172L59e4lpomVxcXHB3LlzNZSQSDp69uyJbdu2IS0tDb1798b169fRu3dvXLhwAV5eXti0aZPYEYkkZdq0acjIyECHDh2wYsUKnD9/Hnfv3sX58+fh5+eHDz74AJmZmZg2bZrYUYkkwdTUFCkpKcpjS0tLXLx4sUTNnTt3oKurq+loRJLXrFkzxMfHK48dHBxw5MgRJCQkAAAePnyIPXv2oGnTpmJFJInjLm9EagoLC0PPnj3FjkGkVfz9/TF+/Hjo6OhALpdj9OjRCA4OhiAIYkcjkpyVK1fi22+/LbUjlUKhgK6uLpYtW6ZcK4aoqhs1ahRiY2MRExMD4GVT9ueff8aiRYvg5uaGEydOYPLkyejVqxcOHz4sblgiiVm2bBl8fX2RkpKCOnXq4NixY+jZsydq1KiBVq1a4fbt28jJycGGDRswfvx4seOSBLGhREREb116enqpc35+fvDz80OfPn0QGBgIHR2dUjXGxsaaiEckeQkJCdi2bRtiYmKQk5MDQ0NDtGvXDqNGjYKNjY3Y8Ygk488//8SsWbNw+PBhWFlZ4eHDh+jQoQPu3bsH4GUj1sjICBEREWjTpo3IaYmkJScnB3FxcbC1tYWBgQEAYPfu3fD19UVCQgIsLS3xxRdfYNKkSSInJaliQ4noDRQWFmLNmjXYsWMHrl+/jmfPnqGwsBAAEBMTg19//RVTpkxB8+bNRU5KJA6ZTFbm7COFQlHurCRBEJT3ERER0Zt6/PgxNm3apPxC7OHhATMzM7FjERG9c9hQIlLT8+fP0adPH5w8eRINGjRAtWrVkJKSonw1ITs7G40aNcLXX3+NRYsWiZyWSBwuLi5v9DpbeHh4JaQhIqJ3UUREBM6dOwdBEODg4IBu3bqJHYmIqEphQ4lITXPmzMEPP/yApUuXYvr06Zg/fz4WLlxYYq2Lfv36ISMjA+fOnRMxKRERSV1ERMQbf9bJyektJiHSHoWFhRg6dGiprcwHDRqE3bt3QybjvkNEqkhOTn5tjUwmg6GhIQwNDTWQiLQNtzsgUtNvv/2GHj16YMaMGQBQ5iwMGxubUjuMEBER/dubzuYDUGrRbqKqYu3atThw4ACMjY0xZMgQAC/XUtq7dy/WrVuHyZMni5yQSDtYWVmp/AwyNjbG4MGDMW/ePJiYmFRyMtIWbCgRqSk5ORmDBw+usMbAwADZ2dkaSkSkHZKSkvDo0SMAQMOGDWFpaSlyIiLxzZ07l7sdEqlp+/btqFOnDmJiYtCoUSMAL+8lW1tbbN26lQ0lIhV5enoiKSkJERERqFu3Luzt7WFiYoK0tDRcunQJmZmZcHZ2hoGBAa5cuYINGzbgwIEDOHv2LBo3bix2fJIANpSI1GRgYFDmDlavio+PR8OGDTWUiEi6UlNTsWjRIuzatQsZGRklrjVs2BDu7u747rvv+EsXVVm+vr5iRyDSOjdu3MDHH3+sbCYBQKNGjTB48GDs2bNHxGRE2mX69Ono1q0b5s6dixkzZqBmzZrKa8+fP8fy5cvx888/48SJE2jZsiWWLFmCOXPmYNGiRfjll19ETE5SwReMidTUuXNnHDhwAFlZWWVev3v3Lg4dOsS1LajKu3LlCtq3b4/169fj0aNHMDc3h4ODAxwcHGBubo709HSsXr0aHTp0QFxcnNhxiYhISzx58gRNmjQpdb5JkyZ4+vSpCImItNOMGTPQqVMn+Pr6lmgmAUCNGjUwb948dOrUCTNnzoRMJsP333+Pjh074tChQyIlJqlhQ4lITdOnT8fjx4/Rs2dPREVFKbc5f/bsGcLCwtC3b18UFhZi2rRpIiclEk9BQQHc3d2RmpoKLy8vxMfH486dOzh16hROnTqFO3fuID4+Hl5eXrh//z7c3d25HgwREamsrFdF+fookXqioqLQoUOHCmvat2+PyMhI5XGnTp2QkpJS2dFIS/CVNyI1OTk5Ye3atfjqq69KzEIyMDAAAOjo6GDdunX44IMPxIpIJLr9+/cjLi4O06ZNg5+fX5k11tbWCAwMRL169fDTTz9h//79r12fjKgqePLkCdauXYvQ0FA8ePAA+fn5pWoEQUB8fLwI6Yik4d69ezh79mypcwBw7tw5lLWRtYODg0ayEWmLoqIi3L59u8Ka27dvl7ifqlWrBn19/cqORlpCUJT115aIXisuLg4bNmzAmTNnkJmZCUNDQ3Tq1Amff/45WrdujbS0NK4LQ1XWmDFjcPDgQdy/fx+1atWqsDY3Nxempqb46KOPEBwcrKGERNL08OFDdO3aFfHx8TA0NEROTg6MjIzw4sULPH/+HABgamqKatWqITExUeS0ROKQyWTlzkZSKBTlXuNMWKKSBgwYgL///htbt27FiBEjSl3fvXs3Ro0ahd69eytfc/vwww8RHx+P2NhYTcclCWJDiUgF69evx2effaZyfVpaGnr06ME/tFRltW7dGk2bNsX+/ftVqndzc0NiYiKuXLlSycmIpG3SpElYv349goODMXr0aOjo6MDX1xdz587FuXPn8MUXX0BXVxdHjx4ttd4FUVUxduzYN/pcYGDgW05CpN2uXLkCR0dH5Obmws7ODo6OjjA2NkZ6ejpOnjyJmJgY1KpVCydOnEDbtm2RkZEBMzMzfPLJJ1i7dq3Y8UkC+MobkQq++OIL1KtXr8zO/b89evQIrq6uuHHjhgaSEUlTSkoK+vXrp3J9s2bNEBUVVYmJiLTDoUOH0LNnT4wZM6bUtY4dO+Lw4cNo06YN5s+fj2XLlomQkEh8bAwRvR1t2rRBZGQkJk+ejKioKMTExJS47ujoiDVr1qBt27YAgDp16iAtLY0/aJASG0pEKmjUqBG8vLxQt25d9OnTp9y64mZSXFwcJk2apMGERNLy5MkTGBoaqlxvYGCAJ0+eVGIiIu2QkpKCjz/+WHmso6OjfNUNAOrWrYv+/ftj165dbCgREdH/zM7ODpGRkUhOTsalS5eQk5MDQ0ND2NnZwcLCokStjo4OjIyMREpKUsSGEpEKjh49CicnJwwdOhR///03OnfuXKomIyMDvXr1wtWrV/Hpp59izZo1IiQlkga5XK7WbjuCIHBtCyIARkZGKCgoUB7XrVtXudBwMUNDQ6SlpWk6GhERvWNcXV3h6OiIhQsXwsLColQDieh12FAiUoGtra3yNYSBAwfi+PHjaN26tfL648eP0bt3b1y+fBnjx4/HunXrRExLJA1l7cBTUS0RATY2NkhKSlIet2vXDn///TcyMjJQv359PH/+HAcOHOCgn+gViYmJ+Pnnn3Hp0iU8ePCgRFO2GHdGJCrtzJkzZf5QTqQqLspNpIawsDAMHDgQ9evXx4kTJ2BlZYWsrCz06tULFy5cgI+PDzZt2iR2TCLRVbQDT1mKd+XhLCWq6ubNm4dVq1YhNTUVNWvWxB9//IFhw4bB1NQUXbp0wYULF5CUlIQffvgB3377rdhxiUQXEhKCQYMG4cWLF6hWrRqMjY2hq1v2b+bcGZGopA8++AAtW7bEtm3bxI5CWooNJSI1/fHHHxgxYgSsrKxw4MABeHh4IDo6Gl5eXlwkkuj/cAceojeTkpKCiIgI9OzZEw0aNAAArFixAosWLUJ2djZq1KiBzz//HEuXLoWOjo7IaYnEZ2dnh9u3byMoKAhDhw6FTCYTOxKR1ggKCsLkyZNx9uxZ2Nraih2HtBAbSkRvwN/fH+PHj4eOjg7kcjlGjx6N4OBgtWZkEBERqUoul+PRo0cwNjbms4boFTVq1MCYMWOwceNGsaMQaZ2IiAgsX74cERERmDhxIjp27AgTE5MynzNOTk4iJCSpY0OJSAXp6emlzvn5+cHPzw99+vRBYGBgmb8UGxsbayIekdZLTEzE/PnzERQUJHYUIlE9ffoUtWvXFjsGkdawtrbGwIEDuRkK0RsoXqKguCVQ0Q8WXJaAysKGEpEKylsPpnjdl7IIgoDCwsLKjkak1ZKTk7Fw4UIEBwejsLCQgxWq8mrVqoVBgwbBw8MDffr04es7RK/x/fff47fffsPVq1ehr68vdhwireLr66vyrNd58+ZVchrSRmwoEanAxcXljV4xCA8Pr4Q0RNrhxIkTmDNnDqKjo6Grq4vu3btj+fLlaNGiBZ49e4bZs2dj3bp1ePHiBUxNTfHdd99h0qRJYscmElXbtm1x9epVCIKAhg0bYuTIkRgzZgw++OADsaMRSVJBQQEGDx6MJ0+eYPHixbCzs+MsPyIiDWFDiYiI3rro6Gg4OjrixYsXJc43btwYkZGRcHNzQ2xsLExNTTFz5kxMmDAB1atXFyktkbRcvnwZwcHB2LFjB1JSUiAIAlq0aAEPDw+MHj0aFhYWYkckkpSjR4/C3d0d2dnZ5dZw5jgR0dvHhhIREb11I0aMwO7du7FkyRKMGzcOALBx40Z8//33aNy4MdLS0jBr1izMmjWLrygQlUOhUCA0NBRbtmzB3r178fTpU8hkMnTr1g0eHh7Ke4uoKvvtt98wevRoFBUVwcbGBo0bN4aurm6ZtZw5TlS23Nxc7N27FzExMcjJyYGhoSHs7e0xaNAg1KpVS+x4JGFsKBG9BYWFhbhy5QoA4P3330e1atVETkQkLnNzc7Rs2RKhoaElzvfs2RPHjh3Djz/+iGnTpomUjkj7PH/+HH/++Se2bNmC0NBQKBQKzrYgAtC6dWukpqYiJCQEHTt2FDsOkdb5/fffMWHCBGRlZeHV1oAgCKhTpw42btyIIUOGiJiQpIwrPRKpIDExEQEBAbh582apawcPHoSZmRk6dOiADh06oHHjxti1a5cIKYmkIz09vcw1X4rPeXl5aToSkVYrLCxEfn4+8vPzUVRUBP4eSPRSYmIi3N3d2UwiegMnT56Eu7s7cnNz8cknn2D79u0IDw/Hjh07MH78eDx79gzu7u44deqU2FFJosqeD0pEJWzcuBHLli1DQkJCifO3b9/G8OHDkZeXB0tLS9SqVQtxcXEYPXo0mjVrhnbt2omUmEhchYWFZU6RLj5Xv359TUci0jpyuRyHDh3C1q1bcfDgQeTl5UEmk6FPnz7w8PAQOx6RJDRp0oQ7hBK9ocWLF6N69eqIioqCnZ1diWsjRozA559/jq5du2Lx4sU4cOCASClJyjhDiUgFJ06cgL29PSwtLUuc//nnn5GXl4dJkyYhMTERV69exe+//w65XI61a9eKlJaIiLTZ6dOnMXnyZDRu3BiDBg3C7t270aJFC/j5+eHevXs4fPgwRo0aJXZMIkkYP348Dhw4gMzMTLGjEGmdU6dOYcSIEaWaScXatm2L4cOH4+TJkxpORtqCM5SIVJCYmIiBAweWOh8SEgI9PT0sXrxYeW7QoEHo3r07IiMjNRmRSHK2bt2K06dPlzh3+/ZtAMCAAQNK1QuCgL/++ksj2YikqlmzZkhISIBCoYCZmRmmT58ODw8PtG7dukRdfn4+d0YkAjBs2DBERUXB0dERs2fPhp2dHQwNDcus5Q6JRCU9e/YMJiYmFdaYmJjg2bNnGkpE2oaLchOpQF9fH9OnT8fChQuV5zIzM9GgQQN0794dx48fL1E/ZcoUbNy4Ebm5uZqOSiQJMpn6E2AFQeBrC1TlGRgYYNiwYfDw8ECPHj0gCEKJ6xcuXIC/vz927tyJjIwMkVISSYdMJoMgCFAoFKXul1cJgsCF7In+pVWrVqhduzbOnTtXbo2DgwOePHmCuLg4DSYjbcEZSkQqqFatWqmBe3R0NACgQ4cOpeq5vSZVdYmJiWJHINJK6enpqFGjRolzWVlZ2Lp1K/z9/XH58mUoFIpSNURVlaenZ4WNJCIq3/Dhw7Fw4UJ4eXlhyZIlMDU1VV5LSUnBd999h+joaMyZM0fElCRlbCgRqaB58+YICwsrce7o0aMQBAFdu3YtVf/gwQM0btxYU/GIJOff640RkWpebRSFhobC398f+/btQ35+PhQKBbp06YKxY8dixIgRIqYkko6goCCxIxBprZkzZyIkJARbtmzBb7/9hvfeew8mJiZIS0vD7du38eLFCzg4OGDmzJliRyWJ4itvRCpYvHgxZs+ejQkTJuDzzz/HzZs3MW7cOAAvm0f/npHUvHlz2NjYICQkRIy4RESkpe7evYvAwEAEBgYiOTlZuZbS/fv34e3tjYCAALEjEhHROyQ/Px/Lli1DcHBwiR2tbWxs4OXlhRkzZnDNPioXG0pEKnj27Bm6dOmCK1euKKdVKxQKrFy5ElOmTClRe/78eTg4OODHH3/E119/LUJaIiLSJgUFBdi7dy/8/f0RFhYGuVyOWrVqYfDgwfD09ISrqyt0dXXxySef4NdffxU7LpFkRUVFISYmBjk5OTA0NIS9vT0cHR3FjkWkNZ48eaK8fwwMDMSOQ1qAr7wRqaBmzZqIiorCqlWrcPr0adSvXx8ff/wxPvzww1K1Fy5cwEcffQQ3NzcRkhIRkbYxNTVFZmYmBEFAjx494OnpiSFDhnA9PiIVnTx5EmPHjlXuJPrqAt3NmjVDYGAgunTpImZEIq1gYGDARhKphTOUiIiIiEQkk8kgk8kwdepUzJgxAw0bNiyzhjOUiEq7du0aOnXqhGfPnqF3797o0aMHGjdujNTUVISHh+Po0aOoXbs2Tp8+DVtbW7HjEonOxsZG7c8IgoD4+PhKSEPajg0lIiIiIhH5+Phg9+7dePbsGXR1ddG3b194eHjgo48+gp6eHgA2lIjKM2LECPz555/Yv38/+vXrV+p6SEgI3NzcMGTIEOzcuVOEhETSIpPJoKOjA11d9V5Wev78eSUlIm0mEzsAkTbIzc1Fs2bN4OjoiIKCgnLrXrx4gW7duqFly5b8o0tERCoJCAhASkoK/vvf/6J9+/Y4ePAg3N3dYWJigokTJ+LEiRNiRySSrGPHjmHYsGFlNpMAoF+/fhg2bBjCw8M1nIxI2lxcXBAcHIycnBw8f/78tf8RlYUNJSIVBAYGIiEhAUuWLEG1atXKrdPT08OSJUtw8+ZNBAYGajAhERFps9q1a+OTTz7BqVOncO3aNUyZMgV6enrYuHEjnJ2dIQgCbty4gTt37ogdlUhSsrOzYW1tXWGNtbU1srOzNZSISNpiY2Px1VdfISYmBu7u7jA1NcXUqVNx5coVsaORFuIrb0Qq6N27N1JSUnD16lWV6u3s7NCgQQOEhYVVcjIiInpXFRYWKnd/+/vvv1FUVASZTAZnZ2d4e3vDw8ND7IhEorOxsYG1tXWFY65evXohISGhxJboRFWdXC7HgQMHEBAQgJCQEMjlcrRr1w7jxo3DqFGjYGRkJHZE0gKcoUSkgkuXLsHJyUnlekdHR3b5iYjof6Krq4thw4bh8OHDSEpKwvz582FpaYnw8HB4e3uLHY9IEtzc3HDs2DHMmTMHeXl5Ja7l5eVh3rx5CA8Px0cffSRSQiJp0tHRwaBBg7B//37cvXsXixcvRm5uLiZNmgRTU1OMGTMGycnJYsckieMMJSIV6OnpYebMmVi4cKFK9bNnz8aPP/6I/Pz8Sk5GRERVTVhYGAICArBt2zaxoxCJLiMjA506dUJiYiLq168PBwcHmJiYIC0tDefOncPDhw9hY2ODs2fPol69emLHJZK8sLAweHt748GDB/jzzz/h5uYmdiSSMPWWdieqogwNDZGRkaFyfWZmJgwMDCoxERERVVU9e/ZEz549xY5BJAn169fH6dOnMWPGDOzcuROHDh1SXtPX18fYsWOxbNkyNpOIXuPcuXMICAjAzp07kZ2dDTMzM5ibm4sdiySOM5SIVNC1a1fk5OSovIbS+++/DyMjI0RFRVVyMiIiIiICgIKCAly/fh05OTkwNDREy5YtK9xMhaiqe/ToEbZs2YLAwEBcu3YNurq6+PDDDzFu3Dj07dsXMhlXyKGK8V8IkQoGDBiAuLg47Ny587W1u3btQmxsLP7zn/9oIBkRERFR1ZWcnIycnBwAQLVq1dCmTRs4OjqiTZs2ymbSkydPuBYM0f8pKirCwYMHMWTIEJiZmeHrr78GAKxYsQL379/Hnj170L9/fzaTSCWcoUSkgqysLDRt2hT5+flYu3ZtuYuhbt68GZMnT4a+vj5u3bqFOnXqaDQnERERUVWio6MDX19fzJkzp9yaH374AXPnzoVcLtdgMiJpMjU1RVpaGoyMjODu7g4fHx906NBB7FikpbiGEpEK6tSpg127dsHNzQ3jxo2Dr68vnJ2dle8V379/H8eOHcPdu3ehr6+PXbt2sZlEREREVMkUCgVe9/s4fz8n+v9SU1NRrVo12NnZISkpCXPnzn3tZwRBwF9//aWBdKRt2FAiUlHPnj1x8uRJfPnll4iMjMSWLVtK1Tg5OeHnn3+GnZ2dCAmJiIiI6N/u3bvHzVKIXlFQUIDjx4+rXC8IQiWmIW3GhhKRGuzs7HD8+HHEx8cjKioKqampAIBGjRrB0dERTZs2FTkhERER0bttwYIFJY6PHTtWZp1cLsfdu3exc+dOdO7cWQPJiKQvMTFR7Aj0DuEaSkREREREpDVeXSxYEITXvtJmamqKP//8Ex07dqzsaEREVQpnKBGpKCIiAtnZ2ejXr1+5W9C+ePECR44cQZ06ddC9e3cNJyQiIiJ694WHhwN4uTaSq6srvL294eXlVapOR0cH9erVQ8uWLVFQUKDpmERE7zzOUCJSQVxcHNq2bQsvLy9s2rSpwtoJEyYgKCgIV65cQYsWLTSUkIiIiKjqmT9/Pnr06AEnJ6cyr1+4cAH+/v7YuXMnMjIyNJyOiOjdxoYSkQqmTZuG9evXIykpCSYmJhXWpqWlwdraGp9++ilWrlypoYREREREBABZWVnYunUr/P39cfnyZSgUCtSoUQO5ubliRyMieqfwlTciFfzzzz9wcXF5bTMJAExMTODi4oKwsDANJCMiIiIiAAgNDYW/vz/27duH/Px8KBQKdOnSBWPHjsWIESPEjkdE9M5hQ4lIBQkJCejVq5fK9ba2toiMjKzERERERER09+5dBAYGIjAwEMnJyVAoFDAzM8P9+/fh7e2NgIAAsSMSEb2z2FAiUsGLFy+gp6encr2enh4KCwsrMRERERFR1VRQUIC9e/fC398fYWFhkMvlqFWrFkaPHg1PT0+4urpCV1cXurr8qkNEVJn4V5ZIBQ0bNkRCQoLK9YmJiWjQoEElJiIiIiKqmkxNTZGZmQlBENCjRw94enpiyJAhqFWrltjRiIiqFDaUiFTQsWNH/P3333j69Clq165dYe3Tp09x9OhRuLi4aCYcERERURWSkZEBmUyGqVOnYsaMGWjYsKHYkYiIqiSZ2AGItMGYMWPw+PFjTJ48+bW1X3zxBbKysjBmzBgNJCMiIiKqWry9vVGjRg2sXLkS5ubmcHNzw+7du/HixQuxoxERVSlsKBGpYMiQIejRowe2bNkCV1dX/PPPPyUGLQUFBQgLC0PPnj0RHBwMV1dXDB48WMTERERERO+mgIAApKSk4L///S/at2+PgwcPwt3dHSYmJpg4cSJOnDghdkQioipBUCgUCrFDEGmDx48fY9CgQYiMjIQgCNDV1VWuk5SRkYGCggIoFAp0794d+/btQ506dcQNTERERFQFxMXFYdOmTdi6dSsePnwIQRAAAN26dUNwcDAsLS1FTkhE9G5iQ4lIDXK5HMHBwfD398e5c+dQUFAAAKhWrRocHBwwbtw4eHh4QEdHR+SkRERERFVLYWGhcve3v//+G0VFRZDJZHB2doa3tzc8PDzEjkhE9E5hQ4noDcnlcmRkZAAA6tevzyYSERERkUTcu3cPgYGBCAoKQmJiIgRBgFwuFzsWEdE7hQ0loresoKBA+etYSEiI2HGIiIiIqrSwsDAEBARg27ZtYkchInqnsKFE9JZcvXoV/v7+2Lp1KzIzMwGAv4QRERERERHRO0lX7ABE2uzJkyfYvn07AgICcP78eQCAvr4+Ro4cibFjx4qcjoiIiIiIiKhysKFE9AYiIiLg7++P33//Hc+fP0fxRL9+/fph586dMDQ0FDkhERERERERUeVhQ4lIRampqQgKCkJAQADi4+OhUChgYWGBMWPGwMPDA61atYK5uTmbSURERERERPTOY0OJSAUffvghjhw5gsLCQhgYGCi3nnVxcRE7GhEREREREZHGsaFEpIK//voLMpkM06dPx4IFC1C9enWxIxERERERERGJRiZ2ACJtYGNjg6KiIvj5+aFTp05YuXIlUlNTxY5FREREREREJAo2lIhUcPv2bfzzzz8YOXIkbt68iW+++QZNmjRB//79sWPHDuTl5YkdkYiIiIiIiEhjBEXx9lREpJLs7Gxs27YN/v7+uHjxIgRBQO3atfH06VN8/PHH2Llzp9gRiYiIiIiIiCoVG0pE/4NLly5h48aN2L59O7KysiAIAqysrODt7Q1PT09YWlqKHZGIiIiIiIjorWNDiegtyM/Px++//w5/f38cO3YMCoUCOjo6KCgoEDsaERERERER0VvHhhLRW5aUlAR/f39s3rwZycnJYschIiIiIiIieuvYUCKqJAqFAoIgiB2DiIiIiIiI6K3TFTsAkTawsbFR+zOCICA+Pr4S0hARERERERGJizOUiFQgk8mgo6MDXV31erDPnz+vpERERERERERE4uEMJSI1uLi4wMfHB4MGDUK1atXEjkNEREREREQkCpnYAYi0QWxsLL766ivExMTA3d0dpqammDp1Kq5cuSJ2NCIiIiIiIiKN4ytvRGqQy+U4cOAAAgICEBISArlcjnbt2mHcuHEYNWoUjIyMxI5IREREREREVOnYUCJ6Q2lpaQgKCkJQUBBu3LiBGjVqYPDgwVi8eDEsLCzEjkdERERERERUadhQInoLwsLC4O3tjQcPHuDPP/+Em5ub2JGIiIiIiIiIKg0X5Sb6H5w7dw4BAQHYuXMnsrOzYWZmBnNzc7FjEREREREREVUqNpSI1PTo0SNs2bIFgYGBuHbtGnR1dfHhhx9i3Lhx6Nu3L2QyrnVPRERERERE7za+8kakgqKiIhw6dAgBAQH466+/UFBQgPfffx8+Pj4YM2YMGjRoIHZEIiIiIiIiIo1hQ4lIBaampkhLS4ORkRHc3d3h4+ODDh06iB2LiIiIiIiISBRsKBGpQCaToVq1aujatStq1Kih0mcEQcBff/1VycmIiIiIiIiINI8NJSIVvMm6SIIgQC6XV0IaIiIiIiIiInFxUW4iFSQmJoodgYiIiIiIiEgyOEOJiIiIiIiIiIjUwv3NiYiIiIiIiIhILWwoERERERERERGRWthQIiIiIiIiIiIitbChREREREREREREamFDiYiIiIiIiIiI1MKGEhERERERERERqYUNJSIiIiIiIiIiUgsbSkREREREREREpJb/B+M5AmPqYSbpAAAAAElFTkSuQmCC", + "image/png": "iVBORw0KGgoAAAANSUhEUgAABJQAAAMbCAYAAAAb68/GAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAA1K9JREFUeJzs3Xl4DXfj/vH7ZI8lhEjsQe211a52tZXaHlqKWloe2qq2WlVaa32ri6ruWrW1pbaiaFGCqn2niqp9jS2SEJKQzO8Pv8wjssgkkTlH36/rysU5M3POfZY5mXNn5jMOwzAMAQAAAAAAAGnkZncAAAAAAAAAuBYKJQAAAAAAAFhCoQQAAAAAAABLKJQAAAAAAABgCYUSAAAAAAAALKFQAgAAAAAAgCUUSgAAAAAAALCEQgkAAAAAAACWUCgBAAAAAADAEgolAAAsWLt2rRwOhxwOR6bfdsLtrl27NtNv+16uX7+u4cOHq1y5cvL19TWz7N69+77c3/18HpHYqFGj5HA41KhRI7ujII2mTZumOnXqyM/Pz1xPJk6caHcsAAASoVACABslfNFL7idbtmwqVaqUevbsqY0bN9odNZFRo0Zp1KhROn78eIZu587HW65cuXvOv23btkTL9OrVK0P3j//p3Lmzxo4dq4MHD8rhcCgoKEhBQUHy9PRM0/KNGjVK8b185w+lxoNl+vTpGjVqVLpK0DtLxfT8ZPTzx1l99NFHevbZZ7V582bduHFDgYGBCgoKUvbs2e2O9sBI6+dVcj/83gGA//GwOwAA4LagoCDz//Hx8QoLC9Phw4d1+PBhfffddxo5cqRGjRplX8A7jB49WtLtjfJixYplym0ePHhQmzZtUp06dVKcZ+rUqZlyX0js4MGDWrp0qSRpzpw5euqpp9J9W56ensqTJ0+K0xOmZcuWTWXKlEn3/SDtAgICVKZMGRUtWjTTb3v69On6/fffJclyWejl5ZXoc+9OYWFhunnzZqrvJ3d3d0v35yo+/PBDSdLAgQM1fvz4NJe6SLs8efIk+96LjY3VlStXJEn+/v7y8vJKMk+uXLnuez4AcBUUSgDgJEJDQxNdjouL0+bNm/Xyyy9rx44dGj16tJo3b65HH33UpoT3T7FixXT8+HHzMI/kREdHa/bs2XI4HCpatKhOnDiRxSkfXH/++ackKW/evBkqkyTp0UcfTdPeKjVr1tTBgwczdF9ImwEDBmjAgAF2x0ji0UcfTfK5l6BRo0b6/fff0/x+elBcvHhR58+flyT17duXMuk+WbBgQbLXr127Vo0bNzbnYY9KAEgdh7wBgJNyd3dX3bp1tWjRIvO6n3/+2b5A91GPHj3kcDg0Z84cXb9+Pdl5FixYoPDwcDVs2DDT9orCbQnPeY4cOWxOAvy73fn5x/oIAHB2FEoA4OQKFy6svHnzSpKuXbuW4nxXr17Ve++9pzp16ihPnjzy9vZWkSJF1KVLF23atCnF5a5cuaIRI0aoatWq8vPzk5eXl/Lnz69KlSqpf//+CgkJMeft1atXokGUGzdunGhsifQWPcWLF1fDhg0VGRmpn376Kdl5Eg536927d5puc9euXerRo4eCg4Pl4+Mjf39/Pfroo5o4caJiYmJSXfbgwYPq1q2b8ufPLx8fH5UoUUIvvfSSuefAvaT3tcio6OhoTZw4UY8++qj8/f3l4+Oj4OBg9ejRI9nBtRPG8EoYE+TEiRNZNlZIaoNyT58+PdH7aceOHXrqqadUoEABeXt7q0SJEho0aJB5aEpK1q1bpzZt2iggIEC+vr4qU6aM3nrrLV27di3JfSTn4sWLevvtt/XII48oV65c5nvhueee019//ZWmx7Vr1y5169ZNhQsXlqenZ6I9HooVKyaHw6Hp06fr6tWrGjp0qMqUKSNfX18FBASoffv22rJlS4r57hzE/cKFCxo0aJBKly6tbNmyJXpeUxuUO2GdTnit58+fr0aNGilPnjzKli2bqlSpok8++UTx8fGJlkt4/hIOdxs9enSWjXFk5TkODQ3VZ599pnbt2qlcuXLKlSuXfH19VbJkSfXp0yfF11FK/3Nzpzlz5ujxxx83xyPLnTu3SpUqpbZt2+qLL75QdHR0osd05/uxePHiqX62rl27Vk8++aQKFSokb29vBQQE6LHHHtO0adMUFxeXbJ673ws//fSTmjdvrsDAQLm5uZmHVd/92KdPn646deooV65c8vf3V9OmTbVu3Trzdm/duqXPPvtM1apVk5+fn3LlyqVWrVpp586dKT430u3Du2fOnKlWrVopKChIXl5eypcvn5o3b64ff/xRhmEku9yd6861a9c0YsQIVaxYUTlz5rwv773ly5fL4XDIw8NDZ8+eTXXe+vXrJ/n8vPs9u337dnXq1EkFChSQj4+PSpYsqcGDBys8PDzV246NjdWXX36pxo0bKyAgwPx93a5dOy1btiyjDxMArDMAALYZOXKkIclI7eP49OnT5jyffPJJsvPs2rXLKFy4sDmfu7u7kTNnTvOyw+Ew3n333STLnTp1yihatKg5n5ubm+Hv72+4u7ub1zVs2NCcf+DAgUZQUJA5zd/f3wgKCjJ/qlevbunxJ9zOtGnTjBkzZhiSjMaNGyeZ7/jx44bD4TBy5sxpREVFGQ0bNjQkGT179kz2didMmGA4HA7z9nPlymV4enqalytVqmScPXs22WWXLVtmeHt7m/PmyJHD8PHxMSQZBQoUMKZOnZrqa5be1+LO52PNmjVpev7udPr0aaNChQrmbXh6ehq5cuVK9Np++umniZb58MMPjaCgIMPPz8+c587Xc+DAgWm+/4TX5M73S2rWrFmT4vM4bdo0Q5IRHBxszJw503ztcuXKZbi5uZnLPfzww8bVq1eTvf1PP/00yXvAy8vLkGSUK1fO+Pjjj837SM7KlSuN3LlzJ3o+s2fPbl728vIyZsyYkerjmj9/vpndz8/P8PHxSfT8BAcHG5KMCRMmGGXKlDFvN+H1SHhNpkyZkmzGhHkmT55srpc+Pj7m+y1BwudMcq9Nz549zXXpxRdfNO/zzscuyejRo0ei5WbPnm0EBQWZjy979uyJ3jtBQUHGyZMnk82dFqm9n6w8xwmPT5Lh4eFh5MmTx/Dw8DCv8/b2NubPn59shvQ+Nwl69+6daL4cOXIY2bJlS3TdsWPHDMMwjA0bNhhBQUFGQECAOS0gICDFz9ZXX3010WdK7ty5E31uN2nSxIiMjEyS6c73wqBBg8zlEz73R44cmeSxJ/zfw8Mj0WeZh4eHsWTJEiM6Otpo3ry5+f69cz3Jli2bsX379mSfn8uXLxsNGjRI9Hzc+ZklyWjbtq0RExOTZNmEdWf8+PFG6dKlzftOeG0Snler7nxv3fk5HB8fbxQvXtyQZLzzzjspLn/gwAFz+Q0bNiR7u4sWLTI/i/z8/Mz/J3wepZT9+PHjxsMPP5zodb/7+erfv3+6HjcApBeFEgDYKLVC6datW8bGjRuNGjVqGJKMwMBA48qVK0nmO3v2rBEYGGhIMv7zn/8Y27dvN2JjYw3DMIzz588bw4cPN79ALVy4MNGyzz33nCHJKFasmLFq1Srj1q1b5n0fP37c+Oqrr4whQ4Ykuc+MFB/J3c60adOMqKgoI2fOnIbD4TCOHj2aaL5Ro0YZkow+ffoYhmGkWigtWbLEvN127dqZtxUTE2N899135heiRx991Hy8CU6dOmV+ma9UqZKxZcsWwzAMIy4uzli2bJlRuHDhRF8m75aR1+LO58Pq83rr1i2jVq1a5heyH374wfwSduTIEeOJJ54wv4D8+uuvSZa/s8BJr/tRKGXLls3w9vY2+vTpY5YTUVFRxueff26WCMOHD0+y/IYNG8ziqVmzZsbff/9tGIZh3Lx505g3b56RJ08ew9/fP8XHvHfvXsPX19eQZPTt29fYv3+/+V45ceKE8cILL5hfqLdt25bi48qRI4fRqlUr48CBA+b0Q4cOmf9P+FKcK1cuw9/f35g7d65x8+ZNwzAMY//+/eZz6uHhYezYsSNJzjvvp0yZMkZISIgRFxdnGIZhPmbDSFuh5O/vb3h5eRkTJkwwIiIiDMMwjEuXLhl9+vQx7yckJCTJ8gkZE4qIzJLWQulez/E777xjfPjhh8aff/5pPrdxcXHGvn37jG7dupll2JkzZ5LcT0aemz/++MMsoN5//33j8uXL5rRLly4ZK1asMHr27Jnkfo8dO5akbLrbZ599Zs7z3//+1zh37pxhGIZx7do14+OPPzY/Yzp37pxk2YT3Qo4cOQxJxpAhQ4wLFy4YhmEY0dHRxvHjxxM99ty5cxu+vr7G119/bVy/ft0wDMM4ePCgUa1aNfN3x4ABA4w8efIYc+fONWJjY434+Hhj+/btxkMPPWRIMurWrZskx61bt8zXuEqVKsaSJUuMqKgo83HMmDHD/Cx95ZVXkiyfsO7kyJHDyJ8/v7Fw4ULzs/bUqVPmbVmVUqFkGIbx3nvvmY85Pj4+2eUTSroKFSqkeLu5cuUyGjVqZOzfv98wjNufS3PmzDE/k2rUqJHkd9O1a9eMsmXLGpKMRo0aGWvXrjWio6MNwzCM8PBwY8KECeZrOnHixHQ9dgBIDwolALDRnYXSnX/Zz5cvn/nXZj8/P6Nbt27mhv7dnn32WUOS0bVr1xTvZ8KECYYko3LlyomuL1eunCHJmDVrlqXc96NQMgzD/II2YsQIc574+HijWLFiif7im1qhlPCY6tevn2Sj3DAMY/Hixeb9zps3L9G0559/3pBk5M2b1zh//nySZf/8889EezrdLSOvxZ3Ph9Xndfbs2eayK1asSDL95s2bZuF09xcdw8jcQsnT0zPJnioJP6VLlzbnT0uhlNJrbBj/++JWsmTJJNMee+wxQ5JRvnx580vXnVavXp1oj4C7NWnSxJBkDB06NMXHO3DgQLO0vNOdj6tmzZrJvgcTJHwplmSsWrUqyfTr168bpUqVMiQZrVq1SjI9YVk/Pz/j1KlTKd5PWgqlO9fDuyWUBwmF7p3sLpTu9RzfS+vWrQ0p+b1OMvLcvP/++4Yko3nz5pby3KtQun79upEnTx5DkvH0008nexuffvqpeRt37x105++cQYMGpZjjzsf+ww8/JJl++PBhc7ok448//kgyT0hIiDn97vfnd999Z0gyypYta4SHhyebYfv27YbD4TC8vLySfB4nrDvu7u7Gzp07U3wcVqVWKF24cMHcm2j58uVJlo2Ojjb3MLt7b9A7b7d06dJmOXenlStXmvPMnTs30bQxY8aY60NCcXa3BQsWGNLtPdsSylMAuN8YQwkAnMT58+fNn4sXL5pjYFy/fl0RERHJjt8THR2tWbNmSZKGDBmS4m336NFDkrRnz55Et5M7d25J0rlz5zLrYWTIs88+K0maMWOGOXbGmjVrdPz4cZUpU+aeZ7jbu3evDhw4IEl6++23kz2teJs2bVSzZk1J0o8//mhebxiG5syZI0nq37+/AgMDkyxboUIFderUKdn7zuhrkREJuevUqaPmzZsnme7h4aGRI0dKkvbt22ee1e1+uHnzZqL38t0/Vr399tvJXt+uXTtJ0uHDhxMNZBwWFqbVq1dLkgYPHixvb+8kyzZu3Fj169dP9naPHz+u1atXy8PDQ6+//nqKuRJex1WrVqU4Xs3gwYPTdGr7unXr6rHHHktyva+vrwYPHizp9hguERERyS7/zDPPqHDhwve8n9QUKVJEPXv2THZa27ZtJd1ev5xNWp/jlLRu3VqStH79+hTnSc9zk/DZeudneWZYuXKlwsLCJMkc7+huL7zwggoUKCBJ5mfS3dzc3FL9nEpQtGhRde3aNcn1Dz30kEqWLCnp9phB9erVSzJPw4YNzfXv7udnypQpkqTnn39euXLlSva+q1WrpocfflixsbFas2ZNsvO0bNlSjzzyyD0fR2bIly+fOnbsKEn65ptvkkxfuHChLl26JF9fXz3zzDMp3s7gwYPl6+ub5PqmTZuav+Nmz56daFrC8zVo0KAUz/zXvn17+fn56dKlS9qxY0faHhQAZBCFEgA4CeP2XqPmz40bN7Rr1y717NlTS5cuVYMGDRKd8U26PVhxwqCuzZs3V/78+ZP9efjhh81lTpw4Yf7/iSeekCS9+eab+u9//6vly5crMjLy/j/YFNSpU0dly5bViRMnzMHArQzGvX37dkm3C5SGDRumOF+zZs0SzS9Jx44dM7+oNWnSJMVlU5qW0dciIxIeR9OmTVOcp3HjxuYX7zsfd2Zr2LBhkvdyws+9Bpy9W548ecwvrXcrWLCg+f87B+fetWuXWUam9h5I6XTgGzZskHR7sODy5cun+Dq2bNlSkhQVFaXLly8ne1t169ZN+cHdIS3vt/j4+BQHOE7r/aSmRo0ayQ6QLv3vuU5YP5xJWh77nj179MILL6hSpUry8/OTm5ubOUDyCy+8IEk6ffp0isun57l57LHH5OPjo127dql+/fqaMmWKjh07ltaHlaKEdbdIkSIqXbp0svO4u7ub75uU1vWSJUsmW5rfrXr16ik+9qCgIEm3n5+UcgQEBEhKvI7GxcVp8+bNkm6XYimtY/nz59fff/8tKeXPysx471vRv39/SdKSJUuSFOSTJ0+WJD311FNmoZictKzvd75uZ86cMR//c889l+JzVaBAAfPEHZn1uwUA7sXD7gAAgOT5+PioSpUq+vbbbxUWFqaFCxeqV69eOnnypPz8/CQp0dlm0rr3x517cwwePFh79uzR3LlzNXnyZE2ePFkOh0MPP/ywWrZsqT59+qhMmTKZ+8DuoXfv3hoyZIimTZummjVrasGCBXJ3dzf3CEnNhQsXJEkBAQHJ7pmSIGFvjoT57/5/oUKF7rns3TL6WmREQvbUcvv4+CggIEDnz59P9FidWc6cOVOc5uHxv02Ymzdvmv+/ePGi+f87S6e7pfRcJbyO8fHxGX4d0/KFPbUsd09L6XVL6/2kJi3P9Z3Ps7O412P//PPP9fLLL5tnYnM4HMqVK5f5+XDjxg1FRkYqKioqxdtIz3Pz0EMP6dtvv1X//v21adMm8+yO+fLlU+PGjdW1a1e1bds2xbImJWlZ16XkP+PulNb3TFoeu9XnJywszDzT5r3O1Jggo+tYZmnQoIHKly+v/fv3a9q0aXrzzTcl3d5TMmEvqn79+qV6G2lZ3+983e783XLp0qU05cys3y0AcC/soQQALqBv376SpIiICP3666/m9XceSnHjxo0U9wy58+fOPTM8PT01Z84c7d69WyNGjFCTJk2ULVs27du3T+PHj9fDDz+sjz76KMsep3T78B13d3ctXLhQkyZN0o0bN9SyZUvzEA5nldHXApnP6pd16X+vY1BQUJpeQ8Mwkj2lu6QMHYplRVbdjzNK7bEfOHBAr7zyiuLj4/Xkk09q69atio6O1pUrVxQaGqrQ0FBNmDBBklI8PX1GdOvWTSdOnNCkSZPUuXNnFSlSRBcvXtTcuXPVvn17NWzY0LY9Qu18z9z5Wbls2bI0rWMpHd5nx+NI2Evp22+/Nd83Cf+vUKGC6tSpk6n3d+fzdeDAgTQ9X7169crUDACQEgolAHABwcHB5v/vPGwif/785v8zsot75cqVNXr0aIWEhCg8PFyrVq1SgwYNFBcXZ+7FlFUKFCigli1b6saNGxo+fLiktB3uJv3vr9WXLl0y/wKenITDW+786/ad/z9z5kyKy6Y0LbNei/RIyJ7aYTvR0dHmoVlZ/Vf9rJQvXz7z/3f+Zf9u93odL126lOpeK5kpre+3B/l1ux/mz5+vuLg4lStXTrNnz1aNGjXk5eWVaJ7Q0ND7miFPnjzq16+fZs+erZMnT+rw4cN688035XA49Mcff6RYlKQkLev6ndOd8T2TN29ec88lVzw0q0ePHsqWLZuOHDmi1atX6+bNm5o+fbqke++dJKVtfb/zdbPzdwsA3AuFEgC4gDu/PGTPnt38/51fkJYsWZIp9+Xh4aHHHntMv/zyi7y9vWUYhlatWpVonoQ9P+7HX/Wl/w3OHRsbq4CAAHPg23upXr26JOnWrVv6/fffU5wv4fHcOfZH8eLFlSdPHklKcQBYSeaAz3e7H69FWiU87oRxp5Kzdu1a3bp1S1LKY548CB555BHz/bl27doU50tpWsKYLHFxcVq2bFlmx0tWau+3hGlubm5ZNviwFW5utzcl79dnQUacOnVK0u3CPCHn3e7+bLvfHnroIY0bN84c6HrlypWWlk9Y10+fPq1Dhw4lO09cXJz5vnHGdd3T09M8MUJWf1Zmhly5cunpp5+WdHtw7oTxlHx9fdW9e/d7Lp+W9T3hdZakYsWKmYfCueLzBeDBRqEEAC7gzjP13LmhmT17dvOLyfvvv6+TJ0+mejt3Dxyb2l483t7e5uEEd38ZSxjDyeogy2nVpk0bDR48WK+99pomTpyY4llt7lapUiWVL19ekjR27Nhkz67066+/asuWLZJkfimQbpdkTz31lCRp0qRJyY5VsX//fs2fPz/Z+87oa5ERXbp0kSRt2rRJv/32W5Lpt27d0pgxYyTdPlNdhQoVMu2+nU2ePHnUuHFjSdJHH32k2NjYJPOsW7dOf/zxR7LLlypVyjwU8a233krxzGoJMuN1XL9+fbIFV3R0tHnIaYsWLVId6Ncu9/uzICMSzh72559/Jlt4LVu2LNXSMSNS+2yVZJ7lK6WiKyXNmjVT3rx5JaV8lrevv/7a3Dvvzs84Z/Lf//5X0u3P4zsP406OMw4Gn3DY26JFi/TBBx9Iuvdg3AnGjx9vnsDhTmvWrDFPCtC5c+dE0xIOe58yZYp27dqV6u074/MF4MFFoQQATiw0NFRvv/22ZsyYIUmqXbt2kvEZ3n33XRUsWFCXLl1SnTp19P333+vq1avm9IsXL+qnn35Shw4dkny5CA4O1tChQ7V58+ZEX4AOHz6sbt266fr163Jzc1OLFi0SLZdQSMycOfO+DP7p6empDz74QOPHj1e3bt0sLfv+++9Lkv744w916tTJPETw5s2bmjlzpvkcPProo2rfvn2iZYcOHaqcOXPq0qVLatasmXmmHcMw9Ntvv+nxxx9XtmzZUrzvjLwWGdGxY0fVqlVL0u0vNbNmzTIHwT127Jg6duxoDgqc8OXnQTZ69Gg5HA7t27dPbdu21T///CPpdrG2YMECdezYUf7+/iku/9lnnylHjhw6dOiQateurZ9//jnRF8AzZ87o+++/12OPPZamU6/fS65cudSxY0fNnz/f3Ivs4MGDat26tQ4ePCh3d3ezEHQ2CZ8Fv/76a6qH8tgh4Ux8f/31l1588UXzi3ZUVJS+/vprderUySxnMtuAAQP01FNP6aeffko0wPK1a9c0adIkfffdd5Kk1q1bW7pdX19fs0j68ccf1b9/f3Pw+OvXr+vTTz/VK6+8Iul2KVGtWrWMP5j7oHv37mratKkMw1CHDh00duzYRIeoRkVFac2aNXrxxRdVokQJG5Mmr3r16qpWrZpiY2PNP1Ck5XA3STp37pxat25tnsHu1q1bmj9/vjp16iRJqlq1qv7zn/8kWua1115TxYoVFR0drcaNG+vzzz9PdHbJ8PBwLVu2TD169FD9+vUz4yECQNoYAADbjBw50pBkSDKCgoIS/eTKlcucJsmoWLGicebMmWRvZ//+/Ubp0qXNed3c3Iw8efIY2bNnT3QbTZs2TbTcndPc3NwMf39/w8fHx7zO4XAYH3/8cZL7+/777815PD09jUKFChnBwcFG3bp1LT3+hNuYNm2apeUaNmxoSDJ69uyZ7PQJEyYYDofDvP3cuXMbXl5eaXouly5danh7e5vz5syZ0/D19TUkGQUKFDCmTp1qTktOel+LO5+PNWvWWHo+DMMwTp8+bTz88MPmbXh5eRm5c+dOlOOTTz5Jdtlp06YZkozg4GDL95sg4TVp2LBhmuZfs2ZNis9jWvIcO3bMXP7YsWNJpn/88ceJnu/cuXObr2uFChXM6WXKlEn29tevX2/kz5/fXN7d3d3Imzev+V5I+OnTp0+aH9fdgoODDUnGhAkTjDJlyhiSDG9v70TrvsPhML755ptkl0/r+yXhcya516Znz56prkuGkfrrcejQIfMzw83NzQgKCjKCg4ON4OBg49SpU6nmSk1q7ycrz3GXLl2SvA/c3d0NSUa1atWMzz77LMXHlpHnJmHZhJ8cOXIkWh8lGfXq1TOuXbuWaLl7va8TvPrqq4neI/7+/oaHh4d5XePGjY3IyMgky6X2XrD62BNeo5EjR6Y4T8J7PLnP+IiICOOJJ55I9Jz4+fkZuXPnTvT57eHhYel2M+LO99a91qtvv/3WnLdChQppvt1FixYZnp6ehiQjV65ciX7fFC1a1Dh69Giyt3HmzBmjdu3aiV733LlzG35+fomew5IlS6b34QOAZeyhBABO4vz584l+rl+/rvz586tFixaaPHmytm/fnuJp0MuVK6e9e/fq66+/VvPmzRUQEKDIyEgZhqGSJUvqySef1DfffKO5c+cmWu63337T0KFDVb9+fRUpUkQ3btyQJJUsWVK9e/fWtm3bzL9236l79+76/vvvVa9ePWXLlk3nzp3TiRMn7jlQbFZ59dVXtX37dnXv3l1FihTR9evX5evrq9q1a+vjjz/Wtm3bUnwuW7durZ07d6pLly4KDAxUbGysgoKCNGDAAO3atUvFixdP9b7T+1pkVKFChbR9+3ZNmDBBtWvXlq+vr65fv64iRYromWee0Y4dOzRw4MBMvU9n9sorr2jt2rVq1aqV/P39FR0drWLFiuntt9/W5s2bzUOgUjpEpW7dujp06JDGjx+vBg0aKHfu3AoPD5e7u7vKlSun7t27a+bMmZo4cWKGs/r7+2vr1q168803VbRoUcXExChPnjxq06aNNmzYYB7u4oxKlSqlNWvWqG3btsqXL58uX76sEydO6MSJE+beVnZKeI0qVaokb29vxcXFqWLFiho3bpw2bNigHDly3Jf7HT58uD799FN16NBBZcuWlYeHh65du6bAwEA1a9ZMU6dO1dq1axONiWfFhAkTtHr1anXs2FFBQUG6du2acubMqcaNG2vq1KlauXKlcubMmcmPKnP5+flpyZIl+vXXX9W5c2fzvX/9+nUVKlRIzZs317hx48w9eZxNp06dzPHa0rp3kiS1a9dOGzduVMeOHeXj4yPDMFS8eHG99tpr2r17d4q/YwoWLKj169frxx9/VNu2bVWgQAFdv35dsbGxKlasmNq0aaOJEydq3bp1mfL4ACAtHEbCFhUAAMC/RLdu3TRr1iw9++yzmjJlii0ZihUrphMnTmjatGmc5htwMT/99JM6deokX19fnT17NtXxk9auXWuO7cZXLwAPEvZQAgAA/yqHDh3SggULJP1vnB0AsOKzzz6TdHvgc2ccMB8AsgKFEgAAeOCMGDFCn3/+uU6ePKn4+HhJtwf6nTNnjho3bqzo6GiVLVs2ycDsAHAv33zzjX7//Xe5ublp0KBBdscBANt42B0AAAAgs+3du1c///yzXnrpJXl6eipnzpwKDw83y6VChQpp3rx58vT0tDkpAFewefNmdenSRREREQoPD5ckvfDCC3r44YftDQYANqJQAgAAD5xXX31VBQsW1MaNG3Xu3DmFhYUpZ86cKl26tJ544gkNGDBAefLksTsmABcRHR2tEydOyN3dXSVKlFDPnj01bNgwu2MBgK0YlBsAAAAAAACWMIYSAAAAAAAALOGQt3SIj4/X2bNnlTNnTjkcDrvjAAAAAAAAZArDMHT16lUVLFhQbm4p74dEoZQOZ8+eVZEiReyOAQAAAAAAcF+cOnVKhQsXTnE6hVI65MyZU9LtJ9fPz8/mNAAAAAAAAJkjMjJSRYoUMbuPlFAopUPCYW5+fn4USgAAAAAA4IFzryF+GJQbAAAAAAAAllAoAQAAAAAAwBIKJQAAAAAAAFhCoQQAAAAAAABLKJQAAAAAAABgCYUSAAAAAAAALKFQAgAAAAAAgCUUSgAAAAAAALCEQgkAAAAAAACWUCgBAAAAAADAEgolAAAAAAAAWEKhBAAAAAAAAEsolAAAAAAAAGAJhRIAAAAAAAAsoVACAAAAAACAJRRKAAAAAAD8S0VFRcnhcMjhcCgqKsruOHAhFEoAAAAAAACwhEIJAAAAAAAAllAoAQAAAAAAwBIKJQAAAAAAAFhCoQQAAAAAAABLKJQAAAAAAABgCYUSAAAAAAAALKFQAgAAAAAAgCUUSgAAAAAAALCEQgkAAAAAAACWUCgBAAAAAADAEgolAAAAAAAAWEKhBAAAAAAAAEsolAAAAAAAAGAJhRIAAAAAAAAsoVACAAAAAACAJRRKAAAAAAAAsIRCCQAAAAAAAJZQKAEAAAAAAMASCiUAAAAAAABYQqEEAAAAAAAASyiUAAAAAAAAYAmFEgAAAAAAACyhUAIAAAAAAIAlFEoAAAAAAACwhEIJAAAAAAAAllAoAQAAAAAAwBIKJQAAAAAAAFhCoQQAAAAAAABLKJQAAAAAAABgCYUSAAAAAAAALKFQAgAAAAAAgCUUSgAAAAAAALCEQgkAAAAAAACWUCgBAAAAAADAEgolAAAAAAAAWEKhBAAAAAAAAEsolAAAAAAAAGAJhRIAAAAAAAAsoVACAAAAAACAJRRKAAAAAAAAsIRCCQAAAAAAAJZQKAEAAAAAAMCSB6JQ+uKLL1SsWDH5+PioVq1a2rp1a6rzh4eH68UXX1SBAgXk7e2t0qVL69dff82itAAAAAAAAK7Nw+4AGTVnzhwNGjRIkyZNUq1atTRx4kS1aNFCf//9twIDA5PMHxsbq2bNmikwMFDz589XoUKFdOLECeXOnTvrwwMAAAAAALggh2EYht0hMqJWrVqqUaOGPv/8c0lSfHy8ihQpopdeeklvvvlmkvknTZqkDz/8UAcPHpSnp2e67jMyMlK5cuVSRESE/Pz8MpQfAAAAAAC7REVFKUeOHJKka9euKXv27DYngt3S2nm49B5KsbGx2rFjh4YOHWpe5+bmpqZNm2rTpk3JLrN48WLVqVNHL774on7++Wfly5dPXbt21ZAhQ+Tu7p7sMjExMYqJiTEvR0ZGZu4DAQAAAACkS7E3f7E7gkuLj402/19u+HK5efnYmMb1HX+vtd0RsoxLj6F06dIlxcXFKSgoKNH1QUFBCg0NTXaZo0ePav78+YqLi9Ovv/6q4cOH66OPPtLYsWNTvJ9x48YpV65c5k+RIkUy9XEAAAAAAAC4EpculNIjPj5egYGB+uabb1StWjV17txZb731liZNmpTiMkOHDlVERIT5c+rUqSxMDAAAAAAA4Fxc+pC3gIAAubu76/z584muP3/+vPLnz5/sMgUKFJCnp2eiw9vKlSun0NBQxcbGysvLK8ky3t7e8vb2ztzwAAAAAAAALsql91Dy8vJStWrVFBISYl4XHx+vkJAQ1alTJ9ll6tatq8OHDys+Pt687tChQypQoECyZRIAAAAAAAASc+lCSZIGDRqkyZMna8aMGTpw4ICef/55RUVFqXfv3pKkHj16JBq0+/nnn1dYWJhefvllHTp0SL/88oveffddvfjii3Y9BAAAAAAAAJfi0oe8SVLnzp118eJFjRgxQqGhoapSpYqWL19uDtR98uRJubn9rzcrUqSIVqxYoVdffVWVKlVSoUKF9PLLL2vIkCF2PQQAAAAAAACX4vKFkiQNGDBAAwYMSHba2rVrk1xXp04dbd68+T6nAgAAAAAAeDC5/CFvAAAAAAAAyFoUSgAAAAAAALCEQgkAAAAAAACWUCgBAAAAAADAEgolAAAAAAAAWEKhBAAAAAAAAEsolAAAAAAAAGAJhRIAAAAAAAAsoVACAAAAAACAJRRKAAAAAAAAsIRCCQAAAAAAAJZQKAEAAAAAAMASCiUAAAAAAABYQqEEAAAAAAAASyiUAAAAAAAAYAmFEgAAAAAAACyhUAIAAAAAAIAlFEoAAAAAAACwhEIJAAAAAAAAllAoAQAAAAAAwBIKJQAAAAAAAFhCoQQAAAAAAABLKJQAAAAAAABgCYUSAAAAAAAALKFQAgAAAAAAgCUUSgAAAAAAALCEQgkAAAAAAACWUCgBAAAAAADAEgolAAAAAAAAWEKhBAAAAAAAAEsolAAAAAAAAGAJhRIAAAAAAAAsoVACAAAAAACAJRRKAAAAAAAAsIRCCQAAAAAAAJZQKAEAAAAAAMASCiUAAAAAAABYQqEEAAAAAAAASyiUAAAAAAAAYImH3QEAAAAAAIA93Lx8FDxkqd0x4ILYQwkAAAAAAACWUCgBAAAAAADAEgolAAAAAAAAWEKhBAAAAAAAAEsolAAAAAAAAGAJhRIAAAAAAAAsoVACAAAAAACAJRRKAAAAAAAAsIRCCQAAAAAAAJZQKAEAAAAAAMASCiUAAAAAAABYQqEEAAAAAAAASyiUAAAAAAAAYAmFEgAAAIAHRlRUlBwOhxwOh6KiouyOAwAPLAolAAAAAAAAWEKhBAAAAAAAAEsolAAAAAAAAGAJhRIAAAAAAAAseSAKpS+++ELFihWTj4+PatWqpa1bt6ZpudmzZ8vhcKh9+/b3NyAAAAAAAMADxOULpTlz5mjQoEEaOXKkdu7cqcqVK6tFixa6cOFCqssdP35cr7/+uurXr59FSQEAAAAAAB4MLl8oTZgwQX379lXv3r1Vvnx5TZo0SdmyZdPUqVNTXCYuLk7dunXT6NGjVaJEiSxMCwAAAAAA4PpculCKjY3Vjh071LRpU/M6Nzc3NW3aVJs2bUpxuTFjxigwMFDPPfdcmu4nJiZGkZGRiX4AAAAAAAD+rVy6ULp06ZLi4uIUFBSU6PqgoCCFhoYmu8z69es1ZcoUTZ48Oc33M27cOOXKlcv8KVKkSIZyAwAAAAAAuDKXLpSsunr1qp555hlNnjxZAQEBaV5u6NChioiIMH9OnTp1H1MCAAAAAAA4Nw+7A2REQECA3N3ddf78+UTXnz9/Xvnz508y/5EjR3T8+HG1adPGvC4+Pl6S5OHhob///lsPPfRQkuW8vb3l7e2dyekBAABSFxUVpRw5ckiSrl27puzZs9ucCAAA4LYM7aG0cOFCPfXUU6pUqZJKlixpXn/w4EF98MEHOnPmTIYDpsbLy0vVqlVTSEiIeV18fLxCQkJUp06dJPOXLVtWf/75p3bv3m3+tG3bVo0bN9bu3bs5lA0AAAAAACAN0rWHUnx8vJ5++mnNnz9fkuTr66sbN26Y0/39/fXWW28pLi5OQ4cOzZykKRg0aJB69uyp6tWrq2bNmpo4caKioqLUu3dvSVKPHj1UqFAhjRs3Tj4+PqpQoUKi5XPnzi1JSa4HAAAAAABA8tK1h9LHH3+sefPmqV+/frpy5Ypef/31RNODgoJUv359/fLLL5kSMjWdO3fW+PHjNWLECFWpUkW7d+/W8uXLzYG6T548qXPnzt33HACAe4uKipLD4ZDD4VBUVJTdcQAAAACkU7r2UJo+fbpq1KihL7/8UpLkcDiSzFOyZMksKZQkacCAARowYECy09auXZvqstOnT8/8QAAAAAAAAA+wdO2hdPjwYdWvXz/VefLmzavLly+nKxQAAAAAAACcV7oKJV9fX0VERKQ6z4kTJ8zxiQAAAAAAAPDgSFeh9Mgjj2jFihWKjo5OdnpYWJiWL1+u2rVrZygcAAAAAAAAnE+6CqWBAwfq9OnT6tixo06fPp1o2pEjR9ShQwdFRERo4MCBmRISAAAAAAAAziNdg3K3a9dOQ4YM0fvvv6/g4GBlz55dkhQYGKjLly/LMAwNHz5cTZo0ydSwAAAAAAAAsF+69lCSpHHjxmnFihV64oknlC1bNrm7uys+Pl4tW7bUsmXLNHr06MzMCQAAAAAAACeRrj2UTp48KS8vLzVr1kzNmjXL7EwAAAAAAABwYunaQ6l48eIaNmxYZmcBAAAAAACAC0hXoeTv76+8efNmdhYAAAAAAAC4gHQVSvXr19eWLVsyOwsAAAAAAABcQLoKpXHjxmnv3r0aM2aMbt26ldmZAAAAAAAA4MTSNSj3Bx98oIoVK2r06NH6+uuvVblyZQUFBcnhcCSaz+FwaMqUKZkSFAAAAAAAAM4hXYXS9OnTzf+fO3dO586dS3Y+CiUAAAAAAIAHT7oKpWPHjmV2DgAAAAAAALiIdBVKwcHBmZ0DAAAAAAAALiJdg3IDAAAAAADg3ytDhdLMmTPVrFkz5cuXT97e3sqXL5+aN2+uWbNmZVY+AAAAAAAAOJl0HfIWFxenp556SosWLZJhGPLx8VHBggV1/vx5rVq1SiEhIfrpp580b948ubmxExQAAAAAAMCDJF1tz6effqqFCxeqbt262rBhg65fv65jx47p+vXr2rhxo+rVq6dFixbps88+y+y8AAAAAAAAsFm6CqUZM2aodOnSCgkJUZ06dRJNq127tlatWqXSpUtr2rRpmRISAAAAAAAAziNdhdKhQ4fUtm1beXp6Jjvd09NTbdq00aFDhzIUDgAAAAAAAM4nXWMoeXl5KSoqKtV5oqKi5OXlla5QAAAAwL9VsTd/sTuCS4uPjTb/X274crl5+diYxvUdf6+13REAOKl07aH0yCOPaO7cuTp79myy08+dO6e5c+eqatWqGQoHAAAAAAAA55OuQmnQoEG6fPmyqlevro8++kjbt2/XqVOntH37do0fP17VqlVTWFiYBg0alNl5AQAAAAAAYLN0HfLWpk0bjR8/Xm+++abeeOONRNMMw5CHh4fGjx+vJ554IlNCAgAAAAAAwHmkq1CSbu+l1L59e82cOVO7d+9WZGSk/Pz89Mgjj6hr164qUaJEZuYEAAAAAACAk0h3oSRJJUqU0PDhwzMrCwAAAAAAAFxAusZQAgAAAAAAwL9Xugqljz76SAEBASme5e3s2bPKly+fPv300wyFAwAAAAAAgPNJV6E0b948Va5cWQULFkx2esGCBVWlShXNnj07Q+EAAAAAAADgfNJVKP3zzz96+OGHU53n4Ycf1j///JOuUAAAAAAAAHBe6SqUbty4oezZs6c6j4+Pj65du5auUAAAAAAAAHBe6SqUihYtqo0bN6Y6z6ZNm1S4cOF0hQIAAAAAAIDzSleh1Lp1a61fv15Tp05Ndvq3336r9evXq02bNhkKBwAAAAAAAOfjkZ6F3nzzTf3444/q27evfvjhBzVr1kyFChXSmTNn9Ntvv2ndunUqWLCghg4dmtl5AQAAAAAAYLN0FUr58uXTmjVr1L17d61du1Zr166Vw+GQYRiSpBo1amjmzJnKly9fpoYFAACupdibv9gdwaXFx0ab/y83fLncvHxsTOP6jr/X2u4IAAA8MNJVKElSmTJltG3bNm3btk1bt25VRESEcufOrZo1a6p69eqZmREAAAAAAABOJN2FUoIaNWqoRo0amZEFAAAAAAAALiDDhdKdjh8/rpUrV8rHx0cdOnRQjhw5MvPmAQAAAAAA4ATSdZa3d999V8WLF9eVK1fM69auXasKFSqof//+6tWrl6pWraqwsLBMCwoAAAAAAADnkK5CadGiRSpWrJj8/f3N64YMGaL4+HiNHj1azz//vA4fPqyJEydmVk4AAAAAAAA4iXQd8nb8+HE9+eST5uWzZ89q27Zteu211/T2229Lkv7++28tXLhQY8aMyZykAOAEOGNVxnDGqszFGasAAABgl3TtoRQZGancuXObl9etWyeHw6E2bdqY11WtWlUnT57McEAAAAAAAAA4l3QVSkFBQTpx4oR5eeXKlfL29latWrXM66Kjo+VwODKeEAAAAAAAAE4lXYe81ahRQz///LOWLl0qHx8fzZkzR40bN5a3t7c5z7Fjx1SwYMFMCwoAAAAAAADnkK49lIYNG6Zbt26pXbt2atGihaKjozVs2DBzekxMjNatW5dojyUAAAAAAAA8GNK1h1LVqlW1efNmff/995Kkp556SjVr1jSn79q1S40bN1bXrl0zJyUAAAAAAACcRroKJUmqXLmyKleunOy02rVra+HChekOBQAAAAAAAOeVrkPeAAAAAAAA8O9FoQQAAAAAAABLKJQAAAAAAABgCYUSAAAAAAAALKFQAgAAAAAAgCUUSgAAAAAAALCEQgkAAAAAAACWeGRk4dDQUO3YsUPh4eGKi4tLdp4ePXpk5C4AAAAAAADgZNJVKEVHR6tv376aPXu24uPjk53HMAw5HA4KJQAAAAAAgAdMugqlN998UzNnzlTp0qX19NNPq3DhwvLwyNDOThnyxRdf6MMPP1RoaKgqV66szz77TDVr1kx23smTJ+u7777Tvn37JEnVqlXTu+++m+L8AAAAAAAASCxdLdDcuXNVvnx57dixQ97e3pmdyZI5c+Zo0KBBmjRpkmrVqqWJEyeqRYsW+vvvvxUYGJhk/rVr1+rpp5/Wo48+Kh8fH73//vtq3ry5/vrrLxUqVMiGRwAAAAAgs7h5+Sh4yFK7YwDAAy9dg3KHh4erZcuWtpdJkjRhwgT17dtXvXv3Vvny5TVp0iRly5ZNU6dOTXb+mTNn6oUXXlCVKlVUtmxZffvtt4qPj1dISEgWJwcAAAAAAHBN6SqUypQpo/Pnz2d2FstiY2O1Y8cONW3a1LzOzc1NTZs21aZNm9J0G9evX9fNmzeVJ0+e+xUTAAAAAADggZKuQmnw4MH6+eefdfjw4czOY8mlS5cUFxenoKCgRNcHBQUpNDQ0TbcxZMgQFSxYMFEpdbeYmBhFRkYm+gEAAAAAAPi3StcYSoULF1aLFi1Us2ZNvfLKK6patar8/PySnbdBgwYZCng/vffee5o9e7bWrl0rHx+fFOcbN26cRo8enYXJAAAAAAAAnFe6CqVGjRrJ4XDIMAyNGjVKDocjxXnj4uLSHe5eAgIC5O7unuTwu/Pnzyt//vypLjt+/Hi99957WrVqlSpVqpTqvEOHDtWgQYPMy5GRkSpSpEj6gwMAAAAAALiwdBVKI0aMSLVEyipeXl6qVq2aQkJC1L59e0kyB9geMGBAist98MEH+r//+z+tWLFC1atXv+f9eHt7O8UA5AAAAAAAAM4gXYXSqFGjMjlG+g0aNEg9e/ZU9erVVbNmTU2cOFFRUVHq3bu3JKlHjx4qVKiQxo0bJ0l6//33NWLECM2aNUvFihUzx1rKkSOHcuTIYdvjAAAAAAAAcBXpKpScSefOnXXx4kWNGDFCoaGhqlKlipYvX24O1H3y5Em5uf1v7PGvvvpKsbGx6tSpU6LbGTlypFMVZQAAAAAAAM7K5QslSRowYECKh7itXbs20eXjx4/f/0AAAAAAAAAPMLd7z5K8U6dOqV+/fnrooYfk6+srd3f3JD8eHg9EXwUAAAAAAIA7pKvxOXr0qGrVqqUrV67o4YcfVkxMjIKDg+Xj46OjR4/q5s2bqly5snLnzp3JcQEAAAAAAGC3dO2hNHr0aEVERCgkJER79uyRJPXu3VsHDhzQ8ePH1bZtW0VFRWn+/PmZGhYAAAAAAAD2S1ehtGrVKrVq1UoNGzY0rzMMQ5JUoEABzZkzR5I0bNiwTIgIAAAAAAAAZ5KuQunSpUsqW7asednDw0PXr183L3t7e6tZs2ZaunRpxhMCAAAAAADAqaSrUAoICFBUVFSiy3efPc3Dw0Ph4eEZyQYAAAAAAAAnlK5BuUuVKqUjR46Yl2vWrKkVK1bo6NGjKlGihC5evKj58+froYceyrSgAAAA/zZuXj4KHsIe3wAAwPmkaw+lxx9/XGvWrDH3QHrllVd09epVVapUSTVq1FDp0qUVGhqql156KTOzAgAAAAAAwAmkq1B6/vnntXbtWrm7u0uSGjVqpNmzZys4OFj79u1TUFCQPv30U/Xt2zdTwwIAAAAAAMB+6Trkzc/PT7Vq1Up03ZNPPqknn3wyU0IBAAAAAADAeaVrDyUAAAAAAAD8e2WoUFq4cKGeeuopVapUSSVLljSvP3jwoD744AOdOXMmwwEBAAAAAADgXNJ1yFt8fLyefvppzZ8/X5Lk6+urGzdumNP9/f311ltvKS4uTkOHDs2cpICTiYqKUo4cOSRJ165dU/bs2W1OBAAAAABA1kjXHkoff/yx5s2bp379+unKlSt6/fXXE00PCgpS/fr19csvv2RKSAAAAAAAADiPdBVK06dPV40aNfTll1/Kz89PDocjyTwlS5bUsWPHMhwQAAAAAAAAziVdhdLhw4dVv379VOfJmzevLl++nK5QAAAAAAAAcF7pGkPJ19dXERERqc5z4sQJ5c6dOz03DwB4QLl5+Sh4yFK7YwAAAADIoHTtofTII49oxYoVio6OTnZ6WFiYli9frtq1a2coHAAAAAAAAJxPugqlgQMH6vTp0+rYsaNOnz6daNqRI0fUoUMHRUREaODAgZkSEgAAAAAAAM4jXYe8tWvXTkOGDNH777+v4OBg83TpgYGBunz5sgzD0PDhw9WkSZNMDQsAAAAAAAD7pWsPJUkaN26cVqxYoSeeeELZsmWTu7u74uPj1bJlSy1btkyjR4/OzJwAAAAAAABwEunaQylBs2bN1KxZs8zKAgAAAAAAABeQ7j2UAAAAAAAA8O+UoT2U4uLidPr0aZ09e1Y3b95Mdp4GDRpk5C4AAAAAAADgZNJVKMXHx+vdd9/VJ598orCwsFTnjYuLS1cwAAAAAAAAOKd0FUpDhw7Vhx9+qMDAQPXu3VsFChSQh0eGdnYCAAAAAACAi0hXCzRjxgyVKVNG27ZtU44cOTI7EwAAAAAAAJxYugblvnbtmlq3bk2ZBAAAAAAA8C+UrkKpUqVKOnv2bGZnAQAAAAAAgAtIV6H01ltvadGiRdq5c2dm5wEAAAAAAICTS9cYSq1bt9b06dP1+OOPq23btqpcubL8/PySnbdHjx4ZCggAAAAAAADnkq5CKSYmRkuWLNGlS5c0ZcoUSZLD4Ug0j2EYcjgcFEoAAAAAAAAPmHQVSoMGDdLMmTNVqVIlderUSQUKFJCHR7puCgAAAAAAAC4mXS3QvHnzVK1aNW3atIkiCQAAAAAA4F8mXYNyR0dHq3HjxpRJAAAAAAAA/0LpKpSqVaumw4cPZ3YWAAAAAAAAuIB0FUrvvvuuli9frqVLl2Z2HgAAAAAAADi5dB2ztnLlSjVq1Ejt2rVTkyZNVLlyZfn5+SWZz+FwaPjw4RkOCQAAAAAAAOeRrkJp1KhR5v9DQkIUEhKS7HwUSgAAAAAAAA+edBVKa9asyewcAAAAAAAAcBHpKpQaNmyY2TkAAAAAAADgItI1KDcAAAAAAAD+vSiUAAAAAAAAYAmFEgAAAAAAACyhUAIAAAAAAIAlFEoAAAAAAACwhEIJAAAAAAAAllAoAQAAAAAAwBIKJQAAAAAAAFhCoQQAAAAAAABLKJQAAAAAAABgCYUSAAAAAAAALKFQAgAAAAAAgCUUSgAAAAAAALCEQgkAAAAAAACWUCgBAAAAAADAEgolAAAAAAAAWEKhBAAAAAAAAEseiELpiy++ULFixeTj46NatWpp69atqc4/b948lS1bVj4+PqpYsaJ+/fXXLEoKAAAAAADg+ly+UJozZ44GDRqkkSNHaufOnapcubJatGihCxcuJDv/xo0b9fTTT+u5557Trl271L59e7Vv31779u3L4uQAAAAAAACuyeULpQkTJqhv377q3bu3ypcvr0mTJilbtmyaOnVqsvN/8sknatmypQYPHqxy5crpnXfeUdWqVfX5559ncXIAAAAAAADX5NKFUmxsrHbs2KGmTZua17m5ualp06batGlTssts2rQp0fyS1KJFixTnBwAAAAAAQGIedgfIiEuXLikuLk5BQUGJrg8KCtLBgweTXSY0NDTZ+UNDQ1O8n5iYGMXExJiXIyMjM5AaAAAAAADAtbl0oZRVxo0bp9GjR9sdI9MVe/MXuyO4tPjYaPP/5YYvl5uXj41pXN/x91rbHSFNXCUn4CxYZwDrWG8Aa1hnAHu49CFvAQEBcnd31/nz5xNdf/78eeXPnz/ZZfLnz29pfkkaOnSoIiIizJ9Tp05lPDwAAAAAAICLculCycvLS9WqVVNISIh5XXx8vEJCQlSnTp1kl6lTp06i+SVp5cqVKc4vSd7e3vLz80v0AwAAAAAA8G/l8oe8DRo0SD179lT16tVVs2ZNTZw4UVFRUerdu7ckqUePHipUqJDGjRsnSXr55ZfVsGFDffTRR2rdurVmz56t7du365tvvrHzYQAAAAAAALgMly+UOnfurIsXL2rEiBEKDQ1VlSpVtHz5cnPg7ZMnT8rN7X87Yj366KOaNWuW3n77bQ0bNkylSpXSokWLVKFCBbseAgAAAAAAgEtxGIZh2B3C1URGRipXrlyKiIhw6cPfGJQ7Y+Jjo3Xq406SpCKvzmdQ7gxiMEUAAAAAsF9aOw+XHkMJAAAAAAAAWY9CCQAAAAAAAJZQKAEAAAAAAMASCiUAAAAAAABYQqEEAAAAAAAASyiUAAAAAAAAYAmFEgAAAAAAACyhUAIAAAAAAIAlFEoAAAAAAACwhEIJAAAAAAAAllAoAQAAAAAAwBIKJQAAAAAAAFhCoQQAAAAAAABLKJQAAAAAAABgCYUSAAAAAAAALKFQAgAAAAAAgCUOwzAMu0O4msjISOXKlUsRERHy8/OzOw5sEhUVpRw5ckiSrl27puzZs9ucCAAAAACAjElr58EeSgAAAAAAALCEQgkAAAAAAACWUCgBAAAAAADAEgolAAAAAAAAWEKhBAAAAAAAAEsolAAAAAAAAGAJhRIAAAAAAAAsoVACAAAAAACAJRRKAAAAAAAAsIRCCQAAAAAAAJZQKAEAAAAAAMASCiUAAAAAAABYQqEEAAAAAAAASyiUAAAAAAAAYAmFEgAAAAAAACyhUAIAAAAAAIAlFEoAAAAAAACwhEIJAAAAAAAAllAoAQAAAAAAwBIKJQAAAAAAAFhCoQQAAAAAAABLKJQAAAAAAABgCYUSAAAAAAAALKFQAgAAAAAAgCUUSgAAAAAAALCEQgkAAAAAAACWUCgBAAAAAADAEgolAAAAAAAAWEKhBAAAAAAAAEsolAAAAAAAAGAJhRIAAAAAAAAsoVACAAAAAACAJRRKAAAAAAAAsIRCCQAAAAAAAJZQKAEAAAAAAMASCiUAAAAAAABYQqEEAAAAAAAASyiUAAAAAAAAYAmFEgAAAAAAACyhUAIAAAAAAIAlFEoAAAAAAACwxKULpbCwMHXr1k1+fn7KnTu3nnvuOV27di3V+V966SWVKVNGvr6+Klq0qAYOHKiIiIgsTA0AAAAAAODaXLpQ6tatm/766y+tXLlSS5cu1bp16/Tf//43xfnPnj2rs2fPavz48dq3b5+mT5+u5cuX67nnnsvC1AAAAAAAAK7NYRiGYXeI9Dhw4IDKly+vbdu2qXr16pKk5cuXq1WrVjp9+rQKFiyYptuZN2+eunfvrqioKHl4eKRpmcjISOXKlUsRERHy8/NL92OAa4uKilKOHDkkSdeuXVP27NltTgQAAAAAQMaktfNw2T2UNm3apNy5c5tlkiQ1bdpUbm5u2rJlS5pvJ+EJSmuZBAAAAAAA8G/nsi1KaGioAgMDE13n4eGhPHnyKDQ0NE23cenSJb3zzjupHiYnSTExMYqJiTEvR0ZGWg8MAAAAAADwgHC6PZTefPNNORyOVH8OHjyY4fuJjIxU69atVb58eY0aNSrVeceNG6dcuXKZP0WKFMnw/QMAAAAAALgqp9tD6bXXXlOvXr1SnadEiRLKnz+/Lly4kOj6W7duKSwsTPnz5091+atXr6ply5bKmTOnFi5cKE9Pz1TnHzp0qAYNGmRejoyMpFQCAAAAAAD/Wk5XKOXLl0/58uW753x16tRReHi4duzYoWrVqkmSVq9erfj4eNWqVSvF5SIjI9WiRQt5e3tr8eLF8vHxued9eXt7y9vbO+0PAgAAAAAA4AHmdIe8pVW5cuXUsmVL9e3bV1u3btWGDRs0YMAAdenSxTzD25kzZ1S2bFlt3bpV0u0yqXnz5oqKitKUKVMUGRmp0NBQhYaGKi4uzs6HAwAAAAAA4DKcbg8lK2bOnKkBAwbosccek5ubmzp27KhPP/3UnH7z5k39/fffun79uiRp586d5hngSpYsmei2jh07pmLFimVZdgAAAAAAAFflMAzDsDuEq4mMjFSuXLkUEREhPz8/u+PAJlFRUcqRI4ck6dq1a8qePbvNiQAAAAAAyJi0dh4ue8gbAAAAAAAA7EGhBAAAAAAAAEsolAAAAAAAAGAJhRIAAAAAAAAsoVACAAAAAACAJRRKAAAAAAAAsIRCCQAAAAAAAJZQKAEAAAAAAMASCiUAAAAAAABYQqEEAAAAAAAASyiUAAAAAAAAYAmFEgAAAAAAACyhUAIAAAAAAIAlFEoAAAAAAACwhEIJAAAAAAAAllAoAQAAAAAAwBIKJQAAAAAAAFhCoQQAAAAAAABLKJQAAAAAAABgCYUSAAAAAAAALPGwOwDgqrJnzy7DMOyOAQAAAABAlmMPJQAAAAAAAFhCoQQAAAAAAABLKJQAAAAAAABgCYUSAAAAAAAALKFQAgAAAAAAgCUUSgAAAAAAALCEQgkAAAAAAACWUCgBAAAAAADAEgolAAAAAAAAWEKhBAAAAAAAAEsolAAAAAAAAGAJhRIAAAAAAAAsoVACAAAAAACAJRRKAAAAAAAAsIRCCQAAAAAAAJZ42B3AFRmGIUmKjIy0OQkAAAAAAEDmSeg6ErqPlFAopcPVq1clSUWKFLE5CQAAAAAAQOa7evWqcuXKleJ0h3GvyglJxMfH6+zZs8qZM6ccDofdcWCjyMhIFSlSRKdOnZKfn5/dcQCXwHoDWMM6A1jHegNYwzqDOxmGoatXr6pgwYJyc0t5pCT2UEoHNzc3FS5c2O4YcCJ+fn588AIWsd4A1rDOANax3gDWsM4gQWp7JiVgUG4AAAAAAABYQqEEAAAAAAAASyiUgAzw9vbWyJEj5e3tbXcUwGWw3gDWsM4A1rHeANawziA9GJQbAAAAAAAAlrCHEgAAAAAAACyhUAIAAAAAAIAlFEoAAAAAAACwhEIJAAAAAAAAllAoAQAAAAAAwBIKJQAAAAAAAFjiYXcAAAAAJC8iIkLZsmWTp6en3VEAp3Xjxg1t3bpVp0+f1qVLl5QtWzbly5dPFStW1EMPPWR3PAB4YFEoAel04sSJJBsuZcuWlY+Pj93RAAAu6Nq1a5o3b55CQkK0YcMGnT17Vrdu3ZIk5cyZUxUrVlSjRo3Url07Va9e3ea0gL1u3Lih2bNna/r06dq8ebO5rhiGIYfDYc5XoEABdejQQf/9739VsWJFu+ICTun69evauHGjNmzYkGwh27BhQ5UsWdLumHBiDsMwDLtDAK5izZo1mj59ukJCQnTu3Lkk0z09PVW9enV16NBBvXr1Ut68eW1ICTiXo0ePavXq1alurDRo0EBeXl52RwVscerUKY0dO1Y//vijrl27Jkny9/dXUFCQ8uTJoxs3bigsLEynT59WXFycHA6HqlSpokGDBqlbt242pweyVmxsrCZOnKj33ntP4eHhypYtm6pVq6bq1asnWWf+/vtvbdmyRceOHZPD4VCTJk00fvx4Va5c2e6HAdhq06ZNmjRpkubPn6/o6GilVAk4HA6VK1dO/fv3V48ePeTn55fFSeHsKJSANJg7d65GjhypQ4cOyTAMFSlSJMUNl127dikmJkbe3t7q3r27xowZowIFCtj9EIAsZRiGZs+erUmTJmn9+vXmdclxOBzy9/dXr1699OKLL6p48eJZGRWw1ZtvvqlPP/1UcXFxevzxx/XUU0+pTp06ya4H169f144dO/Tbb79p1qxZOnbsmKpWrarJkyfrkUcesSE9kPWKFSumM2fOqF27durevbtat259z0NCjx49qu+//14zZszQyZMnNXnyZPXu3TuLEgPO46+//tLgwYO1YsUKubu7q1GjRqpTp06K32s2b96s1atX6+TJk8qbN6+GDx+uF154QR4eHOiE2yiUgHuoXbu2tm7dqqpVq6p79+568sknVahQoRTnv3nzptatW6cffvhBCxYsUHx8vL777jt16NAhC1MD9lm+fLneeOMN7du3TwEBAWrfvn2qGytbtmzRb7/9po0bN8rT01MvvPCChg8fLn9/f7sfCnDf5c6dWwMHDtQrr7yiPHnyWFp21apVGjNmjJo2baoRI0bcp4SAc3nmmWc0YsQIlSpVyvKycXFxmj59utzc3CiU8K/k4eGh4OBgvfrqq+rSpYsCAgLStNzvv/+uyZMna86cORo1apTeeuut+5wUroJCCbiHBg0aaNSoUWrSpInlZcPDw/XRRx8pICBAL7/88n1IBzgfNzc31atXT2+88YZatmyZ5r9inThxQpMnT9bnn3+uQYMG8QUZ/wpXrlzJcHmaGbcBAHjwTZkyRT179kz3Hkb//POPTp8+rcaNG2dyMrgqCiUAQKYKCQnRY489lu7lw8PDdezYMQ7hAQAAAJwYhRIAAAAAAAAscbM7AAAAwL/V7NmzM7T8qVOntGHDhkxKAzi/li1batu2belaNioqSu+9956++OKLTE4FuIaoqCinuA08OCiUgHvo37+/zpw5k+7lZ8+erZkzZ2ZiIsC5nTx5MsO3kZF1DnAl3bt3V6VKlTRjxgxdu3Ytzctt375d/fr1U6lSpbRmzZr7mBBwLhcvXlTt2rXVuHFjTZs2TREREfdcZvPmzRowYICCg4P1zjvvKCgoKAuSAs6nePHi+vDDD9NVCm3atEktW7bUhAkT7kMyuCoOeQPuoVChQgoLC1OXLl3Uo0ePNA1Cd/bsWc2aNUtTp07V33//ra+//lp9+vTJgrSA/by9vdWnTx+9/vrryZ76PCU3b97U/PnzNXbsWHXu3JlBufGvsGvXLg0aNEi///67smXLppYtW6pWrVqqVq2agoKClDt3bkVHRyc6K+LKlSv1zz//yM/PT0OHDtXLL78sb29vux8KkGVmzJih0aNH6/jx43Jzc1OZMmVSXGe2b9+uq1evyt3dXV26dNHYsWNVtGhRux8CYItXXnlFX331lby8vPSf//xHnTp1Uu3atZUvX74k8966dUt79uzRypUrNXPmTO3fv1/ly5fXtGnTVL16dRvSwxlRKAH3cOPGDX3wwQf66KOPFBUVpTx58qhmzZqpbuwfOHBA8fHxqlevnj788EPVqlXL7ocBZJmJEydq7NixunLliurVq2durFSpUkWenp6J5j19+rT5BXn+/Pm6cuWKWrRooU8//VQlS5a06REAWW/16tX66quvtHjxYt28eVMOhyPZ+QzDUIkSJdSvXz/16dOHs7vhX8swDP3666+aNm2a1q5dq7CwsCTzuLm5qVKlSurQoYP69OmjAgUK2JAUcC7//POP3nnnHc2bN0+xsbGSbv8B/e7vNceOHVNMTIwMw1D58uU1aNAg9erVS25uHOSE/6FQAtLo6tWr+u677zRt2jTt3r1b8fHxkmRu9CesSnny5FG7du3Uv39/1ahRw7a8gJ3Cw8M1YcIETZkyRefOnZPD4ZCbm5ty586daGMlOjpa0u31qEWLFnrttdfUpEkTm9MD9gkPD9fvv/+ujRs36vTp07p8+bJ8fX2VL18+VaxYUQ0bNlSlSpXsjgk4nQMHDiRZZx5++GHlypXL7miAUwoLC9OsWbMUEhKijRs36uLFi+Y0T09PVahQQQ0bNlSHDh1Uv359G5PCmVEoAekQHh6uTZs2JbuxX7FiRbvjAU4jLi5Oy5YtMzdWUvqC3K5dOwUHB9sdFwAA4F/p5s2b5jYaRSzSikIJAADASYwZM0bFixfXM888Y3cUwCWUKFFCjz/+OGduA9Lh5MmT8vLyUv78+e2OAhfFAZCARU2aNNHw4cPtjgG4jHXr1mn37t12xwBcwtixY/Xnn3/aHQNwGZcuXZKfn5/dMQCXVLx4cQ0bNszuGHBhFEqARVu2bFFcXJzdMQCX0bhxY33zzTd2xwBcQtGiRRUeHm53DMBlVKpUSYcOHbI7BuCS/P39lTdvXrtjwIVRKAEWlS1bVidOnLA7BuAyAgMD5ePjY3cMwCV06dJFy5cvV0REhN1RAJcwZMgQLVmyRGvWrLE7CuBy6tevry1bttgdAy6MMZQAi6ZPn64BAwZo69atKl++vN1xAKfXo0cP7du3Tzt27EjxVOgAbouJiVHHjh117tw5jRkzRjVq1FBgYKDdsQCn9d1332nu3LlasWKF2rdvrxo1aigoKCjZ3zc9evSwISHgvA4ePKjatWtr0KBBGjZsmDw8POyOBBdDoQRYtG7dOn3wwQdat26d+vXrl+qGS4MGDWxICDiXs2fPqk6dOmrevLnef/995cmTx+5IgNNyd3eXJBmGkWoB63A4dOvWrayKBTgtNzc3ORwO3f2V5s71J2F9YsgCILFnn31W//zzjzZu3Kj8+fOrcuXKyX6vcTgcmjJlik0p4cwolACL7t5wSW2Dnw0X4PZA9pcvX9a+ffvk5eWl4sWLp7ixEhISYlNKwDk0atQozXvycYgPIM2YMSPN8/bs2fM+JgFcj5tb2kbAoZBFSiiUAItGjRqV5o39kSNH3uc0gPNjYwUAAMD5WBkXNjg4+D4mgauiUAIAAAAAAIAlnOUNAADAycTGxurXX3/VhAkT9M4775jXR0dH68KFC4qPj7cxHeB8Fi5cqKeeekqVKlVSyZIlzesPHjyoDz74QGfOnLExHeAawsLCdOrUKbtjwIVQKAHptGvXLr3xxhtq27atmjZtal5/4sQJzZ07V2FhYTamA5zTtWvXtHPnTv3xxx92RwGc1uLFi1W0aFG1adNGr7/+ukaNGmVO27t3rwoUKKDZs2fbFxBwIvHx8ercubM6deqkn376SUePHtWxY8fM6f7+/nrrrbf03Xff2ZgScF4RERF6+eWXFRQUpHz58ql48eLmtC1btqhVq1basWOHjQnhzCiUgHR44403VL16dY0fP15Lly5NNDCqYRjq2rWrvv/+exsTAs7l+PHjateunfz9/VWjRg01btzYnLZhwwaVL19ea9eutS8g4CQ2bNigTp06ydvbW5988om6du2aaHrNmjVVsmRJ/fTTTzYlBJzLxx9/rHnz5qlfv366cuWKXn/99UTTg4KCVL9+ff3yyy82JQScV1hYmGrVqqXPPvtMRYoUUbly5RKdMbFSpUrasGGDZs6caWNKODMKJcCiadOmafz48XriiSe0d+9eDR06NNH0YsWKqWbNmlq8eLFNCQHncvLkSdWuXVu//vqr2rVrpzp16iTaWKlVq5YuXbqkH3/80caUgHN45513lDt3bu3YsUMDBgxQqVKlksxTvXp17dmzx4Z0gPOZPn26atSooS+//FJ+fn7JnjilZMmSifZaAnDbqFGjdOjQIc2ePVvbt2/Xk08+mWi6r6+vGjZsqNWrV9uUEM6OQgmw6Msvv1S5cuX0008/qUKFCvLy8koyT9myZfXPP//YkA5wPiNHjtSVK1f0+++/a/78+WrWrFmi6R4eHqpfv742bNhgU0LAeWzZskXt2rVTQEBAivMUKVJEoaGhWZgKcF6HDx9W/fr1U50nb968unz5chYlAlzH4sWL9cQTT+ipp55KcZ5ixYrp9OnTWZgKroRCCbBo//79atasmTw8PFKcJygoSBcuXMjCVIDzWrFihTp06KBHH300xXmCg4MZMBWQFBMTIz8/v1TnCQ8Pl5sbm3CAdHsPioiIiFTnOXHihHLnzp01gQAXcu7cOZUvXz7Veby9vRUVFZVFieBq2BoBLPLw8FBsbGyq85w9e1Y5cuTIokSAcwsLC1OxYsVSnccwDMXExGRNIMCJlShRQtu2bUt1nk2bNqls2bJZlAhwbo888ohWrFih6OjoZKeHhYVp+fLlql27dhYnA5xf3rx573lWt4MHD6pAgQJZlAiuhkIJsKhixYpavXq14uLikp1+/fp1rVq1StWqVcviZIBzCgoKuuchoH/++aeKFi2aRYkA59WxY0dt2LBB06ZNS3b6+PHjtW/fPnXu3DmLkwHOaeDAgTp9+rQ6duyY5LCcI0eOqEOHDoqIiNDAgQNtSgg4rwYNGujnn39O8ZC2/fv3a/ny5YnOaA3ciUIJsOjZZ5/VoUOH1L9//yR7VERGRqpXr14KDQ1V3759bUoIOJdmzZpp6dKl2rt3b7LT//jjD61evVqtWrXK4mSA8xk8eLDKlSunPn36qFmzZgoJCZF0++yi9evX15AhQ1SlShUNGDDA5qSAc2jXrp2GDBmiZcuWKTg4WB999JEkKTAwUKVLl9Yff/yht99+W02aNLE5KeB83nrrLcXFxalu3bqaOXOmLl26JEk6cOCApkyZoiZNmsjb21uDBw+2OSmclcO481Q7ANKka9eumj17tnLkyKHcuXPrzJkzqlatmg4cOKCoqCj16tVLU6dOtTsm4BSOHz+uKlWqSLr9ZfngwYOaNWuWli5dqo0bN2rChAnKnj279uzZwy7VgKQrV65owIABmjt3bqK9YR0Oh5566il9+eWX8vf3tzEh4HxWrlypzz//XFu2bFFYWJj8/PxUq1YtDRw4UC1atLA7HuC0Fi9erGeeeUbXrl2TdHsYAofDIcMwlDNnTv3444/80Q8polAC0mny5Mn6/PPPtW/fPvMU6OXKldPAgQPVr18/m9MBzmXLli3q0qWLTpw4YW6kJPxbtGhRzZ8/X9WrV7c7JuBULl++rG3btplfjmvUqKGgoCC7YwEAHjBhYWGaMWNGkkK2d+/eqZ51FKBQAjLoxo0bunLlivz8/BiIG0jFrVu3tGTJkiQbK+3atZOXl5fd8QAAAABYQKEEAAAAwKXFxcXp9OnTOnv2rG7evJnsPA0aNMjiVADwYPOwOwDgyuLj43X+/PkUN1w4axUAwKpjx47pk08+0Z49e1L8cuxwOHTkyBEb0gHOJT4+Xu+++64++eQThYWFpTpvSmfoBf7tdu/efc/fOcOHD7chGZwdhRKQDj/88IPGjx+v/fv3p7hx4nA4dOvWrSxOBjgnwzD0888/33NjZcqUKTakA5zH8uXL1b59e8XGxsrT01OBgYHy8Ei6ucYO5sBtQ4cO1YcffqjAwED17t1bBQoUSHadAZDUhQsX1LVrV61Zs0ZSyr9bKJSQEg55AywaP368hgwZIk9PT9WrVy/VDZdp06ZlcTrA+Rw+fFhPPPGE/vnnn1S/BDscDv56jH+9ypUr6/Dhw5o+fbo6duwoNzc3uyMBTi1//vzy9/fXtm3bGMsSsOjJJ5/UTz/9pFatWqlLly6pfq9p2LBhFqeDK6BQAiwKDg6WYRjauHGjChcubHccwOm1aNFCK1eu1PPPP6+nn3461Y2V4ODgLE4HOBdfX191795dkydPtjsK4BJy5Mih/v37a/z48XZHAVxOwhlEQ0JC7I4CF8X+oIBFFy9eVL9+/SiTgDT6448/1LZtW33xxRd2RwGcXv78+eXj42N3DMBlVKpUSWfPnrU7BuCSPD09Va1aNbtjwIWxHzVgUenSpXXlyhW7YwAuI2fOnCpZsqTdMQCX0LVrVy1btkzR0dF2RwFcwltvvaVFixZp586ddkcBXE79+vW1e/duu2PAhXHIG2DRjBkz9Morr2j37t0cngOkQffu3XX06FFt3LjR7iiA07t586Y6dOigq1ev6t1331XlypUZFwa4h7lz5+qll15S27ZtVblyZfn5+SU7X48ePbI4GeDcDhw4oLp162rMmDEaMGCA3XHggiiUgHT48MMPNXHiRL3wwgupbrg0aNAgi5MBzufcuXOqU6eOnnzySb3zzjsczgPcw2+//aYuXbooIiIixXk4kyhwW0xMjPr06aNZs2aZJ35wOByJ5jEMgxM/ACn466+/VL9+fQUEBKhSpUrJfq/hTLxICYUSkA7Dhw/Xxx9/rBs3bqQ6HxsuwG1///236tSpo7i4OJUqVSrFjRUGhcS/3Zw5c9StWzfFx8erRIkSqQ5in3CaZ+Df7MUXX9RXX32lSpUqqVOnTqmuMz179szidIBzO3bsmJo3b64jR46kOh+FLFJCoQRYNGLECP3f//2f8uXLpyeeeCLVDZeRI0dmcTrA+ezatUvNmjVTWFhYqvOxsQJIDz/8sEJDQ7V8+XLVqFHD7jiA0wsMDFRwcLA2bdqU4vYYgOQ98cQT+vXXXzkTL9KNT13AoqlTp6p06dLatm0b41oAafDKK68oPDxc77//vrmx4u7ubncswCkdO3ZMvXv3pkwC0ig6OlqNGzemTALSYd26dWrTpg1n4kW68ckLWHTlyhV16dKFMglIox07dqhz584aPHiw3VEAp1ekSBH21AMsqFatmg4fPmx3DMAleXt7q3Tp0nbHgAtzszsA4GoqVqyoc+fO2R0DcBl+fn4KCgqyOwbgEvr27aslS5bc8xBRALe9++67Wr58uZYuXWp3FMDlNGvWjLPwIkMYQwmwaMmSJerSpYv++OMPVa1a1e44gNN7/vnntWnTJu3cuVNubvwdA0jN8ePH9eqrr+rgwYN6++23Uz2TaNGiRbM4HeB8xowZo82bN2vFihVq0qRJiuuMw+HQ8OHDbUgIOK+zZ8+qXr166tixI2fiRbpQKAEWfffdd1qwYIGWL1+uZ555JtWN/R49emRxOsD5REZGqlmzZipRooTGjx+vQoUK2R0JcFpubm5yOBzmac5T4nA4dOvWrSxMBjintP6hghM/AEk1adJEV65c0d69e5UjRw7OxAvLKJQAi+7c2E9w90Z/whcBNlwAqUSJEoqNjTUPFfX3909xY+Vep60FHnS9evVKtUi607Rp0+5zGsD5/f7772met2HDhvcxCeB6KGSRUQzKDVjEBjxgTXx8vDw9PRMdnpPc3zL4+wYgTZ8+3e4IgEtxOBzy8/NTlSpV7I4CuJz4+Hi7I8DFsYcSYNHJkyfl5eWl/Pnz2x0FAPCAKVGihFq1aqXPP//c7iiAS3B3d1e/fv305Zdf2h0FcDljxoxR8eLF9cwzz9gdBS6K0VEBi4oXL6633nrL7hiAy3j22Wf18ccf2x0DcAmXLl1Szpw57Y4BuIzAwEAGEgbSaezYsfrzzz/tjgEXRqEEWOTv7688efLYHQNwGbNmzdKFCxfsjgG4hEqVKunQoUN2xwBcRrNmzbR27VoOmwbSoWjRogoPD7c7BlwYhRJgUf369bVlyxa7YwAu46GHHjIH5AaQuiFDhmjJkiVas2aN3VEAl/Dee+/p8uXL+u9//6uwsDC74wAupUuXLlq+fLkiIiLsjgIXxRhKgEUHDx5U7dq1NWjQIA0bNkweHoxtD6Tmo48+0nvvvafdu3erUKFCdscBnNp3332nuXPnasWKFWrfvr1q1KihoKCgZM/81qNHDxsSAs6lSZMmunz5svbt2ycvLy8VL1482XWG054DScXExKhjx446d+6cxowZoxo1aigwMNDuWHAhFEqARc8++6z++ecfbdy4Ufnz51flypVT3HCZMmWKTSkB53H8+HENGDBAf/75p954441UvyDfeSY44N/Izc1NDocjyeE7d64vhmFwCmfg/+O050D6ubu7S/rf75WUOBwO3bp1K6tiwYVQKAEWseECWHPnF2Q2VoDUzZgxI83z9uzZ8z4mAQA86Bo1apTqttmdOBQbyaFQAiw6ceJEmucNDg6+j0kA19CrV680b6xMmzbtPqcBAAAAkBkolAAAAAA8EKKiohQZGSk/Pz9lz57d7jgA8EBjNGEAAAAnc/z4cc2cOVO7d+82vxxXqVJF3bp1U7FixeyOBziV2NhYffjhh5o+fbqOHj1qXl+iRAn17t1br7/+ury8vGxMCDi/M2fOJPmdw8lUcC/soQSk08yZMzV9+vREH7yPPPKIevXqpa5du9odD3BKGzZsSLKxUrduXbtjAU7lk08+0RtvvKFbt24lGZzb09NTH3zwgV5++WWb0gHO5caNG3rssce0ZcsWubu7q0SJEipQoIBCQ0N15MgRxcXFqVatWgoJCZGvr6/dcQGnc/jwYT3//PNavXp1kmmPPfaYvvzyS5UsWdKGZHAFFEqARXFxcXrqqae0aNEiGYYhHx8fBQUF6fz584qOjpbD4VD79u01b968NA/gDTzoNm7cqN69e+vw4cOSEp9NpFSpUpo2bZrq1KljZ0TAKSxdulRt27ZVQECAXn31VTVu3Nj8crxmzRpNmDBBly9f1uLFi9W6dWu74wK2GzVqlMaMGaPOnTvrgw8+UJEiRcxpp0+f1htvvKHZs2dr5MiRGjlypI1JAedz6tQp1ahRQxcuXFDZsmXVoEED83fOunXrdODAAQUFBWnr1q2J1i0gAYUSYNHHH3+s1157TfXq1dP777+f6Evw5s2bNWTIEK1fv14TJkzgL8iApL/++ku1atXS9evX1axZsyRfkH/77TflyJFDmzdvVvny5e2OC9iqSZMm2rt3r3bv3q3ChQsnmX7q1Ck98sgjqly5skJCQmxICDiXcuXKKXv27Nq+fXuK89SoUUPXrl3TgQMHsjAZ4Pz69OmjqVOn6ssvv1S/fv2SnETl66+/1vPPP6/nnntOkydPtiklnBmFEmBRlSpVFB0drT///FOenp5Jpt+8eVOVKlWSt7e3du/enfUBASfTuXNnLVy4UIsXL1bLli2TTF++fLnatm2r//znP5o9e7YNCQHnkTt3bnXr1k1ffPFFivO88MILmjVrlsLDw7MuGOCkfH199eqrr+rdd99NcZ6hQ4dq4sSJunHjRhYmA5xfkSJFVLVqVf38888pztOuXTvt2LFDp0+fzsJkcBUcjwNYdOjQIbVt2zbZMkm6Pb5FmzZtdOjQoSxOBjintWvXqlOnTsmWSZLUsmVLderUSWvWrMniZIDziY2NveeZqXLkyKHY2NgsSgQ4t2zZsunixYupznPx4kVly5YtixIBruPChQuqUKFCqvNUqFDhnusY/r0olACLvLy8FBUVleo8UVFRnE0E+P8iIiJUvHjxVOcpXry4IiIisigR4LxKly6tJUuW6NatW8lOv3XrlpYuXarSpUtncTLAOdWuXVuzZ8/WX3/9lez0/fv3a86cOYzTByQjX7582r9/f6rz7N+/X/ny5cuiRHA1FEqARY888ojmzp2rs2fPJjv93Llzmjt3rqpWrZrFyQDnVLBgQW3evDnVebZs2aKCBQtmUSLAefXo0UN///23WrRooR07diSatn37dj3++OP6+++/1bNnT5sSAs5l2LBhio6OVo0aNfTSSy9p/vz5+uOPPzR//nwNGDBANWrUUExMjIYOHWp3VMDptGjRQosXL9aUKVOSnT516lQtWbIkxb3MAcZQAixasmSJ2rVrp/z58+u1115Tw4YNzbO8rV27VhMmTND58+f1888/64knnrA7LmC7V155RZ999pmGDRumt956Sz4+Pua06OhojRs3TmPHjtXAgQP18ccf25gUsF9cXJw6duyoxYsXy+FwKFu2bAoMDNSFCxd0/fp1GYahdu3a6aeffuJMosD/N2/ePPXt21eRkZGJBhU2DEO5cuXS5MmT1alTJxsTAs7p5MmTql69ui5fvqzy5csn+l6zbt06/fXXXwoICND27ds5yxuSRaEEpMOECRP05ptvKi4uLtH1hmHIw8ND77//vl599VWb0gHO5fLly6pVq5aOHTumvHnzqmbNmubGyrZt23Tx4kWVKFFCW7duVZ48eeyOCziF7777TjNmzNDu3bsVGRkpPz8/PfLII+rZs6eeeeYZu+MBTufq1av6+eeftWvXrkTrTLt27ZQzZ0674wFO69ChQ+rfv7/Wrl2bZFrjxo311VdfcZg1UkShBKTT0aNHNXPmzCQb+127dlWJEiXsjgc4lUuXLumNN97Q7NmzFR0dbV7v4+Ojp59+Wu+//74CAgJsTAjYY+/evcqfP78CAwPtjgK4hEGDBqlly5Zq3ry5pNt7WOTOnVt+fn42JwNc26lTpxJ9r6lSpQp7JeGeKJSAe/j0009Vu3Zt1axZ0+4ogMu7efOmDh48aG6slC1bNsUzJgL/Bu7u7ho5cqRGjBghSWrSpIl69eqlHj162JwMcE5ubm4aNWqUuc7cvQ4BSFnVqlXVv39//fe//5V0e2/YKlWqqFKlSjYng6vi4HvgHl555RUtX77cvOzu7q533nnHxkSAc8uTJ48++OAD8/KYMWO0bt06SZKnp6cqVqyounXrqmLFipRJ+Ndzd3dPdPj02rVrdfz4cfsCAU4uR44cun79unmZv40Dabd7926Fhoaal3v16qVFixbZFwguz8PuAICz8/X1VUxMjHnZMAw2XoBUREREJDqsbdSoURo1apQaNGhgYyrAORUuXFi7d++2OwbgMkqVKqUFCxaoQ4cOKlCggCQpPDxcJ0+evOeyRYsWvd/xAKcWEBCgS5cu2R0DDxAKJeAeihcvrhUrVmjgwIEKCgqSpERnEAGQWFBQkE6fPm13DMAltGnTRp999pnKlStnfjmePn16soOj3snhcCgkJCQLEgLO5fXXX1f37t316KOPmtd98skn+uSTT1JdzuFw6NatW/c7HuDUKleurO+//16FChUyf+fs3r1b33333T2X5VBsJIcxlIB7+PTTT/XKK6+YJZJhGGkqlNhwwb9Vhw4dtHz5cvXq1UsFChTQqFGj1KhRIzVq1CjV5RwOh4YPH541IQEncfXqVQ0ePFi//PKLzp49Kylth/A4HI4kZxoF/i02b96sX375RWfOnNH06dNVuXJlValS5Z7LTZs27f6HA5zYjh071KpVK128eFEOhyNN32sS5uF3DpJDoQSkwezZs82N/TVr1ig4OFjFihW753Jr1qy5/+EAJ3P48GG1a9dOBw4ckCRzg+Ve2FgBkg44DCB1rDOANVevXtXWrVt15swZ9erVS+3bt1e7du3uuVzPnj2zIB1cDYUSYBEbLsC9xcfH69ixYzpz5owaNWqkXr16pWlDpGHDhlmQDnBevXv3VocOHdS2bVu7owAu4ffff1exYsUUHBxsdxTA5fC9BhlFoQRYNGPGDFWpUkWVK1e2OwrgEooXL65XX31VAwcOtDsKAOBfIjIyUlu2bJGPj4/q1avH+JcAcB9QKAGZxDAMHT58WD4+PipSpIjdcQAALujPP//Utm3b1KlTJ/n5+UmSbty4oUGDBmnx4sXy9fXV66+/rv79+9ucFHAOkydP1g8//KBFixbJ399fkrRnzx49/vjjOn/+vCSpTp06+u2335QtWzY7owJOKT4+Xm5ubomu27Rpk5YuXSofHx/17t1bhQsXtikdnJ3bvWcBcKcFCxaoR48eunLlinnd8ePHValSJZUtW1bFihVTly5dGAsG+P+uXr2qo0eP6ubNm4munzNnjrp166bnnntOO3futCkd4FzGjh2r4cOHK2fOnOZ1w4YN09dff62rV6/q1KlTevHFF7Vy5UobUwLO4/vvv1dMTIxZJknSa6+9pgsXLqh3795q1aqVNm3apK+++srGlIBzevXVV5UtWzaFh4eb182fP1/169fXuHHjNHLkSFWtWpWz9yJF7KEEWNSsWTOdP39ee/fuNa/r0KGDfv75ZzVp0kSXL1/W3r17NWnSJPXt29fGpIBzeP755/XDDz/o/Pnz5l+Hv/rqKw0YMMAcrNvX11c7duxQ2bJl7YwK2K548eKqW7eufvjhB0nSrVu3FBAQoLJly2rt2rUKCwtT1apVVb16dS1dutTmtID98ufPr3bt2unrr7+WJF2+fFmBgYHq27evJk2aJEmqXbu2YmNj+eMFcJcqVaqoYMGC+vXXX83rypcvr/Pnz+uTTz5RaGiohg4dqhdffFETJ060LyicFnsoARbt379fNWvWNC9fvXpVv/zyizp37qxVq1Zp69atKleunKZOnWpjSsB5/P7772ratGmiQw3ee+89FSpUSOvWrdPcuXNlGIY+/PBDG1MCzuHixYuJDpvetm2bIiMj1b9/f/n4+KhgwYJq166d9uzZY2NKwHmEh4crX7585uU//vhDkvSf//zHvK5evXo6fvx4VkcDnN6pU6dUqlQp8/KxY8d08OBBDRw4UN27d9frr7+uVq1aafny5TamhDOjUAIsCgsLU/78+c3L69ev161bt/T0009Lkjw9PdWsWTMdOXLEroiAUzl37pyKFy9uXj5w4IBOnTqlgQMHql69eurUqZPatm2rdevW2ZgScA4eHh6KiYkxL69du1YOh0ONGzc2r8ubN68uXbpkRzzA6eTNm1fnzp0zL4eEhMjd3V1169Y1rzMMI8lh1wCkqKgoZc+e3bz8+++/y+Fw6PHHHzevK1++PIe8IUUUSoBFfn5+unz5snl5zZo1cnNzU/369c3rPD09FRUVZUc8wOnExMTIy8vLvJywsdK8eXPzuhIlSujMmTN2xAOcSrFixbRmzRrz8rx581S8ePFEp0Q/c+aM8ubNa0c8wOlUqlRJP//8s/bt26fDhw9r1qxZqlu3bqIvycePH1eBAgVsTAk4p4IFC+rvv/82Ly9fvlw5cuRQtWrVzOsiIyPl7e1tRzy4AAolwKKyZctqyZIlunz5ssLDwzVr1ixVq1Yt0WCQJ06cUFBQkI0pAedRuHDhRGOOLV26VHny5FGlSpXM6y5fvqwcOXLYEQ9wKs8884z27NmjWrVqqUGDBtqzZ4+6du2aaJ69e/cmOkQB+Dd74403dOXKFVWuXFllypRReHi4Bg0aZE6Pj4/X+vXrE31BBnBbw4YN9csvv+jzzz/Xt99+qwULFqhFixZyd3c35zly5AhneUOKPOwOALiagQMH6sknn1ThwoXNPZHGjh2baJ7NmzeratWqNiUEnMvjjz+uL774Qq+//rp8fHy0fPly9ejRI9E8hw4dUtGiRW1KCDiPAQMGaOvWrZo/f74Mw1CrVq00bNgwc/pff/2lPXv2aPTo0TamBJxH48aNtXjxYk2bNk2S1KVLF7Vp08acvmHDBhUsWDDRmEoAbnvrrbe0aNEivfzyyzIMQ9mzZ9eoUaPM6VevXtW6devUq1cv2zLCuXGWNyAdvvrqK02ZMkXS7Q2X119/3Zz2+++/q3379nrvvffUr18/uyICTiM0NFSPPvqoOSBqgQIFtGXLFvOvXRcuXFDhwoU1YMAATZgwwcakgPOIjIyUw+FQzpw5E11/6dIlnTlzRsWKFVOuXLlsSgcAeFCcO3dOP/30kySpTZs2iQ6x3rlzp77//nt17dpVNWrUsCsinBiFEgDgvrtx44ZCQkIkSQ0aNJCfn585bf/+/Vq5cqVatGihsmXL2hURAAAAgAUUSgAAAE4oKipK4eHhiouLS3Y6h4kC/7N161Zt27YtxXXG4XBo+PDhNiQDgAcXhRKQTqGhodqxY0eqG/t3jxMDAMC9TJkyRR999FGiM+/czeFw6NatW1mYCnBOYWFhat++vTZs2KDUvtY4HI4Ut9eAf7OLFy9q2rRp9yxkE/Y0B+7EoNyARdHR0erbt69mz56t+Pj4ZOcxDEMOh4NCCfj/9u/fr88///yeGytHjhyxIR3gPL766iu9+OKL8vDwUIMGDVS4cGF5eLC5BqRk0KBBWr9+vRo1aqSePXuyzgAW7N27V02aNNGVK1fuWcgCyWEPJcCiV155RZ9++qlKly6tp59+OtUNl549e2ZxOsD5/P7772rZsqViYmLk4eGhoKCgFNeZY8eOZXE6wLmUKVNGV65c0fr161W6dGm74wBOLyAgQCVLltSmTZv40gtY1KxZM4WEhOjtt9/Wc889p8KFC8vd3d3uWHAh1PeARXPnzlX58uW1Y8cOeXt72x0HcHpvvvmmbt26pW+//VY9e/ZkQwVIxYkTJ9SnTx/KJCCNbty4oQYNGlAmAemwadMmtW/fXmPGjLE7ClyUm90BAFcTHh6uli1bUiYBabRnzx516dJFzz77LGUScA8FChRgnBfAgipVquj48eN2xwBckpeXlx566CG7Y8CFUSgBFpUpU0bnz5+3OwbgMrJnz67AwEC7YwAuoWfPnlq2bJmioqLsjgK4hJEjR2rx4sXavHmz3VEAl9OwYUNt377d7hhwYYyhBFg0a9Ys9e/fXzt37lTJkiXtjgM4vZ49e+rAgQPaunWr3VEAp3fr1i09/fTTOnPmjN577z1VrVpVOXLksDsW4LS+++47/fzzz1q6dKm6deumqlWrys/PL9l5OVkKkNiRI0dUu3ZtDRkyRK+//rrdceCCKJQAi9atW6fPPvtMISEheuWVV1LdcGnQoEEWpwOcz4ULF1SvXj21bNlS7733nrJly2Z3JMBpJRwWmnC20JQ4HA7dunUrq2IBTsvNzU0OhyPRGaruXncS1icOJwUSe/bZZ3Xs2DGtW7dOxYsXV5UqVZL9XuNwODRlyhQbEsLZUSgBFt294ZLaBj8bLoDUpEkThYeHa8+ePcqePbtKly6d4sZKSEiIDQkB59GoUaM0Dy68Zs2a+5wGcH4zZsxI87ycfRdIzM0tbSPgUMgiJRRKgEWjRo1K88b+yJEj73MawPmxsQIAAOB8Tpw4keZ5g4OD72MSuCoKJQAAAAAAAFjiYXcAAAAAAMiouLg4Xbp0STExMclOL1q0aBYnAoAHG4USAACAE4mLi9PcuXO1atUqnT17Ntkvx4w5BvzPjh07NGzYMK1bt06xsbHJzsNA9kDKoqOjtW3bthR/50icJRHJo1AC0uHUqVMaO3asubGf3MYLGy5AYqdPn9aaNWtS/YI8fPhwG5IBziMqKkrNmzfX5s2bzTNT3X32qnudAQ74N9m9e7fq168vDw8PNW/eXEuWLFHlypWVP39+7dy5UxcvXlSjRo0Y/wVIwRdffKHhw4crIiIi2ekJv3MolJAcCiXAoqNHj6pWrVq6cuWKHn74YcXExCg4OFg+Pj46evSobt68qcqVKyt37tx2RwWcxuDBg/XJJ58kGnT7zi/FCf+nUMK/3dixY7Vp0yaNGTNGL7zwggICAjRq1Cj169dP69at07Bhw1S1alXNnDnT7qiAU3jnnXckSVu2bFG5cuXk5uamDh06aMSIEbpx44Zee+01zZ8/X1OnTrU5KeB8FixYoJdeekkVK1bU8OHD9dprr6l9+/aqVauW1q1bp2XLlqljx4564okn7I4KJ5W2U+8AMI0ePVoREREKCQnRnj17JEm9e/fWgQMHdPz4cbVt21ZRUVGaP3++zUkB5zB58mR99NFHaty4sebPny/DMNSzZ0/9+OOP6t+/vzw8PPTkk09q9erVdkcFbLdgwQLVrl1bb7/9tvLkyWNeHxQUpCeffFJr1qzRqlWr9OGHH9qYEnAe69evV9u2bVWuXDnzuoS9+nx9ffX555+rYMGCGjZsmF0RAac1ceJEBQYGatOmTXr11VclSVWqVNGQIUP0yy+/6IcfftCiRYvYww8polACLFq1apVatWqlhg0bmtclbLgUKFBAc+bMkSQ2XID/75tvvlGxYsW0bNkydejQQZJUrFgxde7cWV988YV+++03LVy4UBcvXrQ5KWC/kydPqnbt2uZlNze3RIeIFi5cWK1bt9aMGTPsiAc4nYiICJUoUcK87OnpqWvXrpmX3dzc1KhRI8YcA5Kxd+9etW3bVtmyZTOvu3Nv8q5du6pJkyYaM2aMHfHgAiiUAIsuXbqksmXLmpc9PDx0/fp187K3t7eaNWumpUuX2hEPcDoHDx5Uy5Yt5eb2v185d44v1rBhQ7Vu3Vrjx4+3Ix7gVLJnz55oXcmVK5fOnTuXaJ78+fPr5MmTWR0NcEqBgYG6cuWKeTl//vz6559/Es0THR2daFsNwG03b95Uvnz5zMu+vr4KDw9PNE/lypW1c+fOLE4GV0GhBFgUEBCgqKioRJePHz+eaB4PD48kH8bAv9mdY4plz55dly9fTjS9TJky+uuvv7I4FeB8goODE5VFFSpU0OrVq829lAzDUEhIiAoUKGBXRMCplC9fXn///bd5uW7duvrtt9+0adMmSdKBAwc0d+7cRH8MBHBbwYIFE/3RIjg4WLt27Uo0z4kTJ+ThwdDLSB6FEmBRqVKldOTIEfNyzZo1tWLFCh09elSSdPHiRc2fP18PPfSQXREBp1KoUCGdPn3avPzQQw9py5YtiebZt2+fsmfPntXRAKfz2GOPac2aNeZefD179tTJkydVp04dDR48WPXq1dPu3bvVsWNHm5MCzqF169Zat26d+aV4yJAhMgxD9erVU758+VSxYkWFh4czFAGQjBo1aiTa+6hly5basGGDxo0bp7/++ktff/21FixYoBo1atiYEs7MYdx5LloA9/T+++9r1KhROnfunHLnzq21a9fqsccek6+vr8qVK6fDhw8rMjJSkyZNUt++fe2OC9juueee0x9//KFDhw5JkkaOHKmxY8eqT58+atu2rdavX68PPvhAHTt21Ny5c21OC9jrn3/+0YIFC9SjRw9zL6SXXnpJX375pTleX8eOHTVjxoxEY14A/1Y3b95UWFiY/P395eXlJUnauHGj/u///k9Hjx5VcHCwXnrpJbVu3drmpIDzWbhwoYYN+3/t3XdUFGf7PvBrFkQsgBUUkGZsGAWNYkEBsfsaYotioYhRk2gSNVETY8ESW1ATNeobpYg1ahJbFA0EBbGj2MBGEQtFQUBREJb9/eGX/Uko7vrKzqxcn3NyTmbm3nOuPxzm2XufeZ5ZOHz4MKysrPDw4UN06NBB+UOgQqGAkZERIiIi0KZNG5HTkhSxoUSkppycHMTFxcHW1hYGBgYAgN27d8PX17fEwGXSpEkiJyWShmPHjmHZsmXYsGEDLC0t8fTpUzg7O+PixYsQBAEKhQJWVlYIDw/nLiJE5Xj48KHyGdOoUSOx4xAR0Tvq8ePH2LRpk/KZ4+HhATMzM7FjkUSxoURERBpXUFCAffv2IT4+HpaWlvjwww/5yhsRgAULFsDa2hoeHh5iRyHSCjY2Nujfvz9++eUXsaMQaZ3k5GTo6enxhwp6Y1xdi0hNrq6ucHR0xMKFC8WOQqQVIiIiYGhoCHt7e+W5atWqYdiwYeKFIpKoRYsWYcqUKWLHINIajx49gqGhodgxiLSStbU1vLy8EBAQIHYU0lJclJtITWfOnIFcLhc7BpHW6NGjB3799VexYxBpBQsLC+4SSqSGtm3bKtfoIyL11K1bF/Xr1xc7BmkxNpSI1NSyZUvcuXNH7BhEWsPY2Bj6+vpixyDSCu7u7ggJCUF2drbYUYi0wsyZM3HgwAGEh4eLHYVI63Tv3r3UzrtE6uAaSkRqCgoKwuTJk3H27FnY2tqKHYdI8jw9PXH16lVER0dDEASx4xBJWn5+PoYOHYqUlBQsWLAAHTt2hLGxsdixiCQrODgYu3btwpEjRzBo0CB07NgRJiYmZT5vPD09RUhIJF3Xr19H586dMW3aNMyaNQu6ulwRh9TDhhKRmiIiIrB8+XJERERg4sSJFQ5cnJycREhIJC0PHjxAly5d0KdPHyxbtgz16tUTOxKRpAQHB8Pe3h5t27aFjo4OgJdbNVfUgBUEAYWFhZqKSCQprq6uGDt2LDw8PCCTyZQ7hr7q1fun+H7ikgVEJfn4+ODWrVs4efIkGjVqBDs7uzK/1wiCAH9/f5FSkpSxoUSkAh8fHwwaNAhubm6lBi4VDfg5cKGqKjk5GXXq1IGhoSFcXV2RkZGBq1evQk9PD9bW1uUOVsLCwkRKTCQemUyG+fPnY86cOXBxcVF5Jh9f8aGqSiaTwdfXF3PnzkVQUJDK94yXl1clJyOSPh0dHfj6+mLOnDmQyVRbAYcNWSoP57QRqSAoKAhWVlZwc3PD3Llz+doO0WtYW1srByvHjh1Tns/Pz8f169dx/fr1Up/hfUVVWfGPFK/eL0T0et7e3mJHINIqCoVC+cxJTEwUOQ1pOzaUiNTk6+srdgQiyXt1sFJUVCRyGiIiIiL6N0tLS7EjkJbjLm9ERERERERERKQWzlAiIiIiEllMTAyCg4PV+gx3rKKqLCgoSK1XRLlOH9H/x2UG6G3hotxEKpDJZLC3t4e9vb3Kn+FuCFSVyWQyTJkyBVOmTFHrcxYWFpUTiEjCijd7UBV3rKKqTtWFhF/Fe4boJXWfOQB3FqXysaFEpAIOXIjUw8EKkepkMhlcXFzg7Oys1ufmzZtXSYmIpK34R4uvvvpKrc9xvRiil/ePkZER6tSpo9bnuIA3lYWvvBGpyNvbm9vNEqnBwsICVlZWYscg0gouLi6YO3eu2DGItEadOnXYICJ6Q1OnTuUzh94KNpSIVGRlZaX2r8dEVdnYsWM5WCEiIiIiekdxlzciIiIiIiIiIlILG0pERERERERERKQWNpSIiIiIROTl5aXWLqJEVV14eLhyXcuIiAgkJydXWH/37l1ERERoIhoRUZXChhKRCgIDA/HRRx8BAJKTk5GTk1Nh/ZMnT147uCF6l1laWqq9ewhRVRUYGAg3NzcAgI2NDVavXl1h/S+//AIbGxtNRCOSJGdnZ+WC3D169EBQUFCF9cHBwejRo4cGkhFJX1FRkXKNywULFry22RoZGYkFCxZoIhppITaUiFTg5eUFOzs7AIC1tTV+/vnnCutXr14Na2trTUQjkqTExER8+eWXAAAfHx/s37+/wvqDBw/Cx8dHE9GIJC0pKQlZWVkV1mRlZeHOnTuaCUQkcQqF4rU1RUVFEARBA2mItIuvry+OHTtWYU1ERATmz5+vmUCkddhQIlKTQqF47eBFlcENUVURFBSEmJiYCmsuXbqEzZs3ayYQkZbLzs5G9erVxY5BpDVu3boFIyMjsWMQaaUXL15AR0dH7BgkUbpiByB6F927dw8GBgZixyDSGnl5edDV5SOJqqZ/v26QlJRU5isIcrkcd+/exbZt29C8eXNNxSOSnH/PaN27dy+SkpJK1RXfMxEREejfv7+G0hFpl4pm77148QKRkZEwNjbWYCLSJhy9E6ng3+8Nlzc1tHjgsnPnTnTu3FkDyYi0Q3mDFYVCgbt37+Lw4cMwNTXVcCoiaXBxcVHeI4IgYPPmzeXO2FMoFBAEAUuXLtVkRCJJeXXNJEEQEBMTU+5MWEEQ0LFjR6xatUoz4Ygk7t9r8K1atQqBgYGl6uRyOR49eoS8vDyMHz9eU/FIywgKvptD9Foy2f9/O1QQhNe+0mZqaoo///wTHTt2rOxoRJIkk8mUX5CLvwBXRKFQYObMmViyZIkm4hFJiq+vr/LZsmDBAjg7O8PFxaVUnY6ODurVq4cePXqgVatWmg9KJBHFa4gpFArY2NhgypQp+Oqrr0rV6ejooG7duqhVq5amIxJJlpWVlXJclpycDENDwzI3Uil+5ri6umLOnDm8j6hMbCgRqeD48eMAXg5cXF1d4e3trdyu9lXFf3hbtmxZoglFVNW8OuMiIiICFhYWsLKyKlX36mBl/PjxfEefqrwePXpg7Nix8PT0FDsKkVbYvHkz2rVrh7Zt24odhUjryGQy+Pr6Knd9I1IXG0pEapo/fz569OgBJycnsaMQaQUOVoiIiIik586dO6hTpw4Xrac3xoYSERERkQTl5uYiKysLcrm8zOsWFhYaTkQkXWfPnsW5c+fKvWcEQcCcOXNESEZE9O5iQ4noDaWmpiI6OrrCwT5fWSAiInX5+/tjxYoVuHHjRrk1giCgsLBQg6mIpCkzMxODBg1CVFRUhWtcCoJQ7niNqCp7+PAhAgMDX9uQDQsLEyEdSR13eSNSU/FOBzt37kRRUVGZNcWLELOhRPRSbGws1q5d+9rBSnx8vAjpiKRj/fr1mDRpEnR1deHk5ARzc3Po6nK4RlSeadOm4cSJE3BxcYGXlxfvGSI1XL58Ga6urnj8+PFrG7JEZeEMJSI1TZkyBatXr0bz5s0xcuTICgcuZS3cTVTVHD9+HP369UN+fj50dXVhYmJS7j2TmJio4XRE0tKiRQs8fvwYJ06cQPPmzcWOQyR5DRo0wHvvvYdTp07xSy+Rmnr37o2wsDDMnj0b48aNg7m5OTdIIbWwfU+kpl27dsHW1hbR0dGoXr262HGIJO/bb79FYWEhNm3aBC8vLw5UiCpw584dfPLJJ2wmEano+fPncHJyYjOJ6A2cOnUKgwYNwoIFC8SOQlqK+5oTqSkrKwv9+vVjM4lIRZcuXYK7uzt8fHzYTCJ6jcaNG3OdFyI12NvbIykpSewYRFpJT08PTZs2FTsGaTE2lIjU1KJFC6SlpYkdg0hr1KpVC8bGxmLHINIKXl5eOHz4MHJzc8WOQqQV5s2bh/379+P06dNiRyHSOs7Ozjh//rzYMUiLcQ0lIjVt374dn376KS5cuID33ntP7DhEkufl5YW4uDicPXtW7ChEkldYWIiRI0fi/v37WLp0Kdq3b4/atWuLHYtIsoKDg7Fv3z4cPHgQo0ePRvv27WFoaFhmLTdLISopPj4enTt3xsyZM/HNN9+IHYe0EBtKRGqKiIjAmjVrEBYWhilTplQ4cHFyctJwOiLpSU9PR7du3dCvXz8sXboUNWvWFDsSkWQVvxZavFtoeQRBQGFhoaZiEUmWTCaDIAgldqj6971TfD/xdVKiknx8fJCYmIiIiAhYW1vD3t6+zO81giDA399fhIQkdWwoEanp3wOXigb8HLgQAa6ursjKysKlS5dQq1YtNG/evNzBSlhYmAgJiaTDxcVF5cWFw8PDKzkNkfRt3rxZ5VruvktUkkym2go4bMhSedhQIlKTr6+vyoP9efPmVXIaIunjYIWIiIhIeu7cuaNyraWlZSUmIW3FhhIREREREREREamFu7wREREREREREZFadMUOQERERFRV+fj4QBAELF68GCYmJvDx8VHpc1wglaoqmUwGmUyG2NhYNG/eXLm25etwIXuil5sLAYCDgwP09fWVx6rgZkNUFr7yRvQaNjY2EAQBoaGhsLa2ho2NjUqfEwQB8fHxlZyOSHqCg4MBAIMHD4aBgYHyWBXc0pmqmuIvw3Fxccovx6rgmmNUVRUvXL9lyxaYm5tzIXsiNZT1zFH1/uEzh8rCGUpEr1FUVFTiD+2/j8vDXi1VVd7e3hAEAZ07d4aBgYHyuCLFWzqzoURVTWJiIgDAzMysxDERle3YsWMVHhNR+ebOnQtBENCgQYMSx0RvijOUiIjorQoKCoIgCBgyZAgMDAyUx6rgls5ERKSOiIgIGBoawt7eXuwoRERVDhtKRGpKTk6Gnp4eGjVqJHYUIiJ6x9jY2KB///745ZdfxI5CpBV0dHQwceJErFu3TuwoRFpnwYIFsLa2hoeHh9hRSEtxlzciNVlbW2PWrFlixyDSGj4+Pli1apXYMYi0wqNHj2BoaCh2DCKtYWxsDH19fbFjEGmlRYsW4cqVK2LHIC3GhhKRmurWrYv69euLHYNIa2zfvh3p6elixyDSCm3btsXNmzfFjkGkNXr37o1jx45x7UqiN2BhYYGsrCyxY5AWY0OJSE3du3fHmTNnxI5BpDWaNm2KlJQUsWMQaYWZM2fiwIED3I2KSEVLly5FRkYGJkyYgMzMTLHjEGkVd3d3hISEIDs7W+wopKW4hhKRmq5fv47OnTtj2rRpmDVrFnR1uVkiUUVWrFiBpUuXIiYmRrmTFRGVLTg4GLt27cKRI0cwaNAgdOzYESYmJmUubM9dEYkAV1dXZGRk4OrVq9DT04O1tXWZ94wgCAgLCxMpJZE05efnY+jQoUhJScGCBQvQsWNHGBsbix2LtAgbSkRq8vHxwa1bt3Dy5Ek0atQIdnZ25Q5c/P39RUpJJB1JSUmYPHkyrly5ghkzZlT4BdnCwkKEhETSIZPJIAhCqdd3Xr1fFAoFBEGAXC7XdDwiyZHJVHvhgvcMUWk6OjoA/v9zpTyCIKCwsFBTsUiLsKFEpCYOXIjU8+oXZA5WiCq2efNmlWu9vLwqMQkREb3rXFxcKhybvYqvYlNZ2FAiUtOdO3dUrrW0tKzEJETawdvbW+XBSmBgYCWnISIiIiKit4ENJSIiIiIieickJCQgOzsbRkZGsLGxETsOEdE7jasJE/2PCgsL8eTJExgYGHCBbiIieisuXLiAzZs34+LFi8ovx+3bt4enpyfat28vdjwiScnOzsbcuXMRHByMnJwc5XlDQ0N4eXlh/vz5MDIyEjEhkfRdvHixxDOnXbt2aNeundixSOI4Q4noDcjlcqxevRpBQUG4du2acm2Y1q1bY+zYsZg8eTKbS0T/kp+fj0OHDpUarAwYMADVq1cXOx6RZEyfPh2rVq1CUVFRqWsymQzTpk3D8uXLRUhGJD3p6eno3r07bt26hTp16sDe3h4mJiZIS0tDTEwMsrKy0KxZM0RGRnL3KqIynDt3DuPHj8eVK1cAlFygu02bNti0aRM6dOggZkSSMDaUiNT09OlT9O3bF6dPn4ZMJkOTJk2UA5e7d++iqKgIXbp0wZEjR1CrVi2x4xJJwv79+zFhwgQ8fPiwxO5VgiDA2NgYv/76Kz788EMRExJJw9q1a/Hll1+iRYsWmD17Nrp37658xkRERGDRokW4desW1qxZg88//1zsuESiGzduHAIDA/Htt9/i+++/LzH2ys3NxaJFi7Bs2TL4+Phg06ZNIiYlkp4LFy7AyckJz549Q8+ePUs9c/755x/UqlULkZGRsLe3FzsuSRAbSkRqmjZtGn766SeMGjUKixcvLrHNeXJyMr777jvs2LEDU6dOxYoVK0RMSiQNYWFh6NevH3R0dODh4VFqsLJ161bI5XIcOXIErq6uYsclEpWtrS1yc3Nx9epVGBgYlLqenZ2NNm3aoHbt2oiNjRUhIZG0GBsbo23btggNDS23xtXVFVevXkV6eroGkxFJX9++fXHs2DEcPHgQvXv3LnX9yJEj+PDDD+Hq6oqQkBAREpLUsaFEpCZzc3OYmpri7Nmz5dZ07NgRKSkpuHfvngaTEUlTt27dcPnyZZw8eRLvv/9+qeuXL1+Go6Mj7O3tERkZKUJCIumoUaMGPvvsM6xcubLcmqlTp2LDhg14/vy5BpMRSVOtWrUwdepULFq0qNya77//Hj///DOePn2qwWRE0mdgYICPPvoIW7duLbdm1KhROHjwYIn1yYiKycQOQKRtMjIy0KtXrwprevXqhczMTA0lIpK2ixcvYsSIEWU2kwCgbdu2GD58OC5cuKDhZETSo+oaLyYmJpWchEg7vP/++0hKSqqwJikpqdxnEFFVpqurC0tLywprrK2toaOjo6FEpG3YUCJSU7NmzV47Zfrhw4d47733NJSISNpq1qyJhg0bVlhjbGyMmjVraigRkXSNHDkSv//+e7kzKXJycvD7779j5MiRGk5GJE2zZs3Cnj17yn3l7ejRo9izZw++//57DScjkr6uXbvizJkzFdacPn0a3bp101Ai0jZ85Y1ITf7+/pgyZQpOnz6N1q1bl7p+5coVdOnSBatXr4aPj48ICYmkZeTIkYiPj3/ta6LNmjXD9u3bNZiMSHry8/MxfPhw3Lp1C3PnzkW3bt2Ua45FRkZi4cKFaN68OXbt2gU9PT2x4xKJLjg4GHv27MFff/2F3r17l7pnQkNDMXDgQAwdOrTUZz09PUVITCQdsbGxcHR0xKRJkzBr1qwSP+49e/YMixYtwoYNGxAVFYVWrVqJmJSkig0lIjVFRERgxYoVOHr0KLy8vEoNXIKDg9G3b19Mmzat1GednJxESEwkrvv378PR0RFOTk744Ycf0KRJE+W1u3fvYtasWThx4gSioqJgamoqYlIi8RW/VvDqts2vKu+8IAgoLCys9HxEUiOTySAIAl73lebV+6b4PpLL5ZUdj0jSfHx8EB8fjxMnTqBOnTpo166d8nvNxYsXkZWVhe7du8PGxqbE5wRBgL+/v0ipSUrYUCJS078HLv8eoPz73Ks4cKGqyNXVFY8fP8bly5eho6MDCwsL5WAlOTkZcrkcbdu2Rd26dUt8ThAEhIWFiZSaSBwuLi7lPkNeJzw8/C2nIZK+oKCgN75nvLy83nIaIu0ik73ZCjhsyFIxNpSI1OTr6/vGA5d58+a95TRE0sfBChEREZH03Llz540/+7rFvKlqYEOJiIiISCKCg4NhYmKCvn37ih2FSCu4urrC0dERCxcuFDsKEVGVw13eiNTk4+ODVatWiR2DSGskJycjNTVV7BhEWmHcuHEICQkROwaR1jhz5gxnsxK9IR0dHYwePVrsGKTF2FAiUtP27duRnp4udgwirWFtbY1Zs2aJHYNIKzRu3JiLaxOpoWXLlv/TaztEVZmhoWGJzVKI1MWGEpGamjZtipSUFLFjEGmNunXron79+mLHINIKbm5u+Pvvv5Gfny92FCKt8MUXX2Dfvn2IjY0VOwqR1nFwcMClS5fEjkFajGsoEalpxYoVWLp0KWJiYmBmZiZ2HCLJGzx4MDIyMhARESF2FCLJy87OhqurKxo1aoTly5ejdevWYkcikrSIiAgsX74cERERmDhxIjp27AgTE5MyN1BxcnISISGRdJ06dQouLi7YuHEjPD09xY5DWogNJSI1JSUlYfLkybhy5QpmzJhR4cDFwsJChIRE0nL9+nV07twZ06ZNw6xZs6Crqyt2JCLJsrGxQX5+vnLdMX19fRgbG5d6xgiCgPj4eDEiEkmKTCaDIAgo/kpT0U68XGuJqKQFCxYgKioKoaGhaN++fbnfawRBwJw5c0RKSVLGhhKRml4duFQ0aBEEgetgEOHlQva3bt3CyZMn0ahRI9jZ2ZU7WPH39xcpJZE0WFlZVfhseVViYmIlpyGSPl9fX5XvmXnz5lVyGiLtIpOptgKOIAhsyFKZ2FAiUpO3t7fKA5fAwMBKTkMkfRysEBEREUnP8ePHVa51dnauxCSkrdhQIiKiSqXO7juWlpaVmISIiIiIiN4WNpSIiIiIJCg2NhbXr19Hbm4uPDw8xI5DJGkXL17Ejh07cP36dTx79gyhoaEAXv6ocebMGfTq1Qv16tUTOSUR0btFtfcQiKiU1NRUrFu3Dl9++SXGjRunPP/w4UOcPXsWz58/FzEdkXRlZmbi7t27Yscgkqxz587B3t4ebdq0wccffwxvb2/ltYiICNSsWRP79+8XLyCRxMyYMQMdOnSAn58fDh48iPDwcOU1hUKBUaNGYcuWLSImJJKuwsJCrFq1Cg4ODjA0NCyxeUpMTAw+//xz3Lx5U8SEJGVsKBG9gXXr1sHa2hqTJ0/G2rVrERQUpLyWnp6OLl26YOvWreIFJJKY7OxsfPXVVzAxMUHDhg1hbW2tvHbmzBkMGDAA0dHRIiYkkoZr167B1dUViYmJmDp1Kvr371/ievfu3dGgQQPs3r1bpIRE0hIYGAg/Pz8MHDgQly9fxnfffVfiupWVFRwcHNiEJSrD8+fP0aNHD3zzzTe4c+cODA0N8eoLTNbW1ggMDERwcLCIKUnK2FAiUtOBAwcwefJktGnTBvv378dnn31W4nrr1q3Rtm1b7N27V5yARBKTmZmJTp06Yc2aNWjSpAlatWpVYrDStm1bREVFYdu2bSKmJJKG4l2ooqOj4efnh44dO5a4LggCunTpgnPnzokRj0hy1q1bh1atWuH333/H+++/Dz09vVI1LVu2xK1bt0RIRyRtixcvRlRUFJYsWYLU1FR88sknJa4bGRnB2dkZR44cESkhSR0bSkRq+vHHH2FhYYHw8HAMHDgQxsbGpWratGmD2NhYEdIRSY+vry9u3ryJnTt34vz58/j4449LXK9RowacnZ3xzz//iJSQSDqOHz+OoUOH4r333iu3xsLCAikpKRpMRSRdsbGx6N27d4nXdP7NxMQE6enpGkxFpB1+++039OjRAzNmzIAgCGXuZG1jY4Pk5GQR0pE2YEOJSE0xMTH4z3/+g1q1apVbY2ZmhrS0NA2mIpKu/fv3Y+DAgRg+fHi5NVZWVrh3754GUxFJ05MnT8r8oeJVz58/h1wu11AiImnT1dXFixcvKqx58OABateuraFERNojOTkZHTp0qLDGwMAA2dnZGkpE2oYNJSI1FRUVoVq1ahXWpKeno3r16hpKRCRtKSkpsLW1rbCmevXqyM3N1VAiIulq0qQJrly5UmHNhQsX0LRpUw0lIpK2Nm3a4J9//im3yVq849sHH3yg4WRE0mdgYPDa2Xvx8fFo2LChhhKRtmFDiUhNLVq0QGRkZLnXCwsLERERgTZt2mgwFZF01a9f/7W7ul2/fh2NGzfWUCIi6Ro4cCCOHj2q3PL833bt2oXTp09j0KBBmg1GJFE+Pj64efMmPv30U+Tn55e4lpOTA29vb6SmpmL8+PEiJSSSrs6dO+PAgQPIysoq8/rdu3dx6NAhODk5aTYYaQ02lIjUNHr0aFy8eBHz588vdU0ul+Obb75BQkICPD09RUhHJD1OTk7Yt29fua+0xcbGIiQkBL169dJwMiLpmTVrFkxNTTFgwACMHz8e58+fB/By4WEPDw+MGjUKVlZWmDZtmshJiaTBx8cH7u7u8Pf3R8OGDeHv7w8AcHBwgJmZGfbs2QMvLy8MGzZM5KRE0jN9+nQ8fvwYPXv2RFRUFAoLCwG8nNkXFhaGvn37orCwkM8cKpegeHWrHSJ6rYKCAvTp0wcRERFo2rQp9PX1ce3aNQwdOhTnz59HUlIS+vTpg8OHD5e5sB1RVXPlyhU4ODjA2NgYixcvxunTp7Fu3TpcvXoVJ0+exPfff4+nT5/i4sWLaNasmdhxiUSXkJAADw8PnDp1qtS1Tp06YceOHbCystJ8MCIJ27hxI9auXYurV68qdxJt1aoVvvzyS0ycOFHkdETStX79enz11Vdlvjaqo6ODdevWldr9jagYG0pEb+DFixeYP38+NmzYgMePHyvPGxoa4rPPPsP8+fPL3LaWqKrav38/PDw88PTpUwCAQqGAIAhQKBQwMDDAjh07MGDAAJFTEklLTEwMTp8+jczMTBgaGqJTp07o2LGj2LGIJO358+d4/PgxDA0NuRA3kYri4uKwYcMGnDlzpsQz5/PPP0fr1q3FjkcSxoYS0f9AoVDgxo0byj+8rVq1go6OjtixiCQpMzMTmzdvLjVYGTt2LBo0aCB2PCIiIiIiUgMbSkREREREREREpBZdsQMQERER0Us+Pj6vrZHJZDA0NESLFi0wcOBAmJmZaSAZkTTJZLLXrlkpCILynhk8eDC++OIL1KhRQ0MJiaQrIiLitTXFz5z33nsPNWvW1EAq0iacoUSkJhsbm9fWvDrYHzx4MIYPH66BZETSFBwc/NqaV++ZFi1aaCAVkTS9+uW4rCFa8dpjxXR1dTF37lzMnj1bYxmJpMTFxQXZ2dm4dOkSdHR0YGFhARMTE6SlpSE5ORlyuRx2dnaQy+WIj49HXl4e3n//fURGRsLQ0FDs+ESiUqUh+2pt79698eOPP3JdJVJiQ4lITVZWVigsLMSDBw8AvBzMN2jQAI8ePVJutWlqaoqcnBw8ffoUgiCgZ8+eOHjwIBfqpipJncEKALRs2RJr1qyBq6trJaYikqbExERMmTIFZ8+exVdffQVHR0fll+OoqCisXr0aDg4O+P7773Hp0iUsWrQId+/exfbt2zFixAix4xNp3L1799CtWze4uLhg0aJFMDc3V167f/8+Zs+ejWPHjuHEiRMwMjLCN998g19//RUzZszA0qVLRUxOJD5fX1+cPXsWISEhaNGiBbp27ap85pw6dQrXr19H//790bRpU1y4cAEnT56EkZERzpw5g+bNm4sdnySADSUiNWVlZaF3794wMjLCokWL0KlTJ+UvxmfOnMGcOXOQnZ2No0eP4tGjR5g6dSoOHTqERYsW4bvvvhM7PpHGbd68GX/88QcOHDiAPn36lPqCfPToUbi5ucHJyQkXLlzAb7/9Bh0dHURGRnJHK6pyli5dip9++gmXLl2CiYlJqeupqamwt7fHtGnTMGPGDNy/fx+2trawt7fH8ePHRUhMJC53d3ckJyfj5MmT5dY4OjrCwsICO3bsQFFREdq2bYuCggLcuHFDg0mJpCcyMhK9e/fGhg0b4O3tXer65s2b8dlnn+Ho0aPo1q0btm7dCk9PT4wZM0alGej07mNDiUhNEydOxKlTpxATEwOZTFbqulwuR7t27dC1a1ds2LABeXl5sLW1hYGBAS5duiRCYiJx7d27FyNHjsShQ4fQo0ePUtePHTuGAQMGYOfOnXBzc8Px48fRs2dPfPTRR/j9999FSEwknmbNmqF///5YvXp1uTVffPEFQkJCcOvWLQDA6NGj8ddffyErK0tDKYmko0GDBpg4cSJ++OGHcmtmzZqFjRs34uHDhwCAzz77DEFBQXj+/LmmYhJJkouLCxo2bIjdu3eXW/Pxxx/j4cOHOHbsGADA1dUVN2/exL179zSUkqSs9LdhIqrQvn37MGDAgDKbSQCgo6ODAQMGYN++fQAAfX19uLq64vbt25qMSSQZixcvxvDhw8tsJgEvBzMff/wxFi1aBABwdnZGv379cOLECU3GJJKEe/fuoXr16hXW6OvrlxjIW1hYIC8vr7KjEUlSXl4eUlJSKqxJSUkp0TwyMDCAri73JiKKjo5+7dqVLVq0QHR0tPLY3t5e2ZwlYkOJSE05OTnIycmpsCY7OxvZ2dnK4wYNGlR2LCLJunbtWok1Lcpibm6Oa9euKY9tbW0524KqJDMzM+zdu7fcBlFeXh727t1bYme39PR01K1bV1MRiSSlffv22LlzJ06dOlXm9TNnzuC3337DBx98oDyXkJBQ5iulRFWNnp4eYmJiKqy5ePEiqlWrpjyWy+WoVatWJScjbcGGEpGabG1tsWPHDiQkJJR5PSEhATt37oStra3yXHJyMho2bKipiESSUrt2bURGRlZYExkZidq1ayuPc3NzYWBgUNnRiCRn3LhxiI+PR7du3bB//35kZGQAADIyMrB//35069YNCQkJ8PHxUX4mMjISdnZ2YkUmEtXChQtRWFiI7t27Y8iQIVixYgW2bNmCFStWYMiQIejWrRvkcjkWLFgAAHj69CmOHDkCZ2dnkZMTia9Xr144fPgwli1bhoKCghLXCgoK8OOPPyIkJAR9+vRRno+NjYWFhYWmo5JEcQ0lIjX98ccfGDZsGGrXro1PPvkEjo6OMDY2Rnp6OqKiouDv74+nT59i9+7dGDJkCF68eAFTU1P06dMH27dvFzs+kcZNmDAB/v7+mDhxIubPn1+iufro0SPMmzcPGzZswLhx4/Drr78CeLmAamFhIc6cOSNWbCJRyOVyjB07Flu3blXujiiTyVBUVAQAUCgUGDVqFIKDgyGTyZCWloalS5eiX79+6Nu3r5jRiURz9OhRTJgwAcnJyQCg3CwFePlK6IYNG9CvXz8AwLNnz3Dr1i2YmZlxBjlVeXfu3EGXLl2QlpYGY2NjdOjQQfm9Jjo6Wnn+9OnTsLS0RGpqKt5//3189tlnWLhwodjxSQLYUCJ6AwEBAZgyZQqePn1aYjt0hUKB2rVrY+XKlfjkk08AvNwV7vjx42jdujXee+89sSITiSYjIwNOTk6Ii4tD9erV8d577ykHK7dv30Z+fj5atmyJyMhI1K9fH6mpqRgwYAC8vb3x5Zdfih2fSBT//PMPtmzZgsuXLyMnJweGhoaws7PD6NGj0bNnT7HjEUlOUVERTpw4gUuXLpW4Z7p161buupdEBDx48AAzZ87Enj17kJ+frzxfvXp1DBs2DEuWLHnt0gVUdbGhRPSGsrOzsW/fvlIDl48++ghGRkZixyOSlNzcXCxduhTbtm1DUlKS8ryVlRVGjx6NmTNnlnjljYiIiIg058WLF7hx44bye02LFi2gp6cndiySODaUiIhIo548eaIcrHCdJCIiIiIi7cSGEhEREZHEpKamIjo6GllZWZDL5WXWeHp6ajgVkTQ9fPgQgYGBOHfuXLn3jCAICAsLEyEdEdG7iw0lojfw4sUL7N2797UDF39/fxHSEUlXbm5uhV+QuWsIVXV5eXkYP348du7cqVyI+98UCgUEQSj3PiKqSi5fvgxXV1c8fvwYFX2t4T1DVLbQ0FCsXLlS+b2mrGePIAgoLCwUIR1Jna7YAYi0zZ07d9C7d2/Ex8e/duDChhLRS/7+/lixYgVu3LhRbg0HK0TAt99+i23btqF58+YYOXIkzM3NoavL4RpReb7++mtkZmZi9uzZGDduHMzNzaGjoyN2LCKt8Pvvv2PEiBEoKiqCpaUlWrZsyWcOqYUzlIjUNGTIEOzduxceHh7w8fGpcLBvaWmp4XRE0rN+/XpMmjQJurq6cHR0rPCeCQwM1HA6ImkxNTVFvXr1EB0djerVq4sdh0jyateujT59+uCPP/4QOwqR1rGzs0NCQgL27dsHV1dXseOQFmL7kUhN//zzD3r27InNmzeLHYVIK/z0009o0KABTpw4gebNm4sdh0jSsrKyMGrUKDaTiFSkp6eHpk2bih2DSCvduHEDHh4ebCbRG5OJHYBI2xQVFaFdu3ZixyDSGnfu3MHw4cPZTCJSQYsWLZCWliZ2DCKt4ezsjPPnz4sdg0gr1a9fHzVr1hQ7BmkxNpSI1NSpUyfExcWJHYNIazRu3JgLoRKpaPr06di3bx9u374tdhQireDn54erV6/Cz89P7ChEWmfYsGEIDQ3lGpb0xriGEpGaoqOj4eTkhM2bN2PYsGFixyGSPF9fXwQFBeHatWuoVauW2HGIJC0iIgJr1qxBWFgYpkyZgvbt28PQ0LDMWicnJw2nI5IeHx8fJCYmIiIiAtbW1rC3ty/znuFmKUSl5ebmok+fPmjUqBFWrVrF3XZJbWwoEalpwYIFOHv2LA4fPgxnZ+dyB/uCIGDOnDkiJCSSlsLCQowcORL379/H0qVL0b59e9SuXVvsWESSJJPJIAiCchdRQRDKreXMP6KX94wqBEHgPUP0LzY2NigoKMCDBw8AAHXq1IGRkVGpOkEQEB8fr+l4pAXYUCJSEwcuROop3r5ZoVBU+OVYEAROuaYqz9fXt8L75FXz5s2r5DRE0nfnzh2Va7n7LlFJVlZWKj9zEhMTKzkNaSM2lIjUdPz4cZVrnZ2dKzEJkXZwcXFRebASHh5eyWmIiIiIiOhtYEOJiIiIiIiIiIjUoit2ACIiIiIiIlVEREQAABwcHKCvr688VgUXsiciers4Q4noNZKTkwEAZmZm0NHRUR6rgjslEBFRRWxsbCAIAkJDQ2FtbQ0bGxuVPscFUqmqKl64Pi4uDs2bN1ceq4JrW1JVt2DBAgiCgEmTJqFevXpYsGCBSp/jZkNUHjaUiF7jTQcuXGCYqiofHx8IgoDFixfDxMQEPj4+Kn2OWzpTVVS8IOo///wDa2trLpBK9BrFC9d/8cUXqFevHheyJ1JDWd9rVMHNhqg8bCgRvYa3tzcEQcDSpUthYmKiPFZFYGBgJacjkh4OVoiIiIikp3hzoU6dOkFfX5+bDdH/jA0lIiJ6q4q3cDYzM4Ouri63dCZ6jdWrV6Nz585wcHAQOwqRVmjfvj0+/fRTTJgwQXkuPT0dqampaNu2rYjJiKQvJycH+vr60NPTEzsKvQNU+9mYqIobMmQIdu3aVeLcixcvkJOTI1IiIumytLREdnY2MjMzlceq/kdUFU2ZMgUhISElzv33v/9F+/btRUpEJG0xMTFITU0tcW79+vVo166dSImItEfdunWxbNmyEufOnDmD1atXi5SItBkbSkQq2Lt3L65fv17i3JIlS1C3bl2REhFJW7t27bBhw4YS544cOYJp06aJlIhIu6SmpuLSpUtixyAioneMQqHAv19SCgkJwdSpU0VKRNqMDSUiInrrynqb+vTp0/j5559FSENERERERG8bG0pERERERERERKQWNpSIiIiIiIiIiEgtumIHICIiIqrqcnNzkZ6erjx++vQpAODhw4dlvkIKAMbGxhrJRiRFJ06cwPLly0scA8CPP/5Y7j0zY8YMjWQjIqoq2FAiUtHVq1dL7PR29epVAMDu3bvLHbgMHz5cI9mIiEi7+fn5wc/Pr8Q5hUKBRo0alVkvCAIKCws1EY1IkkJDQxEaGlrq/MyZM8usFwSBDSWi/7N161acPn1aeXz79m0AwIABA8qsFwQBf/31l0aykXYRFOV9EyYiJZlMBkEQSpwrvnX+fb74miAIkMvlGslHJDUymQwNGjRAgwYNlOcePXqEjIwMtGjRoszPCIKAa9euaSoikWS4uLiU+Sx5nfDw8EpIQyR9mzdvfqPPeXl5veUkRNpHJlN/1Rt+r6HysKFEpIL58+e/0efmzZv3lpMQaYc3GawAQFFR0VtOQkRERETF7ty580afs7S0fMtJ6F3AhhIREREREWklHx8ftGnTBlOnThU7ChFRlcNd3oiIiIiISCtt3769xIL2RESkOVyUm0hNT548wcOHD9GkSRNUq1ZNef63337D/v37oa+vj0mTJqF9+/YipiSSDh8fHwwaNAhubm7l1hw8eBB//PEHAgICNJiMSJoePnyIwMBAnDt3DllZWWWuWyEIAsLCwkRIRyQtTZs2RUpKitgxiLRaamoqoqOjy33mAICnp6eGU5E24CtvRGr67LPPsHXrVqSlpaFmzZoAgPXr12Py5MnKhbpr1KiB6OhotGzZUsyoRJIgk8ng6+uLuXPnllvzww8/YO7cuVzwkaq8y5cvw9XVFY8fPy53B1GAC6QSFVuxYgWWLl2KmJgYmJmZiR2HSKvk5eVh/Pjx2LlzZ7nrWHKzIaoIZygRqen48ePo1auXspkEAEuXLoWZmRm2b9+O1NRUeHp64scff4S/v7+ISYm0R15eHnR1+Ugi+vrrr5GZmYnZs2dj3LhxMDc3h46OjtixiCRr6NChCA8PR9euXTFjxgx07NgRJiYmZe6caGFhIUJCIun69ttvsW3bNjRv3hwjR46Eubk5x2OkFv5rIVJTSkoK+vXrpzyOi4vD3bt3sXz5cnTr1g0AsGfPHkRERIgVkUhyytsSXaFQ4O7duzh8+DBMTU01nIpIek6dOoVBgwZhwYIFYkch0go2NjYQBAEKhQJffvlluXWCIKCwsFCDyYikb9euXbC1tUV0dDSqV68udhzSQmwoEakpPz8fenp6yuPjx49DEAT06dNHec7Gxgb79+8XIx6RJMhkshJNJF9fX/j6+pZbr1AoMHPmTA0kI5I2PT09NG3aVOwYRFrD09Oz3B8tiKhiWVlZGDVqFJtJ9MbYUCJSk7m5OS5fvqw8PnjwIOrVq4e2bdsqz2VkZKB27dpixCOSBCcnJ+UAPyIiAhYWFrCysipVp6Ojg3r16sHV1RXjx4/XcEoi6XF2dsb58+fFjkGkNYKCgsSOQKS1WrRogbS0NLFjkBZjQ4lITf3798cvv/yCb775Bvr6+ggJCSm168HNmzf5nj5VaceOHVP+v0wmw9ixYytclJuIXvLz80Pnzp3h5+eHb775Ruw4RET0Dps+fTo+/fRT3L59G++9957YcUgLcZc3IjWlpqaia9euSEpKAgA0btwYZ86cgbm5OQAgPT0d5ubmmDx5MlauXCliUiIi0jY+Pj5ITExEREQErK2tYW9vD0NDw1J1giBw4wciIvqfREREYM2aNQgLC8OUKVPQvn37Mp85wMvZ50T/xoYS0Rt4/vw5wsLCALz84/rqH97Y2Fj8/fff6Nu3L1q2bClWRCIi0kIymUylOm7hTFWVq6srBEHA5s2bYW5uDldXV5U+JwiCcuxGRC8Vr3lZ3BKoaD0yPnOoLGwoERHRW+Xj4wNBELB48WKYmJjAx8dHpc9xxgURcOfOHZVrLS0tKzEJkTQVfwGOi4tD8+bN2YQl+h/4+vqqvKj9vHnzKjkNaSM2lIjU1L9/f0yYMAFubm7Q0dEROw6R5HCwT0RERET07mNDiUhNxV+WjY2N4e3tjXHjxnERO6JXFM+wMDMzg66uLmdcEBERERG9g9hQIlJTQkICNm7ciODgYKSkpEAQBLi4uGD8+PEYMmQI9PT0xI5IpJXS0tJgYmIidgwiSdi2bRuCgoIQExODnJwcGBoaol27dvD29saoUaPEjkdERETEhhLRm5LL5Th48CA2bdqEkJAQFBUVoW7duvD09MQnn3wCW1tbsSMSiWb9+vX47LPPVK5PS0tDjx49EBsbW4mpiKRPLpdj+PDh2Lt3LxQKBfT19WFiYoK0tDTk5eVBEAQMGjQIu3fvVvl1UqKqIC8vD+fOncODBw+Qn59fZo2np6eGUxFJ3927d7Fo0SKEhobiwYMHePHiRakaQRBQWFgoQjqSOjaUiN6ClJQUBAQEIDAwEImJiQCALl26YPz48RgxYgT09fVFTkikWbq6uti2bRtGjBjx2tpHjx7B2dkZ169f5xpKVOWtWrUKX3/9Nbp164Zly5ahS5cuymunT5/GzJkzceLECaxcuRJfffWViEmJpOOXX37BnDlzkJ2dXeZ1hULBdfqIypCQkIBOnTrh8ePHaN26Na5cuQJLS0vo6+sjISEBBQUFsLOzQ506dRAeHi52XJIg/rRF9BY0btwYM2fOxJIlS9C4cWMoFAqcPHkSPj4+MDc3x48//oiioiKxYxJpTKNGjeDl5YWjR49WWPfo0SO4uroiLi4On3/+uYbSEUnX5s2b0bx5c4SFhZVoJgFA586dERoaiubNmyMwMFCkhETS8scff+CLL75AkyZN4OfnB4VCgY8++giLFy9Gv379oFAoMHToUAQEBIgdlUhy5s+fj+zsbISFheHSpUsAgLFjxyIuLg5JSUlwc3NDbm4u9uzZI3JSkio2lIj+Rzdv3sSMGTNgbm4Od3d3ZGZmwsPDA6GhoVi2bBlq166Nb7/9FjNnzhQ7KpHGHD16FLVr18bQoUNx+vTpMmsyMjLQq1cvXL16FZ9++inWrFmj4ZRE0nPz5k24ubmhWrVqZV6vVq0aPvzwQ9y8eVPDyYik6aeffoKxsTFOnTqFqVOnAgDs7e0xc+ZM/PXXX9i6dSv27t3LTR+IyhAaGooBAwbA2dlZea74BabGjRvjt99+AwDMmjVLlHwkfWwoEb2BvLw8bNmyBc7OzmjVqhX8/PxQr149rFixAvfv38fmzZvh6uqKb775Bjdu3ICjoyOCg4PFjk2kMba2tjh06BAAYODAgbh27VqJ648fP0bv3r1x+fJljB8/HuvWrRMjJpHk6OnpITc3t8Ka3NxcbgBB9H8uX74MNzc31KxZU3nu1VfbRo0aBVdXVyxYsECMeESS9ujRI7Rs2VJ5rKuri2fPnimPq1evjt69e+PgwYNixCMtwIYSkZomT54MU1NTeHt748yZMxgxYgTCw8MRGxuLKVOmoG7duiXqq1evjr59++LRo0ciJSYSh4ODA/bu3Yvc3Fz07dsXSUlJAICsrCz07t0bMTEx8PHxwX//+19xgxJJSLt27bBr1y48ePCgzOspKSnYtWsX2rdvr+FkRNJUUFCAhg0bKo9r1KiBrKysEjV2dna4cOGChpMRSV+DBg1K/IjRoEED5XitmK6ubql7iqgYG0pEalq3bh3q16+PpUuX4t69e9i+fXuJaaJlcXFxwdy5czWUkEg6evbsiW3btiEtLQ29e/fG9evX0bt3b1y4cAFeXl7YtGmT2BGJJGXatGnIyMhAhw4dsGLFCpw/fx53797F+fPn4efnhw8++ACZmZmYNm2a2FGJJMHU1BQpKSnKY0tLS1y8eLFEzZ07d6Crq6vpaESS16xZM8THxyuPHRwccOTIESQkJAAAHj58iD179qBp06ZiRSSJ4y5vRGoKCwtDz549xY5BpFX8/f0xfvx46OjoQC6XY/To0QgODoYgCGJHI5KclStX4ttvvy21I5VCoYCuri6WLVumXCuGqKobNWoUYmNjERMTA+BlU/bnn3/GokWL4ObmhhMnTmDy5Mno1asXDh8+LG5YIolZtmwZfH19kZKSgjp16uDYsWPo2bMnatSogVatWuH27dvIycnBhg0bMH78eLHjkgSxoURERG9denp6qXN+fn7w8/NDnz59EBgYCB0dnVI1xsbGmohHJHkJCQnYtm0bYmJikJOTA0NDQ7Rr1w6jRo2CjY2N2PGIJOPPP//ErFmzcPjwYVhZWeHhw4fo0KED7t27B+BlI9bIyAgRERFo06aNyGmJpCUnJwdxcXGwtbWFgYEBAGD37t3w9fVFQkICLC0t8cUXX2DSpEkiJyWpYkOJ6A0UFhZizZo12LFjB65fv45nz56hsLAQABATE4Nff/0VU6ZMQfPmzUVOSiQOmUxW5uwjhUJR7qwkQRCU9xEREdGbevz4MTZt2qT8Quzh4QEzMzOxYxERvXPYUCJS0/Pnz9GnTx+cPHkSDRo0QLVq1ZCSkqJ8NSE7OxuNGjXC119/jUWLFomclkgcLi4ub/Q6W3h4eCWkISKid1FERATOnTsHQRDg4OCAbt26iR2JiKhKYUOJSE1z5szBDz/8gKVLl2L69OmYP38+Fi5cWGKti379+iEjIwPnzp0TMSkREUldRETEG3/WycnpLSYh0h6FhYUYOnRoqa3MBw0ahN27d0Mm475DRKpITk5+bY1MJoOhoSEMDQ01kIi0Dbc7IFLTb7/9hh49emDGjBkAUOYsDBsbm1I7jBAREf3bm87mA1Bq0W6iqmLt2rU4cOAAjI2NMWTIEAAv11Lau3cv1q1bh8mTJ4uckEg7WFlZqfwMMjY2xuDBgzFv3jyYmJhUcjLSFmwoEakpOTkZgwcPrrDGwMAA2dnZGkpEpB2SkpLw6NEjAEDDhg1haWkpciIi8c2dO5e7HRKpafv27ahTpw5iYmLQqFEjAC/vJVtbW2zdupUNJSIVeXp6IikpCREREahbty7s7e1hYmKCtLQ0XLp0CZmZmXB2doaBgQGuXLmCDRs24MCBAzh79iwaN24sdnySADaUiNRkYGBQ5g5Wr4qPj0fDhg01lIhIulJTU7Fo0SLs2rULGRkZJa41bNgQ7u7u+O677/hLF1VZvr6+Ykcg0jo3btzAxx9/rGwmAUCjRo0wePBg7NmzR8RkRNpl+vTp6NatG+bOnYsZM2agZs2aymvPnz/H8uXL8fPPP+PEiRNo2bIllixZgjlz5mDRokX45ZdfRExOUsEXjInU1LlzZxw4cABZWVllXr979y4OHTrEtS2oyrty5Qrat2+P9evX49GjRzA3N4eDgwMcHBxgbm6O9PR0rF69Gh06dEBcXJzYcYmISEs8efIETZo0KXW+SZMmePr0qQiJiLTTjBkz0KlTJ/j6+pZoJgFAjRo1MG/ePHTq1AkzZ86ETCbD999/j44dO+LQoUMiJSapYUOJSE3Tp0/H48eP0bNnT0RFRSm3OX/27BnCwsLQt29fFBYWYtq0aSInJRJPQUEB3N3dkZqaCi8vL8THx+POnTs4deoUTp06hTt37iA+Ph5eXl64f/8+3N3duR4MERGprKxXRfn6KJF6oqKi0KFDhwpr2rdvj8jISOVxp06dkJKSUtnRSEvwlTciNTk5OWHt2rX46quvSsxCMjAwAADo6Ohg3bp1+OCDD8SKSCS6/fv3Iy4uDtOmTYOfn1+ZNdbW1ggMDES9evXw008/Yf/+/a9dn4yoKnjy5AnWrl2L0NBQPHjwAPn5+aVqBEFAfHy8COmIpOHevXs4e/ZsqXMAcO7cOZS1kbWDg4NGshFpi6KiIty+fbvCmtu3b5e4n6pVqwZ9ff3KjkZaQlCU9deWiF4rLi4OGzZswJkzZ5CZmQlDQ0N06tQJn3/+OVq3bo20tDSuC0NV1pgxY3Dw4EHcv38ftWrVqrA2NzcXpqam+OijjxAcHKyhhETS9PDhQ3Tt2hXx8fEwNDRETk4OjIyM8OLFCzx//hwAYGpqimrVqiExMVHktETikMlk5c5GUigU5V7jTFiikgYMGIC///4bW7duxYgRI0pd3717N0aNGoXevXsrX3P78MMPER8fj9jYWE3HJQliQ4lIBevXr8dnn32mcn1aWhp69OjBP7RUZbVu3RpNmzbF/v37Vap3c3NDYmIirly5UsnJiKRt0qRJWL9+PYKDgzF69Gjo6OjA19cXc+fOxblz5/DFF19AV1cXR48eLbXeBVFVMXbs2Df6XGBg4FtOQqTdrly5AkdHR+Tm5sLOzg6Ojo4wNjZGeno6Tp48iZiYGNSqVQsnTpxA27ZtkZGRATMzM3zyySdYu3at2PFJAvjKG5EKvvjiC9SrV6/Mzv2/PXr0CK6urrhx44YGkhFJU0pKCvr166dyfbNmzRAVFVWJiYi0w6FDh9CzZ0+MGTOm1LWOHTvi8OHDaNOmDebPn49ly5aJkJBIfGwMEb0dbdq0QWRkJCZPnoyoqCjExMSUuO7o6Ig1a9agbdu2AIA6deogLS2NP2iQEhtKRCpo1KgRvLy8ULduXfTp06fcuuJmUlxcHCZNmqTBhETS8uTJExgaGqpcb2BggCdPnlRiIiLtkJKSgo8//lh5rKOjo3zVDQDq1q2L/v37Y9euXWwoERHR/8zOzg6RkZFITk7GpUuXkJOTA0NDQ9jZ2cHCwqJErY6ODoyMjERKSlLEhhKRCo4ePQonJycMHToUf//9Nzp37lyqJiMjA7169cLVq1fx6aefYs2aNSIkJZIGuVyu1m47giBwbQsiAEZGRigoKFAe161bV7nQcDFDQ0OkpaVpOhoREb1jXF1d4ejoiIULF8LCwqJUA4noddhQIlKBra2t8jWEgQMH4vjx42jdurXy+uPHj9G7d29cvnwZ48ePx7p160RMSyQNZe3AU1EtEQE2NjZISkpSHrdr1w5///03MjIyUL9+fTx//hwHDhzgoJ/oFYmJifj5559x6dIlPHjwoERTthh3RiQq7cyZM2X+UE6kKi7KTaSGsLAwDBw4EPXr18eJEydgZWWFrKws9OrVCxcuXICPjw82bdokdkwi0VW0A09Zinfl4SwlqurmzZuHVatWITU1FTVr1sQff/yBYcOGwdTUFF26dMGFCxeQlJSEH374Ad9++63YcYlEFxISgkGDBuHFixeoVq0ajI2Noatb9m/m3BmRqKQPPvgALVu2xLZt28SOQlqKDSUiNf3xxx8YMWIErKyscODAAXh4eCA6OhpeXl5cJJLo/3AHHqI3k5KSgoiICPTs2RMNGjQAAKxYsQKLFi1CdnY2atSogc8//xxLly6Fjo6OyGmJxGdnZ4fbt28jKCgIQ4cOhUwmEzsSkdYICgrC5MmTcfbsWdja2oodh7QQG0pEb8Df3x/jx4+Hjo4O5HI5Ro8ejeDgYLVmZBAREalKLpfj0aNHMDY25rOG6BU1atTAmDFjsHHjRrGjEGmdiIgILF++HBEREZg4cSI6duwIExOTMp8zTk5OIiQkqWNDiUgF6enppc75+fnBz88Pffr0QWBgYJm/FBsbG2siHpHWS0xMxPz58xEUFCR2FCJRPX36FLVr1xY7BpHWsLa2xsCBA7kZCtEbKF6ioLglUNEPFlyWgMrChhKRCspbD6Z43ZeyCIKAwsLCyo5GpNWSk5OxcOFCBAcHo7CwkIMVqvJq1aqFQYMGwcPDA3369OHrO0Sv8f333+O3337D1atXoa+vL3YcIq3i6+ur8qzXefPmVXIa0kZsKBGpwMXF5Y1eMQgPD6+ENETa4cSJE5gzZw6io6Ohq6uL7t27Y/ny5WjRogWePXuG2bNnY926dXjx4gVMTU3x3XffYdKkSWLHJhJV27ZtcfXqVQiCgIYNG2LkyJEYM2YMPvjgA7GjEUlSQUEBBg8ejCdPnmDx4sWws7PjLD8iIg1hQ4mIiN666OhoODo64sWLFyXON27cGJGRkXBzc0NsbCxMTU0xc+ZMTJgwAdWrVxcpLZG0XL58GcHBwdixYwdSUlIgCAJatGgBDw8PjB49GhYWFmJHJJKUo0ePwt3dHdnZ2eXWcOY4EdHbx4YSERG9dSNGjMDu3buxZMkSjBs3DgCwceNGfP/992jcuDHS0tIwa9YszJo1i68oEJVDoVAgNDQUW7Zswd69e/H06VPIZDJ069YNHh4eynuLqCr77bffMHr0aBQVFcHGxgaNGzeGrq5umbWcOU5UttzcXOzduxcxMTHIycmBoaEh7O3tMWjQINSqVUvseCRhbCgRvQWFhYW4cuUKAOD9999HtWrVRE5EJC5zc3O0bNkSoaGhJc737NkTx44dw48//ohp06aJlI5I+zx//hx//vkntmzZgtDQUCgUCs62IALQunVrpKamIiQkBB07dhQ7DpHW+f333zFhwgRkZWXh1daAIAioU6cONm7ciCFDhoiYkKSMKz0SqSAxMREBAQG4efNmqWsHDx6EmZkZOnTogA4dOqBx48bYtWuXCCmJpCM9Pb3MNV+Kz3l5eWk6EpFWKywsRH5+PvLz81FUVAT+Hkj0UmJiItzd3dlMInoDJ0+ehLu7O3Jzc/HJJ59g+/btCA8Px44dOzB+/Hg8e/YM7u7uOHXqlNhRSaLKng9KRCVs3LgRy5YtQ0JCQonzt2/fxvDhw5GXlwdLS0vUqlULcXFxGD16NJo1a4Z27dqJlJhIXIWFhWVOkS4+V79+fU1HItI6crkchw4dwtatW3Hw4EHk5eVBJpOhT58+8PDwEDsekSQ0adKEO4QSvaHFixejevXqiIqKgp2dXYlrI0aMwOeff46uXbti8eLFOHDggEgpSco4Q4lIBSdOnIC9vT0sLS1LnP/555+Rl5eHSZMmITExEVevXsXvv/8OuVyOtWvXipSWiIi02enTpzF58mQ0btwYgwYNwu7du9GiRQv4+fnh3r17OHz4MEaNGiV2TCJJGD9+PA4cOIDMzEyxoxBpnVOnTmHEiBGlmknF2rZti+HDh+PkyZMaTkbagjOUiFSQmJiIgQMHljofEhICPT09LF68WHlu0KBB6N69OyIjIzUZkUhytm7ditOnT5c4d/v2bQDAgAEDStULgoC//vpLI9mIpKpZs2ZISEiAQqGAmZkZpk+fDg8PD7Ru3bpEXX5+PndGJAIwbNgwREVFwdHREbNnz4adnR0MDQ3LrOUOiUQlPXv2DCYmJhXWmJiY4NmzZxpKRNqGi3ITqUBfXx/Tp0/HwoULlecyMzPRoEEDdO/eHcePHy9RP2XKFGzcuBG5ubmajkokCTKZ+hNgBUHgawtU5RkYGGDYsGHw8PBAjx49IAhCiesXLlyAv78/du7ciYyMDJFSEkmHTCaDIAhQKBSl7pdXCYLAheyJ/qVVq1aoXbs2zp07V26Ng4MDnjx5gri4OA0mI23BGUpEKqhWrVqpgXt0dDQAoEOHDqXqub0mVXWJiYliRyDSSunp6ahRo0aJc1lZWdi6dSv8/f1x+fJlKBSKUjVEVZWnp2eFjSQiKt/w4cOxcOFCeHl5YcmSJTA1NVVeS0lJwXfffYfo6GjMmTNHxJQkZWwoEamgefPmCAsLK3Hu6NGjEAQBXbt2LVX/4MEDNG7cWFPxiCTn3+uNEZFqXm0UhYaGwt/fH/v27UN+fj4UCgW6dOmCsWPHYsSIESKmJJKOoKAgsSMQaa2ZM2ciJCQEW7ZswW+//Yb33nsPJiYmSEtLw+3bt/HixQs4ODhg5syZYkclieIrb0QqWLx4MWbPno0JEybg888/x82bNzFu3DgAL5tH/56R1Lx5c9jY2CAkJESMuEREpKXu3r2LwMBABAYGIjk5WbmW0v379+Ht7Y2AgACxIxIR0TskPz8fy5YtQ3BwcIkdrW1sbODl5YUZM2ZwzT4qFxtKRCp49uwZunTpgitXriinVSsUCqxcuRJTpkwpUXv+/Hk4ODjgxx9/xNdffy1CWiIi0iYFBQXYu3cv/P39ERYWBrlcjlq1amHw4MHw9PSEq6srdHV18cknn+DXX38VOy6RZEVFRSEmJgY5OTkwNDSEvb09HB0dxY5FpDWePHmivH8MDAzEjkNagK+8EamgZs2aiIqKwqpVq3D69GnUr18fH3/8MT788MNStRcuXMBHH30ENzc3EZISEZG2MTU1RWZmJgRBQI8ePeDp6YkhQ4ZwPT4iFZ08eRJjx45V7iT66gLdzZo1Q2BgILp06SJmRCKtYGBgwEYSqYUzlIiIiIhEJJPJIJPJMHXqVMyYMQMNGzYss4YzlIhKu3btGjp16oRnz56hd+/e6NGjBxo3bozU1FSEh4fj6NGjqF27Nk6fPg1bW1ux4xKJzsbGRu3PCIKA+Pj4SkhD2o4NJSIiIiIR+fj4YPfu3Xj27Bl0dXXRt29feHh44KOPPoKenh4ANpSIyjNixAj8+eef2L9/P/r161fqekhICNzc3DBkyBDs3LlThIRE0iKTyaCjowNdXfVeVnr+/HklJSJtJhM7AJE2yM3NRbNmzeDo6IiCgoJy6168eIFu3bqhZcuW/KNLREQqCQgIQEpKCv773/+iffv2OHjwINzd3WFiYoKJEyfixIkTYkckkqxjx45h2LBhZTaTAKBfv34YNmwYwsPDNZyMSNpcXFwQHByMnJwcPH/+/LX/EZWFDSUiFQQGBiIhIQFLlixBtWrVyq3T09PDkiVLcPPmTQQGBmowIRERabPatWvjk08+walTp3Dt2jVMmTIFenp62LhxI5ydnSEIAm7cuIE7d+6IHZVIUrKzs2FtbV1hjbW1NbKzszWUiEjaYmNj8dVXXyEmJgbu7u4wNTXF1KlTceXKFbGjkRbiK29EKujduzdSUlJw9epVlert7OzQoEEDhIWFVXIyIiJ6VxUWFip3f/v7779RVFQEmUwGZ2dneHt7w8PDQ+yIRKKzsbGBtbV1hWOuXr16ISEhocSW6ERVnVwux4EDBxAQEICQkBDI5XK0a9cO48aNw6hRo2BkZCR2RNICnKFEpIJLly7ByclJ5XpHR0d2+YmI6H+iq6uLYcOG4fDhw0hKSsL8+fNhaWmJ8PBweHt7ix2PSBLc3Nxw7NgxzJkzB3l5eSWu5eXlYd68eQgPD8dHH30kUkIiadLR0cGgQYOwf/9+3L17F4sXL0Zubi4mTZoEU1NTjBkzBsnJyWLHJInjDCUiFejp6WHmzJlYuHChSvWzZ8/Gjz/+iPz8/EpORkREVU1YWBgCAgKwbds2saMQiS4jIwOdOnVCYmIi6tevDwcHB5iYmCAtLQ3nzp3Dw4cPYWNjg7Nnz6JevXpixyWSvLCwMHh7e+PBgwf4888/4ebmJnYkkjD1lnYnqqIMDQ2RkZGhcn1mZiYMDAwqMREREVVVPXv2RM+ePcWOQSQJ9evXx+nTpzFjxgzs3LkThw4dUl7T19fH2LFjsWzZMjaTiF7j3LlzCAgIwM6dO5GdnQ0zMzOYm5uLHYskjjOUiFTQtWtX5OTkqLyG0vvvvw8jIyNERUVVcjIiIiIiAoCCggJcv34dOTk5MDQ0RMuWLSvcTIWoqnv06BG2bNmCwMBAXLt2Dbq6uvjwww8xbtw49O3bFzIZV8ihivFfCJEKBgwYgLi4OOzcufO1tbt27UJsbCz+85//aCAZERERUdWVnJyMnJwcAEC1atXQpk0bODo6ok2bNspm0pMnT7gWDNH/KSoqwsGDBzFkyBCYmZnh66+/BgCsWLEC9+/fx549e9C/f382k0glnKFEpIKsrCw0bdoU+fn5WLt2bbmLoW7evBmTJ0+Gvr4+bt26hTp16mg0JxEREVFVoqOjA19fX8yZM6fcmh9++AFz586FXC7XYDIiaTI1NUVaWhqMjIzg7u4OHx8fdOjQQexYpKW4hhKRCurUqYNdu3bBzc0N48aNg6+vL5ydnZXvFd+/fx/Hjh3D3bt3oa+vj127drGZRERERFTJFAoFXvf7OH8/J/r/UlNTUa1aNdjZ2SEpKQlz58597WcEQcBff/2lgXSkbdhQIlJRz549cfLkSXz55ZeIjIzEli1bStU4OTnh559/hp2dnQgJiYiIiOjf7t27x81SiF5RUFCA48ePq1wvCEIlpiFtxoYSkRrs7Oxw/PhxxMfHIyoqCqmpqQCARo0awdHREU2bNhU5IREREdG7bcGCBSWOjx07VmadXC7H3bt3sXPnTnTu3FkDyYikLzExUewI9A7hGkpERERERKQ1Xl0sWBCE177SZmpqij///BMdO3as7GhERFUKZygRqSgiIgLZ2dno169fuVvQvnjxAkeOHEGdOnXQvXt3DSckIiIieveFh4cDeLk2kqurK7y9veHl5VWqTkdHB/Xq1UPLli1RUFCg6ZhERO88zlAiUkFcXBzatm0LLy8vbNq0qcLaCRMmICgoCFeuXEGLFi00lJCIiIio6pk/fz569OgBJyenMq9fuHAB/v7+2LlzJzIyMjScjojo3caGEpEKpk2bhvXr1yMpKQkmJiYV1qalpcHa2hqffvopVq5cqaGERERERAQAWVlZ2Lp1K/z9/XH58mUoFArUqFEDubm5YkcjInqn8JU3IhX8888/cHFxeW0zCQBMTEzg4uKCsLAwDSQjIiIiIgAIDQ2Fv78/9u3bh/z8fCgUCnTp0gVjx47FiBEjxI5HRPTOYUOJSAUJCQno1auXyvW2traIjIysxEREREREdPfuXQQGBiIwMBDJyclQKBQwMzPD/fv34e3tjYCAALEjEhG9s9hQIlLBixcvoKenp3K9np4eCgsLKzERERERUdVUUFCAvXv3wt/fH2FhYZDL5ahVqxZGjx4NT09PuLq6QldXF7q6/KpDRFSZ+FeWSAUNGzZEQkKCyvWJiYlo0KBBJSYiIiIiqppMTU2RmZkJQRDQo0cPeHp6YsiQIahVq5bY0YiIqhQ2lIhU0LFjR/z99994+vQpateuXWHt06dPcfToUbi4uGgmHBEREVEVkpGRAZlMhqlTp2LGjBlo2LCh2JGIiKokmdgBiLTBmDFj8PjxY0yePPm1tV988QWysrIwZswYDSQjIiIiqlq8vb1Ro0YNrFy5Eubm5nBzc8Pu3bvx4sULsaMREVUpbCgRqWDIkCHo0aMHtmzZAldXV/zzzz8lBi0FBQUICwtDz549ERwcDFdXVwwePFjExERERETvpoCAAKSkpOC///0v2rdvj4MHD8Ld3R0mJiaYOHEiTpw4IXZEIqIqQVAoFAqxQxBpg8ePH2PQoEGIjIyEIAjQ1dVVrpOUkZGBgoICKBQKdO/eHfv27UOdOnXEDUxERERUBcTFxWHTpk3YunUrHj58CEEQAADdunVDcHAwLC0tRU5IRPRuYkOJSA1yuRzBwcHw9/fHuXPnUFBQAACoVq0aHBwcMG7cOHh4eEBHR0fkpERERERVS2FhoXL3t7///htFRUWQyWRwdnaGt7c3PDw8xI5IRPROYUOJ6A3J5XJkZGQAAOrXr88mEhEREZFE3Lt3D4GBgQgKCkJiYiIEQYBcLhc7FhHRO4UNJaK3rKCgQPnrWEhIiNhxiIiIiKq0sLAwBAQEYNu2bWJHISJ6p7ChRPSWXL16Ff7+/ti6dSsyMzMBgL+EERERERER0TtJV+wARNrsyZMn2L59OwICAnD+/HkAgL6+PkaOHImxY8eKnI6IiIiIiIiocrChRPQGIiIi4O/vj99//x3Pnz9H8US/fv36YefOnTA0NBQ5IREREREREVHlYUOJSEWpqakICgpCQEAA4uPjoVAoYGFhgTFjxsDDwwOtWrWCubk5m0lERERERET0zmNDiUgFH374IY4cOYLCwkIYGBgot551cXEROxoRERERERGRxrGhRKSCv/76CzKZDNOnT8eCBQtQvXp1sSMRERERERERiUYmdgAibWBjY4OioiL4+fmhU6dOWLlyJVJTU8WORURERERERCQKNpSIVHD79m38888/GDlyJG7evIlvvvkGTZo0Qf/+/bFjxw7k5eWJHZGIiIiIiIhIYwRF8fZURKSS7OxsbNu2Df7+/rh48SIEQUDt2rXx9OlTfPzxx9i5c6fYEYmIiIiIiIgqFRtKRP+DS5cuYePGjdi+fTuysrIgCAKsrKzg7e0NT09PWFpaih2RiIiIiIiI6K1jQ4noLcjPz8fvv/8Of39/HDt2DAqFAjo6OigoKBA7GhEREREREdFbx4YS0VuWlJQEf39/bN68GcnJyWLHISIiIiIiInrr2FAiqiQKhQKCIIgdg4iIiIiIiOit0xU7AJE2sLGxUfszgiAgPj6+EtIQERERERERiYszlIhUIJPJoKOjA11d9Xqwz58/r6REREREREREROLhDCUiNbi4uMDHxweDBg1CtWrVxI5DREREREREJAqZ2AGItEFsbCy++uorxMTEwN3dHaamppg6dSquXLkidjQiIiIiIiIijeMrb0RqkMvlOHDgAAICAhASEgK5XI527dph3LhxGDVqFIyMjMSOSERERERERFTp2FAiekNpaWkICgpCUFAQbty4gRo1amDw4MFYvHgxLCwsxI5HREREREREVGnYUCJ6C8LCwuDt7Y0HDx7gzz//hJubm9iRiIiIiIiIiCoNF+Um+h+cO3cOAQEB2LlzJ7Kzs2FmZgZzc3OxYxERERERERFVKjaUiNT06NEjbNmyBYGBgbh27Rp0dXXx4YcfYty4cejbty9kMq51T0RERERERO82vvJGpIKioiIcOnQIAQEB+Ouvv1BQUID3338fPj4+GDNmDBo0aCB2RCIiIiIiIiKNYUOJSAWmpqZIS0uDkZER3N3d4ePjgw4dOogdi4iIiIiIiEgUbCgRqUAmk6FatWro2rUratSoodJnBEHAX3/9VcnJiIiIiIiIiDSPDSUiFbzJukiCIEAul1dCGiIiIiIiIiJxcVFuIhUkJiaKHYGIiIiIiIhIMjhDiYiIiIiIiIiI1ML9zYmIiIiIiIiISC1sKBERERERERERkVrYUCIiIiIiIiIiIrWwoURERERERERERGphQ4mIiIiIiIiIiNTChhIREREREREREamFDSUiIiIiIiIiIlILG0pERERERERERKSW/wfjOQJj6mEm6QAAAABJRU5ErkJggg==", "text/plain": [ "
" ] @@ -661,17 +2676,17 @@ "id": "3ee14366", "metadata": { "execution": { - "iopub.execute_input": "2024-11-24T09:28:28.576983Z", - "iopub.status.busy": "2024-11-24T09:28:28.576761Z", - "iopub.status.idle": "2024-11-24T09:28:28.913143Z", - "shell.execute_reply": "2024-11-24T09:28:28.912512Z" + "iopub.execute_input": "2025-05-08T16:23:24.713891Z", + "iopub.status.busy": "2025-05-08T16:23:24.713590Z", + "iopub.status.idle": "2025-05-08T16:23:25.088793Z", + "shell.execute_reply": "2025-05-08T16:23:25.087682Z" }, "lines_to_next_cell": 2 }, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABIkAAAJZCAYAAAAtXGVNAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAADgPUlEQVR4nOzdd3gU5d7G8Xs3lQAJgUBCD02a0rtiAEFABLFyEAWiYEXUqCAiHcSKWFAUaR5REAt6QFFAOihdxSNKC53QgwRIIHneP3h3TpZsQrJJdjfh+7muvSAzz+z8dnaemdl7Z2dsxhgjAAAAAAAAXNXs3i4AAAAAAAAA3kdIBAAAAAAAAEIiAAAAAAAAEBIBAAAAAABAhEQAAAAAAAAQIREAAAAAAABESAQAAAAAAAAREgEAAAAAAECERAAAAAAAABAhEZCnbDabbDabli1b5u1SCrVly5ZZyxoFw8qVK9WlSxeVLl1afn5+stls6t69u7fLArymTZs2stlsGjlypLdLKfTYN/uWvXv3KjY2VpUqVVJgYKBsNptKlCjh7bJQyHljOxAfH2/NNz4+3mPzBXKLkAjIxMiRI60N+5UeKDyWLVumkSNHasaMGW5Nn911xtXD3Xn6up9//lnt2rXTd999p+PHj6tkyZKKjIxUeHi4t0srlNKvU7Vr175i+/Xr1ztN07dv3/wvspBJH1xf6UFQUXjEx8dr5MiRmQZ9jiDQnUdh7YeJiYm6/vrrNWPGDO3bt08hISGKjIxUZGSkt0uDj0oftFz+CAwMVFRUlDp06KAPPvhAFy5cyPHznzp1yurHp06dyvsXABRA/t4uACgIsnvwUrNmTUlSSEhIfpZz1QsJCbGWdV5btmyZRo0apZiYGLcO0jNbV86cOaOkpKQs2xQpUiTH8ysIJk6cqIsXL+r666/Xt99+q5IlS3q7pKvGtm3btHbtWrVs2TLTNtOmTfNgRYVfeHi4AgMDMx3vGFepUiXVrFlTERERnirtqpVf++b4+HiNGjVKklwGRY5A/HIpKSk6efKkpMzXl7CwsDyt1Vd89tln2r9/v8LDw7VmzRrVqlXL2yWhAAkNDXU6Vjp9+rQSEhKUkJCgxYsX68MPP9SiRYtcHmdkth04deqU1Y/79u2bp2e1BQQEWPMNCAjIs+cF8hshEZANhw8fzla7bdu25XMlkKRmzZr57LLObF0ZOXKkdRCS3fWpsPj9998lSf/6178IiDwoOjpa8fHxmj59eqYh0fnz5zV79mzZbDZVqlRJe/bs8XCVhc9XX32lNm3aXLHdxx9/nP/FQJL39s1fffWVy+HLli1T27ZtrTbZWV8KC8f+oF27dgREyLG33norwxd4Bw4c0Ouvv66JEydq06ZNGjJkiD744IMM03pjO1C+fHmfPV4FssLPzQAA+ers2bOSpGLFinm5kqtL7969ZbPZNGfOHOs9uNxXX32lU6dOKSYmRtHR0Z4tEMBVh/0B8lr58uX15ptv6qabbpIkzZs3z7sFAYUAIRGQhzK75sTlF65LSEjQk08+qSpVqig4OFiRkZH617/+dcVvG/bs2aMHH3xQFSpUUFBQkCpUqKDY2Fjt2LEjWxfHS0lJ0Xvvvae2bdsqIiLC+i33bbfdpu+//z5br+vIkSOKi4vTNddco5CQEKdrMvXt29e6loIxRpMnT1azZs0UGhqq0NBQ3XDDDfr0008znU/6C7leuHBBb7zxhpo0aaISJUo4LdesLlw9Y8YM2Ww26wPvxo0bdc8996hs2bIKCgpS1apVFRcXZ53q7+BYfo6zfZYvX+7RawZldxmfPXtWn332mXr37q0GDRqodOnSCgoKUrly5dS9e/cs30d3l016v/zyi3r16mWtu0WLFlXlypUVExOjMWPGaP/+/Rlek2N9jI2NdVqel6+nO3fu1KOPPqoaNWqoSJEiCg0NVaNGjTR69GidPn3aZT2XrwubN29Wr169VKFCBQUEBFjf0F/+2leuXKmuXbuqTJkyKlq0qBo2bKipU6c6PfeCBQvUoUMHlS5dWiEhIWratKnmzJmT6bJxWL16te677z5VrlxZwcHBCgsLU7NmzfTKK6/ozJkzLqe5vO989NFHuuGGG1SqVCm3170qVaooJiZGp0+f1pdffumyjeOnZrGxsdl6zs2bN6t3797WawsPD1erVq00ceJEJScnu5zm8mW/dOlSde/eXWXLlpWfn1+Gb4VXrFihrl27KiIiQkWKFFHNmjU1dOhQnTlzJsNzpeftvpFTWV24Ojo62nrfU1JS9Nprr6l+/foqWrSowsLC1K5dOy1cuDDL509KStKIESNUu3ZtFSlSRGXKlNEtt9yiJUuWZJhHZhYsWKA777xT5cuXV1BQkMLDw3XjjTfq/fffV0pKyhVfV1bb8cuX+aJFi9S5c2eVLl1aRYoUUd26dTV27FidP3/e5Xwc1w109PEvv/xSN998s8qUKSO73e60XPNj3xwdHW2dDZR+HnlxTaHsLsO0tDQtWbJEAwcOVIsWLVShQgUFBgaqVKlSiomJ0eTJkzO9RkteHJfs379fTz/9tOrWrauiRYta/a1x48Z6+umntX79+gyvybG+zZw5M8v9a2JiokaPHq1GjRpZPzGqUaOGHn30Ue3atSvTmrKzL738te/Zs0f9+/dXpUqVFBwcrGrVqunFF1+0fiIuSVu3btV9992nihUrKjg4WDVq1NDYsWOveA2c+Ph4PfXUU6pbt66KFSumkJAQ1apVS08++aT27t3rcpqcbjOzkn55HD58WAMGDLDe46ioKPXq1StbZ7rk57YgrzRo0ECSMt3PutoOtGnTRlWqVLH+rlKlitN6eflZftu2bdNDDz1krVPBwcGqWLGiWrRooRdeeCHDsszq2Dy31ydz51gDyDYDwKURI0YYSSYn3cTRfunSpU7Dd+/ebY2bP3++KVOmjJFkQkJCTFBQkDUuNDTUbNmyxeVzr1mzxhQvXtxqW6RIEVOsWDFrus8//9wat3v37gzTx8fHm7p161ptbDabCQsLs/6WZB555JEsX9eUKVNMZGSkkWSCg4Otehz69OljJJk+ffqYHj16GEnGbreb8PBwY7PZrOeJjY01aWlpGeYTExNjJJnBgwebVq1aGUnG39/fmt6xXJcuXZrpezN9+nQjyVSuXNnMmjXLBAQEGEkmLCzM2O12a7q6deuaf/75x5pu7969JjIy0hQtWtRIMgEBASYyMtLpMXv2bJfLJzuutD5ldxk7Xl/69zAkJMTpfXzmmWdczsPdZeMwY8YMp/cxKCjIhIaGOs17+vTpVnvHcnM8d2hoqNPy3Lt3r9V2zpw5Tn2hePHiTn9XrFjR/Pe//81QU/p14YsvvrBeU2hoqAkODjYxMTEZXvuUKVOM3W532Qeef/55Y4wxw4cPt9bfy9u8//77LpdvamqqGThwoFPbYsWKGT8/P+vvmjVrmvj4+AzTOvpO7969zZ133unUd+x2u9NyvZL078XMmTONJNO2bdsM7eLj443NZjPFixc3SUlJVv/r06ePy+edMGGC0/sfFhZmLW9Jpl69eubgwYMZpku/7CdOnGg9h2P69PN7++23M8wjMDDQSDK1a9c2b775pvVcmc3HG30j/Xp4+fY/M47lPWLEiAzjKleubCSZd955xzRv3tzaJjm2+Y7XOHXqVJfPnZCQYOrUqWO1DQgIMCVKlLCme//99615uFq3zp49a+666y6nZRcaGur03rRo0cKcOHEi09d1pe14+mU+adIk67lLlChh/P39rfk0bNjQ5Xwc29SYmBgTFxdnvbbw8HDj5+fntFzzY9/cpEkTEx4ebrW5fH8xcOBAl++NMVdeX7K7DNPX79jeXL69at26tTl79myGeeT2uGTLli1Or9/Pzy/Dvj5937799ttNZGSkCQ4OtvZvme1ft27daipUqGA9T/p9oWPf88UXX7hcttnZl6Z/7V9++aXVN0JDQ522161btzYpKSlm/vz51rYkLCzM6TX26NEj0/f5k08+cVqWQUFBpkiRIk77uR9++CHDdDnZZl6JY17Tpk0zUVFRRnI+fnQsn++//97l9J7YFlxJ+vcrq31h+/btrW1GVssi/Xxvv/12ExERYY2LiIhwWi9vv/12q+2PP/7o9H6m3646Hpdvz9PXfvmx+eXbjMsfjmV8+fudm2MNILsIiYBM5FdIFB4ebq6//nqzfv16Y4wxFy5cMIsWLTJly5a1Dkoud/LkSWt81apVzU8//WSFLOvWrTP169d3Oli7fEd05swZU6tWLSPJtGnTxixbtsycP3/eGGPMqVOnzIQJE6wDhokTJ2b6uooVK2Zq1qxplixZYlJTU40xxvz1119WO8cHXcdB1JgxY0xiYqIxxpgjR46YAQMGWM/11ltvZZiP44CiWLFiplixYmb69OnWwe2xY8fM8ePHjTHZC4kcB7r9+vWzwoikpCTz7rvvWh8Ahw0blmH69B888lJ2Q6IrLeN58+aZZ5991qxatcokJSVZww8ePGhGjRplvbZvvvkmwzxys2ySkpKsg+z77rvP7Nixwxp35swZs2HDBvPcc8+ZBQsWZJhvVh9GjTFm48aN1nyvv/5689tvvxljLh0Iffvtt9a6X61atQwf0NOvC8WKFTO33HKL+fPPP63xf//9d4bXHhgYaAYOHGiOHDlijDHm+PHj1rprt9vNK6+8Yvz8/MzYsWPNqVOnrOXbqVMnI8kULVrUGp7eiy++aCSZMmXKmEmTJlnra0pKilm6dKlp2LChkWQaNWpkvbcOjvkXK1bM+Pv7m9dff93qO//884/L8CUz6Q+mHe+bzWYzu3btcmo3cuRII8n069fPGGOyDIn+85//WM972223Wc+VnJxsPv74Y2vdaNWqlbl48aLTtI5lHxwcbPz8/Ezfvn2t9e7ixYvWurR69WorkOnQoYO13l+4cMHMnTvXlCxZ0trOuQqJvNU3jMm/kCg8PNyUL1/ezJs3z6SkpBhjjNm2bZtp0aKFtb64Whcd62qRIkXM1KlTre393r17TY8ePUxgYKD1oddVv7zvvvus/c2sWbOsdfHcuXPmm2++MVWrVjWSTPfu3TN9XVfajqdf5gEBAebuu++2lvnZs2fN+++/b30gS/9BzcGxTXXsuwYPHmz16fPnzzt9QMqvfXNW+6KsZDckutIy3Ldvn+nVq5f59ttvrWHGXNpmTJ8+3ZQrV85IMk8//XSGeeT2td90003W9mzt2rXWMUlycrL5+++/zeuvv25effXVDNOl/zLJldOnT5sqVaoYSaZ8+fJmwYIF1vZyy5Yt1rofFBTkMrzKzr40/WsvUaKEuemmm8wff/xhjLm07r399tvWB+4XX3zRhIWFmR49eljr1D///GOGDh1qPceiRYsy1PHjjz8au91u/P39zaBBg8zu3btNWlqaSUtLM9u2bTN33323Fbjs2bPHadrsbjOzw1FjWFiYqVSpkvnxxx+t9+qXX34x1113nVXHvn37MkzviW3BlVwpJDp48KB55plnrDaffvpplssiq+2Aqy9ZHapVq2YkmZtvvtn8/vvv1vBz586ZrVu3mlGjRmWoL7vPfbkPPvjAmm7OnDlO43JzrAFkFyERkIn0H+qzSvq3bt1qTZOdHVCtWrVcfqv37bffWm0u31GPGTPGOmDYvn17hmmPHj3q9E3I5Tui0aNHW8GH44PG5b766isjXfoW5cKFC07jHM+b2UGEg+PgL7MPUsb874CjZMmS5ty5c07jHAcUksy3336b6XyyExJldRDq+Na5evXqGcZ5OyS60jK+ktdee81IMjfddFOGcblZNr/88osVkFy+flzJlUIixwfa6tWrO324d9i0aZN1ZsFrr73mNC79utCsWbMMAYVD+tfuCEXSu3jxovXBRJIZO3ZshjaJiYnWmWb//ve/ncbt3r3b+Pn5mSJFimR6NuDp06etb8e//vprp3Hp+87bb7/tcvrsuvxgul+/fkaSGT58uNUmLS3NREdHG0lm9erVxpisQ6LatWtbHxZdLeP026+5c+c6jUu/7O+4445M63Z86KxTp44VaqT3008/Wc/jKiS6kvzqG8Y4r4fh4eGZ7i8+/PBDa5rshERBQUFOoafDkSNHrDMyPvnkE6dxK1eutGq5fD015lL42rZt20w/dK1YscL6AJL+bL/09u3bZ/WFzZs3O43L7nY8/TKPiYlx+WHmo48+stqsW7fOaVz6bWpcXFym8zEm//bN+R0SXWkZXsn69eut7fbl+9vcvnbHGTFr1qzJUU1XColefvllI106SyP9B3GH06dPW9uuLl26ZBifnX1p+tdet25dl9ub+++/32rToUMHl2c/t27d2kgyDz74oNPw1NRUU6NGDSPJfPDBBy5rMMaYbt26GUnmySefdBqe3W1mdjieJzAw0OXZuAkJCaZkyZJGknnsscecxnlqW3Al6d+vy89ITn+2aOvWrc2XX36Z6fNkZzuQWZCTkJBgtcnJlzbuhEQ//vijdcwzcuTIDM+Xm2MNILu4JhGQDY7ba7p6XOn36Jd75plnXN7qvHPnztZtcB13/3CYO3euJKlHjx6qXr16hmkjIiL06KOPZjpPx7VW4uLiMr0FZ/fu3RUaGqpjx45p48aNLtvcf//9qlChQqbzcShSpIieffZZl+OGDx8uSTpx4oQWLVrksk3dunXVtWvXK87nSl588UWXw2+77TZJ0o4dOzK9oK+3ZHcZZ6ZLly6SpLVr1yo1NTXTdjldNo5bwqakpOj48eNu13e5U6dO6YcffpAkPffccy5vUd2wYUPdcccdki7dPjkzzz33nPz8/K44z+effz7DMD8/P+uil8HBwXrqqacytAkNDbXuEvbbb785jZsxY4ZSU1PVqVMn1a9f3+V8ixcvru7du0uS9ZovFx4erocffviKryEnHnjgAUmXrgFijJF06RoX8fHxqlmzplq1apXl9L/99pv+/PNPSZfWG1fLuGvXrmrWrJmkrN+jIUOGuBx+4sQJ/fTTT5IuvY9BQUEZ2rRt21atW7fOstas5FffuNzJkycz3V+kv8ZJdtx1110u7wBVunTpTNdFx/4iOjpavXr1yjCt3W7P9DVK/9tf9OrVSxUrVnTZpkKFCtb1eDJbl3OyHX/xxRdlt2c8JI2NjbW2h7Nnz3Y5rd1u1+DBg7M1n6y4s2/Ob7ndFzZp0kRlypRRUlKStmzZkmk7d167Y59w6NAht+tzxXHdt7vuukvXXntthvHFixfXoEGDJEnff/+9EhMTXT5PdvelTz/9tMvtTceOHa3/P//88y6vgehoc3kfXLFihbZv366IiAj169cv03n37t1bUuZ9SMp8m5lTd999t2rXrp1heJkyZfTII49IUoZr7nljW3Al6W95n5CQ4LQtPnr0qA4cOGDt5/JS8eLFrW1UXq/z6f3xxx+6++67dfHiRd17770aMWKE0/i8OtYAroSQCMgGc+msO5cPx4Xysqt58+Yuh/v7+6t06dKSLn1gckhJSdEff/whSYqJicn0eTO7he6BAwes21o/+OCDioqKcvkoW7asdaG7zG6Dff3112f94v5fkyZNFBoa6nJcjRo1rAO3DRs25Go+WSlZsqTLQE2SypUrZ/0/Ly9Emxey89oTEhI0YsQItWzZUqVKlZK/v791gcM6depIunQR38xemzvLplq1aqpVq5YuXLig5s2b65VXXtGWLVuy/LCdHZs2bbIO6Nq3b59puw4dOki6dDCeWTCbnWVXsmRJVatWzeW4yMhISVKdOnVUtGjRLNtcvmxXr14tSfrxxx8z7WNRUVGaPn26pMz7WNOmTa0PZXmlZcuWqlWrlvbs2WNdtDgnF6x29FN/f/8st0GO9yizfl2kSBE1atTI5bjNmzdb64E72zkHb/SNyy1dujTT/YWr8DErme0v0teTfn8hXepTknTjjTe6/GArXeor/v7+Lsc51uWpU6dmuS4vXrxYUu73F/7+/pmGf3a73XrPM1uvqlevrjJlymRrXlnJ6b7ZE7KzDFNSUjR58mTdfPPNKleunIKCgpwuenvkyBFJcrqpwOXcee233nqrJKlPnz565plntHz58lx/6ZKSkmIFLtnZH6SlpVnr++Wyu/45wu3LObb10qXtclZtMtsfJCYmqly5cpn2of79+0vKvA9ltc3MqXbt2l1x3PHjx7V79+4Mr8NT24LsmD59utM29eLFi9q/f78mT56shIQEDRw4UPfee2+eB0VFihSxvkjq1KmThg8frl9++SXTi3a7IyEhQV26dFFiYqJatWpl7afTy6tjDeBKXB8hAMg3xYsXz3Sc46A9/YfgEydOWB/E039IuVz58uVdDj948KD1/2PHjmWrxswO9LJ7IJ5ZLenH79+/3zp4dXc+WcnOcpaU4zPB8tuVXvvatWt1yy236NSpU9Ywxx1TbDabUlNTrfc5KSlJERERGZ7DnWXj5+en2bNn6/bbb9fu3bv1/PPP6/nnn1dISIhatWqlO+64Q3369HF5JlBW0q8DWa03jmDx4sWLOnHihNMBvEN21pvsvPac9lHpf/0sKSkpW2eL5LaP5VRsbKwGDx6s6dOnq1mzZvrqq6/k5+dnfZOdFcd7FBER4fIbdwfHe5RZvy5VqpTLs0WkS98AO7iznZO81zfykzvromNZZrUcg4KCFBERocOHD2cY51iXT58+neldBdPL7bp8pfXK8Z7n5/5Ccm9Z57crvbYjR46offv2Tmf5BAcHKyIiwjrj7+jRo0pLS8tyu+TOa3/11Ve1Y8cOLV26VBMmTNCECRPk5+enBg0aqEuXLnrooYeueCxwufTHO9nZH0i5Xy8ye+3p+/uV2mS2P7hw4YISEhKuWMO5c+dcDs9qm5lTWS3P9OOOHDli3e3L09sCd/j5+al8+fJ6+OGHVa5cOXXr1k2zZ89W586ds7V/y4mPPvpI3bp106+//qoxY8ZozJgxCgwMVNOmTXXbbbfpwQcfVMmSJd167nPnzum2227Tnj17VKVKFc2bN8/ldjGvjjWAK+FMIqAAyexb4aykP9Pjzz//zPKsKMcjs9ttZuenPHnBU/PxRVm99osXL6pnz546deqUGjRooO+++06nT5/WP//8o4SEBB0+fFg///yz1T6vv0mrX7++tm3bpi+//FIPPfSQrr32Wp07d06LFy/WY489plq1ann85xjpeXO9cfSzwYMHZ6uPZXbr3/x6Dffff7/8/Pz09ddfa/LkyTp37pw6deqksmXL5sv8XMnua3NnO+ftvuGL3FmO0v/W5ffffz9b6/Llty53YH+Re1d6bU8//bR+//13lSpVStOmTdOhQ4d07tw5HT16VIcPH9bhw4etsDCv1/kSJUrop59+0sqVKzVo0CDr7LSNGzdq9OjRqlGjRpY/Pc1vvrA/aN68ebb6UGbvjbfX7YK2LejatasVSH366ad5/vyVKlXSpk2btHDhQg0cOFCNGzdWWlqaVq9erUGDBql69erWz6Zzwhij3r1765dfflFYWJjmz59vncF3ubw61gCuhJAI8HElS5a0drDpzwq63IEDB1wOj4qKsv7vqdNOM6vl8vH5+e1SYbR27Vrt2bNHfn5+mj9/vjp37pzhG05XZwbkpcDAQN1xxx364IMP9Pvvv+vo0aOaPHmySpYsqX379qlPnz45er7060BWP4dwjPP393f7m7r85Ohnvnpqd9myZdWpUyedO3dOw4YNk5S9n5pJ/3uPjh07puTk5EzbOd4jd/p1+gNid7ZzvtA3fIVjWWa1HJOTkzM9s9TT6/KxY8ey/MkG+wvXLly4oK+++kqS9O677yo2NtZpfy/J6ey5/HLDDTfolVde0apVq3Tq1Cl98803uu6663Tu3Dk98MAD2TqTxiH98U529geSb64Xvrg/yOq4LP249MvTF1/HlVSuXFmSnH42l5fsdrs6duyot956Sxs2bNCJEyc0a9YsVapUSSdPntS9996b45+gvfDCC/riiy/k5+enOXPmWD+NdqUgvicomAiJAB8XGBiounXrSlKW3whkNi46Oto6lfg///lPXpfn0oYNG6zrG11ux44d1gFekyZNPFJPTjhO7fbFMw327dsn6dKHwMxOHXdcG8BTSpUqpYcfflivvPKKpEvXlsnJha0bNWpkLXPH9XJccbyu+vXrZ3rxdW9yXHNh8eLFOn/+vJercc1xAeuUlBRFRESoW7du2ZrO0U8vXryo5cuXZ9rO8R5ldv2OrDRs2NA688Wd7Zwv9g1vcVzDJKv3avXq1bp48aLLcY51ef78+XlfnAsXL17UypUrXY4zxlivw5f3F5Ln9xlHjx61tjUNGzZ02WbVqlUe3R4FBwerW7duVnh1/vx5rVq1KtvTBwYGql69epKytz+w2+15ds2evOToQ4cPH870WlqetnTp0iuOK1mypPVTM8nz24K84Di+zOy6gq7kph8XL15c9957r3WR74SEhBydUT1t2jS9/PLLkqS3337b6YLprhSEYw0UDoREQAFw1113Sbp054mdO3dmGH/8+HFNnjw50+kdF0ecOnWqNm/enOW88uLCnOfOndPrr7/uctzYsWMlXToYcVx80pc4Lrid/romviIsLEzS/+62d7n9+/fr7bffzpd5Z3UGiSSnO+Pk5BoKJUqUsA6KXnvtNZe/n//111/15ZdfSpJ69uyZ7ef2pAceeED+/v46duxYhruRXC4lJSXTEDU/de3aVc8995yeeeYZTZw4MdthW7169axvNseOHevyYuXfffedfvnlF0nuvUclS5a07pDzxhtvuPwmdsWKFZmGCd7sG77Gsb+Ij493+ZMLY4xeeumlTKd/6KGHJElbt27V+++/n+W8kpKS8uTCrePGjVNaWlqG4TNnzrQCwB49euR6Pnkt/Q0aPL3PCA0NtYLVX3/9NcP4ixcvaujQofky74sXL7p8vxzc3R9I0r/+9S9J0hdffKGtW7dmGH/mzBm9+uqrkqRbbrnF6vu+pG3bttYF8J9++ukr9hFPXBB97ty5+uuvvzIMP3bsmD744ANJGfuYN7YFubFs2TLrzmM5CZWz04+v9NrcWed/+ukn685yAwcO1GOPPXbFaQrCsQYKB0IioAAYMGCAIiMjdf78eXXq1EnLly+3vu3YsGGDOnTokOm3wtKl29ted911On/+vNq2bat3333X6WyPU6dO6fvvv1fv3r1zdYtph7CwMI0ZM0bjx4/XP//8I+nSgciTTz6pmTNnSpKGDRum4ODgXM8rrzluufvHH39ozZo1Xq7G2Q033KCiRYvKGKN77rlHf//9t6RLPyn44Ycf1KZNG7evQ3Ils2fP1vXXX68PPvhAu3btsoY75u24rXzLli0VHh6eo+ceO3asAgICtGPHDnXs2NH6Fi4tLU3fffedbrnlFl28eFHVqlXL89vD55Vq1apZP+N69dVX1bt3b6cPOBcvXtSWLVs0evRoVa9ePcvbUeeXgIAAvfrqq3r99ddd3ho9K44zxVauXKm77rrLOpX/woULmjVrlhUMtWrVyrr1bk6NGjVKNptNW7duVbdu3bR9+3ZJl5bdV199pTvvvDPTdcubfcPXtG7d2grg+/fvrxkzZlgh7/79+9WrVy+tXLky04vMx8TEWD9FfPzxx/X000879fnk5GT9/PPPGjRokCpXrpzphYOzKyQkRKtWrdK9995rnQVw/vx5ffjhh3r00UclSbfddlumd6Hypmuuuca6G+FHH33k0bOJihUrZp1VEBcXp59++skKbrZu3apbbrlFGzZsyNEZFdm1f/9+1ahRQ2PHjtXmzZudjj9+++033XfffZIunc2R1d0KXXn00UdVpUoVXbhwQZ07d9b3339vva7ff/9dHTt21O7duxUUFGR96eRr/P39NXnyZPn7+2vVqlW68cYbtWTJEqcLXO/atUuTJ09W06ZN9d577+V7TcHBwerUqZMWL15srafr169X+/btdezYMRUvXtzajzt4elvgruTkZH3zzTfWfs3f318DBw7M9vQlSpSwzkCdPn26y+PpNWvWqF69enrzzTf1559/WuukMUZr1qyxtlUVKlSwzobLyvbt23XnnXfqwoULuuWWWzRhwoRs1VoQjjVQSBgALo0YMcJIMjnpJo72S5cudRq+e/dua9zu3bsznb5y5cpGkpk+fXqGcStXrjTFihWznickJMT6u0SJEmbu3LnWuEOHDmWY/sCBA6ZFixZWG5vNZkqUKGFCQ0OtYZJM9erVs/26LtenTx8jyfTp08f06NHDSDJ+fn4mPDzc2Gw263l69+5tUlNTM0wfExNjJJkRI0ZkOZ+lS5dm+t5Mnz7dSDKVK1fOdPqs3o8LFy6YmjVrWuPDw8NN5cqVTeXKlc3cuXOzrCsrV1qfsruM33//faf3q1ixYiY4ONhIMhEREebbb7/N9LXlZtk4pnU8goKCTKlSpYzdbreGlStXzvz5558ZnjOr9dph9uzZJjAw0Hqu0NBQ63VJMhUrVjT//e9/M0yX1bqQ09fueI9iYmIybZN+Hb9cWlqaGTZsmNO6XqRIEVOqVCnj5+fntPxWrVqV7efNKcc8slrerjj6X2Y1TJgwwem1lShRwuk9u+6668yBAwcyTJedZe/w5ptvOi2nEiVKmKCgICPJXHvttdb4mjVrZpjWW33DGOf18Ep92CGr7V12+kxW68yhQ4dMrVq1rJoCAgJMiRIljCRjt9vNhx9+aCpVqmQkmc8++yzD9MnJyaZfv34Zlmd4eLhTn5dk9u/fn+3XlV76Zf7uu+9a61Z4eLgJCAiwnr9+/frm2LFjGabPTn91yM9984MPPui0X65UqZKpXLmyeeaZZzJ9viutL9ldhhs2bDBFixZ12i4XL17cSDL+/v7m448/zrT23Lz29NM69vMlS5Z02h4EBga63GdmZ1v3+++/m/Lly1vPFRwc7HSsEhQUlOn+ODv9MDuvPTv7littN77++mvr/XD0w1KlSlnbNMdj7NixOXrenHDMY9q0aSYqKspaT9MfTwYFBZn58+e7nN4T24IrSf9+hYaGmsjISOtRunRp4+/v79QHZ8+eneWycLVujBkzxml5VKxY0VSuXNn06NHDGOO8PqR/L9PPOzQ01KxYsSLT2jM7pgoPD3d6TZc/Bg4c6PScuTnWALKLM4mAAuKGG27Qb7/9ptjYWJUrV04XL15UiRIl9MADD2jTpk2qVq2a1bZEiRIZpi9XrpxWrVqlzz77TN26dVPZsmV19uxZpaSkKDo6Wl27dtXEiRO1YsWKPKn3s88+03vvvaeGDRvq4sWLKlq0qFq2bKmPP/5YM2fOzLPbuuY1f39/LVmyRP369VOVKlWUlJSkPXv2aM+ePT5x2u4jjzyiBQsWqE2bNipWrJguXryo8uXL64knntCvv/6q6667Ll/m261bN3388ceKjY1V/fr1FRYWpsTERBUvXlzNmjXTmDFj9Mcff6hWrVpuPX+PHj30xx9/6OGHH1a1atWUnJwsf39/NWjQQKNGjdLWrVtVu3btPH5Vectms2n06NH67bff9Nhjj6l27dry8/NTYmKiwsPD1apVKz333HNas2aNdQZAQfL0009rw4YNuu+++1SxYkWdPXtWRYoUUYsWLfTmm29q/fr1Wd52PTueeuopLVu2TLfccovCw8N1/vx5RUdH68UXX9TPP/9sfQPuahvnrb7hi6KiorR+/XoNGzZMNWvWlN1ul7+/v2655Rb99NNP6t+/vxITEyW5XpaBgYGaMmWK1qxZo759+6patWpKTU3VmTNnVKZMGbVp00bDhw/Xb7/9luPbnLvy+OOP64cfflCnTp1kt9tlt9tVq1YtjR49WmvXrlWpUqVyPY/8MmnSJI0cOdJav/bu3as9e/bk+wWjJalx48Zat26d7rnnHkVERCgtLU3FixfXPffcozVr1uj+++/Pl/mWL19e3377rZ5++mm1aNFCZcuW1ZkzZ+Tv7686dero8ccf19atW62fPubUtddeqz/++EMjR45UgwYN5O/vr+TkZFWrVk2PPPKI/vjjD7ef25O6d++uHTt2aMSIEWrWrJmKFSumU6dOKSgoSPXr11e/fv309ddf67nnnsv3WqpUqaLNmzfr8ccfV+nSpZWSkqIyZcqoZ8+e2rx5s7p06eJyOk9vC67k9OnT1s+KExISdOzYMYWEhKhx48YaNGiQ/vjjD7d+mvrCCy/orbfeUpMmTRQQEKD9+/drz5491g0PmjZtqs8//1yPPvqoGjdurIiICJ0+fVrBwcFq0KCBBg0apD///NOts/FPnjzp9Joufzi21Q6F/VgDvsFmHEdcAAq0KVOm6KGHHlLVqlVdXrfIE/r27auZM2eqT58+md4KFQDc1atXL3366ad64IEHrAuFIue2b9+ua665RtKlUKNixYoer2HGjBmKjY1V5cqVFR8f7/H5A1cDx89sly5dqjZt2ni3GAAFhm9+lQ8gR86fP6+JEydKkjp16uTdYgAgH/z999/WXZPYzuXO+PHjJUl16tTxSkAEAAB8FyERUEDMnj1bL774orZu3WrdZeHixYtasWKF2rVrp//+978KDg7Wk08+6eVKAcA9w4cP17vvvqu9e/daFwZNSkrSnDlz1LZtW50/f161atVy++LYV4tt27apX79+WrFihXXzAMfw2NhYTZ8+XZIyXKgWAADA39sFAMiew4cPa9y4cRo3bpxsNpvCw8N15swZKzAKDAzU9OnTrZ8QAEBB89tvv+mbb77RE088oYCAABUvXlynTp2yAqPy5ctr7ty5CggI8HKlvu38+fOaOnWq9ZO8sLAwXbhwQWfPnrXaDBw4MN+uWQMAAAouQiKggLj11lt19OhRLVu2zLooZkBAgKpWraq2bdvqqaeeIiACUKA9/fTTKleunNasWaNDhw7pxIkTKl68uK655hrdeuutGjBggEqWLOntMn1etWrV9Prrr2vx4sX666+/dOTIEaWmpqpixYpq2bKlHnroId10003eLhMAAPggLlwNAAAAAAAArkkEAAAAAAAAfm4mSUpLS9PBgwdVvHhx61aRAAAAAAAABZ0xRv/884/KlSsnuz3rc4UIiSQdPHiQW8ACAAAAAIBCa9++fapQoUKWbQiJJBUvXlzSpQUWGhrq5WoAAAAAAADyxunTp1WxYkUr+8gKIZFk/cQsNDSUkAgAAAAAABQ62bm8DheuBgAAAAAAACERAAAAAAAACIkAAAAAAAAgQiIAAAAAAACIkAgAAAAAAAAiJAIAAAAAAIAIiQAAAAAAACBCIgAAAAAAAIiQCAAAAAAAACIkAgAAAAAAgAiJAAAAAAAAIEIiAAAAAAAAiJAIAAAAAAAAIiQCAAAAAACACIkAAAAAAAAgQiIAAAAAAACIkAgAAADIE0lJSbLZbLLZbEpKSvJ2OQAA5BghEQAAAHAVIMSCt7DuAQUHIREAAAAAZIGQo3Dz9ffX1+tD4UJIBAAAAAAFGCECvMXX1z1fr88XERIBAAAA8Do+zAGA9xESAQAAAAAAgJAIAAAAAAAAhEQAAAAAAAAQIREAAAAAAABESAQAAAAAAAAREgEAAAAAAECERAAAIIe4TTUAAEDhREgEAAAKFUIsAAAA9xASAQAAeJCvh1i+Xh8AAMg/hEQAAAAoEAiwAADIX4REAAAAAAAAICQCAAAAAAAAIREAAAAAAADkwyHRpEmTFB0dreDgYDVv3lzr1q3LtG2bNm2s36enf3Tp0sWDFQMAAAAAABRcPhkSzZkzR3FxcRoxYoQ2bdqk+vXrq2PHjjpy5IjL9l999ZUOHTpkPbZu3So/Pz/dfffdHq4cAAAAAACgYPLJkGjChAnq37+/YmNjVadOHU2ePFkhISGaNm2ay/YlS5ZUVFSU9Vi0aJFCQkIIiQAAAAAAALLJ50KilJQUbdy4Ue3bt7eG2e12tW/fXmvXrs3Wc0ydOlX/+te/VLRo0fwqEwAAAAAAoFDx93YBlzt27JhSU1MVGRnpNDwyMlLbtm274vTr1q3T1q1bNXXq1EzbJCcnKzk52fr79OnT7hcMAAAAAABQCPjcmUS5NXXqVF133XVq1qxZpm3Gjx+vsLAw61GxYkUPVggAQNaSkpKsmzAkJSV5uxwAAABcJXwuJIqIiJCfn58SEhKchickJCgqKirLaZOSkjR79mw9+OCDWbYbMmSIEhMTrce+fftyXTcAAAAAAEBB5nMhUWBgoBo3bqwlS5ZYw9LS0rRkyRK1bNkyy2nnzp2r5ORk3XfffVm2CwoKUmhoqNMDAHB14WwdAAAAwJnPXZNIkuLi4tSnTx81adJEzZo108SJE5WUlKTY2FhJUu/evVW+fHmNHz/eabqpU6eqe/fuKlWqlDfKBgAAAAAAKLB8MiTq0aOHjh49quHDh+vw4cNq0KCBFi5caF3Meu/evbLbnU+C+uuvv7Rq1Sr9+OOP3igZAHCZpKQkFStWTJJ05swZ7jgJAAAA+DifDIkkacCAARowYIDLccuWLcswrGbNmjLG5HNVAAAAAAAAhZPPXZMIAJA9XFMHAAAAQF4iJAIAAAAAAAAhEQAAAAAAAAiJACBT/JwLAAAAwNWEkAgAAAAAAACERAAAAAAAACAkAgAAAAAAgAiJAAAAAAAAIEIiAAAAAAAAiJAIAAAAAAAAIiQCAAAAAACACIkAAAAAAAAgQiIAAAAAAACIkAgAAAAAAAAiJAIAAAAAAIAIiQAAAAAAACBCIgAAAAAAAIiQCAAAAAAAACIkAgAAAAAAgAiJAAAAAAAAIEIiAAAAAAAAiJAIAAAAAAAAIiQCAAAAAACACIkAAAAAAAAgQiIAAAAAAACIkAgAAAAAAAAiJAIAAAAAAIAIiQAAAAAAACBCIgAAAAAAAIiQCICXJSUlyWazyWazKSkpydvlAAAAAMBVi5AIAAAAAAAAhEQAAAAAAAAgJAIAAAAAAIAIiQAAAAAAACBCIgAAAAAAAIiQCCj0uHsYAAAAACA7CIkAAAAAAABASAQAAAAAAAAfDYkmTZqk6OhoBQcHq3nz5lq3bl2W7U+dOqXHH39cZcuWVVBQkK655hp99913HqoWAAAAAACg4PP3dgGXmzNnjuLi4jR58mQ1b95cEydOVMeOHfXXX3+pTJkyGdqnpKSoQ4cOKlOmjL744guVL19ee/bsUYkSJTxfPAAAAAAAQAHlcyHRhAkT1L9/f8XGxkqSJk+erAULFmjatGl6/vnnM7SfNm2aTpw4oTVr1iggIECSFB0d7cmSAQAAAAAACjyfColSUlK0ceNGDRkyxBpmt9vVvn17rV271uU03377rVq2bKnHH39c33zzjUqXLq17771XgwcPlp+fn6dKBwAAAAAgU9HPL3BrurSU89b/aw9bKHtgcI6fI/7lLlmO92ZtUsGvrzDxqZDo2LFjSk1NVWRkpNPwyMhIbdu2zeU0u3bt0k8//aRevXrpu+++044dO/TYY4/pwoULGjFihMtpkpOTlZycbP19+vTpvHsRAAAAAFAI+foHdV+vDygIfPLC1TmRlpamMmXK6MMPP1Tjxo3Vo0cPDR06VJMnT850mvHjxyssLMx6VKxY0YMVo7BJSkqSzWaTzWZTUlKSt8sBAAAAAMAtPhUSRUREyM/PTwkJCU7DExISFBUV5XKasmXL6pprrnH6aVnt2rV1+PBhpaSkuJxmyJAhSkxMtB779u3LuxcBAAAAAABQAPlUSBQYGKjGjRtryZIl1rC0tDQtWbJELVu2dDnN9ddfrx07digtLc0a9vfff6ts2bIKDAx0OU1QUJBCQ0OdHgAAAAAAAFcznwqJJCkuLk5TpkzRzJkz9eeff+rRRx9VUlKSdbez3r17O13Y+tFHH9WJEyf05JNP6u+//9aCBQv00ksv6fHHH/fWSwAAAAAAAChwfOrC1ZLUo0cPHT16VMOHD9fhw4fVoEEDLVy40LqY9d69e2W3/y/bqlixon744Qc9/fTTqlevnsqXL68nn3xSgwcP9tZLAAAAQAHm6xe/pb6s5Ud9vlybxIWXAeQdnwuJJGnAgAEaMGCAy3HLli3LMKxly5b6+eef87kqAAAAAACAwsvnfm4GAAAAAAAAzyMkAgAAAAAAACERAAAAAAAACIkAAAAAAAAgQiIUAElJSbLZbLLZbEpKSvJ2OQAAAAAAFEqERAAAAAAAACAkAgAAAAAAgOTv7QIAAABwdYl+foFb06WlnLf+X3vYQtkDg916nviXu7g1HQAAhR0hEQAAgBt8PejwZn2EMAAAFEyERAAAwCf5eggDAABQ2BASAQBwlSKEAQAAQHpcuBoAAAAAAACERAAAAAAAACAkAgAAAAAAgAiJAAAAAAAAIEIiAAAAAAAAiJAIAAAAAAAAIiQCAAAAAACACIkAAAAAAAAgQiL8v6SkJNlsNtlsNiUlJXm7HAAAAAAA4GGERAAAAAAAACAkAgAAAAAAACERAAAAAAAAJPl7uwAAAAqz6OcX5HiatJTz1v9rD1soe2CwW/OOf7mLW9MBAADg6sSZRAAAAAAAAOBMIgBAwebOmToSZ+sAAAAAl+NMIgAAAAAAABASAQAAAAAAgJ+bAQCugJ9zAQAAAFcHziQCAAAAAAAAIREAAAAAAAD4uRkAeB0/5wIAAADgCziTCAAAAAAAAIREAAAAAAAA4OdmAK4C/JwLAAAAAK6MM4kAAAAAAABASAQAAAAAAABCIgAAAAAAAMiHQ6JJkyYpOjpawcHBat68udatW5dp2xkzZshmszk9goPdu3YIAAAAAADA1cgnQ6I5c+YoLi5OI0aM0KZNm1S/fn117NhRR44cyXSa0NBQHTp0yHrs2bPHgxUDAAAAAAAUbD4ZEk2YMEH9+/dXbGys6tSpo8mTJyskJETTpk3LdBqbzaaoqCjrERkZ6cGKAQAAAAAACrZchURff/217rnnHtWrV0/Vq1e3hm/btk2vvvqqDhw4kOPnTElJ0caNG9W+ffv/FWm3q3379lq7dm2m0505c0aVK1dWxYoVddttt+mPP/7I8bwBAAAAAACuVv7uTJSWlqaePXvqiy++kCQVKVJE586ds8aHh4dr6NChSk1N1ZAhQ3L03MeOHVNqamqGM4EiIyO1bds2l9PUrFlT06ZNU7169ZSYmKjXX39drVq10h9//KEKFSpkaJ+cnKzk5GTr79OnT+eoRgAAAAAAgMLGrTOJ3nzzTc2dO1cPP/ywTp48qWeffdZpfGRkpFq3bq0FCxbkSZFX0rJlS/Xu3VsNGjRQTEyMvvrqK5UuXVoffPCBy/bjx49XWFiY9ahYsaJH6gQAAAAAAPBVboVEM2bMUNOmTfXee+8pNDRUNpstQ5vq1atr9+7dOX7uiIgI+fn5KSEhwWl4QkKCoqKisvUcAQEBatiwoXbs2OFy/JAhQ5SYmGg99u3bl+M6AQAAAAAAChO3QqIdO3aodevWWbYpVaqUjh8/nuPnDgwMVOPGjbVkyRJrWFpampYsWaKWLVtm6zlSU1P1+++/q2zZsi7HBwUFKTQ01OkBAAAAAABwNXPrmkRFihRRYmJilm327NmjEiVKuPP0iouLU58+fdSkSRM1a9ZMEydOVFJSkmJjYyVJvXv3Vvny5TV+/HhJ0ujRo9WiRQtVr15dp06d0muvvaY9e/aoX79+bs0fAAAAAADgauNWSNSwYUP98MMPOn/+vIKDgzOMP3HihBYuXKgbb7zRraJ69Oiho0ePavjw4Tp8+LAaNGighQsXWhez3rt3r+z2/50EdfLkSfXv31+HDx9WeHi4GjdurDVr1qhOnTpuzR8AAAAAAOBq41ZINHDgQN1+++268847M1wceufOnXrggQeUmJiogQMHul3YgAEDNGDAAJfjli1b5vT3m2++qTfffNPteQEAAAAAAFzt3AqJbrvtNg0ePFivvPKKKleurKJFi0qSypQpo+PHj8sYo2HDhqldu3Z5WiwAAAAAAADyh1sXrpYu3Ub+hx9+0K233qqQkBD5+fkpLS1NnTp10vfff69Ro0blZZ0AAAAAAADIR26dSbR3714FBgaqQ4cO6tChQ17XBAAAAAAAAA9z60yiKlWq6IUXXsjrWgAAAAAAAOAlboVE4eHhKlWqVF7XAgAAAAAAAC9xKyRq3bq1fvnll7yuBQAAAAAAAF7iVkg0fvx4/fbbbxo9erQuXryY1zUBAAAAAADAw9y6cPWrr76q6667TqNGjdIHH3yg+vXrKzIyUjabzamdzWbT1KlT86RQAAAAAAAA5B+3QqIZM2ZY/z906JAOHTrksh0hEQAAAAAAQMHgVki0e/fuvK4DAAAAAAAAXuRWSFS5cuW8rgNAARf9/AK3pktLOW/9v/awhbIHBrv1PPEvd3FrOgAAAACFkz0wWJUHz/d2GQWKWyERAAAAAADIf74cdPhybXCPW3c3c5g1a5Y6dOig0qVLKygoSKVLl9bNN9+sTz/9NK/qAwAAAAAg3ziCjsqD57t9VjtQWLh1JlFqaqruuecezZs3T8YYBQcHq1y5ckpISNDixYu1ZMkSffnll5o7d67s9lzlUAAAAACAAoyzTYCCw60E5+2339bXX3+t66+/XqtXr9bZs2e1e/dunT17VmvWrNENN9ygefPm6Z133snregEAAAAAAJAP3AqJZs6cqWuuuUZLlixRy5Ytnca1aNFCixcv1jXXXKPp06fnSZEAAAAAAADIX26FRH///be6deumgIAAl+MDAgLUtWtX/f3337kqDgAAAAAAAJ7hVkgUGBiopKSkLNskJSUpMDDQraIAAAAAAADgWW6FRA0bNtTnn3+ugwcPuhx/6NAhff7552rUqFGuigMAAAAAAIBnuHV3s7i4ON12221q0qSJnnnmGcXExCgyMlIJCQlatmyZJkyYoBMnTiguLi6v6wWuWtHPL3BrurSU89b/aw9b6PZtPeNf7uLWdAAAAACAgsGtkKhr1656/fXX9fzzz2vQoEFO44wx8vf31+uvv65bb701T4oEAAAAAABA/nIrJJIunU3UvXt3zZo1S1u2bNHp06cVGhqqhg0b6t5771XVqlXzsk4AAAAAhZg9MFiVB8/3dhkAcFVzOySSpKpVq2rYsGF5VQsAAAAAIIcI2ADklVyFRAAAAABQ2BHCALhauHV3szfeeEMRERGZ3t3s4MGDKl26tN5+++1cFQcAAAAgbziCjsqD57t9IwsAQOHmVkg0d+5c1a9fX+XKlXM5vly5cmrQoIFmz56dq+IAAACAgoIQBgBQ0LkVEm3fvl1169bNsk3dunW1fft2t4oCAAAAAACAZ7kVEp07d05FixbNsk1wcLDOnDnjVlEAAAAAAADwLLdCokqVKmnNmjVZtlm7dq0qVKjgVlEAAAAAAADwLLdCoi5dumjVqlWaNm2ay/EfffSRVq1apa5du+aqOAAAAAAAAHiGvzsTPf/88/rss8/Uv39/ffLJJ+rQoYPKly+vAwcO6Mcff9SKFStUrlw5DRkyJK/rBfJN9PML3JouLeW89f/awxa6faHK+Je7uDUdAABXC25DDgBA/nIrJCpdurSWLl2q++67T8uWLdOyZctks9lkjJEkNW3aVLNmzVLp0qXztFgAAADkL4IYAACuXm6FRJJUs2ZNrV+/XuvXr9e6deuUmJioEiVKqFmzZmrSpEle1ggAAAAAAIB85nZI5NC0aVM1bdo0L2oBAAAo9DhTBwAA+Kpch0TpxcfHa9GiRQoODtbtt9+uYsWK5eXTAwAAAAAAIJ+4dXezl156SVWqVNHJkyetYcuWLdO1116rRx55RH379lWjRo104sSJPCsUAAAgOxxn6lQePN/tmwkAAABcjdwKiebNm6fo6GiFh4dbwwYPHqy0tDSNGjVKjz76qHbs2KGJEyfmVZ0AAAAAAADIR26FRPHx8apTp47198GDB7V+/Xo9/vjjevHFF/Xuu+/qpptu0tdff51nhQIAAAAAACD/uHVNotOnT6tEiRLW3ytWrJDNZlPXrl2tYY0aNdLkyZNzXSAAAPAtXHgZAACgcHLrTKLIyEjt2bPH+nvRokUKCgpS8+bNrWHnz5+XzWZzu7BJkyYpOjpawcHBat68udatW5et6WbPni2bzabu3bu7PW8AAAAAAICrjVshUdOmTfXNN99o/vz5Wrx4sebMmaO2bdsqKCjIarN7926VK1fOraLmzJmjuLg4jRgxQps2bVL9+vXVsWNHHTlyJMvp4uPj9eyzz6p169ZuzRcAAAAAAOBq5VZI9MILL+jixYu67bbb1LFjR50/f14vvPCCNT45OVkrVqxwOrMoJyZMmKD+/fsrNjZWderU0eTJkxUSEqJp06ZlOk1qaqp69eqlUaNGqWrVqm7NFwAAAAAA4Grl1jWJGjVqpJ9//ln//ve/JUn33HOPmjVrZo3fvHmz2rZtq3vvvTfHz52SkqKNGzdqyJAh1jC73a727dtr7dq1mU43evRolSlTRg8++KBWrlyZ5TySk5OVnJxs/X369Okc1wkAAAAAAFCYuBUSSVL9+vVVv359l+NatGjh9p3Njh07ptTUVEVGRjoNj4yM1LZt21xOs2rVKk2dOlVbtmzJ1jzGjx+vUaNGuVUfAAAAAABAYeR2SOQr/vnnH91///2aMmWKIiIisjXNkCFDFBcXZ/19+vRpVaxYMb9KxP+Lfn6BW9OlpZy3/l972ELZA4Pdep74l7u4NR0AAAAAAFcDnwuJIiIi5Ofnp4SEBKfhCQkJioqKytB+586dio+PV9euXa1haWlpkiR/f3/99ddfqlatmtM0QUFBThfZBgAAAAAAuNq5deHq/BQYGKjGjRtryZIl1rC0tDQtWbJELVu2zNC+Vq1a+v3337Vlyxbr0a1bN7Vt21ZbtmzhDCEAAAAAAIBs8LkziSQpLi5Offr0UZMmTdSsWTNNnDhRSUlJio2NlST17t1b5cuX1/jx4xUcHKxrr73WafoSJUpIUobhAAAAAAAAcM0nQ6IePXro6NGjGj58uA4fPqwGDRpo4cKF1sWs9+7dK7vd506CAgAAAAAAKLB8MiSSpAEDBmjAgAEuxy1btizLaWfMmJH3BQEAAAAAABRinI4DAAAAAACA3J1JdPjwYW3cuFGnTp1Samqqyza9e/fOzSwAAAAAAADgAW6FROfPn1f//v01e/Zs63bzlzPGyGazERIBAJBD9sBgVR4839tlAAAA4CrjVkj0/PPPa9asWbrmmmvUs2dPVahQQf7+Pnt5IwAAAAAAAFyBW8nO559/rjp16mjjxo0KCgrK65oAAAAAAADgYW6FRKdOndK9995LQAQAKLD4SRcAAADgzK27m9WsWVMJCQl5XQsAAAAAAAC8xK2Q6LnnntM333yjHTt25HU9AAAAAAAA8AK3fm5WoUIFdezYUc2aNdNTTz2lRo0aKTQ01GXbG2+8MVcFAgAKJn7OBQAAABQsboVEbdq0kc1mkzFGI0eOlM1my7Rtamqq28UBAAAAAADAM9wKiYYPH55lMAQAAAAAAICCxa2QaOTIkXlcBgAAAAAAALzJrZAIAOB9XPMHAAAAQF5y6+5mAAAAAAAAKFzcPpNo3759Gjt2rBYvXqyDBw8qJSUlQxubzaaLFy/mqkDkTPTzC9yaLi3lvPX/2sMWyh4YnOPniH+5i1vzBgAAAAAA3udWSLRr1y41b95cJ0+eVN26dZWcnKzKlSsrODhYu3bt0oULF1S/fn2VKFEij8sFAM/h51wAAAAAriZu/dxs1KhRSkxM1JIlS/Trr79KkmJjY/Xnn38qPj5e3bp1U1JSkr744os8LRYAAAAAAAD5w62QaPHixbrlllsUExNjDTPGSJLKli2rOXPmSJJeeOGFPCgRAAAAAAAA+c2tkOjYsWOqVauW9be/v7/Onj1r/R0UFKQOHTpo/nx+pgEAAAAAAFAQuBUSRUREKCkpyenv+Ph4pzb+/v46depUbmoDAAAAAACAh7gVEtWoUUM7d+60/m7WrJl++OEH7dq1S5J09OhRffHFF6pWrVreVAkAAAAAAIB85VZI1LlzZy1dutQ6U+ipp57SP//8o3r16qlp06a65pprdPjwYT3xxBN5WSsAAAAAAADyiVsh0aOPPqply5bJz89PktSmTRvNnj1blStX1tatWxUZGam3335b/fv3z9NiAQAAAAAAkD/83ZkoNDRUzZs3dxp299136+67786TogAAAAAAAOBZbp1JBAAAAAAAgMIlVyHR119/rXvuuUf16tVT9erVreHbtm3Tq6++qgMHDuS6QAAAAAAAAOQ/t35ulpaWpp49e+qLL76QJBUpUkTnzp2zxoeHh2vo0KFKTU3VkCFD8qZSAAAAAAAA5Bu3ziR68803NXfuXD388MM6efKknn32WafxkZGRat26tRYsWJAnRQIAAAAAACB/uRUSzZgxQ02bNtV7772n0NBQ2Wy2DG2qV6+u3bt357pAAAAAAAAA5D+3QqIdO3aodevWWbYpVaqUjh8/7lZRAAAAAAAA8Cy3QqIiRYooMTExyzZ79uxRiRIl3Hl6AAAAAAAAeJhbIVHDhg31ww8/6Pz58y7HnzhxQgsXLlSLFi1yVRwAAAAAAAA8w62QaODAgdq/f7/uvPNO7d+/32nczp07dfvttysxMVEDBw7MkyIBAAAAAACQv/zdmei2227T4MGD9corr6hy5coqWrSoJKlMmTI6fvy4jDEaNmyY2rVrl6fFAgAAAAAAIH+4dSaRJI0fP14//PCDbr31VoWEhMjPz09paWnq1KmTvv/+e40aNSov6wQAAAAAAEA+cutMIocOHTqoQ4cOeVULAAAAAAAAvMTtM4kAAAAAAABQeOTqTKLU1FTt379fBw8e1IULF1y2ufHGG3MzCwAAAAAAAHiAW2cSpaWlaezYsYqKilLVqlV1ww03qG3bti4f7po0aZKio6MVHBys5s2ba926dZm2/eqrr9SkSROVKFFCRYsWVYMGDfTvf//b7XkDAAAAAABcbdw6k2jIkCF67bXXVKZMGcXGxqps2bLy98/VSUlO5syZo7i4OE2ePFnNmzfXxIkT1bFjR/31118qU6ZMhvYlS5bU0KFDVatWLQUGBmr+/PmKjY1VmTJl1LFjxzyrC0DeswcGq/Lg+d4uAwAAAACuem4lOzNnzlTNmjW1fv16FStWLK9r0oQJE9S/f3/FxsZKkiZPnqwFCxZo2rRpev755zO0b9OmjdPfTz75pGbOnKlVq1YREgEAAAAAAGSDWz83O3PmjLp06ZIvAVFKSoo2btyo9u3bW8Psdrvat2+vtWvXXnF6Y4yWLFmiv/76K9PrISUnJ+v06dNODwAAAAAAgKuZWyFRvXr1dPDgwbyuRZJ07NgxpaamKjIy0ml4ZGSkDh8+nOl0iYmJKlasmAIDA9WlSxe988476tChg8u248ePV1hYmPWoWLFinr4GAAAAAACAgsatkGjo0KGaN2+eNm3alNf1uK148eLasmWL1q9fr3HjxikuLk7Lli1z2XbIkCFKTEy0Hvv27fNssQAAAAAAAD7GrWsSdenSRTNmzFDnzp3VrVs31a9fX6GhoS7b9u7dO0fPHRERIT8/PyUkJDgNT0hIUFRUVKbT2e12Va9eXZLUoEED/fnnnxo/fnyG6xVJUlBQkIKCgnJUFwAAAAAAQGHmVkiUnJys//znPzp27JimTp0qSbLZbE5tjDGy2Ww5DokCAwPVuHFjLVmyRN27d5ckpaWlacmSJRowYEC2nyctLU3Jyck5mjcAAAAAAMDVyq2QKC4uTrNmzVK9evV01113qWzZsvL3d+upMn3+Pn36qEmTJmrWrJkmTpyopKQk625nvXv3Vvny5TV+/HhJl64x1KRJE1WrVk3Jycn67rvv9O9//1vvv/9+ntUEAAAAAABQmLmV7MydO1eNGzfW2rVr8zQccujRo4eOHj2q4cOH6/Dhw2rQoIEWLlxoXcx67969stv/dzmlpKQkPfbYY9q/f7+KFCmiWrVq6ZNPPlGPHj3yvDYAAAAAAIDCyK2E5/z582rbtm2+BEQOAwYMyPTnZZdfkHrs2LEaO3ZsvtUCAAAAAABQ2Ll1d7PGjRtrx44deV0LAAAAAAAAvMStU4Feeukl3XTTTZo/f75uvfXWvK4JQB6yBwar8uD53i4DAAAAAODj3AqJFi1apDZt2ui2225Tu3btVL9+fYWGhmZoZ7PZNGzYsFwXCQAAAAAAgPzlVkg0cuRI6/9LlizRkiVLXLYjJAIAAAAAACgY3AqJli5dmtd1AAAAAAAAwIvcColiYmLyug4AAAAAAAB4kVt3NwMAAAAAAEDhQkgEAAAAAAAAQiIAAAAAAAAQEgEAAAAAAECERAAAAAAAABAhEQAAAAAAAERIBAAAAAAAABESAQAAAAAAQIREAAAAAAAAECERAAAAAAAAJPl7uwCgoLMHBqvy4PneLgMAAAAAgFzhTCIAAAAAAAAQEgEAAAAAAICQCAAAAAAAACIkAgAAAAAAgAiJAAAAAAAAIEIiAAAAAAAAiJAIAAAAAAAAIiQCAAAAAACACIkAAAAAAAAgQiIAAAAAAACIkAgAAAAAAAAiJAIAAAAAAIAIiQAAAAAAACBCIgAAAAAAAIiQCAAAAAAAACIkAgAAAAAAgAiJAAAAAAAAIMnf2wUAV2IPDFblwfO9XQYAAAAAAIUaZxIBAAAAAACAkAgAAAAAAACERAAAAAAAAJAPh0STJk1SdHS0goOD1bx5c61bty7TtlOmTFHr1q0VHh6u8PBwtW/fPsv2AAAAAAAAcOaTIdGcOXMUFxenESNGaNOmTapfv746duyoI0eOuGy/bNky9ezZU0uXLtXatWtVsWJF3XzzzTpw4ICHKwcAAAAAACiYfDIkmjBhgvr376/Y2FjVqVNHkydPVkhIiKZNm+ay/axZs/TYY4+pQYMGqlWrlj766COlpaVpyZIlHq4cAAAAAACgYPK5kCglJUUbN25U+/btrWF2u13t27fX2rVrs/UcZ8+e1YULF1SyZEmX45OTk3X69GmnBwAAAAAAwNXM50KiY8eOKTU1VZGRkU7DIyMjdfjw4Ww9x+DBg1WuXDmnoCm98ePHKywszHpUrFgx13UDAAAAAAAUZD4XEuXWyy+/rNmzZ+vrr79WcHCwyzZDhgxRYmKi9di3b5+HqwQAAAAAAPAt/t4u4HIRERHy8/NTQkKC0/CEhARFRUVlOe3rr7+ul19+WYsXL1a9evUybRcUFKSgoKA8qRcAAAAAAKAw8LkziQIDA9W4cWOni047LkLdsmXLTKd79dVXNWbMGC1cuFBNmjTxRKkAAAAAAACFhs+dSSRJcXFx6tOnj5o0aaJmzZpp4sSJSkpKUmxsrCSpd+/eKl++vMaPHy9JeuWVVzR8+HB9+umnio6Otq5dVKxYMRUrVsxrrwMAAAAAAKCg8MmQqEePHjp69KiGDx+uw4cPq0GDBlq4cKF1Meu9e/fKbv/fSVDvv/++UlJSdNdddzk9z4gRIzRy5EhPlg4AAAAAAFAg+WRIJEkDBgzQgAEDXI5btmyZ09/x8fH5XxAAAAAAAEAh5nPXJAIAAAAAAIDnERIBAAAAAACAkAgAAAAAAACERAAAAAAAABAhEQAAAAAAAERIBAAAAAAAABESAQAAAAAAQIREAAAAAAAAECERAAAAAAAAJPl7uwD4BntgsCoPnu/tMgAAAAAAgJdwJhEAAAAAAAAIiQAAAAAAAEBIBAAAAAAAABESAQAAAAAAQIREAAAAAAAAECERAAAAAAAAREgEAAAAAAAAERIBAAAAAABAhEQAAAAAAAAQIREAAAAAAABESAQAAAAAAAAREgEAAAAAAECERAAAAAAAABAhEQAAAAAAAERIBAAAAAAAABESAQAAAAAAQIREAAAAAAAAECERAAAAAAAAREgEAAAAAAAAERIBAAAAAABAhEQAAAAAAAAQIREAAAAAAABESAQAAAAAAAAREgEAAAAAAECERAAAAAAAABAhEQAAAAAAAERIBAAAAAAAABESAQAAAAAAQD4aEk2aNEnR0dEKDg5W8+bNtW7dukzb/vHHH7rzzjsVHR0tm82miRMneq5QAAAAAACAQsLnQqI5c+YoLi5OI0aM0KZNm1S/fn117NhRR44ccdn+7Nmzqlq1ql5++WVFRUV5uFoAAAAAAIDCwedCogkTJqh///6KjY1VnTp1NHnyZIWEhGjatGku2zdt2lSvvfaa/vWvfykoKMjD1QIAAAAAABQOPhUSpaSkaOPGjWrfvr01zG63q3379lq7dm2ezSc5OVmnT592egAAAAAAAFzNfCokOnbsmFJTUxUZGek0PDIyUocPH86z+YwfP15hYWHWo2LFinn23AAAAAAAAAWRT4VEnjJkyBAlJiZaj3379nm7JAAAAAAAAK/y93YB6UVERMjPz08JCQlOwxMSEvL0otRBQUFcvwgAAAAAACAdnzqTKDAwUI0bN9aSJUusYWlpaVqyZIlatmzpxcoAAAAAAAAKN586k0iS4uLi1KdPHzVp0kTNmjXTxIkTlZSUpNjYWElS7969Vb58eY0fP17SpYtd//e//7X+f+DAAW3ZskXFihVT9erVvfY6AAAAAAAAChKfC4l69Oiho0ePavjw4Tp8+LAaNGighQsXWhez3rt3r+z2/50AdfDgQTVs2ND6+/XXX9frr7+umJgYLVu2zNPlAwAAAAAAFEg+FxJJ0oABAzRgwACX4y4PfqKjo2WM8UBVAAAAAAAAhZdPXZMIAAAAAAAA3kFIBAAAAAAAAEIiAAAAAAAAEBIBAAAAAABAhEQAAAAAAAAQIREAAAAAAABESAQAAAAAAAAREgEAAAAAAECERAAAAAAAABAhEQAAAAAAAERIBAAAAAAAABESAQAAAAAAQIREAAAAAAAAECERAAAAAAAAREgEAAAAAAAAERIBAAAAAABAhEQAAAAAAAAQIREAAAAAAABESAQAAAAAAAAREgEAAAAAAECERAAAAAAAABAhEQAAAAAAAERIBAAAAAAAABESAQAAAAAAQIREAAAAAAAAECERAAAAAAAAREgEAAAAAAAAERIBAAAAAABAhEQAAAAAAAAQIREAAAAAAABESAQAAAAAAAAREgEAAAAAAECERAAAAAAAABAhEQAAAAAAAERIBAAAAAAAABESAQAAAAAAQIREAAAAAAAAECERAAAAAAAA5MMh0aRJkxQdHa3g4GA1b95c69aty7L93LlzVatWLQUHB+u6667Td99956FKAQAAAAAACj6fDInmzJmjuLg4jRgxQps2bVL9+vXVsWNHHTlyxGX7NWvWqGfPnnrwwQe1efNmde/eXd27d9fWrVs9XDkAAAAAAEDB5JMh0YQJE9S/f3/FxsaqTp06mjx5skJCQjRt2jSX7d966y116tRJzz33nGrXrq0xY8aoUaNGevfddz1cOQAAAAAAQMHk7+0CLpeSkqKNGzdqyJAh1jC73a727dtr7dq1LqdZu3at4uLinIZ17NhR8+bNc9k+OTlZycnJ1t+JiYmSpNOnT+eyeu9LSz7rtXlfafl5szaJ+nKrINfny7VJ1Hcl1Oc+X65Nor7c8uX6fLk2ifpyi/rc58u1SdSXW75cny/XJhX8+nydo35jzJUbGx9z4MABI8msWbPGafhzzz1nmjVr5nKagIAA8+mnnzoNmzRpkilTpozL9iNGjDCSePDgwYMHDx48ePDgwYMHDx48rorHvn37rpjJ+NyZRJ4wZMgQpzOP0tLSdOLECZUqVUo2m82LlXnX6dOnVbFiRe3bt0+hoaHeLseJL9cmUV9u+XJ9vlybRH255cv1+XJtEvXlFvW5z5drk6gvt3y5Pl+uTaK+3KI+9/lybZLv1+cJxhj9888/Kleu3BXb+lxIFBERIT8/PyUkJDgNT0hIUFRUlMtpoqKictQ+KChIQUFBTsNKlCjhftGFTGhoqM92Hl+uTaK+3PLl+ny5Non6csuX6/Pl2iTqyy3qc58v1yZRX275cn2+XJtEfblFfe7z5dok368vv4WFhWWrnc9duDowMFCNGzfWkiVLrGFpaWlasmSJWrZs6XKali1bOrWXpEWLFmXaHgAAAAAAAM587kwiSYqLi1OfPn3UpEkTNWvWTBMnTlRSUpJiY2MlSb1791b58uU1fvx4SdKTTz6pmJgYvfHGG+rSpYtmz56tDRs26MMPP/TmywAAAAAAACgwfDIk6tGjh44eParhw4fr8OHDatCggRYuXKjIyEhJ0t69e2W3/+8kqFatWunTTz/Viy++qBdeeEE1atTQvHnzdO2113rrJRRIQUFBGjFiRIaf4vkCX65Nor7c8uX6fLk2ifpyy5fr8+XaJOrLLepzny/XJlFfbvlyfb5cm0R9uUV97vPl2iTfr8/X2IzJzj3QAAAAAAAAUJj53DWJAAAAAAAA4HmERAAAAAAAACAkAgAAAAAAACERAAAAAAAAREgEAAAAAAAAERIBAAAAAABAkr+3CwAAALhabNmyRatXr1ZSUpKio6PVuXNnFS9e3Ntl+bQDBw5o+/btSkxMlCSFhYWpRo0aKl++vJcrAwCg8CEkgk8zxuibb75xOqC+++67VaVKFW+XZjl27Jh++eUXq76mTZvKZrN5uyxJvrn8jDHas2eP08F+pUqVZLdzYmNO+OJ7ezn6Rs5rKsh947nnntNXX32lnTt3eq2GpKQkTZkyxel9vffee3XDDTd4tI7Ro0erTZs2uvHGG61hZ8+eVZ8+ffTVV19JuvR+22w2lSxZUjNmzFCXLl08WqMrvrL8JCklJUVvvvmmPvroI+3atctlmypVquihhx7Sk08+qaCgIA9XiLxSUEJAAl4AVw0DuPDyyy+btm3bemx+sbGx5ptvvnEaduTIEdO8eXNjt9uNzWazHkFBQebDDz/0WG3GGDNz5kzz66+/Og1LS0szzz77rAkMDDR2u9161KpVy2zYsMGj9fn68jPGmNmzZ5ubbrrJBAcHOy0vu91ugoODTfv27c2cOXM8XldO0Tec0Tdyr7D0jb59+xq73e6RebVt29bMnDnTadjOnTtNlSpVMryvdrvdvPjiix6py8Fms5lRo0Y5Dbv//vuNzWYztWrVMuPGjTMffPCBiY2NNX5+fqZIkSLmr7/+8lh9vr78zpw5Y5o3b25sNpspXry46dSpk3niiSfM0KFDzdChQ80TTzxhOnXqZIoXL27sdrtp0aKFOXPmjEdrzIlnn33WVK1a1dtlmDNnzpg333zT3HXXXaZz587m0UcfNStXrvRKLcnJyebll1821atXz7DdczyqVatmXnnlFXP+/HmP1TVq1CizfPlyp2FJSUnmrrvusupy9IuIiAgzf/58j9WWFV96b5E/Nm/ebN59913zyiuvmDlz5pjTp097uySft3//frN06VIzb948M2/ePLN06VKzf/9+b5dVIBASwSVPHuwb4/qAunPnzsZms5k2bdqYWbNmmR9++MGMGjXKFC1a1Pj7+5v169d7tb64uDhjs9lMmTJlTP/+/c2QIUNM27Ztjc1mM6VKlTIHDhzwan2+svwuXLhgunfvbh1Y1apVy3Tt2tX06tXL9OrVy3Tt2tXUqlXLOujq3r27uXDhgkdqcwd948r10Teyh77hPlfva7NmzYzNZjO9e/c2q1evNn/99ZeZOXOmiYqKMna73SxevNgjtbmqb+fOncZut5uWLVuas2fPOrX98ssvjc1mMw8//LDX6jPGt5bfc889Z2w2m3n++edNUlJSpu2SkpLM4MGDjc1mM4MGDfJYfTnl6f0GIaD7CHg9zxdCVF8J2Qgpc89XA+iChpAILnn7g/Dvv/9ubDab6dKli0lLS3Nqu3r1amO32819993ntfoOHDhgAgICTJ06dczhw4ed2k6cONHYbDbzzDPPeK0+X1p+48aNMzabzfTs2dPs2bMn03Z79uwxPXv2NHa73bz00kseqc0d9I2s66NvZJ+v943Y2NgcPRwHZJ5w+fv6yy+/GJvNZvr06ZOh7Z9//mkCAwPNHXfc4ZHaXNU3depUY7fbzU8//eSyfevWrU316tU9VZ7PL7/o6GjTqVOnbLe/+eabTXR0dD5WlDve3m8YQwiYXQS8nsdZqP9DSJk7vhxAFzRck+gqMXr06By137JlS/4Ukk2rV6+WzWbTsGHDMlzDpFWrVrr55pu1cuVKL1Un/fTTT0pNTdXLL7+syMhIp3FPPvmkPv74Y33//fd6/fXXvVKfLy2/jz/+WC1bttSnn36aZbtKlSrp008/1e7duzVz5kwNGTLEI/XRN/IWfSP7fL1vzJgxQzabTcaYbE/jrWtOrV+/XjabTXFxcRnG1apVS7fccot+/vlnL1R2SUJCgiSpUaNGLsc3atRIH374oSdLcuJry+/QoUPq2bNntts3btxYy5cvz8eKnD3wwAM5ar9q1ap8qiR71q1bp/Xr16t3796aMWOGNfyaa65Rs2bNVL9+fb333nu66aabPFLP3Llz1bFjR40fPz7LdiEhIXr55Ze1efNmff7553rllVc8Ul96y5YtkySNGzdORYoUcRp3xx136IYbbtCSJUs8XpeDr723vm7ZsmVq06aN07CePXsqPj5e999/vx5++GFFRETo559/1uDBg/XSSy+pTZs2Xlt+u3bt0qxZs9SiRQstWbLEWgcfeugh3Xrrrbrrrrs0YcIETZ482SP1+PryGzVqlNatW6fBgwdr2LBhCgkJcdnu7NmzGj16tF599VWNHj3aK9sWX0dIdJUYOXJkgTnYl6QTJ05Ikq699lqX4+vWraulS5d6siQn+/fvlyS1bNnS5fgWLVpo5syZnizJiS8tvz179uiOO+7Idvs2bdpo4sSJ+VfQZegbeYu+kX2+3jdCQ0NVvnx5TZs2LVvtx4wZo++//z6fq3Lt9OnTki59MHLlmmuu0XfffefJkpyEhYVJUqYXIffz8/PqBcp9bflFRUXlKJDftGmToqKi8q+gyxSkAFUiBMwNAt6cK0ghqq+HbISUOVOQAmhfR0h0lQgJCVH58uWzfdbE+++/79WzESIiIiRdurtJ0aJFM4y/cOGCAgMDPV2WxbGhdlWbY3haWponS3LiS8svPDxcO3bsyHb7HTt2KDw8PB8rckbfyFv0jezz9b7RqFEjrV+/Xs2aNcvWB9zSpUt7oKr/SV9TuXLlJElnzpxRcHBwhrZJSUmZfqOYX+bNm6f4+HhJ0sGDByVJO3fuVIMGDTK03b9/v7VueoovL7877rhDb731loYOHaoXX3wxw4cjh3PnzmnMmDFatGiRnnrqKY/VV5ACVIkQMDcIeHOuIIWovhiypUdImTMFKYD2dYREV4kGDRrojz/+UI8ePbLVfuHChR7/IDxjxgwrMT916pQk6e+//1bz5s0ztN23b5/KlCnjwer+l+ZLl+qSpPj4eNWuXTtD2/3796tUqVKeKk2S7y6/zp07a+bMmZoyZYr69++fZdsPPvhAX3/9tWJjYz1Sm0TfyAv0Dff4et9o1KiRli9frm3btrl8L73tzTff1PTp0yVJycnJkqStW7dmOBVeunTW1uU/f8xvW7ZsyfBBeN68eS5DorVr1+q6667zTGH/z5eX36hRo7R06VKNHz9e7777rq6//nrVqFHD+sCemJio7du3a/Xq1frnn39Uv359jRw50mP1+XqAKhEC5gYBb+4UpBDVF0O29Agpc6YgBdC+jpDoKtGoUSOtXbtWO3fuVLVq1bxdjkvx8fHWTtnhyy+/zPBB7uLFi1q1apVuuOEGD1Z36YNw+g/DkjR//nyXH542bNigmjVreqiyS3x1+Y0bN06LFi3SI488oldffVUdOnRwebC/aNEi7dq1SxUqVNDYsWM9UptE38gL9A33+HrfuO2223T8+HGdO3cuW+379evnMmDID5UqVXL6pjowMFCVKlXSypUrM9Rw7tw5rVixQrfccotHapOk3bt3uxzu6sPali1bVK1aNd155535XZbF15df8eLFtXr1ar3yyiuaOnWqFi5cqIULF2ZoV65cOT399NMaNGiQRz8I+3qAKhEC5gYBb+74eojq6yEbIaX7fD2ALkgIia4SN998s37//XcdPnw4Wx+Eu3fvrujo6Pwv7P/l5Ocn27ZtU5cuXdS9e/f8K+gymV2jxNWObdOmTbpw4YI6duyY32VZfHn5RUVFaf369Ro0aJA+//xz6+J6jp1M+g8p999/v8sLHucn+kbu0Dfc5+t9o3Xr1mrdunW2219//fW6/vrr87Gi/7k89MvK3r17FRcXp7Zt2+ZfQZepXLlytts2aNDA49cR8/XlJ10K1EaNGqVRo0Zp+/bt2r59uxITEyVd+na9Ro0aqlGjhkdrcvDlAFUiBMwNAt7c8/UQ1ddDNkJK9/l6AF2Q2ExOfjAKALlw5swZrV271uXBfosWLVS8eHEvVwh4B30DgDf89ddfmj17ttq2basbb7zRKzX4WghYWHjrvV25cqWmTZumJ554ItNr6aS3evVq7dixQ3369Mn32qKjo12e3fTAAw9o2LBhTsPOnTunqKgo3XLLLfrss8/yvTbpUqjiSkhISIYv37Zs2aKnn35a999/f44vFu4uX19+0qU7lzkCaMeZWJcrV66c+vXr5/GzUAsSQiIAAAAAAP6fLwSoBZkvLD8CaPcREgGFwOrVq9W0aVOv3tUK8EX0Dc9ITU3VgQMHJF36OQRc27Rpk0aPHq3Vq1crKSlJ0dHR6tWrl5577jmPrqOzZs3STTfdVCgu2Hnu3DmtX79ekvggBwBAHvDe5dCBy5w/f15vvPGGunXrpjvuuEMffPCBLly44LLtW2+9papVq3q4woz279+vp556Sk2bNlWdOnV0yy23aNasWR6vo3Xr1tZv93///XePzz+vpKamau/evdq7d6+3S/Ep9A330Tc8Y8eOHYqOjvbounf06FE98cQTqlevnho1aqQhQ4boxIkTLtuOGjVK/v6euwyjn5+fxowZ4zTsxx9/1PXXX69vv/1WSUlJKlGihLZt26bhw4fr1ltvzdHtonPr/vvvV6VKlXT77bdr/vz5Obp2l6/Zu3ev2rRpo3bt2nm7FJd8ve/6Osd1dVasWOHVOjZt2qTu3burdOnSCgkJUZ06dTRu3DilpKR4tI5Zs2bp8OHDHp0ngKuQAS6zbds2Y7fbjZ+fn8fmef78edO8eXNjt9uNzWYzNpvN2O12c+2115o///wzQ/uRI0cau93usfqqVKli3nrrLadhGzZsMCVLlnSq1/Fv7969PVabMcaqwTH/5s2bmylTpph//vnHo3Xk1rZt24zNZvPoupcT9I2M6Bue4et9Y+fOnaZy5comOjraI/M7deqUqV69ulO/sNlspmzZsmb58uUZ2nu6X9hsNjNq1Cjr75SUFFOuXDlTtGhRM23aNJOammqMMWbPnj2mbdu2xm63mylTpni0vvT9snz58mbo0KFm586dHqshr+zdu9fExMSYNm3aeLsUl7zVd48cOWIGDBhgrrvuOtOwYUPz/PPPm+PHj7tsO3LkSJ/dtnh6+dntdjN69GinYT/88IMJDg42NpvNFClSxJQtW9bqOx06dDBpaWkeqc2YS303ICDAdO/e3fznP/+xtiUF1cWLF82ePXvMnj17vF2KT9u4caO57bbbTEREhClSpIipXbu2GTt2rElOTvZoHZ988ok5dOiQR+eZX86ePWuWL1/u8pgBxhASIQPHDtlms3lsni+99JKx2WymW7duZu3atWbDhg3m0UcfNX5+fiYiIsJs3LjRqb23D/jT0tJMzZo1jb+/vxk+fLg5cOCAOX/+vFm+fLmpW7eusdvtZu7cuR6t74knnjBvvPGGqV27tnXwUqxYMfPAAw+Y1atXe6yW3PD0B82com9kRN/wDF/vG542ePBgY7PZzGOPPWYOHTpkjh07Zl555RVTtGhRU6RIEfPdd985tfd2v/j++++NzWYzY8eOzdD25MmTJiIiwqMhh81mMy+++KL58ssvTefOnY2fn5/VN9q1a2c+/fRTj3/4KKy80Xd9PUTNCU+HgAS8nuWNENWXA1RCSs/x9S/fvI2QCD6hfv36pmbNmubixYtOw7/77jtTvHhxU7JkSbN+/XpruLcP+JctW2ZsNpt5+umnM7Tdv3+/KVasmOncubPX6luzZo154IEHTPHixa0dSd26dc2ECRPM0aNHPVYXco++kbf10TcKh1q1apnGjRtnGL5582ZTrlw5ExwcbP7zn/9Yw73dLyZMmGDsdnumH+Tuu+8+U7JkSU+Vl6G+/fv3m9GjR5sqVapY/aJkyZJm4MCBZsuWLR6rC3nD10NUX0bA61mcheqMkNJzfP0sVG/jmkTwCdu3b1fHjh3l5+fnNLxz585asmSJ0tLSdPPNN2vdunVeqtDZli1bZLPZ9PDDD2cYV758eXXp0kUbN270QmWXtGzZUlOnTtWhQ4c0ZcoUNW/eXP/973/17LPPqkKFCrrnnnv0448/eq0+ZB99I2/RNwqH+Ph4tWnTJsPwBg0aaOXKlSpTpozuuusuffvtt54vzoXk5GRJUoUKFVyOr1ixos6cOePJkpyUL19ew4YN065du7R48WL16NFD586d0zvvvKNGjRqpWbNm+vDDD71WH3Lmm2++UaNGjTRp0iRFRUWpVKlSGjRokFatWqXw8HDdcccdmj9/vrfLLBD+/PNP2Ww29ezZM8O4EiVKqFOnTvrtt988WlNAQIDuuOMOfffdd9qzZ49GjRqlypUra+nSpbrvvvtUtmxZPfnkk/r11189Wpc7qlatqvj4eO3evdsj8xs/frx27typRx55RAcPHtTRo0f18ssv6/Tp0+rUqZO+//57j9SRXUuWLNGhQ4c0ZMgQxcbGym6/9NG9UqVK+uqrr1SyZEmPX+/xhRde0BdffKGOHTvq8OHDeumll1SjRg3ddNNN+uyzzzx+nS53VaxYUcuWLdPSpUu9XYpPIiSCTwgICFBwcLDLcU2bNtWiRYtkjFHHjh21du1aD1eX0dmzZyVJ0dHRLsdXqVJFp06d8lxBmShatKgefPBBrVmzRn/88YeeeuophYWF6YsvvlDnzp29XR6ygb6RP+gbObNq1SqNGzdOffv21e23367bb79dffv21bhx47Rq1SqP11O0aNFML/RctWpVLVu2TJGRkbrnnnv0zTffeLi6SxITE60LFhcvXlzSpYttu3L06FGFhYV5srxMtWvXTp9++qkOHjyot956S9ddd502bNigRx991NulZWrNmjX6+OOPvV2GzyhoIaovI+AtXApagEpICW/x3K0+4DP279+v5cuXa/v27UpMTJQkhYWFqUaNGrrxxhtVsWJFj9dUuXLlLO881KRJEy1atEgdOnRQp06ddMMNN3iwuktsNpv1f8cH4JMnT7q8hfDJkydVrFgxT5WWLbVr19Ybb7yhV155Rd98842mTZvm7ZJc+vvvv3X48GGv3MqYvuEe+oZneKNvrF27Vv3799eff/6ZaShjs9lUp04dTZkyRS1atPBIXdHR0dq8eXOm46tUqaKlS5eqbdu2uueee9SkSROP1JXexIkTNXHiRKdhP//8s+68884Mbbdv357ph1BvKVGihJ544gk98cQT2rhxo8/2C0maMmWKPv74Y/Xu3dvj8161alWm+42YmBivbJOzE6K2adNG99xzj+bMmePh6nJuzZo12rFjh8feX0fAK8kp4C1fvnyGtr4W8LZr106nTp3Sv//9b02dOlUbNmzQxo0b9dBDD3m7PJ8QHx+vxx9/PMNwR4Datm1b3XXXXfr888/VrVs3L1TorKCElMOGDdNPP/2kjz76SPPmzdM777yjd999V40bN1a/fv1Y/woir/7YDR61Y8cO06lTJ2O32zP8Ftfx21K73W46d+5stm/f7tHaHnnkEVOkSBFz6tSpLNutX7/ehIeHW7V6Svrlk/5x+e/6HW6++WZz7bXXerS+9L9hLsj69u3r8Wsj0DfcR9/wHE/3jU2bNpng4GATHBxsYmNjzezZs83GjRvN9u3bzfbt283GjRvN7NmzTd++fU1wcLApUqSIx65fExcXZwICAszhw4ezbLdz505TqVIlaz31lL59+7p8TJ8+PUPbAwcOmICAAPPQQw95rL7C1C+M8c5+Y82aNdbF+C/fZ1x+J8q1a9d6tLbGjRubtm3bZtnG0TcCAwNNq1atfPqaRJ58fzPbp33xxRcu28fExJiGDRt6pDZHfTnpuxs2bDCPPfZYPlaUtZUrV5qxY8eaPn36mO7du5vu3bubPn36mLFjx5qVK1d6vJ5SpUqZuLi4TMfv2rXLVKpUyQQFBZl58+Z55ZpEcXFx1h3f3n33XWO3283+/ftdtu/Xr58pXbq0R+u70vp38uRJ8/bbb5v69et7fN+bU6tXrzYzZ870dhk+iTOJrhK7d+9WixYtdPz4cbVp00YdO3ZUjRo1FBoaKkk6ffq0tm/froULF2rhwoVq1aqVfvnlF1WpUsUj9XXr1k0ffPCB3nvvPQ0ZMiTTdunPmnB8Y+cJN954o9PZEg5///13hp+mnDx5UitXrtQ999zjqfJUuXJllShRwmPzK0zoG7lD3yi8hg8frqCgIK1YsUL16tVz2aZRo0bq0aOHnnzyScXExGjYsGEe+QnLHXfcoU8//VQff/yxnnvuuUzbOc6aaNu2rfbt25fvdTlMnz492239/Py0aNEiVatWLR8rchYTE5PpT0J9geMsjuzy9DfpmzdvVrt27SRJffr0yXK/MXv2bLVr105r165V/fr1PVJfTEyM3nnnHSUkJCgyMtJlm6pVq1pn261du9bldvxq1KdPH5fD//nnnwzDDh48qDVr1ig2Nja/y3Jb48aN1bhxY4/Pl7NQ3cdZqJ7jzbNQfZ63Uyp4Rs+ePU1QUJD5/vvvr9j2u+++M0FBQebee+/1QGX/c/78eXPhwoVstT1x4oSJj4/P54rcs3v3bjNjxgzz22+/ebuUAsnT3wjTNzyHvpE7nu4b4eHh5uGHH852+/79+5vw8PB8rAhXi8zO5rjSw1NuvfVWExYWZn799dcrtt28ebMJDQ01Xbt29UBll6xatcpERUWZV1999Yptd+3aZSpXruzR5ec4SyK7j7vuussnz0Y4fPiwWbZsmdm3b5/H5tmmTRufP/OBs1Ddx1monuWNs1ALCpsxmcS7KFTKlCmjzp07a+bMmdlq37t3by1cuFBHjhzJ58pQ2F1+V67sSk1NzeNKXKNvwFt8vW8UK1ZMjz76qF577bVstX/22Wc1efJkr14fAYWDn5+fSpYsme1v8X///XcdOnTIY32jZMmSuueeezR58uRstX/ooYf0xRdf6MSJE/lcWcFgt9vdOnPJU+8vcqdr165auXJllmehOmzZskUxMTGKiYnxyFmoq1ev1l133aW4uLgsz0KVLp1p7jgL1RfXvYSEBG3btk3VqlXz2NlEbdu2VWxsrM+eeZPTs1CfeeYZffXVVz75/nobPze7Spw5c0blypXLdvty5cpxoI88YYxRSEhIti/6fOjQIZendecX+ga8xdf7Rt26dfXll19qxIgRV7zY+OnTp/Xll1+qbt26Hqruys6fPy8/Pz8FBAR4u5Qspaam6sCBA5Iu3dYY0jXXXKPk5ORs3446NjbWo3c3S0lJsS5onB2hoaEF5rbQnmCz2dwKAVEwrF69Wv/617+uGBBJly4Y3aNHD33xxRceqEy6/vrrs70uValSRfHx8flbUC5ERkZm+nPS/OLrt4uPjo7mp7N5hJDoKlG9enUtWLBAY8aMkb9/1m/7hQsXtGDBAlWvXt1D1V1y/vx5TZ8+XTt27NB1112n+++/X35+fjp48KCeeeYZLVu2TAEBAerSpYvGjh2rUqVKebQ+X1ajRg116tRJDz74oBo0aODtcpxER0crKChIf/75Z7bae/pgn75RuNE33Ddw4EDdf//9atasmYYOHaoOHTqoTJkyTm2OHDmiH3/8UePGjdPevXv10ksveay+I0eO6I033rD6xdNPP62wsDBt3bpV/fv31/r162Wz2dS+fXu9++67Hr3mT07s2LFDtWvXlt1u18WLFz0yz4CAAHXq1En9+vXTrbfe6vZZbfmlUaNGmj17tk6dOuWT1xQr6AGq5N0Q1ddDwOwi4HWNEBXeQgCdh7z7azd4yttvv21sNptp27atWbVqlUlLS8vQJi0tzaxcudK0adPG2O12884773isvrNnz5qGDRtadwlx3EkqKSnJ1K1b19hsNlOyZEnj5+dnbDabufbaa825c+c8Vl9ObNu2zdjtduPn5+exeaa/fkPjxo3N+++/bxITEz02/6zcddddxs/Pz5w5cyZb7T39+2D6hufQN5z5et8wxpixY8eagIAAaxmGhoaaihUrmooVK5rQ0FBreEBAgBk3bpzH6jpx4oR1HRXHnaSaNGlijh49aipUqGCCg4NNw4YNTVRUlLHZbKZixYrm5MmTHqsvJ3bu3GkqV65soqOjPTbP9P0iKirKDB482Pz9998em/+VvP7668Zms5nFixdnq/0zzzzj0eX3ySefGJvNZmrXrm0++eQTk5CQkKFNQkKC+fe//21q1apl7Ha7+fTTTz1Wn2P+gwYNMnfccYcZMWKEdYfM33//3bRo0cL4+fkZf39/06lTJ7Njxw6P1nbvvfcau92e7T7pq9cN2bZtm7HZbB7dp/n7+5tbb73VzJs3z1y8eNFj882JZs2amSpVqph//vnnim0TExNNdHS0adasmQcqy55z586ZlJQUb5dxRRcvXrSu24VLatWqZapUqZLt9r66bfEFhERXibS0NNOvXz/rwLB48eKmXr16pnXr1qZ169amXr16pnjx4tYBd//+/T1a35tvvmlsNpu5//77zbfffmseeughY7fbTe/evU3FihXN+vXrjTHGnDlzxjz44IPGbrebN954w6M1ZpfjoMFms3lsnjabzdxwww3muuuus97jokWLmj59+pjly5d7rA5XXnrpJWOz2bJ9q9M+ffp4dNnRNzyHvuHM1/uGw/bt282QIUNMq1atTOnSpU1gYKAJDAw0pUuXNq1atTJDhgzxeMAwcuRIY7PZzLBhw8xvv/1mLctOnTqZunXrOl1IdsSIEcZms5mRI0d6tEZfZrPZTNeuXU3Xrl2Nv7+/1TdiYmLMxx9/7PWg+ezZsyY+Pj7bAao3+GqAaozvh6i+HgJmFwGva74eovpygJoThJQZFZYA2hcQEl1lfvrpJ9OzZ09Trlw568DB8ShXrpzp2bOnWbp0qcfratKkibnuuusyDLPb7eazzz5zGn7hwgVTsWJFc/3113uyRJ+W/m4Dv/zyi+nfv78JDQ21DiZq1qxpXn31VZc76vx25MgRs2zZMq/MOyfoG4UTfaNwql+/vmnZsqXTMMeZfvPnz8/QvlatWqZJkyaeKs/npe8XBw8eNOPGjTPVqlWz+kWJEiXMY489ZjZu3OjlSn2bLwaoxvh+iFoQQkBf5esBr4Ovhqi+HqDmBCFlRoUlgPYFhERXsaSkJHPw4EFz8OBBk5SU5NVaIiIizBNPPOE07KmnnjJ2u93lB6jY2FhTsmRJT5Xn81zdkjIpKclMnz7d3HDDDdZGPTAw0Nx+++1mwYIFLn9WhUvoG4UHfcO7Jk6cmKNTv7OrRIkS5qmnnnIa9swzzxi73W6OHz+eoX3//v1NWFhYntdRUGV2G+Nly5aZ++67z4SEhFh9o2HDhmbSpEnWt+0FRX6tewUBIWrhVZACXl8MUX09QPV1vh5SEkDnHbu3r4kE7wkJCVHZsmVVtmxZhYSEXLH9zJkz1a5du3ypJSkpKcNF7hwXq7z8QqmSFBUV5dG7/BREISEh6tu3r1auXKlt27bpmWeeUcmSJTVv3jx17dpVlStX9naJ2Zaf654r9I3Cjb7hOadOndKePXvy/HkvXLig4OBgp2GOflKyZMkM7SMiInTu3Lk8ryM7Vq1apXHjxqlv3766/fbbdfvtt6tv374aN26cVq1a5ZWaMhMTE6N///vfOnTokN599101aNBAW7Zs0YABA1S+fHlvl5cj+bXu5ZW33npLVatWzZfn3rNnj5o3b+40rHHjxpKkli1bZmjfunVrbd++PV9qyS/5ufwKirJly+qFF17Qjh07tHTpUt17771KSUnR+++/r6ZNm6pRo0Z67733lJiY6JX6qlevrpdeekmrV6/WkSNHlJycrOTkZB05ckSrV6/WSy+9pBo1ani0pq+//lotWrTQ6NGjdd1112nIkCGKiYnRjz/+qFdeecXpVvIjR45UzZo1NX/+fI/W6OuaNGmib7/9Vnv37tXYsWNVpUoVrVixQn379lXZsmX1+OOPa9OmTV6prUiRIqpcubKKFi3qlfkXJtzdDNkWHx+v5cuX58tzR0RE6MiRI07DihQp4vJgX5KOHz/utTue7N+/X8uXL9f27dutHW9YWJhq1KihG2+8Mdu3s/aka665Rq+++qrGjx+v//znP5o6daoWLlzo7bKyLT/XvbxA37iEvuF5vt438kvp0qV1+PBhp2HlypVTo0aNXLZPSEhQeHi4J0qzrF27Vv3799eff/4pY4zLNjabTXXq1NGUKVPUokULj9aXldDQUD322GN67LHH9Ouvv+qjjz7Sp59+6u2yCpX8DLEKUojqLk+EgKtWrcp0nxYTE6MbbrghX+efEzExMYqJidGkSZP0ySefaOrUqdq8ebMGDBigQYMG6cyZM94uMUfeeustvfXWW9q1a1eePu+ePXvUt29fp2GNGzfWihUrMg1QP//88zytobBwhJQvvPCCli9fro8++khfffWV3n//fU2ePFn169dXv3791KtXL4WFhXm73GzLr3WvoCEkgk+oWbOmtm7d6jRs0KBBGjRokMv2u3bt8vgHzp07d2rAgAH68ccfJSnDQb/NZpMkdezYUW+//bbHb5OeHX5+furevbu6d+/OLR8LCPqGZ9A3Cpa6detqy5YtTsP69++v/v37u2y/fft2j551sHnzZusMrz59+qhjx46qUaOGQkNDJV26Lfr27du1cOFCzZ49W+3atdPatWtVv359j9WYXfXr19c777yj119/3dulIJsKQojqywh4vY+zUAkpvcXXz0L1FEIi+ISWLVtq0qRJSklJUWBgYJZtT548qVWrVunhhx/2UHXS7t271aJFCx0/flxt2rTJ8oB/4cKFatWqlX755RdVqVLFYzXmVNmyZb1dArKBvuF59A3fd/PNN2vatGnZ6hcHDx7Uzz//rGeeecZD1UnDhw9XUFCQVqxYoXr16rls06hRI/Xo0UNPPvmkYmJiNGzYMH377bceqzGngoKCvF0CssnXQ1RfRsBbuBWEAJWQEr6AkAg+YfTo0Ro9enS22p46dUqTJ0/W9ddfn89V/c/QoUP1zz//6LvvvlOnTp0ybTd48GB9//33uv322/Xiiy9q1qxZHqlv6dKlio6O9si84Fn0jdyhbxROAwcO1MCBA7PV1m63a9GiRapVq1Y+V/U/q1ev1r/+9a9MA6L0GjRooB49euiLL77wQGWX7N6922s/S0X+8/UQ1ZcR8BZuvh6gElLCVxASocCpUqWKx89CWLx4sXr06JHlh2CHzp0765577vHodU1iYmI8Ni/4LvpGRvQNREVFKSoqyqPzTElJyXDB+ayEhoYqJSUlHytyVpAuzo6c8/UQ1ZcR8BZuvh6gElLCVxASAdlw5swZlStXLtvty5UrV6B+fwu4i74BZFS3bl19+eWXGjFihIoVK5Zl29OnT+vLL79U3bp1PVQd8D/eCFF9GQFv4ebrASohJXyF3dsFAAVB9erVtWDBAl28ePGKbS9cuKAFCxb45MV5gbxG34CvS01N1d69e7V3716PzXPgwIGKj49Xs2bNNGvWrAx3KJSkI0eO6JNPPlHz5s21d+9ePfXUUx6rLye8sfwAb3EEvNn5MoOAt3CLiopSTEyMIiMjPTbPghBSFqQ7lcF9hEQocP766y/5+fnJ399zJ8L1799fW7du1c0336zVq1e7vJCcMUarVq3SzTffrP/+97966KGHPFZfTnhj+cEz6Bu5Q9/Ie8aYTC+86Sk7duxQdHS0R68r0atXL40ZM0Y7duxQ7969VbZsWYWFhalSpUqqVKmSwsLCVLZsWfXp00c7d+7UmDFj1LNnT4/VlxPeWH55wRfWvYKAENAZAS+8iZASvoIjYRRInj74GzBggH777TdNnTpVN954o4oWLaoqVapYaXpiYqJ2796tpKQkGWPUr18/DRgwwGP15RQHz4UXfSN36Bt5KzY2Vm3btvVqDQEBAapUqZJsNptH5zt06FD16NFD06ZNs25jnJCQIOnSbYyvvfZaxcTEKDY2VjVq1PBobTnhreWXW76w7mXFV7Y1O3bsUO3atWW327N1RqivyK/l16tXL8XHx2vUqFHq3bu3JKlYsWJO+zTHB3g/Pz+fD3gL4nvrK1JTU3XgwAFJUqVKlTwyz4EDB+r+++9Xs2bNNHToUHXo0EFlypRxanPkyBH9+OOPGjdunPbu3auXXnrJI7XllDeWH/KOzfjCHgoFwq+//qotW7aoT58+3i7Fa5YuXaopU6Zo+fLlOnTokNO4smXLKiYmRg899JDatGnjnQILKV9f93y9Pk+gb3iHp9a9/fv3W0FHYmKipEtBR40aNXTjjTeqYsWK+Tp/XL0K67q3Z88excfHe/3i+rt27VK7du1ks9m0e/dur9aSE/m9/Hbs2OEU8F6+7hWEgLegvreSNHLkSI0ePVppaWleq+Gvv/7ySsg2btw4jRo1SqmpqZKyDilHjhypF154wWO15YS3ll9u+cK65wsIia5CycnJ2rBhg8udXpMmTbgKfTadPXvWafmFhIR4uSLf5+vrnq/XV1DQN3LOV9e9nTt3asCAAfrxxx8lKcM3946zSzp27Ki3336b603lobfeektvvfWWdu3a5e1SvKKgrHuFNcTyFJYfXPGFENWbIRshpff4wrrnCwiJriLHjx/Xiy++qFmzZikpKUnS/w66HAdbRYsW1X333acxY8aoVKlSXqu1MJo5c6Zmzpypn376yduleJyvr3u+Xl9hR9/wzXVv9+7datasmY4fP642bdqoY8eOqlGjhkJDQyVduh7C9u3btXDhQi1fvlwRERH65ZdfVKVKFY/VWJiNGjVKo0ePtr5NvpoUhHWvoIRYvqowL7+rPeBNjxAQ3sK6lztck+gqcfToUbVq1Uo7d+5U1apV1aFDB5cHXIsWLdLkyZO1aNEirVmzRqVLl/Z4rYW1U8fHx2v58uX5Ph9fW36+vu75en3p+dp7m1foG7657g0dOlT//POPvvvuO3Xq1CnTdoMHD9b333+v22+/3Qq8PGnVqlVZftt6ww03eLSegsYXl5+vr3u7d+9WixYtshViLVy4UK1atSJATaewL79Tp05pz5493i7DqwpzCOjrrvaQknUvjxhcFR566CFjt9vN5MmTr9j2/fffN3a73Tz88MMeqOx/duzYYTp16mTsdrux2+3GZrM5PRzDO3fubLZv3+7R2vLCyJEjjd1uz7fn99Xl5+vrnq/XZ4zvvrd5hb7hm+te6dKlTe/evbPd/v777zelS5fOx4qcrVmzxtStW/f/2rvzuKjK9n/gn3NYRYEQF8RHBXNUFBSxXJNFUyT9ImJp+CjLV1PLXRM0RRYrwTJLbTU31N9TueRSpokhAhpW5pKpsQjikikGsgnkXL8//DKPIwOCOmfuwev9evF6NWduZz5d5x44c82Z++jcp/fuW1dXVzp69KhiuR4Xfb8uRK6f6HMvKCiILCws6Lvvvnvg2L1795KFhQWNHTtWgWTVpaSk0JtvvkkhISEUEBBAAQEBFBISQm+++SalpKQYJJMx1e9h6Pu1W0XEfUtElJ2dTc2aNSNJksjHx4fi4uJo+/btdODAATpw4ABt376d4uLiyNvbmyRJoubNm1N2drbB8jY0Ss0/EfHce3z4TKInxDfffIPAwEBMnjz5gWOnTJmCxMRE7NmzB5988okC6Rr+p0r6JnL9RJ97oucTed8aA5HrJ/rcKy4uhqOjY53HOzo61umyvY/Dr7/+ioEDBwIAQkJCat2vX3zxBQYOHIijR4+ie/fuiuQTnej1E3nuAUBiYiLGjBlT61lOVfz8/DB69Gjs27dPgWT/dfToUbzyyis4e/ZsjVcBkyQJXbp0wZo1a9CnTx/FshlD/UQm8r4FxD8TsIqIZ1EaExHrZyxzzygYukvFlGFpaUkLFiyo8/j58+eTpaWlHhNpa+ifKhHpt7Mvcv1En3ui5xN53z4u/NqoG6XnnpubG7m5uVFlZeUDx1ZUVJCrqyu5ubkpkIxo+PDhZGtrSydPnnzg2F9//ZVsbGzof/7nfxRI9vjo83Uhev1EnntERI0aNaL58+fXeXxERAQ1atRIj4m0HT9+nCwtLcnS0pLCwsLoiy++oF9++YUyMjIoIyODfvnlF/riiy8oNDSULC0tqVGjRnTixAnF8olev0elz9eu6PuWSPwzAUU+i/Jx4LNQxZ17xoSbRE8IlUpF/fr1q/P4vn37kkql0mMibU/Ci1qfv7RFrp/oc0/0fCLv28eFXxt1o/TcW7lypeaU7dTUVFKr1dXGqNVqSklJIW9vb5JlmVatWqVINjs7u3p99e6VV14hOzs7PSZ6/PT5uhC9fiLPPSLxm1jcBDSsJ7nBSyR2E9AYmmyP6kluUoo894yNbOgzmZgyxo0bh6NHj2L8+PHIy8urcVxeXh7GjRuH9PR0jB8/XrF8op9aLjqR6yf63BM9n8j71hiIXD/R5960adMwYcIEHDp0CJ6enrC1tUX37t3h6ekJT09PdO/eHba2tvDy8kJycjImTJiAadOmKZKtoqIC1tbWdR5vY2ODiooKPSYyLqLXT+S5BwCvvPIKfvvtNwwZMgRpaWk6v/JDREhNTcWQIUPw+++/Y9KkSYrlS0tLw8svv4xu3bo9cKy7uzvGjBmD1NRUBZLdJXr9RCb6vgWADh064Ntvv8U///zzwLGVlZX49ttvFVs8ePHixbCwsEB6ejrWrVuHMWPGwMPDAx06dECHDh3g4eGBMWPGYP369Th69CjMzMwQGRmpSDZjIHr9RJ57RsewPSqmlPLycvL19dWcAuji4kL+/v40fvx4Gj9+PPn7+5OLi4vm1MGhQ4dSRUWFYvka+qdKRPrt7ItcP9Hnnuj5RN63jwu/NsSce1V++OEHCgoKIkdHx2qnlDs6OlJQUBAlJSUpmqlXr17k7OxMRUVFDxxbWFhITk5O1KtXLwWSPT76fF0YS/1EnHtEd89imjhxoua1a21tTd26daMBAwbQgAEDqFu3bmRtba157b7yyiuK5mvcuDG9/vrrdR4/d+5caty4sR4TaRO9fo9Kn69d0fctkdhnAop+FuXjwGehijn3jA03iZ4garWa1q1bR3379iUTE5NqB1wmJibUt29fWr9+vc4XlT49CS9qff7SFr1+Is890fOJvm8fB35tiDn3dCkpKaErV67QlStXqKSkxGA5Nm/eTJIkkYuLC23evJmuXbtWbcy1a9do06ZN1LlzZ5Jlmf7f//t/Bkj68KKiokiSJL08tjHWT5S5dy9Rm1jcBDSsJ73BK3IT0BiabI/qSW5Sijz3jA03iZ5Qt2/fpjNnztCRI0foyJEjdObMGSorKzNYnifhRa3PX9rGVD/R5t79RMtnTPv2YfFr4y7R5p7o3nzzTTIzMyNZlkmWZbKxsaE2bdpQmzZtyMbGRrPdzMyM3nrrLUPHrbecnBw6dOiQ3h6/oddPaSI1sbgJaFjc4L1LxCagMTTZHtWT3qQkEnPuGRtuEjGhNOQX9YkTJ2jDhg16fY6GXL8nXUPet/zaYA8rIyODFixYQP369aPmzZuTubk5mZubU/Pmzalfv360YMEC+uOPPwyaMS8vjzZv3kxRUVE0a9YsmjVrFkVFRdHmzZvp4sWLBs1mDPVjD4ebgIbDDd7qRGkCGlOT7WFxk1KbKHPP2EhEOlaLY0wApaWlKCwsBADY2trCysrKwInuKi8vx88//4yMjAytfCqVCs888wwsLCwMnPAuUevHHp2o+5ZfG0+u/Px8fPjhh5AkiRf5/D9ZWVmYNm0avv/+ewCotjivJEkAAF9fX6xcuZIXz3xIPPdqlpmZiXXr1iE5OVnn72UvLy+EhYVBpVIZOKmYLl26VGPtPD090aZNG4Nl43378N566y3ExMTgzp07AIAmTZrA1tYWAFBYWKi5eIWJiQmio6PxxhtvGCzrw8jNzUVOTg68vLz08vgNvX7sLm4SsWpu3bqFnTt3AgCCg4MNG6YeNm7ciI0bN+KHH37Qy+Pn5+dj0aJF2LJlC0pKSgD896C/6mC/cePGGDduHJYsWQJ7e3u95NAXfdevLkSfe6Lnqwm/Nh4NvzYe7Pz583BxcYEkSZoDR9F98MEH+OCDD5Cdnf3YH/vChQvo1asX8vPz4e3tDV9fX6hUKtjY2AC4uz8zMjKwb98+JCcno1mzZkhPT4ezs/Njz6Iv+qxffYg+97iJ9WgMUT9u8DZ8xtBk4yYlMyRuErFqRD/gqklMTAxiY2P1kvn69evo168fsrKy0L59ewwePFjnAf+BAweQnZ2Np59+GkeOHEHz5s0fexZ90Wf96kr0uSd6vprwa+PR8GvjwfLz87Fq1SpIkoSoqChDx6kTfe7XsWPHYseOHdi5cyeGDh1a69jvvvsOI0eOxKhRo7Bly5bHnkVfRHhdAOLPPdFfuzV5UpuA3OBVFjdRq+MmpTJ47tXO1NABmHhsbW0RHBys+SXEgEWLFiE7Oxsff/wxJk+eXOvYTz75BFOnTkVkZCQ++eQThRI2DKLPPdHzGQK/NpQh+tyzt7dHdHS0oWMIIzExEWPGjHlggwgA/Pz8MHr0aOzbt0+BZA2P6HOvWbNmWLx4sbCv3ZoUFBQgNzfX0DEUr9/ChQtRVFSEvXv31vr6jYiI0DR4q86kNRai7FsAuHHjBqKjo43qjbq+z0Lt06dPnZqU+/btQ79+/bhJ+ZCMce4piZtErBoHBwds2LDB0DGE8s033yAwMPCBb4IBYMqUKUhMTMSePXv4jXA9iT73RM9nCPzaUAbPPeNSXFwMR0fHOo93dHTUrOPAGhbRm1iiU7p+3OBVljE2UfXZZOMmpXKMce4pSTZ0AMaMwc2bN+v1vVqVSoWbN2/qMRFjYuDXxpPr1q1buHbtGtRqtaGjCKdDhw749ttv8c8//zxwbGVlJb799lv+ykA98Nxj+sINXmVVNQFF/KqoITxMk/LAgQMKJGt4eO7VjptEjNVBmzZtkJycXOfxycnJBl1QjjGl8Guj4bp8+TKOHDlS7Y34p59+io4dO8LOzg6Ojo546qmnEBoair/++stAScXzyiuv4LfffsOQIUOQlpZWbU0J4O46E6mpqRgyZAh+//13TJo0yQBJxdQQ5l5paSkqKysNHcNoGap+3OBlhsRNSiYKbhI9IUpKSnDlypVq2/fv348hQ4agadOmaNSoEVxcXBAdHY2ysjIDpBTXuHHjcPToUYwfPx55eXk1jsvLy8O4ceOQnp6O8ePHK5hQXMY0927evIlbt27VOubixYs4fPiwQonEx6+Nx0PEuTdv3jz8+9//hiz/91AhPDwcr732mmYR8p49e8LU1BQJCQno27cvbty4oVg+kU2bNg0TJkzAoUOH4OnpCVtbW3Tv3h2enp7w9PRE9+7dYWtrCy8vLyQnJ2PChAmYNm2aoWMLwxjm3u+//46JEydixIgRWLVqlaah9c0336BTp06wtraGlZUVvLy88MsvvyiazRiIWj9u8Cpj9+7dOHXqlKFjCIeblPrHc6+OiD0RwsLCyMHBQWvbihUrSJZlkiSJLC0tqXnz5iRJEsmyTM8++yyVlJQYKO3DiY6OJlmW9fLY5eXl5Ovrq6mPi4sL+fv70/jx42n8+PHk7+9PLi4umnoOHTqUKioq9JJFX/RVP2OYeykpKeTq6kqyLJMsy9SnTx86fPiwzrH6nGf6wq+NR6PP+ok895ydnSkkJERzOzMzk0xMTKhLly7022+/abZXVlZSbGwsSZJEM2bMUCzfo1Kinj/88AMFBQWRo6MjSZKk9ePo6EhBQUGUlJSk1wz6os/6iT73srOzydbWVrMvZVmm6dOn05EjR8jMzIysrKzIw8OD2rRpQ5IkUZMmTejcuXOK5Xsc9Ll/Ra6fWq2miRMnanJZW1tTt27daMCAATRgwADq1q0bWVtba/6mvfLKK4rkepxEOI6RJIkmTZpk0AwPS5/1W7lyJUmSRD4+PpSamkpqtbraGLVaTSkpKeTt7U2yLNOqVav0kkVfDD3/jHnuKYkXrn5CpKWlYeDAgZrbV65cwfz589GqVSt8/vnn8PX1hSRJuHHjBhYsWIC1a9di6dKlWLJkiQFTi8Pc3BzfffcdNmzYgDVr1uDYsWM4d+6c1hhZltG7d29MmjQJISEhvBDa/xF97p0/fx6+vr4oKytDx44dYWZmhvT0dAwcOBBvvvkmIiIiFMlhrPi18fBEn3tXr17VOu09MTERRITPPvsMXbt21Ww3NTVFZGQkkpOTsWvXLnzwwQeGiCskHx8f+Pj4ALj79ZnCwkIAd69WZ2VlZchoQhN97sXHx6OoqAjvvfcehg8fjj179mD+/Pk4efIk3N3dsWfPHrRs2RLA3as6vvbaa1i6dCkvPv9/RK6fJElYs2YNxo4dizVr1iA5ORmnT5/WGtOqVSsMHz4ckyZNgre3t94zGZtjx47Vadxff/2lNbZXr176imQ0pk2bhlOnTmHt2rXw9PRE48aN4ezsDFtbWwBAYWEhLly4gJKSEhARJk6cyGeh3oPn3uPDTaInxKVLlxAYGKi5vX//flRWVmLNmjVai6M1a9YMa9aswenTp/Hll19yk+gekiQhLCwMYWFhKC8vR1ZWltYBf/v27WFpaWnglOIRfe69/fbbKCsrwxdffIHRo0cDuPtHJiQkBG+88QaKi4v5dfAA/Np4OKLPvcaNG6OoqEhzu6CgAADQo0cPneN79OiB1NRUJaI9FkSk86sk+mJlZdWgGkP6rJ/oc+/QoUPw9fXFrFmzAACzZ8/G/v37ceDAAaSkpGgaHMDdqzpu27YNP/zwg2L5RGcM9eMG78Pr06fPAz8MkiQJu3fvxu7duzXb7ty5o+9owuMm5aPhuff4cJPoCWFubo7y8nLN7WvXrgEAPD09dY5/7rnnsHr1akWyPS4BAQFwcnJS5LksLCzQpUsXRZ5LKfqqn+hzLykpCS+88ILmTTpw9xOF9PR0BAQE4O2338adO3fw9ttvK5bpcePXxqPRV/1En3s9evTA/v37QUSQJElzFbtz587Bw8Oj2vhz587B3t5e6ZgPLSwsTPMmkNWfPusn+tzLy8vDyJEjtba5u7vjwIEDcHd3rzbew8MDKSkpCqV7PPTZBDS2+nGDt/4aN26MgIAAmJiY6Hz+hIQEqFQq9OvXT685jBU3KR8ez73Hg5tETwhXV1ckJSVpblddXejSpUvo1KlTtfGXLl2CjY2NYvnuVV5ejp9//hkZGRlavxRVKhWeeeYZWFhY6Px33bt3R/fu3ZWMKiTR6if63Lt27Rrc3NyqbbexscHevXvh7++P+Ph4qNVqxMXFKZZLF9H2rbERrX6iz73XXnsNo0aNwsyZM/H+++9j+PDhUKlUmDp1Knbu3Kn1af/atWuxd+9ehIaGKp7z0qVLSE5O1rlfPT09a7yaXrt27dCuXTslo+qUn5+PDz/8EJIkITIyUvHnF7F+os89W1vbagvNV90uKCio9iauoKAA5ubmiuV7HPTZBHwS6icyfTfIly5diujoaGRmZmLdunXo3LlztTEJCQnw8vLCZ599prcc+sJnoT4afdavoc89RSm8BhIzkLVr15IkSfTOO+8QEVFRURE5OjrSsGHDqKysTGvsgQMHyMzMjF566SVFM964cYOmTJmiWRCwalHAqsUDqxYQfPXVV+nGjRuKZquPwsJC2rhxI23cuFHR5xW1fqLPPUdHR3rttddqvP/27ds0ePBgkmWZ5s2bZ5AF90Tdt/XFrw1txjD3Jk2aRJIkkUqlotdff53Cw8PJ1NSUGjduTF5eXjRixAjq2LEjybJMDg4OdOnSJcWyZWZm0tChQ6vt0/v3rZ+fH2VkZCiWq77OnTunyask0esn8tzz9vam1q1bU1FRERER3bp1ixwdHcnGxoaWLVumNbawsJBatmxJPXv2VCzfvfLy8mjz5s0UFRVFs2bNolmzZlFUVBRt3ryZLl68aJBMxlS/2ty4cYNiYmIoNjbWIM8v4r6tcvr0afLw8KBGjRpRfHx8tQWYjXXRbyKinJwcOnTokKFjGC19168hzz0lSUQKtkKZwRAR/P39sXfvXnh6euLFF1/E33//jZiYGLRs2RLPP/88nnrqKfz+++84ePAgrKyscOzYMbi4uCiS7/r16+jXrx+ysrLQvn17DB48GCqVSnNGya1bt5CRkYEDBw5oLn975MgRNG/eXJF89XH+/Hm4uLhAkiTFvuMqcv1En3teXl4oKCjAyZMnaxxz+/Zt+Pv74+DBg3BwcMCff/7J+/Yh8GtDm+hzr8oHH3yA2NhY/P3335AkSecngEOGDMFHH32E9u3bK5LpwoUL6NWrF/Lz8+Ht7Q1fX1+d+3Xfvn1ITk5Gs2bNkJ6eDmdnZ0Xy1Ud+fj5WrVoFSZIQFRWlyHMaS/1EnHsAsGPHDrz44otwdnZGv379kJaWhosXL+I///kPxo0bhxkzZsDb2xvXr1/He++9hzNnzmDp0qUIDw9XLGNWVhamTZuG77//HgCq1a5q3Q5fX1+sXLlS0ctoG0P96sIQf9MAsfftvf755x+8+eabePvtt+Hh4YH169drju1kWcbEiRMNejbHw55FKQpjPQtVCaLPPaNguP4UU1p5eTnNmjWLzMzMdH6aXvXfXbp0ofT0dEWzTZo0iWRZpk8++eSBYz/++GOSZZkmT56sQLL6u3r1KoWEhFBoaKhizyl6/USee2+99RbJskwnTpyodVxZWRkNHjxY8U/8Rd+39cGvDW2iz737M+zatYsWL15MU6ZMoUmTJtG8efPo888/p6ysLMXzBAUFkYWFBX333XcPHLt3716ysLCgsWPHKpDMOBhT/USbe1XmzJlDJiYmJEkSWVhY0Pvvv09ERDExMVpnYkmSRF5eXlRRUaFYtuzsbGrWrJnmUtpxcXG0fft2OnDgAB04cIC2b99OcXFx5O3tTZIkUfPmzSk7O1uxfERi16+ubty4QVFRURQdHa3YcxrDvr3fL7/8Ql27diVLS0t666236J9//jHo2Ryin0VZV3wW6oOJNveMCZ9J9AS6cuUKtm7diuPHj+Ovv/6CWq2Gra0tOnXqhIEDB8LLywuyLCuaqXXr1ujXrx+2bt1ap/Evvvgijh49isuXL+s5mXEwlvqJOPcyMzMRGRkJPz8/BAcH1zq2vLwckydPRm5urtY6S/pkLPtWVCLXT/S5J7IWLVrAz88PGzdurNP44OBg7Nu3D3/99ZeekxkHrt/jce3aNeTk5EClUqFp06aa7YmJidi3bx8qKirQv39/vPTSS4r+bRs7dix27NiBnTt3al1FVJfvvvsOI0eOxKhRo7BlyxaFEt4lav1EZiz79n4VFRWIjIzE8uXL0b17d5w4cQITJkxQ/GwOYzmLsi74LNS6EWXuGR1Dd6kYIyKytLSkBQsW1Hn8/PnzydLSUo+JjAvXr+HifftouH4NU6NGjWj+/Pl1Hh8REUGNGjXSY6L6KSwspD///JPu3LljkOc39vqx2jVv3pyCg4PrPH78+PHUvHlzPSZij4ux79sjR46QSqUy2NkcxnQWpYiMuX6GnnvGhq9uxoTQpk0bJCcn13l8cnKy8N8VVhLXr+HifftouH6PR05ODpKSkvDHH3+goKAAsiyjRYsWeOaZZzB48GDFrzzUoUMHfPvtt1iyZAlMTWs/lKmsrMS3336r6Locly9fRm5uLvr06aN1BsSnn36K5cuXIysrC8DdS/UGBgZi2bJlaNGihWL5RK/fvUSbe8aguLgYjo6OdR7v6OiI4uJiPSZqWEpLS2FmZgYzMzPFn9vY923fvn1x9uxZFBcX13hFUX1KTEzEmDFjHngWFgD4+flh9OjR2LdvnwLJjIMx18/Qc8/oGLpLxcRQVFRE165dM9inmlXfQR83blytV2S4ePEi/fvf/yZZlhW9mkRxcTFdvny52vZ9+/bR4MGDyc7OjiwtLalz584UFRVFpaWlimUjEr9+tTH03Kuv/Px8ys3NVez5jGnf5ufnU2FhYa1jcnNzKTk5WaFExlW/B1F67hHdXf/Cz89Ps8bAvT9Vaw80b96cVq9erWiulStXatbkSE1NrXb1EiIitVpNKSkp5O3tTbIs06pVqxTLFxQURE5OTlrb5s2bR7Isk4mJCalUKnr22WfJzs6OJEmi9u3b0/Xr1xXLJ3r9iMSde3VlZ2dHs2bNMshzu7m5kZubG1VWVj5wbEVFBbm6upKbm5sCyerOkPU7c+YMTZgwgfz9/WnlypWa45M9e/ZorqhnampKnp6e9PPPPyuarSHsW0NqCGdR7tq1i06ePGmQ524I9WN1w02iJ0Rubq7ON2979uyh7t27a10GeuLEiXTz5k1F85WXl5Ovr6/mwM/FxYX8/f1p/PjxNH78ePL39ycXFxfNweHQoUMVXcQwLCyMHBwctLatWLFCk8fS0pKaN2+uyf/ss89SSUmJYvlErp/oc6++QkNDycTERLHnE3nfVklJSSFXV1fNvuzTpw8dPnxY51ilL+NuDPWrK6XnXl5eHjk4OJAkSdSjRw8KDAykHj16kCRJ5O7uTu+++y6FhISQvb09ybJMU6ZMUSybWq2miRMnavartbU1devWjQYMGEADBgygbt26kbW1tWa/Kn1qubOzM4WEhGhuZ2ZmkomJCXXp0oV+++03zfbKykqKjY0lSZJoxowZiuUTvX4iz726MuRXGoyhCfgghqpfdnY22draai3CO336dDpy5AiZmZmRlZUVeXh4UJs2bUiSJGrSpAmdO3dOsXwNYd8aUkNoskmSRJMmTTLIczeE+rG64SbRE0LXp+MJCQlkYmJCsiyTSqWivn37ko2NjeYg7Pbt24pmVKvVtG7dOurbt6/mihf3/piYmFDfvn1p/fr1Ov8o6lPHjh21vlN7+fJlsrCwoNatW9N3332nyXP9+nXNgfeiRYsUzShq/Yxh7tVHaGio4leSEHXfEt29uoaVlRVJkkSdOnUiV1dXkiSJTE1NKS4urtp4pZtERGLXrz6UnnthYWEkyzJt27ZNa/v27dvJxMSE1q1bR0R3zwZ86aWXSJZl+vrrrxXLR0T0ww8/UFBQEDk6Olbbr46OjhQUFERJSUmKZiKqvhbWJ598QrIsU2pqqs7xgwYNonbt2imU7r9ErZ/oc8/FxeWBP5IkkZ2dneZ2ly5dFMsnehNQ5PpNnjyZZFmmFStWUEZGBr333ntkbm5Onp6e9Oyzz9Kff/6pGfvxxx+TJElaDWF9E33fVvnrr79o2rRp5ObmRj169KD58+dTfn6+zrHR0dGKfQAiepMtPT39gT+SJFFAQIDWNqWIXj8iceeeseEm0RNCkiSKiYnR3C4uLiY7Ozuyt7engwcParaXlJRQUFAQybJMy5cvN0RUIiK6ffs2nTlzho4cOUJHjhyhM2fOUFlZmcHyWFlZaZ1euW7dOpJlmfbu3atzfO/evUmlUikVrxqR6mdsc+9BDNEkupdI+5aIKDg4mCRJoi+//FKzLT09nTp37kyyLFdrlhqiSXQv0epXH0rPPUdHRxo5cqTO+wIDA8nV1VVzu7y8nNq1a0fPP/+8UvGqKSkpoStXrtCVK1cUPZNTF3t7e5o2bZrmdlxcHMmyXGOu119/nSwsLJSKp5NI9RN97lW9Qb+/sXb/ZaDv36Y0UZuAItevU6dO5Ofnp7XN19eXZFmmtLS0auMHDRpEbdq0USTbvUTdt0REBQUF1KFDh2r7sFWrVjq/bq7kcYHoTbZ7LyFfnx+liF4/keeeseGFq59QiYmJKCgowOrVqzFw4EDNdisrK6xbtw6pqanYunUr5syZY5B8FhYW6NKli0GeWxdzc3OUl5drbl+7dg0A4OnpqXP8c889h9WrVyuSTRfR6ncv0eZe+/bt6zX+xo0bekpSN6Lt26SkJLzwwgsYPXq0ZluvXr2Qnp6OgIAAvP3227hz5w7efvttA6b8L5HqJ/rcu3HjBlQqlc77OnTogL1792pum5ubY9iwYfjiiy+UileNlZUVrKysDPb89+rRowf2798PIoIkSZo6njt3Dh4eHtXGnzt3Dvb29krH1CJS/USfe926dUN2djbi4+Px6quv6hwjyzImTpxo0Mss+/j4wMfHB8DdxZYLCwsBALa2tgbd1yLXLy8vDyNHjtTa5u7ujgMHDsDd3b3aeA8PD6SkpCiU7r9E3bcAsHTpUmRlZeHVV19FZGQkzMzMsHbtWsTGxmLo0KHYvn07/Pz8DJJNkiSsWbMGY8eOxZo1a5CcnIzTp09rjWnVqhWGDx+OSZMmwdvbW/GMjRs3RkBAAExMTKrdR0RISEiASqVCv379FM8mev1EnnvGhptET6iMjAxIkoThw4dXu8/S0hLPP/88duzYYYBkYnJ1dUVSUpLmdtXVjy5duoROnTpVG3/p0iXY2Ngols+YiDb3cnJyIMtyna9SUllZqedExuXatWtwc3Ortt3GxgZ79+6Fv78/4uPjoVarERcXZ4CE4hJ97jk4OODUqVM67zt16hRsbW21ttnY2KC0tFSJaMJ77bXXMGrUKMycORPvv/8+hg8fDpVKhalTp2Lnzp1o2bKlZuzatWuxd+9ehIaGGi6wYESfez/99BOio6MxY8YMbNu2DWvXroWTk5Niz/8wRGoCilw/W1tb3Lp1S2tb1e2CgoJqNSwoKDD4FfZE2rcAsGvXLnh4eODDDz/UbAsPD8eQIUMwbNgwBAYGYuvWrTqPA5UiapNt6dKliI6ORmZmJtatW4fOnTtXG5OQkAAvLy9uQOtgDHPPWMgPHsIaIrVaDeDugZguLVu2RFlZmZKR6uzWrVtISEhAQkKCYs8ZFhaGkydP4t133wUAjBgxAg4ODpg7dy5u376tNTYxMRE7duwwyKcPdWGI+t1LtLnn6OiIrl27oqysrE4/48aNUyxbfRli3zZr1qzaAXUVS0tL7NmzB4MGDcI777yD8PBwxXI9DKXrJ/rcGzp0KL7//nutgy0A+Oijj/D9999rDhCr5OXlaTU/RJGfn4/Y2FgsWbJEseccOXIkXnnlFaxevRqdO3fGwoULMWLECPz88894+umn4e3tjYCAAHTq1AmTJk1CixYtEBsbq1i++jBE/USfe2ZmZnjrrbeQlpaGK1euwM3NzaBnDxsbkevXqVMn7Nq1S3PZ+KKiIuzatQtNmjTBli1btMbeunULu3fv1vlh4ZMsJydH5zGwu7s7UlJS0KJFC7z44ovYvXu38uF0sLKyQqtWrdCqVSuDN9siIiLw008/oby8HB4eHli2bBmIyKCZHkSk+hnb3BOagb/uxhQiSRKFhYVRcnIyJScnU2xsLMmyTDk5OTrHh4aGUsuWLRVOWTfnzp3TfBdWKWq1moYPH06yLJO3tzetXr2alixZQqamptS6dWsKCQmhmTNn0uDBg0mWZWrSpAn9/vvviuWrD6XrJ/rc8/f3JzMzszovlm3oNYlqY4jXhqenJ3Xr1q3WMWVlZZrXhqOjI9fv/4g+9y5dukQtWrQgWZapVatW1KdPH2rVqhXJskw2NjZ0/vx5zdh//vmHWrRoQWPGjFEsX10Z4nVR5f3336emTZvWugaLr68vZWVlKZ6trgxRP2Oae7dv36bZs2eTiYkJeXp6UmZmJhEZ9upm9XHjxg2KiYmpdoEJpYhWv+3bt5MkSdS+fXsaN24cOTs7k4mJCX311Vdkbm5Or7/+On3zzTe0fv16cnNzI1mWKT4+XvGcdWGofWtvb09z5syp8f7s7Gxq27YtWVhY0M6dO3ldGB0qKyspKiqKzMzMqHfv3lrvKYzld4sh8Nx7fLhJ9IS4fyG0qtsbNmzQOb53797Uu3dvhVPWzdWrVykkJIRCQ0MVfd7y8nKaNWsWmZmZadXx/oP/Ll26KHqlgfpSun6iz72oqCiSJKnO+ywkJMQgC5DWhSFeG2+99RbJskwnTpyodVxVo8hQb9brQun6GcPcy8rKomHDhpGZmZnmqnUDBw6kkydPao0rKyuj1NRUunjxoqL56uLGjRsUFRVF0dHRBnn+srIy2rVrFy1evJimTJlCkyZNonnz5tHnn38udHOoiqHqZ2xzLzk5mdq3b09WVla0fPlyo3kjZ8gm6r1Eqt+cOXM0V8K0sLCg999/n4iIYmJitI5pJEkiLy8vqqioMEjOBzHUvu3Zsyf5+PjUOiYrK4vatm1L5ubm1K9fP4PPP10M3UAlIvrll1+oa9euZGlpSW+99Rb9888/RvO7xRD1ayhzTwQSkeDnsLHHIiYmRud2d3d3jBgxQmtbRkYGOnfujKlTp2LlypVKxDMqV65cwdatW3H8+HH89ddfUKvVsLW1RadOnTBw4EB4eXlBlvmbnFVEn3vZ2dlISUmBl5dXndZEyM/PR3FxMdq1a6f/cEYgMzMTkZGR8PPzQ3BwcK1jy8vLMXnyZOTm5mqt8fWkMqa5V15ejvz8fNjZ2aFRo0aKPz97chnT3CstLcXcuXPx6aefAoDBF66ui/z8fKxatQqSJCEqKsqgWUSq37Vr15CTkwOVSoWmTZtqticmJmLfvn2oqKhA//798dJLLwl7zGeofTt37lysWrXqgV8Dzc7Oho+PD/Ly8iBJEu7cuaNYxro4f/48XFxcDJ6toqICkZGRWL58Obp3744TJ05gwoQJwv9uMUT9GsrcEwE3iVg1xcXFyM/PR9OmTWFtbW3oOOwJwnOPMcaYsTt06BBOnjwJV1dXDBo0yNBxjA7Xz7ilpaXhxRdfxJw5czBv3rxax164cEHzZl20N+oiNVAB4OjRowgJCUFmZiY3oGvQUOaeCLhJxBhjjLEHunz5MjIyMrSuYqJSqdC6dWsDJ6vu1q1bKCsrQ/PmzQ3+KX9OTg6SkpLwxx9/oKCgALIso0WLFnjmmWcwePBgg18ZSReR6gcY19xjjDF9uXPnDoqLi2FhYQFLS0tDx2ENGDeJnjCVlZU4ffo0TE1N4ebmBkmSdI47deoUTpw48cCvjzwuJSUlKCwshKOjo9b2/fv3Y/ny5fj5559RVlYGJycnjBkzBhEREUKddl5cXIzS0lI0a9bMIAfUxlA/UedeTUpKSrBmzRqkpaWhpKQETk5OGDt2LJ577jmDZbp58yZMTU1hY2NT45iLFy8iJycHnp6eCiaru5s3b6K4uBht27Y1yHMbQ/1EmnsVFRVYsWIFPv/8c2RnZ+sc4+zsjEmTJmHmzJmwsLBQJNfly5eRm5uLPn36aP3O/fTTT7F8+XJkZWUBABo3bozAwEAsW7YMLVq0UCRblQsXLmDq1KnYv39/tfuICJIkwd7eHlFRUZg6daqi2YyhfqLOPV2MsYlVWloKMzMzmJmZGTqK0dWvadOmCAkJwYoVKwwdRSeR9i1jzEgZbDUkprivvvqK7O3tNQvu/etf/6ItW7boHKv0au9hYWHk4OCgtW3FihWahQEtLS2pefPmmgX4nn32WSopKVEsX25uLhUWFlbbvmfPHurevbumptbW1jRx4kS6efOmYtmIxK+fyHPPx8eHNm7cqLUtKyuLnJ2dq12NSJZlWrRokWLZqqSkpJCrq6umfn369KHDhw/rHCv6lRpCQ0PJxMRE0ecUtX6iz73i4mLq3bs3SZJE1tbWNHToUJo+fTotXLiQFi5cSNOnT6ehQ4eStbW1pq7FxcWKZAsKCiInJyetbfPmzSNZlsnExIRUKhU9++yzZGdnp7lS0fXr1xXJRkSUl5dHDg4OJEkS9ejRgwIDA6lHjx4kSRK5u7vTu+++SyEhIZrfi1OmTFEsG5H49RN57lUpLy+nuLg46tChg9bFGe79efrppyk+Pr7OVzB8nM6cOUMTJkwgf39/WrlyJd25c4eI7h63dOzYkWRZJlNTU/L09KSff/5Z8Xyi1682hl44WPR9e79Lly5RUlIS7dy5k3bu3ElJSUl06dIlQ8eq0a5du6otkM/qTqT6GdvcEwk3iZ4Q6enpZGJiQubm5uTr60vDhw8nS0vLGg9OlX6j2bFjRxo7dqzm9uXLl8nCwoJat25N3333HanVaiIiun79Ok2cOJEkSVL0DZMsy9VW509ISCATExOSZZlUKhX17duXbGxsNG8ClDyoEbl+os89SZIoJiZGa1uvXr1IkiQKDg6mtLQ0On/+PG3cuJEcHBxIlmVKTExULN+5c+fIysqKJEmiTp06kaurq+ZKP3FxcdXGG0OTSMl8ItdP9Lk3b948kiSJ5s+fX2tTuaSkhCIiIkiSJAoPD1ckm7OzM4WEhGhuZ2ZmkomJCXXp0oV+++03zfbKykqKjY0lSZJoxowZimQjutu4l2WZtm3bprV9+/btZGJiQuvWrSMioqKiInrppZdIlmX6+uuvFcsnev1EnntE4jexsrOzydbWVqvJPH36dDpy5AiZmZmRlZUVeXh4UJs2bUiSJGrSpAmdO3dOsXwi18/FxeWBP5IkkZ2dneZ2ly5dFMlGJP6+rWLsTcBJkyYZ7Pn/+usvmjZtGrm5uVGPHj1o/vz5lJ+fr3NsdHS04h+8PYih62fMc08k3CR6QowaNYrMzMwoNTVVsy03N5c8PT1JlmUKCQnRNBKIlH+jaWVlRfPnz9fcXrduHcmyTHv37tU5vnfv3qRSqZSKV+3NXHFxMdnZ2ZG9vT0dPHhQs72kpISCgoJIlmVavny5YvlErp/oc+/+fZuenk6SJGm9gapy9uxZMjc3p8DAQMXyBQcHkyRJ9OWXX2pl7Ny5s86zS7hJpE3k+ok+95ycnGjo0KF1Hj9kyJBqZ6foi6WlJS1YsEBz+5NPPiFZlrV+z9xr0KBB1K5dO0WyERE5OjrSyJEjdd4XGBhIrq6umtvl5eXUrl07ev7555WKJ3z9RJ57ROI3sSZPnkyyLNOKFSsoIyOD3nvvPTI3NydPT0969tln6c8//9SM/fjjj2v8vaMvItevqvFy75mc9//oul8pou9bIrGbgOnp6Q/8kSSJAgICtLYppaCgQNPcuHd+tWrVipKTk6uNV/qYT/T6iTz3jA03iZ4QDg4O9NJLL1XbXllZSWPHjiVJkmjcuHGaN+tK/9J56qmnaPbs2ZrbS5cuJVmWa3zhzp07lywsLJSKV+3N3M6dO0mSJPrwww+rjS0rK6M2bdpQnz59FMsncv1En3v379vVq1eTLMs1niobEBBAjo6OSsWjNm3a0LBhw6ptLywsJB8fH5JlWevNntL1c3Z2rtdP1R9mpYhcP9HnnoWFhVZtHmTBggWK/V6xt7enadOmaW7HxcWRLMs1vuF8/fXXFf2bYW5uXuOb2vDwcLK0tNTa9tprr1HTpk2ViEZE4tdP5LlHJH4Tq1OnTuTn56e1zdfXl2RZprS0tGrjBw0aRG3atFEqntD16969O1lbW9NHH31U4xhDft1M9H1LZBxNwPr+KKWqHq+99hpdvXqVbty4QfHx8dS4cWNq1KhRtQ9/DXHMLHL9RJ57xsbU0GsiMWXcvHkTKpWq2nZTU1Ns3rwZZmZmSEhIgFqtxqZNmxTP5+rqiqSkJM3tNm3aAAAuXbqETp06VRt/6dKlWhef1beMjAxIkoThw4dXu8/S0hLPP/88duzYoVgekesn+ty7361btwAAHTt21Hl/x44dsXfvXsXyXLt2DW5ubtW229jYYO/evfD390d8fDzUajXi4uIUy1UlJycHsizXeYHMyspKPSfSJnr97iXa3HNwcMCJEyfqPP748eNwcHDQX6B79OjRA/v379csAF31O+bcuXPw8PCoNv7cuXOwt7dXJBtwt3anTp3Sed+pU6dga2urtc3GxgalpaVKRANgHPUTde4BwNWrVxEUFFTn8T179kRycrIeE2nLy8vDyJEjtba5u7vjwIEDcHd3rzbew8MDKSkpCqUTu34//fQToqOjMWPGDGzbtg1r166Fk5OTIs9dF6LvWwDYunUrfH19sXTp0lrHWVlZIS4uDr/++iu++uorxMfHK5KvcePGCAgIgImJSbX7iAgJCQlQqVTo16+fInnutWvXLnh4eODDDz/UbAsPD8eQIUMwbNgwBAYGYuvWrTrffyhF5PqJPveMieGva8oU4eDggOvXr+u8T5IkrF+/HuPHj8d//vMf/Pvf/8Y///yjaL6wsDCcPHkS7777LgBgxIgRcHBwwNy5c3H79m2tsYmJidixYwe8vb0VzXgvtVoNADUelLZs2RJlZWWK5RG5fqLPvaocVaquEFdcXKxzbElJCaysrBTJBQDNmjXTNA/uZ2lpiT179mDQoEF45513EB4erliuKo6OjujatSvKysrq9DNu3DhF84leP5HnXmBgIPbv34+FCxfW+vusrKwMb7zxBg4cOIBRo0Ypku21115DZmYmZs6cCbVajeHDh0OlUmHq1Km4du2a1ti1a9di7969GDp0qCLZAGDo0KH4/vvvtQ70AeCjjz7C999/Dx8fH63teXl5aNmypWL5RK+fyHMPEL+JZWtrW+33XtXtgoKCauMLCgpgbm6uRDQAYtfPzMwMb731FtLS0nDlyhW4ublh9erVijx3XYi+b4G7TcAePXrUeXzPnj1x9epVPSb6r6VLl6KyshKZmZmIiIjA+vXrtX42bNgAAPDy8tLarpScnBydx+fu7u5ISUlBixYt8OKLL2L37t2KZbqX6PUTee4ZHcOeyMSUMmTIkAeuQaNWqzXrd9jY2Ch6eqBarabhw4eTLMvk7e1Nq1evpiVLlpCpqSm1bt2aQkJCaObMmTR48GCSZZmaNGlCv//+u2L5JEmisLAwSk5OpuTkZIqNjSVZliknJ0fn+NDQUGrZsqVi+USun+hzr2oByqqvQzk6OpIsy5SUlKRz/PDhw6lTp06K5fP09KRu3brVOqasrEyzb6vyK8Xf35/MzMzqvPif0msSiVw/0eferVu3yN3dXfO69PPzoxkzZlBkZCRFRkbSjBkzyM/PT2vB/lu3bimWb9KkSSRJEqlUKnr99dcpPDycTE1NqXHjxuTl5UUjRozQXOnHwcFB0SuaXLp0iVq0aEGyLFOrVq2oT58+1KpVK5JlmWxsbOj8+fOasf/88w+1aNGCxowZo1g+IrHrJ/rcmz17NsmyTG+88QaVlpbWOK60tJQWLFhAsizTnDlzFMvn7e1NrVu3pqKiIiK6W09HR0eysbGhZcuWaY0tLCykli1bUs+ePRXLJ3r9qty+fZtmz55NJiYm5OnpSZmZmURk2K+bib5viYjatWtX7StxtfH19VV0zbPTp0+Th4cHNWrUiOLj47XWxSQy7P61t7evda5nZ2dT27ZtycLCgnbu3GmQdShFrp/oc8+YcJPoCbFixQqSJKnGyz5XUavVFBISovnOqZLKy8tp1qxZZGZmpvkOq65FArt06aLoImhE1b+DW3V7w4YNOsf37t2bevfurWhGUesn+txr164dOTk5Vfu5/2p2RHcPWG1sbOjll19WLN9bb71FsizTiRMnah1X1ehQun5RUVEkSVKd51TVPlaKyPUTfe4R3f3e/uLFi6l169Y1LuLaunVrioqKqvX7//ry/vvvU9OmTWtdbNbX15eysrIUz5aVlUXDhg0jMzMzzRX1Bg4cWG3NqbKyMkpNTaWLFy8qnlHk+ok890RvYm3fvp0kSaL27dvTuHHjyNnZmUxMTOirr74ic3Nzev311+mbb76h9evXk5ubG8myTPHx8YrlE71+90tOTqb27duTlZUVLV++3KBvgkXft0TG0QSsrKykqKgoMjMzo969e2t9cGrI/duzZ0/y8fGpdUxWVha1bduWzM3NqV+/fga5WImo9TOGuWcsJCIiQ5/NxPTvypUrWLVqFXr37o2AgIBaxxIRYmJikJubq+gpglWuXLmCrVu34vjx4/jrr7+gVqtha2uLTp06YeDAgfDy8oIsK/tNyZiYGJ3b3d3dMWLECK1tGRkZ6Ny5M6ZOnYqVK1cqEU+LaPUzprn3IOfPn8cXX3wBHx8feHp6KvKcmZmZiIyMhJ+fH4KDg2sdW15ejsmTJyM3N1drjSp9ys7ORkpKCry8vOq0bkN+fj6Ki4vRrl07/YeD+PWrK0PMvftlZGQgIyMDhYWFAO5+7UGlUulcc0xJt2/fxvfff49ffvml2u88Hx8ftG/f3qD5ysvLkZ+fDzs7OzRq1MigWXQRvX6AmHOvtLQU8fHxWLt2La5cuaJzjKOjIyZOnIjw8HBFvyoKAHPnzsUHH3wAtVoNc3NzxMfHY+bMmYiNjUV0dLTmq65EBE9PTxw4cKDOa8s9DqLX736lpaWYO3cuPv30UwDAxIkT8dlnnxkki+j7tqioCJ6enjh58iSsra3Rv39/qFQqzVpshYWFyMjIQFpaGoqKitC9e3ccPnwY1tbWimWscvz4cQQHByMrKwuRkZGIiIiAmZmZwfbv3LlzsWrVqgd+BTk7Oxs+Pj7Iy8uDJEm4c+eOgin/S7T6GdPcEx03iRh7zIqLi5Gfn4+mTZvyLx3GWIO2e/duODk5oVu3boaOwp4wIs09EZtYwN2F+3NycqBSqdC0aVPN9sTEROzbtw8VFRXo378/XnrpJcU/fLuXqPXT5dChQzh58iRcXV0xaNAgg+UQfd8aUxOwoqICkZGRWL58Obp3744TJ05gwoQJBmlypKWl4cUXX8ScOXMwb968WsdeuHBB0ygyVJMIEKt+gHHNPZFxk4gxxhhjD0WWZYN+om4sLl++rPNNcOvWrQ2czHjx3GPMOBhLE/Do0aMICQlBZmYm/255CCLWz1jmnohMDR2AsbooLi5GaWkpmjVrZtBPuyorK3H69GmYmprCzc1N68pE9zp16hROnDjxwK+3KEWU+jH9u3nzJoqLi9G2bVuD5igpKcGaNWuQlpaGkpISODk5YezYsXjuuecMmutBRKmfCI4dO1ancdevX9ca26tXL31F0iknJwdJSUn4448/UFBQAFmW0aJFCzzzzDMYPHiw4lf2qVJRUYEVK1bg888/R3Z2ts4xzs7OmDRpEmbOnAkLCwuFE94lYv2MZe4Z6zGBKIyhftzgfXTG8qa8b9++OHv2LIqLiw32+9iYiVg/Y5l7QjLUYkiM3Ss3N5cKCwurbd+zZw91795dsxCztbU1TZw4kW7evKl4xq+++ors7e01Wf71r3/Rli1bdI5V+moDxlA/pozQ0FAyMTFR7Pl8fHxo48aNWtuysrLI2dm52kK4sizTokWLFMv2MJSun8juX7C/rj9Kyc7OJj8/P50ZqrI3b96cVq9erVimKsXFxdS7d2+SJImsra1p6NChNH36dFq4cCEtXLiQpk+fTkOHDiVra2uSZZn69OlDxcXFimYUuX6izz0isY8J6sLOzo5mzZplsOcXuX7l5eUUFxdHHTp0qHGuPf300xQfH1/nK3sqydD7tr4+//xzCgsLM3QMIV26dImSkpJo586dtHPnTkpKSlL0SpMNHc+9mvGZREwIzs7OiI6ORmRkpGbbpk2bEBYWBiLC008/jWbNmuHMmTNYu3Ytfv75Z/z444+KdaqPHTuGoKAgmJiYYPDgwTAzM0NiYiLGjx+PlJQUfPzxx4rkqIno9WPKIgW/RXzo0CF4e3trbQsKCkJOTg7Gjx+PyZMno1mzZvjxxx8RERGBt99+G97e3gZdy+FBlKyf6Bo3boyAgACYmJhUu4+IkJCQAJVKhX79+ima69KlS+jXrx+uXbsGd3d3ODs748KFCzhx4gS6d++OcePG4fTp0/jmm28wY8YM/Pbbb4r+no6JicGxY8cQERGByMjIGtc8KC0tRWxsLJYtW4bY2FjEx8crkk/0+gHizj1A/GOCuigoKEBJSYlBnlvk+pWUlGDQoEE4duwYmjRpgiFDhkClUsHGxgYAcOvWLc3CtwsWLMDXX3+NxMRENG7c2GCZ72fIffswUlNTkZCQgHXr1hk6ihCM5SzUhoDnXi0M2aFirIokSRQTE6O5XVxcTHZ2dmRvb08HDx7UbC8pKaGgoCCSZZmWL1+uWL5Ro0aRmZkZpaamarbl5uaSp6cnybJMISEhpFarNfcp/amX6PVjygkNDTXo3EtPTydJkigkJKTa2LNnz5K5uTkFBgYqlq++lK6fyOLi4sjS0pL69u1LZ8+e1TnGUJe6DQsLI1mWadu2bVrbt2/fTiYmJrRu3ToiIioqKqKXXnqJZFmmr7/+WrF8Tk5ONHTo0DqPHzJkCDk5OekxkTbR6yfy3CMS/5jAxcXlgT+SJJGdnZ3mdpcuXRTLJ3L95s2bR5Ik0fz586mkpKTGcSUlJRQREUGSJFF4eLgi2YjE37cPQ+m/u3/99RdNmzaN3NzcqEePHjR//nzKz8/XOTY6OlrRs4uN4SxUketXX3zMVzM+k4gJKTExEQUFBVi9ejUGDhyo2W5lZYV169YhNTUVW7duxZw5cxTJk5aWhoCAAPTv31+zrW3btjh48CBCQkKQkJCAO3fuICEhocbv1CtJtPqxh1ffy0/fuHFDT0nq5qeffoIkSTrnVufOnfHCCy/gxx9/VCyPsdVPJBERERg2bBhCQkLg4eGB6OhozJs3T4jfcfv378eIESMwatQore2BgYEYMWIE3nvvPYSFhaFJkybYvHkzjh07hg8//BABAQGK5Lt69SqCgoLqPL5nz55ITk7WYyJtotdP5LkHiH9McO7cOUiSVOtZkZIkoaCgAAUFBcoF+z8i12/r1q3w9fXF0qVLax1nZWWFuLg4/Prrr/jqq68UOwtQ9H0LAAkJCfUan5mZqack1RUWFqJfv37Izs7W1PDEiRPYuHEjvvjiC3h6elb7N7XV+nET/SxU0esn8twzNtwkYkLKyMiAJEkYPnx4tfssLS3x/PPPY8eOHYrluXnzps6Fz0xNTbF582aYmZkhISEBarUamzZtUixXTUSrH3t4OTk5kGUZZmZmdRpfWVmp50S1u3XrFgCgY8eOOu/v2LEj9u7dq1geY6ufaFxdXZGeno4333wTixYtwo4dO7B+/Xq4uLgYNNeNGzdqXIyyQ4cOWnPM3Nwcw4YNwxdffKFUPDg4OODEiRN1Hn/8+HE4ODjoL9B9RK8fIO7cA8Q/JujWrRuys7MRHx+PV199VecYQ14dTuT6id7gFX3fAkBoaGi9mntEpFgzcOnSpcjKysKrr76KyMhImJmZYe3atYiNjcXQoUOxfft2+Pn5KZJFF9GblKLXT+S5Z2y4ScSEpFarAaDGg+aWLVuirKxMsTwODg64fv26zvskScL69etBRNi0aRPUajU6dOigWDZdRKsfe3iOjo6wt7fHyZMn6zQ+NDRU8YPqe//AOjo6Arh7RT1LS8tqY0tKSmr8ZEwfjKF+ojM1NUV0dDT8/f0RHBwMDw8PREZGIiIiwmCZHBwccOrUKZ33nTp1Cra2tlrbbGxsUFpaqkQ0AHfPyPnggw+wcOFCLFq0CI0aNdI5rqysDEuWLMGBAwcwa9YsxfKJXr8qIs49QPxjgp9++gnR0dGYMWMGtm3bhrVr18LJyUnRDLURuX6iN3hF37fA3cayo6MjJk+eXKfxW7duxa+//qrnVHft2rULHh4e+PDDDzXbwsPDMWTIEAwbNgyBgYHYunWrzg9ZlSB6k1L0+ok894yOgb7mxpgWSZIoLCyMkpOTKTk5mWJjY0mWZcrJydE5PjQ0lFq2bKlYviFDhpBKpap1jFqtpuDgYJIkiWxsbBRfF0bk+rGH5+/vT2ZmZnW+gooh1iSys7MjZ2dncnZ2JkdHR5JlmZKSknSOHz58OHXq1EmxfKLXz9iUl5dTeHg4mZiYkIeHB8mybJB1YSZNmkSyLFe78taHH35IsizTyy+/rLX93//+N7Vr106xfLdu3SJ3d3fN3wM/Pz+aMWMGRUZGUmRkJM2YMYP8/PzIxsaGJEkid3d3unXrlmL5RK+fLqLMPSLxjwmqpKenU+fOnalJkya0atUqrfsMuaaTyPWbPXs2ybJMb7zxBpWWltY4rrS0lBYsWECyLNOcOXMUyXYvUfctEdEzzzxDLVq0qPN4Jf/uWlpa0ty5c3Xel5WVRW3btiULCwvatWsXESm/nli7du3Iz8+vzuN9fX0V/d0sev1EnnvGhptETAj3X+626vaGDRt0ju/duzf17t1bsXwrVqwgSZLo8OHDtY5Tq9UUEhKiya8U0evHHl5UVBRJkkTp6el1Gl81/5TSrl07cnJyqvYTGxtbbWxpaSnZ2NhUewOqT6LXz1gdOXKEVCqVwd6MXLp0iVq0aEGyLFOrVq2oT58+1KpVK5JlmWxsbOj8+fOasf/88w+1aNGCxowZo2jGkpISWrx4MbVu3ZokSdL507p1a4qKiqp1gVx9MIb61cTQc49I/GOCe92+fZtmz55NJiYm5OnpSZmZmURk2EaCyPUTvcF7LxH3LRHR5MmTSZZlunjxYp3GK/lG3d7evtamXnZ2tqbRsXPnTsWbHKI3KUWvn8hzz9jw182YEKKionRuf+qpp6pty8jIwE8//YSpU6fqOdV/jR49GteuXUN+fn6t46pOk3ZyckJubq5C6cSvH3t4wcHBcHZ2RosWLeo0fvny5YiJidFzqv/Kycmp89iLFy9izpw58PHx0V+g+4heP2PVt29fnD17FsXFxQa5/G7r1q1x9OhRzJgxA99//z3+/PNPmJiYwNvbGytWrNBaE6uyshI7duxA27ZtFc1oZWWFmJgYxMTEICMjAxkZGSgsLAQA2NraQqVS1bgukL4ZQ/1qYui5B4h/THAvCwsLvPfeewgICEBYWBi6deuGJUuWGCRLFZHrZ21tjbS0NMTHx2Pt2rXYt28f9u3bV22co6MjZs+ejfDwcEW/Qn0vEfctAAwYMAD79+9HRkYG2rRp88Dxzz33nAKp7nJycqr160XOzs5ISkqCj48PRo8ejWeeeUaxbMDdhauTkpKwdOlSrF69Gv3794dKpdJ8BbiwsBAZGRlIS0tDUVERunfvjujoaMXyiV4/keeesZGIFFxynLHHoLi4GPn5+WjatCmsra0NHcfocP0YYw1JeXk58vPzYWdnV+PaPyLavXs3nJyc0K1bN4PmMNb6sforLS3F3Llz8emnnwKAQRc3NhaiNXhrwvu2bubOnYtVq1YhLy8PLVu2rHFcdnY2fHx8kJeXB0mScOfOHcUylpaWapqUV65c0TnG0dEREydOVLxJaQz1Y48HN4kYY4wxxhRm6CsQsSfXoUOHcPLkSbi6umLQoEGGjsMeI963tUtLS8OLL76IOXPmYN68ebWOvXDhgqbRYagmh2hNSmOrH3t43CRiQqmsrMTp06dhamoKNze3Gi9LeOrUKZw4cQLBwcEKJxQb1+/JUVJSgjVr1iAtLQ0lJSVwcnLC2LFj+dTZOuL6NSyXL1/WeSDdunVrg+Q5duzYA8f06dMHI0aMwIIFCzTbevXqpc9YNRKtfowZGh9PMcaeaIZcEImxe3311Vdkb2+vWXz5X//6F23ZskXnWKUXQjMGXL+GycfHhzZu3Ki1LSsri5ydnTWLlFf9yLJMixYtMlBSMXH9Gq7y8nKKi4ujDh06aC3cf+/P008/TfHx8XW+ut3jcv/FBOr6oySR68cer0uXLlFSUhLt3LmTdu7cSUlJSXTp0iVDxxKWMR1P8b59sn3++ecUFhZm6BisAeKFq5kQjh07hqCgIJiYmGDw4MEwMzNDYmIixo8fj5SUFHz88ceGjig0rl/DdejQIXh7e2ttCwoKQk5ODsaPH4/JkyejWbNm+PHHHxEREYG3334b3t7efJr5/+H6NUwlJSUYNGgQjh07hiZNmmDIkCFQqVSwsbEBANy6dUuzuOeCBQvw9ddfIzExEY0bN1YsY+PGjREQEAATE5Nq9xEREhISoFKp0K9fP8UyVTGG+rFHU1FRgRUrVuDzzz9Hdna2zjHOzs6YNGkSZs6cabBFwEVjDMdTvG8fH2M/izI1NRUJCQlYt26dQZ7f2OvHamHoLhVjRESjRo0iMzMzSk1N1WzLzc0lT09PkmWZQkJCSK1Wa+4z9Cc3ouH6NVySJFFMTIzmdnp6OkmSRCEhIdXGnj17lszNzSkwMFDBhGLj+jVM8+bNI0mSaP78+bVePr6kpIQiIiJIkiQKDw9XLF9cXBxZWlpS37596ezZszrHGPIy1aLXjz2a4uJi6t27N0mSRNbW1jR06FCaPn06LVy4kBYuXEjTp0+noUOHkrW1NcmyTH369KHi4mJDxxaC6MdTvG8fXUM6i9IQl3BvSPVjNeMziZgQ0tLSEBAQgP79+2u2tW3bFgcPHkRISAgSEhJw584dJCQk1Pi98CcZ1+/J8dNPP0GSJMyZM6fafZ07d8YLL7yAH3/80QDJjAPXr2HYunUrfH19sXTp0lrHWVlZIS4uDr/++iu++uorxMfHK5IvIiICw4YNQ0hICDw8PBAdHY158+YJ8/tX9PqxRxMTE4Njx44hIiICkZGRNV79qLS0FLGxsVi2bBliY2N5/0L84ynet49G9LMoExIS6jU+MzNTT0l0E71+7PHhJhETws2bN3Wu1G9qaorNmzfDzMwMCQkJUKvV2LRpkwESio3r9+S4desWAKBjx4467+/YsSP27t2rZCSjwvVrGK5evYqgoKA6j+/ZsyeSk5P1mKg6V1dXpKen480338SiRYuwY8cOrF+/Hi4uLorm0MUY6sceHjcBH57ox1O8bx+N6E220NDQejUfiUjRZqXo9WOPDzeJmBAcHBxw/fp1nfdJkoT169eDiLBp0yao1Wp06NBB4YRi4/o1bPceADg6OgIAiouLYWlpWW1sSUlJjX+0n1Rcv4bHwcEBJ06cqPP448ePw8HBQX+BamBqaoro6Gj4+/sjODgYHh4eiIyMREREhOJZ7mUs9WMPh5uAD0/04ynet49G9Cabubk5HB0dMXny5DqN37p1K3799Vc9p9J+PpHrxx4fbhIxIXTu3BmHDh2q8X5JkrBhwwYAwKZNm2Btba1MMCPB9WvYVqxYgfXr1wMAysvLAQC//fZbtQWZASA3NxctW7ZUMp7wuH4NT2BgID744AMsXLgQixYtQqNGjXSOKysrw5IlS3DgwAHMmjVL2ZD38PDwwPHjxxEZGYnFixdj+/btBv3qmbHVj9UPNwEfnujHU7xvH43oTTY3NzdcvHixzh8knDt3TtEmkej1Y4+PbOgAjAGAn58fMjMzkZKSUuOYqj/MwcHBKCoqUjCd+Lh+DVfbtm1ha2sLIgIRwdzcHG3bttW5r8vKynD48GH06NHDAEnFxPVrmGJiYtCtWzcsXboUDg4OeOGFFzBz5kwsXrwYixcvxsyZM/HCCy/AwcEBcXFx6NatG6Kjow2a2dzcHPHx8UhJSUFRURGIyGBZjLF+rO4CAwOxf/9+LFy4EGVlZTWOKysrwxtvvIEDBw5g1KhRCiYUl+jHU7xvH43oTbaePXvixo0byMvLU+w560P0+rHHh88kYkIYPXo0rl27hvz8/FrHVZ3q6+TkhNzcXIXSiY/r13Dl5OTUeezFixcxZ84c+Pj46C+QkeH6NUzW1tZIS0tDfHw81q5di3379mHfvn3Vxjk6OmL27NkIDw8X5muEffv2xdmzZ1FcXGywS1Mbc/3Yg8XExCApKQlLly7F6tWr0b9/f6hUKtja2gIACgsLNYvLFhUVoXv37twE/D+iH0/xvn00op9FOWDAAOzfvx8ZGRlo06bNA8c/99xzCqT6L9Hrxx4fiQz5URZjjDHG2CPKyMhARkYGCgsLAQC2trZQqVQ6F6Bl1XH9Gp7S0lJNE/DKlSs6xzg6OmLixIncBDQyvG8fXlFRETw9PXHy5ElYW1vXqcl2+PBhXqbh/3D9nhzcJGKMMcZYg7N79244OTmhW7duho5ilLh+DQc3ARsu3rf1x022R8P1ezJwk4gxxhhjDY4sy5g4cSI+++wzQ0cxSlw/xlhDx022R8P1a7h4TSLGGGOMGZVjx47Vadz169e1xvbq1UtfkYwK1+/JUFlZidOnT8PU1BRubm41XlHv1KlTOHHiBIKDgxVOyB4W79vHgxsaj4br13DxmUSMMcYYMyqyLD/UJeTv3LmjhzTGh+vX8G3duhWvvvoq/v77bwB3v/4RHx+PsWPHVhsbExOD2NhY3r9GgvetctauXYu0tDSsW7fO0FGMEtfPePGZRIwxxhgzOo0bN0ZAQABMTEyq3UdESEhIgEqlQr9+/QyQTnxcv4br2LFjCAoKgomJCQYPHgwzMzMkJiZi/PjxSElJwccff2zoiOwh8b5VVmpqKhISErjJ8ZC4fsaLm0SMMcYYMypLly5FdHQ0MjMzsW7dOnTu3LnamISEBHh5efGaOjpw/Rq2ZcuWQZZl/PDDD+jfvz8A4OLFixg/fjw+++wzlJWVYf369Q91NhkzLN63jDElcJOIMcYYY0YlIiICw4YNQ0hICDw8PBAdHY158+bxG6M64vo1bGlpaQgICNA0EQCgbdu2OHjwIEJCQpCQkIA7d+4gISGB97mR4X37aBISEuo1PjMzU09JjBPX78nBTSLGGGOMGR1XV1ekp6fjzTffxKJFi7Bjxw6sX78eLi4uho5mFLh+DdfNmzd1LiZramqKzZs3w8zMDAkJCVCr1di0aZMBErKHxfv20YSGhtareUZE3Gy7B9fvycFNIsYYY4wZJVNTU0RHR8Pf3x/BwcHw8PBAZGQkIiIiDB3NKHD9GiYHBwdcv35d532SJGH9+vUgImzatAlqtRodOnRQOCF7WLxvH425uTkcHR0xefLkOo3funUrfv31Vz2nMh5cvycHN4kYY4wxZtQ8PDxw/PhxREZGYvHixdi+fTt/elkPXL+GpXPnzjh06FCN90uShA0bNgAANm3aBGtra2WCsUfG+/bRuLm54eLFi3VuhJ87d46bHPfg+j05ZEMHYIwxxhh7VObm5oiPj0dKSgqKiopARIaOZFS4fg2Hn58fMjMzkZKSUuOYqmZCcHAwioqKFEzHHgXv20fTs2dP3LhxA3l5eYaOYpS4fk8OPpOIMcYYYw1G3759cfbsWRQXF8PCwsLQcYwO18/4jR49GteuXUN+fn6t46q+nuTk5ITc3FyF0rFHwfv20QwYMAD79+9HRkYG2rRp88Dxzz33nAKpjAfX78khEX9UxBhjjDHGGGOMMfbE46+bMcYYY4wxxhhjjDFuEjHGGGOMMcYYY4wxbhIxxhhjjDHGGGOMMXCTiDHGGGMGdujQIUiShOjo6DqN9/b21tsl2qOjoyFJUq2XmTYGTk5OcHJyeqTHyMnJgSRJCA0NfSyZGGOMMSY+bhIxxhhjzOht2LBBc+lnxhhjjDH2cEwNHYAxxhhjrD4SEhJQWlqql8eeNm0aXn75ZbRt21Yvj88YY4wxJjJuEjHGGGPMqOizgdOsWTM0a9ZMb4/PGGOMMSYy/roZY4wxxoSRmpoKb29vWFtb46mnnsKoUaOQmZmpNeb+NYlCQ0MRFhYGAAgLC4MkSZqfKlevXsXMmTOhUqnQqFEjPPXUU3BxccGUKVNQWFioGadrTaKq56vp5/41e4qKihAVFYWuXbtqnsvX1xepqakPXZekpCT87//+Lzp16oQmTZqgSZMmeOaZZ/DZZ5/V+THu/X9bu3Yt3NzcYGlpidatW2P27NkoKiqq8d9mZmZi5MiRsLOzQ+PGjfH888/j5MmTesnJGGOMMcPhM4kYY4wxJoQff/wRS5cuxdChQzF9+nScOXMGX3/9NVJSUvDjjz+iffv2Ov9dQEAACgoKsGvXLowYMQLu7u5a95eWlqJ///7IycnBkCFDMHLkSFRUVODChQvYtGkTXn/9ddja2taYKzQ0FN7e3tW2f/fddzh27BisrKw0227evAlPT0+cOXMG/fv3x5QpU3Dr1i3s2rULPj4+2Lp1KwICAupdm/j4eGRmZqJPnz4YOXIkCgoKsG/fPkyePBnnz5/H8uXL6/xY7733Hg4ePIgxY8Zg2LBhSExMxPvvv48ff/wRhw8fhpmZmdb4nJwc9OnTB127dsX//u//IisrS/P/c/bsWbRs2VIvORljjDFmAMQYY4wxZkBJSUkEgADQJ598onXfJ598QgBo+PDhmm1eXl50/yHM+vXrCQCtX7++2uPv3r2bANCsWbOq3VdUVES3b9/W3I6KiiIAlJSUVGvmw4cPk7m5ObVv356uX7+u2T527FgCQGvWrNEaf+3aNWrTpg01b96cysrKan1sXbKzs6ttq6yspMGDB5OJiQnl5uZq3deuXTtq166d1raq/zdzc3M6efKkZrtardbkfvfddzXbL1y4oNkvcXFxWo+1aNEiAkBLly59pJyMMcYYEwt/3YwxxhhjQujYsSNeeeUVrW2vvPIKVCoVvv32W1y/fv2RHr9Ro0bVtjVp0gQWFhb1epyqr15ZWVnh22+/1axhdOPGDXz55ZcYOHAgJk6cqPVvWrRogXnz5uH69etITEysd3ZnZ+dq20xNTTFlyhTcuXMHSUlJdX6s4OBgdOvWTXNbkiS8/fbbMDEx0Xl1OGdnZ8ybN09r24QJEwAAP/30k95yMsYYY0x5/HUzxhhjjAmhf//+kGXtz69kWUb//v2RkZGBkydP4vnnn6/343p6eqJVq1aIi4vDyZMnMXz4cHh5ecHFxUVr3aK6+PvvvzFs2DAUFhZi37596Ny5s+a+n376CXfu3EF5eTmio6Or/duMjAwAwLlz5zB8+PB6PW9RURHeffdd7Ny5E1lZWSgpKdG6/8qVK3V+rAEDBlTb1q5dO7Rp0wZnzpxBRUUFzM3NNfe5u7tX2y//+te/AAAFBQV6y8kYY4wx5XGTiDHGGGNCuHdtG13b711guj5sbW3x448/YvHixdizZw/27t0LAGjTpg3mz5+P1157rU6PU1lZicDAQPzxxx/47LPPMGjQIK37b968CQBIS0tDWlpajY9zf+PkQSoqKuDt7Y3jx4+jR48eGD9+POzt7WFqaoqcnBxs3LgR5eXldX682uqck5ODoqIi2Nvba7bb2NhUG2tqevcQ8s6dO3rLyRhjjDHlcZOIMcYYY0K4du1ardtrW1z6Qdq2bYsNGzZArVbj1KlT+P7777Fy5UpMnToVdnZ2CAoKeuBjTJ48GYcOHcLcuXOrfS0O+G8zZe7cuXj33XcfOuv9du3ahePHj2PChAn4/PPPte774osvsHHjxno9Xm11liQJ1tbWQuRkjDHGmPJ4TSLGGGOMCSEtLQ1qtVprm1qtxpEjRyBJErp3717jvzUxMQGgfWaLLrIsw93dHeHh4fjPf/4DANi9e/cDsy1duhTr16/HiBEjsGzZMp1jnn32WUiShKNHjz7w8eojKysLADBixIhq96WkpNT78XT9m9zcXOTl5aFr165aXzWrj8edkzHGGGPK4yYRY4wxxoTwxx9/YM2aNVrb1qxZgz/++APDhg1D8+bNa/y3TZs2BQDk5eVVu+/MmTM6z56p2mZpaVlrrm3btmHhwoXw8PDAli1bqq3PU8XBwQGjR4/GkSNH8M4774CIqo1JT09HaWlprc93v3bt2gEAUlNTtbYnJydXq1ddJCQk4NSpU5rbRIQ33ngDd+7cQWhoaL0fT185GWOMMaY8/roZY4wxxoTg6+uLGTNmYO/evejatSvOnDmDPXv2oFmzZvjggw9q/bd9+/ZFo0aN8P777+Pvv//WNJQWLVqEAwcOYN68eejfvz86duwIe3t7ZGdnY/fu3bC0tMTUqVNrfezg4GAQETw8PPDOO+9Uu9/d3R0BAQEAgI8++gjnz59HeHg4Nm3ahL59++Kpp55CXl4efv75Z2RkZODq1auwsrKqc13+53/+B05OTli2bBl+++03uLq64vz58/jmm28wcuRIbNu2rc6PBdytc9++ffHyyy+jefPmOHjwIH7++Wf06dMH06dPr9dj6TMnY4wxxpTHTSLGGGOMCaFPnz5YtGgRFi1ahJUrV8LExAQBAQFYtmwZ2rdvX+u/bdq0KbZt24bo6GisWbMGZWVlAO42iXx9fZGTk4PDhw9jx44dKC4uRuvWrTFmzBiEh4ejS5cutT521WPdv85OlZCQEE2TqGnTpjhy5AhWr16NL7/8Elu2bIFarYaDgwO6d++OyMhINGvWrF51adKkCX744QfMmzcPhw8fxqFDh9C1a1ds2bIFLVu2rHfzZc6cOfD398f777+PzMxMNG3aFDNnzsSSJUse+qtm+sjJGGOMMeVJpOtcaMYYY4wx1qBER0cjJiYGSUlJ8Pb2NnQcxhhjjAmI1yRijDHGGGOMMcYYY9wkYowxxhhjjDHGGGO8JhFjjDHGmOJ27tyJEydOPHCct7c3fzWMMcYYY4rhNYkYY4wxxhQWGhqKjRs3PnBcVFQUoqOj9R+IMcYYYwzcJGKMMcYYY4wxxhhj4DWJGGOMMcYYY4wxxhi4ScQYY4wxxhhjjDHGwE0ixhhjjDHGGGOMMQZuEjHGGGOMMcYYY4wxcJOIMcYYY4wxxhhjjIGbRIwxxhhjjDHGGGMM3CRijDHGGGOMMcYYY+AmEWOMMcYYY4wxxhgDN4kYY4wxxhhjjDHGGID/D+nbHcBijQ7pAAAAAElFTkSuQmCC", + "image/png": "iVBORw0KGgoAAAANSUhEUgAABIkAAAJZCAYAAAAtXGVNAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAA4D1JREFUeJzs3Xd4FOXexvF7N5UACYFAQg9NmtK7YgBBQASxchAFomBF1KggIh3EilhQFGkeURALekBRQDooXcUjSgud0IMESCB53j94d06WbEKySXY34fu5rr0gM8/s/HZ2npnZe2dnbMYYIwAAAAAAAFzV7N4uAAAAAAAAAN5HSAQAAAAAAABCIgAAAAAAABASAQAAAAAAQIREAAAAAAAAECERAAAAAAAAREgEAAAAAAAAERIBAAAAAABAhEQAAAAAAAAQIRGQp2w2m2w2m5YtW+btUgq1ZcuWWcsaBcPKlSvVpUsXlS5dWn5+frLZbOrevbu3ywK8pk2bNrLZbBo5cqS3Syn02Df7lr179yo2NlaVKlVSYGCgbDabSpQo4e2yUMh5YzsQHx9vzTc+Pt5j8wVyi5AIyMTIkSOtDfuVHig8li1bppEjR2rGjBluTZ/ddcbVw915+rqff/5Z7dq103fffafjx4+rZMmSioyMVHh4uLdLK5TSr1O1a9e+Yvv169c7TdO3b9/8L7KQSR9cX+lBUFF4xMfHa+TIkZkGfY4g0J1HYe2HiYmJuv766zVjxgzt27dPISEhioyMVGRkpLdLg49KH7Rc/ggMDFRUVJQ6dOigDz74QBcuXMjx8586dcrqx6dOncr7FwAUQP7eLgAoCLJ78FKzZk1JUkhISH6Wc9ULCQmxlnVeW7ZsmUaNGqWYmBi3DtIzW1fOnDmjpKSkLNsUKVIkx/MrCCZOnKiLFy/q+uuv17fffquSJUt6u6SrxrZt27R27Vq1bNky0zbTpk3zYEWFX3h4uAIDAzMd7xhXqVIl1axZUxEREZ4q7aqVX/vm+Ph4jRo1SpJcBkWOQPxyKSkpOnnypKTM15ewsLA8rdVXfPbZZ9q/f7/Cw8O1Zs0a1apVy9sloQAJDQ11OlY6ffq0EhISlJCQoMWLF+vDDz/UokWLXB5nZLYdOHXqlNWP+/btm6dntQUEBFjzDQgIyLPnBfIbIRGQDYcPH85Wu23btuVzJZCkZs2a+eyyzmxdGTlypHUQkt31qbD4/fffJUn/+te/CIg8KDo6WvHx8Zo+fXqmIdH58+c1e/Zs2Ww2VapUSXv27PFwlYXPV199pTZt2lyx3ccff5z/xUCS9/bNX331lcvhy5YtU9u2ba022VlfCgvH/qBdu3YERMixt956K8MXeAcOHNDrr7+uiRMnatOmTRoyZIg++OCDDNN6YztQvnx5nz1eBbLCz80AAPnq7NmzkqRixYp5uZKrS+/evWWz2TRnzhzrPbjcV199pVOnTikmJkbR0dGeLRDAVYf9AfJa+fLl9eabb+qmm26SJM2bN8+7BQGFACERkIcyu+bE5ReuS0hI0JNPPqkqVaooODhYkZGR+te//nXFbxv27NmjBx98UBUqVFBQUJAqVKig2NhY7dixI1sXx0tJSdF7772ntm3bKiIiwvot92233abvv/8+W6/ryJEjiouL0zXXXKOQkBCnazL17dvXupaCMUaTJ09Ws2bNFBoaqtDQUN1www369NNPM51P+gu5XrhwQW+88YaaNGmiEiVKOC3XrC5cPWPGDNlsNusD78aNG3XPPfeobNmyCgoKUtWqVRUXF2ed6u/gWH6Os32WL1/u0WsGZXcZnz17Vp999pl69+6tBg0aqHTp0goKClK5cuXUvXv3LN9Hd5dNer/88ot69eplrbtFixZV5cqVFRMTozFjxmj//v0ZXpNjfYyNjXVanpevpzt37tSjjz6qGjVqqEiRIgoNDVWjRo00evRonT592mU9l68LmzdvVq9evVShQgUFBARY39Bf/tpXrlyprl27qkyZMipatKgaNmyoqVOnOj33ggUL1KFDB5UuXVohISFq2rSp5syZk+mycVi9erXuu+8+Va5cWcHBwQoLC1OzZs30yiuv6MyZMy6nubzvfPTRR7rhhhtUqlQpt9e9KlWqKCYmRqdPn9aXX37pso3jp2axsbHZes7Nmzerd+/e1msLDw9Xq1atNHHiRCUnJ7uc5vJlv3TpUnXv3l1ly5aVn59fhm+FV6xYoa5duyoiIkJFihRRzZo1NXToUJ05cybDc6Xn7b6RU1lduDo6Otp631NSUvTaa6+pfv36Klq0qMLCwtSuXTstXLgwy+dPSkrSiBEjVLt2bRUpUkRlypTRLbfcoiVLlmSYR2YWLFigO++8U+XLl1dQUJDCw8N144036v3331dKSsoVX1dW2/HLl/miRYvUuXNnlS5dWkWKFFHdunU1duxYnT9/3uV8HNcNdPTxL7/8UjfffLPKlCkju93utFzzY98cHR1tnQ2Ufh55cU2h7C7DtLQ0LVmyRAMHDlSLFi1UoUIFBQYGqlSpUoqJidHkyZMzvUZLXhyX7N+/X08//bTq1q2rokWLWv2tcePGevrpp7V+/foMr8mxvs2cOTPL/WtiYqJGjx6tRo0aWT8xqlGjhh599FHt2rUr05qysy+9/LXv2bNH/fv3V6VKlRQcHKxq1arpxRdftH4iLklbt27Vfffdp4oVKyo4OFg1atTQ2LFjr3gNnPj4eD311FOqW7euihUrppCQENWqVUtPPvmk9u7d63KanG4zs5J+eRw+fFgDBgyw3uOoqCj16tUrW2e65Oe2IK80aNBAkjLdz7raDrRp00ZVqlSx/q5SpYrTenn5WX7btm3TQw89ZK1TwcHBqlixolq0aKEXXnghw7LM6tg8t9cnc+dYA8g2A8ClESNGGEkmJ93E0X7p0qVOw3fv3m2Nmz9/vilTpoyRZEJCQkxQUJA1LjQ01GzZssXlc69Zs8YUL17calukSBFTrFgxa7rPP//cGrd79+4M08fHx5u6detabWw2mwkLC7P+lmQeeeSRLF/XlClTTGRkpJFkgoODrXoc+vTpYySZPn36mB49ehhJxm63m/DwcGOz2azniY2NNWlpaRnmExMTYySZwYMHm1atWhlJxt/f35resVyXLl2a6Xszffp0I8lUrlzZzJo1ywQEBBhJJiwszNjtdmu6unXrmn/++ceabu/evSYyMtIULVrUSDIBAQEmMjLS6TF79myXyyc7rrQ+ZXcZO15f+vcwJCTE6X185plnXM7D3WXjMGPGDKf3MSgoyISGhjrNe/r06VZ7x3JzPHdoaKjT8ty7d6/Vds6cOU59oXjx4k5/V6xY0fz3v//NUFP6deGLL76wXlNoaKgJDg42MTExGV77lClTjN1ud9kHnn/+eWOMMcOHD7fW38vbvP/++y6Xb2pqqhk4cKBT22LFihk/Pz/r75o1a5r4+PgM0zr6Tu/evc2dd97p1HfsdrvTcr2S9O/FzJkzjSTTtm3bDO3i4+ONzWYzxYsXN0lJSVb/69Onj8vnnTBhgtP7HxYWZi1vSaZevXrm4MGDGaZLv+wnTpxoPYdj+vTze/vttzPMIzAw0EgytWvXNm+++ab1XJnNxxt9I/16ePn2PzOO5T1ixIgM4ypXrmwkmXfeecc0b97c2iY5tvmO1zh16lSXz52QkGDq1KljtQ0ICDAlSpSwpnv//fetebhat86ePWvuuusup2UXGhrq9N60aNHCnDhxItPXdaXtePplPmnSJOu5S5QoYfz9/a35NGzY0OV8HNvUmJgYExcXZ7228PBw4+fn57Rc82Pf3KRJExMeHm61uXx/MXDgQJfvjTFXXl+yuwzT1+/Y3ly+vWrdurU5e/Zshnnk9rhky5YtTq/fz88vw74+fd++/fbbTWRkpAkODrb2b5ntX7du3WoqVKhgPU/6faFj3/PFF1+4XLbZ2Zemf+1ffvml1TdCQ0OdttetW7c2KSkpZv78+da2JCwszOk19ujRI9P3+ZNPPnFalkFBQaZIkSJO+7kffvghw3Q52WZeiWNe06ZNM1FRUUZyPn50LJ/vv//e5fSe2BZcSfr3K6t9Yfv27a1tRlbLIv18b7/9dhMREWGNi4iIcFovb7/9dqvtjz/+6PR+pt+uOh6Xb8/T1375sfnl24zLH45lfPn7nZtjDSC7CImATORXSBQeHm6uv/56s379emOMMRcuXDCLFi0yZcuWtQ5KLnfy5ElrfNWqVc1PP/1khSzr1q0z9evXdzpYu3xHdObMGVOrVi0jybRp08YsW7bMnD9/3hhjzKlTp8yECROsA4aJEydm+rqKFStmatasaZYsWWJSU1ONMcb89ddfVjvHB13HQdSYMWNMYmKiMcaYI0eOmAEDBljP9dZbb2WYj+OAolixYqZYsWJm+vTp1sHtsWPHzPHjx40x2QuJHAe6/fr1s8KIpKQk8+6771ofAIcNG5Zh+vQfPPJSdkOiKy3jefPmmWeffdasWrXKJCUlWcMPHjxoRo0aZb22b775JsM8crNskpKSrIPs++67z+zYscMad+bMGbNhwwbz3HPPmQULFmSYb1YfRo0xZuPGjdZ8r7/+evPbb78ZYy4dCH377bfWul+tWrUMH9DTrwvFihUzt9xyi/nzzz+t8X///XeG1x4YGGgGDhxojhw5Yowx5vjx49a6a7fbzSuvvGL8/PzM2LFjzalTp6zl26lTJyPJFC1a1Bqe3osvvmgkmTJlyphJkyZZ62tKSopZunSpadiwoZFkGjVqZL23Do75FytWzPj7+5vXX3/d6jv//POPy/AlM+kPph3vm81mM7t27XJqN3LkSCPJ9OvXzxhjsgyJ/vOf/1jPe9ttt1nPlZycbD7++GNr3WjVqpW5ePGi07SOZR8cHGz8/PxM3759rfXu4sWL1rq0evVqK5Dp0KGDtd5fuHDBzJ0715QsWdLazrkKibzVN4zJv5AoPDzclC9f3sybN8+kpKQYY4zZtm2badGihbW+uFoXHetqkSJFzNSpU63t/d69e02PHj1MYGCg9aHXVb+87777rP3NrFmzrHXx3Llz5ptvvjFVq1Y1kkz37t0zfV1X2o6nX+YBAQHm7rvvtpb52bNnzfvvv299IEv/Qc3BsU117LsGDx5s9enz5887fUDKr31zVvuirGQ3JLrSMty3b5/p1auX+fbbb61hxlzaZkyfPt2UK1fOSDJPP/10hnnk9rXfdNNN1vZs7dq11jFJcnKy+fvvv83rr79uXn311QzTpf8yyZXTp0+bKlWqGEmmfPnyZsGCBdb2csuWLda6HxQU5DK8ys6+NP1rL1GihLnpppvMH3/8YYy5tO69/fbb1gfuF1980YSFhZkePXpY69Q///xjhg4daj3HokWLMtTx448/Grvdbvz9/c2gQYPM7t27TVpamklLSzPbtm0zd999txW47Nmzx2na7G4zs8NRY1hYmKlUqZL58ccfrffql19+Mdddd51Vx759+zJM74ltwZVcKSQ6ePCgeeaZZ6w2n376aZbLIqvtgKsvWR2qVatmJJmbb77Z/P7779bwc+fOma1bt5pRo0ZlqC+7z325Dz74wJpuzpw5TuNyc6wBZBchEZCJ9B/qs0r6t27dak2TnR1QrVq1XH6r9+2331ptLt9Rjxkzxjpg2L59e4Zpjx496vRNyOU7otGjR1vBh+ODxuW++uorI136FuXChQtO4xzPm9lBhIPj4C+zD1LG/O+Ao2TJkubcuXNO4xwHFJLMt99+m+l8shMSZXUQ6vjWuXr16hnGeTskutIyvpLXXnvNSDI33XRThnG5WTa//PKLFZBcvn5cyZVCIscH2urVqzt9uHfYtGmTdWbBa6+95jQu/brQrFmzDAGFQ/rX7ghF0rt48aL1wUSSGTt2bIY2iYmJ1plm//73v53G7d692/j5+ZkiRYpkejbg6dOnrW/Hv/76a6dx6fvO22+/7XL67Lr8YLpfv35Gkhk+fLjVJi0tzURHRxtJZvXq1caYrEOi2rVrWx8WXS3j9NuvuXPnOo1Lv+zvuOOOTOt2fOisU6eOFWqk99NPP1nP4yokupL86hvGOK+H4eHhme4vPvzwQ2ua7IREQUFBTqGnw5EjR6wzMj755BOncStXrrRquXw9NeZS+Nq2bdtMP3StWLHC+gCS/my/9Pbt22f1hc2bNzuNy+52PP0yj4mJcflh5qOPPrLarFu3zmlc+m1qXFxcpvMxJv/2zfkdEl1pGV7J+vXrre325fvb3L52xxkxa9asyVFNVwqJXn75ZSNdOksj/Qdxh9OnT1vbri5dumQYn519afrXXrduXZfbm/vvv99q06FDB5dnP7du3dpIMg8++KDT8NTUVFOjRg0jyXzwwQcuazDGmG7duhlJ5sknn3Qant1tZnY4nicwMNDl2bgJCQmmZMmSRpJ57LHHnMZ5altwJenfr8vPSE5/tmjr1q3Nl19+menzZGc7kFmQk5CQYLXJyZc27oREP/74o3XMM3LkyAzPl5tjDSC7uCYRkA2O22u6elzp9+iXe+aZZ1ze6rxz587WbXAdd/9wmDt3riSpR48eql69eoZpIyIi9Oijj2Y6T8e1VuLi4jK9BWf37t0VGhqqY8eOaePGjS7b3H///apQoUKm83EoUqSInn32WZfjhg8fLkk6ceKEFi1a5LJN3bp11bVr1yvO50pefPFFl8Nvu+02SdKOHTsyvaCvt2R3GWemS5cukqS1a9cqNTU103Y5XTaOW8KmpKTo+PHjbtd3uVOnTumHH36QJD333HMub1HdsGFD3XHHHZIu3T45M88995z8/PyuOM/nn38+wzA/Pz/ropfBwcF66qmnMrQJDQ217hL222+/OY2bMWOGUlNT1alTJ9WvX9/lfIsXL67u3btLkvWaLxceHq6HH374iq8hJx544AFJl64BYoyRdOkaF/Hx8apZs6ZatWqV5fS//fab/vzzT0mX1htXy7hr165q1qyZpKzfoyFDhrgcfuLECf3000+SLr2PQUFBGdq0bdtWrVu3zrLWrORX37jcyZMnM91fpL/GSXbcddddLu8AVbp06UzXRcf+Ijo6Wr169cowrd1uz/Q1Sv/bX/Tq1UsVK1Z02aZChQrW9XgyW5dzsh1/8cUXZbdnPCSNjY21toezZ892Oa3dbtfgwYOzNZ+suLNvzm+53Rc2adJEZcqUUVJSkrZs2ZJpO3deu2OfcOjQIbfrc8Vx3be77rpL1157bYbxxYsX16BBgyRJ33//vRITE10+T3b3pU8//bTL7U3Hjh2t/z///PMur4HoaHN5H1yxYoW2b9+uiIgI9evXL9N59+7dW1LmfUjKfJuZU3fffbdq166dYXiZMmX0yCOPSFKGa+55Y1twJelveZ+QkOC0LT569KgOHDhg7efyUvHixa1tVF6v8+n98ccfuvvuu3Xx4kXde++9GjFihNP4vDrWAK6EkAjIBnPprDuXD8eF8rKrefPmLof7+/urdOnSki59YHJISUnRH3/8IUmKiYnJ9Hkzu4XugQMHrNtaP/jgg4qKinL5KFu2rHWhu8xug3399ddn/eL+X5MmTRQaGupyXI0aNawDtw0bNuRqPlkpWbKky0BNksqVK2f9Py8vRJsXsvPaExISNGLECLVs2VKlSpWSv7+/dYHDOnXqSLp0Ed/MXps7y6ZatWqqVauWLly4oObNm+uVV17Rli1bsvywnR2bNm2yDujat2+fabsOHTpIunQwnlkwm51lV7JkSVWrVs3luMjISElSnTp1VLRo0SzbXL5sV69eLUn68ccfM+1jUVFRmj59uqTM+1jTpk2tD2V5pWXLlqpVq5b27NljXbQ4JxesdvRTf3//LLdBjvcos35dpEgRNWrUyOW4zZs3W+uBO9s5B2/0jcstXbo00/2Fq/AxK5ntL9LXk35/IV3qU5J04403uvxgK13qK/7+/i7HOdblqVOnZrkuL168WFLu9xf+/v6Zhn92u916zzNbr6pXr64yZcpka15Zyem+2ROyswxTUlI0efJk3XzzzSpXrpyCgoKcLnp75MgRSXK6qcDl3Hntt956qySpT58+euaZZ7R8+fJcf+mSkpJiBS7Z2R+kpaVZ6/vlsrv+OcLtyzm29dKl7XJWbTLbHyQmJqpcuXKZ9qH+/ftLyrwPZbXNzKl27dpdcdzx48e1e/fuDK/DU9uC7Jg+fbrTNvXixYvav3+/Jk+erISEBA0cOFD33ntvngdFRYoUsb5I6tSpk4YPH65ffvkl04t2uyMhIUFdunRRYmKiWrVqZe2n08urYw3gSlwfIQDIN8WLF890nOOgPf2H4BMnTlgfxNN/SLlc+fLlXQ4/ePCg9f9jx45lq8bMDvSyeyCeWS3px+/fv986eHV3PlnJznKWlOMzwfLblV772rVrdcstt+jUqVPWMMcdU2w2m1JTU633OSkpSRERERmew51l4+fnp9mzZ+v222/X7t279fzzz+v5559XSEiIWrVqpTvuuEN9+vRxeSZQVtKvA1mtN45g8eLFizpx4oTTAbxDdtab7Lz2nPZR6X/9LCkpKVtni+S2j+VUbGysBg8erOnTp6tZs2b66quv5OfnZ32TnRXHexQREeHyG3cHx3uUWb8uVaqUy7NFpEvfADu4s52TvNc38pM766JjWWa1HIOCghQREaHDhw9nGOdYl0+fPp3pXQXTy+26fKX1yvGe5+f+QnJvWee3K722I0eOqH379k5n+QQHBysiIsI64+/o0aNKS0vLcrvkzmt/9dVXtWPHDi1dulQTJkzQhAkT5OfnpwYNGqhLly566KGHrngscLn0xzvZ2R9IuV8vMnvt6fv7ldpktj+4cOGCEhISrljDuXPnXA7PapuZU1ktz/Tjjhw5Yt3ty9PbAnf4+fmpfPnyevjhh1WuXDl169ZNs2fPVufOnbO1f8uJjz76SN26ddOvv/6qMWPGaMyYMQoMDFTTpk1122236cEHH1TJkiXdeu5z587ptttu0549e1SlShXNmzfP5XYxr441gCvhTCKgAMnsW+GspD/T488//8zyrCjHI7PbbWbnpzx5wVPz8UVZvfaLFy+qZ8+eOnXqlBo0aKDvvvtOp0+f1j///KOEhAQdPnxYP//8s9U+r79Jq1+/vrZt26Yvv/xSDz30kK699lqdO3dOixcv1mOPPaZatWp5/OcY6XlzvXH0s8GDB2erj2V269/8eg3333+//Pz89PXXX2vy5Mk6d+6cOnXqpLJly+bL/FzJ7mtzZzvn7b7hi9xZjtL/1uX3338/W+vy5bcud2B/kXtXem1PP/20fv/9d5UqVUrTpk3ToUOHdO7cOR09elSHDx/W4cOHrbAwr9f5EiVK6KefftLKlSs1aNAg6+y0jRs3avTo0apRo0aWPz3Nb76wP2jevHm2+lBm74231+2Cti3o2rWrFUh9+umnef78lSpV0qZNm7Rw4UINHDhQjRs3VlpamlavXq1BgwapevXq1s+mc8IYo969e+uXX35RWFiY5s+fb53Bd7m8OtYAroSQCPBxJUuWtHaw6c8KutyBAwdcDo+KirL+76nTTjOr5fLx+fntUmG0du1a7dmzR35+fpo/f746d+6c4RtOV2cG5KXAwEDdcccd+uCDD/T777/r6NGjmjx5skqWLKl9+/apT58+OXq+9OtAVj+HcIzz9/d3+5u6/OToZ756anfZsmXVqVMnnTt3TsOGDZOUvZ+aSf97j44dO6bk5ORM2zneI3f6dfoDYne2c77QN3yFY1lmtRyTk5MzPbPU0+vysWPHsvzJBvsL1y5cuKCvvvpKkvTuu+8qNjbWaX8vyensufxyww036JVXXtGqVat06tQpffPNN7ruuut07tw5PfDAA9k6k8Yh/fFOdvYHkm+uF764P8jquCz9uPTL0xdfx5VUrlxZkpx+NpeX7Ha7OnbsqLfeeksbNmzQiRMnNGvWLFWqVEknT57Uvffem+OfoL3wwgv64osv5Ofnpzlz5lg/jXalIL4nKJgIiQAfFxgYqLp160pSlt8IZDYuOjraOpX4P//5T16X59KGDRus6xtdbseOHdYBXpMmTTxST044Tu32xTMN9u3bJ+nSh8DMTh13XBvAU0qVKqWHH35Yr7zyiqRL15bJyYWtGzVqZC1zx/VyXHG8rvr162d68XVvclxzYfHixTp//ryXq3HNcQHrlJQURUREqFu3btmaztFPL168qOXLl2fazvEeZXb9jqw0bNjQOvPFne2cL/YNb3FcwySr92r16tW6ePGiy3GOdXn+/Pl5X5wLFy9e1MqVK12OM8ZYr8OX9xeS5/cZR48etbY1DRs2dNlm1apVHt0eBQcHq1u3blZ4df78ea1atSrb0wcGBqpevXqSsrc/sNvteXbNnrzk6EOHDx/O9FpanrZ06dIrjitZsqT1UzPJ89uCvOA4vszsuoKu5KYfFy9eXPfee691ke+EhIQcnVE9bdo0vfzyy5Kkt99+2+mC6a4UhGMNFA6EREABcNddd0m6dOeJnTt3Zhh//PhxTZ48OdPpHRdHnDp1qjZv3pzlvPLiwpznzp3T66+/7nLc2LFjJV06GHFcfNKXOC64nf66Jr4iLCxM0v/utne5/fv36+23386XeWd1Bokkpzvj5OQaCiVKlLAOil577TWXv5//9ddf9eWXX0qSevbsme3n9qQHHnhA/v7+OnbsWIa7kVwuJSUl0xA1P3Xt2lXPPfecnnnmGU2cODHbYVu9evWsbzbHjh3r8mLl3333nX755RdJ7r1HJUuWtO6Q88Ybb7j8JnbFihWZhgne7Bu+xrG/iI+Pd/mTC2OMXnrppUynf+ihhyRJW7du1fvvv5/lvJKSkvLkwq3jxo1TWlpahuEzZ860AsAePXrkej55Lf0NGjy9zwgNDbWC1V9//TXD+IsXL2ro0KH5Mu+LFy+6fL8c3N0fSNK//vUvSdIXX3yhrVu3Zhh/5swZvfrqq5KkW265xer7vqRt27bWBfCffvrpK/YRT1wQfe7cufrrr78yDD927Jg++OADSRn7mDe2BbmxbNky685jOQmVs9OPr/Ta3Fnnf/rpJ+vOcgMHDtRjjz12xWkKwrEGCgdCIqAAGDBggCIjI3X+/Hl16tRJy5cvt77t2LBhgzp06JDpt8LSpdvbXnfddTp//rzatm2rd9991+lsj1OnTun7779X7969c3WLaYewsDCNGTNG48eP1z///CPp0oHIk08+qZkzZ0qShg0bpuDg4FzPK685brn7xx9/aM2aNV6uxtkNN9ygokWLyhije+65R3///bekSz8p+OGHH9SmTRu3r0NyJbNnz9b111+vDz74QLt27bKGO+btuK18y5YtFR4enqPnHjt2rAICArRjxw517NjR+hYuLS1N3333nW655RZdvHhR1apVy/Pbw+eVatWqWT/jevXVV9W7d2+nDzgXL17Uli1bNHr0aFWvXj3L21Hnl4CAAL366qt6/fXXXd4aPSuOM8VWrlypu+66yzqV/8KFC5o1a5YVDLVq1cq69W5OjRo1SjabTVu3blW3bt20fft2SZeW3VdffaU777wz03XLm33D17Ru3doK4Pv3768ZM2ZYIe/+/fvVq1cvrVy5MtOLzMfExFg/RXz88cf19NNPO/X55ORk/fzzzxo0aJAqV66c6YWDsyskJESrVq3Svffea50FcP78eX344Yd69NFHJUm33XZbpneh8qZrrrnGuhvhRx995NGziYoVK2adVRAXF6effvrJCm62bt2qW265RRs2bMjRGRXZtX//ftWoUUNjx47V5s2bnY4/fvvtN913332SLp3NkdXdCl159NFHVaVKFV24cEGdO3fW999/b72u33//XR07dtTu3bsVFBRkfenka/z9/TV58mT5+/tr1apVuvHGG7VkyRKnC1zv2rVLkydPVtOmTfXee+/le03BwcHq1KmTFi9ebK2n69evV/v27XXs2DEVL17c2o87eHpb4K7k5GR988031n7N399fAwcOzPb0JUqUsM5AnT59usvj6TVr1qhevXp688039eeff1rrpDFGa9assbZVFSpUsM6Gy8r27dt155136sKFC7rllls0YcKEbNVaEI41UEgYAC6NGDHCSDI56SaO9kuXLnUavnv3bmvc7t27M52+cuXKRpKZPn16hnErV640xYoVs54nJCTE+rtEiRJm7ty51rhDhw5lmP7AgQOmRYsWVhubzWZKlChhQkNDrWGSTPXq1bP9ui7Xp08fI8n06dPH9OjRw0gyfn5+Jjw83NhsNut5evfubVJTUzNMHxMTYySZESNGZDmfpUuXZvreTJ8+3UgylStXznT6rN6PCxcumJo1a1rjw8PDTeXKlU3lypXN3Llzs6wrK1dan7K7jN9//32n96tYsWImODjYSDIRERHm22+/zfS15WbZOKZ1PIKCgkypUqWM3W63hpUrV878+eefGZ4zq/XaYfbs2SYwMNB6rtDQUOt1STIVK1Y0//3vfzNMl9W6kNPX7niPYmJiMm2Tfh2/XFpamhk2bJjTul6kSBFTqlQp4+fn57T8Vq1ale3nzSnHPLJa3q44+l9mNUyYMMHptZUoUcLpPbvuuuvMgQMHMkyXnWXv8OabbzotpxIlSpigoCAjyVx77bXW+Jo1a2aY1lt9wxjn9fBKfdghq+1ddvpMVuvMoUOHTK1atayaAgICTIkSJYwkY7fbzYcffmgqVapkJJnPPvssw/TJycmmX79+GZZneHi4U5+XZPbv35/t15Ve+mX+7rvvWutWeHi4CQgIsJ6/fv365tixYxmmz05/dcjPffODDz7otF+uVKmSqVy5snnmmWcyfb4rrS/ZXYYbNmwwRYsWddouFy9e3Egy/v7+5uOPP8609ty89vTTOvbzJUuWdNoeBAYGutxnZmdb9/vvv5vy5ctbzxUcHOx0rBIUFJTp/jg7/TA7rz07+5YrbTe+/vpr6/1w9MNSpUpZ2zTHY+zYsTl63pxwzGPatGkmKirKWk/TH08GBQWZ+fPnu5zeE9uCK0n/foWGhprIyEjrUbp0aePv7+/UB2fPnp3lsnC1bowZM8ZpeVSsWNFUrlzZ9OjRwxjjvD6kfy/Tzzs0NNSsWLEi09ozO6YKDw93ek2XPwYOHOj0nLk51gCyizOJgALihhtu0G+//abY2FiVK1dOFy9eVIkSJfTAAw9o06ZNqlatmtW2RIkSGaYvV66cVq1apc8++0zdunVT2bJldfbsWaWkpCg6Olpdu3bVxIkTtWLFijyp97PPPtN7772nhg0b6uLFiypatKhatmypjz/+WDNnzsyz27rmNX9/fy1ZskT9+vVTlSpVlJSUpD179mjPnj0+cdruI488ogULFqhNmzYqVqyYLl68qPLly+uJJ57Qr7/+quuuuy5f5tutWzd9/PHHio2NVf369RUWFqbExEQVL15czZo105gxY/THH3+oVq1abj1/jx499Mcff+jhhx9WtWrVlJycLH9/fzVo0ECjRo3S1q1bVbt27Tx+VXnLZrNp9OjR+u233/TYY4+pdu3a8vPzU2JiosLDw9WqVSs999xzWrNmjXUGQEHy9NNPa8OGDbrvvvtUsWJFnT17VkWKFFGLFi305ptvav369Vnedj07nnrqKS1btky33HKLwsPDdf78eUVHR+vFF1/Uzz//bH0D7mob562+4YuioqK0fv16DRs2TDVr1pTdbpe/v79uueUW/fTTT+rfv78SExMluV6WgYGBmjJlitasWaO+ffuqWrVqSk1N1ZkzZ1SmTBm1adNGw4cP12+//Zbj25y78vjjj+uHH35Qp06dZLfbZbfbVatWLY0ePVpr165VqVKlcj2P/DJp0iSNHDnSWr/27t2rPXv25PsFoyWpcePGWrdune655x5FREQoLS1NxYsX1z333KM1a9bo/vvvz5f5li9fXt9++62efvpptWjRQmXLltWZM2fk7++vOnXq6PHHH9fWrVutnz7m1LXXXqs//vhDI0eOVIMGDeTv76/k5GRVq1ZNjzzyiP744w+3n9uTunfvrh07dmjEiBFq1qyZihUrplOnTikoKEj169dXv3799PXXX+u5557L91qqVKmizZs36/HHH1fp0qWVkpKiMmXKqGfPntq8ebO6dOnicjpPbwuu5PTp09bPihMSEnTs2DGFhISocePGGjRokP744w+3fpr6wgsv6K233lKTJk0UEBCg/fv3a8+ePdYND5o2barPP/9cjz76qBo3bqyIiAidPn1awcHBatCggQYNGqQ///zTrbPxT5486fSaLn84ttUOhf1YA77BZhxHXAAKtClTpuihhx5S1apVXV63yBP69u2rmTNnqk+fPpneChUA3NWrVy99+umneuCBB6wLhSLntm/frmuuuUbSpVCjYsWKHq9hxowZio2NVeXKlRUfH+/x+QNXA8fPbJcuXao2bdp4txgABYZvfpUPIEfOnz+viRMnSpI6derk3WIAIB/8/fff1l2T2M7lzvjx4yVJderU8UpABAAAfBchEVBAzJ49Wy+++KK2bt1q3WXh4sWLWrFihdq1a6f//ve/Cg4O1pNPPunlSgHAPcOHD9e7776rvXv3WhcGTUpK0pw5c9S2bVudP39etWrVcvvi2FeLbdu2qV+/flqxYoV18wDH8NjYWE2fPl2SMlyoFgAAwN/bBQDInsOHD2vcuHEaN26cbDabwsPDdebMGSswCgwM1PTp062fEABAQfPbb7/pm2++0RNPPKGAgAAVL15cp06dsgKj8uXLa+7cuQoICPBypb7t/Pnzmjp1qvWTvLCwMF24cEFnz5612gwcODDfrlkDAAAKLkIioIC49dZbdfToUS1btsy6KGZAQICqVq2qtm3b6qmnniIgAlCgPf300ypXrpzWrFmjQ4cO6cSJEypevLiuueYa3XrrrRowYIBKlizp7TJ9XrVq1fT6669r8eLF+uuvv3TkyBGlpqaqYsWKatmypR566CHddNNN3i4TAAD4IC5cDQAAAAAAAK5JBAAAAAAAAH5uJklKS0vTwYMHVbx4cetWkQAAAAAAAAWdMUb//POPypUrJ7s963OFCIkkHTx4kFvAAgAAAACAQmvfvn2qUKFClm0IiSQVL15c0qUFFhoa6uVqAAAAAAAA8sbp06dVsWJFK/vICiGRZP3ELDQ0lJAIAAAAAAAUOtm5vA4XrgYAAAAAAAAhEQAAAAAAAAiJAAAAAAAAIEIiAAAAAAAAiJAIAAAAAAAAIiQCAAAAAACACIkAAAAAAAAgQiIAAAAAAACIkAgAAAAAAAAiJAIAAAAAAIAIiQAAAAAAACBCIgAAAAAAAIiQCAAAAAAAACIkAgAAAAAAgAiJAAAAAAAAIEIiAAAAAAAAiJAIAAAAyBNJSUmy2Wyy2WxKSkrydjkAAOQYIREAAABwFSDEgrew7gEFByERAAAAAGSBkKNw8/X319frQ+FCSAQAAAAABRghArzF19c9X6/PFxESAQAAAPA6PswBgPcREgEAAAAAAICQCAAAAAAAAIREAAAAAAAAECERAAAAAAAAREgEAAAAAAAAERIBAAAAAABAhEQAACCHuE01AABA4URIBAAAChVCLAAAAPcQEgEAAHiQr4dYvl4fAADIP4REAAAAKBAIsAAAyF+ERAAAAAAAACAkAgAAAAAAACERAAAAAAAA5MMh0aRJkxQdHa3g4GA1b95c69aty7RtmzZtrN+np3906dLFgxUDAAAAAAAUXD4ZEs2ZM0dxcXEaMWKENm3apPr166tjx446cuSIy/ZfffWVDh06ZD22bt0qPz8/3X333R6uHAAAAAAAoGDyyZBowoQJ6t+/v2JjY1WnTh1NnjxZISEhmjZtmsv2JUuWVFRUlPVYtGiRQkJCCIkAAAAAAACyyedCopSUFG3cuFHt27e3htntdrVv315r167N1nNMnTpV//rXv1S0aNH8KhMAAAAAAKBQ8fd2AZc7duyYUlNTFRkZ6TQ8MjJS27Ztu+L069at09atWzV16tRM2yQnJys5Odn6+/Tp0+4XDAAAAAAAUAj43JlEuTV16lRdd911atasWaZtxo8fr7CwMOtRsWJFD1YIAEDWkpKSrJswJCUlebscAAAAXCV8LiSKiIiQn5+fEhISnIYnJCQoKioqy2mTkpI0e/ZsPfjgg1m2GzJkiBITE63Hvn37cl03AAAAAABAQeZzIVFgYKAaN26sJUuWWMPS0tK0ZMkStWzZMstp586dq+TkZN13331ZtgsKClJoaKjTAwBwdeFsHQAAAMCZz12TSJLi4uLUp08fNWnSRM2aNdPEiROVlJSk2NhYSVLv3r1Vvnx5jR8/3mm6qVOnqnv37ipVqpQ3ygYAAAAAACiwfDIk6tGjh44eParhw4fr8OHDatCggRYuXGhdzHrv3r2y251Pgvrrr7+0atUq/fjjj94oGQBwmaSkJBUrVkySdObMGe44CQAAAPg4nwyJJGnAgAEaMGCAy3HLli3LMKxmzZoyxuRzVQAAAAAAAIWTz12TCACQPVxTBwAAAEBeIiQCAAAAAAAAIREAAAAAAAAIiQAgU/ycCwAAAMDVhJAIAAAAAAAAhEQAAAAAAAAgJAIAAAAAAIAIiQAAAAAAACBCIgAAAAAAAIiQCAAAAAAAACIkAgAAAAAAgAiJAAAAAAAAIEIiAAAAAAAAiJAIAAAAAAAAIiQCAAAAAACACIkAAAAAAAAgQiIAAAAAAACIkAgAAAAAAAAiJAIAAAAAAIAIiQAAAAAAACBCIgAAAAAAAIiQCAAAAAAAACIkAgAAAAAAgAiJAAAAAAAAIEIiAAAAAAAAiJAIAAAAAAAAIiQCAAAAAACACIkAAAAAAAAgQiIAAAAAAACIkAiAlyUlJclms8lmsykpKcnb5QAAAADAVYuQCAAAAAAAAIREAAAAAAAAICQCAAAAAACACIkAAAAAAAAgQiIAAAAAAACIkAgo9Lh7GAAAAAAgOwiJAAAAAAAAQEgEAAAAAAAAHw2JJk2apOjoaAUHB6t58+Zat25dlu1PnTqlxx9/XGXLllVQUJCuueYafffddx6qFgAAAAAAoODz93YBl5szZ47i4uI0efJkNW/eXBMnTlTHjh31119/qUyZMhnap6SkqEOHDipTpoy++OILlS9fXnv27FGJEiU8XzwAAAAAAEAB5XMh0YQJE9S/f3/FxsZKkiZPnqwFCxZo2rRpev755zO0nzZtmk6cOKE1a9YoICBAkhQdHe3JkgEAAAAAAAo8nwqJUlJStHHjRg0ZMsQaZrfb1b59e61du9blNN9++61atmypxx9/XN98841Kly6te++9V4MHD5afn5+nSgcAAAAAIFPRzy9wa7q0lPPW/2sPWyh7YHCOnyP+5S5ZjvdmbVLBr68w8amQ6NixY0pNTVVkZKTT8MjISG3bts3lNLt27dJPP/2kXr166bvvvtOOHTv02GOP6cKFCxoxYoTLaZKTk5WcnGz9ffr06bx7EQAAAABQCPn6B3Vfrw8oCHzywtU5kZaWpjJlyujDDz9U48aN1aNHDw0dOlSTJ0/OdJrx48crLCzMelSsWNGDFaOwSUpKks1mk81mU1JSkrfLAQAAAADALT4VEkVERMjPz08JCQlOwxMSEhQVFeVymrJly+qaa65x+mlZ7dq1dfjwYaWkpLicZsiQIUpMTLQe+/bty7sXAQAAAAAAUAD5VEgUGBioxo0ba8mSJdawtLQ0LVmyRC1btnQ5zfXXX68dO3YoLS3NGvb333+rbNmyCgwMdDlNUFCQQkNDnR4AAAAAAABXM58KiSQpLi5OU6ZM0cyZM/Xnn3/q0UcfVVJSknW3s969eztd2PrRRx/ViRMn9OSTT+rvv//WggUL9NJLL+nxxx/31ksAAAAAAAAocHzqwtWS1KNHDx09elTDhw/X4cOH1aBBAy1cuNC6mPXevXtlt/8v26pYsaJ++OEHPf3006pXr57Kly+vJ598UoMHD/bWSwAAAEAB5usXv6W+rOVHfb5cm8SFlwHkHZ8LiSRpwIABGjBggMtxy5YtyzCsZcuW+vnnn/O5KgAAAAAAgMLL535uBgAAAAAAAM8jJAIAAAAAAAAhEQAAAAAAAAiJAAAAAAAAIEIiFABJSUmy2Wyy2WxKSkrydjkAAAAAABRKhEQAAAAAAAAgJAIAAAAAAIDk7+0CAAAAcHWJfn6BW9OlpZy3/l972ELZA4Pdep74l7u4NR0AAIUdIREAAIAbfD3o8GZ9hDAAABRMhEQAAMAn+XoIAwAAUNgQEgEAcJUihAEAAEB6XLgaAAAAAAAAhEQAAAAAAAAgJAIAAAAAAIAIiQAAAAAAACBCIgAAAAAAAIiQCAAAAAAAACIkAgAAAAAAgAiJAAAAAAAAIEIi/L+kpCTZbDbZbDYlJSV5uxwAAAAAAOBhhEQAAAAAAAAgJAIAAAAAAAAhEQAAAAAAACT5e7sAAAAKs+jnF+R4mrSU89b/aw9bKHtgsFvzjn+5i1vTAQAA4OrEmUQAAAAAAADgTCIAQMHmzpk6EmfrAAAAAJfjTCIAAAAAAAAQEgEAAAAAAICfmwEAroCfcwEAAABXB84kAgAAAAAAACERAAAAAAAA+LkZAHgdP+cCAAAA4As4kwgAAAAAAACERAAAAAAAAODnZgCuAvycCwAAAACujDOJAAAAAAAAQEgEAAAAAAAAQiIAAAAAAADIh0OiSZMmKTo6WsHBwWrevLnWrVuXadsZM2bIZrM5PYKD3bt2CAAAAAAAwNXIJ0OiOXPmKC4uTiNGjNCmTZtUv359dezYUUeOHMl0mtDQUB06dMh67Nmzx4MVAwAAAAAAFGw+GRJNmDBB/fv3V2xsrOrUqaPJkycrJCRE06ZNy3Qam82mqKgo6xEZGenBigEAAAAAAAq2XIVEX3/9te655x7Vq1dP1atXt4Zv27ZNr776qg4cOJDj50xJSdHGjRvVvn37/xVpt6t9+/Zau3ZtptOdOXNGlStXVsWKFXXbbbfpjz/+yPG8AQAAAAAArlb+7kyUlpamnj176osvvpAkFSlSROfOnbPGh4eHa+jQoUpNTdWQIUNy9NzHjh1TampqhjOBIiMjtW3bNpfT1KxZU9OmTVO9evWUmJio119/Xa1atdIff/yhChUqZGifnJys5ORk6+/Tp0/nqEYAAAAAAIDCxq0zid58803NnTtXDz/8sE6ePKlnn33WaXxkZKRat26tBQsW5EmRV9KyZUv17t1bDRo0UExMjL766iuVLl1aH3zwgcv248ePV1hYmPWoWLGiR+oEAAAAAADwVW6FRDNmzFDTpk313nvvKTQ0VDabLUOb6tWra/fu3Tl+7oiICPn5+SkhIcFpeEJCgqKiorL1HAEBAWrYsKF27NjhcvyQIUOUmJhoPfbt25fjOgEAAAAAAAoTt0KiHTt2qHXr1lm2KVWqlI4fP57j5w4MDFTjxo21ZMkSa1haWpqWLFmili1bZus5UlNT9fvvv6ts2bIuxwcFBSk0NNTpAQAAAAAAcDVz65pERYoUUWJiYpZt9uzZoxIlSrjz9IqLi1OfPn3UpEkTNWvWTBMnTlRSUpJiY2MlSb1791b58uU1fvx4SdLo0aPVokULVa9eXadOndJrr72mPXv2qF+/fm7NHwAAAAAA4GrjVkjUsGFD/fDDDzp//ryCg4MzjD9x4oQWLlyoG2+80a2ievTooaNHj2r48OE6fPiwGjRooIULF1oXs967d6/s9v+dBHXy5En1799fhw8fVnh4uBo3bqw1a9aoTp06bs0fAAAAAADgauNWSDRw4EDdfvvtuvPOOzNcHHrnzp164IEHlJiYqIEDB7pd2IABAzRgwACX45YtW+b095tvvqk333zT7XkBAAAAAABc7dwKiW677TYNHjxYr7zyiipXrqyiRYtKksqUKaPjx4/LGKNhw4apXbt2eVosAAAAAAAA8odbF66WLt1G/ocfftCtt96qkJAQ+fn5KS0tTZ06ddL333+vUaNG5WWdAAAAAAAAyEdunUm0d+9eBQYGqkOHDurQoUNe1wQAAAAAAAAPc+tMoipVquiFF17I61oAAAAAAADgJW6FROHh4SpVqlRe1wIAAAAAAAAvcSskat26tX755Ze8rgUAAAAAAABe4lZINH78eP32228aPXq0Ll68mNc1AQAAAAAAwMPcunD1q6++quuuu06jRo3SBx98oPr16ysyMlI2m82pnc1m09SpU/OkUAAAAAAAAOQft0KiGTNmWP8/dOiQDh065LIdIREAAAAAAEDB4FZItHv37ryuAwAAAAAAAF7kVkhUuXLlvK4DQAEX/fwCt6ZLSzlv/b/2sIWyBwa79TzxL3dxazoAAAAAhZM9MFiVB8/3dhkFilshEQAAAAAAyH++HHT4cm1wj1t3N3OYNWuWOnTooNKlSysoKEilS5fWzTffrE8//TSv6gMAAAAAIN84go7Kg+e7fVY7UFi4dSZRamqq7rnnHs2bN0/GGAUHB6tcuXJKSEjQ4sWLtWTJEn355ZeaO3eu7PZc5VAAAAAAgAKMs02AgsOtBOftt9/W119/reuvv16rV6/W2bNntXv3bp09e1Zr1qzRDTfcoHnz5umdd97J63oBAAAAAACQD9wKiWbOnKlrrrlGS5YsUcuWLZ3GtWjRQosXL9Y111yj6dOn50mRAAAAAAAAyF9uhUR///23unXrpoCAAJfjAwIC1LVrV/3999+5Kg4AAAAAAACe4VZIFBgYqKSkpCzbJCUlKTAw0K2iAAAAAAAA4FluhUQNGzbU559/roMHD7ocf+jQIX3++edq1KhRrooDAAAAAACAZ7h1d7O4uDjddtttatKkiZ555hnFxMQoMjJSCQkJWrZsmSZMmKATJ04oLi4ur+sFrlrRzy9wa7q0lPPW/2sPW+j2bT3jX+7i1nQAAAAAgILBrZCoa9euev311/X8889r0KBBTuOMMfL399frr7+uW2+9NU+KBAAAAAAAQP5yKySSLp1N1L17d82aNUtbtmzR6dOnFRoaqoYNG+ree+9V1apV87JOAAAAAIWYPTBYlQfP93YZAHBVczskkqSqVatq2LBheVULAAAAACCHCNgA5JVchUQAAAAAUNgRwgC4Wrh1d7M33nhDERERmd7d7ODBgypdurTefvvtXBUHAAAAIG84go7Kg+e7fSMLAEDh5lZINHfuXNWvX1/lypVzOb5cuXJq0KCBZs+enaviAAAAgIKCEAYAUNC5FRJt375ddevWzbJN3bp1tX37dreKAgAAAAAAgGe5FRKdO3dORYsWzbJNcHCwzpw541ZRAAAAAAAA8Cy3QqJKlSppzZo1WbZZu3atKlSo4FZRAAAAAAAA8Cy3QqIuXbpo1apVmjZtmsvxH330kVatWqWuXbvmqjgAAAAAAAB4hr87Ez3//PP67LPP1L9/f33yySfq0KGDypcvrwMHDujHH3/UihUrVK5cOQ0ZMiSv6wXyTfTzC9yaLi3lvPX/2sMWun2hyviXu7g1HQAAVwtuQw4AQP5yKyQqXbq0li5dqvvuu0/Lli3TsmXLZLPZZIyRJDVt2lSzZs1S6dKl87RYAAAA5C+CGAAArl5uhUSSVLNmTa1fv17r16/XunXrlJiYqBIlSqhZs2Zq0qRJXtYIAAAAAACAfOZ2SOTQtGlTNW3aNC9qAQAAKPQ4UwcAAPiqXIdE6cXHx2vRokUKDg7W7bffrmLFiuXl0wMAAAAAACCfuHV3s5deeklVqlTRyZMnrWHLli3Ttddeq0ceeUR9+/ZVo0aNdOLEiTwrFAAAIDscZ+pUHjzf7ZsJAAAAXI3cConmzZun6OhohYeHW8MGDx6stLQ0jRo1So8++qh27NihiRMn5lWdAAAAAAAAyEduhUTx8fGqU6eO9ffBgwe1fv16Pf7443rxxRf17rvv6qabbtLXX3+dZ4UCAAAAAAAg/7h1TaLTp0+rRIkS1t8rVqyQzWZT165drWGNGjXS5MmTc10gAADwLVx4GQAAoHBy60yiyMhI7dmzx/p70aJFCgoKUvPmza1h58+fl81mc7uwSZMmKTo6WsHBwWrevLnWrVuXrelmz54tm82m7t27uz1vAAAAAACAq41bIVHTpk31zTffaP78+Vq8eLHmzJmjtm3bKigoyGqze/dulStXzq2i5syZo7i4OI0YMUKbNm1S/fr11bFjRx05ciTL6eLj4/Xss8+qdevWbs0XAAAAAADgauVWSPTCCy/o4sWLuu2229SxY0edP39eL7zwgjU+OTlZK1ascDqzKCcmTJig/v37KzY2VnXq1NHkyZMVEhKiadOmZTpNamqqevXqpVGjRqlq1apuzRcAAAAAAOBq5dY1iRo1aqSff/5Z//73vyVJ99xzj5o1a2aN37x5s9q2bat77703x8+dkpKijRs3asiQIdYwu92u9u3ba+3atZlON3r0aJUpU0YPPvigVq5cmeU8kpOTlZycbP19+vTpHNcJAAAAAABQmLgVEklS/fr1Vb9+fZfjWrRo4fadzY4dO6bU1FRFRkY6DY+MjNS2bdtcTrNq1SpNnTpVW7ZsydY8xo8fr1GjRrlVHwAAAAAAQGHkdkjkK/755x/df//9mjJliiIiIrI1zZAhQxQXF2f9ffr0aVWsWDG/SsT/i35+gVvTpaWct/5fe9hC2QOD3Xqe+Je7uDUdAAAAAABXA58LiSIiIuTn56eEhASn4QkJCYqKisrQfufOnYqPj1fXrl2tYWlpaZIkf39//fXXX6pWrZrTNEFBQU4X2QYAAAAAALjauXXh6vwUGBioxo0ba8mSJdawtLQ0LVmyRC1btszQvlatWvr999+1ZcsW69GtWze1bdtWW7Zs4QwhAAAAAACAbPC5M4kkKS4uTn369FGTJk3UrFkzTZw4UUlJSYqNjZUk9e7dW+XLl9f48eMVHBysa6+91mn6EiVKSFKG4QAAAAAAAHDNJ0OiHj166OjRoxo+fLgOHz6sBg0aaOHChdbFrPfu3Su73edOggIAAAAAACiwfDIkkqQBAwZowIABLsctW7Ysy2lnzJiR9wUBAAAAAAAUYpyOAwAAAAAAgNydSXT48GFt3LhRp06dUmpqqss2vXv3zs0sAAAAAAAA4AFuhUTnz59X//79NXv2bOt285czxshmsxESAQCQQ/bAYFUePN/bZQAAAOAq41ZI9Pzzz2vWrFm65ppr1LNnT1WoUEH+/j57eSMAAAAAAABcgVvJzueff646depo48aNCgoKyuuaAAAAAAAA4GFuhUSnTp3SvffeS0AEACiw+EkXAAAA4Mytu5vVrFlTCQkJeV0LAAAAAAAAvMStkOi5557TN998ox07duR1PQAAAAAAAPACt35uVqFCBXXs2FHNmjXTU089pUaNGik0NNRl2xtvvDFXBQIACiZ+zgUAAAAULG6FRG3atJHNZpMxRiNHjpTNZsu0bWpqqtvFAQAAAAAAwDPcComGDx+eZTAEAAAAAACAgsWtkGjkyJF5XAYAAAAAAAC8ya2QCADgfVzzBwAAAEBecuvuZgAAAAAAAChc3D6TaN++fRo7dqwWL16sgwcPKiUlJUMbm82mixcv5qpA5Ez08wvcmi4t5bz1/9rDFsoeGJzj54h/uYtb8wYAAAAAAN7nVki0a9cuNW/eXCdPnlTdunWVnJysypUrKzg4WLt27dKFCxdUv359lShRIo/LBQDP4edcAAAAAK4mbv3cbNSoUUpMTNSSJUv066+/SpJiY2P1559/Kj4+Xt26dVNSUpK++OKLPC0WAAAAAAAA+cOtkGjx4sW65ZZbFBMTYw0zxkiSypYtqzlz5kiSXnjhhTwoEQAAAAAAAPnNrZDo2LFjqlWrlvW3v7+/zp49a/0dFBSkDh06aP58fqYBAAAAAABQELgVEkVERCgpKcnp7/j4eKc2/v7+OnXqVG5qAwAAAAAAgIe4FRLVqFFDO3futP5u1qyZfvjhB+3atUuSdPToUX3xxReqVq1a3lQJAAAAAACAfOVWSNS5c2ctXbrUOlPoqaee0j///KN69eqpadOmuuaaa3T48GE98cQTeVkrAAAAAAAA8olbIdGjjz6qZcuWyc/PT5LUpk0bzZ49W5UrV9bWrVsVGRmpt99+W/3798/TYgEAAAAAAJA//N2ZKDQ0VM2bN3cadvfdd+vuu+/Ok6IAAAAAAADgWW6dSQQAAAAAAIDCJVch0ddff6177rlH9erVU/Xq1a3h27Zt06uvvqoDBw7kukAAAAAAAADkP7d+bpaWlqaePXvqiy++kCQVKVJE586ds8aHh4dr6NChSk1N1ZAhQ/KmUgAAAAAAAOQbt84kevPNNzV37lw9/PDDOnnypJ599lmn8ZGRkWrdurUWLFiQJ0UCAAAAAAAgf7kVEs2YMUNNmzbVe++9p9DQUNlstgxtqlevrt27d+e6QAAAAAAAAOQ/t0KiHTt2qHXr1lm2KVWqlI4fP+5WUQAAAAAAAPAst0KiIkWKKDExMcs2e/bsUYkSJdx5egAAAAAAAHiYWyFRw4YN9cMPP+j8+fMux584cUILFy5UixYtclUcAAAAAAAAPMOtkGjgwIHav3+/7rzzTu3fv99p3M6dO3X77bcrMTFRAwcOzJMiAQAAAAAAkL/83Znotttu0+DBg/XKK6+ocuXKKlq0qCSpTJkyOn78uIwxGjZsmNq1a5enxQIAAAAAACB/uHUmkSSNHz9eP/zwg2699VaFhITIz89PaWlp6tSpk77//nuNGjUqL+sEAAAAAABAPnLrTCKHDh06qEOHDnlVCwAAAAAAALzE7TOJAAAAAAAAUHjk6kyi1NRU7d+/XwcPHtSFCxdctrnxxhtzMwsAAAAAAAB4gFtnEqWlpWns2LGKiopS1apVdcMNN6ht27YuH+6aNGmSoqOjFRwcrObNm2vdunWZtv3qq6/UpEkTlShRQkWLFlWDBg3073//2+15AwAAAAAAXG3cOpNoyJAheu2111SmTBnFxsaqbNmy8vfP1UlJTubMmaO4uDhNnjxZzZs318SJE9WxY0f99ddfKlOmTIb2JUuW1NChQ1WrVi0FBgZq/vz5io2NVZkyZdSxY8c8qwtA3rMHBqvy4PneLgMAAAAArnpuJTszZ85UzZo1tX79ehUrViyva9KECRPUv39/xcbGSpImT56sBQsWaNq0aXr++ecztG/Tpo3T308++aRmzpypVatWERIBAAAAAABkg1s/Nztz5oy6dOmSLwFRSkqKNm7cqPbt21vD7Ha72rdvr7Vr115xemOMlixZor/++ivT6yElJyfr9OnTTg8AAAAAAICrmVshUb169XTw4MG8rkWSdOzYMaWmpioyMtJpeGRkpA4fPpzpdImJiSpWrJgCAwPVpUsXvfPOO+rQoYPLtuPHj1dYWJj1qFixYp6+BgAAAAAAgILGrZBo6NChmjdvnjZt2pTX9bitePHi2rJli9avX69x48YpLi5Oy5Ytc9l2yJAhSkxMtB779u3zbLEAAAAAAAA+xq1rEnXp0kUzZsxQ586d1a1bN9WvX1+hoaEu2/bu3TtHzx0RESE/Pz8lJCQ4DU9ISFBUVFSm09ntdlWvXl2S1KBBA/35558aP358husVSVJQUJCCgoJyVBcAAAAAAEBh5lZIlJycrP/85z86duyYpk6dKkmy2WxObYwxstlsOQ6JAgMD1bhxYy1ZskTdu3eXJKWlpWnJkiUaMGBAtp8nLS1NycnJOZo3AAAAAADA1cqtkCguLk6zZs1SvXr1dNddd6ls2bLy93frqTJ9/j59+qhJkyZq1qyZJk6cqKSkJOtuZ71791b58uU1fvx4SZeuMdSkSRNVq1ZNycnJ+u677/Tvf/9b77//fp7VBAAAAAAAUJi5lezMnTtXjRs31tq1a/M0HHLo0aOHjh49quHDh+vw4cNq0KCBFi5caF3Meu/evbLb/3c5paSkJD322GPav3+/ihQpolq1aumTTz5Rjx498rw2AAAAAACAwsithOf8+fNq27ZtvgREDgMGDMj052WXX5B67NixGjt2bL7VAgAAAAAAUNi5dXezxo0ba8eOHXldCwAAAAAAALzErVOBXnrpJd10002aP3++br311ryuCUAesgcGq/Lg+d4uAwAAAADg49wKiRYtWqQ2bdrotttuU7t27VS/fn2FhoZmaGez2TRs2LBcFwkAAAAAAID85VZINHLkSOv/S5Ys0ZIlS1y2IyQCAAAAAAAoGNwKiZYuXZrXdQAAAAAAAMCL3AqJYmJi8roOAAAAAAAAeJFbdzcDAAAAAABA4UJIBAAAAAAAAEIiAAAAAAAAEBIBAAAAAABAhEQAAAAAAAAQIREAAAAAAABESAQAAAAAAAAREgEAAAAAAECERAAAAAAAABAhEQAAAAAAACT5e7sAoKCzBwar8uD53i4DAAAAAIBc4UwiAAAAAAAAEBIBAAAAAACAkAgAAAAAAAAiJAIAAAAAAIAIiQAAAAAAACBCIgAAAAAAAIiQCAAAAAAAACIkAgAAAAAAgAiJAAAAAAAAIEIiAAAAAAAAiJAIAAAAAAAAIiQCAAAAAACACIkAAAAAAAAgQiIAAAAAAACIkAgAAAAAAAAiJAIAAAAAAIAIiQAAAAAAACDJ39sFAFdiDwxW5cHzvV0GAAAAAACFGmcSAQAAAAAAgJAIAAAAAAAAhEQAAAAAAACQD4dEkyZNUnR0tIKDg9W8eXOtW7cu07ZTpkxR69atFR4ervDwcLVv3z7L9gAAAAAAAHDmkyHRnDlzFBcXpxEjRmjTpk2qX7++OnbsqCNHjrhsv2zZMvXs2VNLly7V2rVrVbFiRd188806cOCAhysHAAAAAAAomHwyJJowYYL69++v2NhY1alTR5MnT1ZISIimTZvmsv2sWbP02GOPqUGDBqpVq5Y++ugjpaWlacmSJR6uHAAAAAAAoGDyuZAoJSVFGzduVPv27a1hdrtd7du319q1a7P1HGfPntWFCxdUsmRJl+OTk5N1+vRppwcAAAAAAMDVzOdComPHjik1NVWRkZFOwyMjI3X48OFsPcfgwYNVrlw5p6ApvfHjxyssLMx6VKxYMdd1AwAAAAAAFGQ+FxLl1ssvv6zZs2fr66+/VnBwsMs2Q4YMUWJiovXYt2+fh6sEAAAAAADwLf7eLuByERER8vPzU0JCgtPwhIQERUVFZTnt66+/rpdfflmLFy9WvXr1Mm0XFBSkoKCgPKkXAAAAAACgMPC5M4kCAwPVuHFjp4tOOy5C3bJly0yne/XVVzVmzBgtXLhQTZo08USpAAAAAAAAhYbPnUkkSXFxcerTp4+aNGmiZs2aaeLEiUpKSlJsbKwkqXfv3ipfvrzGjx8vSXrllVc0fPhwffrpp4qOjrauXVSsWDEVK1bMa68DAAAAAACgoPDJkKhHjx46evSohg8frsOHD6tBgwZauHChdTHrvXv3ym7/30lQ77//vlJSUnTXXXc5Pc+IESM0cuRIT5YOAAAAAABQIPlkSCRJAwYM0IABA1yOW7ZsmdPf8fHx+V8QAAAAAABAIeZz1yQCAAAAAACA5xESAQAAAAAAgJAIAAAAAAAAhEQAAAAAAAAQIREAAAAAAABESAQAAAAAAAAREgEAAAAAAECERAAAAAAAABAhEQAAAAAAACT5e7sA+AZ7YLAqD57v7TIAAAAAAICXcCYRAAAAAAAACIkAAAAAAABASAQAAAAAAAAREgEAAAAAAECERAAAAAAAABAhEQAAAAAAAERIBAAAAAAAABESAQAAAAAAQIREAAAAAAAAECERAAAAAAAAREgEAAAAAAAAERIBAAAAAABAhEQAAAAAAAAQIREAAAAAAABESAQAAAAAAAAREgEAAAAAAECERAAAAAAAABAhEQAAAAAAAERIBAAAAAAAABESAQAAAAAAQIREAAAAAAAAECERAAAAAAAAREgEAAAAAAAAERIBAAAAAABAhEQAAAAAAAAQIREAAAAAAABESAQAAAAAAAAREgEAAAAAAEA+GhJNmjRJ0dHRCg4OVvPmzbVu3bpM2/7xxx+68847FR0dLZvNpokTJ3quUAAAAAAAgELC50KiOXPmKC4uTiNGjNCmTZtUv359dezYUUeOHHHZ/uzZs6patapefvllRUVFebhaAAAAAACAwsHnQqIJEyaof//+io2NVZ06dTR58mSFhIRo2rRpLts3bdpUr732mv71r38pKCjIw9UCAAAAAAAUDj4VEqWkpGjjxo1q3769Ncxut6t9+/Zau3Ztns0nOTlZp0+fdnoAAAAAAABczXwqJDp27JhSU1MVGRnpNDwyMlKHDx/Os/mMHz9eYWFh1qNixYp59twAAAAAAAAFkU+FRJ4yZMgQJSYmWo99+/Z5uyQAAAAAAACv8vd2AelFRETIz89PCQkJTsMTEhLy9KLUQUFBXL8IAAAAAAAgHZ86kygwMFCNGzfWkiVLrGFpaWlasmSJWrZs6cXKAAAAAAAACjefOpNIkuLi4tSnTx81adJEzZo108SJE5WUlKTY2FhJUu/evVW+fHmNHz9e0qWLXf/3v/+1/n/gwAFt2bJFxYoVU/Xq1b32OgAAAAAAAAoSnwuJevTooaNHj2r48OE6fPiwGjRooIULF1oXs967d6/s9v+dAHXw4EE1bNjQ+vv111/X66+/rpiYGC1btszT5QMAAAAAABRIPhcSSdKAAQM0YMAAl+MuD36io6NljPFAVQAAAAAAAIWXT12TCAAAAAAAAN5BSAQAAAAAAABCIgAAAAAAABASAQAAAAAAQIREAAAAAAAAECERAAAAAAAAREgEAAAAAAAAERIBAAAAAABAhEQAAAAAAAAQIREAAAAAAABESAQAAAAAAAAREgEAAAAAAECERAAAAAAAABAhEQAAAAAAAERIBAAAAAAAABESAQAAAAAAQIREAAAAAAAAECERAAAAAAAAREgEAAAAAAAAERIBAAAAAABAhEQAAAAAAAAQIREAAAAAAABESAQAAAAAAAAREgEAAAAAAECERAAAAAAAABAhEQAAAAAAAERIBAAAAAAAABESAQAAAAAAQIREAAAAAAAAECERAAAAAAAAREgEAAAAAAAAERIBAAAAAABAhEQAAAAAAAAQIREAAAAAAABESAQAAAAAAAAREgEAAAAAAECERAAAAAAAABAhEQAAAAAAAOTDIdGkSZMUHR2t4OBgNW/eXOvWrcuy/dy5c1WrVi0FBwfruuuu03fffeehSgEAAAAAAAo+nwyJ5syZo7i4OI0YMUKbNm1S/fr11bFjRx05csRl+zVr1qhnz5568MEHtXnzZnXv3l3du3fX1q1bPVw5AAAAAABAweSTIdGECRPUv39/xcbGqk6dOpo8ebJCQkI0bdo0l+3feustderUSc8995xq166tMWPGqFGjRnr33Xc9XDkAAAAAAEDB5O/tAi6XkpKijRs3asiQIdYwu92u9u3ba+3atS6nWbt2reLi4pyGdezYUfPmzXPZPjk5WcnJydbfiYmJkqTTp0/nsnrvS0s+67V5X2n5ebM2ifpyqyDX58u1SdR3JdTnPl+uTaK+3PLl+ny5Non6cov63OfLtUnUl1u+XJ8v1yYV/Pp8naN+Y8yVGxsfc+DAASPJrFmzxmn4c889Z5o1a+ZymoCAAPPpp586DZs0aZIpU6aMy/YjRowwknjw4MGDBw8ePHjw4MGDBw8ePK6Kx759+66YyfjcmUSeMGTIEKczj9LS0nTixAmVKlVKNpvNi5V51+nTp1WxYkXt27dPoaGh3i7HiS/XJlFfbvlyfb5cm0R9ueXL9flybRL15Rb1uc+Xa5OoL7d8uT5frk2ivtyiPvf5cm2S79fnCcYY/fPPPypXrtwV2/pcSBQRESE/Pz8lJCQ4DU9ISFBUVJTLaaKionLUPigoSEFBQU7DSpQo4X7RhUxoaKjPdh5frk2ivtzy5fp8uTaJ+nLLl+vz5dok6sst6nOfL9cmUV9u+XJ9vlybRH25RX3u8+XaJN+vL7+FhYVlq53PXbg6MDBQjRs31pIlS6xhaWlpWrJkiVq2bOlympYtWzq1l6RFixZl2h4AAAAAAADOfO5MIkmKi4tTnz591KRJEzVr1kwTJ05UUlKSYmNjJUm9e/dW+fLlNX78eEnSk08+qZiYGL3xxhvq0qWLZs+erQ0bNujDDz/05ssAAAAAAAAoMHwyJOrRo4eOHj2q4cOH6/Dhw2rQoIEWLlyoyMhISdLevXtlt//vJKhWrVrp008/1YsvvqgXXnhBNWrU0Lx583Tttdd66yUUSEFBQRoxYkSGn+L5Al+uTaK+3PLl+ny5Non6csuX6/Pl2iTqyy3qc58v1yZRX275cn2+XJtEfblFfe7z5dok36/P19iMyc490AAAAAAAAFCY+dw1iQAAAAAAAOB5hEQAAAAAAAAgJAIAAAAAAAAhEQAAAAAAAERIBAAAAAAAABESAQAAAAAAQJK/twsAAAC4WmzZskWrV69WUlKSoqOj1blzZxUvXtzbZfm0AwcOaPv27UpMTJQkhYWFqUaNGipfvryXKwMAoPAhJIJPM8bom2++cTqgvvvuu1WlShVvl2Y5duyYfvnlF6u+pk2bymazebssSb65/Iwx2rNnj9PBfqVKlWS3c2JjTvjie3s5+kbOayrIfeO5557TV199pZ07d3qthqSkJE2ZMsXpfb333nt1ww03eLSO0aNHq02bNrrxxhutYWfPnlWfPn301VdfSbr0fttsNpUsWVIzZsxQly5dPFqjK76y/CQpJSVFb775pj766CPt2rXLZZsqVarooYce0pNPPqmgoCAPV4i8UlBCQAJeAFcNA7jw8ssvm7Zt23psfrGxseabb75xGnbkyBHTvHlzY7fbjc1msx5BQUHmww8/9Fhtxhgzc+ZM8+uvvzoNS0tLM88++6wJDAw0drvdetSqVcts2LDBo/X5+vIzxpjZs2ebm266yQQHBzstL7vdboKDg0379u3NnDlzPF5XTtE3nNE3cq+w9I2+ffsau93ukXm1bdvWzJw502nYzp07TZUqVTK8r3a73bz44oseqcvBZrOZUaNGOQ27//77jc1mM7Vq1TLjxo0zH3zwgYmNjTV+fn6mSJEi5q+//vJYfb6+/M6cOWOaN29ubDabKV68uOnUqZN54oknzNChQ83QoUPNE088YTp16mSKFy9u7Ha7adGihTlz5oxHa8yJZ5991lStWtXbZZgzZ86YN99809x1112mc+fO5tFHHzUrV670Si3Jycnm5ZdfNtWrV8+w3XM8qlWrZl555RVz/vx5j9U1atQos3z5cqdhSUlJ5q677rLqcvSLiIgIM3/+fI/VlhVfem+RPzZv3mzeffdd88orr5g5c+aY06dPe7skn7d//36zdOlSM2/ePDNv3jyzdOlSs3//fm+XVSAQEsElTx7sG+P6gLpz587GZrOZNm3amFmzZpkffvjBjBo1yhQtWtT4+/ub9evXe7W+uLg4Y7PZTJkyZUz//v3NkCFDTNu2bY3NZjOlSpUyBw4c8Gp9vrL8Lly4YLp3724dWNWqVct07drV9OrVy/Tq1ct07drV1KpVyzro6t69u7lw4YJHanMHfePK9dE3soe+4T5X72uzZs2MzWYzvXv3NqtXrzZ//fWXmTlzpomKijJ2u90sXrzYI7W5qm/nzp3Gbrebli1bmrNnzzq1/fLLL43NZjMPP/yw1+ozxreW33PPPWdsNpt5/vnnTVJSUqbtkpKSzODBg43NZjODBg3yWH055en9BiGg+wh4Pc8XQlRfCdkIKXPPVwPogoaQCC55+4Pw77//bmw2m+nSpYtJS0tzart69Wpjt9vNfffd57X6Dhw4YAICAkydOnXM4cOHndpOnDjR2Gw288wzz3itPl9afuPGjTM2m8307NnT7NmzJ9N2e/bsMT179jR2u9289NJLHqnNHfSNrOujb2Sfr/eN2NjYHD0cB2SecPn7+ssvvxibzWb69OmToe2ff/5pAgMDzR133OGR2lzVN3XqVGO3281PP/3ksn3r1q1N9erVPVWezy+/6Oho06lTp2y3v/nmm010dHQ+VpQ73t5vGEMImF0EvJ7HWaj/Q0iZO74cQBc0XJPoKjF69Ogctd+yZUv+FJJNq1evls1m07BhwzJcw6RVq1a6+eabtXLlSi9VJ/30009KTU3Vyy+/rMjISKdxTz75pD7++GN9//33ev31171Sny8tv48//lgtW7bUp59+mmW7SpUq6dNPP9Xu3bs1c+ZMDRkyxCP10TfyFn0j+3y9b8yYMUM2m03GmGxP461rTq1fv142m01xcXEZxtWqVUu33HKLfv75Zy9UdklCQoIkqVGjRi7HN2rUSB9++KEnS3Lia8vv0KFD6tmzZ7bbN27cWMuXL8/Hipw98MADOWq/atWqfKoke9atW6f169erd+/emjFjhjX8mmuuUbNmzVS/fn299957uummmzxSz9y5c9WxY0eNHz8+y3YhISF6+eWXtXnzZn3++ed65ZVXPFJfesuWLZMkjRs3TkWKFHEad8cdd+iGG27QkiVLPF6Xg6+9t75u2bJlatOmjdOwnj17Kj4+Xvfff78efvhhRURE6Oeff9bgwYP10ksvqU2bNl5bfrt27dKsWbPUokULLVmyxFoHH3roId1666266667NGHCBE2ePNkj9fj68hs1apTWrVunwYMHa9iwYQoJCXHZ7uzZsxo9erReffVVjR492ivbFl9HSHSVGDlyZIE52JekEydOSJKuvfZal+Pr1q2rpUuXerIkJ/v375cktWzZ0uX4Fi1aaObMmZ4syYkvLb89e/bojjvuyHb7Nm3aaOLEiflX0GXoG3mLvpF9vt43QkNDVb58eU2bNi1b7ceMGaPvv/8+n6ty7fTp05IufTBy5ZprrtF3333nyZKchIWFSVKmFyH38/Pz6gXKfW35RUVF5SiQ37Rpk6KiovKvoMsUpABVIgTMDQLenCtIIaqvh2yElDlTkAJoX0dIdJUICQlR+fLls33WxPvvv+/VsxEiIiIkXbq7SdGiRTOMv3DhggIDAz1dlsWxoXZVm2N4WlqaJ0ty4kvLLzw8XDt27Mh2+x07dig8PDwfK3JG38hb9I3s8/W+0ahRI61fv17NmjXL1gfc0qVLe6Cq/0lfU7ly5SRJZ86cUXBwcIa2SUlJmX6jmF/mzZun+Ph4SdLBgwclSTt37lSDBg0ytN2/f7+1bnqKLy+/O+64Q2+99ZaGDh2qF198McOHI4dz585pzJgxWrRokZ566imP1VeQAlSJEDA3CHhzriCFqL4YsqVHSJkzBSmA9nWERFeJBg0a6I8//lCPHj2y1X7hwoUe/yA8Y8YMKzE/deqUJOnvv/9W8+bNM7Tdt2+fypQp48Hq/pfmS5fqkqT4+HjVrl07Q9v9+/erVKlSnipNku8uv86dO2vmzJmaMmWK+vfvn2XbDz74QF9//bViY2M9UptE38gL9A33+HrfaNSokZYvX65t27a5fC+97c0339T06dMlScnJyZKkrVu3ZjgVXrp01tblP3/Mb1u2bMnwQXjevHkuQ6K1a9fquuuu80xh/8+Xl9+oUaO0dOlSjR8/Xu+++66uv/561ahRw/rAnpiYqO3bt2v16tX6559/VL9+fY0cOdJj9fl6gCoRAuYGAW/uFKQQ1RdDtvQIKXOmIAXQvo6Q6CrRqFEjrV27Vjt37lS1atW8XY5L8fHx1k7Z4csvv8zwQe7ixYtatWqVbrjhBg9Wd+mDcPoPw5I0f/58lx+eNmzYoJo1a3qoskt8dfmNGzdOixYt0iOPPKJXX31VHTp0cHmwv2jRIu3atUsVKlTQ2LFjPVKbRN/IC/QN9/h637jtttt0/PhxnTt3Llvt+/Xr5zJgyA+VKlVy+qY6MDBQlSpV0sqVKzPUcO7cOa1YsUK33HKLR2qTpN27d7sc7urD2pYtW1StWjXdeeed+V2WxdeXX/HixbV69Wq98sormjp1qhYuXKiFCxdmaFeuXDk9/fTTGjRokEc/CPt6gCoRAuYGAW/u+HqI6ushGyGl+3w9gC5ICImuEjfffLN+//13HT58OFsfhLt3767o6Oj8L+z/5eTnJ9u2bVOXLl3UvXv3/CvoMpldo8TVjm3Tpk26cOGCOnbsmN9lWXx5+UVFRWn9+vUaNGiQPv/8c+vieo6dTPoPKffff7/LCx7nJ/pG7tA33OfrfaN169Zq3bp1tttff/31uv766/Oxov+5PPTLyt69exUXF6e2bdvmX0GXqVy5crbbNmjQwOPXEfP15SddCtRGjRqlUaNGafv27dq+fbsSExMlXfp2vUaNGqpRo4ZHa3Lw5QBVIgTMDQLe3PP1ENXXQzZCSvf5egBdkNhMTn4wCgC5cObMGa1du9blwX6LFi1UvHhxL1cIeAd9A4A3/PXXX5o9e7batm2rG2+80Ss1+FoIWFh4671duXKlpk2bpieeeCLTa+mkt3r1au3YsUN9+vTJ99qio6Ndnt30wAMPaNiwYU7Dzp07p6ioKN1yyy367LPP8r026VKo4kpISEiGL9+2bNmip59+Wvfff3+OLxbuLl9fftKlO5c5AmjHmViXK1eunPr16+fxs1ALEkIiAAAAAAD+ny8EqAWZLyw/Amj3ERIBhcDq1avVtGlTr97VCvBF9A3PSE1N1YEDByRd+jkEXNu0aZNGjx6t1atXKykpSdHR0erVq5eee+45j66js2bN0k033VQoLth57tw5rV+/XpL4IAcAQB7w3uXQgcucP39eb7zxhrp166Y77rhDH3zwgS5cuOCy7VtvvaWqVat6uMKM9u/fr6eeekpNmzZVnTp1dMstt2jWrFker6N169bWb/d///13j88/r6Smpmrv3r3au3evt0vxKfQN99E3PGPHjh2Kjo726Lp39OhRPfHEE6pXr54aNWqkIUOG6MSJEy7bjho1Sv7+nrsMo5+fn8aMGeM07Mcff9T111+vb7/9VklJSSpRooS2bdum4cOH69Zbb83R7aJz6/7771elSpV0++23a/78+Tm6dpev2bt3r9q0aaN27dp5uxSXfL3v+jrHdXVWrFjh1To2bdqk7t27q3Tp0goJCVGdOnU0btw4paSkeLSOWbNm6fDhwx6dJ4CrkAEus23bNmO3242fn5/H5nn+/HnTvHlzY7fbjc1mMzabzdjtdnPttdeaP//8M0P7kSNHGrvd7rH6qlSpYt566y2nYRs2bDAlS5Z0qtfxb+/evT1WmzHGqsEx/+bNm5spU6aYf/75x6N15Na2bduMzWbz6LqXE/SNjOgbnuHrfWPnzp2mcuXKJjo62iPzO3XqlKlevbpTv7DZbKZs2bJm+fLlGdp7ul/YbDYzatQo6++UlBRTrlw5U7RoUTNt2jSTmppqjDFmz549pm3btsZut5spU6Z4tL70/bJ8+fJm6NChZufOnR6rIa/s3bvXxMTEmDZt2ni7FJe81XePHDliBgwYYK677jrTsGFD8/zzz5vjx4+7bDty5Eif3bZ4evnZ7XYzevRop2E//PCDCQ4ONjabzRQpUsSULVvW6jsdOnQwaWlpHqnNmEt9NyAgwHTv3t385z//sbYlBdXFixfNnj17zJ49e7xdik/buHGjue2220xERIQpUqSIqV27thk7dqxJTk72aB2ffPKJOXTokEfnmV/Onj1rli9f7vKYAcYQEiEDxw7ZZrN5bJ4vvfSSsdlsplu3bmbt2rVmw4YN5tFHHzV+fn4mIiLCbNy40am9tw/409LSTM2aNY2/v78ZPny4OXDggDl//rxZvny5qVu3rrHb7Wbu3Lkere+JJ54wb7zxhqldu7Z18FKsWDHzwAMPmNWrV3usltzw9AfNnKJvZETf8Axf7xueNnjwYGOz2cxjjz1mDh06ZI4dO2ZeeeUVU7RoUVOkSBHz3XffObX3dr/4/vvvjc1mM2PHjs3Q9uTJkyYiIsKjIYfNZjMvvvii+fLLL03nzp2Nn5+f1TfatWtnPv30U49/+CisvNF3fT1EzQlPh4AEvJ7ljRDVlwNUQkrP8fUv37yNkAg+oX79+qZmzZrm4sWLTsO/++47U7x4cVOyZEmzfv16a7i3D/iXLVtmbDabefrppzO03b9/vylWrJjp3Lmz1+pbs2aNeeCBB0zx4sWtHUndunXNhAkTzNGjRz1WF3KPvpG39dE3CodatWqZxo0bZxi+efNmU65cORMcHGz+85//WMO93S8mTJhg7HZ7ph/k7rvvPlOyZElPlZehvv3795vRo0ebKlWqWP2iZMmSZuDAgWbLli0eqwt5w9dDVF9GwOtZnIXqjJDSc3z9LFRv45pE8Anbt29Xx44d5efn5zS8c+fOWrJkidLS0nTzzTdr3bp1XqrQ2ZYtW2Sz2fTwww9nGFe+fHl16dJFGzdu9EJll7Rs2VJTp07VoUOHNGXKFDVv3lz//e9/9eyzz6pChQq655579OOPP3qtPmQffSNv0TcKh/j4eLVp0ybD8AYNGmjlypUqU6aM7rrrLn377beeL86F5ORkSVKFChVcjq9YsaLOnDnjyZKclC9fXsOGDdOuXbu0ePFi9ejRQ+fOndM777yjRo0aqVmzZvrwww+9Vh9y5ptvvlGjRo00adIkRUVFqVSpUho0aJBWrVql8PBw3XHHHZo/f763yywQ/vzzT9lsNvXs2TPDuBIlSqhTp0767bffPFpTQECA7rjjDn333Xfas2ePRo0apcqVK2vp0qW67777VLZsWT355JP69ddfPVqXO6pWrar4+Hjt3r3bI/MbP368du7cqUceeUQHDx7U0aNH9fLLL+v06dPq1KmTvv/+e4/UkV1LlizRoUOHNGTIEMXGxspuv/TRvVKlSvrqq69UsmRJj1/v8YUXXtAXX3yhjh076vDhw3rppZdUo0YN3XTTTfrss888fp0ud1WsWFHLli3T0qVLvV2KTyIkgk8ICAhQcHCwy3FNmzbVokWLZIxRx44dtXbtWg9Xl9HZs2clSdHR0S7HV6lSRadOnfJcQZkoWrSoHnzwQa1Zs0Z//PGHnnrqKYWFhemLL75Q586dvV0esoG+kT/oGzmzatUqjRs3Tn379tXtt9+u22+/XX379tW4ceO0atUqj9dTtGjRTC/0XLVqVS1btkyRkZG655579M0333i4uksSExOtCxYXL15c0qWLbbty9OhRhYWFebK8TLVr106ffvqpDh48qLfeekvXXXedNmzYoEcffdTbpWVqzZo1+vjjj71dhs8oaCGqLyPgLVwKWoBKSAlv8dytPuAz9u/fr+XLl2v79u1KTEyUJIWFhalGjRq68cYbVbFiRY/XVLly5SzvPNSkSRMtWrRIHTp0UKdOnXTDDTd4sLpLbDab9X/HB+CTJ0+6vIXwyZMnVaxYMU+Vli21a9fWG2+8oVdeeUXffPONpk2b5u2SXPr77791+PBhr9zKmL7hHvqGZ3ijb6xdu1b9+/fXn3/+mWkoY7PZVKdOHU2ZMkUtWrTwSF3R0dHavHlzpuOrVKmipUuXqm3btrrnnnvUpEkTj9SV3sSJEzVx4kSnYT///LPuvPPODG23b9+e6YdQbylRooSeeOIJPfHEE9q4caPP9gtJmjJlij7++GP17t3b4/NetWpVpvuNmJgYr2yTsxOitmnTRvfcc4/mzJnj4epybs2aNdqxY4fH3l9HwCvJKeAtX758hra+FvC2a9dOp06d0r///W9NnTpVGzZs0MaNG/XQQw95uzyfEB8fr8cffzzDcEeA2rZtW9111136/PPP1a1bNy9U6KyghJTDhg3TTz/9pI8++kjz5s3TO++8o3fffVeNGzdWv379WP8KIq/+2A0etWPHDtOpUydjt9sz/BbX8dtSu91uOnfubLZv3+7R2h555BFTpEgRc+rUqSzbrV+/3oSHh1u1ekr65ZP+cfnv+h1uvvlmc+2113q0vvS/YS7I+vbt6/FrI9A33Eff8BxP941NmzaZ4OBgExwcbGJjY83s2bPNxo0bzfbt28327dvNxo0bzezZs03fvn1NcHCwKVKkiMeuXxMXF2cCAgLM4cOHs2y3c+dOU6lSJWs99ZS+ffu6fEyfPj1D2wMHDpiAgADz0EMPeay+wtQvjPHOfmPNmjXWxfgv32dcfifKtWvXerS2xo0bm7Zt22bZxtE3AgMDTatWrXz6mkSefH8z26d98cUXLtvHxMSYhg0beqQ2R3056bsbNmwwjz32WD5WlLWVK1easWPHmj59+pju3bub7t27mz59+pixY8ealStXeryeUqVKmbi4uEzH79q1y1SqVMkEBQWZefPmeeWaRHFxcdYd3959911jt9vN/v37Xbbv16+fKV26tEfru9L6d/LkSfP222+b+vXre3zfm1OrV682M2fO9HYZPokzia4Su3fvVosWLXT8+HG1adNGHTt2VI0aNRQaGipJOn36tLZv366FCxdq4cKFatWqlX755RdVqVLFI/V169ZNH3zwgd577z0NGTIk03bpz5pwfGPnCTfeeKPT2RIOf//9d4afppw8eVIrV67UPffc46nyVLlyZZUoUcJj8ytM6Bu5Q98ovIYPH66goCCtWLFC9erVc9mmUaNG6tGjh5588knFxMRo2LBhHvkJyx133KFPP/1UH3/8sZ577rlM2znOmmjbtq327duX73U5TJ8+Pdtt/fz8tGjRIlWrVi0fK3IWExOT6U9CfYHjLI7s8vQ36Zs3b1a7du0kSX369MlyvzF79my1a9dOa9euVf369T1SX0xMjN555x0lJCQoMjLSZZuqVataZ9utXbvW5Xb8atSnTx+Xw//5558Mww4ePKg1a9YoNjY2v8tyW+PGjdW4cWOPz5ezUN3HWaie482zUH2et1MqeEbPnj1NUFCQ+f7776/Y9rvvvjNBQUHm3nvv9UBl/3P+/Hlz4cKFbLU9ceKEiY+Pz+eK3LN7924zY8YM89tvv3m7lALJ098I0zc8h76RO57uG+Hh4ebhhx/Odvv+/fub8PDwfKwIV4vMzua40sNTbr31VhMWFmZ+/fXXK7bdvHmzCQ0NNV27dvVAZZesWrXKREVFmVdfffWKbXft2mUqV67s0eXnOEsiu4+77rrLJ89GOHz4sFm2bJnZt2+fx+bZpk0bnz/zgbNQ3cdZqJ7ljbNQCwqbMZnEuyhUypQpo86dO2vmzJnZat+7d28tXLhQR44cyefKUNhdfleu7EpNTc3jSlyjb8BbfL1vFCtWTI8++qhee+21bLV/9tlnNXnyZK9eHwGFg5+fn0qWLJntb/F///13HTp0yGN9o2TJkrrnnns0efLkbLV/6KGH9MUXX+jEiRP5XFnBYLfb3TpzyVPvL3Kna9euWrlyZZZnoTps2bJFMTExiomJ8chZqKtXr9Zdd92luLi4LM9ClS6dae44C9UX172EhARt27ZN1apV89jZRG3btlVsbKzPnnmT07NQn3nmGX311Vc++f56Gz83u0qcOXNG5cqVy3b7cuXKcaCPPGGMUUhISLYv+nzo0CGXp3XnF/oGvMXX+0bdunX15ZdfasSIEVe82Pjp06f15Zdfqm7duh6q7srOnz8vPz8/BQQEeLuULKWmpurAgQOSLt3WGNI111yj5OTkbN+OOjY21qN3N0tJSbEuaJwdoaGhBea20J5gs9ncCgFRMKxevVr/+te/rhgQSZcuGN2jRw998cUXHqhMuv7667O9LlWpUkXx8fH5W1AuREZGZvpz0vzi67eLj46O5qezeYSQ6CpRvXp1LViwQGPGjJG/f9Zv+4ULF7RgwQJVr17dQ9Vdcv78eU2fPl07duzQddddp/vvv19+fn46ePCgnnnmGS1btkwBAQHq0qWLxo4dq1KlSnm0Pl9Wo0YNderUSQ8++KAaNGjg7XKcREdHKygoSH/++We22nv6YJ++UbjRN9w3cOBA3X///WrWrJmGDh2qDh06qEyZMk5tjhw5oh9//FHjxo3T3r179dJLL3msviNHjuiNN96w+sXTTz+tsLAwbd26Vf3799f69etls9nUvn17vfvuux695k9O7NixQ7Vr15bdbtfFixc9Ms+AgAB16tRJ/fr106233ur2WW35pVGjRpo9e7ZOnTrlk9cUK+gBquTdENXXQ8DsIuB1jRAV3kIAnYe8+2s3eMrbb79tbDabadu2rVm1apVJS0vL0CYtLc2sXLnStGnTxtjtdvPOO+94rL6zZ8+ahg0bWncJcdxJKikpydStW9fYbDZTsmRJ4+fnZ2w2m7n22mvNuXPnPFZfTmzbts3Y7Xbj5+fnsXmmv35D48aNzfvvv28SExM9Nv+s3HXXXcbPz8+cOXMmW+09/ftg+obn0Dec+XrfMMaYsWPHmoCAAGsZhoaGmooVK5qKFSua0NBQa3hAQIAZN26cx+o6ceKEdR0Vx52kmjRpYo4ePWoqVKhggoODTcOGDU1UVJSx2WymYsWK5uTJkx6rLyd27txpKleubKKjoz02z/T9IioqygwePNj8/fffHpv/lbz++uvGZrOZxYsXZ6v9M88849Hl98knnxibzWZq165tPvnkE5OQkJChTUJCgvn3v/9tatWqZex2u/n00089Vp9j/oMGDTJ33HGHGTFihHWHzN9//920aNHC+Pn5GX9/f9OpUyezY8cOj9Z27733Grvdnu0+6avXDdm2bZux2Wwe3af5+/ubW2+91cybN89cvHjRY/PNiWbNmpkqVaqYf/7554ptExMTTXR0tGnWrJkHKsuec+fOmZSUFG+XcUUXL160rtuFS2rVqmWqVKmS7fa+um3xBYREV4m0tDTTr18/68CwePHipl69eqZ169amdevWpl69eqZ48eLWAXf//v09Wt+bb75pbDabuf/++823335rHnroIWO3203v3r1NxYoVzfr1640xxpw5c8Y8+OCDxm63mzfeeMOjNWaX46DBZrN5bJ42m83ccMMN5rrrrrPe46JFi5o+ffqY5cuXe6wOV1566SVjs9myfavTPn36eHTZ0Tc8h77hzNf7hsP27dvNkCFDTKtWrUzp0qVNYGCgCQwMNKVLlzatWrUyQ4YM8XjAMHLkSGOz2cywYcPMb7/9Zi3LTp06mbp16zpdSHbEiBHGZrOZkSNHerRGX2az2UzXrl1N165djb+/v9U3YmJizMcff+z1oPns2bMmPj4+2wGqN/hqgGqM74eovh4CZhcBr2u+HqL6coCaE4SUGRWWANoXEBJdZX766SfTs2dPU65cOevAwfEoV66c6dmzp1m6dKnH62rSpIm57rrrMgyz2+3ms88+cxp+4cIFU7FiRXP99dd7skSflv5uA7/88ovp37+/CQ0NtQ4matasaV599VWXO+r8duTIEbNs2TKvzDsn6BuFE32jcKpfv75p2bKl0zDHmX7z58/P0L5WrVqmSZMmnirP56XvFwcPHjTjxo0z1apVs/pFiRIlzGOPPWY2btzo5Up9my8GqMb4fohaEEJAX+XrAa+Dr4aovh6g5gQhZUaFJYD2BYREV7GkpCRz8OBBc/DgQZOUlOTVWiIiIswTTzzhNOypp54ydrvd5Qeo2NhYU7JkSU+V5/Nc3ZIyKSnJTJ8+3dxwww3WRj0wMNDcfvvtZsGCBS5/VoVL6BuFB33DuyZOnJijU7+zq0SJEuapp55yGvbMM88Yu91ujh8/nqF9//79TVhYWJ7XUVBldhvjZcuWmfvuu8+EhIRYfaNhw4Zm0qRJ1rftBUV+rXsFASFq4VWQAl5fDFF9PUD1db4eUhJA5x27t6+JBO8JCQlR2bJlVbZsWYWEhFyx/cyZM9WuXbt8qSUpKSnDRe4cF6u8/EKpkhQVFeXRu/wURCEhIerbt69Wrlypbdu26ZlnnlHJkiU1b948de3aVZUrV/Z2idmWn+ueK/SNwo2+4TmnTp3Snj178vx5L1y4oODgYKdhjn5SsmTJDO0jIiJ07ty5PK8jO1atWqVx48apb9++uv3223X77berb9++GjdunFatWuWVmjITExOjf//73zp06JDeffddNWjQQFu2bNGAAQNUvnx5b5eXI/m17uWVt956S1WrVs2X596zZ4+aN2/uNKxx48aSpJYtW2Zo37p1a23fvj1faskv+bn8CoqyZcvqhRde0I4dO7R06VLde++9SklJ0fvvv6+mTZuqUaNGeu+995SYmOiV+qpXr66XXnpJq1ev1pEjR5ScnKzk5GQdOXJEq1ev1ksvvaQaNWp4tKavv/5aLVq00OjRo3XddddpyJAhiomJ0Y8//qhXXnnF6VbyI0eOVM2aNTV//nyP1ujrmjRpom+//VZ79+7V2LFjVaVKFa1YsUJ9+/ZV2bJl9fjjj2vTpk1eqa1IkSKqXLmyihYt6pX5Fybc3QzZFh8fr+XLl+fLc0dEROjIkSNOw4oUKeLyYF+Sjh8/7rU7nuzfv1/Lly/X9u3brR1vWFiYatSooRtvvDHbt7P2pGuuuUavvvqqxo8fr//85z+aOnWqFi5c6O2ysi0/1728QN+4hL7heb7eN/JL6dKldfjwYadh5cqVU6NGjVy2T0hIUHh4uCdKs6xdu1b9+/fXn3/+KWOMyzY2m0116tTRlClT1KJFC4/Wl5XQ0FA99thjeuyxx/Trr7/qo48+0qeffurtsgqV/AyxClKI6i5PhICrVq3KdJ8WExOjG264IV/nnxMxMTGKiYnRpEmT9Mknn2jq1KnavHmzBgwYoEGDBunMmTPeLjFH3nrrLb311lvatWtXnj7vnj171LdvX6dhjRs31ooVKzINUD///PM8raGwcISUL7zwgpYvX66PPvpIX331ld5//31NnjxZ9evXV79+/dSrVy+FhYV5u9xsy691r6AhJIJPqFmzprZu3eo0bNCgQRo0aJDL9rt27fL4B86dO3dqwIAB+vHHHyUpw0G/zWaTJHXs2FFvv/22x2+Tnh1+fn7q3r27unfvzi0fCwj6hmfQNwqWunXrasuWLU7D+vfvr/79+7tsv337do+edbB582brDK8+ffqoY8eOqlGjhkJDQyVdui369u3btXDhQs2ePVvt2rXT2rVrVb9+fY/VmF3169fXO++8o9dff93bpSCbCkKI6ssIeL2Ps1AJKb3F189C9RRCIviEli1batKkSUpJSVFgYGCWbU+ePKlVq1bp4Ycf9lB10u7du9WiRQsdP35cbdq0yfKAf+HChWrVqpV++eUXValSxWM15lTZsmW9XQKygb7hefQN33fzzTdr2rRp2eoXBw8e1M8//6xnnnnGQ9VJw4cPV1BQkFasWKF69eq5bNOoUSP16NFDTz75pGJiYjRs2DB9++23Hqsxp4KCgrxdArLJ10NUX0bAW7gVhACVkBK+gJAIPmH06NEaPXp0ttqeOnVKkydP1vXXX5/PVf3P0KFD9c8//+i7775Tp06dMm03ePBgff/997r99tv14osvatasWR6pb+nSpYqOjvbIvOBZ9I3coW8UTgMHDtTAgQOz1dZut2vRokWqVatWPlf1P6tXr9a//vWvTAOi9Bo0aKAePXroiy++8EBll+zevdtrP0tF/vP1ENWXEfAWbr4eoBJSwlcQEqHAqVKlisfPQli8eLF69OiR5Ydgh86dO+uee+7x6HVNYmJiPDYv+C76Rkb0DURFRSkqKsqj80xJSclwwfmshIaGKiUlJR8rclaQLs6OnPP1ENWXEfAWbr4eoBJSwlcQEgHZcObMGZUrVy7b7cuVK1egfn8LuIu+AWRUt25dffnllxoxYoSKFSuWZdvTp0/ryy+/VN26dT1UHfA/3ghRfRkBb+Hm6wEqISV8hd3bBQAFQfXq1bVgwQJdvHjxim0vXLigBQsW+OTFeYG8Rt+Ar0tNTdXevXu1d+9ej81z4MCBio+PV7NmzTRr1qwMdyiUpCNHjuiTTz5R8+bNtXfvXj311FMeqy8nvLH8AG9xBLzZ+TKDgLdwi4qKUkxMjCIjIz02z4IQUhakO5XBfYREKHD++usv+fn5yd/fcyfC9e/fX1u3btXNN9+s1atXu7yQnDFGq1at0s0336z//ve/euihhzxWX054Y/nBM+gbuUPfyHvGmEwvvOkpO3bsUHR0tEevK9GrVy+NGTNGO3bsUO/evVW2bFmFhYWpUqVKqlSpksLCwlS2bFn16dNHO3fu1JgxY9SzZ0+P1ZcT3lh+ecEX1r2CgBDQGQEvvImQEr6CI2EUSJ4++BswYIB+++03TZ06VTfeeKOKFi2qKlWqWGl6YmKidu/eraSkJBlj1K9fPw0YMMBj9eUUB8+FF30jd+gbeSs2NlZt27b1ag0BAQGqVKmSbDabR+c7dOhQ9ejRQ9OmTbNuY5yQkCDp0m2Mr732WsXExCg2NlY1atTwaG054a3ll1u+sO5lxVe2NTt27FDt2rVlt9uzdUaor8iv5derVy/Fx8dr1KhR6t27tySpWLFiTvs0xwd4Pz8/nw94C+J76ytSU1N14MABSVKlSpU8Ms+BAwfq/vvvV7NmzTR06FB16NBBZcqUcWpz5MgR/fjjjxo3bpz27t2rl156ySO15ZQ3lh/yjs34wh4KBcKvv/6qLVu2qE+fPt4uxWuWLl2qKVOmaPny5Tp06JDTuLJlyyomJkYPPfSQ2rRp450CCylfX/d8vT5PoG94h6fWvf3791tBR2JioqRLQUeNGjV04403qmLFivk6f1y9Cuu6t2fPHsXHx3v94vq7du1Su3btZLPZtHv3bq/WkhP5vfx27NjhFPBevu4VhIC3oL63kjRy5EiNHj1aaWlpXqvhr7/+8krINm7cOI0aNUqpqamSsg4pR44cqRdeeMFjteWEt5ZfbvnCuucLCImuQsnJydqwYYPLnV6TJk24Cn02nT171mn5hYSEeLki3+fr656v11dQ0DdyzlfXvZ07d2rAgAH68ccfJSnDN/eOs0s6duyot99+m+tN5aG33npLb731lnbt2uXtUryioKx7hTXE8hSWH1zxhRDVmyEbIaX3+MK65wsIia4ix48f14svvqhZs2YpKSlJ0v8OuhwHW0WLFtV9992nMWPGqFSpUl6rtTCaOXOmZs6cqZ9++snbpXicr697vl5fYUff8M11b/fu3WrWrJmOHz+uNm3aqGPHjqpRo4ZCQ0MlXboewvbt27Vw4UItX75cERER+uWXX1SlShWP1ViYjRo1SqNHj7a+Tb6aFIR1r6CEWL6qMC+/qz3gTY8QEN7Cupc7XJPoKnH06FG1atVKO3fuVNWqVdWhQweXB1yLFi3S5MmTtWjRIq1Zs0alS5f2eK2FtVPHx8dr+fLl+T4fX1t+vr7u+Xp96fnae5tX6Bu+ue4NHTpU//zzj7777jt16tQp03aDBw/W999/r9tvv90KvDxp1apVWX7besMNN3i0noLGF5efr697u3fvVosWLbIVYi1cuFCtWrUiQE2nsC+/U6dOac+ePd4uw6sKcwjo6672kJJ1L48YXBUeeughY7fbzeTJk6/Y9v333zd2u908/PDDHqjsf3bs2GE6depk7Ha7sdvtxmazOT0cwzt37my2b9/u0drywsiRI43dbs+35/fV5efr656v12eM7763eYW+4ZvrXunSpU3v3r2z3f7+++83pUuXzseKnK1Zs8bUrVv3/9q787ioyvZ/4J9zWEWBEBfERwVzVBQUsVyTRVMk/SJiafgoy1dTy10TNEUWK8EyS201N9TfU7nkUqaJIQIaVuaSqbEI4pIpBrIJ5Fy/P/wyjyMDgjpn7sHr/XrxejVnbmc+XeceOHPNmfvo3Kf37ltXV1c6evSoYrkeF32/LkSun+hzLygoiCwsLOi777574Ni9e/eShYUFjR07VoFk1aWkpNCbb75JISEhFBAQQAEBARQSEkJvvvkmpaSkGCSTMdXvYej7tVtFxH1LRJSdnU3NmjUjSZLIx8eH4uLiaPv27XTgwAE6cOAAbd++neLi4sjb25skSaLmzZtTdna2wfI2NErNPxHx3Ht8+EyiJ8Q333yDwMBATJ48+YFjp0yZgsTEROzZsweffPKJAuka/qdK+iZy/USfe6LnE3nfGgOR6yf63CsuLoajo2Odxzs6Otbpsr2Pw6+//oqBAwcCAEJCQmrdr1988QUGDhyIo0ePonv37orkE53o9RN57gFAYmIixowZU+tZTlX8/PwwevRo7Nu3T4Fk/3X06FG88sorOHv2bI1XAZMkCV26dMGaNWvQp08fxbIZQ/1EJvK+BcQ/E7CKiGdRGhMR62csc88oGLpLxZRhaWlJCxYsqPP4+fPnk6WlpR4TaWvonyoR6bezL3L9RJ97oucTed8+LvzaqBul556bmxu5ublRZWXlA8dWVFSQq6srubm5KZCMaPjw4WRra0snT5584Nhff/2VbGxs6H/+538USPb46PN1IXr9RJ57RESNGjWi+fPn13l8REQENWrUSI+JtB0/fpwsLS3J0tKSwsLC6IsvvqBffvmFMjIyKCMjg3755Rf64osvKDQ0lCwtLalRo0Z04sQJxfKJXr9Hpc/Xruj7lkj8MwFFPovyceCzUMWde8aEm0RPCJVKRf369avz+L59+5JKpdJjIm1Pwotan7+0Ra6f6HNP9Hwi79vHhV8bdaP03Fu5cqXmlO3U1FRSq9XVxqjVakpJSSFvb2+SZZlWrVqlSDY7O7t6ffXulVdeITs7Oz0mevz0+boQvX4izz0i8ZtY3AQ0rCe5wUskdhPQGJpsj+pJblKKPPeMjWzoM5mYMsaNG4ejR49i/PjxyMvLq3FcXl4exo0bh/T0dIwfP16xfKKfWi46kesn+twTPZ/I+9YYiFw/0efetGnTMGHCBBw6dAienp6wtbVF9+7d4enpCU9PT3Tv3h22trbw8vJCcnIyJkyYgGnTpimSraKiAtbW1nUeb2Njg4qKCj0mMi6i10/kuQcAr7zyCn777TcMGTIEaWlpOr/yQ0RITU3FkCFD8Pvvv2PSpEmK5UtLS8PLL7+Mbt26PXCsu7s7xowZg9TUVAWS3SV6/UQm+r4FgA4dOuDbb7/FP//888CxlZWV+PbbbxVbPHjx4sWwsLBAeno61q1bhzFjxsDDwwMdOnRAhw4d4OHhgTFjxmD9+vU4evQozMzMEBkZqUg2YyB6/USee0bHsD0qppTy8nLy9fXVnALo4uJC/v7+NH78eBo/fjz5+/uTi4uL5tTBoUOHUkVFhWL5GvqnSkT67eyLXD/R557o+UTet48LvzbEnHtVfvjhBwoKCiJHR8dqp5Q7OjpSUFAQJSUlKZqpV69e5OzsTEVFRQ8cW1hYSE5OTtSrVy8Fkj0++nxdGEv9RJx7RHfPYpo4caLmtWttbU3dunWjAQMG0IABA6hbt25kbW2tee2+8soriuZr3Lgxvf7663UeP3fuXGrcuLEeE2kTvX6PSp+vXdH3LZHYZwKKfhbl48BnoYo594wNN4meIGq1mtatW0d9+/YlExOTagdcJiYm1LdvX1q/fr3OF5U+PQkvan3+0ha9fiLPPdHzib5vHwd+bYg593QpKSmhK1eu0JUrV6ikpMRgOTZv3kySJJGLiwtt3ryZrl27Vm3MtWvXaNOmTdS5c2eSZZn+3//7fwZI+vCioqJIkiS9PLYx1k+UuXcvUZtY3AQ0rCe9wStyE9AYmmyP6kluUoo894wNN4meULdv36YzZ87QkSNH6MiRI3TmzBkqKyszWJ4n4UWtz1/axlQ/0ebe/UTLZ0z79mHxa+Mu0eae6N58800yMzMjWZZJlmWysbGhNm3aUJs2bcjGxkaz3czMjN566y1Dx623nJwcOnTokN4ev6HXT2kiNbG4CWhY3OC9S8QmoDE02R7Vk96kJBJz7hkbbhIxoTTkF/WJEydow4YNen2Ohly/J11D3rf82mAPKyMjgxYsWED9+vWj5s2bk7m5OZmbm1Pz5s2pX79+tGDBAvrjjz8MmjEvL482b95MUVFRNGvWLJo1axZFRUXR5s2b6eLFiwbNZgz1Yw+Hm4CGww3e6kRpAhpTk+1hcZNSmyhzz9hIRDpWi2NMAKWlpSgsLAQA2NrawsrKysCJ7iovL8fPP/+MjIwMrXwqlQrPPPMMLCwsDJzwLlHrxx6dqPuWXxtPrvz8fHz44YeQJIkX+fw/WVlZmDZtGr7//nsAqLY4ryRJAABfX1+sXLmSF898SDz3apaZmYl169YhOTlZ5+9lLy8vhIWFQaVSGTipmC5dulRj7Tw9PdGmTRuDZeN9+/DeeustxMTE4M6dOwCAJk2awNbWFgBQWFiouXiFiYkJoqOj8cYbbxgs68PIzc1FTk4OvLy89PL4Db1+7C5uErFqbt26hZ07dwIAgoODDRumHjZu3IiNGzfihx9+0Mvj5+fnY9GiRdiyZQtKSkoA/Pegv+pgv3Hjxhg3bhyWLFkCe3t7veTQF33Xry5En3ui56sJvzYeDb82Huz8+fNwcXGBJEmaA0fRffDBB/jggw+QnZ392B/7woUL6NWrF/Lz8+Ht7Q1fX1+oVCrY2NgAuLs/MzIysG/fPiQnJ6NZs2ZIT0+Hs7PzY8+iL/qsX32IPve4ifVoDFE/bvA2fMbQZOMmJTMkbhKxakQ/4KpJTEwMYmNj9ZL5+vXr6NevH7KystC+fXsMHjxY5wH/gQMHkJ2djaeffhpHjhxB8+bNH3sWfdFn/epK9Lkner6a8Gvj0fBr48Hy8/OxatUqSJKEqKgoQ8epE33u17Fjx2LHjh3YuXMnhg4dWuvY7777DiNHjsSoUaOwZcuWx55FX0R4XQDizz3RX7s1eVKbgNzgVRY3UavjJqUyeO7VztTQAZh4bG1tERwcrPklxIBFixYhOzsbH3/8MSZPnlzr2E8++QRTp05FZGQkPvnkE4USNgyizz3R8xkCvzaUIfrcs7e3R3R0tKFjCCMxMRFjxox5YIMIAPz8/DB69Gjs27dPgWQNj+hzr1mzZli8eLGwr92aFBQUIDc319AxFK/fwoULUVRUhL1799b6+o2IiNA0eKvOpDUWouxbALhx4waio6ON6o26vs9C7dOnT52alPv27UO/fv24SfmQjHHuKYmbRKwaBwcHbNiwwdAxhPLNN98gMDDwgW+CAWDKlClITEzEnj17+I1wPYk+90TPZwj82lAGzz3jUlxcDEdHxzqPd3R01KzjwBoW0ZtYolO6ftzgVZYxNlH12WTjJqVyjHHuKUk2dADGjMHNmzfr9b1alUqFmzdv6jERY2Lg18aT69atW7h27RrUarWhowinQ4cO+Pbbb/HPP/88cGxlZSW+/fZb/spAPfDcY/rCDV5lVTUBRfyqqCE8TJPywIEDCiRreHju1Y6bRIzVQZs2bZCcnFzn8cnJyQZdUI4xpfBro+G6fPkyjhw5Uu2N+KeffoqOHTvCzs4Ojo6OeOqppxAaGoq//vrLQEnF88orr+C3337DkCFDkJaWVm1NCeDuOhOpqakYMmQIfv/9d0yaNMkAScXUEOZeaWkpKisrDR3DaBmqftzgZYbETUomCm4SPSFKSkpw5cqVatv379+PIUOGoGnTpmjUqBFcXFwQHR2NsrIyA6QU17hx43D06FGMHz8eeXl5NY7Ly8vDuHHjkJ6ejvHjxyuYUFzGNPdu3ryJW7du1Trm4sWLOHz4sEKJxMevjcdDxLk3b948/Pvf/4Ys//dQITw8HK+99ppmEfKePXvC1NQUCQkJ6Nu3L27cuKFYPpFNmzYNEyZMwKFDh+Dp6QlbW1t0794dnp6e8PT0RPfu3WFrawsvLy8kJydjwoQJmDZtmqFjC8MY5t7vv/+OiRMnYsSIEVi1apWmofXNN9+gU6dOsLa2hpWVFby8vPDLL78oms0YiFo/bvAqY/fu3Th16pShYwiHm5T6x3Ovjog9EcLCwsjBwUFr24oVK0iWZZIkiSwtLal58+YkSRLJskzPPvsslZSUGCjtw4mOjiZZlvXy2OXl5eTr66upj4uLC/n7+9P48eNp/Pjx5O/vTy4uLpp6Dh06lCoqKvSSRV/0VT9jmHspKSnk6upKsiyTLMvUp08fOnz4sM6x+pxn+sKvjUejz/qJPPecnZ0pJCREczszM5NMTEyoS5cu9Ntvv2m2V1ZWUmxsLEmSRDNmzFAs36NSop4//PADBQUFkaOjI0mSpPXj6OhIQUFBlJSUpNcM+qLP+ok+97Kzs8nW1lazL2VZpunTp9ORI0fIzMyMrKysyMPDg9q0aUOSJFGTJk3o3LlziuV7HPS5f0Wun1qtpokTJ2pyWVtbU7du3WjAgAE0YMAA6tatG1lbW2v+pr3yyiuK5HqcRDiOkSSJJk2aZNAMD0uf9Vu5ciVJkkQ+Pj6UmppKarW62hi1Wk0pKSnk7e1NsizTqlWr9JJFXww9/4x57imJF65+QqSlpWHgwIGa21euXMH8+fPRqlUrfP755/D19YUkSbhx4wYWLFiAtWvXYunSpViyZIkBU4vD3Nwc3333HTZs2IA1a9bg2LFjOHfunNYYWZbRu3dvTJo0CSEhIbwQ2v8Rfe6dP38evr6+KCsrQ8eOHWFmZob09HQMHDgQb775JiIiIhTJYaz4tfHwRJ97V69e1TrtPTExEUSEzz77DF27dtVsNzU1RWRkJJKTk7Fr1y588MEHhogrJB8fH/j4+AC4+/WZwsJCAHevVmdlZWXIaEITfe7Fx8ejqKgI7733HoYPH449e/Zg/vz5OHnyJNzd3bFnzx60bNkSwN2rOr722mtYunQpLz7/f0SunyRJWLNmDcaOHYs1a9YgOTkZp0+f1hrTqlUrDB8+HJMmTYK3t7feMxmbY8eO1WncX3/9pTW2V69e+opkNKZNm4ZTp05h7dq18PT0ROPGjeHs7AxbW1sAQGFhIS5cuICSkhIQESZOnMhnod6D597jw02iJ8SlS5cQGBioub1//35UVlZizZo1WoujNWvWDGvWrMHp06fx5ZdfcpPoHpIkISwsDGFhYSgvL0dWVpbWAX/79u1haWlp4JTiEX3uvf322ygrK8MXX3yB0aNHA7j7RyYkJARvvPEGiouL+XXwAPzaeDiiz73GjRujqKhIc7ugoAAA0KNHD53je/TogdTUVCWiPRZEpPOrJPpiZWXVoBpD+qyf6HPv0KFD8PX1xaxZswAAs2fPxv79+3HgwAGkpKRoGhzA3as6btu2DT/88INi+URnDPXjBu/D69OnzwM/DJIkCbt378bu3bs12+7cuaPvaMLjJuWj4bn3+HCT6Alhbm6O8vJyze1r164BADw9PXWOf+6557B69WpFsj0uAQEBcHJyUuS5LCws0KVLF0WeSyn6qp/ocy8pKQkvvPCC5k06cPcThfT0dAQEBODtt9/GnTt38PbbbyuW6XHj18aj0Vf9RJ97PXr0wP79+0FEkCRJcxW7c+fOwcPDo9r4c+fOwd7eXumYDy0sLEzzJpDVnz7rJ/rcy8vLw8iRI7W2ubu748CBA3B3d6823sPDAykpKQqlezz02QQ0tvpxg7f+GjdujICAAJiYmOh8/oSEBKhUKvTr10+vOYwVNykfHs+9x4ObRE8IV1dXJCUlaW5XXV3o0qVL6NSpU7Xxly5dgo2NjWL57lVeXo6ff/4ZGRkZWr8UVSoVnnnmGVhYWOj8d927d0f37t2VjCok0eon+ty7du0a3Nzcqm23sbHB3r174e/vj/j4eKjVasTFxSmWSxfR9q2xEa1+os+91157DaNGjcLMmTPx/vvvY/jw4VCpVJg6dSp27typ9Wn/2rVrsXfvXoSGhiqe89KlS0hOTta5Xz09PWu8ml67du3Qrl07JaPqlJ+fjw8//BCSJCEyMlLx5xexfqLPPVtb22oLzVfdLigoqPYmrqCgAObm5orlexz02QR8EuonMn03yJcuXYro6GhkZmZi3bp16Ny5c7UxCQkJ8PLywmeffaa3HPrCZ6E+Gn3Wr6HPPUUpvAYSM5C1a9eSJEn0zjvvEBFRUVEROTo60rBhw6isrExr7IEDB8jMzIxeeuklRTPeuHGDpkyZolkQsGpRwKrFA6sWEHz11Vfpxo0bimarj8LCQtq4cSNt3LhR0ecVtX6izz1HR0d67bXXarz/9u3bNHjwYJJlmebNm2eQBfdE3bf1xa8NbcYw9yZNmkSSJJFKpaLXX3+dwsPDydTUlBo3bkxeXl40YsQI6tixI8myTA4ODnTp0iXFsmVmZtLQoUOr7dP7962fnx9lZGQolqu+zp07p8mrJNHrJ/Lc8/b2ptatW1NRUREREd26dYscHR3JxsaGli1bpjW2sLCQWrZsST179lQs373y8vJo8+bNFBUVRbNmzaJZs2ZRVFQUbd68mS5evGiQTMZUv9rcuHGDYmJiKDY21iDPL+K+rXL69Gny8PCgRo0aUXx8fLUFmI110W8iopycHDp06JChYxgtfdevIc89JUlECrZCmcEQEfz9/bF37154enrixRdfxN9//42YmBi0bNkSzz//PJ566in8/vvvOHjwIKysrHDs2DG4uLgoku/69evo168fsrKy0L59ewwePBgqlUpzRsmtW7eQkZGBAwcOaC5/e+TIETRv3lyRfPVx/vx5uLi4QJIkxb7jKnL9RJ97Xl5eKCgowMmTJ2scc/v2bfj7++PgwYNwcHDAn3/+yfv2IfBrQ5voc6/KBx98gNjYWPz999+QJEnnJ4BDhgzBRx99hPbt2yuS6cKFC+jVqxfy8/Ph7e0NX19fnft13759SE5ORrNmzZCeng5nZ2dF8tVHfn4+Vq1aBUmSEBUVpchzGkv9RJx7ALBjxw68+OKLcHZ2Rr9+/ZCWloaLFy/iP//5D8aNG4cZM2bA29sb169fx3vvvYczZ85g6dKlCA8PVyxjVlYWpk2bhu+//x4AqtWuat0OX19frFy5UtHLaBtD/erCEH/TALH37b3++ecfvPnmm3j77bfh4eGB9evXa47tZFnGxIkTDXo2x8OeRSkKYz0LVQmizz2jYLj+FFNaeXk5zZo1i8zMzHR+ml713126dKH09HRFs02aNIlkWaZPPvnkgWM//vhjkmWZJk+erECy+rt69SqFhIRQaGioYs8pev1EnntvvfUWybJMJ06cqHVcWVkZDR48WPFP/EXft/XBrw1tos+9+zPs2rWLFi9eTFOmTKFJkybRvHnz6PPPP6esrCzF8wQFBZGFhQV99913Dxy7d+9esrCwoLFjxyqQzDgYU/1Em3tV5syZQyYmJiRJEllYWND7779PREQxMTFaZ2JJkkReXl5UUVGhWLbs7Gxq1qyZ5lLacXFxtH37djpw4AAdOHCAtm/fTnFxceTt7U2SJFHz5s0pOztbsXxEYtevrm7cuEFRUVEUHR2t2HMaw7693y+//EJdu3YlS0tLeuutt+iff/4x6Nkcop9FWVd8FuqDiTb3jAmfSfQEunLlCrZu3Yrjx4/jr7/+glqthq2tLTp16oSBAwfCy8sLsiwrmql169bo168ftm7dWqfxL774Io4ePYrLly/rOZlxMJb6iTj3MjMzERkZCT8/PwQHB9c6try8HJMnT0Zubq7WOkv6ZCz7VlQi10/0uSeyFi1awM/PDxs3bqzT+ODgYOzbtw9//fWXnpMZB67f43Ht2jXk5ORApVKhadOmmu2JiYnYt28fKioq0L9/f7z00kuK/m0bO3YsduzYgZ07d2pdRVSX7777DiNHjsSoUaOwZcsWhRLeJWr9RGYs+/Z+FRUViIyMxPLly9G9e3ecOHECEyZMUPxsDmM5i7Iu+CzUuhFl7hkdQ3epGCMisrS0pAULFtR5/Pz588nS0lKPiYwL16/h4n37aLh+DVOjRo1o/vz5dR4fERFBjRo10mOi+iksLKQ///yT7ty5Y5DnN/b6sdo1b96cgoOD6zx+/Pjx1Lx5cz0mYo+Lse/bI0eOkEqlMtjZHMZ0FqWIjLl+hp57xoavbsaE0KZNGyQnJ9d5fHJysvDfFVYS16/h4n37aLh+j0dOTg6SkpLwxx9/oKCgALIso0WLFnjmmWcwePBgxa881KFDB3z77bdYsmQJTE1rP5SprKzEt99+q+i6HJcvX0Zubi769OmjdQbEp59+iuXLlyMrKwvA3Uv1BgYGYtmyZWjRooVi+USv371Em3vGoLi4GI6OjnUe7+joiOLiYj0malhKS0thZmYGMzMzxZ/b2Pdt3759cfbsWRQXF9d4RVF9SkxMxJgxYx54FhYA+Pn5YfTo0di3b58CyYyDMdfP0HPP6Bi6S8XEUFRURNeuXTPYp5pV30EfN25crVdkuHjxIv373/8mWZYVvZpEcXExXb58udr2ffv20eDBg8nOzo4sLS2pc+fOFBUVRaWlpYplIxK/frUx9Nyrr/z8fMrNzVXs+Yxp3+bn51NhYWGtY3Jzcyk5OVmhRMZVvwdReu4R3V3/ws/PT7PGwL0/VWsPNG/enFavXq1orpUrV2rW5EhNTa129RIiIrVaTSkpKeTt7U2yLNOqVasUyxcUFEROTk5a2+bNm0eyLJOJiQmpVCp69tlnyc7OjiRJovbt29P169cVyyd6/YjEnXt1ZWdnR7NmzTLIc7u5uZGbmxtVVlY+cGxFRQW5urqSm5ubAsnqzpD1O3PmDE2YMIH8/f1p5cqVmuOTPXv2aK6oZ2pqSp6envTzzz8rmq0h7FtDaghnUe7atYtOnjxpkOduCPVjdcNNoidEbm6uzjdve/bsoe7du2tdBnrixIl08+ZNRfOVl5eTr6+v5sDPxcWF/P39afz48TR+/Hjy9/cnFxcXzcHh0KFDFV3EMCwsjBwcHLS2rVixQpPH0tKSmjdvrsn/7LPPUklJiWL5RK6f6HOvvkJDQ8nExESx5xN531ZJSUkhV1dXzb7s06cPHT58WOdYpS/jbgz1qyul515eXh45ODiQJEnUo0cPCgwMpB49epAkSeTu7k7vvvsuhYSEkL29PcmyTFOmTFEsm1qtpokTJ2r2q7W1NXXr1o0GDBhAAwYMoG7dupG1tbVmvyp9armzszOFhIRobmdmZpKJiQl16dKFfvvtN832yspKio2NJUmSaMaMGYrlE71+Is+9ujLkVxqMoQn4IIaqX3Z2Ntna2motwjt9+nQ6cuQImZmZkZWVFXl4eFCbNm1IkiRq0qQJnTt3TrF8DWHfGlJDaLJJkkSTJk0yyHM3hPqxuuEm0RNC16fjCQkJZGJiQrIsk0qlor59+5KNjY3mIOz27duKZlSr1bRu3Trq27ev5ooX9/6YmJhQ3759af369Tr/KOpTx44dtb5Te/nyZbKwsKDWrVvTd999p8lz/fp1zYH3okWLFM0oav2MYe7VR2hoqOJXkhB13xLdvbqGlZUVSZJEnTp1IldXV5IkiUxNTSkuLq7aeKWbRERi168+lJ57YWFhJMsybdu2TWv79u3bycTEhNatW0dEd88GfOmll0iWZfr6668Vy0dE9MMPP1BQUBA5OjpW26+Ojo4UFBRESUlJimYiqr4W1ieffEKyLFNqaqrO8YMGDaJ27doplO6/RK2f6HPPxcXlgT+SJJGdnZ3mdpcuXRTLJ3oTUOT6TZ48mWRZphUrVlBGRga99957ZG5uTp6envTss8/Sn3/+qRn78ccfkyRJWg1hfRN931b566+/aNq0aeTm5kY9evSg+fPnU35+vs6x0dHRin0AInqTLT09/YE/kiRRQECA1jaliF4/InHnnrHhJtETQpIkiomJ0dwuLi4mOzs7sre3p4MHD2q2l5SUUFBQEMmyTMuXLzdEVCIiun37Np05c4aOHDlCR44coTNnzlBZWZnB8lhZWWmdXrlu3TqSZZn27t2rc3zv3r1JpVIpFa8akepnbHPvQQzRJLqXSPuWiCg4OJgkSaIvv/xSsy09PZ06d+5MsixXa5Yaokl0L9HqVx9Kzz1HR0caOXKkzvsCAwPJ1dVVc7u8vJzatWtHzz//vFLxqikpKaErV67QlStXFD2TUxd7e3uaNm2a5nZcXBzJslxjrtdff50sLCyUiqeTSPUTfe5VvUG/v7F2/2Wg79+mNFGbgCLXr1OnTuTn56e1zdfXl2RZprS0tGrjBw0aRG3atFEk271E3bdERAUFBdShQ4dq+7BVq1Y6v26u5HGB6E22ey8hX58fpYheP5HnnrHhhaufUImJiSgoKMDq1asxcOBAzXYrKyusW7cOqamp2Lp1K+bMmWOQfBYWFujSpYtBnlsXc3NzlJeXa25fu3YNAODp6alz/HPPPYfVq1crkk0X0ep3L9HmXvv27es1/saNG3pKUjei7dukpCS88MILGD16tGZbr169kJ6ejoCAALz99tu4c+cO3n77bQOm/C+R6if63Ltx4wZUKpXO+zp06IC9e/dqbpubm2PYsGH44osvlIpXjZWVFaysrAz2/Pfq0aMH9u/fDyKCJEmaOp47dw4eHh7Vxp87dw729vZKx9QiUv1En3vdunVDdnY24uPj8eqrr+ocI8syJk6caNDLLPv4+MDHxwfA3cWWCwsLAQC2trYG3dci1y8vLw8jR47U2ubu7o4DBw7A3d292ngPDw+kpKQolO6/RN23ALB06VJkZWXh1VdfRWRkJMzMzLB27VrExsZi6NCh2L59O/z8/AySTZIkrFmzBmPHjsWaNWuQnJyM06dPa41p1aoVhg8fjkmTJsHb21vxjI0bN0ZAQABMTEyq3UdESEhIgEqlQr9+/RTPJnr9RJ57xoabRE+ojIwMSJKE4cOHV7vP0tISzz//PHbs2GGAZGJydXVFUlKS5nbV1Y8uXbqETp06VRt/6dIl2NjYKJbPmIg293JyciDLcp2vUlJZWannRMbl2rVrcHNzq7bdxsYGe/fuhb+/P+Lj46FWqxEXF2eAhOISfe45ODjg1KlTOu87deoUbG1ttbbZ2NigtLRUiWjCe+211zBq1CjMnDkT77//PoYPHw6VSoWpU6di586daNmypWbs2rVrsXfvXoSGhhousGBEn3s//fQToqOjMWPGDGzbtg1r166Fk5OTYs//MERqAopcP1tbW9y6dUtrW9XtgoKCajUsKCgw+BX2RNq3ALBr1y54eHjgww8/1GwLDw/HkCFDMGzYMAQGBmLr1q06jwOVImqTbenSpYiOjkZmZibWrVuHzp07VxuTkJAALy8vbkDrYAxzz1jIDx7CGiK1Wg3g7oGYLi1btkRZWZmSkers1q1bSEhIQEJCgmLPGRYWhpMnT+Ldd98FAIwYMQIODg6YO3cubt++rTU2MTERO3bsMMinD3VhiPrdS7S55+joiK5du6KsrKxOP+PGjVMsW30ZYt82a9as2gF1FUtLS+zZsweDBg3CO++8g/DwcMVyPQyl6yf63Bs6dCi+//57rYMtAPjoo4/w/fffaw4Qq+Tl5Wk1P0SRn5+P2NhYLFmyRLHnHDlyJF555RWsXr0anTt3xsKFCzFixAj8/PPPePrpp+Ht7Y2AgAB06tQJkyZNQosWLRAbG6tYvvowRP1En3tmZmZ46623kJaWhitXrsDNzc2gZw8bG5Hr16lTJ+zatUtz2fiioiLs2rULTZo0wZYtW7TG3rp1C7t379b5YeGTLCcnR+cxsLu7O1JSUtCiRQu8+OKL2L17t/LhdLCyskKrVq3QqlUrgzfbIiIi8NNPP6G8vBweHh5YtmwZiMigmR5EpPoZ29wTmoG/7sYUIkkShYWFUXJyMiUnJ1NsbCzJskw5OTk6x4eGhlLLli0VTlk3586d03wXVilqtZqGDx9OsiyTt7c3rV69mpYsWUKmpqbUunVrCgkJoZkzZ9LgwYNJlmVq0qQJ/f7774rlqw+l6yf63PP39yczM7M6L5Zt6DWJamOI14anpyd169at1jFlZWWa14ajoyPX7/+IPvcuXbpELVq0IFmWqVWrVtSnTx9q1aoVybJMNjY2dP78ec3Yf/75h1q0aEFjxoxRLF9dGeJ1UeX999+npk2b1roGi6+vL2VlZSmera4MUT9jmnu3b9+m2bNnk4mJCXl6elJmZiYRGfbqZvVx48YNiomJqXaBCaWIVr/t27eTJEnUvn17GjduHDk7O5OJiQl99dVXZG5uTq+//jp98803tH79enJzcyNZlik+Pl7xnHVhqH1rb29Pc+bMqfH+7Oxsatu2LVlYWNDOnTt5XRgdKisrKSoqiszMzKh3795a7ymM5XeLIfDce3y4SfSEuH8htKrbGzZs0Dm+d+/e1Lt3b4VT1s3Vq1cpJCSEQkNDFX3e8vJymjVrFpmZmWnV8f6D/y5duih6pYH6Urp+os+9qKgokiSpzvssJCTEIAuQ1oUhXhtvvfUWybJMJ06cqHVcVaPIUG/W60Lp+hnD3MvKyqJhw4aRmZmZ5qp1AwcOpJMnT2qNKysro9TUVLp48aKi+erixo0bFBUVRdHR0QZ5/rKyMtq1axctXryYpkyZQpMmTaJ58+bR559/LnRzqIqh6mdscy85OZnat29PVlZWtHz5cqN5I2fIJuq9RKrfnDlzNFfCtLCwoPfff5+IiGJiYrSOaSRJIi8vL6qoqDBIzgcx1L7t2bMn+fj41DomKyuL2rZtS+bm5tSvXz+Dzz9dDN1AJSL65ZdfqGvXrmRpaUlvvfUW/fPPP0bzu8UQ9Wsoc08EEpHg57CxxyImJkbndnd3d4wYMUJrW0ZGBjp37oypU6di5cqVSsQzKleuXMHWrVtx/Phx/PXXX1Cr1bC1tUWnTp0wcOBAeHl5QZb5m5xVRJ972dnZSElJgZeXV53WRMjPz0dxcTHatWun/3BGIDMzE5GRkfDz80NwcHCtY8vLyzF58mTk5uZqrfH1pDKmuVdeXo78/HzY2dmhUaNGij8/e3IZ09wrLS3F3Llz8emnnwKAwReurov8/HysWrUKkiQhKirKoFlEqt+1a9eQk5MDlUqFpk2barYnJiZi3759qKioQP/+/fHSSy8Je8xnqH07d+5crFq16oFfA83OzoaPjw/y8vIgSRLu3LmjWMa6OH/+PFxcXAyeraKiApGRkVi+fDm6d++OEydOYMKECcL/bjFE/RrK3BMBN4lYNcXFxcjPz0fTpk1hbW1t6DjsCcJzjzHGmLE7dOgQTp48CVdXVwwaNMjQcYwO18+4paWl4cUXX8ScOXMwb968WsdeuHBB82ZdtDfqIjVQAeDo0aMICQlBZmYmN6Br0FDmngi4ScQYY4yxB7p8+TIyMjK0rmKiUqnQunVrAyer7tatWygrK0Pz5s0N/il/Tk4OkpKS8Mcff6CgoACyLKNFixZ45plnMHjwYINfGUkXkeoHGNfcY4wxfblz5w6Ki4thYWEBS0tLQ8dhDRg3iZ4wlZWVOH36NExNTeHm5gZJknSOO3XqFE6cOPHAr488LiUlJSgsLISjo6PW9v3792P58uX4+eefUVZWBicnJ4wZMwYRERFCnXZeXFyM0tJSNGvWzCAH1MZQP1HnXk1KSkqwZs0apKWloaSkBE5OThg7diyee+45g2W6efMmTE1NYWNjU+OYixcvIicnB56engomq7ubN2+iuLgYbdu2NchzG0P9RJp7FRUVWLFiBT7//HNkZ2frHOPs7IxJkyZh5syZsLCwUCTX5cuXkZubiz59+mj9zv3000+xfPlyZGVlAQAaN26MwMBALFu2DC1atFAkW5ULFy5g6tSp2L9/f7X7iAiSJMHe3h5RUVGYOnWqotmMoX6izj1djLGJVVpaCjMzM5iZmRk6itHVr2nTpggJCcGKFSsMHUUnkfYtY8xIGWw1JKa4r776iuzt7TUL7v3rX/+iLVu26Byr9GrvYWFh5ODgoLVtxYoVmoUBLS0tqXnz5poF+J599lkqKSlRLF9ubi4VFhZW275nzx7q3r27pqbW1tY0ceJEunnzpmLZiMSvn8hzz8fHhzZu3Ki1LSsri5ydnatdjUiWZVq0aJFi2aqkpKSQq6urpn59+vShw4cP6xwr+pUaQkNDycTERNHnFLV+os+94uJi6t27N0mSRNbW1jR06FCaPn06LVy4kBYuXEjTp0+noUOHkrW1taauxcXFimQLCgoiJycnrW3z5s0jWZbJxMSEVCoVPfvss2RnZ6e5UtH169cVyUZElJeXRw4ODiRJEvXo0YMCAwOpR48eJEkSubu707vvvkshISGa34tTpkxRLBuR+PUTee5VKS8vp7i4OOrQoYPWxRnu/Xn66acpPj6+zlcwfJzOnDlDEyZMIH9/f1q5ciXduXOHiO4et3Ts2JFkWSZTU1Py9PSkn3/+WfF8otevNoZeOFj0fXu/S5cuUVJSEu3cuZN27txJSUlJdOnSJUPHqtGuXbuqLZDP6k6k+hnb3BMJN4meEOnp6WRiYkLm5ubk6+tLw4cPJ0tLyxoPTpV+o9mxY0caO3as5vbly5fJwsKCWrduTd999x2p1WoiIrp+/TpNnDiRJElS9A2TLMvVVudPSEggExMTkmWZVCoV9e3bl2xsbDRvApQ8qBG5fqLPPUmSKCYmRmtbr169SJIkCg4OprS0NDp//jxt3LiRHBwcSJZlSkxMVCzfuXPnyMrKiiRJok6dOpGrq6vmSj9xcXHVxhtDk0jJfCLXT/S5N2/ePJIkiebPn19rU7mkpIQiIiJIkiQKDw9XJJuzszOFhIRobmdmZpKJiQl16dKFfvvtN832yspKio2NJUmSaMaMGYpkI7rbuJdlmbZt26a1ffv27WRiYkLr1q0jIqKioiJ66aWXSJZl+vrrrxXLJ3r9RJ57ROI3sbKzs8nW1laryTx9+nQ6cuQImZmZkZWVFXl4eFCbNm1IkiRq0qQJnTt3TrF8ItfPxcXlgT+SJJGdnZ3mdpcuXRTJRiT+vq1i7E3ASZMmGez5//rrL5o2bRq5ublRjx49aP78+ZSfn69zbHR0tOIfvD2IoetnzHNPJNwkekKMGjWKzMzMKDU1VbMtNzeXPD09SZZlCgkJ0TQSiJR/o2llZUXz58/X3F63bh3Jskx79+7VOb53796kUqmUilftzVxxcTHZ2dmRvb09HTx4ULO9pKSEgoKCSJZlWr58uWL5RK6f6HPv/n2bnp5OkiRpvYGqcvbsWTI3N6fAwEDF8gUHB5MkSfTll19qZezcubPOs0u4SaRN5PqJPvecnJxo6NChdR4/ZMiQamen6IulpSUtWLBAc/uTTz4hWZa1fs/ca9CgQdSuXTtFshEROTo60siRI3XeFxgYSK6urprb5eXl1K5dO3r++eeViid8/USee0TiN7EmT55MsizTihUrKCMjg9577z0yNzcnT09PevbZZ+nPP//UjP34449r/L2jLyLXr6rxcu+ZnPf/6LpfKaLvWyKxm4Dp6ekP/JEkiQICArS2KaWgoEDT3Lh3frVq1YqSk5OrjVf6mE/0+ok894wNN4meEA4ODvTSSy9V215ZWUljx44lSZJo3LhxmjfrSv/Seeqpp2j27Nma20uXLiVZlmt84c6dO5csLCyUilftzdzOnTtJkiT68MMPq40tKyujNm3aUJ8+fRTLJ3L9RJ979+/b1atXkyzLNZ4qGxAQQI6OjkrFozZt2tCwYcOqbS8sLCQfHx+SZVnrzZ7S9XN2dq7XT9UfZqWIXD/R556FhYVWbR5kwYIFiv1esbe3p2nTpmlux8XFkSzLNb7hfP311xX9m2Fubl7jm9rw8HCytLTU2vbaa69R06ZNlYhGROLXT+S5RyR+E6tTp07k5+entc3X15dkWaa0tLRq4wcNGkRt2rRRKp7Q9evevTtZW1vTRx99VOMYQ37dTPR9S2QcTcD6/iilqh6vvfYaXb16lW7cuEHx8fHUuHFjatSoUbUPfw1xzCxy/USee8bG1NBrIjFl3Lx5EyqVqtp2U1NTbN68GWZmZkhISIBarcamTZsUz+fq6oqkpCTN7TZt2gAALl26hE6dOlUbf+nSpVoXn9W3jIwMSJKE4cOHV7vP0tISzz//PHbs2KFYHpHrJ/rcu9+tW7cAAB07dtR5f8eOHbF3717F8ly7dg1ubm7VttvY2GDv3r3w9/dHfHw81Go14uLiFMtVJScnB7Is13mBzMrKSj0n0iZ6/e4l2txzcHDAiRMn6jz++PHjcHBw0F+ge/To0QP79+/XLABd9Tvm3Llz8PDwqDb+3LlzsLe3VyQbcLd2p06d0nnfqVOnYGtrq7XNxsYGpaWlSkQDYBz1E3XuAcDVq1cRFBRU5/E9e/ZEcnKyHhNpy8vLw8iRI7W2ubu748CBA3B3d6823sPDAykpKQqlE7t+P/30E6KjozFjxgxs27YNa9euhZOTkyLPXRei71sA2Lp1K3x9fbF06dJax1lZWSEuLg6//vorvvrqK8THxyuSr3HjxggICICJiUm1+4gICQkJUKlU6NevnyJ57rVr1y54eHjgww8/1GwLDw/HkCFDMGzYMAQGBmLr1q06338oReT6iT73jInhr2vKFOHg4IDr16/rvE+SJKxfvx7jx4/Hf/7zH/z73//GP//8o2i+sLAwnDx5Eu+++y4AYMSIEXBwcMDcuXNx+/ZtrbGJiYnYsWMHvL29Fc14L7VaDQA1HpS2bNkSZWVliuURuX6iz72qHFWqrhBXXFysc2xJSQmsrKwUyQUAzZo10zQP7mdpaYk9e/Zg0KBBeOeddxAeHq5YriqOjo7o2rUrysrK6vQzbtw4RfOJXj+R515gYCD279+PhQsX1vr7rKysDG+88QYOHDiAUaNGKZLttddeQ2ZmJmbOnAm1Wo3hw4dDpVJh6tSpuHbtmtbYtWvXYu/evRg6dKgi2QBg6NCh+P7777UO9AHgo48+wvfffw8fHx+t7Xl5eWjZsqVi+USvn8hzDxC/iWVra1vt917V7YKCgmrjCwoKYG5urkQ0AGLXz8zMDG+99RbS0tJw5coVuLm5YfXq1Yo8d12Ivm+Bu03AHj161Hl8z549cfXqVT0m+q+lS5eisrISmZmZiIiIwPr167V+NmzYAADw8vLS2q6UnJwcncfn7u7uSElJQYsWLfDiiy9i9+7dimW6l+j1E3nuGR3DnsjElDJkyJAHrkGjVqs163fY2NgoenqgWq2m4cOHkyzL5O3tTatXr6YlS5aQqakptW7dmkJCQmjmzJk0ePBgkmWZmjRpQr///rti+SRJorCwMEpOTqbk5GSKjY0lWZYpJydH5/jQ0FBq2bKlYvlErp/oc69qAcqqr0M5OjqSLMuUlJSkc/zw4cOpU6dOiuXz9PSkbt261TqmrKxMs2+r8ivF39+fzMzM6rz4n9JrEolcP9Hn3q1bt8jd3V3zuvTz86MZM2ZQZGQkRUZG0owZM8jPz09rwf5bt24plm/SpEkkSRKpVCp6/fXXKTw8nExNTalx48bk5eVFI0aM0Fzpx8HBQdErmly6dIlatGhBsixTq1atqE+fPtSqVSuSZZlsbGzo/PnzmrH//PMPtWjRgsaMGaNYPiKx6yf63Js9ezbJskxvvPEGlZaW1jiutLSUFixYQLIs05w5cxTL5+3tTa1bt6aioiIiultPR0dHsrGxoWXLlmmNLSwspJYtW1LPnj0Vyyd6/arcvn2bZs+eTSYmJuTp6UmZmZlEZNivm4m+b4mI2rVrV+0rcbXx9fVVdM2z06dPk4eHBzVq1Iji4+O11sUkMuz+tbe3r3WuZ2dnU9u2bcnCwoJ27txpkHUoRa6f6HPPmHCT6AmxYsUKkiSpxss+V1Gr1RQSEqL5zqmSysvLadasWWRmZqb5DquuRQK7dOmi6CJoRNW/g1t1e8OGDTrH9+7dm3r37q1oRlHrJ/rca9euHTk5OVX7uf9qdkR3D1htbGzo5ZdfVizfW2+9RbIs04kTJ2odV9XoULp+UVFRJElSnedU1T5Wisj1E33uEd393v7ixYupdevWNS7i2rp1a4qKiqr1+//68v7771PTpk1rXWzW19eXsrKyFM+WlZVFw4YNIzMzM80V9QYOHFhtzamysjJKTU2lixcvKp5R5PqJPPdEb2Jt376dJEmi9u3b07hx48jZ2ZlMTEzoq6++InNzc3r99dfpm2++ofXr15ObmxvJskzx8fGK5RO9fvdLTk6m9u3bk5WVFS1fvtygb4JF37dExtEErKyspKioKDIzM6PevXtrfXBqyP3bs2dP8vHxqXVMVlYWtW3blszNzalfv34GuViJqPUzhrlnLCQiIkOfzcT078qVK1i1ahV69+6NgICAWscSEWJiYpCbm6voKYJVrly5gq1bt+L48eP466+/oFarYWtri06dOmHgwIHw8vKCLCv7TcmYmBid293d3TFixAitbRkZGejcuTOmTp2KlStXKhFPi2j1M6a59yDnz5/HF198AR8fH3h6eirynJmZmYiMjISfnx+Cg4NrHVteXo7JkycjNzdXa40qfcrOzkZKSgq8vLzqtG5Dfn4+iouL0a5dO/2Hg/j1qytDzL37ZWRkICMjA4WFhQDufu1BpVLpXHNMSbdv38b333+PX375pdrvPB8fH7Rv396g+crLy5Gfnw87Ozs0atTIoFl0Eb1+gJhzr7S0FPHx8Vi7di2uXLmic4yjoyMmTpyI8PBwRb8qCgBz587FBx98ALVaDXNzc8THx2PmzJmIjY1FdHS05quuRARPT08cOHCgzmvLPQ6i1+9+paWlmDt3Lj799FMAwMSJE/HZZ58ZJIvo+7aoqAienp44efIkrK2t0b9/f6hUKs1abIWFhcjIyEBaWhqKiorQvXt3HD58GNbW1oplrHL8+HEEBwcjKysLkZGRiIiIgJmZmcH279y5c7Fq1aoHfgU5OzsbPj4+yMvLgyRJuHPnjoIp/0u0+hnT3BMdN4kYe8yKi4uRn5+Ppk2b8i8dxliDtnv3bjg5OaFbt26GjsKeMCLNPRGbWMDdhftzcnKgUqnQtGlTzfbExETs27cPFRUV6N+/P1566SXFP3y7l6j10+XQoUM4efIkXF1dMWjQIIPlEH3fGlMTsKKiApGRkVi+fDm6d++OEydOYMKECQZpcqSlpeHFF1/EnDlzMG/evFrHXrhwQdMoMlSTCBCrfoBxzT2RcZOIMcYYYw9FlmWDfqJuLC5fvqzzTXDr1q0NnMx48dxjzDgYSxPw6NGjCAkJQWZmJv9ueQgi1s9Y5p6ITA0dgLG6KC4uRmlpKZo1a2bQT7sqKytx+vRpmJqaws3NTevKRPc6deoUTpw48cCvtyhFlPox/bt58yaKi4vRtm1bg+YoKSnBmjVrkJaWhpKSEjg5OWHs2LF47rnnDJrrQUSpnwiOHTtWp3HXr1/XGturVy99RdIpJycHSUlJ+OOPP1BQUABZltGiRQs888wzGDx4sOJX9qlSUVGBFStW4PPPP0d2drbOMc7Ozpg0aRJmzpwJCwsLhRPeJWL9jGXuGesxgSiMoX7c4H10xvKmvG/fvjh79iyKi4sN9vvYmIlYP2OZe0Iy1GJIjN0rNzeXCgsLq23fs2cPde/eXbMQs7W1NU2cOJFu3rypeMavvvqK7O3tNVn+9a9/0ZYtW3SOVfpqA8ZQP6aM0NBQMjExUez5fHx8aOPGjVrbsrKyyNnZudpCuLIs06JFixTL9jCUrp/I7l+wv64/SsnOziY/Pz+dGaqyN2/enFavXq1YpirFxcXUu3dvkiSJrK2taejQoTR9+nRauHAhLVy4kKZPn05Dhw4la2trkmWZ+vTpQ8XFxYpmFLl+os89IrGPCerCzs6OZs2aZbDnF7l+5eXlFBcXRx06dKhxrj399NMUHx9f5yt7KsnQ+7a+Pv/8cwoLCzN0DCFdunSJkpKSaOfOnbRz505KSkpS9EqTDR3PvZrxmURMCM7OzoiOjkZkZKRm26ZNmxAWFgYiwtNPP41mzZrhzJkzWLt2LX7++Wf8+OOPinWqjx07hqCgIJiYmGDw4MEwMzNDYmIixo8fj5SUFHz88ceK5KiJ6PVjyiIFv0V86NAheHt7a20LCgpCTk4Oxo8fj8mTJ6NZs2b48ccfERERgbfffhve3t4GXcvhQZSsn+gaN26MgIAAmJiYVLuPiJCQkACVSoV+/fopmuvSpUvo168frl27Bnd3dzg7O+PChQs4ceIEunfvjnHjxuH06dP45ptvMGPGDPz222+K/p6OiYnBsWPHEBERgcjIyBrXPCgtLUVsbCyWLVuG2NhYxMfHK5JP9PoB4s49QPxjgrooKChASUmJQZ5b5PqVlJRg0KBBOHbsGJo0aYIhQ4ZApVLBxsYGAHDr1i3NwrcLFizA119/jcTERDRu3Nhgme9nyH37MFJTU5GQkIB169YZOooQjOUs1IaA514tDNmhYqyKJEkUExOjuV1cXEx2dnZkb29PBw8e1GwvKSmhoKAgkmWZli9frli+UaNGkZmZGaWmpmq25ebmkqenJ8myTCEhIaRWqzX3Kf2pl+j1Y8oJDQ016NxLT08nSZIoJCSk2tizZ8+Subk5BQYGKpavvpSun8ji4uLI0tKS+vbtS2fPntU5xlCXug0LCyNZlmnbtm1a27dv304mJia0bt06IiIqKiqil156iWRZpq+//lqxfE5OTjR06NA6jx8yZAg5OTnpMZE20esn8twjEv+YwMXF5YE/kiSRnZ2d5naXLl0Uyydy/ebNm0eSJNH8+fOppKSkxnElJSUUERFBkiRReHi4ItmIxN+3D0Ppv7t//fUXTZs2jdzc3KhHjx40f/58ys/P1zk2Ojpa0bOLjeEsVJHrV198zFczPpOICSkxMREFBQVYvXo1Bg4cqNluZWWFdevWITU1FVu3bsWcOXMUyZOWloaAgAD0799fs61t27Y4ePAgQkJCkJCQgDt37iAhIaHG79QrSbT6sYdX38tP37hxQ09J6uann36CJEk651bnzp3xwgsv4Mcff1Qsj7HVTyQREREYNmwYQkJC4OHhgejoaMybN0+I33H79+/HiBEjMGrUKK3tgYGBGDFiBN577z2EhYWhSZMm2Lx5M44dO4YPP/wQAQEBiuS7evUqgoKC6jy+Z8+eSE5O1mMibaLXT+S5B4h/THDu3DlIklTrWZGSJKGgoAAFBQXKBfs/Itdv69at8PX1xdKlS2sdZ2Vlhbi4OPz666/46quvFDsLUPR9CwAJCQn1Gp+ZmamnJNUVFhaiX79+yM7O1tTwxIkT2LhxI7744gt4enpW+ze11fpxE/0sVNHrJ/LcMzbcJGJCysjIgCRJGD58eLX7LC0t8fzzz2PHjh2K5bl586bOhc9MTU2xefNmmJmZISEhAWq1Gps2bVIsV01Eqx97eDk5OZBlGWZmZnUaX1lZqedEtbt16xYAoGPHjjrv79ixI/bu3atYHmOrn2hcXV2Rnp6ON998E4sWLcKOHTuwfv16uLi4GDTXjRs3alyMskOHDlpzzNzcHMOGDcMXX3yhVDw4ODjgxIkTdR5//PhxODg46C/QfUSvHyDu3APEPybo1q0bsrOzER8fj1dffVXnGENeHU7k+one4BV93wJAaGhovZp7RKRYM3Dp0qXIysrCq6++isjISJiZmWHt2rWIjY3F0KFDsX37dvj5+SmSRRfRm5Si10/kuWdsuEnEhKRWqwGgxoPmli1boqysTLE8Dg4OuH79us77JEnC+vXrQUTYtGkT1Go1OnTooFg2XUSrH3t4jo6OsLe3x8mTJ+s0PjQ0VPGD6nv/wDo6OgK4e0U9S0vLamNLSkpq/GRMH4yhfqIzNTVFdHQ0/P39ERwcDA8PD0RGRiIiIsJgmRwcHHDq1Cmd9506dQq2trZa22xsbFBaWqpENAB3z8j54IMPsHDhQixatAiNGjXSOa6srAxLlizBgQMHMGvWLMXyiV6/KiLOPUD8Y4KffvoJ0dHRmDFjBrZt24a1a9fCyclJ0Qy1Ebl+ojd4Rd+3wN3GsqOjIyZPnlyn8Vu3bsWvv/6q51R37dq1Cx4eHvjwww8128LDwzFkyBAMGzYMgYGB2Lp1q84PWZUgepNS9PqJPPeMjoG+5saYFkmSKCwsjJKTkyk5OZliY2NJlmXKycnROT40NJRatmypWL4hQ4aQSqWqdYxarabg4GCSJIlsbGwUXxdG5Pqxh+fv709mZmZ1voKKIdYksrOzI2dnZ3J2diZHR0eSZZmSkpJ0jh8+fDh16tRJsXyi18/YlJeXU3h4OJmYmJCHhwfJsmyQdWEmTZpEsixXu/LWhx9+SLIs08svv6y1/d///je1a9dOsXy3bt0id3d3zd8DPz8/mjFjBkVGRlJkZCTNmDGD/Pz8yMbGhiRJInd3d7p165Zi+USvny6izD0i8Y8JqqSnp1Pnzp2pSZMmtGrVKq37DLmmk8j1mz17NsmyTG+88QaVlpbWOK60tJQWLFhAsizTnDlzFMl2L1H3LRHRM888Qy1atKjzeCX/7lpaWtLcuXN13peVlUVt27YlCwsL2rVrFxEpv55Yu3btyM/Pr87jfX19Ff3dLHr9RJ57xoabREwI91/utur2hg0bdI7v3bs39e7dW7F8K1asIEmS6PDhw7WOU6vVFBISosmvFNHrxx5eVFQUSZJE6enpdRpfNf+U0q5dO3Jycqr2ExsbW21saWkp2djYVHsDqk+i189YHTlyhFQqlcHejFy6dIlatGhBsixTq1atqE+fPtSqVSuSZZlsbGzo/PnzmrH//PMPtWjRgsaMGaNoxpKSElq8eDG1bt2aJEnS+dO6dWuKioqqdYFcfTCG+tXE0HOPSPxjgnvdvn2bZs+eTSYmJuTp6UmZmZlEZNhGgsj1E73Bey8R9y0R0eTJk0mWZbp48WKdxiv5Rt3e3r7Wpl52dram0bFz507FmxyiNylFr5/Ic8/Y8NfNmBCioqJ0bn/qqaeqbcvIyMBPP/2EqVOn6jnVf40ePRrXrl1Dfn5+reOqTpN2cnJCbm6uQunErx97eMHBwXB2dkaLFi3qNH758uWIiYnRc6r/ysnJqfPYixcvYs6cOfDx8dFfoPuIXj9j1bdvX5w9exbFxcUGufxu69atcfToUcyYMQPff/89/vzzT5iYmMDb2xsrVqzQWhOrsrISO3bsQNu2bRXNaGVlhZiYGMTExCAjIwMZGRkoLCwEANja2kKlUtW4LpC+GUP9amLouQeIf0xwLwsLC7z33nsICAhAWFgYunXrhiVLlhgkSxWR62dtbY20tDTEx8dj7dq12LdvH/bt21dtnKOjI2bPno3w8HBFv0J9LxH3LQAMGDAA+/fvR0ZGBtq0afPA8c8995wCqe5ycnKq9etFzs7OSEpKgo+PD0aPHo1nnnlGsWzA3YWrk5KSsHTpUqxevRr9+/eHSqXSfAW4sLAQGRkZSEtLQ1FREbp3747o6GjF8oleP5HnnrGRiBRccpyxx6C4uBj5+flo2rQprK2tDR3H6HD9GGMNSXl5OfLz82FnZ1fj2j8i2r17N5ycnNCtWzeD5jDW+rH6Ky0txdy5c/Hpp58CgEEXNzYWojV4a8L7tm7mzp2LVatWIS8vDy1btqxxXHZ2Nnx8fJCXlwdJknDnzh3FMpaWlmqalFeuXNE5xtHRERMnTlS8SWkM9WOPBzeJGGOMMcYUZugrELEn16FDh3Dy5Em4urpi0KBBho7DHiPet7VLS0vDiy++iDlz5mDevHm1jr1w4YKm0WGoJodoTUpjqx97eNwkYkKprKzE6dOnYWpqCjc3txovS3jq1CmcOHECwcHBCicUG9fvyVFSUoI1a9YgLS0NJSUlcHJywtixY/nU2Tri+jUsly9f1nkg3bp1a4PkOXbs2APH9OnTByNGjMCCBQs023r16qXPWDUSrX6MGRofTzHGnmiGXBCJsXt99dVXZG9vr1l8+V//+hdt2bJF51ilF0IzBly/hsnHx4c2btyotS0rK4ucnZ01i5RX/ciyTIsWLTJQUjFx/Rqu8vJyiouLow4dOmgt3H/vz9NPP03x8fF1vrrd43L/xQTq+qMkkevHHq9Lly5RUlIS7dy5k3bu3ElJSUl06dIlQ8cSljEdT/G+fbJ9/vnnFBYWZugYrAHihauZEI4dO4agoCCYmJhg8ODBMDMzQ2JiIsaPH4+UlBR8/PHHho4oNK5fw3Xo0CF4e3trbQsKCkJOTg7Gjx+PyZMno1mzZvjxxx8RERGBt99+G97e3nya+f/h+jVMJSUlGDRoEI4dO4YmTZpgyJAhUKlUsLGxAQDcunVLs7jnggUL8PXXXyMxMRGNGzdWLGPjxo0REBAAExOTavcRERISEqBSqdCvXz/FMlUxhvqxR1NRUYEVK1bg888/R3Z2ts4xzs7OmDRpEmbOnGmwRcBFYwzHU7xvHx9jP4syNTUVCQkJWLdunUGe39jrx2ph6C4VY0REo0aNIjMzM0pNTdVsy83NJU9PT5JlmUJCQkitVmvuM/QnN6Lh+jVckiRRTEyM5nZ6ejpJkkQhISHVxp49e5bMzc0pMDBQwYRi4/o1TPPmzSNJkmj+/Pm1Xj6+pKSEIiIiSJIkCg8PVyxfXFwcWVpaUt++fens2bM6xxjyMtWi1489muLiYurduzdJkkTW1tY0dOhQmj59Oi1cuJAWLlxI06dPp6FDh5K1tTXJskx9+vSh4uJiQ8cWgujHU7xvH11DOovSEJdwb0j1YzXjM4mYENLS0hAQEID+/ftrtrVt2xYHDx5ESEgIEhIScOfOHSQkJNT4vfAnGdfvyfHTTz9BkiTMmTOn2n2dO3fGCy+8gB9//NEAyYwD169h2Lp1K3x9fbF06dJax1lZWSEuLg6//vorvvrqK8THxyuSLyIiAsOGDUNISAg8PDwQHR2NefPmCfP7V/T6sUcTExODY8eOISIiApGRkTVe/ai0tBSxsbFYtmwZYmNjef9C/OMp3rePRvSzKBMSEuo1PjMzU09JdBO9fuzx4SYRE8LNmzd1rtRvamqKzZs3w8zMDAkJCVCr1di0aZMBEoqN6/fkuHXrFgCgY8eOOu/v2LEj9u7dq2Qko8L1axiuXr2KoKCgOo/v2bMnkpOT9ZioOldXV6Snp+PNN9/EokWLsGPHDqxfvx4uLi6K5tDFGOrHHh43AR+e6MdTvG8fjehNttDQ0Ho1H4lI0Wal6PVjjw83iZgQHBwccP36dZ33SZKE9evXg4iwadMmqNVqdOjQQeGEYuP6NWz3HgA4OjoCAIqLi2FpaVltbElJSY1/tJ9UXL+Gx8HBASdOnKjz+OPHj8PBwUF/gWpgamqK6Oho+Pv7Izg4GB4eHoiMjERERITiWe5lLPVjD4ebgA9P9OMp3rePRvQmm7m5ORwdHTF58uQ6jd+6dSt+/fVXPafSfj6R68ceH24SMSF07twZhw4dqvF+SZKwYcMGAMCmTZtgbW2tTDAjwfVr2FasWIH169cDAMrLywEAv/32W7UFmQEgNzcXLVu2VDKe8Lh+DU9gYCA++OADLFy4EIsWLUKjRo10jisrK8OSJUtw4MABzJo1S9mQ9/Dw8MDx48cRGRmJxYsXY/v27Qb96pmx1Y/VDzcBH57ox1O8bx+N6E02Nzc3XLx4sc4fJJw7d07RJpHo9WOPj2zoAIwBgJ+fHzIzM5GSklLjmKo/zMHBwSgqKlIwnfi4fg1X27ZtYWtrCyICEcHc3Bxt27bVua/Lyspw+PBh9OjRwwBJxcT1a5hiYmLQrVs3LF26FA4ODnjhhRcwc+ZMLF68GIsXL8bMmTPxwgsvwMHBAXFxcejWrRuio6MNmtnc3Bzx8fFISUlBUVERiMhgWYyxfqzuAgMDsX//fixcuBBlZWU1jisrK8Mbb7yBAwcOYNSoUQomFJfox1O8bx+N6E22nj174saNG8jLy1PsOetD9Pqxx4fPJGJCGD16NK5du4b8/Pxax1Wd6uvk5ITc3FyF0omP69dw5eTk1HnsxYsXMWfOHPj4+OgvkJHh+jVM1tbWSEtLQ3x8PNauXYt9+/Zh37591cY5Ojpi9uzZCA8PF+ZrhH379sXZs2dRXFxssEtTG3P92IPFxMQgKSkJS5cuxerVq9G/f3+oVCrY2toCAAoLCzWLyxYVFaF79+7cBPw/oh9P8b59NKKfRTlgwADs378fGRkZaNOmzQPHP/fccwqk+i/R68ceH4kM+VEWY4wxxtgjysjIQEZGBgoLCwEAtra2UKlUOhegZdVx/Rqe0tJSTRPwypUrOsc4Ojpi4sSJ3AQ0MrxvH15RURE8PT1x8uRJWFtb16nJdvjwYV6m4f9w/Z4c3CRijDHGWIOze/duODk5oVu3boaOYpS4fg0HNwEbLt639cdNtkfD9XsycJOIMcYYYw2OLMuYOHEiPvvsM0NHMUpcP8ZYQ8dNtkfD9Wu4eE0ixhhjjBmVY8eO1Wnc9evXtcb26tVLX5GMCtfvyVBZWYnTp0/D1NQUbm5uNV5R79SpUzhx4gSCg4MVTsgeFu/bx4MbGo+G69dw8ZlEjDHGGDMqsiw/1CXk79y5o4c0xofr1/Bt3boVr776Kv7++28Ad7/+ER8fj7Fjx1YbGxMTg9jYWN6/RoL3rXLWrl2LtLQ0rFu3ztBRjBLXz3jxmUSMMcYYMzqNGzdGQEAATExMqt1HREhISIBKpUK/fv0MkE58XL+G69ixYwgKCoKJiQkGDx4MMzMzJCYmYvz48UhJScHHH39s6IjsIfG+VVZqaioSEhK4yfGQuH7Gi5tEjDHGGDMqS5cuRXR0NDIzM7Fu3Tp07ty52piEhAR4eXnxmjo6cP0atmXLlkGWZfzwww/o378/AODixYsYP348PvvsM5SVlWH9+vUPdTYZMyzet4wxJXCTiDHGGGNGJSIiAsOGDUNISAg8PDwQHR2NefPm8RujOuL6NWxpaWkICAjQNBEAoG3btjh48CBCQkKQkJCAO3fuICEhgfe5keF9+2gSEhLqNT4zM1NPSYwT1+/JwU0ixhhjjBkdV1dXpKen480338SiRYuwY8cOrF+/Hi4uLoaOZhS4fg3XzZs3dS4ma2pqis2bN8PMzAwJCQlQq9XYtGmTARKyh8X79tGEhobWq3lGRNxsuwfX78nBTSLGGGOMGSVTU1NER0fD398fwcHB8PDwQGRkJCIiIgwdzShw/RomBwcHXL9+Xed9kiRh/fr1ICJs2rQJarUaHTp0UDghe1i8bx+Nubk5HB0dMXny5DqN37p1K3799Vc9pzIeXL8nBzeJGGOMMWbUPDw8cPz4cURGRmLx4sXYvn07f3pZD1y/hqVz5844dOhQjfdLkoQNGzYAADZt2gRra2tlgrFHxvv20bi5ueHixYt1boSfO3eOmxz34Po9OWRDB2CMMcYYe1Tm5uaIj49HSkoKioqKQESGjmRUuH4Nh5+fHzIzM5GSklLjmKpmQnBwMIqKihRMxx4F79tH07NnT9y4cQN5eXmGjmKUuH5PDj6TiDHGGGMNRt++fXH27FkUFxfDwsLC0HGMDtfP+I0ePRrXrl1Dfn5+reOqvp7k5OSE3NxchdKxR8H79tEMGDAA+/fvR0ZGBtq0afPA8c8995wCqYwH1+/JIRF/VMQYY4wxxhhjjDH2xOOvmzHGGGOMMcYYY4wxbhIxxhhjjDHGGGOMMW4SMcYYY4wxxhhjjDFwk4gxxhhjBnbo0CFIkoTo6Og6jff29tbbJdqjo6MhSVKtl5k2Bk5OTnBycnqkx8jJyYEkSQgNDX0smRhjjDEmPm4SMcYYY8zobdiwQXPpZ8YYY4wx9nBMDR2AMcYYY6w+EhISUFpaqpfHnjZtGl5++WW0bdtWL4/PGGOMMSYybhIxxhhjzKjos4HTrFkzNGvWTG+PzxhjjDEmMv66GWOMMcaEkZqaCm9vb1hbW+Opp57CqFGjkJmZqTXm/jWJQkNDERYWBgAICwuDJEmanypXr17FzJkzoVKp0KhRIzz11FNwcXHBlClTUFhYqBmna02iquer6ef+NXuKiooQFRWFrl27ap7L19cXqampD12XpKQk/O///i86deqEJk2aoEmTJnjmmWfw2Wef1fkx7v1/W7t2Ldzc3GBpaYnWrVtj9uzZKCoqqvHfZmZmYuTIkbCzs0Pjxo3x/PPP4+TJk3rJyRhjjDHD4TOJGGOMMSaEH3/8EUuXLsXQoUMxffp0nDlzBl9//TVSUlLw448/on379jr/XUBAAAoKCrBr1y6MGDEC7u7uWveXlpaif//+yMnJwZAhQzBy5EhUVFTgwoUL2LRpE15//XXY2trWmCs0NBTe3t7Vtn/33Xc4duwYrKysNNtu3rwJT09PnDlzBv3798eUKVNw69Yt7Nq1Cz4+Pti6dSsCAgLqXZv4+HhkZmaiT58+GDlyJAoKCrBv3z5MnjwZ58+fx/Lly+v8WO+99x4OHjyIMWPGYNiwYUhMTMT777+PH3/8EYcPH4aZmZnW+JycHPTp0wddu3bF//7v/yIrK0vz/3P27Fm0bNlSLzkZY4wxZgDEGGOMMWZASUlJBIAA0CeffKJ13yeffEIAaPjw4ZptXl5edP8hzPr16wkArV+/vtrj7969mwDQrFmzqt1XVFREt2/f1tyOiooiAJSUlFRr5sOHD5O5uTm1b9+erl+/rtk+duxYAkBr1qzRGn/t2jVq06YNNW/enMrKymp9bF2ys7OrbausrKTBgweTiYkJ5ebmat3Xrl07ateunda2qv83c3NzOnnypGa7Wq3W5H733Xc12y9cuKDZL3FxcVqPtWjRIgJAS5cufaScjDHGGBMLf92MMcYYY0Lo2LEjXnnlFa1tr7zyClQqFb799ltcv379kR6/UaNG1bY1adIEFhYW9Xqcqq9eWVlZ4dtvv9WsYXTjxg18+eWXGDhwICZOnKj1b1q0aIF58+bh+vXrSExMrHd2Z2fnattMTU0xZcoU3LlzB0lJSXV+rODgYHTr1k1zW5IkvP322zAxMdF5dThnZ2fMmzdPa9uECRMAAD/99JPecjLGGGNMefx1M8YYY4wJoX///pBl7c+vZFlG//79kZGRgZMnT+L555+v9+N6enqiVatWiIuLw8mTJzF8+HB4eXnBxcVFa92iuvj7778xbNgwFBYWYt++fejcubPmvp9++gl37txBeXk5oqOjq/3bjIwMAMC5c+cwfPjwej1vUVER3n33XezcuRNZWVkoKSnRuv/KlSt1fqwBAwZU29auXTu0adMGZ86cQUVFBczNzTX3ubu7V9sv//rXvwAABQUFesvJGGOMMeVxk4gxxhhjQrh3bRtd2+9dYLo+bG1t8eOPP2Lx4sXYs2cP9u7dCwBo06YN5s+fj9dee61Oj1NZWYnAwED88ccf+OyzzzBo0CCt+2/evAkASEtLQ1paWo2Pc3/j5EEqKirg7e2N48ePo0ePHhg/fjzs7e1hamqKnJwcbNy4EeXl5XV+vNrqnJOTg6KiItjb22u229jYVBtranr3EPLOnTt6y8kYY4wx5XGTiDHGGGNCuHbtWq3ba1tc+kHatm2LDRs2QK1W49SpU/j++++xcuVKTJ06FXZ2dggKCnrgY0yePBmHDh3C3Llzq30tDvhvM2Xu3Ll49913Hzrr/Xbt2oXjx49jwoQJ+Pzzz7Xu++KLL7Bx48Z6PV5tdZYkCdbW1kLkZIwxxpjyeE0ixhhjjAkhLS0NarVaa5tarcaRI0cgSRK6d+9e4781MTEBoH1miy6yLMPd3R3h4eH4z3/+AwDYvXv3A7MtXboU69evx4gRI7Bs2TKdY5599llIkoSjR48+8PHqIysrCwAwYsSIavelpKTU+/F0/Zvc3Fzk5eWha9euWl81q4/HnZMxxhhjyuMmEWOMMcaE8Mcff2DNmjVa29asWYM//vgDw4YNQ/PmzWv8t02bNgUA5OXlVbvvzJkzOs+eqdpmaWlZa65t27Zh4cKF8PDwwJYtW6qtz1PFwcEBo0ePxpEjR/DOO++AiKqNSU9PR2lpaa3Pd7927doBAFJTU7W2JycnV6tXXSQkJODUqVOa20SEN954A3fu3EFoaGi9H09fORljjDGmPP66GWOMMcaE4OvrixkzZmDv3r3o2rUrzpw5gz179qBZs2b44IMPav23ffv2RaNGjfD+++/j77//1jSUFi1ahAMHDmDevHno378/OnbsCHt7e2RnZ2P37t2wtLTE1KlTa33s4OBgEBE8PDzwzjvvVLvf3d0dAQEBAICPPvoI58+fR3h4ODZt2oS+ffviqaeeQl5eHn7++WdkZGTg6tWrsLKyqnNd/ud//gdOTk5YtmwZfvvtN7i6uuL8+fP45ptvMHLkSGzbtq3OjwXcrXPfvn3x8ssvo3nz5jh48CB+/vln9OnTB9OnT6/XY+kzJ2OMMcaUx00ixhhjjAmhT58+WLRoERYtWoSVK1fCxMQEAQEBWLZsGdq3b1/rv23atCm2bduG6OhorFmzBmVlZQDuNol8fX2Rk5ODw4cPY8eOHSguLkbr1q0xZswYhIeHo0uXLrU+dtVj3b/OTpWQkBBNk6hp06Y4cuQIVq9ejS+//BJbtmyBWq2Gg4MDunfvjsjISDRr1qxedWnSpAl++OEHzJs3D4cPH8ahQ4fQtWtXbNmyBS1btqx382XOnDnw9/fH+++/j8zMTDRt2hQzZ87EkiVLHvqrZvrIyRhjjDHlSaTrXGjGGGOMMdagREdHIyYmBklJSfD29jZ0HMYYY4wJiNckYowxxhhjjDHGGGPcJGKMMcYYY4wxxhhjvCYRY4wxxpjidu7ciRMnTjxwnLe3N381jDHGGGOK4TWJGGOMMcYUFhoaio0bNz5wXFRUFKKjo/UfiDHGGGMM3CRijDHGGGOMMcYYY+A1iRhjjDHGGGOMMcYYuEnEGGOMMcYYY4wxxsBNIsYYY4wxxhhjjDEGbhIxxhhjjDHGGGOMMXCTiDHGGGOMMcYYY4yBm0SMMcYYY4wxxhhjDNwkYowxxhhjjDHGGGPgJhFjjDHGGGOMMcYYAzeJGGOMMcYYY4wxxhiA/w/p2x3AYo0O6QAAAABJRU5ErkJggg==", "text/plain": [ "
" ] @@ -722,16 +2737,16 @@ "id": "20f7e139", "metadata": { "execution": { - "iopub.execute_input": "2024-11-24T09:28:28.915675Z", - "iopub.status.busy": "2024-11-24T09:28:28.915430Z", - "iopub.status.idle": "2024-11-24T09:28:29.314170Z", - "shell.execute_reply": "2024-11-24T09:28:29.313570Z" + "iopub.execute_input": "2025-05-08T16:23:25.091970Z", + "iopub.status.busy": "2025-05-08T16:23:25.091624Z", + "iopub.status.idle": "2025-05-08T16:23:25.443209Z", + "shell.execute_reply": "2025-05-08T16:23:25.441976Z" } }, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABS8AAARPCAYAAAD+yxSnAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAADt4UlEQVR4nOzdd5gV9dk//vssy1IWFpCOIoLYFWzYImLviobYFeV5NGpiTMSvQY2IorEnlhhjiorGrolGjYEogg1CLCFqYkOpAipdVunz+8Mf53Fll7Ls7JldXq/rOlf2zHxmzn3uMxvOvv3MTC5JkiQAAAAAADKmqNAFAAAAAABURngJAAAAAGSS8BIAAAAAyCThJQAAAACQScJLAAAAACCThJcAAAAAQCYJLwEAAACATBJeAgAAAACZJLwEAAAAADJJeAkAANR7w4YNi1wuF5tttlmhSwEA1kFxoQsAAKjKsGHDYtKkSbHvvvvGvvvuW+hy8kaPHh2jR4+OzTbbLM4444xClwMAAPWW8BIAyKxhw4bFiy++GBGRufDyyiuvjD59+ggvAQAgRU4bBwAAAAAySXgJAAAAAGSS8BIAyJyVN9ZYecr4lVdeGblcrsJj0qRJq2z36quvxqmnnhpdunSJxo0bR4sWLWK33XaL66+/PhYuXFjl640YMSK++93vxiabbBIlJSVRVlYW3bp1i4MPPjhuuummmDNnTkRETJo0KXK5XFx55ZUREfHiiy+uUtewYcPW6b0+8sgjcdhhh0X79u2jYcOG0bJly9hiiy3i6KOPjl//+texaNGiSrebPXt2DB06NHbffffYaKONonHjxrHZZpvFwQcfHL/5zW9i/vz5lW735z//OY488sho3759lJSURPv27ePII4+MJ554osoazzjjjMjlcnHGGWdEkiTxhz/8Ifbee+9o3bp1pe950qRJ8ZOf/CS22267aNasWTRt2jS23nrr+PGPfxxTpkxZp/5ERPTt2zdyuVx897vfXe24jz76KP85vPzyyxXWre1nXFOWLl0aTz31VHz/+9+PXXfdNTp27BglJSXRrl27OOSQQ+Khhx6KJEkq3Xb06NH59xER8frrr8f3vve96NixYzRu3Di6d+8eF110UcybN6/S7b99Y5rnnnsuDjvssGjbtm00adIktttuu7j66qurPLauuOKKyOVy+Us1/OlPf4qDDz442rVrF0VFRXHFFVdUGP+vf/0r+vfvn/+9a9WqVey1115xyy23xOLFiyt9jRUrVsTIkSPj/PPPjz322CP/ubRu3Tr69OkTd955ZyxdunT1TY6Iv//973HiiSdGly5dokmTJrHRRhtFjx494kc/+lGMHTt2tdu+8cYbcfzxx0fHjh2jUaNG0a1btxg4cGDMnTt3ja8LANSiBAAgYx5++OGkffv2ScOGDZOISEpLS5P27dtXeEyZMiU/fvny5cn555+fRET+0axZs6RBgwb551tttVUyadKkVV7ryiuvrLBd06ZNk2bNmlVYNmrUqCRJkmTKlClJ+/btk9LS0iQikoYNG65S18MPP7zW73PAgAGr1Ny0adMKyyZOnLjKdiNGjEhatWqVH1NcXJy0bt0636+ISJ544okK2yxevDg54YQT8uuLioqSVq1aJUVFRfllJ510UrJkyZJVXu/0009PIiLp379/0q9fv1W2v+eee/Jj77///qRRo0b5fTZq1Chp0qRJ/nnz5s2TESNGrHWPkiRJHnvssSQikpKSkmT27NlVjrviiiuSiEi6du2arFixIr98XT7jmjJq1KgK+y8rK0uaN29eYdlxxx2XLF++fLXbPvnkk0lJSUl+Hyt/joikS5culR4f99xzT379r3/96ySXyyURkbRs2TIpLi7Ob7/TTjslc+bMWWX7IUOGJBGR9OnTJxk4cGASEUkul0tatWqVNGjQIBkyZEh+7C9/+cv8/iMiadGiRYXjsEePHsn06dNXeY2JEyeucuy3aNGiwrLevXsnX375ZaX9LS8vT4477rgK45s3b15hHz179qyyLw888EC+zhYtWlT4Pdhuu+2SL774YvUfMABQa4SXAEBm9enTJ4mICmFJZS677LIkIpJ27dolv/71r/MB15IlS5JRo0YlO+20UxIRyc4771whLJo0aVI+tBg4cGDyySef5NfNmzcvefnll5Mf/OAHyeuvv17h9b4Z7lTXyy+/nA8Br7/++gqh3KxZs5IRI0Ykp59+eoWakiRJ3nzzzaRx48b5kOXZZ5/NB47Lli1LXn/99eTCCy9Mnn/++QrbXXjhhfkQavDgwcncuXOTJEmSOXPmJJdeemk+uBk0aNAqta4ML5s1a5YUFxcnN910UzJ//vwkSZLkiy++yIdTf//735OioqKkuLg4+elPf5pMnDgxWbFiRbJixYrkvffey4dNZWVlyeTJk9e6V4sWLcqHtb/5zW+qHNe9e/ckIpLLL788v6y6n/H6GjduXHL22Wcnzz33XL5XSZIks2fPTm699dakrKwsiYjk1ltvXWXbb4aXLVq0SPbdd9/kv//9b5IkSbJ06dLkkUceyfejV69eybJlyypsvzKka9q0adKwYcPkuOOOy4f9X375ZfKb3/wmHzAfe+yxq7z+yuN7ZcA7aNCg5LPPPkuS5OvPYuV/BHj66afzdfbt2zf5+OOPkyT5Oii/77778mHtXnvttUqNU6dOTU455ZTkqaeeqnDsf/HFF8k999yTdOrUKYmI5IILLqi0v8cff3z+92fQoEHJ1KlT8+s+//zz5IEHHkjOOeecKvvSqFGj5Mwzz8z3pby8PLn99tvzgebgwYMrfV0AoPYJLwGAzFqb8HLixIlJgwYNkiZNmiTjx4+vdMyCBQuSTTbZZJUZiY888kgSEcmWW265TnXVRHh5/fXXJxGRHHzwweu03d57751ERLLFFlsk8+bNW6ttpk2blp9xd8kll1Q6ZuUMu4YNG64yU25leBkRyW233Vbp9suXL0+22GKLJCKS3/72t1XWcvTRRycRkfz4xz9eq9pXOvvss5OISPbcc89K148ZMyZf44cffphfXt3POG0rZ5Nuvvnmq6z7Zni55ZZbVjr78LnnnsuPefTRRyusWxnSrTxGK5vd+Yc//CE/5p///GeFdSuP75WBb1W22Wab/AzJb4eTSZIkTz31VH4/jz32WJX7qcxrr72WRHw96/qrr76qsO7555/P7/eOO+5Y631+sy+nn356pWNW/h507959neoFANLjmpcAQJ02bNiwWL58eRx66KHRs2fPSsc0b948jjnmmIj4+tqHK7Vs2TIiIr744osoLy9Pu9QKVr72559/HsuXL1+rbT788MN45ZVXIiLimmuuiRYtWqzVdn/6059i2bJl0bhx47j44osrHXPZZZdFo0aNYunSpfH4449XOqZVq1Zx9tlnV7rupZdeig8//DDatGkTZ555ZpW19O/fPyIqfg5r47TTTouIiLFjx8aECRNWWf/HP/4xIiL23HPP6N69e355IT/j1TniiCMi4uvrdM6cObPKcRdddFE0adJkleUHHnhg7LXXXhER8fDDD1e5/WWXXRZFRat+5R8wYEBssskmq92+qKgoBg0aVOm6t956K9599938azRo0GCVMUcddVTstttuERHx0EMPVVljZXbddddo165dlJeXx/jx4yusu/vuuyMiYvvtt49zzz13nfa70mWXXVbp8r59+0ZExIQJE+LLL7+s1r4BgJolvAQA6rRXX301Ir6+cUeHDh2qfNxzzz0RETF58uT8trvttlu0adMmZsyYEbvvvnvcfvvt8d5771V5I5WadMABB0Tjxo3jX//6V/Tu3TvuuuuumDhx4mq3GTNmTERENGjQIA477LC1fq3XX389IiJ69eoVZWVllY5p1apV7LrrrhXGf1uvXr2ipKSk0nUrP4f58+dHp06dqvwczjrrrIio+Dmsje985zux+eabR0TE/fffX2HdkiVL4pFHHomI/wtHVyrkZ/zFF1/EjTfeGH369Il27dpFSUlJ/kY8TZs2zY+bNm1alfvYf//917iuqs+ruLg4evfuXem6oqKi/A15qtq+e/fu0a5du0rXrdymuLg4+vTpU2WNBx10UJWvsWTJkrjzzjvj4IMPjk6dOkWjRo0q3Pzqs88+i4hV+7Py9+DII4+s8nVXZ6ONNqoQcH9Tp06d8j+7cQ8AZENxoQsAAFgf06dPj4iI8vLytZpZ983ZVC1btoyHHnooTj755PjPf/4TP/rRjyIiokWLFrHPPvvE8ccfHyeccEI0bNiwxuvefPPN4w9/+EOcc845MXbs2Pydkdu2bRv77bdfnHzyyXH00Ufn7zgdEfkZem3atInS0tK1fq2VIdDGG2+82nErZ+KtHP9tVQVZEf/3OSxdujQ+/fTTNdb01VdfrXHMt5122mlxxRVXxP3331/hjtfPPvtszJkzJ0pKSuKEE06osE2hPuMPPvggDjjggArBW9OmTaNly5b5mZAr+7S643Z1n9nKdVV9Xm3atIlGjRpVe/vVfd4rt1nTa1R1TH322Wdx4IEHxttvv51f1rhx42jTpk1+Fufnn38eK1asWKU/K38PunTpUuXrrk7z5s2rXFdc/H9/Hq3N3c4BgPSZeQkA1GkrT7keNGhQJF9fz3u1j9GjR1fY/sADD4yJEyfGfffdF6effnpsscUWMX/+/Hj66afjtNNOi5122ik++eSTVGo/5ZRTYvLkyXHnnXfGCSecEJ07d47PP/88Hn300TjmmGOiT58+sWDBgvz4bwaZhVDZqcErrfwcdt9997X6HKoz83HlqeMfffRRfqZnxP+dMn7kkUdGq1atVtmuEJ/xgAEDYtq0abHZZpvFY489FrNnz47y8vL47LPPYubMmRVerzZmgVbH6j7v9XXBBRfE22+/Ha1bt4677747ZsyYEV999VV8/vnnMXPmzJg5c2Z+FuS3+1Po3wMAoHYJLwGAOq1Dhw4Rse6nIX9TaWlpnHbaaTFs2LD44IMPYtq0aXH99ddH48aNK8zWS8NGG20UZ599djz88MMxZcqUmDBhQlx88cWRy+Xi5ZdfrjDDcOV7nTVr1jpdv3HlDLrVnZ78zfWrm3FXlZr4HNakW7du8Z3vfCci/i+wnDt3bvz1r3+NiFVPGf+m2vyMp06dmj+1+aGHHorvfe97sdFGG1UYs7rrXH7T6kLVleuq+rxmzZoVS5Ysqfb2q7Nym1mzZsXixYurHFfZMbV06dL485//HBERt99+ewwYMCB//Ky0fPnymDVrVqX7rI1jDQDIDuElAJBZK0+vXd3MtJVh1vPPPx+LFi2qkdfdeOON46c//WlceOGFERHx3HPPrXNd1bX55pvHtddeGyeffPIqr73yBi3Lly+Pv/3tb2u9z29ey3L+/PmVjpk3b16Fa2Ouq5Wfw8yZM6u8hmJNWBlQPvroo7FkyZJ49NFHY/HixdGmTZs4/PDD13o/a/qM18fUqVPzP++0006Vjnn++efXal+jRo1a47qVn++3LVu2LF5++eVK1yVJEi+++OJqt1+dldssW7Ysv5/KrHyf3zymPv/88/zvalX9eeWVV6r8fV75e/D000+vc90AQN0jvAQAMmvlzWXmzZtX5Zj/+Z//ieLi4pg1a1YMGTJktftbsmRJLFy4MP98dTPGIiJ/l+dv3615bepak+q8dvfu3WOfffaJiIhLL720winlq9OvX78oLi6ORYsWxfXXX1/pmGuuuSYWL14cDRs2jH79+q3Vfr9pv/32y98E5YILLljtjL+IiDlz5qzza0REHH/88dGoUaOYO3duPP300/kZmCeeeGKl162s7me8Pr55F/h///vfq6z/4osv4uqrr16rfd10002VhnijRo3Knzr/7et8ftPPf/7zWLFixSrL77333nzIurrtq9KjR4/YdtttIyLi6quvzl824JueffbZGDduXEREnHTSSfnlZWVl+VO/K+vPsmXL4mc/+1mVr/2///u/ERHxn//8J37zm9+sc+0AQN0ivAQAMmv77bePiK9DkKpOn918881j8ODBERFxww03RP/+/eOdd97Jr1+2bFmMHz8+hg4dGt27d4/x48fn111//fVx2GGHxR//+McKp1QvXrw4Hn300bjxxhsjIuKII46otK7//Oc/+dOD19V5550Xxx9/fPzpT3+qcDOThQsXxp133hn33Xdfpa996623RuPGjePDDz+M73znOzF8+PD8jUWWL18er732WpxzzjkVZvZtvPHG8eMf/zgiIq677roYMmRIPnidN29eDB48OP9eBw4cGB07dlzn91NcXBx33nlnFBcXxyuvvBL77LNPjBw5ssJNTz7++OO48847o1evXnHHHXes82tEfH0DnqOOOioiIq699tp8gLfyepjfVt3PeNKkSfm7Xn/z1P21sc0228Smm24aEV+H62+88UZ+3dixY2Pfffdd6ztZz5gxI4444oh4//33I+Lr4/nxxx+P733vexERsfPOO8d3v/vdSrdt2rRpvPLKK3HyySfn3/uiRYvid7/7XZx77rkREdG3b9/Ybbfd1un9rbQyCH/55Zfje9/7XkycODEivj4t/IEHHsgHlnvttVccc8wx+e2aNWuWn6k7cODAeOGFF/IB6zvvvBOHH354vP7661XelGq//faLE088MSK+/j265JJLKny2s2bNij/84Q/5kBMAqOMSAICM+uCDD5LGjRsnEZEUFRUl7du3T7p06ZJ06dIlmTp1an7cihUrksGDBye5XC6JiCQikiZNmiStW7dOGjRokF8WEckrr7yS327IkCEV1jVp0iTZaKONKuxnm222SWbMmFGhrqVLlyZbbbVVfkyrVq3ydT322GNr9d5OP/30Cq/drFmzpGXLlhWW7b333snChQtX2XbEiBFJixYt8uMaNmyYtG7dOmnYsGF+2RNPPFFhm8WLFyfHH398fn1RUVHSqlWrpKioKL/spJNOSpYsWVJlraeffvoa39cTTzyRNG/efJXaGjVqVOG9XX311WvVp8o89dRTFfa19dZbVzm2up/xxIkT8+uHDBmyzjU+/fTTSXFxcX4fTZs2TZo2bZpERFJaWpo8//zz+XWjRo2qsO2oUaPy65588sn859qiRYsKfdx0002Tjz/+eJXXvueee5KISLp06ZLcfvvt+ffaqlWrCsdIz549k1mzZlXZsz59+qzxff7yl7+s0MuWLVsmJSUl+ec77LBD8sknn6yy3euvv56UlpbmxzVq1Ch/3BQXFyf33Xdf0qVLlyQiknvuuWeV7cvLy5Pvfve7FT7bsrKyCr8XPXv2rLIvVfnm5z5x4sQ1vn8AIH1mXgIAmbXFFlvEqFGj4uijj462bdvG7NmzY/LkyTF58uRYtmxZflwul4uhQ4fGW2+9FT/4wQ9im222iQYNGsT8+fOjVatWsddee8VFF10UY8aMyc/4ioj4/ve/H7/73e/ipJNOiu233z6aNm0aCxYsiFatWkXv3r3jlltuiTfffHOVm4kUFxfHyJEj48wzz4yuXbtGeXl5vq5vnpa+OoMHD47bbrstjj322Nh6662juLg4Fi5cGO3atYuDDjoo7r777hg9enSls88OPvjg+PDDD+NnP/tZ7LTTTtGkSZMoLy+PjTfeOA455JD47W9/G/vvv3+FbUpKSuKRRx6Jxx9/PA477LBo3bp1fPHFF9G6des47LDD4s9//nM8+OCDlZ56vS6OOeaYmDBhQgwZMiR22223aNasWcybNy8aNWoUPXv2jDPPPDOeeOKJuOiii6r9Gocddli0bds2/7yqWZcR1f+M19eRRx4ZL730UhxxxBHRsmXLWLZsWbRp0yYGDBgQb7zxRhxwwAFrtZ++ffvGmDFjol+/ftG4ceNIkiS6du0aF154YYwfPz66du262u1/+MMfxogRI+LQQw+NoqKiKCoqiq233jqGDh0aY8eOjdatW6/X+7zgggvi9ddfj1NPPTU6d+4cX375ZTRp0iT22GOPuPnmm+O1117L3zX8m3bZZZf45z//Gccff3y0adMmVqxYEc2bN4/jjz8+xowZs9rPNOLrWaV/+tOf4plnnoljjz02OnXqFIsWLYri4uLo0aNHnH/++fG73/1uvd4bAJANuSRJ4UrzAABAtYwePTr222+/iKjeTaGGDRsWAwYMiC5dusSkSZNquDoAgNpl5iUAAAAAkEnCSwAAAAAgk4SXAAAAAEAmCS8BAAAAgExywx4AAAAAIJPMvAQAAAAAMqm40AXURStWrIjp06dH8+bNI5fLFbocAAAAAKhTkiSJL774Ijp16hRFRVXPrxReVsP06dOjc+fOhS4DAAAAAOq0qVOnxiabbFLleuFlNTRv3jwivm5uWVlZgasBAAAAgLplwYIF0blz53zOVhXhZTWsPFW8rKxMeAkAAAAA1bSmSzK6YQ8AAAAAkEnCSwAAAAAgk4SXAAAAAEAmCS8BAAAAgEwSXgIAAAAAmSS8BAAAAAAySXgJAAAAAGSS8BIAAAAAyCThJQAAAACQScJLAAAAACCThJcAAAAAQCYJLwEAAACATBJeAgAAAACZJLwEAAAAADJJeAkAAAAAZJLwEgAAAADIJOElAAAAAJBJwksAAAAAIJOElwAAAABAJgkvAQAAAIBMEl4CAAAAAJkkvAQAAAAAMkl4CQAAAABkkvASAAAAAMgk4SUAAAAAkEnCSwAAAAAgk4SXAAAAAEAmCS8BAAAAgEwSXgIAAAAAmSS8BAAAADZ45eXlkcvlIpfLRXl5ecH2AVQkvAQAAACoZ2oqSM1KqFvf3g9rT3gJAAAAkCHCsQ2Dz3ntCC8BAAAAgEwSXgIAAAAAmSS8BAAAAAAySXgJAAAAdYSbjQAbGuElAAAAsM6yFKQKZKH+El4CAAAAAJkkvAQAAAAAMkl4CQAAAABkkvASAAAAAMgk4SUAAADUAjeVAVh3wksAAABYDaEjQOEILwEAAKi3BI8AdZvwEgAAgMwROgIQIbwEAAAAADJKeAkAAECNMmsSgJoivAQAAAAAMkl4CQAAAABkkvASAAAAAMgk4SUAAAAAkEnCSwAAAAAgk4SXAAAAAEAmCS8BAAAAgEwSXgIAAAAAmSS8BAAAAAAySXgJAAAAAGSS8BIAAAAAyCThJQAAAACQScJLAAAAACCThJcAAADklZeXRy6Xi1wuF+Xl5YUuB4ANnPASAAAAAMgk4SUAAAAAkEnCSwAAgHrA6d4A1EfCSwAAAAAgk4SXAAAAAEAmFRe6AAAAAADqh80u/usqy1YsWZT/eZvBw6OopPEqYyZdd0SN7qM+1rKhMvMSAACgwFyvEgAqJ7wEAAAAADLJaeMAAADABqW+nU6cpVqgppl5CQAAAABkkvASAAAAAMgk4SUAAAAAkEnCSwAAgGpyl3AASJcb9gAAAACpc1MZoDqElwAAAJBB7kIN4LRxAAAAACCjhJcAAAAAQCYJLwEAAACATBJeAgAAAACZJLwEAAA2SOXl5ZHL5SKXy0V5eXmhywEAKiG8BAAAAAAySXgJAAAAAGRScaELAAAAgPpms4v/usqyFUsW5X/eZvDwKCppvMqYSdcdkWpdAHWN8BIAAAD+f0JHgGwRXgIAAFAvCB4B6h/XvAQAAAAAMsnMSwAAAArKjEkAqlIvwstf//rXceONN8bMmTOjZ8+e8atf/Sp22223SscOGzYsBgwYUGFZo0aNYtGiRZWOBwAAoGqCRwDSVOdPG3/kkUdi4MCBMWTIkHjzzTejZ8+eccghh8Rnn31W5TZlZWUxY8aM/GPy5Mm1WDEAAAAAsDbqfHj5y1/+Ms4666wYMGBAbLvttnHnnXdG06ZN4+67765ym1wuFx06dMg/2rdvX4sVAwAAAABro06Hl0uWLIk33ngjDjzwwPyyoqKiOPDAA2Ps2LFVbrdw4cLo0qVLdO7cOfr27Rv/+c9/aqNcAAAAAGAd1OnwctasWbF8+fJVZk62b98+Zs6cWek2W221Vdx9993xl7/8Je6///5YsWJF7LXXXjFt2rQqX2fx4sWxYMGCCg8AAAAAIF11Orysjj333DP69+8fO+64Y/Tp0yf+/Oc/R9u2beO3v/1tldtce+210aJFi/yjc+fOtVgxbLjKy8sjl8tFLpeL8vLyQpcDAAAA1LI6HV62adMmGjRoEJ9++mmF5Z9++ml06NBhrfbRsGHD2GmnnWLChAlVjrnkkkti/vz5+cfUqVPXq27IMoEhAAAAkBV1OrwsKSmJXXbZJUaOHJlftmLFihg5cmTsueeea7WP5cuXx9tvvx0dO3asckyjRo2irKyswgNqksAQAAAAYFXFhS5gfQ0cODBOP/302HXXXWO33XaLW265JcrLy2PAgAEREdG/f//YeOON49prr42IiKFDh8Yee+wR3bt3j3nz5sWNN94YkydPjjPPPLOQb4M6rLy8PJo1axYRX98MqrS0tMAVAQAAANQPdT68POGEE+Lzzz+Pyy+/PGbOnBk77rhjDB8+PH8TnylTpkRR0f9NMJ07d26cddZZMXPmzGjVqlXssssuMWbMmNh2220L9RaoBoEhAAAAQP1X58PLiIjzzjsvzjvvvErXjR49usLzm2++OW6++eZaqAoAAAAAWB91+pqXAAAAAED9JbwEAAAAADKpXpw2DgAAwLrb7OK/rrJsxZJF+Z+3GTw8ikoarzJm0nVHpFoXwIagqKRxdBn0TKHLyDzhJQAAAAAbhJoIDIWOtUt4CQAAAEBqBIasD9e8BAAAAAAySXgJAAAAAGSS08YBAADqGDfaAWBDIbwEAIBvKS8vj2bNmkVExMKFC6O0tLTAFQGwIXF9R/g/wksAgA2coA4A6p+aCkAFqRSa8BIAMkaQBABQNwn6oOYJLwHqEKEWAACkQ/AI2eRu4wAAAABAJpl5CdRrZioCQLbU1L/NdfnfeHcKh5pn1iTUX8JLAADIsJoI6QSGQFYJHYE1EV4CAAAA60zwCNQG4SUAAABsQISOQF0ivASgWrJ06qBaAIANheAR2NC42zjAWigvL49cLhe5XC7Ky8sLXc56q2/vBwAAgPpJeAkAAAAAZJLwEgAAAADIJNe8BAAAWEubXfzXCs9XLFmU/3mbwcOjqKTxKttMuu6I1OsCgPrKzEsAgDoqS9evralaamI/9bEvAAAbKuElAAWVlT/ss1JHTaqP76k+8fkAAMCaCS8BaomggrooS7Pg6lstAADAmrnmJQAAANSCopLG0WXQM4UuA6BOEV4CAADAaggdAQrHaeMAAAAAQCaZeQkAAEC9ZdYkQN1m5iUAAAAAkElmXgIAAJA5ZkwCECG8BAAANgCbXfzXVZatWLIo//M2g4dHUUnjVcZMuu6IVOsCAFZPeAkAAECNMmsSgJrimpcAAAAAQCYJLwEAAACATBJeAgAAAACZJLwEAAAAADJJeAkAAAAAZJLwEgAAAADIJOElAAAAAJBJwksAAAAAIJOKC10AAABQP2128V9XWbZiyaL8z9sMHh5FJY1XGTPpuiNS2Q8AUPcILwEAoJ75dtgnMAQA6irhJQAAZITAEACgIuElAAAAeUUljaPLoGcKXQYARIQb9gAAAAAAGSW8BAAAAAAySXgJAAAAAGSS8BIAAAAAyCThJQAAAACQSe42DgAAUA+4SzgA9ZHwEgAAasBmF/91lWUrlizK/7zN4OFRVNJ4lTGTrjsi1boAAOoy4SUAABs0oSMAQHYJLwEAqLMEjwAA9ZvwEgCAgqhO8Ch0BADYsAgvAQA2IDUxU9FsRwAAaovwEgCol2oqYKuJ2YECQwAAqB7hJQAQEdkK2AR1AABAhPASAApK2AdARERRSePoMuiZQpcBAJkjvARggyMwBAAAqBuElwDUmiydlgwAAED2CS8BWCOBIQAAAIVQVOgCAAAAAAAqY+YlQEa5LiMAAAAbOuElQAoEhgAAALD+hJcA3yJ4BAAAgGxwzUsAAAAAIJOElwAAAABAJjltHAAAoJqKShpHl0HPFLoMAKi3hJcAAECtqamwT2gIABsG4SUAANRzAkMAoK4SXgL1hruEA1AfCQwBgA2ZG/YAAAAAAJkkvAQAAAAAMkl4CQAAAABkkvASAAAAAMgk4SUAAAAAkEnCSwAAAAAgk4SXAAAAAEAmCS8BAAAAgEwqLnQBAAAAhVBU0ji6DHqm0GUAAKshvAQAgJQIxwAA1o/TxgEAAACATDLzEgCAesVsRwCA+sPMSwAAAAAgk4SXAAAAAEAmOW0cqHHl5eXRrFmziIhYuHBhlJaWFrgiAOoKp3wDAPBNwksAANab0BEAgDQ4bRwAAAAAyCQzLwGADUZNzQ6sif2YqQgAAGsmvAQAUpWlwLC+0RMAAOo74SUAUCXhGAAAUEiueQkAAAAAZJKZlwBQT5k1CQAA1HXCSwAIQR8AAEAWOW0cAAAAAMgkMy8BAOBbzMYGAMgG4SXUI+Xl5dGsWbOIiFi4cGGUlpYWuCJYMwEBAAAAVXHaOAAAAACQScJLAAAAACCTnDYOADXIafAAAAA1R3gJALCBE7oDAJBVwksA6jzBCwAAQP3kmpcAAAAAQCaZeQlQS8wOBAAAgHUjvASgWoSxAAAApM1p4wAAAABAJpl5CQAZY1YrAADA14SXABsg4RgAAAB1gdPGAQAAAIBMEl4CAAAAAJkkvAQAAAAAMsk1LwHWgmtEAgAAQO0z8xIAAAAAyCThJRus8vLyyOVykcvlory8vNDlAAAAAPAtwksAAAAAIJNc8xKgDnHtTQAAADYkZl4CAAAAAJkkvAQAAAAAMqlehJe//vWvY7PNNovGjRvH7rvvHv/85z9XO/6xxx6LrbfeOho3bhw77LBDPPvss7VUKQAAAACwtup8ePnII4/EwIEDY8iQIfHmm29Gz54945BDDonPPvus0vFjxoyJk046Kf73f/83/vWvf8UxxxwTxxxzTLzzzju1XDkAAAAAsDp1Prz85S9/GWeddVYMGDAgtt1227jzzjujadOmcffdd1c6/tZbb41DDz00Lrroothmm23iqquuip133jluv/32Wq4cAAAAAFidOh1eLlmyJN5444048MAD88uKioriwAMPjLFjx1a6zdixYyuMj4g45JBDqhwPAAAAABRGcaELWB+zZs2K5cuXR/v27Sssb9++fbz33nuVbjNz5sxKx8+cObPK11m8eHEsXrw4/3zBggXrUTUAAAAAsDZySZIkhS6iuqZPnx4bb7xxjBkzJvbcc8/88p/+9Kfx4osvxrhx41bZpqSkJO6999446aST8svuuOOOuPLKK+PTTz+t9HWuuOKKuPLKK1dZPn/+/CgrK6uBd5I9m13812ptN+m6I2p8P5XtY8WSRTH15u9FRETnCx6PopLGqe9DLdl/P5UpLy+PZs2aRUTEwoULo7S0dLXjAQAAgPQtWLAgWrRoscZ8rU6fNt6mTZto0KDBKqHjp59+Gh06dKh0mw4dOqzT+IiISy65JObPn59/TJ06df2LBwAAAABWq06HlyUlJbHLLrvEyJEj88tWrFgRI0eOrDAT85v23HPPCuMjIp577rkqx0dENGrUKMrKyio8AAAAAIB01elrXkZEDBw4ME4//fTYddddY7fddotbbrklysvLY8CAARER0b9//9h4443j2muvjYiIH//4x9GnT5/4xS9+EUcccUQ8/PDD8frrr8fvfve7Qr4NAAAAAOBb6nx4ecIJJ8Tnn38el19+ecycOTN23HHHGD58eP6mPFOmTImiov+bYLrXXnvFgw8+GJdddllceumlscUWW8STTz4Z22+/faHeAgAAAABQiTofXkZEnHfeeXHeeedVum706NGrLDvuuOPiuOOOS7kqAAAAAGB91IvwEqAqpaWlkSRJocsAAAAAqqFO37AHAAAAAKi/hJcAAAAAQCYJLwEAAACATBJeAgAAAACZJLwEAAAAADJJeAkAAAAAZJLwEgAAAADIJOElAAAAAJBJwksAAAAAIJOKC10AQETEpOuOWGVZeXl5NLv565/fverQKC0treWqAAAAgEISXgLrRegIAAAApMVp4wAAAABAJgkvAQAAAIBMEl4CAAAAAJkkvKTWrViyKCZff2RMvv7IWLFkUaHLAQAAACCjhJcAAAAAQCYJLwEAAACATBJeAgAAAACZJLwEAAAAADKpuNAFAIUz6bojVllWXl4ezW7++ud3rzo0SktLa7kqAAAAgK+ZeQkAAAAAZJLwEgAAAADIJOElAAAAAJBJwksAAAAAIJOElwAAAABAJgkvAQAAAIBMEl4CAAAAAJkkvAQAAAAAMkl4CQAAAABkUnGhCwCqZ9J1R6yyrLy8PJrd/PXP7151aJSWltZyVQAAAAA1x8xLAAAAACCTzLyEWmbGJAAAAMDaMfMSAAAAAMgk4SUAAAAAkEnCSwAAAAAgk4SXAAAAAEAmCS8BAAAAgEwSXgIAAAAAmSS8BAAAAAAySXgJAAAAAGSS8BIAAAAAyCThJQAAAACQScJLAAAAACCThJcAAAAAQCYJLwEAAACATBJeAgAAAACZJLwEAAAAADJJeAkAAAAAZJLwEgAAAADIpOJCFwB1yaTrjlhlWXl5eTS7+euf373q0CgtLa3lqgAAAADqJzMvAQAAAIBMEl4CAAAAAJkkvAQAAAAAMkl4CQAAAABkkvASAAAAAMgk4SUAAAAAkEnCSwAAAAAgk4SXAAAAAEAmFRe6AKgNk647YpVl5eXl0ezmr39+96pDo7S0tJarAgAAAGB11mvm5RNPPBHHH3989OjRI7p3755f/t5778UNN9wQn3zyyXoXCAAAAABsmKo183LFihVx0kknxeOPPx4REU2aNImvvvoqv75Vq1bxs5/9LJYvXx6XXHJJzVQKAAAAAGxQqjXz8uabb47HHnsszj777Jg7d278v//3/yqsb9++ffTu3Tv++te/1kiRAAAAAMCGp1rh5bBhw6JXr15xxx13RFlZWeRyuVXGdO/ePSZOnLjeBQIAAAAAG6ZqhZcTJkyI3r17r3ZM69atY/bs2dUqCgAAAACgWte8bNKkScyfP3+1YyZPnhwtW7aszu6BOq60tDSSJCl0GQAAAEAdV62ZlzvttFOMGDEiFi1aVOn6OXPmxPDhw2OPPfZYr+IAAAAAgA1XtcLL888/P6ZNmxb9+vWLadOmVVj30UcfxbHHHhvz58+P888/v0aKBAAAAAA2PNU6bbxv374xaNCguP7666NLly5RWloaERHt2rWL2bNnR5IkMXjw4Nh///1rtFgAAAAAYMNRrZmXERHXXnttjBgxIo488sho2rRpNGjQIFasWBGHHnpo/O1vf4srr7yyJusEAAAAADYw1Zp5OWXKlCgpKYmDDjooDjrooJquCQAAAACgejMvu3btGpdeemlN1wIAAAAAkFet8LJVq1bRunXrmq4FAAAAACCvWuFl7969Y9y4cTVdCwAAAABAXrXCy2uvvTbeeuutGDp0aCxbtqymawIAAAAAqN4Ne2644YbYYYcd4sorr4zf/va30bNnz2jfvn3kcrkK43K5XNx11101UigAAAAAsGGpVng5bNiw/M8zZsyIGTNmVDpOeAkAAAAAVFe1wsuJEyfWdB0AAAAAABVUK7zs0qVLTdcBAAAAAFBBtW7YAwAAAACQtvUKLx944IE46KCDom3bttGoUaNo27ZtHHzwwfHggw/WVH0AAAAAwAaqWqeNL1++PI4//vh48sknI0mSaNy4cXTq1Ck+/fTTeP7552PkyJHxpz/9KR577LEoKjK5k/Uz6bojVllWXl4ezW7++ud3rzo0SktLa7kqAAAAANJWrWTxtttuiyeeeCK+853vxKuvvhpffvllTJw4Mb788ssYM2ZM7L333vHkk0/Gr371q5quFwAAAADYQFQrvLz33ntjyy23jJEjR8aee+5ZYd0ee+wRzz//fGy55ZZxzz331EiRAAAAAMCGp1rh5QcffBBHH310NGzYsNL1DRs2jKOOOio++OCD9SoOAAAAANhwVSu8LCkpifLy8tWOKS8vj5KSkmoVBQAAAABQrfByp512ikcffTSmT59e6foZM2bEo48+GjvvvPN6FQcAAAAAbLiqFV4OHDgwZs+eHbvuumv84he/iNdffz2mTp0ar7/+etx0002xyy67xJw5c2LgwIE1XS8AAAAAsIEors5GRx11VNx0001x8cUXx09/+tMK65IkieLi4rjpppviyCOPrJEiAQAAAIANT7XCy4ivZ18ec8wx8cADD8T48eNjwYIFUVZWFjvttFOcfPLJ0a1bt5qsEwAAAADYwFQ7vIyI6NatWwwePLimagEAAAAAyKvWNS8BAAAAANJWrfDyF7/4RbRp06bKu41Pnz492rZtG7fddtt6FQcAAAAAbLiqFV4+9thj0bNnz+jUqVOl6zt16hQ77rhjPPzww+tVHLBuSktLI0mSSJIkSktLC10OAAAAwHqpVnj54YcfxnbbbbfaMdttt118+OGH1SoKAAAAAKBa4eVXX321xlldjRs3joULF1arKAAAAACAaoWXm266aYwZM2a1Y8aOHRubbLJJtYoCAAAAAKhWeHnEEUfEK6+8EnfffXel6//whz/EK6+8EkcdddR6FQcAAAAAbLiKq7PRxRdfHA899FCcddZZcf/998dBBx0UG2+8cXzyySfx97//PV566aXo1KlTXHLJJTVdLwAAAACwgahWeNm2bdsYNWpUnHrqqTF69OgYPXp05HK5SJIkIiJ69eoVDzzwQLRt27ZGiwUAAAAANhzVCi8jIrbaaqt47bXX4rXXXot//vOfMX/+/GjZsmXstttuseuuu9ZkjQAAAADABqja4eVKvXr1il69etVELQAAAAAAeesdXn7TpEmT4rnnnovGjRvHscceG82aNavJ3QMAAAAAG5Bq3W38mmuuia5du8bcuXPzy0aPHh3bb799nHPOOXHGGWfEzjvvHHPmzKmxQgEAAACADUu1wssnn3wyNttss2jVqlV+2aBBg2LFihVx5ZVXxrnnnhsTJkyIW265pabqBAAAAAA2MNUKLydNmhTbbrtt/vn06dPjtddeix/+8Idx2WWXxe233x4HHHBAPPHEEzVWKAAAAACwYalWeLlgwYJo2bJl/vlLL70UuVwujjrqqPyynXfeOaZMmbLeBQIAAAAAG6ZqhZft27ePyZMn558/99xz0ahRo9h9993zyxYtWhS5XG79KwQAAAAANkjVutt4r1694i9/+Us888wz0bhx43jkkUdiv/32i0aNGuXHTJw4MTp16lRjhQIAAAAAG5Zqzby89NJLY9myZdG3b9845JBDYtGiRXHppZfm1y9evDheeumlCjMxAQAAAADWRbVmXu68887xj3/8I/74xz9GRMTxxx8fu+22W379v/71r9hvv/3i5JNPrpkqAQAAAIANTrXCy4iInj17Rs+ePStdt8cee7jTOAAAAACwXqodXsLamHTdEassKy8vj2Y3f/3zu1cdGqWlpbVcFQAAAAB1QbWueQkAAAAAkDbhJQAAAACQScJL1tqKJYti8vVHxuTrj4wVSxYVuhwAAAAA6jnhJQAAAACQScJLAAAAACCThJcAAAAAQCYVr8/GM2fOjDfeeCPmzZsXy5cvr3RM//791+clVmvOnDnxox/9KJ5++ukoKiqKfv36xa233hrNmjWrcpt99903XnzxxQrLzj777LjzzjtTqxMAAAAAWHfVCi8XLVoUZ511Vjz88MOxYsWKSsckSRK5XC7V8PKUU06JGTNmxHPPPRdLly6NAQMGxPe///148MEHV7vdWWedFUOHDs0/b9q0aWo1AgAAAADVU63w8uKLL44HHnggttxyyzjppJNik002ieLi9ZrEuc7efffdGD58eLz22mux6667RkTEr371qzj88MPjpptuik6dOlW5bdOmTaNDhw61VSoAAAAAUA3VShwfffTR2HbbbeONN96IRo0a1XRNa2Xs2LHRsmXLfHAZEXHggQdGUVFRjBs3Lo499tgqt33ggQfi/vvvjw4dOsRRRx0VgwcPXu3sy8WLF8fixYvzzxcsWFAzbwIAAAAAqFK1wst58+bFySefXLDgMuLr6222a9euwrLi4uLYaKONYubMmVVud/LJJ0eXLl2iU6dO8dZbb8WgQYPi/fffjz//+c9VbnPttdfGlVdeWWO1AwAAAABrVq3wcquttopPP/20pmuJiK9PSb/++utXO+bdd9+t9v6///3v53/eYYcdomPHjnHAAQfERx99FJtvvnml21xyySUxcODA/PMFCxZE586dq10DAAAAALBm1QovL7roojjnnHNiwoQJ0b179xot6MILL4wzzjhjtWO6desWHTp0iM8++6zC8mXLlsWcOXPW6XqWu+++e0RETJgwocrwslGjRgWdZQoAAAAAG6JqhZebbLJJHHLIIbHbbrvFT37yk9h5552jrKys0rH77LPPOu27bdu20bZt2zWO23PPPWPevHnxxhtvxC677BIRES+88EKsWLEiH0iujfHjx0dERMeOHdepTgAAAAAgXdUKL/fdd9/I5XKRJElcccUVkcvlqhy7fPnyahe3Ottss00ceuihcdZZZ8Wdd94ZS5cujfPOOy9OPPHE/J3GP/nkkzjggAPivvvui9122y0++uijePDBB+Pwww+P1q1bx1tvvRUXXHBB7LPPPtGjR49U6gQAAAAAqqda4eXll1++2sCytjzwwANx3nnnxQEHHBBFRUXRr1+/uO222/Lrly5dGu+//358+eWXERFRUlISzz//fNxyyy1RXl4enTt3jn79+sVll11WqLcAAAAAAFShWuHlFVdcUcNlVM9GG20UDz74YJXrN9tss0iSJP+8c+fO8eKLL9ZGaQAAAADAeioqdAEAAAAAAJURXgIAAAAAmVTt8HLq1Klx9tlnx+abbx5NmjSJBg0arPIoLq7WWekAAAAAANW75uXHH38cu+++e8ydOze22267WLx4cXTp0iUaN24cH3/8cSxdujR69uwZLVu2rOFyAQAAAIANRbVmXl555ZUxf/78GDlyZPz73/+OiIgBAwbEu+++G5MmTYqjjz46ysvL4/HHH6/RYqEmlZaWRpIkkSRJlJaWFrocAAAAAL6lWuHl888/H4cffnj06dMnv2zlXb07duwYjzzySEREXHrppTVQIgAAAACwIapWeDlr1qzYeuut88+Li4vjyy+/zD9v1KhRHHTQQfHMM8+sf4UAAAAAwAapWuFlmzZtory8vMLzSZMmVRhTXFwc8+bNW5/aAAAAAIANWLXCyy222CI++uij/PPddtstRowYER9//HFERHz++efx+OOPx+abb14zVQIAAAAAG5xqhZeHHXZYjBo1Kj+z8ic/+Ul88cUX0aNHj+jVq1dsueWWMXPmzPjRj35Uk7UCAAAAABuQaoWX5557bowePToaNGgQERH77rtvPPzww9GlS5d45513on379nHbbbfFWWedVaPFAgAAAAAbjuLqbFRWVha77757hWXHHXdcHHfccTVSFAAAAABAtWZeAgAAAACkbb3CyyeeeCKOP/746NGjR3Tv3j2//L333osbbrghPvnkk/UuEAAAAADYMFXrtPEVK1bESSedFI8//nhERDRp0iS++uqr/PpWrVrFz372s1i+fHlccsklNVMpAAAAALBBqdbMy5tvvjkee+yxOPvss2Pu3Lnx//7f/6uwvn379tG7d+/461//WiNFAgAAAAAbnmqFl8OGDYtevXrFHXfcEWVlZZHL5VYZ071795g4ceJ6FwgAAAAAbJiqFV5OmDAhevfuvdoxrVu3jtmzZ1erKAAAAACAaoWXTZo0ifnz5692zOTJk6Nly5bV2T0AAAAAQPXCy5122ilGjBgRixYtqnT9nDlzYvjw4bHHHnusV3EAAAAAwIarWuHl+eefH9OmTYt+/frFtGnTKqz76KOP4thjj4358+fH+eefXyNFAgAAAAAbnuLqbNS3b98YNGhQXH/99dGlS5coLS2NiIh27drF7NmzI0mSGDx4cOy///41WiwAAAAAsOGo1szLiIhrr702RowYEUceeWQ0bdo0GjRoECtWrIhDDz00/va3v8WVV15Zk3UCAAAAABuYas28XOmggw6Kgw46qKZqAQAAAADIq/bMSwAAAACANK3XzMvly5fHtGnTYvr06bF06dJKx+yzzz7r8xIAAAAAwAaqWuHlihUr4pprrolbb7015syZs9qxy5cvr1ZhAAAAAMCGrVrh5SWXXBI33nhjtGvXLgYMGBAdO3aM4uL1msQJsIrS0tJIkqTQZQAAAAAFUq3E8d57742tttoqXnvttWjWrFlN1wQAAAAAUL0b9ixcuDCOOOIIwSUAAAAAkJpqhZc9evSI6dOn13QtAAAAAAB51Qovf/azn8WTTz4Zb775Zk3XAwAAAAAQEdW85uURRxwRw4YNi8MOOyyOPvro6NmzZ5SVlVU6tn///utVIAAAAACwYapWeLl48eJ4+umnY9asWXHXXXdFREQul6swJkmSyOVywksAAAAAoFqqFV4OHDgwHnjggejRo0d873vfi44dO0ZxcbV2BQAAAABQqWoljo899ljssssuMXbsWKElAAAAAJCKat2wZ9GiRbHffvsJLgEAAACA1FQrvNxll11iwoQJNV0LAAAAAEBetcLLa665JoYPHx7PPPNMTdcDAAAAABAR1bzm5XPPPRf77rtv9O3bN/bff//o2bNnlJWVrTIul8vF4MGD17tIAAAAAGDDU63w8oorrsj/PHLkyBg5cmSl44SXAAAAAEB1VSu8HDVqVE3XAQAAAABQQbXCyz59+tR0HQAAAAAAFVTrhj0AAAAAAGkTXgIAAAAAmVSt08aB+qu0tDSSJCl0GQAAAABmXgIAAAAA2SS8BAAAAAAySXgJAAAAAGSS8BIAAAAAyCThJQAAAACQScJLAAAAACCThJcAAAAAQCYJLwEAAACATBJeAgAAAACZJLwEAAAAADJJeAkAAAAAZJLwEgAAAADIJOElAAAAAJBJwksAAAAAIJOElwAAAABAJgkvAQAAAIBMEl4CAAAAAJkkvAQAAAAAMkl4CQAAAABkkvASAAAAAMgk4SUAAAAAkEnCSwAAAAAgk4SXAAAAAEAmFRe6ACCitLQ0kiQpdBkAAAAAmWLmJQAAAACQScJLAAAAACCThJcAAAAAQCYJLwEAAACATBJeAgAAAACZJLwEAAAAADJJeAkAAAAAZJLwEgAAAADIJOElAAAAAJBJxYUugA1PaWlpJElS6DIAAAAAyDgzLwEAAACATBJeAgAAAACZJLwEAAAAADJJeAkAAAAAZJLwEgAAAADIJOElAAAAAJBJwksAAAAAIJOElwAAAABAJgkvAQAAAIBMEl4CAAAAAJkkvAQAAAAAMkl4CQAAAABkkvASAAAAAMgk4SUAAAAAkEnCSwAAAAAgk4SXAAAAAEAmCS8BAAAAgEwSXgIAAAAAmSS8BAAAAAAySXgJAAAAAGSS8BIAAAAAyCThJQAAAACQScJLAAAAACCTigtdANR1paWlkSRJocsAAAAAqHfMvAQAAAAAMkl4CQAAAABkkvASAAAAAMgk4SUAAAAAkEnCSwAAAAAgk4SXAAAAAEAmCS8BAAAAgEwSXgIAAAAAmSS8BAAAAAAySXgJAAAAAGSS8BIAAAAAyCThJQAAAACQScJLAAAAACCThJcAAAAAQCYJLwEAAACATKrT4eXPf/7z2GuvvaJp06bRsmXLtdomSZK4/PLLo2PHjtGkSZM48MAD48MPP0y3UAAAAABgndXp8HLJkiVx3HHHxbnnnrvW29xwww1x2223xZ133hnjxo2L0tLSOOSQQ2LRokUpVgoAAAAArKviQhewPq688sqIiBg2bNhajU+SJG655Za47LLLom/fvhERcd9990X79u3jySefjBNPPDGtUgEAAACAdVSnZ16uq4kTJ8bMmTPjwAMPzC9r0aJF7L777jF27Ngqt1u8eHEsWLCgwgMAAAAASNcGFV7OnDkzIiLat29fYXn79u3z6ypz7bXXRosWLfKPzp07p1onAAAAAJDB8PLiiy+OXC632sd7771XqzVdcsklMX/+/Pxj6tSptfr6AAAAALAhytw1Ly+88MI444wzVjumW7du1dp3hw4dIiLi008/jY4dO+aXf/rpp7HjjjtWuV2jRo2iUaNG1XpNAAAAAKB6Mhdetm3bNtq2bZvKvrt27RodOnSIkSNH5sPKBQsWxLhx49bpjuUAAAAAQPoyd9r4upgyZUqMHz8+pkyZEsuXL4/x48fH+PHjY+HChfkxW2+9dTzxxBMREZHL5eInP/lJXH311fHUU0/F22+/Hf37949OnTrFMcccU6B3AQAAAABUJnMzL9fF5ZdfHvfee2/++U477RQREaNGjYp99903IiLef//9mD9/fn7MT3/60ygvL4/vf//7MW/evNh7771j+PDh0bhx41qtHQAAAABYvTodXg4bNiyGDRu22jFJklR4nsvlYujQoTF06NAUKwMAAAAA1ledPm0cAAAAAKi/hJcAAAAAQCYJLwEAAACATBJeAgAAAACZJLwEAAAAADJJeAkAAAAAZJLwEgAAAADIJOElAAAAAJBJwksAAAAAIJOElwAAAABAJgkvAQAAAIBMEl4CAAAAAJmUS5IkKXQRdc2CBQuiRYsWMX/+/CgrKyt0ObWmvLw8mjVrFhERCxcujNLSUrUAAAAAsM7WNl8z8xIAAAAAyCThJQAAAACQScJLAAAAACCThJcAAAAAQCYJLwEAAACATBJeAgAAAACZJLwEAAAAADJJeAkAAAAAZJLwEgAAAADIJOElAAAAAJBJwksAAAAAIJOElwAAAABAJgkvAQAAAIBMEl4CAAAAAJkkvAQAAAAAMkl4CQAAAABkkvASAAAAAMgk4SUAAAAAkEnCSwAAAAAgk4SXAAAAAEAmFRe6AKiO0tLSSJKk0GUAAAAAkCIzLwEAAACATBJeAgAAAACZJLwEAAAAADJJeAkAAAAAZJLwEgAAAADIJOElAAAAAJBJwksAAAAAIJOElwAAAABAJgkvAQAAAIBMEl4CAAAAAJkkvAQAAAAAMkl4CQAAAABkkvASAAAAAMgk4SUAAAAAkEnCSwAAAAAgk4SXAAAAAEAmCS8BAAAAgEwSXgIAAAAAmSS8BAAAAAAySXgJAAAAAGSS8BIAAAAAyCThJQAAAACQScJLAAAAACCThJcAAAAAQCYJLwEAAACATBJeAgAAAACZJLwEAAAAADJJeAkAAAAAZJLwEgAAAADIJOElAAAAAJBJwksAAAAAIJOElwAAAABAJgkvAQAAAIBMEl4CAAAAAJkkvAQAAAAAMkl4CQAAAABkkvASAAAAAMgk4SUAAAAAkEnCSwAAAAAgk4SXAAAAAEAmCS8BAAAAgEwSXgIAAAAAmSS8BAAAAAAySXgJAAAAAGSS8BIAAAAAyCThJQAAAACQScJLAAAAACCThJcAAAAAQCYJLwEAAACATBJeAgAAAACZJLwEAAAAADJJeAkAAAAAZJLwEgAAAADIJOElAAAAAJBJwksAAAAAIJOElwAAAABAJgkvAQAAAIBMEl4CAAAAAJkkvAQAAAAAMkl4CQAAAABkkvASAAAAAMgk4SUAAAAAkEnCSwAAAAAgk4SXAAAAAEAmCS8BAAAAgEwSXgIAAAAAmSS8BAAAAAAySXgJAAAAAGSS8BIAAAAAyCThJQAAAACQScJLAAAAACCThJcAAAAAQCYJLwEAAACATBJeAgAAAACZJLwEAAAAADJJeAkAAAAAZJLwEgAAAADIJOElAAAAAJBJwksAAAAAIJOElwAAAABAJgkvAQAAAIBMEl4CAAAAAJkkvAQAAAAAMkl4CQAAAABkkvASAAAAAMikOh1e/vznP4+99tormjZtGi1btlyrbc4444zI5XIVHoceemi6hQIAAAAA66y40AWsjyVLlsRxxx0Xe+65Z9x1111rvd2hhx4a99xzT/55o0aN0igPAAAAAFgPdTq8vPLKKyMiYtiwYeu0XaNGjaJDhw4pVAQAAAAA1JQ6fdp4dY0ePTratWsXW221VZx77rkxe/bs1Y5fvHhxLFiwoMIDAAAAAEjXBhdeHnrooXHffffFyJEj4/rrr48XX3wxDjvssFi+fHmV21x77bXRokWL/KNz5861WDEAAAAAbJgyF15efPHFq9xQ59uP9957r9r7P/HEE+Poo4+OHXbYIY455ph45pln4rXXXovRo0dXuc0ll1wS8+fPzz+mTp1a7dcHAAAAANZO5q55eeGFF8YZZ5yx2jHdunWrsdfr1q1btGnTJiZMmBAHHHBApWMaNWrkpj4AAAAAUMsyF162bds22rZtW2uvN23atJg9e3Z07Nix1l4TAAAAAFizzJ02vi6mTJkS48ePjylTpsTy5ctj/PjxMX78+Fi4cGF+zNZbbx1PPPFEREQsXLgwLrroovjHP/4RkyZNipEjR0bfvn2je/fuccghhxTqbQAAAAAAlcjczMt1cfnll8e9996bf77TTjtFRMSoUaNi3333jYiI999/P+bPnx8REQ0aNIi33nor7r333pg3b1506tQpDj744LjqqqucFg4AAAAAGZNLkiQpdBF1zYIFC6JFixYxf/78KCsrK3Q5taa8vDyaNWsWEV/PYi0tLS1wRQAAAADURWubr9Xp08YBAAAAgPpLeAkAAAAAZJLwEgAAAADIJOElAAAAAJBJwksAAAAAIJOElwAAAABAJgkvAQAAAIBMEl4CAAAAAJkkvAQAAAAAMkl4CQAAAABkkvASAAAAAMgk4SUAAAAAkEnCSwAAAAAgk4SXAAAAAEAmCS8BAAAAgEwSXgIAAAAAmSS8BAAAAAAySXgJAAAAAGSS8BIAAAAAyCThJQAAAACQScJLAAAAACCThJcAAAAAQCYJLwEAAACATBJeAgAAAACZJLwEAAAAADJJeAkAAAAAZJLwEgAAAADIJOElAAAAAJBJwksAAAAAIJOElwAAAABAJgkvAQAAAIBMEl4CAAAAAJkkvAQAAAAAMkl4CQAAAABkkvASAAAAAMgk4SUAAAAAkEnCSwAAAAAgk4SXAAAAAEAmCS8BAAAAgEwSXgIAAAAAmVRc6AKoO0pLSyNJkkKXAQAAAMAGwsxLAAAAACCThJcAAAAAQCYJLwEAAACATBJeAgAAAACZJLwEAAAAADJJeAkAAAAAZJLwEgAAAADIJOElAAAAAJBJwksAAAAAIJOElwAAAABAJgkvAQAAAIBMEl4CAAAAAJkkvAQAAAAAMkl4CQAAAABkkvASAAAAAMgk4SUAAAAAkEnCSwAAAAAgk4SXAAAAAEAmCS8BAAAAgEwSXgIAAAAAmSS8BAAAAAAySXgJAAAAAGSS8BIAAAAAyCThJQAAAACQScJLAAAAACCThJcAAAAAQCYJLwEAAACATBJeAgAAAACZJLwEAAAAADKpuNAF1EVJkkRExIIFCwpcCQAAAADUPStztZU5W1WEl9XwxRdfRERE586dC1wJAAAAANRdX3zxRbRo0aLK9blkTfEmq1ixYkVMnz49mjdvHrlcrtDl1KoFCxZE586dY+rUqVFWVlbocuoVvU2P3qZHb9Ojt+nR2/TobXr0Nj16mx69TY/epkdv06O3fFuSJPHFF19Ep06doqio6itbmnlZDUVFRbHJJpsUuoyCKisr8382KdHb9OhtevQ2PXqbHr1Nj96mR2/To7fp0dv06G169DY9ess3rW7G5Upu2AMAAAAAZJLwEgAAAADIJOEl66RRo0YxZMiQaNSoUaFLqXf0Nj16mx69TY/epkdv06O36dHb9OhtevQ2PXqbHr1Nj95SXW7YAwAAAABkkpmXAAAAAEAmCS8BAAAAgEwSXgIAAAAAmSS8BAAAAAAySXgJAAAAAGSS8BIAAAAAyKTiQhcARMyfPz+aNm0aDRs2LHQp9Y7epkdv06O31EWO25r11VdfxT//+c+YNm1azJo1K5o2bRpt27aNHXbYITbffPNClwcAUGuEl6y1yZMnr/IFeuutt47GjRsXurQ6ZeHChfHYY4/FyJEj49VXX43p06fHsmXLIiKiefPmscMOO8S+++4bffv2jV133bXA1dYtepsevU2P3lIXOW7T8dVXX8XDDz8cw4YNi3/84x/5niZJErlcLj+uY8eOceyxx8b3v//92GGHHQpVbp315ZdfxpgxY+LVV1+tNBzu06dPdO/evdBl1kl6mx69TY/epkdvqSm5JEmSQhdBdo0aNSqGDRsWI0eOjBkzZqyyvmHDhrHrrrvGscceG2eccUa0bt26AFXWDVOnTo2rr746HnrooVi4cGFERLRq1Srat28fG220UXz11VcxZ86cmDZtWixfvjxyuVzsuOOOMXDgwDjllFMKXH226W169DY9elu7Pv7443jhhRdW++V5n332iZKSkkKXmmmO23QsWbIkbrnllrjuuuti3rx50bRp09hll11i1113XaW377//fowbNy4mTpwYuVwu9t9//7jpppuiZ8+ehX4bmTd27Ni488474/HHH49FixZFVX8G5XK52GabbeKcc86J/v37R1lZWS1XWvfobXr0Nj16mx69paYJL6nUo48+GkOGDIkPPvggkiSJzp07V/kF+l//+lcsXrw4GjVqFKeeemoMHTo0OnbsWOi3kCkXX3xx3HbbbbF8+fI47LDD4vjjj48999wzunbtusrYL7/8Mt544434+9//Hg8++GBMnDgxdt555/j9738fO+20UwGqzza9TY/epkdva0eSJPHwww/HnXfeGa+88kp+WWVyuVy0atUqzjjjjPjhD39Y6WexoXPcpmezzTaLTz75JPr27RunnnpqHHHEEWs8/f7jjz+OP/7xj3HvvffGlClT4ve//30MGDCgliquW/7zn//ERRddFCNGjIgGDRrEvvvuG3vuuWeV323/8Y9/xAsvvBBTpkyJ1q1bx+DBg+MHP/hBFBc7ae3b9DY9epsevU2P3pKaBL5l9913T3K5XLLLLrskN998czJt2rTVjl+yZEny/PPPJ2eccUZSVlaWNGvWLPnzn/9cS9XWDS1atEgGDx6czJ49e523fe6555LevXsnV155ZQqV1X16mx69TY/epu9vf/tbssMOOyS5XC5p27ZtctZZZyV333138tZbbyWffvppsnTp0mTBggXJpEmTkhEjRiRDhw5N9t5776SoqChp1KhRcsEFFyRz5swp9NvIFMdtek499dTkgw8+qNa2y5YtS/7whz8kd999dw1XVX80aNAg6datW/KrX/0q+fzzz9d6u9GjRyennHJKUlxcnFx99dUpVlh36W169DY9epsevSUtZl6yin322SeuuOKK2H///dd523nz5sUvfvGLaNOmTfz4xz9Oobq6ae7cudGqVauC76M+0tv06G169DZ9RUVFsffee8dPf/rTOPTQQ9f6v+BPnjw5fv/738ftt98eAwcOjMsvvzzlSusOxy111V133RWnn356tWfyfPjhhzFt2rTYb7/9ariyuk9v06O36dHb9OgtaRFeAgD1zsiRI+OAAw6o9vbz5s2LiRMnOsUZAAAKTHgJAAAAAGRSUaELgA3Bww8/vF7bT506NV599dUaqqZ+0dv06G169Ja6yHGbnkMPPTRee+21am1bXl4e1113Xfz617+u4arqj/Ly8kzsoz7S2/TobXr0Nj16S1qEl6zinHPOiU8++aTa2z/88MPxwAMP1GBFdd+pp54aPXr0iHvvvTcWLly41tu9/vrrcfbZZ8cWW2wRo0aNSrHCuktv06O36dHb9E2ZMmW997E+/xbWR47b9Hz++eexxx57xH777Rf33HNPzJ8/f43b/OMf/4jzzjsvunTpEldddVW0b9++Fiqtm7p27Ro33nhjtf4gHjt2bBx66KHxy1/+MoXK6j69TY/epkdv06O3pKaQdwsimzp16pQ0btw4OeOMM5IXXnhhrbb55JNPkhtvvDHZZpttkqKiouT3v/99ylXWLW+++Way7777JrlcLiktLU369euX3HDDDcnIkSOTd955J5k2bVoyYcKE5J///Gfyxz/+MTnvvPOSrbbaKikqKkpatmyZXH/99cmiRYsK/TYySW/To7fp0dv0lZSUJD/4wQ+Sjz/+eJ22W7JkSfLggw8m2267rTtjf4vjNl3Dhg1LunbtmuRyuaRBgwbJtttum5x22mnJ//t//y+5+uqrk8suuyz5wQ9+kBxwwAFJixYtkqKioqRhw4bJaaedlkyePLnQ5Wfaj3/846SkpCRp1qxZ0r9//+Spp55KPvvss0rHLl26NHn99deTa6+9Ntl+++2ToqKiZPvtt09ee+21Wq66btDb9OhtevQ2PXpLWlzzklV89dVXccMNN8QvfvGLKC8vj4022ih222232GWXXaJ9+/bRsmXLWLRoUcyZMyfef//9GDduXLz77ruxYsWK2HvvvePGG2+M3XffvdBvI5NeeOGF+M1vfhNPPfVULF26NHK5XKXjkiSJbt26xdlnnx1nnnmmO7OuBb1Nj96mR2/Tc8stt8TVV18dc+fOjb333ju+973vxR577BE77rhjNGzYsMLYadOmxbhx4+K5556Lxx9/PObOnRuHHHJI3HbbbdG9e/cCvYPsctymJ0mSePbZZ+Oee+6J0aNHx5w5c1YZU1RUFD169Ihjjz02zjzzzOjYsWMBKq17Pvzww7jqqqviscceiyVLlkRExMYbb7zKd9uJEyfG4sWLI0mS2HbbbWPgwIFxxhlnRFGRE9aqorfp0dv06G169JY0CC+p0hdffBH33Xdf3HPPPTF+/PhYsWJFRET+j5SVh85GG20Uffv2jXPOOSd69epVsHrrknnz5sWLL74YY8aMiWnTpsXs2bOjSZMm0bZt29hhhx2iT58+0aNHj0KXWSfpbXr0Nj16m4558+bFL3/5y7jrrrtixowZkcvloqioKFq2bFnhy/OiRYsi4ut/3w455JC48MILY//99y9w9dnnuE3fu+++u0pvt9tuu2jRokWhS6uz5syZEw8++GCMHDkyxowZE59//nl+XcOGDWP77bePPn36xLHHHhu9e/cuYKV1j96mR2/To7fp0VtqkvCStTJv3rwYO3ZspX+c7LDDDoUuDwCqtHz58vjb3/6W//JcVdDWt2/f6NKlS6HLBWrR0qVL8/9/IBSuWXqbHr1Nj96mR29ZH8JLKIChQ4dG165d47TTTit0KfWO3qZHb9Ojt9RFjtv0dOvWLQ477DB3EE/JlClToqSkJDp06FDoUuodvU2P3qZHb9Ojt9QUFxNgjfbff/8YPHhwocuoV66++up4++23C11GvaS36dHb9Oht+l566aUYP358ocuoVxy36Zk1a1aUlZUVuox6q2vXrnHppZcWuox6SW/To7fp0dv06C01RXjJGo0bNy6WL19e6DLqlU033TTmzZtX6DLqJb1Nj96mR2/Tt99++8Xvfve7QpdRrzhu09OjR4/44IMPCl1GvdWqVato3bp1ocuol/Q2PXqbHr1Nj95SU4SXrNHWW28dkydPLnQZ9cqJJ54Yw4cPj/nz5xe6lHpHb9Ojt+nR2/S1a9cuGjduXOgy6hXHbXoGDRoUTz/9dIwaNarQpdRLvXv3jnHjxhW6jHpJb9Ojt+nR2/ToLTXFNS9Zo2HDhsV5550X//znP2PbbbctdDn1wuLFi6Nfv34xY8aMGDp0aPTq1SvatWtX6LLqBb1Nj96mR2/T179//3jnnXfijTfeiFwuV+hy6gXHbXruu+++ePTRR2PEiBFxzDHHRK9evaJ9+/aVHrv9+/cvQIV123vvvRd77LFHDBw4MC699NIoLi4udEn1ht6mR2/To7fp0VtqivCSNXrppZfihhtuiJdeeinOPvvs1X6B3meffQpQYd3ToEGDiIhIkmS1f0TncrlYtmxZbZVVL+htevQ2PXqbvunTp8eee+4ZBx98cFx//fWx0UYbFbqkOs9xm56ioqLI5XLx7a/p3+zzyr67tM+6+5//+Z/48MMPY8yYMdGhQ4fo2bNnpd9tc7lc3HXXXQWqsm7S2/TobXr0Nj16S00RXrJG3/4Cvbo/UHyBXjv77rvvWs/8ccrYutHb9OhtevQ2ffvvv3/Mnj073nnnnSgpKYmuXbtW+eV55MiRBaqybnHcpufee+9d67Gnn356ipXUT0VFa3flLOHwutPb9OhtevQ2PXpLTRFeskZXXHHFWv9xMmTIkJSrAYB158szsNK6XMu9S5cuKVZS/+htevQ2PXqbHr2lpggvAQAAAIBMcrVUKKAlS5bE888/H++9916Ul5fH4MGDIyJi0aJFsWDBgmjTps1azxaiIr1Nj96mR2+pixy36XniiSfioYceivfeey++/PLLmDBhQkR8fQOEp556Kk455ZTYeOONC1xl3TdnzpwoLy+Pzp07F7qUekdv06O36dHb9Ogt1ZbAWnrzzTeTiy66KDnqqKOSAw44IL980qRJySOPPJLMnj27gNXVPX/5y1+S9u3bJ0VFRUkul0uKiory68aNG5cUFRUlDzzwQAErrLv0Nj16mx69rT1ffPFF8sYbbyQvvfRSoUup8xy36Vi+fHly/PHHJ0VFRUlRUVFSWlpaobczZ85MiouLk2uuuaaAVdZt8+bNS84///ykXbt2SVFRUdKgQYP8un/84x/JYYcdlrz++usFrLDu0tv06G169DY9ektNEF6yVi666KL8Hybf/uNk4sSJSYMGDZJbbrmlgBXWLa+88krSsGHDZNNNN01+9atfJaecckqFniZJkmy55ZbJd7/73QJVWHfpbXr0Nj16WzsmTpyYHH300UlxcfEqX55feeWVZJtttklGjRpVuALrGMdtem666aYkl8sl5557bjJ//vxkyJAhq/R2v/32S77zne8UqMK6bfbs2clWW22V5HK5ZJdddkm22267Cv398ssvk7KysuSCCy4oYJV1k96mR2/To7fp0VtqinN4WKN77rknbrrppjjyyCPjrbfeiksuuaTC+s022yx22223eOqppwpUYd1z1VVXRcuWLeONN96I8847L7bYYotVxuy6667x73//uwDV1W16mx69TY/epm/KlCmxxx57xLPPPht9+/aNPffcM5JvXPZ79913j1mzZsVDDz1UwCrrFsdteoYNGxa9evWKO+64I8rKyiq9cWL37t1j4sSJBaiu7rviiivigw8+iIcffjhef/31OO644yqsb9KkSfTp0ydeeOGFAlVYd+ltevQ2PXqbHr2lpggvWaM77rgjttlmm/jTn/4U22+/fZSUlKwyZuutt44PP/ywANXVTePGjYu+fftGmzZtqhzTuXPnmDlzZi1WVT/obXr0Nj16m74hQ4bE3Llz48UXX4zHH388DjrooArri4uLo3fv3vHqq68WqMK6x3GbngkTJkTv3r1XO6Z169Yxe/bsWqqofnnqqafiyCOPjOOPP77KMZtttllMmzatFquqH/Q2PXqbHr1Nj95SU4SXrNF///vfOOigg6K4uOr7O7Vv3z4+++yzWqyqblu8eHGUlZWtdsy8efPc4KAa9DY9epsevU3fiBEj4thjj4299tqryjFdunSJTz75pBarqtsct+lp0qRJzJ8/f7VjJk+eHC1btqydguqZGTNmxLbbbrvaMY0aNYry8vJaqqj+0Nv06G169DY9ektN8W2SNSouLo4lS5asdsz06dOjWbNmtVRR3detW7d47bXXVjtm7NixsfXWW9dSRfWH3qZHb9Ojt+mbM2dObLbZZqsdkyRJLF68uHYKqgcct+nZaaedYsSIEbFo0aJK18+ZMyeGDx8ee+yxRy1XVj+0bt06pk6dutox7733XnTs2LGWKqo/9DY9epsevU2P3lJThJes0Q477BAvvPBCLF++vNL1X375ZTz//POxyy671HJldVe/fv3i1VdfjXvuuafS9TfddFO88847ccIJJ9RyZXWf3qZHb9Ojt+lr3779Gi9v8vbbb8emm25aSxXVfY7b9Jx//vkxbdq06Nev3yqn0n300Udx7LHHxvz58+P8888vUIV12z777BN/+ctfqjxN8b///W8MHz48DjzwwFqurO7T2/TobXr0Nj16S40p9B2DyL677roryeVyyZlnnpksWrQoueKKK/J3CJs/f35y3HHHJUVFRcljjz1W4Errji+++CJ/p7UDDzww6d27d1JUVJRcdNFFyd57750UFRUlO++8c7Jo0aJCl1rn6G169DY9epu+//3f/01KSkqSf//730mSJBX+LUuSJHnppZeSXC7nbpfrwHGbrosvvjjJ5XJJUVFR0rx586SoqChp27ZtUlRUlORyueTyyy8vdIl11ltvvZU0btw42XTTTZP7778/Oe+885KioqLkv//9b/KHP/whad++fVJaWpp88MEHhS61ztHb9OhtevQ2PXpLTRFeslZOOumkJJfLJc2bN086d+6cFBUVJb169UqaNWuW5HK5ZMCAAYUusc6ZM2dOcvLJJyfFxcVJLpfLP4qKipITTzwxmTNnTqFLrLP0Nj16mx69TdfEiROTFi1aJC1atEiuvvrq5NRTT02KioqSZ599NrnsssuSpk2bJm3btk2mT59e6FLrFMdtuv7+978nRx99dNK+ffukYcOGSevWrZPDDz88GT58eKFLq/P+8pe/JGVlZUlRUVE+EF75v2VlZclf//rXQpdYZ+ltevQ2PXqbHr2lJuSSJEkKPfuTuuH3v/993H777fHOO+/EysNmm222ifPPPz/OPvvsAldXd82ePTtee+21mDNnTpSVlUWvXr2iffv2hS6rXtDb9OhtevQ2PePGjYsTTzwxJk+eHLlcLpIkyf/vpptuGo8//njsuuuuhS6zTnLcUhfNmTMn7r333hg3blz+2N19991jwIAB0aZNm0KXV6fpbXr0Nj16mx69ZX0JL1lnX331VcydOzfKysrcpAeAOmXZsmXx9NNPr/LluW/fvlFSUlLo8gAAgG8RXgIAQAYtX748pk2bFtOnT4+lS5dWOmafffap5aoAAGpXcaELoG5ZsWJFfPrpp1V+gXaX1rU3ceLEuPXWW+Pf//53lX+U5HK5+OijjwpQXd2mt+nR2/ToLXWR4zYdK1asiGuuuSZuvfXWmDNnzmrHLl++vJaqqn/Gjx+/xmN38ODBBais7tPb9OhtevQ2PXrL+jLzkrVy//33x0033RT//e9/q/ySnMvlYtmyZbVcWd00fPjwOOaYY2LJkiXRsGHDaNeuXRQXV/7fEiZOnFjL1dVtepsevU2P3taOJEniL3/5yxq/PN91110FqK7ucdymZ9CgQXHjjTdGu3bt4sgjj4yOHTtW2dshQ4bUcnV132effRYnn3xyjBo1KiIiqvpzKJfLCYfXkd6mR2/To7fp0VtqipmXrNFNN90UgwYNioYNG8Y+++yz2i/QrJ1BgwZFgwYN4pFHHol+/fpFUVFRoUuqN/Q2PXqbHr1N34QJE+LII4+MDz/8sMovzhHCy3XhuE3PvffeG1tttVW89tprri+egh/+8IfxwgsvxOGHHx4nnnii77Y1SG/To7fp0dv06C01xcxL1qhLly6RJEmMGTMmNtlkk0KXUy80adIkTj311Pj9739f6FLqHb1Nj96mR2/Td8ghh8Rzzz0X5557bpx00kmr/fLcpUuXWq6ubnLcpqdZs2ZxzjnnxE033VToUuqlsrKy6NWrV4wcObLQpdQ7epsevU2P3qZHb6kpIm/W6PPPP4+zzz5bcFmDOnToEI0bNy50GfWS3qZHb9Ojt+l7+eWX4+ijj45f//rXhS6l3nDcpqdHjx4xffr0QpdRbzVs2DB22WWXQpdRL+ltevQ2PXqbHr2lpji/hzXacsstY+7cuYUuo145+eST429/+1ssWrSo0KXUO3qbHr1Nj96mr3nz5tG9e/dCl1GvOG7T87Of/SyefPLJePPNNwtdSr3Uu3fvGD9+fKHLqJf0Nj16mx69TY/eUlOcNs4a3XvvvfGTn/wkxo8f71S6GrJ06dI49thj44svvohrrrkmevbs6ZpWNURv06O36dHb9J166qnx8ccfx5gxYwpdSr3huE3Xo48+Gj/60Y/i6KOPjp49e0ZZWVml4/r371/LldV97777bnznO9+JoUOHxnnnnVfocuoVvU2P3qZHb9Ojt9QU4SVr5cYbb4xbbrklfvCDH6z2C/Q+++xTy5XVXX//+9/jxBNPjPnz51c5xh3cq0dv06O36dHbdM2YMSP23HPPOO644+Kqq65yunMNcdymY/HixXHmmWfGgw8+mL/BVC6XqzAmSRJ3Z10P//nPf6J3797Rpk2b6NGjR6Xfbd3Aq3r0Nj16mx69TY/eUhOEl6yVwYMHx8033xxfffXVasf5Ar12HnnkkTjllFNixYoV0a1bt9XeOGLUqFG1XF3dprfp0dv06G3teP/992PPPfeM5cuXxxZbbFHll2cXlV87jtv0/PCHP4zf/OY30aNHj/je97632t6efvrptVxd3Tdx4sQ4+OCD46OPPlrtOOHwutPb9OhtevQ2PXpLTRFeskaXX355/PznP4+2bdvGkUceudov0EOGDKnl6uqm7bbbLmbOnBnDhw+PXr16FbqcekVv06O36dHb9P3rX/+Kgw46KObMmbPacb48rz3HbXratWsXXbp0ibFjx1b5nYvqO/LII+PZZ5+Nc889N0466aTVfrd1yaR1o7fp0dv06G169JaaIrxkjTbZZJNo3rx5vPbaa65lVUOaNm0aAwYMcNfbFOhtevQ2PXqbvj59+sSrr74a1157bf7Lc4MGDQpdVp3muE1PWVlZnHPOOXHDDTcUupR6qaysLPbbb7/4y1/+UuhS6h29TY/epkdv06O31BT/KZc1mjt3bpx44omCyxrUuXNnM3tSorfp0dv06G363njjjTjhhBPioosuKnQp9YbjNj277LJLTJgwodBl1FuNGjWKLbfcstBl1Et6mx69TY/epkdvqSlFhS6A7Nthhx1ixowZhS6jXjnrrLPi6aefXuPpi6w7vU2P3qZHb9NXVlYW7du3L3QZ9YrjNj3XXHNNDB8+PJ555plCl1IvHXTQQTFmzJhCl1Ev6W169DY9epsevaWmOG2cNXr66afjxBNPjJdffjl23nnnQpdTL0yaNCkuuOCCeO+99+Kyyy5b7R3cN91001qurm7T2/TobXr0Nn3nnntujB07Nt58880oKvLfbmuC4zY9Q4cOjX/84x8xYsSI2H///avsbS6Xi8GDBxegwrpt+vTpsffee0e/fv3iqquuisaNGxe6pHpDb9Ojt+nR2/ToLTVFeMka3XffffHnP/85hg8fHqeddtpq/zjp379/LVdXNxUVFUUul4skSSKXy1U5LpfLxbJly2qxsrpPb9Ojt+nR2/QtWLAgDjrooOjWrVvcdNNNsfHGGxe6pDrPcZuetQ3Y3WCqevbff/+YO3duvPXWW9GsWbPYYostqgyHR44cWYAK6y69TY/epkdv06O31BThJWv0zT9OVvr2Hykr/3DxBXrtnHHGGav9Q++b7rnnnpSrqV/0Nj16mx69TV+3bt1iyZIl+cugtGrVqsovzx999FFtl1cnOW7T8+KLL6712D59+qRYSf0kHE6P3qZHb9Ojt+nRW2qK8JI1uvfee9d67Omnn55iJQBQPZttttlaB20TJ05MuRpYvZdeeinKyspixx13LHQpAAAFJ7xkjaZMmRIlJSXRoUOHQpdSb3Tr1i0OP/zwuP322wtdSr2jt+nR2/ToLXWR4zY9DRo0iLPPPjvuuOOOQpdSLw0dOjS6du0ap512WqFLqXf0Nj16mx69TY/eUlNcsZ416tq1a/zsZz8rdBn1yqxZs6J58+aFLqNe0tv06G169DZ9//M//xM333xzocuoVxy36WnXrp2bGqTo6quvjrfffrvQZdRLepsevU2P3qZHb6kpwkvWqFWrVrHRRhsVuox6pUePHvHBBx8Uuox6SW/To7fp0dv0Pfjgg/HZZ58Vuox6xXGbnoMOOihGjx4dTpBKx6abbhrz5s0rdBn1kt6mR2/To7fp0VtqivCSNerdu3eMGzeu0GXUK4MGDYqnn346Ro0aVehS6h29TY/epkdv07f55pvnb9ZDzXDcpue6666L2bNnx/e///2YM2dOocupd0488cQYPnx4zJ8/v9Cl1Dt6mx69TY/epkdvqSmueckavffee7HHHnvEwIED49JLL43i4uJCl1Tn3XffffHoo4/GiBEj4phjjolevXpF+/btK72ZRP/+/QtQYd2lt+nR2/Tobfp+8YtfxHXXXRfjx4+PjTfeuNDl1AuO2/Tsv//+MXv27HjnnXeipKQkunbtWmlvc7lcjBw5skBV1l2LFy+Ofv36xYwZM2Lo0KHRq1evaNeuXaHLqhf0Nj16mx69TY/eUlOEl6zR//zP/8SHH34YY8aMiQ4dOkTPnj2r/AJ91113FajKuqWoqChyudwqp4N9s6dJkkQul4vly5fXdnl1mt6mR2/To7fpmzRpUpx33nnx9ttvx09/+tPVBm2bbrppASqsexy36SkqWruTo/S2eho0aBAR/3d8ViWXy8WyZctqq6x6QW/To7fp0dv06C01xRQ61mjYsGH5n2fMmFHlaXfCy7V3zz33FLqEektv06O36dHb9HXr1i0ftJ1//vlVjvPlee05btOzYsWKQpdQr/Xu3Xu1f0RTfXqbHr1Nj96mR2+pKWZeskaTJ09e67FdunRJsRL+v/buPCyquv//+OscBkRZ3BBUCAQ3tBQ1NXcB9zJzyyVTFLNNM7WyslQ077JS2/dQ1DTSNLfuzCQUNXfDfUXcxQVFFAUEPr8/7p/zjURAm/cczvR6XBfX5cwcrut9Pe/PbWc+zpxDRET3ZvDgwcU+eeamHBERERFRycHNSyIiIiKiEiwjIwPp6enw9PSEm5ub0eMQERER2RW/Nk5koGPHjmHevHlITEy0vilp0KABBgwYgGrVqhk9nqmxrRy2lcO2ZEZctzKys7Px/vvvIyYmBkePHrU+HxQUhCFDhuDll1+Gi4uLgRM6htOnT9+2dnlTL9tgWzlsK4dt5bAt/SOKqJi+++471b59e+Xl5aVcXFyUl5eX6tChg5o3b57Ro5nShx9+qFxcXJSu60rTtHw/Li4u6sMPPzR6RNNiWzlsK4dt7Wf9+vXq008/VW+//bb69NNP1fr1640eybS4bmVcv35dNW/eXOm6rpydnVXt2rVVaGioCg4OVs7OzkrXddW8eXN1/fp1o0c1rcOHD6v27dsrXddv++nQoYM6fPiw0SOaFtvKYVs5bCuHbckW+LVxKlJubi769OmDJUuWQCkFV1dX+Pj44Ny5c8jMzISmaejevTsWLlxY7Ltj/tutWLEC3bp1g5eXF0aPHo2wsDBUqVIFKSkpiI+Px4wZM5Camoply5bhkUceMXpcU2FbOWwrh23t448//sCQIUNw5MgRAPnvfFmzZk3MmjULzZs3N3JEU+G6lRMVFYXJkyejb9++eO+993DfffdZXzt16hTGjh2L2NhYTJw4ERMnTjRwUnM6efIkmjRpgvPnzyM4OBht2rSxrt2EhATs378fPj4+2LJlS772VDS2lcO2cthWDtuSzRi7d0pmMGPGDKVpmmrdurX6448/8r22ceNG1aZNG6XrOj9dcRfCwsJUxYoV1cmTJwt8/cSJE6pixYoqPDzczpOZH9vKYVs5bCtvz549ys3NTWmapjp27KjeeecdFRMTo6ZOnao6deqkNE1THh4eau/evUaPahpct3KCg4PVgw8+WOgxjRs3VsHBwXaayLEMHTpUaZqmvvjiC5WXl3fb619++aXSNE099dRTBkxnbmwrh23lsK0ctiVb4eYlFSkkJETVrl1bZWdnF/h6dna2Cg4OViEhIfYdzMTKli2rnn/++UKPee6551TZsmXtM5ADYVs5bCuHbeX16dNHOTs7q19++aXA13/55Rfl7Oys+vbta+fJzIvrVo6rq6t6/fXXCz3mtddeU66urnaayLH4+fmpbt26FXpMt27dlK+vr50mchxsK4dt5bCtHLYlW+F3fKlIhw4dQrdu3eDs7Fzg687Oznj00Udx6NAhO09mXtnZ2UXeLdTd3R3Z2dl2mshxsK0ctpXDtvLWrFmD3r17o3PnzgW+3rlzZ/Tu3Rvx8fF2nsy8uG7llClTBhcuXCj0mAsXLqBMmTJ2msixnD9/Hg888EChxzzwwANF/m9At2NbOWwrh23lsC3ZCjcvqUguLi7IyMgo9JiMjAze8fIu1KpVC8uXL0dOTk6Br+fk5GDFihWoVauWnSczP7aVw7Zy2FbelStXEBgYWOgxgYGBuHLlip0mMj+uWznNmjVDbGws9u7dW+Dr+/btww8//MBrtN6jSpUqYd++fYUes2/fPlSqVMlOEzkOtpXDtnLYVg7bkq1w85KK1LBhQyxYsABnzpwp8PWzZ89iwYIFaNSokZ0nM69Bgwbh4MGD6NSpE7Zv357vtW3btqFLly44ePAgIiIiDJrQvNhWDtvKYVt5VatWxaZNmwo9ZvPmzahataqdJjI/rls548aNQ2ZmJpo0aYIXXngBP/74I9atW4cff/wRI0aMQJMmTZCVlYXXX3/d6FFNqVOnTli2bBmio6MLfH3mzJlYvnz5HT+pTXfGtnLYVg7bymFbshXebZyKtHz5cjz22GOoXLkyXnrpJbRt29Z6t/E1a9ZgxowZOHfuHJYuXYquXbsaPa4p5ObmolevXli2bBk0TUOZMmXg7e2N8+fP4/r161BK4bHHHsOiRYt4B/e7xLZy2FYO28obNWoUPvnkE4wbNw5vvPEGXF1dra9lZmbinXfewZQpUzBy5Eh88MEHBk5qHly3shYuXIhhw4YhPT0dmqZZn1dKoWzZsvjmm2/Qu3dvAyc0rxMnTqBx48ZITU1F3bp1853bJiQkYO/evfDy8sK2bdt499u7xLZy2FYO28phW7IZ4y63SWYyffp05ezsrHRdz/ejaZpydnZWM2bMMHpEU5o9e7YKDw9XFSpUUBaLRVWoUEG1a9dOzZkzx+jRTI9t5bCtHLaVc/HiRVW9enWl67qqVKmSeuSRR1RkZKR65JFHlLe3t9I0TVWvXl2lpqYaParpcN3KSU9PV3PnzlVjxoxRTz31lBozZoyaO3euSk9PN3o00zt48KAKCwtTmqbd9hMeHq4OHjxo9IimxbZy2FYO28phW7IFfvKSiu3o0aOYN28eEhMTkZ6eDk9PTzRs2BBPPPEEgoKCjB6vRNu1axcqV64Mb29vo0dxOGwrh23lsK0xLl68iLFjxyI2NhaZmZnW511dXdG/f3+8++678PLyMnDCko3rVs6YMWPQuXNndOzYEcD/PqlSrlw5eHp6GjyZ4zt58mS+c9sGDRrw0z82wrZy2FYO28phW/pHjN49pZLno48+Ups3bzZ6DIei67qaNGmS9XFYWJiaPXu2gRM5DraVw7Zy2NZY2dnZateuXWr9+vVq165dKjs72+iRTIHrVo6mafna/r01/TMNGzZUX331lfXx7Nmz1c6dOw2cyHGwrRy2lcO2ctiWpPACRHSbUaNGYeXKldbHTk5OeOuttwycyPycnJyQm5trfbxmzRocO3bMuIEcCNvKYVs5bCuvQoUKeO+996yPJ0+ejISEBACAs7Mz6tWrh5YtW6JevXpwdnY2akxT4bqV4+7ujuvXr1sfK34xyqYSExORkpJifTx48GAsWbLEuIEcCNvKYVs5bCuHbUmKxegBqOQpXbo0srKyrI+VUjyJ/of8/PyQmJho9BgOiW3lsK0ctpV35cqVfF8Nj4qKQlRUFNq0aWPgVObGdSunZs2aWLx4MXr06IEqVaoAANLS0nDixIkif9ff3196PNPz8vLCxYsXjR7DIbGtHLaVw7Zy2JakcPOSbhMYGIhff/0VI0eOhI+PDwDku8sl3b1HH30Un3zyCerUqWN9UxITE4M1a9YU+nuapiEuLs4OE5oX28phWzlsK8/HxwenTp0yegyHwnUr5+WXX8aTTz6JFi1aWJ/76KOP8NFHHxX6e5qmIScnR3o80wsJCcHcuXPh6+trXbuJiYmYM2dOkb87aNAg6fFMjW3lsK0ctpXDtiSFN+yh23z88ccYNWqUdcNSKVWszUueQN/Z1atX8corr+Dnn3/GmTNnABTvK2GapuX7ih7djm3lsK0ctpXXo0cPrFy5EoMHD0aVKlUQFRWF0NBQhIaGFvp7mqZh/Pjx9hnSZLhuZW3atAk///wzTp8+jZiYGISEhKBBgwZF/t6sWbPkhzO57du34+GHH8aFCxegaVqxzm1vHcO1Wzi2lcO2cthWDtuSFG5eUoFiY2Otb07i4+MREBCAatWqFfl78fHx8sM5AF3XERUVhQkTJhg9isNhWzlsK4dtbe/IkSN47LHHsH//fgCwnkAXhSfPxcd1K4dtbe/q1avYsmULTp8+jcGDB6N79+547LHHivy9iIgIO0xnbmwrh23lsK0ctiUJ/No4Fahfv37o168fgP+dQA8ZMoQn0DYUERFRrE9T0N1jWzlsK4dtba9GjRrYvXs3kpOTcfr0aYSGhmLw4ME8MbYhrls58fHxxfpHYyo+Dw8PtGvXDsD/biDRoEED/n1gI2wrh23lsK0ctiUJ/OQlFWn27Nlo0KABQkJCjB6FiIjongQGBmL06NEYOXKk0aMQ3bP09HRs3rwZrq6uaNWqFa9JTkRERP8KutEDUMkXERFR4MalUgqHDx/GyZMnDZjK3Hbv3o2ZM2ciPT3d+tyNGzfw3HPPwdfXFzVq1MCXX35p4ITmxbZy2FYO28pLTk7mxqWNcd3K+eabb9C2bVtcvnzZ+tzOnTsRHByMzp07IzQ0FK1bt8b169cNnNLc8vLybntu48aNeOONN/DWW2/xhl//ANvKYVs5bCuHbckmFFERFi1apAYOHKguXbpkfS45OVk98MADStd1peu66tu3r8rJyTFwSnPp06ePqlq1qsrLy7M+N2rUKKVpmvLw8FAuLi5K13W1atUqA6c0J7aVw7Zy2FZeenq6SkpKUtnZ2fmej42NVU888YSKjIxU27dvN2g6c+K6ldO6dWv10EMP5XuuXbt2ysnJSQ0dOlR17dpV6bqupk2bZtCE5jZq1ChVqlQpdfnyZetzCxcuVE5OTkrTNKVpmqpUqZI6efKkcUOaFNvKYVs5bCuHbclWuHlJRWrfvr2qV69evue6d++uNE1T7dq1Uw0aNFC6rquvv/7aoAnNp1q1amrAgAHWxzdv3lRly5ZVDz30kLpx44Y6ffq08vHxUY888oiBU5oT28phWzlsK+/ZZ59V7u7uKiMjw/rc559/rnRdt548lylTRu3fv9/AKc2F61aOj4+Pevrpp62PL168qHRdV88884z1uYceekg1bNjQiPFMLyQkRHXp0iXfc3Xq1FEVKlRQc+fOVe+//76yWCzqxRdfNGZAE2NbOWwrh23lsC3ZCr82TkXat28fmjZtan189epV/Pzzz+jbty9Wr16NLVu2oE6dOpg5c6aBU5rLhQsXcN9991kfb926Fenp6Xj22Wfh6uqKqlWr4rHHHsPOnTsNnNKc2FYO28phW3lr165F+/btUaZMGetzU6dOha+vLxISErBgwQIopfD+++8bOKW5cN3KSUtLQ6VKlayP161bBwDo2bOn9blWrVrh2LFj9h7NIZw8eRI1a9a0Pk5OTsaBAwcwcuRIPPnkk3j55Zfx8MMPY+XKlQZOaU5sK4dt5bCtHLYlW+HmJRXp0qVLqFy5svXx+vXrkZOTg/79+wMAnJ2d0aFDByQlJRk1oulYLBZkZWVZH69ZswaapiEsLMz6XMWKFXHx4kUjxjM1tpXDtnLYVt7Zs2cRGBhofbx//36cPHkSI0eORKtWrdC7d29069YNCQkJBk5pLly3cipWrIizZ89aH8fFxcHJyQktW7a0PqeUws2bN40Yz/QyMjLg5uZmfbx27VpomoYuXbpYn6tbty6vw3YP2FYO28phWzlsS7bCzUsqkqenJ1JTU62P4+Pjoes6WrdubX3O2dkZGRkZRoxnStWqVUN8fLz18cKFCxEYGIiAgADrc6dPn0bFihWNGM/U2FYO28phW3lZWVlwcXGxPr518tyxY0frc0FBQTh9+rQR45kS162c+vXrY+nSpdizZw+OHDmC+fPno2XLlvneAB47dgxVqlQxcErzqlq1Kg4ePGh9vHLlSri7u+PBBx+0Ppeeno5SpUoZMZ6psa0ctpXDtnLYlmzFYvQAVPIFBwdj+fLlmDJlCpycnDB//nw8+OCDKF++vPWY48ePw8fHx8ApzWXgwIF45ZVX8NBDD6FUqVLYuXMn3njjjXzH7Nq1K99H7Kl42FYO28phW3l+fn7YtWuX9fGKFStQoUIF1K9f3/pcamoq3N3djRjPlLhu5YwdOxbt27dHSEiI9bkxY8ZY/5yXl4f169cjPDzciPFMr23btvj+++/x6aefwtXVFYsXL0b37t3h5ORkPSYpKQl+fn4GTmlObCuHbeWwrRy2JZsx+qKbVPL9+OOPStM05erqqjw8PJSu62rWrFn5jvH391fdu3c3ZkATyszMVH369LHeKOKRRx5RN27csL6+Z88epWmamjx5soFTmhPbymFbOWwrb+TIkcrJyUm99NJL6o033lBOTk5qyJAh+Y4JDQ1VDz74oEETmg/XrawVK1aoXr16qV69eqmFCxfmey0hIUE1aNBALViwwKDpzO3w4cOqXLly1rXr7u6u9u7da309PT1dlS5dWj333HMGTmlObCuHbeWwrRy2JVvRlFLK6A1UKvm++OILREdHAwD69euHl19+2fra2rVr0b17d0ydOhXPPPOMUSOaUnp6OjRNg4eHR77nL168iNOnT6NatWooW7asQdOZG9vKYVs5bCsnJSUFLVq0sN7gpEqVKti8ebP1X/rPnz8PPz8/jBgxAjNmzDBwUvPhuiUzOnv2LBYtWgQAePTRR/Nd7mDHjh2YO3cunnjiCTRp0sSoEU2LbeWwrRy2lcO2ZAvcvCQiIqJ/hRs3biAuLg4A0KZNG3h6elpf27dvH3777Td06tQJwcHBRo1IRERERER/w81LIoNlZGQgLS0Nubm5Bb7u7+9v54kcB9vKYVs5bEtmxHUrY8uWLdi6desd22qahvHjxxswGREREZH9cPOSii0lJQXbt28v9M3JoEGD7DyVeUVHR2P69On57r72d5qmIScnx45TOQa2lcO2ctiWzIjrVsalS5fQvXt3bNiwAYWdqmuadsdzMirchQsXMGvWrCI3h299WpuKj23lsK0ctpXDtmQLvNs4FSkzMxPDhg1DbGws8vLyCjxGKQVN07h5WUxffPEFhg8fDovFgjZt2sDPzw8WC//vaAtsK4dt5bCtfezbtw+ffvppkSfPSUlJBkxnPly3csaMGYP169cjNDQUERERbGtju3btQnh4OC5fvlzk5jDdHbaVw7Zy2FYO25Kt8JOXVKRRo0bh448/Rq1atdC/f/9CT6AjIiLsPJ051a5dG5cvX8b69etRq1Yto8dxKGwrh23lsK28tWvXonPnzsjKyoLFYoGPj88d/1uWnJxs5+nMietWjpeXF2rUqIGNGzfyDZ2ADh06IC4uDm+++SaGDh0KPz8/ODk5GT2WQ2BbOWwrh23lsC3ZCjcvqUhVq1ZFhQoVsH37dpQqVcrocRyCq6srnnrqKXz66adGj+Jw2FYO28phW3nNmzfHtm3b8NVXXyEiIoInzjbAdSvHzc0Nw4cPx3vvvWf0KA7J3d0dHTt2xOLFi40exeGwrRy2lcO2ctiWbEU3egAq+dLS0tC5c2duXNpQlSpVeI0qIWwrh23lsK28nTt3ol+/foiMjOTGpY1w3cpp0KABjh07ZvQYDsvFxQXVq1c3egyHxLZy2FYO28phW7IVbl5SkWrXro1z584ZPYZDiYiIwC+//IKMjAyjR3E4bCuHbeWwrTw3Nzd4e3sbPYZD4bqVM3HiRCxbtgybNm0yehSH1LZtW2zbts3oMRwS28phWzlsK4dtyVb4tXEq0vz58/Hss89ix44dqFGjhtHjOIScnBz0798fp0+fxtSpU9GoUSO4u7sbPZZDYFs5bCuHbeVFRERg//792LJli9GjOAyuWzlz5szB0qVLsWLFCgwYMACNGjWCp6dngcfyZol3LykpCc2aNcOrr76Kl19+2ehxHArbymFbOWwrh23JVrh5SUVKSEjAJ598gri4OIwaNarQE+g2bdrYeTpzuvWVxVt3ab8TTdOQk5Njr7EcAtvKYVs5bCvv/PnzaNWqFTp37oypU6eiTJkyRo9kely3cnRdh6Zp+e7M+vfGt7rzq/t3LzIyEsnJyUhISEBgYCAaNGhQ4LmtpmmIjo42YELzYls5bCuHbeWwLdkKNy+pSH8/gS7sDQpPoIsnNDS02HcPjY+PF57GsbCtHLaVw7bywsPDkZaWhp07d8LNzQ21atW648lzXFycAROaD9etnNmzZxf72IiICMFJHJOuF+/KWdwcvntsK4dt5bCtHLYlW+HmJRUpKiqq2G9OJk6cKDwNERHR3ePJMxHdcvz48WIfGxAQIDiJ42FbOWwrh23lsC3ZCjcviYiIiIiIiIiIqESyGD0AEREREREVLDc3FxcvXkRWVlaBr/v7+9t5IiIiIiL74uYlkUFyc3OxYMECrF69GmfOnCnwTQmvvXZv2FYO28phWzIjrls527dvx7hx45CQkIDs7OwCj+HNkP6ZzMxMbN269Y5rF+Dd3O8V28phWzlsK4dt6Z/i18apWE6ePIkpU6ZY35wUdBLNE+jiy8jIQMeOHbFp0ybr3UL/fkdR3kX03rCtHLaVw7b2c+rUKcTHxxe60TZ+/HgDJjMfrls5iYmJaNGiBSwWC8LCwrB8+XKEhISgcuXK2LFjBy5cuIDQ0FAEBARg1qxZRo9rSp999hnGjx+PK1euFPg61+69Y1s5bCuHbeWwLdmEIipCUlKS8vLyUk5OTqp+/fpK0zRVrVo1FRwcrFxcXJSmaapBgwYqNDTU6FFN47XXXlOapqm33npLpaamKk3T1KRJk1RKSopasGCBqlGjhurTp4+6efOm0aOaDtvKYVs5bGsfL7/8snJ2dla6rlt/NE277c9UPFy3cnr27KlKly6t9u3bp5RS1rZKKXX9+nX13HPPqUqVKqnk5GQDpzSvRYsWKU3TVP369dWMGTOUpmmqR48eaurUqerhhx9Wmqap3r17q5iYGKNHNR22lcO2cthWDtuSrXDzkoo0aNAg5ezsrNasWaOUyn8CfebMGfXYY4+pmjVrqosXLxo5pqnUqlVLNW/e3Pr4r02VUurkyZOqQoUK6u233zZiPFNjWzlsK4dt5X399ddK0zTVsWNHtXjxYqVpmhoyZIiKjY1Vzz//vHJxcVF9+vSx/reOisZ1K8fb21v17dvX+ljTNBUVFWV9nJubq0JCQlT//v2NGM/0WrdurXx8fFRGRoZS6va1O2/ePGWxWFR8fLxBE5oX28phWzlsK4dtyVZ0oz/5SSXf6tWr8fDDD6Nt27bW59T//1pYlSpV8MMPPwAAxo0bZ8h8ZnTixAk0a9bM+ljX9XxfX/Tz88MjjzyC2bNnGzGeqbGtHLaVw7byvv76a1SrVg2//PILevToAQCoVq0a+vbti88++wyrVq3CTz/9hAsXLhg8qXlw3cq5cuUKgoKCrI+dnZ1x7do162Nd1xEaGsprid6jXbt2oVu3bihTpoz1ub9+XfGJJ55AeHg4Jk+ebMR4psa2cthWDtvKYVuyFW5eUpEuXryI4OBg62OLxYLr169bH5cqVQodOnTAihUrjBjPlNzc3KDr//d/v7Jly+Ls2bP5jqlcuTJOnDhh79FMj23lsK0ctpV34MABdO7cOV/nv16nuW3btnjkkUcwbdo0I8YzJa5bOd7e3rh8+bL1ceXKlXH48OF8x2RmZuY7H6Piu3nzJipVqmR9XLp0aaSlpeU7JiQkBDt27LDzZObHtnLYVg7bymFbshVuXlKRvLy8kJGRke/xsWPH8h1jsVhu+0uI7iwgICDfm7kHHngAv//+u/UTK0opxMXFoUqVKkaNaFpsK4dt5bCtfZQrV876Zzc3N6SmpuZ7vXbt2ti7d6+dpzIvrls5devWxcGDB62PW7ZsiVWrVmHjxo0AgP3792PBggX5/nGZiq9q1ar5NtoDAgLw559/5jvm+PHjsFgs9h7N9NhWDtvKYVs5bEu2ws1LKlLNmjWRlJRkfdy0aVP8+uuvOHr0KADgwoUL+PHHH1G9enWjRjSddu3aIT4+3vqpn4iICJw4cQLNmzfHK6+8glatWiExMRG9evUyeFLzYVs5bCuHbeX5+vri1KlT1sfVq1fH5s2b8x2zZ88euLm52Xs00+K6lfPII48gISHB+obv1VdfhVIKrVq1QqVKlVCvXj2kpaXxkj33qEmTJvk+5dO5c2ds2LAB77zzDvbu3YuvvvoKixcvRpMmTQyc0pzYVg7bymFbOWxLNmPg9TbJJKZOnapcXV3V5cuXlVJKxcfHK13XlZubm2rcuLEqV66c0nVdff3118YOaiKHDh1SU6dOVWfOnLE+N2LECOvdbm/dde3WhY2p+NhWDtvKYVt5kZGRqmbNmtbHEyZMULquq6efflqtWLFCvfbaa0rXdfX4448bOKW5cN3Kyc7OVikpKSorK8v63IYNG9TDDz+sgoODVadOndSKFSsMnNDcFi9erIKDg613az9//rzy9/dXuq5b12+5cuXUrl27jB3UhNhWDtvKYVs5bEu2oin1/++8QnQH6enp2L9/P+rWrQsPDw8AwMKFCxEVFYWjR48iICAAL7zwAoYPH27wpOZ34cIFa9PKlSsbPY5DYVs5bCuHbW1nzZo1ePfdd/Hll18iICAA165dQ9u2bfHnn39C0zQopVCtWjXEx8cjICDA6HFNjeuWzOjy5cv49ttvrWt34MCB8PX1NXosh8C2cthWDtvKYVu6F9y8JDLA5MmTERgYiIEDBxo9isNhWzlsK4dtjXHz5k0sXboUSUlJCAgIwKOPPsqvjd8Frls5QUFB6NKlCz777DOjR3FIJ06cgIuLCzfXBbCtHLaVw7Zy2JZshde8pCKFh4dj/PjxRo/hUKZMmYLdu3cbPYZDYls5bCuHbeUlJCQgMTEx33POzs7o3bs3Xn31VfTr148bl3eJ61bOxYsX4enpafQYDiswMJDXCxXCtnLYVg7bymFbshVuXlKRNm/ejNzcXKPHcCj+/v68O7sQtpXDtnLYVl5YWBi+/vpro8dwKFy3curXr49Dhw4ZPYbDKl++PCpWrGj0GA6JbeWwrRy2lcO2ZCvcvKQiBQcH4/jx40aP4VD69euHlStX4sqVK0aP4nDYVg7bymFbed7e3nB1dTV6DIfCdSvn1VdfxfLlyxEfH2/0KA6pdevW2Lx5s9FjOCS2lcO2cthWDtuSrfCal1SkmJgYjBgxAlu2bEHdunWNHschZGVloVevXjh79iwmT56MJk2awNvb2+ixHALbymFbOWwrb9CgQdizZw+2b98OTdOMHschcN3KmTNnDhYsWIBff/0V3bt3R5MmTeDj41Pg2h00aJABE5rbgQMH0KxZM4wZMwbjxo2DxWIxeiSHwbZy2FYO28phW7IVbl5SkRISEvDee+8hISEBzzzzTKEn0G3atDFgQnOYM2cOGjRogPr168PJyQkAoJQq9E20pmnIycmx14imxbZy2FYO29rXmTNn0Lx5c3Ts2BHvvvsuKlSoYPRIpsR1Kyc8PBxDhgzBwIEDoes6NE3D30/T/9r5Vnde2ufuRUZG4vDhw/jjjz9QuXJlhISEFHhuq2kaoqOjDZrSnNhWDtvKYVs5bEu2ws1LKlBkZCS6d++Obt263XYCXdgbFJ5A35mu65g0aRLGjx+P0NDQYn/yh18ZKxrbymFbOWwr78SJEyhXrhw8PT0RHh6O1NRU7NmzBy4uLggMDLzjyXNcXJxBE5d8XLdydF1HVFQUJkyYgJiYmGK3jYiIEJ7MMTg5OSEqKgrjx4+HrhfvylncHC4etpXDtnLYVg7bkgR+ZpcKFBMTg2rVqqFbt26YMGECv2JnI7c2gNesWWPsIA6IbeWwrRy2lRUYGGg9ef5r46ysLBw4cAAHDhy47Xf437uicd3KGzx4sNEjOByllHXtJicnGzyNY2FbOWwrh23lsC1J4OYlFSkqKsroEYiIiO7aX0+e8/LyDJ6GiEqKgIAAo0dwWGwrh23lsK0ctiVb4d3GiYiIiIiIiIiIqETiJy+J7CgxMRFz5sy5q9/hXUSLh23lsK0ctiUz4rqVExMTc1dfx+c1Wu8OLwshh23lsK0ctpXDtmRrvGEPFUjXdTRo0AANGjQo9u/wDmGFu3Xjo+LiXUSLj23lsK0ctpWn6zpGjRqFUaNG3dXv+fv7ywzkALhu5RT3pgZ/xbbFd7drF/hf35ycHKGJHAfbymFbOWwrh21JAj95SXeUmJiIxMTEYh/PzcuitW3bFm3btjV6DIfEtnLYVg7byvvoo4/w0UcfFft4njwXjetWzqhRo/Diiy8aPYbD8vT0RLly5YwewyGxrRy2lcO2ctiWbI2bl3RHgwcPRkREhNFjOJTQ0FBMmDDB6DEcEtvKYVs5bCvP398f1apVM3oMh8J1K6dcuXK8uYGg0aNHc+0KYVs5bCuHbeWwLdkaNy/pjqpVq8ZPVhARkakNGTKEJ89ERERERCbGu40TERERERERERFRicTNSyIiIiIiIiIiIiqRuHlJZCcRERF3dfd2Kj62lcO2ctiWzIjrVk58fLz1WuMJCQk4ceJEocefPHkSCQkJ9hiNiIiIyFDcvKQCzZo1C4899hgA4MSJE0hPTy/0+KtXrxZ5kv1vN2vWLHTr1g0AEBQUhI8//rjQ4z/77DMEBQXZYzTTY1s5bCuHbeUFBATwTpc2xnUrp23bttab9YSFhSEmJqbQ4+fMmYOwsDA7TOYY8vLyrNe/nTx5cpEbv+vWrcPkyZPtMZrpsa0ctpXDtnLYliRw85IKFBERgZCQEABAYGAgPvroo0KP//jjjxEYGGiP0RzCsWPHkJaWVugxaWlpOH78uH0GciBsK4dt5bCtjOTkZIwcORIAEBkZiWXLlhV6/IoVKxAZGWmP0RwC160cpVSRx+Tl5UHTNDtM43iioqKwZs2aQo9JSEjApEmT7DOQA2FbOWwrh23lsC3ZCjcvqUhKqSJPootzkk1358qVKyhVqpTRYzgktpXDtnLY9p+JiYlBYmJiocfs3LkTs2fPts9A/xJct3IOHz6MsmXLGj2Gw8rOzoaTk5PRYzgktpXDtnLYVg7bUnFYjB6AHMOpU6fg4eFh9Bgl2t8/Ln/s2LECP0Kfm5uLkydPYt68eahVq5a9xjM1tpXDtnLYtuTJzMyExcJTo8Jw3cr5+6d+lyxZgmPHjt123K22CQkJ6NKli52mczyFfWo1Ozsb69atg7e3tx0nchxsK4dt5bCtHLYlW9AUPzJHBfjrNSeioqIQGhqK0NDQ2467dQIdGxuLZs2a4ffff7fjlOai63qxv96llIKmaYiJicHAgQOFJzM/tpXDtnLY1r50XcekSZMwfvz4215TSuHkyZPo2bMnUlNTkZycbMCE5sB1K0fX/+8LUZqmFfqtFk3T0KRJE3z33XeoUaOGPcYzvb9ee/XYsWMoV65cgdfEzc3NxcWLF5GZmYlhw4bhyy+/tOOU5sS2cthWDtvKYVuSwM1LKtDdnEADQNWqVfHTTz+hSZMm0qOZVlRUlLXl5MmT0bZt2wI3hJ2cnFChQgWEhYWhTp069h/UhNhWDtvKYVt5f91ou7WRVhilFF599VW888479hjPlLhu5dy6NqhSCkFBQRg1ahRefPHF245zcnJC+fLl4ebmZu8RTa1atWrWvwNOnDgBT0/PAt9M31q74eHhGD9+PDsXA9vKYVs5bCuHbUkCNy+pQGvXrgXwvxPo8PBwDB48GBEREbcdd+svnODg4HwbnlS4sLAwDBkyBIMGDTJ6FIfDtnLYVg7byggNDbWePCckJMDf3x/VqlW77bi/njwPGzaM110qJq5bObNnz0bDhg1Rv359o0dxSLquIyoqyno3XLIdtpXDtnLYVg7bkq1w85KKNGnSJISFhaFNmzZGj0JERHRPePJMRLccP34c5cqV4w2PBLCtHLaVw7Zy2JZshZuXRAbLyMhAWloacnNzC3zd39/fzhM5DraVw7Zy2JbMiOtWxpYtW7B169Y7ttU0rcDruBIRERE5Em5eUrGlpKRg+/bthb454VfHii86OhrTp0/HwYMH73iMpmnIycmx41SOgW3lsK0ctiUz4rqVcenSJXTv3h0bNmwo8sY9dzono8JduHABs2bNKnJzOC4uzoDpzI1t5bCtHLaVw7ZkCxajB6CS79bdv2JjY5GXl1fgMbduhMDNy+L54osvMHz4cFgsFrRp0wZ+fn6wWPh/R1tgWzlsK4dt7WPfvn349NNPizx5TkpKMmA68+G6lTNmzBisX78eoaGhiIiIYFsb27VrF8LDw3H58uUiN4fp7rCtHLaVw7Zy2JZshZ+8pCKNGjUKH3/8MWrVqoX+/fsXegJd0E196Ha1a9fG5cuXsX79etSqVcvocRwK28phWzlsK2/t2rXo3LkzsrKyYLFY4OPjc8f/liUnJ9t5OnPiupXj5eWFGjVqYOPGjXxDJ6BDhw6Ii4vDm2++iaFDh8LPz4836rIRtpXDtnLYVg7bkq1w85KKVLVqVVSoUAHbt29HqVKljB7HIbi6uuKpp57Cp59+avQoDodt5bCtHLaV17x5c2zbtg1fffUVIiIieOJsA1y3ctzc3DB8+HC89957Ro/ikNzd3dGxY0csXrzY6FEcDtvKYVs5bCuHbclWdKMHoJIvLS0NnTt35salDVWpUoXXqBLCtnLYVg7bytu5cyf69euHyMhIblzaCNetnAYNGuDYsWNGj+GwXFxcUL16daPHcEhsK4dt5bCtHLYlW+HmJRWpdu3aOHfunNFjOJSIiAj88ssvyMjIMHoUh8O2cthWDtvKc3Nzg7e3t9FjOBSuWzkTJ07EsmXLsGnTJqNHcUht27bFtm3bjB7DIbGtHLaVw7Zy2JZshV8bpyLNnz8fzz77LHbs2IEaNWoYPY5DyMnJQf/+/XH69GlMnToVjRo1gru7u9FjOQS2lcO2cthWXkREBPbv348tW7YYPYrD4LqVM2fOHCxduhQrVqzAgAED0KhRI3h6ehZ4LG+WePeSkpLQrFkzvPrqq3j55ZeNHsehsK0ctpXDtnLYlmyFm5dUpISEBHzyySeIi4vDqFGjCj2BbtOmjZ2nM6dbX1m8dZf2O9E0DTk5OfYayyGwrRy2lcO28s6fP49WrVqhc+fOmDp1KsqUKWP0SKbHdStH13Vompbvzqx/b3yrO7+6f/ciIyORnJyMhIQEBAYGokGDBgWe22qahujoaAMmNC+2lcO2cthWDtuSrXDzkor09xPowt6g8AS6eEJDQ4t999D4+HjhaRwL28phWzlsKy88PBxpaWnYuXMn3NzcUKtWrTuePMfFxRkwoflw3cqZPXt2sY+NiIgQnMQx6XrxrpzFzeG7x7Zy2FYO28phW7IVbl5SkaKioor95mTixInC0xAREd09njwT0S3Hjx8v9rEBAQGCkzgetpXDtnLYVg7bkq1w85KIiIiIiIiIiIhKJN5tnIiIiIiIiIiIiEoki9EDEP0bREZGQtM0vP322/Dx8UFkZGSxfo8XLi4a28phWzlsS2bEdStH13Xouo59+/ahVq1a1uuNF4U3QyqehIQEAEDTpk3h6upqfVwcvBll4dhWDtvKYVs5bEtS+LVxuk1QUBA0TcPq1asRGBiIoKCgYv2epmlISkoSns6cbr0J2b9/v/VNSXHw2mtFY1s5bCuHbeXNmTMHANCjRw94eHhYHxfHoEGDpMYyNa5bObdufjR37lz4+fnxZkg2VtDaLW5frt3Csa0ctpXDtnLYlqTwk5d0m7y8vHx/wfz98Z1wH/zOkpOTAQC+vr75HtM/x7Zy2FYO28obPHgwNE1Ds2bN4OHhYX1cGKUUNE3j5uUdcN3KWbNmTaGP6Z+ZMGECNE2Dl5dXvsf0z7GtHLaVw7Zy2Jak8JOXRERE5HBiYmKgaRp69uwJDw8P6+PiiIiIEJ6OqHAJCQnw9PREgwYNjB6FiIiIyHDcvKQinThxAi4uLqhcubLRoziMoKAgdOnSBZ999pnRozgctpXDtnLYlsyI61aOk5MTnnnmGXz++edGj+KQJk+ejMDAQAwcONDoURwO28phWzlsK4dtyVZ4t3EqUmBgIMaNG2f0GA7l4sWL8PT0NHoMh8S2cthWDtvKi4yMxAcffGD0GA6F61aOt7c3XF1djR7DYU2ZMgW7d+82egyHxLZy2FYO28phW7IVbl5SkcqXL4+KFSsaPYZDqV+/Pg4dOmT0GA6JbeWwrRy2lTd//nycP3/e6DEcCtetnA4dOmDNmjW8nrgQf39/pKWlGT2GQ2JbOWwrh23lsC3ZCjcvqUitW7fG5s2bjR7Dobz66qtYvnw57xAqgG3lsK0ctpVXvXp1nD171ugxHArXrZypU6ciNTUVTz/9NC5dumT0OA6nX79+WLlyJa5cuWL0KA6HbeWwrRy2lcO2ZCu85iUV6cCBA2jWrBnGjBmDcePGwWLhTer/qTlz5mDBggX49ddf0b17dzRp0gQ+Pj4F3kyCd729O2wrh23lsK286dOnY+rUqUhMTLTeLZv+Ga5bOeHh4UhNTcWePXvg4uKCwMDAAttqmoa4uDiDpjSvrKws9OrVC2fPnsXkyZPRpEkTeHt7Gz2WQ2BbOWwrh23lsC3ZCjcvqUiRkZE4fPgw/vjjD1SuXBkhISF3PIGOjo42aEpz0XUdmqbd9nWwvzZVSkHTNOTm5tp7PFNjWzlsK4dt5R07dgwjRozA7t27MXbs2EI32vz9/Q2Y0Hy4buXoevG+HMW298bJyQnA/63PO9E0DTk5OfYayyGwrRy2lcO2ctiWbIUfoaMixcTEWP989uzZO37tjpuXxTdr1iyjR3BYbCuHbeWwrbygoCDrRtvIkSPveBxPnouP61ZOXl6e0SM4tNatWxf6JpruHdvKYVs5bCuHbclW+MlLKtLx48eLfWxAQIDgJERERPdm8ODBxT555qYcEREREVHJwc1LIiIiIqIS7OjRo7hy5QrKli2LoKAgo8chIiIisit+bZzuWk5ODq5evQoPDw/evOcf2rFjB2bPno0///zT+qakUaNGGDRoEBo1amT0eKbGtnLYVg7bkhlx3cq4cuUKJkyYgDlz5iA9Pd36vKenJyIiIjBp0iSULVvWwAkdw59//plv7TZs2BANGzY0eiyHwLZy2FYO28phW/pHFFEx5OTkqBkzZqj69esrJycnpeu6cnJyUvXr11cffPCBunnzptEjms7LL7+snJyclKZpt/04OTmpV155xegRTYtt5bCtHLa1j8zMTLV48WI1fvx4NXLkSDV+/Hi1ePFilZmZafRopsR1K+PcuXOqVq1aStM0Vb58eRUWFqb69eunwsLCVPny5ZWmaapWrVrq3LlzRo9qWlu2bFEhISFK13Wl67rSNM3655CQELV161ajRzQttpXDtnLYVg7bki1w85KKdPXqVdWiRQul67qyWCwqMDBQNWvWTAUGBiqLxaJ0XVctW7ZU165dM3pU0/jkk0+UpmkqODhYfffdd+r48eMqMzNTHT9+XM2dO1fVrl1b6bquPvvsM6NHNR22lcO2ctjWPpYuXap8fHysJ863fnRdV5UrV1bLli0zekRT4bqVExkZqTRNU6+//vpt51fXrl1Tr732mtI0TQ0dOtSgCc1t+/btys3NTWmaptq3b68mTZqkvvzySzVp0iTVrl07pWmacnd3V3/++afRo5oO28phWzlsK4dtyVa4eUlFGj16tNI0TQ0YMEAdP34832vHjx9XTzzxhNI0TY0ZM8agCc2nTp06yt/fX6Wnpxf4elpamrrvvvtUnTp17DyZ+bGtHLaVw7byVq9erSwWiypVqpR66qmn1OzZs9XKlSvV7Nmz1dChQ1WpUqWUxWJRcXFxRo9qGly3cipVqqTatWtX6DFhYWGqUqVKdprIsXTs2FG5uLioVatWFfj6ypUrlbOzs+rUqZOdJzM/tpXDtnLYVg7bkq1w85KK5Ovrq5o0aVLoMY0bN1a+vr52msj8XF1d1ejRows9ZtSoUcrV1dVOEzkOtpXDtnLYVl7Lli2Vh4eH2r17d4Gv79y5U7m7u6tWrVrZeTLz4rqVU6ZMGfXGG28Uesy4ceOUm5ubnSZyLO7u7mrAgAGFHtO/f3/l4eFhp4kcB9vKYVs5bCuHbclWdKOvuUklX2pqKtq3b1/oMe3bt8elS5fsNJH5eXt7F+s4Hx8f4UkcD9vKYVs5bCvvzz//RN++ffHAAw8U+Hr9+vXRp08f7Nixw86TmRfXrZwHHngAx44dK/SYY8eO3XE9U+EsFgsCAgIKPSYwMBBOTk52mshxsK0ctpXDtnLYlmyFm5dUpJo1a+L8+fOFHnPhwgXUqFHDThOZX//+/bFo0SJcu3atwNfT09OxaNEi9O/f386TmR/bymFbOWwrr0yZMqhUqVKhx3h7e6NMmTJ2msj8uG7ljBs3Dj/++CNWr15d4OurVq3Cjz/+iDfeeMPOkzmGFi1aYPPmzYUes2nTJrRq1cpOEzkOtpXDtnLYVg7bks0Y/dFPKvm+/fZb5e7urvbs2VPg67t27VJubm4qOjrazpOZV2ZmpurWrZuqU6eO+v7779XJkydVdna2OnnypJo/f76qU6eOeuyxx1RWVpbRo5oO28phWzlsK69fv37FugRK//797TSR+XHdypk9e7Z69NFHla7rqlOnTuqtt95SX3/9tXrrrbdUx44dla7rqlu3bmr27Nm3/VDR9u7dq8qVK6feeOMNlZGRke+1jIwM9frrr6vy5curffv2GTShebGtHLaVw7Zy2JZsRVNKKaM3UKlkS0hIwPTp07Fq1SpERESgVatW8PHxwblz57Bu3TrMmTMHnTp1wpgxY2773TZt2hgwccl362PxSilomnbb63d6XtM05OTkiM9nZmwrh23lsK2806dPo2XLlmjTpg3+85//4L777rO+dvLkSYwbNw7r16/Hhg0bULVqVQMnNQ+uWzm6rkPTNBR1mv7Xvrd65+bmSo9nepGRkUhKSsL69etRrlw5NGzY0Hpu++effyItLQ2tW7dGUFBQvt/TNA3R0dEGTW0ObCuHbeWwrRy2JVvh5iUV6e8n0H8/Uf77c3/FE+iChYaG3rFZUeLj4208jWNhWzlsK4dt5YWHh+Py5cvYtWsXnJyc4O/vbz15PnHiBHJzc1G/fn2UL18+3+9pmoa4uDiDpi7ZuG7lxMTE3HPbiIgIG0/jeHT93q6cxc3horGtHLaVw7Zy2JZshZuXVKSoqKh7PoGeOHGijachIiK6ezx5JqJbjh8/fs+/W9SNJ/7t2FYO28phWzlsS7bCzUsiA8yZMwc+Pj7o1KmT0aM4HLaVw7Zy2JbMiOtWTnh4OFq2bIm33nrL6FGIiIiIDMe7jVORIiMj8cEHHxg9hkMZOnQoVq5cafQYDolt5bCtHLaVd+LECaSkpBg9hkPhupWzefNmfuJXkJOTEwYMGGD0GA6JbeWwrRy2lcO2ZCvcvKQizZ8/H+fPnzd6DIdSpUoV3qxACNvKYVs5bCsvMDAQ48aNM3oMh8J1Kyc4OPgffdWOCufp6Znvpl1kO2wrh23lsK0ctiVb4eYlFal69eo4e/as0WM4lG7duuG3335DVlaW0aM4HLaVw7Zy2FZe+fLlUbFiRaPHcChct3JeeOEFLF26FPv27TN6FIfUtGlT7Ny50+gxHBLbymFbOWwrh23JVrh5SUWKjIzEzz//jNOnTxs9isP4z3/+Azc3N/Ts2RN79+41ehyHwrZy2FYO28pr3bo1Nm/ebPQYDoXrVk5QUBBCQ0PRrFkzvPLKK1iwYAHWrl2LhISE237o7kVFReH333/HnDlzjB7F4bCtHLaVw7Zy2JZshTfsoSIdO3YMI0aMwO7duzF27Fg0adIEPj4+Bd6B3N/f34AJzScoKAhZWVnW66+5urrC29v7tqaapiEpKcmIEU2LbeWwrRy2lXfgwAE0a9YMY8aMwbhx42CxWIweyfS4buXoug5N03DrNL2gc65beG3Muzd58mRs2LABq1evRqNGje54bqtpGsaPH2/QlObEtnLYVg7bymFbshVuXlKR/noCXdjJs6ZpvPZVMVWrVq3Qln+VnJwsPI1jYVs5bCuHbeVFRkbi8OHD+OOPP1C5cmWEhITc8eQ5OjraoCnNhetWTlRUVLHbTpw4UXgax6PrxfvymaZp3By+S2wrh23lsK0ctiVb4eYlFWnw4MHFPoGeNWuW8DRERER3jyfPRHTL2rVri31s27ZtBSdxPGwrh23lsK0ctiVb4eYlEREROby7uXNzQECA4CRERERERHQ3uHlJZLB9+/bhwIEDyMjIwMCBA40ex6GwrRy2lcO2ZEZctzL+/PNPfP/99zhw4ACuX7+O1atXA/jfZvzmzZvRvn17VKhQweApiYiIiGTxbuNUbCkpKfj8888xcuRIDB061Pr8hQsXsGXLFty4ccPA6cxn69ataNCgAerVq4fHH38cgwcPtr6WkJCAMmXKYNmyZcYNaGJsK4dt5bCtfV26dAknT540egzT47qVM3bsWDRu3BjTpk3DihUrEB8fb31NKYUnnngCc+fONXBCc8vJycEHH3yApk2bwtPTM99NvBITE/H888/j0KFDBk5oXmwrh23lsK0ctiWbUETF8NlnnylXV1elaZrSNE3pum59bc+ePUrXdfX1118bOKG57NmzR7m7uytPT0/10ksvqUceeSRf07y8PHXfffepJ5980sApzYlt5bCtHLa1j7S0NDVy5Ejl7e2tdF1XTk5O1tc2bdqkunTporZt22bghObCdStn5syZStM01a1bN7V79241bty4fG2VUqp58+YqPDzcoAnN7fr166pVq1ZK13Xl7e2tfH198/VNS0tTrq6u6o033jBwSnNiWzlsK4dt5bAt2Qo/eUlFWr58OUaMGIF69eph2bJleO655/K9fv/996N+/fpYsmSJMQOa0K07g27fvh3Tpk1DkyZN8r2uaRqaN2+OrVu3GjGeqbGtHLaVw7byLl26hIceegiffPIJ7rvvPtSpUwfqL1fOqV+/PjZs2IB58+YZOKW5cN3K+fzzz1GnTh0sWrQIDzzwAFxcXG47Jjg4GIcPHzZgOvN7++23sWHDBrzzzjtISUnBU089le/1smXLom3btvj1118NmtC82FYO28phWzlsS7bCzUsq0vvvvw9/f3/Ex8eja9eu8Pb2vu2YevXqYd++fQZMZ05r165Fr169UKNGjTse4+/vj7Nnz9pxKsfAtnLYVg7byouKisKhQ4cQGxuLbdu24fHHH8/3eunSpdG2bVv8/vvvBk1oPly3cvbt24cOHTrk+2rd3/n4+OD8+fN2nMpx/PDDDwgLC8PYsWOhaRo0TbvtmKCgIJw4ccKA6cyNbeWwrRy2lcO2ZCvcvKQiJSYm4pFHHoGbm9sdj/H19cW5c+fsOJW5Xb16tcBN4L+6ceMGcnNz7TSR42BbOWwrh23lLVu2DF27dkWfPn3ueEy1atVw6tQpO05lbly3ciwWC7Kzsws95syZM3B3d7fTRI7lxIkTaNy4caHHeHh44MqVK3aayHGwrRy2lcO2ctiWbIWbl1SkvLw8ODs7F3rM+fPnUapUKTtNZH733Xcfdu/eXegxO3bsQPXq1e00keNgWzlsK4dt5Z09exZ169Yt9JhSpUohIyPDThOZH9etnHr16uH333+/48bvrTuPP/jgg3aezDF4eHgU+anVpKQkVKpUyU4TOQ62lcO2cthWDtuSrXDzkopUu3ZtrFu37o6v5+TkICEhAfXq1bPjVObWtWtXrFq1CqtXry7w9QULFmDTpk3o3r27fQdzAGwrh23lsK28ihUrFnl38QMHDqBKlSp2msj8uG7lREZG4tChQ3j22WeRlZWV77X09HQMHjwYKSkpGDZsmEETmluzZs2wfPlypKWlFfj6yZMn8d///hdt2rSx72AOgG3lsK0ctpXDtmQzRt8xiEq+6dOnK03TVFRUlFJKqaioKOsdwnJyctSLL76odF1X33zzjZFjmsr58+eVn5+fcnZ2Vk899ZTq2rWr0nVdffbZZ+rJJ59UTk5OKjAwUKWlpRk9qumwrRy2lcO28vr27avc3NzUyZMnlVL5/1umlFJ79+5VFotFDRs2zKgRTYfrVlb//v2VpmnKw8ND3XfffUrXddWkSRPl7u6uNE1TQ4YMMXpE01q7dq3SdV01atRIrV+/Xr355ptK13WVkZGhVq9ererUqaOcnZ3Vtm3bjB7VdNhWDtvKYVs5bEu2ws1LKlJ2drYKDQ1Vuq6rmjVrqnr16ild19Xjjz+uAgMDlaZpqlOnTiovL8/oUU0lKSlJtWjRQmmadttPs2bNVHJystEjmhbbymFbOWwra9euXcrV1VX5+/ur7777To0YMULpuq727dunvv32W+Xj46Pc3NzUoUOHjB7VVLhuZX399deqfv36Std1a9e6deuqL7/80ujRTO/zzz9Xzs7OStf1236cnZ35j/L/ANvKYVs5bCuHbckWNKWUMvrTn1TyZWdnY9KkSfjyyy9x+fJl6/Oenp547rnnMGnSJLi4uBg4oXklJiZi06ZNuHTpEjw9PfHQQw+hSZMmRo/lENhWDtvKYVs5y5Ytw8CBA3Ht2jUAgFIKmqZBKQUPDw98//33ePjhhw2e0py4bmXduHEDly9fhqenJ2/SY0P79+/Hl19+ic2bN+dbu88//zzuv/9+o8czNbaVw7Zy2FYO29I/xc1LuitKKRw8eND6F06dOnXg5ORk9FhERETFcunSJcyePfu2k+chQ4bAy8vL6PGIiIiIiOhvuHlJREREREREREREJZLF6AGI/o0iIyOLPEbXdXh6eqJ27dro2rUrfH197TCZ+bGtHLaVw7ZkRly3cnRdh6ZphR6jaZq1bY8ePfDCCy+gdOnSdprQ3BISEoo85tbarVGjBsqUKWOHqRwD28phWzlsK4dtyVb4yUsqUlBQUJHH/PXNSY8ePdCnTx87TGZef31TUtD/BW9dg+0Wi8WCCRMm4M0337TbjGbFtnLYVg7bypszZ06Rx/z1v2W1a9e2w1TmxnUrJzQ0FFeuXMHOnTvh5OQEf39/+Pj44Ny5czhx4gRyc3MREhKC3NxcJCUlITMzEw888ADWrVsHT09Po8cv8YqzOfzXYzt06ID333+f12UrBraVw7Zy2FYO25KtcPOSilStWjXk5OTgzJkzAP735sPLywsXL15ETk4OAKBq1apIT0/HtWvXoGka2rVrhxUrVvAmPneQnJyMUaNGYcuWLXjxxRfRsmVL65uSDRs24OOPP0bTpk3xxhtvYOfOnZgyZQpOnjyJ+fPno2/fvkaPX6KxrRy2lcO28u7m5BkAgoOD8cknnyA8PFxwKnPjupVz6tQptGrVCqGhoZgyZQr8/Pysr50+fRpvvvkm1qxZg/Xr16Ns2bJ4+eWX8fXXX2Ps2LGYOnWqgZObQ1RUFLZs2YKVK1eidu3aaNGihXXtbty4EQcOHECXLl1QvXp17NixA3/88QfKli2LzZs3o1atWkaPX6KxrRy2lcO2ctiWbMaOdzYnk7p8+bJq3Lixateundq4caPKy8tTSimVl5enNm7cqNq3b6+aNGmiLl++rA4fPqy6du2qdF1Xb7/9tsGTl1zvvPOO8vHxUSkpKQW+fvbsWeXj46PeffddpZRSp06dUp6enqpNmzb2HNOU2FYO28phW3kxMTGqW7duStM01alTJzV58mT11VdfqcmTJ6tOnTopTdPUY489pqZPn64GDBigLBaLKlWqlNqyZYvRo5dYXLdy+vbtq5o3b17oMS1atFD9+vVTSimVm5ur7r//flWrVi17jGd6CQkJqlSpUmrWrFkFvh4TE6NKly6t1q1bp5RSau7cuUrTNDVw4EA7TmlObCuHbeWwrRy2JVvh5iUV6emnn1b16tVTubm5Bb6ek5Oj6tWrp5555hmllFI3btxQgYGBqn79+vYc01Rq1KihXnjhhUKPGTFihKpRo4b18RNPPKHKli0rPJn5sa0ctpXDtvJ++ukn5erqqn7//fcCX4+Pj1elS5dWS5cuVUoptWbNGuXk5KR69uxpzzFNhetWTsWKFdW4ceMKPeb1119XXl5e1sfPPvuscnV1lR7NIbRt21b17t270GN69+6t2rZta30cFhamfH19hSczP7aVw7Zy2FYO25Kt6EZ/8pNKvqVLl+Lhhx+Grhe8XJycnPDwww9j6dKlAABXV1eEh4fjyJEj9hzTVE6dOoVSpUoVeoyrqytOnTplfezv74/MzEzp0UyPbeWwrRy2lff222+jT58+CAsLK/D10NBQPP7445gyZQoAoG3btujcuTPWr19vzzFNhetWTmZmJs6ePVvoMWfPnsWNGzesjz08PGCx8F6cxbF9+/Yir2tbu3ZtbN++3fq4QYMGuHDhgvRopse2cthWDtvKYVuyFW5eUpHS09ORnp5e6DFXrlzBlStXrI+9vLykxzI1X19fLFmy5I5v4DIzM7FkyZJ8d2U9f/48ypcvb68RTYtt5bCtHLaVt3fv3nzXDSyIn58f9u7da31ct25dpKWlCU9mXly3cho1aoTY2Fhs3LixwNc3b96MH374AQ8++KD1uaNHj8LHx8deI5qai4sLEhMTCz3mzz//hLOzs/Vxbm4u3NzchCczP7aVw7Zy2FYO25KtcPOSilS3bl18//33OHr0aIGvHz16FLGxsahbt671uRMnTqBSpUr2GtF0hg4diqSkJLRq1QrLli1DamoqACA1NRXLli1Dq1atcPToUURGRlp/Z926dQgJCTFqZNNgWzlsK4dt5bm7u2PdunWFHrNu3Tq4u7tbH2dkZMDDw0N6NNPiupXz1ltvIScnB61bt0bPnj0xffp0zJ07F9OnT0fPnj3RqlUr5ObmYvLkyQCAa9eu4ddff0Xbtm0Nntwc2rdvj19++QXvvvsubt68me+1mzdv4v3338fKlSvRsWNH6/P79u2Dv7+/vUc1HbaVw7Zy2FYO25LNGP29dSr5Fi1apDRNUx4eHmr06NHqxx9/VAkJCerHH39Uo0ePVp6enkrXdbVo0SKllFJZWVmqYsWKqn///gZPXnLl5OSogQMHKk3TlK7rStd1ZbFYrH/WNE0NGDDAep3RlJQUNWrUKLVy5UqDJy/52FYO28phW3nDhg1Tuq6r5557Tp0/fz7faxcuXFDPP/+80nVdDRs2zPp8ixYtVNOmTe09qmlw3cr69ddfVUBAgNI0zdr41p8DAgLUL7/8Yj02IyNDJSYmqgsXLhg4sXkcO3ZMValSRem6ripXrqy6du2qIiMjVdeuXfM9f+zYMaXU/24+VbFiRfXmm28aPHnJx7Zy2FYO28phW7IVTSmljN5ApZJv5syZGDVqFK5duwZN06zPK6Xg7u6OGTNm4KmnngIApKWlYe3atbj//vtRo0YNo0Y2hd9//x1z587Frl27kJ6eDk9PT4SEhGDAgAFo166d0eOZGtvKYVs5bCsnNTUVbdq0wf79+1GqVCnUqFED3t7eOH/+PI4cOYKsrCwEBwdj3bp1qFixIlJSUvDwww9j8ODBGDlypNHjl2hct3Ly8vKwfv167Ny5M1/bVq1a3fFa5FQ8Z86cwauvvooff/wRWVlZ1udLlSqF3r1745133inyUhNUMLaVw7Zy2FYO25ItcPOSiu3KlStYunTpbSfQjz32GMqWLWv0eERERIXKyMjA1KlTMW/ePBw7dsz6fLVq1TBgwAC8+uqr+b42TkSOLzs7GwcPHrSe29auXRsuLi5Gj+UQ2FYO28phWzlsS/8ENy+JiIjoX+fq1avWk2de15KIiIiIqOTi5iWRgVJSUrB9+3akpaUhNze3wGMGDRpk56kcA9vKYVs5bEtmxHUr48KFC5g1axa2bt16x7aapiEuLs6A6YiIiIjsh5uXVCzZ2dlYsmRJkSfQ0dHRBkxnPpmZmRg2bBhiY2ORl5dX4DFKKWiadsc3glQwtpXDtnLY1r4yMjIK3WjjHS6Lh+tWzq5duxAeHo7Lly+jsFN1tr13q1evxowZM6zntgWtYU3TkJOTY8B05sa2cthWDtvKYVuyBYvRA1DJd/z4cXTo0AFJSUlFnkBz87J4XnvtNcybNw+1atVC//794efnB4uF/3e0BbaVw7Zy2NY+oqOjMX36dBw8ePCOx/Dkufi4buW89NJLuHTpEt58800MHToUfn5+cHJyMnosh7Fo0SL07dsXeXl5CAgIQHBwMNeujbCtHLaVw7Zy2JZshZ+8pCL17NkTS5YswcCBAxEZGVnom5OAgAA7T2dOVatWRYUKFbB9+3aUKlXK6HEcCtvKYVs5bCvviy++wPDhw2GxWNCyZctC/1s2a9YsO09nTly3ctzd3dGxY0csXrzY6FEcUkhICI4ePYqlS5ciPDzc6HEcCtvKYVs5bCuHbclWuOVNRfr999/Rrl07zJ492+hRHEZaWhqeeOIJvtkTwLZy2FYO28r78MMP4eXlhfXr16NWrVpGj+MQuG7luLi4oHr16kaP4bAOHjyIgQMH8o20ALaVw7Zy2FYO25Kt6EYPQCVfXl4eGjZsaPQYDqV27do4d+6c0WM4JLaVw7Zy2Fbe8ePH0adPH25c2hDXrZy2bdti27ZtRo/hsCpWrIgyZcoYPYZDYls5bCuHbeWwLdkKNy+pSA899BD2799v9BgO5ZVXXsHSpUtx5MgRo0dxOGwrh23lsK28KlWq8MYmNsZ1K2fatGnYs2cPpk2bZvQoDql3795YvXo1r28rgG3lsK0ctpXDtmQrvOYlFWn79u1o06YNZs+ejd69exs9jkNISEjAJ598gri4OIwaNQqNGjWCp6dngce2adPGztOZG9vKYVs5bCsvKioKMTEx2Lt3L9zc3IwexyFw3cqJjIxEcnIyEhISEBgYiAYNGhTYljdLvDcZGRno2LEjKleujA8++AD+/v5Gj+Qw2FYO28phWzlsS7bCzUsq0uTJk7Flyxb88ssvaNu27R3fnGiahvHjxxswofnoug5N06x3b9c07Y7H8pNCd4dt5bCtHLaVl5OTg/79++P06dOYOnUqGjVqBHd3d6PHMjWuWzm6XrwvR2maxrb3ICgoCDdv3sSZM2cAAOXKlUPZsmVvO07TNCQlJdl7PFNjWzlsK4dt5bAt2Qpv2ENFioqKsv55zZo1WLNmTYHHcfOy+CZMmFDomzy6d2wrh23lsK28WzeVUUohLCzsjsdpmsavNhUT162c5ORko0dwaHl5ebBYLPk+AVTQ5zn4GY+7x7Zy2FYO28phW7IVfvKSirR27dpiH9u2bVvBSYiIiO5NaGhosTfa4uPjhachIiIiIqLi4uYlERERERERERERlUj82jgRERERkYESEhIAAE2bNoWrq6v1cXHwZkhERETk6PjJS7rNiRMnAAC+vr5wcnKyPi4O3j2sYEFBQdA0DatXr0ZgYCCCgoKK9Xu8cHHR2FYO28phWzIjrls5t25+tH//ftSqVcv6uDh4w56iTZ48GZqmYfjw4ahQoQImT55crN/j9dyLxrZy2FYO28phW5LCzUu6zb2eQPMmB3dWrVo1aJqG33//HYGBgdbHxcGL9heObeWwrRy2lRcZGQlN0/D222/Dx8cHkZGRxfo9TdMQHR0tPJ05cd3KiYqKgqZpeOGFF1ChQgXr4+KYOHGi8HTmV9C5bXHwbu5FY1s5bCuHbeWwLUnh5iXdZvDgwdA0DVOnToWPj4/1cXHMmjVLeDoiIqKi8eSZiG65dfPJhx56CK6urrwZpQ2xrRy2lcO2ctiWpHDzkshOPv74YzRr1gxNmzY1ehSHw7Zy2FYO28o6fvw4gP9dAsVisVgfF0dAQIDUWKbHdSunUaNGePbZZ/H0009bnzt//jxSUlJQv359AydzDOnp6XB1dYWLi4vRozgctpXDtnLYVg7bkoTifQyB/nV69uyJBQsW5HsuOzsb6enpBk1kfqNGjcLKlSvzPffVV1+hUaNGBk3kONhWDtvKYVtZAQEBuHLlCi5dumR9XNwfujOuWzmJiYlISUnJ99wXX3yBhg0bGjSRYylfvjzefffdfM9t3rwZH3/8sUETOQ62lcO2cthWDtuSBG5eUoGWLFmCAwcO5HvunXfeQfny5Q2ayDGlpKRg586dRo/hkNhWDtvKYVvbatiwIb788st8z/36668YM2aMQRM5Jq5bMgOlFP7+hbOVK1di9OjRBk3kONhWDtvKYVs5bEsSuHlJREREDqmgK+Ns2rQJH330kQHTEBERERHRveDmJREREREREREREZVI3LwkIiIiIiIiIiKiEsli9ABE/yYZGRk4f/689fG1a9cAABcuXCjw640A4O3tbZfZzI5t5bCtHLYlM+K6lbN+/Xq89957+R4DwPvvv3/HtmPHjrXLbERERERG0dSdzoToX03XdfTu3Ru9e/e2Prdw4UIsXrwYsbGxdzyB7tOnj71GNB1d16Fp2m3PK6UKfB4ANE1DTk6O9Gimx7Zy2FYO28rTdR1RUVGYMGGC9blJkyZh8uTJyM3NNXAy8+K6laPrd/+FKE3TuJaLSdd11KhRAzVq1LA+d+TIESQlJaFTp04F/o6mafj555/tNaJpsa0ctpXDtnLYliRw85IKVNCbk1tLpbA3LTyBvrPQ0NA7vrErTHx8vMA0joVt5bCtHLaVp+s6vLy84OXlZX3u4sWLSE1NRe3atQv8HU3TsHfvXnuNaDpct3Jmz559T78XERFh40kcEzeH5bCtHLaVw7Zy2JYkcPOSCjRp0qR7+r2JEyfaeBIiIqJ7cy8nzwCQl5dn40mIyGjHjx+/p98LCAiw8SSOh23lsK0ctpXDtiSBm5dERERERCVIZGQk6tWrh9GjRxs9ChEREZHheLdxIiIiIqISZP78+fluikRERET0b8a7jVORrl69igsXLuC+++6Ds7Oz9fkffvgBy5Ytg6urK4YPH45GjRoZOKX5XLhwAbNmzcLWrVuRlpZW4DU+NE1DXFycAdOZG9vKYVs5bCsrMjIS3bt3R7du3e54zIoVK7B48WLMnDnTjpOZG9etjOrVq+Ps2bNGj+HwUlJSsH379juuXQAYNGiQnadyDGwrh23lsK0ctqV/il8bpyI999xz+O6773Du3DmUKVMGAPDFF19gxIgR1pv4lC5dGtu3b0dwcLCRo5rGrl27EB4ejsuXL9/xzu0AL1x8L9hWDtvKYVt5Bd15/O/+85//YMKECWxcTFy3cqZPn46pU6ciMTERvr6+Ro/jcDIzMzFs2DDExsbe8Rq3vBnlvWFbOWwrh23lsC3ZCj95SUVau3Yt2rdvb924BICpU6fC19cX8+fPR0pKCgYNGoT3338f0dHRBk5qHi+99BIuXbqEN998E0OHDoWfnx+cnJyMHsshsK0ctpXDtiVDZmYmLBaeGhUX162cXr16IT4+Hi1atMDYsWPRpEkT+Pj4FHind39/fwMmNLfXXnsN8+bNQ61atdC/f3/4+fnx//s2wrZy2FYO28phW7IVfvKSilS+fHkMGTIEM2bMAADs378f999/P9577z28/PLLAIB+/fph+/btOHz4sJGjmoa7uzs6duyIxYsXGz2Kw2FbOWwrh23l6bqOSZMmYfz48be9ppTCyZMn0bNnT6SmpiI5OdmACc2H61aOruvQNM36aZQ70TQNOTk5dpzMMVStWhUVKlTA9u3bUapUKaPHcShsK4dt5bCtHLYlW+GWNxUpKysLLi4u1sdr166Fpmno2LGj9bmgoCAsW7bMiPFMycXFBdWrVzd6DIfEtnLYVg7byri1AXRLVFQUoqKi7ni8UgqvvvqqHSZzDFy3cgYNGlTopiX9M2lpaXjiiSf4RloA28phWzlsK4dtyVa4eUlF8vPzw65du6yPV6xYgQoVKqB+/frW51JTU+Hu7m7EeKbUtm1bbNu2zegxHBLbymFbOWwro02bNtYNoISEBPj7+6NatWq3Hefk5IQKFSogPDwcw4YNs/OU5sV1KycmJsboERxa7dq1ce7cOaPHcEhsK4dt5bCtHLYlm1FERRg5cqRycnJSL730knrjjTeUk5OTGjJkSL5jQkND1YMPPmjQhOZz5MgR5eXlpd5//32jR3E4bCuHbeWwrTxN09SkSZOMHsOhcN2SWc2bN095eHiow4cPGz2Kw2FbOWwrh23lsC3ZCq95SUVKSUlBixYtcOzYMQBAlSpVsHnzZvj5+QEAzp8/Dz8/P4wYMcJ6XUwqXGRkJJKTk5GQkIDAwEA0aNAAnp6etx2naRpvgnSX2FYO28phWzIjrlsyq4SEBHzyySeIi4vDqFGj0KhRowLXLvC/T3BT8bGtHLaVw7Zy2JZshZuXVCw3btxAXFwcgP/9pfLXv3D27duH3377DZ06dUJwcLBRI5qKruvFOk7TNOTm5gpP41jYVg7bymFbMiOuW9sJDw+HpmmYPXs2/Pz8EB4eXqzf0zTNen5GxffXGyIBKPT6oly7d4dt5bCtHLaVw7ZkK7zmJRVL6dKl0bVr1wJfq1u3LurWrWvnicyNd7KVw7Zy2FYO29peZGQkNE3D22+/DR8fH0RGRhbr9/gpweLjurWdNWvWQNM0XL9+3fq4OHhTn3szYcIEthPCtnLYVg7bymFbshV+8pKK1KVLFzz99NPo1q0bnJycjB6HiIioSLf+pX///v2oVasWPyVIRERERGRS3LykIt16A+jt7Y3Bgwdj6NChqFGjhtFjERER3dHx48cBAL6+vrBYLNbHxREQECA1FhERERER3aXifQyB/tWOHDmCsWPHQtd1vPvuu6hduzbatWuH2NhYZGdnGz2eqc2bNw8dOnRApUqVUKpUKVSqVAkdO3bE/PnzjR7N9NhWDtvKYVvbCQgIQEBAACwWS77HRf24uroaPLn5cN0SERERkSR+8pKKLTc3FytWrMC3336LlStXIi8vD+XLl8egQYPw1FNP8bqXdyE3Nxd9+vTBkiVLoJSCq6srfHx8cO7cOWRmZkLTNHTv3h0LFy4s9lcd6X/YVg7bymFbGV988QWee+65Yh9/7tw5hIWFYd++fYJTOQ6uW3mZmZnYunUrzpw5g6ysrAKPGTRokJ2ncgwnT57ElClTsHr1apw5c6bAf5DXNA05OTkGTGdubCuHbeWwrRy2JZtQRPfgzJkzasqUKap69epK13Wl67pq2bKliomJUTdu3DB6vBJvxowZStM01bp1a/XHH3/ke23jxo2qTZs2Std19eGHHxo0oXmxrRy2lcO2MpycnFRsbGyxjr1w4YKqW7eu0nVdeCrHwXUr69NPP1Xly5e3nmf9/UfTNK7Xe5SUlKS8vLyUk5OTql+/vtI0TVWrVk0FBwcrFxcXpWmaatCggQoNDTV6VNNhWzlsK4dt5bAt2Qo3L+me3bx5Uy1YsED5+voqTdOsJ9EVK1ZU7733nsrNzTV6xBIrJCRE1a5dW2VnZxf4enZ2tgoODlYhISH2HcwBsK0ctpXDtjJ8fX1VqVKl1K+//lrocRcuXFD16tVTmqapESNG2Gk68+O6lbNo0SKlaZqqX7++dZO4R48eaurUqerhhx9Wmqap3r17q5iYGKNHNaVBgwYpZ2dntWbNGqWUUpqmqUmTJiml/vcP9I899piqWbOmunjxopFjmhLbymFbOWwrh23JVvgdHrprhw4dwtixY+Hn54d+/frh0qVLGDhwIFavXo13330X7u7ueO211/Dqq68aPWqJdejQIXTr1g3Ozs4Fvu7s7IxHH30Uhw4dsvNk5se2cthWDtvKWLVqFdzd3dGrVy9s2rSpwGNSU1PRvn177NmzB88++yw++eQTO09pXly3cj788EN4e3tj48aNGD16NACgQYMGePXVV/Hzzz/ju+++w5IlS3hzqXu0evVqPPzww2jbtq31OfX/r6RVpUoV/PDDDwCAcePGGTKfmbGtHLaVw7Zy2JZshZuXVCyZmZmYO3cu2rZtizp16mDatGmoUKECpk+fjtOnT2P27NkIDw/Hyy+/jIMHD6Jly5aYM2eO0WOXWC4uLsjIyCj0mIyMDLi4uNhpIsfBtnLYVg7byqhbty7++9//AgC6du2KvXv35nv98uXL6NChA3bt2oVhw4bh888/N2JM0+K6lbNr1y5069YNZcqUsT6Xm5tr/fMTTzyB8PBwTJ482YjxTO/ixYsIDg62PrZYLLh+/br1calSpdChQwesWLHCiPFMjW3lsK0ctpXDtmQr3LykIo0YMQJVq1bF4MGDsXnzZvTt2xfx8fHYt28fRo0ahfLly+c7vlSpUujUqRMuXrxo0MQlX8OGDbFgwQKcOXOmwNfPnj2LBQsWoFGjRnaezPzYVg7bymFbOU2bNsWSJUuQkZGBTp064dixYwCAtLQ0dOjQAYmJiYiMjMRXX31l7KAmxHUr5+bNm6hUqZL1cenSpZGWlpbvmJCQEOzYscPOkzkGLy+vfBvvXl5e1r8bbrFYLLc1p6KxrRy2lcO2ctiWbIWbl1Skzz//HBUrVsTUqVNx6tQpzJ8/P9/HvgsSGhqKCRMm2GlC8xkzZgxSU1PRuHFjTJ8+Hdu2bcPJkyexbds2TJs2DQ8++CAuXbqEMWPGGD2q6bCtHLaVw7ay2rVrh3nz5uHcuXPo0KEDDhw4gA4dOmDHjh2IiIjAt99+a/SIpsR1K6dq1ao4e/as9XFAQAD+/PPPfMccP34cFovF3qM5hJo1ayIpKcn6uGnTpvj1119x9OhRAMCFCxfw448/onr16kaNaFpsK4dt5bCtHLYlmzH0iptkCqtXrzZ6BIc0ffp05ezsXODdQ52dndWMGTOMHtG02FYO28phW3nffvut0jRNWSwWpWmaevLJJ1VeXp7RY5ka162M/v3757vR0ejRo5Wu6+rtt99We/bsUV9++aWyWCyqc+fOxg1pYlOnTlWurq7q8uXLSiml4uPjla7rys3NTTVu3FiVK1dO6bquvv76a2MHNSG2lcO2cthWDtuSrWhK/f+rpRKR3R09ehTz5s1DYmIi0tPT4enpiYYNG+KJJ55AUFCQ0eOZGtvKYVs5bGtb58+fv+25adOmYdq0aejYsSNmzZoFJyen247x9va2x3gOg+vW9n766SeMGzcOv/zyC6pVq4YLFy6gcePGOHXqFID/3eygbNmySEhIQL169Qye1nzS09Oxf/9+1K1bFx4eHgCAhQsXIioqCkePHkVAQABeeOEFDB8+3OBJzYdt5bCtHLaVw7ZkK9y8pGLJycnBJ598gu+//x4HDhzA9evXkZOTAwBITEzE119/jVGjRqFWrVoGT0pERPQ/uq5D07TbnldKFfg8AGiaZv3vG1FJcvnyZXz77bfWN3sDBw6Er6+v0WMRERERiePmJRXpxo0b6NixI/744w94eXnB2dkZZ8+etd718sqVK6hcuTJeeuklTJkyxeBpiYiI/ic0NPSOm5SFiY+PF5iGqHgSEhKwdetWaJqGpk2bolWrVkaPRERERGQobl5SkcaPH4///Oc/mDp1Kl555RVMmjQJb731lnXzEgA6d+6M1NRUbN261cBJS66EhIR7/t02bdrYcBLHw7Zy2FYO25IZcd3KysnJQa9evbBixYp8z3fv3h0LFy6ErvM+m7Zy4sSJIo/RdR2enp7w9PS0w0SOg23lsK0ctpXDtmQr3LykItWqVQv33Xcf4uLiAACTJk3C5MmT821ePv/881i0aBHOnTtn1Jgl2p2+ulgcf+1Mt2NbOWwrh23JjLhuZX344YcYM2YMvL290bNnTwD/u/bl+fPn8dFHH2HEiBEGT+g47mYte3t7o0ePHpg4cSJ8fHyEJzM/tpXDtnLYVg7bkq1YjB6ASr4TJ06gR48ehR7j4eGBK1eu2Gki85kwYcI9v+GjwrGtHLaVw7bGOXbsGC5evAgAqFSpEgICAgyeyDy4bmXNnz8f5cqVQ2JiIipXrgzgf83r1q2L7777jpuXNjRo0CAcO3YMCQkJKF++PBo0aAAfHx+cO3cOO3fuxKVLl9C2bVt4eHhg9+7d+PLLL7F8+XJs2bIFVapUMXr8Eo1t5bCtHLaVw7ZkM8bc5JzMxMvLSw0ePNj6OCoqSum6nu+YXr16KT8/P3uPRkREVKSzZ8+q4cOHq0qVKild1/P9+Pj4qBdffFGlpKQYPSb9y3l6eqqhQ4fe9nxkZKTy9PQ0YCLHtWfPHlWuXDk1ceJElZGRke+169evq6ioKFW+fHm1d+9elZubq6ZMmaI0TVPPP/+8QRObB9vKYVs5bCuHbclW+LVxKtKjjz6KjRs34siRIyhXrtxtXxs/efIkateujR49emDevHkGT0tERPR/du/ejU6dOuHcuXNQSuG+++5D1apVAQBnzpzByZMnAQC+vr5YtWoV6tSpY+S49C+m6zomTpyIiRMn5ns+KirqtmuN0z/zyCOPIDc3FytXrrzjMV26dIHFYsHy5csBAA899BDOnz+P5ORke41pSmwrh23lsK0ctiVb4ZW/qUivvPIKLl++jHbt2mHDhg3IyckBAFy/fh1xcXHo1KkTcnJyMGbMGIMnJSIi+j83b95Ev379kJKSgoiICCQlJeH48ePYuHEjNm7ciOPHjyMpKQkRERE4ffo0+vXrxw0iMlRBX8vnV/Vtb8OGDWjcuHGhxzRq1Ajr1q2zPn7ooYdw9uxZ6dFMj23lsK0ctpXDtmQrvOYlFalNmzb49NNP8eKLL+a7W6iHhwcAwMnJCZ9//jkefPBBo0Y0patXr+LTTz/F6tWrcebMGWRlZd12jKZpSEpKMmA6c2NbOWwrh21tb9myZdi/fz/GjBmDadOmFXhMYGAgZs2ahQoVKuDDDz/EsmXLirzOM/0frlvbOnXqFLZs2XLbcwCwdetWFPSFqaZNm9plNkeSl5eHI0eOFHrMkSNH8vV2dnaGq6ur9Gimx7Zy2FYO28phW7IZw76wTqazb98+NXLkSPXQQw+pmjVrqgcffFA9//zzas+ePUopxeuF3YXz58+rGjVqKE3TVNmyZZWmaapcuXKqTJkyStM0pWma8vX1VdWqVTN6VNNhWzlsK4dtZQwYMECVLVtWXbt2rchjr127pjw9PdXAgQPtMJlj4Lq1LU3Tbrsm662fwl6ju9elSxdlsVhUbGxsga8vWLBAWSwW1aVLF+tzXbt2VXXq1LHXiKbFtnLYVg7bymFbshVe85IK9MUXX+C5554r9vHnzp1DWFgY9u3bJziV4xg+fDi++OILzJkzBwMGDICTkxOioqIwYcIEbN26FS+88AIsFgtWrVqFMmXKGD2uqbCtHLaVw7Yy7r//flSvXh3Lli0r1vHdunVDcnIydu/eLTyZY+C6ta0hQ4bc0+/NmjXLxpM4vt27d6Nly5bIyMhASEgIWrZsCW9vb5w/fx5//PEHEhMT4ebmhvXr16N+/fpITU2Fr68vnnrqKXz66adGj1+isa0ctpXDtnLYlmzG6N1TKpmcnJzu+K8jf3fhwgVVt25d/uv/XahWrZpq37699bGmaWrSpEnWx5cuXVK+vr5q7NixRoxnamwrh23lsK2M8uXLqzFjxhT7+DFjxqgKFSoITuRYuG7JzBITE1WrVq2snxL+60+rVq3Un3/+aT02JydHpaWlqezsbOMGNhG2lcO2cthWDtuSLfCal1SgypUrIyIiAuXLl0fHjh3veNzFixcRHh6O/fv3Y/jw4Xac0NzOnj2Lxx9/3PrYyckJN27csD4uX748unTpggULFuDdd981YkTTYls5bCuHbWVcvXoVnp6exT7ew8MDV69eFZzIsXDdkpmFhIRg3bp1OHHiBHbu3In09HR4enoiJCQE/v7++Y51cnJC2bJlDZrUfNhWDtvKYVs5bEu2wM1LKtCqVavQpk0b9OrVC7/99huaNWt22zGpqalo37499uzZg2effRaffPKJAZOaU9myZXHz5k3r4/Lly1svyH+Lp6cnzp07Z+/RTI9t5bCtHLaVkZube1d3atY0jXcbvwtct2RW4eHhaNmyJd566y34+/vf9uaZ7h3bymFbOWwrh23JVrh5SQWqW7cu/vvf/6Jdu3bo2rUr1q5di/vvv9/6+uXLl9GhQwfs2rULw4YNw+eff27gtOYTFBSEY8eOWR83bNgQv/32G1JTU1GxYkXcuHEDy5cv51/u94Bt5bCtHLaVU9Ddmws7loqP61ZWcnIyPvroI+zcuRNnzpzJt1F8C+/kfm82b95c4D/M0z/HtnLYVg7bymFbshXd6AGo5GratCmWLFmCjIwMdOrUyfoGJS0tDR06dEBiYiIiIyPx1VdfGTuoCXXs2BFxcXG4fv06AOCZZ57B+fPnERISgscffxwPPPAAkpKSMHjwYGMHNSG2lcO2cthWTnR0NJo3b16sn+joaKPHNRWuWzkrV65EnTp18PHHH+OPP/7A9evXoZS67ScvL8/oUU0pODgYx48fN3oMh8S2cthWDtvKYVuyFd5tnIq0ePFi9O3bF9WqVcPy5csxcOBAbN++HREREbzD5T06e/YsEhIS0K5dO3h5eQEApk+fjilTpuDKlSsoXbo0nn/+eUydOhVOTk4GT2subCuHbeWwrQzevVkW162ckJAQHDlyBDExMejVqxd0nZ83sKWYmBiMGDECW7ZsQd26dY0ex6GwrRy2lcO2ctiWbIWbl1Qs0dHRGDZsGJycnJCbm4sBAwZgzpw5d3UtMSpabm4uLl68CG9vb7a1MbaVw7Zy2JbMiOv2nytdujSefPJJfPPNN0aP4pASEhLw3nvvISEhAc888wyaNGkCHx+fAtdrmzZtDJjQvNhWDtvKYVs5bEu2ws1LKtD58+dve27atGmYNm0aOnbsiFmzZhX4KQpvb297jGd6165dg7u7u9FjOCS2lcO2cti2ZEhOTsakSZMQExNj9CimwHUrJzAwEF27duXNEIXoug5N03DrbVBhm+y8idfdYVs5bCuHbeWwLdkKb9hDBapcufId/2L57bff4Ofnd9vzmqYhJydHejSH4OPjg+7du2PgwIHo2LEjvw5mQ2wrh23lsK2xTpw4gbfeegtz5sxBTk4ONy+LietWzhNPPIEffvgBmZmZcHV1NXochzNhwgR+KlgI28phWzlsK4dtyVb4yUsqUGho6D39JRMfHy8wjeOpX78+9uzZA03TUKlSJfTv3x9PPvkkHnzwQaNHMz22lcO2cthWzvr16zF+/Hhs374dFosFrVu3xnvvvYfatWvj+vXrePPNN/H5558jOzsbVatWxeuvv47hw4cbPbYpcN3KuXnzJnr06IGrV6/i7bffRkhICD/lSkRERP9a3LwkMsiuXbswZ84cfP/99zh79iw0TUPt2rUxcOBADBgwAP7+/kaPaFpsK4dt5bCt7W3fvh0tW7ZEdnZ2vuerVKmCdevWoVu3bti3bx+qVq2KV199FU8//TRKlSpl0LTmxHUrZ9WqVejXrx+uXLlyx2P4rRciIiL6N+DmJZHBlFJYvXo15s6diyVLluDatWvQdR2tWrXCwIEDMXToUKNHNC22lcO2ctjWdvr27YuFCxfinXfesXb75ptv8MYbb6BKlSo4d+4cxo0bh3HjxvGruf8Q161t/fDDDxgwYADy8vIQFBSEKlWqwGIp+GpP/NbLvcvIyMCSJUuQmJiI9PR0eHp6okGDBujevTvc3NyMHs/U2FYO28phWzlsS/8UNy/pnuTk5GD37t0AgAceeADOzs4GT+QYbty4gZ9++glz587F6tWroZTiJypshG3lsK0ctv1n/Pz8EBwcjNWrV+d7vl27dlizZg3ef/99jBkzxqDpHBfX7T93//33IyUlBStXrkSTJk2MHschLVq0CE8//TTS0tLw17dDmqahXLly+Oabb9CzZ08DJzQvtpXDtnLYVg7bki3wyupUoOTkZMycOROHDh267bUVK1bA19cXjRs3RuPGjVGlShUsWLDAgCkdT05ODrKyspCVlYW8vDzw3xZsh23lsK0ctv1nzp8/X+D1F289FxERYe+R/hW4bv+55ORk9OvXjxuXQv744w/069cPGRkZeOqppzB//nzEx8fj+++/x7Bhw3D9+nX069cPGzduNHpU02FbOWwrh23lsC3ZjCIqwOuvv650XVfHjh3L9/zhw4dV6dKllaZpqlq1aur+++9Xuq4ri8WiduzYYdC05paTk6OWLVum+vTpo8qUKWPt2blzZzVv3jyjxzM1tpXDtnLY1nY0TVOTJk267fmoqCil67oBEzkurlvbqlWrlnrmmWeMHsNhPfLII8rNzU0lJiYW+PrOnTuVm5ub6tq1q50nMz+2lcO2cthWDtuSrXDzkgrUunVr1ahRo9ueHzFihNI0TY0YMcL63E8//aQ0TVORkZH2HNH0Nm7cqIYPH64qVaqkdF1Xmqaphg0bqhkzZqiUlBSjxzM1tpXDtnLY1va4eSmP61bG+++/r6pWrapSU1ONHsUhVahQocjz1iFDhqgKFSrYaSLHwbZy2FYO28phW7KVgq/8Tf96ycnJ6Nq1623Pr1y5Ei4uLnj77betz3Xv3h2tW7fGunXr7DmiqdWsWRNHjx6FUgq+vr545ZVXMHDgQNx///35jsvKyuKdb+8S28phWzlsK+e7777Dpk2b8j135MgRAMDDDz982/GapuHnn3+2y2xmx3Urp3fv3tiwYQNatmyJN998EyEhIfD09CzwWN7R/e5dv34dPj4+hR7j4+OD69ev22kix8G2cthWDtvKYVuyFd6whwrk6uqKV155BW+99Zb1uUuXLsHLywutW7fG2rVr8x0/atQofPPNN8jIyLD3qKbk4eGB3r17Y+DAgQgLC4Omafle37FjB6KjoxEbG4vU1FSDpjQntpXDtnLYVoau3/2lvTVNQ25ursA0jofrVo6u69A0DUqp27r+laZpvBnSPahTpw7c3d2xdevWOx7TtGlTXL16Ffv377fjZObHtnLYVg7bymFbshV+8pIK5OzsfNsbje3btwMAGjdufNvxbm5udpnLUZw/fx6lS5fO91xaWhq+++47REdHY9euXVBK3XYMFY1t5bCtHLaVkZycbPQIDo3rVs6gQYMK3bSkf6ZPnz546623EBERgXfeeQdVq1a1vnb27Fm8/vrr2L59O8aPH2/glObEtnLYVg7bymFbshV+8pIK9OCDD+LatWs4ePCg9blXXnkFM2bMwIIFC9CrV698xw8ZMgTr1q2zfhWPim/16tWIjo7G0qVLkZWVBaUUmjdvjiFDhqBv377w8PAwekTTYls5bCuHbcmMuG7JTK5fv46wsDBs3boVLi4uqFGjBnx8fHDu3DkcOXIE2dnZaNq0KeLj47n5fpfYVg7bymFbOWxLNmPfS2ySWfznP/9RmqapZ555Ru3cuVMtXLhQeXp6Kk9PT3Xt2rXbjq9Zs6bq1KmTAZOa04kTJ9SkSZNUtWrVrDc48PPzU5qmqSFDhhg9nqmxrRy2lcO2ZEZct2RmmZmZatKkSap69epK0zTrT/Xq1dXkyZNVZmam0SOaFtvKYVs5bCuHbckW+MlLKtD169fRvHlz7N692/q1JaUUZsyYgVGjRuU7dtu2bWjatCnef/99vPTSSwZMaw43b97EkiVLEB0djbi4OOTm5sLNzQ09evTAoEGDEB4eDovFgqeeegpff/210eOaCtvKYVs5bEtmxHVrfxs2bEBiYiLS09Ph6emJBg0aoGXLlkaP5VCuXr1q7ctPCdsW28phWzlsK4dt6V7xmpdUoDJlymDDhg344IMPsGnTJlSsWBGPP/44Hn300duO3bFjBx577DF069bNgEnNo2rVqrh06RI0TUNYWBgGDRqEnj178nqhNsC2cthWDtuSGXHd2s8ff/yBIUOGWC/Jo/5y856aNWti1qxZaN68uZEjOgwPDw++iRbCtnLYVg7bymFbulfcvKQ7cnd3L9aFc59++mk8/fTTdpjI3FJTU6HrOkaPHo2xY8eiUqVKRo/kMNhWDtvKYVsyI65b+9i7dy86duyI69evo0OHDggLC0OVKlWQkpKC+Ph4rFq1Cp06dcKmTZtQt25do8c1haCgoLv+HU3TkJSUJDCNY2FbOWwrh23lsC1J4NfGiewkMjISCxcuxPXr12GxWNCpUycMHDgQjz32GFxcXAAAuq7zq3b3gG3lsK0ctiUz4rq1j759++Knn37CsmXL0Llz59teX7lyJbp164aePXsiNjbWgAnNR9d1ODk5wWK5u89u3LhxQ2gix8G2cthWDtvKYVuSoBs9AJVMGRkZqFmzJlq2bImbN2/e8bjs7Gy0atUKwcHB/MumCDNnzsTZs2fx1VdfoVGjRlixYgX69esHHx8fPPPMM1i/fr3RI5oW28phWzlsS2bEdWsfa9asQe/evQvcuASAzp07o3fv3oiPj7fzZOYXGhqKOXPmID09HTdu3Cjyh4qPbeWwrRy2lcO2ZFNG3i2ISq5PPvlE6bqu1q5dW+SxCQkJStM09dlnn9lhMsexb98+NWbMGOXt7a00TVO6ritd11WbNm3UsWPHjB7P1NhWDtvKYVsyI65bGaVKlVLjxo0r9Jhx48apUqVK2Wki89u/f7966aWXVOXKlZWu68rLy0uNGjVK7dq1y+jRTI9t5bCtHLaVw7YkgZuXVKD27dur+++/v9jH169fX4WHhwtO5Lhu3rypFi5cqDp37qycnJyUpmnKyclJhYeHqzlz5hg9nqmxrRy2lcO2ZEZct7YVGBhY5HlVu3btVGBgoJ0mchw5OTnqp59+Uo8++qhydnZWuq6rBx98UH3++ecqLS3N6PFMjW3lsK0ctpXDtmRL3LykAlWqVEk999xzxT7+ueeeU5UqVRKc6N/h5MmTavLkySooKMj6CRayDbaVw7Zy2JbMiOv2n3vxxReVruvqzTffVDdu3Mj32o0bN9SECROUrutq1KhRBk3oGFJSUtTUqVNVcHCw0jRNlSlTRg0YMEAdP37c6NFMj23lsK0ctpXDtvRP8YY9VCAXFxe8+uqreOutt4p1/Jtvvon3338fWVlZwpP9e8TFxWHmzJmYN2+e0aM4HLaVw7Zy2JbMiOv23qSmpuKhhx5CcnIyKlasiKZNm8LHxwfnzp3D1q1bceHCBQQFBWHLli2oUKGC0eM6hLi4OAwePBhnzpzBTz/9hG7duhk9ksNgWzlsK4dt5bAt3Yu7u/0T/Wt4enoiNTW12MdfunQJHh4eghP9+7Rr1w7t2rUzegyHxLZy2FYO25IZcd3em4oVK2LTpk0YO3YsYmNj8d///tf6mqurK4YMGYJ3332XG5c2sHXrVsycOROxsbG4cuUKfH194efnZ/RYDoFt5bCtHLaVw7b0T/CTl1SgFi1aID09HXv27CnW8Q888ADKli2LDRs2CE9GRERE9O9x8+ZNHDhwAOnp6fD09ERwcDCcnZ2NHsvULl68iLlz52LWrFnYu3cvLBYLHn30UQwdOhSdOnWCrutGj2habCuHbeWwrRy2JVvhJy+pQA8//DAmTpyI2NhY9OvXr9BjFyxYgH379mHKlCl2mo6IiIjIcZ04cQLlypWDp6cnnJ2dUa9evduOuXr1Ki5fvgx/f38DJjSfvLw8/Pe//8XMmTPx888/4+bNm3jggQcwffp0PPnkk/Dy8jJ6RNNiWzlsK4dt5bAtSeAnL6lAaWlpqF69OrKysvDpp59i8ODBBR43e/ZsjBgxAq6urjh8+DDKlStn1zmJiIiIHI2TkxOioqIwfvz4Ox7zn//8BxMmTEBubq4dJzOvqlWr4ty5cyhbtiz69euHyMhING7c2OixHALbymFbOWwrh21JAjcv6Y7i4uLQrVs3ZGZm4r777kPbtm2t16Q4ffo01qxZg5MnT8LV1RUrVqxAWFiYwRMTERERmZ+u64iKisKECRPueMyUKVMwceJEbl4Wk67rcHZ2RosWLVC6dOli/Y6mafj555+FJzM/tpXDtnLYVg7bkgRuXlKhdu7ciZEjR2LdunUFvt6mTRt89NFHCAkJsfNkRERERI6pOJuXzz77LGJjY5GWlma/wUzsXq6rpmkaN4eLgW3lsK0ctpXDtiSB17ykQoWEhGDt2rVISkrChg0bkJKSAgCoXLkyWrZsierVqxs8IREREZH5TZ48Od/jNWvWFHhcbm4uTp48idjYWDRr1swOkzmG5ORko0dwWGwrh23lsK0ctiUJ/OQlEREREZHB/vpJFU3TUNQpetWqVfHTTz+hSZMm0qMRERERGYqfvKQ7SkhIwJUrV9C5c2c4OzsXeEx2djZ+/fVXlCtXDq1bt7bzhERERESOIT4+HgCglEJ4eDgGDx6MiIiI245zcnJChQoVEBwcjJs3b9p7TCIiIiK74ycvqUD79+9H/fr1ERERgW+//bbQY59++mnExMRg9+7dqF27tp0mJCIiInJMkyZNQlhYGNq0aVPg6zt27EB0dDRiY2ORmppq5+mIiIiI7Iubl1SgMWPG4IsvvsCxY8fg4+NT6LHnzp1DYGAgnn32WcyYMcNOExIRERH9e6SlpeG7775DdHQ0du3aBaUUSpcujYyMDKNHIyIiIhLFr41TgX7//XeEhoYWuXEJAD4+PggNDUVcXJwdJiMiIiL691i9ejWio6OxdOlSZGVlQSmF5s2bY8iQIejbt6/R4xERERGJ4+YlFejo0aNo3759sY+vW7cu1q1bJzgRERER0b/DyZMnMWvWLMyaNQsnTpyAUgq+vr44ffo0Bg8ejJkzZxo9IhEREZHdcPOSCpSdnQ0XF5diH+/i4oKcnBzBiYiIiIgc182bN7FkyRJER0cjLi4Oubm5cHNzw4ABAzBo0CCEh4fDYrHAYuHpOxEREf278OyHClSpUiUcPXq02McnJyfDy8tLcCIiIiIix1W1alVcunQJmqYhLCwMgwYNQs+ePeHm5mb0aERERESG4uYlFahJkyb47bffcO3aNbi7uxd67LVr17Bq1SqEhobaZzgiIiIiB5Oamgpd1zF69GiMHTsWlSpVMnokIiIiohJBN3oAKpmefPJJXL58GSNGjCjy2BdeeAFpaWl48skn7TAZERERkeMZPHgwSpcujRkzZsDPzw/dunXDwoULkZ2dbfRoRERERIbi5iUVqGfPnggLC8PcuXMRHh6O33//Pd/J882bNxEXF4d27dphzpw5CA8PR48ePQycmIiIiMi8Zs6cibNnz+Krr75Co0aNsGLFCvTr1w8+Pj545plnsH79eqNHJCIiIjKEppRSRg9BJdPly5fRvXt3rFu3DpqmwWKxWK9rmZqaips3b0IphdatW2Pp0qUoV66csQMTEREROYj9+/fj22+/xXfffYcLFy5A0zQAQKtWrTBnzhwEBAQYPCERERGRfXDzkgqVm5uLOXPmIDo6Glu3bsXNmzcBAM7OzmjatCmGDh2KgQMHwsnJyeBJiYiIiBxPTk6O9S7kv/32G/Ly8qDrOtq2bYvBgwdj4MCBRo9IREREJIqbl1Rsubm5SE1NBQBUrFiRG5ZEREREdnTq1CnMmjULMTExSE5OhqZpyM3NNXosIiIiIlHcvKR/7ObNm9ZPBKxcudLocYiIiIgcXlxcHGbOnIl58+YZPQoRERGRKG5e0j3bs2cPoqOj8d133+HSpUsAwH/9JyIiIiIiIiIim7EYPQCZy9WrVzF//nzMnDkT27ZtAwC4urqif//+GDJkiMHTERERERERERGRI+HmJRVLQkICoqOjsWjRIty4cQO3PrDbuXNnxMbGwtPT0+AJiYiIiIiIiIjI0XDzku4oJSUFMTExmDlzJpKSkqCUgr+/P5588kkMHDgQderUgZ+fHzcuiYiIiIiIiIhIBDcvqUCPPvoofv31V+Tk5MDDwwODBw/GwIEDERoaavRoRERERERERET0L8HNSyrQzz//DF3X8corr2Dy5MkoVaqU0SMREREREREREdG/jG70AFQyBQUFIS8vD9OmTcNDDz2EGTNmICUlxeixiIiIiIiIiIjoX4Sbl1SgI0eO4Pfff0f//v1x6NAhvPzyy7jvvvvQpUsXfP/998jMzDR6RCIiIiIiIiIicnCaunXbaKI7uHLlCubNm4fo6Gj8+eef0DQN7u7uuHbtGh5//HHExsYaPSIRERERERERETkgbl7SXdm5cye++eYbzJ8/H2lpadA0DdWqVcPgwYMxaNAgBAQEGD0iERERERERERE5CG5e0j3JysrCokWLEB0djTVr1kApBScnJ9y8edPo0YiIiIiIiIiIyEFw85L+sWPHjiE6OhqzZ8/GiRMnjB6HiIiIiIiIiIgcBDcvyWaUUtA0zegxiIiIiIiIiIjIQViMHoBKpqCgoLv+HU3TkJSUJDANERERERERERH9G/GTl1QgXdfh5OQEi+Xu9rdv3LghNBEREREREREREf3b8JOXVKjQ0FBERkaie/fucHZ2NnocIiIiIiIiIiL6F9GNHoBKpn379uHFF19EYmIi+vXrh6pVq2L06NHYvXu30aMREREREREREdG/BL82ToXKzc3F8uXLMXPmTKxcuRK5ublo2LAhhg4diieeeAJly5Y1ekQiIiIiIiIiInJQ3LykYjt37hxiYmIQExODgwcPonTp0ujRowfefvtt+Pv7Gz0eERERERERERE5GG5e0j2Ji4vD4MGDcebMGfz000/o1q2b0SMREREREREREZGD4Q176K5s3boVM2fORGxsLK5cuQJfX1/4+fkZPRYRERERERERETkgbl5SkS5evIi5c+di1qxZ2Lt3LywWCx599FEMHToUnTp1gq7zvk9ERERERERERGR7/No4FSgvLw///e9/MXPmTPz888+4efMmHnjgAURGRuLJJ5+El5eX0SMSEREREREREZGD4+YlFahq1ao4d+4cypYti379+iEyMhKNGzc2eiwiIiIiIiIiIvoX4eYlFUjXdTg7O6NFixYoXbp0sX5H0zT8/PPPwpMREREREREREdG/BTcvqUD3ch1LTdOQm5srMA0REREREREREf0b8YY9VKDk5GSjRyAiIiIiIiIion85fvKSiIiIiIiIiIiISqS7/24wERERERERERERkR1w85KIiIiIiIiIiIhKJG5eEhERERERERERUYnEzUsiIiIiIiIiIiIqkbh5SURERERERERERCUSNy+JiIiIiIiIiIioROLmJREREREREREREZVI3LwkIiIiIiIiIiKiEun/AW2yzILLgaYyAAAAAElFTkSuQmCC", + "image/png": "iVBORw0KGgoAAAANSUhEUgAABS8AAARPCAYAAAD+yxSnAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAA7eFJREFUeJzs3XeYFfXZP/77LMtSFhaQjiKC2BVs2CJi74qG2BXleTRqYkzEr0GNiKKxJ5YYY4qKxq6JRo2BKIINQiwhamJDqQIqXVbp8/vDH+dxZZey7OyZXV6v6zpX9sx8Zs597jMbzr79zEwuSZIkAAAAAAAypqjQBQAAAAAAVEZ4CQAAAABkkvASAAAAAMgk4SUAAAAAkEnCSwAAAAAgk4SXAAAAAEAmCS8BAAAAgEwSXgIAAAAAmSS8BAAAAAAySXgJAADUe8OGDYtcLhebbbZZoUsBANZBcaELAACoyrBhw2LSpEmx7777xr777lvocvJGjx4do0ePjs022yzOOOOMQpcDAAD1lvASAMisYcOGxYsvvhgRkbnw8sorr4w+ffoILwEAIEVOGwcAAAAAMkl4CQAAAABkkvASAMiclTfWWHnK+JVXXhm5XK7CY9KkSats9+qrr8app54aXbp0icaNG0eLFi1it912i+uvvz4WLlxY5euNGDEivvvd78Ymm2wSJSUlUVZWFt26dYuDDz44brrpppgzZ05EREyaNClyuVxceeWVERHx4osvrlLXsGHD1um9PvLII3HYYYdF+/bto2HDhtGyZcvYYost4uijj45f//rXsWjRokq3mz17dgwdOjR233332GijjaJx48ax2WabxcEHHxy/+c1vYv78+ZVu9+c//zmOPPLIaN++fZSUlET79u3jyCOPjCeeeKLKGs8444zI5XJxxhlnRJIk8Yc//CH23nvvaN26daXvedKkSfGTn/wktttuu2jWrFk0bdo0tt566/jxj38cU6ZMWaf+RET07ds3crlcfPe7313tuI8++ij/Obz88ssV1q3tZ1xTli5dGk899VR8//vfj1133TU6duwYJSUl0a5duzjkkEPioYceiiRJKt129OjR+fcREfH666/H9773vejYsWM0btw4unfvHhdddFHMmzev0u2/fWOa5557Lg477LBo27ZtNGnSJLbbbru4+uqrqzy2rrjiisjlcvlLNfzpT3+Kgw8+ONq1axdFRUVxxRVXVBj/r3/9K/r375//vWvVqlXstddeccstt8TixYsrfY0VK1bEyJEj4/zzz4899tgj/7m0bt06+vTpE3feeWcsXbp09U2OiL///e9x4oknRpcuXaJJkyax0UYbRY8ePeJHP/pRjB07drXbvvHGG3H88cdHx44do1GjRtGtW7cYOHBgzJ07d42vCwDUogQAIGMefvjhpH379knDhg2TiEhKS0uT9u3bV3hMmTIlP3758uXJ+eefn0RE/tGsWbOkQYMG+edbbbVVMmnSpFVe68orr6ywXdOmTZNmzZpVWDZq1KgkSZJkypQpSfv27ZPS0tIkIpKGDRuuUtfDDz+81u9zwIABq9TctGnTCssmTpy4ynYjRoxIWrVqlR9TXFyctG7dOt+viEieeOKJCtssXrw4OeGEE/Lri4qKklatWiVFRUX5ZSeddFKyZMmSVV7v9NNPTyIi6d+/f9KvX79Vtr/nnnvyY++///6kUaNG+X02atQoadKkSf558+bNkxEjRqx1j5IkSR577LEkIpKSkpJk9uzZVY674oorkohIunbtmqxYsSK/fF0+45oyatSoCvsvKytLmjdvXmHZcccdlyxfvny12z755JNJSUlJfh8rf46IpEuXLpUeH/fcc09+/a9//eskl8slEZG0bNkyKS4uzm+/0047JXPmzFll+yFDhiQRkfTp0ycZOHBgEhFJLpdLWrVqlTRo0CAZMmRIfuwvf/nL/P4jImnRokWF47BHjx7J9OnTV3mNiRMnrnLst2jRosKy3r17J19++WWl/S0vL0+OO+64CuObN29eYR89e/assi8PPPBAvs4WLVpU+D3Ybrvtki+++GL1HzAAUGuElwBAZvXp0yeJiAphSWUuu+yyJCKSdu3aJb/+9a/zAdeSJUuSUaNGJTvttFMSEcnOO+9cISyaNGlSPrQYOHBg8sknn+TXzZs3L3n55ZeTH/zgB8nrr79e4fW+Ge5U18svv5wPAa+//voKodysWbOSESNGJKeffnqFmpIkSd58882kcePG+ZDl2WefzQeOy5YtS15//fXkwgsvTJ5//vkK21144YX5EGrw4MHJ3LlzkyRJkjlz5iSXXnppPrgZNGjQKrWuDC+bNWuWFBcXJzfddFMyf/78JEmS5IsvvsiHU3//+9+ToqKipLi4OPnpT3+aTJw4MVmxYkWyYsWK5L333suHTWVlZcnkyZPXuleLFi3Kh7W/+c1vqhzXvXv3JCKSyy+/PL+sup/x+ho3blxy9tlnJ88991y+V0mSJLNnz05uvfXWpKysLImI5NZbb11l22+Gly1atEj23Xff5L///W+SJEmydOnS5JFHHsn3o1evXsmyZcsqbL8ypGvatGnSsGHD5LjjjsuH/V9++WXym9/8Jh8wH3vssau8/srje2XAO2jQoOSzzz5LkuTrz2LlfwR4+umn83X27ds3+fjjj5Mk+Toov++++/Jh7V577bVKjVOnTk1OOeWU5Kmnnqpw7H/xxRfJPffck3Tq1CmJiOSCCy6otL/HH398/vdn0KBBydSpU/PrPv/88+SBBx5IzjnnnCr70qhRo+TMM8/M96W8vDy5/fbb84Hm4MGDK31dAKD2CS8BgMxam/By4sSJSYMGDZImTZok48ePr3TMggULkk022WSVGYmPPPJIEhHJlltuuU511UR4ef311ycRkRx88MHrtN3ee++dRESyxRZbJPPmzVurbaZNm5afcXfJJZdUOmblDLuGDRuuMlNuZXgZEcltt91W6fbLly9PtthiiyQikt/+9rdV1nL00UcnEZH8+Mc/XqvaVzr77LOTiEj23HPPStePGTMmX+OHH36YX17dzzhtK2eTbr755qus+2Z4ueWWW1Y6+/C5557Lj3n00UcrrFsZ0q08Riub3fmHP/whP+af//xnhXUrj++VgW9Vttlmm/wMyW+Hk0mSJE899VR+P4899liV+6nMa6+9lkR8Pev6q6++qrDu+eefz+/3jjvuWOt9frMvp59+eqVjVv4edO/efZ3qBQDS45qXAECdNmzYsFi+fHkceuih0bNnz0rHNG/ePI455piI+Prahyu1bNkyIiK++OKLKC8vT7vUCla+9ueffx7Lly9fq20+/PDDeOWVVyIi4pprrokWLVqs1XZ/+tOfYtmyZdG4ceO4+OKLKx1z2WWXRaNGjWLp0qXx+OOPVzqmVatWcfbZZ1e67qWXXooPP/ww2rRpE2eeeWaVtfTv3z8iKn4Oa+O0006LiIixY8fGhAkTVln/xz/+MSIi9txzz+jevXt+eSE/49U54ogjIuLr63TOnDmzynEXXXRRNGnSZJXlBx54YOy1114REfHwww9Xuf1ll10WRUWrfuUfMGBAbLLJJqvdvqioKAYNGlTpurfeeivefffd/Gs0aNBglTFHHXVU7LbbbhER8dBDD1VZY2V23XXXaNeuXZSXl8f48eMrrLv77rsjImL77bePc889d532u9Jll11W6fK+fftGRMSECRPiyy+/rNa+AYCaJbwEAOq0V199NSK+vnFHhw4dqnzcc889ERExefLk/La77bZbtGnTJmbMmBG777573H777fHee+9VeSOVmnTAAQdE48aN41//+lf07t077rrrrpg4ceJqtxkzZkxERDRo0CAOO+ywtX6t119/PSIievXqFWVlZZWOadWqVey6664Vxn9br169oqSkpNJ1Kz+H+fPnR6dOnar8HM4666yIqPg5rI3vfOc7sfnmm0dExP33319h3ZIlS+KRRx6JiP8LR1cq5Gf8xRdfxI033hh9+vSJdu3aRUlJSf5GPE2bNs2PmzZtWpX72H///de4rqrPq7i4OHr37l3puqKiovwNearavnv37tGuXbtK163cpri4OPr06VNljQcddFCVr7FkyZK488474+CDD45OnTpFo0aNKtz86rPPPouIVfuz8vfgyCOPrPJ1V2ejjTaqEHB/U6dOnfI/u3EPAGRDcaELAABYH9OnT4+IiPLy8rWaWffN2VQtW7aMhx56KE4++eT4z3/+Ez/60Y8iIqJFixaxzz77xPHHHx8nnHBCNGzYsMbr3nzzzeMPf/hDnHPOOTF27Nj8nZHbtm0b++23X5x88slx9NFH5+84HRH5GXpt2rSJ0tLStX6tlSHQxhtvvNpxK2firRz/bVUFWRH/9zksXbo0Pv300zXW9NVXX61xzLeddtppccUVV8T9999f4Y7Xzz77bMyZMydKSkrihBNOqLBNoT7jDz74IA444IAKwVvTpk2jZcuW+ZmQK/u0uuN2dZ/ZynVVfV5t2rSJRo0aVXv71X3eK7dZ02tUdUx99tlnceCBB8bbb7+dX9a4ceNo06ZNfhbn559/HitWrFilPyt/D7p06VLl665O8+bNq1xXXPx/fx6tzd3OAYD0mXkJANRpK0+5HjRoUCRfX897tY/Ro0dX2P7AAw+MiRMnxn333Renn356bLHFFjF//vx4+umn47TTTouddtopPvnkk1RqP+WUU2Ly5Mlx5513xgknnBCdO3eOzz//PB599NE45phjok+fPrFgwYL8+G8GmYVQ2anBK638HHbfffe1+hyqM/Nx5anjH330UX6mZ8T/nTJ+5JFHRqtWrVbZrhCf8YABA2LatGmx2WabxWOPPRazZ8+O8vLy+Oyzz2LmzJkVXq82ZoFWx+o+7/V1wQUXxNtvvx2tW7eOu+++O2bMmBFfffVVfP755zFz5syYOXNmfhbkt/tT6N8DAKB2CS8BgDqtQ4cOEbHupyF/U2lpaZx22mkxbNiw+OCDD2LatGlx/fXXR+PGjSvM1kvDRhttFGeffXY8/PDDMWXKlJgwYUJcfPHFkcvl4uWXX64ww3Dle501a9Y6Xb9x5Qy61Z2e/M31q5txV5Wa+BzWpFu3bvGd73wnIv4vsJw7d2789a9/jYhVTxn/ptr8jKdOnZo/tfmhhx6K733ve7HRRhtVGLO661x+0+pC1ZXrqvq8Zs2aFUuWLKn29quzcptZs2bF4sWLqxxX2TG1dOnS+POf/xwREbfffnsMGDAgf/ystHz58pg1a1al+6yNYw0AyA7hJQCQWStPr13dzLSVYdbzzz8fixYtqpHX3XjjjeOnP/1pXHjhhRER8dxzz61zXdW1+eabx7XXXhsnn3zyKq+98gYty5cvj7/97W9rvc9vXsty/vz5lY6ZN29ehWtjrquVn8PMmTOrvIZiTVgZUD766KOxZMmSePTRR2Px4sXRpk2bOPzww9d6P2v6jNfH1KlT8z/vtNNOlY55/vnn12pfo0aNWuO6lZ/vty1btixefvnlStclSRIvvvjiardfnZXbLFu2LL+fyqx8n988pj7//PP872pV/XnllVeq/H1e+Xvw9NNPr3PdAEDdI7wEADJr5c1l5s2bV+WY//mf/4ni4uKYNWtWDBkyZLX7W7JkSSxcuDD/fHUzxiIif5fnb9+teW3qWpPqvHb37t1jn332iYiISy+9tMIp5avTr1+/KC4ujkWLFsX1119f6ZhrrrkmFi9eHA0bNox+/fqt1X6/ab/99svfBOWCCy5Y7Yy/iIg5c+as82tERBx//PHRqFGjmDt3bjz99NP5GZgnnnhipdetrO5nvD6+eRf4f//736us/+KLL+Lqq69eq33ddNNNlYZ4o0aNyp86/+3rfH7Tz3/+81ixYsUqy++99958yLq67avSo0eP2HbbbSMi4uqrr85fNuCbnn322Rg3blxERJx00kn55WVlZflTvyvrz7Jly+JnP/tZla/9v//7vxER8Z///Cd+85vfrHPtAEDdIrwEADJr++23j4ivQ5CqTp/dfPPNY/DgwRERccMNN0T//v3jnXfeya9ftmxZjB8/PoYOHRrdu3eP8ePH59ddf/31cdhhh8Uf//jHCqdUL168OB599NG48cYbIyLiiCOOqLSu//znP/nTg9fVeeedF8cff3z86U9/qnAzk4ULF8add94Z9913X6Wvfeutt0bjxo3jww8/jO985zsxfPjw/I1Fli9fHq+99lqcc845FWb2bbzxxvHjH/84IiKuu+66GDJkSD54nTdvXgwePDj/XgcOHBgdO3Zc5/dTXFwcd955ZxQXF8crr7wS++yzT4wcObLCTU8+/vjjuPPOO6NXr15xxx13rPNrRHx9A56jjjoqIiKuvfbafIC38nqY31bdz3jSpEn5u15/89T9tbHNNtvEpptuGhFfh+tvvPFGft3YsWNj3333Xes7Wc+YMSOOOOKIeP/99yPi6+P58ccfj+9973sREbHzzjvHd7/73Uq3bdq0abzyyitx8skn59/7okWL4ne/+12ce+65ERHRt2/f2G233dbp/a20Mgh/+eWX43vf+15MnDgxIr4+LfyBBx7IB5Z77bVXHHPMMfntmjVrlp+pO3DgwHjhhRfyAes777wThx9+eLz++utV3pRqv/32ixNPPDEivv49uuSSSyp8trNmzYo//OEP+ZATAKjjEgCAjPrggw+Sxo0bJxGRFBUVJe3bt0+6dOmSdOnSJZk6dWp+3IoVK5LBgwcnuVwuiYgkIpImTZokrVu3Tho0aJBfFhHJK6+8kt9uyJAhFdY1adIk2WijjSrsZ5tttklmzJhRoa6lS5cmW221VX5Mq1at8nU99thja/XeTj/99Aqv3axZs6Rly5YVlu29997JwoULV9l2xIgRSYsWLfLjGjZsmLRu3Tpp2LBhftkTTzxRYZvFixcnxx9/fH59UVFR0qpVq6SoqCi/7KSTTkqWLFlSZa2nn376Gt/XE088kTRv3nyV2ho1alThvV199dVr1afKPPXUUxX2tfXWW1c5trqf8cSJE/PrhwwZss41Pv3000lxcXF+H02bNk2aNm2aRERSWlqaPP/88/l1o0aNqrDtqFGj8uuefPLJ/OfaokWLCn3cdNNNk48//niV177nnnuSiEi6dOmS3H777fn32qpVqwrHSM+ePZNZs2ZV2bM+ffqs8X3+8pe/rNDLli1bJiUlJfnnO+ywQ/LJJ5+sst3rr7+elJaW5sc1atQof9wUFxcn9913X9KlS5ckIpJ77rlnle3Ly8uT7373uxU+27Kysgq/Fz179qyyL1X55uc+ceLENb5/ACB9Zl4CAJm1xRZbxKhRo+Loo4+Otm3bxuzZs2Py5MkxefLkWLZsWX5cLpeLoUOHxltvvRU/+MEPYptttokGDRrE/Pnzo1WrVrHXXnvFRRddFGPGjMnP+IqI+P73vx+/+93v4qSTTortt98+mjZtGgsWLIhWrVpF796945Zbbok333xzlZuJFBcXx8iRI+PMM8+Mrl27Rnl5eb6ub56WvjqDBw+O2267LY499tjYeuuto7i4OBYuXBjt2rWLgw46KO6+++4YPXp0pbPPDj744Pjwww/jZz/7Wey0007RpEmTKC8vj4033jgOOeSQ+O1vfxv7779/hW1KSkrikUceiccffzwOO+ywaN26dXzxxRfRunXrOOyww+LPf/5zPPjgg5Weer0ujjnmmJgwYUIMGTIkdtttt2jWrFnMmzcvGjVqFD179owzzzwznnjiibjooouq/RqHHXZYtG3bNv+8qlmXEdX/jNfXkUceGS+99FIcccQR0bJly1i2bFm0adMmBgwYEG+88UYccMABa7Wfvn37xpgxY6Jfv37RuHHjSJIkunbtGhdeeGGMHz8+unbtutrtf/jDH8aIESPi0EMPjaKioigqKoqtt946hg4dGmPHjo3WrVuv1/u84IIL4vXXX49TTz01OnfuHF9++WU0adIk9thjj7j55pvjtddey981/Jt22WWX+Oc//xnHH398tGnTJlasWBHNmzeP448/PsaMGbPazzTi61mlf/rTn+KZZ56JY489Njp16hSLFi2K4uLi6NGjR5x//vnxu9/9br3eGwCQDbkkSeFK8wAAQLWMHj069ttvv4io3k2hhg0bFgMGDIguXbrEpEmTarg6AIDaZeYlAAAAAJBJwksAAAAAIJOElwAAAABAJgkvAQAAAIBMcsMeAAAAACCTzLwEAAAAADKpuNAF1EUrVqyI6dOnR/PmzSOXyxW6HAAAAACoU5IkiS+++CI6deoURUVVz68UXlbD9OnTo3PnzoUuAwAAAADqtKlTp8Ymm2xS5XrhZTU0b948Ir5ubllZWYGrAQAAAIC6ZcGCBdG5c+d8zlYV4WU1rDxVvKysTHgJAAAAANW0pksyumEPAAAAAJBJwksAAAAAIJOElwAAAABAJgkvAQAAAIBMEl4CAAAAAJkkvAQAAAAAMkl4CQAAAABkkvASAAAAAMgk4SUAAAAAkEnCSwAAAAAgk4SXAAAAAEAmCS8BAAAAgEwSXgIAAAAAmSS8BAAAAAAySXgJAAAAAGSS8BIAAAAAyCThJQAAAACQScJLAAAAACCThJcAAAAAQCYJLwEAAACATBJeAgAAAACZJLwEAAAAADJJeAkAAAAAZJLwEgAAAADIJOElAAAAAJBJwksAAAAAIJOElwAAAABAJgkvAQAAAIBMEl4CAAAAAJkkvAQAAAA2eOXl5ZHL5SKXy0V5eXnB9gFUJLwEAAAAqGdqKkjNSqhb394Pa094CQAAAJAhwrENg8957QgvAQAAAIBMEl4CAAAAAJkkvAQAAAAAMkl4CQAAAHWEm40AGxrhJQAAALDOshSkCmSh/hJeAgAAAACZJLwEAAAAADJJeAkAAAAAZJLwEgAAAADIJOElAAAA1AI3lQFYd8JLAAAAWA2hI0DhCC8BAACotwSPAHWb8BIAAIDMEToCECG8BAAAAAAySngJAABAjTJrEoCaIrwEAAAAADJJeAkAAAAAZJLwEgAAAADIJOElAAAAAJBJwksAAAAAIJOElwAAAABAJgkvAQAAAIBMEl4CAAAAAJkkvAQAAAAAMkl4CQAAAABkkvASAAAAAMgk4SUAAAAAkEnCSwAAAAAgk4SXAAAA5JWXl0cul4tcLhfl5eWFLgeADZzwEgAAAADIJOElAAAAAJBJwksAAIB6wOneANRHwksAAAAAIJOElwAAAABAJhUXugAAAAAA6ofNLv7rKstWLFmU/3mbwcOjqKTxKmMmXXdEje6jPtayoTLzEgAAoMBcrxIAKie8BAAAAAAyyWnjAAAAwAalvp1OnKVaoKaZeQkAAAAAZJLwEgAAAADIJOElAAAAAJBJwksAAIBqcpdwAEiXG/YAAAAAqXNTGaA6hJcAAACQQe5CDeC0cQAAAAAgo4SXAAAAAEAmCS8BAAAAgEwSXgIAAAAAmSS8BAAANkjl5eWRy+Uil8tFeXl5ocsBACohvAQAAAAAMkl4CQAAAABkUnGhCwAAAID6ZrOL/7rKshVLFuV/3mbw8CgqabzKmEnXHZFqXQB1jfASAAAA/n9CR4BsEV4CAABQLwgeAeof17wEAAAAADLJzEsAAAAKyoxJAKpSL8LLX//613HjjTfGzJkzo2fPnvGrX/0qdtttt0rHDhs2LAYMGFBhWaNGjWLRokWVjgcAAKBqgkcA0lTnTxt/5JFHYuDAgTFkyJB48803o2fPnnHIIYfEZ599VuU2ZWVlMWPGjPxj8uTJtVgxAAAAALA26nx4+ctf/jLOOuusGDBgQGy77bZx5513RtOmTePuu++ucptcLhcdOnTIP9q3b1+LFQMAAAAAa6NOh5dLliyJN954Iw488MD8sqKiojjwwANj7NixVW63cOHC6NKlS3Tu3Dn69u0b//nPf2qjXAAAAABgHdTp8HLWrFmxfPnyVWZOtm/fPmbOnFnpNltttVXcfffd8Ze//CXuv//+WLFiRey1114xbdq0Kl9n8eLFsWDBggoPAAAAACBddTq8rI4999wz+vfvHzvuuGP06dMn/vznP0fbtm3jt7/9bZXbXHvttdGiRYv8o3PnzrVYMWy4ysvLI5fLRS6Xi/Ly8kKXAwAAANSyOh1etmnTJho0aBCffvppheWffvppdOjQYa320bBhw9hpp51iwoQJVY655JJLYv78+fnH1KlT16tuyDKBIQAAAJAVdTq8LCkpiV122SVGjhyZX7ZixYoYOXJk7Lnnnmu1j+XLl8fbb78dHTt2rHJMo0aNoqysrMIDapLAEAAAAGBVxYUuYH0NHDgwTj/99Nh1111jt912i1tuuSXKy8tjwIABERHRv3//2HjjjePaa6+NiIihQ4fGHnvsEd27d4958+bFjTfeGJMnT44zzzyzkG+DOqy8vDyaNWsWEV/fDKq0tLTAFQEAAADUD3U+vDzhhBPi888/j8svvzxmzpwZO+64YwwfPjx/E58pU6ZEUdH/TTCdO3dunHXWWTFz5sxo1apV7LLLLjFmzJjYdtttC/UWqAaBIQAAAED9V+fDy4iI8847L84777xK140ePbrC85tvvjluvvnmWqgKAAAAAFgfdfqalwAAAABA/SW8BAAAAAAyqV6cNg4AAMC62+ziv66ybMWSRfmftxk8PIpKGq8yZtJ1R6RaF8CGoKikcXQZ9Eyhy8g84SUAAAAAG4SaCAyFjrVLeAkAAABAagSGrA/XvAQAAAAAMkl4CQAAAABkktPGAQAA6hg32gFgQyG8BACAbykvL49mzZpFRMTChQujtLS0wBUBsCFxfUf4P8JLAIANnKAOAOqfmgpABakUmvASADJGkAQAUDcJ+qDmCS8B6hChFgAApEPwCNnkbuMAAAAAQCaZeQnUa2YqAkC21NS/zXX533h3CoeaZ9Yk1F/CSwAAyLCaCOkEhkBWCR2BNRFeAgAAAOtM8AjUBuElAAAAbECEjkBdIrwEoFqydOqgWgCADYXgEdjQuNs4wFooLy+PXC4XuVwuysvLC13Oeqtv7wcAAID6SXgJAAAAAGSS8BIAAAAAyCTXvAQAAFhLm1381wrPVyxZlP95m8HDo6ik8SrbTLruiNTrAoD6ysxLAIA6KkvXr62pWmpiP/WxLwAAGyrhJQAFlZU/7LNSR02qj++pPvH5AADAmgkvAWqJoIK6KEuz4OpbLQAAwJq55iUAAADUgqKSxtFl0DOFLgOgThFeAgAAwGoIHQEKx2njAAAAAEAmmXkJAABAvWXWJEDdZuYlAAAAAJBJZl4CAACQOWZMAhAhvAQAADYAm13811WWrViyKP/zNoOHR1FJ41XGTLruiFTrAgBWT3gJAABAjTJrEoCa4pqXAAAAAEAmCS8BAAAAgEwSXgIAAAAAmSS8BAAAAAAySXgJAAAAAGSS8BIAAAAAyCThJQAAAACQScJLAAAAACCTigtdAAAAUD9tdvFfV1m2Ysmi/M/bDB4eRSWNVxkz6bojUtkPAFD3CC8BAKCe+XbYJzAEAOoq4SUAAGSEwBAAoCLhJQAAAHlFJY2jy6BnCl0GAESEG/YAAAAAABklvAQAAAAAMkl4CQAAAABkkvASAAAAAMgk4SUAAAAAkEnuNg4AAFAPuEs4APWR8BIAAGrAZhf/dZVlK5Ysyv+8zeDhUVTSeJUxk647ItW6AADqMuElAAAbNKEjAEB2CS8BAKizBI8AAPWb8BIAgIKoTvAodAQA2LAILwEANiA1MVPRbEcAAGqL8BIAqJdqKmCridmBAkMAAKge4SUAEBHZCtgEdQAAQITwEgAKStgHQEREUUnj6DLomUKXAQCZI7wEYIMjMAQAAKgbhJcA1JosnZYMAABA9gkvAVgjgSEAAACFUFToAgAAAAAAKmPmJUBGuS4jAAAAGzrhJUAKBIYAAACw/oSXAN8ieAQAAIBscM1LAAAAACCThJcAAAAAQCY5bRwAAKCaikoaR5dBzxS6DACot4SXAABArampsE9oCAAbBuElAADUcwJDAKCuEl4C9Ya7hANQHwkMAYANmRv2AAAAAACZJLwEAAAAADJJeAkAAAAAZJLwEgAAAADIJOElAAAAAJBJwksAAAAAIJOElwAAAABAJgkvAQAAAIBMKi50AQAAAIVQVNI4ugx6ptBlAACrIbwEAICUCMcAANaP08YBAAAAgEwy8xIAgHrFbEcAgPrDzEsAAAAAIJOElwAAAABAJjltHKhx5eXl0axZs4iIWLhwYZSWlha4IgDqCqd8AwDwTcJLAADWm9ARAIA0OG0cAAAAAMgkMy8BgA1GTc0OrIn9mKkIAABrJrwEAFKVpcCwvtETAADqO+ElAFAl4RgAAFBIrnkJAAAAAGSSmZcAUE+ZNQkAANR1wksACEEfAABAFjltHAAAAADIJDMvAQDgW8zGBgDIBuEl1CPl5eXRrFmziIhYuHBhlJaWFrgiWDMBAQAAAFVx2jgAAAAAkEnCSwAAAAAgk5w2DgA1yGnwAAAANUd4CQCwgRO6AwCQVcJLAOo8wQsAAED95JqXAAAAAEAmmXkJUEvMDgQAAIB1I7wEoFqEsQAAAKTNaeMAAAAAQCaZeQkAGWNWKwAAwNeElwAbIOEYAAAAdYHTxgEAAACATBJeAgAAAACZJLwEAAAAADLJNS8B1oJrRAIAAEDtM/MSAAAAAMgk4SUbrPLy8sjlcpHL5aK8vLzQ5QAAAADwLcJLAAAAACCTXPMSoA5x7U0AAAA2JGZeAgAAAACZJLwEAAAAADKpXoSXv/71r2OzzTaLxo0bx+677x7//Oc/Vzv+sccei6233joaN24cO+ywQzz77LO1VCkAAAAAsLbqfHj5yCOPxMCBA2PIkCHx5ptvRs+ePeOQQw6Jzz77rNLxY8aMiZNOOin+93//N/71r3/FMcccE8ccc0y88847tVw5AAAAALA6dT68/OUvfxlnnXVWDBgwILbddtu48847o2nTpnH33XdXOv7WW2+NQw89NC666KLYZptt4qqrroqdd945br/99lquHAAAAABYnTodXi5ZsiTeeOONOPDAA/PLioqK4sADD4yxY8dWus3YsWMrjI+IOOSQQ6ocDwAAAAAURnGhC1gfs2bNiuXLl0f79u0rLG/fvn289957lW4zc+bMSsfPnDmzytdZvHhxLF68OP98wYIF61E1AAAAALA2ckmSJIUuorqmT58eG2+8cYwZMyb23HPP/PKf/vSn8eKLL8a4ceNW2aakpCTuvffeOOmkk/LL7rjjjrjyyivj008/rfR1rrjiirjyyitXWT5//vwoKyurgXeSPZtd/NdqbTfpuiNqfD+V7WPFkkUx9ebvRURE5wsej6KSxqnvQy3Zfz+VKS8vj2bNmkVExMKFC6O0tHS14wEAAID0LViwIFq0aLHGfK1Onzbepk2baNCgwSqh46effhodOnSodJsOHTqs0/iIiEsuuSTmz5+ff0ydOnX9iwcAAAAAVqtOh5clJSWxyy67xMiRI/PLVqxYESNHjqwwE/Ob9txzzwrjIyKee+65KsdHRDRq1CjKysoqPAAAAACAdNXpa15GRAwcODBOP/302HXXXWO33XaLW265JcrLy2PAgAEREdG/f//YeOON49prr42IiB//+MfRp0+f+MUvfhFHHHFEPPzww/H666/H7373u0K+DQAAAADgW+p8eHnCCSfE559/HpdffnnMnDkzdtxxxxg+fHj+pjxTpkyJoqL/m2C61157xYMPPhiXXXZZXHrppbHFFlvEk08+Gdtvv32h3gIAAAAAUIk6H15GRJx33nlx3nnnVbpu9OjRqyw77rjj4rjjjku5KgAAAABgfdSL8BKgKqWlpZEkSaHLAAAAAKqhTt+wBwAAAACov4SXAAAAAEAmCS8BAAAAgEwSXgIAAAAAmSS8BAAAAAAySXgJAAAAAGSS8BIAAAAAyCThJQAAAACQScJLAAAAACCTigtdAEBExKTrjlhlWXl5eTS7+euf373q0CgtLa3lqgAAAIBCEl4C60XoCAAAAKTFaeMAAAAAQCYJLwEAAACATBJeAgAAAACZJLyk1q1YsigmX39kTL7+yFixZFGhywEAAAAgo4SXAAAAAEAmCS8BAAAAgEwSXgIAAAAAmSS8BAAAAAAyqbjQBQCFM+m6I1ZZVl5eHs1u/vrnd686NEpLS2u5KgAAAICvmXkJAAAAAGSS8BIAAAAAyCThJQAAAACQScJLAAAAACCThJcAAAAAQCYJLwEAAACATBJeAgAAAACZJLwEAAAAADJJeAkAAAAAZFJxoQsAqmfSdUessqy8vDya3fz1z+9edWiUlpbWclUAAAAANcfMSwAAAAAgk8y8hFpmxiQAAADA2jHzEgAAAADIJOElAAAAAJBJwksAAAAAIJOElwAAAABAJgkvAQAAAIBMEl4CAAAAAJkkvAQAAAAAMkl4CQAAAABkkvASAAAAAMgk4SUAAAAAkEnCSwAAAAAgk4SXAAAAAEAmCS8BAAAAgEwSXgIAAAAAmSS8BAAAAAAySXgJAAAAAGSS8BIAAAAAyKTiQhcAdcmk645YZVl5eXk0u/nrn9+96tAoLS2t5aoAAAAA6iczLwEAAACATBJeAgAAAACZJLwEAAAAADJJeAkAAAAAZJLwEgAAAADIJOElAAAAAJBJwksAAAAAIJOElwAAAABAJhUXugCoDZOuO2KVZeXl5dHs5q9/fveqQ6O0tLSWqwIAAABgddZr5uUTTzwRxx9/fPTo0SO6d++eX/7ee+/FDTfcEJ988sl6FwgAAAAAbJiqNfNyxYoVcdJJJ8Xjjz8eERFNmjSJr776Kr++VatW8bOf/SyWL18el1xySc1UCgAAAABsUKo18/Lmm2+Oxx57LM4+++yYO3du/L//9/8qrG/fvn307t07/vrXv9ZIkQAAAADAhqda4eWwYcOiV69ecccdd0RZWVnkcrlVxnTv3j0mTpy43gUCAAAAABumaoWXEyZMiN69e692TOvWrWP27NnVKgoAAAAAoFrXvGzSpEnMnz9/tWMmT54cLVu2rM7ugTqutLQ0kiQpdBkAAABAHVetmZc77bRTjBgxIhYtWlTp+jlz5sTw4cNjjz32WK/iAAAAAIANV7XCy/PPPz+mTZsW/fr1i2nTplVY99FHH8Wxxx4b8+fPj/PPP79GigQAAAAANjzVOm28b9++MWjQoLj++uujS5cuUVpaGhER7dq1i9mzZ0eSJDF48ODYf//9a7RYAAAAAGDDUa2ZlxER1157bYwYMSKOPPLIaNq0aTRo0CBWrFgRhx56aPztb3+LK6+8sibrBAAAAAA2MNWaeTllypQoKSmJgw46KA466KCargkAAAAAoHozL7t27RqXXnppTdcCAAAAAJBXrfCyVatW0bp165quBQAAAAAgr1rhZe/evWPcuHE1XQsAAAAAQF61wstrr7023nrrrRg6dGgsW7aspmsCAAAAAKjeDXtuuOGG2GGHHeLKK6+M3/72t9GzZ89o37595HK5CuNyuVzcddddNVIoAAAAALBhqVZ4OWzYsPzPM2bMiBkzZlQ6TngJAAAAAFRXtcLLiRMn1nQdAAAAAAAVVCu87NKlS03XAQAAAABQQbVu2AMAAAAAkLb1Ci8feOCBOOigg6Jt27bRqFGjaNu2bRx88MHx4IMP1lR9AAAAAMAGqlqnjS9fvjyOP/74ePLJJyNJkmjcuHF06tQpPv3003j++edj5MiR8ac//Skee+yxKCoyuZP1M+m6I1ZZVl5eHs1u/vrnd686NEpLS2u5KgAAAADSVq1k8bbbbosnnngivvOd78Srr74aX375ZUycODG+/PLLGDNmTOy9997x5JNPxq9+9auarhcAAAAA2EBUK7y89957Y8stt4yRI0fGnnvuWWHdHnvsEc8//3xsueWWcc8999RIkQAAAADAhqda4eUHH3wQRx99dDRs2LDS9Q0bNoyjjjoqPvjgg/UqDgAAAADYcFUrvCwpKYny8vLVjikvL4+SkpJqFQUAAAAAUK3wcqeddopHH300pk+fXun6GTNmxKOPPho777zzehUHAAAAAGy4qhVeDhw4MGbPnh277rpr/OIXv4jXX389pk6dGq+//nrcdNNNscsuu8ScOXNi4MCBNV0vAAAAALCBKK7ORkcddVTcdNNNcfHFF8dPf/rTCuuSJIni4uK46aab4sgjj6yRIgEAAACADU+1wsuIr2dfHnPMMfHAAw/E+PHjY8GCBVFWVhY77bRTnHzyydGtW7earBMAAAAA2MBUO7yMiOjWrVsMHjy4pmoBAAAAAMir1jUvAQAAAADSVq3w8he/+EW0adOmyruNT58+Pdq2bRu33XbbehUHAAAAAGy4qhVePvbYY9GzZ8/o1KlTpes7deoUO+64Yzz88MPrVRywbkpLSyNJkkiSJEpLSwtdDgAAAMB6qVZ4+eGHH8Z222232jHbbbddfPjhh9UqCgAAAACgWuHlV199tcZZXY0bN46FCxdWqygAAAAAgGqFl5tuummMGTNmtWPGjh0bm2yySbWKAgAAAACoVnh5xBFHxCuvvBJ33313pev/8Ic/xCuvvBJHHXXUehUHAAAAAGy4iquz0cUXXxwPPfRQnHXWWXH//ffHQQcdFBtvvHF88skn8fe//z1eeuml6NSpU1xyySU1XS8AAAAAsIGoVnjZtm3bGDVqVJx66qkxevToGD16dORyuUiSJCIievXqFQ888EC0bdu2RosFAAAAADYc1QovIyK22mqreO211+K1116Lf/7znzF//vxo2bJl7LbbbrHrrrvWZI0AAAAAwAao2uHlSr169YpevXrVRC0AAAAAAHnrHV5+06RJk+K5556Lxo0bx7HHHhvNmjWryd0DAAAAABuQat1t/JprromuXbvG3Llz88tGjx4d22+/fZxzzjlxxhlnxM477xxz5sypsUIBAAAAgA1LtcLLJ598MjbbbLNo1apVftmgQYNixYoVceWVV8a5554bEyZMiFtuuaWm6gQAAAAANjDVCi8nTZoU2267bf759OnT47XXXosf/vCHcdlll8Xtt98eBxxwQDzxxBM1VigAAAAAsGGpVni5YMGCaNmyZf75Sy+9FLlcLo466qj8sp133jmmTJmy3gUCAAAAABumaoWX7du3j8mTJ+efP/fcc9GoUaPYfffd88sWLVoUuVxu/SsEAAAAADZI1brbeK9eveIvf/lLPPPMM9G4ceN45JFHYr/99otGjRrlx0ycODE6depUY4UCAAAAABuWas28vPTSS2PZsmXRt2/fOOSQQ2LRokVx6aWX5tcvXrw4XnrppQozMQEAAAAA1kW1Zl7uvPPO8Y9//CP++Mc/RkTE8ccfH7vttlt+/b/+9a/Yb7/94uSTT66ZKgEAAACADU61wsuIiJ49e0bPnj0rXbfHHnu40zgAAAAAsF6qHV7C2ph03RGrLCsvL49mN3/987tXHRqlpaW1XBUAAAAAdUG1rnkJAAAAAJA24SUAAAAAkEnCS9baiiWLYvL1R8bk64+MFUsWFbocAAAAAOo54SUAAAAAkEnCSwAAAAAgk4SXAAAAAEAmFa/PxjNnzow33ngj5s2bF8uXL690TP/+/dfnJVZrzpw58aMf/SiefvrpKCoqin79+sWtt94azZo1q3KbfffdN1588cUKy84+++y48847U6sTAAAAAFh31QovFy1aFGeddVY8/PDDsWLFikrHJEkSuVwu1fDylFNOiRkzZsRzzz0XS5cujQEDBsT3v//9ePDBB1e73VlnnRVDhw7NP2/atGlqNQIAAAAA1VOt8PLiiy+OBx54ILbccss46aSTYpNNNoni4vWaxLnO3n333Rg+fHi89tprseuuu0ZExK9+9as4/PDD46abbopOnTpVuW3Tpk2jQ4cOtVUqAAAAAFAN1UocH3300dh2223jjTfeiEaNGtV0TWtl7Nix0bJly3xwGRFx4IEHRlFRUYwbNy6OPfbYKrd94IEH4v77748OHTrEUUcdFYMHD17t7MvFixfH4sWL888XLFhQM28CAAAAAKhStcLLefPmxcknn1yw4DLi6+tttmvXrsKy4uLi2GijjWLmzJlVbnfyySdHly5dolOnTvHWW2/FoEGD4v33348///nPVW5z7bXXxpVXXlljtQMAAAAAa1at8HKrrbaKTz/9tKZriYivT0m//vrrVzvm3Xffrfb+v//97+d/3mGHHaJjx45xwAEHxEcffRSbb755pdtccsklMXDgwPzzBQsWROfOnatdAwAAAACwZtUKLy+66KI455xzYsKECdG9e/caLejCCy+MM844Y7VjunXrFh06dIjPPvuswvJly5bFnDlz1ul6lrvvvntEREyYMKHK8LJRo0YFnWUKAAAAABuiaoWXm2yySRxyyCGx2267xU9+8pPYeeedo6ysrNKx++yzzzrtu23bttG2bds1jttzzz1j3rx58cYbb8Quu+wSEREvvPBCrFixIh9Iro3x48dHRETHjh3XqU4AAAAAIF3VCi/33XffyOVykSRJXHHFFZHL5aocu3z58moXtzrbbLNNHHrooXHWWWfFnXfeGUuXLo3zzjsvTjzxxPydxj/55JM44IAD4r777ovddtstPvroo3jwwQfj8MMPj9atW8dbb70VF1xwQeyzzz7Ro0ePVOoEAAAAAKqnWuHl5ZdfvtrAsrY88MADcd5558UBBxwQRUVF0a9fv7jtttvy65cuXRrvv/9+fPnllxERUVJSEs8//3zccsstUV5eHp07d45+/frFZZddVqi3AAAAAABUoVrh5RVXXFHDZVTPRhttFA8++GCV6zfbbLNIkiT/vHPnzvHiiy/WRmkAAAAAwHoqKnQBAAAAAACVEV4CAAAAAJlU7fBy6tSpcfbZZ8fmm28eTZo0iQYNGqzyKC6u1lnpAAAAAADVu+blxx9/HLvvvnvMnTs3tttuu1i8eHF06dIlGjduHB9//HEsXbo0evbsGS1btqzhcgEAAACADUW1Zl5eeeWVMX/+/Bg5cmT8+9//joiIAQMGxLvvvhuTJk2Ko48+OsrLy+Pxxx+v0WKhJpWWlkaSJJEkSZSWlha6HAAAAAC+pVrh5fPPPx+HH3549OnTJ79s5V29O3bsGI888khERFx66aU1UCIAAAAAsCGqVng5a9as2HrrrfPPi4uL48svv8w/b9SoURx00EHxzDPPrH+FAAAAAMAGqVrhZZs2baK8vLzC80mTJlUYU1xcHPPmzVuf2gAAAACADVi1wsstttgiPvroo/zz3XbbLUaMGBEff/xxRER8/vnn8fjjj8fmm29eM1UCAAAAABucaoWXhx12WIwaNSo/s/InP/lJfPHFF9GjR4/o1atXbLnlljFz5sz40Y9+VJO1AgAAAAAbkGqFl+eee26MHj06GjRoEBER++67bzz88MPRpUuXeOedd6J9+/Zx2223xVlnnVWjxQIAAAAAG47i6mxUVlYWu+++e4Vlxx13XBx33HE1UhQAAAAAQLVmXgIAAAAApG29wssnnngijj/++OjRo0d07949v/y9996LG264IT755JP1LhAAAAAA2DBV67TxFStWxEknnRSPP/54REQ0adIkvvrqq/z6Vq1axc9+9rNYvnx5XHLJJTVTKQAAAACwQanWzMubb745HnvssTj77LNj7ty58f/+3/+rsL59+/bRu3fv+Otf/1ojRQIAAAAAG55qhZfDhg2LXr16xR133BFlZWWRy+VWGdO9e/eYOHHiehcIAAAAAGyYqhVeTpgwIXr37r3aMa1bt47Zs2dXqygAAAAAgGqFl02aNIn58+evdszkyZOjZcuW1dk9AAAAAED1wsuddtopRowYEYsWLap0/Zw5c2L48OGxxx57rFdxAAAAAMCGq1rh5fnnnx/Tpk2Lfv36xbRp0yqs++ijj+LYY4+N+fPnx/nnn18jRQIAAAAAG57i6mzUt2/fGDRoUFx//fXRpUuXKC0tjYiIdu3axezZsyNJkhg8eHDsv//+NVosAAAAALDhqNbMy4iIa6+9NkaMGBFHHnlkNG3aNBo0aBArVqyIQw89NP72t7/FlVdeWZN1AgAAAAAbmGrNvFzpoIMOioMOOqimagEAAAAAyKv2zEsAAAAAgDSt18zL5cuXx7Rp02L69OmxdOnSSsfss88+6/MSAAAAAMAGqlrh5YoVK+Kaa66JW2+9NebMmbPascuXL69WYQAAAADAhq1a4eUll1wSN954Y7Rr1y4GDBgQHTt2jOLi9ZrECbCK0tLSSJKk0GUAAAAABVKtxPHee++NrbbaKl577bVo1qxZTdcEAAAAAFC9G/YsXLgwjjjiCMElAAAAAJCaaoWXPXr0iOnTp9d0LQAAAAAAedUKL3/2s5/Fk08+GW+++WZN1wMAAAAAEBHVvOblEUccEcOGDYvDDjssjj766OjZs2eUlZVVOrZ///7rVSAAAAAAsGGqVni5ePHiePrpp2PWrFlx1113RURELperMCZJksjlcsJLAAAAAKBaqhVeDhw4MB544IHo0aNHfO9734uOHTtGcXG1dgUAAAAAUKlqJY6PPfZY7LLLLjF27FihJQAAAACQimrdsGfRokWx3377CS4BAAAAgNRUK7zcZZddYsKECTVdCwAAAABAXrXCy2uuuSaGDx8ezzzzTE3XAwAAAAAQEdW85uVzzz0X++67b/Tt2zf233//6NmzZ5SVla0yLpfLxeDBg9e7SAAAAABgw1Ot8PKKK67I/zxy5MgYOXJkpeOElwAAAABAdVUrvBw1alRN1wEAAAAAUEG1wss+ffrUdB0AAAAAABVU64Y9AAAAAABpE14CAAAAAJlUrdPGgfqrtLQ0kiQpdBkAAAAAZl4CAAAAANkkvAQAAAAAMkl4CQAAAABkkvASAAAAAMgk4SUAAAAAkEnCSwAAAAAgk4SXAAAAAEAmCS8BAAAAgEwSXgIAAAAAmSS8BAAAAAAySXgJAAAAAGSS8BIAAAAAyCThJQAAAACQScJLAAAAACCThJcAAAAAQCYJLwEAAACATBJeAgAAAACZJLwEAAAAADJJeAkAAAAAZJLwEgAAAADIJOElAAAAAJBJwksAAAAAIJOElwAAAABAJhUXugAgorS0NJIkKXQZAAAAAJli5iUAAAAAkEnCSwAAAAAgk4SXAAAAAEAmCS8BAAAAgEwSXgIAAAAAmSS8BAAAAAAySXgJAAAAAGSS8BIAAAAAyCThJQAAAACQScWFLoANT2lpaSRJUugyAAAAAMg4My8BAAAAgEwSXgIAAAAAmSS8BAAAAAAySXgJAAAAAGSS8BIAAAAAyCThJQAAAACQScJLAAAAACCThJcAAAAAQCYJLwEAAACATBJeAgAAAACZJLwEAAAAADJJeAkAAAAAZJLwEgAAAADIJOElAAAAAJBJwksAAAAAIJOElwAAAABAJgkvAQAAAIBMEl4CAAAAAJkkvAQAAAAAMkl4CQAAAABkkvASAAAAAMgk4SUAAAAAkEnCSwAAAAAgk4oLXQDUdaWlpZEkSaHLAAAAAKh3zLwEAAAAADJJeAkAAAAAZJLwEgAAAADIJOElAAAAAJBJwksAAAAAIJOElwAAAABAJgkvAQAAAIBMEl4CAAAAAJkkvAQAAAAAMkl4CQAAAABkkvASAAAAAMgk4SUAAAAAkEnCSwAAAAAgk4SXAAAAAEAmCS8BAAAAgEyq0+Hlz3/+89hrr72iadOm0bJly7XaJkmSuPzyy6Njx47RpEmTOPDAA+PDDz9Mt1AAAAAAYJ3V6fByyZIlcdxxx8W555671tvccMMNcdttt8Wdd94Z48aNi9LS0jjkkENi0aJFKVYKAAAAAKyr4kIXsD6uvPLKiIgYNmzYWo1PkiRuueWWuOyyy6Jv374REXHfffdF+/bt48knn4wTTzwxrVIBAAAAgHVUp2derquJEyfGzJkz48ADD8wva9GiRey+++4xduzYKrdbvHhxLFiwoMIDAAAAAEjXBhVezpw5MyIi2rdvX2F5+/bt8+sqc+2110aLFi3yj86dO6daJwAAAACQwfDy4osvjlwut9rHe++9V6s1XXLJJTF//vz8Y+rUqbX6+gAAAACwIcrcNS8vvPDCOOOMM1Y7plu3btXad4cOHSIi4tNPP42OHTvml3/66aex4447Vrldo0aNolGjRtV6TQAAAACgejIXXrZt2zbatm2byr67du0aHTp0iJEjR+bDygULFsS4cePW6Y7lAAAAAED6Mnfa+LqYMmVKjB8/PqZMmRLLly+P8ePHx/jx42PhwoX5MVtvvXU88cQTERGRy+XiJz/5SVx99dXx1FNPxdtvvx39+/ePTp06xTHHHFOgdwEAAAAAVCZzMy/XxeWXXx733ntv/vlOO+0UERGjRo2KfffdNyIi3n///Zg/f35+zE9/+tMoLy+P73//+zFv3rzYe++9Y/jw4dG4ceNarR0AAAAAWL06HV4OGzYshg0bttoxSZJUeJ7L5WLo0KExdOjQFCsDAAAAANZXnT5tHAAAAACov4SXAAAAAEAmCS8BAAAAgEwSXgIAAAAAmSS8BAAAAAAySXgJAAAAAGSS8BIAAAAAyCThJQAAAACQScJLAAAAACCThJcAAAAAQCYJLwEAAACATBJeAgAAAACZlEuSJCl0EXXNggULokWLFjF//vwoKysrdDm1pry8PJo1axYREQsXLozS0lK1AAAAALDO1jZfM/MSAAAAAMgk4SUAAAAAkEnCSwAAAAAgk4SXAAAAAEAmCS8BAAAAgEwSXgIAAAAAmSS8BAAAAAAySXgJAAAAAGSS8BIAAAAAyCThJQAAAACQScJLAAAAACCThJcAAAAAQCYJLwEAAACATBJeAgAAAACZJLwEAAAAADJJeAkAAAAAZJLwEgAAAADIJOElAAAAAJBJwksAAAAAIJOElwAAAABAJhUXugCojtLS0kiSpNBlAAAAAJAiMy8BAAAAgEwSXgIAAAAAmSS8BAAAAAAySXgJAAAAAGSS8BIAAAAAyCThJQAAAACQScJLAAAAACCThJcAAAAAQCYJLwEAAACATBJeAgAAAACZJLwEAAAAADJJeAkAAAAAZJLwEgAAAADIJOElAAAAAJBJwksAAAAAIJOElwAAAABAJgkvAQAAAIBMEl4CAAAAAJkkvAQAAAAAMkl4CQAAAABkkvASAAAAAMgk4SUAAAAAkEnCSwAAAAAgk4SXAAAAAEAmCS8BAAAAgEwSXgIAAAAAmSS8BAAAAAAySXgJAAAAAGSS8BIAAAAAyCThJQAAAACQScJLAAAAACCThJcAAAAAQCYJLwEAAACATBJeAgAAAACZJLwEAAAAADJJeAkAAAAAZJLwEgAAAADIJOElAAAAAJBJwksAAAAAIJOElwAAAABAJgkvAQAAAIBMEl4CAAAAAJkkvAQAAAAAMkl4CQAAAABkkvASAAAAAMgk4SUAAAAAkEnCSwAAAAAgk4SXAAAAAEAmCS8BAAAAgEwSXgIAAAAAmSS8BAAAAAAySXgJAAAAAGSS8BIAAAAAyCThJQAAAACQScJLAAAAACCThJcAAAAAQCYJLwEAAACATBJeAgAAAACZJLwEAAAAADJJeAkAAAAAZJLwEgAAAADIJOElAAAAAJBJwksAAAAAIJOElwAAAABAJgkvAQAAAIBMEl4CAAAAAJkkvAQAAAAAMkl4CQAAAABkkvASAAAAAMgk4SUAAAAAkEnCSwAAAAAgk4SXAAAAAEAmCS8BAAAAgEwSXgIAAAAAmSS8BAAAAAAySXgJAAAAAGSS8BIAAAAAyCThJQAAAACQScJLAAAAACCThJcAAAAAQCYJLwEAAACATBJeAgAAAACZJLwEAAAAADJJeAkAAAAAZJLwEgAAAADIpDodXv785z+PvfbaK5o2bRotW7Zcq23OOOOMyOVyFR6HHnpouoUCAAAAAOusuNAFrI8lS5bEcccdF3vuuWfcdddda73doYceGvfcc0/+eaNGjdIoDwAAAABYD3U6vLzyyisjImLYsGHrtF2jRo2iQ4cOKVQEAAAAANSUOn3aeHWNHj062rVrF1tttVWce+65MXv27NWOX7x4cSxYsKDCAwAAAABI1wYXXh566KFx3333xciRI+P666+PF198MQ477LBYvnx5ldtce+210aJFi/yjc+fOtVgxAAAAAGyYMhdeXnzxxavcUOfbj/fee6/a+z/xxBPj6KOPjh122CGOOeaYeOaZZ+K1116L0aNHV7nNJZdcEvPnz88/pk6dWu3XBwAAAADWTuaueXnhhRfGGWecsdox3bp1q7HX69atW7Rp0yYmTJgQBxxwQKVjGjVq5KY+AAAAAFDLMhdetm3bNtq2bVtrrzdt2rSYPXt2dOzYsdZeEwAAAABYs8ydNr4upkyZEuPHj48pU6bE8uXLY/z48TF+/PhYuHBhfszWW28dTzzxRERELFy4MC666KL4xz/+EZMmTYqRI0dG3759o3v37nHIIYcU6m0AAAAAAJXI3MzLdXH55ZfHvffem3++0047RUTEqFGjYt99942IiPfffz/mz58fERENGjSIt956K+69996YN29edOrUKQ4++OC46qqrnBYOAAAAABmTS5IkKXQRdc2CBQuiRYsWMX/+/CgrKyt0ObWmvLw8mjVrFhFfz2ItLS0tcEUAAAAA1EVrm6/V6dPGAQAAAID6S3gJAAAAAGSS8BIAAAAAyCThJQAAAACQScJLAAAAACCThJcAAAAAQCYJLwEAAACATBJeAgAAAACZJLwEAAAAADJJeAkAAAAAZJLwEgAAAADIJOElAAAAAJBJwksAAAAAIJOElwAAAABAJgkvAQAAAIBMEl4CAAAAAJkkvAQAAAAAMkl4CQAAAABkkvASAAAAAMgk4SUAAAAAkEnCSwAAAAAgk4SXAAAAAEAmCS8BAAAAgEwSXgIAAAAAmSS8BAAAAAAySXgJAAAAAGSS8BIAAAAAyCThJQAAAACQScJLAAAAACCThJcAAAAAQCYJLwEAAACATBJeAgAAAACZJLwEAAAAADJJeAkAAAAAZJLwEgAAAADIJOElAAAAAJBJwksAAAAAIJOElwAAAABAJgkvAQAAAIBMEl4CAAAAAJlUXOgCqDtKS0sjSZJClwEAAADABsLMSwAAAAAgk4SXAAAAAEAmCS8BAAAAgEwSXgIAAAAAmSS8BAAAAAAySXgJAAAAAGSS8BIAAAAAyCThJQAAAACQScJLAAAAACCThJcAAAAAQCYJLwEAAACATBJeAgAAAACZJLwEAAAAADJJeAkAAAAAZJLwEgAAAADIJOElAAAAAJBJwksAAAAAIJOElwAAAABAJgkvAQAAAIBMEl4CAAAAAJkkvAQAAAAAMkl4CQAAAABkkvASAAAAAMgk4SUAAAAAkEnCSwAAAAAgk4SXAAAAAEAmCS8BAAAAgEwSXgIAAAAAmSS8BAAAAAAyqbjQBdRFSZJERMSCBQsKXAkAAAAA1D0rc7WVOVtVhJfV8MUXX0REROfOnQtcCQAAAADUXV988UW0aNGiyvW5ZE3xJqtYsWJFTJ8+PZo3bx65XK7Q5dSqBQsWROfOnWPq1KlRVlZW6HLqFb1Nj96mR2/To7fp0dv06G169DY9epsevU2P3qZHb9Ojt3xbkiTxxRdfRKdOnaKoqOorW5p5WQ1FRUWxySabFLqMgiorK/N/NinR2/TobXr0Nj16mx69TY/epkdv06O36dHb9OhtevQ2PXrLN61uxuVKbtgDAAAAAGSS8BIAAAAAyCThJeukUaNGMWTIkGjUqFGhS6l39DY9epsevU2P3qZHb9Ojt+nR2/TobXr0Nj16mx69TY/eUl1u2AMAAAAAZJKZlwAAAABAJgkvAQAAAIBMEl4CAAAAAJkkvAQAAAAAMkl4CQAAAABkkvASAAAAAMik4kIXAETMnz8/mjZtGg0bNix0KfWO3qZHb9Ojt9RFjtua9dVXX8U///nPmDZtWsyaNSuaNm0abdu2jR122CE233zzQpcHAFBrhJestcmTJ6/yBXrrrbeOxo0bF7q0OmXhwoXx2GOPxciRI+PVV1+N6dOnx7JlyyIionnz5rHDDjvEvvvuG3379o1dd921wNXWLXqbHr1Nj95SFzlu0/HVV1/Fww8/HMOGDYt//OMf+Z4mSRK5XC4/rmPHjnHsscfG97///dhhhx0KVW6d9eWXX8aYMWPi1VdfrTQc7tOnT3Tv3r3QZdZJepsevU2P3qZHb6kpuSRJkkIXQXaNGjUqhg0bFiNHjowZM2assr5hw4ax6667xrHHHhtnnHFGtG7dugBV1g1Tp06Nq6++Oh566KFYuHBhRES0atUq2rdvHxtttFF89dVXMWfOnJg2bVosX748crlc7LjjjjFw4MA45ZRTClx9tultevQ2PXpbuz7++ON44YUXVvvleZ999omSkpJCl5ppjtt0LFmyJG655Za47rrrYt68edG0adPYZZddYtddd12lt++//36MGzcuJk6cGLlcLvbff/+46aabomfPnoV+G5k3duzYuPPOO+Pxxx+PRYsWRVV/BuVyudhmm23inHPOif79+0dZWVktV1r36G169DY9epsevaWmCS+p1KOPPhpDhgyJDz74IJIkic6dO1f5Bfpf//pXLF68OBo1ahSnnnpqDB06NDp27Fjot5ApF198cdx2222xfPnyOOyww+L444+PPffcM7p27brK2C+//DLeeOON+Pvf/x4PPvhgTJw4MXbeeef4/e9/HzvttFMBqs82vU2P3qZHb2tHkiTx8MMPx5133hmvvPJKflllcrlctGrVKs4444z44Q9/WOlnsaFz3KZns802i08++ST69u0bp556ahxxxBFrPP3+448/jj/+8Y9x7733xpQpU+L3v/99DBgwoJYqrlv+85//xEUXXRQjRoyIBg0axL777ht77rlnld9t//GPf8QLL7wQU6ZMidatW8fgwYPjBz/4QRQXO2nt2/Q2PXqbHr1Nj96SmgS+Zffdd09yuVyyyy67JDfffHMybdq01Y5fsmRJ8vzzzydnnHFGUlZWljRr1iz585//XEvV1g0tWrRIBg8enMyePXudt33uueeS3r17J1deeWUKldV9epsevU2P3qbvb3/7W7LDDjskuVwuadu2bXLWWWcld999d/LWW28ln376abJ06dJkwYIFyaRJk5IRI0YkQ4cOTfbee++kqKgoadSoUXLBBRckc+bMKfTbyBTHbXpOPfXU5IMPPqjWtsuWLUv+8Ic/JHfffXcNV1V/NGjQIOnWrVvyq1/9Kvn888/XervRo0cnp5xySlJcXJxcffXVKVZYd+ltevQ2PXqbHr0lLWZesop99tknrrjiith///3Xedt58+bFL37xi2jTpk38+Mc/TqG6umnu3LnRqlWrgu+jPtLb9OhtevQ2fUVFRbH33nvHT3/60zj00EPX+r/gT548OX7/+9/H7bffHgMHDozLL7885UrrDsctddVdd90Vp59+erVn8nz44Ycxbdq02G+//Wq4srpPb9Ojt+nR2/ToLWkRXgIA9c7IkSPjgAMOqPb28+bNi4kTJzrFGQAACkx4CQAAAABkUlGhC4ANwcMPP7xe20+dOjVeffXVGqqmftHb9OhtevSWushxm55DDz00XnvttWptW15eHtddd138+te/ruGq6o/y8vJM7KM+0tv06G169DY9ektahJes4pxzzolPPvmk2ts//PDD8cADD9RgRXXfqaeeGj169Ih77703Fi5cuNbbvf7663H22WfHFltsEaNGjUqxwrpLb9Ojt+nR2/RNmTJlvfexPv8W1keO2/R8/vnnsccee8R+++0X99xzT8yfP3+N2/zjH/+I8847L7p06RJXXXVVtG/fvhYqrZu6du0aN954Y7X+IB47dmwceuih8ctf/jKFyuo+vU2P3qZHb9Ojt6SmkHcLIps6deqUNG7cODnjjDOSF154Ya22+eSTT5Ibb7wx2WabbZKioqLk97//fcpV1i1vvvlmsu+++ya5XC4pLS1N+vXrl9xwww3JyJEjk3feeSeZNm1aMmHChOSf//xn8sc//jE577zzkq222iopKipKWrZsmVx//fXJokWLCv02Mklv06O36dHb9JWUlCQ/+MEPko8//nidtluyZEny4IMPJttuu607Y3+L4zZdw4YNS7p27ZrkcrmkQYMGybbbbpucdtppyf/7f/8vufrqq5PLLrss+cEPfpAccMABSYsWLZKioqKkYcOGyWmnnZZMnjy50OVn2o9//OOkpKQkadasWdK/f//kqaeeSj777LNKxy5dujR5/fXXk2uvvTbZfvvtk6KiomT77bdPXnvttVquum7Q2/TobXr0Nj16S1pc85JVfPXVV3HDDTfEL37xiygvL4+NNtoodtttt9hll12iffv20bJly1i0aFHMmTMn3n///Rg3bly8++67sWLFith7773jxhtvjN13373QbyOTXnjhhfjNb34TTz31VCxdujRyuVyl45IkiW7dusXZZ58dZ555pjuzrgW9TY/epkdv03PLLbfE1VdfHXPnzo299947vve978Uee+wRO+64YzRs2LDC2GnTpsW4cePiueeei8cffzzmzp0bhxxySNx2223RvXv3Ar2D7HLcpidJknj22WfjnnvuidGjR8ecOXNWGVNUVBQ9evSIY489Ns4888zo2LFjASqtez788MO46qqr4rHHHoslS5ZERMTGG2+8ynfbiRMnxuLFiyNJkth2221j4MCBccYZZ0RRkRPWqqK36dHb9OhtevSWNAgvqdIXX3wR9913X9xzzz0xfvz4WLFiRURE/o+UlYfORhttFH379o1zzjknevXqVbB665J58+bFiy++GGPGjIlp06bF7Nmzo0mTJtG2bdvYYYcdok+fPtGjR49Cl1kn6W169DY9epuOefPmxS9/+cu46667YsaMGZHL5aKoqChatmxZ4cvzokWLIuLrf98OOeSQuPDCC2P//fcvcPXZ57hN37vvvrtKb7fbbrto0aJFoUurs+bMmRMPPvhgjBw5MsaMGROff/55fl3Dhg1j++23jz59+sSxxx4bvXv3LmCldY/epkdv06O36dFbapLwkrUyb968GDt2bKV/nOywww6FLg8AqrR8+fL429/+lv/yXFXQ1rdv3+jSpUuhywVq0dKlS/P/fyAUrll6mx69TY/epkdvWR/CSyiAoUOHRteuXeO0004rdCn1jt6mR2/To7fURY7b9HTr1i0OO+wwdxBPyZQpU6KkpCQ6dOhQ6FLqHb1Nj96mR2/To7fUFBcTYI3233//GDx4cKHLqFeuvvrqePvttwtdRr2kt+nR2/TobfpeeumlGD9+fKHLqFcct+mZNWtWlJWVFbqMeqtr165x6aWXFrqMeklv06O36dHb9OgtNUV4yRqNGzculi9fXugy6pVNN9005s2bV+gy6iW9TY/epkdv07fffvvF7373u0KXUa84btPTo0eP+OCDDwpdRr3VqlWraN26daHLqJf0Nj16mx69TY/eUlOEl6zR1ltvHZMnTy50GfXKiSeeGMOHD4/58+cXupR6R2/To7fp0dv0tWvXLho3blzoMuoVx216Bg0aFE8//XSMGjWq0KXUS717945x48YVuox6SW/To7fp0dv06C01xTUvWaNhw4bFeeedF//85z9j2223LXQ59cLixYujX79+MWPGjBg6dGj06tUr2rVrV+iy6gW9TY/epkdv09e/f/9455134o033ohcLlfocuoFx2167rvvvnj00UdjxIgRccwxx0SvXr2iffv2lR67/fv3L0CFddt7770Xe+yxRwwcODAuvfTSKC4uLnRJ9Ybepkdv06O36dFbaorwkjV66aWX4oYbboiXXnopzj777NV+gd5nn30KUGHd06BBg4iISJJktX9E53K5WLZsWW2VVS/obXr0Nj16m77p06fHnnvuGQcffHBcf/31sdFGGxW6pDrPcZueoqKiyOVy8e2v6d/s88q+u7TPuvuf//mf+PDDD2PMmDHRoUOH6NmzZ6XfbXO5XNx1110FqrJu0tv06G169DY9ektNEV6yRt/+Ar26P1B8gV47++6771rP/HHK2LrR2/TobXr0Nn37779/zJ49O955550oKSmJrl27VvnleeTIkQWqsm5x3Kbn3nvvXeuxp59+eoqV1E9FRWt35Szh8LrT2/TobXr0Nj16S00RXrJGV1xxxVr/cTJkyJCUqwGAdefLM7DSulzLvUuXLilWUv/obXr0Nj16mx69paYILwEAAACATHK1VCigJUuWxPPPPx/vvfdelJeXx+DBgyMiYtGiRbFgwYJo06bNWs8WoiK9TY/epkdvqYsct+l54okn4qGHHor33nsvvvzyy5gwYUJEfH0DhKeeeipOOeWU2HjjjQtcZd03Z86cKC8vj86dOxe6lHpHb9Ojt+nR2/ToLdWWwFp68803k4suuig56qijkgMOOCC/fNKkSckjjzySzJ49u4DV1T1/+ctfkvbt2ydFRUVJLpdLioqK8uvGjRuXFBUVJQ888EABK6y79DY9epseva09X3zxRfLGG28kL730UqFLqfMct+lYvnx5cvzxxydFRUVJUVFRUlpaWqG3M2fOTIqLi5NrrrmmgFXWbfPmzUvOP//8pF27dklRUVHSoEGD/Lp//OMfyWGHHZa8/vrrBayw7tLb9OhtevQ2PXpLTRBeslYuuuii/B8m3/7jZOLEiUmDBg2SW265pYAV1i2vvPJK0rBhw2TTTTdNfvWrXyWnnHJKhZ4mSZJsueWWyXe/+90CVVh36W169DY9els7Jk6cmBx99NFJcXHxKl+eX3nllWSbbbZJRo0aVbgC6xjHbXpuuummJJfLJeeee24yf/78ZMiQIav0dr/99ku+853vFKjCum327NnJVlttleRyuWSXXXZJtttuuwr9/fLLL5OysrLkggsuKGCVdZPepkdv06O36dFbaopzeFije+65J2666aY48sgj46233opLLrmkwvrNNtssdtttt3jqqacKVGHdc9VVV0XLli3jjTfeiPPOOy+22GKLVcbsuuuu8e9//7sA1dVtepsevU2P3qZvypQpsccee8Szzz4bffv2jT333DOSb1z2e/fdd49Zs2bFQw89VMAq6xbHbXqGDRsWvXr1ijvuuCPKysoqvXFi9+7dY+LEiQWoru674oor4oMPPoiHH344Xn/99TjuuOMqrG/SpEn06dMnXnjhhQJVWHfpbXr0Nj16mx69paYIL1mjO+64I7bZZpv405/+FNtvv32UlJSsMmbrrbeODz/8sADV1U3jxo2Lvn37Rps2baoc07lz55g5c2YtVlU/6G169DY9epu+IUOGxNy5c+PFF1+Mxx9/PA466KAK64uLi6N3797x6quvFqjCusdxm54JEyZE7969VzumdevWMXv27FqqqH556qmn4sgjj4zjjz++yjGbbbZZTJs2rRarqh/0Nj16mx69TY/eUlOEl6zRf//73zjooIOiuLjq+zu1b98+Pvvss1qsqm5bvHhxlJWVrXbMvHnz3OCgGvQ2PXqbHr1N34gRI+LYY4+Nvfbaq8oxXbp0iU8++aQWq6rbHLfpadKkScyfP3+1YyZPnhwtW7asnYLqmRkzZsS222672jGNGjWK8vLyWqqo/tDb9OhtevQ2PXpLTfFtkjUqLi6OJUuWrHbM9OnTo1mzZrVUUd3XrVu3eO2111Y7ZuzYsbH11lvXUkX1h96mR2/To7fpmzNnTmy22WarHZMkSSxevLh2CqoHHLfp2WmnnWLEiBGxaNGiStfPmTMnhg8fHnvssUctV1Y/tG7dOqZOnbraMe+991507NixliqqP/Q2PXqbHr1Nj95SU4SXrNEOO+wQL7zwQixfvrzS9V9++WU8//zzscsuu9RyZXVXv3794tVXX4177rmn0vU33XRTvPPOO3HCCSfUcmV1n96mR2/To7fpa9++/Rovb/L222/HpptuWksV1X2O2/Scf/75MW3atOjXr98qp9J99NFHceyxx8b8+fPj/PPPL1CFdds+++wTf/nLX6o8TfG///1vDB8+PA488MBarqzu09v06G169DY9ekuNKfQdg8i+u+66K8nlcsmZZ56ZLFq0KLniiivydwibP39+ctxxxyVFRUXJY489VuBK644vvvgif6e1Aw88MOndu3dSVFSUXHTRRcnee++dFBUVJTvvvHOyaNGiQpda5+htevQ2PXqbvv/93/9NSkpKkn//+99JkiQV/i1LkiR56aWXklwu526X68Bxm66LL744yeVySVFRUdK8efOkqKgoadu2bVJUVJTkcrnk8ssvL3SJddZbb72VNG7cONl0002T+++/PznvvPOSoqKi5L///W/yhz/8IWnfvn1SWlqafPDBB4Uutc7R2/TobXr0Nj16S00RXrJWTjrppCSXyyXNmzdPOnfunBQVFSW9evVKmjVrluRyuWTAgAGFLrHOmTNnTnLyyScnxcXFSS6Xyz+KioqSE088MZkzZ06hS6yz9DY9epsevU3XxIkTkxYtWiQtWrRIrr766uTUU09NioqKkmeffTa57LLLkqZNmyZt27ZNpk+fXuhS6xTHbbr+/ve/J0cffXTSvn37pGHDhknr1q2Tww8/PBk+fHihS6vz/vKXvyRlZWVJUVFRPhBe+b9lZWXJX//610KXWGfpbXr0Nj16mx69pSbkkiRJCj37k7rh97//fdx+++3xzjvvxMrDZptttonzzz8/zj777AJXV3fNnj07XnvttZgzZ06UlZVFr169on379oUuq17Q2/TobXr0Nj3jxo2LE088MSZPnhy5XC6SJMn/76abbhqPP/547LrrroUus05y3FIXzZkzJ+69994YN25c/tjdfffdY8CAAdGmTZtCl1en6W169DY9epsevWV9CS9ZZ1999VXMnTs3ysrK3KQHgDpl2bJl8fTTT6/y5blv375RUlJS6PIAAIBvEV4CAEAGLV++PKZNmxbTp0+PpUuXVjpmn332qeWqAABqV3GhC6BuWbFiRXz66adVfoF2l9a1N3HixLj11lvj3//+d5V/lORyufjoo48KUF3dprfp0dv06C11keM2HStWrIhrrrkmbr311pgzZ85qxy5fvryWqqp/xo8fv8Zjd/DgwQWorO7T2/TobXr0Nj16y/oy85K1cv/998dNN90U//3vf6v8kpzL5WLZsmW1XFndNHz48DjmmGNiyZIl0bBhw2jXrl0UF1f+3xImTpxYy9XVbXqbHr1Nj97WjiRJ4i9/+csavzzfddddBaiu7nHcpmfQoEFx4403Rrt27eLII4+Mjh07VtnbIUOG1HJ1dd9nn30WJ598cowaNSoiIqr6cyiXywmH15Hepkdv06O36dFbaoqZl6zRTTfdFIMGDYqGDRvGPvvss9ov0KydQYMGRYMGDeKRRx6Jfv36RVFRUaFLqjf0Nj16mx69Td+ECRPiyCOPjA8//LDKL84Rwst14bhNz7333htbbbVVvPbaa64vnoIf/vCH8cILL8Thhx8eJ554ou+2NUhv06O36dHb9OgtNcXMS9aoS5cukSRJjBkzJjbZZJNCl1MvNGnSJE499dT4/e9/X+hS6h29TY/epkdv03fIIYfEc889F+eee26cdNJJq/3y3KVLl1qurm5y3KanWbNmcc4558RNN91U6FLqpbKysujVq1eMHDmy0KXUO3qbHr1Nj96mR2+pKSJv1ujzzz+Ps88+W3BZgzp06BCNGzcudBn1kt6mR2/To7fpe/nll+Poo4+OX//614Uupd5w3KanR48eMX369EKXUW81bNgwdtlll0KXUS/pbXr0Nj16mx69paY4v4c12nLLLWPu3LmFLqNeOfnkk+Nvf/tbLFq0qNCl1Dt6mx69TY/epq958+bRvXv3QpdRrzhu0/Ozn/0snnzyyXjzzTcLXUq91Lt37xg/fnyhy6iX9DY9epsevU2P3lJTnDbOGt17773xk5/8JMaPH+9UuhqydOnSOPbYY+OLL76Ia665Jnr27OmaVjVEb9Ojt+nR2/Sdeuqp8fHHH8eYMWMKXUq94bhN16OPPho/+tGP4uijj46ePXtGWVlZpeP69+9fy5XVfe+++2585zvfiaFDh8Z5551X6HLqFb1Nj96mR2/To7fUFOEla+XGG2+MW265JX7wgx+s9gv0PvvsU8uV1V1///vf48QTT4z58+dXOcYd3KtHb9Ojt+nR23TNmDEj9txzzzjuuOPiqquucrpzDXHcpmPx4sVx5plnxoMPPpi/wVQul6swJkkSd2ddD//5z3+id+/e0aZNm+jRo0el323dwKt69DY9epsevU2P3lIThJeslcGDB8fNN98cX3311WrH+QK9dh555JE45ZRTYsWKFdGtW7fV3jhi1KhRtVxd3aa36dHb9Oht7Xj//fdjzz33jOXLl8cWW2xR5ZdnF5VfO47b9Pzwhz+M3/zmN9GjR4/43ve+t9renn766bVcXd03ceLEOPjgg+Ojjz5a7Tjh8LrT2/TobXr0Nj16S00RXrJGl19+efz85z+Ptm3bxpFHHrnaL9BDhgyp5erqpu222y5mzpwZw4cPj169ehW6nHpFb9Ojt+nR2/T961//ioMOOijmzJmz2nG+PK89x2162rVrF126dImxY8dW+Z2L6jvyyCPj2WefjXPPPTdOOumk1X63dcmkdaO36dHb9OhtevSWmiK8ZI022WSTaN68ebz22muuZVVDmjZtGgMGDHDX2xTobXr0Nj16m74+ffrEq6++Gtdee23+y3ODBg0KXVad5rhNT1lZWZxzzjlxww03FLqUeqmsrCz222+/+Mtf/lLoUuodvU2P3qZHb9Ojt9QU/ymXNZo7d26ceOKJgssa1LlzZzN7UqK36dHb9Oht+t5444044YQT4qKLLip0KfWG4zY9u+yyS0yYMKHQZdRbjRo1ii233LLQZdRLepsevU2P3qZHb6kpRYUugOzbYYcdYsaMGYUuo14566yz4umnn17j6YusO71Nj96mR2/TV1ZWFu3bty90GfWK4zY911xzTQwfPjyeeeaZQpdSLx100EExZsyYQpdRL+ltevQ2PXqbHr2lpjhtnDV6+umn48QTT4yXX345dt5550KXUy9MmjQpLrjggnjvvffisssuW+0d3DfddNNarq5u09v06G169DZ95557bowdOzbefPPNKCry325rguM2PUOHDo1//OMfMWLEiNh///2r7G0ul4vBgwcXoMK6bfr06bH33ntHv3794qqrrorGjRsXuqR6Q2/To7fp0dv06C01RXjJGt13333x5z//OYYPHx6nnXbaav846d+/fy1XVzcVFRVFLpeLJEkil8tVOS6Xy8WyZctqsbK6T2/To7fp0dv0LViwIA466KDo1q1b3HTTTbHxxhsXuqQ6z3GbnrUN2N1gqnr233//mDt3brz11lvRrFmz2GKLLaoMh0eOHFmACusuvU2P3qZHb9Ojt9QU4SVr9M0/Tlb69h8pK/9w8QV67Zxxxhmr/UPvm+65556Uq6lf9DY9epsevU1ft27dYsmSJfnLoLRq1arKL88fffRRbZdXJzlu0/Piiy+u9dg+ffqkWEn9JBxOj96mR2/To7fp0VtqivCSNbr33nvXeuzpp5+eYiUAUD2bbbbZWgdtEydOTLkaWL2XXnopysrKYscddyx0KQAABSe8ZI2mTJkSJSUl0aFDh0KXUm9069YtDj/88Lj99tsLXUq9o7fp0dv06C11keM2PQ0aNIizzz477rjjjkKXUi8NHTo0unbtGqeddlqhS6l39DY9epsevU2P3lJTXLGeNeratWv87Gc/K3QZ9cqsWbOiefPmhS6jXtLb9OhtevQ2ff/zP/8TN998c6HLqFcct+lp166dmxqk6Oqrr46333670GXUS3qbHr1Nj96mR2+pKcJL1qhVq1ax0UYbFbqMeqVHjx7xwQcfFLqMeklv06O36dHb9D344IPx2WefFbqMesVxm56DDjooRo8eHU6QSsemm24a8+bNK3QZ9ZLepkdv06O36dFbaorwkjXq3bt3jBs3rtBl1CuDBg2Kp59+OkaNGlXoUuodvU2P3qZHb9O3+eab52/WQ81w3Kbnuuuui9mzZ8f3v//9mDNnTqHLqXdOPPHEGD58eMyfP7/QpdQ7epsevU2P3qZHb6kprnnJGr333nuxxx57xMCBA+PSSy+N4uLiQpdU5913333x6KOPxogRI+KYY46JXr16Rfv27Su9mUT//v0LUGHdpbfp0dv06G36fvGLX8R1110X48ePj4033rjQ5dQLjtv07L///jF79ux45513oqSkJLp27Vppb3O5XIwcObJAVdZdixcvjn79+sWMGTNi6NCh0atXr2jXrl2hy6oX9DY9epsevU2P3lJThJes0f/8z//Ehx9+GGPGjIkOHTpEz549q/wCfddddxWoyrqlqKgocrncKqeDfbOnSZJELpeL5cuX13Z5dZrepkdv06O36Zs0aVKcd9558fbbb8dPf/rT1QZtm266aQEqrHsct+kpKlq7k6P0tnoaNGgQEf93fFYll8vFsmXLaqusekFv06O36dHb9OgtNcUUOtZo2LBh+Z9nzJhR5Wl3wsu1d8899xS6hHpLb9Ojt+nR2/R169YtH7Sdf/75VY7z5XntOW7Ts2LFikKXUK/17t17tX9EU316mx69TY/epkdvqSlmXrJGkydPXuuxXbp0SbES/r/27jwsqrr///jrHAZEWdwQVAgEN7QUNTV3Afcyc8slUxSzTTO1srJUNO+yUtv3UNQ00jS37swkFDV3w31F3MUFRRQFBD6/P+6f841EQJv3HM70elwX1+XMHK7rfT3vz21nPs6cQ0RE92bw4MHFPnnmphwRERERUcnBzUsiIiIiohIsIyMD6enp8PT0hJubm9HjEBEREdkVvzZOZKBjx45h3rx5SExMtL4padCgAQYMGIBq1aoZPZ6psa0ctpXDtmRGXLcysrOz8f777yMmJgZHjx61Ph8UFIQhQ4bg5ZdfhouLi4ETOobTp0/ftnZ5Uy/bYFs5bCuHbeWwLf0jiqiYvvvuO9W+fXvl5eWlXFxclJeXl+rQoYOaN2+e0aOZ0ocffqhcXFyUrutK07R8Py4uLurDDz80ekTTYls5bCuHbe1n/fr16tNPP1Vvv/22+vTTT9X69euNHsm0uG5lXL9+XTVv3lzpuq6cnZ1V7dq1VWhoqAoODlbOzs5K13XVvHlzdf36daNHNa3Dhw+r9u3bK13Xb/vp0KGDOnz4sNEjmhbbymFbOWwrh23JFvi1cSpSbm4u+vTpgyVLlkApBVdXV/j4+ODcuXPIzMyEpmno3r07Fi5cWOy7Y/7brVixAt26dYOXlxdGjx6NsLAwVKlSBSkpKYiPj8eMGTOQmpqKZcuW4ZFHHjF6XFNhWzlsK4dt7eOPP/7AkCFDcOTIEQD573xZs2ZNzJo1C82bNzdyRFPhupUTFRWFyZMno2/fvnjvvfdw3333WV87deoUxo4di9jYWEycOBETJ040cFJzOnnyJJo0aYLz588jODgYbdq0sa7dhIQE7N+/Hz4+PtiyZUu+9lQ0tpXDtnLYVg7bks0Yu3dKZjBjxgylaZpq3bq1+uOPP/K9tnHjRtWmTRul6zo/XXEXwsLCVMWKFdXJkycLfP3EiROqYsWKKjw83M6TmR/bymFbOWwrb8+ePcrNzU1pmqY6duyo3nnnHRUTE6OmTp2qOnXqpDRNUx4eHmrv3r1Gj2oaXLdygoOD1YMPPljoMY0bN1bBwcF2msixDB06VGmapr744guVl5d32+tffvml0jRNPfXUUwZMZ25sK4dt5bCtHLYlW+HmJRUpJCRE1a5dW2VnZxf4enZ2tgoODlYhISH2HczEypYtq55//vlCj3nuuedU2bJl7TOQA2FbOWwrh23l9enTRzk7O6tffvmlwNd/+eUX5ezsrPr27WvnycyL61aOq6urev311ws95rXXXlOurq52msix+Pn5qW7duhV6TLdu3ZSvr6+dJnIcbCuHbeWwrRy2JVvhd3ypSIcOHUK3bt3g7Oxc4OvOzs549NFHcejQITtPZl7Z2dlF3i3U3d0d2dnZdprIcbCtHLaVw7by1qxZg969e6Nz584Fvt65c2f07t0b8fHxdp7MvLhu5ZQpUwYXLlwo9JgLFy6gTJkydprIsZw/fx4PPPBAocc88MADRf5vQLdjWzlsK4dt5bAt2Qo3L6lILi4uyMjIKPSYjIwM3vHyLtSqVQvLly9HTk5Oga/n5ORgxYoVqFWrlp0nMz+2lcO2cthW3pUrVxAYGFjoMYGBgbhy5YqdJjI/rls5zZo1Q2xsLPbu3Vvg6/v27cMPP/zAa7Teo0qVKmHfvn2FHrNv3z5UqlTJThM5DraVw7Zy2FYO25KtcPOSitSwYUMsWLAAZ86cKfD1s2fPYsGCBWjUqJGdJzOvQYMG4eDBg+jUqRO2b9+e77Vt27ahS5cuOHjwICIiIgya0LzYVg7bymFbeVWrVsWmTZsKPWbz5s2oWrWqnSYyP65bOePGjUNmZiaaNGmCF154AT/++CPWrVuHH3/8ESNGjECTJk2QlZWF119/3ehRTalTp05YtmwZoqOjC3x95syZWL58+R0/qU13xrZy2FYO28phW7IV3m2cirR8+XI89thjqFy5Ml566SW0bdvWerfxNWvWYMaMGTh37hyWLl2Krl27Gj2uKeTm5qJXr15YtmwZNE1DmTJl4O3tjfPnz+P69etQSuGxxx7DokWLeAf3u8S2cthWDtvKGzVqFD755BOMGzcOb7zxBlxdXa2vZWZm4p133sGUKVMwcuRIfPDBBwZOah5ct7IWLlyIYcOGIT09HZqmWZ9XSqFs2bL45ptv0Lt3bwMnNK8TJ06gcePGSE1NRd26dfOd2yYkJGDv3r3w8vLCtm3bePfbu8S2cthWDtvKYVuyGeMut0lmMn36dOXs7Kx0Xc/3o2macnZ2VjNmzDB6RFOaPXu2Cg8PVxUqVFAWi0VVqFBBtWvXTs2ZM8fo0UyPbeWwrRy2lXPx4kVVvXp1peu6qlSpknrkkUdUZGSkeuSRR5S3t7fSNE1Vr15dpaamGj2q6XDdyklPT1dz585VY8aMUU899ZQaM2aMmjt3rkpPTzd6NNM7ePCgCgsLU5qm3fYTHh6uDh48aPSIpsW2cthWDtvKYVuyBX7ykort6NGjmDdvHhITE5Geng5PT080bNgQTzzxBIKCgower0TbtWsXKleuDG9vb6NHcThsK4dt5bCtMS5evIixY8ciNjYWmZmZ1uddXV3Rv39/vPvuu/Dy8jJwwpKN61bOmDFj0LlzZ3Ts2BHA/z6pUq5cOXh6eho8meM7efJkvnPbBg0a8NM/NsK2cthWDtvKYVv6R4zePaWS56OPPlKbN282egyHouu6mjRpkvVxWFiYmj17toETOQ62lcO2ctjWWNnZ2WrXrl1q/fr1ateuXSo7O9vokUyB61aOpmn52v69Nf0zDRs2VF999ZX18ezZs9XOnTsNnMhxsK0ctpXDtnLYlqTwAkR0m1GjRmHlypXWx05OTnjrrbcMnMj8nJyckJuba328Zs0aHDt2zLiBHAjbymFbOWwrr0KFCnjvvfesjydPnoyEhAQAgLOzM+rVq4eWLVuiXr16cHZ2NmpMU+G6lePu7o7r169bHyt+McqmEhMTkZKSYn08ePBgLFmyxLiBHAjbymFbOWwrh21JisXoAajkKV26NLKysqyPlVI8if6H/Pz8kJiYaPQYDolt5bCtHLaVd+XKlXxfDY+KikJUVBTatGlj4FTmxnUrp2bNmli8eDF69OiBKlWqAADS0tJw4sSJIn/X399fejzT8/LywsWLF40ewyGxrRy2lcO2ctiWpHDzkm4TGBiIX3/9FSNHjoSPjw8A5LvLJd29Rx99FJ988gnq1KljfVMSExODNWvWFPp7mqYhLi7ODhOaF9vKYVs5bCvPx8cHp06dMnoMh8J1K+fll1/Gk08+iRYtWlif++ijj/DRRx8V+nuapiEnJ0d6PNMLCQnB3Llz4evra127iYmJmDNnTpG/O2jQIOnxTI1t5bCtHLaVw7YkhTfsodt8/PHHGDVqlHXDUilVrM1LnkDf2dWrV/HKK6/g559/xpkzZwAU7ythmqbl+4oe3Y5t5bCtHLaV16NHD6xcuRKDBw9GlSpVEBUVhdDQUISGhhb6e5qmYfz48fYZ0mS4bmVt2rQJP//8M06fPo2YmBiEhISgQYMGRf7erFmz5Iczue3bt+Phhx/GhQsXoGlasc5tbx3DtVs4tpXDtnLYVg7bkhRuXlKBYmNjrW9O4uPjERAQgGrVqhX5e/Hx8fLDOQBd1xEVFYUJEyYYPYrDYVs5bCuHbW3vyJEjeOyxx7B//34AsJ5AF4Unz8XHdSuHbW3v6tWr2LJlC06fPo3Bgweje/fueOyxx4r8vYiICDtMZ25sK4dt5bCtHLYlCfzaOBWoX79+6NevH4D/nUAPGTKEJ9A2FBERUaxPU9DdY1s5bCuHbW2vRo0a2L17N5KTk3H69GmEhoZi8ODBPDG2Ia5bOfHx8cX6R2MqPg8PD7Rr1w7A/24g0aBBA/59YCNsK4dt5bCtHLYlCfzkJRVp9uzZaNCgAUJCQowehYiI6J4EBgZi9OjRGDlypNGjEN2z9PR0bN68Ga6urmjVqhWvSU5ERET/CrrRA1DJFxERUeDGpVIKhw8fxsmTJw2Yytx2796NmTNnIj093frcjRs38Nxzz8HX1xc1atTAl19+aeCE5sW2cthWDtvKS05O5saljXHdyvnmm2/Qtm1bXL582frczp07ERwcjM6dOyM0NBStW7fG9evXDZzS3PLy8m57buPGjXjjjTfw1ltv8YZf/wDbymFbOWwrh23JJhRRERYtWqQGDhyoLl26ZH0uOTlZPfDAA0rXdaXruurbt6/KyckxcEpz6dOnj6patarKy8uzPjdq1CilaZry8PBQLi4uStd1tWrVKgOnNCe2lcO2cthWXnp6ukpKSlLZ2dn5no+NjVVPPPGEioyMVNu3bzdoOnPiupXTunVr9dBDD+V7rl27dsrJyUkNHTpUde3aVem6rqZNm2bQhOY2atQoVapUKXX58mXrcwsXLlROTk5K0zSlaZqqVKmSOnnypHFDmhTbymFbOWwrh23JVrh5SUVq3769qlevXr7nunfvrjRNU+3atVMNGjRQuq6rr7/+2qAJzadatWpqwIAB1sc3b95UZcuWVQ899JC6ceOGOn36tPLx8VGPPPKIgVOaE9vKYVs5bCvv2WefVe7u7iojI8P63Oeff650XbeePJcpU0bt37/fwCnNhetWjo+Pj3r66aetjy9evKh0XVfPPPOM9bmHHnpINWzY0IjxTC8kJER16dIl33N16tRRFSpUUHPnzlXvv/++slgs6sUXXzRmQBNjWzlsK4dt5bAt2Qq/Nk5F2rdvH5o2bWp9fPXqVfz888/o27cvVq9ejS1btqBOnTqYOXOmgVOay4ULF3DfffdZH2/duhXp6el49tln4erqiqpVq+Kxxx7Dzp07DZzSnNhWDtvKYVt5a9euRfv27VGmTBnrc1OnToWvry8SEhKwYMECKKXw/vvvGziluXDdyklLS0OlSpWsj9etWwcA6Nmzp/W5Vq1a4dixY/YezSGcPHkSNWvWtD5OTk7GgQMHMHLkSDz55JN4+eWX8fDDD2PlypUGTmlObCuHbeWwrRy2JVvh5iUV6dKlS6hcubL18fr165GTk4P+/fsDAJydndGhQwckJSUZNaLpWCwWZGVlWR+vWbMGmqYhLCzM+lzFihVx8eJFI8YzNbaVw7Zy2Fbe2bNnERgYaH28f/9+nDx5EiNHjkSrVq3Qu3dvdOvWDQkJCQZOaS5ct3IqVqyIs2fPWh/HxcXByckJLVu2tD6nlMLNmzeNGM/0MjIy4ObmZn28du1aaJqGLl26WJ+rW7cur8N2D9hWDtvKYVs5bEu2ws1LKpKnpydSU1Otj+Pj46HrOlq3bm19ztnZGRkZGUaMZ0rVqlVDfHy89fHChQsRGBiIgIAA63OnT59GxYoVjRjP1NhWDtvKYVt5WVlZcHFxsT6+dfLcsWNH63NBQUE4ffq0EeOZEtetnPr162Pp0qXYs2cPjhw5gvnz56Nly5b53gAeO3YMVapUMXBK86patSoOHjxofbxy5Uq4u7vjwQcftD6Xnp6OUqVKGTGeqbGtHLaVw7Zy2JZsxWL0AFTyBQcHY/ny5ZgyZQqcnJwwf/58PPjggyhfvrz1mOPHj8PHx8fAKc1l4MCBeOWVV/DQQw+hVKlS2LlzJ9544418x+zatSvfR+ypeNhWDtvKYVt5fn5+2LVrl/XxihUrUKFCBdSvX9/6XGpqKtzd3Y0Yz5S4buWMHTsW7du3R0hIiPW5MWPGWP+cl5eH9evXIzw83IjxTK9t27b4/vvv8emnn8LV1RWLFy9G9+7d4eTkZD0mKSkJfn5+Bk5pTmwrh23lsK0ctiWbMfqim1Ty/fjjj0rTNOXq6qo8PDyUrutq1qxZ+Y7x9/dX3bt3N2ZAE8rMzFR9+vSx3ijikUceUTdu3LC+vmfPHqVpmpo8ebKBU5oT28phWzlsK2/kyJHKyclJvfTSS+qNN95QTk5OasiQIfmOCQ0NVQ8++KBBE5oP162sFStWqF69eqlevXqphQsX5nstISFBNWjQQC1YsMCg6czt8OHDqly5cta16+7urvbu3Wt9PT09XZUuXVo999xzBk5pTmwrh23lsK0ctiVb0ZRSyugNVCr5vvjiC0RHRwMA+vXrh5dfftn62tq1a9G9e3dMnToVzzzzjFEjmlJ6ejo0TYOHh0e+5y9evIjTp0+jWrVqKFu2rEHTmRvbymFbOWwrJyUlBS1atLDe4KRKlSrYvHmz9V/6z58/Dz8/P4wYMQIzZswwcFLz4bolMzp79iwWLVoEAHj00UfzXe5gx44dmDt3Lp544gk0adLEqBFNi23lsK0ctpXDtmQL3LwkIiKif4UbN24gLi4OANCmTRt4enpaX9u3bx9+++03dOrUCcHBwUaNSEREREREf8PNSyKDZWRkIC0tDbm5uQW+7u/vb+eJHAfbymFbOWxLZsR1K2PLli3YunXrHdtqmobx48cbMBkRERGR/XDzkootJSUF27dvL/TNyaBBg+w8lXlFR0dj+vTp+e6+9neapiEnJ8eOUzkGtpXDtnLYlsyI61bGpUuX0L17d2zYsAGFnaprmnbHczIq3IULFzBr1qwiN4dvfVqbio9t5bCtHLaVw7ZkC7zbOBUpMzMTw4YNQ2xsLPLy8go8RikFTdO4eVlMX3zxBYYPHw6LxYI2bdrAz88PFgv/72gLbCuHbeWwrX3s27cPn376aZEnz0lJSQZMZz5ct3LGjBmD9evXIzQ0FBEREWxrY7t27UJ4eDguX75c5OYw3R22lcO2cthWDtuSrfCTl1SkUaNG4eOPP0atWrXQv3//Qk+gIyIi7DydOdWuXRuXL1/G+vXrUatWLaPHcShsK4dt5bCtvLVr16Jz587IysqCxWKBj4/PHf9blpycbOfpzInrVo6Xlxdq1KiBjRs38g2dgA4dOiAuLg5vvvkmhg4dCj8/Pzg5ORk9lkNgWzlsK4dt5bAt2Qo3L6lIVatWRYUKFbB9+3aUKlXK6HEcgqurK5566il8+umnRo/icNhWDtvKYVt5zZs3x7Zt2/DVV18hIiKCJ842wHUrx83NDcOHD8d7771n9CgOyd3dHR07dsTixYuNHsXhsK0ctpXDtnLYlmxFN3oAKvnS0tLQuXNnblzaUJUqVXiNKiFsK4dt5bCtvJ07d6Jfv36IjIzkxqWNcN3KadCgAY4dO2b0GA7LxcUF1atXN3oMh8S2cthWDtvKYVuyFW5eUpFq166Nc+fOGT2GQ4mIiMAvv/yCjIwMo0dxOGwrh23lsK08Nzc3eHt7Gz2GQ+G6lTNx4kQsW7YMmzZtMnoUh9S2bVts27bN6DEcEtvKYVs5bCuHbclW+LVxKtL8+fPx7LPPYseOHahRo4bR4ziEnJwc9O/fH6dPn8bUqVPRqFEjuLu7Gz2WQ2BbOWwrh23lRUREYP/+/diyZYvRozgMrls5c+bMwdKlS7FixQoMGDAAjRo1gqenZ4HH8maJdy8pKQnNmjXDq6++ipdfftnocRwK28phWzlsK4dtyVa4eUlFSkhIwCeffIK4uDiMGjWq0BPoNm3a2Hk6c7r1lcVbd2m/E03TkJOTY6+xHALbymFbOWwr7/z582jVqhU6d+6MqVOnokyZMkaPZHpct3J0XYemafnuzPr3xre686v7dy8yMhLJyclISEhAYGAgGjRoUOC5raZpiI6ONmBC82JbOWwrh23lsC3ZCjcvqUh/P4Eu7A0KT6CLJzQ0tNh3D42PjxeexrGwrRy2lcO28sLDw5GWloadO3fCzc0NtWrVuuPJc1xcnAETmg/XrZzZs2cX+9iIiAjBSRyTrhfvylncHL57bCuHbeWwrRy2JVvh5iUVKSoqqthvTiZOnCg8DRER0d3jyTMR3XL8+PFiHxsQECA4ieNhWzlsK4dt5bAt2Qo3L4mIiIiIiIiIiKhEshg9ABERERERFSw3NxcXL15EVlZWga/7+/vbeSIiIiIi++LmJZFBcnNzsWDBAqxevRpnzpwp8E0Jr712b9hWDtvKYVsyI65bOdu3b8e4ceOQkJCA7OzsAo/hzZD+mczMTGzduvWOaxfg3dzvFdvKYVs5bCuHbemf4tfGqVhOnjyJKVOmWN+cFHQSzRPo4svIyEDHjh2xadMm691C/35HUd5F9N6wrRy2lcO29nPq1CnEx8cXutE2fvx4AyYzH65bOYmJiWjRogUsFgvCwsKwfPlyhISEoHLlytixYwcuXLiA0NBQBAQEYNasWUaPa0qfffYZxo8fjytXrhT4OtfuvWNbOWwrh23lsC3ZhCIqQlJSkvLy8lJOTk6qfv36StM0Va1aNRUcHKxcXFyUpmmqQYMGKjQ01OhRTeO1115Tmqapt956S6WmpipN09SkSZNUSkqKWrBggapRo4bq06ePunnzptGjmg7bymFbOWxrHy+//LJydnZWuq5bfzRNu+3PVDxct3J69uypSpcurfbt26eUUta2Sil1/fp19dxzz6lKlSqp5ORkA6c0r0WLFilN01T9+vXVjBkzlKZpqkePHmrq1Knq4YcfVpqmqd69e6uYmBijRzUdtpXDtnLYVg7bkq1w85KKNGjQIOXs7KzWrFmjlMp/An3mzBn12GOPqZo1a6qLFy8aOaap1KpVSzVv3tz6+K9NlVLq5MmTqkKFCurtt982YjxTY1s5bCuHbeV9/fXXStM01bFjR7V48WKlaZoaMmSIio2NVc8//7xycXFRffr0sf63jorGdSvH29tb9e3b1/pY0zQVFRVlfZybm6tCQkJU//79jRjP9Fq3bq18fHxURkaGUur2tTtv3jxlsVhUfHy8QROaF9vKYVs5bCuHbclWdKM/+Ukl3+rVq/Hwww+jbdu21ufU//9aWJUqVfDDDz8AAMaNG2fIfGZ04sQJNGvWzPpY1/V8X1/08/PDI488gtmzZxsxnqmxrRy2lcO28r7++mtUq1YNv/zyC3r06AEAqFatGvr27YvPPvsMq1atwk8//YQLFy4YPKl5cN3KuXLlCoKCgqyPnZ2dce3aNetjXdcRGhrKa4neo127dqFbt24oU6aM9bm/fl3xiSeeQHh4OCZPnmzEeKbGtnLYVg7bymFbshVuXlKRLl68iODgYOtji8WC69evWx+XKlUKHTp0wIoVK4wYz5Tc3Nyg6//3f7+yZcvi7Nmz+Y6pXLkyTpw4Ye/RTI9t5bCtHLaVd+DAAXTu3Dlf579ep7lt27Z45JFHMG3aNCPGMyWuWzne3t64fPmy9XHlypVx+PDhfMdkZmbmOx+j4rt58yYqVapkfVy6dGmkpaXlOyYkJAQ7duyw82Tmx7Zy2FYO28phW7IVbl5Skby8vJCRkZHv8bFjx/IdY7FYbvtLiO4sICAg35u5Bx54AL///rv1EytKKcTFxaFKlSpGjWhabCuHbeWwrX2UK1fO+mc3Nzekpqbme7127drYu3evnacyL65bOXXr1sXBgwetj1u2bIlVq1Zh48aNAID9+/djwYIF+f5xmYqvatWq+TbaAwIC8Oeff+Y75vjx47BYLPYezfTYVg7bymFbOWxLtsLNSypSzZo1kZSUZH3ctGlT/Prrrzh69CgA4MKFC/jxxx9RvXp1o0Y0nXbt2iE+Pt76qZ+IiAicOHECzZs3xyuvvIJWrVohMTERvXr1MnhS82FbOWwrh23l+fr64tSpU9bH1atXx+bNm/Mds2fPHri5udl7NNPiupXzyCOPICEhwfqG79VXX4VSCq1atUKlSpVQr149pKWl8ZI996hJkyb5PuXTuXNnbNiwAe+88w727t2Lr776CosXL0aTJk0MnNKc2FYO28phWzlsSzZj4PU2ySSmTp2qXF1d1eXLl5VSSsXHxytd15Wbm5tq3LixKleunNJ1XX399dfGDmoihw4dUlOnTlVnzpyxPjdixAjr3W5v3XXt1oWNqfjYVg7bymFbeZGRkapmzZrWxxMmTFC6rqunn35arVixQr322mtK13X1+OOPGziluXDdysnOzlYpKSkqKyvL+tyGDRvUww8/rIKDg1WnTp3UihUrDJzQ3BYvXqyCg4Otd2s/f/688vf3V7quW9dvuXLl1K5du4wd1ITYVg7bymFbOWxLtqIp9f/vvEJ0B+np6di/fz/q1q0LDw8PAMDChQsRFRWFo0ePIiAgAC+88AKGDx9u8KTmd+HCBWvTypUrGz2OQ2FbOWwrh21tZ82aNXj33Xfx5ZdfIiAgANeuXUPbtm3x559/QtM0KKVQrVo1xMfHIyAgwOhxTY3rlszo8uXL+Pbbb61rd+DAgfD19TV6LIfAtnLYVg7bymFbuhfcvCQywOTJkxEYGIiBAwcaPYrDYVs5bCuHbY1x8+ZNLF26FElJSQgICMCjjz7Kr43fBa5bOUFBQejSpQs+++wzo0dxSCdOnICLiws31wWwrRy2lcO2ctiWbIXXvKQihYeHY/z48UaP4VCmTJmC3bt3Gz2GQ2JbOWwrh23lJSQkIDExMd9zzs7O6N27N1599VX069ePG5d3ietWzsWLF+Hp6Wn0GA4rMDCQ1wsVwrZy2FYO28phW7IVbl5SkTZv3ozc3Fyjx3Ao/v7+vDu7ELaVw7Zy2FZeWFgYvv76a6PHcChct3Lq16+PQ4cOGT2GwypfvjwqVqxo9BgOiW3lsK0ctpXDtmQr3LykIgUHB+P48eNGj+FQ+vXrh5UrV+LKlStGj+Jw2FYO28phW3ne3t5wdXU1egyHwnUr59VXX8Xy5csRHx9v9CgOqXXr1ti8ebPRYzgktpXDtnLYVg7bkq3wmpdUpJiYGIwYMQJbtmxB3bp1jR7HIWRlZaFXr144e/YsJk+ejCZNmsDb29vosRwC28phWzlsK2/QoEHYs2cPtm/fDk3TjB7HIXDdypkzZw4WLFiAX3/9Fd27d0eTJk3g4+NT4NodNGiQAROa24EDB9CsWTOMGTMG48aNg8ViMXokh8G2cthWDtvKYVuyFW5eUpESEhLw3nvvISEhAc8880yhJ9Bt2rQxYEJzmDNnDho0aID69evDyckJAKCUKvRNtKZpyMnJsdeIpsW2cthWDtva15kzZ9C8eXN07NgR7777LipUqGD0SKbEdSsnPDwcQ4YMwcCBA6HrOjRNw99P0//a+VZ3Xtrn7kVGRuLw4cP4448/ULlyZYSEhBR4bqtpGqKjow2a0pzYVg7bymFbOWxLtsLNSypQZGQkunfvjm7dut12Al3YGxSeQN+ZruuYNGkSxo8fj9DQ0GJ/8odfGSsa28phWzlsK+/EiRMoV64cPD09ER4ejtTUVOzZswcuLi4IDAy848lzXFycQROXfFy3cnRdR1RUFCZMmICYmJhit42IiBCezDE4OTkhKioK48ePh64X78pZ3BwuHraVw7Zy2FYO25IEfmaXChQTE4Nq1aqhW7dumDBhAr9iZyO3NoDXrFlj7CAOiG3lsK0ctpUVGBhoPXn+a+OsrCwcOHAABw4cuO13+N+7onHdyhs8eLDRIzgcpZR17SYnJxs8jWNhWzlsK4dt5bAtSeDmJRUpKirK6BGIiIju2l9PnvPy8gyehohKioCAAKNHcFhsK4dt5bCtHLYlW+HdxomIiIiIiIiIiKhE4icviewoMTERc+bMuavf4V1Ei4dt5bCtHLYlM+K6lRMTE3NXX8fnNVrvDi8LIYdt5bCtHLaVw7Zka7xhDxVI13U0aNAADRo0KPbv8A5hhbt146Pi4l1Ei49t5bCtHLaVp+s6Ro0ahVGjRt3V7/n7+8sM5AC4buUU96YGf8W2xXe3axf4X9+cnByhiRwH28phWzlsK4dtSQI/eUl3lJiYiMTExGIfz83LorVt2xZt27Y1egyHxLZy2FYO28r76KOP8NFHHxX7eJ48F43rVs6oUaPw4osvGj2Gw/L09ES5cuWMHsMhsa0ctpXDtnLYlmyNm5d0R4MHD0ZERITRYziU0NBQTJgwwegxHBLbymFbOWwrz9/fH9WqVTN6DIfCdSunXLlyvLmBoNGjR3PtCmFbOWwrh23lsC3ZGjcv6Y6qVavGT1YQEZGpDRkyhCfPREREREQmxruNExERERERERERUYnEzUsiIiIiIiIiIiIqkbh5SWQnERERd3X3dio+tpXDtnLYlsyI61ZOfHy89VrjCQkJOHHiRKHHnzx5EgkJCfYYjYiIiMhQ3LykAs2aNQuPPfYYAODEiRNIT08v9PirV68WeZL9bzdr1ix069YNABAUFISPP/640OM/++wzBAUF2WM002NbOWwrh23lBQQE8E6XNsZ1K6dt27bWm/WEhYUhJiam0OPnzJmDsLAwO0zmGPLy8qzXv508eXKRG7/r1q3D5MmT7TGa6bGtHLaVw7Zy2JYkcPOSChQREYGQkBAAQGBgID766KNCj//4448RGBhoj9EcwrFjx5CWllboMWlpaTh+/Lh9BnIgbCuHbeWwrYzk5GSMHDkSABAZGYlly5YVevyKFSsQGRlpj9EcAtetHKVUkcfk5eVB0zQ7TON4oqKisGbNmkKPSUhIwKRJk+wzkANhWzlsK4dt5bAt2Qo3L6lISqkiT6KLc5JNd+fKlSsoVaqU0WM4JLaVw7Zy2PafiYmJQWJiYqHH7Ny5E7Nnz7bPQP8SXLdyDh8+jLJlyxo9hsPKzs6Gk5OT0WM4JLaVw7Zy2FYO21JxWIwegBzDqVOn4OHhYfQYJdrfPy5/7NixAj9Cn5ubi5MnT2LevHmoVauWvcYzNbaVw7Zy2LbkyczMhMXCU6PCcN3K+funfpcsWYJjx47ddtyttgkJCejSpYudpnM8hX1qNTs7G+vWrYO3t7cdJ3IcbCuHbeWwrRy2JVvQFD8yRwX46zUnoqKiEBoaitDQ0NuOu3UCHRsbi2bNmuH333+345Tmout6sb/epZSCpmmIiYnBwIEDhSczP7aVw7Zy2Na+dF3HpEmTMH78+NteU0rh5MmT6NmzJ1JTU5GcnGzAhObAdStH1//vC1GaphX6rRZN09CkSRN89913qFGjhj3GM72/Xnv12LFjKFeuXIHXxM3NzcXFixeRmZmJYcOG4csvv7TjlObEtnLYVg7bymFbksDNSyrQ3ZxAA0DVqlXx008/oUmTJtKjmVZUVJS15eTJk9G2bdsCN4SdnJxQoUIFhIWFoU6dOvYf1ITYVg7bymFbeX/daLu1kVYYpRReffVVvPPOO/YYz5S4buXcujaoUgpBQUEYNWoUXnzxxduOc3JyQvny5eHm5mbvEU2tWrVq1r8DTpw4AU9PzwLfTN9au+Hh4Rg/fjw7FwPbymFbOWwrh21JAjcvqUBr164F8L8T6PDwcAwePBgRERG3HXfrL5zg4OB8G55UuLCwMAwZMgSDBg0yehSHw7Zy2FYO28oIDQ21njwnJCTA398f1apVu+24v548Dxs2jNddKiauWzmzZ89Gw4YNUb9+faNHcUi6riMqKsp6N1yyHbaVw7Zy2FYO25KtcPOSijRp0iSEhYWhTZs2Ro9CRER0T3jyTES3HD9+HOXKleMNjwSwrRy2lcO2ctiWbIWbl0QGy8jIQFpaGnJzcwt83d/f384TOQ62lcO2ctiWzIjrVsaWLVuwdevWO7bVNK3A67gSERERORJuXlKxpaSkYPv27YW+OeFXx4ovOjoa06dPx8GDB+94jKZpyMnJseNUjoFt5bCtHLYlM+K6lXHp0iV0794dGzZsKPLGPXc6J6PCXbhwAbNmzSpyczguLs6A6cyNbeWwrRy2lcO2ZAsWowegku/W3b9iY2ORl5dX4DG3boTAzcvi+eKLLzB8+HBYLBa0adMGfn5+sFj4f0dbYFs5bCuHbe1j3759+PTTT4s8eU5KSjJgOvPhupUzZswYrF+/HqGhoYiIiGBbG9u1axfCw8Nx+fLlIjeH6e6wrRy2lcO2ctiWbIWfvKQijRo1Ch9//DFq1aqF/v37F3oCXdBNfeh2tWvXxuXLl7F+/XrUqlXL6HEcCtvKYVs5bCtv7dq16Ny5M7KysmCxWODj43PH/5YlJyfbeTpz4rqV4+XlhRo1amDjxo18QyegQ4cOiIuLw5tvvomhQ4fCz8+PN+qyEbaVw7Zy2FYO25KtcPOSilS1alVUqFAB27dvR6lSpYwexyG4urriqaeewqeffmr0KA6HbeWwrRy2lde8eXNs27YNX331FSIiInjibANct3Lc3NwwfPhwvPfee0aP4pDc3d3RsWNHLF682OhRHA7bymFbOWwrh23JVnSjB6CSLy0tDZ07d+bGpQ1VqVKF16gSwrZy2FYO28rbuXMn+vXrh8jISG5c2gjXrZwGDRrg2LFjRo/hsFxcXFC9enWjx3BIbCuHbeWwrRy2JVvh5iUVqXbt2jh37pzRYziUiIgI/PLLL8jIyDB6FIfDtnLYVg7bynNzc4O3t7fRYzgUrls5EydOxLJly7Bp0yajR3FIbdu2xbZt24wewyGxrRy2lcO2ctiWbIVfG6cizZ8/H88++yx27NiBGjVqGD2OQ8jJyUH//v1x+vRpTJ06FY0aNYK7u7vRYzkEtpXDtnLYVl5ERAT279+PLVu2GD2Kw+C6lTNnzhwsXboUK1aswIABA9CoUSN4enoWeCxvlnj3kpKS0KxZM7z66qt4+eWXjR7HobCtHLaVw7Zy2JZshZuXVKSEhAR88skniIuLw6hRowo9gW7Tpo2dpzOnW19ZvHWX9jvRNA05OTn2GsshsK0ctpXDtvLOnz+PVq1aoXPnzpg6dSrKlClj9Eimx3UrR9d1aJqW786sf298qzu/un/3IiMjkZycjISEBAQGBqJBgwYFnttqmobo6GgDJjQvtpXDtnLYVg7bkq1w85KK9PcT6MLeoPAEunhCQ0OLfffQ+Ph44WkcC9vKYVs5bCsvPDwcaWlp2LlzJ9zc3FCrVq07njzHxcUZMKH5cN3KmT17drGPjYiIEJzEMel68a6cxc3hu8e2cthWDtvKYVuyFW5eUpGioqKK/eZk4sSJwtMQERHdPZ48E9Etx48fL/axAQEBgpM4HraVw7Zy2FYO25KtcPOSiIiIiIiIiIiISiTebZyIiIiIiIiIiIhKJIvRAxD9G0RGRkLTNLz99tvw8fFBZGRksX6PFy4uGtvKYVs5bEtmxHUrR9d16LqOffv2oVatWtbrjReFN0MqnoSEBABA06ZN4erqan1cHLwZZeHYVg7bymFbOWxLUvi1cbpNUFAQNE3D6tWrERgYiKCgoGL9nqZpSEpKEp7OnG69Cdm/f7/1TUlx8NprRWNbOWwrh23lzZkzBwDQo0cPeHh4WB8Xx6BBg6TGMjWuWzm3bn40d+5c+Pn58WZINlbQ2i1uX67dwrGtHLaVw7Zy2Jak8JOXdJu8vLx8f8H8/fGdcB/8zpKTkwEAvr6++R7TP8e2cthWDtvKGzx4MDRNQ7NmzeDh4WF9XBilFDRN4+blHXDdylmzZk2hj+mfmTBhAjRNg5eXV77H9M+xrRy2lcO2ctiWpPCTl0RERORwYmJioGkaevbsCQ8PD+vj4oiIiBCejqhwCQkJ8PT0RIMGDYwehYiIiMhw3LykIp04cQIuLi6oXLmy0aM4jKCgIHTp0gWfffaZ0aM4HLaVw7Zy2JbMiOtWjpOTE5555hl8/vnnRo/ikCZPnozAwEAMHDjQ6FEcDtvKYVs5bCuHbclWeLdxKlJgYCDGjRtn9BgO5eLFi/D09DR6DIfEtnLYVg7byouMjMQHH3xg9BgOhetWjre3N1xdXY0ew2FNmTIFu3fvNnoMh8S2cthWDtvKYVuyFW5eUpHKly+PihUrGj2GQ6lfvz4OHTpk9BgOiW3lsK0ctpU3f/58nD9/3ugxHArXrZwOHTpgzZo1vJ64EH9/f6SlpRk9hkNiWzlsK4dt5bAt2Qo3L6lIrVu3xubNm40ew6G8+uqrWL58Oe8QKoBt5bCtHLaVV716dZw9e9boMRwK162cqVOnIjU1FU8//TQuXbpk9DgOp1+/fli5ciWuXLli9CgOh23lsK0ctpXDtmQrvOYlFenAgQNo1qwZxowZg3HjxsFi4U3q/6k5c+ZgwYIF+PXXX9G9e3c0adIEPj4+Bd5Mgne9vTtsK4dt5bCtvOnTp2Pq1KlITEy03i2b/hmuWznh4eFITU3Fnj174OLigsDAwALbapqGuLg4g6Y0r6ysLPTq1Qtnz57F5MmT0aRJE3h7exs9lkNgWzlsK4dt5bAt2Qo3L6lIkZGROHz4MP744w9UrlwZISEhdzyBjo6ONmhKc9F1HZqm3fZ1sL82VUpB0zTk5ubaezxTY1s5bCuHbeUdO3YMI0aMwO7duzF27NhCN9r8/f0NmNB8uG7l6HrxvhzFtvfGyckJwP+tzzvRNA05OTn2GsshsK0ctpXDtnLYlmyFH6GjIsXExFj/fPbs2Tt+7Y6bl8U3a9Yso0dwWGwrh23lsK28oKAg60bbyJEj73gcT56Lj+tWTl5entEjOLTWrVsX+iaa7h3bymFbOWwrh23JVvjJSyrS8ePHi31sQECA4CRERET3ZvDgwcU+eeamHBERERFRycHNSyIiIiKiEuzo0aO4cuUKypYti6CgIKPHISIiIrIrfm2c7lpOTg6uXr0KDw8P3rznH9qxYwdmz56NP//80/qmpFGjRhg0aBAaNWpk9HimxrZy2FYO25IZcd3KuHLlCiZMmIA5c+YgPT3d+rynpyciIiIwadIklC1b1sAJHcOff/6Zb+02bNgQDRs2NHosh8C2cthWDtvKYVv6RxRRMeTk5KgZM2ao+vXrKycnJ6XrunJyclL169dXH3zwgbp586bRI5rOyy+/rJycnJSmabf9ODk5qVdeecXoEU2LbeWwrRy2tY/MzEy1ePFiNX78eDVy5Eg1fvx4tXjxYpWZmWn0aKbEdSvj3LlzqlatWkrTNFW+fHkVFham+vXrp8LCwlT58uWVpmmqVq1a6ty5c0aPalpbtmxRISEhStd1peu60jTN+ueQkBC1detWo0c0LbaVw7Zy2FYO25ItcPOSinT16lXVokULpeu6slgsKjAwUDVr1kwFBgYqi8WidF1XLVu2VNeuXTN6VNP45JNPlKZpKjg4WH333Xfq+PHjKjMzUx0/flzNnTtX1a5dW+m6rj777DOjRzUdtpXDtnLY1j6WLl2qfHx8rCfOt350XVeVK1dWy5YtM3pEU+G6lRMZGak0TVOvv/76bedX165dU6+99prSNE0NHTrUoAnNbfv27crNzU1pmqbat2+vJk2apL788ks1adIk1a5dO6VpmnJ3d1d//vmn0aOaDtvKYVs5bCuHbclWuHlJRRo9erTSNE0NGDBAHT9+PN9rx48fV0888YTSNE2NGTPGoAnNp06dOsrf31+lp6cX+HpaWpq67777VJ06dew8mfmxrRy2lcO28lavXq0sFosqVaqUeuqpp9Ts2bPVypUr1ezZs9XQoUNVqVKllMViUXFxcUaPahpct3IqVaqk2rVrV+gxYWFhqlKlSnaayLF07NhRubi4qFWrVhX4+sqVK5Wzs7Pq1KmTnSczP7aVw7Zy2FYO25KtcPOSiuTr66uaNGlS6DGNGzdWvr6+dprI/FxdXdXo0aMLPWbUqFHK1dXVThM5DraVw7Zy2FZey5YtlYeHh9q9e3eBr+/cuVO5u7urVq1a2Xky8+K6lVOmTBn1xhtvFHrMuHHjlJubm50mcizu7u5qwIABhR7Tv39/5eHhYaeJHAfbymFbOWwrh23JVnSjr7lJJV9qairat29f6DHt27fHpUuX7DSR+Xl7exfrOB8fH+FJHA/bymFbOWwr788//0Tfvn3xwAMPFPh6/fr10adPH+zYscPOk5kX162cBx54AMeOHSv0mGPHjt1xPVPhLBYLAgICCj0mMDAQTk5OdprIcbCtHLaVw7Zy2JZshZuXVKSaNWvi/PnzhR5z4cIF1KhRw04TmV///v2xaNEiXLt2rcDX09PTsWjRIvTv39/Ok5kf28phWzlsK69MmTKoVKlSocd4e3ujTJkydprI/Lhu5YwbNw4//vgjVq9eXeDrq1atwo8//og33njDzpM5hhYtWmDz5s2FHrNp0ya0atXKThM5DraVw7Zy2FYO25LNGP3RTyr5vv32W+Xu7q727NlT4Ou7du1Sbm5uKjo62s6TmVdmZqbq1q2bqlOnjvr+++/VyZMnVXZ2tjp58qSaP3++qlOnjnrsscdUVlaW0aOaDtvKYVs5bCuvX79+xboESv/+/e00kflx3cqZPXu2evTRR5Wu66pTp07qrbfeUl9//bV66623VMeOHZWu66pbt25q9uzZt/1Q0fbu3avKlSun3njjDZWRkZHvtYyMDPX666+r8uXLq3379hk0oXmxrRy2lcO2ctiWbEVTSimjN1CpZEtISMD06dOxatUqREREoFWrVvDx8cG5c+ewbt06zJkzB506dcKYMWNu+902bdoYMHHJd+tj8UopaJp22+t3el7TNOTk5IjPZ2ZsK4dt5bCtvNOnT6Nly5Zo06YN/vOf/+C+++6zvnby5EmMGzcO69evx4YNG1C1alUDJzUPrls5uq5D0zQUdZr+1763eufm5kqPZ3qRkZFISkrC+vXrUa5cOTRs2NB6bvvnn38iLS0NrVu3RlBQUL7f0zQN0dHRBk1tDmwrh23lsK0ctiVb4eYlFenvJ9B/P1H++3N/xRPogoWGht6xWVHi4+NtPI1jYVs5bCuHbeWFh4fj8uXL2LVrF5ycnODv7289eT5x4gRyc3NRv359lC9fPt/vaZqGuLg4g6Yu2bhu5cTExNxz24iICBtP43h0/d6unMXN4aKxrRy2lcO2ctiWbIWbl1SkqKioez6Bnjhxoo2nISIiuns8eSaiW44fP37Pv1vUjSf+7dhWDtvKYVs5bEu2ws1LIgPMmTMHPj4+6NSpk9GjOBy2lcO2ctiWzIjrVk54eDhatmyJt956y+hRiIiIiAzHu41TkSIjI/HBBx8YPYZDGTp0KFauXGn0GA6JbeWwrRy2lXfixAmkpKQYPYZD4bqVs3nzZn7iV5CTkxMGDBhg9BgOiW3lsK0ctpXDtmQr3LykIs2fPx/nz583egyHUqVKFd6sQAjbymFbOWwrLzAwEOPGjTN6DIfCdSsnODj4H33Vjgrn6emZ76ZdZDtsK4dt5bCtHLYlW+HmJRWpevXqOHv2rNFjOJRu3brht99+Q1ZWltGjOBy2lcO2cthWXvny5VGxYkWjx3AoXLdyXnjhBSxduhT79u0zehSH1LRpU+zcudPoMRwS28phWzlsK4dtyVa4eUlFioyMxM8//4zTp08bPYrD+M9//gM3Nzf07NkTe/fuNXoch8K2cthWDtvKa926NTZv3mz0GA6F61ZOUFAQQkND0axZM7zyyitYsGAB1q5di4SEhNt+6O5FRUXh999/x5w5c4wexeGwrRy2lcO2ctiWbIU37KEiHTt2DCNGjMDu3bsxduxYNGnSBD4+PgXegdzf39+ACc0nKCgIWVlZ1uuvubq6wtvb+7ammqYhKSnJiBFNi23lsK0ctpV34MABNGvWDGPGjMG4ceNgsViMHsn0uG7l6LoOTdNw6zS9oHOuW3htzLs3efJkbNiwAatXr0ajRo3ueG6raRrGjx9v0JTmxLZy2FYO28phW7IVbl5Skf56Al3YybOmabz2VTFVq1at0JZ/lZycLDyNY2FbOWwrh23lRUZG4vDhw/jjjz9QuXJlhISE3PHkOTo62qApzYXrVk5UVFSx206cOFF4Gsej68X78pmmadwcvktsK4dt5bCtHLYlW+HmJRVp8ODBxT6BnjVrlvA0REREd48nz0R0y9q1a4t9bNu2bQUncTxsK4dt5bCtHLYlW+HmJRERETm8u7lzc0BAgOAkRERERER0N7h5SWSwffv24cCBA8jIyMDAgQONHsehsK0ctpXDtmRGXLcy/vzzT3z//fc4cOAArl+/jtWrVwP432b85s2b0b59e1SoUMHgKYmIiIhk8W7jVGwpKSn4/PPPMXLkSAwdOtT6/IULF7BlyxbcuHHDwOnMZ+vWrWjQoAHq1auHxx9/HIMHD7a+lpCQgDJlymDZsmXGDWhibCuHbeWwrX1dunQJJ0+eNHoM0+O6lTN27Fg0btwY06ZNw4oVKxAfH299TSmFJ554AnPnzjVwQnPLycnBBx98gKZNm8LT0zPfTbwSExPx/PPP49ChQwZOaF5sK4dt5bCtHLYlm1BExfDZZ58pV1dXpWma0jRN6bpufW3Pnj1K13X19ddfGzihuezZs0e5u7srT09P9dJLL6lHHnkkX9O8vDx13333qSeffNLAKc2JbeWwrRy2tY+0tDQ1cuRI5e3trXRdV05OTtbXNm3apLp06aK2bdtm4ITmwnUrZ+bMmUrTNNWtWze1e/duNW7cuHxtlVKqefPmKjw83KAJze369euqVatWStd15e3trXx9ffP1TUtLU66uruqNN94wcEpzYls5bCuHbeWwLdkKP3lJRVq+fDlGjBiBevXqYdmyZXjuuefyvX7//fejfv36WLJkiTEDmtCtO4Nu374d06ZNQ5MmTfK9rmkamjdvjq1btxoxnqmxrRy2lcO28i5duoSHHnoIn3zyCe677z7UqVMH6i9Xzqlfvz42bNiAefPmGTiluXDdyvn8889Rp04dLFq0CA888ABcXFxuOyY4OBiHDx82YDrze/vtt7Fhwwa88847SElJwVNPPZXv9bJly6Jt27b49ddfDZrQvNhWDtvKYVs5bEu2ws1LKtL7778Pf39/xMfHo2vXrvD29r7tmHr16mHfvn0GTGdOa9euRa9evVCjRo07HuPv74+zZ8/acSrHwLZy2FYO28qLiorCoUOHEBsbi23btuHxxx/P93rp0qXRtm1b/P777wZNaD5ct3L27duHDh065Ptq3d/5+Pjg/PnzdpzKcfzwww8ICwvD2LFjoWkaNE277ZigoCCcOHHCgOnMjW3lsK0ctpXDtmQr3LykIiUmJuKRRx6Bm5vbHY/x9fXFuXPn7DiVuV29erXATeC/unHjBnJzc+00keNgWzlsK4dt5S1btgxdu3ZFnz597nhMtWrVcOrUKTtOZW5ct3IsFguys7MLPebMmTNwd3e300SO5cSJE2jcuHGhx3h4eODKlSt2mshxsK0ctpXDtnLYlmyFm5dUpLy8PDg7Oxd6zPnz51GqVCk7TWR+9913H3bv3l3oMTt27ED16tXtNJHjYFs5bCuHbeWdPXsWdevWLfSYUqVKISMjw04TmR/XrZx69erh999/v+PG7607jz/44IN2nswxeHh4FPmp1aSkJFSqVMlOEzkOtpXDtnLYVg7bkq1w85KKVLt2baxbt+6Or+fk5CAhIQH16tWz41Tm1rVrV6xatQqrV68u8PUFCxZg06ZN6N69u30HcwBsK4dt5bCtvIoVKxZ5d/EDBw6gSpUqdprI/Lhu5URGRuLQoUN49tlnkZWVle+19PR0DB48GCkpKRg2bJhBE5pbs2bNsHz5cqSlpRX4+smTJ/Hf//4Xbdq0se9gDoBt5bCtHLaVw7ZkM0bfMYhKvunTpytN01RUVJRSSqmoqCjrHcJycnLUiy++qHRdV998842RY5rK+fPnlZ+fn3J2dlZPPfWU6tq1q9J1XX322WfqySefVE5OTiowMFClpaUZParpsK0ctpXDtvL69u2r3Nzc1MmTJ5VS+f9bppRSe/fuVRaLRQ0bNsyoEU2H61ZW//79laZpysPDQ913331K13XVpEkT5e7urjRNU0OGDDF6RNNau3at0nVdNWrUSK1fv169+eabStd1lZGRoVavXq3q1KmjnJ2d1bZt24we1XTYVg7bymFbOWxLtsLNSypSdna2Cg0NVbquq5o1a6p69eopXdfV448/rgIDA5WmaapTp04qLy/P6FFNJSkpSbVo0UJpmnbbT7NmzVRycrLRI5oW28phWzlsK2vXrl3K1dVV+fv7q++++06NGDFC6bqu9u3bp7799lvl4+Oj3Nzc1KFDh4we1VS4bmV9/fXXqn79+krXdWvXunXrqi+//NLo0Uzv888/V87OzkrX9dt+nJ2d+Y/y/wDbymFbOWwrh23JFjSllDL6059U8mVnZ2PSpEn48ssvcfnyZevznp6eeO655zBp0iS4uLgYOKF5JSYmYtOmTbh06RI8PT3x0EMPoUmTJkaP5RDYVg7bymFbOcuWLcPAgQNx7do1AIBSCpqmQSkFDw8PfP/993j44YcNntKcuG5l3bhxA5cvX4anpydv0mND+/fvx5dffonNmzfnW7vPP/887r//fqPHMzW2lcO2cthWDtvSP8XNS7orSikcPHjQ+hdOnTp14OTkZPRYRERExXLp0iXMnj37tpPnIUOGwMvLy+jxiIiIiIjob7h5SURERERERERERCWSxegBiP6NIiMjizxG13V4enqidu3a6Nq1K3x9fe0wmfmxrRy2lcO2ZEZct3J0XYemaYUeo2matW2PHj3wwgsvoHTp0naa0NwSEhKKPObW2q1RowbKlCljh6kcA9vKYVs5bCuHbclW+MlLKlJQUFCRx/z1zUmPHj3Qp08fO0xmXn99U1LQ/wVvXYPtFovFggkTJuDNN9+024xmxbZy2FYO28qbM2dOkcf89b9ltWvXtsNU5sZ1Kyc0NBRXrlzBzp074eTkBH9/f/j4+ODcuXM4ceIEcnNzERISgtzcXCQlJSEzMxMPPPAA1q1bB09PT6PHL/GKszn812M7dOiA999/n9dlKwa2lcO2cthWDtuSrXDzkopUrVo15OTk4MyZMwD+9+bDy8sLFy9eRE5ODgCgatWqSE9Px7Vr16BpGtq1a4cVK1bwJj53kJycjFGjRmHLli148cUX0bJlS+ubkg0bNuDjjz9G06ZN8cYbb2Dnzp2YMmUKTp48ifnz56Nv375Gj1+isa0ctpXDtvLu5uQZAIKDg/HJJ58gPDxccCpz47qVc+rUKbRq1QqhoaGYMmUK/Pz8rK+dPn0ab775JtasWYP169ejbNmyePnll/H1119j7NixmDp1qoGTm0NUVBS2bNmClStXonbt2mjRooV17W7cuBEHDhxAly5dUL16dezYsQN//PEHypYti82bN6NWrVpGj1+isa0ctpXDtnLYlmzGjnc2J5O6fPmyaty4sWrXrp3auHGjysvLU0oplZeXpzZu3Kjat2+vmjRpoi5fvqwOHz6sunbtqnRdV2+//bbBk5dc77zzjvLx8VEpKSkFvn727Fnl4+Oj3n33XaWUUqdOnVKenp6qTZs29hzTlNhWDtvKYVt5MTExqlu3bkrTNNWpUyc1efJk9dVXX6nJkyerTp06KU3T1GOPPaamT5+uBgwYoCwWiypVqpTasmWL0aOXWFy3cvr27auaN29e6DEtWrRQ/fr1U0oplZubq+6//35Vq1Yte4xnegkJCapUqVJq1qxZBb4eExOjSpcurdatW6eUUmru3LlK0zQ1cOBAO05pTmwrh23lsK0ctiVb4eYlFenpp59W9erVU7m5uQW+npOTo+rVq6eeeeYZpZRSN27cUIGBgap+/fr2HNNUatSooV544YVCjxkxYoSqUaOG9fETTzyhypYtKzyZ+bGtHLaVw7byfvrpJ+Xq6qp+//33Al+Pj49XpUuXVkuXLlVKKbVmzRrl5OSkevbsac8xTYXrVk7FihXVuHHjCj3m9ddfV15eXtbHzz77rHJ1dZUezSG0bdtW9e7du9Bjevfurdq2bWt9HBYWpnx9fYUnMz+2lcO2cthWDtuSrehGf/KTSr6lS5fi4Ycfhq4XvFycnJzw8MMPY+nSpQAAV1dXhIeH48iRI/Yc01ROnTqFUqVKFXqMq6srTp06ZX3s7++PzMxM6dFMj23lsK0ctpX39ttvo0+fPggLCyvw9dDQUDz++OOYMmUKAKBt27bo3Lkz1q9fb88xTYXrVk5mZibOnj1b6DFnz57FjRs3rI89PDxgsfBenMWxffv2Iq9rW7t2bWzfvt36uEGDBrhw4YL0aKbHtnLYVg7bymFbshVuXlKR0tPTkZ6eXugxV65cwZUrV6yPvby8pMcyNV9fXyxZsuSOb+AyMzOxZMmSfHdlPX/+PMqXL2+vEU2LbeWwrRy2lbd379581w0siJ+fH/bu3Wt9XLduXaSlpQlPZl5ct3IaNWqE2NhYbNy4scDXN2/ejB9++AEPPvig9bmjR4/Cx8fHXiOamouLCxITEws95s8//4Szs7P1cW5uLtzc3IQnMz+2lcO2cthWDtuSrXDzkopUt25dfP/99zh69GiBrx89ehSxsbGoW7eu9bkTJ06gUqVK9hrRdIYOHYqkpCS0atUKy5YtQ2pqKgAgNTUVy5YtQ6tWrXD06FFERkZaf2fdunUICQkxamTTYFs5bCuHbeW5u7tj3bp1hR6zbt06uLu7Wx9nZGTAw8NDejTT4rqV89ZbbyEnJwetW7dGz549MX36dMydOxfTp09Hz5490apVK+Tm5mLy5MkAgGvXruHXX39F27ZtDZ7cHNq3b49ffvkF7777Lm7evJnvtZs3b+L999/HypUr0bFjR+vz+/btg7+/v71HNR22lcO2cthWDtuSzRj9vXUq+RYtWqQ0TVMeHh5q9OjR6scff1QJCQnqxx9/VKNHj1aenp5K13W1aNEipZRSWVlZqmLFiqp///4GT15y5eTkqIEDBypN05Su60rXdWWxWKx/1jRNDRgwwHqd0ZSUFDVq1Ci1cuVKgycv+dhWDtvKYVt5w4YNU7quq+eee06dP38+32sXLlxQzz//vNJ1XQ0bNsz6fIsWLVTTpk3tPappcN3K+vXXX1VAQIDSNM3a+NafAwIC1C+//GI9NiMjQyUmJqoLFy4YOLF5HDt2TFWpUkXpuq4qV66sunbtqiIjI1XXrl3zPX/s2DGl1P9uPlWxYkX15ptvGjx5yce2cthWDtvKYVuyFU0ppYzeQKWSb+bMmRg1ahSuXbsGTdOszyul4O7ujhkzZuCpp54CAKSlpWHt2rW4//77UaNGDaNGNoXff/8dc+fOxa5du5Ceng5PT0+EhIRgwIABaNeundHjmRrbymFbOWwrJzU1FW3atMH+/ftRqlQp1KhRA97e3jh//jyOHDmCrKwsBAcHY926dahYsSJSUlLw8MMPY/DgwRg5cqTR45doXLdy8vLysH79euzcuTNf21atWt3xWuRUPGfOnMGrr76KH3/8EVlZWdbnS5Uqhd69e+Odd94p8lITVDC2lcO2cthWDtuSLXDzkortypUrWLp06W0n0I899hjKli1r9HhERESFysjIwNSpUzFv3jwcO3bM+ny1atUwYMAAvPrqq/m+Nk5Eji87OxsHDx60ntvWrl0bLi4uRo/lENhWDtvKYVs5bEv/BDcviYiI6F/n6tWr1pNnXteSiIiIiKjk4uYlkYFSUlKwfft2pKWlITc3t8BjBg0aZOepHAPbymFbOWxLZsR1K+PChQuYNWsWtm7dese2mqYhLi7OgOmIiIiI7Iebl1Qs2dnZWLJkSZEn0NHR0QZMZz6ZmZkYNmwYYmNjkZeXV+AxSilomnbHN4JUMLaVw7Zy2Na+MjIyCt1o4x0ui4frVs6uXbsQHh6Oy5cvo7BTdba9d6tXr8aMGTOs57YFrWFN05CTk2PAdObGtnLYVg7bymFbsgWL0QNQyXf8+HF06NABSUlJRZ5Ac/OyeF577TXMmzcPtWrVQv/+/eHn5weLhf93tAW2lcO2ctjWPqKjozF9+nQcPHjwjsfw5Ln4uG7lvPTSS7h06RLefPNNDB06FH5+fnBycjJ6LIexaNEi9O3bF3l5eQgICEBwcDDXro2wrRy2lcO2ctiWbIWfvKQi9ezZE0uWLMHAgQMRGRlZ6JuTgIAAO09nTlWrVkWFChWwfft2lCpVyuhxHArbymFbOWwr74svvsDw4cNhsVjQsmXLQv9bNmvWLDtPZ05ct3Lc3d3RsWNHLF682OhRHFJISAiOHj2KpUuXIjw83OhxHArbymFbOWwrh23JVrjlTUX6/fff0a5dO8yePdvoURxGWloannjiCb7ZE8C2cthWDtvK+/DDD+Hl5YX169ejVq1aRo/jELhu5bi4uKB69epGj+GwDh48iIEDB/KNtAC2lcO2cthWDtuSrehGD0AlX15eHho2bGj0GA6ldu3aOHfunNFjOCS2lcO2cthW3vHjx9GnTx9uXNoQ162ctm3bYtu2bUaP4bAqVqyIMmXKGD2GQ2JbOWwrh23lsC3ZCjcvqUgPPfQQ9u/fb/QYDuWVV17B0qVLceTIEaNHcThsK4dt5bCtvCpVqvDGJjbGdStn2rRp2LNnD6ZNm2b0KA6pd+/eWL16Na9vK4Bt5bCtHLaVw7ZkK7zmJRVp+/btaNOmDWbPno3evXsbPY5DSEhIwCeffIK4uDiMGjUKjRo1gqenZ4HHtmnTxs7TmRvbymFbOWwrLyoqCjExMdi7dy/c3NyMHschcN3KiYyMRHJyMhISEhAYGIgGDRoU2JY3S7w3GRkZ6NixIypXrowPPvgA/v7+Ro/kMNhWDtvKYVs5bEu2ws1LKtLkyZOxZcsW/PLLL2jbtu0d35xomobx48cbMKH56LoOTdOsd2/XNO2Ox/KTQneHbeWwrRy2lZeTk4P+/fvj9OnTmDp1Kho1agR3d3ejxzI1rls5ul68L0dpmsa29yAoKAg3b97EmTNnAADlypVD2bJlbztO0zQkJSXZezxTY1s5bCuHbeWwLdkKb9hDRYqKirL+ec2aNVizZk2Bx3HzsvgmTJhQ6Js8undsK4dt5bCtvFs3lVFKISws7I7HaZrGrzYVE9etnOTkZKNHcGh5eXmwWCz5PgFU0Oc5+BmPu8e2cthWDtvKYVuyFX7ykoq0du3aYh/btm1bwUmIiIjuTWhoaLE32uLj44WnISIiIiKi4uLmJREREREREREREZVI/No4EREREZGBEhISAABNmzaFq6ur9XFx8GZIRERE5Oj4yUu6zYkTJwAAvr6+cHJysj4uDt49rGBBQUHQNA2rV69GYGAggoKCivV7vHBx0dhWDtvKYVsyI65bObdufrR//37UqlXL+rg4eMOeok2ePBmapmH48OGoUKECJk+eXKzf4/Xci8a2cthWDtvKYVuSws1Lus29nkDzJgd3Vq1aNWiaht9//x2BgYHWx8XBi/YXjm3lsK0ctpUXGRkJTdPw9ttvw8fHB5GRkcX6PU3TEB0dLTydOXHdyomKioKmaXjhhRdQoUIF6+PimDhxovB05lfQuW1x8G7uRWNbOWwrh23lsC1J4eYl3Wbw4MHQNA1Tp06Fj4+P9XFxzJo1S3g6IiKiovHkmYhuuXXzyYceegiurq68GaUNsa0ctpXDtnLYlqRw85LITj7++GM0a9YMTZs2NXoUh8O2cthWDtvKOn78OID/XQLFYrFYHxdHQECA1Fimx3Urp1GjRnj22Wfx9NNPW587f/48UlJSUL9+fQMncwzp6elwdXWFi4uL0aM4HLaVw7Zy2FYO25KE4n0Mgf51evbsiQULFuR7Ljs7G+np6QZNZH6jRo3CypUr8z331VdfoVGjRgZN5DjYVg7bymFbWQEBAbhy5QouXbpkfVzcH7ozrls5iYmJSElJyffcF198gYYNGxo0kWMpX7483n333XzPbd68GR9//LFBEzkOtpXDtnLYVg7bkgRuXlKBlixZggMHDuR77p133kH58uUNmsgxpaSkYOfOnUaP4ZDYVg7bymFb22rYsCG+/PLLfM/9+uuvGDNmjEETOSauWzIDpRT+/oWzlStXYvTo0QZN5DjYVg7bymFbOWxLErh5SURERA6poCvjbNq0CR999JEB0xARERER0b3g5iURERERERERERGVSNy8JCIiIiIiIiIiohLJYvQARP8mGRkZOH/+vPXxtWvXAAAXLlwo8OuNAODt7W2X2cyObeWwrRy2JTPiupWzfv16vPfee/keA8D7779/x7Zjx461y2xERERERtHUnc6E6F9N13X07t0bvXv3tj63cOFCLF68GLGxsXc8ge7Tp4+9RjQdXdehadptzyulCnweADRNQ05OjvRopse2cthWDtvK03UdUVFRmDBhgvW5SZMmYfLkycjNzTVwMvPiupWj63f/hShN07iWi0nXddSoUQM1atSwPnfkyBEkJSWhU6dOBf6Opmn4+eef7TWiabGtHLaVw7Zy2JYkcPOSClTQm5NbS6WwNy08gb6z0NDQO76xK0x8fLzANI6FbeWwrRy2lafrOry8vODl5WV97uLFi0hNTUXt2rUL/B1N07B37157jWg6XLdyZs+efU+/FxERYeNJHBM3h+WwrRy2lcO2ctiWJHDzkgo0adKke/q9iRMn2ngSIiKie3MvJ88AkJeXZ+NJiMhox48fv6ffCwgIsPEkjodt5bCtHLaVw7YkgZuXREREREQlSGRkJOrVq4fRo0cbPQoRERGR4Xi3cSIiIiKiEmT+/Pn5bopERERE9G/Gu41Tka5evYoLFy7gvvvug7Ozs/X5H374AcuWLYOrqyuGDx+ORo0aGTil+Vy4cAGzZs3C1q1bkZaWVuA1PjRNQ1xcnAHTmRvbymFbOWwrKzIyEt27d0e3bt3ueMyKFSuwePFizJw5046TmRvXrYzq1avj7NmzRo/h8FJSUrB9+/Y7rl0AGDRokJ2ncgxsK4dt5bCtHLalf4pfG6ciPffcc/juu+9w7tw5lClTBgDwxRdfYMSIEdab+JQuXRrbt29HcHCwkaOaxq5duxAeHo7Lly/f8c7tAC9cfC/YVg7bymFbeQXdefzv/vOf/2DChAlsXExct3KmT5+OqVOnIjExEb6+vkaP43AyMzMxbNgwxMbG3vEat7wZ5b1hWzlsK4dt5bAt2Qo/eUlFWrt2Ldq3b2/duASAqVOnwtfXF/Pnz0dKSgoGDRqE999/H9HR0QZOah4vvfQSLl26hDfffBNDhw6Fn58fnJycjB7LIbCtHLaVw7YlQ2ZmJiwWnhoVF9etnF69eiE+Ph4tWrTA2LFj0aRJE/j4+BR4p3d/f38DJjS31157DfPmzUOtWrXQv39/+Pn58f/7NsK2cthWDtvKYVuyFX7ykopUvnx5DBkyBDNmzAAA7N+/H/fffz/ee+89vPzyywCAfv36Yfv27Th8+LCRo5qGu7s7OnbsiMWLFxs9isNhWzlsK4dt5em6jkmTJmH8+PG3vaaUwsmTJ9GzZ0+kpqYiOTnZgAnNh+tWjq7r0DTN+mmUO9E0DTk5OXaczDFUrVoVFSpUwPbt21GqVCmjx3EobCuHbeWwrRy2JVvhljcVKSsrCy4uLtbHa9euhaZp6Nixo/W5oKAgLFu2zIjxTMnFxQXVq1c3egyHxLZy2FYO28q4tQF0S1RUFKKiou54vFIKr776qh0mcwxct3IGDRpU6KYl/TNpaWl44okn+EZaANvKYVs5bCuHbclWuHlJRfLz88OuXbusj1esWIEKFSqgfv361udSU1Ph7u5uxHim1LZtW2zbts3oMRwS28phWzlsK6NNmzbWDaCEhAT4+/ujWrVqtx3n5OSEChUqIDw8HMOGDbPzlObFdSsnJibG6BEcWu3atXHu3Dmjx3BIbCuHbeWwrRy2JZtRREUYOXKkcnJyUi+99JJ64403lJOTkxoyZEi+Y0JDQ9WDDz5o0ITmc+TIEeXl5aXef/99o0dxOGwrh23lsK08TdPUpEmTjB7DoXDdklnNmzdPeXh4qMOHDxs9isNhWzlsK4dt5bAt2QqveUlFSklJQYsWLXDs2DEAQJUqVbB582b4+fkBAM6fPw8/Pz+MGDHCel1MKlxkZCSSk5ORkJCAwMBANGjQAJ6enrcdp2kab4J0l9hWDtvKYVsyI65bMquEhAR88skniIuLw6hRo9CoUaMC1y7wv09wU/GxrRy2lcO2ctiWbIWbl1QsN27cQFxcHID//aXy179w9u3bh99++w2dOnVCcHCwUSOaiq7rxTpO0zTk5uYKT+NY2FYO28phWzIjrlvbCQ8Ph6ZpmD17Nvz8/BAeHl6s39M0zXp+RsX31xsiASj0+qJcu3eHbeWwrRy2lcO2ZCu85iUVS+nSpdG1a9cCX6tbty7q1q1r54nMjXeylcO2cthWDtvaXmRkJDRNw9tvvw0fHx9ERkYW6/f4KcHi47q1nTVr1kDTNFy/ft36uDh4U597M2HCBLYTwrZy2FYO28phW7IVfvKSitSlSxc8/fTT6NatG5ycnIweh4iIqEi3/qV///79qFWrFj8lSERERERkUty8pCLdegPo7e2NwYMHY+jQoahRo4bRYxEREd3R8ePHAQC+vr6wWCzWx8UREBAgNRYREREREd2l4n0Mgf7Vjhw5grFjx0LXdbz77ruoXbs22rVrh9jYWGRnZxs9nqnNmzcPHTp0QKVKlVCqVClUqlQJHTt2xPz5840ezfTYVg7bymFb2wkICEBAQAAsFku+x0X9uLq6Gjy5+XDdEhEREZEkfvKSii03NxcrVqzAt99+i5UrVyIvLw/ly5fHoEGD8NRTT/G6l3chNzcXffr0wZIlS6CUgqurK3x8fHDu3DlkZmZC0zR0794dCxcuLPZXHel/2FYO28phWxlffPEFnnvuuWIff+7cOYSFhWHfvn2CUzkOrlt5mZmZ2Lp1K86cOYOsrKwCjxk0aJCdp3IMJ0+exJQpU7B69WqcOXOmwH+Q1zQNOTk5Bkxnbmwrh23lsK0ctiWbUET34MyZM2rKlCmqevXqStd1peu6atmypYqJiVE3btwwerwSb8aMGUrTNNW6dWv1xx9/5Htt48aNqk2bNkrXdfXhhx8aNKF5sa0ctpXDtjKcnJxUbGxssY69cOGCqlu3rtJ1XXgqx8F1K+vTTz9V5cuXt55n/f1H0zSu13uUlJSkvLy8lJOTk6pfv77SNE1Vq1ZNBQcHKxcXF6VpmmrQoIEKDQ01elTTYVs5bCuHbeWwLdkKNy/pnt28eVMtWLBA+fr6Kk3TrCfRFStWVO+9957Kzc01esQSKyQkRNWuXVtlZ2cX+Hp2drYKDg5WISEh9h3MAbCtHLaVw7YyfH19ValSpdSvv/5a6HEXLlxQ9erVU5qmqREjRthpOvPjupWzaNEipWmaql+/vnWTuEePHmrq1Knq4YcfVpqmqd69e6uYmBijRzWlQYMGKWdnZ7VmzRqllFKapqlJkyYppf73D/SPPfaYqlmzprp48aKRY5oS28phWzlsK4dtyVb4HR66a4cOHcLYsWPh5+eHfv364dKlSxg4cCBWr16Nd999F+7u7njttdfw6quvGj1qiXXo0CF069YNzs7OBb7u7OyMRx99FIcOHbLzZObHtnLYVg7byli1ahXc3d3Rq1cvbNq0qcBjUlNT0b59e+zZswfPPvssPvnkEztPaV5ct3I+/PBDeHt7Y+PGjRg9ejQAoEGDBnj11Vfx888/47vvvsOSJUt4c6l7tHr1ajz88MNo27at9Tn1/6+kVaVKFfzwww8AgHHjxhkyn5mxrRy2lcO2ctiWbIWbl1QsmZmZmDt3Ltq2bYs6depg2rRpqFChAqZPn47Tp09j9uzZCA8Px8svv4yDBw+iZcuWmDNnjtFjl1guLi7IyMgo9JiMjAy4uLjYaSLHwbZy2FYO28qoW7cu/vvf/wIAunbtir179+Z7/fLly+jQoQN27dqFYcOG4fPPPzdiTNPiupWza9cudOvWDWXKlLE+l5uba/3zE088gfDwcEyePNmI8Uzv4sWLCA4Otj62WCy4fv269XGpUqXQoUMHrFixwojxTI1t5bCtHLaVw7ZkK9y8pCKNGDECVatWxeDBg7F582b07dsX8fHx2LdvH0aNGoXy5cvnO75UqVLo1KkTLl68aNDEJV/Dhg2xYMECnDlzpsDXz549iwULFqBRo0Z2nsz82FYO28phWzlNmzbFkiVLkJGRgU6dOuHYsWMAgLS0NHTo0AGJiYmIjIzEV199ZeygJsR1K+fmzZuoVKmS9XHp0qWRlpaW75iQkBDs2LHDzpM5Bi8vr3wb715eXta/G26xWCy3Naeisa0ctpXDtnLYlmyFm5dUpM8//xwVK1bE1KlTcerUKcyfPz/fx74LEhoaigkTJthpQvMZM2YMUlNT0bhxY0yfPh3btm3DyZMnsW3bNkybNg0PPvggLl26hDFjxhg9qumwrRy2lcO2stq1a4d58+bh3Llz6NChAw4cOIAOHTpgx44diIiIwLfffmv0iKbEdSunatWqOHv2rPVxQEAA/vzzz3zHHD9+HBaLxd6jOYSaNWsiKSnJ+rhp06b49ddfcfToUQDAhQsX8OOPP6J69epGjWhabCuHbeWwrRy2JZsx9IqbZAqrV682egSHNH36dOXs7Fzg3UOdnZ3VjBkzjB7RtNhWDtvKYVt53377rdI0TVksFqVpmnryySdVXl6e0WOZGtetjP79++e70dHo0aOVruvq7bffVnv27FFffvmlslgsqnPnzsYNaWJTp05Vrq6u6vLly0oppeLj45Wu68rNzU01btxYlStXTum6rr7++mtjBzUhtpXDtnLYVg7bkq1oSv3/q6USkd0dPXoU8+bNQ2JiItLT0+Hp6YmGDRviiSeeQFBQkNHjmRrbymFbOWxrW+fPn7/tuWnTpmHatGno2LEjZs2aBScnp9uO8fb2tsd4DoPr1vZ++uknjBs3Dr/88guqVauGCxcuoHHjxjh16hSA/93soGzZskhISEC9evUMntZ80tPTsX//ftStWxceHh4AgIULFyIqKgpHjx5FQEAAXnjhBQwfPtzgSc2HbeWwrRy2lcO2ZCvcvKRiycnJwSeffILvv/8eBw4cwPXr15GTkwMASExMxNdff41Ro0ahVq1aBk9KRET0P7quQ9O0255XShX4PABommb97xtRSXL58mV8++231jd7AwcOhK+vr9FjEREREYnj5iUV6caNG+jYsSP++OMPeHl5wdnZGWfPnrXe9fLKlSuoXLkyXnrpJUyZMsXgaYmIiP4nNDT0jpuUhYmPjxeYhqh4EhISsHXrVmiahqZNm6JVq1ZGj0RERERkKG5eUpHGjx+P//znP5g6dSpeeeUVTJo0CW+99ZZ18xIAOnfujNTUVGzdutXASUuuhISEe/7dNm3a2HASx8O2cthWDtuSGXHdysrJyUGvXr2wYsWKfM93794dCxcuhK7zPpu2cuLEiSKP0XUdnp6e8PT0tMNEjoNt5bCtHLaVw7ZkK9y8pCLVqlUL9913H+Li4gAAkyZNwuTJk/NtXj7//PNYtGgRzp07Z9SYJdqdvrpYHH/tTLdjWzlsK4dtyYy4bmV9+OGHGDNmDLy9vdGzZ08A/7v25fnz5/HRRx9hxIgRBk/oOO5mLXt7e6NHjx6YOHEifHx8hCczP7aVw7Zy2FYO25KtWIwegEq+EydOoEePHoUe4+HhgStXrthpIvOZMGHCPb/ho8KxrRy2lcO2xjl27BguXrwIAKhUqRICAgIMnsg8uG5lzZ8/H+XKlUNiYiIqV64M4H/N69ati++++46blzY0aNAgHDt2DAkJCShfvjwaNGgAHx8fnDt3Djt37sSlS5fQtm1beHh4YPfu3fjyyy+xfPlybNmyBVWqVDF6/BKNbeWwrRy2lcO2ZDPG3OSczMTLy0sNHjzY+jgqKkrpup7vmF69eik/Pz97j0ZERFSks2fPquHDh6tKlSopXdfz/fj4+KgXX3xRpaSkGD0m/ct5enqqoUOH3vZ8ZGSk8vT0NGAix7Vnzx5Vrlw5NXHiRJWRkZHvtevXr6uoqChVvnx5tXfvXpWbm6umTJmiNE1Tzz//vEETmwfbymFbOWwrh23JVvi1cSrSo48+io0bN+LIkSMoV67cbV8bP3nyJGrXro0ePXpg3rx5Bk9LRET0f3bv3o1OnTrh3LlzUErhvvvuQ9WqVQEAZ86cwcmTJwEAvr6+WLVqFerUqWPkuPQvpus6Jk6ciIkTJ+Z7Pioq6rZrjdM/88gjjyA3NxcrV6684zFdunSBxWLB8uXLAQAPPfQQzp8/j+TkZHuNaUpsK4dt5bCtHLYlW+GVv6lIr7zyCi5fvox27dphw4YNyMnJAQBcv34dcXFx6NSpE3JycjBmzBiDJyUiIvo/N2/eRL9+/ZCSkoKIiAgkJSXh+PHj2LhxIzZu3Ijjx48jKSkJEREROH36NPr168cNIjJUQV/L51f1bW/Dhg1o3Lhxocc0atQI69atsz5+6KGHcPbsWenRTI9t5bCtHLaVw7ZkK7zmJRWpTZs2+PTTT/Hiiy/mu1uoh4cHAMDJyQmff/45HnzwQaNGNKWrV6/i008/xerVq3HmzBlkZWXddoymaUhKSjJgOnNjWzlsK4dtbW/ZsmXYv38/xowZg2nTphV4TGBgIGbNmoUKFSrgww8/xLJly4q8zjP9H65b2zp16hS2bNly23MAsHXrVhT0hammTZvaZTZHkpeXhyNHjhR6zJEjR/L1dnZ2hqurq/Ropse2cthWDtvKYVuyGcO+sE6ms2/fPjVy5Ej10EMPqZo1a6oHH3xQPf/882rPnj1KKcXrhd2F8+fPqxo1aihN01TZsmWVpmmqXLlyqkyZMkrTNKVpmvL19VXVqlUzelTTYVs5bCuHbWUMGDBAlS1bVl27dq3IY69du6Y8PT3VwIED7TCZY+C6tS1N0267Juutn8Jeo7vXpUsXZbFYVGxsbIGvL1iwQFksFtWlSxfrc127dlV16tSx14imxbZy2FYO28phW7IVXvOSCvTFF1/gueeeK/bx586dQ1hYGPbt2yc4leMYPnw4vvjiC8yZMwcDBgyAk5MToqKiMGHCBGzduhUvvPACLBYLVq1ahTJlyhg9rqmwrRy2lcO2Mu6//35Ur14dy5YtK9bx3bp1Q3JyMnbv3i08mWPgurWtIUOG3NPvzZo1y8aTOL7du3ejZcuWyMjIQEhICFq2bAlvb2+cP38ef/zxBxITE+Hm5ob169ejfv36SE1Nha+vL5566il8+umnRo9forGtHLaVw7Zy2JZsxujdUyqZnJyc7vivI3934cIFVbduXf7r/12oVq2aat++vfWxpmlq0qRJ1seXLl1Svr6+auzYsUaMZ2psK4dt5bCtjPLly6sxY8YU+/gxY8aoChUqCE7kWLhuycwSExNVq1atrJ8S/utPq1at1J9//mk9NicnR6Wlpans7GzjBjYRtpXDtnLYVg7bki3wmpdUoMqVKyMiIgLly5dHx44d73jcxYsXER4ejv3792P48OF2nNDczp49i8cff9z62MnJCTdu3LA+Ll++PLp06YIFCxbg3XffNWJE02JbOWwrh21lXL16FZ6ensU+3sPDA1evXhWcyLFw3ZKZhYSEYN26dThx4gR27tyJ9PR0eHp6IiQkBP7+/vmOdXJyQtmyZQ2a1HzYVg7bymFbOWxLtsDNSyrQqlWr0KZNG/Tq1Qu//fYbmjVrdtsxqampaN++Pfbs2YNnn30Wn3zyiQGTmlPZsmVx8+ZN6+Py5ctbL8h/i6enJ86dO2fv0UyPbeWwrRy2lZGbm3tXd2rWNI13G78LXLdkVuHh4WjZsiXeeust+Pv73/bmme4d28phWzlsK4dtyVa4eUkFqlu3Lv773/+iXbt26Nq1K9auXYv777/f+vrly5fRoUMH7Nq1C8OGDcPnn39u4LTmExQUhGPHjlkfN2zYEL/99htSU1NRsWJF3LhxA8uXL+df7veAbeWwrRy2lVPQ3ZsLO5aKj+tWVnJyMj766CPs3LkTZ86cybdRfAvv5H5vNm/eXOA/zNM/x7Zy2FYO28phW7IV3egBqORq2rQplixZgoyMDHTq1Mn6BiUtLQ0dOnRAYmIiIiMj8dVXXxk7qAl17NgRcXFxuH79OgDgmWeewfnz5xESEoLHH38cDzzwAJKSkjB48GBjBzUhtpXDtnLYVk50dDSaN29erJ/o6GijxzUVrls5K1euRJ06dfDxxx/jjz/+wPXr16GUuu0nLy/P6FFNKTg4GMePHzd6DIfEtnLYVg7bymFbshXebZyKtHjxYvTt2xfVqlXD8uXLMXDgQGzfvh0RERG8w+U9Onv2LBISEtCuXTt4eXkBAKZPn44pU6bgypUrKF26NJ5//nlMnToVTk5OBk9rLmwrh23lsK0M3r1ZFtetnJCQEBw5cgQxMTHo1asXdJ2fN7ClmJgYjBgxAlu2bEHdunWNHsehsK0ctpXDtnLYlmyFm5dULNHR0Rg2bBicnJyQm5uLAQMGYM6cOXd1LTEqWm5uLi5evAhvb2+2tTG2lcO2ctiWzIjr9p8rXbo0nnzySXzzzTdGj+KQEhIS8N577yEhIQHPPPMMmjRpAh8fnwLXa5s2bQyY0LzYVg7bymFbOWxLtsLNSyrQ+fPnb3tu2rRpmDZtGjp27IhZs2YV+CkKb29ve4xneteuXYO7u7vRYzgktpXDtnLYtmRITk7GpEmTEBMTY/QopsB1KycwMBBdu3blzRCF6LoOTdNw621QYZvsvInX3WFbOWwrh23lsC3ZCm/YQwWqXLnyHf9i+e233+Dn53fb85qmIScnR3o0h+Dj44Pu3btj4MCB6NixI78OZkNsK4dt5bCtsU6cOIG33noLc+bMQU5ODjcvi4nrVs4TTzyBH374AZmZmXB1dTV6HIczYcIEfipYCNvKYVs5bCuHbclW+MlLKlBoaOg9/SUTHx8vMI3jqV+/Pvbs2QNN01CpUiX0798fTz75JB588EGjRzM9tpXDtnLYVs769esxfvx4bN++HRaLBa1bt8Z7772H2rVr4/r163jzzTfx+eefIzs7G1WrVsXrr7+O4cOHGz22KXDdyrl58yZ69OiBq1ev4u2330ZISAg/5UpERET/Wty8JDLIrl27MGfOHHz//fc4e/YsNE1D7dq1MXDgQAwYMAD+/v5Gj2habCuHbeWwre1t374dLVu2RHZ2dr7nq1SpgnXr1qFbt27Yt28fqlatildffRVPP/00SpUqZdC05sR1K2fVqlXo168frly5csdj+K0XIiIi+jfg5iWRwZRSWL16NebOnYslS5bg2rVr0HUdrVq1wsCBAzF06FCjRzQttpXDtnLY1nb69u2LhQsX4p133rF2++abb/DGG2+gSpUqOHfuHMaNG4dx48bxq7n/ENetbf3www8YMGAA8vLyEBQUhCpVqsBiKfhqT/zWy73LyMjAkiVLkJiYiPT0dHh6eqJBgwbo3r073NzcjB7P1NhWDtvKYVs5bEv/FDcv6Z7k5ORg9+7dAIAHHngAzs7OBk/kGG7cuIGffvoJc+fOxerVq6GU4icqbIRt5bCtHLb9Z/z8/BAcHIzVq1fne75du3ZYs2YN3n//fYwZM8ag6RwX1+0/d//99yMlJQUrV65EkyZNjB7HIS1atAhPP/000tLS8Ne3Q5qmoVy5cvjmm2/Qs2dPAyc0L7aVw7Zy2FYO25It8MrqVKDk5GTMnDkThw4duu21FStWwNfXF40bN0bjxo1RpUoVLFiwwIApHU9OTg6ysrKQlZWFvLw88N8WbIdt5bCtHLb9Z86fP1/g9RdvPRcREWHvkf4VuG7/ueTkZPTr148bl0L++OMP9OvXDxkZGXjqqacwf/58xMfH4/vvv8ewYcNw/fp19OvXDxs3bjR6VNNhWzlsK4dt5bAt2YwiKsDrr7+udF1Xx44dy/f84cOHVenSpZWmaapatWrq/vvvV7quK4vFonbs2GHQtOaWk5Ojli1bpvr06aPKlClj7dm5c2c1b948o8czNbaVw7Zy2NZ2NE1TkyZNuu35qKgopeu6ARM5Lq5b26pVq5Z65plnjB7DYT3yyCPKzc1NJSYmFvj6zp07lZubm+rataudJzM/tpXDtnLYVg7bkq1w85IK1Lp1a9WoUaPbnh8xYoTSNE2NGDHC+txPP/2kNE1TkZGR9hzR9DZu3KiGDx+uKlWqpHRdV5qmqYYNG6oZM2aolJQUo8czNbaVw7Zy2Nb2uHkpj+tWxvvvv6+qVq2qUlNTjR7FIVWoUKHI89YhQ4aoChUq2Gkix8G2cthWDtvKYVuylYKv/E3/esnJyejatettz69cuRIuLi54++23rc91794drVu3xrp16+w5oqnVrFkTR48ehVIKvr6+eOWVVzBw4EDcf//9+Y7LysrinW/vEtvKYVs5bCvnu+++w6ZNm/I9d+TIEQDAww8/fNvxmqbh559/tstsZsd1K6d3797YsGEDWrZsiTfffBMhISHw9PQs8Fje0f3uXb9+HT4+PoUe4+Pjg+vXr9tpIsfBtnLYVg7bymFbshXesIcK5OrqildeeQVvvfWW9blLly7By8sLrVu3xtq1a/MdP2rUKHzzzTfIyMiw96im5OHhgd69e2PgwIEICwuDpmn5Xt+xYweio6MRGxuL1NRUg6Y0J7aVw7Zy2FaGrt/9pb01TUNubq7ANI6H61aOruvQNA1Kqdu6/pWmabwZ0j2oU6cO3N3dsXXr1jse07RpU1y9ehX79++342Tmx7Zy2FYO28phW7IVfvKSCuTs7HzbG43t27cDABo3bnzb8W5ubnaZy1GcP38epUuXzvdcWloavvvuO0RHR2PXrl1QSt12DBWNbeWwrRy2lZGcnGz0CA6N61bOoEGDCt20pH+mT58+eOuttxAREYF33nkHVatWtb529uxZvP7669i+fTvGjx9v4JTmxLZy2FYO28phW7IVfvKSCvTggw/i2rVrOHjwoPW5V155BTNmzMCCBQvQq1evfMcPGTIE69ats34Vj4pv9erViI6OxtKlS5GVlQWlFJo3b44hQ4agb9++8PDwMHpE02JbOWwrh23JjLhuyUyuX7+OsLAwbN26FS4uLqhRowZ8fHxw7tw5HDlyBNnZ2WjatCni4+O5+X6X2FYO28phWzlsSzZj30tskln85z//UZqmqWeeeUbt3LlTLVy4UHl6eipPT0917dq1246vWbOm6tSpkwGTmtOJEyfUpEmTVLVq1aw3OPDz81OapqkhQ4YYPZ6psa0ctpXDtmRGXLdkZpmZmWrSpEmqevXqStM060/16tXV5MmTVWZmptEjmhbbymFbOWwrh23JFvjJSyrQ9evX0bx5c+zevdv6tSWlFGbMmIFRo0blO3bbtm1o2rQp3n//fbz00ksGTGsON2/exJIlSxAdHY24uDjk5ubCzc0NPXr0wKBBgxAeHg6LxYKnnnoKX3/9tdHjmgrbymFbOWxLZsR1a38bNmxAYmIi0tPT4enpiQYNGqBly5ZGj+VQrl69au3LTwnbFtvKYVs5bCuHbele8ZqXVKAyZcpgw4YN+OCDD7Bp0yZUrFgRjz/+OB599NHbjt2xYwcee+wxdOvWzYBJzaNq1aq4dOkSNE1DWFgYBg0ahJ49e/J6oTbAtnLYVg7bkhlx3drPH3/8gSFDhlgvyaP+cvOemjVrYtasWWjevLmRIzoMDw8PvokWwrZy2FYO28phW7pX3LykO3J3dy/WhXOffvppPP3003aYyNxSU1Oh6zpGjx6NsWPHolKlSkaP5DDYVg7bymFbMiOuW/vYu3cvOnbsiOvXr6NDhw4ICwtDlSpVkJKSgvj4eKxatQqdOnXCpk2bULduXaPHNYWgoKC7/h1N05CUlCQwjWNhWzlsK4dt5bAtSeDXxonsJDIyEgsXLsT169dhsVjQqVMnDBw4EI899hhcXFwAALqu86t294Bt5bCtHLYlM+K6tY++ffvip59+wrJly9C5c+fbXl+5ciW6deuGnj17IjY21oAJzUfXdTg5OcFiubvPbty4cUNoIsfBtnLYVg7bymFbkqAbPQCVTBkZGahZsyZatmyJmzdv3vG47OxstGrVCsHBwfzLpggzZ87E2bNn8dVXX6FRo0ZYsWIF+vXrBx8fHzzzzDNYv3690SOaFtvKYVs5bEtmxHVrH2vWrEHv3r0L3LgEgM6dO6N3796Ij4+382TmFxoaijlz5iA9PR03btwo8oeKj23lsK0ctpXDtmRTRt4tiEquTz75ROm6rtauXVvksQkJCUrTNPXZZ5/ZYTLHsW/fPjVmzBjl7e2tNE1Tuq4rXddVmzZt1LFjx4wez9TYVg7bymFbMiOuWxmlSpVS48aNK/SYcePGqVKlStlpIvPbv3+/eumll1TlypWVruvKy8tLjRo1Su3atcvo0UyPbeWwrRy2lcO2JIGbl1Sg9u3bq/vvv7/Yx9evX1+Fh4cLTuS4bt68qRYuXKg6d+6snJyclKZpysnJSYWHh6s5c+YYPZ6psa0ctpXDtmRGXLe2FRgYWOR5Vbt27VRgYKCdJnIcOTk56qefflKPPvqocnZ2VrquqwcffFB9/vnnKi0tzejxTI1t5bCtHLaVw7ZkS9y8pAJVqlRJPffcc8U+/rnnnlOVKlUSnOjf4eTJk2ry5MkqKCjI+gkWsg22lcO2ctiWzIjr9p978cUXla7r6s0331Q3btzI99qNGzfUhAkTlK7ratSoUQZN6BhSUlLU1KlTVXBwsNI0TZUpU0YNGDBAHT9+3OjRTI9t5bCtHLaVw7b0T/GGPVQgFxcXvPrqq3jrrbeKdfybb76J999/H1lZWcKT/XvExcVh5syZmDdvntGjOBy2lcO2ctiWzIjr9t6kpqbioYceQnJyMipWrIimTZvCx8cH586dw9atW3HhwgUEBQVhy5YtqFChgtHjOoS4uDgMHjwYZ86cwU8//YRu3boZPZLDYFs5bCuHbeWwLd2Lu7v9E/1reHp6IjU1tdjHX7p0CR4eHoIT/fu0a9cO7dq1M3oMh8S2cthWDtuSGXHd3puKFSti06ZNGDt2LGJjY/Hf//7X+pqrqyuGDBmCd999lxuXNrB161bMnDkTsbGxuHLlCnx9feHn52f0WA6BbeWwrRy2lcO29E/wk5dUoBYtWiA9PR179uwp1vEPPPAAypYtiw0bNghPRkRERPTvcfPmTRw4cADp6enw9PREcHAwnJ2djR7L1C5evIi5c+di1qxZ2Lt3LywWCx599FEMHToUnTp1gq7rRo9oWmwrh23lsK0ctiVb4ScvqUAPP/wwJk6ciNjYWPTr16/QYxcsWIB9+/ZhypQpdpqOiIiIyHGdOHEC5cqVg6enJ5ydnVGvXr3bjrl69SouX74Mf39/AyY0n7y8PPz3v//FzJkz8fPPP+PmzZt44IEHMH36dDz55JPw8vIyekTTYls5bCuHbeWwLUngJy+pQGlpaahevTqysrLw6aefYvDgwQUeN3v2bIwYMQKurq44fPgwypUrZ9c5iYiIiByNk5MToqKiMH78+Dse85///AcTJkxAbm6uHSczr6pVq+LcuXMoW7Ys+vXrh8jISDRu3NjosRwC28phWzlsK4dtSQI3L+mO4uLi0K1bN2RmZuK+++5D27ZtrdekOH36NNasWYOTJ0/C1dUVK1asQFhYmMETExEREZmfruuIiorChAkT7njMlClTMHHiRG5eFpOu63B2dkaLFi1QunTpYv2Opmn4+eefhSczP7aVw7Zy2FYO25IEbl5SoXbu3ImRI0di3bp1Bb7epk0bfPTRRwgJCbHzZERERESOqTibl88++yxiY2ORlpZmv8FM7F6uq6ZpGjeHi4Ft5bCtHLaVw7Ykgde8pEKFhIRg7dq1SEpKwoYNG5CSkgIAqFy5Mlq2bInq1asbPCERERGR+U2ePDnf4zVr1hR4XG5uLk6ePInY2Fg0a9bMDpM5huTkZKNHcFhsK4dt5bCtHLYlCfzkJRERERGRwf76SRVN01DUKXrVqlXx008/oUmTJtKjERERERmKn7ykO0pISMCVK1fQuXNnODs7F3hMdnY2fv31V5QrVw6tW7e284REREREjiE+Ph4AoJRCeHg4Bg8ejIiIiNuOc3JyQoUKFRAcHIybN2/ae0wiIiIiu+MnL6lA+/fvR/369REREYFvv/220GOffvppxMTEYPfu3ahdu7adJiQiIiJyTJMmTUJYWBjatGlT4Os7duxAdHQ0YmNjkZqaaufpiIiIiOyLm5dUoDFjxuCLL77AsWPH4OPjU+ix586dQ2BgIJ599lnMmDHDThMSERER/XukpaXhu+++Q3R0NHbt2gWlFEqXLo2MjAyjRyMiIiISxa+NU4F+//13hIaGFrlxCQA+Pj4IDQ1FXFycHSYjIiIi+vdYvXo1oqOjsXTpUmRlZUEphebNm2PIkCHo27ev0eMRERERiePmJRXo6NGjaN++fbGPr1u3LtatWyc4EREREdG/w8mTJzFr1izMmjULJ06cgFIKvr6+OH36NAYPHoyZM2caPSIRERGR3XDzkgqUnZ0NFxeXYh/v4uKCnJwcwYmIiIiIHNfNmzexZMkSREdHIy4uDrm5uXBzc8OAAQMwaNAghIeHw2KxwGLh6TsRERH9u/DshwpUqVIlHD16tNjHJycnw8vLS3AiIiIiIsdVtWpVXLp0CZqmISwsDIMGDULPnj3h5uZm9GhEREREhuLmJRWoSZMm+O2333Dt2jW4u7sXeuy1a9ewatUqhIaG2mc4IiIiIgeTmpoKXdcxevRojB07FpUqVTJ6JCIiIqISQTd6ACqZnnzySVy+fBkjRowo8tgXXngBaWlpePLJJ+0wGREREZHjGTx4MEqXLo0ZM2bAz88P3bp1w8KFC5GdnW30aERERESG4uYlFahnz54ICwvD3LlzER4ejt9//z3fyfPNmzcRFxeHdu3aYc6cOQgPD0ePHj0MnJiIiIjIvGbOnImzZ8/iq6++QqNGjbBixQr069cPPj4+eOaZZ7B+/XqjRyQiIiIyhKaUUkYPQSXT5cuX0b17d6xbtw6apsFisViva5mamoqbN29CKYXWrVtj6dKlKFeunLEDExERETmI/fv349tvv8V3332HCxcuQNM0AECrVq0wZ84cBAQEGDwhERERkX1w85IKlZubizlz5iA6Ohpbt27FzZs3AQDOzs5o2rQphg4dioEDB8LJycngSYmIiIgcT05OjvUu5L/99hvy8vKg6zratm2LwYMHY+DAgUaPSERERCSKm5dUbLm5uUhNTQUAVKxYkRuWRERERHZ06tQpzJo1CzExMUhOToamacjNzTV6LCIiIiJR3Lykf+zmzZvWTwSsXLnS6HGIiIiIHF5cXBxmzpyJefPmGT0KERERkShuXtI927NnD6Kjo/Hdd9/h0qVLAMB//SciIiIiIiIiIpuxGD0AmcvVq1cxf/58zJw5E9u2bQMAuLq6on///hgyZIjB0xERERERERERkSPh5iUVS0JCAqKjo7Fo0SLcuHEDtz6w27lzZ8TGxsLT09PgCYmIiIiIiIiIyNFw85LuKCUlBTExMZg5cyaSkpKglIK/vz+efPJJDBw4EHXq1IGfnx83LomIiIiIiIiISAQ3L6lAjz76KH799Vfk5OTAw8MDgwcPxsCBAxEaGmr0aERERERERERE9C/BzUsq0M8//wxd1/HKK69g8uTJKFWqlNEjERERERERERHRv4xu9ABUMgUFBSEvLw/Tpk3DQw89hBkzZiAlJcXosYiIiIiIiIiI6F+Em5dUoCNHjuD3339H//79cejQIbz88su477770KVLF3z//ffIzMw0ekQiIiIiIiIiInJwmrp122iiO7hy5QrmzZuH6Oho/Pnnn9A0De7u7rh27Roef/xxxMbGGj0iERERERERERE5IG5e0l3ZuXMnvvnmG8yfPx9paWnQNA3VqlXD4MGDMWjQIAQEBBg9IhEREREREREROQhuXtI9ycrKwqJFixAdHY01a9ZAKQUnJyfcvHnT6NGIiIiIiIiIiMhBcPOS/rFjx44hOjoas2fPxokTJ4weh4iIiIiIiIiIHAQ3L8lmlFLQNM3oMYiIiIiIiIiIyEFYjB6ASqagoKC7/h1N05CUlCQwDRERERERERER/Rvxk5dUIF3X4eTkBIvl7va3b9y4ITQRERERERERERH92/CTl1So0NBQREZGonv37nB2djZ6HCIiIiIiIiIi+hfRjR6ASqZ9+/bhxRdfRGJiIvr164eqVati9OjR2L17t9GjERERERERERHRvwS/Nk6Fys3NxfLlyzFz5kysXLkSubm5aNiwIYYOHYonnngCZcuWNXpEIiIiIiIiIiJyUNy8pGI7d+4cYmJiEBMTg4MHD6J06dLo0aMH3n77bfj7+xs9HhERERERERERORhuXtI9iYuLw+DBg3HmzBn89NNP6Natm9EjERERERERERGRg+ENe+iubN26FTNnzkRsbCyuXLkCX19f+Pn5GT0WERERERERERE5IG5eUpEuXryIuXPnYtasWdi7dy8sFgseffRRDB06FJ06dYKu875PRERERERERERke/zaOBUoLy8P//3vfzFz5kz8/PPPuHnzJh544AFERkbiySefhJeXl9EjEhERERERERGRg+PmJRWoatWqOHfuHMqWLYt+/fohMjISjRs3NnosIiIiIiIiIiL6F+HmJRVI13U4OzujRYsWKF26dLF+R9M0/Pzzz8KTERERERERERHRvwU3L6lA93IdS03TkJubKzANERERERERERH9G/GGPVSg5ORko0cgIiIiIiIiIqJ/OX7ykoiIiIiIiIiIiEqku/9uMBEREREREREREZEdcPOSiIiIiIiIiIiISiRuXhIREREREREREVGJxM1LIiIiIiIiIiIiKpG4eUlEREREREREREQlEjcviYiIiIiIiIiIqETi5iURERERERERERGVSNy8JCIiIiIiIiIiohLp/wFtssyCy4GmMgAAAABJRU5ErkJggg==", "text/plain": [ "
" ] @@ -964,10 +2979,13 @@ } ], "metadata": { + "jupytext": { + "formats": "docs//notebooks//ipynb,docs//notebooks//scripts//py:percent" + }, "kernelspec": { - "display_name": "aniEnv", + "display_name": ".venv", "language": "python", - "name": "anienv" + "name": "python3" }, "language_info": { "codemirror_mode": { @@ -979,7 +2997,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.10.12" + "version": "3.12.6" } }, "nbformat": 4, diff --git a/docs/notebooks/10_pipeline_pandas_output.ipynb b/docs/notebooks/10_pipeline_pandas_output.ipynb index ddefb69..f9ae568 100644 --- a/docs/notebooks/10_pipeline_pandas_output.ipynb +++ b/docs/notebooks/10_pipeline_pandas_output.ipynb @@ -9,12 +9,12 @@ "\n", "This notebook highlights the ability of scikit-mol transformers to return data in DataFrames with meaningful column names. Some use-cases of this feature are illustrated.\n", "\n", - "***NOTE***: The goal of this notebook is to highlight the advantages of storing transformer output in DataFrames with meaningful column names. This notebook should *not* be considered a set of good practices for training and evaluating QSAR pipelines. The performance metrics of the resulting pipelines are pretty bad: the dataset they have been trained on is pretty small. Tuning the hyperparameters of the Random Forest regressor model (maximum depth of the trees, maximum features to consider when splitting...) can be beneficial. Also including dimensionality reduction / feature selection techniques can be beneficial, since pipelines use an high number of features for a small number of samples. Of course, to further reduce the risk of overfitting, the best hyperparameters and preprocessing techniques should be chosen in cross validation." + "***NOTE***: The goal of this notebook is to highlight the advantages of storing transformer output in DataFrames with meaningful column names. This notebook should *not* be considered a set of good practices for training and evaluating QSAR pipelines. The performance metrics of the resulting pipelines are pretty bad: the dataset they have been trained on is pretty small. Tuning the hyperparameters of the Random Forest regressor model (maximum depth of the trees, maximum features to consider when splitting...) can be beneficial. Also including dimensionality reduction / feature selection techniques can be beneficial, since pipelines use a high number of features for a small number of samples. Of course, to further reduce the risk of overfitting, the best hyperparameters and preprocessing techniques should be chosen in cross validation." ] }, { "cell_type": "code", - "execution_count": 1, + "execution_count": 14, "id": "cb457069", "metadata": { "execution": { @@ -43,7 +43,7 @@ }, { "cell_type": "code", - "execution_count": 2, + "execution_count": 15, "id": "bc72ca09", "metadata": { "execution": { @@ -55,7 +55,7 @@ }, "outputs": [], "source": [ - "csv_file = Path(\"../tests/data/SLC6A4_active_excapedb_subset.csv\")\n", + "csv_file = Path(\"../../tests/data/SLC6A4_active_excapedb_subset.csv\")\n", "assert csv_file.is_file()\n", "data = pd.read_csv(csv_file)\n", "data.drop_duplicates(subset=\"Ambit_InchiKey\", inplace=True)" @@ -71,7 +71,7 @@ }, { "cell_type": "code", - "execution_count": 3, + "execution_count": 16, "id": "6019d09f", "metadata": { "execution": { @@ -88,7 +88,7 @@ }, { "cell_type": "code", - "execution_count": 4, + "execution_count": 17, "id": "fe9efa0e", "metadata": { "execution": { @@ -128,7 +128,7 @@ }, { "cell_type": "code", - "execution_count": 5, + "execution_count": 18, "id": "33ce774b", "metadata": { "execution": { @@ -142,9 +142,10 @@ { "data": { "text/html": [ - "
Pipeline(steps=[('smilestomoltransformer', SmilesToMolTransformer()),\n",
+       "
Pipeline(steps=[('smilestomoltransformer', SmilesToMolTransformer()),\n",
        "                ('standardizer', Standardizer()),\n",
        "                ('moleculardescriptortransformer',\n",
        "                 MolecularDescriptorTransformer(desc_list=['MaxAbsEStateIndex',\n",
@@ -575,7 +586,7 @@
        "                                                           'BCUT2D_MRHI',\n",
        "                                                           'BCUT2D_MRLOW',\n",
        "                                                           'AvgIpc', 'BalabanJ',\n",
-       "                                                           'BertzCT', 'Chi0', ...]))])
In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.
" ], "text/plain": [ " feature importance\n", - "0 MaxAbsEStateIndex 0.002776\n", - "1 MaxEStateIndex 0.003859\n", - "2 MinAbsEStateIndex 0.006311\n", - "3 MinEStateIndex 0.004721\n", - "4 qed 0.007605\n", + "0 MaxAbsEStateIndex 0.003240\n", + "1 MaxEStateIndex 0.001821\n", + "2 MinAbsEStateIndex 0.002461\n", + "3 MinEStateIndex 0.004588\n", + "4 qed 0.009382\n", ".. ... ...\n", - "205 fr_thiazole 0.000000\n", - "206 fr_thiocyan 0.000000\n", - "207 fr_thiophene 0.000046\n", - "208 fr_unbrch_alkane 0.000000\n", - "209 fr_urea 0.000000\n", + "212 fr_thiazole 0.000000\n", + "213 fr_thiocyan 0.000000\n", + "214 fr_thiophene 0.000835\n", + "215 fr_unbrch_alkane 0.000000\n", + "216 fr_urea 0.000000\n", "\n", - "[210 rows x 2 columns]" + "[217 rows x 2 columns]" ] }, - "execution_count": 13, + "execution_count": 26, "metadata": {}, "output_type": "execute_result" } @@ -4358,7 +3246,7 @@ }, { "cell_type": "code", - "execution_count": 14, + "execution_count": 27, "id": "713d24f1", "metadata": { "execution": { @@ -4398,27 +3286,27 @@ " \n", " 0\n", " PEOE_VSA6\n", - " 0.147449\n", + " 0.138689\n", " \n", " \n", " 1\n", " VSA_EState5\n", - " 0.087963\n", + " 0.062832\n", " \n", " \n", " 2\n", " MaxAbsPartialCharge\n", - " 0.057491\n", + " 0.052241\n", " \n", " \n", " 3\n", " VSA_EState6\n", - " 0.034922\n", + " 0.048135\n", " \n", " \n", " 4\n", " SlogP_VSA6\n", - " 0.028875\n", + " 0.027086\n", " \n", " \n", " ...\n", @@ -4426,53 +3314,53 @@ " ...\n", " \n", " \n", - " 205\n", - " fr_hdrzine\n", + " 212\n", + " fr_term_acetylene\n", " 0.000000\n", " \n", " \n", - " 206\n", - " fr_hdrzone\n", + " 213\n", + " fr_thiazole\n", " 0.000000\n", " \n", " \n", - " 207\n", - " fr_imidazole\n", + " 214\n", + " fr_thiocyan\n", " 0.000000\n", " \n", " \n", - " 208\n", - " fr_imide\n", + " 215\n", + " fr_unbrch_alkane\n", " 0.000000\n", " \n", " \n", - " 209\n", + " 216\n", " fr_urea\n", " 0.000000\n", " \n", " \n", "\n", - "

210 rows × 2 columns

\n", + "

217 rows × 2 columns

\n", "
" ], "text/plain": [ " feature importance\n", - "0 PEOE_VSA6 0.147449\n", - "1 VSA_EState5 0.087963\n", - "2 MaxAbsPartialCharge 0.057491\n", - "3 VSA_EState6 0.034922\n", - "4 SlogP_VSA6 0.028875\n", + "0 PEOE_VSA6 0.138689\n", + "1 VSA_EState5 0.062832\n", + "2 MaxAbsPartialCharge 0.052241\n", + "3 VSA_EState6 0.048135\n", + "4 SlogP_VSA6 0.027086\n", ".. ... ...\n", - "205 fr_hdrzine 0.000000\n", - "206 fr_hdrzone 0.000000\n", - "207 fr_imidazole 0.000000\n", - "208 fr_imide 0.000000\n", - "209 fr_urea 0.000000\n", + "212 fr_term_acetylene 0.000000\n", + "213 fr_thiazole 0.000000\n", + "214 fr_thiocyan 0.000000\n", + "215 fr_unbrch_alkane 0.000000\n", + "216 fr_urea 0.000000\n", "\n", - "[210 rows x 2 columns]" + "[217 rows x 2 columns]" ] }, - "execution_count": 14, + "execution_count": 27, "metadata": {}, "output_type": "execute_result" } @@ -4486,7 +3374,7 @@ }, { "cell_type": "code", - "execution_count": 15, + "execution_count": 28, "id": "4b97778f", "metadata": { "execution": { @@ -4538,7 +3426,7 @@ }, { "cell_type": "code", - "execution_count": 16, + "execution_count": 29, "id": "bf8ddaf9", "metadata": { "execution": { @@ -4920,13 +3808,13 @@ "[194 rows x 513 columns]" ] }, - "execution_count": 16, + "execution_count": 29, "metadata": {}, "output_type": "execute_result" } ], "source": [ - "file_cddd_features = Path(\"../tests/data/CDDD_SLC6A4_active_excapedb_subset.csv.gz\")\n", + "file_cddd_features = Path(\"../../tests/data/CDDD_SLC6A4_active_excapedb_subset.csv.gz\")\n", "assert file_cddd_features.is_file()\n", "df_cddd = pd.read_csv(file_cddd_features)\n", "df_cddd" @@ -4944,7 +3832,7 @@ }, { "cell_type": "code", - "execution_count": 17, + "execution_count": 30, "id": "db83be01", "metadata": { "execution": { @@ -4973,7 +3861,7 @@ }, { "cell_type": "code", - "execution_count": 18, + "execution_count": 31, "id": "dae995b7", "metadata": { "execution": { @@ -4985,7 +3873,7 @@ }, "outputs": [], "source": [ - "# The CDDD descriptors couldn't be computed for few molecules and can be removed as outcommented below. The Datafile is now prefiltered\n", + "# The CDDD descriptors couldn't be computed for few molecules and can be removed as commented out below. The Datafile is now prefiltered\n", "# target_train = data_train.loc[data_train[\"Ambit_InchiKey\"].isin(data_combined_train[\"Ambit_InchiKey\"]), column_target]\n", "# target_test = data_test.loc[data_test[\"Ambit_InchiKey\"].isin(data_combined_test[\"Ambit_InchiKey\"]), column_target]\n", "\n", @@ -5005,7 +3893,7 @@ }, { "cell_type": "code", - "execution_count": 19, + "execution_count": 32, "id": "dc6de049", "metadata": { "execution": { @@ -5019,9 +3907,10 @@ { "data": { "text/html": [ - "
ColumnTransformer(transformers=[('pipeline-1',\n",
+       "
ColumnTransformer(transformers=[('pipeline-1',\n",
        "                                 Pipeline(steps=[('smilestomoltransformer',\n",
        "                                                  SmilesToMolTransformer()),\n",
        "                                                 ('standardizer',\n",
@@ -5447,11 +4346,11 @@
        "                                                                                            'BalabanJ',\n",
        "                                                                                            'BertzCT',\n",
        "                                                                                            'Chi0', ...]))]),\n",
-       "                                 <sklearn.compose._column_transformer.make_column_selector object at 0x729f1412c520>),\n",
+       "                                 <sklearn.compose._column_transformer.make_column_selector object at 0x7fb59f3aff50>),\n",
        "                                ('pipeline-2',\n",
        "                                 Pipeline(steps=[('functiontransformer',\n",
        "                                                  FunctionTransformer())]),\n",
-       "                                 <sklearn.compose._column_transformer.make_column_selector object at 0x729f1412ebf0>)])
In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.
<sklearn.compose._column_transformer.make_column_selector object at 0x7fb59f3ad2b0>
FunctionTransformer()
" ], "text/plain": [ "ColumnTransformer(transformers=[('pipeline-1',\n", @@ -5523,14 +4422,14 @@ " 'BalabanJ',\n", " 'BertzCT',\n", " 'Chi0', ...]))]),\n", - " ),\n", + " ),\n", " ('pipeline-2',\n", " Pipeline(steps=[('functiontransformer',\n", " FunctionTransformer())]),\n", - " )])" + " )])" ] }, - "execution_count": 19, + "execution_count": 32, "metadata": {}, "output_type": "execute_result" } @@ -5557,7 +4456,7 @@ }, { "cell_type": "code", - "execution_count": 20, + "execution_count": 33, "id": "6ee85c3c", "metadata": { "execution": { @@ -5571,9 +4470,10 @@ { "data": { "text/html": [ - "
Pipeline(steps=[('columntransformer',\n",
+       "
Pipeline(steps=[('columntransformer',\n",
        "                 ColumnTransformer(transformers=[('pipeline-1',\n",
        "                                                  Pipeline(steps=[('smilestomoltransformer',\n",
        "                                                                   SmilesToMolTransformer()),\n",
@@ -5990,13 +4900,13 @@
        "                                                                                                             'SPS',\n",
        "                                                                                                             'MolW...\n",
        "                                                                                                             'Chi0', ...]))]),\n",
-       "                                                  <sklearn.compose._column_transformer.make_column_selector object at 0x729f1412c520>),\n",
+       "                                                  <sklearn.compose._column_transformer.make_column_selector object at 0x7fb59f3aff50>),\n",
        "                                                 ('pipeline-2',\n",
        "                                                  Pipeline(steps=[('functiontransformer',\n",
        "                                                                   FunctionTransformer())]),\n",
-       "                                                  <sklearn.compose._column_transformer.make_column_selector object at 0x729f1412ebf0>)])),\n",
+       "                                                  <sklearn.compose._column_transformer.make_column_selector object at 0x7fb59f3ad2b0>)])),\n",
        "                ('standardscaler', StandardScaler()),\n",
-       "                ('randomforestregressor', RandomForestRegressor(max_depth=5))])
In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.
<sklearn.compose._column_transformer.make_column_selector object at 0x7fb59f3ad2b0>
FunctionTransformer()
StandardScaler()
RandomForestRegressor(max_depth=5)
" ], "text/plain": [ "Pipeline(steps=[('columntransformer',\n", @@ -6080,16 +4990,16 @@ " 'SPS',\n", " 'MolW...\n", " 'Chi0', ...]))]),\n", - " ),\n", + " ),\n", " ('pipeline-2',\n", " Pipeline(steps=[('functiontransformer',\n", " FunctionTransformer())]),\n", - " )])),\n", + " )])),\n", " ('standardscaler', StandardScaler()),\n", " ('randomforestregressor', RandomForestRegressor(max_depth=5))])" ] }, - "execution_count": 20, + "execution_count": 33, "metadata": {}, "output_type": "execute_result" } @@ -6105,7 +5015,7 @@ }, { "cell_type": "code", - "execution_count": 21, + "execution_count": 34, "id": "03960958", "metadata": { "execution": { @@ -6120,661 +5030,25 @@ "name": "stderr", "output_type": "stream", "text": [ - "[10:28:38] DEPRECATION WARNING: please use MorganGenerator\n", - "[10:28:38] DEPRECATION WARNING: please use MorganGenerator\n", - "[10:28:38] DEPRECATION WARNING: please use MorganGenerator\n", - "[10:28:38] DEPRECATION WARNING: please use MorganGenerator\n", - "[10:28:38] DEPRECATION WARNING: please use MorganGenerator\n", - "[10:28:38] DEPRECATION WARNING: please use MorganGenerator\n", - "[10:28:38] DEPRECATION WARNING: please use MorganGenerator\n", - "[10:28:38] DEPRECATION WARNING: please use MorganGenerator\n", - "[10:28:38] DEPRECATION WARNING: please use MorganGenerator\n", - "[10:28:38] DEPRECATION WARNING: please use MorganGenerator\n", - "[10:28:38] DEPRECATION WARNING: please use MorganGenerator\n", - "[10:28:38] DEPRECATION WARNING: please use MorganGenerator\n", - "[10:28:38] DEPRECATION WARNING: please use MorganGenerator\n", - "[10:28:38] DEPRECATION WARNING: please use MorganGenerator\n", - "[10:28:38] DEPRECATION WARNING: please use MorganGenerator\n", - "[10:28:38] DEPRECATION WARNING: please use MorganGenerator\n", - "[10:28:38] DEPRECATION WARNING: please use MorganGenerator\n", - "[10:28:38] DEPRECATION WARNING: please use MorganGenerator\n", - "[10:28:38] DEPRECATION WARNING: please use MorganGenerator\n", - "[10:28:38] DEPRECATION WARNING: please use MorganGenerator\n", - "[10:28:38] DEPRECATION WARNING: please use MorganGenerator\n", - "[10:28:38] DEPRECATION WARNING: please use MorganGenerator\n", - "[10:28:38] DEPRECATION WARNING: please use MorganGenerator\n", - "[10:28:38] DEPRECATION WARNING: please use MorganGenerator\n", - "[10:28:38] DEPRECATION WARNING: please use MorganGenerator\n", - "[10:28:38] DEPRECATION WARNING: please use MorganGenerator\n", - "[10:28:38] DEPRECATION WARNING: please use MorganGenerator\n", - "[10:28:38] DEPRECATION WARNING: please use MorganGenerator\n", - "[10:28:38] DEPRECATION WARNING: please use MorganGenerator\n", - "[10:28:38] DEPRECATION WARNING: please use MorganGenerator\n", - "[10:28:38] DEPRECATION WARNING: please use MorganGenerator\n", - "[10:28:38] DEPRECATION WARNING: please use MorganGenerator\n", - "[10:28:38] DEPRECATION WARNING: please use MorganGenerator\n", - "[10:28:38] DEPRECATION WARNING: please use MorganGenerator\n", - "[10:28:38] DEPRECATION WARNING: please use MorganGenerator\n", - "[10:28:38] DEPRECATION WARNING: please use MorganGenerator\n", - "[10:28:38] DEPRECATION WARNING: please use MorganGenerator\n", - "[10:28:38] DEPRECATION WARNING: please use MorganGenerator\n", - "[10:28:38] DEPRECATION WARNING: please use MorganGenerator\n", - "[10:28:38] DEPRECATION WARNING: please use MorganGenerator\n", - "[10:28:38] DEPRECATION WARNING: please use MorganGenerator\n", - "[10:28:38] DEPRECATION WARNING: please use MorganGenerator\n", - "[10:28:38] DEPRECATION WARNING: please use MorganGenerator\n", - "[10:28:38] DEPRECATION WARNING: please use MorganGenerator\n", - "[10:28:38] DEPRECATION WARNING: please use MorganGenerator\n", - "[10:28:38] DEPRECATION WARNING: please use MorganGenerator\n", - "[10:28:38] DEPRECATION WARNING: please use MorganGenerator\n", - "[10:28:38] DEPRECATION WARNING: please use MorganGenerator\n", - "[10:28:38] DEPRECATION WARNING: please use MorganGenerator\n", - "[10:28:38] DEPRECATION WARNING: please use MorganGenerator\n", - "[10:28:38] DEPRECATION WARNING: please use MorganGenerator\n", - "[10:28:38] DEPRECATION WARNING: please use MorganGenerator\n", - "[10:28:38] DEPRECATION WARNING: please use MorganGenerator\n", - "[10:28:38] DEPRECATION WARNING: please use MorganGenerator\n", - "[10:28:38] DEPRECATION WARNING: please use MorganGenerator\n", - "[10:28:38] DEPRECATION WARNING: please use MorganGenerator\n", - "[10:28:38] DEPRECATION WARNING: please use MorganGenerator\n", - "[10:28:38] DEPRECATION WARNING: please use MorganGenerator\n", - "[10:28:38] DEPRECATION WARNING: please use MorganGenerator\n", - "[10:28:38] DEPRECATION WARNING: please use MorganGenerator\n", - "[10:28:38] DEPRECATION WARNING: please use MorganGenerator\n", - "[10:28:38] DEPRECATION WARNING: please use MorganGenerator\n", - "[10:28:38] DEPRECATION WARNING: please use MorganGenerator\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "[10:28:38] DEPRECATION WARNING: please use MorganGenerator\n", - "[10:28:38] DEPRECATION WARNING: please use MorganGenerator\n", - "[10:28:38] DEPRECATION WARNING: please use MorganGenerator\n", - "[10:28:38] DEPRECATION WARNING: please use MorganGenerator\n", - "[10:28:38] DEPRECATION WARNING: please use MorganGenerator\n", - "[10:28:38] DEPRECATION WARNING: please use MorganGenerator\n", - "[10:28:38] DEPRECATION WARNING: please use MorganGenerator\n", - "[10:28:38] DEPRECATION WARNING: please use MorganGenerator\n", - "[10:28:38] DEPRECATION WARNING: please use MorganGenerator\n", - "[10:28:38] DEPRECATION WARNING: please use MorganGenerator\n", - "[10:28:38] DEPRECATION WARNING: please use MorganGenerator\n", - "[10:28:38] DEPRECATION WARNING: please use MorganGenerator\n", - "[10:28:38] DEPRECATION WARNING: please use MorganGenerator\n", - "[10:28:38] DEPRECATION WARNING: please use MorganGenerator\n", - "[10:28:38] DEPRECATION WARNING: please use MorganGenerator\n", - "[10:28:38] DEPRECATION WARNING: please use MorganGenerator\n", - "[10:28:38] DEPRECATION WARNING: please use MorganGenerator\n", - "[10:28:38] DEPRECATION WARNING: please use MorganGenerator\n", - "[10:28:38] DEPRECATION WARNING: please use MorganGenerator\n", - "[10:28:38] DEPRECATION WARNING: please use MorganGenerator\n", - "[10:28:38] DEPRECATION WARNING: please use MorganGenerator\n", - "[10:28:38] DEPRECATION WARNING: please use MorganGenerator\n", - "[10:28:38] DEPRECATION WARNING: please use MorganGenerator\n", - "[10:28:38] DEPRECATION WARNING: please use MorganGenerator\n", - "[10:28:38] DEPRECATION WARNING: please use MorganGenerator\n", - "[10:28:38] DEPRECATION WARNING: please use MorganGenerator\n", - "[10:28:38] DEPRECATION WARNING: please use MorganGenerator\n", - "[10:28:38] DEPRECATION WARNING: please use MorganGenerator\n", - "[10:28:38] DEPRECATION WARNING: please use MorganGenerator\n", - "[10:28:38] DEPRECATION WARNING: please use MorganGenerator\n", - "[10:28:38] DEPRECATION WARNING: please use MorganGenerator\n", - "[10:28:38] DEPRECATION WARNING: please use MorganGenerator\n", - "[10:28:38] DEPRECATION WARNING: please use MorganGenerator\n", - "[10:28:38] DEPRECATION WARNING: please use MorganGenerator\n", - "[10:28:38] DEPRECATION WARNING: please use MorganGenerator\n", - "[10:28:38] DEPRECATION WARNING: please use MorganGenerator\n", - "[10:28:38] DEPRECATION WARNING: please use MorganGenerator\n", - "[10:28:38] DEPRECATION WARNING: please use MorganGenerator\n", - "[10:28:38] DEPRECATION WARNING: please use MorganGenerator\n", - "[10:28:38] DEPRECATION WARNING: please use MorganGenerator\n", - "[10:28:38] DEPRECATION WARNING: please use MorganGenerator\n", - "[10:28:38] DEPRECATION WARNING: please use MorganGenerator\n", - "[10:28:38] DEPRECATION WARNING: please use MorganGenerator\n", - "[10:28:38] DEPRECATION WARNING: please use MorganGenerator\n", - "[10:28:38] DEPRECATION WARNING: please use MorganGenerator\n", - "[10:28:38] DEPRECATION WARNING: please use MorganGenerator\n", - "[10:28:38] DEPRECATION WARNING: please use MorganGenerator\n", - "[10:28:38] DEPRECATION WARNING: please use MorganGenerator\n", - "[10:28:38] DEPRECATION WARNING: please use MorganGenerator\n", - "[10:28:38] DEPRECATION WARNING: please use MorganGenerator\n", - "[10:28:38] DEPRECATION WARNING: please use MorganGenerator\n", - "[10:28:38] DEPRECATION WARNING: please use MorganGenerator\n", - "[10:28:38] DEPRECATION WARNING: please use MorganGenerator\n", - "[10:28:38] DEPRECATION WARNING: please use MorganGenerator\n", - "[10:28:38] DEPRECATION WARNING: please use MorganGenerator\n", - "[10:28:38] DEPRECATION WARNING: please use MorganGenerator\n", - "[10:28:38] DEPRECATION WARNING: please use MorganGenerator\n", - "[10:28:38] DEPRECATION WARNING: please use MorganGenerator\n", - "[10:28:38] DEPRECATION WARNING: please use MorganGenerator\n", - "[10:28:38] DEPRECATION WARNING: please use MorganGenerator\n", - "[10:28:38] DEPRECATION WARNING: please use MorganGenerator\n", - "[10:28:38] DEPRECATION WARNING: please use MorganGenerator\n", - "[10:28:38] DEPRECATION WARNING: please use MorganGenerator\n", - "[10:28:38] DEPRECATION WARNING: please use MorganGenerator\n", - "[10:28:38] DEPRECATION WARNING: please use MorganGenerator\n", - "[10:28:38] DEPRECATION WARNING: please use MorganGenerator\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "[10:28:38] DEPRECATION WARNING: please use MorganGenerator\n", - "[10:28:38] DEPRECATION WARNING: please use MorganGenerator\n", - "[10:28:38] DEPRECATION WARNING: please use MorganGenerator\n", - "[10:28:38] DEPRECATION WARNING: please use MorganGenerator\n", - "[10:28:38] DEPRECATION WARNING: please use MorganGenerator\n", - "[10:28:38] DEPRECATION WARNING: please use MorganGenerator\n", - "[10:28:38] DEPRECATION WARNING: please use MorganGenerator\n", - "[10:28:38] DEPRECATION WARNING: please use MorganGenerator\n", - "[10:28:38] DEPRECATION WARNING: please use MorganGenerator\n", - "[10:28:38] DEPRECATION WARNING: please use MorganGenerator\n", - "[10:28:38] DEPRECATION WARNING: please use MorganGenerator\n", - "[10:28:38] DEPRECATION WARNING: please use MorganGenerator\n", - "[10:28:38] DEPRECATION WARNING: please use MorganGenerator\n", - "[10:28:38] DEPRECATION WARNING: please use MorganGenerator\n", - "[10:28:38] DEPRECATION WARNING: please use MorganGenerator\n", - "[10:28:38] DEPRECATION WARNING: please use MorganGenerator\n", - "[10:28:38] DEPRECATION WARNING: please use MorganGenerator\n", - "[10:28:38] DEPRECATION WARNING: please use MorganGenerator\n", - "[10:28:38] DEPRECATION WARNING: please use MorganGenerator\n", - "[10:28:38] DEPRECATION WARNING: please use MorganGenerator\n", - "[10:28:38] DEPRECATION WARNING: please use MorganGenerator\n", - "[10:28:38] DEPRECATION WARNING: please use MorganGenerator\n", - "[10:28:38] DEPRECATION WARNING: please use MorganGenerator\n", - "[10:28:38] DEPRECATION WARNING: please use MorganGenerator\n", - "[10:28:38] DEPRECATION WARNING: please use MorganGenerator\n", - "[10:28:38] DEPRECATION WARNING: please use MorganGenerator\n", - "[10:28:38] DEPRECATION WARNING: please use MorganGenerator\n", - "[10:28:38] DEPRECATION WARNING: please use MorganGenerator\n", - "[10:28:38] DEPRECATION WARNING: please use MorganGenerator\n", - "[10:28:38] DEPRECATION WARNING: please use MorganGenerator\n", - "[10:28:38] DEPRECATION WARNING: please use MorganGenerator\n", - "[10:28:38] DEPRECATION WARNING: please use MorganGenerator\n", - "[10:28:38] DEPRECATION WARNING: please use MorganGenerator\n", - "[10:28:38] DEPRECATION WARNING: please use MorganGenerator\n", - "[10:28:38] DEPRECATION WARNING: please use MorganGenerator\n", - "[10:28:38] DEPRECATION WARNING: please use MorganGenerator\n", - "[10:28:38] DEPRECATION WARNING: please use MorganGenerator\n", - "[10:28:38] DEPRECATION WARNING: please use MorganGenerator\n", - "[10:28:38] DEPRECATION WARNING: please use MorganGenerator\n", - "[10:28:38] DEPRECATION WARNING: please use MorganGenerator\n", - "[10:28:38] DEPRECATION WARNING: please use MorganGenerator\n", - "[10:28:38] DEPRECATION WARNING: please use MorganGenerator\n", - "[10:28:38] DEPRECATION WARNING: please use MorganGenerator\n", - "[10:28:38] DEPRECATION WARNING: please use MorganGenerator\n", - "[10:28:38] DEPRECATION WARNING: please use MorganGenerator\n", - "[10:28:38] DEPRECATION WARNING: please use MorganGenerator\n", - "[10:28:38] DEPRECATION WARNING: please use MorganGenerator\n", - "[10:28:38] DEPRECATION WARNING: please use MorganGenerator\n", - "[10:28:38] DEPRECATION WARNING: please use MorganGenerator\n", - "[10:28:38] DEPRECATION WARNING: please use MorganGenerator\n", - "[10:28:38] DEPRECATION WARNING: please use MorganGenerator\n", - "[10:28:38] DEPRECATION WARNING: please use MorganGenerator\n", - "[10:28:38] DEPRECATION WARNING: please use MorganGenerator\n", - "[10:28:38] DEPRECATION WARNING: please use MorganGenerator\n", - "[10:28:38] DEPRECATION WARNING: please use MorganGenerator\n", - "[10:28:38] DEPRECATION WARNING: please use MorganGenerator\n", - "[10:28:38] DEPRECATION WARNING: please use MorganGenerator\n", - "[10:28:38] DEPRECATION WARNING: please use MorganGenerator\n", - "[10:28:38] DEPRECATION WARNING: please use MorganGenerator\n", - "[10:28:38] DEPRECATION WARNING: please use MorganGenerator\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "[10:28:38] DEPRECATION WARNING: please use MorganGenerator\n", - "[10:28:38] DEPRECATION WARNING: please use MorganGenerator\n", - "[10:28:38] DEPRECATION WARNING: please use MorganGenerator\n", - "[10:28:38] DEPRECATION WARNING: please use MorganGenerator\n", - "[10:28:38] DEPRECATION WARNING: please use MorganGenerator\n", - "[10:28:38] DEPRECATION WARNING: please use MorganGenerator\n", - "[10:28:38] DEPRECATION WARNING: please use MorganGenerator\n", - "[10:28:38] DEPRECATION WARNING: please use MorganGenerator\n", - "[10:28:38] DEPRECATION WARNING: please use MorganGenerator\n", - "[10:28:38] DEPRECATION WARNING: please use MorganGenerator\n", - "[10:28:38] DEPRECATION WARNING: please use MorganGenerator\n", - "[10:28:38] DEPRECATION WARNING: please use MorganGenerator\n", - "[10:28:38] DEPRECATION WARNING: please use MorganGenerator\n", - "[10:28:38] DEPRECATION WARNING: please use MorganGenerator\n", - "[10:28:38] DEPRECATION WARNING: please use MorganGenerator\n", - "[10:28:38] DEPRECATION WARNING: please use MorganGenerator\n", - "[10:28:38] DEPRECATION WARNING: please use MorganGenerator\n", - "[10:28:38] DEPRECATION WARNING: please use MorganGenerator\n", - "[10:28:38] DEPRECATION WARNING: please use MorganGenerator\n", - "[10:28:38] DEPRECATION WARNING: please use MorganGenerator\n", - "[10:28:38] DEPRECATION WARNING: please use MorganGenerator\n", - "[10:28:38] DEPRECATION WARNING: please use MorganGenerator\n", - "[10:28:38] DEPRECATION WARNING: please use MorganGenerator\n", - "[10:28:38] DEPRECATION WARNING: please use MorganGenerator\n", - "[10:28:38] DEPRECATION WARNING: please use MorganGenerator\n", - "[10:28:38] DEPRECATION WARNING: please use MorganGenerator\n", - "[10:28:38] DEPRECATION WARNING: please use MorganGenerator\n", - "[10:28:38] DEPRECATION WARNING: please use MorganGenerator\n", - "[10:28:38] DEPRECATION WARNING: please use MorganGenerator\n", - "[10:28:38] DEPRECATION WARNING: please use MorganGenerator\n", - "[10:28:38] DEPRECATION WARNING: please use MorganGenerator\n", - "[10:28:38] DEPRECATION WARNING: please use MorganGenerator\n", - "[10:28:38] DEPRECATION WARNING: please use MorganGenerator\n", - "[10:28:39] DEPRECATION WARNING: please use MorganGenerator\n", - "[10:28:39] DEPRECATION WARNING: please use MorganGenerator\n", - "[10:28:39] DEPRECATION WARNING: please use MorganGenerator\n", - "[10:28:39] DEPRECATION WARNING: please use MorganGenerator\n", - "[10:28:39] DEPRECATION WARNING: please use MorganGenerator\n", - "[10:28:39] DEPRECATION WARNING: please use MorganGenerator\n", - "[10:28:39] DEPRECATION WARNING: please use MorganGenerator\n", - "[10:28:39] DEPRECATION WARNING: please use MorganGenerator\n", - "[10:28:39] DEPRECATION WARNING: please use MorganGenerator\n", - "[10:28:39] DEPRECATION WARNING: please use MorganGenerator\n", - "[10:28:39] DEPRECATION WARNING: please use MorganGenerator\n", - "[10:28:39] DEPRECATION WARNING: please use MorganGenerator\n", - "[10:28:39] DEPRECATION WARNING: please use MorganGenerator\n", - "[10:28:39] DEPRECATION WARNING: please use MorganGenerator\n", - "[10:28:39] DEPRECATION WARNING: please use MorganGenerator\n", - "[10:28:39] DEPRECATION WARNING: please use MorganGenerator\n", - "[10:28:39] DEPRECATION WARNING: please use MorganGenerator\n", - "[10:28:39] DEPRECATION WARNING: please use MorganGenerator\n", - "[10:28:39] DEPRECATION WARNING: please use MorganGenerator\n", - "[10:28:39] DEPRECATION WARNING: please use MorganGenerator\n", - "[10:28:39] DEPRECATION WARNING: please use MorganGenerator\n", - "[10:28:39] DEPRECATION WARNING: please use MorganGenerator\n", - "[10:28:39] DEPRECATION WARNING: please use MorganGenerator\n", - "[10:28:39] DEPRECATION WARNING: please use MorganGenerator\n", - "[10:28:39] DEPRECATION WARNING: please use MorganGenerator\n", - "[10:28:39] DEPRECATION WARNING: please use MorganGenerator\n", - "[10:28:39] DEPRECATION WARNING: please use MorganGenerator\n", - "[10:28:39] DEPRECATION WARNING: please use MorganGenerator\n", - "[10:28:39] DEPRECATION WARNING: please use MorganGenerator\n", - "[10:28:39] DEPRECATION WARNING: please use MorganGenerator\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "[10:28:39] DEPRECATION WARNING: please use MorganGenerator\n", - "[10:28:39] DEPRECATION WARNING: please use MorganGenerator\n", - "[10:28:39] DEPRECATION WARNING: please use MorganGenerator\n", - "[10:28:39] DEPRECATION WARNING: please use MorganGenerator\n", - "[10:28:39] DEPRECATION WARNING: please use MorganGenerator\n", - "[10:28:39] DEPRECATION WARNING: please use MorganGenerator\n", - "[10:28:39] DEPRECATION WARNING: please use MorganGenerator\n", - "[10:28:39] DEPRECATION WARNING: please use MorganGenerator\n", - "[10:28:39] DEPRECATION WARNING: please use MorganGenerator\n", - "[10:28:39] DEPRECATION WARNING: please use MorganGenerator\n", - "[10:28:39] DEPRECATION WARNING: please use MorganGenerator\n", - "[10:28:39] DEPRECATION WARNING: please use MorganGenerator\n", - "[10:28:39] DEPRECATION WARNING: please use MorganGenerator\n", - "[10:28:39] DEPRECATION WARNING: please use MorganGenerator\n", - "[10:28:39] DEPRECATION WARNING: please use MorganGenerator\n", - "[10:28:39] DEPRECATION WARNING: please use MorganGenerator\n", - "[10:28:39] DEPRECATION WARNING: please use MorganGenerator\n", - "[10:28:39] DEPRECATION WARNING: please use MorganGenerator\n", - "[10:28:39] DEPRECATION WARNING: please use MorganGenerator\n", - "[10:28:39] DEPRECATION WARNING: please use MorganGenerator\n", - "[10:28:39] DEPRECATION WARNING: please use MorganGenerator\n", - "[10:28:39] DEPRECATION WARNING: please use MorganGenerator\n", - "[10:28:39] DEPRECATION WARNING: please use MorganGenerator\n", - "[10:28:39] DEPRECATION WARNING: please use MorganGenerator\n", - "[10:28:39] DEPRECATION WARNING: please use MorganGenerator\n", - "[10:28:39] DEPRECATION WARNING: please use MorganGenerator\n", - "[10:28:39] DEPRECATION WARNING: please use MorganGenerator\n", - "[10:28:39] DEPRECATION WARNING: please use MorganGenerator\n", - "[10:28:39] DEPRECATION WARNING: please use MorganGenerator\n", - "[10:28:39] DEPRECATION WARNING: please use MorganGenerator\n", - "[10:28:39] DEPRECATION WARNING: please use MorganGenerator\n", - "[10:28:39] DEPRECATION WARNING: please use MorganGenerator\n", - "[10:28:39] DEPRECATION WARNING: please use MorganGenerator\n", - "[10:28:39] DEPRECATION WARNING: please use MorganGenerator\n", - "[10:28:39] DEPRECATION WARNING: please use MorganGenerator\n", - "[10:28:39] DEPRECATION WARNING: please use MorganGenerator\n", - "[10:28:39] DEPRECATION WARNING: please use MorganGenerator\n", - "[10:28:39] DEPRECATION WARNING: please use MorganGenerator\n", - "[10:28:39] DEPRECATION WARNING: please use MorganGenerator\n", - "[10:28:39] DEPRECATION WARNING: please use MorganGenerator\n", - "[10:28:39] DEPRECATION WARNING: please use MorganGenerator\n", - "[10:28:39] DEPRECATION WARNING: please use MorganGenerator\n", - "[10:28:39] DEPRECATION WARNING: please use MorganGenerator\n", - "[10:28:39] DEPRECATION WARNING: please use MorganGenerator\n", - "[10:28:39] DEPRECATION WARNING: please use MorganGenerator\n", - "[10:28:39] DEPRECATION WARNING: please use MorganGenerator\n", - "[10:28:39] DEPRECATION WARNING: please use MorganGenerator\n", - "[10:28:39] DEPRECATION WARNING: please use MorganGenerator\n", - "[10:28:39] DEPRECATION WARNING: please use MorganGenerator\n", - "[10:28:39] DEPRECATION WARNING: please use MorganGenerator\n", - "[10:28:39] DEPRECATION WARNING: please use MorganGenerator\n", - "[10:28:39] DEPRECATION WARNING: please use MorganGenerator\n", - "[10:28:39] DEPRECATION WARNING: please use MorganGenerator\n", - "[10:28:39] DEPRECATION WARNING: please use MorganGenerator\n", - "[10:28:39] DEPRECATION WARNING: please use MorganGenerator\n", - "[10:28:39] DEPRECATION WARNING: please use MorganGenerator\n", - "[10:28:39] DEPRECATION WARNING: please use MorganGenerator\n", - "[10:28:39] DEPRECATION WARNING: please use MorganGenerator\n", - "[10:28:39] DEPRECATION WARNING: please use MorganGenerator\n", - "[10:28:39] DEPRECATION WARNING: please use MorganGenerator\n", - "[10:28:39] DEPRECATION WARNING: please use MorganGenerator\n", - "[10:28:39] DEPRECATION WARNING: please use MorganGenerator\n", - "[10:28:39] DEPRECATION WARNING: please use MorganGenerator\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "[10:28:39] DEPRECATION WARNING: please use MorganGenerator\n", - "[10:28:39] DEPRECATION WARNING: please use MorganGenerator\n", - "[10:28:39] DEPRECATION WARNING: please use MorganGenerator\n", - "[10:28:39] DEPRECATION WARNING: please use MorganGenerator\n", - "[10:28:39] DEPRECATION WARNING: please use MorganGenerator\n", - "[10:28:39] DEPRECATION WARNING: please use MorganGenerator\n", - "[10:28:39] DEPRECATION WARNING: please use MorganGenerator\n", - "[10:28:39] DEPRECATION WARNING: please use MorganGenerator\n", - "[10:28:39] DEPRECATION WARNING: please use MorganGenerator\n", - "[10:28:39] DEPRECATION WARNING: please use MorganGenerator\n", - "[10:28:39] DEPRECATION WARNING: please use MorganGenerator\n", - "[10:28:39] DEPRECATION WARNING: please use MorganGenerator\n", - "[10:28:39] DEPRECATION WARNING: please use MorganGenerator\n", - "[10:28:39] DEPRECATION WARNING: please use MorganGenerator\n", - "[10:28:39] DEPRECATION WARNING: please use MorganGenerator\n", - "[10:28:39] DEPRECATION WARNING: please use MorganGenerator\n", - "[10:28:39] DEPRECATION WARNING: please use MorganGenerator\n", - "[10:28:39] DEPRECATION WARNING: please use MorganGenerator\n", - "[10:28:39] DEPRECATION WARNING: please use MorganGenerator\n", - "[10:28:39] DEPRECATION WARNING: please use MorganGenerator\n", - "[10:28:39] DEPRECATION WARNING: please use MorganGenerator\n", - "[10:28:39] DEPRECATION WARNING: please use MorganGenerator\n", - "[10:28:39] DEPRECATION WARNING: please use MorganGenerator\n", - "[10:28:39] DEPRECATION WARNING: please use MorganGenerator\n", - "[10:28:39] DEPRECATION WARNING: please use MorganGenerator\n", - "[10:28:39] DEPRECATION WARNING: please use MorganGenerator\n", - "[10:28:39] DEPRECATION WARNING: please use MorganGenerator\n", - "[10:28:39] DEPRECATION WARNING: please use MorganGenerator\n", - "[10:28:39] DEPRECATION WARNING: please use MorganGenerator\n", - "[10:28:39] DEPRECATION WARNING: please use MorganGenerator\n", - "[10:28:39] DEPRECATION WARNING: please use MorganGenerator\n", - "[10:28:39] DEPRECATION WARNING: please use MorganGenerator\n", - "[10:28:39] DEPRECATION WARNING: please use MorganGenerator\n", - "[10:28:39] DEPRECATION WARNING: please use MorganGenerator\n", - "[10:28:39] DEPRECATION WARNING: please use MorganGenerator\n", - "[10:28:39] DEPRECATION WARNING: please use MorganGenerator\n", - "[10:28:39] DEPRECATION WARNING: please use MorganGenerator\n", - "[10:28:39] DEPRECATION WARNING: please use MorganGenerator\n", - "[10:28:39] DEPRECATION WARNING: please use MorganGenerator\n", - "[10:28:39] DEPRECATION WARNING: please use MorganGenerator\n", - "[10:28:39] DEPRECATION WARNING: please use MorganGenerator\n", - "[10:28:39] DEPRECATION WARNING: please use MorganGenerator\n", - "[10:28:39] DEPRECATION WARNING: please use MorganGenerator\n", - "[10:28:39] DEPRECATION WARNING: please use MorganGenerator\n", - "[10:28:39] DEPRECATION WARNING: please use MorganGenerator\n", - "[10:28:39] DEPRECATION WARNING: please use MorganGenerator\n", - "[10:28:39] DEPRECATION WARNING: please use MorganGenerator\n", - "[10:28:39] DEPRECATION WARNING: please use MorganGenerator\n", - "[10:28:39] DEPRECATION WARNING: please use MorganGenerator\n", - "[10:28:39] DEPRECATION WARNING: please use MorganGenerator\n", - "[10:28:39] DEPRECATION WARNING: please use MorganGenerator\n", - "[10:28:39] DEPRECATION WARNING: please use MorganGenerator\n", - "[10:28:39] DEPRECATION WARNING: please use MorganGenerator\n", - "[10:28:39] DEPRECATION WARNING: please use MorganGenerator\n", - "[10:28:39] DEPRECATION WARNING: please use MorganGenerator\n", - "[10:28:39] DEPRECATION WARNING: please use MorganGenerator\n", - "[10:28:39] DEPRECATION WARNING: please use MorganGenerator\n", - "[10:28:39] DEPRECATION WARNING: please use MorganGenerator\n", - "[10:28:39] DEPRECATION WARNING: please use MorganGenerator\n", - "[10:28:39] DEPRECATION WARNING: please use MorganGenerator\n", - "[10:28:39] DEPRECATION WARNING: please use MorganGenerator\n", - "[10:28:39] DEPRECATION WARNING: please use MorganGenerator\n", - "[10:28:39] DEPRECATION WARNING: please use MorganGenerator\n", - "[10:28:39] DEPRECATION WARNING: please use MorganGenerator\n", - "[10:28:39] DEPRECATION WARNING: please use MorganGenerator\n", - "[10:28:39] DEPRECATION WARNING: please use MorganGenerator\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "[10:28:39] DEPRECATION WARNING: please use MorganGenerator\n", - "[10:28:39] DEPRECATION WARNING: please use MorganGenerator\n", - "[10:28:39] DEPRECATION WARNING: please use MorganGenerator\n", - "[10:28:39] DEPRECATION WARNING: please use MorganGenerator\n", - "[10:28:39] DEPRECATION WARNING: please use MorganGenerator\n", - "[10:28:39] DEPRECATION WARNING: please use MorganGenerator\n", - "[10:28:39] DEPRECATION WARNING: please use MorganGenerator\n", - "[10:28:39] DEPRECATION WARNING: please use MorganGenerator\n", - "[10:28:39] DEPRECATION WARNING: please use MorganGenerator\n", - "[10:28:39] DEPRECATION WARNING: please use MorganGenerator\n", - "[10:28:39] DEPRECATION WARNING: please use MorganGenerator\n", - "[10:28:39] DEPRECATION WARNING: please use MorganGenerator\n", - "[10:28:39] DEPRECATION WARNING: please use MorganGenerator\n", - "[10:28:39] DEPRECATION WARNING: please use MorganGenerator\n", - "[10:28:39] DEPRECATION WARNING: please use MorganGenerator\n", - "[10:28:39] DEPRECATION WARNING: please use MorganGenerator\n", - "[10:28:39] DEPRECATION WARNING: please use MorganGenerator\n", - "[10:28:39] DEPRECATION WARNING: please use MorganGenerator\n", - "[10:28:39] DEPRECATION WARNING: please use MorganGenerator\n", - "[10:28:39] DEPRECATION WARNING: please use MorganGenerator\n", - "[10:28:39] DEPRECATION WARNING: please use MorganGenerator\n", - "[10:28:39] DEPRECATION WARNING: please use MorganGenerator\n", - "[10:28:39] DEPRECATION WARNING: please use MorganGenerator\n", - "[10:28:39] DEPRECATION WARNING: please use MorganGenerator\n", - "[10:28:39] DEPRECATION WARNING: please use MorganGenerator\n", - "[10:28:39] DEPRECATION WARNING: please use MorganGenerator\n", - "[10:28:39] DEPRECATION WARNING: please use MorganGenerator\n", - "[10:28:39] DEPRECATION WARNING: please use MorganGenerator\n", - "[10:28:39] DEPRECATION WARNING: please use MorganGenerator\n", - "[10:28:39] DEPRECATION WARNING: please use MorganGenerator\n", - "[10:28:39] DEPRECATION WARNING: please use MorganGenerator\n", - "[10:28:39] DEPRECATION WARNING: please use MorganGenerator\n", - "[10:28:39] DEPRECATION WARNING: please use MorganGenerator\n", - "[10:28:39] DEPRECATION WARNING: please use MorganGenerator\n", - "[10:28:39] DEPRECATION WARNING: please use MorganGenerator\n", - "[10:28:39] DEPRECATION WARNING: please use MorganGenerator\n", - "[10:28:39] DEPRECATION WARNING: please use MorganGenerator\n", - "[10:28:39] DEPRECATION WARNING: please use MorganGenerator\n", - "[10:28:39] DEPRECATION WARNING: please use MorganGenerator\n", - "[10:28:39] DEPRECATION WARNING: please use MorganGenerator\n", - "[10:28:39] DEPRECATION WARNING: please use MorganGenerator\n", - "[10:28:39] DEPRECATION WARNING: please use MorganGenerator\n", - "[10:28:39] DEPRECATION WARNING: please use MorganGenerator\n", - "[10:28:39] DEPRECATION WARNING: please use MorganGenerator\n", - "[10:28:39] DEPRECATION WARNING: please use MorganGenerator\n", - "[10:28:39] DEPRECATION WARNING: please use MorganGenerator\n", - "[10:28:39] DEPRECATION WARNING: please use MorganGenerator\n", - "[10:28:39] DEPRECATION WARNING: please use MorganGenerator\n", - "[10:28:39] DEPRECATION WARNING: please use MorganGenerator\n", - "[10:28:39] DEPRECATION WARNING: please use MorganGenerator\n", - "[10:28:39] DEPRECATION WARNING: please use MorganGenerator\n", - "[10:28:39] DEPRECATION WARNING: please use MorganGenerator\n", - "[10:28:39] DEPRECATION WARNING: please use MorganGenerator\n", - "[10:28:39] DEPRECATION WARNING: please use MorganGenerator\n", - "[10:28:39] DEPRECATION WARNING: please use MorganGenerator\n", - "[10:28:39] DEPRECATION WARNING: please use MorganGenerator\n", - "[10:28:39] DEPRECATION WARNING: please use MorganGenerator\n", - "[10:28:39] DEPRECATION WARNING: please use MorganGenerator\n", - "[10:28:39] DEPRECATION WARNING: please use MorganGenerator\n", - "[10:28:39] DEPRECATION WARNING: please use MorganGenerator\n", - "[10:28:39] DEPRECATION WARNING: please use MorganGenerator\n", - "[10:28:39] DEPRECATION WARNING: please use MorganGenerator\n", - "[10:28:39] DEPRECATION WARNING: please use MorganGenerator\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "[10:28:39] DEPRECATION WARNING: please use MorganGenerator\n", - "[10:28:39] DEPRECATION WARNING: please use MorganGenerator\n", - "[10:28:39] DEPRECATION WARNING: please use MorganGenerator\n", - "[10:28:39] DEPRECATION WARNING: please use MorganGenerator\n", - "[10:28:39] DEPRECATION WARNING: please use MorganGenerator\n", - "[10:28:39] DEPRECATION WARNING: please use MorganGenerator\n", - "[10:28:39] DEPRECATION WARNING: please use MorganGenerator\n", - "[10:28:39] DEPRECATION WARNING: please use MorganGenerator\n", - "[10:28:39] DEPRECATION WARNING: please use MorganGenerator\n", - "[10:28:39] DEPRECATION WARNING: please use MorganGenerator\n", - "[10:28:39] DEPRECATION WARNING: please use MorganGenerator\n", - "[10:28:39] DEPRECATION WARNING: please use MorganGenerator\n", - "[10:28:39] DEPRECATION WARNING: please use MorganGenerator\n", - "[10:28:39] DEPRECATION WARNING: please use MorganGenerator\n", - "[10:28:39] DEPRECATION WARNING: please use MorganGenerator\n", - "[10:28:39] DEPRECATION WARNING: please use MorganGenerator\n", - "[10:28:39] DEPRECATION WARNING: please use MorganGenerator\n", - "[10:28:39] DEPRECATION WARNING: please use MorganGenerator\n", - "[10:28:39] DEPRECATION WARNING: please use MorganGenerator\n", - "[10:28:39] DEPRECATION WARNING: please use MorganGenerator\n", - "[10:28:39] DEPRECATION WARNING: please use MorganGenerator\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "[10:28:42] DEPRECATION WARNING: please use MorganGenerator\n", - "[10:28:42] DEPRECATION WARNING: please use MorganGenerator\n", - "[10:28:42] DEPRECATION WARNING: please use MorganGenerator\n", - "[10:28:42] DEPRECATION WARNING: please use MorganGenerator\n", - "[10:28:42] DEPRECATION WARNING: please use MorganGenerator\n", - "[10:28:42] DEPRECATION WARNING: please use MorganGenerator\n", - "[10:28:42] DEPRECATION WARNING: please use MorganGenerator\n", - "[10:28:42] DEPRECATION WARNING: please use MorganGenerator\n", - "[10:28:42] DEPRECATION WARNING: please use MorganGenerator\n", - "[10:28:42] DEPRECATION WARNING: please use MorganGenerator\n", - "[10:28:42] DEPRECATION WARNING: please use MorganGenerator\n", - "[10:28:42] DEPRECATION WARNING: please use MorganGenerator\n", - "[10:28:42] DEPRECATION WARNING: please use MorganGenerator\n", - "[10:28:42] DEPRECATION WARNING: please use MorganGenerator\n", - "[10:28:42] DEPRECATION WARNING: please use MorganGenerator\n", - "[10:28:42] DEPRECATION WARNING: please use MorganGenerator\n", - "[10:28:42] DEPRECATION WARNING: please use MorganGenerator\n", - "[10:28:42] DEPRECATION WARNING: please use MorganGenerator\n", - "[10:28:42] DEPRECATION WARNING: please use MorganGenerator\n", - "[10:28:42] DEPRECATION WARNING: please use MorganGenerator\n", - "[10:28:42] DEPRECATION WARNING: please use MorganGenerator\n", - "[10:28:42] DEPRECATION WARNING: please use MorganGenerator\n", - "[10:28:42] DEPRECATION WARNING: please use MorganGenerator\n", - "[10:28:42] DEPRECATION WARNING: please use MorganGenerator\n", - "[10:28:42] DEPRECATION WARNING: please use MorganGenerator\n", - "[10:28:42] DEPRECATION WARNING: please use MorganGenerator\n", - "[10:28:42] DEPRECATION WARNING: please use MorganGenerator\n", - "[10:28:42] DEPRECATION WARNING: please use MorganGenerator\n", - "[10:28:42] DEPRECATION WARNING: please use MorganGenerator\n", - "[10:28:42] DEPRECATION WARNING: please use MorganGenerator\n", - "[10:28:42] DEPRECATION WARNING: please use MorganGenerator\n", - "[10:28:42] DEPRECATION WARNING: please use MorganGenerator\n", - "[10:28:42] DEPRECATION WARNING: please use MorganGenerator\n", - "[10:28:42] DEPRECATION WARNING: please use MorganGenerator\n", - "[10:28:42] DEPRECATION WARNING: please use MorganGenerator\n", - "[10:28:42] DEPRECATION WARNING: please use MorganGenerator\n", - "[10:28:42] DEPRECATION WARNING: please use MorganGenerator\n", - "[10:28:42] DEPRECATION WARNING: please use MorganGenerator\n", - "[10:28:42] DEPRECATION WARNING: please use MorganGenerator\n", - "[10:28:42] DEPRECATION WARNING: please use MorganGenerator\n", - "[10:28:42] DEPRECATION WARNING: please use MorganGenerator\n", - "[10:28:42] DEPRECATION WARNING: please use MorganGenerator\n", - "[10:28:42] DEPRECATION WARNING: please use MorganGenerator\n", - "[10:28:42] DEPRECATION WARNING: please use MorganGenerator\n", - "[10:28:42] DEPRECATION WARNING: please use MorganGenerator\n", - "[10:28:42] DEPRECATION WARNING: please use MorganGenerator\n", - "[10:28:42] DEPRECATION WARNING: please use MorganGenerator\n", - "[10:28:42] DEPRECATION WARNING: please use MorganGenerator\n", - "[10:28:42] DEPRECATION WARNING: please use MorganGenerator\n", - "[10:28:42] DEPRECATION WARNING: please use MorganGenerator\n", - "[10:28:42] DEPRECATION WARNING: please use MorganGenerator\n", - "[10:28:42] DEPRECATION WARNING: please use MorganGenerator\n", - "[10:28:42] DEPRECATION WARNING: please use MorganGenerator\n", - "[10:28:42] DEPRECATION WARNING: please use MorganGenerator\n", - "[10:28:42] DEPRECATION WARNING: please use MorganGenerator\n", - "[10:28:42] DEPRECATION WARNING: please use MorganGenerator\n", - "[10:28:42] DEPRECATION WARNING: please use MorganGenerator\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "[10:28:42] DEPRECATION WARNING: please use MorganGenerator\n", - "[10:28:42] DEPRECATION WARNING: please use MorganGenerator\n", - "[10:28:42] DEPRECATION WARNING: please use MorganGenerator\n", - "[10:28:42] DEPRECATION WARNING: please use MorganGenerator\n", - "[10:28:42] DEPRECATION WARNING: please use MorganGenerator\n", - "[10:28:42] DEPRECATION WARNING: please use MorganGenerator\n", - "[10:28:42] DEPRECATION WARNING: please use MorganGenerator\n", - "[10:28:42] DEPRECATION WARNING: please use MorganGenerator\n", - "[10:28:42] DEPRECATION WARNING: please use MorganGenerator\n", - "[10:28:42] DEPRECATION WARNING: please use MorganGenerator\n", - "[10:28:42] DEPRECATION WARNING: please use MorganGenerator\n", - "[10:28:42] DEPRECATION WARNING: please use MorganGenerator\n", - "[10:28:42] DEPRECATION WARNING: please use MorganGenerator\n", - "[10:28:42] DEPRECATION WARNING: please use MorganGenerator\n", - "[10:28:42] DEPRECATION WARNING: please use MorganGenerator\n", - "[10:28:42] DEPRECATION WARNING: please use MorganGenerator\n", - "[10:28:42] DEPRECATION WARNING: please use MorganGenerator\n", - "[10:28:42] DEPRECATION WARNING: please use MorganGenerator\n", - "[10:28:42] DEPRECATION WARNING: please use MorganGenerator\n", - "[10:28:42] DEPRECATION WARNING: please use MorganGenerator\n", - "[10:28:42] DEPRECATION WARNING: please use MorganGenerator\n", - "[10:28:42] DEPRECATION WARNING: please use MorganGenerator\n", - "[10:28:42] DEPRECATION WARNING: please use MorganGenerator\n", - "[10:28:42] DEPRECATION WARNING: please use MorganGenerator\n", - "[10:28:42] DEPRECATION WARNING: please use MorganGenerator\n", - "[10:28:42] DEPRECATION WARNING: please use MorganGenerator\n", - "[10:28:42] DEPRECATION WARNING: please use MorganGenerator\n", - "[10:28:42] DEPRECATION WARNING: please use MorganGenerator\n", - "[10:28:42] DEPRECATION WARNING: please use MorganGenerator\n", - "[10:28:42] DEPRECATION WARNING: please use MorganGenerator\n", - "[10:28:42] DEPRECATION WARNING: please use MorganGenerator\n", - "[10:28:42] DEPRECATION WARNING: please use MorganGenerator\n", - "[10:28:42] DEPRECATION WARNING: please use MorganGenerator\n", - "[10:28:42] DEPRECATION WARNING: please use MorganGenerator\n", - "[10:28:42] DEPRECATION WARNING: please use MorganGenerator\n", - "[10:28:42] DEPRECATION WARNING: please use MorganGenerator\n", - "[10:28:42] DEPRECATION WARNING: please use MorganGenerator\n", - "[10:28:42] DEPRECATION WARNING: please use MorganGenerator\n", - "[10:28:42] DEPRECATION WARNING: please use MorganGenerator\n", - "[10:28:42] DEPRECATION WARNING: please use MorganGenerator\n", - "[10:28:42] DEPRECATION WARNING: please use MorganGenerator\n", - "[10:28:42] DEPRECATION WARNING: please use MorganGenerator\n", - "[10:28:42] DEPRECATION WARNING: please use MorganGenerator\n", - "[10:28:42] DEPRECATION WARNING: please use MorganGenerator\n", - "[10:28:42] DEPRECATION WARNING: please use MorganGenerator\n", - "[10:28:42] DEPRECATION WARNING: please use MorganGenerator\n", - "[10:28:42] DEPRECATION WARNING: please use MorganGenerator\n", - "[10:28:42] DEPRECATION WARNING: please use MorganGenerator\n", - "[10:28:42] DEPRECATION WARNING: please use MorganGenerator\n", - "[10:28:42] DEPRECATION WARNING: please use MorganGenerator\n", - "[10:28:42] DEPRECATION WARNING: please use MorganGenerator\n", - "[10:28:42] DEPRECATION WARNING: please use MorganGenerator\n", - "[10:28:42] DEPRECATION WARNING: please use MorganGenerator\n", - "[10:28:42] DEPRECATION WARNING: please use MorganGenerator\n", - "[10:28:42] DEPRECATION WARNING: please use MorganGenerator\n", - "[10:28:42] DEPRECATION WARNING: please use MorganGenerator\n", - "[10:28:42] DEPRECATION WARNING: please use MorganGenerator\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "[10:28:42] DEPRECATION WARNING: please use MorganGenerator\n", - "[10:28:42] DEPRECATION WARNING: please use MorganGenerator\n", - "[10:28:42] DEPRECATION WARNING: please use MorganGenerator\n", - "/home/esben/python_envs/vscode/lib/python3.10/site-packages/sklearn/metrics/_regression.py:492: FutureWarning: 'squared' is deprecated in version 1.4 and will be removed in 1.6. To calculate the root mean squared error, use the function'root_mean_squared_error'.\n", - " warnings.warn(\n" + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'DataFrame.swapaxes' is deprecated and will be removed in a future version. Please use 'DataFrame.transpose' instead.\n", + " return bound(*args, **kwds)\n", + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'DataFrame.swapaxes' is deprecated and will be removed in a future version. Please use 'DataFrame.transpose' instead.\n", + " return bound(*args, **kwds)\n", + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'DataFrame.swapaxes' is deprecated and will be removed in a future version. Please use 'DataFrame.transpose' instead.\n", + " return bound(*args, **kwds)\n", + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'DataFrame.swapaxes' is deprecated and will be removed in a future version. Please use 'DataFrame.transpose' instead.\n", + " return bound(*args, **kwds)\n" ] }, { "data": { "text/plain": [ - "{'RMSE': 0.8314055216871027,\n", - " 'MAE': 0.7061918187521163,\n", - " 'R2': 0.2104167870060334}" + "{'RMSE': 0.8008666941742995,\n", + " 'MAE': 0.6900085446099777,\n", + " 'R2': 0.26735673218396616}" ] }, - "execution_count": 21, + "execution_count": 34, "metadata": {}, "output_type": "execute_result" } @@ -6796,7 +5070,7 @@ }, { "cell_type": "code", - "execution_count": 22, + "execution_count": 35, "id": "6ce2fe53", "metadata": { "execution": { @@ -6836,15 +5110,15 @@ " \n", " \n", " descriptors\n", - " 0.873696\n", - " 0.707222\n", - " 0.122139\n", + " 0.853908\n", + " 0.722250\n", + " 0.161453\n", " \n", " \n", " combined\n", - " 0.831406\n", - " 0.706192\n", - " 0.210417\n", + " 0.800867\n", + " 0.690009\n", + " 0.267357\n", " \n", " \n", "\n", @@ -6852,11 +5126,11 @@ ], "text/plain": [ " RMSE MAE R2\n", - "descriptors 0.873696 0.707222 0.122139\n", - "combined 0.831406 0.706192 0.210417" + "descriptors 0.853908 0.722250 0.161453\n", + "combined 0.800867 0.690009 0.267357" ] }, - "execution_count": 22, + "execution_count": 35, "metadata": {}, "output_type": "execute_result" } @@ -6873,13 +5147,13 @@ "id": "83b7fd13", "metadata": {}, "source": [ - "All performance metrics were improved by the includion of the CDDD features.\n", + "All performance metrics were improved by the inclusion of the CDDD features.\n", "Let's analyze the feature importances of the model:" ] }, { "cell_type": "code", - "execution_count": 23, + "execution_count": 36, "id": "9c98ac71", "metadata": { "execution": { @@ -6919,27 +5193,27 @@ " \n", " 0\n", " pipeline-1__PEOE_VSA6\n", - " 0.078597\n", + " 0.077408\n", " \n", " \n", " 1\n", " pipeline-2__cddd_102\n", - " 0.064366\n", + " 0.069598\n", " \n", " \n", " 2\n", - " pipeline-2__cddd_378\n", - " 0.045695\n", + " pipeline-2__cddd_369\n", + " 0.051396\n", " \n", " \n", " 3\n", - " pipeline-1__VSA_EState5\n", - " 0.032759\n", + " pipeline-2__cddd_378\n", + " 0.044292\n", " \n", " \n", " 4\n", - " pipeline-2__cddd_369\n", - " 0.030738\n", + " pipeline-2__cddd_372\n", + " 0.030435\n", " \n", " \n", " ...\n", @@ -6947,53 +5221,53 @@ " ...\n", " \n", " \n", - " 717\n", - " pipeline-1__fr_lactam\n", + " 724\n", + " pipeline-1__PEOE_VSA3\n", " 0.000000\n", " \n", " \n", - " 718\n", - " pipeline-1__fr_NH2\n", + " 725\n", + " pipeline-1__Ipc\n", " 0.000000\n", " \n", " \n", - " 719\n", - " pipeline-1__SMR_VSA2\n", + " 726\n", + " pipeline-1__SMR_VSA8\n", " 0.000000\n", " \n", " \n", - " 720\n", - " pipeline-1__fr_Imine\n", + " 727\n", + " pipeline-2__cddd_461\n", " 0.000000\n", " \n", " \n", - " 721\n", - " pipeline-1__fr_phos_acid\n", + " 728\n", + " pipeline-1__NumRadicalElectrons\n", " 0.000000\n", " \n", " \n", "\n", - "

722 rows × 2 columns

\n", + "

729 rows × 2 columns

\n", "" ], "text/plain": [ - " feature importance\n", - "0 pipeline-1__PEOE_VSA6 0.078597\n", - "1 pipeline-2__cddd_102 0.064366\n", - "2 pipeline-2__cddd_378 0.045695\n", - "3 pipeline-1__VSA_EState5 0.032759\n", - "4 pipeline-2__cddd_369 0.030738\n", - ".. ... ...\n", - "717 pipeline-1__fr_lactam 0.000000\n", - "718 pipeline-1__fr_NH2 0.000000\n", - "719 pipeline-1__SMR_VSA2 0.000000\n", - "720 pipeline-1__fr_Imine 0.000000\n", - "721 pipeline-1__fr_phos_acid 0.000000\n", - "\n", - "[722 rows x 2 columns]" + " feature importance\n", + "0 pipeline-1__PEOE_VSA6 0.077408\n", + "1 pipeline-2__cddd_102 0.069598\n", + "2 pipeline-2__cddd_369 0.051396\n", + "3 pipeline-2__cddd_378 0.044292\n", + "4 pipeline-2__cddd_372 0.030435\n", + ".. ... ...\n", + "724 pipeline-1__PEOE_VSA3 0.000000\n", + "725 pipeline-1__Ipc 0.000000\n", + "726 pipeline-1__SMR_VSA8 0.000000\n", + "727 pipeline-2__cddd_461 0.000000\n", + "728 pipeline-1__NumRadicalElectrons 0.000000\n", + "\n", + "[729 rows x 2 columns]" ] }, - "execution_count": 23, + "execution_count": 36, "metadata": {}, "output_type": "execute_result" } @@ -7011,7 +5285,7 @@ }, { "cell_type": "code", - "execution_count": 24, + "execution_count": 37, "id": "9dbd2a9e", "metadata": { "execution": { @@ -7029,9 +5303,9 @@ "The 5 most important features are:\n", "pipeline-1__PEOE_VSA6\n", "pipeline-2__cddd_102\n", + "pipeline-2__cddd_369\n", "pipeline-2__cddd_378\n", - "pipeline-1__VSA_EState5\n", - "pipeline-2__cddd_369\n" + "pipeline-2__cddd_372\n" ] } ], @@ -7054,8 +5328,11 @@ } ], "metadata": { + "jupytext": { + "formats": "docs//notebooks//ipynb,docs//notebooks//scripts//py:percent" + }, "kernelspec": { - "display_name": "scikit-mol", + "display_name": ".venv", "language": "python", "name": "python3" }, @@ -7069,7 +5346,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.10.12" + "version": "3.12.6" } }, "nbformat": 4, diff --git a/docs/notebooks/11_safe_inference.ipynb b/docs/notebooks/11_safe_inference.ipynb index 1c67167..126086e 100644 --- a/docs/notebooks/11_safe_inference.ipynb +++ b/docs/notebooks/11_safe_inference.ipynb @@ -9,14 +9,14 @@ "\n", "I think everyone which have worked with SMILES and RDKit sooner or later come across a SMILES that doesn't parse. It can happen if the SMILES was produced with a different toolkit that are less strict with e.g. valence rules, or maybe a characher was missing in the copying from the email. During curation of the dataset for training models, these SMILES need to be identfied and eventually fixed or removed. But what happens when we are finished with our modelling? What kind of molecules and SMILES will a user of the model send for the model in the future when it's in deployment. What kind of SMILES will a generative model create that we need to predict? We don't know and we won't know. So it's kind of crucial to be able to handle these situations. Scikit-Learn models usually simply explodes the entire batch that are being predicted. This is where safe_inference_mode was introduced in Scikit-Mol. With the introduction all transformers got a safe inference mode, where they handle invalid input. How they handle it depends a bit on the transformer, so we will go through the different usual steps and see how things have changed with the introduction of the safe inference mode.\n", "\n", - "NOTE! In the following demonstration I switch on the safe inference mode individually for demonstration purposes. I would not recommend to do that while building and training models, instead I would switch it on _after_ training and evaluation (more on that later). Otherwise there's a risk to train on the 2% of a dataset that didn't fail....\n", + "NOTE! In the following demonstration I switch on the safe inference mode individually for demonstration purposes. I would not recommend to do that while building and training models, instead I would switch it on _after_ training and evaluation (more on that later). Otherwise, there's a risk to train on the 2% of a dataset that didn't fail....\n", "\n", "First some imports and test SMILES and molecules." ] }, { "cell_type": "code", - "execution_count": 1, + "execution_count": 10, "id": "ac780f4c", "metadata": { "execution": { @@ -30,16 +30,16 @@ { "data": { "text/plain": [ - "array([[],\n", - " [],\n", - " [],\n", - " [],\n", + "array([[],\n", + " [],\n", + " [],\n", + " [],\n", " [InvalidMol('SmilesToMolTransformer(safe_inference_mode=True)', error='Invalid Molecule: Explicit valence for atom # 0 N, 4, is greater than permitted')],\n", " [InvalidMol('SmilesToMolTransformer(safe_inference_mode=True)', error='Invalid SMILES: I'm not a SMILES')]],\n", " dtype=object)" ] }, - "execution_count": 1, + "execution_count": 10, "metadata": {}, "output_type": "execute_result" } @@ -72,7 +72,7 @@ }, { "cell_type": "code", - "execution_count": 2, + "execution_count": 11, "id": "44a6019c", "metadata": { "execution": { @@ -86,13 +86,13 @@ { "data": { "text/plain": [ - "[array([], dtype=object),\n", - " array([], dtype=object),\n", - " array([], dtype=object),\n", - " array([], dtype=object)]" + "[array([], dtype=object),\n", + " array([], dtype=object),\n", + " array([], dtype=object),\n", + " array([], dtype=object)]" ] }, - "execution_count": 2, + "execution_count": 11, "metadata": {}, "output_type": "execute_result" } @@ -111,7 +111,7 @@ }, { "cell_type": "code", - "execution_count": 3, + "execution_count": 12, "id": "8286fd44", "metadata": { "execution": { @@ -125,13 +125,13 @@ { "data": { "text/plain": [ - "array([,\n", - " ,\n", - " ,\n", - " ], dtype=object)" + "array([,\n", + " ,\n", + " ,\n", + " ], dtype=object)" ] }, - "execution_count": 3, + "execution_count": 12, "metadata": {}, "output_type": "execute_result" } @@ -151,7 +151,7 @@ }, { "cell_type": "code", - "execution_count": 4, + "execution_count": 13, "id": "9a705642", "metadata": { "execution": { @@ -200,7 +200,7 @@ " fill_value=1e+20)" ] }, - "execution_count": 4, + "execution_count": 13, "metadata": {}, "output_type": "execute_result" } @@ -218,12 +218,12 @@ "id": "a5e2b301", "metadata": {}, "source": [ - "However, currently scikit-learn models accepts masked arrays, but they do not respect the mask! So if you fed it directly to the model to train, it would seemingly work, but the invalid samples would all have the fill_value, meaning you could get weird results. Instead we need the last part of the puzzle, the SafeInferenceWrapper class." + "However, currently scikit-learn models accepts masked arrays, but they do not respect the mask! So if you fed it directly to the model to train, it would seemingly work, but the invalid samples would all have the fill_value, meaning you could get weird results. Instead, we need the last part of the puzzle, the SafeInferenceWrapper class." ] }, { "cell_type": "code", - "execution_count": 5, + "execution_count": 14, "id": "37987dc9", "metadata": { "execution": { @@ -239,7 +239,9 @@ "name": "stderr", "output_type": "stream", "text": [ - "/home/esben/git/scikit-mol/scikit_mol/safeinference.py:49: UserWarning: SafeInferenceWrapper is in safe_inference_mode during use of fit and invalid data detected. This mode is intended for safe inference in production, not for training and evaluation.\n", + "/home/anton/projects/scikit-mol/scikit_mol/safeinference.py:64: UserWarning: SafeInferenceWrapper is in safe_inference_mode during use of fit and invalid data detected. This mode is intended for safe inference in production, not for training and evaluation.\n", + " warnings.warn(\n", + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/sklearn/utils/deprecation.py:151: FutureWarning: 'force_all_finite' was renamed to 'ensure_all_finite' in 1.6 and will be removed in 1.8.\n", " warnings.warn(\n" ] }, @@ -249,7 +251,7 @@ "array([ 0., 1., 0., 1., nan, nan])" ] }, - "execution_count": 5, + "execution_count": 14, "metadata": {}, "output_type": "execute_result" } @@ -277,7 +279,7 @@ "metadata": {}, "source": [ "The prediction went fine both in fit and in prediction, where the result shows `nan` for the invalid entries. However, please note fit in sage_inference_mode is not recommended in a training session, but you are warned and not blocked, because maybe you know what you do and do it on purpose.\n", - "The SafeInferenceMapper both handles rows that are masked in masked arrays, but also checks rows for nonfinite values and filters these away. Sometimes some descriptors may return a inf or nan, even though the molecule itself is valid. The masking of nonfinite values can be switched off, maybe you are using a model that can handle missing data and only want to filter away invalid molecules.\n", + "The SafeInferenceMapper both handles rows that are masked in masked arrays, but also checks rows for nonfinite values and filters these away. Sometimes some descriptors may return an inf or nan, even though the molecule itself is valid. The masking of nonfinite values can be switched off, maybe you are using a model that can handle missing data and only want to filter away invalid molecules.\n", "\n", "## Setting safe_inference_mode post-training\n", "As I said before I believe in catching errors and fixing those during training, but what do we do when we need to switch on safe inference mode for all objects in a pipeline? There's of course a tool for that, so lets demo that:" @@ -285,7 +287,7 @@ }, { "cell_type": "code", - "execution_count": 6, + "execution_count": 15, "id": "51436aa8", "metadata": { "execution": { @@ -354,7 +356,7 @@ }, { "cell_type": "code", - "execution_count": 7, + "execution_count": 16, "id": "b8dbd88c", "metadata": { "execution": { @@ -539,7 +541,7 @@ "[4 rows x 25 columns]" ] }, - "execution_count": 7, + "execution_count": 16, "metadata": {}, "output_type": "execute_result" } @@ -563,7 +565,7 @@ }, { "cell_type": "code", - "execution_count": 8, + "execution_count": 17, "id": "710ceeb0", "metadata": { "execution": { @@ -804,7 +806,7 @@ "[6 rows x 25 columns]" ] }, - "execution_count": 8, + "execution_count": 17, "metadata": {}, "output_type": "execute_result" } @@ -819,12 +821,12 @@ "id": "b87b46b3", "metadata": {}, "source": [ - "The second output is no longer integers, but floats. As most sklearn models cast input arrays to float32 internally, this difference is likely benign, but that's not guaranteed! Thus if you want to use pandas output for your production models, do check that the final outputs are the same for the valid rows, with and without a single invalid row. Alternatively the dtype for the output of the transformer can be switched to float for consistency if its supported by the transformer." + "The second output is no longer integers, but floats. As most sklearn models cast input arrays to float32 internally, this difference is likely benign, but that's not guaranteed! Thus, if you want to use pandas output for your production models, do check that the final outputs are the same for the valid rows, with and without a single invalid row. Alternatively the dtype for the output of the transformer can be switched to float for consistency if it's supported by the transformer." ] }, { "cell_type": "code", - "execution_count": 9, + "execution_count": 18, "id": "bbfe1ec0", "metadata": { "execution": { @@ -835,14 +837,6 @@ } }, "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/esben/git/scikit-mol/scikit_mol/fingerprints/morgan.py:69: DeprecationWarning: dtype is no longer supported, due to move to generator based fingerprints\n", - " self.dtype = dtype\n" - ] - }, { "data": { "text/html": [ @@ -1017,7 +1011,7 @@ "[4 rows x 25 columns]" ] }, - "execution_count": 9, + "execution_count": 18, "metadata": {}, "output_type": "execute_result" } @@ -1041,8 +1035,11 @@ } ], "metadata": { + "jupytext": { + "formats": "docs//notebooks//ipynb,docs//notebooks//scripts//py:percent" + }, "kernelspec": { - "display_name": "vscode", + "display_name": ".venv", "language": "python", "name": "python3" }, @@ -1056,7 +1053,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.10.12" + "version": "3.12.6" } }, "nbformat": 4, diff --git a/docs/notebooks/12_custom_fingerprint_transformer.ipynb b/docs/notebooks/12_custom_fingerprint_transformer.ipynb index ce56b58..9f8c0cb 100644 --- a/docs/notebooks/12_custom_fingerprint_transformer.ipynb +++ b/docs/notebooks/12_custom_fingerprint_transformer.ipynb @@ -30,6 +30,22 @@ "id": "1ed1c7f0", "metadata": {}, "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/joblib/externals/loky/backend/fork_exec.py:38: DeprecationWarning: This process (pid=43991) is multi-threaded, use of fork() may lead to deadlocks in the child.\n", + " pid = os.fork()\n", + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/joblib/externals/loky/backend/fork_exec.py:38: DeprecationWarning: This process (pid=43991) is multi-threaded, use of fork() may lead to deadlocks in the child.\n", + " pid = os.fork()\n", + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/joblib/externals/loky/backend/fork_exec.py:38: DeprecationWarning: This process (pid=43991) is multi-threaded, use of fork() may lead to deadlocks in the child.\n", + " pid = os.fork()\n", + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/joblib/externals/loky/backend/fork_exec.py:38: DeprecationWarning: This process (pid=43991) is multi-threaded, use of fork() may lead to deadlocks in the child.\n", + " pid = os.fork()\n", + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/joblib/externals/loky/backend/fork_exec.py:38: DeprecationWarning: This process (pid=43991) is multi-threaded, use of fork() may lead to deadlocks in the child.\n", + " pid = os.fork()\n" + ] + }, { "data": { "text/plain": [ @@ -39,7 +55,7 @@ " ...,\n", " [2., 2., 2., ..., 2., 2., 2.],\n", " [2., 2., 2., ..., 2., 2., 2.],\n", - " [2., 2., 2., ..., 2., 2., 2.]])" + " [2., 2., 2., ..., 2., 2., 2.]], shape=(100, 64))" ] }, "execution_count": 1, @@ -52,16 +68,20 @@ "import numpy as np\n", "from rdkit import Chem\n", "\n", + "\n", "class DummyFingerprintTransformer(BaseFpsTransformer):\n", - " def __init__(self, fpSize=64, n_jobs=1, safe_inference_mode = False):\n", + " def __init__(self, fpSize=64, n_jobs=1, safe_inference_mode=False):\n", " self.fpSize = fpSize\n", - " super().__init__(n_jobs=n_jobs, safe_inference_mode=safe_inference_mode, name=\"dummy\")\n", + " super().__init__(\n", + " n_jobs=n_jobs, safe_inference_mode=safe_inference_mode, name=\"dummy\"\n", + " )\n", "\n", " def _transform_mol(self, mol):\n", " return mol.GetNumAtoms() * np.ones(self.fpSize)\n", - " \n", + "\n", + "\n", "trans = DummyFingerprintTransformer(n_jobs=4)\n", - "mols = [Chem.MolFromSmiles('CC')] * 100\n", + "mols = [Chem.MolFromSmiles(\"CC\")] * 100\n", "trans.transform(mols)" ] }, @@ -93,7 +113,7 @@ " ...,\n", " [0, 0, 0, ..., 0, 0, 0],\n", " [0, 0, 0, ..., 0, 0, 0],\n", - " [0, 0, 0, ..., 0, 0, 0]], dtype=uint8)" + " [0, 0, 0, ..., 0, 0, 0]], shape=(100, 512), dtype=uint8)" ] }, "execution_count": 2, @@ -104,15 +124,21 @@ "source": [ "from rdkit.Chem import rdFingerprintGenerator\n", "\n", + "\n", "class UnpickableFingerprintTransformer(BaseFpsTransformer):\n", " def __init__(self, fpSize=1024, n_jobs=1, safe_inference_mode=False, **kwargs):\n", " self.fpSize = fpSize\n", - " super().__init__(n_jobs=n_jobs, safe_inference_mode=safe_inference_mode, **kwargs)\n", - " self.fp_gen = rdFingerprintGenerator.GetRDKitFPGenerator(maxPath=2, fpSize=self.fpSize)\n", + " super().__init__(\n", + " n_jobs=n_jobs, safe_inference_mode=safe_inference_mode, **kwargs\n", + " )\n", + " self.fp_gen = rdFingerprintGenerator.GetRDKitFPGenerator(\n", + " maxPath=2, fpSize=self.fpSize\n", + " )\n", "\n", " def _transform_mol(self, mol):\n", " return self.fp_gen.GetFingerprintAsNumPy(mol)\n", - " \n", + "\n", + "\n", "trans = UnpickableFingerprintTransformer(n_jobs=4, fpSize=512)\n", "trans.transform(mols)" ] @@ -135,10 +161,32 @@ "name": "stdout", "output_type": "stream", "text": [ - "n_jobs=1 is fine\n", + "n_jobs=1 is fine\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/joblib/externals/loky/backend/fork_exec.py:38: DeprecationWarning: This process (pid=43991) is multi-threaded, use of fork() may lead to deadlocks in the child.\n", + " pid = os.fork()\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ "n_jobs=2 is not fine, because the generator passed as an argument is not picklable\n", "Error msg: Could not pickle the task to send it to the workers.\n" ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/joblib/externals/loky/backend/fork_exec.py:38: DeprecationWarning: This process (pid=43991) is multi-threaded, use of fork() may lead to deadlocks in the child.\n", + " pid = os.fork()\n" + ] } ], "source": [ @@ -146,6 +194,7 @@ " def __init__(self, generator, n_jobs=1):\n", " self.generator = generator\n", " super().__init__(n_jobs=n_jobs)\n", + "\n", " def _transform_mol(self, mol):\n", " return self.generator.GetFingerprint(mol)\n", "\n", @@ -156,7 +205,9 @@ "try:\n", " BadTransformer(fp_gen, n_jobs=2).transform(mols)\n", "except Exception as e:\n", - " print(\"n_jobs=2 is not fine, because the generator passed as an argument is not picklable\")\n", + " print(\n", + " \"n_jobs=2 is not fine, because the generator passed as an argument is not picklable\"\n", + " )\n", " print(f\"Error msg: {e}\")" ] }, @@ -200,13 +251,16 @@ "class NamedTansformer1(UnpickableFingerprintTransformer):\n", " pass\n", "\n", + "\n", "class NamedTansformer2(UnpickableFingerprintTransformer):\n", " def __init__(self):\n", " super().__init__(name=\"fp_fancy\")\n", "\n", + "\n", "class FancyFingerprintTransformer(UnpickableFingerprintTransformer):\n", " pass\n", "\n", + "\n", "print(NamedTansformer1().get_feature_names_out())\n", "print(NamedTansformer2().get_feature_names_out())\n", "print(FancyFingerprintTransformer().get_feature_names_out())" @@ -215,10 +269,10 @@ ], "metadata": { "jupytext": { - "formats": "ipynb,py:percent" + "formats": "docs//notebooks//ipynb,docs//notebooks//scripts//py:percent" }, "kernelspec": { - "display_name": "vscode", + "display_name": ".venv", "language": "python", "name": "python3" }, @@ -232,7 +286,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.10.12" + "version": "3.12.6" } }, "nbformat": 4, diff --git a/docs/notebooks/13_applicability_domain.ipynb b/docs/notebooks/13_applicability_domain.ipynb index fcac2a4..e456495 100644 --- a/docs/notebooks/13_applicability_domain.ipynb +++ b/docs/notebooks/13_applicability_domain.ipynb @@ -18,7 +18,7 @@ }, { "cell_type": "code", - "execution_count": 1, + "execution_count": 5, "id": "40500fae", "metadata": {}, "outputs": [], @@ -26,7 +26,6 @@ "import numpy as np\n", "import pandas as pd\n", "from rdkit import Chem\n", - "from rdkit.Chem import Draw\n", "from rdkit.Chem import PandasTools\n", "import matplotlib.pyplot as plt\n", "from sklearn.model_selection import train_test_split\n", @@ -34,690 +33,206 @@ "from sklearn.pipeline import Pipeline\n", "from sklearn.preprocessing import StandardScaler\n", "from sklearn.decomposition import PCA\n", - "import pathlib\n", "\n", - "\n", - "from scikit_mol.fingerprints import MorganFingerprintTransformer\n", - "from scikit_mol.applicability import KNNApplicabilityDomain, LeverageApplicabilityDomain" - ] - }, - { - "cell_type": "markdown", - "id": "e5d1277e", - "metadata": {}, - "source": [ - "## Load and Prepare Data" - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "id": "79d3b853", - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "0 out of 7228 SMILES failed in conversion\n" - ] - } - ], - "source": [ - "full_set = True\n", - "\n", - "if full_set:\n", - " csv_file = \"SLC6A4_active_excape_export.csv\"\n", - " if not pathlib.Path(csv_file).exists():\n", - " import urllib.request\n", - "\n", - " url = \"https://ndownloader.figshare.com/files/25747817\"\n", - " urllib.request.urlretrieve(url, csv_file)\n", - "else:\n", - " csv_file = \"../tests/data/SLC6A4_active_excapedb_subset.csv\"\n", - "\n", - "data = pd.read_csv(csv_file)\n", - "\n", - "#Could also build a pipeline to convert the smiles to mols using SmilesToMolTransformer\n", - "PandasTools.AddMoleculeColumnToFrame(data, smilesCol=\"SMILES\")\n", - "print(f\"{data.ROMol.isna().sum()} out of {len(data)} SMILES failed in conversion\")\n", - "\n", - "# Split into train/val/test\n", - "X = data.ROMol\n", - "y = data.pXC50\n", - "\n", - "X_temp, X_test, y_temp, y_test = train_test_split(X, y, test_size=0.2, random_state=42)\n", - "X_train, X_val, y_train, y_val = train_test_split(X_temp, y_temp, test_size=0.25, random_state=42)" - ] - }, - { - "cell_type": "markdown", - "id": "e2896ad5", - "metadata": {}, - "source": [ - "## Example 1: k-NN Applicability Domain with Binary Morgan Fingerprints\n", - "\n", - "In this example, we'll use binary Morgan fingerprints and a k-NN based applicability domain with Tanimoto distance.\n", - "This is particularly suitable for binary fingerprints as the Tanimoto coefficient is a natural similarity measure for them." - ] - }, - { - "cell_type": "code", - "execution_count": 3, - "id": "9c89148b", - "metadata": {}, - "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/esben/envs/vscode/lib/python3.10/site-packages/numpy/core/fromnumeric.py:59: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", - " return bound(*args, **kwds)\n" - ] - }, - { - "data": { - "text/html": [ - "
Pipeline(steps=[('fp', MorganFingerprintTransformer()),\n",
-       "                ('rf', RandomForestRegressor(n_jobs=-1, random_state=61453))])
In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.
" - ], - "text/plain": [ - "Pipeline(steps=[('fp', MorganFingerprintTransformer()),\n", - " ('rf', RandomForestRegressor(n_jobs=-1, random_state=61453))])" - ] - }, - "execution_count": 3, - "metadata": {}, - "output_type": "execute_result" - } - ], + "from scikit_mol.conversions import SmilesToMolTransformer\n", + "from scikit_mol.fingerprints import MorganFingerprintTransformer\n", + "from scikit_mol.applicability import KNNApplicabilityDomain, LeverageApplicabilityDomain" + ] + }, + { + "cell_type": "markdown", + "id": "e5d1277e", + "metadata": {}, "source": [ - "# Create pipeline for binary fingerprints\n", - "binary_fp_pipe = Pipeline([\n", - " ('fp', MorganFingerprintTransformer(fpSize=2048, radius=2)),\n", - " ('rf', RandomForestRegressor(n_estimators=100, random_state=0xf00d, n_jobs=-1))\n", - "])\n", - "\n", - "# Train the model\n", - "binary_fp_pipe.fit(X_train, y_train)" + "## Load and Prepare Data" ] }, { "cell_type": "code", - "execution_count": 9, - "id": "ee7b2f64", + "execution_count": 6, + "id": "79d3b853", "metadata": {}, "outputs": [ { - "name": "stderr", + "name": "stdout", "output_type": "stream", "text": [ - "/home/esben/envs/vscode/lib/python3.10/site-packages/numpy/core/fromnumeric.py:59: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", - " return bound(*args, **kwds)\n" + "0 out of 200 SMILES failed in conversion\n" ] - }, - { - "data": { - "text/plain": [ - "Text(0.5, 1.0, 'Predicted pXC50 vs Absolute Error')" - ] - }, - "execution_count": 9, - "metadata": {}, - "output_type": "execute_result" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAUkAAAE8CAYAAABNZUPaAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAAC6BklEQVR4nOy9d5xdVdX//z719rnTZ1ImnZ4AIh0kNEGKigUQnkdRRFFAsSvqV0VUHkUEH+FHsYAtCojgIyIKShGEUIMklHTSppfb76n798c+92ZqMjeZJJPkfl6vgcyZc8/Z59yz11l7rc/6LEUIIaiiiiqqqGJUqLt6AFVUUUUVkxlVI1lFFVVUsQVUjWQVVVRRxRZQNZJVVFFFFVtA1UhWUUUVVWwBVSNZRRVVVLEFVI1kFVVUUcUWUDWSVVRRRRVbQNVIVlFFFVVsAVUjOQZmzZrFhz/84fLvjz32GIqi8Nhjj+2yMQ3H8DFWMXnwrW99C0VR6Onp2annVRSFb33rWzv1nHs6JqWRvPPOO1EUpfwTDofZd999ueKKK+js7NzVw6sIDz744G7x0AoheNvb3kZTUxO9vb0j/v6JT3wCwzBYsmRJeduqVau49NJLmTNnDuFwmJqaGo477jh+/OMfUygUyvudeOKJQ77P0s873vGOEeexLIsvf/nLTJ06lUgkwlFHHcXDDz+8Q655e3DkkUeiKAq33HLLrh7KhOF73/se999//4Qfd9asWaN+/2M9A5MN+q4ewJbw7W9/m9mzZ1MsFnnyySe55ZZbePDBB1m6dCnRaHSnjuWEE06gUChgmmZFn3vwwQe5+eabJ72hVBSF2267jUMPPZQvfOEL3HHHHeW/Pf3009x+++187nOf49BDDwXgL3/5C+eeey6hUIgPfehDzJ8/H9u2efLJJ/niF7/IsmXLuP3228vHmD59Otdee+2Qc06dOnXEOD784Q/zhz/8gc985jPss88+3HnnnZx55pk8+uijHH/88Tvm4ivEihUreO6555g1axa//e1v+eQnP7mrhzQh+N73vsf73/9+zjnnnAk/9qGHHsrnP//5EdtHewYmHcQkxB133CEA8dxzzw3Z/rnPfU4AYtGiRWN+NpvNTsgYZs6cKS666KLtPs7ll18udtRtnqgxDsZXv/pVAYjHHntMCCGEbdti/vz5YsaMGeV7u3r1ahGPx8X+++8vNm3aNOIYK1asEDfeeGP594ULF4qDDjpoq+devHixAMR1111X3lYoFMTcuXPFMcccs72XNmH4xje+IZqbm8W9994rFEURa9asGbHPN7/5TQGI7u7unTo2QHzzm9/cps/GYrEJf56EkM/pWWedtU2fHWs+e54nCoXC9gxr3LZiUi63x8LJJ58MwJo1awDpdcTjcVatWsWZZ55JIpHgv/7rvwDwfZ8bb7yRgw46iHA4TEtLC5deein9/f1DjimE4Dvf+Q7Tp08nGo1y0kknsWzZshHnHismuXjxYs4880zq6uqIxWIcfPDB/PjHPy6P7+abbwYYssQoYaLHOBrWrl2Loij88Ic/5IYbbmDmzJlEIhEWLlzI0qVLR+z///7f/2Pu3Llceuml2LbN9ddfz9KlS7npppuIxWIA/OAHPyCbzfLzn/+cKVOmjDjGvHnzuPLKK0dsd12XbDY75lj/8Ic/oGkaH//4x8vbwuEwH/3oR3n66adZv379mJ+94ooriMfj5PP5EX+74IILaG1txfM8AJ5//nlOP/10GhsbiUQizJ49m4svvnjMYw/HokWLeP/738/ZZ59NMplk0aJFY+7b09PDeeedR01NDQ0NDVx55ZUUi8Uh+zz88MMcf/zx1NbWEo/H2W+//fjqV786ZJ+uri4++tGP0tLSQjgc5pBDDuGXv/zlVsf64Q9/mFmzZo3YXoqZlqAoCrlcjl/+8pfl53RwvHvjxo1cfPHFtLS0EAqFOOigg/jFL36x1fNXgi3NZ0VRuOKKK/jtb3/LQQcdRCgU4qGHHgLgpZde4owzzqCmpoZ4PM4pp5zCM888M+TYpRDe448/zmWXXUZzczPTp08f17gm9XJ7OFatWgVAQ0NDeZvrupx++ukcf/zx/PCHPywvwy+99FLuvPNOPvKRj/DpT3+aNWvWcNNNN/HSSy/x1FNPYRgGAN/4xjf4zne+w5lnnsmZZ57Jiy++yGmnnYZt21sdz8MPP8zZZ5/NlClTuPLKK2ltbeW1117jgQce4Morr+TSSy9l06ZNPPzww/z6178e8fmdMcYSfvWrX5HJZLj88sspFov8+Mc/5uSTT+aVV16hpaWlvF84HOb/+//+P04//XQuu+wyFi1axHve8x7e+c53lvf585//zJw5czj22GPHff7ly5cTi8WwbZuWlhY+9rGP8Y1vfKN8jSAf9n333Zeampohnz3yyCMBWLJkCW1tbaMe//zzz+fmm28uhwFKyOfz/PnPf+bDH/4wmqbR1dXFaaedRlNTE1/5yleora1l7dq1/PGPfxzXdSxevJiVK1dyxx13YJom733ve/ntb387wqiVcN555zFr1iyuvfZannnmGf73f/+X/v5+fvWrXwGwbNkyzj77bA4++GC+/e1vEwqFWLlyJU899VT5GIVCgRNPPJGVK1dyxRVXMHv2bO655x4+/OEPMzAwMOoLqVL8+te/5pJLLuHII48sv6Tmzp0LQGdnJ0cffXTZUDU1NfHXv/6Vj370o6TTaT7zmc9s9fiO44yaxIrFYkQikfLvY81ngH/+85/cfffdXHHFFTQ2NjJr1iyWLVvG2972NmpqavjSl76EYRjcdtttnHjiiTz++OMcddRRQ8532WWX0dTUxDe+8Q1yudz4bs52+as7CKXl9iOPPCK6u7vF+vXrxe9//3vR0NAgIpGI2LBhgxBCiIsuukgA4itf+cqQz//rX/8SgPjtb387ZPtDDz00ZHtXV5cwTVOcddZZwvf98n6lJefgpcejjz4qAPHoo48KIYRwXVfMnj1bzJw5U/T39w85z+BjjbXc3hFjHA1r1qwRwJD7JsTmpe1nP/vZUT93wQUXCEAkEgmxfv368vZUKiUA8e53v3uL5x2Miy++WHzrW98S9957r/jVr34l3vWudwlAnHfeeUP2O+igg8TJJ5884vPLli0TgLj11lvHPIfv+2LatGnife9735Dtd999twDEE088IYQQ4r777hs1lDNeXHHFFaKtra38Xfz9738XgHjppZeG7Fdabr/rXe8asv2yyy4TgHj55ZeFEELccMMNW12W33jjjQIQv/nNb8rbbNsWxxxzjIjH4yKdTpe3M2y5fdFFF4mZM2eOOGZpfIMx1nL7ox/9qJgyZYro6ekZsv0DH/iASCaTIp/Pjzl2IeRyGxj159prrx0y1tHmc+m6VFUVy5YtG7L9nHPOEaZpilWrVpW3bdq0SSQSCXHCCSeUt5VsyvHHHy9c193ieIdjUi+3Tz31VJqammhra+MDH/gA8Xic++67j2nTpg3Zb3jg/J577iGZTPL2t7+dnp6e8s9b3/pW4vE4jz76KACPPPIItm3zqU99asjSYzxvxpdeeok1a9bwmc98htra2iF/G3yssbAzxjgY55xzzpD7duSRR3LUUUfx4IMPjrp/Y2MjAAceeOCQZUk6nQYgkUiM+9w///nP+eY3v8l73/tePvjBD/KnP/2Jj33sY9x9991DlkWFQoFQKDTi8+FwuPz3saAoCueeey4PPvjgkCX9XXfdxbRp08pJn9J39cADD+A4zrivAaSXc9ddd3H++eeXv4uTTz6Z5uZmfvvb3476mcsvv3zI75/61KcAyve9NJ4//elP+L4/6jEefPBBWltbueCCC8rbDMPg05/+NNlslscff7yi66gEQgjuvfde3vnOdyKEGPKsnn766aRSKV588cWtHqfEUhj+M/iaShgrEbZw4UIOPPDA8u+e5/H3v/+dc845hzlz5pS3T5kyhQsvvJAnn3yy/LyW8LGPfQxN08Z7+cAkpQCVcPPNN/Pwww/z6KOP8uqrr7J69WpOP/30Ifvouj4itrBixQpSqRTNzc00NTUN+clms3R1dQHw5ptvArDPPvsM+XxTUxN1dXVbHFtp6T9//vxturadMcbBGP55gH333Ze1a9eO2P78889z8803M3/+fBYvXsxvfvOb8t9KS+FMJjPuc4+GUqbzkUceKW+LRCJYljVi31IMb/CybDScf/75FAoF/u///g+AbDbLgw8+yLnnnls2agsXLuR973sfV199NY2Njbz73e/mjjvuGPW8w/H3v/+d7u5ujjzySFauXMnKlStZs2YNJ510Er/73e9GNXLD7/vcuXNRVbV8388//3yOO+44LrnkElpaWvjABz7A3XffPeRYb775Jvvssw+qOnS6HnDAAeW/7yh0d3czMDDA7bffPuI5/chHPgJQfla3hMbGRk499dQRPzNnzhyy32jzuYTZs2ePGFs+n2e//fYbse8BBxyA7/sj4tjDjzEeTOqY5JFHHsnhhx++xX1CodCIh8f3/S2+3ZuamiZsjNuKyTpGz/P4+Mc/ztSpU3nqqac47bTT+PznP8/ZZ59NbW0tNTU1TJ06ddSkTyUoxRb7+vrK26ZMmcLGjRtH7Nve3g5snS5y9NFHM2vWLO6++24uvPBC/vznP1MoFDj//PPL+yiKwh/+8AeeeeYZ/vznP/O3v/2Niy++mOuvv55nnnmGeDw+5vFL39V555036t8ff/xxTjrppC2OcfgqIxKJ8MQTT/Doo4/yl7/8hYceeoi77rqLk08+mb///e8Vez1bO18JpSTW1lAy1v/93//NRRddNOo+Bx988LYNbhSMNp9L2NpLcjzYlmNMaiO5rZg7dy6PPPIIxx133BZvSukttmLFiiHuend394gM82jnAFi6dCmnnnrqmPuN9ZDujDEOxooVK0ZsW758+YjM5//+7//y0ksvcd9991FTU8Ott97K4Ycfzle+8hVuvfVWAM4++2xuv/12nn76aY455phxj2EwVq9eDQx9GRx66KE8+uijpNPpIcmbxYsXl/++NZx33nn8+Mc/Jp1Oc9dddzFr1iyOPvroEfsdffTRHH300Xz3u99l0aJF/Nd//Re///3vueSSS0Y9bi6X409/+hPnn38+73//+0f8/dOf/jS//e1vRxjJFStWDPFeVq5cie/7Q+67qqqccsopnHLKKfzoRz/ie9/7Hl/72td49NFHy97Wf/7zH3zfH2JAXn/9dYAR3thg1NXVMTAwMGL7aN7naM9qU1MTiUQCz/O2+JzvCjQ1NRGNRnnjjTdG/O31119HVdUxE32VYFIvt7cV5513Hp7ncc0114z4m+u65Yfm1FNPxTAMfvKTnyAG9UO78cYbt3qOww47jNmzZ3PjjTeOeAgHH6tEmxm+z84Y42Dcf//9Q7y0Z599lsWLF3PGGWeUt61fv55vfOMbvOtd7yoTig899FA+/elP89Of/rRsrL70pS8Ri8W45JJLRq2AWrVqVZkGlU6nRyxlRUBpAoaET97//vfjed4QErplWdxxxx0cddRR43rgzz//fCzL4pe//CUPPfTQCK+vv79/yH0sXWPpXGPhvvvuI5fLcfnll/P+979/xM/ZZ5/NvffeO+IYJQpYCT/5yU8Ayvd9sCc91njOPPNMOjo6uOuuu8r7uK7LT37yE+LxOAsXLhxz3HPnziWVSvGf//ynvK29vZ377rtvxL6xWGzEc6ppGu973/u49957R109dHd3j3nuHQ1N0zjttNP405/+NCRs1NnZyaJFizj++ONHMCW2CRWleXYSxiKTD8dFF10kYrHYqH+79NJLBSDOOOMMccMNN4ibbrpJXHnllWLq1KninnvuKe931VVXCUCceeaZ4qabbhIf/ehHxdSpU0VjY+MWs9tCyEy0YRhi5syZ4lvf+pa47bbbxGc/+1lx2mmnlfcpZVc/+MEPit/85jfid7/73Q4b42goZbcXLFggZs2aJb7//e+Lb3/726K+vl40NDQMIYO/+93vFrFYTLz55ptDjpFOp8W0adPEoYceWs4M/ulPfxLhcFjU1dWJK6+8Uvz0pz8VN998s/iv//ovYZqm+PjHP16+b62treKzn/2suPnmm8UPf/hDcdxxxwmgvM9gnHvuuULXdfHFL35R3HbbbeLYY48Vuq6Lxx9/fIvXORjz5s0TiURCAOKFF14Y8rcbbrhB7LPPPuJLX/qSuO2228QPf/hDsd9++4mamhqxevXqMY/5jne8QzQ0NIyZGf3zn/8sAHHvvfcKITZnjxcsWCDe+c53iptvvln893//twDEhRdeWP7clVdeKd7ylreIr3/96+KnP/2p+O53vyumTZsmpk+fLgYGBoQQQuTzeXHAAQcI0zTF5z//efGTn/xELFy4UABDSPtCjMxu9/T0iFgsJubMmSNuvPFG8b3vfU+0tbWJww47bER2+8wzzxSxWExcf/314ne/+5145plnhBBCdHR0iJkzZ4poNCquvPJKcdttt4lrr71WnHvuuaKurm4r34bMbh966KHi17/+9Yif++67r7zfluYzIC6//PIR25cuXSpisZiYNm2a+O53vyu+//3vizlz5ohQKFQevxDjtymjnrviT+wETISRFEKI22+/Xbz1rW8VkUhEJBIJsWDBAvGlL31piGHwPE9cffXVYsqUKSISiYgTTzxRLF26dEQ1y2hGUgghnnzySfH2t79dJBIJEYvFxMEHHyx+8pOflP/uuq741Kc+JZqamoSiKCMezIkc42goGcnrrrtOXH/99aKtrU2EQiHxtre9rUxDEWIzNeaHP/zhqMf5wx/+IADxox/9qLxt+fLl4mMf+5iYNWuWME1TJBIJcdxxx4mf/OQnolgsCiFkdc65554rZs2aJcLhsIhGo+Ktb32ruPXWW4dQmkooFAriC1/4gmhtbRWhUEgcccQR4qGHHtriNQ7H1772NQGIefPmjfjbiy++KC644AIxY8YMEQqFRHNzszj77LPF888/P+bxOjs7ha7r4oMf/OCY++TzeRGNRsV73vMeIcRmI/nqq6+K97///SKRSIi6ujpxxRVXDKkU+cc//iHe/e53i6lTpwrTNMXUqVPFBRdcIJYvXz5iDB/5yEdEY2OjME1TLFiwQNxxxx0jxjHcSAohaUrz588XpmmK/fbbT/zmN78ZlQL0+uuvixNOOEFEIpER9LLOzk5x+eWXi7a2NmEYhmhtbRWnnHKKuP3228e8JyVsiQI0mJ60LUZSCPmdnn766SIej4toNCpOOukk8e9//3vIPttjJJVgAFXsoVi7di2zZ8/muuuu4wtf+MKuHk4VVex22CNjklVUUUUVE4Wqkayiiiqq2AKqRrKKKqqoYguoxiSrqKKKKraAqidZRRVVVLEFVI1kFVVUUcUWsEeWJW4Jvu+zadMmEonEuNR6qqiiip0LIQSZTIapU6eOWce9M7HXGclNmzZNSD1nFVVUsWOxfv36cauH70jsdUaypIO4fv36ianrrKKKKiYU6XSatra2ijRLdyT2OiNZWmLX1NRUjWQVVUxiTJZw2K5f8FdRRRVVTGJUjWQVVVRRxRaw1y23dzV8X7BxoEDOdomZOtNqI6jq5FhWVFFFFSNRNZI7ESu7MvxtaSerurMUXY+wrjG3Kc7p81uY1zw5gtRVVFHFUFSN5ARhax7iyq4Mdzy1lr6czZRkmKgZIW+7LN2UYlOqwEeOm1U1lFVUMQlRNZITgK15iL4v+NvSTvpyNvs0x8tZu0TYIB7SWdGV5e/LOpnTGK8uvauoYpKhaiS3E+PxEEO6xqruLFOS4RG0BkVRmJIMs7Iry8aBAm310V10JVVUUcVoqGa3twPDPcRE2EBTFRJhg32a4/TlbP6+rJOM5VB0PaLm6O+kiKlhuR45293JV1BFFVVsDVUjuR3YOFAYl4eYLbqEdY38GEawYHuEdI3YGEa0iiqq2HWoGsntQM52x+UhxkM6c5vitKeKI9qZCiFoTxWZ1xxnWu32N1+voooqJhZVI7kdiJn6uDzERNjg9Pkt1MdMVnRlyRQdXN8nU3RY0ZWlPmZy2kEt1aRNFVVMQlSN5HZgWm1k3B7ivOYEHzluFvOnJhnIO6ztyTGQd1gwLVml/1RRxSTGLjWSt9xyCwcffHBZbOKYY47hr3/96xY/c88997D//vsTDodZsGABDz744E4a7UioqlKRhzivOcEnT5zLZ9++L586ZR8++/Z9+cTCuVUDWUUVkxi71EhOnz6d//mf/+GFF17g+eef5+STT+bd7343y5YtG3X/f//731xwwQV89KMf5aWXXuKcc87hnHPOYenSpTt55JtRqYeoqgpt9VH2b62hrT5aXWJXUcUkx6RrBFZfX891113HRz/60RF/O//888nlcjzwwAPlbUcffTSHHnoot95667iOn06nSSaTpFKpCZVKq9ZkV1HFxGBHzdFtxaThnHiexz333EMul+OYY44ZdZ+nn36az33uc0O2nX766dx///1jHteyLCzLKv+eTqcnZLzDUfIQq6iiij0Luzxx88orrxCPxwmFQnziE5/gvvvu48ADDxx1346ODlpaWoZsa2lpoaOjY8zjX3vttSSTyfJPtXVDFVVUUQl2uZHcb7/9WLJkCYsXL+aTn/wkF110Ea+++uqEHf+qq64ilUqVf9avXz9hx66iir0dvi9Y35fn9Y406/vy+P6kit5NCHb5cts0TebNmwfAW9/6Vp577jl+/OMfc9ttt43Yt7W1lc7OziHbOjs7aW1tHfP4oVCIUCg0sYOuoooq9hrpv13uSQ6H7/tDYoiDccwxx/CPf/xjyLaHH354zBhmFVVUsWNQEnZZuilFbdRgTmOc2qjB0k0p7nhqLSu7Mrt6iBOGXepJXnXVVZxxxhnMmDGDTCbDokWLeOyxx/jb3/4GwIc+9CGmTZvGtddeC8CVV17JwoULuf766znrrLP4/e9/z/PPP8/tt9++Ky+jiir2Kuxt0n+71Eh2dXXxoQ99iPb2dpLJJAcffDB/+9vfePvb3w7AunXrhjQnP/bYY1m0aBFf//rX+epXv8o+++zD/fffz/z583fVJVRRxV6H8Qq77CnSf5OOJ7mjMdk4WFVUsbvh9Y40//uPFcxpjKON4im6vs/anhyfOmUf9m+tfI5Ntjk66WKSVVRRxeTGeIVd9hTpv6qRnADsDTSIKqoooRJhlz0Be4ap34XYW2gQVYyOvbEctSTssilVYEWXjE1GTI2C7dGeKu5x0n9VI7kdqHZA3LuxN78gS8IupevvTBcJ6RoLpiU57aA96/qrRnIbsbfRIKoYiuoLUhrKOSfG93hPumoktxF7Gw2iis2oviA3Y28QdqkoceM4DqeccgorVqzYUePZbTDe/jbVDoh7Hip5QVax+6MiI2kYBv/5z3921Fh2K+xtNIgqNqP6gty7UDEF6L//+7/5+c9/viPGsluhUhpElSa056D6gty7UPG36Louv/jFL3jkkUd461vfSiwWG/L3H/3oRxM2uMmMSmgQe3MWdE9E6QW5dFOKeEgfsuQuvSAXTEvuMTzBvR0VG8mlS5dy2GGHAbB8+fIhfxsen9nTMR4aRDULuudhb+MJ7u2o1m5PAMYiFPu+4JbHVrF0U2pIFhSkx7GiK8uCaUk+sXBudULthhi8QrBcucSe1xzf43iCOxuTrXZ7u4ImGzZsAGTXw70ZY9EgqjShPRt7C09wb0fFiRvf9/n2t79NMplk5syZzJw5k9raWq655hp8398RY9xtUc2C7vmotgje81GxJ/m1r32Nn//85/zP//wPxx13HABPPvkk3/rWtygWi3z3u9+d8EHurhicBU2EjRF/r2ZBq9gbsLvXt1c8O3/5y1/ys5/9jHe9613lbQcffDDTpk3jsssuqxrJQahmQavY27EnMDsqNpJ9fX3sv//+I7bvv//+9PX1Tcig9hRUs6BV7M3YU5gdFcckDznkEG666aYR22+66SYOOeSQCRnUnoQSTWj+1CQDeYe1PTkG8g4LpiV3m4ekiirGwlhFEsPr2xNhA01VSIQN9mmO05ez+fuyzt2iqKJiT/IHP/gBZ511Fo888ki5S+HTTz/N+vXrefDBByd8gJMd44m3VLOgVewpGPy892QslqwbYHVPbsRSOqRrewyzo2IjuXDhQpYvX87NN9/M66+/DsB73/teLrvsMqZOnTrhA5zMqCTesjeopVSxZ2Pw896TtVjfl8fQVeZPrWFOY3zIUnrhvk0Bs2P0eHvE1OhMF3cLZkdFRtJxHN7xjndw66237vUJmj0l3lJFFePB4Oe9tSbMpoECQgg8X7CiK0csZFAfM8tScS+82U9IU/cIZkdVBWgbsCfFW6qoYmsY/rwDDBQcamMmDTGTgu2yqjuLEKK8lO5KF2lKhPaIPjhVFaBtQFVPsIq9CcOfd9vzcX0fQ1NRFIV4WKcvZ5MpyqVzxNSwPZ/DZ9dTHzNZ0ZUlU3RwfZ9M0WFFV3a3YnbsUhWga6+9lj/+8Y+8/vrrRCIRjj32WL7//e+z3377jfmZO++8k4985CNDtoVCIYrFYmUXsh3YXEmz+8dbqqhiaxj+vJuaiq6qOJ5PSNcwNJWs5WJ7suKutJQ+oLWGOY2x3b4Pzi5VAXr88ce5/PLLOeKII3Bdl69+9aucdtppvPrqqyOM72DU1NTwxhtvbPN5txfVSpoq9iYMf94TYZ36qElXpogZk8ZSV1VMTR1RJKGqym7P7KhoFnuex9VXX82CBQuoq6vb7pM/9NBDQ36/8847aW5u5oUXXuCEE04Y83OKotDa2rrd599WVCtpqtibMNrzPrc5RsZy6M1auD60JsOAGHUpvbszOyqKSWqaxmmnncbAwMAOGUwqlQKgvr5+i/tls1lmzpxJW1sb7373u1m2bNmY+1qWRTqdHvKzvShV0uwJ8ZYqqtgaRnveayIySampKqqiENJVUgV3jyySqFhP8vDDD+f73/8+p5xyyoQOxPd93vWudzEwMMCTTz455n5PP/00K1as4OCDDyaVSvHDH/6QJ554gmXLlo0q2fatb32Lq6++esT2idCqq+oJVrE3YbTnfW5TnIPbkjQlQhO2lJ5sepIVG8mHHnqIq666imuuuWbUxM22XtQnP/lJ/vrXv/Lkk09WpE/pOA4HHHAAF1xwAddcc82Iv1uWhWVZ5d/T6TRtbW0T9gXs7gonVVRRCXbG8z7ZjGTFmYUzzzwTgHe9610jYnGKouB5XsWDuOKKK3jggQd44oknKhbwNQyDt7zlLaxcuXLUv4dCIUKhUMVjGi9293hLFVVUgr3xea/YSD766KMTdnIhBJ/61Ke47777eOyxx5g9e3bFx/A8j1deeaVsvKuooooqJhLbVLs9Ubj88stZtGgRf/rTn0gkEnR0dACQTCaJRGRm+EMf+hDTpk3j2muvBeDb3/42Rx99NPPmzWNgYIDrrruON998k0suuWTCxlVFFVVUUcK4s9s/+MEPKBQ2V5A89dRTQ2J9mUyGyy67rKKT33LLLaRSKU488USmTJlS/rnrrrvK+6xbt4729vby7/39/XzsYx/jgAMO4MwzzySdTvPvf/+bAw88sKJzV1FFFVWMB+NO3GiaRnt7O83NzYBM0CxZsoQ5c+YA0NnZydSpU7cpJrkzMdmCwlVUUcVQTLY5Ou7l9mhF6lXsvqhm5auoYnyo1s3thdgT+o5UUcXOQtVI7mWo6mBWUUVlqMhI/uxnPyMel3pyruty55130tjYCMjETRWTG8N1AUs810TYKIul/n1ZJ3Ma49Wl9zagGsLYMzHuxM2sWbPGpbazZs2a7R7UjsRkCwrvTKzvy3PDw8upjRqjqhdlig4DeYfPvn3fvY4wvL2ohjAmDpNtjo7bk1y7du0OHEYVY2EivZOqDuaOQTWEsWejGpPcRuyMpdXyjgx/eGE9q7qzeALqIgbzmhPb7J1UdTAnHtUQxp6P6mzYBuyMpdU/Xuvkf/+xgu6MhakrhHSNTMGhJ2dvs3dS1cGceFTSymMiQxjV+OfOQ9VIVoidsbRa3pnmf/+xgo50kdaaEKau4Xg+qYKD5Uqy/rZ4JyVdwE2pAiu65MSOmBoF26M9VazqYG4DdkUIoxr/3LmouBHY3oyd0SXR9wV/eH4j3RmLKTVhwoYeiJpq1MdMio5P3nZZ0ZnZpkZj85oTfOS4WcyfmmQg77C2J8dA3tkjxVJ3BgaHMEbDRIcwSi/ppZtS1EYN5jTGqY0aLN2U4o6n1rKyq8oymWhUPckKsDOWVqVzmLqKoQ99h5U602WKLgMFZ5u9k3nNid2+78hkwc4MYVTjn7sG2+RJrlq1iq9//etccMEFdHV1AfDXv/51i20U9gRsXlqN/m6JmBqW623X0ipnu3jCJ6SrON5Ij9TQVGzXQ1XYLu+kpAu4f2sNbfXRvWJS+b5gfV+e1zvSrO/LT0hf9J3ZyqPaynjXoGIj+fjjj7NgwQIWL17MH//4R7LZLAAvv/wy3/zmNyd8gJMJO2NpFTN16iIm8ZBOtuiMqJG3XQ/bFczdTRq7Txas7Mpwy2OruOHh5fzvP1Zww8PLueWxVROyPN1ZIYyd8ZKuYiQqns1f+cpX+M53vsPnPvc5EonNX/7JJ5/MTTfdNKGDm2yodGm1LRnIabUR5jUn6MnaWK5PX84mHtYDD9KnIy1jle8/rG2v8P4mAjsj2bYzQhhVCteuQcV385VXXmHRokUjtjc3N9PT0zMhg5qsqCQ7vK0ZyMHnAMjbLhnLxXYdbNentSbMp07Zh31bd88Ey86mruzMON6Obm0w3pf0lJow6/vy1XjzBKFiI1lbW0t7e/uIVgsvvfQS06ZNm7CBTUb4viCkayzcr4nn1/TRnbHoTPuEdI0F05LlLomjeS45y+XZtb0sa09xwZEzOG5u45gPbmn59relnazsyjBQsFEVlXnNcd731mns27LrS7W2BbuCurKreIw7AuN5Se/XmuC2J1ZX6UETiIqN5Ac+8AG+/OUvc88996AoCr7v89RTT/GFL3yBD33oQztijJMCK7syPLS0g1c2psjbLhFDY2ZDjCNm1XPAlJry23o0z6UvZ7GqK0dvziJVcFjbk+fM+a28Y0HrmA/unpaB3lWle3taKebgF+iq7iyd6WL5Jb1fa4J/vt5VLY+cYFRsJL/3ve9x+eWX09bWhud5HHjggXiex4UXXsjXv/71HTHGXY6VXRlufGQFyzsyeEIAAlBY25OnPVVkTlOsbLyGey59OYsl6wco2B7xsE7I0MhZLs+92Ud7urjFB3dP6Uy3K6kre2Icb7QX6JSaMLc9sbpKD9oBqDi7bZomP/3pT1m9ejUPPPAAv/nNb3j99df59a9/jaZpO2KMuxS+L1i0eB0vrx/A830SYZ36WIhEWMfzfV5eP8CixevKdJLBGUghBKu6chRsj/qYSUjXCOkqiiLjSxNBPt8dsCupK6U4XnuqOKq6fnuqyLxxMgV2BIVoWzGcwtWeLlbpQTsIFb8+v/3tb/OFL3yBtrY22traytsLhQLXXXcd3/jGNyZ0gLsaG/rzPLO6F02Bhnio/ACGdA0zrtKZLrJ4dS8b+vPMaIgN8VyEgL68zE6XPud4PrqqEtI1piS13SYetj3YlUveiSrFnKh46o5KXO1pYYXJhIo9yauvvrrMjRyMfD7P1VdfPSGDmkxY3ZMjlXeoiRqjvqGTUYOBgsPqnhww1HOxXA/X8/F9maUu2i6Zokt9zCQR1vcaXtvOLt0bju3lMU5UKeCO5Gru6nu8J6PiOyaEGFV89+WXX6a+vn5CBjXZIBRQGOttP3T7YM9leWeG3pxNT9ZCCPCFIGrqHDRVeqQFy90rHtzJoD60rYmwiYqn7ujE1WS4x3sqxu1J1tXVUV9fj6Io7LvvvtTX15d/kskkb3/72znvvPMqOvm1117LEUccQSKRoLm5mXPOOYc33nhjq5+755572H///QmHwyxYsIAHH3ywovNWgtmNMWojJgP5kdUvQghSeYdkxGR2Y6y8fV5zgpP3b8Z2fVzPx3Z9NFUhFtYJ6SprenL0Zq2K4mG7M3Zm6d7WxlFpKeZExFN3hjDKZLnHeyLG7cLceOONCCG4+OKLufrqq0kmk+W/mabJrFmzOOaYYyo6+eOPP87ll1/OEUccgeu6fPWrX+W0007j1VdfJRaLjfqZf//731xwwQVce+21nH322SxatIhzzjmHF198kfnz51d0/vGgrS7K0bPrefi1TnpzNomg+sXxfDJFF18IjplTT1vd5pii7wteb88wJRlmdmOUZZvS2K5PbdTA0FS6MzbPru3j8Jl1e82DuyXqSolfOhkxEbG+LRlagHhI44U3+3n+zT4On1m/zc/D7nqPJzvG3eOmhMcff5xjjz0WwxhJp9hedHd309zczOOPP84JJ5ww6j7nn38+uVyOBx54oLzt6KOP5tBDD+XWW2/d6jm2pX9GmQLUmcEb9LbXVIV9WxJ85tR9hjyAw3vJlHiSfXkbz/fxBYR1lavOPIDj92ka1xh2VwxPVEypCdMeGJXdgfs5EX2BXu+Q+qBzGuNog661L2ezsitLb84iXXA4aGoNh82o327i9+4uyLvb9rgpYfbs2bS3t4/59xkzZmzzYFKpFMAWY5tPP/00n/vc54ZsO/3007n//vtH3d+yLCzLKv+eTqcrHte8ZmkIH3olIJM7LlFD5+DpSU6fP5IQPtz7qI+FqJtlkim62J6Ppij0ZC0aE6GKx7I7YUsZ4f1bd/3DPx5sT6yvZKw6UkU8X5CzXGoi0tD25eyAP+ti6irJiEFDLDQhMco9hV87WVCxkdxa10TP87ZpIL7v85nPfIbjjjtui8vmjo4OWlpahmxraWmho6Nj1P2vvfbaCcm6z2tOcNlJ4wv8j0ZgVhSlPEEyRYewsWcnbPaU5ljbSiEa/IIoOC7r+wqs6c5x5Ow66mMhVnZlKdgudVGD/rxDc02Y1mSYVqgSvycZKp6lL7300pDfHcfhpZde4kc/+hHf/e53t3kgl19+OUuXLuXJJ5/c5mOMhquuumqI55lOp4fwOyvBeN/Qe3umcbKLw1a6HK001jf8BTHVjBAxNJ5b28/jy3s4cEqC3pyFqav05x0ipsbcplj5Pu1O9eR7Ayo2kocccsiIbYcffjhTp07luuuu473vfW/Fg7jiiit44IEHeOKJJ5g+ffoW921tbaWzs3PIts7OTlpbW0fdPxQKEQrtmGXtWJNtb+8lM5lFJbaVFD6YQpQpOmQtV5aZ6hq+L8rf5VgviLb6GFFT59m1fazsypKzPZIRg+aaMHObYtTHNj+jVeL35MKErff2228/nnvuuYo+I4TgU5/6FPfddx+PPfbYCGWh0XDMMcfwj3/8g8985jPlbQ8//HDFmfXtxdYm22TMNO6sgP5krf7Y3hCAqipYrsejr3eP+b1v6QXREA9x3NwGVnXlcIVgem2E1lH2qxK/Jxcq/haGJz6EELS3t/Otb32LffbZp6JjXX755SxatIg//elPJBKJclwxmUwSicgJ9qEPfYhp06Zx7bXXAnDllVeycOFCrr/+es466yx+//vf8/zzz3P77bdXeinbjPFOtjmNcc4+RPIiAeY0xphet2taJexMmbLJKCoxESGA8Xzvri+2+IKIhnTiYY3mmjCdaYvh65+9IRyzu2Gb9CSHv/mEELS1tfH73/++omPdcsstAJx44olDtt9xxx18+MMfBmDdunWo6mbO+7HHHsuiRYv4+te/zle/+lX22Wcf7r///h3CkRwNgyfbvKYYWcujP29jairzmmKs7M5JYrAQPLysa1Lo+u3sJMpkjMlubwhgvEb2rIOnbPUFETZ0TjmghYeWduyV4ZjdDRUbyUcffXTI76qq0tTUxLx589D1yg43HormY489NmLbueeey7nnnlvRuSYKpckWMVSeX9tPZ8bC8X0MVaUlEWJKbZgX1/XzRmcG2/V3eWZ3VyRRJmNMdntDAOM1sgqM6wVx3NxGpiTDkyocU8XoqNhILly4cEeMY9JieBwvU3ToyVpsGsjTl3MYbOYH8jZdmSKegOl1EQ6bUbfLM7u7Koky2WKyUUPD8wUb+/PURqXAyOD7sbUQwHiNbN7xxv2C2NOElfdUjMtI/t///d+4D/iud71rmwcz2TBaHK8hbrKmO0d/wcbQVEK6iqqAL8ByfdrTRVQUDp9Zt9Mzu6MlZnZlEmWyGIGVXRkeeqWD9X0F+nJWmbg9t1lmlccTAqgkztpWHx33C6JK/J78GJeRPOecc8Z1MEVRtplMPtkwVhzv9fYUXVkLBUiE1PKE1xRZaliwPTzhE9ZH1w7ZUUZprMTMIW3JXZpE2dVGYPD3uH9rnDc6IVt02TiQJ1W02a8lQcHxtxoCqDTOOlleEFVsP8Y1M3zf39HjmFTYUhyvLvA8FFWh6PqYuoqmKHhCYLs+IV2l6Hp0ZSwaEuERx94RRmlLiZmNA3lqowbtqeKkSaLsLIz2PcZCBiu7svTnLHqzNm+IDGcumFpRF8vxxll39Qtid6/hniyoErFGwRbjeCgYmlxih3QVxxPYwkdVFGIhnaih0p6y6M3bI7Q3d4RRGk9iZmpSoy5q7tIkyq6YsKN9j/UxkyNm1ZEpuvTnbQq2x9mHTGFmw+iqU4Mx2eKsW8Ku6Ey5p2KbjOTjjz/OD3/4Q1577TUADjzwQL74xS/ytre9bUIHt6uwpTheXdQgYmjkbJfGuImuqnhCoCkKpi7bObTUhJhWG90pRmk8iZn+vMN7DpvGf9anhkzu+VOTHNyWxA16t+wow7WrJuxY32Opjj4a0ljbk6PgjB4iGs2w7w7L6D2lbn6yoGIj+Zvf/IaPfOQjvPe97+XTn/40AE899RSnnHIKd955JxdeeOGED3JnY0tB+pqIQXNNiLU9HumCQ308RFjXcDyf3qyFL+CEfZv4wJFtZZ7kjvQ4xpuYaUqE+OSJc8uTuydjsWTdAPe9uHGHGq5dOWG3h9S+NcM+kcvoifSyJ3vd/O6Iio3kd7/7XX7wgx/w2c9+trzt05/+ND/60Y+45ppr9ggjuaUgPUBDLITnC3wBmaJLqcWspqocMjXBhUfNkKWJTYkd7nFUYghKMbKVXRn+urRjhxuuXT1ht5XUvjMN+3i87EqM6GSum99dUbGRXL16Ne985ztHbH/Xu97FV7/61QkZ1K7G1oL0MxqifPi4WbzWnpb6krZHxNCY1RDl8Nn1Q0QPJuJB3NIkqdQQ7EzDtXVFbp0X3uzj+TfrtkuReyxsS7JlZ96f8RhjoKJQxWStm9+dUbGRbGtr4x//+Afz5s0bsv2RRx7ZZgmyyYjxBOlP2q+ZjQMFXmtP8/zafrozRe5/aSMP6R0TtnTdmqcxtPFYlkRYR1MVPF+QKbo0xIcagp3paYw1YUtK7T2BIvdtj6/muRn9OyRGWWmyZWfdH98XPPRKBxv6ZSxYCFCVocb4d4vXUXB8+vPj92gnY9387o6K79TnP/95Pv3pT7NkyRKOPfZYQMYk77zzTn784x9P+AB3JbYWpC+pwjy+vHuQN6BXtDTbkpc43mVfqfHYnU+tZdmmFI7nY2gqsxpinHv49CHn35mexmgTti9nBYrcXlmRuz5m7JCl/uD7eukJc8bVNmJn3Z+nVvXw4NIOLNdjY38BXVOpi5rMa45THzNprQnx9Oo+mhImh0yvBSgr27ckQnSki6N6tJOxbn53R8VG8pOf/CStra1cf/313H333QAccMAB3HXXXbz73e+e8AHuamxpyVzJ0gwYYQxX92TH9BLnNMbHfezVPVn++XoXsZDG0XPq0VQVz5eNyv75ehczG6Jlw7MzPY3hExZgVVeOgu0NUeSekpQTdqKWstvTNmJn3J+VXRl+9+w6+nIWLTVhzIBK1p0pkrVcDm2rBQSpgs1+LXH6847kduZtXM9H11RipsaL6/pHeLSTsW5+d8c2fdPvec97eM973jPRY9ntMN6l2VOresr0m9KkrY0YdGUtPF+M6iW+Y37ruI69vj9fNqb7tiRGeA7DDc/O9DSGT9h4SKdniCK3ztymzS+AiVjKbm/SZUffn9KLNWe5JCMGigKqohDSFcyYSV/OZlV3lqa4CQI8QbkXTjxsYIR1HE8wkHfozlq81pEeca92Jz7n7oCKjeT69etRFKWsIP7ss8+yaNEiDjzwQD7+8Y9P+AAnM8azNFvZleV3z65DCGkEIkaYrnSRf7zeieMKTtq/qeyxDPYS//FaJwXHZepWln1renIVxdB2tqcxeMK+uK6PdMEZpMgtl5bDr2lbl7ITkXTZ0fen9GKd0xjHcQVdmSJmTEVRFBRFIR7W6ctaeL5PMqKzoT9PwXapj5nl6wnpCiKs0Z3xeH5tH6fuP3I8pVDRhv48qwM909mNsSGtj6sYH0YvMN4CLrzwwrJcWkdHB6eeeirPPvssX/va1/j2t7894QOczBi8NBsNeculJ2uTs1z2aY7jeD4vrutn8Zo+ujIWfQWbf63ooTe3uZtjybC1p4r4PmMeu7TsAwJDPfr7LmJqWK43xPCUDNf8qUkG8g5re3IM5B0WTEtOKL3FD0jqri945yFT+NgJczhoapKDpyc5fGbdEAM5+Jq2dSlbSdJlS9iR96f0Yo2FdOY2x4iYGn05G8v18IXAF4KBgkNDzOSgaUk6xignzVkeU2rDdKetMa9ndU+WP7/czv8t2cTdz6/nx4+s4JbHVrGyK7PN498bUfHTuHTpUo488kgA7r77bhYsWMBTTz3F3//+dz7xiU/wjW98Y8IHOVmxtaXZ6p4cCoI5jXH68zbPrO6jN2fhegLXEygIOtJFnlzRw9v2aSz3OYmYGpqi0FwT3mrN9ZzG2DbF0HZ05choccE5TTFm1kdpTxdH7F/pUnZHKx7tqPsz+MVaHwtxaFttuSd7znLxBTTETC48aiZ522Px6j4yRQcUMDQVx/PJFl0ipsZ+LQlSBWfU66lW3UwcKjaSjuOUG2s98sgjZWm0/ffff4v9uPdEbG1pFgvpCAFRU+Oplf10posoSKqHqso6cM+H7ozF0o0p3rZPE4qiBOrVGqce2Mxft6JePb0uus0xtB0lwDDWBF22KY2mKmiqsl1L2Z2leLQj7s/wF+vgnuyW67FxoMCRsxo4dm4jGwcK7NuaoD9nk7M9cpaLpqrl5mGGplJ0/BHXs6tJ/HsaKjaSBx10ELfeeitnnXUWDz/8MNdccw0AmzZtoqGhYcIHONmxpSD5wdOT/PHFjXSmC6wOaoQVACHw5f/QVGk01/cXSBcdasJG2bAdO7eR5kSYP7ywnlXdWXwBtRFjRAD+7Qe2sLwzw4vr+pmSjNCUCFF0dk02czwTdEoyTH3UZHVPruKkwq5UPJqI8sHhL9bWmhCeD+miQ3/eZnptlNPnt5STbG9pq+OVjSkW1IRwfIGpqSTCctqu6MqOej3VqpuJRcVG8vvf/z7vec97uO6667jooovKLWb/7//+r7wM39sw1tIM4J+vdfHAK+2ki27Zi9RUBRWBK8DzZXazaLtsGijSqVplw7a6J8vDr3bSnbECEQ2VpkSYUw9sLhuTlV0ZHn61k5zt0pWxeLM3T8TUmFEf5bAZdTs9mzmeCTqQd/jwsbNQFKUig7MrFY+2VaRjLJGMjxw3i0WL1/HM6l5SBalwXxsxmRvQxWCoQe3MWOXryVruFq+nWnUzsajYSJ544on09PSQTqepq6srb//4xz9ONLr3vpVGW5qt7MrQmbHIWfJhVIIfzxeggK4pKAIs1wMUspbL8fMaOe2gFoAhHtO0uih522V9f55f/vvNcslaaZ8Z9VH2a0nQlSmWl/qDjenOQiVtDkqcxfF6aNujeLQ99Jdtje9tybACFB2PpkSIfVsS1IQNNBXa00XueGrtkEKBSuk81aqbicU23SVN03Ach3/961+A7Lk9a9asiRzXpMG2LrF8X/DQ0g56sxYxU6PoeAhBuSeOIsBQFaKGRsZ2aU6EuPKUeRwxS4Ysbnls1RY9pr8t7UDAiH2m1kaZkoywoivLI692Ma8psVPjTpVO0Eo8tG1VPNqepMu2xve2HBYoEA64oodMH9p9NBE2Rhyz0iRStepmYlGxkcxkMlx22WX8/ve/L7dq0DSN888/n5tvvplkMjnhg9xV2B4dxH+v6uHBV9rJBNlHXVVwfIESZCkVwPWlN6GgcNiMOo6Y1YCqKqzvy2/VY/rPhhQockJMRNxpouS6KpmglXpo26J4tL3Ylvje1gzryxsG6M7YHDV7/H2QKrmeatXNxKJinuQll1zC4sWLeeCBBxgYGGBgYIAHHniA559/nksvvXRHjHGXoDSBl25KURs1mNMYpzYqa4zveGrtFrlmK7syLHp2Hb05m3hYJ2xoRE0NTVUQQi63Pd8Plt0q9TGT9711evmh3ewxjc19zDsuedsdsY8QgnTBIW/LfuCZojOua73lsVXc8PBy/vcfK7jh4eXbzKcrTdD6mIwLZooOru+TKTos78xi6irzWiTJ+aFXOsqGJBE20FSFRNhgn+Y4fTlb9i/3N/ejLBng9lRxRDvikgGe1xyfUA9pPN/FcB7q1gxrXdRkoGDjjdEVZbRjVoqdxYXdG1CxJ/nAAw/wt7/9jeOPP7687fTTT+enP/0p73jHOyo61hNPPMF1113HCy+8QHt7O/fdd98Wm4499thjnHTSSSO2t7e309raWtG5t4SSJ9CbtWmtCWG5PkK4JMI6+zTHt0ihGFx2VhcxCOkaEUMnZ7vURoxAfxJ0TcUQ0BA3OWX/Zo6b21g+xng8pqihg8II8YgS567guPg+3P/SJmmYmhOjeoure7ITzqcbLY5muT6W4+P6Kve/tBHPF6zvK7B/a7wib2pne0jbEt/bWligJmygIDPadcMI9WMdc1uwO6io7w6o+FtoaGgYdUmdTCaHJHLGg1wuxyGHHMLFF1/Me9/73nF/7o033qCmZrNQQXNzc0Xn3Ro2DhR4aX0//Tmbtb05XN9HV1XqoyZzm2NbXMpuLjuLYbtStKAuqmN7Ho4niIekinnI0ImaGsfMqeeCo2ZUrORy8PQkAli2KU08pNOft8vqOrGQhuOq1NYYvNmb5Sf/XMlhM2rZ2F+gO2NheX6Z3N2XtcdcFi7vzHL38+s55y3TSISMiibY4An6Wnuav7zSjq56TK2NEDV1Nvbn6ctZvNEJsZAxovpmrAzszq5L3pb43tYMq6ZCMmLQn5cJt8HH9H2/XLYohCjrkm4rdnUzsj0BFRvJr3/963zuc5/j17/+ddl76+jo4Itf/CL/7//9v4qOdcYZZ3DGGWdUOgSam5upra2t+HPjxWvtaZZ3ZDA0hUTEwNB0HM+nK1MkY8kly1jLoZIXMTUUYV5znKzlytrbqCQMZ22XousTDyucsn8zFwQq5sNxSFuSZe0pXt4wwJzGGNGQPsRjOn2+vPftqSLLO7N0Z4rkLSmCkLNcoiGdabVRujNFXlw3wGNvdBEzdaYkw+zXmiBsaDy3to91vXneMqN2hDfXn7fpzhRZtinF8s4M9dFQxRqZJa7f/y3ZhO36QwQ4aqMmyYhBtuiyqjtLXXRofG5L3tTO9JC2xXvdmmHtSFscPaeBouMNOeam/jxLNqSwHZ+C7XHDw8uZ15yoNu/axRiXkXzLW94y5ItesWIFM2bMYMaMGQCsW7eOUChEd3f3TolLHnrooViWxfz58/nWt77FcccdN+a+lmVhWZtro9Pp9BaP7fuC59f24/qC+phZro8O6RpmTKUvZ/NGZ4YZddFRJ/DQsjOTQ9tqyzJXEVND0xQaYyaXn7wP5xw6bcTEHpwsyhZderIW3RmbxrhJYzw0wmP6yHGzuPu59SzblEJTFSzXp7kmTGM8xJqeHHlLxiQ9X5CM6KQKDq9sTHFoWy3TaiO80ZFh00CR6XWbPZqS5mPectFUhdaaCFFT26Yl+FjxuURYpyEWYuNAnr6sRaboUhORXtd4MrA7w0MqhSdcX3DG/FaWrBsYFwF+PIb1wqPk3Cl91//ZMMDKrhye71MTNkgVHDxf0JO1q2WEuxjjMpJbihPuTEyZMoVbb72Vww8/HMuy+NnPfsaJJ57I4sWLOeyww0b9zLXXXsvVV1897nNsHCjQnSkyJRkmVXAwdbU8uWXfZo32gSJvnVk36gQeWXa2uYXp5rKz+jEN5OD44NTaCDnLZXVPllhI5z2HTeO4uY1DPjevOcE5h01jeVeG1poIEUMjHtJ4/s1AXiukM1Bw0BUFXVNJhLVAjivHvi1xYiGd7kFGSghR1nyMhw0s1ydiaNtc0raljoVzm2Okija9WZv+vE00NHkysGPVnr/nsGk0JUJb9V7HGxaYc2Kcf63s5rt/eQ1dU5jVEMcI9CUHCg4ZyyVnO9z9/Hq+dNr+6HrFudYqthPjMpLf/OY3x3WwEiVoR2G//fZjv/32K/9+7LHHsmrVKm644QZ+/etfj/qZq666is997nPl39Pp9BbbTORsF8vz2a+1hlc2pugLMtQlcYFMUV5jazLM+v48CpB3vCGTZjQvQlGgP+8wvS7K6fNbx0z4DI8P1kQMDp6W5D8bU/zztS5m1keZXhcd8vlEyKA+GiJqSmOWLsgSt3jYwPN9XF/ImunBclw5G4DGuMmq7hyd6UIwDp+OdBFdg4G8zdTaSLkMbluoRVuKz9XHQuzXkuB1kaFge6ztyW13fHEiqExbqj1vTxX5yHGzxnXt4w0LPLWih2zRZVptmJChBdfhUbQ90kUHVVXoSlsgFM47YvoO8yh3RW/03QETQrlfvnw5P//5z/nVr36100UujjzySJ588skx/x4KhcqCHONBaVKHDXXIUjlruXi+wHI8fAEPvdLBH57fCAga4yEa40NjdqN5EfOn1nBIW225z/WUmnC5pUC64LCyKzNiWdqXs1nZlaUrU2RlZ5ZNqQIHT6sdEqeaUhOmMW7yanuaeU1xbM/H9XyMsI7w5VI7EtYxAy/E0FRygYxbpuhSsD2eXdtPxEhjez7pgoOqKBiaSl3Moz/vlBMrlZa0bS0+V3B8zlowlbMPmUJh2MtmSxgrU7+9/b0nWhxia2GBUjjC1BXMILRTsF060kUcTxAyZFM5AbzanuKOp9wdsvTeVb3Rdwdss5HM5/Pcdddd/OIXv+Dpp5/m8MMPH+Kx7SwsWbKEKVOmTNjxBk/qfZrj5aVyd7bI8o4MOV8axazlkrM8FAS9ivTIhsfsBnsR3RmLl9cP8Megz7UdUGJChoqpq1iOx/r+Am+dUYcQYHs+ectjRVeGouNJA4MgamijdtNb3ZNjXV+e1d056mMGri/IWS6WI7ULTW3zhHY86V0u70iTKrrMbIiiKwpr+/IUHQ/fFySjBk2JMNmiy5L1AxzaVkt9zBySUBmP5zGe+Nzp81uY2RAb93c02oSujRp0ZcZWeh+vYdnZ4hA528UTMubteD6mptKXc3A8QcTQAEEu6Fk0rylOZ8aacAWfwZ5za02IuK+TLjo8u7aXjQN5Lj5+9l5tKCs2ks888ww/+9nPuOeee5gxYwavvfYajz76KG9729sqPnk2m2XlypXl39esWcOSJUuor69nxowZXHXVVWzcuJFf/epXANx4443Mnj2bgw46iGKxyM9+9jP++c9/8ve//73ic4+FsSZ1+0CRVNGlORFGUxVylktLjfRQ+3I2HWmLt86oZWV3bshDXOpz/dCgPtdFR+XFdf305x1qIwaHzagjLaAnY/HQsg6SER1dVRkoOPi+CKpqQNc0aqMmibD0aBYtXkfRkZ7ejPoozYkwb3Sk2TRQIG975G2NuU0xDkqEWNOTpy9nEwvpZIoOluOR96EpEWgadmepi5rEQyobByyEgJpgmV1qKVAbqS0nVAq2xy2PrRqX5zGRtJ3RlsI5y+XJFT0UHI+F+46u9D74O9mScd/Z4hAxU6cuYpApOKQKDrGQTsHxglg4uJ5cCdTHTGoiBqqqTKiRHuw5N8RMXu8Y1EtHVWhPFYkYGl8768C9duk9biN5/fXX84tf/IJUKsUFF1zAE088wSGHHIJhGNsskfb8888PIYeXPNGLLrqIO++8k/b2dtatW1f+u23bfP7zn2fjxo1Eo1EOPvhgHnnkkVEJ5tuD4ZO6P5+jK2MxvS7CjLoor3VkiIeNsqdRivFlLW+EpzF8+QbwensG1xPMqIuwcaDIo290oatS4ML1BI7nM6UmhOvJZVZHWj6o0+ujxEMamaKLqSk8sbybqbVhDm2T9JlEGBrjjaQLDv/ZOEDB8UmGDRrjIWIhneUdGdpTUvDWFzC9PsKBU5LoqkJ/XhKbQ7pKaxI6UkU600XqYibRkE5nush/NqaYXhdlv9YEv3y6MgJ6JbSdsYzYWEthoNwrZnVPbkirg+Hen+V6W1xW7mxxiJIqUE+gTt6Xs3F9HzPwLHOWRzysc0BrQoZGHJf+vEXG2nol1XhQ8pwjhsrLG1Ijeun052z++XoXJ+7fzNv2aZqQc+5uGPc3/eUvf5kvf/nLfPvb30bTtAk5+YknnjiivGww7rzzziG/f+lLX+JLX/rShJx7axg8qZduSnHXc+s4aEqSgYKzOd4nBLbr4/iCoiOz13Uxc4inMXz5li449OVtdE1hXV+B/ryN5wu0IGmpq3IidmRsFGQ/k7ztoaoKDTGD598coD9vk7ddOtNSQq0hFqItICUrikIyanJoWx3r+vLMaIjSk5UTcEZ9lMNn1dNSE+aJFV0c2FpDwfHpzBQp2h7xkPxeE2GDvO1RGzUpOj6O51F0fOY0xrngqDYeXta1TTG78dB2thQbC+naqEth2/PxhKAmotORKvJmb566qDRwji9QFSg6Lq91pHn8je4tGvc5jfHtEoeoNPkxeOUioTCQt8kGlVnxsM6BU2pY3ZOnP29TdDw8X3D/ixsxj1C3exmcswPDm3NG7aXTlDDZ0F/gH691jmBW7C0Yt5G85ppruOOOO/j1r3/NBRdcwAc/+EHmz5+/I8e2yzF4Uj8cDcllkKaia6okhhcdCo6P6/sIAa93ZJhZH8X1BB2pIjFTLm0HL99szydvy7rrbNEDZOYZAik1FfAFtitjg0JoxMMahqqwvFPy6HRNIVd0cT2fjlSRR3PdzGyIcvD02iEJlpCucs5hslpm8KTdOFDg36t6WLymj5ztBd6JQ9H1aU6YqKpC1NQlyRyF/rxNwfH4yHFSA3JbY3bDDcjgxFXMlGT5LXmoC/drGnUpbGoqni/oCmTpnl3j4gQ131FTw9BUQprKw8s6yFreFo37JxbGt7n0cVuTH4NXLiu6MuRsl2zRpa0uwrS6KGt7ZTOwmKmRt3wSYYPXOzL84sk12x0vlLFl6M5aJAatjkpwfUEspNOeKu61Ir3jNpJXXXUVV111FY8//ji/+MUvOOqoo5g3bx5CCPr7+3fkGHc5Bidz5jXFCOkqa3pyaKoSTFCIhHS6M5ZsBxozueu59UQMjcZ4CNv1y8s3Q5OeoeX4KApoioovBEKAoauyThwIqQq2L3B8H03RyRRdFEWhNqLTkbbIOx6GphIPadgerO/L4/mCt8yoG5JgSYSMEQ92wZGJpI50UQbqQ7I+PVNwcD2PaEhnel2UmmC52ZEucsj0WqbXRVnelRliqIQQZIoudpB0kOIMI2N2ww3I8MRVSFPpydqgwFvaakc1Ys+v7SOkqSOWwk6Q5EoXHVQF8rZsqqUqCnkhMHUN34Dn1vZz2CjVRcON+7bEUJd3prn50VX0ZqU47uyGGAXHG3fiaLQyTinEXCBvueiaVK/3hMD15TWu68sT1lW+fvZB2+zhTauNMCUZYcmGgbL3XYIQgmzRpSkRQgsEkvdGVBxYWbhwIQsXLuSmm25i0aJF/OIXv2DhwoUceeSRvP/9798lGe4djeHJHMeThswNqDa6pmCo0J+z8ASYhsacRjlJ1vXlZL206/OWttryMYWQnpWigK6qks/oBcpAQEhX0VS5fJZxKqiPmfRkbfK2zHarioLt+YR1tay0MzzBMnxZ6PuCh5d1URM28HwRxLwUGmMhHFcEsS6FmfXRIQrYpx7YzIb+PEs3pBjIOXQYecKGxuruPH15u1zfHjM16mLmkJjd8GTL8MTVW2fW43geq7qz1ERkHXqpKRpsNmLdaYumhOSnxkyNrOVhuR6vd2RkksP18QBVkeELXVWwPdBUlQNa47y4bmBEdVEJwxMylcRQl3dkuOaB11jVnSVqavRkbeqiUpFoa4Iow5+ztvoobfVR5jTFuPu5Dbza3o7n++RzPgIR9LWR/W5cX3Dfkk3sO6WGDxwxY5xP88hznnpgM48v76InY1EbM0c0HJuaDAPKXivSu81XnUgkuPTSS7n00kt55ZVX+PnPf87//M//7JFGEjYvie5+bgPLNqWJGCrZoheQtRVyloWmKrQkZBxvQ3+B+pjJPs1xcpZHuiClwsKGSsRQcVyfgiMf+oipUrCh4Eiiuh4YR0NTaYybtA8UcD2PvpyFL6AmotMUDyOEz6ZUUbadFYApAo/SZ25TnFMPbB4xydf35/nPhgEagjLH9lRBxll9n5qITkhX8IX0HuuiJgumJdmvNcHvn13PM6t7Gcg7ZIoOSzYIIrpGLKRTHzcxNB3b9dgQlPEVHGlstpa46s87rO3NMashStTUcFyfVd056qLmEEMmjZjP4bPq2JQq8LdlnXhC4HgePRmZjVUDpXdVkbfD9gS6qmBoCtGQPmp1UckLtl0ZShlsCMYbQ7350ZXy5RQ1iIVkwqM7UyRruRzaVltRCKJkiOc1JzjnLVN5ozNNf86hJ2thuzIeaeoqYUXB9XxSRYc7nlzDYTNq2belZoxRbhnHzm3kpP2bJUPA9siJzQ3H5jRG6c05e7VI74S8GhYsWMCNN97IddddNxGHm7QoPbhL1vfTm7OIGNJIuJ6gM12UcbGsrGRxPZ9oSKcuajIlGSJkqMyoj/BmX75s6CDgLHoyLqkgs7QK4HiCaEjF9Xym1EZIFx18IRM7U5NRLNenPy/rey3Xx/EERddDURRMTQpL/P7Z9Qzknc1cwohBX97mlU0pIoaM1dVFDQ5oTRAN6ZiaSthQeL0jw3lHtHHQlBrW9Ob4+ZNrWNmRxdAVGhOSgrSmJ0e/4+AKgpprmYltioeoCRtlVfSxElfxsI6qqmVmwNRkGF1TURVJORpcyw2bs8pRM0gaKoAA35f3SgDRgIwd1lVQZDdKy/VkLFlVaYqHWNubC7LIolwo4Ho+edtjbnOcgj2yamxr2fbenEXEVIkF3n1IVzBjZpk6dWhbkqIjhTwqIb8nwgZhXSNnyWfGDQykEAJPyBYgEUOjP29z7wsb+fI7tk2FXlUVLjxqBkXHZ+NAnrqoWW4n0ZG2dnmJ6K7GhPrPhjGSMrGnIR7SZfWNJ2ipkRM/b7sIwEdguwJdhWTUQFNVujNF0kXZbP6cw6YRN3V+8eRa1vRmmZYM88K6AfK2h6Ep+L5fnvAgJ0BLMsKcxhgrOjMs78qi6Sq9OekNub5AUxSEEBgaGKqKqqk0J0I8vaoXHzh0epJ5zQnaUwUefq2znEmPhTRURaU7Y5G1PA5tq6UmYpApOtRFQyRCOv+3ZBMPvtLOuv48QgjqoiYIOa6IIduZFmyXjQN5mhNhmhIhWmsiCAQvrx9gfX+eguONSFy5vo+hyUfP0FSyloupq9RFTbrSRRRFYA9SpC1lledPTbJk3QCuJzhmdj0DRZfejMVA3iFsaNiej+PJWnM9IM97QsV2fWzfZ2ptmM50kRWdWdJFB9cThAxpdEovrV8+vXZI/HA82fapyQg9WVtK4AWGenD556quLOv7i/zu2XVoqjJu8vucxjhTkhFeWNeP43q4AqyiixDyZSqQXNaoqW03d3Jec4KLj98ch+3NWTtUgm53wt4ZZNgOSAOmINj8VlWRHqHvC1RFoCgqauDRxUyN7qyN7XpEDY0ZDTH++5gZ5RjdQVNr2DhQoD1VxPXB1DXa6iLMaY7TFA+RCOv056XQge36FG0XNys9z6ipkXN8SfuJGHIMwKub0rgBteqFdQOkCjJzXfJC3CAW2RDTqB/k8ZRimVOSYR58pZ2NAwWyQesJXdPI2R62VyQZMVFVldqoXi4lnFkfJWNJmo3j+RQdjzueWsMpB7QM4R2amoquqmWD4ngylhnSNeY1x+nLWWSKMrHj+lIybNNAgZChURcz+Mt/2inYblnn03F9XCGwPY+QruJ4UHQ9YqoGKHiewNDkknvA8jhx/yZWdGTJFF2ipoovoCUZYW5TrNxlsRQ/3Jog8cJ9ZbZ9dkOM+qhJV6aIGdssiGJoKn1Zm5c3pKgJG0xNRoiF9HGT3z+xUIZM/rJ0E1nbQ1cUNE3Z3EwOsF2fiKnjC3+7EytVkd7RUTWSFaLgeDTGTZRgWRgP6/iIclsGU5cUobzt0pv1KTguedsja6n89pl1nH9k24jsaUPMlKTvWAhNVTh6Tj2qKomTfTmbl9b105uzmdkgyekrurK4rsD1XVRFIWrIZXkpmWQ5PomgVtt2pQJ4zvZoTYYJGyqpgoOuKuXxDyGL10YRwfIyZmq4ngAh+z2jyevPBFlkEdCXXF+wujcPQhAPG5i6nFRrenL89ZUOaiOyF3bM1BBCENJV+nM2TXGTbNGluSZcFtGQHqkglbfpSBfwfek1ub7g3hc28Fp7mpCh0VIToi5qkrVc1IyF5QpAetaqopCzPRCUXyalhM3J+7cwkHOYWhvB0NVyH+uSYSvFDzf057daw/3Cm/2ENJWC4zG3OUbGcoYIomSDXtqJsMGRs+uGhA/GS34/enYDLYkwfVkboQh8X0FRZHIwrCnkHR/H9UiGjQlJrFRFekeiaiQrRMzUA0ELk/aURX/eJme7qCqYilp+6/Zm7fLbPmZqhAyN1zrSQ9qFzjlR9npZ3ZMD5MT529JOVnbnmBIYtFc3pejOWjTFTd4yo46+nM3GgUKZxO75ggIyw+75gUcrpIdhBDG+iClLHDNFh3gojK4q7NOSkKrkeXsIWXy/KQl+9e83sVwPNxC7cH0fTfPLGfeCLcvm8raLgoLnS8PXUhMGoC/n0VITZsHUJK9sSlEXNSk6Lg8t6yiPbSBv05OzaUqEmNmwOZOejBo0xc0gIeXRmbKImFIcpCdrgQK+EPTlHExNIxHI0fXmbHzhoyoKkWDpDYCQ7RKOnNXA6fNbcH2B5flMq4uW+amDUcpyr+7JbZUP2hV0ZlzfX2Cf5jiHTK/l1fY0/TkbXwgKjkfE1DhqTj0N8XD58yXyezJqjBp/HZxpb08Xaa0J05GSv0dMTSb2kMyGUCCr1pKM7LWJlR2NcRnJrQnVDsbgtgp7IgZzJg+fWUvW8ujL2yzdkELXZKDbcjwcRbaLjYR04qbsRzNcoGC0wH1txGBKMsxA3qE/b5XLIQ+cUgPIul2QHo2k/UiBBBHEMnVVwfEEru8HsT4NQ9MwdZWc5ZG3PbQgiTGnMUam6JbJ4ift38Tvn1tPX86ipSaMoUkR396cTSpvEzI0PF+WTSoWeEHwVFXA1JTAoAoipkZj3OTFdQN0Zoq82p5GVRRcTxA1VUK6Sm3UIG/L5fLG/gKN8RBTakKs7cuzosumtSbMQM5GV6VRfLU9je3KMsuC4+F4vkz41Iapj0mifzYQ63jLjFo836crI726C4+cwbFBtcj6vvy4yg6BcdRw+xw+u56c3c1LgUhxtuhgex62B3FTZv6n1Q71zEohB5Df0+D46+AxRAwZ87Q8jwVtSV7dmJaCGKoiY5uGiq4oKKrCW2fW7fXL4h2FcRnJ2tqRBNyxsKM1JXc1BnMmSx7ftNowKzozrOvLg6BM3zF0ldqITtGRauGDBQr+vaqHvwaiF4OVV1b1ZJmaDPPew6aRsVzuem49B02pQVMVngsU02vCBnnHI2JoZC1XlnYqMtuqqMikhRC4nsDQBDFTJWpqDOQd0gWHGQ2x8hIzEdbpSBelZuWGFDnLJRkxysvB2qDFQs7zyNleKak8BJ6AvpxDxvKY0xhldmOMNT1SuDdqqvTlBBFDJRaRGfV9WhI0xUPETI1XNqWY3Rhj4X5N/Pxfa1jdnSNaFhRxaIzLTGt74ElNqQnTnbWxHNk+o+jIks2oIVkG9XG5BA/pGkfPaRiRdBhvz5rZjbFxGdMDWmvQFIX//ccK2lMFdFUlbGi01BhoikzcrehM05gIl5f2ibBOfdRk40CeiKHJUMawMUxNhvnzy5t4ZUOKVd05IobGlGQY25NxWoEgrGvEwpJBccCUPds52ZUYl5F89NFHy/9eu3YtX/nKV/jwhz/MMcccA8DTTz/NL3/5S6699todM8pJhuExxZ6sRSrvoCkKpqlh27LtQdZyyVouU5JyYiqKQsTU6EgVeeTVri0qr0RNnYuOnUV91KTgeAhBOb4VM3WctOThgfQefSEkRUhRCBuyjA4h43S2JwjrqszAC2itCeEJQWEQWfyQtlr++OJG5jTGcVzBhv48vhDkbQ/bH5RpDv5fMi0lTmLUlJVHvTmbUG+egu1RHzPJBDqctRGjnO3ty8p2FP0Fh+ZEiOWdWV7ryLCmO0djzCQWluWcBcejN2uXl9WpgoMPtNaE6c1apIoO/QWHmKnTnAyxb2ucSxfOpSZibJd022kHtdBWFx3TmA5u1uV5Pk8u7yYfqMA7ngAUTE1606t7cvx7VS8tNZLiVBc1mdccZ05TlPX9efzgrpaSVO2pIpqq0Jmx2DhQpCas0xgL0ZezcAKK17TaCE2JELVRg860zcHT914O486AIrakMDEKTjnlFC655BIuuOCCIdsXLVrE7bffzmOPPTaR45twpNNpkskkqVRqu0MDvi9Y35/njqfWsKYnx/TaCC+tH2BlV1baJwSKotAQMznlgGYa4mEyRYeNAwUQkoazoitH3nYJaSqKKnl/6aBX9mffvi8dqSLLNqWpixo8u6aPupgpy+1sl3W9kmITNjRs18MOMrnxkEwclIxcXdTA82FqbZgF05KkClKMo5RRPu0gGav733+sYE5jnHV9Of61ogc7yIgXbJltLplKQ5XxU1PT8IWg6PoYmkIyrJO1ZdhgRn0UU1fLHuCcxhiaqpIq2PRkbZJhA8f3yRWlBxrSNYTwSUZNGoJrXNeXxxOCRMigpcZkbU+eaEg2M7NcWREyf3qSuoghveHptXxi4dxxLTsHU3usgEjeVBPi8Fn1HNBaM2q7XSmZV2DppjSO69NWH8UTgmUb00RNjeYgROF4gr6spFbpGhQdL3hJGFiOjB83J8IkowbN8RADBaf8fcxtitGbs4PknE9/wSFVsOnNytiwTEZJKlpNxGTB9CSfOXWfPYqiM5FzdCJQceLm6aef5tZbbx2x/fDDD+eSSy6ZkEHtTuhMF1nfl6clEUYJCOERU8PzBJGQVJXOWC7Pre3niFl19OYcpiTDdKQKbBookirYeJ5gwHVwAp6fCLzCWx5dyQn7NKGpChsHCggIelfLWGR9zJRxvpCGqihkLQdFAc+TWWYFhZDu0FITZlpdlMtPnMe85tEpHqVYXc5y6cnYJMJ6eewlapFCmcONqWnlX1QFPB+KrnzfFmyXoiNjolFTR9cUXB9s16U3a1OwPRJB98eiG5RiCoGqqmSL8nwtNWGiZsmjdMk7OjVRSSHqzVq4vmyhUR816EhbNMRDFRGeh9dKP7+2n+50kftf2shDekeZC3nRMbP4wwvrWdUtaUNdGQtTU3nLjFqmJCP88/UuCo4b8FwFqq5iajKOarkeYUOnNmJSFzOxXB9FEWSKHi018OlT5pUJ96XvQwjBtx94le5MEdcT6JpC0fHxhRRRUZCrgaLr4+dtMsWJkUyrYmxUbCTb2tr46U9/yg9+8IMh23/2s59tsXfMnoaSJ/Liun6WbUqTDOsUHOlrzaiP0pm2cDzpYRmqTGo8u6afI2bVc8oBLfzm6TfZGIjjlsQY3CAzLVfJMju6ujdHImwwpzHGhv4Cq3uyKICpq7LJvQJ5WyZoGuKhwLst0J/P4/qCZNAj58KjZ5a9jdEoHqVY3bNre+nNySoLzxfkbNmuAqRxFEhvVwsoR54v6U+qIso0JF9ICa62+ihzGmOs6s7RFcix2a5P2FDLyRdNVTF0+XmBpO/Yrk93xiIR1skH5ZoDOYcZDVGmJkMs25TBD6hEqYK7TYTnUhVNSUzCcjb3BC9xIV/rSNMcD8lQiO/Tk7VRUDhidh2N8TDpgoMdkNftUiLJCGO7PgXHl8t4x6c+ullRSZZAyjr9iKGPoNy8uinFul5ZWtoQD7FxoEDB9iSXVJPsBVSFtroorufRPlDkb0s7mXPixCmVVzEUFRvJG264gfe973389a9/5aijjgLg2WefZcWKFdx7770TPsDJiMGCDXVRWfFQcH16chZhXaU2atJaEw6EeGVlTCLgT75jQSvHzW3kkWWdPLWqBz3g8WWKLr4AI+AdChQsx2dqMsxAQcYeZ9RLFW5dVaQAhCLoyVikii4Rw6doyxI83/fxhVx6h3SNzoy1lSvaHKtb1p4iVXAQQHe6SKa4maA8OGljeWJzGWXw4wuZTIjHDKbWhjmsLUnO9mmIm3SmC6SKDgpS0KPoeAgk4VomuoKXBIKi45OzPfK2ix8koHwh6S6KovLuQ6dxcFtyXF0Lx/r+/ra0k5VdGZZtSpO1ZFa8KVCdT4QNbNfj8eU9REyN4+Y2kAgbbOgv4vs+/9mQ4tA2WeOuALGQTjYQxLUc6R07no+pK1iORyKsBy80OUbX91nbkxuV/J21XArBZ2xXlnqC5HuqCmioQdWUQjQke7n/Z+PAXitjtjNQsZE888wzWb58Obfccguvv/46AO985zv5xCc+sVd4ksPl7ld1Z0kXXanK4vn4PnRmisysjzIlGaIro1AbNVgwrYa+gBeoqgqHzqjlDy9uwPNlYsUNFIFcX6AGEmyOL3A8QWtNiMVr+mhKhDj1gBZWdWfpSls4vk84qMHO21ITEmTzqIa4QSKs47hyUi9avI6vb0WCf15zgguOnMHa7hzt6SIZyy0bgpIXORhB2BU/+LcOoCi0JkM0xEP8/dUuWWOMIB9UDJm65JKWvNz6qCkbrdlSvEFVZMiCwKMWQiER1jhwag0XHDmTA6bUbFcVyOAXXCKkoyhQGzWGlGfWRQ1Wd+dRFVlNBQqe8FGAxkSIgbxTbsmrayoJTcF2PbKWx8aBIq4vpfFyljRuDfGhOo3D1c0H14bnbJewoWI5Pmrw4gluKyKQ1NNUBU2VLxiQcedKqm2qXRErwzaRydva2vje97430WPZLTCa3H1jPITv+2QCkvBA3iFuWiiKIlvCTq8te3XpgsPrHWlqYwaNcekJ2K5XFrkwdJWwruD4MkFi6jJrnCo47NuSQFEUaTyQRkR+DnKWR01EtmrQVaXcL1wIKb6xeHUvG/rzzNhKw63j5jZy3LwG7n5hAwSCGnqQBLJcMaqhVAFDk+6kQBr2ouMNcj0VTEPD1Fxqowb7tiRY25MnEdYIGzJzXHAK5F3pLSbCGpYjiId0EhGDw2fW0pO1eOyNLhzPpz1V4LC2ujF7UI+3/UNvzpaK5iGDeGhzL599m+P05W2SUanQXtLK1DUV12dIS95SOWIsZJApSmPl+wJP5lhQhGDJ+jSuD3Ma48RD2hAZu+G14Z4v49GekLFL+bIYdDxFlq6WSjtBrkTGW21T7YpYObbJSP7rX//itttuY/Xq1dxzzz1MmzaNX//618yePZvjjz9+osc4qZCxHHpzRfpzsg2sVPJWMTSFN3vz5C0XF0FvzuGAKQnmNSeoixq8tG4AFPjd4nVYgW6krqnUBDXXnnDQFekdlIQrpHSZVHkpxfqWrB+gYLvlDoslZXHLFRiai6qEyr2bgaCdg0Fv1mZ1T26rRlJVFd46q57fPbdeeoclDp8is6q+D4Opz2ZQF21okiSuABv68sRDOqcf2ELWkkbGUBVea0+xqicvdQsjBqmiQyho3xvSVQqaJEnnbRnPm9kYZV5zglTB4ZWNKQbyDn9/tZOIoTGrIcaHj5vFSfsNlYMrOC4PL+saV/uH4XXkJePXH1QZmciGbCV+Y13UpDtTpDYq+5k7nmBuc4xUwaK9r4ihKZLM7ws0TYYJhBAM5G2eXtXLqq4s0ZDOvi0JTjuoZdTa8JzlsqY7R87xaEmY5ILlt+9LGleJ22rqMoGlqSoHT6sdFwVoZZdUM984UKAuagZlsFTcUXJvQ8VG8t577+WDH/wg//Vf/8WLL76IZcl4VyqV4nvf+x4PPvjghA9ysmBlV4b7X9zI8g65xDY0KZYbD+kYusqUpFSZKTqSRD2nKUrRcXlyRYrevE1bXUQ21jKlyMHqriy9eRuEwLI98gJ0VZLEw2GdKckI8ZDG6h5JmdnQn6Ngu0QMGWcsxb1cT8FCkLekGMTU2giRwLMQQmA7sqqjO2PhB1mYLS236mMmYV2q55SU0hGgqmDoUJKvjJmyFDFne8E5ZPKm6HiyhlpVqYmUatBlfbXt+izvykpakifIWw5qUM4ZMzXZ89zUOWhqDbURgzW9OZasl8o/mqbQlAihAMu7Mlz951f5y8ubQFHKaufdGYuasME+LfExBSlKVTQlUndXpogRlZ5mznbJWy4qkMo7TKuLlIn385rjZC2X7oysBMrbUpFHV1UMVQlaAQtZCROI41quj+LLl2K6KLP9IF82D786sja8JiLrvB9f3kPe8ThsRpLXOrL05qTKUNTUiZoqnekivoBDpiY4ff7Ws/q+L1j0zDqef7MfFdjYXyjzNku0o4luVbunoGIj+Z3vfIdbb72VD33oQ/z+978vbz/uuOP4zne+M6GDm0woxbJ6szZ1UTNoFSDoydl0Z21CuvQmhYDaiIHrCZ5a0YsnpNQ+CDJFg/6cTTyk4/oCxxekClJmTVU2r06LrodmS6OxsjvH9NoozfEQT63qpTkRKsty6UEdddGVvp0rIF1wEAKm10dljXPWZqDgoCnw8KsdvNaeBgEDBWfM5VY8LAVqUwVHLrk1WX0Dm7UbQfaKLkm2hQzpRaZdmaHfmCowMxcLVIaswAP2aE2GAiOjUrBdCkWv7IlaQUuK6XVhutKWzPT2F3Bcn5CuoCnSQ9ZUyclc31/g8RXdnLhvIzUhnaW9qbL8mBOEL0YTpChV0SiKwtzmGN3ZIqu6c7i+wBeCNzoy5AL5ujmNsbIBq4+ZHDI9yb9W9JC2XBav7gMFWfkS0lGQ/MWQodGbtbAVhfqofBbyjgyHHDO3nq6MzR9eXE932hq1NrwhHuaIWXWB4rrK7MYYpqZKuo8iQyu1EYOj5jRw4VEztur9+b7g/iUb+duyDkDGVRNBzXdJHHif5tiEtqrdk1CxkXzjjTc44YQTRmxPJpMMDAxMxJgmHcriqllZQmh7Hm/25ct9Z1A2S1eBXLIKIR/GmKmzdGMK15cir2sC1Rc7qIlWZQUhKnIZ6wtQVRWBwqaBAmcumMrp81tY3Z1j8Zo++nIWOdtDhXLmXFcVVAS2D7YPfXmHgpMpGzNdVZjdFCcW0nn41U4AjphVx5zG+KitYOOmLkUUVBnTlILpQ6ORUhjYxxMKEUPF9aQGpKZK0VnL8cvya6u6cuUKHNvzaU7I9hCre3IM5B1akyEOnJrk1U1p2lMFXnxzoNzIzPdllt72pAp5+0ABRVEoOiUBDsGzawfQFEVqIBoaPVmLZZtSHDe3AVVVRxWk2FxFU/qRWedw8LKLh3QE8GZvHlNXy1U5b/bm0VWFKTVhGuMhaiNSEeqJFd0UHNlhUgEKjl+OCyuqbMehq+D6UmloVVcWTwim1W02SEII0kWnLKbcnAhx/pFtcmVgSAWltb15AOY0xpheF92q11fq+f7HFzfQk7OImTq9WYv6WIiIqZXFgTcOFGmIGXttH5stYfTI9xbQ2trKypUrR2x/8sknmTNnTkXHeuKJJ3jnO9/J1KlTURSF+++/f6ufeeyxxzjssMMIhULMmzdvRNvZHYGNAwVeWt9Pd6bIM2v6eLMnh+eLQOBBoAiCpZDGjLoI6aLsn71viyQr54O2DELILO+bvXnaU0XswAMszVNNBU2BkKYENeERzj5kCvOaExwwpYZ9WxPEQgaO65FzAg9OV4maOoqqDiF7FxzJ1fM8n7qowYJpSTpTFqYmkzodaQtVkUIZ+zTH6QuWW74vWNuboy+YqOUk0aCfEkoZ14G8S7rolPl/hq7hCZ++rEV7qlhWIgfIBiT4TFBSOa0ujOtLdaXZjTEKtkfGcunP2XRnLCnW4ZXGIVkAhiaVhxyfoJ2vrGW2XZ9UwaE3Z/NGR4anVvWWEywRU3IZD59dT31M6kam8havbOgnW3SJhTSm10Y4dl4TJ+zbzLsOmcLMhghFx2NtT45XN6Xoy1rkbXnfLddnXX+eV9tTrO7JEg+YBD2ZYtkjLQki266PoUvNzFKzNF/IJnD5wCj15SyeWN7NA/9p5x+vdfLo6528uG6Av77Sjq4qzGyIMasxzon7NXPifs3MaIiNy0De8dRanlvbh+cLIoaGqkoZuY50kYLtlcWBe7IWXvA9VDEUFRvJj33sY1x55ZUsXrwYRVHYtGkTv/3tb/nCF77AJz/5yYqOlcvlOOSQQ7j55pvHtf+aNWs466yzOOmkk1iyZAmf+cxnuOSSS/jb3/5W6WVUhNfa0yzvyDCQtwkbKrGQIXUjVQUhFAxdCuzWRHQyllfWeFyyPkVP1sL1ZC+VoutTKgItGRxPUCaQ+0JWruQs2c/G8f1y35tptRHe0lZHc02IupiJqaokwwY1Yb0s+BsxVRncZ3PWWShg+7LrXV/eJhGR1KCSRBcM1TD896oefvfsOoqOh4IyIpsNmw1x3vICT0+2Lggb0gBEA6+rJ2sHsTRJSO/L2URMndYa2dsmHtIRIiix7MvxRqf0fo2gFt0TgUZmUNVTalBlu/4Qz70/b9OeKsoe24EcsuvL+OSS9QP05ewhghQfOW4WU2rCPLWylzcClfKCs7ndRk3EYKDgkLekMck5XtB0TYpPIHxpoISsVV/emaEzVZTc0qxNuiB7ptuefFEZmoKpqjQEIsoFWy6X5zbFaU8V6c0WeWZ1H6t7cjiuT9TQ0AKZu6dX9XLjIytY2ZWp6JkdnMmfVhspf0dekAAqqSgJIVciOctlam1Vbm00VPza+MpXvoLv+5xyyink83lOOOEEQqEQX/jCF/jUpz5V0bHOOOMMzjjjjHHvf+uttzJ79myuv/56AA444ACefPJJbrjhBk4//fSKzj1e+L7guTV9FF2PiCnbF/hCeoC6qlB0ffKW5Dh2pCwa4ybJsI7r+7zZK3UiBTKOpynSKI5qeBTKlB03EIrIW175zV4ie28cKLC2J4fjC6KaTBQUXVkPHNalKpCUF5PS/pqqkiu6LNkwgC8EibDUNcxa7hCJruHCG3qw1C5TT6AcOzVUsD15LUXHJxGW79qQLtXDa8IGG/rzOJ4gU7QZyEuDM6U2zIFTktLA2i6ZgozVOZ7Pi+sGysae4FyaoqCpcgyOT7k0z/PdskybgkyCqEFC3/HB0ORLJ2ZqFGyXlV0ZWXk0vbZck110fZJRg5zjUR810VWFbNFlyfoBZjdGWdOTI29JoZLZDTEihsY/X++iN2eRjBikBorlth0ySy7pWlnLpTMoXRSujO+amkoyajC3STILShSgUw9s5s6n3mTxmj66MkVURd5D2QFToyURIm+7LO/IVFxVM7i3kBCU+ZyO51N0ZVik4LhkLJmoihgapxzQXE3ajIKKjaSiKHzta1/ji1/8IitXriSbzXLggQcSj8d3xPiG4Omnn+bUU08dsu3000/nM5/5zJifsSyrnIGHyrQxAZ5a1cNTK3twPcGG/gJhQw14fS4qCpoiPR1NAdv16AqyjiVBCF1VKInolGpvR/fOlM3KOgS10I7HlJrNYq2lPiSO5/HgKx2kCi66pqIpMi6YD5pYxUK61I3UJH3F9X2ZffZlV0BFUcrUlhIKtocnBO2pAq01YV7vyODYQiaUBs0bEXi9uhrEUlVZSugLggy6Tabg4voyTtuZsshbLukgc1xwfKYmQ6QLTrnfeEjXKDoulivJ+LqmyKUqlO8dSKOsDNtWoiWpKoQ12XfHdgWmLulEqiqpWUfMrue0g1oAKWzcn7eZPzUZiFBIDqupq/TmbJasG5BxybCB5cqyQwDP8yVnNe+gqjLUoGkKnu/jKwo6Ci2JEChK8B3Kl2NTTYj9WhIYmsqKrmxZaWhec4IzFrTy3JpeWUUTlGSahkpdxCBiamiask1VNTnbLWfyVWUzn7OlJkx/ziFvy/tdCGTljt+nkWPnNo7r2HsbKl5uX3zxxWQyGUzT5MADD+TII48kHo+Ty+W4+OKLd8QYy+jo6KClpWXItpaWFtLpNIVCYdTPXHvttSSTyfJPJVVBK7sy/O7ZdfTlZaVMNGhnkCk6eIERKE3caEjqBBYdn7zj45aXz5srJnwxlGM4GAJR9iJLpGHL89kwkB+y37zmBNe+52DOXDCF5kSY2nBJQEKeJ2yo+MiOgaU+3poqPRmA/mCZXR8ziYckub07U2RVd5bWmjCqCsmIKRMbUK7bLiU5pHSlQsjQpGqRkN6gpikBjw/68rY8jyWXsbGQzCRnLY/lnRmeXNlDMahvtlyfoiONZyn+6XgypufLMuVh92noPRzs6Soom8v3FIVcED9MhHXOWiBju4M9rETYIGpq9GZtSX4HQppUcZcixfI+JcI6luuRdzwURXrvliNJ364n1eE9X3arbIiHePsBzRw4NckVp+zDOw+Zyoy6KKmCw0BetmYdzEdsSoRoTsrGa6Yuv8e85dKRttg4UJDtM7ahqiZm6mU9zFIWv5R8aoybNCfC1MdMWpJhjphVz4VHzSh7kb4vWxO/3pFmfV++7N3vrajYk/zlL3/J//zP/5BIDKUdFAoFfvWrX/GLX/xiwgY3EbjqqquG9AJPp9PjMpSlmE5JhDZiakzRI3RlikHbgs1LZ0OTkzJT9IYsA0sxR6DsPpaSK6WJXtpvOEkbAau7s1z22xc5/4g2Tt6/pcxn1HWVSxfOwdBUNg7kWd+XpyttBUZRek9xU8NHLqtrIjqRQBHc8gQCn6ip8tzafrqzFjnLJWLoNCfCAXUGWoLac79kvAaVx5m6FJa1HC8wqgaOJwKVGxlTtF1fZuyF9KYSYQPLcSnYPpYPIClMIUPGdvO2z+Bb5YtAPHjQBNWCG1Z6MZX2VYLvSygy/ucpMCUZ4cg5dbie7PtTEqUteVhFR+X19gz9eZtUIehFE5J1+I7nkyl61MXMsg5oiTNaitKWQg8EY/V9ed9aa8LEwgZ61uawmXV84IgZW+SkxkwdhBIk+/wyHUi21PDk9xd0RKwkqTJcXLg+FuLQNsk06M1ZpAoO9bEQJ+zTxOnzW8fVHXJvJZqP+66n0+mgdlSQyWQIhzcvAz3P48EHH6S5uXmHDLKE1tZWOjs7h2zr7OykpqaGSGT0gHMoFCIUClV8rpLHURKh7cpIQdbGuGwVgIBckKFVUcgWpSBseQUr5DJ8OEqxycFZYwXK1lIKQEguoBCwsivLDx56g4eWdnD8vKbyw1paei9avI6VXVkc3w8Mtuzx4voyExw2NMKGRl/ORlUUTtinAc8XvLRuQHY6DOnMaogxtVZqXXZnLCzX54DWBBv7C/T5kuyuqUq5ttoIklaKohDRNabXygy1F4hRbOzPyUQUMusfD0m1GwUtSLqUboZARdarl14WSvAPU1fLy/ESFFU2wfI92bbXG7T0LzVOc1wfEajtrO3Jo6sqx8xtKCckYqYUjnhxXT+uJ+vHS7SYjOWSKkqeaW1M59C2WupjJgT31Q9itIaq4A0bG5TqtM0htdlba6w1pSZMwZb6ngoKhrqZQuYGCTcFhflTKxPWHU1cuCZisF9rnNU9khj/gSNncFzQ1gKG1rWP1eZ2bzSU4zaSpRYOiqKw7777jvi7oihcffXVEzq44TjmmGNGVPQ8/PDDZYX0iUTJ45gaigzphGcGzbAcR3qNuiYnh+NRnrgKouxB6sooxlKBuKGSc/zNAhLBPppCEOeS8cyasE6m6PJmX57khoEhD+ucxjj1gdL1IdOSPLeun2zBDfpaq2iaQltdhEPakqzqznHg1Bq+cOp+3P6v1fQGWc9SXNL2fBRkLK0nYxE1NBZMr+HFN2VLWseVhszQZPzSViXlqTEeYqDgEg/L5V130SLvCOkVC7BcD7lMl0vGwd6yG1CnQrpGSFeCZas0lhFDQwAZ30FDPl9yKotyz+kSj1IoBF6efEnVRXQSIZ3VPVJmbt+WzZqNIV1WwvTnHWbURVBVlZAOUVOj6HhsGCgQ0TXqIrL0MF1wpFCIF4hvKNIAGUEvIVVVEIG3q6uyO+VAYXNt9tbEJDamCqSKbhA7FlIQJHh7iiBB6AvBwW3JipMqwxX0O9NFQrrGUbNHtrUYXtc+WnfIvbUiZ9xG8tFHH0UIwcknn8y9995LfX19+W+maTJz5kymTp1a0cmz2ewQzuWaNWtYsmQJ9fX1zJgxg6uuuoqNGzfyq1/9CoBPfOIT3HTTTXzpS1/i4osv5p///Cd33303f/nLXyo673gwOKYzeKnSl7MCnUX5AId1LaCmOOUs7OBV4mjeJAQtDwwtENoVQ5eavgwWx0M6uqYSDaS4YmGtzGec0xgve7thXWVjqoipSsPoehDSFeqiBhnLZW1vnpkNMc47vI3OrMXqnhxzm+I4nuCNziwd6QKpvGzipSoKugrxkEYyajK7McobHZlyRlRXZZJDlj0KZjVGyVk+/Xlb1j3nbBSkhyi9ZIWC7Y55H6ygNa5AvihKHZKKQafBklajqsgXhudLw6sFRqomquH5ChnLwVAVNE0lbOr4SMK17fn88t9raYybsmbeE7QPFIgamqQhhXU0BVJ5l4ztYmoKCJ81vQWWd+UIayo1UYOYKXuWG5pK1NBwhSS3e77A1GTySlNVOtIFZjXGy7XZW1u6runJUXA82uqjsgdR0ZG8UKTRTYR1NJURXut4Md5e2oNjtWN1h9xbK3LGbSQXLlwISEM2Y8aMcTcG2xKef/55TjrppPLvpdjhRRddxJ133kl7ezvr1q0r/3327Nn85S9/4bOf/Sw//vGPmT59Oj/72c92CP1ntJhO3SxZjvjvlT0UbamHaAU1w6WECwyKQ44CFUkZiYVka1rb9djYXwyMUIkvKZeBZqByY2gKBVtQcOTS9YU3+3j+zTr68jYvruunL2fLpl+6SsSQTMGC42Glg657LXHmNsfoy9lEQ1oQk9N4ZWOKVMEmZ0nhX1OXlTNF18cVgqihEQtarzYnZMuEsKFi6iqGprJ4dR9v9hY4/cBmspbHS+sH5HLX98kGbwnbG6kcNBg+8qWgK5tjfELIpXsp1pkqOvK4wXI3HtYDr83H0BVyedlHfG5zgjlNMaKmHkjN+Ty3po/2gSKtyQam1ckWvlnbIxGSghbdGYvenOwvVDJEqgKzG6IUhEJvzmZTqlD2+HVNlRQdQyNZI4WW8wEzIKTCQVOTnHeEjHmPJl7x7NpelrWnuCBY6gIoAkKGysyGaFmPEmTyzUe2z90ejKeX9uBs+GgY3OZ2b0PFiZt//vOfxONxzj333CHb77nnHvL5PBdddNG4j3XiiSeypRY7o1XTnHjiibz00kvjPse2YqyGUTlL6gY2JkJkLRlY9/0tG4LyMRVpJAuOj656bEoVA31AAhpKQC+ypUAESINhOVJEd0VnFgUplPC9v7xGd9Yqk5h1TSYXbE8a4fqgp3OqYPP8mj5eerMfU9dorQnJRlMpmYDygkxy1JTaiioejgdFy2dNT5aOtBSM6Ms5eELgBTXRJXHcQs5m8do+ZjXESRVka1oPBUMVQ14cwzGcCuULWWnkBtbICShX85rizGuO8fL6FNlAoTtsaExJRsotcZ9b20fYkC0VkhEzuG+C59f24waVUKauoakKdVGTuohB0fEo2C7ZolsmVNuuDBN4Alb25IkbmizNZFCyyPcJGzoFR7bnNTS1HD+ti5kkwsao4hV9OWtI0mRtT54z57dycFuSZNQgnXcI10hxj7C8hLLMXW1EKtPvSAxeOW2pO+TeWJFT8RVfe+213HbbbSO2Nzc38/GPf7wiIznZMVpMp+h4xMMaEV1HVWw8z8PyKNN3tggBpfewpkrKTMZycQIKSc720IPsre36oMilaqmVa/tAAUNXywmdXODNqmzuWui4PpYje+CUjFDe9qiNGpiawrq+ApYrBV1basIMuE5QYyw/my56+MJnTW82OJ4gHpKToz1VJB+MRY5DGsrV3TksR7Y3QEBDzETTVLpSBQqjrLOVQf8vZfolw0gK7DbGQ+Rtr5x5ro9Jcd6C67FvS5yZ9TFqIkbA95RHq4vJ1rMgv4tNqYJs8RpwLkux10RYpy4WYkNfTrZJCGLI/iAv0g/oW+mAd6ogQyiIUkWUS3MiRH9BZqRrQhqRoMXGsk2p4LtxmRF4b+t6cyzdlMJ2fWqjBiEjTM5yee7NPjalCuzXmuD5tf30Zi0SEaNcWZQpOPgCjprTwPS6HbvEHW+r3b2xIqdiI7lu3Tpmz549YvvMmTOHLI33FAyP6aQLDj97YjWvdaTpzzvYXhB/U6TIxJbs5OC/+UIaRVl/raEpUs6s5H1lbRfF3qwMHjY0TF1SRdQg01MisvtA0RGoipzsw82S5wuylofrQ3PCZH1/gZztkS7I3i2mLpMWmcCr0lRZglca86aBomyXGtRPOgIUXxAzNDRFGp+BgkNIl9JbEUNl40BxzHtSyugPHqcC1EWlaHDE1ElGBSFdIWzq5B2flmSYdX153ujIki647NuaIGJIAduaiIEQUgHJ9QWru3O0pwp0pouogffYn7PK4rlzm2K82Zuj4A6OnQbGegxGwmBql+NDZ8aSVVIoFDwV3RO82VegLmpguUVylkdTPMRr7WlWdGUp2B5hQ7ZeSEYMXN8nZmpsHCgwtzHGwdNrWdGZCUpF5Yg0VeWQqYkhHMYdhfG22t3bkjawDUayubmZ//znP8yaNWvI9pdffpmGhoaJGtekwuCYju8LFoXWSUmuIA5YosfYowQjx6qwsVw5YU1NJR7S8ITsVFgqzSt5pWFDRVOkkczZbuAxSnGHwZUAQziZg86tqSUv16foQE/GpiFqsCnlB83HJM2ktMzVlM3UG0MjSEaJMsFaJhTAdX0KSI5kfcygPWVJrqcv6Exb5Z7gW0OJb9hWF6GpJjyIJ+jjo1CwffpzDsfPa2Rmg0witaeKdGctptVG0FWVuqjBxoECDy7t2FzDHog5qIpCuujw2PIeyTcM6eUMN2x+cQ2js24RsjY8oGppCs2JUCCeLKRmp4B0wWbxml48XxLOY0FHy3TRDdSfFF4VGTRNoTtj86FjZ3LAlASvbEyRtz2ipsbB02p3Kj9xrGz4tjRa25NQsZG84IIL+PSnP00ikShLpj3++ONceeWVfOADH5jwAU5GGGppoSjKJXtjxVaHb9UUiBiyWdhA3iFsqJQoMkLA9NoI02qjLNuUwvF8aiIG/XmplC1VeaSBhLGrdwYjGCVFx0dXpWKO5el4vk/G8tBV2dRL+CLgZspzqIGXFDZUHM/D9mRsVBnE8fTxiXo+vlAwdcnty9kuPTl7iJDH1u5LMqLTOMhACiHIFBy8oKVq1FQxdJWGmIk5XWVaXYTV3Tn68w4z6yNMq4szqyHG48u76C242J4su4yHJH3K0EpxRRGEHPLkAmHdEjdTVdh6uITNXifIF4imyOZnqiIl4syYSU/WDrpMCqYkI6SLDroqy0PdQKAjYmo0JkwcT8Ydn1jezWdO2Zd3Hzptl/aeGW82fG9CxUbymmuuYe3atZxyyinoekll2edDH/rQHtf3ZjDHLWJoKMDqnhypgkNbXZh1fYVylcR4S7dCukp9PMSshhhLN6bwfUHBl15NxNQ4uK2WqKmzMZVHCJjbFGdFV5a87ZIquJtn6DghqTXSqmmKXHqng26IEUNF13QG8jZZx0cJqm1UVUX4UukmFtJwfZW+nFPmPqpIDzVuamVlnHhIQzGkiHApRLA1lDxhBRnnK7VzLRk2TZVG2hdSEGNNd46+vMxElzLS+7cmSITlcjsRNkhGTLKWK9V8fL8cQ5X9q2W7C8f1y7Xnji8reVRFQVPEFpkJpVXBYK/T9QWdmSLNCRkmUBRZFun7AjMocRQBXSjv+DiB1JuuSi9eUaQ3nrNcHnmtk08snLvLDdJ4suF7Eyo2kqZpctddd3HNNdfw8ssvE4lEWLBgATNnztwR49tlGFye1ZO1ZFICQcSUcbDGmFnOditBnfF4YOoKUUOjKR6iNqinLkn9T6+N0FYXDeJSkrg8rTZCKm+zZH1eejEV8OVK3EMFUFRAkVlpX8hlfHNNuCzeUHAKuL48flRXA6aj5Oop+GVRYF2RSaeSEK0QkC66hHQFFdkWtnTuLaFkBkpljVJtvSArWjSFsCHjYW7Qf3pFZ1YmzUI6RQSu6+H4sHRjSmaUhUx+1cQMQoZKqihV1afWhskWvbKgQ95y0TSFWtOkO2tvJv4LUa722dL9HHEdiiz9tFyflpoQhqrSlZaakiWSu+zDLVcKph7wLIOKqKLj0VwTZk5jVRl8smKb8/n77rvvqJU3ewIGl2dFDKkMk7NcFGQPF01BCsK6PgS1yaoyMiYY1ktKNtKTUwOaSbrgsKorTargBsKngnjIoDERkiKoIU1SgBQZm+vNO9glJaFxjL9U2uj4ckwl6pETqNgYmkJrUvIe39JWy/6tCZ5Z08vanhyGpjC1LoKuKuXYYtHZXCnjBgZF19RyFj6kq3J56UvvtOj64zKSJY5kpuiWSwyb4gYRU7aOKMm56aoayLzpUt/RcskHLVe7sxavbBzg0Om16JpsSVDKDvtCEAuZ1EalzmbecYmHZH+hgSAOGwvJpJU3zpfccLi+pMcU8IJnRF5cSFepj4RQVOhGGlIfmewqWeNM0aEmIiXUoiGdroy1V/IQJzvGZSQ/97nPcc011xCLxYaIRYyGH/3oRxMysF2FweVZ85piPP/mAJbj0VIj6797A+J2f94u91EBuaTVB1F8VCWIWamym2BJrVr4kCo6ZCzZX9nQZTGgpsKq7iyaIs9RGzUo2B5/e7WzXCM+HKXKnpJB0pCeGcgYoRuIRpQoLfIvspInZmoUXbn8a4yHOHxmPX05h1TBxvN84iGTWEgjlZfXqyqyTLJUOpgtOoQMTbZZ0BT68w4CBS2oP3a2wJEsDUQJvNy+nOzdEtFV2lMWYElOpi/IWR4FO0/YUANeqbzgEm/Rsl1WdmapDRtoqiypDOmKlF5zBLmibG1rBcK5mqoSDRlki3a5r1BNWPahKTjuCG7naM6lFoSkS4a1XEkYLJ/DwX3pyBQC4WJRflkWHClAHDE1SbtpjlMfC5EJOkfujTzEyY5xfSMvvfQSjuOU/z0WJqIKZ1djcHlW1pJcvXh4c3N5Q5MZSidwG11foJe4dcExDJWg+kULpMBk/XIybOD6IiA3qxi6xsz6iOQE5mw6U0XaB4qB4RWkCy7WMPd08KQt/T9YSdMYiCv4yFrswZ8s9cb2hNR1XN9XoD5ulvmDDfEQB0+v4YU3BxgoyOVj1nJlZUlUalXWRU0UBD1ZWxLJbU+2JwiSEp4PtqsEnRJlCGLUJWow+CHXISh7h+V66GAH2UzNLydNSo+ZK8D1AM/jqVU9shrG3VwPL4WMZdtbP0iOFR15HXnbRVNl1t/1BV5g8QxNRVMkFcsdHIAcfC+D8SnBPVVVcF25bA8HxPJSkksJEjsKkAmSNs01IQ6fVU9bXbQstLw38xAnO8ZlJB999NFR/70nYnB5Vn+QJDDCm9uzZoouvhBl79DzpfcoBk16xwfP9tGD2RzWNZprQpi6yob+AhFTIxHSydoeBcfn8Jl1bOgvyEZfeZvGmBn0VZYvpsGGcTABu2QMfKR3ky44aJqKoapEDZWBgovtST5lSYBWRcFxfbKeSzSkEQ9p5WszNI33HDoVTVNZtikdNPKSOpmd6SK9WUvyMv3NWX1PSP1DJUgMKYpA01Q8F8aqQxqe/Bi83RPgedIAhXWZ3HBGMaimSjkEAXLZK4RfDnmU4rdSyVyga5AISQWgzkwRU1ewXYWC4w8ZhYqPoilETA3P9ykGxm6wlJ0TjE9TN6sWla7JDdSYHM+X3m1Q6imQHSFVVUFTZOuNUq12f95mem20Ih7i1oQzqpg4VH37YRhcnmVqajnOFdJl2V8+aDUqQ0dyGaoqckk1nMgtyeFSrqw3a1F0JQeyL2eRKsgM7vq+PI1xk/V9eQpBv+pk1KAjKDcsJUxKGI2YDVLPsjZq4AQxshKtSEUukzVNwQtUa1RVwROyl85AwcHQ1DJh+MKjZzKnMc4TK7r56b9WETF01vbkAIGPLEscTO9xXFE2Em5gvFxPlEWAt4axciUCWfc9OJlS9iKFpDUNJqqXDGxIk60lCK5b1+QYXU/GgtWgf07ppTb8/PLlI7UxEaLc4XB4UkcaRLmSGMxXDQWtWn1kb6GQ79MUDwWGUzCvKcqKriwPv9ZJwXJRVZWmuMncxvEr+1c1H3cuxmUk3/ve9477gH/84x+3eTCTAYPLs+Y1xaiLmnRnipgxE9eXne/iIQ3HdYKYI0HUaXOM0Ef+uL5ccrqejyXk5JP0GcnQ6w/qoQsr3XJ7WFOTVRml/injTdSAnISOTzk54foyi62rm2uiPV9QEzYQSOmy1zsytNVFOWhKgml1cgLLDoOC/qzDa+kMluuXe4orgBjElRyerJJSZ+NPwW9xTzH0+KL8H0lwH+43ScO6+ZgyDixjhEXXC4z7ZiM/ONmmImXvHE9+h25Qumlqg/iwYwx2cJhFoOD7PpomxUZsTwTxZ43WZJiC47FxoCifBUXB1HwGigovbxzAesrfqmZjVfNx52NcRjKZTJb/LYTgvvvuI5lMcvjhhwPwwgsvMDAwUJExnawYXJ61sjvHlGSIdNGhM23herIfihFkdoFyYgSxWearBBFklm1XLs9rowYZyyNbdDdL5QsYyDtlKTHX91nemWWcjhg1Iem5SLUcV3pZvlKOSeqqzJb7ouQhCepjkjKjoHDWwa3kbZ+Hl3XQkZKTtxR/9QUUXY+4qUuv2JNGR1XGJrIPLtUuGbGS8akUQxfCEsOX58Mx2vK9VPteXjYLafwGi/0KZDzS9/0h1xBUYm4WU94KNIJ74PlYjodAIVVwiIcMHNfl2fUpWa2jyCRb6fsvBhUCgzUbhy+pp9SEx635CFSX4xOEcRnJO+64o/zvL3/5y5x33nnceuutaFqpQZLHZZddRk1NzY4Z5U7G8PKshpgpvQ8hZcj68045LieGtV0oVXGUlnKmoVG0PUK6gqFpxEw5KSh9XmzOiJdQSUuRsCFVYzJFl6ITxMOszV5WqTmY7PWs4HgeXYH6uKYo/ObpdWxKFfF8P8iuyiRN3vbKohnpohRaKL0Y/v/23jxKruq8137OWGOPaqlbLbUGJCEhBgkjIyR8P3kFHDCOA/l8EwhgCCGs6xvsGHDsBcSY5djMmMFAGGJj7BVIZK8VM13bkE/LvrYBA2EUMkJCoLkHdau75jrj/v7Yp6pHtbqllrol7WetXlJVn6rafarOW3vv931/v9EKrgcikAHViAqnx/FnVR9/sFTOQ2WPMqC/wH7oLLUi/DEwYRREB7kjBPmKGEYFP4RClL12BbjloLp3aeiCDbtz+JHeaDyqMQ1CgYZMKLX3ldjUkWVXXwnHD4YtqZvSNh91F5jTmBxV8/GlLd28uyMzIctxtfcJmhhNq2wEpk+fzu9//3sWL1486P4PPviA1atX09PTM6EDnGiy2Sx1dXVkMpn9BvWBH5C4qfPf23p56rVt7OgpRVJbwaCstq7JbGdlY78ykwyEnNHZpo4dZcc1rd/E6mBI2QapmEmu7FUzuwKqZTggL8pKRlaPavgCIQ3CSp6sb6xNGIBG0fEHJUSgXwVnX8K5o1ER8M2UgmqS6XCyn/pwNPrfo/0dO5bn1gbcP3DP09KQwiDIWtJq6RhyD1fX5b7yibPq+NtPzec3G7vYubdEqAkMNJKRaduO3hKfWjid6TXDLUn8MGT9zgzpuIkQRMtx2cVU2XMez3J8svY+x3ONHg7GnbjxfZ+NGzcOC5IbN24kHGvbyRFCpT3rw64cz7/Tzi/e62BvwSEVMyPf4mDQTCIU8gMvhNy306JlqWXIIOkGIU4UaWpiFtmyNyDx0h/UxoMcg0w0DBzLQIX0gTMii8oyVsOJxIKBYUFsaKlRKIYnkcaCoUHSNsmUgsMeIGF4zWOlXGrQtoAml8lyhjm255UVA/KLbmjCLmb1e9T4kRCJFx1g6YNL5eRMU8MPQ9kNFcqtj5c+7Kav6OEG8n01NI10XDpYftCZpSndNGw2WXR8uvMumgbLZtcflAWD2vvsZ9xB8oorruDKK69ky5YtnH766QC8+uqr3H777VxxxRUTPsDJpvJh2dlbxPEDmmvjaBr05MPowz34qqqKs4qoJEbXqImbBKEgFc0i5f5Xf1Abq7jCSISCqIxlMBrDL97K8Y4XQrRVUGFokmjY4+jXVBwPuq5RcPwJWTofCJWtxBAZ1GQdI4QDZt1+OPKs0Dao9ncPZV+PE8g9aIj2MrV+EzE3kAEyCAWaoQ2YcYpq5UHCNvntpm56Cm6/aIoAXwj6ih4asLkrz8mtddQl7f7XFYKPugtoCI5rSo+6HN9f66PyuxnMuIPk3XffTUtLC9/73vdob28HYObMmXz961/na1/72oQPcDIZ+GFprYuzrbuIH1ba5OQxUYPLsJISHdANjZihMy1t051zyJal+EMYCHryQfXiGuse33jY11MGlV8ewGseyDhLnsDzDyBrM0EMnBkjiOoetUE+RNGvhj82JBKsEMP2iUfbNw5EvxCypkUNB/rAz4bAD6LfReVSArCFoCNTkla+oVyCC0H138qMPlfyeXtHL5+Y2zhI8zEVk8vsVGzky3qsFgzK72Yw4w6Suq7zjW98g2984xtks1mAKbFvcCiofFgSls4HHXn2Fl16i3J2VHR9uTSLlmpG5PZn6HrkACgTNZapU3bDSOhg/MmLqYbB8Cz+/vAFVcX1yfr7zag+siJmIXdgRx+PL0Absv7e15ZDJWEHAxSQon3nSuE/SDUiIeTMz/X66zxNHZa21rCtp4QXygaAyu5V5bEDtz/KXii7tLJhVfPxlNl1/Oebu8ZtwTA0OZNzPOV3M4ADKib3fZ/f/OY3bNmyhYsvvhiA3bt3U1tbSzo99qLYqU7B9enOO/QUHMpuIE20vBBEKIuotf7sbRDKTHbS0ukrSgHellqLlvoEmzrzlLz9iz4cCRzonPBAkj4TiTd0W2SMjxtp26GS7NGgGmkH/n2V/w7cog+FXHYnLQNN08iU3Gr2P27pnD6vkVkNyah3ffRZu4YMtn+9cg61kW94pZ3xnR2ZcVkwjJScaUrbUeOE8ruBAwiS27Zt49xzz2X79u04jsNnPvMZampquOOOO3Ach0ceeeRQjPOwE4aCTNGVe5FeQGt9gpQv6MiWKUXp38oSyDSkQIURJUOqnika/LE9R6bojdjdcaAY0fL+6EqTHTlUlr0w9kSPBtTFTVIxC8uQNaumodOUtlk+u56mmjjbewrVesn9kSlJO9wlLYNXceOxYNhXcmb73hJ7cg6OF3LqnPoxBdujmXEHya9+9ausWLFimF3DX/zFX3DVVVdN6OAmi8q36zs7+9iTcwmEQNPKNKZitNTG6cxKj5hKkIxHTnxuINXDQd6/J+fiDJANm6jJ1NCEzEQFX8XYGe/5TtgVG2HZl1+fslnaUkd90qq6KW7uyqEh9vt+6shglS8PX+6O1YJhtOTM8c1m1c9pU2eO1vrEMe13M+4g+bvf/Y6XX34Z27YH3T9v3jx27do1YQObLAZ+u6Zsg/qkScEJ6C16lLyQmXVxGlM22bJfVSWXJvUahqEjhIamaxjRhGCsPczjYegzDg2YIx2jOPxUMuuV0qKEZZBzfBpNm7q4jWloVRWgLV1yFtlcGyfnFEZdbodAIfL+GYmxWDDsLzmzaEaa7XuLzGlM0Z13jmm/mzE2W/UThiFBMHxHZ+fOndTUHNiJe+ihh5g3bx7xeJyVK1fy2muv7fPYJ554Ak3TBv3E4/EDet2hDP12rU/apGIWM2pj1CcsXD9gd6ZEEAqpLJ6yo/pGAZrckI+ZOoYuM9pJS6/W5k0U+/vyHpY8UBw0ptZ/PqUjUT+jnecwOkB66GjkHB/HkyZfC6anac+UCcOwan9rm1JQxTS0fX5mTL2/RfIX77XzYVduxOMqNb5LWmppa0wOm/X1q13tOxMeM3UuOLWVaz9zPF85axHXfuZ4vrRmwTEVIOEArt8//dM/5b777qve1jSNfD7PzTffzHnnnTfuAaxdu5brrruOm2++mTfffJNly5Zxzjnn0NXVtc/H1NbW0t7eXv3Ztm3buF93JIZ+u9bETRqTNn4gmNUgrRXq4hanzK7nfyxqwtQ1dF2nKWXTlLaZURPDNg1MXaMpHaMhZR9otc0+GcseWEWJXDExWFFNI0TlONH/pfjFGB6va5HVh0/JC1k4I83/XDELQ9d4YUMnr27poTNbZndfiZ19JSxdoyFlkbb1wQpDRtS1ZRrMn5bE8QJe3NA5Zn+lgQxUuxqJSnKmJm6NGmyPBcZ9Ld1999289NJLLF26lHK5zMUXX1xdat9xxx3jHsA999zDVVddxRVXXMHSpUt55JFHSCaTPP744/t8jKZptLS0VH+am5vH/bojMfTbVdM0FsxIkbAN9hZcTFPKjPmhYPveEjFT9mnsLXpVm9N0zKQ2Lu1FK9nL/X2EzXEEtbFcDqGIPG0UE8JAq+CBNg/efvrRtagW09DlzLDkBTQkLf7nJ9rQK0vcqOFASrjJz0HMkqLMMdPAMDQZHA2qnkIJy2BOY2pQveJ4qahdtVfU3gdQSc4snJE+ZpIzozHuPcm2tjbeeecd1q5dyzvvvEM+n+fKK6/kkksuIZEY3wl1XZc33niDG264oXqfruucffbZvPLKK/t8XD6fZ+7cuYRhyCc+8QluvfVWTjzxxBGPdRwHx3Gqtyu1nSMx8Nu1UvrQmIqxvK2eLV0FOnNlyl7Anpz0fpleE5NyWqbci8yVXXryDm4o7R30/utg1ItJCIhZstKu7B18LaWAA/ZsUQwnEP3dRqN1JUF/HaXGYNO2vBuQsEyu+NR8Fs5I8/BvthCEgnOWNpMr+7y5o49M0WV62qYr5+IEIZapoztUlZmKboCmadiGxsbOHHUJk5hpHFC94kC1q7Fkwo9lxhUkPc9jyZIlPP/881xyySVccsklB/Xi3d3dBEEwbCbY3NzMxo0bR3zM4sWLefzxxznllFPIZDLcfffdrF69mg0bNjB79uxhx9922218+9vfHtN4BmpJDqwza0zFqJ9r8e6uDPOmJbFNgx17SyyakeKNbX105cokbClZVnQDEraBYWrkI+mYyues0rJYqa8baDMwoybG3rzDRJWbq8TNxLK/bqNKKKkESCuKqrqu0ZiyMQ2dFfPqOWlWLb94bzdvbNvLtLSNpmnUJW2Wza7n7R3SOiMdN9HcgJip01d0o5molOhrqYtTm5ArlY6MI83Qcg5LWsb/N401E36sM64gaVkW5XL5UI1lTKxatYpVq1ZVb69evZoTTjiBRx99lO985zvDjr/hhhsGmZdls1na2tpGfO6h364ttTG8IKQz67C36DKrPsFZJzTz9Fu7aa2Po+s6C2akyJY9dvWVCALpvucF0tckhYbjS79lS5P1lEEYRoZUsse3YtLVW/Qoq+nfEUulFdVA+hvNrI/h+oKauEUqppMvB2zuKPCVp96i6EhnxaaaGDPr5LK2MWWzvK2eD7vy9BQcHC/guGkJauMmu/rKWIZGc00MXTq9YRuVJI7OuzsynLmg6YBmfWPJhB/rjHu5ffXVV3PHHXfwgx/8ANM8uIr7pqYmDMOgs7Nz0P2dnZ20tIztq9GyLE499VQ+/PDDEX8fi8WIxYbLSu2LyrfrU3/Yzv/dtIc9uTJeKDB1jb6ih67tqhbfZktSZ3FWfULaLejg+SFOIG1W6xIWjq/j+rLWMmVoOMhNSj8k2peSUxTHDxihaEAxRRi4ZWJo/TPLysqgokav6/KnPeNgG7I2cmdvGccPI/O4ivp8SF/RJRSCvOOzvK2expTNJ+c10J4psbfg8b/WHEfZDbn52fcQQuCFAksTeEFIvuyTjJksmpFmy56D66OuZMIVIzPuKPf666+zbt06XnzxRU4++WRSqdSg34/HvsG2bU477TTWrVvHBRdcAMgSo3Xr1vHlL395TM8RBAHr168/oMz6aHTmHIpeQDpuUZuwpA5kyePVj3oIhLQulRYNIUEg7WJn1MRw/IDunAtIYdVpaRvL1Nm5t0TeCUjYOnqkBBNWvUilCnVlqaaWypPPSOo+FYaK9Q7MkVWkz1pr45iGTntfGU0TxEwDQYitV3zJpdRe0jYoOj4bdmdY0lKDbejkyj6nzW1gxdxGNnXlaGtM4vohfSWPguNj6DozauMsmJ6iNmGxtbtwzPRRTwbjDpL19fV84QtfmLABXHfddVx++eWsWLGC008/nfvuu49CoVCVXbvsssuYNWsWt912GwD//M//zBlnnMHChQvp6+vjrrvuYtu2bfzd3/3dhIwnDAW/Wt/B5q4cSdtgWsqu7k3GLYPdfUX25l3yZY/ZDQmSlomnh+zJO7RnSrLDRkDZC+jKOiQsnXTcpLkmxt6Si65FRlQIEraJH4SYuhYpiB/5AhhHC+Mpyg+IhI01aKmLEwpoSsUoez5lL6AmLl0aDU0GRj+Qs0Eh5Jdx2g7oypXpzJYRAqbXxPjLFTXoukbKNmlKx6hLyESiG4TYhk46ZpJ3fHb1lqRNsWUcqlNxzDPuIDnQymEiuPDCC9mzZw/f+ta36OjoYPny5fzqV7+qJnO2b99e3YcB6O3t5aqrrqKjo4OGhgZOO+00Xn75ZZYuXToh49nVV2L9rgxBKKoZbscLCCLjprIntf8CDXb0lqqWB6YutSJBmt0nbSmnVnADsmWfWQ0J4rZBV1a6IJq6Tsn1cY4CZaCjkYp+5ljl4SrHZUvSv+iDzhyWoUtnzUCuNgIhCMJ+p8YweqFM2cc2NEwNalIWhq7x7Du7aWtMsHB6TTWZWGkf3FtweGNbLz0Fh0zJozEV49m3d3PuyS0q2XIIGLN9QxiG3HXXXTz77LO4rstZZ53FzTffPO6yn8lmf9LwGzuyfPf//JH2vjIJS6ev6FfVv4NQ7h8hpHJLwjZw/cjcPpQXQRhCY8quWiQ4kXr5/KYk2ZLP1p7ioOy24uhBA5rSNrqmkS1LgVxT1wiEkMZsA+w6KvYdFQwN+UVqGZFbZsCCGWlu+txSdJ1qq2zC0vmgMxf1bcuGh+Ob05S8cNz2DFOVqWbfMOaS41tuuYUbb7yRdDrNrFmzuP/++7n66qsP5dgmhZRtkrLk8qg9IzXzTEMjYRl4wUA1a+nlrGkapi77b5OWHnnchNVlVTpu0VqXIFvy6cw61Q4cFSCPTirbJlbkxlh0A0puiB9IObUod1P1N6r8+AJ295XJlDzilk590mJLV56Hfi0TklecOY8TW2vZ2JGjJ++SsAxmNSQ4dU4DbY0pFs1Is7fgHnAHjmLfjDlI/uQnP+Ff/uVfeOGFF3j66ad57rnnePLJJ486X5tZ9QlOmlVL0Q0oeyFxUy6lg1BUP3yyWFsQM3XSMdkdURFCjZs6NXFZRjG7IcG0lI2uQ0/exQv6rU0nEltXvdpjRWPwHlNFG3IiEIAXyASLG2WzfTHcGjdg+F6nFj1DyZVulrqmkbR1egpO1Srh88taaWtIcsZx01i1oIkVcxtoTEmhmaGK4YqJY8xBcvv27YMyyGeffTaaprF79+5DMrDJQtc1ls9pIG7qssuhutEeRPaflQwmVYENU9eiQCqFdxuS0uSrK1tmR2+RbT0F8o60bqjI+E9kUBvJy0YxMrahkYwPTnJM5MTLDcQgS4axIgA0DUPX8PyQnoKDqevMrEtUA1/JCzAMjdkNSWoT1jD1noRt4PiBynRPMGMOkr7vD1PbsSwLzxtZrulIZnpNjAUz0ixoSmEZOoUowaLpGqYu3Q+FkA531SoeUVF7gbqETdkNyJQ9mfQJBUZkRO+N4K53sBwKj5yjEelrI/eNB8qYHQrGYuw29IvSjzq23ECQKXokYybTo7KyguuTsAyCQLCzt0i25A3ruT7WFMMPF2M+m0II/uZv/mZQYXa5XOZLX/rSoFrJ8dRJTlUqZRfHNSVZWE7RU3QxNZ0dewvs6C0Rt3RKXkgQ9lu6isjGIVPyeHtHH0FkGFbJigcITC3yTYleZ6IuUBUjx4YeFTW6QUDM0gnDEGeCCvgHetwc6JdWxTjMjWwYa+MmZU8Gvu6cw9s7+tjRW6Sn4NKQsGhIxardOseiYvjhYsxB8vLLLx9236WXXjqhg5kqzKpPUJ+w+P2WbnQitztDr5YiFd2AmrhFS22MnBPQnXeImwZ1CZNM0ZOq5UAQhtTEzWgGKaIZpyr5mSw8IKnrLJqRpm1akt9t6sYJJmZpKvbRBTBac8Aw8WRRsXXQ0DRp0bC7r0xrfZxfrG+nt+ixpKWGDzpzFMo+u/tKZMseiwdkt5UoxcQz5iA50fWRU5mPuvN05R1KboChQW3SwvFCOrJl3EAghKDg+OzqCwmRGn+tdXFKkbiFE4TSkD4UclmEvFgm2wxLAUUvZEN7lvc7c1V/7ImgsvIdGp729wpD/YpEKPAQ2KbOrr4ycxpTEPX2V+okUzGTLV0FegoOPXmHjQI+d3IL55yk6iQPBWrzYggVdfIgFKw5vomP9hRpz5boybsEYUjC1rF0nYRl4IYhnhvQmLbJlX1Z+ybkbNFHIwz3bdal2g8nD3+gx+sEUFErD+iXStvfs9uGVm1LDZFL7VhUNqRpsr/f8QPmNyXZvrc0yGahMRWjYZ78zPUWXUpewOeXtTJnWmr0F1UcECpIDmGgOnlN3KIhGeOlLTLDXSm3yJY96hM2vQWHvqJLR9YhGTMxdMiWPLxg9AZDXYOamEHRDRijOZ5iilL5squ826ap4YxhhlqXMCm5UiEKIGFJkV07KiEzdSmTtqO3RMnzaR3iga1pGrUJi2TMYGt3gaKn1FEOFSpIDqFfnVx+KHNlj76iR9I2qn7Hhq5xwswaunM2e/JSyWV6OoYQgu6cu99ZhCwml0cp464jm2oHDXJ2mLIMXN/f7/uZKXkYuo6haTTVWEyriWNqcusGYG/BpbUhQa7soaEpD+xJRJ3ZIQxUJ/cCwbs7paiuZUj1HsuU3Te2oZNzfGxT9mB7QYjnB2PLbAooR1qS0c0pidoSGBuVute4ZRC3dChB3NLwfTFsH9rS5R5k0jZAaARhQM4JEDg0pW0IIF/2SdgmxzfXkCl6zKiJ054pDxKChmPTA3syUEFyCBV18j981ENv0SVX9jF1PTKD0siVfISAvqJHR1YKEAehXKb7YxTNFSDl1Q7h3zERqAA5NirnyTY0ptfG6cq7WLpOPK5RcHyCMNKZjPq1QwF+AElbA93E0jXyjk/RDZiWtplZJz+Dpg57heD4ljS9JVd5YE8SKkgOQdc1PnPiDF78Ywd78g4tNTH8UIqc6rpGMrLafL8jS3euTBBCXdICIdhbGFvYq4i0Ko4eNE2Whlm6VIEyDA3b0Ck6AWiygF1oAyw8NK266khYBjPrYvQWfRqSNqfNqae36PLSh72Yhs7vNu/BCwRlN+CDjhy6DknL5JTZdSqjfRhQQXIEEpbsdDB1jYIbYOiybk3TYFraxjYMtu0t4PhSx8/QNMpjabGIUDO0o49QQNkP2Vv0ScVMunLlSB2qvz+8sr2i6xAzNfyoEsIydYpuSDpm0Ft0eWN7Lx/vKWDoGqfPb6S1PsnuviLbeoqUvIDmWpukbarP0WFCBckRKLhyr/GM46ZFbWIhRdenI1Omt+iRKbk4XkjKNnCjtdNYrGMVRzdCQMwwWDY7zf/d1E2mJFt2K9nvSqA0NA3Xl26IXggLmlJ05hx29pYoOFItytDguOlpUjGLTMllc1eeMJTCvZZu0FoXZ8PuLO2Z8lEhjzaVUUFyBCrJm5IXUJuoZBRjtDUkyZV9tvUUpIdy3GJXRi653WD/GU1di+rpVDQ9ohm4+1dpFKgEwjnTEtQnY9QlrUgg160eE7f0yNso6sDyAgxDp+QHlNyAuKlhmRaWplETtyg4Pm9t78XUNUpuwLR0DDdSGQKNRTPSbO7K8+KGTuY1pmjPlpWZ1yFABckR2Je1rKZJkdNACBKWQWfeQdeR2e0xrLZjpk5ZFUYe8RgDZJyEoCpyoiE92N1Azvha6+N4fkjJkwpQskKiX4g5NDRMQtbvzOCHAsvQmVETIwgFqbhJSgh2Z8oUnICZdVIzwTJ08o6PG4RVebQ3t/dy5wsb6c67lP2AuGmwYHqac05StrATgQqSI7A/4/Z0zILIryRpGftt3qjIowXjlM9STE0qwrkweItFR2qKTktpmIaOF21IVlSiCk6ArsvHh0IKbiQsEz/SGQ1CgeOHaJqsz82XA3IlqQUAglw5IB2Thea2IespS17Aps4cZS/g+OYaknaCouvz3u4MuzMltRSfAMYslXasUbGWPam1jr6ix9buAn1Fj5Na62iuiTGjJkbM0MiX/VGXz9IgSpO+NoZa/hzpVL7wBnbZVAiBje05NnZk8YKQHb0lgjDE0GUDQjJmYOlaVY80bsrSskBAbcJibmMCQ5dfvrt6SxQcD8vUq8vmvOOxOyNVqNIxg0zR5e3tfZS9kAXTU9TEpT9OTdxSSuUTiJpJjsJIxu2hENz//21mdn2Crd0Fso476DEDC7A15IwhjKKoO44MuGJqUnkLK9JoQ8NP3vH5oCNHwe03jwOZwdaEVJQKgYa4xf84vgmBxns7M8QsHYEMoIWyH2mQytpcU9cIAoFhyFctewGvf7yXXZkSnVmHuGXwQUeORc2yrxuGK5UrX+0DRwXJ/TDUuH1jR5buvENPwcGIRHgrNeQDLxodBpl9Wcpi4ahipK87AfSWPAwALVo5CBlYfeTmpWVohJF4hRSuiJFzPHb0eiBkyVCInGWGoaDoy0oLhJA9/3GTnb0ldlPCjfzehRBs6szTU3A547hp1UCZsA06o2SO4sBRQXKcJC2D7rxD0fFpro1Tcn1p9BTt3leD5IDgaUWbGq6aSB4TBBC1VUm7DyGkrYMbBMRNsA0DTYePugu8u7Ovago26DnCEDQd2zRY3lZHY9KmPVPi/Y4cRTeoeim5foBlSofFzqzD+l0Z/p9F09E0TfV1TxBTYk/yoYceYt68ecTjcVauXMlrr7026vE/+9nPWLJkCfF4nJNPPplf/OIXh2mklQ+zhkDDNjRq4jbxqAvHMjSsqP2scmJ1TWYkjzK/NMUoVFYMgaBqBFah7EPRCyi7MilTWb4Ps3IIpR1tbdzECwRtjUkWt9SAkFUScxqTzG9KURO3CUIReTLBzt5S1dqhPVNm4Yy06us+SCY9SK5du5brrruOm2++mTfffJNly5Zxzjnn0NXVNeLxL7/8Mn/913/NlVdeyVtvvcUFF1zABRdcwHvvvXdYxlvyAprSNum4SW/RIx0ziJkahlbpypH/96PZQco2EEKghKyOXQYav1X2qb1QBtHK3qauVZJ8VH3ZTR1qYiZ7C26kHenh+CF1CatqBNaYsrEMnbIv7ULKXsCuPlmVofq6JwZNDHUTOsysXLmST37ykzz44IMAhGFIW1sbX/nKV7j++uuHHX/hhRdSKBR4/vnnq/edccYZLF++nEceeWS/r3ewxuc79ha59782AYL2jENv0aXoSnECIeRme8EJSFiyBEQgM+AhSlXnWKEivFtBG/L/cMD/tWoXjvRIMg1pX+z5AsvUmNOYJBRw8qw6dvQWeX93jrbGOPXJfq+pkhuwt+CSdzzKXsgn5tbzqYXT+dMTj8w6yYO9RieaSd2scF2XN954gxtuuKF6n67rnH322bzyyisjPuaVV17huuuuG3TfOeecw9NPPz3i8Y7j4DhO9XY2mz2oMQ8sNF8xt568I9sWLV1DCMGG9iyZkseZxzXxQVeOD/fkKTiyJs7QUSK7xwADvwgNrb/DqqJHGoZSQk1HBkYvkIXkpiGz25oOviawDR3Xk/vdJTfgtDmN9BU8HC9ECFFtckjYBq1WnF29IdNSMb561iI+OW+amkFOEJO63O7u7iYIApqbmwfd39zcTEdHx4iP6ejoGNfxt912G3V1ddWftra2gxpzpdC8MWXz4Z4Cmgb1SQtd1+jKuzTXxplZlyCdsFg4I03SNiJP5f6uDMXYOBLP1dAxW4ZWXUbHLR3b1In85NB1Kb5sDamfDaMPSltjknnTU3xmaTM3fu4EvnHOYtYsnk4goCfv4PjSqdPxA3ryDrqus2bxdBUgJ5hJ35M81Nxwww1kMpnqz44dOw76OfdVaH7yrDouOn0OTekYRdenMRXj1LYGYqYuvUz2M4vUo4spaenMa4xTFzexdLDH8C4N3PMyNJlR31ft+sFcPtU9s0OMbcilp3mAn1AdiJvReRjTsRqm1n/b0uXMfyT29ffrGqRjBgPjkxCCeCTSLIT0UAqCytaL3L+2DZl08QKBF4S4fkjM0GlMWcxuSHLpGXOZOy2FaepcvHIOy9rqMXSdXNlnb8EhV/YxdJ1lbfVcvHKOCpATzKQut5uamjAMg87OzkH3d3Z20tLSMuJjWlpaxnV8LBYb5BU+UYxUaF7JIr67I1Pt+57TmGRxs7QB9fxQzia14eb1li5nqaaus3BGioRlkHMKNCRtYpZOX9Gj5AXVcpFKMkDTZL9wyjZwfEHR82UG1JJmZUU3oOiGg5aAA/9v6tCYtMmUPNxoXTh037SSrTcNnda6GB1ZFyOS+8o7AV4gVdbHu98aj8ZdcAOcyrkBbANSMQPLMCj7ASIUZEcxyNYBy5AlV0IDS5ddLKahoevI8x6dN1OTy1npQyQf15SySVjy/DlBEBVwy62RQtmjNEBeXI8SKoau4wehbBaI/nZDo9p3bRk6+bKHrkklexAUo78THaYlrOpjbUOj7AeUPel5ZOoai5prWL1g+L7iwhk1XHP2In71Xgfrd2UougFJ2+CUWfWqV/sQMalB0rZtTjvtNNatW8cFF1wAyMTNunXr+PKXvzziY1atWsW6deu45pprqvf913/9F6tWrToMIx7M0ELzCkP7vpe21tJX8ujMOrILA0EYdV4YUdGxpsmSohk1MRZMT7Mn59KQsqlLmCDk3lV33qUcGT6lbJMZNTGWz6nnrKXNNCZtUpbJbz/cwwsbOujMlhECauI6dQkpCJst+9XidkOD5toY//vTC1k5fxq3/+p93o/2U4NASC3EAXtplqnTlLYpeCHTa2LMa0oShIK+osfeglPNvIoRgqWlV1wkI21FXZZFtdbHqUvY9OQdOrJldE1jcXMNOcfH8aSO57S0TVtjku17i+zqLREEIV6kKqHrWn/LnaaRsA0Stk7CMjENqR5fdKWlhqFrtDUmOLG1lrIXsjtTxvelso5haFUR2yUza3lpczd/+HgvfUUHI2ExzdRJWiZxU6c9W6bsBViGjp0wKbohZS9A0+R7Mi1t86mF0/nUoiZ+8spW3tuVlYE+6r6pSVgsnJ7iq2cfj+MF/PjlbWztKSCQ4rvNdXH+31Nnc9YJzftU8lk4o4a/H+ELWs0gDw2Tnt1eu3Ytl19+OY8++iinn3469913Hz/96U/ZuHEjzc3NXHbZZcyaNYvbbrsNkCVAa9as4fbbb+dzn/sc//Ef/8Gtt97Km2++yUknnbTf1ztcmbMPu3K88F4nW/bkcXw5g3C8QGYuwxDPFxgaxCwDxw/JlHxsA5pq4jSlYyyckWZxSw0b23N82JWjr+ShaTCjJsZJs+uYXZ/kuKYUsxuSwy4O3w95c0cvPQWXaSmb5bPqac+V2dSV5a2tfWg6LG6p5dwTWrBtozreX73XwSsf9bCzt4Tryf2ushsSIoiZOgnbZH5TistXz2PutCQvvNcZjc2VBfVhiG3oZMo+XdkyThRMYpZO0jY5bnqaTy+ejqbB/3m3nW09RbwglOo3tTHmNiRB0+jOO3TnXTQE09Kx6vk4vrmG1z7u4d2dfXTmHPxAYEZfLMdNT7Pm+OmkYibv7OhjS1ee3qKL64ekYya1CYsgFLhBSMw0WDgjzdknNJOwjWGBJgwFO3qLfNxdAOC4phStdQnas2Xe78jy+sd72d5TpOgFJCyDuY0J5s9I01qXGPSefNiV45fr23l9ay95xycdMzl9XiPnntyvJj70vfpEWwPmge4xHCVMtez2pAdJgAcffJC77rqLjo4Oli9fzve//31WrlwJwKc//WnmzZvHE088UT3+Zz/7Gd/85jfZunUrixYt4s477+S8884b02sdzjcgDMWgb/uZtfFBmn8Dbycs6cZY9IJhF+zhmjFUXivneOTL8qJO2gYdWSk2PPQiHu3vk+pIgq09RQDmN6VoGxDQRwoOuq5Vn29/52PgGGvi1qDzMtI5AybsPI7nPTmc79/RggqSk8xUewMUCsVgpto1emzP6xUKhWI/qCCpUCgUo6CCpEKhUIzCMaehVNmCPdj2RIVCcWioXJtTJV1yzAXJXC4HcNDtiQqF4tCSy+Woq6ub7GEce9ntMAzZvXs3NTU1VYGAI4VsNktbWxs7duyYElm/qYo6T/tnKp8jIQS5XI7W1lZ0ffJ3BI+5maSu68yePXuyh3FQ1NbWTrkP9lREnaf9M1XP0VSYQVaY/DCtUCgUUxgVJBUKhWIUVJA8gojFYtx8882HRNXoaEKdp/2jztHYOeYSNwqFQjEe1ExSoVAoRkEFSYVCoRgFFSQVCoViFFSQVCgUilFQQfIIYdeuXVx66aVMmzaNRCLBySefzH//939P9rCmDEEQcNNNNzF//nwSiQQLFizgO9/5zpTp/50sfvvb3/L5z3+e1tZWNE0bZr0shOBb3/oWM2fOJJFIcPbZZ7N58+bJGewURQXJI4De3l7OPPNMLMvil7/8JX/84x/53ve+R0NDw2QPbcpwxx138PDDD/Pggw/y/vvvc8cdd3DnnXfywAMPTPbQJpVCocCyZct46KGHRvz9nXfeyfe//30eeeQRXn31VVKpFOeccw7lcvkwj3TqokqAjgCuv/56XnrpJX73u99N9lCmLH/2Z39Gc3MzP/zhD6v3feELXyCRSPBv//ZvkziyqYOmafz85z+vmu4JIWhtbeVrX/sa//iP/whAJpOhubmZJ554gosuumgSRzt1UDPJI4Bnn32WFStW8Jd/+ZfMmDGDU089lX/913+d7GFNKVavXs26devYtGkTAO+88w6///3v+exnPzvJI5u6fPzxx3R0dHD22WdX76urq2PlypW88sorkziyqcUxJ3BxJPLRRx/x8MMPc91113HjjTfy+uuv8w//8A/Yts3ll18+2cObElx//fVks1mWLFmCYRgEQcAtt9zCJZdcMtlDm7J0dHQA0NzcPOj+5ubm6u8UKkgeEYRhyIoVK7j11lsBOPXUU3nvvfd45JFHVJCM+OlPf8qTTz7JU089xYknnsjbb7/NNddcQ2trqzpHioNCLbePAGbOnMnSpUsH3XfCCSewffv2SRrR1OPrX/86119/PRdddBEnn3wyX/ziF7n22murfu2K4bS0tADQ2dk56P7Ozs7q7xQqSB4RnHnmmXzwwQeD7tu0aRNz586dpBFNPYrF4jCBVsMwCMNwkkY09Zk/fz4tLS2sW7euel82m+XVV19l1apVkziyqYVabh8BXHvttaxevZpbb72Vv/qrv+K1117jscce47HHHpvsoU0ZPv/5z3PLLbcwZ84cTjzxRN566y3uuece/vZv/3ayhzap5PN5Pvzww+rtjz/+mLfffpvGxkbmzJnDNddcw3e/+10WLVrE/Pnzuemmm2htba1mwBWAUBwRPPfcc+Kkk04SsVhMLFmyRDz22GOTPaQpRTabFV/96lfFnDlzRDweF8cdd5z4p3/6J+E4zmQPbVL59a9/LYBhP5dffrkQQogwDMVNN90kmpubRSwWE2eddZb44IMPJnfQUwxVJ6lQKBSjoPYkFQqFYhRUkFQoFIpRUEFSoVAoRkEFSYVCoRgFFSQVCoViFFSQVCgUilFQQVKhUChGQQVJhUKhGAUVJBUKhWIUVJBUTBkKhQILFizguuuuG3T/1q1bqa2trQoNCyF47LHHWLlyJel0mvr6elasWMF9991HsVgE4IknnkDTtEE/8Xh80PMK5e+iGAMqSCqmDKlUih/96Ec88MADVasKIQRXXHEFZ555JldddRUAX/ziF7nmmms4//zz+fWvf83bb7/NTTfdxDPPPMOLL75Yfb7a2lra29urP9u2bRv0esrfRTEmJrVzXHHMsWbNGnH11VeLq6++WtTW1opp06aJb37zmyIMw+ox1157rViwYIHI5/Pi3nvvFfX19WLnzp1CCCHWrl0rAPH0008Pe+4wDEVfX58QQogf/ehHoq6ubp/jCMNQtLS0iLvuuqt6X19fn4jFYuLf//3fJ+ivVRwNqJmk4rDz4x//GNM0ee2117j//vu55557+MEPflD9/S233IJpmlx66aXceOONPPDAA8yaNQuAJ598ksWLF3P++ecPe15N06irq6vezufzzJ07l7a2Ns4//3w2bNhQ/Z3yd1GMFaUnqTjstLW1ce+996JpGosXL2b9+vXce++91eV0IpHg/vvv59xzz+Wzn/0sl156afWxmzdvZvHixft9jcWLF/P4449zyimnkMlkuPvuu1m9ejUbNmxg9uzZyt9FMWbUTFJx2DnjjDPQNK16e9WqVWzevJkgCKr3/fCHPySZTLJ+/XoymUz1fjFGZb9Vq1Zx2WWXsXz5ctasWcN//ud/Mn36dB599NGJ+0MUxwQqSCqmHGvXruX555/n5Zdfpqamhmuvvbb6u+OPP56NGzeO+zkty+LUU0+tqnQrfxfFWFFBUnHYefXVVwfd/sMf/sCiRYswDIPOzk6uvvpqvvvd77Js2TKeeOIJfvKTn/DLX/4SgIsvvphNmzbxzDPPDHteIcSgWedAgiBg/fr1zJw5E1D+LopxMNmZI8WxxZo1a0Q6nRbXXnut2Lhxo3jqqadEKpUSjzzyiBBCiD//8z8Xn/rUp0QQBNXHXH/99WL27Nmir69PhGEoLrzwQpFIJMQtt9wiXn/9dbF161bx3HPPiT/5kz8RP//5z4UQQnz7298WL7zwgtiyZYt44403xEUXXSTi8bjYsGFD9Xlvv/12UV9fL5555hnx7rvvivPPP1/Mnz9flEqlw3pOFFMbFSQVh5U1a9aIv//7vxdf+tKXRG1trWhoaBA33nijCMNQ/PjHPxbJZFJs3rx50GMcxxEnnXSSuOKKK4QQQgRBIB5++GHxyU9+UiSTSVFbWytOO+00cf/994tisSiEEOKaa64Rc+bMEbZti+bmZnHeeeeJN998c9DzKn8XxVhQHjeKw8qnP/1pli9fzn333TfZQ1EoxoTak1QoFIpRUEFSoVAoRkEttxUKhWIU1ExSoVAoRkEFSYVCoRgFFSQVCoViFFSQVCgUilFQQVKhUChGQQVJhUKhGAUVJBUKhWIUVJBUKBSKUfj/ASChX1HxJPjuAAAAAElFTkSuQmCC", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" } ], "source": [ + "# Load the dataset\n", + "csv_file = \"../../tests/data/SLC6A4_active_excapedb_subset.csv\"\n", + "data = pd.read_csv(csv_file)\n", "\n", - "# Get predictions and errors\n", - "y_pred_test = binary_fp_pipe.predict(X_test)\n", - "abs_errors = np.abs(y_test - y_pred_test)\n", + "# Add RDKit mol objects\n", + "PandasTools.AddMoleculeColumnToFrame(data, smilesCol=\"SMILES\")\n", + "print(f\"{data.ROMol.isna().sum()} out of {len(data)} SMILES failed in conversion\")\n", "\n", + "# Split into train/val/test\n", + "X = data.ROMol\n", + "y = data.pXC50\n", "\n", - "fig = plt.figure(figsize=(3,3))\n", + "X_temp, X_test, y_temp, y_test = train_test_split(X, y, test_size=0.2, random_state=42)\n", + "X_train, X_val, y_train, y_val = train_test_split(\n", + " X_temp, y_temp, test_size=0.25, random_state=42\n", + ")" + ] + }, + { + "cell_type": "markdown", + "id": "e2896ad5", + "metadata": {}, + "source": [ + "## Example 1: k-NN Applicability Domain with Binary Morgan Fingerprints\n", "\n", - "plt.scatter(y_test, abs_errors, alpha=0.5)\n", - "plt.xlabel('pXC50')\n", - "plt.ylabel('Predicted Absolute Error')\n", - "plt.title('Predicted pXC50 vs Absolute Error')\n" + "In this example, we'll use binary Morgan fingerprints and a k-NN based applicability domain with Tanimoto distance.\n", + "This is particularly suitable for binary fingerprints as the Tanimoto coefficient is a natural similarity measure for them." ] }, { "cell_type": "code", - "execution_count": 10, - "id": "9d2860b4", + "execution_count": 7, + "id": "9c89148b", "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ - "/home/esben/envs/vscode/lib/python3.10/site-packages/numpy/core/fromnumeric.py:59: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", " return bound(*args, **kwds)\n", - "/home/esben/envs/vscode/lib/python3.10/site-packages/sklearn/utils/deprecation.py:151: FutureWarning: 'force_all_finite' was renamed to 'ensure_all_finite' in 1.6 and will be removed in 1.8.\n", + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n", + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n", + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/sklearn/utils/deprecation.py:151: FutureWarning: 'force_all_finite' was renamed to 'ensure_all_finite' in 1.6 and will be removed in 1.8.\n", " warnings.warn(\n", - "/home/esben/envs/vscode/lib/python3.10/site-packages/sklearn/utils/deprecation.py:151: FutureWarning: 'force_all_finite' was renamed to 'ensure_all_finite' in 1.6 and will be removed in 1.8.\n", + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/sklearn/utils/deprecation.py:151: FutureWarning: 'force_all_finite' was renamed to 'ensure_all_finite' in 1.6 and will be removed in 1.8.\n", " warnings.warn(\n", - "/home/esben/envs/vscode/lib/python3.10/site-packages/sklearn/utils/deprecation.py:151: FutureWarning: 'force_all_finite' was renamed to 'ensure_all_finite' in 1.6 and will be removed in 1.8.\n", + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/sklearn/utils/deprecation.py:151: FutureWarning: 'force_all_finite' was renamed to 'ensure_all_finite' in 1.6 and will be removed in 1.8.\n", " warnings.warn(\n", - "/home/esben/envs/vscode/lib/python3.10/site-packages/sklearn/metrics/pairwise.py:2466: DataConversionWarning: Data was converted to boolean for metric jaccard\n", + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/sklearn/metrics/pairwise.py:2466: DataConversionWarning: Data was converted to boolean for metric jaccard\n", " warnings.warn(msg, DataConversionWarning)\n", - "/home/esben/envs/vscode/lib/python3.10/site-packages/numpy/core/fromnumeric.py:59: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", " return bound(*args, **kwds)\n", - "/home/esben/envs/vscode/lib/python3.10/site-packages/sklearn/utils/deprecation.py:151: FutureWarning: 'force_all_finite' was renamed to 'ensure_all_finite' in 1.6 and will be removed in 1.8.\n", + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/sklearn/utils/deprecation.py:151: FutureWarning: 'force_all_finite' was renamed to 'ensure_all_finite' in 1.6 and will be removed in 1.8.\n", " warnings.warn(\n", - "/home/esben/envs/vscode/lib/python3.10/site-packages/sklearn/utils/deprecation.py:151: FutureWarning: 'force_all_finite' was renamed to 'ensure_all_finite' in 1.6 and will be removed in 1.8.\n", + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/sklearn/utils/deprecation.py:151: FutureWarning: 'force_all_finite' was renamed to 'ensure_all_finite' in 1.6 and will be removed in 1.8.\n", " warnings.warn(\n", - "/home/esben/envs/vscode/lib/python3.10/site-packages/sklearn/metrics/pairwise.py:2466: DataConversionWarning: Data was converted to boolean for metric jaccard\n", + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/sklearn/metrics/pairwise.py:2466: DataConversionWarning: Data was converted to boolean for metric jaccard\n", " warnings.warn(msg, DataConversionWarning)\n", - "/home/esben/envs/vscode/lib/python3.10/site-packages/numpy/core/fromnumeric.py:59: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", " return bound(*args, **kwds)\n", - "/home/esben/envs/vscode/lib/python3.10/site-packages/sklearn/utils/deprecation.py:151: FutureWarning: 'force_all_finite' was renamed to 'ensure_all_finite' in 1.6 and will be removed in 1.8.\n", + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/sklearn/utils/deprecation.py:151: FutureWarning: 'force_all_finite' was renamed to 'ensure_all_finite' in 1.6 and will be removed in 1.8.\n", " warnings.warn(\n", - "/home/esben/envs/vscode/lib/python3.10/site-packages/sklearn/metrics/pairwise.py:2466: DataConversionWarning: Data was converted to boolean for metric jaccard\n", + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/sklearn/metrics/pairwise.py:2466: DataConversionWarning: Data was converted to boolean for metric jaccard\n", " warnings.warn(msg, DataConversionWarning)\n" ] } ], "source": [ + "# Create pipeline for binary fingerprints\n", + "binary_fp_pipe = Pipeline(\n", + " [\n", + " (\"fp\", MorganFingerprintTransformer(fpSize=2048, radius=2)),\n", + " (\"rf\", RandomForestRegressor(n_estimators=100, random_state=42)),\n", + " ]\n", + ")\n", + "\n", + "# Train the model\n", + "binary_fp_pipe.fit(X_train, y_train)\n", + "\n", + "# Get predictions and errors\n", + "y_pred_test = binary_fp_pipe.predict(X_test)\n", + "abs_errors = np.abs(y_test - y_pred_test)\n", "\n", - "# Create and fit k-NN AD estimator. Distance metrics follow the scikit-learn API, and the custom distance metric tanimoto popular in cheminformatics is available in scikit-mol.\n", - "knn_ad = KNNApplicabilityDomain(n_neighbors=3, distance_metric='tanimoto', n_jobs=-1)\n", - "knn_ad.fit(binary_fp_pipe.named_steps['fp'].transform(X_train))\n", + "# Create and fit k-NN AD estimator\n", + "knn_ad = KNNApplicabilityDomain(n_neighbors=3, distance_metric=\"tanimoto\")\n", + "knn_ad.fit(binary_fp_pipe.named_steps[\"fp\"].transform(X_train))\n", "\n", "# Fit threshold using validation set\n", - "knn_ad.fit_threshold(binary_fp_pipe.named_steps['fp'].transform(X_val), target_percentile=95)\n", + "knn_ad.fit_threshold(binary_fp_pipe.named_steps[\"fp\"].transform(X_val))\n", "\n", "# Get AD scores for test set\n", - "knn_scores = knn_ad.transform(binary_fp_pipe.named_steps['fp'].transform(X_test))" + "knn_scores = knn_ad.transform(binary_fp_pipe.named_steps[\"fp\"].transform(X_test))" ] }, { "cell_type": "markdown", - "id": "22848529", + "id": "a7f33a3f", "metadata": {}, "source": [ - "Let's visualize the relationship between prediction errors and AD scores, and calculate some statistics on compound errors within and outside the domain." + "Let's visualize the relationship between prediction errors and AD scores:" ] }, { "cell_type": "code", - "execution_count": 11, - "id": "e8e2bb86", + "execution_count": 8, + "id": "ee7b2f64", "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAX0AAAE8CAYAAAAsfWGYAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAADb4klEQVR4nOydd5xcVfn/37dNn+01yWZTgQBJ6EhNgAACCkFBRL4/qoIIAoKoqF/B9sUCAoJfQOELFkAFxYpIaEF6D6RBejab7W36zC3n98edmexsndmdTTbkvl+vgeydW87cufOcc57zeZ5HEkIIHBwcHBz2CORd3QAHBwcHh52HY/QdHBwc9iAco+/g4OCwB+EYfQcHB4c9CMfoOzg4OOxBOEbfwcHBYQ/CMfoODg4OexCO0XdwcHDYg3CMvoODg8MehGP0JykzZszgwgsvzP79/PPPI0kSzz//fNGuIUkSN910U9HO5zCxZJ6Bxx57bFc3xWE3xjH6Q/Dggw8iSVL25fF42Guvvbjyyitpa2vb1c0riCeeeGLSGfabbrop5/4OfLW2tu7qJn4kydz32tpaYrHYoPdnzJjBJz7xiZxtme/k1ltvHbR/5nfy5ptv5t2GJ554AkmSmDJlCpZlDbnPjBkzsteVZZmysjLmz5/PpZdeymuvvZb3tSzL4je/+Q2HH344FRUVBINB9tprL84//3xeffXVvM/zUUPd1Q2YzHzve99j5syZJBIJXnzxRe6++26eeOIJVq5cic/n26ltOfbYY4nH47hcroKOe+KJJ/jFL34xpOGPx+Oo6q57BO6++24CgcCg7WVlZTu/MXsQ7e3t3H333Vx33XV5H/PTn/6Uyy+/fNzP/UMPPcSMGTPYvHkzzz77LEuWLBlyvwMOOCDbvnA4zJo1a3j00Uf51a9+xVe+8hV+9rOfjXqtq666il/84hecccYZnHfeeaiqygcffMC//vUvZs2axcc+9rFxfZbdFuEwiAceeEAA4o033sjZfu211wpAPPzww8MeG4lEitKGxsZGccEFF4z7PFdccYWYbF/zjTfeKADR0dFR8LHxeFyYpjnke+O996Zping8Pq5zTCTPPfecAMSjjz46puMz9/2AAw4QtbW1IhaL5bzf2NgoTjvttJxtmf0Bceutt+a8N9zvZDgikYjw+/3i5z//uTjwwAPFhRdeOOR+Q7VDCCFisZhYunSpAMT//u//jnit1tZWIUmS+MIXvjDoPcuyRFtbW15tLga6rotkMrnTrjcajnunAI4//ngANm3aBMCFF15IIBBgw4YNnHrqqQSDQc477zzAnlrefvvt7Lfffng8Hmpra7nsssvo6enJOacQgh/84AdMmzYNn8/Hcccdx6pVqwZdezif/muvvcapp55KeXk5fr+fBQsWcMcdd2Tb94tf/AIgx32SYSif/jvvvMMpp5xCSUkJgUCAE044YdBUODOtf+mll7j22muprq7G7/dz5pln0tHRUeBdHZ7MZ/7973/Pt7/9baZOnYrP5yMUCo1476PRKNdddx0NDQ243W723ntvbrnlFsSAhLKSJHHllVfy0EMPsd9+++F2u3nyyScB+P3vf8/BBx9MMBikpKSE+fPnZ+/rUOi6TkVFBRdddNGg90KhEB6Ph69+9avZbXfeeSf77bcfPp+P8vJyDjnkEB5++OGC71EymeQTn/gEpaWlvPzyy3kd853vfIe2tjbuvvvuvPY/6qijOP744/nJT35CPB4vuI0ZHn/8ceLxOGeffTaf/exn+fOf/0wikcj7eK/Xy29/+1sqKir44Q9/OOj77M+mTZsQQnDUUUcNek+SJGpqanK29fb28pWvfIUZM2bgdruZNm0a559/Pp2dndl92tvbueSSS6itrcXj8bBw4UJ+/etf55xn8+bNSJLELbfcwu23387s2bNxu92sXr0agLVr13LWWWdRUVGBx+PhkEMO4W9/+1vOOXRd57vf/S5z587F4/FQWVnJ0UcfzbJly/K+VyPhuHcKYMOGDQBUVlZmtxmGwcknn8zRRx/NLbfckp3+XnbZZTz44INcdNFFXHXVVWzatIm77rqLd955h5deeglN0wD7B/iDH/yAU089lVNPPZW3336bk046iVQqNWp7li1bxic+8Qnq6+u5+uqrqaurY82aNfzjH//g6quv5rLLLmP79u0sW7aM3/72t6Oeb9WqVRxzzDGUlJTwta99DU3TuPfee1m8eDHLly/n8MMPz9n/y1/+MuXl5dx4441s3ryZ22+/nSuvvJI//OEPed3P7u7uQdtUVR3k3vn+97+Py+Xiq1/9KslkMuviGureCyE4/fTTee6557jkkks44IAD+Pe//831119Pc3Mzt912W865n332Wf74xz9y5ZVXUlVVxYwZM1i2bBnnnnsuJ5xwAj/+8Y8BWLNmDS+99BJXX331kJ9F0zTOPPNM/vznP3PvvffmuOH+8pe/kEwm+exnPwvAr371K6666irOOussrr76ahKJBO+99x6vvfYan/vc5/K6d2C758444wzefPNNnn76aQ499NC8jjvmmGOyRvzyyy/H6/WOesxNN93Esccey9133821116bdxv789BDD3HcccdRV1fHZz/7Wb7xjW/w97//nbPPPjvvcwQCAc4880zuv/9+Vq9ezX777Tfkfo2NjQA8+uijnH322SO6pSKRCMcccwxr1qzh4osv5qCDDqKzs5O//e1vbNu2jaqqKuLxOIsXL2b9+vVceeWVzJw5k0cffZQLL7yQ3t7eQc/FAw88QCKR4NJLL8XtdlNRUcGqVas46qijmDp1Kt/4xjfw+/388Y9/ZOnSpfzpT3/izDPPBOx7ffPNN/P5z3+eww47jFAoxJtvvsnbb7/NiSeemPe9GpZdOs+YpGSmrU8//bTo6OgQTU1N4ve//72orKwUXq9XbNu2TQghxAUXXCAA8Y1vfCPn+P/85z8CEA899FDO9ieffDJne3t7u3C5XOK0004TlmVl9/vmN78pgBz3TmZq/9xzzwkhhDAMQ8ycOVM0NjaKnp6enOv0P9dI7h1A3Hjjjdm/ly5dKlwul9iwYUN22/bt20UwGBTHHnvsoPuzZMmSnGt95StfEYqiiN7e3iGvlyHjZhjqtffeew/6zLNmzRrkihju3v/lL38RgPjBD36Qs/2ss84SkiSJ9evX53x+WZbFqlWrcva9+uqrRUlJiTAMY8TPMZB///vfAhB///vfc7afeuqpYtasWdm/zzjjDLHffvsVdG4hct074XBYLFq0SFRVVYl33nknr+P7u9WWL18uAPGzn/0s+/5w7p0rrrhCCCHEcccdJ+rq6rLfRSHunba2NqGqqvjVr36V3XbkkUeKM844Y9C+w7l3Mtx2220CEH/9619HvOb5558vAFFeXi7OPPNMccstt4g1a9YM2u873/mOAMSf//znQe9lnu/bb79dAOJ3v/td9r1UKiWOOOIIEQgERCgUEkIIsWnTJgGIkpIS0d7ennOuE044QcyfP18kEomc8x955JFi7ty52W0LFy4c8fOPF8e9MwJLliyhurqahoYGPvvZzxIIBHj88ceZOnVqzn6XX355zt+PPvoopaWlnHjiiXR2dmZfBx98MIFAgOeeew6Ap59+mlQqxZe//OUct8s111wzatveeecdNm3axDXXXDNoZNz/XPlimiZPPfUUS5cuZdasWdnt9fX1fO5zn+PFF18kFArlHHPppZfmXOuYY47BNE22bNmS1zX/9Kc/sWzZspzXAw88MGi/Cy64YNjR6MB7/8QTT6AoCldddVXO9uuuuw4hBP/6179yti9atIh99903Z1tZWRnRaLTg6fTxxx9PVVVVzkynp6eHZcuWcc455+Scf9u2bbzxxhsFnT9DX18fJ510EmvXruX555/ngAMOKPgcxx57LMcdd1xBLpubbrqJ1tZW7rnnnoKv9/vf/x5Zlvn0pz+d3Xbuuefyr3/9a5DLczQyi//hcHjE/R544AHuuusuZs6cyeOPP85Xv/pV5s2bxwknnEBzc3N2vz/96U8sXLgwO9LuT+b5fuKJJ6irq+Pcc8/NvqdpGldddRWRSITly5fnHPfpT3+a6urq7N/d3d08++yzfOYznyEcDmdtQldXFyeffDLr1q3LtqmsrIxVq1axbt26gu5LvjhGfwR+8YtfsGzZMp577jlWr17Nxo0bOfnkk3P2UVWVadOm5Wxbt24dfX191NTUUF1dnfOKRCK0t7cDZI3j3Llzc46vrq6mvLx8xLZlXE3777//uD5jho6ODmKxGHvvvfeg9+bNm4dlWTQ1NeVsnz59es7fmTbn+yM+9thjWbJkSc7riCOOGLTfzJkzhzx+qHu/ZcsWpkyZQjAYHPQZMu+Pdu4vfelL7LXXXpxyyilMmzaNiy++OOvrHwlVVfn0pz/NX//6V5LJJAB//vOf0XU9x+h//etfJxAIcNhhhzF37lyuuOIKXnrppVHPn+Gaa67hjTfe4Omnnx7k3kilUrS2tua8TNMc8jyFGvGxdBQZfve733HYYYfR1dXF+vXrWb9+PQceeCCpVIpHH320oHNFIhGAQd/xQGRZ5oorruCtt96is7OTv/71r5xyyik8++yzWVcb2L+l0X5HW7ZsYe7cuchyrsnM97lav349Qgj++7//e5BNuPHGGwGyduF73/sevb297LXXXsyfP5/rr7+e9957b8T2FYJj9EfgsMMOY8mSJSxevJh58+YN+sIB3G73oO2WZVFTUzNoFJt5fe9739tZH2FCURRlyO2iyBU4hxvlD3Xvi3Humpoa3n33Xf72t79l1wdOOeUULrjgglHP99nPfpZwOJydUfzxj39kn332YeHChdl95s2bxwcffMDvf/97jj76aP70pz9x9NFHZ3/8o3HGGWcghOBHP/rRIK37yy+/TH19fc5rYGed4dhjj2Xx4sUFGfEbb7yR1tZW7r333rz2B3sQ9MYbb/Diiy8yd+7c7Ovoo48GbF9/IaxcuRKAOXPm5H1MZWUlp59+Ok888QSLFi3ixRdfzHtGOhYGPleZ7+mrX/3qsHYh83mOPfZYNmzYwP/93/+x//77c99993HQQQdx3333FaVtzkLuBDB79myefvppjjrqqBEXyTKLTevWrctxqXR0dIw6Wp49ezZg/wCG0zpD/q6e6upqfD4fH3zwwaD31q5diyzLNDQ05HWuXUljYyNPP/004XA4ZyS4du3a7Pv54HK5+OQnP8knP/lJLMviS1/6Evfeey///d//PaKxOfbYY6mvr+cPf/gDRx99NM8++yzf+ta3Bu3n9/s555xzOOecc0ilUnzqU5/ihz/8ITfccAMej2fEti1dupSTTjqJCy+8kGAwmKPCWbhw4SC3VF1d3bDnuummm1i8eHHeRnzRokUsXryYH//4x3znO9/J65iHHnoITdP47W9/O2ig8OKLL/Lzn/+crVu3Dpo5DkUkEuHxxx+noaEhO8oulEMOOYTly5fT0tJCY2Mjs2fPznYkw9HY2Mh7772HZVk5A418n6vM71vTtBF/rxkySrCLLrqISCTCsccey0033cTnP//5UY8dDWekPwF85jOfwTRNvv/97w96zzAMent7AXvNQNM07rzzzpzR8e233z7qNQ466CBmzpzJ7bffnj1fhv7n8vv9AIP2GYiiKJx00kn89a9/ZfPmzdntbW1tPPzwwxx99NGUlJSM2q5dzamnnoppmtx1110522+77TYkSeKUU04Z9RxdXV05f8uyzIIFCwCybpvhkGWZs846i7///e/89re/xTCMHNfOUOd3uVzsu+++CCHQdX3U9gGcf/75/PznP+eee+7h61//enZ7eXn5IJfZSJ1IfyOer3wy4xb65S9/mdf+Dz30EMcccwznnHMOZ511Vs7r+uuvB+CRRx4Z9TzxeJz/9//+H93d3XzrW98acUDT2tqalUn2J5VK8cwzzyDLcrbz/vSnP82KFSt4/PHHB+2f+S2deuqptLa25qzXGIbBnXfeSSAQYNGiRSO2vaamJtu5trS0DHq/v9R54PMRCASYM2fOqM9evjgj/Qlg0aJFXHbZZdx88828++67nHTSSWiaxrp163j00Ue54447OOuss6iuruarX/0qN998M5/4xCc49dRTeeedd/jXv/5FVVXViNeQZZm7776bT37ykxxwwAFcdNFF1NfXs3btWlatWsW///1vAA4++GDAjk48+eSTURQlx5/Znx/84AcsW7aMo48+mi996Uuoqsq9995LMpnkJz/5SXFvEvDYY48NGZF74oknUltbO6ZzfvKTn+S4447jW9/6Fps3b2bhwoU89dRT/PWvf+Waa67JzpBG4vOf/zzd3d0cf/zxTJs2jS1btnDnnXdywAEH5DW6POecc7jzzju58cYbmT9//qBjTjrpJOrq6jjqqKOora1lzZo13HXXXZx22mmj+qn7c+WVVxIKhfjWt75FaWkp3/zmN/M+tj833ngjxx13XN77L1q0iEWLFg1avByK1157LStzHIqpU6dy0EEH8dBDD+V0Xs3Nzfzud78D7NH96tWrefTRR2ltbeW6667jsssuG/G627Zt47DDDuP444/nhBNOoK6ujvb2dh555BFWrFjBNddck/2NXX/99Tz22GOcffbZXHzxxRx88MF0d3fzt7/9jXvuuYeFCxdy6aWXcu+993LhhRfy1ltvMWPGDB577DFeeuklbr/99ry+t1/84hccffTRzJ8/ny984QvMmjWLtrY2XnnlFbZt28aKFSsA2HfffVm8eDEHH3wwFRUVvPnmmzz22GPD3sOCmTBd0G5MvlK0Cy64QPj9/mHf/+UvfykOPvhg4fV6RTAYFPPnzxdf+9rXxPbt27P7mKYpvvvd74r6+nrh9XrF4sWLxcqVKwdF5A6UbGZ48cUXxYknniiCwaDw+/1iwYIF4s4778y+bxiG+PKXvyyqq6uFJEk58k0GSDaFEOLtt98WJ598sggEAsLn84njjjtOvPzyy3ndn+HaOJCRJJv9jx8pAnWkex8Oh8VXvvIVMWXKFKFpmpg7d6746U9/miMvzXz+jByxP4899pg46aSTRE1NjXC5XGL69OnisssuEy0tLSN+rgyWZYmGhoYhpaNCCHHvvfeKY489VlRWVgq32y1mz54trr/+etHX1zfieYe7H1/72tcEIO66664Rjx8pEnrRokUCGFGyOVRbRvudfPnLXxZAjgx4IDfddJMAxIoVK4QQtmQzc25JkkRJSYnYb7/9xBe+8AXx2muvjfgZM4RCIXHHHXeIk08+WUybNk1omiaCwaA44ogjxK9+9atBz0JXV5e48sorxdSpU4XL5RLTpk0TF1xwgejs7Mzu09bWJi666CJRVVUlXC6XmD9/vnjggQdyzpORbP70pz8dsl0bNmwQ559/vqirqxOapompU6eKT3ziE+Kxxx7L7vODH/xAHHbYYaKsrEx4vV6xzz77iB/+8IcilUrl9dlHQxKiyKtuDg4ODg6TFsen7+Dg4LAH4Rh9BwcHhz0Ix+g7ODg47EE4Rt/BwcFhD8Ix+g4ODg57EI7Rd3BwcNiD2OOCsyzLYvv27QSDwTFlo3RwcHCYbAghCIfDTJkyZdR8VHuc0d++fftukUPGwcHBoVCampoGZZ4dyB5n9DPh0k1NTbtFLhkHBweH0QiFQjQ0NOSVDmKPM/oZl05JSYlj9B0cRiKVgkyG0B/+EPqVgHSYnOTjst7j0jCEQiFKS0vp6+tzjL6Dw0hEo5BJiBeJQDpjq8PkoxC75qh3HBwcHPYg9jj3jsNHB8sSNPfGiaYM/C6VqWVeZNlRZDk4jIRj9B12S9a3h/n3yjY2dERIGCYeVWF2dYCT969lTk3+Oel3FUIIDMMYtn7tpCCZhExFqGQShimP6bBz0DRt2BKlheAYfYdxs7NH3Ovbwzzw0ma6oynqSz34XF5iKYOV2/vY3hfnoqNmTGrDn0qlaGlpIRaL7eqmjIxlQaZoeksLjLMescP4kCSJadOmDVl4qBAco+8wLnb2iNuyBP9e2UZ3NMXcmkBWrRD0aATcKuvaIzy1qo1ZVYFJ6eqxLItNmzahKApTpkzB5XJN3iBB04RMwfQZM5yR/i5ECEFHRwfbtm1j7ty54xrxO0bfYczsihF3c2+cDR0R6ks9g4ylJEnUl3pY3x6huTdOQ4WvqNcuBqlUCsuyaGhowOebfO3Lob/ryeNxjP4uprq6ms2bN6PrumP0HXY+u2rEHU0ZJAwTn8s75Ptel0JbKEE0ZRTtmhPBaKHykwJZhv322/Fvh11KsWaEzjfpMCYKGXEXE79LxaMqxIYx6vGUiVtV8Luc8cy4kSTweu3XZHVBORSMY/QdxsSOEffQxtXrUkgaZtFH3FPLvMyuDtDSl2BgXKEQgpa+BHNqAkwtG3om4OCwp+MYfYcxsatG3LIscfL+tVT4XaxrjxBO6BiWRTihs649QoXfxUn71U7KRdzdDsuC7dvtl2Xt6tYAcOGFF7J06dKdft3FixdzzTXXjOscN910EwcccMCI++yMz+cYfYcxsStH3HNqglx01Az2n1JKb0xnc2eU3pjO/Kmlk16uuVshxA6j3+87fuWVV1AUhdNOO23QIZs3b0aSpOwrGAyy3377ccUVV7Bu3bphL/Xggw/mHDfUa/PmzRPxKfc4dqnRv/vuu1mwYEE2+dkRRxzBv/71rxGPefTRR9lnn33weDzMnz+fJ554Yie11qE/u3rEPacmyOWLZ/OVE/fiyyfM5Ssn7sUXF812DP5O4P777+fLX/4yL7zwAtu3bx9yn6effpqWlhZWrFjB//zP/7BmzRoWLlzIM888M+T+55xzDi0tLdnXEUccwRe+8IWcbWNNiZ5KpcZ03EeVXWr0p02bxo9+9CPeeust3nzzTY4//njOOOMMVq1aNeT+L7/8Mueeey6XXHIJ77zzDkuXLmXp0qWsXLlyJ7fcAXb9iFuWJRoqfOxTV0JDhW/3d+lEo8O/Eon8943H89t3DEQiEf7whz9w+eWXc9ppp/Hggw8OuV9lZSV1dXXMmjWLM844g6effprDDz+cSy65ZMgoZK/XS11dXfblcrnw+Xw52/rLFG+55Rbq6+uprKzkiiuuQNf17HszZszg+9//Pueffz4lJSVceumlALz44oscc8wxeL1eGhoauOqqq4j2uw//+7//y9y5c/F4PNTW1nLWWWfltNGyLL72ta9RUVFBXV0dN910U877W7du5YwzziAQCFBSUsJnPvMZ2trahr2Xpmly7bXXUlZWRmVlJV/72tcGzZonBDHJKC8vF/fdd9+Q733mM58Rp512Ws62ww8/XFx22WV5n7+vr08Aoq+vb1ztdNiBaVpia1dUrGnpE1u7osI0rV3dpElLPB4Xq1evFvF4fPCbthNl6Nepp+bu6/MNv++iRbn7VlUNvd9oGIYQb7xhvwxDCCHE/fffLw455BAhhBB///vfxezZs4Vl7fi+N23aJADxzjvvDDrd448/LgDx2muvjXrpRYsWiauvvnrQ9gsuuECUlJSIL37xi2LNmjXi73//u/D5fOKXv/xldp/GxkZRUlIibrnlFrF+/frsy+/3i9tuu018+OGH4qWXXhIHHniguPDCC4UQQrzxxhtCURTx8MMPi82bN4u3335b3HHHHTntKSkpETfddJP48MMPxa9//WshSZJ46qmnhBBCmKYpDjjgAHH00UeLN998U7z66qvi4IMPFov6fRc33nijWLhwYfbvH//4x6K8vFz86U9/EqtXrxaXXHKJCAaD4owzzhjynoz07BRi1yaN0TcMQzzyyCPC5XKJVatWDblPQ0ODuO2223K2fec73xELFiwY9ryJREL09fVlX01NTY7Rd9hl7O5G/8gjjxS33367EEIIXddFVVWVeO6557KHjGT016xZIwDxhz/8YdRLj2T0GxsbhZFujxBCnH322eKcc87J/t3Y2CiWLl2ac9wll1wiLr300pxt//nPf4QsyyIej4s//elPoqSkRIRCoWHbc/TRR+dsO/TQQ8XXv/51IYQQTz31lFAURWzdujX7/qpVqwQgXn/9dSHEYKNfX18vfvKTn2T/1nVdTJs2bcKN/i4XM7///vscccQRJBIJAoEAjz/+OPvuu++Q+7a2tlJbW5uzrba2ltbW1mHPf/PNN/Pd7363qG12cJgQIpHh3xsYgdnePvy+AwOpirQA+sEHH/D666/z+OOPA6CqKueccw73338/ixcvHvV4kXZdjDfIaL/99stx9dTX1/P+++/n7HPIIYfk/L1ixQree+89HnrooZz2ZNJinHjiiTQ2NjJr1iw+/vGP8/GPf5wzzzwzJ2p6wYIFOeesr6+nPf09rFmzhoaGhpx1h3333ZeysjLWrFnDoYcemnNsX18fLS0tHH744dltqqpyyCGHTLiLZ5cb/b333pt3332Xvr4+HnvsMS644AKWL18+rOEvlBtuuIFrr702+3emrJjDxOCkOx4HhRQpmah9R+D+++/HMAymTJmS3SaEwO12c9ddd1FaWjri8WvWrAFg5syZ42qHpmk5f0uShDVAUuof8JkjkQiXXXYZV1111aDzTZ8+HZfLxdtvv83zzz/PU089xXe+8x1uuukm3njjDcrKyvK+7u7ALjf6LpeLOXPmAHDwwQfzxhtvcMcdd3DvvfcO2reurm7QwkhbWxt1dXXDnt/tduN2u4vbaIch2d3THTsMQJZh3jwADMviN7/5DbfeeisnnXRSzm5Lly7lkUce4Ytf/OKwp7Isi5///OfMnDmTAw88cEKbPRQHHXQQq1evztqaoVBVlSVLlrBkyRJuvPFGysrKePbZZ/nUpz416vnnzZtHU1MTTU1N2UHl6tWr6e3tHXIAW1paSn19Pa+99hrHHnssAIZh8NZbb3HQQQeN8VPmxy43+gOxLItkMjnke0cccQTPPPNMTpDEsmXLOOKII3ZS6xyGY3dPd+wwBJKUnSX84y9/oaenh0suuWTQiP7Tn/40999/f47R7+rqorW1lVgsxsqVK7n99tt5/fXX+ec//1mUnPCF8vWvf52PfexjXHnllXz+85/H7/ezevVqli1bxl133cU//vEPNm7cyLHHHkt5eTlPPPEElmWx995753X+JUuWMH/+fM477zxuv/12DMPgS1/6EosWLRrkaspw9dVX86Mf/Yi5c+eyzz778LOf/Yze3t4ifuqh2aVG/4YbbuCUU05h+vTphMNhHn74YZ5//nn+/e9/A3D++eczdepUbr75ZsC+SYsWLeLWW2/ltNNO4/e//z1vvvkmv/zlL3flx9jj2d3THTuMzv3338+SJUuGdOF8+tOf5ic/+Qnvvfdetj7rkiVLAPD5fDQ2NnLcccfxy1/+csSR9kSyYMECli9fzre+9S2OOeYYhBDMnj2bc845B4CysjL+/Oc/c9NNN5FIJJg7dy6PPPII+2USzo2CJEn89a9/5ctf/jLHHnsssizz8Y9/nDvvvHPYY6677jpaWlq44IILkGWZiy++mDPPPJO+vr6ifOZh2yometVgBC655BKeeeYZWlpaKC0tZcGCBXz961/nxBNPBOzQ5xkzZuRogR999FG+/e1vs3nzZubOnctPfvITTj311Lyv6RRGLz5N3TFuW/YhZT6NoEcb9H44odMb0/nKiXtNynTHO5NEIsGmTZuYOXMmHo9nVzdnZCxrx4JxTY2TaXMXM9KzU4hd26Uj/fvvv3/E959//vlB284++2zOPvvsCWqRw1j4qKQ7dhiAELBtm/3v6upd2xaHouF03Q7jxkl37OCw++AY/T0YyxI0dcdY2xqiqTuGZY3N0+ekO3Zw2H1whl57KMWUV2aSr23vi7Ou3S6s4nUpxFMmLX0JJ93xBCKEQDctTAGKBJoiT96auw6TAsfo74FMhLwyk3wt05G0hRK4VYX5U0s5aT9Hpz+QYugnErpJKK6TNCwsIZAlCbcqU+LV8GhOPduPGsXS3BRk9A3D4H/+53+4+OKLmTZtWlEa4LBzmUh55ZyaILMWB5yI3BHIRHXGYjG83rG7uxK6SVckiWEJNEVGk2QsIYjrJrppURlwO4b/I0YmRfR44xwKMvqqqvLTn/6U888/f1wXddh1FFLbdizyyky6Y4ehURSFsrKybM4Wn89XsDtGCEF3NEVCN3GpCpaATDIAWUAiZdJl6lT4XeNz9fRPgZxIDM7/47DTsCyLjo4OfD4fqjo+B03BRx9//PEsX76cGTNmjOvCDrsGR16568mkDWkfKWnaCBiWRShuIEsSQ02iLAGWEHR7VdTxaOuF2GHot2xxiqPvYmRZZvr06eNesynY6J9yyil84xvf4P333+fggw8elNjo9NNPH1eDHCaW/vLKoQKpHHnlxCNJEvX19dTU1OQU/8iXjR0R/rF6Cw3lviGNvikEzT1x/utjU5lZHShCix0mAy6XC7kIAXIF/7K/9KUvAfCzn/1s0HuSJA1ZFcdh8pCRV67c3kfAreaMGjLyyvlTSx155RgpJMuooihj8s8G/RZJS6Ezbg0bAZ2wFIJ+3+SP+nXY6RRs9HfHVKIOO3DklRPHzsoyutM6bl2HTF6rSy8FbXAH47D7sUtz7+wKnNw7Nv0NVNKwXTpzagKOvHKMDJbBqsRSRrYjLXaW0YHXG9hxF+V60SgE0u6hSKRoefkdis+E595Zvnw5t9xyS7Yowr777sv111/PMcccM5bTOewCHHll8dgVWUaduAiHsVKw0f/d737HRRddxKc+9alsFZqXXnqJE044gQcffJDPfe5zRW+kw8TgyCuLw0TLYIfD6bgdxkLBRv+HP/whP/nJT/jKV76S3XbVVVfxs5/9jO9///uO0XfY49iVMlin43YolIL1Pxs3buSTn/zkoO2nn346mzZtKkqjHPY8ipX8bVfgZBl12J0o+ClsaGjgmWeeGVQB5+mnn3YKjjuMid29tq4jg3XYnSjY6F933XVcddVVvPvuuxx55JGA7dN/8MEHueOOO4reQIePNh+F2rqODNZhd6Jgo3/55ZdTV1fHrbfeyh//+EfArgT/hz/8gTPOOKPoDXT46DIRqpdCgqOKyUdSTeN2wz/+sePfDh8Jxpxl88UXX5yoNjnsIRRb9TJWN1GxOoqh1DT1JR5aQgnWtoZ2P3WNqsJpp+3qVjgUmYKzbP7kJz9xsmw6FIViql7G6iYq9npCfzXN+vYw976wcbddq3D4aFKweueEE05g+fLlE9EWhz2MYqleBrqJgh4NRZYIejTm1gTojqZ4alXbIEVQpqNYub2PMp/GrKoAZT6Nldv7eOClzaxvD4/5s03kuXcaug4PPmi/xpAYzmFy4mTZdNhlFEv1MhY30URG0e6KCN0JIZWCiy6y/3322U7unY8ITpZNh11GsVQvY3ETTWQU7a6K0HVwyIeC3TuWZQ37KtTg33zzzRx66KEEg0FqampYunQpH3zwwYjHPPjgg0iSlPNy0sfuvmRUL/tPKaU3prO5M0pvTGf+1NK85ZpjcRPt6CiGHvd4XQpJwxxTFO1EntvBYbwUNNLXdR2v18u7777L/vvvP+6LL1++nCuuuIJDDz0UwzD45je/yUknncTq1asHuY36U1JSktM5jLeSjMOuZbw5ZMbiJprIYjJOoRqHyUxBT52maUyfPr1oLpwnn3wy5+8HH3yQmpoa3nrrLY499thhj5MkKVtyzuGjwXhyyIzFTTSRUbROhK7DZKZg9863vvUtvvnNb9Ld3V30xvT19QFQUVEx4n6RSITGxkYaGho444wzWLVq1bD7JpNJQqFQzsvho0ehbqJMR1Hhd7GuPUI4oWNYFuGEzrr2yLiiaCfy3A4O46XgIioHHngg69evR9d1GhsbB7lh3n777TE1xLIsTj/9dHp7e0cM/HrllVdYt24dCxYsoK+vj1tuuYUXXniBVatWMW3atEH733TTTXz3u98dtH1PL6LyUaXQQKuJLCaz2xeqcYqo7DYUUkSlYKM/lAHtz4033ljI6bJcfvnl/Otf/+LFF18c0ngPh67rzJs3j3PPPZfvf//7g95PJpMkk8ns36FQiIaGBsfoO2SZyNQNuyotRFEwDHj8cfvfZ55pR+g6TEom1OhPBFdeeSV//etfeeGFF5g5c2bBx5999tmoqsojjzwy6r5OuUQHB4ePGoXYtbx9+q+//vqIC7jJZDKbgC1fhBBceeWVPP744zz77LNjMvimafL+++9TX19f8LEODg4Oexp5G/0jjjiCrq6u7N8lJSVs3Lgx+3dvby/nnntuQRe/4oor+N3vfsfDDz9MMBiktbWV1tZW4vF4dp/zzz+fG264Ifv39773PZ566ik2btzI22+/zX/913+xZcsWPv/5zxd0bQcHh1EwDHj0UftlODEFHxXydtIN9AIN5RUq1FN09913A7B48eKc7Q888AAXXnghAFu3bkWWd/RNPT09fOELX6C1tZXy8nIOPvhgXn75Zfbdd9+Cru3g4DAKySR85jP2vyMRx6f/EaGo32KhQVL5dBLPP/98zt+33XYbt912W0HXcXBwcHCwcbru3YDdWgHi4OAwqSjI6K9evZrW1lbAHqWvXbuWSCQCQGdnZ/Fb57Db1491cHCYXOQt2ZRlGUmShnTJZLbvDlk2dyfJ5uDCICqxlJFNLbA71I912I1xgrN2Gwqxa3mP9Ddt2jTuhjnkz0cmJ7uDQ5Fw3JzFIW+j39jYOJHtcBiAk5PdwWEHjpuzeDgLuZOUYtaPdcjFGTHmicsFDzyw49+7iLHWP3YYGsfoT1KcnOwTw0SNGD+SHYmmQTpeplgUep8cN2fxcSzGJMXJyV58JmrEuLu5HnZVBzWW++S4OYuPY/QnKcWqH+tgM1Ejxt3N9VCQ4TUM+Pe/7X+ffPK4InLHep8cN2fxcYz+JCZTGCTzI20LJXCrCvOnlu4+OdknCRMxYtzdXA8FG95kEj7xCfvf40jDMJ775Lg5i0/Bd6qtrY2vfvWrPPPMM7S3tw/S7U92nf7uxnjrxzrYTMSIcXdyPezKDmo898lxcxafgo3+hRdeyNatW/nv//5v6uvrnaLkO4Hx1I91sJmIEePu5HrYWR3UUOsF47lPjpuz+BRs9F988UX+85//cMABB0xAcxwcJoaJGDHuTq6HndFBDbdesLChdFz3yXFzFpeCn8aGhoaCUyg7OOwshlOmTMSIcXdyPUx0BzXSekFzb4wyn0ZLX2LM98lxcxaPgr/h22+/nW984xvce++9zJgxYwKa5LC7sDOlf/lcazRlSrFHjLuT62EiO6h81gumlCqU+1zjuk+Om7M4FFwjt7y8nFgshmEY+Hw+NC131NDd3V3UBhab3Snh2q5kNCNbDG16vp1GPtcqJDldsTur/u1LGvaIeU5NYNK5Hgbeo4GGd5B6J8+Ea03dMW5b9iFlPm3IWUQ4odMb0znzoKm819Q36e/T7siEJFzLcPvtt4+1XQ67CaMZ2WJo0/PtNPK51qyqQEHKlKFGjOPpCHYX10PBMx2XC+66a8e/hyHf9YLqoJvLF8+e9Pfpo07BRv+CCy6YiHY4TBJGM7IXHNnIslXt45L+5dtp5Csz/MQCeVzKlGLMWnYX10NBHZSmwRVXjHrOQtYLdpf79FFmTKs2pmnyl7/8hTVr1gCw3377cfrpp6MoSlEb57BzycfI/umtZtpDiTEb2EL04vnKDDd2RsesTMl3JvFRGp0W2/DuTgvaDmMw+uvXr+fUU0+lubmZvffeG4Cbb76ZhoYG/vnPfzJ79uyiN9Jh55CvkTWFYGr50EZjNOlfIXrxcEKnO5bCpcoIAUFPrkHJXAsYkzIlnw7okde2Uu53sbEjulvk1Skqpgn/+Y/972OOgWEGdbvTgrYDyIUecNVVVzF79myampp4++23efvtt9m6dSszZ87kqquumog2Ouwkdvhmhx4LeF0KlrBQJIgNY9RHk/7lc42kYbKmJcRf3tnOhvYIr27s5JWNXby5uYfuaHLQtWZW+ZldHaClLzFITpwZac6pCQwaaY7WAXk1mWfXtvPG5m7KfBqzqgKU+TRWbu/jgZc2s749PORnyGBZgqbuGGtbQzR1x7Cs3UzqnEjAccfZr0RixF0z6wX7TymlN6azuTNKb0xn/tTSSZd/aE+n4JH+8uXLefXVV6moqMhuq6ys5Ec/+hFHHXVUURvnsHPJxzdb5nVRHXTT1BMf01Q+n2skDYt/vt9CUjepCbrpjem4VYn2cIJwUueAhjLKfa7stRrKfWMaaY60ACmEvbAb102mlnmzbc137WJ3y7xZDHaXBe09nYJH+m63m3B48AgnEongKrDQws0338yhhx5KMBikpqaGpUuX8sEHH4x63KOPPso+++yDx+Nh/vz5PPHEEwVd12FoMr7ZkUbMc2uDnHVwAxV+W3MdTugYlkU4obOuPTLqVH60a2zvTZDULZK6yV61QfadUorPrRJNmvjdKrGkweqWEB+25V5rLCPN/h3QQMIJg85ICr9bxa3mujUGuqEGklknWLm9b0wzhN2ZzHrBPnUlNFT4HIM/CSnY6H/iE5/g0ksv5bXXXkMIgRCCV199lS9+8YucfvrpBZ1r+fLlXHHFFbz66qssW7YMXdc56aSTiEajwx7z8ssvc+6553LJJZfwzjvvsHTpUpYuXcrKlSsL/SgOA8j4Zkcz6HvVjX0qP9o13JqMW5OZUuZFkiQq/C4OaCijOughaViYAtpDSaZXegdda05NkMsXz+YrJ+7Fl0+Yy1dO3IsvLpo9bHv6d0CWZRGK63RGkoTiOgndIJI0qA66CXoGT4gzbqiBaxcD1wmCHg1Flgh6NObWBOiOpnhqVdvu5+px+MhQcHBWb28vF1xwAX//+9+zgVmGYXD66afz4IMPUlpaOubGdHR0UFNTw/Llyzn22GOH3Oecc84hGo3yj3/8I7vtYx/7GAcccAD33HPPqNdwgrNGJ59gI8sSNPXE2NRpd9CzqvxMK89/ZDfcNebUBvjLO83MqgqgyLmuo3DCIK4btIUSXP/xfdi3fuzPWv923P70Oj5sC2P2M8SWEKQMi8NnVtBQMTgoKRNw9JUT98pRwuQbqDTwuElJnsFZDrueCQ3OKisr469//Svr1q1j7dq1AMybN485c+aMrbX96OvrA8hZLxjIK6+8wrXXXpuz7eSTT+Yvf/nLkPsnk0mSyR2Lf6FQaNztLCaTsczeaL7ZYvirh7tGc2+cJ9XWQT5/SZIo8WpIEpT73ATdgw3quEjbewmBQEKVJFxulY5IimnlvrzXLnanzJsOeyZjTv83d+5c5s6dW7SGWJbFNddcw1FHHcX+++8/7H6tra3U1tbmbKutraW1tXXI/W+++Wa++93vFq2dxWQyL/YNp+UuZqWooa6xMzXfGVeMaQlO3q+WSNIkZVq4FJmAW+Hdpj5CcZ0P2yJMKctvcXh3yrzpsGeS15N37bXX8v3vfx+/3z9olD2Qn/3sZ2NqyBVXXMHKlSt58cUXx3T8cNxwww05bQ6FQjQ0NBT1GmNhdyuzBzunEMfO1Hz3l2zKskyJN3eJa25tgK3dMaZXeOmMpLJpC/afUsqChlKMtCSz/yzoIxWopGnwk5/s+LfDR4K8jP4777yDruvZfxebK6+8kn/84x+88MILTJs2bcR96+rqaGtry9nW1tZGXV3dkPu73W7cbnfR2loMdrcyexl2ViGOQnLEjMc9lo8rxq3KLD1oKkG3RjRl0BlO8u7WXh5/u3nI2dl4Oq1J5+pzueD663fd9R0mhLyM/nPPPTfkv8eLEIIvf/nLPP744zz//PPMnDlz1GOOOOIInnnmGa655prstmXLlnHEEUcUrV0Tze5UZq8/O9NfnY/me7zusXxdMUG3RkOFj/XtYf61snXU2dmcmiAXHNnIY282s6EjgiUsyryuEVM4T2ZXn8NHi4IlmxdffPGQOv1oNMrFF19c0LmuuOIKfve73/Hwww8TDAZpbW2ltbWVeHyH9vn888/nhhtuyP599dVX8+STT3Lrrbeydu1abrrpJt58802uvPLKQj/KLiPfqNTJttg3kq4diu+vHknzXQwtfD5xCZlI3kKkmOvbwyxb1U5HOIEpBLIkUR10s2Te8AZ/Z+n6C4oSNk144w375dS+/shQsNH/9a9/nWOUM8TjcX7zm98UdK67776bvr4+Fi9eTH19ffb1hz/8IbvP1q1baWlpyf595JFH8vDDD/PLX/6ShQsX8thjj/GXv/xlxMXfycbONp7FohAjOZEUSwufb1yCLEt5z85e2tCZNeDlfhf7TymlsdJPU0+cX78y2IDvTF3/+vYwdz+/gduWfcjPn1nHbcs+5O7nNwzfqSQScNhh9muUNAy7mt0+5cVOJG+rEgqFssFY4XAYj8eTfc80TZ544glqamoKung+IQLPP//8oG1nn302Z599dkHXmkzsrot9kyWxVjHdY/muH+Tj2mrti/PMmsLWanaWq293FA7ky/r2ME++38r7zX1EdQO/pjJ/aikfn1+3236miSRvo19WVoYkSUiSxF577TXofUmSJq00crIxWYznWJgMRaqLvbaQz/pBPv5/04KWvgRT09HE/elvwLf1xJAkiWjKoLUvQVw3mTKB6ySGYfHHN7axpSvKnOpAdqAx2YUD+TBccN2mrihr28Jcs2SuY/gHkLfRf+655xBCcPzxx/OnP/0pJ4DK5XLR2NjIlClTJqSRH0Umg/EcK7s6sdZEaOFHyzGfz+xsSpmX1lBixLWa9e0R/u/FzYQSOgnDxDTtyGavJg8Z+TteV9+HbSEeeHETz37QgSpLdISTVPjdzKkJUOF3TWrhwGhYluDhV7eyoqkXlyoT9GhoioRuCsIJnRVNvTzy2la+ddq+u11nNpHk/SQtWrQIgE2bNjF9+vRBIxmHwtnVxnM87MoKSLvCPZbP7OyEeTX8+e3mYTujlt44Td0xJAlmVwfwubxEkzqbuqK8sbkHn0uhMrDDbTrez/LMmjZ+/sw6tvfGiSYNPJqCKQTxlEkkaXBAQxkVftduGyXc1BPj1U3dyJJEZboDA3CrEi6/i7ZQklc2dtPUE6Ox0kkhkaHghdxnn32Wxx57bND2Rx99lF//+tdFadSexO6elXBXLKAVsgBbTEbL5Hnk7KphF7oty2JlcwhNlVkwtTS7YFvidXHYDHvW/PqmHkLxVFE+y4etYX7+zDpaQwmqAm48moIsSyR1i7hu0hdLsaEjgkh3ApNRODAamzqj9MZTlPm0Id1ppT6Nvngqmx/Kwabgb/nmm2/m3nvvHbS9pqaGSy+91KmhuwexK7XlGQP85Ep7AS+WMvG5FBZMLZvQ6482OxtuNrChI4JuCg6cXoos5461KgNuDp1RztrWCNv7EqiyNC5Xn2UJHnuriY5wkroSN25VIZxQiaYMPKpMwrBIWRZd6YyibeHkpBQO5IMkQDDcQMNR8AxFwUY/UyVrII2NjWzdurUojXKY/EwaNYiwX8L+T84Ie6IiXEdybQ23VjOzyo8QMKVs6OPqy7wkdJPPHDqdulLPmNqb+bwbOiKs3B7CpUi4VCWdolojZZokDAtFlkjpFhHJYH1HhMZK/9CzCU2DG2/c8e9JxqwqP6U+jVBMx1OiDHLz9cV0yrwas6oc105/Cjb6NTU1vPfee8yYMSNn+4oVK6isrCxWuxwmMZMhjUT/TmdquRefSyWWMljVEqIllOD4fWpY2xLeZbOQ/rMBn6awvS/Or17YSHsoQd0Q8sx4ysSjqcyuDoxpraT/rKs9kmBDewTDsvAkdEq9LrwulboSD91RnVjKIKGbaKrMflNKOfuQaUPfE5cLbrppjHdh4plW7uNjsypZtrqNrkiSoFdDU2R00yIc17EEHD6rkmnD1HPeUynY6J977rlcddVVBIPBbM775cuXc/XVV/PZz3626A10mHzs6jQSw3U6AbdKbdDNe829vL21h8ZyH1PKvbtkFpKZDaxvD/P3FS2sbw/T1BNnTUuYxgofc2oDVPjtnFDjXbAdOOsKuFVaehJ0RZJs702gKTI+l4rXpTJFU9JVwZIcv08115+0N6pa8NLepECWJT53+HTaw0k+bA0TThjYUz8JRZZZOCXI5w6fvtutk000BRv973//+2zevJkTTjgBVbUPtyyL888/n//5n/8pegMdJh9j0ckbhsXbTT10RVNU+l0c1FA+ZmMzVKfTHU2xvj1CdzRJWyhJ0jDxqDLVJe5shOvO1qQPNMaHNFbw1pZuNnZF6Y6lOLixHI+mjCs2Y6gOUAhBTYmHlGnRG0vZnW+5FyEgoZt0x3Smlnm56KiZI38HlgVr1tj/njcP5MnXOcypCXLNkrk7fW1nd6Zgo+9yufjDH/7A97//fVasWIHX62X+/Pk0NjZORPscJiGF6uSfWdPGgy9tZnNXFN200BSZGZV+LjxqBifMy62NkPFLh5M6kYRBwK0S9Gg5/u2BnU53NMW7Tb3EUwaaKiNLoCoSnRF7uy1NdO9UTfpQxjjogcNmVrK+PcyWrhhvbelh3/qSccVmDNUBSpLEnJoAkaSBaQmiCYMtXTF008K07E55drUfeTTZdTwOmfQmk7hy1pyaIF/aTaXPu4Ixa7T22muvISNzHT76FKKTX7a6lR/8cw3hhE6Fz0V10EVCt/iwPczN/7Irr2UMf8Yv/U5TD1u7Y8RTJl5NYXqljwMbyrMjN6+mYJqCbT0xyrwa69rCxFMGFX4Xcd3EFAJNlqnwu4gmDTZ0RCn32TruQjXpY10MHs4FVuF3ceiMCqaVe+mO6px7+HQOaawYs4EabtaVqS383rZeemMpXLJMhd9NVcDFjEo/cd3igZc279bpF/qzK+NGdjcmTREVh92HfNNIfNga5gf/WGNHqWoyPTGdhG5S4XczvdzL1p44v355M4vmVrO5O8oDL21ma1eM9nAC0xQEPSpJ3WRbT4ykYbG9L87x+9SwpiVEU0+MrmgKv0shlDCoCtgjeRkwLYHXo+JWZSRJpTuaIpwwKPFqBWnSxyNJHckFJkkSNSUeYimTEq82rhHpSLOucp+GIkHAo3LEzEoqAnaR94wLaHdOvzAUk64ewSSlqEVUnCjdPYfR0kgA3LrsA9rDCXwuBa8mYwmIpkxSZoK6Eg+VfhebOqO8ubWbtzb30hVJYlgWpiWoDNgj84DbNtqGabG1O8rPn1lHfamHfeqCfNAWttUoSZNOkoBANyz8bhWXYj+LmiITTRqkTKugBdPxSlJ3VtnEkWZdobhOayhJQ4WPxip/znu7c/qFoXDqEeTPLi2i4rB7M5Q0UWCPcv/ydjMdkSQS4NFkJElCkcCrycR1i+5oipoSF91Ri/XtETZ0RAh6VDZ3xQh4tBz/dMCj0hNNoSoy3dEUBzaUUepz4XerrNoeIpLQiSUNOoG5NQH2C7rZ1BmjO5rCpdrXThlW3hGuxZCkTnSqiP6j2gUNpTT3Dp51re+IoCoSe9eWDDkg213TLwxk0sSM7CbsXnHXDpNuCjtQmrihI0J3LMmG9ig+lx0wo5sCt7rDiLtUmbhuEoobaIqMR1VIGCYlHg3DtNA8uY+lpsj0GjroJi5VRk+neqjwuzlqdhUALX1xvJrC3rVBSn0uSr2u7IJp0KNimFbeC6bFkKQWM5PqwO88rhssW9WeM6ot82rUl3rojenZWde+U0rwaAoebWjVze6afqE/kyFmZHcjr2/7U5/6VN4n/POf/zzmxjiMzGSdwg4cablUmc2dMXTDrrYUTRq4lB2jd0WClGXRHUux/5RSDmks5+UNXZiWharIOZ0EgG5aSNjHBNwaLmWHEZNlif2mlJA0TLoiKXrjOn6PiqZIlHo1Dp1ZwWnz65lXX5J3B1ms1M3FyKQ68DtPGRYd4SQlHo25tYHsqLalL0G5T+NTB02lKujG71KpL/Fwz/INvLGlm6llXrv0Yz+f/mSt21AIuzpmZHckL6NfWlqa/bcQgscff5zS0lIOOeQQAN566y16e3sL6hwcCmOyTmGH1oljjzBV25XTG9fpixt4XQqaIpHQLWK6RX2phwuOnMH0Sj+zqwO839xLuU+jI5zElc6aKIQgkjAo82m0hSwCHpXggJlAhd/N3rVB1oow8ZTJ5s4oblVhwbSyMUkhi+mPH08m1YHfuVfz8OrGLlpDCUxLoJtiUAzCe9v6+OKi2ciyxPr2MN2xFFu7YqxtDRNwq1QFXEwt8xLXrdFnG5oGX/3qjn9PQgZ20EIIwgl7DcelyOnSo7u/C6uY5GX0H3jggey/v/71r/OZz3yGe+65B0VRALty1pe+9CVKSkomppV7OJN5CjvUSCvoUSn3uegIJ6hJB0dZQhBJmsSSFgKoL/XwrdPmccK8WixLsLChlFUtfeimhSxLtIbsxGOGaeF1qQTcGlYQfNrgR1YIQSxlcdScKo6YXYksScyq8jOtfGxZSwf644GsIdFkidZQkgXTSrO1c0cz6GOREw71nYfiOtGUSV2Jm2jSTuJW7ivPFjfqP6pNGma2wzhwehnbexN0RJJs6YrRHkpy/D41nHv49JE7RJcLfvrTgu/fzqR/B62bFhva7cA3w7JQZRm/S6Hc79qtXVjFpuA78X//93+8+OKLWYMPoCgK1157LUceeSQ/neQPye7IZJ7CDuUK6R8cFEkYqIrEYTOriCR1WnqTVAVdXLdkb/aZUpLjvogkDHpiOt3RFCnDxBKgyjKaojC3NsBRc6p4dm37IB/5uvYIobidXrm5Nz5ut1d/f/w7Tb3EkgbhpEHSMNENQXXQzdmHTGNjZ2TC3G1Dfecp08KwLIKqPQvqL0WFHW6ncFLnuTUdOR3GtHIf4YT9GZp741T43cyqCoyrjZOBTAf96qZO2voSxHXLHnR4XaRMk229cQxLENedkX6Ggo2+YRisXbuWvffeO2f72rVrsSyraA1z2EGxywMWk+FcIZngoNXb+2gPJ+kIJyn3uThx3x0ul/7ui7oSD6ZlsbXLzn1eFXAztzaI36XQG7f1/Y2VvkE+8qRhEYrrlHg0plf4sonXxuv2mlMT5Ph9avj5M+tsd5NqLzhXBVR8msrj7zQDdkzARLjbhvrOXYqMKsvZqOZIWoqaIeN2iiSMIaN07c5Bw6MpbOjIY5BgWZDJnDt9+qRMwyDLEnvXBfntq1vojaVwq7ZE16XKuFSZ6oCbEo/G06vbmVMddBZzGYPRv+iii7jkkkvYsGEDhx12GACvvfYaP/rRj7jooouK3kCHnaf5HgsjSRPLfRrVQTeHzKjgjAOm5KRT6O++qPRrrG0Nsa49kv4sEuGknRRs37nVNELWhfXFRbO57Fg/bzf10BFO8uK6ThQJ9q4rKarby7IEa1vC1Jd6OLChDN0SuBSZoEdFCMG/V7eBgJP3q83mxy/0uiO5hob6zoMelQqfi/ZwAr9bRZXl7KJ2/4XZgFstziAhHodMGvVJmobBVo1tx7TsEb4lBIYliCQN/KjMqg5QFXA5i7n9KNhK3HLLLdTV1XHrrbfS0tICQH19Pddffz3XXXdd0RvosGvKA+bLaNLEyoB7yNS9GfeFV5NZsa2PUFzHtAR+ty3zTKRMNnfGmFkZZ3qlL+vCemlDJyuaenm/uY/uaIpt3THqyzzUxHQq/K7s+cfr9sq0b0qZd1BHG04Y2SLckaRJiXfHCDjf646mxBrqO5ckidk1fkKJFK2hBNPKvXhdMuGEniMDdavKpB0kFJPMwKErmqTEa68jGabAFAIZiKQHDtPKPSQN01nMTVPwty7LMl/72tf42te+RigUAnAWcCeYYmq+J4KxSBOjKYO4btITTRFPmQQ9GqGEgSrLSBL40ukVNnZGaKjwZouK/+o/G2ntTWAKQcow6UvoJDstwgmTj82qzDH843F7jeRSy7hUJESOeyXf6+arxBrqO9cUmXK/G0WWKfe52NIVG3SvDcOiKuBidUuIOdUBSrw75LITOUjY2TEk2Y651EtnJIVhCdzajrVGSbbXPTrCyY9EJ1csxnQXDMPg+eefZ8OGDXzuc58DYPv27ZSUlBAI5L849MILL/DTn/6Ut956i5aWFh5//HGWLl067P7PP/88xx133KDtLS0t1NXVFfw58mUyBEQVQ/M90e0rRJrod9lT8Y5I0pZgCpAlCVMIVEnCAlyqTDhhZPOkN/fGiSdNvC6ZoFfDslQiSRPDtGgLJXi/uZdj51ZnDdx4RrR+l4pbkWkLxXGpSta1I0nSDpcKUk7MQIaRrluIEmu47/yIWZUsmVeL16UMuteZGcTGzihbu2Ns7IhSX+ph77rguNM4j8SuiCHJdMwzK/1Zt5fLL2fvqabIRBJ2DMORs6t263iEYlLwr2HLli18/OMfZ+vWrSSTSU488USCwSA//vGPSSaT3HPPPXmfKxqNsnDhQi6++OKCNP4ffPBBzuyipqamoM9QCJMpIGo8mu9iMlwnWIg0cWqZl/pSDyuabG2+LEl4NduIyapMyrDSEb2CpGGyrSdOKKHj0xQq08nVhBD4XSrRpF0laVtPnFBcp9TnGnZEm28HHk+ZdEbs4uE+l4Kq2CPrOTUByrwqiiyBgIBbyTlutJF0oUqs4b7zzLn6038GMb3CR03QwwetIVr6bLnmXrVBDppeXvRBwq6KIcmse8R1k9k1fsJJW/kV8KjZnEuxlEllwL1LZ8KTjYKN/tVXX80hhxwyqDzimWeeyRe+8IWCznXKKadwyimnFNoEampqKCsrK/i4QpmMAVG7OoVssTpBWZY4YV4tyz/ooCOcotyvUeZTiaV0euN6Vn1hWYINHRFMIbAsQak3Ny9PtvZryrQNdTSJLEtDjmjzbfv69jC/fmUzSFDiVdENC1mC9lCC7miSmqCHvWrt/denR9L5utvGosQa+J0P9TlmVfvpjqQG5e+vClQRiuus74gwuzrApcfMKmqlrF0ZQ9J/3WNuTYADGsqyOv1IQieWsphTE+CK42bv8pnwZKJgo/+f//yHl19+GZfLlbN9xowZNDc3F61hI3HAAQeQTCbZf//9uemmmzjqqKOG3TeZTJJMJrN/Z9YhRmMyB0TtKordCR41u4rj9q7hxQ2dJFImMd3EQkICdMOiuSeOqsj2LMClEEuZtIeT1ATBm3adZGq/toWThOJ23hmXMtjtlW/b+3/vBzaU0RNLZQ2JJAnCCZPaErjqhDnIklSwu228SqzhPscbm7vZ2hXjwOllg7Jplvpc7FUbpCOcpCWUKOqgIZ+Zy7q2MG9u6abEqxW9QP3AdY8DppfZn7MvTmXAzRWL52Q7aAebgo2+ZVmYpjlo+7Zt2wgGJ/bm1tfXc88993DIIYeQTCa57777WLx4Ma+99hoHHXTQkMfcfPPNfPe73y34WpM5IGpXUEgnCOTlQpFlic99bDoJw+TDtjAJw6LEo+IvcdMTSxFJmqiKjKrIzKoK0NybSKt8LOpLvVnDn0n5UFLu5fLFc5ibVr9krllI2wd+7xV+N+UzXNmI3JRh2VHCmkpDha9gd9t4lFgjfY6pZV4+aA2zvTfBtHLfoGd2TIvaqgpf+tKOfw/BaDOXuG6yuiXEvcs34NaUortHB657JA278z1ydtWkWOuajBRs9E866SRuv/12fvnLXwK2AYxEItx4442ceuqpRW9gf/bee++coLAjjzySDRs2cNttt/Hb3/52yGNuuOGGnMIvoVCIhoaGUa81mQOidgVDdYL985wE3Arr2sK8vKGTFU19ebl/LEvgVhWO3auadW2RtB9fRghwqQoVqkJNwEVHJMXm7ii1QTfNvXFiKYv2SJJpZTKGZbfBEnDMnCrmVAeIpgyae+NZAzxcB55pv1uVWdHUS1NPjLhuDhlhnIl6NSyLzZ3R7PdeqLttPEqskQYiblXB71bpiCRzonQzjGlR2+2GX/xixF36z1wCbjUn741uWry9pYdwwqDS704Xjim+e3SodY/6Eg8toQRrW0OTIhvtZGJMOv2Pf/zj7LvvviQSCT73uc+xbt06qqqqeOSRRyaijSNy2GGH8eKLLw77vtvtxu12F3zeyRwQtSsYqi7t+vYIPTG7wIks2znru6Ip/G51VPdPf790dyxJa8g2eDOq/Hg0mZXb+kCC1lCSaMqkK5qi3OfCpSokdYtIwqAjnERVZBRZYla1HySJ259el9PZnLhfDdt7E7RHEgTcdmBVJoVBpv26aZHQTR54aRNL5tUOq9qB/L730RaLx6rEGmkgEvSoVAfcbO6KkjRMYMczOxaZZr4L3jvSIHRhGBY96XQYiiQRSxrEdIu9agPUpTuqiXKP9u9817eHufeFjZNCfDEZKdhiNTQ0sGLFCv7whz+wYsUKIpEIl1xyCeeddx5e786XRL377rvU19cX/byTOSBqV5Cb2EpkC5EHPBqaRyWaMGiJJEkaFifsU9MvinTwj3xjZ2TIVMzxlMGWriiNlX5iur0wa6QjYYXIBG6BLNlGqcLvIujWqPBrhJIG23vjTCnzZjubVzd28dTqVgIelc0dUVp6E9QEPVQH3WzqjGbb70qncd7UGeWR17fS2pegpS8xSLVT7tNG/d4zndn69jA9cR1FgtnVAc46uIG96nYYnEKVWJYlCMV1krpJeyiRNaIZJEliSpmHtlDCzj+kKWOO5ch2yO1h1J4u3KpM3awGTp5fN8hoyrLEPvVBHn+3mXBCp9LvotSr0RfTaY+k8Koy1UH3TqvaNRnFF5ONgoy+ruvss88+/OMf/+C8887jvPPOG9fFI5EI69evz/69adMm3n33XSoqKpg+fTo33HADzc3N/OY3vwHg9ttvZ+bMmey3334kEgnuu+8+nn32WZ566qlxtWMoJntA1HgpNPYg0wm+39xLX1zPFiLPSCejqXS+E0ViQ0cEVZZyUhdkfuRNPbERUzFHkgbNPTFiSRPdsvC7FEwBimznvinxaLSFEgDMrPITSZqsbgkTSRo0VvqoDnpQZLtwS08sRUckyTTZy7QKL219CdpDCTZ2RGxDVuoBoDtqUlviYVqZlxfWdaJIUrbwykDVzvRK37Dfe8bgbO2OEUsaRNJJ2ta0hHltUzdXnTA3WwQe8ncN9e9ImnrirGkJ01jhY05tgAq/PYsVQhDXLY7bp4YKn4uNndEx5+/Pyj7dFjd86UQArv7Vf9geSgwymtl0FSUeqgMuemI6fXEdwxL4XQp+l0JnJMWMSpFj+CfCPeqIL/KjIKOvaRqJRKJoF3/zzTdzgq0yvvcLLriABx98kJaWFrZmEj4BqVSK6667jubmZnw+HwsWLODpp58eMmCrGEymgKhiBoiNRXaZ6QQ/bA+zZVsfZT4NAaQMk0jCNvh+VNyawrr2CO2hJJJEdqTcWOmlJ5bkhQ87eG9bL1PKhk7F7Hcr9MV1TCHAznRAKlP3Ni011E2LWMqiM2InapMkKEvn4Y8kTRZOK2VDR5SEnk5DnDKZVx8kljLpi6WIJA0kSbVD85MmXpfCrCofGzpiyJKEW5PZd0oJbX3JQaqd/3fEdNyqMshXnDE4W7tj9ESTJHQ793+JVyNlmLSGEvz8mXU0VHjZqzY3gn2k73bgyPWQxgre2tLNxi5bUXRwY3lO0NXnDp+eXZAu9FkZaDS1xI44gNk1ftaEUoOMZmadYW5tIMenn9RNVjb3IcuDs4HCxLhHHfFFfhR8x6+44gp+/OMfc99996EOs6KfL4sXL0YIMez7Dz74YM7fmfQPO5PJEBBVzACx4aa/7zf38mF7mNPm17NPXRCBrbzo/3nn1AQ5bX49a7aHMC1BbyyFIsvUlHioLXHzblMvnWkXT1XARdCjoZuCbT0x1raGkCXoitij7764n7m1wexsoX8q5kSmLKJh0hc38Gh2OcCUaRFOGBimQJUlppV7kdJRvCVujYDbXmtY3RIilky7nhSJWCqFz6VyQEMZ723roytqG35fQqWu1MPsaj+qLNMTS1Hm04ilDHwulYMbfbSE4sRTJgJBUrf481vNdEZSxHUTS9gZNk+YV0tjumRkLGmQSBcoyRgej6ZSVyLREU7yp7ea+frHgzlGfbjvdlZVYNDINeiBw2ZWZktBvrWlh33rSwYNRMZi1PobTYBwQs95fyij2X+dof+CtxCC5l57ZiVJuekqJso96ogv8qNgq/3GG2/wzDPP8NRTTzF//nz8AzLvfRTLJe7KgKhi+iiHm/7qpqAvrrNlWx8rmnrxaQpIElUBF1UBd04HM6++hH3rg+imQEjg1RQCboWUYS+GxlMmXs12xciSRCyl0xVJEjcsXIpEKKGT0C22dseIpkwOaCijwu/KScUc6zVAgN+tEnBLCCCU0NFkmVKvbZTdsh21G/Co2XTDblUh4FHpjqZAQNAroZv2omLSsEeWc2sChOIpkoZg/tRSGitteWNnJIlhWrhUCUWWiaUMNnXsKMihm3Yn1xPTmVHpoydqd14rmnpZ/kEHC6eVsb0vTiRpEPCog0aamWCz/kZztO/2lP3rhhy5VvhdHDqjgmnlXrqjOucePp1DGivGPRDJGM2ErrCmpYdYT1/2vbe39FI/tXJQ4rLhBA+Zjrw7miScsMs8GpY1oe5RR3yRHwV/+rKyMj796U9PRFscBlBsH+VQ09/uaCq7KOt1yXSGk+geLZv4rCrgyulgLAu6onrWbx/T7ZgNlyzRG9fRTQtVtv38PdEkW7vjdsUpyc6Fokj2eSNJA0WWcqo/ZVIxH9xYTsKwWNtizw46IrbCJmVaNPfG6I3p+N0q7zf3UeF34dHsHCsuv4ymyAgEsiShG5bdAUiwclsfRjqvT9KwjXi5b0d0r52rXiIU0ynzu1jXFiGhm+lORWFLV4ykbtGVlkQKIdJuKY2OcIoVzb0kdRP6jXb7o5uWHWEsLKIpI6/v9pk17cR1kylDjFwlSUpLIE1KvFpRjKffpZIyLN7a0o1pCSr7JS/rDCdo2dJDQ4Uvx2iOllq7JuihpgQM08qWsZw/tdRWSQ3hJhsPjvgiPwo2+v1LJzpMLMX2UQ5VT3R9e4R4yqDcp7G9L4FhQbnPhc+l0B1N0RpKcvD0MtZ3RHnkta3EdQske+TaFbEjnQUQNm1DioCEbrG2LYxpCQx7dwwBlm6nSXArMklhEUrotPbF6Yn50RQ5m4r5M4c2sKUrxssburKKELcqs703TixlIoASr4bXpdARTmbTDndHU+nFZBm3qrC1O4Zu2usBfrdKmUtFNy2SEYEA1rdH2KsuiNelAAILMAUIS5DQzayLJpHOCFrm09LJ3wxmVwfscxn2YrNhWeiSRF/cIOU38fQzjJk6v6U+jTKvC6+m8OaWbt7e2kOFf3AHkflum3viILHTRq71JR6S6ZrG08u9uPUdLhmXKtMaTVETdFNf4sluH03wML3SxwVHNuLV1Kx7NK4bLFtV/HxWH3XxRbHI+2mxLIuf/vSn/O1vfyOVSnHCCSdw44037hKZ5p5CsX2UA6e/4YRBTyxFIO17j6VsX7oq20Y04yqJJO0F0Vc2dlMddHHAtFLCcZ1QQseyBNGkgWmBJIPfJRPTLXST7EKsJNn/FsLuAHTLHnFLQDRpsLkrSpXfTUOFl0NmVKDKEq9u7KLEoxB02+kXOsNJDEtQHXARSZmE4jrVAdst1B1NEfSouFWZrd1xgh4VvyaTSJc3BIOUYeHSZFyyTH2pB7dmZ2PsiaZoC9muoWPmVLGpK8ralnDOQnV3TEeWJEo9Gu2RJKZl0dQTQzcFlhBI2J9rTk2AaCpCc1+CqWVee13CtGMKPJqCV1NRVYn7X9zE+vYIGzoilHk1tvUkmFMToMLvygaMxXVb+dNY6aOlLzHqyLUYC/0toQRuTabcp9ET00kZqex7W7vjJN0etvcleGVTF8fMrc6+V4jgYX17mF+/vGXCJJWTSXwxWcnb6P/whz/kpptuYsmSJXi9Xu644w7a29v5v//7v4ls3x5NsX2UA6e/KdNOKaB5VOIpO8VAmU/LqmT6l+STJeiLp9i7NkAkaZIwLBrKfbSFElgCNNkuKBJNWaTri2RsPlL2P2CYghKvbcjB1rCfsn89mztjdIQS/O6VLWzvjdMeThLwqATdKqoi4XEp1Hg9BN0qfXGd7b0JtvXEKfO78LpkQgmDaeVeDp1ZQUO5l3+tbE0XOhHEUyYJyUTRZQJulYUNZVQH3fREU5x7+HQCbjXri393ay/beuKYli35VGVbZ64qEpJsl0dM6BZgq34USSaVDu7qjqWYUuZFN61siUWXKlPqs7+7jnCCTZ0RTEvgVmWMdM3bjnCCSNJgZpWfjnCSnliKhG5iWiIrQR1p5FqsWr0Z2e1B08tZvT1Ec6/BXxYuQUYiEHBT6ffSF9d55PWt1Jd6cs6dj+BhZ0kqJ4P4YjKTt9H/zW9+w//+7/9y2WWXAfD0009z2mmncd9992XLxTkUl2L7KAdOfwNuBVmWiCYNokkDbUD0qe2ft90lPbH04qhHyxbodgnbP64pttbeEgJL2CP7/qIsU4Aq252IKQSmBYospf36Mq9u7MqmUu6KJoklDduHr5tIHpVQ3M6pX+5zkUhH45rCIpqCaCqOLNnn239KCR+bVcHvX2+iK5JCWAJJAtOy22NYFgidd5t6OWpOJSnTojem88amnqzBNE2BIsH0Ch9VQQ8uRSbgVnhzSy/be2Mk06odr6Zk1y5MS1Dm1UjqJi5F5pun7sPL67ttNY9uICzoi+skUiaqLFNfald4CicMOsIppld46YuleG2TPaIPulV0w6SyxE04XVi+vsRDb0wfNHIFirbQnxlkuFUZr0vBF/Rz38X/jSrL1KhyVoETTRpDGufRBA87U1K5q7PRTmbyNvpbt27Nya2zZMkSJEli+/btTJs2bUIat6cz0EjXlbizuWZ6YimmlnkL9lH2n/6ubw8jAb0xncYKH+U+k0jSyMpoIwmDmhIPAbfCxk5bzqjIEgoSpiXY3psgmjSQsH33FiCzoxhKfzGuZQGKQAiJuG7YawNC2G2QJKZXeGnts0jqFtVBN8n0GkEkaVLp0+iJ2SUCJWzdvltVmFbuIZa0M28mDYvmvjj3/2cT2/sSKJLdHmHZnZAk2W3QTUFXJMnrm7qpLfHwz/dbSBlW1mBGkzqbuqKsbgmzKOjOLsrOqQnQFbFdTIosYQmLhI5drUm1YxFCCQOBxMyqAFNKfTz2VhPrOyJs6rBz9VjCLviuyDKKDFPLvWzpitHcG0eVZeK6SYVPs+WkbpV960so97lY1x6hMuDmgqNm5MhoAe5+fkPRRs6ZQcbrm7voiaYoT6+lwI51iZoSD7Oq/GMyzo6kcnKQt9E3DAOPx5OzTdM0dF0f5giHYpAx0g+/upVXN3XTF7dH3GU+jdnV+Vcpgx1BQIYl+OTCegT1fNAW5p8rWkgaFvUumQ/awumIV9unX1fiZn1HNGsQbLeCRixpS/ckCSTsEW/adQ8I3JrtzzYtuyMQEqQMgRCClAmqLFPi0/BqCh6XQktfkr64Tl2pO52NUSZkGITiOgGX/XdvLIVHtbNu+l0qCIlQOtmaW5ExTHsBNmVYSNjtsQBFskeSsmwbaTvGQMe0oMSj5hRVL/G6OGxGBcs/7OD1TT0cNacSn1u1ZyqqhKbYHV5XREeR7eAzTZboS+gEPRqVfhcftIZZ/mEH3dEUVX43zT1xJEmlLZSkK5LEpaRH0i41nTohSTxlYgrbdVRf5mV2tT8bbVtf6mFDRwRZktinbkdgV1N3rKgj58wgY1VLHz1xnVpVQksk0E2LbkvF61aZXe3H51ZpDycLNs6OpHJykPfdFUJw4YUX5iQvSyQSfPGLX8zR6n8UdfqTgYRhUR10sXdtgKDHHnG39CV44KXNeU3hRwoC+vIJc7Ijf79LJZ4ykSWZCp8GSDmuhP97cTNvbOpGkcHvUggn7Vw8SLZsM2kKTAEBVcY0rawv30wP+2VAUyTKvCp1pV6iSQO/W0WWoDNqyyE1WcYQ9oheNwUb9SgAhgWxlIVbgyq/REc0SSxl4nPJVAbc9MVsyagsibS7yb68JezrZjAsgUe1tfv968dmqAy4OXRGOWtbI2zvS2SraEWSOzJrqqpkL0ZL9nejKBZ7lboJujXe3NyTHX13RVOYQhBwq/RpOinDsn3/2o4EZNGkSVKx8GkyB88oZ0qpN6+UBRMxcp5VFWDJvFrWtoRI9oX53X9/AoCL7nyWadPKqPC7CSf0MRnniZBUToZSprsbeX9rF1xwwaBt//Vf/1XUxjgMJrP41RNLsXDajgIZQgiEcLO+I8Kjb27j+pP2HrYiUj4BXifuW0tfPGWXJHQpuFSFKWV2tOlRs6uyP6RT5tfxblMvXpeKqliYwvbxGpbAFAJFtn3ovXHb0PR38Wiy7XvPGEqPJhNO2AoZVZbRZLsmbkK3sITApcoYlokl7PsA4FIlJCS2hxIIAUG3Sm2pB4+mkNAT6fPbAV1W2vVirzUI28UEqIrEzOoAGzqiKEOsR9nJ3VQq/Crzp5ayqiWEJIFHlQkndCzLHkkrsl25y6cphBM6W7viLN47QEc4kR192/p/OzbBqymELYNY0lYTuTUF3bTXRJKGoDLoHmTwYfgRcLFHzv1z/KiKZLvg0hw4vQzT6x6X3r3YksrJVMp0dyJvo+/o83cNwwVUZdICJ3STLV0xhBB85tCGIXPWj6aYyOjve2IpGiv9+FwqsZRdUPrJla05So3qoJvGSi/VAQ+mEGiyLXt8cUMXvXEdqZ+bZ1CCDUlKZ820E6KtbQ2DgK4INFR48WkyHZEUQhPICGK6nbK5zKMS001ShiDg1lBk6Isb6UhZk56oTsBj4VEV/G6N3pjODkeTQFMkLAE6oMoSdaUeSn2avbBsWTlNzNzb9nCCeNKgLZREQmLfKUHaQklqSzx0R3VShp0B1J5pKJhCQpiCGVV+tvXG8aUNbdCjZot2l/tcJA3LziCqm6iKfe9cikx9qTd7TH9GMrLFHDkPzvFTycrkjjxbXZEkiuQat969WJJKJ5vm2HGcZ5OcofLY909r7HcrdEWSrG4JDenqGU0x0V9/338mMdxioN+l2npzRaLcY5fMLPFqbO6OkTTsqmpJQ9jpj8UOjb6iSLgUiYRuL/rKkkXctEfduiFY1x4l6FEwLUE4uaMym4mgM6rj1WwVTW88hc9lpw2OJgWmkOiLp+iN2Yut+00ppTOcpCeeRJZsiWUmd5tLtbX29aUeLBNmVPqz0bWZ4K53m3qJpQxM06Km1EM4bmBaJiu3h0gZFrUlHlyKko5fMOiL266OulIPblVmSpl30Oi7ttRNeyRBKKFT4lGxhJ3XqDeuoyky+00r5WOzKnmvqW/QCHh7r62dn1MbyCkMA8UbOQ81MAh64JAZFdl93tnay+wZ7qLo3ccrqZwI6eee5CZyjP4kZ2BlokwEbSZaNGmYeDSVOdUB2sLJQQ/7UFG4udWNRFZ/n89i4FCjy3DCIGlYTCvzsLErisBePBXYI2tFtv8w0gZYNwWaDFK6EzFVi3DCpDMytChAADHdjimwDbiEhF0oPZay8/QgQVsowf5TSzlsZjnL13WiSyaZRQWfS8Gryvg9GqoiUxl0c/Y+NTy7tj2rjPqwLUQorqPKEPRqTCv3sjYRpiropiNsrx/ohoXXpTBF8xDXTboiKRorfVT6NUzLTvecuT8pw2RjR4zuWIqUYRFNGqQMQYXfLm+Y0O1zJXWT1zd2U+a1O6SMNDNp2Gom3ZR4+LWtQ+bmL8bIebiBQblvRx3sqeW+ouX4gfFJKost/dzT3ESO0Z/k9DeytUF3NoI2k8c+I6PL5F8Z+LDnFj+xskW+DcvW4MvYevyhfMIweDFwqNFlLGUQjqdImhYS4NFkPKodmavK9g9RTxvsDLadtv37mqrgUiz0tN9+hwool5Rl6/0ViWyJREWyZxFuVSaU0Hl5QydTy30cM7cKn6bS1B2jLZzAMAU+l0JDhY+DppdnDWJjpY9/r2zjvW12UJZHU6gt8TCr2k8iZQdIxZImZT4X0VSc7phdwSuWMulNu9c2dkT4oFUwtdzDmtYQCxpKWd0SYvmHncgSlPo0XKoLCYmUaktSPS6FEq+WLvqyw51W7tP41EFTiaVM/vl+Cwk9SW9s5Nz84x05j7YgDPZ6RrFy/IyXYi5g74luIsfoT3L6G9n1HXYSML9bIZnOY+91Kcyu9iNJ0pAPe/9ydv3zvGuKSsowae61DWI4qVPudw26fmYx0KcpNHXHskblgiMbWbaqnbe3drNyex+d4ZTtxxcgpT36qizZkk15hwm3R//255IlW6GjyLauv/8+wyEERBMGFrZryKXIyBJZP1I4YSABVx+/F3NqbEMYTupEEvZMKVNEPGO8MgbzhXUd3P/iRmZWBrCEYGN7lK5okr6ETmckaQetYSeK6wwnSaU7Mbcmk9ANTEtiS1ec//nnGubWBOiN6ciyhFeViaWDsqaWe5lZ6eONzT2EEgYn71ubDWzs75pY0dSLwHbl2R3L6Ln5xzNyHm1BGJhUUspiLWDvqUVXJse36DAimSn8H9/YxpauGF2RJB5NpabEk6PnHuphl2WJE/et5anVrXSki45o6aLV0aRJbdBNJGmyqjnEtDJvTnR1ZjGwvtTD397dzsbOaM70N+hR2NQZpSeqY+2oeZLOxS9QZTuQKWXYHYBh2QFbsiRR4lGp9LvRVFtfvykZyeteWMLW3muKTKlXRZYk4ikDyxQEPBoHTy/Drdo+/3wNoSxLzK4OUB3wEEnqrGuPEE/ZGTanlHpp6UvQHU1hWoJSrwbpiGM7SAtCCZMyr0ZNiZtIwqQtnKA7YucDmldfgs+tZiuIhRNGtkBMOGEgSVLW1ZapMPbetj7bpVVgbv6xMtyCsFAUPjzmZMIJg5l1JZMmO2WxFrD31KIrYzL6v/3tb7nnnnvYtGkTr7zyCo2NjdlShmeccUax2+iAbfi/dvLegGB1S4g51YEcjflID7vXpdj5Y2SJaMoOqlLTxU9mVweIJnXe2drLe819zK4O5CwGKrJEeziZNf6Z6e8rGztZtT2UzXqpyrZBNvsN0w2LdP4bu32Z9zwuJWvwFUnCkkTOcSORdt/jd8vpkbeOYQp0S2BYFtt74yiyzIaOSEEujqllXmZV+/nbu9sxLYvKgF3X1a1Cfamb9R0GFsKOyJUkKgMuSjwa4YROJGmiyBJuVUHySvTG7AVawxS0hZMcUuHLfk92KgNByhC809RL0rDXKjIVxmZU+YjptrEvJDf/eBhuQThsydx26Q+p8Lu46MDpk2a0W6wF7D01QrjgpDl333031157Laeeeiq9vb2Ypq20KCsr4/bbby92+xz6oaoynzm0gcZKP23hJJGkLVsMJ+zR6XAPeyaR1sdmVXLErEoOn2n//5DGcir8LurLvDRU+JhZ5ac3prO5M0pvTGf/KaXUBNyYlmBuzY6gsIDbLoQeTeoYloUMuDUFtyYzMFRAYPv43apM0K3gUiUiCYOt3TG2dEXZ3BVlc1cMI0+r75JtT46eDnKKpyxSpp3zJ2kIVrWEWLW9j1++sIG7n9/A+vZwXueVZYmFDWXopoVh2cbZEoKkYRJOGLgVmallHvwulRKvyvQKHwG3imHZxiGu2wnr+ufzd2tKtlRgtv2KTMqwi9b0xnQ8mkK534VHU+gIJ3h7Sw+WZc9kkoaJpgz+iQ6Vm7+p265O1tQdy8Y05EPmWMMSnLJ/HfvVl+Q8A/Onlk5Kv3Zm9rv/lNIxt7e/m2goPqoRwgV/mjvvvJNf/epXLF26lB/96EfZ7Ycccghf/epXi9o4h8Hkq9boL0ELxXXcip3bZagCH/GUSVXAzUVHzUSWpKzf3hKCO55eN2j6G0rodERTdqlCU6Cp9uhbkSQ8moJuWCTNHYuyJV7bjx50K7y1pYeIYWvwJd2eIRjWyH78/sgyeGV7kTizkJuJurUAywQhCzZ3RpEluaDFuOqgm4YKHynDzikfSdozojKfC5F+vyuSsusDpIPRLCHwKLItVxUCzEy8gEpfTB9UKtDvsn38lhBUBzSMdNZOJV1EZmtPnJqgm73rgmzujJJKq7MyDMzN3xlO8szq9jEpT4ZSrcyq9nPmQVOpDronVLpYDInkeBew99SiKwUb/U2bNnHggQcO2u52u4lGo0Vp1GRjsml4Mw97U0+MTZ1RhBB4XQop06KpO5YuUrHDELgVmc5Iis5IigOnlw37cDeU+3I+19rW0KDpb3c0yXvb+uiJJrOj85QhACsbDasoElI6W6WmyiyYWopbVXhmbVtOlKcA9NzYqGHJKHoMCzujpZFClkTaAOemcVZlu5hJU0+MhG7w75VtzFo89GLcwM6x0u+iLJ1+IuNrF0Lw6qbu9MhPRlMkuiIpO0upZNcHkCQJGXKSkr2xuXtQqcANHRF75qPJrO+Iks5ggSzZs40Sj4ZbUzh2bg1vbO6hNZSgrkQalJvfp6mU+1088X4LPTG9YOXJcKqVVdtDtPQluOioGTS4BWRmGpEIDCiNOlaKJZEc7+9yPG6iyWYTCqFgoz9z5kzeffddGhsbc7Y/+eSTzJs3r2gNmyysbw/z5MpW3m/uyxbMnj+1lI/vX7dLp7yZHOrvNPWwtStGXLfzu1f6bTlhiUdjbm0g+2PujKZo6UvA1l7m1gbyergHqiS6o0nebeollA4qShl2GgYLSBgCRbIXbsE2wplgLp9L4YV1nTkGHwZLM4eTakImaZq9VzRloKXTPaQGdBpqOqmaYZq0hxKE4zrRZDMLG0o5ul/hDxhsfLKdYzTFgQ25KS/KfRoftkXwaXbCt764Tk8shUinky712tkxPZpCwKXSHU3iUiVmVflySgXOqgrQGUnSkqkCll6kUCRbdmovfFtYCD510FR+/3oT7aEEbk3J5ub3abZ7CQE9Mb1g5UneqpVD6gr3/45CsSSSxeo4xhLnMFltQr4UbPSvvfZarrjiChKJBEIIXn/9dR555BFuvvlm7rvvvolo4y5jfXuY259ex4et4bSk0P6FbuqIsrY1zDVL5u6SLznzw9naHaMjnMC0LIIelaRusa49ghCC+lIvumlHxgoBDeVeErqZrl27o1rUSA93/+mv36WwoT1KPGVSW+IhnjIJD7DQpgBh2mUH7dGrRHXQxZbuGJG0X7u/+RnKyPff1v/fPrdKpd9FWzhBXDeRkLIyzf5k+hVNlvC5VEzLoiOS4uHXt1KXTidhWYKXNnTyyOtbiSYNZlUGCAiVcEInrhv0xgygl7k1OzrHTMGZGFDr0ahJB2xF0gvZ8XQ6hs5oii3pMo2qLLN3XYCPza5kYUMZfpfKhvYIj7/TTNKwKPe5ENhZPw3TzjUUjuusievc/59NIAnK/S78bgVVlvG6ZMq8LubWBpk/rZTH324ek/IkX9XK9t44maTpliVo7ifZHcvItlgSyeE6jveb+/iwLcxpC+uZl1YbZc4z0si8EDfRZLUJhVCw0f/85z+P1+vl29/+NrFYjM997nNMmTKFO+64g89+9rMFneuFF17gpz/9KW+99RYtLS08/vjjLF26dMRjnn/+ea699lpWrVpFQ0MD3/72t7nwwgsL/RijYlmCh1/byoqmXlyKRNCrZaWO4bjOiqZeHn5tK98+bd+dOq0zDIs/vtHE5s5oOuBKZJUmmmzQHk7gd6vEUwbvN/fi1RR6YrodzYqdgvhTB09j3yklo/54+09/32vuoy2cyMYIJA07L44m2RG2mXXY/gNvgSCU0An3JjAyKh5sYy6lffEDrb6mSKTMHftmUNNa/oZyL5s6Y7YPv9/i70Dzbwk7f0/KEvhcdj3fJ99vZcG0BM+saeOlDV2EEym8LoVNHVEUxY4cVtKBZLGkke0cXYqMT1OZUxPAsARb051YRoKa0e/bqaYlfJpMid+F16XQ3JvgV//ZxA2n7MNxe9fwm5c3YVqWrVySQZJkNAWECuGETsKwA9y2dEbQNBmQkCWJhgovnz1setaYfdgeHrPyZCjVSv9IbUWSSOgmUX3Hsb96YSMfRKxxjaqLIZEcruPQTYu+mN3hrm0NsW99CXNqgpy8vx3ANtqsIB9572S1CYUypmXp8847j/POO49YLEYkEqGmpmZMF49GoyxcuJCLL76YT33qU6Puv2nTJk477TS++MUv8tBDD/HMM8/w+c9/nvr6ek4++eQxtWE4tvXEeHVjF4pE1qiCHaTiCsi0hRK8trGLbT0xplcWx9c5Guvbw/zxjW38a2UrVvpH6nfZ6gKvS7GLmGSiX1HY3Bmj1KtR7neheVRShkVbKMHTa9pYMK00L6lfZvr7u1e3sK7d1tILYfvqp/ldxHW78EoiZWIK2zetKOBRFMoDbmLpqlz9DbJI/2egO19gB1ylBih5NNnOVQPQUFZCS18STZHSRkow1M9LAnrjun1PZInmnjj3v7QJlyqnSx7aP367QxR4NDvpmarYBq8rkuS/PtbIvCklhOI6j7y2FUly8d62PhKGPWNSJXthOWmmpaoCZASSy06ZXOrVqPAJtvbE+fXLm5ld7WdjZ5SgR0U3BXHdVuEoku2qsuWbAk0Br9sOxsoYlHVtEV7d0MWSfWqzbrOxBigN5bbrH6ktBLhVma5wMnvM6pYQFTVlBCyVUELn9c1dNPfGuPjomXkZfssSbOiI0BGxq4Nl8h31Jx+J5NAJCJPpfFR28XrTEqiKxMrtfaxpDQG2dHi8EbeT0SaMhYJddscffzy9vb0A+Hy+rMEPhUIcf/zxBZ3rlFNO4Qc/+AFnnnlmXvvfc889zJw5k1tvvZV58+Zx5ZVXctZZZ3HbbbcVdN182NgZpS+mU+IbnG9dkiRKfRq9cZ2NnTtn8TozpV3d0ociS2mNPiR0i9aQnfNdSaf7NUxBJGmgWxZBj13+Tk7nfi/1atlyd/lK+2zDP5P5U0qZP9V++TQlne/eHhl6XQouRabc72Lv2hJqSjzMqPQN66MfbntygJNekexCJZV+F36XwrbeGBU+FxU+ze5gpMHnk7CNsG7Zx1an1zlCcZ1QXKfMq6JIdrnGuG7hc8lYwu4kXIpdEzdhWLy3rY+9aoKUeDUShklzr52GwbKEXTxFlQfFF1hAKG6wuTPKlnQSukq/i02dUd7Y3IMpbHdGZcD+PHbhF4ukYSt6AFyqgmFa9MV0O0jMrSIhsgYFdrjeWvoS2Upn2XubXpyfUxMYUnnS/9jOcILXN3XT1BNDlqDMo2GYdjzCkytbs8dU+DXWtkZ4fXM3K5v7aOtL8OaWHh55beuoz9H69jB3P7+BR17byoaOKC9t6EzXHEjm7JePRHLHLEXNftaM27HC78LvVjGFwKUqzKn282FbmA9bw8yp9mclx0GPxtyaAN3RVEG/g8lmE8ZKwUb/+eefJ5VKDdqeSCT4z3/+U5RGDccrr7zCkiVLcradfPLJvPLKK8Mek0wmCYVCOa98EZKdH2Zo8p++jUdHnTk+M6WdUx3AoylIwq4+5VLtkX13LJUN2tEti3jKQpPtXO6wQ+pXGXDnlLvLl4ZyHwumlZE0LCQJQgk7H4yqyPjcSnpB00pH+hp2fpy4QYlboSroQs1zumtij+xdioRbtWMCGsp9VAbcyLJdk9fjsiWS2Sye7Pg2Mm4egS08qQ24SKQ7J1my3USRpGmXTxQCCUFSt3Pax1MZpY2dT397b5zm3rgtX7WgtS+Badrp3pRMhLEY/CRIkn39vphuL55jux8Sukm51/ZfG6Y98mwo9zK13IvfrWRVSNGkycbOGOvbI2zoiPBhe4RoyqQjkswalIzrrcJvl1MMJ/S8Yjb6HytL8OSqNpp6YoQTKbb3JtjYFcWlyhw2o4KW0I7Uyu83h+gIJ3bEFbjsNaRn17bz0obOYb/PzGBl5fY+ppR5mF7us4PWQnHeberNGv7ROqoMA7X14YRBdyyVDWLrX9c5krRzJ5nCLruZ+x3lupPypVg2YVeSt3vnvffey/579erVtLbuGAWYpsmTTz7J1KlTi9u6AbS2tlJbW5uzrba2llAoRDwex+sd/LDcfPPNfPe73y34WjOr/JR5XfTGdGpL5EEyx76YTqnXxcyqkadxxVAZ9J/SBtwq5en87HZSM7sYdzxl2oW5VRmPqhBJ6lT4XaiKNChPz1jK3WUMRXNvjDc2d9vGLp30LZqyMETGYBnpBGUa0fQoNZqyDW4h19JkmYBXxaspWOm1ATv5mUEooaObtsEOuFUEkEiZ6OYOH7si2YFQmiLTG9PtTiBdplA3LRRZRmCiShK6JfBgdwKGZZHQrXQtW3tkuVdNkPpSL29u6cYU9kxEILIj84FduBBkZ1Ypw6IzksStKsytDdAX19nWG0cgaA8n7cVcYXcQ2eP7/d9KF/oNpWvzbu9noMabYTOum9kCNtnnO+17kyQo9Xt4ea/DcGkyUUNQUebq59KwF+m39cR5Zk1bTqGdDEP53+fWBommTGJpiey69gjz6iRaQ8m8ImkHautTpi2H1RQ1JwFh0KPSFbUHpxK5sRIZCo24LZZN2NXkbfQPOOAAJMnWYQ/lxvF6vdx5551FbVwxuOGGG7j22muzf4dCIRoaGkY9rqHcx8dmVrBsTRtdUTuPSnbRJmFgCcERsypoKB/eL54Z5XSlE3aVeDRMy+L95t6C/In9F94kSWJOTcB235gWsgFJ3cAU0BXV8aevs63Hjursi+so2ZQL/nGVu5tTE+TU+fW829RLiVclFNeJJExEegRtmrZvWmBHnFrCzrnjUhU0ebCvPoMika6SZatYKnwaLlWlvtTNPnUldEZTrGzuIxRPL3SmF4ENy15ALfdqeHwaPTE9a/gNAaZusbUnhhB2amWPKmfr+ZZ41WxEsyRJ6bTNEuGEmQ4m8wC271yWJZbsW8PTa9qIpmx/vmXZBnmoT2QBhmkhSxKyKgjFDeZP81Hm0+iOpOgMJ7M5eCLpxdOEMVjOKqXPZQqQTIGMLdW1LDEm5Um2fWljnDIsaoJu/OmOU5HsGsA9MZ0NHVFmVfn5yvk/wKUqOT7sDJkZUUtfIm+VUIXfxQENZdlCNU3d9rrTwmlleXVUA7X1AbedfymarkbmdanMrg5kq5aBnYo78+/+FBpxWwybMBnI+1e/adMmhBDMmjWL119/nerqHZpnl8tFTU0NiqJMSCMz1NXV0dbWlrOtra2NkpKSIUf5YAeN9a/rmy+yLPG5j02nPZLkw7ZwTii9kg7ZP/fw4fORZH5YW7tiGJaVTjWQybFi10XNN4PfwIW3/j+c1lCcnmgK07TQVImGci8HNpTRGUmxsdPOP+NWFTtLZHpkPlyk4UBZW32Jh5b0SChjTKqCbhorfHhdCh3hJB+0RYiljGxULNhaeb9LoS9hkDQEhmlgDv5YWez8YyI7GzAE1Pi0bMnFbT0xuqMpUqatGCr1aBiWlTaYgp50IRMzrabpTzpLCJawR3aJlF2xqtSrEU+nRxYC4rqF320XKp9dbde2nT+1lPoSD03dMSr8Lj42q4Jn17bZP3Br8EJ0fwxhfzAzYeLWZA6fWclvX9lKd9QOkNvem6AjnMguJPvdKuG4kT3nQHeVhJ3euKkrPsjAFpphs78x7oykkGU7TUaGgEelO5piSqkHv1sjlNAHp9dId1jVQTdKOop7IMPltqnwuzh0Rjk9sRSbu6Kce9h0jp1bnbfipf8MJ5Nmozem01jpY05NkIp0ttiAW8nWcgi4c23TWCJux2sTJgt5G/1MMJZl5RlCOQEcccQRPPHEEznbli1bxhFHHDEh15tTE+SaJXN58v10IIZu4NNUFkwr5eRRAjGae+O809RDeziRLpYh43MpyJKdIVGRJd7e2jPoBzyUnniocPHMDycUD7CuPcL0Si/nfayRUo+LqWVeNnZG+mmZFUwhiCeNYYOxBrqhUukCHm5NzrqMZlcHqErr7pPZKFPDdsEI279tWLbu3OyXdtPo1xkYQzw+FpDQ7Z1kbI19JKFjCuiIJNjaZevevZqCmQ4SVRV74bgvrmMIi5Rh5hRflyT7hyhL9j1N6CYKkLIESLYFqwq4iKQMTEtQ5tXYb2oJ08q8tIVTVPhd7F0X5N4XNubck+qgB4sEkYSBJIYe6Q8k4FJpCyWIJM2sm2NauY9wwqAtFOeVjd1YlpVO02wNWWpSlu1YhZhuFuSWG+p5yhjjmZV+yn125+Pql8lTU2QiCZ2Wvjjz6oO8s7WXlr4E1QE7SV4mMtjrUphSumNGNJCRFEaSJKEpMtUBu5MdTwqGNS0h/vl+C0ndRFOkbPRzS1+CvWrt3+j6jui4a/JmrjtWmzBZKFiy+Zvf/GbE988///y8zxWJRFi/fn32702bNvHuu+9SUVHB9OnTueGGG2hubs5e84tf/CJ33XUXX/va17j44ot59tln+eMf/8g///nPQj9G3sypCfKl4wrP7xFO6qxvjxCK277aUML283o1hXKfSixlp0wIJ3f4ckfy/w8XLt4WTjKjyj/IVVSIv3dgsEtCV3hrSze9cZ1yn8ZB08vxaAovb+hgY3uYqG4hIVHmtXPMJ3WTpGnZeXcsC4EgppuDRsL5rF/LaVePW1XoiaX4sC1CNGVQ5lUp97npiKSyOXdkWcLvVuiN2eFgUtpUKumMn4YpkGV7JmEK6EuayNiGcHNHBEm2s3y6NVvGuXp7iM2dceZPLWHBtFKeWdNOTyw3ACiZXhRO6RZJYeWodwY+EX6XnC7OrvDO1l72m1JCOGFkZ12ZPEh+t0pXJIkq2+4VKz1jyZxaxpYFqrKEz1V4ofOBz9OChlI8qkJcN7Ouwu5oKl1nQSaaNOiLG/iNEP935VIsAYuu+z1NuonfreJzqelUEz66ovqwo+WJzm2TmeE0VPiYVe0f9lkHxl2Ttz9jtQmThYKN/tVXX53zt67rxGIxXC4XPp+vIKP/5ptvctxxx2X/zvjeL7jgAh588EFaWlrYunVr9v2ZM2fyz3/+k6985SvccccdTJs2jfvuu6/oGv2BjKVAxQctYTrCdp1Wn9uWCJpCEE0ZpEyToMc2/JlI1XzC0wtdtMvH3ztwsQ1gTUsPpiWYXu6lJ6azuStGuVflrS3d9JvR0pcwkAGfy04jHDGNbBZOgV3sxOw3Gs7H6PvdCuG4TldEp8KvoSm2d1uSZFRZQpVtxYZblbJFWjLrCGAbfLdmu3rs2ciOc0vYRU8AEoaFptp1cg9pLKc7prO+LUxnNMkbm7tZsa2XlCGYWe0jlLANbdCjccC0UmIpg2jKZKZfY1tvAsu0iKSlprJEtqiLJEnIioTAHm2nTAufy16In1MToMLvIuhRqfJrdIQSuDQlncfH9q8DWc05CFRVZsHUsjEVOu//PDX3xin1qNn003OqA7T0xe0kcwm77q+qyFQHNNwpW8FTV+pmu2EvTu9VG6DS7xp18bVYKZDzYbRnfTyJ2YZiPEVrdjUFG/2enp5B29atW8fll1/O9ddfX9C5Fi9ePEhj3J8HH3xwyGPeeeedgq6zs7Eswbtbe7MuBiWt5FAlCUVTiKcMuiMpqktsNU6+4elfXDSbywt8eEd7OAcutoXSOWUCHg1Zlgl4VNa3h+mOpLJumpzPClmDB+CSbFmlZe1IxzBUWoXh6Evs8P4LIfBqXjyqTE9MpzeuY6Y15NHUDr1x/xmFpshZ9Y4qSaTSz1dmmybLeDSJWMpuoyZDRyTJ+vYIumlR6XfT0hcj3GfnxWkNxXGrdk6j2TUBeqIpNnVGCSeN7HqAXajd/nCWsNttB5rJGOkUzXJ6RpFJoRxJGhzQUEaF31Z7bO6KY2IHRcV1Kx3BbMtDDUvg0RT2rS/lxH1rR/3+R3ue3tlqF3/viqZY2xom4FapCrhorPBmZbjVQRcLqneshR0yo4I1IZMtXTE+aA2zb31JXqPlYtTwzZfMs24YFm839bByex+VfhcHNZSjqvJua6SLTVESRc+dO5cf/ehH/Nd//Rdr164txil3a5p747SGEtlaqvG0lDIz2rcNg52qN+jRCg5PL+bDO3CxLZNjRvPYj0bKMOlIl0LMh4Rh4VJsc6XKMmY/qVwh0QkytoSyqceWNyaHWAwYanVJNywUl5LOyJmbpsHrsitqJXSTpGF3LmvbwqzriNqfWZawgGhm1I7tksvIK1v6EqiKlHXDqLKMbtr59u2gHxVVltIBXwrJdH79qoCHlBknpVuUeexF7u5YilXb+zhyVgVx3eJjsyrY2BmlM5zElVY6ZZKx+TSV4/ep4bQF9SxbnZsgrjro5pCZFTm5ZkZ6nnpiOu3hBOGEwYJpdi76jkiSLV0x2jWFQ2eU43XZCd0kscP1WO5zcWiFl2nlXrqjekFF0gtVGI0ng+Uza9p48KXNbO6Kopv2/Z9R6efCo2Zkawrv6RStOoCqqmzfvr1Yp9utiaYMZNn2aW7vi2OagoRhkRK2jM/vVkgZdmGS8eZRGS8DF9s0OV0CMG7gUe30BYUYa4GdlkCWBIpsFy3HFCOqd4bClioKTNMacvF3OAxhS/E0RcrpFFTFjhpWFQnZlLKJ2UxLIEn2qD6FGGIdQmBatrslaQkEghKPC8Wwa/NKEsSSdoxAOGEvamuKbAdoCUFNiZtYymBauZdIwpZCivR1e2Ip2voSBDwqDRU+aoNuhGXPZIJuBb9HY2q5j9MX1lNX6uHXL2/pt+4i80GrXST9yVWt7FUb5MCGck7ev9bO0T/E8ySEYH17JF0kXqYy4Gav2iDhhF10vbk3js+lEU6mI177rTeBPQCpKfHYWVwLLJIuyxJTy7xZY97cGx/SmI8nruWZNW3c/K+1hBN2iuyMK+nD9jA3/8sejDqGfwxG/29/+1vO30IIWlpauOuuuzjqqKOK1rDdGb9LxaupeMuUbCBKqVdDkkFYdqfgVmVOmDf+PCrjpf9iW8qw2NARIZSww/9VCULJwsy1jG2wRVqyKMkSHk0irtuSzKFcRMNh9S+8WwCmALPfhWTIaqqFgIS+4zNJmbZm/9jxT0lKa/GFwJJsX7tpQSxl4nOrCEsQ1wWSbO+nmwJFtijx2n77zkgSw7TXdKZX+FnTErLr61p2p5gyLfoSOiawn0dlSl0Jc2rsMH6/W+Vzh03nyNlVANz9/Iasu6YnluL95j7iKZPqoItIwkxvs+M/Ttm/bsjnKZww6ImlcGt22gmXIvdbUNbwaArNPXGQIJYyGEroPNZnMR9jPp60y4Zh8eBLmwkndKaX76j1HPTI+F1KNv/RornVqAP1p3sYBVuRgVkwJUmiurqa448/nltvvbVY7dqt6W9IF04rZUNHlJ5YCsOwUNNl9I6ZU8VR6R/0RKkc8pkmZxbb1rSGWP5hB7IkUel30WElCA9IlJYPmmobRsuynw0ERNMGWJNtZUq+WSjyLbAyFD5NzspHVdmuXwtgWnZZwwyqYl9HThv4DLbsU0pH3qY3ih3/0w1bWhn02IvWsfQKd2XQRUOFH0221yHK/Br71AZZ0xomoZtMK7MD7BK6SUc4id+t4FIVWkNJppX7KPG6WDhNY117hPe29XHk7Kocdw2Qk2smEzAZTZrMn+KhLZxkRVMvs6r9rNoeynmeMq47IQS1pV6Cntyfv9eloMhQU+KhpS9BWUmucRzrs5iPMZ9VFRhX2uW3m3rY3BWl0u/KGvzsdynL2fxHbzf1cNjMyrzb/lGkYKO/K3X6uwv9VQtd0RT71NkpeTMjrall3pwgjolQORQyTZ5VFaAm6MarKdmcNKU++8fTHUmNGIQ0kJRBv5QLgv4TBUW25YmhuFHQiL8QMoN1TZVxkamqJYgmDdyaTDJdZjHTRFmypZ7ZPD7pdilp332yX0MzQVJ2HVyy98uwBJqqUOHXmFbuZV59KacvmMJfVjTzztZu3t7aS1N3DEWWiKVMvJqMKeyo2kq/GySytXQzxe77r+OEkzrdsSQuVSYU1+mKJnMKpmuKnE6wZ+fz2dAR5cyDptLSl8h5nlKGmXbNqMyu9g/y98dTdmnGE+bV8uTKVtZ3hti8/yHIkkQ4ZdIUGjmnz1DkK1L4xAJ5XGmXu6IpO5bDNXSAqNdl1yvOpGaYjOysalwfrYq/k4iBqoWkYU+LD59ZOaRqoZgqh0Knyc29cXpjOkfNriKcsl07XpeCV5H5x8pWYkkjW/N2KDJ1ajO7ZP6fGuAZiusCRRa4NQkjNTFWP3PWpG6PhOtKPZiW/RljKTOddhpUCUp9diK47mjKjubt9/uyOz97LcClyGiyRG/cQJXtXFMuLZPl0b6WLEvUltiBRh3hJJ2xJFu7YqxuiZBKLxq7VRlZhp6YiZKOMdDSroZI0sjJD5NZx1nTGuLNTd1saI+yuTOGBPQldKaUenGnf739k4xljqsOugc9Ty5FZnZallvuc+Xet36j+KNmV1Ff6uHfK9v4+bd/ZT+7psL8qYGCn8V8RQobO6PjWteq9LvQFJlY0rCjs4VAkewyk5Ikpdd57BH/ZKRYlcDyIS+j3z93zWj87Gc/G3NjPmqMpFoYqlcfb6FnGFt1omjKoDOSZHuvrdU2LDtdsk9TKE3ndAdbejjQ5SJLUB100RfXMfXBaRD6I0G6KHhh97FQZKDEowISZT4XLkWmtsTNlq4YXZEkumEnYFNliZqgO501VMeyBElDpN03Ardmj6K9mkJSt1AUO/wrkrLQDB1FsQucyJJEtd/NnJogPrfK+819/OAfq2ntS9h5ciQwTDsNtpGO/lVkmZRpoRsWSGSNdoZ4yi5U888VLSTTOXJ6YylcqmKXW+xLMLXMi0eTc5KMRdJGz++yF4cHPk/xlMmvX9k86oyyGM8iDJ+KIUPGmAPjWtc6qKGcmqCbtW1hPIqcrS3h1WTKfBpd0RR71wY5qKG8oPbvDIpVQjJf8jL6+eriB/bkDkPr5D9sC/HYm81s6IhgCotyrytb5WdOTXBcksyxVCfqDCdp6o4hhKDM78IwJTqjSZp74whhu3ssIfC5VLsgitiRvlgCOsKpQXnlh8ICFMa0NlsQFna2TwuT7kiS6qCH1dv7MCxBiVdDVWRCCSNbHlGS7Lq0pm1/Cbjt6NdEuqiJpdiF56dWeEnpFlu7ohiWQE+vFzSUe9m7LogqSzR3x2yFTrpIiM8lI6EQSdqBapm1guqAm+a+ON3RJJqqUBN0I4SgM5JEkyVa+uIkDQtVttirNkB10MW7Tb3EUiZ+l0I4adpV0lwKPrfG7Gp7BN/f554ZWIQTOpGknRAs6Na44IgZWennROrmYeRUDLDDmM+s8o9rXWtzd5RA+vwx3S5dqcjQF9fpiqaoCXq44MgZk24Rt1glJAshL6P/3HPPFeViDras7OfPrKMjnEynG5AJxw06I6mi9OqjlcKTJUjoRnaanAkk09IVpUzT1qTrpoUvHUiWSssmQ4kdC7t2ZkwJyxw8+h+JfDqHDGraxTKWVaSobqdefq85hFuNIEswrdzHvvUl+N0qr23qZntvnHDCTGeYJBsJq8gSpT4XR0wp4aDpZaxo6qUznGRKmY94yqA3niIU15Elu2DN9t44uinwajJt4RRJwzY60XTEMpKUlX6aAoxIMhuwlTIFKdOkT9V5eWMXKcNeaC71apT5NKaUedK5ltwc0FDGhvYoLUIQSZn0xXWqgi72n1qCpkg5efQ3dkb498o23mnqYWtXjLhuu+ymV/g4sKGcE/er4XRtyrCj+PXtYZ55YxPnnbuIMuAHP/8npdXlHDKjnHn1JXmP+vMVKTSU+8a8rpUxnD6XwvF7V7OiqY/euE5Ct593v0vl4MZyjtt7bBX+JpJilJAslHH59Ldt2wbAtGnTRtnTAeDD1jA/f2YdraEE9SWedPIqOw1xJvhovL364FJ4Kdb///beO8ySssz7/1Q8uU/n7ukJTA4w5DAEAcOscKG4vO4rriCCAXcXWAX28rew6qIiUVQUUHYl+r4gKIouBlZEeFeCgkMeJjCJSZ3TyRWf3x9PndN5ps/M9MT6XlcrXV1V5zk1VXc9z31/7++3KyfZQ2WfXF0qZC5uhc19eV7a1EddzJBSt/2WLISqCnnHo2D7Y1ypIDBBdwRTKay6qwG/DBH8j+P6RAyN9sESvoBlc+qZVRdja38BRSGQktBIBDK9cVOjNm7QkorQOVji5U39lByfN7ZlsAP2i1TZlFaNnivoK1jETZ2CLWfUlqMEUgpC6hGJIblkgZyB6qrKMbNq6claDBQcTF0hoqmkIiauL3i3t8DshkRlhlyfiFA32yRbStGRKbG6I0NzMkqm6GA5/gitmfuf38TmvgLd2RKe75OKStOTLX0FBgo2K9sH+cRJs8bVwS+nG3K9GZLZAQC29Bf4U3uRJ99qZ2HrUE9AtVLIO0sp7Upda3jgTEUNZjckac8UK7WppKmTKbl7NHDuKUw2/bUne3R2ib3zzW9+k29/+9vkctIzNZVK8S//8i98+ctfHkOXCiHh+4LHVmyhO2vRWhMhYshoGdEVzIRJX96m4Li805ndrZtzNO/+9a2DFG2XZNRAj2j0ZC1cReF3b3awqSfPL17ZxuqOjKQsCgL5Z4WiUHBdf0wqRhCwc4KA7FfbdVUFygFfVwLvXHds89TOIJC9AYrroSoKHYNFnlndScGWM+qycFtDMkJzSjLT+/I2BdvjmdVdJII8udT58XFGLVXKvxUsn4juE9HVoG4hu0ELtuys1dSh/oWYoZKKGlIHSAjmNCRoTUfpydts6y8wWHTI2w79eYen3u7gPQuaZIdsQM8sW2VGdZVPLJtFTcyozNZBcvp7c5Ii7HqiooWvKQ7bBkv05my29BXY1FPgnKWtfHBpCzFDJ2+7xA2NJ9/soC9vs6R5yAykN2+TSiQo2tIw/s1tk883VxPMd6WWMDpwykawoefH9X26c9WZBu0t7IsenarP9OUvf5l7772Xm2++udKM9dxzz/G1r32NUqnEDTfcsMcGdzChPBsxdWkqMhyKopCM6mRLMnWwOzfncIerlzb1YTk+TSk5cxwouKRiBkfPSPN2+yC/fbMdkI5MMUOuOiSlUaCrI4PbcN2c4ZTHvQFXgLubHM8yddPyPEqOfJCkOJqC78NAwcbQZCNPIqJXmpSiwcsZIZuvVIbqGWUoSI2lkiMCSqdM28RU+ZnDV+0+UqKiJmZwWH2cVR1ZTpkbxxOCNR0ZGayDXgLXg568w+9XdrCwNcWR02upixtkig7runMc0Zau6MqUsaWvwPruHDVRnY09OQxdpeh4OK5Pb97C8wRChcZEFMv1eHZtF0+t6qQpFamYxm/pK7K4NTni+mVLLkVfWhsWnAIz62MVj9nJrEyrCebVipnty+bG3cVUK5GOh6qvwoMPPsg999zDRz7ykcq2o446iunTp3PZZZeFQX8C5G1ZyIvo0q4vMirwG5qK7TqoirrbN+f85hRnL23l5Y39+L6064vqWsU9y/cF73RK39WkKRUpsyWPqKGiqbJZyfdGBrbxZvzVonw7T3UhdzwM/0zHB+F6SIak/Eum5FJ08iRNHUWBrOVSE9UZKEg6Z3GYXv945/aFCDSWJDOr3Llb1s/xhpuuBN247YGhvaLCm1sH6czIoFrW3Sm/PCzXZ31XnlzRxTSk/aOuKkQNjf/4nw0j0izlWa8QUkhOQb6kS46sXSRNTUpTq1J0bqDgkLVcdE1h2ewG1nXn6MwUcT2f4jDXP0NXIFAvzVkub23PcNT0dFX55j2lTDme2c/eDpx7CntTibSMqqNLX18fixcvHrN98eLF9PX17ZFB7W/YE00TCVOnLmaQLToMFh3MxEiPzXIBb2fG0JPB2s4Mv3p1OwNFG0NT0IRCPKIztzEBKLy4oYeC46EpUoZYDezehouaTUVg1lUZ/AxV+tLui+BfxmjJZSEkTTMnXBxPppH68w5uwLjZ2VgrvQmBWbCiBEHbHdmBHDMUpqejuB5sHyiSt1y29xfYOiBXFr7UicbQ1YAl5QEKJcdly4CPqaksbEmyqDVF1NDG0PoSpo7t+mzozldqGYYCxUD5M297mLqG5/sUbA/FVGitidCXt/nzxl4GCw4lx2Nrf4H+Lqsybl1VcIOiRNRQcVyf7YMl6uPmCFLAVDcXTcRnXzwttVcD557E3lQihV0I+kcffTR33nkn3//+90dsv/POOzn66KP32MD2F6zryvLkW4FLju0SN3WOnJ7m7Cpdcso8/J68ZHcMN62wXY+OjEVrTZT/dVzbCJpdMqqTihiTfoDK7KD2QdmMZGgqvilpma+5/eiaSt72KikJX8iZpRYk9ct0zD0JFRko5IzYB3U3K7R7GMNVFoY3oblBGqtcppqM8Fs59WWoUm5D4GEH3H8j4PVv7itKfaDgs/76br+0czQ0nGAWDlKULWLoRHWFgYJDIqJRGzWY3ZgIrC9hflOCdd35SpplWk0Uy/HJByuVguOjSIF/dEU6hxm+T74kxdTq4gYFx6MrY1FyPJpTEWpdk4GCrGuMuE5CTk4SEakt1J21SAf1hL3RXLQzPvv7Fzezuj27VwLnnsae6ouYDKoO+rfeeisf+tCH+MMf/lCxKXzxxRfZsmXLGCvDAx3rurLc/od3WNuRxRNDzPSN3XlWd2S5cvmCSd9Mw5dxAAXLJWu52K6N7Qqm1UT5u+Nn8PTb3RPS7Hb2AA1nB7WlY3RnLXKWS8n2cRSfQpBiqovr9ECgAePiuDLoa7osVo7upN1VyOAnZ726plIb0yk6PrmSw+TFmvctBDLYV0NP0JTAqpFAxyhr4QdB3gqatcq5f09I0TYA15Mz5rJxjKpKpzXP9/GRL4WBksMr7/YHMhEq9XGT1nSkkmYBaRRTlzAo2B6q62O50szdQRbhXV+gaRqG8OnOlujNO4EMsUJvziER0SlYLiVF4Y3WBSiK7K4uItVL6+MGuibNyKeloxQdd4QC6FQ0F02Gz76mI8s/nDF3jK/z/jrDH429ZcxSddA/88wzWbt2LXfddVdFO/+jH/0ol112GW1tbXt8gPsKvi94+C+beX3LAKamkIoZGJr0B80WHV7fMsDDf9nMVz50+C4ZOr/TlaVjsETR8ZhWG+WMBY28uTXD+u4cXVnZyZmKGFiupNlZjr/DB2g8dlBDMkLR8WSjUsBfdH1wXA9dDRqSgtjr+GJSJifVQAAoUvBKV2WwMA2VVe0emutVLbe8L1HNwqQ2bhDRNQZLDm7Jr7CdHOT/q6pS0elXUdAUIWf+wSrBDjj/iYiOpkDO8lAE9OflyyNhaqSiJqqi0JUtMViyaUhEKmkWU1c5blYdm3oKtGeKDAac9TJzSNdUWmuirO7I4vnS6zhqSIvKfNCXkYjq5O0of/+57+F4AlOopAyVxoSJqip0Z21igc7/Uyu7xg3GCVPjjW2DPPTnzXz6tNnMqIuPa/gymdntZPns7ZnSfkfL3N+wSxXDtra2g75gu7W/wJ839KIpVChvIAuxZlKlM1PiLxt62dpfYFZDYidnG8L85hT+EYJNvTK45y1pjv2XDX0VFzHHE0QNFV8o1MUNio6H6/v05qwJ2RI7YgcJRc4yy4GrGHRTjS5MTsXcuy5hoCnSd/Wt9qzk3h8Yk/xdhqmr1CdNbM8POmEhmMzjQ0D7lBs0Zcjv1ws8fUGujjzPZ9AOagwC3OAk7YMlenI2NTGD5lRE+jALiBsaiqIQ1TWihsYJs+vIllJYrkdvzmZ9d46i7RIxNIq2UzGyV4C4qaNrCpoqWTCOBy2pCCgKjudRG4+AkL4QuieIGCrvmdeIqau8srlPCscNQ7k/pCtbYl1nju2DRY6aXjtGSnmyKaF9wWc/WFE1qf7JJ5/kueeeq/x+1113ccwxx3DBBReMa6V4oGJDT57BgkNNXFLALEfq4luBFns6bjBQlNrn1WBdV5bvP72OP2/ow/cFLekocVMnU3LIFF3ylks0mI3lbZfOrIUeyPSmovqIZXwZvi8CHXwXVVGk7K8Q9OVtbNfH94aKpmU2RzWdsbsDz5MyDZmSh+sPBfwDY8G9a1AU6Axy5J4/tmNZDPtxhWQT6eqQnaIC5C2PwZKD446Voi4H6/68zda+Ao4nEIEtfJkC2D4o9WxqYgZNqSiLp9Vw8tx6EhEDTVXoztnUxHQSER1Dl05jQgi8oOArhMLC1hRxU0NVVJa21XDinHqWtqVpSUcrfso/+p+NrNye4fWtA/x1Uz99eYu+vM1rWwbozpZIRnRipko8KDrf//wm1nVlK/n5t7YPUhs3mNuYpDZujNhnOIbTMsfD/kzL3N9QddD/0pe+RCaTAeDNN9/k6quv5pxzzmHjxo1VCbMdCBAKMq0yUGJLf5Gt/UW29BfZPlCitAti774vePKtDtZ2ZDE16UIU1TXylouKgqrKYCybhmQ+1/F8spaD6/loqoLleiNmM+u6svzw2fX85C+b2dZfoL/gsDnouhwoWBRsb6ggSTlfPAQVqYejq1Jbfk8H4968U7EtHH5uwS7cfAcAVGQ6pmBLNyp7Em9XAViuT01UZ0FLkuZUtKLvP/ouK7+0ZcVdyjG4vk9jQq4Iy7Wj+oTJO105siUpoJctOfTmHU6cXc+nT5vDvOYk71vUzFmHt9KYMCk5nvTm9QTJiE5NTGdGRPB/b/h7fvXtT6IWC/TlbVRFYV6TTOO0Z0rUJwzSMfki6cqWeHVzP29uG6Bou4HeP+iaRm3cZEFzkt6czaMvb+H/vLiJrf0F5jfJjmNpN2mwoDlZ4f/7w952w19mo321y7TMPcF8OxRQ9Wtx48aNHH744QD8/Oc/59xzz+XGG2/klVde4ZxzztnjA9xXmNOYIGZobB8ooqkKuqaiK4HKouUwULRpqYkyp3HyqZ1tA0Xe3DaIJwSpQDfdcjysoJAKMp8rxb+ElPXVVfKWXPp6vhgxmxnOZmirjTJYTLC5r0BfwWJdtzNihugjA1LC1MhZHk7wx3JQUX3ZNbqnFwDl86kKFSkCMepvBwt0FVnYtH2Klo09yXnB0LURHDktzUoxSFe2hKIqeIHpzOhr5vpDbCBNVYiZeuW+2BEFcPmSFgaKNqamUnI8WtNRzljYyMub+inYHsnA57dge2wfKNLU2wHAF96/gJwRIW5o/Ndr22kfLFVm+1v7S3RnS9TFDbqyFnlbmsUAIxRA+ws23dkSr2/pl89A1MBxBfOaE9QH6aGJ9Gb2BZ/9YEXVQd80TQqFAgB/+MMf+NSnPgVAfX19ZQVwMGB6OkZtzGBrfxHF8xG2VxHJkoZQMt8+PT35mUXedoPlqcAIZHTLrKByIw6CwDxdMoVUwPH9SsfuUTNqKwqKo9kMC1pStA+WcL0J8uZKOciP/aPPSOeoPQmVYIbK2Nn+wQJDVWhKmcxvSrKyPVMpyk7mO/pCrraylscf13TRnbWCoB6s0IKXwhB/TKaQEqaGL+Qkoa02NmKWOx4FsOi4PLWyk3VdWbb0F1nVnuWw+jjzW5KcNKee9V15evMW3Xmb+kSEE2bVVM43oz4OiQRb+gps6MmPKKjOb06Ss1z6C07QmSyN53OWS8zUmNeUoL8gUz4FS6qamppKIqJJk3bL4ZiZtZXAP1F+fm/z2Q9WVB303/Oe93D11Vdz2mmn8dJLL/Hoo48CsHbt2oNKeK09U8LUVTRFSuwOrShFRffE0NSq2AIJU5eG0yiVrlyp6qiiq9IQW1XljM8KOihtT6Z6DE3qw5RnM+V2++EPX21Mx3I9uaRWh3jllcCBpIqOp4k/Ffz8MsqrDDjwA32Zjul4I7n3s+tjuD68uS1Df3FyUtPD4SML7E5WvrRBpgPL/1Rlf+Xyi0QJ6jKuL0jFdD6wpHnELHc0K0bq6A/RKk84rJ4V7/axoTdPX8Hm+MPqWNSaZEOPwvzmJH9/0ixOax07oRmvoFqfMDlmZi3runJ0ZIq4niBXcplZn6AlHcHzBas7ssFKwgDcQMNJpT4hHa3Wd+epi5sVw5OJ8vN7k89+sKLqtOqdd96Jrus89thj/PCHP2T69OkA/O53v+Pss8/epUHcddddzJ49m2g0yrJly3jppZcm3PeBBx6oCE+Vf6LR6C597o6QtRxZDFMEuiof7vKPrgKKzCNmLWfS55xeG+PI6Wk0RSFbdBBCYOpqYJ8ni3m6ppCMSM13y/HwfUFTMsL7FjWPoGsOPXxDD0b7YImC7ZGO6jLPqgxZFyoBN3y8UoQyhQG/jOErjwP58fSFbJoqX8+IHqhyJgx8IYjqCuouXMxyjaMsxKYwVGwvt4ho6kgpC8f1iBs6f3N4c8VAHYbqPN99ai3ff/odvvP7NVz/67fZ3FdgQXOSVNSgKRXhpDkNzG1MkC25rHi3n4GCw7I5DXxx+QJmNyR4p3tkMRUmLqjWJ0xOnF3H8bNqaauNUZc08YXPqvYsz6/vZV1XjnzJob9g01wjxe1yQYNYMqpX7CInk58v89kXt9Yws34sDTTEjlH1TH/WrFn8+te/HrP9u9/97i4N4NFHH+Xqq6/m7rvvZtmyZdx+++2cddZZrFmzhubm8fWva2pqWLNmTeX3qTBvyRYd+vI2mqKQTpiUHFGxYIsaCjnLoz9vky1OPuirqsLZS1tZ3ZHl9S0DdGZKpOMG8YjOQNHF8wUtqQhHz6xFAToyJRoSJp9YdtgYCdzxRKYKjovj+ZiahkJgFYdcLfgChte/VIIZuLL3KZQH8mxfdhUPrZxsV2C7Lu905khGdExDQ9cUnCoF4hSgLmHSVhvj3d6CZP14Q2/j0SJ3RtA7cuLsBi5cdljl3hiva7UzU2R9d5Zo4ITWlIyQiupBoK5nRl2MvrwjFTujRsXgRyvl+c/g89Z3ZZk3J7FDgTCAvO1z7Mw0r2/N0JmxaEiYxE2Nvpwga3lEfGhKRUnHDPK27EyPR3Qcz6O/YNORCfPzU41d4jd5nsfjjz/OqlWrAFiyZAnnnXceul796b7zne9w6aWX8ulPfxqAu+++m9/85jfcd999XHPNNeMeoygKra2tuzL0SSMfiGW5nk9vXtrclROqeVtBC1gJ+SrbV+c3p7hy+QIe/stm/ryhl96cNGpuSUWojRvUJcxKwfbMhc0T5ipHP3z9BZt3ews4ns9g0UdRFGkOrsnGKEcIbMev5JoNTRan46aK7QmyRXd/UkbYryGQs3A1SPPlbJm/BplSc3bhLaop5aYulYSpUrCRNZhhFNfyf5f3/dCR07jw5MMq98dEXatFx6fk+AwGuk9NyQj1iUilgNpcE6Vge6xqz/CLV7ZVDH5qvCHtnf/z53f5ZCJRcXibqKBaFzeIGhrT0lGafJP+QMtHURRSEQ1TU+nJWcxuiFdSQl1ZyYYrOh5Hz6gN8/NTjKqj9MqVKzn33HPp7Oxk0aJFANxyyy00NTXxxBNPsHTp0kmfy7ZtVqxYwbXXXlvZpqoqy5cv58UXX5zwuFwux2GHHYbv+xx33HHceOONHHHEEePua1kWljV080622KwqkkJZskTwu9Rg8YVsrnGAGkPuVy3mN6f4yocOZ2t/ocLzn9OYYHo6NukW8uFshle3DNCVKWG7HhFdpeT4GKp0gVKQ8sB+sByXAUPH1DQs15fdssIPA/4uQAEINHCkTlqQ+tsFxEyprlpyPEquX6kZlD8nZiiykUpRWNhSw5fOWsh75jeNuD/G61rty9u805nD9vxK054a0CvLBVQjYPI88tIW+gp2xeBHKfpsajkMRVHY0leqNAbuqKB61Iw0P1+xldZ0BENTme5KeYc1HTkGizbJwNgnW5KUzhMOq+WNbYPMbUxO2LUbYs+i6qD/uc99jqVLl7JixQrq6uoA6O/v55JLLuHzn/88L7zwwqTP1dPTg+d5tLS0jNje0tJSkXgYjUWLFnHfffdx1FFHMTg4yG233capp57KypUrxy0k33TTTXz961+v4htKzKqP4Xh+xVmpPOtSFMm08JGrgFn1u8YLVlWFWQ2JMd28ExWFJzJSv/iU2Vz/67fJltzA8UkasgCYmqTe2d7QDN/UFVxPIWGqWJ5PvuQGxuchqoUaMFXKrJqC7aKgIHYhf6UoKq7v05mxyFseuiatKL3g3LYnSEYkJ/6k2XVjAj6MLbIKIVjXlcP1PGpjBjlb1og0VaE+MO5Z15WjJmqQKbkMFp0RBj/E4/x/X3uYvrxNWtVHGPxMVFD9w+pOVrZnZE3CF+iaSl3cZEZ9DKdH6i55gsCbWNahZtTFufDkWVV1tofYdVQd9F977TX++te/VgI+QF1dHTfccAMnnnjiHh3ceDjllFMqQm8Ap556KkuWLOE//uM/uP7668fsf+21145oGstkMsycOXOnn9OVtVBQAnZNuW4g8zsi8DsFha6sxdym6pei1cjQltvV13Vl6S/aaIrKvKYk//uE6cRMncakSWu6AVMvL59LvL5lkO6cVZFciBkqbekoKLB9oER3zqM+rpMrepPmkx+K0GBCjSAVKk5asmYiqbhSXK26z4mbGtsHS0GPxhDtKqopNMQNLA+aayKceFgt/QVnXA370XWebMmlv2CTipkkfEHRKcoJgCcQhpSLeLe3wBFtNWiKUrXBz2iBsHVdWX7zeju5kktt3KAmZuB4gu5siZzlMqcxwbb+Il1Zi85Mibp4JKRb7gNUHfQXLlxIZ2fnmHRKV1cX8+fPr+pcjY2NaJpGZ2fniO2dnZ2TztkbhsGxxx7LunXrxv17JBIhEomM+7cdob/gEDM0DE1SNmUhTTZnKYpCIqJW5BGqxcgg7qApyCB+/EwWtqbG7Hv/85vY3FugYLvkLKl7v6o9w1829vLR46ZjeT7T65KVBq+amMGsuhg/fWUbvnAwVIXDGhIBXU6qNa7vLtBbcA96HZzdxUSxO6rLQrk1LLo7HgjhVcVOMgKPgbipkcu6FCxvRKpN8QQZy0dVYWt/Uebao8a4GjOj6zy25+N6PkZUR9EU6QoWcPv7C7K7NhXVOWV+I/+ztnu3DH7K9QTL9TmsPk53ziIZgYiuVuxAu7MWjckIx8+u47xjp1clGR5iz2FSGchMJlP5uemmm/jCF77AY489xtatW9m6dSuPPfYYV155JbfccktVH26aJscffzxPP/10ZZvv+zz99NMjZvM7gud5vPnmm0ybNq2qz94ZGhImMVOjIWnSEDeJGVpAr9RoSJg0JIO/J8yqzlsO4n/e2MvmvgLtQR7212+086XHXufpVUMvwPKDtLm3QH/BZrDoEDN1mlKS8taRKfHIy1squkDD0Zm1sRyfuKkTMfRKMxhIfnQkcHhKRHSSpkLcOBhFEaYGkqop8+DDt4Es5E525VSm0Goq2I5H3vIqzVflhjZPSFaWEvzelbHY0legO2uNe86jZ6ZRFHh96wCW46KqUgK5L2+TjhucsbCRU+Y1smxOA0fPSHP4tBqWttVQF5MSxbmANglg2iVu+/qFfPvrF6IUCjukUZbrCW21Uea3JImZkn9vufI7lVcVUVPj/BNmcvi0dEi33EeY1Ey/trZ2jAXZ+eefX9lWvknOPfdcvCrXtVdffTUXX3wxJ5xwAieddBK33347+Xy+wub51Kc+xfTp07npppsA+MY3vsHJJ5/M/PnzGRgY4Fvf+hbvvvsun/vc56r63J3huJl1zG5IsLYry6y6GI43RNk0NIXN/UUWtaQ4bmbdzk8WoBLE+wr05y1Kjuy0rYka5CyHrf0FbvvvNUyvi7K4Nc22gSLrurIUbJeS41EXl8vlkiMbtlpTEbpzNklTZ/tAkYUtQxS6QiD2pSKIxUw5K3U8XF/Qk7MCs24FTVOwPGWEzkmIHUNRJLtrdAdztdLUZW5+TVSnryDrMAlTms0Ubb/SCyCE/LxURAt6RlTe2DI4gsY7XLEyV3LpyVl0Zyxs1yfn+hzWEGd+c7LS9SqE4J2uHEdOlz67L2/spydvkS3J/pRUVKdOeMxs3whAU9Lk746fPmGQHl5P0FSFY2bWsr5LNn7lgy7cVFTnQ0dOC1M5+xiTCvrPPPPMlA3g4x//ON3d3fz7v/87HR0dHHPMMTz55JOV4u7mzZtR1aFZaH9/P5deeikdHR3U1dVx/PHH88ILL1T0gPYUdF3lktNmc9PvVrO5v1iZ+Rdtj/aMTU3U4OJTZ48wpd4ZKkHccik5PvUJk5Lj056VuvquJ9jUm+erv1zJ9X+7lI5MiS0DcpZv6irtgxZFZ0gOImpIIz8tcGkaTqGjLOWgqDJfPFCqSDQX7aEUhOsJPE9qNFYbtA5VTCQPrWuB7WIVNZKyH68beBIXHL8iWcEwKQffk7z9mpjJwpYk67uHtGlGc/PbamPkLZcNPTkEoCsyV29oauXff7heja6rLJ6W4vdvdzBQlEqyAwWbPndoNfFP753Hwpaa8b4CMLaeUJ+IUDfbJFuS+vzS6N1nybSJzxFi70ARoyXrdgNvvfVWVZTNfYFMJkM6nWZwcJCamp3fgE+v6uSB5zexqTcfuAupzGlMcPGps/nAkpadHj8cqzsy3Py71bQPFImZGr4vG7Acz8fU1UCh0UVXFVrSMRqSJu90ZMlacnmvayoxU0o3eEJQsiW3Y1FrDZ87fS7vdOZY353Dcj0MVeHVrYMMFhzpTSvkEtt2pRl2+R+9nNXZm3LLBysUJCW23JelKpI26wsx7rUts8LKT6CujnxhjH4Jt6RM/ubwFtJxk009eS5/33wSEZ37n9/Ixp48R01Pj5gglWfz09JR6uMmG3ryWK6UOJjfnKwUUEfXjbKWKzVyCnn+dP3fypPlcpCYmF3j+4IfPruet7YPjugRGD6OI6en+ccz5+12SmdvePEeaKgmru22+HQ2m+UnP/kJ99xzDytWrKg6vbO/4wNLWjhzQROvbOmnN2/TkDA5bmZdVTP8MhKmdEKyXI+aqEF7Vgb8mKGhKATaO0qF8ZAwNdpqo6zcnqkEBiE0FBW0wE7PF/JFsbg1xfIlLSMehlXbM1z7+JtkLYdUxMDzfDJFZ0Qg2QWF6BAToNytW4aqQCqqk7ddvHE6dH2GHkAXKDNny13S5fx++ciS67O+O8+0tIfl+vzy1e2825vnze2DUoZ7mGKlEIJsySWiq2wbKPKpkw9DCzwahgfK4Q1dx86qBajMzuP2kG+D74sdFgD3lgrm3vDiPdixy0H/f/7nf7j33nv5+c9/TltbGx/96Ee566679uTY9hvouspJcxp2+zxldsWq9iw5y6HoeFIqQZGzobKkMgiaUxHytsfMuhiqmsXzRLA0d1FMDdsT6KqCoWkQsIrG89hc2JLk3d482ZJLwfbC2fwUY/g7VAuKqO4O6iVlr4Phx2pBpB+uSqqrUiNp+0CRjb0F0oEEcszUiBlaRbEyU3JoSUfpCfyRy25XD7zwLp88ZRaLW0fOAsdr6KqJSZaXXhyawG0fKDIjldzhd9+ZpHNE11jdkdnl2fnOjNH3hBfvjnCwrDCqCvodHR088MAD3HvvvWQyGc4//3wsy+KXv/zlHs+pH4xQVYX/ffxM/rKxj639BVxPYGoari8DvjTOENTETRIRg8GizOXXJ0wGiy6OK1vVVUUhFrS0p6IGDQmTojN2hZW3XeoSJsfOrGV9V44/ru1GeAJTg9LBtSDb76ApshO6YI1Pix0+gx/9Z3fYm8MPzpWM6PjIhqeC7RLRVBY0J8lZHoamoioqMRM29xZ4pyuHriL7NgIpjo29Oe5/ftOYwLgzG8LKfs7kbAh3JOm8O7PzyRijT2QluidwMK0wJp2jOPfcc1m0aBFvvPEGt99+O9u3b+eOO+6YyrEdlFjYmuILH1hAUypa8VB1PZ+IIaWadU2lMWHg+j6aKnP46ZjJrLoY9UnJwklEdGqjBjPq4ixqSdKYjIzLny4X10qulFnwhcA0FDRNO6CVLg8EqIoM0DUxQ1oOQuUHJi6Ya8qQbj7Imkvc1PCRuf/auCln+ZoU/UtFderiJn15i/aBIiVXsrYSER1DU8gFqZoZtdGKI5Xr+mzpK7C6I0Om6BDR1DGUXyEEGculr3EaPY3TiBuTnx8OV8G0XI8HX3h30raIE2GyxuijrUT3BKq1dtzfMel/yd/97nd84Qtf4J/+6Z9YsGDBVI7poIbvCxa2pPjCB+Zz97PraR8sETdVoob0K+0v2OiqWnEcmlYTY3t/ia5siZaUDO5HTk9TnzBJRjTWdec5cnp6XP708GYdR4rDoKLgizCRP9VQFQXXk0wcXZVMq8JOCihlk/RERLqb6Sosbk2hKCp9eZvmVISFrSle2tgLSPVURVGY15RgQ3dOiv8JUXnh+EKeK6KpbOgpML02xv+s7WZLX0EanXg+pqqwbaDEu30FjpqepiZm0F+wK4YqT1z1Y+oTEc5ZO8DZkWhVs9o9OTvfV8bo+3qFMRWYdNB/7rnnuPfeezn++ONZsmQJF110EX//938/lWM76DB6idiUiuB4InAXStKYNHlpYx9bB4o0JU3mNSVQVYW5zQm6s0U29xVoTEZIRiVVc113focFsuHFtbXZIqpCxds3TO1PHaSctQjSdVJhMhLIXE903cuNWJ4AYXuV9IzlCkqOTcRQmdUQJ6KX27bADBruDE0lHpF2moNFGxQF34dERMon257HO105tvQV6M3brO/OMas+Tms6xpZ+eV8VbY+t/UUakyZWQK8EhcZkhIUt0g1s+2CRc46cRmMw+Rid0x6d8xZCTHp2vjMjovGkxIdjqozRq1lhTNZMaV9j0lfo5JNP5uSTT+b222/n0Ucf5b777uPqq6/G932eeuopZs6cSSp1YOW29iYmKkLZriATmEsUghy8G6QFDE2lO1vitS0DbB+0sF2PouPR+VqJ5poo713YxCeWzdrh7Gt+c4r3L25mY3cWbxyj7RB7HoYGvpBaNk5QnHcsD00Jgvo4xww3R/F9iJoqjuvTmSlhaCoxYFV7VrqjOR6aquD7viQAeD6aqtBaE6HouERNjRnpGKauki15dGZKlFwf11VRFWhMRujOWWzsKZCMaEyvjdGbs/CEYEtfAdcXtNZEmRasFOsTJr05i5c29fH6lgFmNUj/6OE57fFy3jVRg56cRdsEXbzVzM53pONfNl6ZaMVbLYa/vDoGSxQdl7a9vMKYSlT9WkwkEnzmM5/hM5/5DGvWrOHee+/l5ptv5pprruFv/uZv+K//+q+pGOc+xe5W7Xe0RDx2Vi1rO7Mc1pDgb49pIxU1KNoeT73dyatb+lm5fZDBooupqcyoi6EqMFB0KVoeHZnxW/GHY11Xlsdf3cbGnsIuf/8Q1UEEdNqmZAQt+Pcqu0RN5K0yXEZZEIi36Rp6cB5VVRgs2GzuzSOAiK7xu5UdzKiLMaMugRCyySsZkZr8fsD06c07FRVV2/WpixukojqZooPlesRNFVNXaUhFyBQctLiC60lDl2UtUT7+pU/g+oIv/uP3sDwVT5Pj0TWlwpp5/+Jm/ri6a8yEZn23XF00Jk1m1o/l+FczO9/TlNCJnunRLy/PF2zpKxIztN3+DvsLdmukixYt4tZbb+Wmm27iiSee4L777ttT49pvsCeq9jtbIrbVxujOWqSiRmWJOLcxwS1PruadzixNSZPmVKTSeJOKGvRkS7y9fZD/++JmPvOe8XXIfV/w8J838/LGPvrzdjjL30tQkYJsrueTCBQuFQQ5eyLH+iFOvhZw9G1XkIpJX+SunEXBlkJ7QsjzawooaLzTmWf7QEmmehSY15RgS3+R9T15HNcfY+iSKbl0ZS1Kri+DpiO7ZQ1dxRVSr7+pxqRge+RLDq1r3wLAsmya6moYLDp4QlAXNUlGdNZ25njg+U0kIhoLW1IjJjRHTU/TPljirW2ZIKiObByrdna+p4zRJ3qmF09LjXl55S2Xjd15Xt7UT9zUaUgOiTfu6RXG3sIeeT1pmsZ5553HeeedtydOt99gT/GCd6UI1Z4psbmvgB7QMoc/MCXHp+D65Iouv35jO2u7MsyqT3DGwkaZ84/opKKSAfTnDb0BPz/M4u8tuJ6giBeIpflkgg5oERRqJ+qVkAquMkdflsXozpakUqUmu6kJ9rE9QUuNWemgjZkaJdujc7CI50+8orA9mcKJGlKt03KlK5xlufi+NAoSwsf1fexhPguJqIHlCzRVrdQSyno6K7cPcvLc+jETGlVVWdpWw6ubB3hj2yDzmpK73bC1u8boEz3Tb24b4Pdvd1ATMzh2Zu2InoWT5tTx/9b28NKmPk6b10A8ou/xprO9iQNnTbKXsStV+4mWjJMpQpmaSqboVJpXsiWnwo02NGXEvh2ZEiXHw/E8HM/nza2DrHi3n8df2UoqZlAfN5nVECcdM+jMlAjLtnsXHlJP3/M9isIbkmcWYOgKwhVjVl1lE/uIoaEiKNiCTNHBFxDRwXIDgbZyt64Q9OYtVEXBdn0s16cmouH4alCEHQl9WD3BE1CwfQzNAxR6siVywT0o00gO9QmzEtxBNof1BoyyVHQobGiqguNJejFQ6QS2PR9TU2lNR5lZH2dOY4KBgrPLs/PhGK8JcTyMfh6n1UQnfKZbawRvbB1E18YG74ZklBNn17G6I8v2gRK6puz2d9iXCIP+BKi2ar+jNNDcxuQOi1DvdOZAgZ/8ZTOW5xPVNRqTEcrMSscTRHRp3tKXtyg5Hrbr4frDjc0VXN8nG+jzb+iWy/e87SHwQ938fYDxZvS2KzB1hdKoqbgaCPEoAoquP+LYkjss5x/cOr4Pg0VXGrQH3bs520ObwL5zdAFZAJmiS8RQsV252pyWjuL6gnd7C/QVbAaHeUX05ixi6QjzmhIj7t8yLbUvb2E5Pu2DRQaKDq7no2sqCVOjLmHy6dPmoCrKXutmHe95bExG2NAjmUujn2nHF5i6pEpnS26lK7mMabUxSo7P+SfOpDUdPXQ6cg8lVJOSmUwaaKIi1DudObYPFqlPmAigMRFBU2FzX55sycH1BdmSg5kwsYOOXM/3A7/UwLu3rL+LXL73523ylkcyogEC2w3n+vsLfORLXFdHdd76chUgi4eyKWs8Xf7hL+/RHb2uJ/An+Jceb6sPOK5PY8qkMRlF1xRKjsv0WiklvrYrV9nX1DSOmpGuSDODfBG8vnUQ1xeseLcf15fS4801UeoSJo7rs3WgKNNHjj/GIGiqMNHz+Hb7IJt7CzSnImNW3KYmC9qW641Ia5VRtD2iAWPpQKFmToTQOWMCDE/JjIdy1T5uaJUl4/wmyaLoL9gIAfObEpUuyLLx89K2NAMFh009efrzNgVHarNkiw5vbRvkpU19rO7I0ZiMkI6ZRANlzM6MRd6RQlslx0dBkXIMpo7l+tieqMzmHB8cz6cnb48w2A6xf8ATIwM+yGDuur4M+JoyNKVn7H7DyzP+sBl8WU11MtCD+kJNzCAdNbBcj5Lj01wT5ZR5Dbx/cRMzhvk/H3tYHb15J5iI+Gzpy/P/1nZTcjyOnlGLFqSZXCHozUld/pzl0pQ0qYkZ/GFV5255Nvi+qHQRb+krTHiu0WnZVNRAUxVSUYP5TUlcX7CmM8toceFUVCcV0bFdgTFq9l4u2O7IROZAQjjTnwCT5QULYH13jpih8td3B+gv2JWlbV3cZFo6UkkDjS5Cvb09w/effgcERE3ZNj/cU3RBc4KIoVIXN1i5PUtvroQTaPSkohq2K/B9GfBhiOutQCXYVxMIQux9KMGP9GGWtQDbF2hUZ8qiIl8Ayk4OUpF5+HRMp+B4pOMGR86oJWKUtZzkve76Prqi4NY3oKsKnzrlMJ7cKKW7OwaLbOqVNMaT5tRhaBrre3JoqoLl+hQcD5GTQXd+cxJDU3ergakaBt2O0rI1MYNp6SjtAyUyRYd0fKTrXTxwpevIWKiBmN2BXLCdCGHQnwCT5QUXHY+enEVv3sZyPJJRAyOqV4J3puTQkDArzJxyEcr3BY+8tJmS4zGjLlYphEV0peIpum2gREPC4NPvmUPC1FnfneOnL2/hpY19qApYrjtixlim/fkMLeHK971K2Ji1v0FBumY1pUw6sxa5krQWRMhicDkFNFpiuey4Vd5malKWuRz0VTHxv7WqQjKqVwzQhZDF48bkSB/pou2hJJO0v7NZFmJ9wbk1KTb05OnOWjz1difTa2PUxGQDlqYqzKiL43h+xRBoUUuKdNzE9f0dNjDtqA+mWgbdjtKyiqKwsDVFd85iXXeOhS2pEc/0rIY471/czOr27G5RQvd3hEF/B5gML/jd3jw9OWkJ11ITqcwuysG7MyOtCWPGSLPpbQNF2gdLJCK6zIUOS7QpikIyqtOTs6iNGaQikr9/WEMC34cX1veQLQeIUShvK8vyOl4wm9xJMAix96GpctYdNw1qYz7ZkleZ+SuKNM3xxcgifNn0RtdUBNJBLRXRGCjK7u6dMXPjpkxj1MQMfCEYKDgTpjOWtqXxheD3b3fw1419dGctLM/HcvxK0xUYmJqKrqo4vk/E0DB0lf6CXekR2FED084IENUy6HbGlIsZsp9gbmOCnpw97jP9vkXNB4WE8kQIg/5OsDNesPxfESjaj4chK8LhyNsuqiK7G3tyFmZCHbEc1QMt9rbaWCWP6PuCn7z8Ljlr/IA//qcHdMCA5jHa1zXEvkPC0BDIgqjlupXmLBgq2Eb0IaE2FemPYLk+vXmbpmSURa1JenI2qzqyWK4z4vzjre5s18P2NFpqItiBE1xHpoSqKkQNje6sRftgEVPX6MmVuP7Xb7O2M4vrCUm/rIvhKjBQtFnxbj8nzamnNmYSN+Wx9QmZMtEDPv+OGph2Nos/e2lr1bo3k0nLHjerjs+fPpf2YPUx+pmeLCX0QEUY9HcDvi/Y0JOXrkWeT2/OIhVo5jieT67kkozqNCQiFEbp3SdMnZihEauNkrdd+vI2yaheObY/bxMzND6wpLlyMz761838vzU9k6JfqsqQiBfINILt+rhVvDBCTC1Knk9SV8nbMh2iqfJl7wsQvsD3pc9xRZoBeKcrj6mrRHWZfzc0FV8I/FGME0NVUFWk+Y4Yqh14vqA/b/H8+l7a0jEuOXU22ZLLq1v6K8Jrmio1gzo7+rjpnmvwheCrn7+FTT15NnTnSEV1fF+uVl/a2Ed9wqS/YDNYdOjLWxiaxmENcUDaJI6XD59MH8zTqzqr1r2ZbFpW19WDOrDvCGHQ3wl21LK9uj3LG9sG6BiUMyUFGCw66KqCpqo010RprYkAypil7fAZydEz0mzoltzovCVXABFd4z0LGjl1XiMgmR3/54V3Ky5MwwW6RsPQpMuS6w+nZykVTZaCHQb+fYnyjN4LzHMAXN8nbmigKFiBo5qmKliOj6JIik46ptOcilCwfVwhZ/sdgyUsT7JmaiKyLwNAUUTA8JJMHdcPCsVBwUd4Ph2DJX7+ylb+7rjpJCLy3K01Ubb0FejIWDiWw1HrXwNgsGAh1IjsCRDQmDTZ3F9gXZdkmrWkIxiaSlfGwvZ8urIltvQXOW5W3bj58Mn0wWwbKIKgamXNPSXXcLAiDPo7wETLzz9v6OXx17YxLR1lflOSwYJDx2ARTVXRNYUFLSmakpEd6t0Pn5H05m0WtSbxfCqKmzNq41ywbFZldvTKln629g+Jpu0saPsoGBromkLe9skEkrsKyhgD7hB7H6YhO2cLtoemQUTTSMcNBoOGqcaESdbysF0fJejkba2Jko6bpGM+XVmL/oJNVFepjeoULAc3SOirQXB3ERiagipARaArMt0Tj+iYwYpyW3+BHzy7nvnNSY6bVUe25DJYkmqvmjKULnI8iEV1PCEoOT6NSY2kqWE5PpbrUbA8dE1lSWuqUo9qTkX43GlzME1tzPefTB9MmfPfPliqWllzd+UaDmaEPP0JMBHfNxnRZedrSXYdpqI6C1qSpGIGIB+I7qzFeHr3o7nGw7n7g0W30la/bE4Dn37PSFbCW9sHKY0md0+AmK4ysz7G9LpY4Lkrg4CpKcQMNezO3cdQFKl46Qez5qimUZ8w8XyY05hgblMSFFWuyIRA1xRq45LvXrRd2gctBvIO2ZJLT85m+2BJBnlfsnEcf4jLLwkEspHPF6BpcsVnaLKGlIoZDBYdBoo2II1ZXM+XVN8RnWDSo1kIgS982RXuSVevVNTgiLY0S1prEMCW/iL9BYc/vdPDbU+tGddZKm5I/f9t/QUyRWcMb77cDLX88GbqEybvdOUqPQLZkjNh2mg4hjt4zawfK0h4qGK/mOnfddddfOtb36Kjo4Ojjz6aO+64g5NOOmnC/X/2s5/x1a9+lU2bNrFgwQJuueUWzjnnnD06pomWn9mSS39B0jD7C/LBq09EOGZmLeu78nRmS2ztL1AbMzh6Zm1lObkjlsI/vXfeDmck67qyvLiud9JjT5g6nifozlnYniCiySBgu75c64dBf59BAVIRaXdYdDyEgCOmpzl7aSuvvDuA5fpMS0u9+2zJwfN9klGdllSEkiN1lxxPoGlDgd3xhnL/WmCg7gVFANv1cbwh2ie+oGC5UuNHUdCDtGSuKOUHTE3FE4KtA0XU/JB0d6bo4uCgKgqKQqD95JOO6UR0BU/I+lbRdklGDRIRjd6cxdvtmTHevOu6sjz5Zgdb+or05S3SMYOGRIR5zQnqE5ERs/hT5zXSmo6GqZo9iH0e9B999FGuvvpq7r77bpYtW8btt9/OWWedxZo1a2hubh6z/wsvvMAnPvEJbrrpJj784Q/z8MMPc9555/HKK6+wdOnSPTauiZaf5ZlQOm6QKTqVlu36RIS62SYDBYeNvXk+sWwWZyxoqmh076paZ3nFoSkK9XGDjqy9w3ErQNTU6MvbWI4014hHdGoDGzzH82WBL0zv7HWoBJIZwfs8qmvMrI+RjpnkLY/L3z+Pp1Z2sb47R95y0VWFuKnTmIwQNTS2D8iAHzNkYbL87h6aHyhDuXykXWKZ+SNfCAqGpuD6YAcpHF2VtQMnUNVUgILlkbNcaoeNXSCLwr4q0FSF3rwtG5gMDU1V2T5QpGi71CdMFEXBcj2ihs78piSdWatCrdzQk6s8C4tbk6zphFzJZdtAgcGSzaKWFEXHHzGLD1M1exb7PL3zne98h0svvZRPf/rTHH744dx9993E4/EJtfm/973vcfbZZ/OlL32JJUuWcP3113Pcccdx55137tFxTSTDYAbm5ZLloI5QIlQUBT0wmZjXlKykdCZqC1/QnKzINEzUVl5ecbTVxVg8rYZxRABHIKIr9BYcHE8KSKVj8r3ueIIFzUlqYwaGvs//2Q8ZDO+SjhoKjUGxNBmRgeuoGbW01UrqYczQ+af3zuOqv1nIl85ezIePbqMhGcEJVDSLQYEXZKqlfG4tsFZUVTA0LdBiGhpDWdVBUyWvvyzMIYQsJJfZOLoC67vzRAyVmKGOYJwpQT1ACIgG3bsJUyNrucRNjYIlZ/iKIoUBcyX5Aih3wa7ryrG1vzDiWZhZn+C4WXW01caIGRq9OZs1HVmWtqXHTITCVM2ewz59+m3bZsWKFSxfvryyTVVVli9fzosvvjjuMS+++OKI/QHOOuusCfe3LItMJjPiZzIos2vaB0sj8o2pqE5d3KA3b1dciMoYT6OjGrXO8TC04tCZ05hkWjpKNPBbHQ5dhZm1UZprotREdNpqYyQiGlogJFV0PBxPkIwaFSOOEFMLBdktm4yogTCegqnLXPr0ujjHzKqlPhEhZmpYrid7N4Lgdvi0NB8/cSaLWlPYnqArW8LxZI5fKqcqRAw5Sx++apMBW5OOWBrUxw1mNcQxVOmI5fqSmx83pSa8rilMS8doromysbdAV7ZEXVA/8H1BwYhQMCLoqmSFRQ2NaTVRWmoieL4gZsoCa8n10VSwXI++vB34PktFzvL329CTH/Ms1CdMTpxdxynzGjl5bgMz6uJ8+OhpYdpmCrFP0zs9PT14nkdLS8uI7S0tLaxevXrcYzo6Osbdv6OjY9z9b7rpJr7+9a9XPbYd8X11VRqb6JpKLjCwmEijY1cMVIZjZIehzqz6BBFdw9AVsiUp1iaDi4KhaSSjOjnLoS5uUnJ88rZLVJdNMp4QgbF22KE7VSjn1X0hhdMiukoioqMqHsfMrGVmfXyExg3smHp45fIFPPyXzfxpbTcDBQfP94iZGrMbYtiuz7u9+YCKKQJ+v5yYuL6g5Hg0piKcOreBLQMFXt08QMmR8suqAqgqiYjG4mk1vH9xM39a28P6rhxKkBrSUkn+1y1PYuoa0zyfbMklU3QoOLLIWp8wuWDZLLb1l/jdW+305iyihk5zTZR5TYmKImf5+wHjPguKolATM4hHNDb15CmO6mkJsWexz3P6U41rr72Wq6++uvJ7JpNh5syZkzp2Ir7vKfMaWNSampRGx2QMVHbksTmcz7+gOcm85gRZy6FoezQmTXIlGQR6cxaxiMrcxgSrOrI4vsyL2gEtsNxH4HhSsE3XZBGvYE8kxnvgoZwzn8g1qlqU5RCE2HHtWwka4coZOkVRSEc05jTJlVnOcvF9QdzUaAhy3mVMhnr4lQ8dzuaT89z5zHo29eY4YloN6bhJX96ir2CTKzroKtREZEHU9nziAVsnFZWSC0vjtUyrifL29ix9BRvH81BQOHF2Ax87YQbzm1MsaE7SnikSNzQ0VeGtbYNETb0yUYjqGlFDY+n0NKYmKafvX9zCtJooIHi7PcP8piQ1MaPyHYd/vzmNid16FkLsGezTq9vY2IimaXR2do7Y3tnZSWtr67jHtLa2VrV/JBIhEomM+7fJYEdFpMlodExWrXMiydbxVhxHTk+zpiNL+6B08ZldE6cuUAycURejM2PRlZWrjpZUhG2DRWlgYbkUHZ/FrSlylkdPzsbQfAaL7oRBrRqlx92FHryMbFegqhDRFArO+NLQMkeu4nl+pedAUWRNQ/PBqlJaVEG+NARDukXJiCZXcyWn8hmGJrXvy8YlCpCOauiqSsn1URWFurhkbjUkTDoyFjPq4hXz8F0x9VZVhdlNSf7xvXO5//lNdOVsNE0lHTc5cnoNL2/sDzT6JYumNm4QNzVipkvcGHrEG5JR3rMgQqbosK47x+FtNXzpg4vQg6A+oy7OUdNreWv7IPObEmwbKNGdLWEG0go5y6WlJsqsutiI/hNVVTj/xJnc//wmOrMTK1TOrIvv1rMQYs9AEaMJsnsZy5Yt46STTuKOO+4AwPd9Zs2axRVXXME111wzZv+Pf/zjFAoFnnjiicq2U089laOOOoq77757p5+XyWRIp9MMDg5SU1Oz577IDjCavTP6gZiM1+5wyqflSmu7ppoIJ8yuZ0lrDUXH5cEX3pX5VENlTWeWXMkFFJJRjRm1MfK2R0MywuXvm8eWviLff/odurMWni8o2K700RUyyNRGDWoTBiVHcrJzlocS6K/jS0qfN6pYKAi44IoMmJ6Q5hllpciJoCrQlDQ4ekYdvQUbTVGYVR/H9XzWd+fZ0l/Acj0cV3oGlIN7RNcQAkxDY1Z9jOZUFMv1yBYdNvcXKVgenvCxHX/M7L9SYFVkcT5qqMN06WXuXQhpTFKwXTRVFsUNXaVoOWQt+RZIRIKiZkSnPmGiayoRvfyjMb85OS5t13K9MX+f7L00+hy1MYOs5dKXt/AF1MYMFrSkWNQ60uh7Mvfd8Hs1JRw+dvNVuL7g3z/5NcxUfAS7ZvTxk/l+e+JZCDEW1cS1fR70H330US6++GL+4z/+g5NOOonbb7+dn/70p6xevZqWlhY+9alPMX36dG666SZAUjbPPPNMbr75Zj70oQ/xyCOPcOONN06asrkvgj5M7oHYGXYkQTv6M3pyFj05C1BoTJo0JiNjPm9tZ4bH/rqN9d05PN/H1FXaamO8f3EzhzUkKDoeMUNDAVZ3ZoeUFl2PwYLLlv48fYFRixIUKVtqIsyqj6NrsthcsD3SMYPDGmIsaE3RnbHZ2JXlre0ZMiVHskciOs3p2Igxzm0cWl1FdJWuTImV7Rle3tjHO505BkuSM96QMDl5bgMXLJs14pjurMVrmwf488ZetvYXyVsuBUvWQFRFIRnRZB7Z1EhGDKKGZGJNr4vzgSXNnHRYPa9tG6A3b1O0Pbb1F9jQnWeg6KAqMLcpyekLGmlMRaTGUmBGP60mOqGQ12T+DXf1PgDGPe+u3HflY7Zs6ebmS04F4KO3PEmyoXbc+6iae3T0fbqrz0KIkTiggj7AnXfeWWnOOuaYY/j+97/PsmXLAHjve9/L7NmzeeCBByr7/+xnP+MrX/lKpTnr1ltvnXRz1r4K+rBnHvhqPiMeqDgWHW/Cz6tmTOMZTW8ZKPDXTf2UHI+FLUmOn1WPqio7PGe1Yxw9hi39BTb25AGY25hgRt34FL7y52Qth1zJJWHo5GyHvO2hKgpzGhNMT8d2GKR35Trtb9iVsfu+YPu2HmbMkr0yW97tJG/uOW/YA/l67o844IL+3sS+DPohQhxQyOchmZT/nctBIrFvxxNiQlQT10K6dogQIUIcQgiDfogQIUIcQgiDfogQIUIcQjjkuiDKJYzJyjGECHHIIp8f+u9MBrywU3Z/RTmeTaZEe8gF/WxWantPtis3RIgQQFvbvh5BiEkgm82STqd3uM8hx97xfZ/t27eTSqXGCKDtCGX5hi1btoSsH8LrMRrh9RiJ8HqMxFRfDyEE2WyWtrY2VHXHWftDbqavqiozZszY5eNramrCm3gYwusxEuH1GInweozEVF6Pnc3wywgLuSFChAhxCCEM+iFChAhxCCEM+pNEJBLhuuuu2y3FzoMJ4fUYifB6jER4PUZif7oeh1whN0SIECEOZYQz/RAhQoQ4hBAG/RAhQoQ4hBAG/RAhQoQ4hBAG/RAhQoQ4hBAG/WG46667mD17NtFolGXLlvHSSy/tcP+f/exnLF68mGg0ypFHHslvf/vbvTTSvYNqrsePfvQjTj/9dOrq6qirq2P58uU7vX4HGqq9P8p45JFHUBSF8847b2oHuJdR7fUYGBjg8ssvZ9q0aUQiERYuXHhQPTPVXo/bb7+dRYsWEYvFmDlzJldddRWlUmnqBypCCCGEeOSRR4RpmuK+++4TK1euFJdeeqmora0VnZ2d4+7//PPPC03TxK233irefvtt8ZWvfEUYhiHefPPNvTzyqUG11+OCCy4Qd911l3j11VfFqlWrxCWXXCLS6bTYunXrXh751KDa61HGxo0bxfTp08Xpp58u/vZv/3bvDHYvoNrrYVmWOOGEE8Q555wjnnvuObFx40bx7LPPitdee20vj3xqUO31eOihh0QkEhEPPfSQ2Lhxo/jv//5vMW3aNHHVVVdN+VjDoB/gpJNOEpdffnnld8/zRFtbm7jpppvG3f/8888XH/rQh0ZsW7ZsmfiHf/iHKR3n3kK112M0XNcVqVRKPPjgg1M1xL2KXbkeruuKU089Vdxzzz3i4osvPqiCfrXX44c//KGYO3eusG17bw1xr6La63H55ZeL97///SO2XX311eK0006b0nEKIUSY3gFs22bFihUsX768sk1VVZYvX86LL7447jEvvvjiiP0BzjrrrAn3P5CwK9djNAqFAo7jUF9fP1XD3GvY1evxjW98g+bmZj772c/ujWHuNezK9fiv//ovTjnlFC6//HJaWlpYunQpN954I95BINe8K9fj1FNPZcWKFZUU0IYNG/jtb387aa/v3cEhJ7g2Hnp6evA8j5aWlhHbW1paWL169bjHdHR0jLt/R0fHlI1zb2FXrsdo/Ou//ittbW1jXowHInblejz33HPce++9vPbaa3thhHsXu3I9NmzYwB//+EcuvPBCfvvb37Ju3Touu+wyHMfhuuuu2xvDnjLsyvW44IIL6Onp4T3veQ9CCFzX5R//8R/5t3/7tykfbzjTD7HHcfPNN/PII4/w+OOPE41G9/Vw9jqy2SwXXXQRP/rRj2hsbNzXw9kv4Ps+zc3N/Od//ifHH388H//4x/nyl7/M3Xffva+Htk/w7LPPcuONN/KDH/yAV155hV/84hf85je/4frrr5/yzw5n+kBjYyOaptHZ2Tlie2dnJ62treMe09raWtX+BxJ25XqUcdttt3HzzTfzhz/8gaOOOmoqh7nXUO31WL9+PZs2beLcc8+tbPN9HwBd11mzZg3z5s2b2kFPIXbl/pg2bRqGYaBpWmXbkiVL6OjowLZtTNOc0jFPJXblenz1q1/loosu4nOf+xwARx55JPl8ns9//vN8+ctf3qkm/u4gnOkDpmly/PHH8/TTT1e2+b7P008/zSmnnDLuMaeccsqI/QGeeuqpCfc/kLAr1wPg1ltv5frrr+fJJ5/khBNO2BtD3Suo9nosXryYN998k9dee63y85GPfIT3ve99vPbaawe8a9uu3B+nnXYa69atq7z8ANauXcu0adMO6IAPu3Y9CoXCmMBefiGKqZZDm/JS8QGCRx55REQiEfHAAw+It99+W3z+858XtbW1oqOjQwghxEUXXSSuueaayv7PP/+80HVd3HbbbWLVqlXiuuuuO+gom9Vcj5tvvlmYpikee+wx0d7eXvnJZrP76ivsUVR7PUbjYGPvVHs9Nm/eLFKplLjiiivEmjVrxK9//WvR3NwsvvnNb+6rr7BHUe31uO6660QqlRI/+clPxIYNG8Tvf/97MW/ePHH++edP+VjDoD8Md9xxh5g1a5YwTVOcdNJJ4s9//nPlb2eeeaa4+OKLR+z/05/+VCxcuFCYpimOOOII8Zvf/GYvj3hqUc31OOywwwQw5ue6667b+wOfIlR7fwzHwRb0haj+erzwwgti2bJlIhKJiLlz54obbrhBuK67l0c9dajmejiOI772ta+JefPmiWg0KmbOnCkuu+wy0d/fP+XjDKWVQ4QIEeIQQpjTDxEiRIhDCGHQDxEiRIhDCGHQDxEiRIhDCGHQDxEiRIhDCGHQDxEiRIhDCGHQDxEiRIhDCGHQDxEiRIhDCGHQDxEiRIhDCGHQD7Ff4r3vfS9XXnnlvh5GiBAHHcKgH+KgwSWXXIKiKNx8880jtv/yl79EUZTK788++yyKonDEEUeMMfGora3lgQce2Olnbd26FdM0Wbp06bh/VxSl8pNIJFiwYAGXXHIJK1as2Om5X3/9dT7ykY/Q3NxMNBpl9uzZfPzjH6erq2unx4YIsTOEQT/EQYVoNMott9xCf3//TvfdsGEDP/7xj3fpcx544AHOP/98MpkMf/nLX8bd5/7776e9vZ2VK1dy1113kcvlWLZs2Q4/s7u7mw984APU19fz3//936xatYr777+ftrY28vn8Lo11MnAcZ8rOHWL/Qhj0QxwQ+M1vfkM6neahhx7a4X7Lly+ntbWVm266aafn/Od//meuu+46LMuqaixCCO6//34uuugiLrjgAu69995x96utraW1tZXZs2fzwQ9+kMcee4wLL7yQK664YsKX0vPPP8/g4CD33HMPxx57LHPmzOF973sf3/3ud5kzZ05lv5UrV/LhD3+YmpoaUqkUp59+OuvXrwekrO83vvENZsyYQSQS4ZhjjuHJJ5+sHLtp0yYUReHRRx/lzDPPJBqNVq7rPffcw5IlS4hGoyxevJgf/OAHVV2bEPs/wqAfYr/Hww8/zCc+8QkeeughLrzwwh3uq2kaN954I3fccQdbt27d4b5XXnklrutyxx13VDWeZ555hkKhwPLly/nkJz/JI488MulZ+FVXXUU2m+Wpp54a9++tra24rsvjjz8+oa76tm3bOOOMM4hEIvzxj39kxYoVfOYzn8F1XQC+973v8e1vf5vbbruNN954g7POOouPfOQjvPPOOyPOc8011/DFL36RVatWcdZZZ/HQQw/x7//+79xwww2sWrWKG2+8ka9+9as8+OCDVVydEPs9plzHM0SIXcCZZ54pvvjFL4o777xTpNNp8eyzz+70mOHyxSeffLL4zGc+I4QQ4vHHHxfDb/VnnnlGAKK/v1/cfffdor6+XgwMDAghhEin0+L+++/f4edccMEF4sorr6z8fvTRR485BhCPP/74mGOLxaIAxC233DLh+f/t3/5N6Lou6uvrxdlnny1uvfXWii67EEJce+21Ys6cOcK27XGPb2trEzfccMOIbSeeeKK47LLLhBBCbNy4UQDi9ttvH7HPvHnzxMMPPzxi2/XXXy9OOeWUCcca4sBDONMPsd/iscce46qrruKpp57izDPPrGz/05/+RDKZrPyMl/K55ZZbePDBB1m1atUOP+Ozn/0sDQ0N3HLLLZMa08DAAL/4xS/45Cc/Wdn2yU9+csIUz2iIYPY+vLA8GjfccAMdHR3cfffdHHHEEdx9990VNy6A1157jdNPPx3DMMYcm8lk2L59O6eddtqI7aeddtqYazHc3Syfz7N+/Xo++9nPjri23/zmNytpoxAHB0KP3BD7LY499lheeeUV7rvvPk444YRKoDzhhBN47bXXKvu1tLSMOfaMM87grLPO4tprr+WSSy6Z8DN0XeeGG27gkksu4YorrtjpmB5++GFKpRLLli2rbBNC4Ps+a9euZeHChTs8vhx4h+fnx0NDQwMf+9jH+NjHPsaNN97Isccey2233caDDz5ILBbb6Tgng0QiUfnvXC4HwI9+9KMR3w0Y4Wsb4sBHONMPsd9i3rx5PPPMM/zqV7/in//5nyvbY7EY8+fPr/ykUqlxj7/55pt54oknePHFF3f4OR/72Mc44ogj+PrXv77TMd177738y7/8ywj/29dff53TTz+d++67b6fH33777dTU1LB8+fKd7luGaZrMmzevUjc46qij+NOf/jQu46ampoa2tjaef/75Eduff/55Dj/88Ak/o6Wlhba2NjZs2DDi2s6fP3+nL6gQBxj2dX4pRIjxUM7pCyHE6tWrRWtra+X3iTCeJeFFF10kotHohDn9Mp5++mmh67rQdX3CnP6rr74qALFq1aoxf/vBD34gWltbheM4QgiZ07///vtFe3u72LRpk/j9738v/u7v/k5omiYeeuihCb/DE088IS688ELxxBNPiDVr1ojVq1eLb33rW0LTNPHjH/9YCCFET0+PaGhoEB/96EfFyy+/LNauXSt+/OMfi9WrVwshhPjud78rampqxCOPPCJWr14t/vVf/1UYhiHWrl0rhBjK6b/66qsjPvtHP/qRiMVi4nvf+55Ys2aNeOONN8R9990nvv3tb0843hAHHsKgH2K/xPCgL4QQb7/9tmhubhZXX331hMeMF/Q3btwoTNPcadAXQogPfvCDlWA9Hq644gpx+OGHj/u39vZ2oaqq+NWvfiWEECN8gqPRqJg3b564+OKLxYoVKyb+0kKI9evXi0svvVQsXLhQxGIxUVtbK0488cQxY3r99dfFBz/4QRGPx0UqlRKnn366WL9+vRBCCM/zxNe+9jUxffp0YRiGOProo8Xvfve7EddkvKAvhBAPPfSQOOaYY4RpmqKurk6cccYZ4he/+MUOxxziwELokRsiRIgQhxDCnH6IECFCHEIIg36IECFCHEIIg36IECFCHEIIg36IECFCHEIIg36IECFCHEIIg36IECFCHEIIg36IECFCHEIIg36IECFCHEIIg36IECFCHEIIg36IECFCHEIIg36IECFCHEL4/wG7t9Te+2WS8AAAAABJRU5ErkJggg==", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA1cAAAIjCAYAAADvBuGTAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAAgitJREFUeJzt3Xl4U2Xax/FfmjZN27SpCF2t7DsVFAYGQUCsFFDcFVwB13FDrcvozCvgiruoMOIogs6o4K6jyCrggI6oiAqiQxFk6QbWbumSpjnvH50GQgs0kDRp+/1c17k4OXlycp+c0PY+z3Pux2QYhiEAAAAAwFEJC3YAAAAAANASkFwBAAAAgB+QXAEAAACAH5BcAQAAAIAfkFwBAAAAgB+QXAEAAACAH5BcAQAAAIAfkFwBAAAAgB+QXAEAAACAH5BcAUAAdOjQQZMmTfI8XrVqlUwmk1atWuW39zCZTJo+fbrf9ofAqvsOvP3228EOBQAQICRXAFqc+fPny2QyeRar1apu3brppptuUn5+frDD88miRYtCLoGaPn261+d74JKXlxfsEFukus89MTFR5eXl9Z7v0KGDzjzzTK9tdefkySefrNe+7v/J119/3egYFi1aJJPJpJSUFLnd7gbbdOjQwfO+YWFhio+PV3p6uq699lp9+eWXjX4vt9utV199VYMGDVKbNm0UGxurbt266YorrtB//vOfRu8HAJpSeLADAIBAuf/++9WxY0dVVlZqzZo1ev7557Vo0SJt3LhR0dHRTRrLsGHDVFFRIYvF4tPrFi1apNmzZzeYYFVUVCg8PHg/xp9//nnZbLZ62+Pj45s+mFakoKBAzz//vG6//fZGv+bxxx/X9ddff9Tf+9dee00dOnTQ9u3b9emnnyojI6PBdv369fPEV1paqs2bN+utt97Siy++qNtuu01PPfXUYd9rypQpmj17ts4++2xdeumlCg8P188//6xPPvlEnTp10h//+MejOhYACASSKwAt1pgxYzRgwABJ0tVXX61jjz1WTz31lD744ANdfPHFDb7G4XAoJibG77GEhYXJarX6dZ/+3p+vLrjgArVt29an11RWVspisSgsrP7AiaP97N1ut5xOZ9A/l0Dr16+fHn/8cd1www2KiopqVPsNGzZozpw5ysrKOuL3dTgc+uCDDzRjxgzNmzdPr7322kGTq9TUVF122WVe2x599FFdcsklevrpp9W1a1ddf/31B32v/Px8/e1vf9M111yjv//9717PzZw5U3v27Dni4/CVy+WS2+32+cIIgNaJYYEAWo2RI0dKkrZt2yZJmjRpkmw2m7Zu3aqxY8cqNjZWl156qaTaP9Rnzpyp3r17y2q1KjExUdddd51+//13r30ahqEHH3xQxx13nKKjo3Xqqadq06ZN9d77YPdcffnllxo7dqyOOeYYxcTE6IQTTtAzzzzjiW/27NmS5DXsrk5D91x9++23GjNmjOLi4mSz2XTaaafVG0JVNxxs7dq1ysrKUrt27RQTE6Nzzz3Xr3+01h3zggUL9H//939KTU1VdHS0SkpKDvnZOxwO3X777UpLS1NkZKS6d++uJ554QoZheO3fZDLppptu0muvvabevXsrMjJSixcvliQtWLBA/fv3V2xsrOLi4pSenu75XBtSXV2tNm3aaPLkyfWeKykpkdVq1R133OHZ9txzz6l3796Kjo7WMcccowEDBuj111/3+TOqqqrSmWeeKbvdrs8//7xRr5k6dary8/P1/PPPN6r9kCFDNHLkSD322GOqqKjwOcY67733nioqKnThhRdqwoQJevfdd1VZWdno10dFRekf//iH2rRpo4ceeqje+dzftm3bZBiGhgwZUu85k8mkhIQEr21FRUW67bbb1KFDB0VGRuq4447TFVdcob1793raFBQU6KqrrlJiYqKsVqv69u2rV155xWs/27dvl8lk0hNPPKGZM2eqc+fOioyM1I8//ihJ+umnn3TBBReoTZs2slqtGjBggD788EOvfVRXV+u+++5T165dZbVadeyxx2ro0KFatmxZoz8rAM0XPVcAWo2tW7dKko499ljPNpfLpczMTA0dOlRPPPGEZ9jUddddp/nz52vy5MmaMmWKtm3bplmzZunbb7/V2rVrFRERIan2D90HH3xQY8eO1dixY7V+/XqNGjVKTqfzsPEsW7ZMZ555ppKTk3XLLbcoKSlJmzdv1kcffaRbbrlF1113nXJycrRs2TL94x//OOz+Nm3apFNOOUVxcXG66667FBERoRdeeEEjRozQ6tWrNWjQIK/2N998s4455hhNmzZN27dv18yZM3XTTTdp4cKFjfo8CwsL620LDw+vNyzwgQcekMVi0R133KGqqipPD0BDn71hGDrrrLO0cuVKXXXVVerXr5+WLFmiO++8U7t379bTTz/tte9PP/1Ub775pm666Sa1bdtWHTp00LJly3TxxRfrtNNO06OPPipJ2rx5s9auXatbbrmlwWOJiIjQueeeq3fffVcvvPCCVy/F+++/r6qqKk2YMEGS9OKLL2rKlCm64IILdMstt6iyslLff/+9vvzyS11yySWN+uyk2mGdZ599tr7++mstX75cf/jDHxr1ulNOOcWTLF1//fWN6r2aPn26hg0bpueff/6Ie69ee+01nXrqqUpKStKECRN0991361//+pcuvPDCRu/DZrPp3HPP1dy5c/Xjjz+qd+/eDbZr3769JOmtt97ShRdeeMjhjGVlZTrllFO0efNmXXnllTrppJO0d+9effjhh9q1a5fatm2riooKjRgxQtnZ2brpppvUsWNHvfXWW5o0aZKKiorqfS/mzZunyspKXXvttYqMjFSbNm20adMmDRkyRKmpqbr77rsVExOjN998U+ecc47eeecdnXvuuZJqP+sZM2bo6quv1sCBA1VSUqKvv/5a69ev1+mnn97ozwpAM2UAQAszb948Q5KxfPlyY8+ePcbOnTuNBQsWGMcee6wRFRVl7Nq1yzAMw5g4caIhybj77ru9Xv/vf//bkGS89tprXtsXL17stb2goMCwWCzGGWecYbjdbk+7v/zlL4YkY+LEiZ5tK1euNCQZK1euNAzDMFwul9GxY0ejffv2xu+//+71Pvvv68YbbzQO9qNakjFt2jTP43POOcewWCzG1q1bPdtycnKM2NhYY9iwYfU+n4yMDK/3uu222wyz2WwUFRU1+H51pk2bZkhqcOnevXu9Y+7UqZNRXl7utY+Dffbvv/++Icl48MEHvbZfcMEFhslkMrKzs72OPywszNi0aZNX21tuucWIi4szXC7XIY/jQEuWLDEkGf/617+8to8dO9bo1KmT5/HZZ59t9O7d26d9G8a+z+Ott94ySktLjeHDhxtt27Y1vv3220a9vu5z37Nnj7F69WpDkvHUU095nm/fvr1xxhlneL1GknHjjTcahmEYp556qpGUlOQ5F3Xfg6+++uqw752fn2+Eh4cbL774omfbySefbJx99tn12jYUx/6efvppQ5LxwQcfHPI9r7jiCkOSccwxxxjnnnuu8cQTTxibN2+u127q1KmGJOPdd9+t91zd93vmzJmGJOOf//yn5zmn02kMHjzYsNlsRklJiWEYhrFt2zZDkhEXF2cUFBR47eu0004z0tPTjcrKSq/9n3zyyUbXrl092/r27XvI4wfQsjEsEECLlZGRoXbt2iktLU0TJkyQzWbTe++9p9TUVK92B9778dZbb8lut+v000/X3r17PUv//v1ls9m0cuVKSdLy5cvldDp18803ew3Xu/XWWw8b27fffqtt27bp1ltvrdfTs/++GqumpkZLly7VOeeco06dOnm2Jycn65JLLtGaNWtUUlLi9Zprr73W671OOeUU1dTU6Ndff23Ue77zzjtatmyZ1zJv3rx67SZOnHjQ3pUDP/tFixbJbDZrypQpXttvv/12GYahTz75xGv78OHD1atXL69t8fHxcjgcPg/DGjlypNq2bevVc/f7779r2bJlGj9+vNf+d+3apa+++sqn/dcpLi7WqFGj9NNPP2nVqlXq16+fz/sYNmyYTj31VJ+G+k2fPl15eXmaM2eOz++3YMEChYWF6fzzz/dsu/jii/XJJ5/UGyp7OHVFUEpLSw/Zbt68eZo1a5Y6duyo9957T3fccYd69uyp0047Tbt37/a0e+edd9S3b19Pz9H+6r7fixYtUlJSkte9lhEREZoyZYrKysq0evVqr9edf/75ateunedxYWGhPv30U1100UUqLS31/Ez47bfflJmZqS1btnhiio+P16ZNm7RlyxafPhcALQPJFYAWa/bs2Vq2bJlWrlypH3/8Ub/88osyMzO92oSHh+u4447z2rZlyxYVFxcrISFB7dq181rKyspUUFAgSZ4kpGvXrl6vb9eunY455phDxlY3RLFPnz5HdYx19uzZo/LycnXv3r3ecz179pTb7dbOnTu9th9//PFej+tibuwfy8OGDVNGRobXMnjw4HrtOnbs2ODrG/rsf/31V6WkpCg2NrbeMdQ9f7h933DDDerWrZvGjBmj4447TldeeaXnXqxDCQ8P1/nnn68PPvhAVVVVkqR3331X1dXVXsnVn//8Z9lsNg0cOFBdu3bVjTfeqLVr1x52/3VuvfVWffXVV1q+fHm9YXFOp1N5eXleS01NTYP78TVZOpKErM4///lPDRw4UL/99puys7OVnZ2tE088UU6nU2+99ZZP+yorK5Okeuf4QGFhYbrxxhv1zTffaO/evfrggw80ZswYffrpp54hmlLt/6XD/T/69ddf1bVr13qFVBr7vcrOzpZhGLr33nvr/UyYNm2aJHl+Ltx///0qKipSt27dlJ6erjvvvFPff//9IeMD0HKQXAFosQYOHKiMjAyNGDFCPXv2bLBCXWRkZL3tbrdbCQkJ9Xpl6pb777+/qQ4hoMxmc4PbjUMUGjgSB+u1auiz98e+ExIStGHDBn344Yee+7fGjBmjiRMnHnZ/EyZMUGlpqaeH7M0331SPHj3Ut29fT5uePXvq559/1oIFCzR06FC98847Gjp0qOeP7MM5++yzZRiGHnnkkXpzRX3++edKTk72Wg5MiusMGzZMI0aM8ClZmjZtmvLy8vTCCy80qr1Ue7Hhq6++0po1a9S1a1fPMnToUEm192L5YuPGjZKkLl26NPo1xx57rM466ywtWrRIw4cP15o1axrdw3okDvxe1Z2nO+6446A/F+qOZ9iwYdq6datefvll9enTRy+99JJOOukkvfTSSwGLF0DooKAFABygc+fOWr58uYYMGXLIYgF1N91v2bLFayjenj17Dtv707lzZ0m1f2gerJy11Pghgu3atVN0dLR+/vnnes/99NNPCgsLU1paWqP2FUzt27fX8uXLVVpa6tWz8dNPP3mebwyLxaJx48Zp3LhxcrvduuGGG/TCCy/o3nvvPeQf9cOGDVNycrIWLlyooUOH6tNPP9Vf//rXeu1iYmI0fvx4jR8/Xk6nU+edd54eeugh3XPPPYctBX/OOedo1KhRmjRpkmJjY72q/vXt27fecMakpKSD7mv69OkaMWJEo5Ol4cOHa8SIEXr00Uc1derURr3mtddeU0REhP7xj3/US8jXrFmjZ599Vjt27KjXE9qQsrIyvffee0pLS/P0GvlqwIABWr16tXJzc9W+fXt17tzZk7AdTPv27fX999/L7XZ7JfSN/V7V/f+OiIg45P/XOnWVJydPnqyysjINGzZM06dP19VXX33Y1wJo3ui5AoADXHTRRaqpqdEDDzxQ7zmXy6WioiJJtfd0RURE6LnnnvPq7Zk5c+Zh3+Okk05Sx44dNXPmTM/+6uy/r7p5nw5scyCz2axRo0bpgw8+0Pbt2z3b8/Pz9frrr2vo0KGKi4s7bFzBNnbsWNXU1GjWrFle259++mmZTCaNGTPmsPv47bffvB6HhYXphBNOkCTPcL+DCQsL0wUXXKB//etf+sc//iGXy+U1JLCh/VssFvXq1UuGYai6uvqw8UnSFVdcoWeffVZz5szRn//8Z8/2Y445pt5Qy0Mla/snS40ti143nPDA+aMO5rXXXtMpp5yi8ePH64ILLvBa7rzzTknSG2+8cdj9VFRU6PLLL1dhYaH++te/HvLCQV5enqf8+f6cTqdWrFihsLAwT5J8/vnn67vvvtN7771Xr33d/6WxY8cqLy/P6346l8ul5557TjabTcOHDz9k7AkJCZ4kNjc3t97z+09hcOD3w2azqUuXLof97gFoGei5AoADDB8+XNddd51mzJihDRs2aNSoUYqIiNCWLVv01ltv6ZlnntEFF1ygdu3a6Y477tCMGTN05plnauzYsfr222/1ySefHHZy3bCwMD3//PMaN26c+vXrp8mTJys5OVk//fSTNm3apCVLlkiS+vfvL0maMmWKMjMzZTabve432d+DDz6oZcuWaejQobrhhhsUHh6uF154QVVVVXrsscf8+yFJevvttz3FCfZ3+umnKzEx8Yj2OW7cOJ166qn661//qu3bt6tv375aunSpPvjgA916662eHr9Dufrqq1VYWKiRI0fquOOO06+//qrnnntO/fr1a1Rvyfjx4/Xcc89p2rRpSk9Pr/eaUaNGKSkpSUOGDFFiYqI2b96sWbNm6YwzzjjsfUT7u+mmm1RSUqK//vWvstvt+stf/tLo1+5v2rRpOvXUUxvdfvjw4Ro+fHi9Ig4N+fLLLz3lyxuSmpqqk046Sa+99ppXkrh7927985//lFTbW/Xjjz/qrbfeUl5enm6//XZdd911h3zfXbt2aeDAgRo5cqROO+00JSUlqaCgQG+88Ya+++473XrrrZ7/Y3feeafefvttXXjhhbryyivVv39/FRYW6sMPP9ScOXPUt29fXXvttXrhhRc0adIkffPNN+rQoYPefvttrV27VjNnzmzUeZs9e7aGDh2q9PR0XXPNNerUqZPy8/P1xRdfaNeuXfruu+8kSb169dKIESPUv39/tWnTRl9//bXefvvtg36GAFqY4BUqBIDAaGyJ6YkTJxoxMTEHff7vf/+70b9/fyMqKsqIjY010tPTjbvuusvIycnxtKmpqTHuu+8+Izk52YiKijJGjBhhbNy40Wjfvv0hS7HXWbNmjXH66acbsbGxRkxMjHHCCScYzz33nOd5l8tl3HzzzUa7du0Mk8nkVZZdB5RiNwzDWL9+vZGZmWnYbDYjOjraOPXUU43PP/+8UZ/PwWI80KFKse//+v1Ljx/oUJ99aWmpcdtttxkpKSlGRESE0bVrV+Pxxx/3Khtfd/x1Zcb39/bbbxujRo0yEhISDIvFYhx//PHGddddZ+Tm5h7yuOq43W4jLS2twZLwhmEYL7zwgjFs2DDj2GOPNSIjI43OnTsbd955p1FcXHzI/R7s87jrrrsMScasWbMO+fr9S7EfaPjw4YakQ5ZibyiWw/0/ufnmmw1JXuX9DzR9+nRDkvHdd98ZhlFbir1u3yaTyYiLizN69+5tXHPNNcaXX355yGOsU1JSYjzzzDNGZmamcdxxxxkRERFGbGysMXjwYOPFF1+s91347bffjJtuuslITU01LBaLcdxxxxkTJ0409u7d62mTn59vTJ482Wjbtq1hsViM9PR0Y968eV77qSvF/vjjjzcY19atW40rrrjCSEpKMiIiIozU1FTjzDPPNN5++21PmwcffNAYOHCgER8fb0RFRRk9evQwHnroIcPpdDbq2AE0bybD8POdywAAAADQCnHPFQAAAAD4AckVAAAAAPgByRUAAAAA+AHJFQAAAAD4AckVAAAAAPgByRUAAAAA+AGTCDfA7XYrJydHsbGxh5xBHgAAAEDLZhiGSktLlZKSorCwQ/dNkVw1ICcnR2lpacEOAwAAAECI2Llzp4477rhDtiG5akBsbKyk2g8wLi4uyNEAAAAA8KiulubNq12fPFmKiAjo25WUlCgtLc2TIxyKyTAMI6DRNEMlJSWy2+0qLi4muQIAAABCicMh2Wy162VlUkxMQN/Ol9yAghYAAAAA4AckVwAAAADgByRXAAAAAOAHFLQ4QoZhyOVyqaamJtihoBkwm80KDw+ntD8AAEALRnJ1BJxOp3Jzc1VeXh7sUNCMREdHKzk5WRaLJdihAAAAIABIrnzkdru1bds2mc1mpaSkyGKx0BuBQzIMQ06nU3v27NG2bdvUtWvXw05ABwAAgOaH5MpHTqdTbrdbaWlpio6ODnY4aCaioqIUERGhX3/9VU6nU1arNdghAQAANE+RkdJHH+1bDyEkV0eIngf4iu8MAACAH4SHS2ecEewoGsRfewAAAADgB/RcAQAAAGg+qqul116rXb/0UikiIrjx7IeeKzSZSZMm6Zxzzmny9x0xYoRuvfXWo9rH9OnT1a9fv0O2CdbxAQAAtCpOpzR5cu3idAY7Gi8kV63MF198IbPZrDMaGKe6fft2mUwmzxIbG6vevXvrxhtv1JYtWw66z/nz53u9rqFl+/btATwqAAAAIPhIrlqZuXPn6uabb9Znn32mnJycBtssX75cubm5+u677/Twww9r8+bN6tu3r1asWNFg+/Hjxys3N9ezDB48WNdcc43XtrS0tCOK1xliVyMAAACAgyG58ieH4+BLZWXj21ZUHL7tESgrK9PChQt1/fXX64wzztD8+fMbbHfssccqKSlJnTp10tlnn63ly5dr0KBBuuqqq1RTU1OvfVRUlJKSkjyLxWJRdHS01zaz2exp/8QTTyg5OVnHHnusbrzxRlVXV3ue69Chgx544AFdccUViouL07XXXitJWrNmjU455RRFRUUpLS1NU6ZMkWO/z+Fvf/ubunbtKqvVqsTERF1wwQVeMbrdbt11111q06aNkpKSNH36dK/nd+zYobPPPls2m01xcXG66KKLlJ+ff9DPsqamRllZWYqPj9exxx6ru+66S4ZhHLQ9AAD+4nYb2llYrp/ySrSzsFxuN79/gFBBcuVPNtvBl/PP926bkHDwtmPGeLft0KF+myPw5ptvqkePHurevbsuu+wyvfzyy41KCMLCwnTLLbfo119/1TfffHNE711n5cqV2rp1q1auXKlXXnlF8+fPr5fkPfHEE+rbt6++/fZb3Xvvvdq6datGjx6t888/X99//70WLlyoNWvW6KabbpIkff3115oyZYruv/9+/fzzz1q8eLGGDRvmtc9XXnlFMTEx+vLLL/XYY4/p/vvv17JlyyTVJl5nn322CgsLtXr1ai1btky//PKLxo8ff9DjePLJJzV//ny9/PLLWrNmjQoLC/Xee+8d1WcDAMDhZBeU6vlVW/X0sv/q2RVb9PSy/+r5VVuVXVAa7NAAiGqBrcrcuXN12WWXSZJGjx6t4uJirV69WiNGjDjsa3v06CGp9r6sgQMHHnEMxxxzjGbNmiWz2awePXrojDPO0IoVK3TNNdd42owcOVK333675/HVV1+tSy+91FOUomvXrnr22Wc1fPhwPf/889qxY4diYmJ05plnKjY2Vu3bt9eJJ57o9b4nnHCCpk2b5nn9rFmztGLFCp1++ulasWKFfvjhB23bts0zfPHVV19V79699dVXX+kPf/hDveOYOXOm7rnnHp133nmSpDlz5mjJkiVH/LkAAHA42QWlmrd2uwodTiXbrYq2RKnc6dLGnGLlFFdo8pAO6pIQG+wwgVaN5MqfysoO/tx+w+IkSQUFB2974GSzfigG8fPPP2vdunWe3pXw8HCNHz9ec+fObVRyVdfDZTKZjiqO3r17ew0RTE5O1g8//ODVZsCAAV6Pv/vuO33//fd6ra7k5v/icbvd2rZtm04//XS1b99enTp10ujRozV69Gide+65io6O9rQ/4YQTvPaZnJysgv+dg82bNystLc3rvrBevXopPj5emzdvrpdcFRcXKzc3V4MGDfJsCw8P14ABAxgaCAAICLfb0JKN+Sp0ONU1web5fRxrjZAtMlxbCsq0dFO+OrW1KSzs6H5XAzhyJFf+FBMT/LYHMXfuXLlcLqWkpHi2GYahyMhIzZo1S3a7/ZCv37x5sySpY8eORxVHxAHzEJhMJrndbq9tMQccb1lZma677jpNmTKl3v6OP/54WSwWrV+/XqtWrdLSpUs1depUTZ8+XV999ZXi4+Mb/b4AAISq3UUV2rqnTMl2a70LnSaTScl2q7ILyrS7qEJpbaIPsheghYiMlN58c996COGeq1bA5XLp1Vdf1ZNPPqkNGzZ4lu+++04pKSl64403Dvl6t9utZ599Vh07dqw33K4pnHTSSfrxxx/VpUuXeovFYpFU23OUkZGhxx57TN9//722b9+uTz/9tFH779mzp3bu3KmdO3d6tv34448qKipSr1696rW32+1KTk7Wl19+6dnmcrmO+n40AAAOxuF0qdJVo2hLw9fFoyxmVblq5HC6mjgyIAjCw6ULL6xdwkOrryi0okFAfPTRR/r999911VVX1euhOv/88zV37lz96U9/8mz77bfflJeXp/Lycm3cuFEzZ87UunXr9PHHH3sN6Wsqf/7zn/XHP/5RN910k66++mrFxMToxx9/1LJlyzRr1ix99NFH+uWXXzRs2DAdc8wxWrRokdxut7p3796o/WdkZCg9PV2XXnqpZs6cKZfLpRtuuEHDhw+vN0Sxzi233KJHHnlEXbt2VY8ePfTUU0+pqKjIj0cNAMA+MZZwWcPNKne6FGuNqPd8hbNGkeFmxRwk+QLQNOi5agXmzp2rjIyMBof+nX/++fr666/1/fffe7ZlZGQoOTlZ6enpuvvuu9WzZ099//33OvXUU5sybI8TTjhBq1ev1n//+1+dcsopOvHEEzV16lTPEMf4+Hi9++67GjlypHr27Kk5c+bojTfeUO/evRu1f5PJpA8++EDHHHOMhg0bpoyMDHXq1EkLFy486Gtuv/12XX755Zo4caIGDx6s2NhYnXvuuX45XgAADpQaH6XO7WzKLa6sd3+vYRjKLa5UlwSbUuOjghQh0IRcLumtt2oXV2j11poM7sCvp6SkRHa7XcXFxYqLi/N6rrKyUtu2bVPHjh1ltVqDFCGaI747AICjcWC1wCiLWRXOGuUWV6pNjIVqgWg9HI59UxOVlfmlPsGhHCo3OBA9VwAAAM1Al4RYTR7SQX1S7Coqr9b2vQ4VlVcrPdVOYgWECAbmAgAANBNdEmLVaYRNu4sq5HC6FGMJV2p8FOXXgRBBcgUAANCMhIWZKLcOhCiGBQIAAACAH5BcHSHqgMBXfGcAAABaNpIrH0VE1M4tUV5eHuRI0NzUfWfqvkMAAABoWbjnykdms1nx8fEqKCiQJEVHR8tk4iZSHJxhGCovL1dBQYHi4+ODMhEzAABAi2GxSPPm7VsPISRXRyApKUmSPAkW0Bjx8fGe7w4AAACOUESENGlSsKNoEMnVETCZTEpOTlZCQoKqq6uDHQ6agYiICHqsAAAAWjiSq6NgNpv5gxkAAABoSi6XtGRJ7XpmphQeOilN6EQCAAAAAIdTVSWdeWbtellZSCVXVAsEAAAAAD8guQIAAAAAPyC5AgAAAAA/ILkCAAAAAD8guQIAAAAAPwhqcvXZZ59p3LhxSklJkclk0vvvv3/I9pMmTZLJZKq39O7d29Nm+vTp9Z7v0aNHgI8EAAAAQGsX1LqFDodDffv21ZVXXqnzzjvvsO2feeYZPfLII57HLpdLffv21YUXXujVrnfv3lq+fLnncXgIlWcEAAAAcBQsFmnWrH3rISSoWceYMWM0ZsyYRre32+2y2+2ex++//75+//13TZ482atdeHi4kpKS/BYnAAAAgBARESHdeGOwo2hQs77nau7cucrIyFD79u29tm/ZskUpKSnq1KmTLr30Uu3YseOQ+6mqqlJJSYnXAgAAAAC+aLbJVU5Ojj755BNdffXVXtsHDRqk+fPna/HixXr++ee1bds2nXLKKSotLT3ovmbMmOHpFbPb7UpLSwt0+AAAAACORE2NtGpV7VJTE+xovJgMwzCCHYQkmUwmvffeezrnnHMa1X7GjBl68sknlZOTI8shxloWFRWpffv2euqpp3TVVVc12KaqqkpVVVWexyUlJUpLS1NxcbHi4uJ8Og4AAAAAAeRwSDZb7XpZmRQTE9C3Kykpkd1ub1Ru0CwrPRiGoZdfflmXX375IRMrSYqPj1e3bt2UnZ190DaRkZGKjIz0d5gAAAAAWpFmOSxw9erVys7OPmhP1P7Kysq0detWJScnN0FkAAAAAFqroCZXZWVl2rBhgzZs2CBJ2rZtmzZs2OApQHHPPffoiiuuqPe6uXPnatCgQerTp0+95+644w6tXr1a27dv1+eff65zzz1XZrNZF198cUCPBQAAAEDrFtRhgV9//bVOPfVUz+OsrCxJ0sSJEzV//nzl5ubWq/RXXFysd955R88880yD+9y1a5cuvvhi/fbbb2rXrp2GDh2q//znP2rXrl3gDgQAAABAqxcyBS1CiS83rQEAAABoQiFc0KJZ3nMFAAAAAKGmWVYLBAAAANBKRURIjz22bz2EkFwBAAAAaD4sFunOO4MdRYMYFggAAAAAfkDPFQAAAIDmo6ZGWr++dv2kkySzObjx7IfkCgAAAEDzUVkpDRxYu94E1QJ9wbBAAAAAAPADkisAAAAA8AOSKwAAAADwA5IrAAAAAPADkisAAAAA8AOSKwAAAADwA0qxAwAAAGg+IiKkadP2rYcQkisAAAAAzYfFIk2fHuwoGsSwQAAAAADwA3quAAAAADQfbre0eXPtes+eUljo9BeRXAEAAABoPioqpD59atfLyqSYmODGs5/QSfMAAAAAoBkjuQIAAAAAPyC5AgAAAAA/ILkCAAAAAD8guQIAAAAAPyC5AgAAAAA/oBQ7AAAAgOYjIkK644596yGE5AoAAABA82GxSI8/HuwoGsSwQAAAAADwA3quAAAAADQfbre0Y0ft+vHHS2Gh019EcgUAAACg+aiokDp2rF0vK5NiYoIbz35CJ80DAAAAgGaM5AoAAAAA/IDkCgAAAAD8gOQKAAAAAPyA5AoAAAAA/IDkCgAAAAD8gFLsAAAAAJqP8HDphhv2rYeQ0IoGAAAAAA4lMlKaPTvYUTSIYYEAAAAA4Af0XAEAAABoPgxD2ru3dr1tW8lkCm48+yG5AgAAANB8lJdLCQm162VlUkxMcOPZD8MCAQAAAMAPSK4AAAAAwA9IrgAAAADAD0iuAAAAAMAPSK4AAAAAwA9IrgAAAADADyjFDgAAAKD5CA+XJk7ctx5Cgtpz9dlnn2ncuHFKSUmRyWTS+++/f8j2q1atkslkqrfk5eV5tZs9e7Y6dOggq9WqQYMGad26dQE8CgAAAABNJjJSmj+/domMDHY0XoKaXDkcDvXt21ezZ8/26XU///yzcnNzPUtC3SRikhYuXKisrCxNmzZN69evV9++fZWZmamCggJ/hw8AAAAAHkHtRxszZozGjBnj8+sSEhIUHx/f4HNPPfWUrrnmGk2ePFmSNGfOHH388cd6+eWXdffddx9NuAAAAACCzTCk8vLa9ehoyWQKbjz7aZYFLfr166fk5GSdfvrpWrt2rWe70+nUN998o4yMDM+2sLAwZWRk6Isvvjjo/qqqqlRSUuK1AAAAAAhB5eWSzVa71CVZIaJZJVfJycmaM2eO3nnnHb3zzjtKS0vTiBEjtH79eknS3r17VVNTo8TERK/XJSYm1rsva38zZsyQ3W73LGlpaQE9DgAAAAAtT2iV1ziM7t27q3v37p7HJ598srZu3aqnn35a//jHP454v/fcc4+ysrI8j0tKSkiwAAAAAPikWSVXDRk4cKDWrFkjSWrbtq3MZrPy8/O92uTn5yspKemg+4iMjFRkiFUaAQAAANC8NKthgQ3ZsGGDkpOTJUkWi0X9+/fXihUrPM+73W6tWLFCgwcPDlaIAAAAAFqBoPZclZWVKTs72/N427Zt2rBhg9q0aaPjjz9e99xzj3bv3q1XX31VkjRz5kx17NhRvXv3VmVlpV566SV9+umnWrp0qWcfWVlZmjhxogYMGKCBAwdq5syZcjgcnuqBAAAAABAIQU2uvv76a5166qmex3X3PU2cOFHz589Xbm6uduzY4Xne6XTq9ttv1+7duxUdHa0TTjhBy5cv99rH+PHjtWfPHk2dOlV5eXnq16+fFi9eXK/IBQAAAAD4k8kwDCPYQYSakpIS2e12FRcXKy4uLtjhAAAAAKhTWSldfnnt+j/+IVmtAX07X3KDZl/QAgAAAEArYrVKb70V7Cga1OwLWgAAAABAKCC5AgAAAAA/ILkCAAAA0Hw4HJLJVLs4HMGOxgvJFQAAAAD4AckVAAAAAPgByRUAAAAA+AHJFQAAAAD4AckVAAAAAPgByRUAAAAA+EF4sAMAAAAAgEYzm6WxY/ethxCSKwAAAADNh9UqffxxsKNoEMMCAQAAAMAPSK4AAAAAwA9IrgAAAAA0Hw6HFBNTuzgcwY7GC/dcAQAAAGheysuDHUGD6LkCAAAAAD8guQIAAAAAPyC5AgAAAAA/ILkCAAAAAD8guQIAAAAAP6BaIAAAAIDmIyxMGj5833oIIbkCAAAA0HxERUmrVgU7igaFVqoHAAAAAM0UyRUAAAAA+AHDAgEAh+R2G9pdVCGH06UYS7hS46MUFmYKdlgAgNbK4ZA6dKhd375diokJZjReSK4AAAeVXVCqJRvztXVPmSpdNbKGm9W5nU2ZfRLVJSE22OEBAFqrvXuDHUGDSK4AAA3KLijVvLXbVehwKtluVbQlSuVOlzbmFCunuEKTh3QgwQIAYD/ccwUAqMftNrRkY74KHU51TbAp1hohc5hJsdYIdU2wqdDh1NJN+XK7jWCHCgBAyCC5AgDUs7uoQlv3lCnZbpXJ5H1/lclkUrLdquyCMu0uqghShAAAhB6SKwBAPQ6nS5WuGkVbGh49HmUxq8pVI4fT1cSRAQAQukiuAAD1xFjCZQ03q/wgyVOFs0aR4WbFHCT5AgCgNeK3IgCgntT4KHVuZ9PGnGLZIsO9hgYahqHc4kqlp9qVGh8VxCgBAK1SWJg0YMC+9RBCcgUAqCcszKTMPonKKa7QloLae6+iLGZVOGuUW1ypNjEWjeqdyHxXAICmFxUlffVVsKNoUGilegCAkNElIVaTh3RQnxS7isqrtX2vQ0Xl1UpPtVOGHQCABtBzBQA4qC4Jseo0wqbdRRVyOF2KsYQrNT6KHisAABpAcgW0UG63wR/E8IuwMJPS2kQHOwwAAGqVl0u9etWu//ijFB06v6N8Sq5cLpcefvhhXXnllTruuOMCFROAo5RdUKolG/O1dU+ZKl01soab1bmdTZl9EhnKBQAAmjfDkH79dd96CPHpnqvw8HA9/vjjcrmY1wQIVdkFpZq3drs25hQrPjpCndraFB8doY05xZq3druyC0qDHSIAAECL5HNBi5EjR2r16tWBiAXAUXK7DS3ZmK9Ch1NdE2yKtUbIHGZSrDVCXRNsKnQ4tXRTvtzu0LrKAwAA0BL4fM/VmDFjdPfdd+uHH35Q//79FRMT4/X8WWed5bfgAPhmd1GFtu6pLZu9/7xEkmQymZRstyq7oEy7iyq4hwYAAMDPfE6ubrjhBknSU089Ve85k8mkmpqao48KwBFxOF2qdNUo2tLwxK5RFrPySyrlcDK0FwAAwN98Tq7cbncg4gDgBzGWcFnDzSp3uhRrjaj3fIWzRpHhZsVYKBQKAADgb/yFBbQgqfFR6tzOpo05xbJFhnsNDTQMQ7nFlUpPtSs1vuGeLQAAgJBnMu0rxW4KrWlmfC5oIUmrV6/WuHHj1KVLF3Xp0kVnnXWW/v3vf/s7NgA+CgszKbNPotrEWLSloEylldVyud0qrazWloIytYmxaFTvROa7AgAAzVd0tLRpU+0SQnNcSUeQXP3zn/9URkaGoqOjNWXKFE2ZMkVRUVE67bTT9PrrrwciRgA+6JIQq8lDOqhPil1F5dXavtehovJqpafaNXlIB+a5AgAACBCTYfg281bPnj117bXX6rbbbvPa/tRTT+nFF1/U5s2b/RpgMJSUlMhut6u4uFhxcXHBDgc4Im63od1FFXI4XYqxhCs1PooeKwAAAB/5khv43HP1yy+/aNy4cfW2n3XWWdq2bZtP+/rss880btw4paSkyGQy6f333z9k+3fffVenn3662rVrp7i4OA0ePFhLlizxajN9+nSZTCavpUePHj7FBbQEYWEmpbWJVo+kOKW1iSaxAgCEDLfb0M7Ccv2UV6KdheXMvwjflJdLvXvXLuXlwY7Gi88FLdLS0rRixQp16dLFa/vy5cuVlpbm074cDof69u2rK6+8Uuedd95h23/22Wc6/fTT9fDDDys+Pl7z5s3TuHHj9OWXX+rEE0/0tOvdu7eWL1/ueRweTt0OAACAUJBdUKolG/O1dU+ZKl01soab1bmdTZl9Ehm6jsYxDOnHH/ethxCfs47bb79dU6ZM0YYNG3TyySdLktauXav58+frmWee8WlfY8aM0ZgxYxrdfubMmV6PH374YX3wwQf617/+5ZVchYeHKykpyadYAAAAEFjZBaWat3a7Ch1OJdutirZEqdzp0sacYuUUV3BvMJo9n5Or66+/XklJSXryySf15ptvSqq9D2vhwoU6++yz/R7gobjdbpWWlqpNmzZe27ds2aKUlBRZrVYNHjxYM2bM0PHHH3/Q/VRVVamqqsrzuKSkJGAxAwAAtEZut6ElG/NV6HCqa4LNM11IrDVCtshwbSko09JN+erU1sZQdjRbPiVXLpdLDz/8sK688kqtWbMmUDE12hNPPKGysjJddNFFnm2DBg3S/Pnz1b17d+Xm5uq+++7TKaecoo0bNyo2tuErITNmzNB9993XVGEDAAC0OruLKrR1T5mS7VaveRglyWQyKdluVXZBmXYXVSitTWiV1wYay6eCFuHh4XrsscfkcrkCFU+jvf7667rvvvv05ptvKiEhwbN9zJgxuvDCC3XCCScoMzNTixYtUlFRkaeXrSH33HOPiouLPcvOnTub4hAAAABaDYfTpUpXjaItDV/bj7KYVeWqkcMZ/L8zgSPl87DA0047TatXr1aHDh0CEE7jLFiwQFdffbXeeustZWRkHLJtfHy8unXrpuzs7IO2iYyMVGRkpL/DBAAAwP/EWMJlDTer3OlSrDWi3vMVzhpFhpsVc5DkC2gOfP72jhkzRnfffbd++OEH9e/fXzExMV7Pn3XWWX4LriFvvPGGrrzySi1YsEBnnHHGYduXlZVp69atuvzyywMaFwAAAA4uNT5KndvZtDGnWLbIcK+hgYZhKLe4UumpdqXGRwUxytDGHJb/YzJJ7dvvWw8hPidXN9xwg6TaSYMPZDKZVFNT0+h9lZWVefUobdu2TRs2bFCbNm10/PHH65577tHu3bv16quvSqodCjhx4kQ988wzGjRokPLy8iRJUVFRstvtkqQ77rhD48aNU/v27ZWTk6Np06bJbDbr4osv9vVQAQAA4CdhYSZl9klUTnGFthTU3nsVZTGrwlmj3OJKtYmxaFTvxNaZLDQCJez3Ex0tbd8e7CgaZDKM4BWHX7VqlU499dR62ydOnKj58+dr0qRJ2r59u1atWiVJGjFihFavXn3Q9pI0YcIEffbZZ/rtt9/Url07DR06VA899JA6d+7c6Lh8mYUZAAAAjbd/klDlqh0K2CXBplG9W2GS0Ej1S9iHq9zp8iSllLAPLF9yA5+Sq+rqakVFRWnDhg3q06fPUQcaqkiuAAAAAofhbY3ndht6ftVWbcwp9iphL9UOp9xSUKb0VLv+NLwzn2GA+JIb+DQsMCIiQscff7xPQ/8AAACA/YWFmSi33kiUsG9ARYU0bFjt+mefSVGhc5+eT6XYJemvf/2r/vKXv6iwsDAQ8QAAAAD4H0rYN8Dtlr7+unZxu4MdjRefC1rMmjVL2dnZSklJUfv27etVC1y/fr3fggMAAABaM0rYNy8+n4VzzjknAGEAAAAAOBAl7JsXn5OradOmBSIOAAAAAAeghH3z0uh7rtatW3fIQhZVVVV68803/RIUAAAAgFpdEmI1eUgH9Umxq6i8Wtv3OlRUXq30VDtl2ENMo0uxm81m5ebmKiEhQZIUFxenDRs2qFOnTpKk/Px8paSktIhKgpRiBwAAQKihhP3/OBySzVa7XlYmHVADwt8CUor9wBysoZwsiPMRAwAAAC0aJez307ZtsCNokF/LihxYex8AAAAA/ComRtqzJ9hRNMjnea4AAAAAAPX51HP1448/Ki8vT1LtEMCffvpJZWVlkqS9e/f6PzoAAAAAaCYaXdAiLCxMJpOpwfuq6rabTCYKWgAAAAAInIoKacyY2vVPPpGiAjvHV0AKWmzbtu2oAwMAAACAo+J2S6tX71sPIY1Ortq3bx/IOAAAAACgWaOgBQAAAAD4AckVAAAAAPgByRUAAAAA+AHJFQAAAAD4gU/zXAEAAABA0EVHBzuCBvncc5Wfn6/LL79cKSkpCg8Pl9ls9loAAAAAIGBiYiSHo3aJiQl2NF587rmaNGmSduzYoXvvvVfJyckymUyBiAsAAAAAmhWfk6s1a9bo3//+t/r16xeAcAAAAACgefJ5WGBaWpoMwwhELAAAAABwaJWV0hln1C6VlcGOxovPydXMmTN19913a/v27QEIBwAAAAAOoaZGWrSodqmpCXY0XnweFjh+/HiVl5erc+fOio6OVkREhNfzhYWFfgsOAAAAAJoLn5OrmTNnBiAMAAAAAGjefE6uJk6cGIg4AAAAEABut6HdRRVyOF2KsYQrNT5KYWFUewYC4YgmEa6pqdH777+vzZs3S5J69+6ts846i3muAAAAQkh2QamWbMzX1j1lqnTVyBpuVud2NmX2SVSXhNhghwe0OD4nV9nZ2Ro7dqx2796t7t27S5JmzJihtLQ0ffzxx+rcubPfgwQAAIBvsgtKNW/tdhU6nEq2WxVtiVK506WNOcXKKa7Q5CEdSLAAP/O5WuCUKVPUuXNn7dy5U+vXr9f69eu1Y8cOdezYUVOmTAlEjAAAAPCB221oycZ8FTqc6ppgU6w1QuYwk2KtEeqaYFOhw6mlm/LldjO9DuBPPvdcrV69Wv/5z3/Upk0bz7Zjjz1WjzzyiIYMGeLX4AAAAOC73UUV2rqnTMl2q0wm7/urTCaTku1WZReUaXdRhdLaRAcpSuAIxcRIITrvrs89V5GRkSotLa23vaysTBaLxS9BAQAA4Mg5nC5VumoUbWn4OnqUxawqV40cTlcTRwa0bD4nV2eeeaauvfZaffnllzIMQ4Zh6D//+Y/+9Kc/6ayzzgpEjAAAAPBBjCVc1nCzyg+SPFU4axQZblbMQZIvAEfG5+Tq2WefVefOnTV48GBZrVZZrVYNGTJEXbp00TPPPBOIGAEAAOCD1PgodW5nU25xpYwDhk8ZhqHc4kp1SbApNT4qSBEi0NxuQzsLy/VTXol2Fpa3rPvrKiulCy+sXSorgx2NF5Nx4P+4RtqyZYt++uknSVLPnj3VpUsXvwYWTCUlJbLb7SouLlZcXFywwwEAAPDZgdUCoyxmVThrlFtcqTYxFqoFtmAtvgS/wyHZbLXrZWW192AFkC+5wREnVy0ZyRUAAGgJ9v8ju8pVOxSwS4JNo3q3kD+yUU/9EvzhKne6WlZSHcLJVaMG2mZlZemBBx5QTEyMsrKyDtn2qaeeanykAAAACJguCbHqNMKm3UUVcjhdirGEKzU+SmFhpsO/GM3OgSX46ypFxlojZIsM15aCMi3dlK9ObW18BwKkUcnVt99+q+rqas86AAAAmoewMBPl1lsJSvAHX6OSq5UrVza4DgAAACA07CvB33ChkiiLWfkllZTgDyCfqwVeeeWVDc5z5XA4dOWVV/olKAAAAAC+oQR/8PmcXL3yyiuqqKiot72iokKvvvqqX4ICAAAA4BtK8Adfo9PWkpISz6TBpaWlslqtnudqamq0aNEiJSQkBCRIAAAAAIcWFmZSZp9E5RRXaEtBWYMl+Ef1Tmz+xSyio2urBNath5BGJ1fx8fEymUwymUzq1q1bvedNJpPuu+8+vwYHAAAAoPG6JMRq8pAOnhL8+SWVigw3Kz3V3nJK8JtMAS+/fqQanVytXLlShmFo5MiReuedd9SmTRvPcxaLRe3bt1dKSkpAggQAAPA3t9ugRDlaJErwB0+jk6vhw4dLkrZt26bjjz++XnlHAACA5mL/yXUrXTWyhpvVuZ1NmX1ayJV9tHotugR/VZV03XW16y+8IEVGBjee/fhc0OLTTz/V22+/XW/7W2+9pVdeecUvQQEAAARKdkGp5q3dro05xYqPjlCntjbFR0doY06x5q3druyC+lWRAYQQl0t65ZXaxRVaZeV9Tq5mzJihtm3b1tuekJCghx9+2Kd9ffbZZxo3bpxSUlJkMpn0/vvvH/Y1q1at0kknnaTIyEh16dJF8+fPr9dm9uzZ6tChg6xWqwYNGqR169b5FBcAAGiZ3G5DSzbmq9DhVNcEm2KtETKHmRRrjVDXBJsKHU4t3ZQvt9s4/M4A4AA+J1c7duxQx44d621v3769duzY4dO+HA6H+vbtq9mzZzeq/bZt23TGGWfo1FNP1YYNG3Trrbfq6quv1pIlSzxtFi5cqKysLE2bNk3r169X3759lZmZqYKCAp9iAwAALc/uogpt3VNbRe3AWxxMJpOS7VZlF5Rpd1H9aWcA4HB8nkEsISFB33//vTp06OC1/bvvvtOxxx7r077GjBmjMWPGNLr9nDlz1LFjRz355JOSpJ49e2rNmjV6+umnlZmZKUl66qmndM0112jy5Mme13z88cd6+eWXdffdd/sUHwAAaFkcTpcqXTWKtjQ8z0+Uxaz8kko5DjIJKwAcis89VxdffLGmTJmilStXqqamRjU1Nfr00091yy23aMKECYGI0eOLL75QRkaG17bMzEx98cUXkiSn06lvvvnGq01YWJgyMjI8bRpSVVWlkpISrwUAALQ8MZZwWcPNKj9I8lThrFFkuFkxFp+vPwOA7z1XDzzwgLZv367TTjtN4eG1L3e73briiit8vufKV3l5eUpMTPTalpiYqJKSElVUVOj3339XTU1Ng21++umng+53xowZzNEFAEArkBofpc7tbNqYUyxbZLjX0EDDMJRbXKn0VLtS4xvu2QoVlJEHQpPPyZXFYtHChQv1wAMP6LvvvlNUVJTS09PVvn37QMTXJO655x5lZWV5HpeUlCgtLS2IEQEAgEAICzMps0+icoortKWg9t6rKItZFc4a5RZXqk2MRaN6J4Z0okIZeSB0HXGfd7du3dStWzd/xnJYSUlJys/P99qWn5+vuLg4RUVFyWw2y2w2N9gmKSnpoPuNjIxUZAjVxwcOxBVKAPCfLgmxmjykgydByS+pVGS4Wempdo3qHdoJSl0Z+UKHU8l2q6ItUSp3urQxp1g5xRWaPKRDSMcP+EV0tFRXrC46tObyalRylZWVpQceeEAxMTFePTwNeeqpp/wSWEMGDx6sRYsWeW1btmyZBg8eLKm2V61///5asWKFzjnnHEm1QxZXrFihm266KWBxAYHEFUoArVGgLyp1SYhVpxG2ZnXh6sAy8nVDGmOtEbJFhmtLQZmWbspXp7a2kD4O4KiZTFK7dsGOokGNSq6+/fZbVVdXe9YP5sCSpodTVlam7Oxsz+Nt27Zpw4YNatOmjY4//njdc8892r17t1599VVJ0p/+9CfNmjVLd911l6688kp9+umnevPNN/Xxxx979pGVlaWJEydqwIABGjhwoGbOnCmHw+GpHgg0J1yhBNAaNdVFpbAwk9LahNZV70PxpYx8czouoCVpVHK1cuXKBteP1tdff61TTz3V87iuV2zixImaP3++cnNzvebO6tixoz7++GPddttteuaZZ3TcccfppZde8pRhl6Tx48drz549mjp1qvLy8tSvXz8tXry4XpELINRxhRJAa8RFpYOjjDzwP1VVUt1ouqeekkLo9h6TYRhMQX6AkpIS2e12FRcXKy4uLtjhoJXaWViup5f9V/HREYq1RtR7vrSyWkXl1brt9G5coQTQIrjdhp5ftVUbc4q9LipJtZX8thSUKT3Vrj8N79wqLyrxewH4H4dDstlq18vKpJiYgL6dL7lBo3quzjvvvEa/+bvvvtvotgAOjiuUAFobhr0dWkspIw+0ZI2aRNhut3uWuLg4rVixQl9//bXn+W+++UYrVqyQ3W4PWKBAa8NElwBam30XlRr+uRZlMavKVdNqLyrVlZFvE2PRloIylVZWy+V2q7SyWlsKyppFGXmgpWvUX2Xz5s3zrP/5z3/WRRddpDlz5shsNkuSampqdMMNNzCEDvAjrlACaG32v6jU0LA3Lio17zLyQGvg80+nl19+WWvWrPEkVpJkNpuVlZWlk08+WY8//rhfAwRaq5Yw0SUA+IKLSo3THMvIA62Fz8mVy+XSTz/9pO7du3tt/+mnn+R2u/0WGACuUAJoXbio1HjNrYw80Fr4nFxNnjxZV111lbZu3aqBAwdKkr788ks98sgjzCUFBABXKAG0JlxUAtCc+ZxcPfHEE0pKStKTTz6p3NxcSVJycrLuvPNO3X777X4PEABXKAG0LlxUAnBIUVHStm371kPIUc1zVVJSIkktrpAF81wBAAAAkHzLDRpViv1ALpdLy5cv1xtvvOG52TQnJ0dlZWVHsjsAAAAAaPZ8Hhb466+/avTo0dqxY4eqqqp0+umnKzY2Vo8++qiqqqo0Z86cQMQJAAAAAJLTKf31r7XrDz0kWSzBjWc/Pvdc3XLLLRowYIB+//13Re03xvHcc8/VihUr/BocAAAAAHiprpaeeKJ2qa4OdjRefO65+ve//63PP/9clgMyxA4dOmj37t1+CwwAAAAAmhOfe67cbrdqamrqbd+1a5diYymPCgAAAKB18jm5GjVqlGbOnOl5bDKZVFZWpmnTpmns2LH+jA0AAADNkNttaGdhuX7KK9HOwnK53UdcnBpoVo5onqvRo0erV69eqqys1CWXXKItW7aobdu2euONNwIRIwAAAJqJ7IJSzyTQla4aWcPN6tzOpsw+TAKNls/n5CotLU3fffedFi5cqO+++05lZWW66qqrdOmll3oVuAAAAEDrkl1Qqnlrt6vQ4VSy3apoS5TKnS5tzClWTnGFJg/pQIKFFs2n5Kq6ulo9evTQRx99pEsvvVSXXnppoOICAABAM+J2G1qyMV+FDqe6Jtg8c6HGWiNkiwzXloIyLd2Ur05tbQoLMwU5WiAwfEquIiIiVFlZGahYAAAA0EztLqrQ1j1lSrZbPYlVHZPJpGS7VdkFZdpdVKG0NtFBihItQlSUtHHjvvUQ4nNBixtvvFGPPvqoXC5XIOIBAABAM+RwulTpqlG0peFr91EWs6pcNXI4+Rsy1IV8QZKwMKl379olzOd0JqB8vufqq6++0ooVK7R06VKlp6crJibG6/l3333Xb8EBAACgeYixhMsabla506VYa0S95yucNYoMNyvmIMkXQgMFSY6Oz9/u+Ph4nX/++YGIBQAAAM1UanyUOrezaWNOsWyR4V5DAw3DUG5xpdJT7UqND61hXNin2RQkcTqlhx+uXf/LXySLJbjx7MdkGEaI9fMFX0lJiex2u4qLixUXFxfscAAAAJqFA/84j7KYVeGsUW5xpdrEWIL6x7nbbWh3UYUcTpdiLOFKjY+isMZ+3G5Dz6/aqo05xV4FSaTa5HhLQZnSU+360/DOwf/cHA7JZqtdLyuTDhhJ52++5AaN7rlyu916/PHH9eGHH8rpdOq0007TtGnTKL8OAAAASVKXhFhNHtLBM6wsv6RSkeFmpafaNap38IaVMdTt8ChI4h+NTq4eeughTZ8+XRkZGYqKitIzzzyjgoICvfzyy4GMDwAAAM1Il4RYdRphC5leomYz1C3I9hUkabjjJMpiVn5JJQVJDqPRydWrr76qv/3tb7ruuuskScuXL9cZZ5yhl156SWEhVqUDAAAAwRMWZgqJ3g3m3mo8CpL4R6Ozoh07dmjs2LGexxkZGTKZTMrJyQlIYAAAAMDR8GWoW2tXV5Akt7hSB5ZkqCtI0iXBRkGSw2h0cuVyuWS1Wr22RUREqLq62u9BAQAAAEeLubcaLyzMpMw+iWoTY9GWgjKVVlbL5XartLJaWwrK1CbGolG9E1t9D9/hNLpfzzAMTZo0SZGRkZ5tlZWV+tOf/uQ11xXzXAEAACAUtMShboGsehiqBUmak0Z/kyZOnFhv22WXXebXYAAAAAB/aWlzbzVF1cNQK0jSIKtVWrdu33oIYZ6rBjDPFQAAQMsQynNv+aJ+1cNwlTtdze44miNfcgPK/AEAAKDFqhvq1ifFrqLyam3f61BRebXSU+3NJiE5sOphrDVC5jCTYq0R6ppgU6HDqaWb8uV202cSbM1ngCkAAABwBJrFULdDYILfAzid0jPP1K7fcotksQQ3nv2QXAEAAKDFC5W5t44EE/weoLpauuuu2vUbbgip5IphgQAAAEAI27/qYUOaY9XDlorkCgAAAAhhTPDbfBxRcvWPf/xDQ4YMUUpKin799VdJ0syZM/XBBx/4NTgAAACgtWOC3+bD5+Tq+eefV1ZWlsaOHauioiLV1NRIkuLj4zVz5kx/xwcAAAC0ei2h6mFr4PM8V7169dLDDz+sc845R7Gxsfruu+/UqVMnbdy4USNGjNDevXsDFWuTYZ4rAAAAhCK322i2VQ/9xuGQbLba9bIyKSYmoG/nS27g811v27Zt04knnlhve2RkpBwOh6+7AwAAANBIzbnqYWvgc3LVsWNHbdiwQe3bt/favnjxYvXs2dNvgQEAAABAPVartHLlvvUQ4nNylZWVpRtvvFGVlbXVStatW6c33nhDM2bM0EsvvRSIGAEAAACgltksjRgR7Cga5HNydfXVVysqKkr/93//p/Lycl1yySVKSUnRM888owkTJgQiRgAAAAAIeT4XtNhfeXm5ysrKlJCQ4M+Ygo6CFgAAAECIqq6W/v732vVrr5UiIgL6dr7kBj6XYh85cqSKiookSdHR0Z7EqqSkRCNHjvQ9WgAAAABoLKdTuumm2sXpDHY0XnxOrlatWiVnAwdRWVmpf//7334JCgAAAACam0bfc/X999971n/88Ufl5eV5HtfU1Gjx4sVKTU31b3QAAAAA0Ew0uueqX79+OvHEE2UymTRy5Ej169fPs/Tv318PPvigpk6dekRBzJ49Wx06dJDVatWgQYO0bt26g7YdMWKETCZTveWMM87wtJk0aVK950ePHn1EsQEAAABAYzS652rbtm0yDEOdOnXSunXr1K5dO89zFotFCQkJMpvNPgewcOFCZWVlac6cORo0aJBmzpypzMxM/fzzzw0Wynj33Xe9hiX+9ttv6tu3ry688EKvdqNHj9a8efM8jyMjI32ODQAAAAAaq9HJVd2kwW63268BPPXUU7rmmms0efJkSdKcOXP08ccf6+WXX9bdd99dr32bNm28Hi9YsEDR0dH1kqvIyEglJSX5NVYAAAAAOBif57l69dVXD/n8FVdc0eh9OZ1OffPNN7rnnns828LCwpSRkaEvvviiUfuYO3euJkyYoJiYGK/tq1atUkJCgo455hiNHDlSDz74oI499tgG91FVVaWqqirP45KSkkYfAwAAAABIR5Bc3XLLLV6Pq6urVV5eLovFoujoaJ+Sq71796qmpkaJiYle2xMTE/XTTz8d9vXr1q3Txo0bNXfuXK/to0eP1nnnnaeOHTtq69at+stf/qIxY8boiy++aHDo4owZM3Tfffc1Om4AAAAAQRIZKX300b71EOJzcvX777/X27ZlyxZdf/31uvPOO/0SVGPNnTtX6enpGjhwoNf2CRMmeNbT09N1wgknqHPnzlq1apVOO+20evu55557lJWV5XlcUlKitLS0wAUOAAAA4MiEh0v7FbMLJT7Pc9WQrl276pFHHqnXq3U4bdu2ldlsVn5+vtf2/Pz8w94v5XA4tGDBAl111VWHfZ9OnTqpbdu2ys7ObvD5yMhIxcXFeS0AAAAA4Au/JFeSFB4erpycHJ9eY7FY1L9/f61YscKzze12a8WKFRo8ePAhX/vWW2+pqqpKl1122WHfZ9euXfrtt9+UnJzsU3wAAAAAQkx1tTR/fu1SXR3saLz4PCzwww8/9HpsGIZyc3M1a9YsDRkyxOcAsrKyNHHiRA0YMEADBw7UzJkz5XA4PNUDr7jiCqWmpmrGjBler5s7d67OOeecekUqysrKdN999+n8889XUlKStm7dqrvuuktdunRRZmamz/EBAAAACCFOp/S/XEEXXihFRAQ3nv34nFydc845Xo9NJpPatWunkSNH6sknn/Q5gPHjx2vPnj2aOnWq8vLy1K9fPy1evNhT5GLHjh0KC/PuYPv555+1Zs0aLV26tN7+zGazvv/+e73yyisqKipSSkqKRo0apQceeIC5rgAAAAAEjMkwDCPYQYSakpIS2e12FRcXc/8VAABokNttaHdRhRxOl2Is4UqNj1JYmCnYYQEtn8Mh2Wy162Vl0gFTMvmbL7mBzz1XAAAArV12QamWbMzX1j1lqnTVyBpuVud2NmX2SVSXhNhghwcgSBqVXO1fpvxwnnrqqSMOBgAAINRlF5Rq3trtKnQ4lWy3KtoSpXKnSxtzipVTXKHJQzqQYAGtVKOSq2+//bZROzOZ6AoHAAAtl9ttaMnGfBU6nOqaYPP87RNrjZAtMlxbCsq0dFO+OrW1MUQQaIUalVytXLky0HEAAACEvN1FFdq6p0zJdmu9i8omk0nJdquyC8q0u6hCaW2igxQlgGA5qnuudu3aJUk67rjj/BIMAABAKHM4Xap01SjaEtXg81EWs/JLKuVwupo4MqAViYyU3nxz33oI8XkSYbfbrfvvv192u13t27dX+/btFR8frwceeEButzsQMQIAAISEGEu4rOFmlR8keapw1igy3KwYCzXDgIAJD6+d3+rCC2vXQ4jP0fz1r3/V3Llz9cgjj3gmDV6zZo2mT5+uyspKPfTQQ34PEgAAIBSkxkepczubNuYUyxYZ7jU00DAM5RZXKj3VrtT4hnu2ALRsPidXr7zyil566SWdddZZnm0nnHCCUlNTdcMNN5BcAQCAFisszKTMPonKKa7QloLae6+iLGZVOGuUW1ypNjEWjeqdSDELIJBcLum992rXzz03pHqvfI6ksLBQPXr0qLe9R48eKiws9EtQAAAAoapLQqwmD+ngmecqv6RSkeFmpafaNao381wBAVdVJV10Ue16WVnzTq769u2rWbNm6dlnn/XaPmvWLPXt29dvgQEAAISqLgmx6jTCpt1FFXI4XYqxhCs1PooeK6CV8zm5euyxx3TGGWdo+fLlGjx4sCTpiy++0M6dO7Vo0SK/BwgAABCKwsJMlFsH4MXnaoHDhw/Xf//7X5177rkqKipSUVGRzjvvPP3888865ZRTAhEjAAAIMrfb0M7Ccv2UV6KdheVyu41ghwQAIcdkGAY/HQ9QUlIiu92u4uJixcXFBTscAACCKrug1HN/UaWrRtZwszq3symzD/cXAQgCh0Oy2WrXy8qkmJiAvp0vuYHPPVeLFy/WmjVrPI9nz56tfv366ZJLLtHvv//ue7QAACBkZReUat7a7dqYU6z46Ah1amtTfHSENuYUa97a7couKA12iAAQMnxOru68806VlJRIkn744QdlZWVp7Nix2rZtm7KysvweIAAACA6329CSjfkqdDjVNcGmWGuEzGEmxVoj1DXBpkKHU0s35TNEEAD+x+eCFtu2bVOvXr0kSe+8847GjRunhx9+WOvXr9fYsWP9HiAAAAiO3UUV2rqndi6n/SfLlSSTyaRku1XZBWXaXVRBYQcATcdikebN27ceQnxOriwWi8rLyyVJy5cv1xVXXCFJatOmjadHCwAANH8Op0uVrhpFW6IafD7KYlZ+SaUcTlcTRwagVYuIkCZNCnYUDfI5uRo6dKiysrI0ZMgQrVu3TgsXLpQk/fe//9Vxxx3n9wABAEBwxFjCZQ03q9zpUqw1ot7zFc4aRYabFWMJnQk8ASCYfL7natasWQoPD9fbb7+t559/XqmpqZKkTz75RKNHj/Z7gAAAIDhS46PUuZ1NucWVOrC4sGEYyi2uVJcEm1LjG+7ZAoCAcLmkjz+uXVyh1XNOKfYGUIodAIBaddUCCx1OJdutirKYVeGsUW5xpdrEWDR5SAfKsQNoWiFciv2I+vFramr03nvvafPmzZKknj176pxzzlF4OMMCAABoSbokxGrykA6eea7ySyoVGW5Weqpdo3ozzxUA7M/nbGjTpk0aN26c8vPz1b17d0nSo48+qnbt2ulf//qX+vTp4/cgAQBA8HRJiFWnETbtLqqQw+lSjCVcqfFRCgszHf7FANCK+JxcXX311erTp4+++eYbHXPMMZKk33//XZMmTdK1116rzz//3O9BAgCA4AoLM1FuHQAOw+fkasOGDfr66689iZUkHXPMMXrooYf0hz/8wa/BAQAAAEBz4XO1wG7duik/P7/e9oKCAnXp0sUvQQEAAABAc9Oo5KqkpMSzzJgxQ1OmTNHbb7+tXbt2adeuXXr77bd166236tFHHw10vAAAAAAQkho1LDA+Pl4m076bVg3D0EUXXeTZVlfNfdy4caqpqQlAmAAAAAAgyWKRZs3atx5CGpVcrVy5MtBxAAAAAMDhRURIN94Y7Cga1Kjkavjw4Y3a2caNG48qGAAAAABornwuaHGg0tJS/f3vf9fAgQPVt29ff8QEAAAAAA2rqZFWrapdQuyWJJ9Lsdf57LPPNHfuXL3zzjtKSUnReeedp9mzZ/szNgAICrfbYLJUAABCVWWldOqptetlZVJMTHDj2Y9PyVVeXp7mz5+vuXPnqqSkRBdddJGqqqr0/vvvq1evXoGKEQCaTHZBqZZszNfWPWWqdNXIGm5W53Y2ZfZJVJeE2GCHBwAAQlijhwWOGzdO3bt31/fff6+ZM2cqJydHzz33XCBjA4AmlV1Qqnlrt2tjTrHioyPUqa1N8dER2phTrHlrtyu7oDTYIQIAgBDW6J6rTz75RFOmTNH111+vrl27BjImAGhybrehJRvzVehwqmuCzTPVRKw1QrbIcG0pKNPSTfnq1NbGEEEAANCgRvdcrVmzRqWlperfv78GDRqkWbNmae/evYGMDQCazO6iCm3dU6Zku9VrXj9JMplMSrZblV1Qpt1FFUGKEAAAhLpGJ1d//OMf9eKLLyo3N1fXXXedFixYoJSUFLndbi1btkylpQyXAdB8OZwuVbpqFG1puEM/ymJWlatGDqeriSMDAADNhc+l2GNiYnTllVdqzZo1+uGHH3T77bfrkUceUUJCgs4666xAxAgAARdjCZc13KzygyRPFc4aRYabFXOQ5AsAAOCo5rnq3r27HnvsMe3atUtvvPGGv2ICgCaXGh+lzu1syi2ulGEYXs8ZhqHc4kp1SbApNT4qSBECAABJUkSE9NhjtUtERLCj8WIyDvwrAiopKZHdbldxcbHi4uKCHQ6AJlJXLbDQ4VSy3aooi1kVzhrlFleqTYxFk4d0oBw7AACtjC+5wVH1XAFAS9IlIVaTh3RQnxS7isqrtX2vQ0Xl1UpPtZNYAQCAw+LmAQDYT5eEWHUaYdPuogo5nC7FWMKVGh9F+XUAAEJFTY20fn3t+kknSWZzcOPZD8kVABwgLMyktDbRwQ4DAAA0pLJSGjiwdr2sTIqJCW48+2FYIAAAAAD4AckVAAAAAPgByRUAAAAA+AHJFQAAAAD4QUgkV7Nnz1aHDh1ktVo1aNAgrVu37qBt58+fL5PJ5LVYrVavNoZhaOrUqUpOTlZUVJQyMjK0ZcuWQB8GAAAAgFYs6MnVwoULlZWVpWnTpmn9+vXq27evMjMzVVBQcNDXxMXFKTc317P8+uuvXs8/9thjevbZZzVnzhx9+eWXiomJUWZmpiorKwN9OAAAAABaqaAnV0899ZSuueYaTZ48Wb169dKcOXMUHR2tl19++aCvMZlMSkpK8iyJiYme5wzD0MyZM/V///d/Ovvss3XCCSfo1VdfVU5Ojt5///0mOCIAAAAAARMRIU2bVrtERAQ7Gi9BTa6cTqe++eYbZWRkeLaFhYUpIyNDX3zxxUFfV1ZWpvbt2ystLU1nn322Nm3a5Hlu27ZtysvL89qn3W7XoEGDDrrPqqoqlZSUeC0AAAAAQpDFIk2fXrtYLMGOxktQk6u9e/eqpqbGq+dJkhITE5WXl9fga7p3766XX35ZH3zwgf75z3/K7Xbr5JNP1q5duyTJ8zpf9jljxgzZ7XbPkpaWdrSHBrQIbrehnYXl+imvRDsLy+V2G8EOCQAAIGSFBzsAXw0ePFiDBw/2PD755JPVs2dPvfDCC3rggQeOaJ/33HOPsrKyPI9LSkpIsNDqZReUasnGfG3dU6ZKV42s4WZ1bmdTZp9EdUmIDXZ4AACgtXK7pc2ba9d79pTCgn6nk0dQk6u2bdvKbDYrPz/fa3t+fr6SkpIatY+IiAideOKJys7OliTP6/Lz85WcnOy1z379+jW4j8jISEVGRh7BEQAtU3ZBqeat3a5Ch1PJdquiLVEqd7q0MadYOcUVmjykAwkWAAAIjooKqU+f2vWyMikmJrjx7CeoaZ7FYlH//v21YsUKzza3260VK1Z49U4dSk1NjX744QdPItWxY0clJSV57bOkpERffvllo/cJtGZut6ElG/NV6HCqa4JNsdYImcNMirVGqGuCTYUOp5ZuymeIIAAAwAGCPiwwKytLEydO1IABAzRw4EDNnDlTDodDkydPliRdccUVSk1N1YwZMyRJ999/v/74xz+qS5cuKioq0uOPP65ff/1VV199taTaSoK33nqrHnzwQXXt2lUdO3bUvffeq5SUFJ1zzjnBOkyg2dhdVKGte8qUbLfKZDJ5PWcymZRstyq7oEy7iyqU1iY6SFECAACEnqAnV+PHj9eePXs0depU5eXlqV+/flq8eLGnIMWOHTsUtt84yt9//13XXHON8vLydMwxx6h///76/PPP1atXL0+bu+66Sw6HQ9dee62Kioo0dOhQLV68uN5kwwDqczhdqnTVKNoS1eDzURaz8ksq5XC6mjgyAACA0GYyDIOxPQcoKSmR3W5XcXGx4uLigh0OjpLbbWh3UYUcTpdiLOFKjY9SWJjp8C9spXYWluvpZf9VfHSEYq31544oraxWUXm1bju9Gz1XAACg6Tkcks1Wu94E91z5khsEvecKCCQq3vkuNT5KndvZtDGnWLbIcK+hgYZhKLe4UumpdqXGN9yzBQAA0FqRXKHFouLdkQkLMymzT6Jyiiu0paD23qsoi1kVzhrlFleqTYxFo3on0vsHAABwAJIrtEgHVryr632JtUbIFhmuLQVlWropX53a2kgSGtAlIVaTh3Tw9Prll1QqMtys9FS7RvWm1w8AAARRRIR0xx371kMIyRVaJCreHb0uCbHqNMLG/WoAACC0WCzS448HO4oGkVyhRaLinX+EhZlIPgEAABopqJMIA4ESYwmXNdys8oMkTxXOGkWGmxVj4foCAABAs+J2S9u31y5ud7Cj8UJyhRapruJdbnGlDpxtoK7iXZcEGxXvAAAAmpuKCqljx9qloiLY0XghuUKLVFfxrk2MRVsKylRaWS2X263SymptKSij4h0AAAD8juQKLVZdxbs+KXYVlVdr+16HisqrlZ5qpww7AAAA/I4bTtCiUfEOAAAATYXkCi0eFe8AAKHG7Ta48Ae0QCRXAAAATSi7oNQzSXulq0bWcLM6t7Mpsw+TtAPNHckVAABAE8kuKNW8tdtV6HAq2W5VtCVK5U6XNuYUK6e4gnuCgWaO5AoAAKAJuN2GlmzMV6HDqa4JNplMtcMAY60RskWGa0tBmZZuylentjaGCAKHEh4u3XDDvvUQElrRAAAAtFC7iyq0dU+Zku1WT2JVx2QyKdluVXZBmXYXVXCvMEJa0O8ZjIyUZs9uuvfzAckVAABAE3A4Xap01Sja0vAE9lEWs/JLKuVwupo4MqDxuGfw0EiuAAAAmkCMJVzWcLPKnS7FWiPqPV/hrFFkuFkxFv48Q2gKmXsGDUPau7d2vW1byRQ6w2iZRBgAAByU221oZ2G5fsor0c7CcrndRrBDarZS46PUuZ1NucWVMgzvz9EwDOUWV6pLgk2p8Q33bAHBdOA9g7HWCJnDTIq1Rqhrgk2FDqeWbspvmp8R5eVSQkLtUl4e+PfzAZdGAABAgxj+419hYSZl9klUTnGFthTU3nsVZTGrwlmj3OJKtYmxaFTvRIpZICRxz2Dj0HMFAADqqRv+szGnWPHREerU1qb46AhtzCnWvLXblV1QGuwQm6UuCbGaPKSD+qTYVVRere17HSoqr1Z6qp0y7Ahp++4ZbLhvJspiVpWrptXfM0jPFQAA8ELJ8MDqkhCrTiNswa22BviIewYbp3UfPdDMBL30KYBWgeE/gRcWZuKzQ7NSd8/gxpxi2SLDvX421N0zmJ5qb/X3DJJcAc0E9z4AaCqUDAdwIO4ZbBySK6AZCJnSpwBaBYb/AGhI3T2DdRd780sqFRluVnqqXaN6c7FXIrkCQh73PoQGhmSiNWH4D4CDCYl7BsPDpYkT962HkNCKBkA93PsQfAzJRGvD8B8AhxLoewYPe0EzMlKaPz9g7380SK6AEMe9D8HFkEy0Vgz/ARAMzf2CJskVEOK49yF4GJKJ1i4khv8AaDUafUHTMKTy8toXRUdLptD5mcQkwkCIq7v3Ibe4UoZheD1Xd+9DlwQb9z4EgC9DMoGWqm74T4+kOKW1iSaxAhAQB17QjLVGyBxmUqw1Ql0TbCp0OLV0U77c7v8lVjZb7VKXZIUIkisgxNXd+9AmxqItBWUqrayWy+1WaWW1thSUce9DADEbPQAATaOlXNAkuQKagbp7H/qk2FVUXq3tex0qKq9Weqqde34CaP8hmQ1hSCYAAP7RUi5o8hcB0Exw70PToxw1AABNw7d7zI36OwgRJFdAMxLo0qfwRjlqAACahk8XNCtC6z6r/TEsEAAOgSGZAAAEXku5x5yeKwA4DIZkAgAQeC1hfj2SKwBoBIZkAgAQeI26oGk2SxdcsG89hJBcAQAAhAC326CHHFAjLmhardJbbzVdQD4guQIAAAiy7IJSz1CoSleNrOFmdW5nU2af5jEUCkAtkisAAIAgyi4o1by121XocCrZblW0JUrlTpc25hQrp7iC4jlAM0K1QAAAgCBxuw0t2ZivQodTXRNsirVGyBxmUqw1Ql0TbCp0OLV0U77c7tCd1wdocg6HZDLVLg5HsKPxQnIFAAAQJLuLKrR1T+08evvP6yNJJpNJyXarsgvKtLuoIkgRAvAFyRUAAECQOJwuVbpqFG1p+E6NKItZVa4aOZyuJo4MwJHgnisA8AHVvAD4U4wlXNZws8qdLsVaI+o9X+GsUWS4WTEHSb4AhBb+pwJAI1HNC4C/pcZHqXM7mzbmFMsWGe41NNAwDOUWVyo91a7U+KggRgmgsUiuQhhXyIHQQTUvAIEQFmZSZp9E5RRXaEtB7b1XURazKpw1yi2uVJsYi0b1TuT3P9BMkFyFKK6QA6HjwGpedVeWY60RskWGa0tBmZZuylentjb+AALgsy4JsZo8pIPn935+SaUiw81KT7VrVG9+7wPNSUgUtJg9e7Y6dOggq9WqQYMGad26dQdt++KLL+qUU07RMccco2OOOUYZGRn12k+aNEkmk8lrGT16dKAPw2/qrpBvzClWfHSEOrW1KT46QhtzijVv7XZlF5QGO0SgVaGaF4BA65IQq+tHdNZtp3fTzad11W2nd9OfhncmsQIaYjZLY8fWLmZzsKPxEvTkauHChcrKytK0adO0fv169e3bV5mZmSooKGiw/apVq3TxxRdr5cqV+uKLL5SWlqZRo0Zp9+7dXu1Gjx6t3Nxcz/LGG280xeEcNea7AEIP1bwQatxuQzsLy/VTXol2FpbzO6GFCAszKa1NtHokxSmtTTQ94cDBWK3Sxx/XLlZrsKPxEvRhgU899ZSuueYaTZ48WZI0Z84cffzxx3r55Zd1991312v/2muveT1+6aWX9M4772jFihW64oorPNsjIyOVlJQU2OADwJcr5GltooMUJdC6UM0LoYRh4wAQuoLac+V0OvXNN98oIyPDsy0sLEwZGRn64osvGrWP8vJyVVdXq02bNl7bV61apYSEBHXv3l3XX3+9fvvtt4Puo6qqSiUlJV5LsHCFHAg9ddW8cosrZRjePQR11by6JNio5oWAY9g4AIS2oCZXe/fuVU1NjRITE722JyYmKi8vr1H7+POf/6yUlBSvBG306NF69dVXtWLFCj366KNavXq1xowZo5qamgb3MWPGDNntds+SlpZ25Ad1lPa/Qt4QrpADTa+umlebGIu2FJSptLJaLrdbpZXV2lJQRjUvNAmGjQPA/zgcUkxM7eJwBDsaL836L/RHHnlECxYs0KpVq2Tdb7zlhAkTPOvp6ek64YQT1LlzZ61atUqnnXZavf3cc889ysrK8jwuKSkJWoLFfBdAaKKaF4KNYeMAsJ/y8mBH0KCgJldt27aV2WxWfn6+1/b8/PzD3i/1xBNP6JFHHtHy5ct1wgknHLJtp06d1LZtW2VnZzeYXEVGRioyMtL3AwgA5rsAQleXhFh1GmFj/jkExb5h4w1fXIuymJVfUsmwcQAIoqAOC7RYLOrfv79WrFjh2eZ2u7VixQoNHjz4oK977LHH9MADD2jx4sUaMGDAYd9n165d+u2335ScnOyXuAOt7gp5nxS7isqrtX2vQ0Xl1UpPtTNRKRBkVPNCsDBsHABCX9B/AmdlZWnixIkaMGCABg4cqJkzZ8rhcHiqB15xxRVKTU3VjBkzJEmPPvqopk6dqtdff10dOnTw3Jtls9lks9lUVlam++67T+eff76SkpK0detW3XXXXerSpYsyMzODdpy+4go5AGB/DBsHgNAX9ORq/Pjx2rNnj6ZOnaq8vDz169dPixcv9hS52LFjh8LC9nWwPf/883I6nbrgggu89jNt2jRNnz5dZrNZ33//vV555RUVFRUpJSVFo0aN0gMPPBAyQ/8aq+4KOQAgsNxuI+QvZjFsHEejOXzHgZbAZBxYVxgqKSmR3W5XcXGx4uLigh0OACCAmtu8UfvHW+WqHQrYJcFGYRUcVHP7jgOH5XBINlvtellZbdXAAPIlNwh6zxUAAMFSN29UocOpZLtV0ZYolTtd2phTrJziipC8z5Vh4/BFc/yOA4cVFiYNH75vPYSQXAEAWqUD542qu4cp1hohW2S4thSUaemmfHVqawu5xIVh42iM5vwdBw4pKkpatSrYUTQotFI9AACaiC/zRgHNEd9xoOmRXAEAWqV980Y1PIgjymJWlauGeaPQbPEdB5oeyRUAoFVi3ii0dHzH0WI5HFK7drWLwxHsaLyQXAEAWqW6eaNyiyt1YOHcunmjuiTYmDcKzRbfcbRoe/fWLiGG5AoA0CrVzRvVJsaiLQVlKq2slsvtVmlltbYUlDFvFJo9vuNA02OeqwYwzxUAtB7MG4WWju84WhzmuQIAIDQxbxRaOr7jQNMhuQIAtHrMG4WWju840DS45woAAAAA/ICeKwAAAADNR1iYNGDAvvUQQnIFAAAAoPmIipK++irYUTQotFI9AAAAAGimSK4AAAAAwA8YFggAwEG43QblqwEg1JSXS7161a7/+KMUHTqVMEmuAABowP4Tr1a6amQNN6tzO5sy+zDxKgAElWFIv/66bz2EkFwBAHCA7IJSzVu7XYUOp5LtVkVbolTudGljTrFyiis0eUgHEiwAQD3ccwUAwH7cbkNLNuar0OFU1wSbYq0RMoeZFGuNUNcEmwodTi3dlC+3O7SulgIAgo/kCgDQIrndhnYWluunvBLtLCxvdDK0u6hCW/eUKdlulcnkfX+VyWRSst2q7IIy7S6qCETYAIBmjGGBAIAW52jul3I4Xap01SjaEtXg81EWs/JLKuVwugIROgCgGSO5AgC0KEd7v1SMJVzWcLPKnS7FWiPqPV/hrFFkuFkxFn6FAgC8MSwQANBi+ON+qdT4KHVuZ1NucaWMA6pQGYah3OJKdUmwKTW+4Z4tAECAmUy1pdh79apdDyFcdgMAtBi+3C+V1qbheVHCwkzK7JOonOIKbSmo3VeUxawKZ41yiyvVJsaiUb0Tme8KAIIlOlratCnYUTSInisAQIux736phq8dRlnMqnLVHPZ+qS4JsZo8pIP6pNhVVF6t7XsdKiqvVnqqnTLsAICDoucKANBi+PN+qS4Jseo0wqbdRRVyOF2KsYQrNT7K7z1WbrcR8PcAADQNkisAQItRd7/Uxpxi2SLDvYYG1t0vlZ5qb/T9UmFhpoMOH/SHo6lqCACtVnm59Ic/1K5/9VXtMMEQQXIFAGgxmtP9Ukdb1RAAWi3DkH78cd96COGeKwBAi9Ic7pfyR1VDAEDooecKANDiNNX9UkfKH1UNAQChh+QKANAiBfp+qaOxr6phw/d+RVnMyi+pPGxVQwBAaGFYIAAATWz/qoYN8aWqIQAgdPBTG2gClFoGsD9/VzUMJn6+AcA+JFdAgFFqGcCBmlNVw0Ph51vTIpEF/sdkktq337ceQkyGEWL1C0NASUmJ7Ha7iouLFRcXF+xw0IzVL7UcrnKny/PHU6hULgMQHPsnJ1Wu2qGAXRJsGtU79JMTfr41LRJZIHh8yQ3ouQIC5MBSy3XDfmKtEbJFhmtLQZmWbspXp7Y2rjwCrVSoVzU8GH6+NS3mRAOaD5IrIEAotQx/YShQyxbKVQ0Php9vTYdEFmheSK6AAKHUMvyBoUAIRfx8azokskADKiqkYcNq1z/7TIoKneI/JFdAgOxfajnWGlHveUot43AYCoRQxc+3pkMiCzTA7Za+/nrfeghhnisgQOpKLecWV+rAujF1pZa7JNiaRallNL0DhwLFWiNkDjMp1hqhrgk2FTqcWropX243NYnQ9Pj51nSYEw1oXkiugACpK7XcJsaiLQVlKq2slsvtVmlltbYUlDWbUssIDl+GAgFNjZ9vTYdEFmheSK6AAOqSEKvJQzqoT4pdReXV2r7XoaLyaqWn2hnShUPaNxSo4avRURazqlw1DAVCk3C7De0sLNdPeSXaWVgut9vg51sTIZEFmhf6kIEAa66llhFc3NOCUHG4oir8fAu8ukS27jzkl1QqMtys9FR7s5gTDWhN+K0MNIHmWGoZwVU3FGhjTrFskeFeQwPrhgKlp9oZCoSAamxRFX6+BR6JLNA8kFwBQAiqGwqUU1yhLQW1915FWcyqcNYot7iSoUAIOOZXCj1cqAP207ZtsCNoEMkVAIQohgIhmJhfCUDIiomR9uwJdhQNComCFrNnz1aHDh1ktVo1aNAgrVu37pDt33rrLfXo0UNWq1Xp6elatGiR1/OGYWjq1KlKTk5WVFSUMjIytGXLlkAeAgAERJeEWF0/orNuO72bbj6tq247vZv+NLwziRUCjqIqAOC7oCdXCxcuVFZWlqZNm6b169erb9++yszMVEFBQYPtP//8c1188cW66qqr9O233+qcc87ROeeco40bN3raPPbYY3r22Wc1Z84cffnll4qJiVFmZqYqKyub6rAAwG/qhgL1SIpTWptohmChSTC/EgD4zmQcOGlCExs0aJD+8Ic/aNasWZIkt9uttLQ03Xzzzbr77rvrtR8/frwcDoc++ugjz7Y//vGP6tevn+bMmSPDMJSSkqLbb79dd9xxhySpuLhYiYmJmj9/viZMmHDYmEpKSmS321VcXKy4uDg/HSkAAM2H223o+VVbtTGn2OueK6l2hMiWgjKlp9r1p+GdSfgBNK2KCmnMmNr1Tz6RogJb3MmX3CCoPVdOp1PffPONMjIyPNvCwsKUkZGhL774osHXfPHFF17tJSkzM9PTftu2bcrLy/NqY7fbNWjQoIPus6qqSiUlJV4LAACtGfMrAQhZbre0enXt4nYHOxovQU2u9u7dq5qaGiUmJnptT0xMVF5eXoOvycvLO2T7un992eeMGTNkt9s9S1pa2hEdDwAALQkTBQOAbxgoLemee+5RVlaW53FJSQkJFgAAYn4lAPBFUJOrtm3bymw2Kz8/32t7fn6+kpKSGnxNUlLSIdvX/Zufn6/k5GSvNv369Wtwn5GRkYqMjDzSwwAAoEVjfiUAaJygDgu0WCzq37+/VqxY4dnmdru1YsUKDR48uMHXDB482Ku9JC1btszTvmPHjkpKSvJqU1JSoi+//PKg+wQAAACAoxX0YYFZWVmaOHGiBgwYoIEDB2rmzJlyOByaPHmyJOmKK65QamqqZsyYIUm65ZZbNHz4cD355JM644wztGDBAn399df6+9//Lql2YsNbb71VDz74oLp27aqOHTvq3nvvVUpKis4555xgHSYAAACAFi7oydX48eO1Z88eTZ06VXl5eerXr58WL17sKUixY8cOhYXt62A7+eST9frrr+v//u//9Je//EVdu3bV+++/rz59+nja3HXXXXI4HLr22mtVVFSkoUOHavHixbJarU1+fAAAAAD8LDo0hyoHfZ6rUMQ8VwAAAACkZjTPFQAAAAC0FCRXAAAAAOAHJFcAAAAAmo/KSumMM2qXyspgR+Ml6AUtAAAAAKDRamqkRYv2rYcQeq4AAAAAwA9IrgAAAADAD0iuAAAAAMAPSK4AAAAAwA9IrgAAAADAD6gW2ADDMCTVzsYMAAAAIIQ4HPvWS0oCXjGwLieoyxEOheSqAaWlpZKktLS0IEcCAAAA4KBSUprsrUpLS2W32w/ZxmQ0JgVrZdxut3JychQbGyuTyRTscFqkkpISpaWlaefOnYqLiwt2OBDnJFRxXkIP5yT0cE5CE+cl9HBOjoxhGCotLVVKSorCwg59VxU9Vw0ICwvTcccdF+wwWoW4uDj+c4cYzklo4ryEHs5J6OGchCbOS+jhnPjucD1WdShoAQAAAAB+QHIFAAAAAH5AcoWgiIyM1LRp0xQZGRnsUPA/nJPQxHkJPZyT0MM5CU2cl9DDOQk8CloAAAAAgB/QcwUAAAAAfkByBQAAAAB+QHIFAAAAAH5AcgUAAAAAfkByBb+YPXu2OnToIKvVqkGDBmndunUHbTt//nyZTCavxWq1erUxDENTp05VcnKyoqKilJGRoS1btgT6MFocf5+XSZMm1WszevToQB9Gi+LLOZGkoqIi3XjjjUpOTlZkZKS6deumRYsWHdU+4c3f52T69On1/p/06NEj0IfR4vhyXkaMGFHvMzeZTDrjjDM8bfi9cvT8fU74nXL0fP35NXPmTHXv3l1RUVFKS0vTbbfdpsrKyqPaJw5gAEdpwYIFhsViMV5++WVj06ZNxjXXXGPEx8cb+fn5DbafN2+eERcXZ+Tm5nqWvLw8rzaPPPKIYbfbjffff9/47rvvjLPOOsvo2LGjUVFR0RSH1CIE4rxMnDjRGD16tFebwsLCpjicFsHXc1JVVWUMGDDAGDt2rLFmzRpj27ZtxqpVq4wNGzYc8T7hLRDnZNq0aUbv3r29/p/s2bOnqQ6pRfD1vPz2229en/fGjRsNs9lszJs3z9OG3ytHJxDnhN8pR8fXc/Laa68ZkZGRxmuvvWZs27bNWLJkiZGcnGzcdtttR7xP1EdyhaM2cOBA48Ybb/Q8rqmpMVJSUowZM2Y02H7evHmG3W4/6P7cbreRlJRkPP74455tRUVFRmRkpPHGG2/4Le6Wzt/nxTBqfxGeffbZfoyydfH1nDz//PNGp06dDKfT6bd9wlsgzsm0adOMvn37+jvUVuVov9dPP/20ERsba5SVlRmGwe8Vf/D3OTEMfqccLV/PyY033miMHDnSa1tWVpYxZMiQI94n6mNYII6K0+nUN998o4yMDM+2sLAwZWRk6Isvvjjo68rKytS+fXulpaXp7LPP1qZNmzzPbdu2TXl5eV77tNvtGjRo0CH3iX0CcV7qrFq1SgkJCerevbuuv/56/fbbbwE5hpbmSM7Jhx9+qMGDB+vGG29UYmKi+vTpo4cfflg1NTVHvE/sE4hzUmfLli1KSUlRp06ddOmll2rHjh0BPZaWxB/f67lz52rChAmKiYmRxO+VoxWIc1KH3ylH5kjOycknn6xvvvnGM8zvl19+0aJFizR27Ngj3ifqI7nCUdm7d69qamqUmJjotT0xMVF5eXkNvqZ79+56+eWX9cEHH+if//yn3G63Tj75ZO3atUuSPK/zZZ/wFojzIkmjR4/Wq6++qhUrVujRRx/V6tWrNWbMmHp/WKK+Izknv/zyi95++23V1NRo0aJFuvfee/Xkk0/qwQcfPOJ9Yp9AnBNJGjRokObPn6/Fixfr+eef17Zt23TKKaeotLQ0oMfTUhzt93rdunXauHGjrr76as82fq8cnUCcE4nfKUfjSM7JJZdcovvvv19Dhw5VRESEOnfurBEjRugvf/nLEe8T9YUHOwC0PoMHD9bgwYM9j08++WT17NlTL7zwgh544IEgRta6Nea8TJgwwfN8enq6TjjhBHXu3FmrVq3Saaed1uQxt3Rut1sJCQn6+9//LrPZrP79+2v37t16/PHHNW3atGCH1yo15pyMGTPG0/6EE07QoEGD1L59e7355pu66qqrghV6qzF37lylp6dr4MCBwQ4F/3Owc8LvlKa1atUqPfzww/rb3/6mQYMGKTs7W7fccoseeOAB3XvvvcEOr8Wg5wpHpW3btjKbzcrPz/fanp+fr6SkpEbtIyIiQieeeKKys7MlyfO6o9lnaxeI89KQTp06qW3btodsg1pHck6Sk5PVrVs3mc1mz7aePXsqLy9PTqfTL+e5NQvEOWlIfHy8unXrxv+TRjqa77XD4dCCBQvqJbH8Xjk6gTgnDeF3SuMdyTm59957dfnll+vqq69Wenq6zj33XD388MOaMWOG3G43v1P8hOQKR8Visah///5asWKFZ5vb7daKFSu8ekEOpaamRj/88IOSk5MlSR07dlRSUpLXPktKSvTll182ep+tXSDOS0N27dql33777ZBtUOtIzsmQIUOUnZ0tt9vt2fbf//5XycnJslgsfjnPrVkgzklDysrKtHXrVv6fNNLRfK/feustVVVV6bLLLvPazu+VoxOIc9IQfqc03pGck/LycoWFef/pX3ehyDAMfqf4S7AraqD5W7BggREZGWnMnz/f+PHHH41rr73WiI+P95Txvvzyy427777b0/6+++4zlixZYmzdutX45ptvjAkTJhhWq9XYtGmTp80jjzxixMfHGx988IHx/fffG2effTYlc33k7/NSWlpq3HHHHcYXX3xhbNu2zVi+fLlx0kknGV27djUqKyuDcozNja/nZMeOHUZsbKxx0003GT///LPx0UcfGQkJCcaDDz7Y6H3i0AJxTm6//XZj1apVxrZt24y1a9caGRkZRtu2bY2CgoImP77mytfzUmfo0KHG+PHjG9wnv1eOjr/PCb9Tjp6v52TatGlGbGys8cYbbxi//PKLsXTpUqNz587GRRdd1Oh94vBIruAXzz33nHH88ccbFovFGDhwoPGf//zH89zw4cONiRMneh7feuutnraJiYnG2LFjjfXr13vtz+12G/fee6+RmJhoREZGGqeddprx888/N9XhtBj+PC/l5eXGqFGjjHbt2hkRERFG+/btjWuuuYYfuD7y5ZwYhmF8/vnnxqBBg4zIyEijU6dOxkMPPWS4XK5G7xOH5+9zMn78eCM5OdmwWCxGamqqMX78eCM7O7upDqfF8PW8/PTTT4YkY+nSpQ3uj98rR8+f54TfKf7hyzmprq42pk+fbnTu3NmwWq1GWlqaccMNNxi///57o/eJwzMZhmEEu/cMAAAAAJo77rkCAAAAAD8guQIAAAAAPyC5AgAAAAA/ILkCAAAAAD8guQIAAAAAPyC5AgAAAAA/ILkCAAAAAD8guQIAAAAAPyC5AgAExIgRI3TrrbcGOwwAAJoMyRUAIGRMmjRJJpNJjzzyiNf2999/XyaTyfN41apVMplM6t27t2pqarzaxsfHa/78+Yd9r127dslisahPnz4NPm8ymTxLTEyMunbtqkmTJumbb7457L6/++47nXXWWUpISJDValWHDh00fvx4FRQUHPa1AIDmi+QKABBSrFarHn30Uf3++++HbfvLL7/o1VdfPaL3mT9/vi666CKVlJToyy+/bLDNvHnzlJubq02bNmn27NkqKyvToEGDDvmee/bs0WmnnaY2bdpoyZIl2rx5s+bNm6eUlBQ5HI4jirUxqqurA7ZvAEDjkFwBAJrExx9/LLvdrtdee+2Q7TIyMpSUlKQZM2Ycdp8333yzpk2bpqqqKp9iMQxD8+bN0+WXX65LLrlEc+fObbBdfHy8kpKS1KFDB40aNUpvv/22Lr30Ut10000HTf7Wrl2r4uJivfTSSzrxxBPVsWNHnXrqqXr66afVsWNHT7tNmzbpzDPPVFxcnGJjY3XKKado69atkiS32637779fxx13nCIjI9WvXz8tXrzY89rt27fLZDJp4cKFGj58uKxWq+dzfemll9SzZ09ZrVb16NFDf/vb33z6bAAAR47kCgAQcK+//rouvvhivfbaa7r00ksP2dZsNuvhhx/Wc889p127dh2y7a233iqXy6XnnnvOp3hWrlyp8vJyZWRk6LLLLtOCBQsa3at02223qbS0VMuWLWvw+aSkJLlcLr333nsyDKPBNrt379awYcMUGRmpTz/9VN98842uvPJKuVwuSdIzzzyjJ598Uk888YS+//57ZWZm6qyzztKWLVu89nP33Xfrlltu0ebNm5WZmanXXntNU6dO1UMPPaTNmzfr4Ycf1r333qtXXnnFh08HAHCkSK4AAAE1e/Zs3XDDDfrXv/6lM888s1GvOffcc9WvXz9NmzbtkO2io6M1bdo0zZgxQ8XFxY2Oae7cuZowYYLMZrP69OmjTp066a233mrUa3v06CGptveoIX/84x/1l7/8RZdcconatm2rMWPG6PHHH1d+fr6nzezZs2W327VgwQINGDBA3bp10+TJk9W9e3dJ0hNPPKE///nPmjBhgrp3765HH31U/fr108yZM73e69Zbb9V5552njh07Kjk5WdOmTdOTTz7p2Xbeeefptttu0wsvvNDozwYAcORIrgAAAfP222/rtttu07JlyzR8+HDP9n//+9+y2WyepaGhgo8++qheeeUVbd68+ZDvcdVVV+nYY4/Vo48+2qiYioqK9O677+qyyy7zbLvssssOOjTwQHW9UfsX2DjQQw89pLy8PM2ZM0e9e/fWnDlz1KNHD/3www+SpA0bNuiUU05RREREvdeWlJQoJydHQ4YM8do+ZMiQep/FgAEDPOsOh0Nbt27VVVdd5fXZPvjgg57hhgCAwAoPdgAAgJbrxBNP1Pr16/Xyyy9rwIABnoRkwIAB2rBhg6ddYmJivdcOGzZMmZmZuueeezRp0qSDvkd4eLgeeughTZo0STfddNNhY3r99ddVWVmpQYMGebYZhiG3263//ve/6tat2yFfX5fg7H//VEOOPfZYXXjhhbrwwgv18MMP68QTT9QTTzyhV155RVFRUYeNszFiYmI862VlZZKkF1980evYpNqhlgCAwKPnCgAQMJ07d9bKlSv1wQcf6Oabb/Zsj4qKUpcuXTxLbGxsg69/5JFH9K9//UtffPHFId/nwgsvVO/evXXfffcdNqa5c+fq9ttv14YNGzzLd999p1NOOUUvv/zyYV8/c+ZMxcXFKSMj47Bt61gsFnXu3NlzX9cJJ5ygf//73w1W+IuLi1NKSorWrl3rtX3t2rXq1avXQd8jMTFRKSkp+uWXX7w+2y5duhw2EQQA+Ac9VwCAgOrWrZtWrlypESNGKDw8vN59Q4eSnp6uSy+9VM8+++xh2z7yyCPKzMw8ZJsNGzZo/fr1eu211zz3TtW5+OKLdf/99+vBBx9UeHjtr8eioiLl5eWpqqpK//3vf/XCCy/o/fff16uvvqr4+PgG3+Ojjz7SggULNGHCBHXr1k2GYehf//qXFi1apHnz5kmSbrrpJj333HOaMGGC7rnnHtntdv3nP//RwIED1b17d915552aNm2aOnfurH79+mnevHnasGHDYSst3nfffZoyZYrsdrtGjx6tqqoqff311/r999+VlZV12M8QAHB0SK4AAAHXvXt3ffrppxoxYoTMZrOefPLJRr/2/vvv18KFCw/bbuTIkRo5cqSWLl160DZz585Vr1696iVWUm0RjZtuukmLFi3SWWedJUmaPHmypNq5t1JTUzV06FCtW7dOJ5100kHfo1evXoqOjtbtt9+unTt3KjIyUl27dtVLL72kyy+/XFLtkMFPP/1Ud955p4YPHy6z2ax+/fp57rOaMmWKiouLdfvtt6ugoEC9evXShx9+qK5dux7yM7j66qsVHR2txx9/XHfeeadiYmKUnp6uW2+99ZCvAwD4h8k4WJ1YAAAAAECjcc8VAAAAAPgByRUAAAAA+AHJFQAAAAD4AckVAAAAAPgByRUAAAAA+AHJFQAAAAD4AckVAAAAAPgByRUAAAAA+AHJFQAAAAD4AckVAAAAAPgByRUAAAAA+MH/AwndDm6vSEGUAAAAAElFTkSuQmCC", "text/plain": [ - "
" + "
" ] }, "metadata": {}, "output_type": "display_data" }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "95th percentile of errors inside domain: 1.29\n" + ] + }, { "name": "stderr", "output_type": "stream", "text": [ - "/home/esben/envs/vscode/lib/python3.10/site-packages/numpy/core/fromnumeric.py:59: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", " return bound(*args, **kwds)\n", - "/home/esben/envs/vscode/lib/python3.10/site-packages/sklearn/utils/deprecation.py:151: FutureWarning: 'force_all_finite' was renamed to 'ensure_all_finite' in 1.6 and will be removed in 1.8.\n", + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/sklearn/utils/deprecation.py:151: FutureWarning: 'force_all_finite' was renamed to 'ensure_all_finite' in 1.6 and will be removed in 1.8.\n", " warnings.warn(\n", - "/home/esben/envs/vscode/lib/python3.10/site-packages/sklearn/utils/deprecation.py:151: FutureWarning: 'force_all_finite' was renamed to 'ensure_all_finite' in 1.6 and will be removed in 1.8.\n", + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/sklearn/utils/deprecation.py:151: FutureWarning: 'force_all_finite' was renamed to 'ensure_all_finite' in 1.6 and will be removed in 1.8.\n", " warnings.warn(\n", - "/home/esben/envs/vscode/lib/python3.10/site-packages/sklearn/metrics/pairwise.py:2466: DataConversionWarning: Data was converted to boolean for metric jaccard\n", + "/home/anton/projects/scikit-mol/.venv/lib/python3.12/site-packages/sklearn/metrics/pairwise.py:2466: DataConversionWarning: Data was converted to boolean for metric jaccard\n", " warnings.warn(msg, DataConversionWarning)\n" ] }, { - "name": "stdout", - "output_type": "stream", - "text": [ - "95th percentile of errors inside domain: 1.45\n", - "95th percentile of errors outside domain: 1.85\n", - "Fraction of samples outside domain: 0.04\n" + "ename": "IndexError", + "evalue": "index -1 is out of bounds for axis 0 with size 0", + "output_type": "error", + "traceback": [ + "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", + "\u001b[0;31mIndexError\u001b[0m Traceback (most recent call last)", + "Cell \u001b[0;32mIn[8], line 16\u001b[0m\n\u001b[1;32m 13\u001b[0m errors_out \u001b[38;5;241m=\u001b[39m abs_errors[in_domain \u001b[38;5;241m==\u001b[39m \u001b[38;5;241m-\u001b[39m\u001b[38;5;241m1\u001b[39m]\n\u001b[1;32m 15\u001b[0m \u001b[38;5;28mprint\u001b[39m(\u001b[38;5;124mf\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124m95th percentile of errors inside domain: \u001b[39m\u001b[38;5;132;01m{\u001b[39;00mnp\u001b[38;5;241m.\u001b[39mpercentile(errors_in,\u001b[38;5;250m \u001b[39m\u001b[38;5;241m95\u001b[39m)\u001b[38;5;132;01m:\u001b[39;00m\u001b[38;5;124m.2f\u001b[39m\u001b[38;5;132;01m}\u001b[39;00m\u001b[38;5;124m\"\u001b[39m)\n\u001b[0;32m---> 16\u001b[0m \u001b[38;5;28mprint\u001b[39m(\u001b[38;5;124mf\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124m95th percentile of errors outside domain: \u001b[39m\u001b[38;5;132;01m{\u001b[39;00m\u001b[43mnp\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mpercentile\u001b[49m\u001b[43m(\u001b[49m\u001b[43merrors_out\u001b[49m\u001b[43m,\u001b[49m\u001b[38;5;250;43m \u001b[39;49m\u001b[38;5;241;43m95\u001b[39;49m\u001b[43m)\u001b[49m\u001b[38;5;132;01m:\u001b[39;00m\u001b[38;5;124m.2f\u001b[39m\u001b[38;5;132;01m}\u001b[39;00m\u001b[38;5;124m\"\u001b[39m)\n\u001b[1;32m 17\u001b[0m \u001b[38;5;28mprint\u001b[39m(\u001b[38;5;124mf\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mFraction of samples outside domain: \u001b[39m\u001b[38;5;132;01m{\u001b[39;00m(in_domain\u001b[38;5;250m \u001b[39m\u001b[38;5;241m==\u001b[39m\u001b[38;5;250m \u001b[39m\u001b[38;5;241m-\u001b[39m\u001b[38;5;241m1\u001b[39m)\u001b[38;5;241m.\u001b[39mmean()\u001b[38;5;132;01m:\u001b[39;00m\u001b[38;5;124m.2f\u001b[39m\u001b[38;5;132;01m}\u001b[39;00m\u001b[38;5;124m\"\u001b[39m)\n", + "File \u001b[0;32m~/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/lib/_function_base_impl.py:4273\u001b[0m, in \u001b[0;36mpercentile\u001b[0;34m(a, q, axis, out, overwrite_input, method, keepdims, weights, interpolation)\u001b[0m\n\u001b[1;32m 4270\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m np\u001b[38;5;241m.\u001b[39many(weights \u001b[38;5;241m<\u001b[39m \u001b[38;5;241m0\u001b[39m):\n\u001b[1;32m 4271\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m \u001b[38;5;167;01mValueError\u001b[39;00m(\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mWeights must be non-negative.\u001b[39m\u001b[38;5;124m\"\u001b[39m)\n\u001b[0;32m-> 4273\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[43m_quantile_unchecked\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m 4274\u001b[0m \u001b[43m \u001b[49m\u001b[43ma\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mq\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43maxis\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mout\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43moverwrite_input\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mmethod\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mkeepdims\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mweights\u001b[49m\u001b[43m)\u001b[49m\n", + "File \u001b[0;32m~/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/lib/_function_base_impl.py:4550\u001b[0m, in \u001b[0;36m_quantile_unchecked\u001b[0;34m(a, q, axis, out, overwrite_input, method, keepdims, weights)\u001b[0m\n\u001b[1;32m 4541\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m\u001b[38;5;250m \u001b[39m\u001b[38;5;21m_quantile_unchecked\u001b[39m(a,\n\u001b[1;32m 4542\u001b[0m q,\n\u001b[1;32m 4543\u001b[0m axis\u001b[38;5;241m=\u001b[39m\u001b[38;5;28;01mNone\u001b[39;00m,\n\u001b[0;32m (...)\u001b[0m\n\u001b[1;32m 4547\u001b[0m keepdims\u001b[38;5;241m=\u001b[39m\u001b[38;5;28;01mFalse\u001b[39;00m,\n\u001b[1;32m 4548\u001b[0m weights\u001b[38;5;241m=\u001b[39m\u001b[38;5;28;01mNone\u001b[39;00m):\n\u001b[1;32m 4549\u001b[0m \u001b[38;5;250m \u001b[39m\u001b[38;5;124;03m\"\"\"Assumes that q is in [0, 1], and is an ndarray\"\"\"\u001b[39;00m\n\u001b[0;32m-> 4550\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[43m_ureduce\u001b[49m\u001b[43m(\u001b[49m\u001b[43ma\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 4551\u001b[0m \u001b[43m \u001b[49m\u001b[43mfunc\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43m_quantile_ureduce_func\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 4552\u001b[0m \u001b[43m \u001b[49m\u001b[43mq\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mq\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 4553\u001b[0m \u001b[43m \u001b[49m\u001b[43mweights\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mweights\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 4554\u001b[0m \u001b[43m \u001b[49m\u001b[43mkeepdims\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mkeepdims\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 4555\u001b[0m \u001b[43m \u001b[49m\u001b[43maxis\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43maxis\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 4556\u001b[0m \u001b[43m \u001b[49m\u001b[43mout\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mout\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 4557\u001b[0m \u001b[43m \u001b[49m\u001b[43moverwrite_input\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43moverwrite_input\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 4558\u001b[0m \u001b[43m \u001b[49m\u001b[43mmethod\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mmethod\u001b[49m\u001b[43m)\u001b[49m\n", + "File \u001b[0;32m~/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/lib/_function_base_impl.py:3894\u001b[0m, in \u001b[0;36m_ureduce\u001b[0;34m(a, func, keepdims, **kwargs)\u001b[0m\n\u001b[1;32m 3891\u001b[0m index_out \u001b[38;5;241m=\u001b[39m (\u001b[38;5;241m0\u001b[39m, ) \u001b[38;5;241m*\u001b[39m nd\n\u001b[1;32m 3892\u001b[0m kwargs[\u001b[38;5;124m'\u001b[39m\u001b[38;5;124mout\u001b[39m\u001b[38;5;124m'\u001b[39m] \u001b[38;5;241m=\u001b[39m out[(\u001b[38;5;28mEllipsis\u001b[39m, ) \u001b[38;5;241m+\u001b[39m index_out]\n\u001b[0;32m-> 3894\u001b[0m r \u001b[38;5;241m=\u001b[39m \u001b[43mfunc\u001b[49m\u001b[43m(\u001b[49m\u001b[43ma\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mkwargs\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 3896\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m out \u001b[38;5;129;01mis\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m:\n\u001b[1;32m 3897\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m out\n", + "File \u001b[0;32m~/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/lib/_function_base_impl.py:4727\u001b[0m, in \u001b[0;36m_quantile_ureduce_func\u001b[0;34m(a, q, weights, axis, out, overwrite_input, method)\u001b[0m\n\u001b[1;32m 4725\u001b[0m arr \u001b[38;5;241m=\u001b[39m a\u001b[38;5;241m.\u001b[39mcopy()\n\u001b[1;32m 4726\u001b[0m wgt \u001b[38;5;241m=\u001b[39m weights\n\u001b[0;32m-> 4727\u001b[0m result \u001b[38;5;241m=\u001b[39m \u001b[43m_quantile\u001b[49m\u001b[43m(\u001b[49m\u001b[43marr\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 4728\u001b[0m \u001b[43m \u001b[49m\u001b[43mquantiles\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mq\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 4729\u001b[0m \u001b[43m \u001b[49m\u001b[43maxis\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43maxis\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 4730\u001b[0m \u001b[43m \u001b[49m\u001b[43mmethod\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mmethod\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 4731\u001b[0m \u001b[43m \u001b[49m\u001b[43mout\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mout\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 4732\u001b[0m \u001b[43m \u001b[49m\u001b[43mweights\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mwgt\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 4733\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m result\n", + "File \u001b[0;32m~/projects/scikit-mol/.venv/lib/python3.12/site-packages/numpy/lib/_function_base_impl.py:4849\u001b[0m, in \u001b[0;36m_quantile\u001b[0;34m(arr, quantiles, axis, method, out, weights)\u001b[0m\n\u001b[1;32m 4842\u001b[0m arr\u001b[38;5;241m.\u001b[39mpartition(\n\u001b[1;32m 4843\u001b[0m np\u001b[38;5;241m.\u001b[39munique(np\u001b[38;5;241m.\u001b[39mconcatenate(([\u001b[38;5;241m0\u001b[39m, \u001b[38;5;241m-\u001b[39m\u001b[38;5;241m1\u001b[39m],\n\u001b[1;32m 4844\u001b[0m previous_indexes\u001b[38;5;241m.\u001b[39mravel(),\n\u001b[1;32m 4845\u001b[0m next_indexes\u001b[38;5;241m.\u001b[39mravel(),\n\u001b[1;32m 4846\u001b[0m ))),\n\u001b[1;32m 4847\u001b[0m axis\u001b[38;5;241m=\u001b[39m\u001b[38;5;241m0\u001b[39m)\n\u001b[1;32m 4848\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m supports_nans:\n\u001b[0;32m-> 4849\u001b[0m slices_having_nans \u001b[38;5;241m=\u001b[39m np\u001b[38;5;241m.\u001b[39misnan(\u001b[43marr\u001b[49m\u001b[43m[\u001b[49m\u001b[38;5;241;43m-\u001b[39;49m\u001b[38;5;241;43m1\u001b[39;49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m]\u001b[49m)\n\u001b[1;32m 4850\u001b[0m \u001b[38;5;28;01melse\u001b[39;00m:\n\u001b[1;32m 4851\u001b[0m slices_having_nans \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;01mNone\u001b[39;00m\n", + "\u001b[0;31mIndexError\u001b[0m: index -1 is out of bounds for axis 0 with size 0" ] } ], "source": [ - "plt.figure(figsize=(4, 3))\n", + "plt.figure(figsize=(10, 6))\n", "plt.scatter(knn_scores, abs_errors, alpha=0.5)\n", - "plt.axvline(x=knn_ad.threshold_, color='r', linestyle='--', label='AD Threshold')\n", - "plt.xlabel('k-NN AD Score')\n", - "plt.ylabel('Absolute Prediction Error')\n", - "plt.title('Prediction Errors vs k-NN AD Scores')\n", + "plt.axvline(x=knn_ad.threshold_, color=\"r\", linestyle=\"--\", label=\"AD Threshold\")\n", + "plt.xlabel(\"k-NN AD Score\")\n", + "plt.ylabel(\"Absolute Prediction Error\")\n", + "plt.title(\"Prediction Errors vs k-NN AD Scores\")\n", "plt.legend()\n", "plt.show()\n", "\n", "# Calculate error statistics\n", - "in_domain = knn_ad.predict(binary_fp_pipe.named_steps['fp'].transform(X_test))\n", + "in_domain = knn_ad.predict(binary_fp_pipe.named_steps[\"fp\"].transform(X_test))\n", "errors_in = abs_errors[in_domain == 1]\n", "errors_out = abs_errors[in_domain == -1]\n", "\n", @@ -726,14 +241,6 @@ "print(f\"Fraction of samples outside domain: {(in_domain == -1).mean():.2f}\")" ] }, - { - "cell_type": "markdown", - "id": "10e69073", - "metadata": {}, - "source": [ - "There's some diffence in the errors distribution inside and outside the domain threshold, but maybe not as clear-cut as we could have wished for. The fraction of samples outside the domain in the test-set are close the 5% that corresponds to the threshold estimated from the validation set fractile of 95%." - ] - }, { "cell_type": "markdown", "id": "09bdc3b2", @@ -747,7 +254,7 @@ }, { "cell_type": "code", - "execution_count": 12, + "execution_count": null, "id": "fe4a6819", "metadata": {}, "outputs": [ @@ -1197,108 +704,92 @@ } ], "source": [ - "# Create pipeline for count-based fingerprints AD estimation with PCA, scaling and leverage\n", - "count_fp_pipe = Pipeline([\n", - " ('fp', MorganFingerprintTransformer(fpSize=2048, radius=2, useCounts=True)),\n", - " ('pca', PCA(n_components=0.9)), # Keep 90% of variance\n", - " ('scaler', StandardScaler()),\n", - " ('leverage', LeverageApplicabilityDomain())\n", - "])\n", + "# Create pipeline for count-based fingerprints with PCA\n", + "count_fp_pipe = Pipeline(\n", + " [\n", + " (\"fp\", MorganFingerprintTransformer(fpSize=2048, radius=2, useCounts=True)),\n", + " (\"pca\", PCA(n_components=0.9)), # Keep 90% of variance\n", + " (\"scaler\", StandardScaler()),\n", + " (\"rf\", RandomForestRegressor(n_estimators=100, random_state=42)),\n", + " ]\n", + ")\n", "\n", "# Train the model\n", - "count_fp_pipe.fit(X_train, y_train)" - ] - }, - { - "cell_type": "code", - "execution_count": 13, - "id": "57d73a11", - "metadata": {}, - "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/esben/envs/vscode/lib/python3.10/site-packages/numpy/core/fromnumeric.py:59: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", - " return bound(*args, **kwds)\n", - "/home/esben/envs/vscode/lib/python3.10/site-packages/sklearn/utils/deprecation.py:151: FutureWarning: 'force_all_finite' was renamed to 'ensure_all_finite' in 1.6 and will be removed in 1.8.\n", - " warnings.warn(\n", - "/home/esben/envs/vscode/lib/python3.10/site-packages/sklearn/utils/deprecation.py:151: FutureWarning: 'force_all_finite' was renamed to 'ensure_all_finite' in 1.6 and will be removed in 1.8.\n", - " warnings.warn(\n", - "/home/esben/envs/vscode/lib/python3.10/site-packages/numpy/core/fromnumeric.py:59: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", - " return bound(*args, **kwds)\n", - "/home/esben/envs/vscode/lib/python3.10/site-packages/sklearn/utils/deprecation.py:151: FutureWarning: 'force_all_finite' was renamed to 'ensure_all_finite' in 1.6 and will be removed in 1.8.\n", - " warnings.warn(\n" - ] - } - ], - "source": [ + "count_fp_pipe.fit(X_train, y_train)\n", + "\n", + "# Get predictions and errors\n", + "y_pred_test = count_fp_pipe.predict(X_test)\n", + "abs_errors = np.abs(y_test - y_pred_test)\n", "\n", - "X_val_transformed = count_fp_pipe[:-1].transform(X_val) #Index into pipeline to get all the pipeline up to thelast step before the AD estimator\n", - "count_fp_pipe.named_steps['leverage'].fit_threshold(X_val_transformed, target_percentile=95)\n", + "# Create and fit leverage AD estimator\n", + "leverage_ad = LeverageApplicabilityDomain()\n", + "X_train_transformed = count_fp_pipe.named_steps[\"scaler\"].transform(\n", + " count_fp_pipe.named_steps[\"pca\"].transform(\n", + " count_fp_pipe.named_steps[\"fp\"].transform(X_train)\n", + " )\n", + ")\n", + "leverage_ad.fit(X_train_transformed)\n", "\n", + "# Fit threshold using validation set\n", + "X_val_transformed = count_fp_pipe.named_steps[\"scaler\"].transform(\n", + " count_fp_pipe.named_steps[\"pca\"].transform(\n", + " count_fp_pipe.named_steps[\"fp\"].transform(X_val)\n", + " )\n", + ")\n", + "leverage_ad.fit_threshold(X_val_transformed)\n", "\n", "# Get AD scores for test set\n", - "X_test_transformed = count_fp_pipe[:-1].transform(X_test) #Index into pipeline to get the last step before the AD estimator \n", - "leverage_raw_scores = count_fp_pipe.named_steps['leverage'].transform(X_test_transformed)" + "X_test_transformed = count_fp_pipe.named_steps[\"scaler\"].transform(\n", + " count_fp_pipe.named_steps[\"pca\"].transform(\n", + " count_fp_pipe.named_steps[\"fp\"].transform(X_test)\n", + " )\n", + ")\n", + "leverage_scores = leverage_ad.transform(X_test_transformed)" ] }, { "cell_type": "markdown", - "id": "fd5c6718", + "id": "d7723e37", "metadata": {}, "source": [ - "As before, let's visualize the relationship between prediction errors and leverage scores and look at the fractiles errors." + "Visualize the relationship between prediction errors and leverage scores:" ] }, { "cell_type": "code", - "execution_count": 15, - "id": "41434c9d", + "execution_count": null, + "id": "57d73a11", "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ + "/home/esben/envs/vscode/lib/python3.10/site-packages/numpy/core/fromnumeric.py:59: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n", + "/home/esben/envs/vscode/lib/python3.10/site-packages/sklearn/utils/deprecation.py:151: FutureWarning: 'force_all_finite' was renamed to 'ensure_all_finite' in 1.6 and will be removed in 1.8.\n", + " warnings.warn(\n", "/home/esben/envs/vscode/lib/python3.10/site-packages/sklearn/utils/deprecation.py:151: FutureWarning: 'force_all_finite' was renamed to 'ensure_all_finite' in 1.6 and will be removed in 1.8.\n", " warnings.warn(\n", + "/home/esben/envs/vscode/lib/python3.10/site-packages/numpy/core/fromnumeric.py:59: FutureWarning: 'Series.swapaxes' is deprecated and will be removed in a future version. Please use 'Series.transpose' instead.\n", + " return bound(*args, **kwds)\n", "/home/esben/envs/vscode/lib/python3.10/site-packages/sklearn/utils/deprecation.py:151: FutureWarning: 'force_all_finite' was renamed to 'ensure_all_finite' in 1.6 and will be removed in 1.8.\n", " warnings.warn(\n" ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "95th percentile of errors inside domain: 1.50\n", - "95th percentile of errors outside domain: 1.23\n", - "Fraction of samples outside domain: 0.05\n" - ] - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAX0AAAE8CAYAAAAsfWGYAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAACU8UlEQVR4nOydd3gc1dX/P1O2a9WsZstyrxgXMM00UwwGE8CEFuD3YjqEHgIkpGFCEhOqCfACSQAneQOh19CMqaaDjcG9d1WrbN+dcn9/jHatVbNWlizJns/z7KPdO+3OaPfMnXPP+R5JCCGwsbGxsdknkHu6AzY2NjY2ew7b6NvY2NjsQ9hG38bGxmYfwjb6NjY2NvsQttG3sbGx2Yewjb6NjY3NPoRt9G1sbGz2IWyjb2NjY7MPYRt9Gxsbm30I2+j3EoYMGcJFF12U+vzhhx8iSRIffvhhlx1DkiRmz57dZfuzsbHpe9hGH5g3bx6SJKVebrebUaNGce2111JZWdnT3cuIN998s9cZ9tmzZ6dd3+avioqKnu5ir2Tjxo1IksS9997b013p85imyT//+U8OPfRQ8vPz8fv9jBo1igsvvJAvvviip7u3R1F7ugO9id///vcMHTqUWCzGwoULefTRR3nzzTdZunQpXq93j/bl6KOPJhqN4nQ6M9ruzTff5JFHHmnV8EejUVS15/7ljz76KFlZWS3ac3Nz93xnbPYprr/+eh555BFOP/10LrjgAlRVZdWqVbz11lsMGzaMww47rKe7uMewjX4TTj75ZA466CAALrvsMvr168f999/Pq6++ynnnndfqNuFwGJ/P1+V9kWUZt9vdpfvs6v1lyllnnUVBQUFG28RiMZxOJ7Lc8qF0d6+9aZokEokevy57C0IIYrEYHo+np7uSRmVlJf/7v//L5Zdfzl//+te0ZXPnzqW6unqP9UXXdUzTzHgw15XY7p12OO644wDYsGEDABdddBFZWVmsW7eOGTNm4Pf7ueCCCwDLgMydO5dx48bhdrspLi7myiuvpK6uLm2fQgj+8Ic/MHDgQLxeL8ceeyzLli1rcey2fPpffvklM2bMIC8vD5/Px4QJE3jwwQdT/XvkkUcA0twnSVrz6S9evJiTTz6Z7OxssrKyOP7441s87ibdX59++ik33XQThYWF+Hw+zjjjjC79wSTP+T//+Q+/+c1vKC0txev1EggE2r324XCYn//855SVleFyuRg9ejT33nsvzQVkJUni2muv5d///jfjxo3D5XLx9ttvA/Cf//yHyZMn4/f7yc7OZvz48anr2hqappGfn8/FF1/cYlkgEMDtdnPzzTen2h566CHGjRuH1+slLy+Pgw46iKeffrorLhvxeJzbb7+dESNG4HK5KCsr49ZbbyUej6fW2X///Tn22GNbbGuaJqWlpZx11llpbR35Lg8ZMoQf/ehHvPPOOxx00EF4PB4ef/xxAJ566imOO+44ioqKcLlc7Lfffjz66KOtHn/27NkMGDAg9XtYvnx5izkugPr6em688cbU/3nEiBH8+c9/xjTNdq/Phg0bEEJwxBFHtFgmSRJFRUUtjvOzn/2MIUOG4HK5GDhwIBdeeCE1NTWpdaqqqrj00kspLi7G7XYzceJE/vGPf6Ttp6l7bu7cuQwfPhyXy8Xy5csBWLlyJWeddRb5+fm43W4OOuggXnvttbR9aJrGHXfcwciRI3G73fTr148jjzyS+fPnt3vO7WGP9Nth3bp1APTr1y/Vpus606dP58gjj+Tee+9NuX2uvPJK5s2bx8UXX8z111/Phg0bePjhh1m8eDGffvopDocDgN/97nf84Q9/YMaMGcyYMYNFixZx4oknkkgkdtmf+fPn86Mf/Yj+/ftzww03UFJSwooVK3jjjTe44YYbuPLKK9m+fTvz58/nX//61y73t2zZMo466iiys7O59dZbcTgcPP744xxzzDF89NFHHHrooWnrX3fddeTl5XH77bezceNG5s6dy7XXXsuzzz7boetZW1vbok1V1RbunTvvvBOn08nNN99MPB5PjYpau/ZCCE477TQ++OADLr30UiZNmsQ777zDLbfcwrZt23jggQfS9v3+++/z3HPPce2111JQUMCQIUOYP38+5513Hscffzx//vOfAVixYgWffvopN9xwQ6vn4nA4OOOMM3jppZd4/PHH00Zur7zyCvF4nJ/85CcA/O1vf+P666/nrLPO4oYbbiAWi/H999/z5Zdfcv7553fo2rWFaZqcdtppLFy4kCuuuIKxY8fyww8/8MADD7B69WpeeeUVAM4991xmz55NRUUFJSUlqe0XLlzI9u3bU32Fjn+XAVatWsV5553HlVdeyeWXX87o0aMBy5U3btw4TjvtNFRV5fXXX+fqq6/GNE2uueaa1Pa33XYbd999N6eeeirTp09nyZIlTJ8+nVgslnaekUiEqVOnsm3bNq688koGDRrEZ599xm233UZ5eTlz585t8xoNHjwYgOeff56zzz67XVdtKBTiqKOOYsWKFVxyySUceOCB1NTU8Nprr7F161YKCgqIRqMcc8wxrF27lmuvvZahQ4fy/PPPc9FFF1FfX9/iO/PUU08Ri8W44oorcLlc5Ofns2zZMo444ghKS0v55S9/ic/n47nnnmPmzJm8+OKLnHHGGYA1HzZnzhwuu+wyDjnkEAKBAN988w2LFi3ihBNOaPM82kXYiKeeekoA4r333hPV1dViy5Yt4j//+Y/o16+f8Hg8YuvWrUIIIWbNmiUA8ctf/jJt+08++UQA4t///nda+9tvv53WXlVVJZxOpzjllFOEaZqp9X71q18JQMyaNSvV9sEHHwhAfPDBB0IIIXRdF0OHDhWDBw8WdXV1acdpuq9rrrlGtPVvBcTtt9+e+jxz5kzhdDrFunXrUm3bt28Xfr9fHH300S2uz7Rp09KO9bOf/UwoiiLq6+tbPV6S22+/XQCtvkaPHt3inIcNGyYikUjaPtq69q+88ooAxB/+8Ie09rPOOktIkiTWrl2bdv6yLItly5alrXvDDTeI7Oxsoet6u+fRnHfeeUcA4vXXX09rnzFjhhg2bFjq8+mnny7GjRuX0b6FEGLDhg0CEPfcc0+b6/zrX/8SsiyLTz75JK39scceE4D49NNPhRBCrFq1SgDioYceSlvv6quvFllZWanr3dHvshBCDB48WADi7bffbtGv5v8/IYSYPn162nWpqKgQqqqKmTNnpq03e/bsFr+HO++8U/h8PrF69eq0dX/5y18KRVHE5s2bWxyvKRdeeKEARF5enjjjjDPEvffeK1asWNFivd/97ncCEC+99FKLZcnv/ty5cwUg/u///i+1LJFIiClTpoisrCwRCASEEDv/f9nZ2aKqqiptX8cff7wYP368iMViafs//PDDxciRI1NtEydOFKecckq755YptnunCdOmTaOwsJCysjJ+8pOfkJWVxcsvv0xpaWnaej/96U/TPj///PPk5ORwwgknUFNTk3pNnjyZrKwsPvjgAwDee+89EokE1113XZrb5cYbb9xl3xYvXsyGDRu48cYbW4yMm+6roxiGwbvvvsvMmTMZNmxYqr1///6cf/75LFy4kEAgkLbNFVdckXaso446CsMw2LRpU4eO+eKLLzJ//vy011NPPdVivVmzZrXpF25+7d98800UReH6669Pa//5z3+OEIK33norrX3q1Knst99+aW25ubmEw+GMH5mPO+44CgoK0p506urqmD9/Pueee27a/rdu3crXX3+d0f47wvPPP8/YsWMZM2ZM2ncv6ZpMfvdGjRrFpEmT0vpqGAYvvPACp556aup6d/S7nGTo0KFMnz69Rb+a/v8aGhqoqalh6tSprF+/noaGBgAWLFiArutcffXVadted911rZ7nUUcdRV5eXlq/pk2bhmEYfPzxx+1ep6eeeoqHH36YoUOH8vLLL3PzzTczduxYjj/+eLZt25Za78UXX2TixImpkXZTkt/9N998k5KSkrR5PofDwfXXX08oFOKjjz5K2+7MM8+ksLAw9bm2tpb333+fc845h2AwmDqXHTt2MH36dNasWZPqU25uLsuWLWPNmjXtnl8m2O6dJjzyyCOMGjUKVVUpLi5m9OjRLSYQVVVl4MCBaW1r1qyhoaGhhW8wSVVVFUDKOI4cOTJteWFhIXl5ee32Lelq2n///Tt+Qu1QXV1NJBJJPY43ZezYsZimyZYtWxg3blyqfdCgQWnrJfvc3NfbFkcffXSHJnKHDh3aantr137Tpk0MGDAAv9/f4hySy3e176uvvprnnnuOk08+mdLSUk488UTOOeccTjrppHb7qaoqZ555Jk8//TTxeByXy8VLL72EpmlpRv8Xv/gF7733HocccggjRozgxBNP5Pzzz2/Vx5wpa9asYcWKFWlGpSnJ7x5YLp5f/epXbNu2jdLSUj788EOqqqrS+trR73KStv5Xn376Kbfffjuff/45kUgkbVlDQwM5OTmp/82IESPSlufn57f4PaxZs4bvv/++Q+fZGrIsc80113DNNdewY8cOPv30Ux577DHeeustfvKTn/DJJ58A1u/szDPPbHdfmzZtYuTIkS1sQ0e/c2vXrkUIwW9/+1t++9vftnk+paWl/P73v+f0009n1KhR7L///px00kn8z//8DxMmTGi3j+1hG/0mHHLIIanonbZwuVwt/tmmaVJUVMS///3vVrdp64va11AUpdV20cUVN9sa5bd27bti30VFRXz33Xe88847vPXWW7z11ls89dRTXHjhhS0m55rzk5/8hMcff5y33nqLmTNn8txzzzFmzBgmTpyYWmfs2LGsWrWKN954g7fffpsXX3yR//3f/+V3v/sdd9xxx26dj2majB8/nvvvv7/V5WVlZan35557LrfddhvPP/88N954I8899xw5OTlpN7dMv8utXc9169Zx/PHHM2bMGO6//37KyspwOp28+eabPPDAA7uceG3rPE844QRuvfXWVpePGjWqw/vq168fp512Gqeddlpq/mrTpk0p339X0/waJc//5ptvbvUpCXbeCI8++mjWrVvHq6++yrvvvsvf//53HnjgAR577DEuu+yyTvXHNvpdwPDhw3nvvfc44ogj2g1XS36p1qxZk+ZSqa6u3uVoefjw4QAsXbqUadOmtbleR109hYWFeL1eVq1a1WLZypUrkWU5zWD0VgYPHsx7771HMBhMG+2vXLkytbwjOJ1OTj31VE499VRM0+Tqq6/m8ccf57e//W2LkWhTjj76aPr378+zzz7LkUceyfvvv8+vf/3rFuv5fD7OPfdczj33XBKJBD/+8Y/54x//yG233bZbIaPDhw9nyZIlHH/88bv83w8dOpRDDjmEZ599lmuvvZaXXnqJmTNn4nK50vbXke9ye7z++uvE43Fee+21tKfD5q6h5P9m7dq1aaPhHTt2tPg9DB8+nFAo1O53vzMcdNBBfPTRR5SXlzN48GCGDx/O0qVL291m8ODBfP/995immTYI6eh3LvnbdzgcHTqfZJTYxRdfTCgU4uijj2b27NmdNvq2T78LOOecczAMgzvvvLPFMl3Xqa+vB6w5A4fDwUMPPZQ2Om4v8iDJgQceyNChQ5k7d25qf0ma7isZt958neYoisKJJ57Iq6++ysaNG1PtlZWVPP300xx55JFkZ2fvsl89zYwZMzAMg4cffjit/YEHHkCSJE4++eRd7mPHjh1pn2VZTj0+Nw17bA1ZljnrrLN4/fXX+de//oWu62nuktb273Q62W+//RBCoGnaLvvXHueccw7btm3jb3/7W4tl0WiUcDic1nbuuefyxRdf8OSTT1JTU9Oirx39LrdH8omw6feyoaGhxfzN8ccfj6qqLUI5m/8vk/36/PPPeeedd1osq6+vR9f1NvtTUVGRCpNsSiKRYMGCBciynLqxn3nmmSxZsoSXX365xfrJ85kxYwYVFRVp8yO6rvPQQw+RlZXF1KlT2+wLWE+WxxxzDI8//jjl5eUtljcNg27+3cnKymLEiBG7/F62hz3S7wKmTp3KlVdeyZw5c/juu+848cQTcTgcrFmzhueff54HH3yQs846i8LCQm6++WbmzJnDj370I2bMmMHixYt56623dunrlmWZRx99lFNPPZVJkyZx8cUX079/f1auXMmyZctSP4bJkycDVgbi9OnTURQlLRyvKX/4wx+YP38+Rx55JFdffTWqqvL4448Tj8e5++67u/YiAS+88EKrGbknnHACxcXFndrnqaeeyrHHHsuvf/1rNm7cyMSJE3n33Xd59dVXufHGG1NPSO1x2WWXUVtby3HHHcfAgQPZtGkTDz30EJMmTUr5advj3HPP5aGHHuL2229n/PjxLbY58cQTKSkp4YgjjqC4uJgVK1bw8MMPc8opp7SYi2iNBQsWtAhhBJg5cyb/8z//w3PPPcdVV13FBx98wBFHHIFhGKxcuZLnnnsuFUOf5JxzzuHmm2/m5ptvJj8/v8VIs6Pf5fY48cQTU09OV155JaFQiL/97W8UFRWlGbni4mJuuOEG7rvvPk477TROOukklixZkvo9NH1yueWWW3jttdf40Y9+xEUXXcTkyZMJh8P88MMPvPDCC2zcuLHN39DWrVs55JBDOO644zj++OMpKSmhqqqKZ555hiVLlnDjjTemtr3lllt44YUXOPvss7nkkkuYPHkytbW1vPbaazz22GNMnDiRK664gscff5yLLrqIb7/9liFDhvDCCy/w6aefMnfu3A79Tx955BGOPPJIxo8fz+WXX86wYcOorKzk888/Z+vWrSxZsgSA/fbbj2OOOYbJkyeTn5/PN998wwsvvMC11167y2O0SZfGAvVRkiGJX3/9dbvrzZo1S/h8vjaX//WvfxWTJ08WHo9H+P1+MX78eHHrrbeK7du3p9YxDEPccccdon///sLj8YhjjjlGLF26VAwePLjdkM0kCxcuFCeccILw+/3C5/OJCRMmpIXh6bourrvuOlFYWCgkSUoL36RZyKYQQixatEhMnz5dZGVlCa/XK4499ljx2Wefdej6tNXH5rQXstl0++T+nn/++Rb7aO/aB4NB8bOf/UwMGDBAOBwOMXLkSHHPPfekhZcmz/+aa65psf0LL7wgTjzxRFFUVCScTqcYNGiQuPLKK0V5eXm755XENE1RVlbWauioEEI8/vjj4uijjxb9+vUTLpdLDB8+XNxyyy2ioaGh3f0mQ/7aev3rX/8SQljhgn/+85/FuHHjhMvlEnl5eWLy5MnijjvuaPUYRxxxhADEZZdd1uaxO/JdHjx4cJvhhK+99pqYMGGCcLvdYsiQIeLPf/6zePLJJwUgNmzYkFpP13Xx29/+VpSUlAiPxyOOO+44sWLFCtGvXz9x1VVXpe0zGAyK2267TYwYMUI4nU5RUFAgDj/8cHHvvfeKRCLR5rkEAgHx4IMPiunTp4uBAwcKh8Mh/H6/mDJlivjb3/7W4nuyY8cOce2114rS0lLhdDrFwIEDxaxZs0RNTU1qncrKSnHxxReLgoIC4XQ6xfjx48VTTz2Vtp9dhdyuW7dOXHjhhaKkpEQ4HA5RWloqfvSjH4kXXnghtc4f/vAHccghh4jc3Fzh8XjEmDFjxB//+Md2z3dXSEJ08SycjY2NzW5QX19PXl4ef/jDH1qdH7HZPWyfvo2NTY8RjUZbtCXnuI455pg925l9BNunb2Nj02M8++yzzJs3jxkzZpCVlcXChQt55plnOPHEE7skj8GmJbbRt7Gx6TEmTJiAqqrcfffdBAKB1OTuH/7wh57u2l6L7dO3sbGx2Yewffo2NjY2+xC20bexsbHZh9jnfPqmabJ9+3b8fn+n1CltbGxsehtCCILBIAMGDNilPtU+Z/S3b9/eJzRlbGxsbDJly5YtLZRom7PPGf1kivSWLVv6hLaMjY2Nza4IBAKUlZV1SAJinzP6SZdOdna2bfR3l0QCkhmTf/wj9GCxZxsbm46p7O5zIZuBQICcnBwaGhpso7+7hMOQFFALhaBR4dPGxmbPkolds6N3bGxsbPYh9jn3TndjmoJt9VHCCR2fU6U014Ms21FCNjY2vQPb6Hcha6uCvLO0knXVIWK6gVtVGF6YxfT9ixlRtOsJFpt9ByEEuq5jGEZPd8Wmj+BwONosWZoJttHvItZWBXnq043UhhP0z3HjdXqIJHSWbm9ge0OUi48Y0iWG336S6PskEgnKy8tbFAy3sWkPSZIYOHBgq4WIMsE2+l2AaQreWVpJbTjByKKs1Ay63+0gy6WypirEu8sqGVaQtVsG2n6S6PuYpsmGDRtQFIUBAwbgdDrtJEGbXSKEoLq6mq1btzJy5MjdGvHbRr8L2FYfZV11iP457hY/YEmS6J/jZm1ViG31UcryvZ06xp56krDpXhKJBKZpUlZWhtfbue+Czb5JYWEhGzduRNM02+j3NOGETkw38Do9rS73OBUqAzHCibaLN7fHnnqSyBiPB5Yu3fnepsPsKlXexqY5XfVEaBv9LsDnVHGrCpGEjt/taLE8mjBwqQo+Z+cu9554kugUsgzjxu2549nY2Ow29nCjCyjN9TC8MIvyhhjNc92EEJQ3xBhRlEVpbudGwzufJFq/aXicCnHd6PSThI2Nzb6DbfS7AFmWmL5/Mfk+J2uqQgRjGrppEoxprKkKke9zcuK44k67Xpo+SbTG7j5JdJpEAmbPtl6JxJ49ts0+yUUXXcTMmTP3+HGPOeYYbrzxxt3ax+zZs5k0aVK76+yJ87ONfhcxosjPxUcMYf8BOdRHNDbWhKmPaIwvzdntSdbufpLoNJoGd9xhvTRtzx7bpsf4/PPPURSFU045pcWyjRs3IklS6uX3+xk3bhzXXHMNa9asaXOf8+bNS9uutdfGjRu78az2HXrU6D/66KNMmDAhJX42ZcoU3nrrrXa3ef755xkzZgxut5vx48fz5ptv7qHe7poRRX5+esxwfnbCKK47fiQ/O2EUV00dvttRNd39JGFjkwlPPPEE1113HR9//DHbt29vdZ333nuP8vJylixZwp/+9CdWrFjBxIkTWbBgQavrn3vuuZSXl6deU6ZM4fLLL09r66wkesJ+Ck2jR43+wIEDueuuu/j222/55ptvOO644zj99NNZtmxZq+t/9tlnnHfeeVx66aUsXryYmTNnMnPmTJYmI0h6AbIsUZbvZUxJNmX53i4zxN35JGHTSwiH237FYh1fNxrt2LqdIBQK8eyzz/LTn/6UU045hXnz5rW6Xr9+/SgpKWHYsGGcfvrpvPfeexx66KFceumlrWYhezweSkpKUi+n04nX601raxqmeO+999K/f3/69evHNddcg9bkSXPIkCHceeedXHjhhWRnZ3PFFVcAsHDhQo466ig8Hg9lZWVcf/31hJtch//93/9l5MiRuN1uiouLOeuss9L6aJomt956K/n5+ZSUlDB79uy05Zs3b+b0008nKyuL7OxszjnnHCorK9u8loZhcNNNN5Gbm0u/fv249dZbWzzJdwuil5GXlyf+/ve/t7rsnHPOEaecckpa26GHHiquvPLKDu+/oaFBAKKhoWG3+tlTGIYpNu8IixXlDWLzjrAwDLPnOhMKCQHWKxTquX70IaLRqFi+fLmIRqMtFyavZWuvGTPS1/V621536tT0dQsKWl+vEzzxxBPioIMOEkII8frrr4vhw4cL09z5HdywYYMAxOLFi1ts+/LLLwtAfPnll7s8ztSpU8UNN9zQon3WrFkiOztbXHXVVWLFihXi9ddfF16vV/z1r39NrTN48GCRnZ0t7r33XrF27drUy+fziQceeECsXr1afPrpp+KAAw4QF110kRBCiK+//looiiKefvppsXHjRrFo0SLx4IMPpvUnOztbzJ49W6xevVr84x//EJIkiXfffVcIIYRhGGLSpEniyCOPFN9884344osvxOTJk8XUJv+L22+/XUycODH1+c9//rPIy8sTL774oli+fLm49NJLhd/vF6effnqr16S9704mdq3XGH1d18UzzzwjnE6nWLZsWavrlJWViQceeCCt7Xe/+52YMGFCm/uNxWKioaEh9dqyZUufNvq9CtvoZ0xfN/qHH364mDt3rhBCCE3TREFBgfjggw9Sy9sz+itWrBCAePbZZ3d5nPaM/uDBg4Wu66m2s88+W5x77rmpz4MHDxYzZ85M2+7SSy8VV1xxRVrbJ598ImRZFtFoVLz44osiOztbBAKBNvtz5JFHprUdfPDB4he/+IUQQoh3331XKIoiNm/enFq+bNkyAYivvvpKCNHS6Pfv31/cfffdqc+apomBAwd2u9Hv8Tj9H374gSlTphCLxcjKyuLll19mv/32a3XdiooKiouL09qKi4upqKhoc/9z5szhjjvu6NI+29h0C6FQ28uaZ2BWVbW9bvPEry6aAF21ahVfffUVL7/8MgCqqnLuuefyxBNPcMwxx+xye9HoutjdJKNx48aluXr69+/PDz/8kLbOQQcdlPZ5yZIlfP/99/z73/9O609SFuOEE05g8ODBDBs2jJNOOomTTjqJM844Iy1resKECWn77N+/P1WN/4cVK1ZQVlaWNu+w3377kZuby4oVKzj44IPTtm1oaKC8vJxDDz001aaqKgcddFC3u3h63OiPHj2a7777joaGBl544QVmzZrFRx991Kbhz5TbbruNm266KfU5WVasr2ILru3FZFKEprvWbYcnnngCXdcZMGBAqk0Igcvl4uGHHyYnJ6fd7VesWAHA0KFDd6sfDkd6AqQkSZimmdbma3bOoVCIK6+8kuuvv77F/gYNGoTT6WTRokV8+OGHvPvuu/zud79j9uzZfP311+Tm5nb4uH2BHjf6TqeTESNGADB58mS+/vprHnzwQR5//PEW65aUlLSYGKmsrKSkpKTN/btcLlwuV9d2uofodYJrbjd89dXO9zZ7Lbqu889//pP77ruPE088MW3ZzJkzeeaZZ7jqqqva3N40Tf7yl78wdOhQDjjggO7ubgsOPPBAli9fnrI1raGqKtOmTWPatGncfvvt5Obm8v777/PjH/94l/sfO3YsW7ZsYcuWLalB5fLly6mvr291AJuTk0P//v358ssvOfroowHrGn/77bcceOCBnTzLjtHjRr85pmkSj8dbXTZlyhQWLFiQliQxf/58pkyZsod613P0SsE1RYFmj602eydvvPEGdXV1XHrppS1G9GeeeSZPPPFEmtHfsWMHFRUVRCIRli5dyty5c/nqq6/473//2yWa8Jnyi1/8gsMOO4xrr72Wyy67DJ/Px/Lly5k/fz4PP/wwb7zxBuvXr+foo48mLy+PN998E9M0GT16dIf2P23aNMaPH88FF1zA3Llz0XWdq6++mqlTp7ZwNSW54YYbuOuuuxg5ciRjxozh/vvvp76+vgvPunV61OjfdtttnHzyyQwaNIhgMMjTTz/Nhx9+yDvvvAPAhRdeSGlpKXPmzAGsizR16lTuu+8+TjnlFP7zn//wzTff8Ne//rUnT6Pb6bWCazb7DE888QTTpk1r1YVz5plncvfdd/P999+n6rNOmzYNAK/Xy+DBgzn22GP561//2u5IuzuZMGECH330Eb/+9a856qijEEIwfPhwzj33XAByc3N56aWXmD17NrFYjJEjR/LMM88wroPaUpIk8eqrr3Lddddx9NFHI8syJ510Eg899FCb2/z85z+nvLycWbNmIcsyl1xyCWeccQYNDQ1dcs5t9lV096xBO1x66aUsWLCA8vJycnJymDBhAr/4xS844YQTACv1eciQIWmxwM8//zy/+c1v2LhxIyNHjuTuu+9mxowZHT5mXyyMvqU2wgPzV5PrdbQq6BaMadRHNH52wqg9K7iWSMCDD1rvb7gBnM49d+w+SiwWY8OGDQwdOhS37RKzyYD2vjuZ2LUeHek/8cQT7S7/8MMPW7SdffbZnH322d3Uo95Jd0s3dxpNg1tvtd5ffbVt9G1s+gC29k4foNcKrtnY2PQ5bKPfB+i1gms9iGkKttRGWFkRYEttBNPsMS+ljU2fwh4a9gGSgmvbG6KsqbKKqXicCtGEwfb6GC6HzIjiLLbVR/eJuP1eF7pqY9OHsI1+HyEpuJY0dpWBGHHdJK6Z6KbMK4u38bZasdcbv14ZutoJejB+wqaP0lXfmYzcO7qu8/vf/56tW7d2ycFtMqOpdPPpk0rxuVR8LoVB+V6GFWSR63WwdHsDT326kbVVwZ7ubpfTPHTV73agyBJ+t4ORRVnUhhO8u6yyV7t6klmdkUikh3ti09dISkTvbp5DRiN9VVW55557uPDCC3froDadR5YlSnM9vPbddhK6yahi/z4Tt99rawVngKIo5ObmpjRbvF5vlxW8ttl7MU2T6upqvF4vqrp7DpqMtz7uuOP46KOPGDJkyG4d2Kbz9Brj53bDBx/sfN/N9NrQ1QxJyoZUtSeaZmPTDFmWGTRo0G4PEjI2+ieffDK//OUv+eGHH5g8eXILYaPTTjtttzpks2t6jfFTFOiAumJX0TR0tbUktb4SuipJEv3796eoqCit+IeNTXs4nU7k5gqqnSDjX8fVV18NwP33399imSRJrVbFsWmbzqhm7i3GL1OSoatLtzeQ5VLTRjzJ0NXxpTl9JnRVUZQe0aGx2bfJ2Cr0RSnR3kpnQw97jfHTNEjqHl1xBTha3oC6kvZCV8sbYnatYBubDtCj2js9QW/R3mkZeqgSSegp47Wr0MPm2zc3fnskdDEchqws630o1GW67bui6c0yrltPNSOKsjhx3N4bqmpj0x7drr3z0Ucfce+996aKIuy3337ccsstHHXUUZ3Z3T5HV6hmtha371IVxpfm7PXGb0SRn2HHZNnFZGxsOkHGRv///u//uPjii/nxj3+cqkLz6aefcvzxxzNv3jzOP//8Lu/k3kZXRd/sy8ZPlqVeG5ZpY9Obydjo//GPf+Tuu+/mZz/7Wart+uuv5/777+fOO++0jX4H6MroG9v42djYZELG8T/r16/n1FNPbdF+2mmnsWHDhi7p1N5Gc3Ewj0OxVTNtbGx6hIytSllZGQsWLGhRAee9997r0wXHu4vWInSGFfrI9Tgob4jtFaGHNjY2fYeMjf7Pf/5zrr/+er777jsOP/xwwPLpz5s3jweTVZRsgLbFwZZtD6DIEoos2aGHNjY2e5SMjf5Pf/pTSkpKuO+++3juuecAqxL8s88+y+mnn97lHeyrdCRCp3+Om3yvk/U14TajbzqTvLXHcLngjTd2vrexsen1ZGT0dV3nT3/6E5dccgkLFy7srj7tFXQkQqc+onHR4UOQJKlVo766MsAL32xjXXUIQ5jkeZyMKPL3HulkVYVTTunQqr365mVjsw+Rscrm3XffbatsdoCORuhENIMxJS2TKRasqOQvC9ZQHYzjVGVcqkwwqlMTSvQp3Xiwi57Y2PQmMo7eOf744/noo4+6oy97FbtT13Z1RZC/LFhDRSBGkd9Fod+Fx6nSENWoiyTYvCPSO3TjNQ3mzbNebQiHJec1lm5vINfr2Cd0/21sejO2ymY30Vl9HNMUvPDtFqqDcUqyXbgcliCXS5Vw+pzUhhNENJ01lcGe141PJODii633Z5/dQnunKzKPbWxsuhZbZbOb6Kw4WHIuwKlKONV0BUZJkshyqwRjOvXRRK/Xje81uv82NjYpMnbvmKbZ5itTgz9nzhwOPvhg/H4/RUVFzJw5k1WrVrW7zbx585AkKe3l3gMFPDpDUh9n/wE51Ec0NtaEqY9ojC/NadMnH07oGAJcqoJmtFQ0dSgyCd1EluRen7y1c16j9X56nApx3ej1Ny8bm72JjKyGpml4PB6+++479t9//90++EcffcQ111zDwQcfjK7r/OpXv+LEE09k+fLlLdxGTcnOzk67OfTmcnOZ6uP4nCp5HgfBqEZDVMPpk9POL6GbJHSTEUVZvT55a1/V/bex6c1k9GtzOBwMGjSoy1w4b7/9dtrnefPmUVRUxLfffsvRRx/d5naSJKVKzvUFMtHHKc31MKLIT004QVw3qA0nyHKrjSN8g4pAnJJsN2dOLu31fvBeo/tvY2OTImP3zq9//Wt+9atfUVtb2+WdaWhoACA/P7/d9UKhEIMHD6asrIzTTz+dZcuWtbluPB4nEAikvXozybmAQfle8nwucjwOIgmD6mCM6mCC/tlurj9+JKOKe64WQEdJnku+z8maqhDBmIZumgRjGmuqQnbmsY1ND5BxEZUDDjiAtWvXomkagwcPbuGGWbRoUac6Ypomp512GvX19e0mfn3++eesWbOGCRMm0NDQwL333svHH3/MsmXLGDhwYIv1Z8+ezR133NGivaeLqOyKZGz72qog9VENWYLhRVmcdWAZo0p6SWx7B4uo2EVPbGy6l0yKqGRs9FszoE25/fbbM9ldip/+9Ke89dZbLFy4sFXj3RaapjF27FjOO+887rzzzhbL4/E48Xg89TkQCFBWVtbrjT70gSxWXYeXX7ben3GGlaHbBr3+XGxs+jDdavS7g2uvvZZXX32Vjz/+mKFDh2a8/dlnn42qqjzzzDO7XLe3lEu0sbGx6SoysWsd9ul/9dVX7U7gxuPxlABbRxFCcO211/Lyyy/z/vvvd8rgG4bBDz/8QP/+/TPe1sbGxmZfo8NGf8qUKezYsSP1OTs7m/Xr16c+19fXc95552V08GuuuYb/+7//4+mnn8bv91NRUUFFRQXRaDS1zoUXXshtt92W+vz73/+ed999l/Xr17No0SL+3//7f2zatInLLrsso2PbdAG6Ds8/b710O9bexqYv0OGQzeZeoNa8Qpl6ih599FEAjjnmmLT2p556iosuugiAzZs3I8s77011dXVcfvnlVFRUkJeXx+TJk/nss8/Yb7/9Mjq2TRcQj8M551jvQ6F2ffo2Nja9gy79lWaaJNWRm8SHH36Y9vmBBx7ggQceyOg4NjY2NjYW9tCsj2FHwdjY2OwOGRn95cuXU1FRAVij9JUrVxIKhQCoqanp+t7ZpGHr0tvY2OwuHQ7ZlGVLA6a11ZPtfUFls6+GbLast6sSSegpxc4eKarSweQsGxub7iUTu9bhkf6GDRt2u2P7Il3hjrF16W1sbLqKDhv9wYMHd2c/9kq6yh1j69Lb2Nh0FfZEbjfR0h3jIZLQWbq9IeMatx2tt9tUl36PTPg6nfDUUzvf29jY9Hpso98NZOqO2ZWBTurSh+OWUU8YJk5Fxu+25Iqb69LvsQlfhwMa8ylsbGz6BrbR70KSxntddYjvt9UzIMezS3dMXDd2aaBLcz3keh0sXFODJIEhBKosk+91MqzQy46wltKl78onDBsbm70P2+h3EU1H11WhGBuqwjRENEYWZ5Hvc6Wtm3THrKgI8NGq6l0a6PU1IaqCcaKagSxJ5HgdgGBbfYQtdREmluVy4rhigD074avr8M471vvp0+2MXBubPoD9K+0Cmo+us1wq5fUxKhosl82kstw0wx9NGDgVmW821O7SQA/J9/HO0koMUzB1VCHrqsPURRLoponHoWACxX4Xwwqy9vyEbzwOP/qR9d6WYbCx6RNk/CutrKzk5ptvZsGCBVRVVbWI2+/tcfpdTWv+eyEERX43VcEYkbjOuuoweV5nall5Q4xB+V6qArFdGuhFW+pShtzvdpDvcxKM6Sm/PgjqIlpqTiDTCV8bG5t9i4yN/kUXXcTmzZv57W9/S//+/Xt1UfI9QWuja0mSGFGURSiuE4hqVAZi1Ec0VEVKJVNNHpzHK99tw9tGUfCkgd4RThDVdLIMlZpQPG0CF0A3TaqC8dQksF2I3MbGpj0y/vUvXLiQTz75hEmTJnVDd/oebY2u831OJpXlsroywNa6KBt2hCnMcjG+NIcTxxXjUhXeXlqxSwMdTRhs2hFldWUICVAVmTyvkxFFWeT7nGmG3C5EbmNjsysyNvplZWUZSyjvzbQ3us73Odmvfza5HifnHTqI4YVZqXBM0xTtGujt9VH8bpX5yyqIJnRM06Qw241uQnUwRiiuM3FgDjvCiZQhTxYi394QZU2V9fThcVo3juQThl2I3MZm36bDRVSSzJ07l1/+8pds3LixG7rT90iOrssbYq3WHKgIxJlYlsvRIwspy/emDG7SQOf7nKypChGMaeimSTCmsXhzPeUNMRZtqmfR5np00ySUMNheH0UIk1yvg0BU46uNteR6VCYMzGF1VZAttRGGFWRx8RFD2H9ADvURjY01YeojVkinHa5pY2OTcY3cvLw8IpEIuq7j9XpxONJHt7W1tV3awa6mOwTXmkfvNB9dX3zEkFR0TTCmEYrrZLlV/C4H0YTB/OVWqGdcN4jrJtXBOE5VpqIhiqabxHRBXDcQAtxOhRy3iqrISEJwwOB8DFO0iPFPHq9bM3JtwTUbm15BtwiuJZk7d25n+7XXMqLIz8VHDOGdpZWsrQqyoUZDlmB4URZnHVgGwKMfrmPxljo274gQ1Qw8ToVB+V4OKMvjhHFFnOYYQDCu8cqibaiyjCLDqoogiiThcsh4HDIRzTL8qiIzKN/LuqoQ5Q1RRhX7eyYJy+mEhx/e+d7GxqbXk7HRnzVrVnf0o88zosiPOU7QENUIxHQMYVIdiPOfrzZTFYrTENWoDsYwTBO/WyWumWypjRDXzJSR9rsc1ISsp4UlW+sxhcDjkFEbR+huh4JumGiGyaqKAELAiMKs1FzCHlfddDjgmmu6b/82NjZdTqdi9wzD4JVXXmHFihUAjBs3jtNOOw1FUbq0c32JtVVB/vHZJmrDCQb38+J1qoTjGgvX1RBNGOR7HeiGoF+WC0mSyHIJasNWktWOUJx3l1VyzOhCYrpBlqkSjut4HApRzcQDKLKMIoEmQJEkqiMaw4t8ZHvS3Wu26qaNjU17ZGz0165dy4wZM9i2bRujR48GYM6cOZSVlfHf//6X4cOHd3knezttCayBhAyYQrCtIcbAXE8qQSuhmyiyRFUg3qiZE+KgIXm4VYVt9VGqQ3HLV68ZRDUDpyrjUmQEEG1MrhqU5201T2KPJWEZBnzyifX+qKNgH77p29j0FTKO3rn++usZPnw4W7ZsYdGiRSxatIjNmzczdOhQrr/++u7oY6+nLfmDhGGimwKfUyGmGZjCir/fXh9jS12UykCMymCMVZVBakJxstwquV4HK7YHiGsGDkUmx+PAqcgkNINATEcA/bJcZLlUdEMQiGotoob2WBJWLAbHHmu9YrHuPZaNjU2XkLFV+Oijj/jiiy/Iz89PtfXr14+77rqLI444oks711doK0HLqcioinVflYBgTCOcMNAME6cqo8oKkmFSG0oQiulUB+MgQFEkXKqCppt4nQpZLpWoLGGYgnyvg7huIEkSS7bWs6k2Qj+fi+FFPvJ9LjsJy8bGpl0yHum7XC6CwWCL9lAohDPDCI45c+Zw8MEH4/f7KSoqYubMmaxatWqX2z3//POMGTMGt9vN+PHjefPNNzM6blfTNEGrKX63Sp7XSTSh41QkaiMJNMMSSlMk60nA51RwqRIORebTNTuoiyQ4eEgeg/p5kSQINOrs+N0q+T4HFQ0xwnGDCQOzKfC7iWkm2+ojLNpcx5baMGuqQnYSlo2NTZtkbPR/9KMfccUVV/Dll18ihEAIwRdffMFVV13FaaedltG+PvroI6655hq++OIL5s+fj6ZpnHjiiYTD4Ta3+eyzzzjvvPO49NJLWbx4MTNnzmTmzJksXbo001PpMtpK0JIkieGFPkwBHqeKaQoMwyRhmEQ0E1mSkCUJn9vB/qXZrKsOURfVGJDr5eiRhRw7uogRRVnkeZ24VZlIwkCWJQ4cnMe4AbkcOCiPAbkePA6FHaEEqyqC7D+g40lYpinYUhthZUWALbURTNPOtLax2dvJODmrvr6eWbNm8frrr6cSs3Rd57TTTmPevHnk5OR0ujPV1dUUFRXx0UcfcfTRR7e6zrnnnks4HOaNN95ItR122GFMmjSJxx57bJfH6I7kLGg/QUuRJVRZ4tN1NSR0E90QOBSJPK+T/rkehhdaUTjLtzcgSxKD+/lSYZhCCIIxndpIgu821aEqEkePKkpF7SSX10USRBMGvzplLIP77TpJqkuqa9nJWTY2vYJuTc7Kzc3l1VdfZc2aNaxcuRKAsWPHMmLEiM71tgkNDQ0AafMFzfn888+56aab0tqmT5/OK6+80ur68XiceDye+hwIBHa7n63RNEFrXXWIykAMl6qkBNa210dZuq2BmGYgAIcskedzMqzA8sUHogkciozf7WBddYgJpTnIsowkSWR7LD9+3DDpn+vD7975b0su97oUNtaEiWq7lra2q2vZ2Oy7dDq8Y+TIkYwcObLLOmKaJjfeeCNHHHEE+++/f5vrVVRUUFxcnNZWXFxMRUVFq+vPmTOHO+64o8v62R4jivwMO6al/MH6mhBvL61AliUUWabQ70Q3rcibJVvrGdLPy6qKEKoi089nsLUuSnl9jP1Ls+mf6yGaMNhWH8XjUBmQ21J/HzoesZNp/V4bG5u9iw4Z/Ztuuok777wTn8/XYpTdnPvvv79THbnmmmtYunQpCxcu7NT2bXHbbbel9TkQCFBWVtalx2iKLEtpCVFJI1sX0ThkSD5LtjZQH9FS4Znb66Nsqo2Q43ZwcGk2A3K9FPpdLN0eYNHmeorqLLXN0cV+hvXzURGMI4TotGxyl1bXcjjg7rt3vrexsen1dMjoL168GE3TUu+7mmuvvZY33niDjz/+mIEDB7a7bklJCZWVlWltlZWVlJSUtLq+y+XC5XK1umxP0NTI+t0OJpXlsrYqZJU8NEximokwBZMH5VGWb/nEy/J9eBwKn63fwY5QHI9ToToYJ8/nRJGl3ZJNDsY0aiMJnKqMEKQVZIHWE7uSBd9biLc5nXDLLd1z4WxsbLqFDhn9Dz74oNX3u4sQguuuu46XX36ZDz/8kKFDh+5ymylTprBgwQJuvPHGVNv8+fOZMmVKl/WrK2kew5/vc3LwkDyCMZ0doTiLttRhGBJCIjWCrw0n+H5bANMEWZEYnO9LVd1SZIn+2W7qI1qLeYNd+eHXVgV5ZfF21lWF2FgTwu1Qyfc6UzH+0NJN1CUTvjY2Nr2GjH36l1xyCQ8++CB+f/oPPhwOc9111/Hkk092eF/XXHMNTz/9NK+++ip+vz/ll8/JycHjsYzkhRdeSGlpKXPmzAHghhtuYOrUqdx3332ccsop/Oc//+Gbb77hr3/9a6anskdorciKJEnopmBTbYS6sIYkwdKtDVQF4gwv9LGuOkw0oVPod9IQ1TCEIM/tTPnc+2W5mHXEEKKa0aZscvPReTRh8I/PN7IjFKfI76I+ouFSJaqCMYJxjUllueR5nWluol1O+B5Wxoita6wDHnigLcNgY9MHyDhkU1EUysvLKSoqSmuvqamhpKQEXe+43ktb9XWfeuopLrroIgCOOeYYhgwZwrx581LLn3/+eX7zm9+wceNGRo4cyd13382MGTM6dMzuCtlsC9MUPPrhOpZub0hNnNaGE3y3pZ5ANEF1KE62W6Uk20MorqPIEgnDJMfjBAQxzWTKsH6pEM1gTKMunOC8QweR7XG0avSbj85dikxNKAESHFCWS11E47st9UQTOj6XSiimketzUpjlpl/WTv3/5v1OIoRgTVWIA/IdXHHKRKvRDtm0sekxuiVkMxAIpJKxgsEgbrc7tcwwDN58880WN4Jd0ZH7zYcfftii7eyzz+bss8/O6Fg9RfMShiXZLlZXBghENRRZwu9y4FRlnKpMvmqNtMNxnXyvg4aoTlG2Oy1EM6YZLCsP8PhH63GqEqYJ/XM8TNuviMOHF7C+JtRidF4ZsOYVsj0qdZEE+T5X2tyCIaAqEGfy4DzOOaiMEUV+ttRGdjnhu766e8JfbWxsuo8OG/3c3FwkSUKSJEaNGtViuSRJeyw0sq/RNIb/+631bK2L4nYoFGe7KchysqEmTG04QZZbxedUqIskqGiIkZ/lYnihL2V0a8Nxvt1URyimo8pQF7Y0+r/dXMe7Kyo4fHg//E61RTimU1XwOi0tn3XVYXI9TlRZYmiBl1Ldbal9BmPMPKA05advS08oicepUKfvOifAxsamd9Fho//BBx8ghOC4447jxRdfTEugcjqdDB48mAEDBnRLJ/cGkjH8H66uovbDBCXZlisl2+0gx+NgXVU4pc0jIaEqMhMH5qQmWIUQrK0MUR/VKMl2s60+RiCmkdAFpmlSF9Z5a2kFTllm8pDctNF5UvhNlqC8Icqn6wwiCQPdNFFlGZ9TIc/nxO/aGXbZXsF32Dnha2Nj07fosNGfOnUqABs2bGDQoEFt+uNt2mZ9TYgv1tVS0RCjOhhLi545qDGipy5i+fn7+VzsCGs4VQWPU6EqELfi+T2ORiE2jWjCQDcFTlVBVWSicZ1wQuf7rQFKsj30y7JuGEnht611EeojicZiLk4cikpCN9haH0U3BVFt53xMUk9o6fYGslxqq3kBBxTaPnwbm75GxoJr77//Pi+88EKL9ueff55//OMfXdKpvZFkJMzm2jBFfheKJKeiZ77bUk9dJGGVUdRNjhhewLXHDWf/ATnURzQ21oSpDcfxu1XGlGQTSxgkdIFmmDgUKTU3IskSLlUmFNdZXh7Y2d4o/BbVDDRDkOVScSgymmESjhsUZrnIdjt4b3lVSnQtOReR73OypipEMKahmybBmJZS8jx+bGZzODY2Nj1PxiGbc+bM4fHHH2/RXlRUxBVXXGHX0G2FZFbujpDl1lEVyzCH4gZZjdEzy8sDqeiZZMz9iEJ/KuwyENV45svNCCCmmUQTOroQxGM6QoAAZAm8DoWIZlAbihOM6amoH1WWkIB8nwMhBHWRBKosU5TtZnhhFg5FapGJuys9oeG+jMcMNjY2PUzGRj9ZJas5gwcPZvPmzV3Sqb2NbfVRFm+poy6cYEONFUap6QKBwDQFgpbRM5Au6WCagq831PHVxh0kDJOoZiBLEooMSKAbAiQJXQgUWSIU19laF6Gf5sQwBdvro3gcCkeM6IfboZIwTJyKnMrI1U2z1RKLbekJybIEiQTcfru1oi3DYGPTJ8jY6BcVFfH9998zZMiQtPYlS5bQr1+/rurXXsWK8gCrK4IIIdCEQNOtMoq6YaI5BWNK/OimYGJZLi5VwTRFi2SrpLtla12YJVsaMEzRmAslN76X8DkUIpqJS5URQrB0W4Ol6KnIlOS4Kc3z4HGq7U7MtibY1lxPKIXTCbNnd8k1srGx2TNkbPTPO+88rr/+evx+f0rz/qOPPuKGG27gJz/5SZd3sC/QpjZN47JvNtYRbayRawqBS5VxqWCYCoGYxqLNdWS7HTz/zRYWLK9qU+ZgRJGfUyYM4KsNtUQTOglDoGKN2J2qjC4sN04kYdA/x81BQ/JQZBmzUdGzPBBjTWWIAwbldlqwzcbGpm+TsdG/88472bhxI8cffzyqam1umiYXXnghf/rTn7q8g72dtrRpTtivGI9TYV11iA01QVRFIhDVyXarqRuCwMQ0TTQT/C7YrySbmG6m6doPK0h3reT7nIwqyWZQgY8lW+qJaVY1LQG4VJlIQkeSYL8Bfgbk7hydl+S4CWsGgajG6sqgVXHLqRCJ66yvCZPlUhk/MMMCOKYJK1ZY78eOBdn28dvY9HYylmFIsnr1apYsWYLH42H8+PEMHjy4q/vWLXSlDENLbRqVSEJndWWQHaEEOR4HujDZXBMhYQgQAkmWcKpWzHwgqpPQTUBQlO3mxP1KyPY4ME2T77c1kO91UuB3UROMEzdM3KpCQZaL9TUhBuV7SRgmy7cHqAsnEAhkSaI+ouFzqUwbW5yaxE0SjGlsro0wrCCLmlA89QKJgiwnBVmuzMTU7MpZNja9gm6tnJVk1KhRrWbm7iu0VYykJhRnTWWQ+qiOxyGT53US000SuoHHoeBUZBKaiWZabYosozaO/OO6QW1YsLYqxNa6CF+HaslyqwzM8zAwz4cpBCsrGmiI6sR1kwPKcjlyRAHBxuLpwZjGlxtqKc31pEk3JPE4FVyqzMwDBlAbTvD0V5uRJBhW4MPnctjVs2xs9gF6TRGVvkZrxUh2hOJ8ub6WUNzA71IxhcDtUJAk0E1BTDcwGidpDVNgmGCYJqYCwajG4i316IYV0RNN6JhC4FRkNtZEWF8dIdut4nUqRHWTuGawujLEgFw3XpeClICtUQ1vB6prZblUPlhZjRAwcWCuXT3LxmYfokuLqOxLWbrNtWmEECwvDxBJ6PhcCqosE9UMVEWiLNfDqqoQMU2QkAz8buuGILDi64WQcDoUKhqiaIbApcgE4jpCCKqCcSTAqcoYQuByKEQ1k2BMx+9W03T1DxnSj+EFccoDsXarawnouupZNjY2fYoeLaLSl2muTROM6dSFE8iShCpbBlqWJBRJwulS8LlUAlENAUTiOgJQZTAFIIFhWiP8uG6i6SaGKVBlkLAMsWaYBKMaWS6VbLdKdSiO1ylz6ZHDiDTR1U+qbLZXXSuqGbsUU2stZt/Gxqbv02mf/r5Oc22ahGEiBCiyhGGaJAyBz6XiVGUSuokMuFUZWZIabwigm2AaZiqkstH+Y0qgSECj8JoQgpgmiOsGem0kJZ62tjqMJEmMKdk5cbOrLNqkbHJHxNR2VWTdxsam79GhX/WPf/zjDu/wpZde6nRn+hLNdfKzXApOh4yakAjFDbxOhXyvE4CoZpAwTABKc90E4zrRhIEig88pW7IKmkkyjEoWIKuW318Ia/RvNi7TTIFm6CiKxLqqECvKAy1cMO1m0dIxMTU7Zt/GZu+kQ0Y/J2dn/LYQgpdffpmcnBwOOuggAL799lvq6+szujn0RZonYQ0ryEqNqtdWBbEG5xI+p4LboZAwDHaE4wSiGpGEgUO26hFEEyamgCyXim4KhGYiSyAEmNYuUGQJzRBpNwMAhEBRrIifQEznvRWVTBvbsiB6m1m0tLxhdbbIOg4H3Hzzzvc2Nja9nozj9H/xi19QW1vLY489htJYE9UwDK6++mqys7O55557uqWjXUVn4/TbKxA+rCCLrXURFq6t4d3llYRiGpG4wbZ6Kz5fbhxJe10KHlWmMpjAqUhkuRQCMZ24ZuJQZXTdRG/8b+S4FYIxg6ZlSiTA7ZDJcqlohglIDMhx8+j/TGZwv8xj5JueU1y3XDojirI6VGTdxsam95CJXcvY6BcWFrJw4UJGjx6d1r5q1SoOP/xwduzYkXmP9yCdMfptJWElR8XHjSliZXmQddUhK+EpGKc6FEc3BTkeB/k+J6W5HjbuCFMXtvTyJSRMIUgYAglQJdAb1TIlrEleQzRO9DZBlsChSPicKgV+F+G4zh/PGM8xozsnc9yehISNjU3foFuTs3RdZ+XKlS2M/sqVKzFNs42t+i5tJWElY9oXb6nnLwvW0D/HzYBcDwNyPVQ0RPh4TZwcj8oBZbmU5XuRJIlcr4Nl2wPUhhPEdRNJsgoaKPJO4y41vqClwZewXECaLkgoVibv7tKeG2iXmCYklVUHDbJlGGxs+gAZG/2LL76YSy+9lHXr1nHIIYcA8OWXX3LXXXdx8cUXd3kHe5rWkrCSCCGoC8epaIjRP9tNTDMQwqpJm+22dOsrg/GUUc33uTh8WD+2N0TZEUpQmu2iLqoRNwSyKVBkiOsCIcBodv+Umvy1wj4NNtVEGJjnZVhBD8kfRKOQlNm2ZRhsbPoEGRv9e++9l5KSEu677z7Ky8sB6N+/P7fccgs///nPu7yDPU1bBcJrwwmWbW9gfXUYzTD5ZG0NLlUmx+sgz+vEEAKPQ6E2nEgVMxFCUBGIgbCSrUwknKpCJKGhKmAKCUlqrFwlgTB3juWTf6XGZYawInkEVqavjY2NTUfI2OjLssytt97KrbfeSiAQANht4bLeTGsFwmvDCb7bUk91MIZmWsVLnIqMKQSBqI5uCBK6ia4LXA6JhGFSG46zrirM9voIdZEEHoeSqnYlECR0y1ffGJ5P425xyhJxY6cbxwQkYW3nUmVyvVaZwxGF/nZ98bbv3sbGBjpRIxcsv/57773HM888k3J5bN++nVAolNF+Pv74Y0499VQGDBiAJEm88sor7a7/4YcfIklSi1dFRUVnTqNDlOZ6GFbgY111iOpgjIZIgjWVQSJxK5nKNAVORcLjVPA6FXTD0sVRJImoZhCOG9SE4izaXMe2+giaYenx9Mty4lRlVEXGpSqoslW9SjMtg69IkiXE1uj3VxsTtpKTvA5Fop/PxfBCf0oyoS3WVgV59MN1PDB/NX9ZsIYH5q/m0Q/XsbYq2G3XzcbGpneS8Uh/06ZNnHTSSWzevJl4PM4JJ5yA3+/nz3/+M/F4nMcee6zD+wqHw0ycOJFLLrkkoxj/VatWpT1dFBV1X4Hu9TUhaiMJNu+IsLIiiEuVCccNfE6ZcFzHqcoosoxumkQTJgnDJKIZeBqLmgzL8bKlNkJtOEGux0FerpNIwroRyBLUhuIILHePBIQbk7ZUWUI3THSzccSvWpr5pgCHLONQJMryPRT6XWzaEW5TMqFl5JHHVtO0sdmHydjo33DDDRx00EEtyiOeccYZXH755Rnt6+STT+bkk0/OtAsUFRWRm5ub8XaZ0tRgHjAol+31MbbVRQjFNeK6jCJb4mQ7QgnqIxoSVlIVwtLSEVg6Nk5FYVSxnzyvk5pQjG821lETSliJWY3HShiWX14IKyPXEAITy8dvNo7+RWM8pyRBgd/FiKIsYlrbkgm7ijyy1TRtbPY9Mjb6n3zyCZ999hlOpzOtfciQIWzbtq3LOtYekyZNIh6Ps//++zN79myOOOKINteNx+PE4/HU5+Q8xK5ozWAOzPOyPd/DNxtqiWkmuhB4HQp1SYPZKKEM4HWpZLlUhLA09ieV5bKlLsKna3cQ1008ToVQXCeZJWEKy40jSaCZVoMigcshE9dM4rpV8DzLpTKkn5fxpTnkeZ2sqQq1KZnQXuSRraZpY7NvkrFP3zRNDKNltMjWrVvx+7vXTdC/f38ee+wxXnzxRV588UXKyso45phjWLRoUZvbzJkzh5ycnNSrrKysQ8dqzWBKksSAHA8Dcr04VQndEKzfEaYhkkgLqfS7VbLdDvrnehjSz0ckYVDREOW7zfXEdZNst4pLlVsNs1flRuMPICDH4yDH62g09h6mjSni8OEFOBSZNVWhdiUTdkYetX5v9zgV4rrReTVNVYWrr7Zeqi3OZmPTF8j4l3riiScyd+5c/vrXvwKWIQyFQtx+++3MmDGjyzvYlNGjR6clhR1++OGsW7eOBx54gH/961+tbnPbbbelFX4JBAIdMvxthWpKksTwIh+VwRhRzcqsFVgjdLPRXRPTTWRZYliBz0rAkmDxlnpqQnEcioxuCqtYSrNjmkDC2JmgJckwbkAOA3M9rKsJgYCGSIJNtWEcssL+pdmcddDANn3yrUUeNSWaMHAqMoGoxsqKQOZRPS4XPPJIx9a1sbHpFXQqTv+kk05iv/32IxaLcf7557NmzRoKCgp45plnuqOP7XLIIYewcOHCNpe7XC5cLlfG+23PYOZ5nbhUGaci43Mp1IY1qyKWJOFSZRyKbNW53WqFdTZErXKGuglo5s6RfBtIWDcAYVo3khyvk8IsF0u2NGCYJuGE0VgPN4FuCM4/bFCrhn9XapprqqwbyTNfbk7V4M2oRq6NjU2fI2OjX1ZWxpIlS3j22WdZsmQJoVCISy+9lAsuuACPZ89L8X733Xf079+/y/fbnsEMRDXqIxoji/2U5Xn4Yv0OGmIajkYZgnBcoyGqoTQmUamyhCJB0omyK7EKS0rNorwhxoDcOEu2WtE2eR4H/XPcJAxBfVTjrWUVVAZj/OyEUS0MdXtqmmuqQlQ0xCjJdpPnc6b0hDKK6hECamqs9wUF1uOOjY1NryYjo69pGmPGjOGNN97gggsu4IILLtitg4dCIdauXZv6vGHDBr777jvy8/MZNGgQt912G9u2beOf//wnAHPnzmXo0KGMGzeOWCzG3//+d95//33efffd3epHa7RnMNdWh1AVayJ0fU24MXpGENNMYppBMpfKaJycNZKRNx0kNT8gQTBqZf7WBOMokoTf46A2rBHVDAzTqrD1xfpanv5iE7/50bgWrpnWiqo4FWs+oSTbzQGDdqNGbiQCyXDZUAjT47UTwGxsejkZGX2Hw0EsFuuyg3/zzTcce+yxqc9J3/usWbOYN28e5eXlbE4KegGJRIKf//znbNu2Da/Xy4QJE3jvvffS9tGVtFWFar8B2bhUmYqGGNGEQUmOm+pgnPpoBKOZcZflnRE9HUU0ebMjkqAhpqObAp9TtbKADYEqW4ldkmQVUX93eSXHji3mqJGFrZ5H06IqgajGM19uJs/n7LKonnVVQd7eUN6q9LTtKrKx6T1kLK38pz/9idWrV/P3v/8dtQ9GbHRGWrm5hEH/bDd3v7OSN74vx+9WGrNuLeVMICWvkAzD7Iz2aFJjJ7kfSQKHLFl6O00kmGXJMtRuVeaMA0u5/dT9Wx1dNz2HioYYz369heGFWVZeQTN002RjTZjrjh+ZVoqxBeEwZGUBMPvpL6g01Falp+0EMBub7qVbpZW//vprFixYwLvvvsv48ePxNVNW3BvLJbYmP3zQ0Hxe/76c7Q1xEAKjUVZaaqyAlRyud9TgJ9UzgdRcQPIF1kLdFKlYfmi6XKAbBvOXV3Lc2GKmjkrPUE4WS1lbFaQumiChmVQF47hViUH9slr0pTM1cuvCGiN3x1VkY2OzR8jY6Ofm5nLmmWd2R1/6FKOL/XgdCpG4AY0h91ITfZzmbp62aBqeaZiNTwZNtlXZOQEM1k1EoaXWvglUBuL88b8r0A3B8WOLgZ1ZxZt3RIgkdEJxnbhmsCOcoDoY5+hRgmGFO0fhna2RW5LjshPAbGz6ABkb/aeeeqo7+tHnkLCyZXM9Cl6Xg231UeK6gaZn5r+HpN/fet/0ycASVpMRupl2E2nthpK80VQ0RPnLgjWU5XsYUejnnaWVbN5hKXvGNIMst4NsjwO3U2HTjggfr65BlWUG5Hkyr5HbBK9TbfWpxuNUqAzEWk0As5U/bWz2PB02+qZpcs899/Daa6+RSCQ4/vjjuf3223skTLM3ENEMCrJcSBLENBOnKhFJCJAyi9QR7DT4LZYJ0A0r4WtXcwPJQ2qGYHt9lBe/3cb5hw5ibVWQSEInphnkN5m4zfE4GZQv2F4fZ+n2BuK6gduhMr40p1M1ciMJHXcrA/m2XEXt1Ry2/f82Nt1Hh43+H//4R2bPns20adPweDw8+OCDVFVV8eSTT3Zn/3otPqdKQZaLgiwn66vDbKuLYpitKit0iKY+/SSGsLT2TdF+MlcSGdB0k7Cks2RLPVOG96MumiAU18lyO1q4X7I9TmKaSaHfzTkHD2J4YVZmo21VRVw4i5UVAbaHdIbmiBYJYK25imzlTxubnqPD2jv//Oc/+d///V/eeecdXnnlFV5//XX+/e9/75V1cTtCMnmrOpQgnNCRZfC7FDwOuUMGuqMkffcduZnIUlIOAqqCUUwhUCSZuG7iUFr2SjNMXA4FlypTkuOmLN+bmXvF5UL6xzwc//oH2blZrKkKEYxp6KZJMKa1qg3UXMjO73agyBJ+t4ORRVnUhhO8u6wSM8MwVxsbm47RYaO/efPmNG2dadOmIUkS27dv75aO9XZkWeKE/YoJRDVqwwkcsozXqSBLEp1xS3eFidMFjUVYBNXBBHXhBMMLs0joJlozH5IQglBMx+9WyfU4MorUaU4yn2H/ATnURzQ21oSpj2iML81pMWrPRPnTxsam6+nwL13Xddxud1qbw+FA07Qu71RfweNUKPS7MEzB5toI4YSBZpiNJRBbRtjsCWSsCCIhYMGKKs44sJQv1tewtT5Kvs+BW1WQJAjHDdwOGa9TZWSxP6NInRRCWFm5wIjCrLQEsLYmZtsSskvS3sSvjY3N7tNhoy+E4KKLLkoTL4vFYlx11VVpsfp7Y5x+c5JRJ0u3N6CbJkcOz+fjxqLnphAkNJHRZG6XIgGSREGWk3BC54t1OxhemMXm2iibd0RRZHA7VIpzXOT5XAzK92YcqZMiEkklZxEKIft8uwzL7IjyZ6Y5AjY2Nh2nw7+sWbNmtWj7f//v/3VpZ/oCTaNOaiMJVpYHWV0RRJZkErpJVDN7ZISfxBSQMEw8LpV8r5P3V1YxqJ+XY0cXsmFHmB3BOFHdJBI3mDI0i/MObV2hs7vYlfJnZ3IEbGxsOk6Hjb4dn98y6sSlyizd1kAwpqXkGTbXRoh3NDOrmzBMqG4UVotqBqW5Hgr91kRtMKYT1w221UfJ97kYVtAyI7c7aU/IrrM5AjY2Nh3HfobuIM2jTgBWlAfxOhUQgqhmEozreJ0K8WjP+6MbIhoJI0RhlguXqgDWRGm2xwE4cDsU1lX3TKZsW0J2nc0RsLGx6Ti20e8gzaNOAlGNukiCfJ+LXI+D6mCcYFy3iqnQMc2dRvd7l7uDZKxInnDcYFihA7+75b+5oxOm3ZU121z5087ItbHZM9hGv4M0jzpJGCa6YeJwq8iqSmmewrb6KNGETkLvWJaWRPdE+CRvOKYAr1NpERoJHZsw7e6s2daE7GxsbLoX2+h3kOZRJ07F0rPXDIFLlQjFNWKNgmYddenvibS2+qiGEB3LlG1Kh7JmfR1O8+gQthaPjU33Yxv9DtI86sTvVsnzOqkOxtAdMtvrY41F0FsKKnRWU7+zJHsggB3BOAvX1jC80Eeh30VMM3c5Ydp8/qJNueRDS5HPOsvaSFF2q8+2Fo+NzZ6hU0O1f/3rXxxxxBEMGDCATZs2AVYpw1dffbVLO9ebSEad5PucrKkKEYrrDCnwosgSG3dEMIWgIMuJqkgpGQYFOpWdu7skbzkSlhtn044IX6yvZcGKKjbXRlrNlG1Kh7NmYwKef956NUvcy4TkU8XS7Q3keh0MK8gi1+tg6fYGnvp0I2urgp3et42NTToZG/1HH32Um266iRkzZlBfX49hGIClsz937tyu7l+vorncQCCqUeB34XFYo37DBFWScCX1dxqH3D2lTiSw1EBlBMOLfBRkufA5VaaN3Tl6Nk3BltoIKysCbKmNYJqiyfxF6w+CHqdCXDc6lTXb/Hi6btpaPDY2e5CM3TsPPfQQf/vb35g5cyZ33XVXqv2ggw7i5ptv7tLO9UaaR51UNMT4z1ebKPJ70E2TFeVBqoMxasON5RNbk8/sIjriNtJNqAlrrKkIMSjfS20kwXsrKhlRlMX6mlCrLpUJZTkZZc121BffmgunIMvJ+powg/K9dhEWG5s9QMZGf8OGDRxwwAEt2l0uF+FwuEs61dtpGnXic6p4HCoxzcChygzp50UzTAxTUB2KY3TjML+juxZATDeoCsVRZYlFm+v4bF0Nby2tSJuoDcd1vtq4g6Xb65GQWFURZWSRn2zPTlnmtElghwmShAw8Mu8zAqqzTV98WxPDy8sDbK6NUOR342/FQ2Rr8djYdC0ZG/2hQ4fy3XffMXjw4LT2t99+m7Fjx3ZZx/oKUU2nJpRgXXUIj1NGlWVkScLjVGglUrLHiCYMBuaphGIam2sjzF+ePlFbG46zrirM9oYINaEEYD1JrK60nhBGlfjxOJS0SeANNSGGN+4/x6tSkJ3Vqi5+exPDIwqzWF8dZlVlgIKsghajfVuLx8ama8n4l3TTTTdxzTXXEIvFEELw1Vdf8cwzzzBnzhz+/ve/d0cfexVNXRk1wThv/lAOgN+tEokbBPQE0YRhlU5s9O54HDKKBMHErsfmXodMTDO7fB4gppuE4zouh0JdOMGGmjAjmhj8xZvr2RGOE0lYczSyJOFzymgGbKmLUh2KM6rYz4GD8jhxXDHDCrL429cbUkbf51Kpi+skDJNiv4uKQDxVEL29ieFsj4P+OW7K62MEoho5Xmdqma3FY2PT9WRs9C+77DI8Hg+/+c1viEQinH/++QwYMIAHH3yQn/zkJxnt6+OPP+aee+7h22+/pby8nJdffpmZM2e2u82HH37ITTfdxLJlyygrK+M3v/kNF110Uaan0Sma+qSjmsGmHWEiCYNxA7Jxqh6WbgsQ0wxkSaRKICqNU+UdLZ0b1cxumQIwBdRHEmR7nDgdMqYw8TpVhBD8sK2B7fVRopqB3phRLEkSxdkuTAHZbhWvS2VYoY8rjhqGqspsqY2woWanO2/xpnrKDQXdNFFlGZ9TYdFmM3WDbEtOWZIkRpf4qQ7FWVsdYlSxv0u1eOzYfxubdDr1zHzBBRdwwQUXEIlECIVCFBUVderg4XCYiRMncskll/DjH/94l+tv2LCBU045hauuuop///vfLFiwgMsuu4z+/fszffr0TvWhozT3SRshK949oZt8tKqq0ZBYksZIEhEtgmlaI+aEYbZZB7c53RmjEorrZHucDMz14nOpRBI6dZEEG2vCGKYlB+1UZEwh0E1BbThBod9FVDMZUeShJpigPBCjLN+bMuRJttZHULP95Hoc6KagPpKgOhRnRXmAsf2z250YdjsURhX7GVaQRU0o3mVaPHbsv41NSzI2+scddxwvvfQSubm5eL1evF5rQjMQCDBz5kzef//9Du/r5JNP5uSTT+7w+o899hhDhw7lvvvuA2Ds2LEsXLiQBx54oFuNfnOfdF0kwbLyAAndKogeTpjomokMxHXLB53U09cN0WMhm80xhcCpSJTle3CqMuuqQ9SFEmiGwONU0AwdqyovuFUZwxQEYzoeh4IiS0QSempC1edUiTcx+qG4QSIQx+OQyfe5yHJbekTfbqrjuNFFu5RTPnBQHlccNYzyxknb3R2V23V4bWxaJ2Oj/+GHH5JIJFq0x2IxPvnkky7pVFt8/vnnTJs2La1t+vTp3HjjjW1uE4/Hicfjqc+BQCDj4zb1SQOsqwqj6SaqIhHTTIQQIMChSugmBGN6t47YM0VprOSVaPTP10c1XA6FmGYQiulIkmV8BZZbSpXlxoloiUjCwO1QMEyRNqEaTRiU18dSx/A4JIQiEU4YxPUoHodC/1w3VYEY5YFYh+SUVVWmLN+bcsmsrgp2yvh3OKO4IMt29djsc3TY6H///fep98uXL6eioiL12TAM3n77bUpLS7u2d82oqKiguLg4ra24uJhAIEA0GsXjaekznjNnDnfcccduHbepTzoY06mNJMj1OKgLa+imQJUkDASmsEbTvcngAyktIAlwqxJ5XquqlmkKdNMShzNMgSxJCMDrlHE0unkSuonPqRCMagzq52VNVZC11UE+W1ODy+3g4xEHI0kSGlZ9YFWmUX9IMCEnJ5XENaYku0Nyyl3hksmkDq8d+2+zr9Fhoz9p0iQkSUKSJI477rgWyz0eDw899FCXdq4ruO2227jppptSnwOBAGVlZRnto6nYmuWfN3EqCrIsocgSRmMwfsLoXQa/efKWNdq3RtESAs2wRsWqLONUZbwOhbhuopkgdJOEZqBIEiawoTbCmqog//2+HN00iWkmhX4Xv7p0DoYpSBgCLa6jGdZEdEwz+H5rA1kuy80zpmTXcspd5ZKx6/Da2LRNh43+hg0bEEIwbNgwvvrqKwoLC1PLnE4nRUVFKLspurUrSkpKqKysTGurrKwkOzu71VE+WEljTev6doamYmvFfheqLBPXTSQJshwyDWbXh1juDskk4OZ9UmTQTYFuWK4pj0PBFAITgWkK8rxOorpBQ1QjoRmYQL7XgaabNEQ1XIqE36MSTRg0RHUqAjFciozXpZLtUagOxpEkGZdqlY7UDOtYb/1QQf8cNyOK/G3KKXelS8auw2tj0zYd/tYnk7FMs+fM25QpU3jzzTfT2ubPn8+UKVO69bhNS/xVBOL4nIqlrmkIwpqB0b1qCx3ro0TjU0fbE8emCYYkcKkyuilIGCZOVUaWIKoZmEJwxPB+BGOWQc/3OvG5VJZsqcchSxgCqoMJdMPEFAKt0W8kN0pKm0LgdShopkAzTPIdMiOLfWyrj/DO0gqGHdO2we5Kl4xdh9fGpm0yHur885//bHf5hRde2OF9hUIh1q5dm/q8YcMGvvvuO/Lz8xk0aBC33XYb27ZtSx3zqquu4uGHH+bWW2/lkksu4f333+e5557jv//9b6ankTFNS/wt3mKyrT5CVNNTMgs9afCdMiiKNbpGAkm03h8BjYbaRJElNMPE61DJ8zmoi2g0RDW21UfJ87qYOqqICQNz+NcXm4jpJhHNMvQuVcapKFY8fyTCl385Hwk47tbniDrcxHSDuGbiUGQEsKoihACqgxVMKMvlqJGFrfSspUtGCCtyKGGYOBW5UeStYy4Zuw6vjU3bZGz0b7jhhrTPmqYRiURwOp14vd6MjP4333zDsccem/qc9L3PmjWLefPmUV5ezubNm1PLhw4dyn//+19+9rOf8eCDDzJw4ED+/ve/d3uMfpKkT3pLXYQH5q9m4ZpqasLaHjl2ewggoZsYworUUWSrrbXcAIEVRmqYVmEVp2opgo4u9uN2KJxzcBn7D7BGwaurgoTjGqG4FY3kdcipUbPPpaLHwKtZkVFeh0Rujou6iNaY0OUgx+PEoUgkdJPKQIxnvtqccvM0xTQFgahGXDOoCsRwqjLrq8PURhJpyV55PmeHXTJ2HV4bm9bJ2OjX1dW1aFuzZg0//elPueWWWzLa1zHHHGOFO7bBvHnzWt1m8eLFGR2nK5FlCVmyNPOzPQ5qG41cTyLEzggdQ9AYgtn2+iaAAFkITGGiyCo+l4Iqy+zXPztNTE6WZDTDxO1IL7voUCQcrp1fn7guELo1KneqMiXZO900kgQ5HgfhuN7CL5+M1llbFWRLXZQftgVACNxOhXyfE4eiktANttZH0U1BVOv45Ktdh9fGpiVdUu9u5MiR3HXXXS2eAvZWgjGN9TVhKhpiCGFdRFXuoovZCZqXZ9TNlm2tYQINMZ2KhijfbKpjfU2I177bnipaUprrYWiBDwToupF2IxEivb7voUP7Ueh34XEq5PtcaaqcoZhOvywXwwp8Kb88pBdPyfM5mTwoD1MIGmIaoZiObphohkk4blCY5SLb7eC95VUZaesnJ47HlFg3M9vg2+zrdJmdUlWV7du3d9Xuei1rq4K8vGgb66pCKZ2clAnqBfYk0y5ouiAYNwnHdIIxjdeXbGfue2tYWxVEliVO2K+YHK8DXUC4MSRTMwThuJ5mfM+cXEq/LBf1UQ1TWP7/uG5QG07gcSoML/ThdampuP3m0Tp+twO3Q0mVoUwYlsxFLGFQlO3mgEF5jCzOSrtp2NjYZE7G7p3XXnst7bMQgvLych5++GGOOOKILutYbyQ5Mt1SG0aRJWTJGlG35T/vCTL1NAmseQBJlhrDOQ2WbKnn6S8385tT9uPw4QVMH1fCghVVhOIa0UYVTpdDYYh/Z/TLYcMKML0+NtaECccNogkDRZYpynYzvNBHvs9FMKalQiVbi9ZJGCaKJDEwz0M4Ye1j/9IcBuR6kCQJ3TTt+Hobm90kY6PfXAVTkiQKCws57rjjUpo4eyNNR6YD87ysqQxZxqcXZGMJMgsZTSZtyYDHaT3s6aYgHDcYkO2mIabz5fodbK2LMKifj/MPHURMsyKWXKqCU5XxOGTiDaGd+5QlDh9ewIzx/fl6Yy2luR5cqjVylySpRajk6qpgiwQqpyKjKjK6CVkuFd0wcTWZS7Dj621sdp+Mfz09GaffkzQdmdaFE0Q1A6ciWeqUPd25DEn+B52qNSkNjYlbhiBuCHK8DnaEElYZw34+RhT5ueTInZEwcd3KTRg3MJfo4UficSggy8iyxEn7l1DeEGvMqlUwhCAa11uESraWQJV07VQHY/hcCoos42zUprbj621sugZ7yNRBknHkHoebFQ0xJElCVRWyJJNwomVG7p5O1sr0WEnN/ORTAmmx/S1nBtqMhDnpkxbrdSRUsrUEKkmSGFGURTCmURGIMzDPg8epEIxpdny9jU0X0SGj31S7Zlfcf//9ne5MbyY5Mq0OxqkIxlAkiCSsCUtFtrJdm6LKYJgdr2PbnTS/ASVn72OaiUORUGXriUWVJVyqRENEI8fjZGiBr1NFSDoSKtlWApVDsQThFNn6u2lH2I6vt7HpQjpk9DsaF988fX5vIjkyXbCykpqgVWA8y6WQ0M20YiJJA9tbDD60fAowaZRbFlaGrmYIVEXC71IJxS05hinD8olrJo9+uC5VKcwUgv45bo4fW8wRwwvaNf5taew0pa2nginD+zFtvyI8DtWOr7ex6WIk0V521F5IIBAgJyeHhoYGsrOzM9p2dUWQG/6zmA01YbJcKk7ViniJxA2impEmYZyM7OmNqI36+k3761AkivwuvC6VUcV+zjiglPdXVlkhlw6Z7fUxqkNxwnGrqMqxo4u4YHw/hh8y3trJxo3g83WqP3ZJQxub3SMTu7ZbPv2tW7cCMHDgwN3ZTZ/B41QYkOumIZogENMxhIwsSXhdijXabzSiTQ1qb8QQlqFPvhyyVbJwWEEWhw7L59gxRfzj8438sK2BHJfKunACQyQnWh1UBxMsXFeDEQpyR03NbvenI08FNjY2XUPGyVmmafL73/+enJwcBg8ezODBg8nNzeXOO+/c6yN7wgkdl0Nh6qgiSnO9ZLlUCrOcGIbZwqffm0nKLqsKeJ0K+VlOPE6Fk8eXMLIkixuf+Y4XvtnKiu1BvthQx9rqMPWRBKYpUGSZXK8D3TBZWxVq9zimKdhSG2FlRYAttZGMMmltbGy6h4xH+r/+9a954oknuOuuu1LJWAsXLmT27NnEYjH++Mc/dnknewvJyVyPU+GQofl8v7WezTsiNET1XuO/7wjJeQfdAIRBgcNJQhe88f12lm4PEGw8n9QEsIC6iIZuCIpz3IRjOg0xDeSdSVKfra0mv9hIuWfW14TsouQ2Nr2QjI3+P/7xD/7+979z2mmnpdomTJhAaWkpV1999V5t9JuGGfbzOYkkDHTT7HNx+qLJX8OE+ohOSbaLrzfU0qjOjNxsPYRV+zeuR3AoVjZylnNn0Zw731hOYUk/CrJc5HodVAXjGKbo9UXJ7fkEm32NjI1+bW0tY8aMadE+ZswYamtru6RTvZVkmOG2+gifrKlhRziO6IPJWU2xZJkNakJxEu08riQ1hmK6SVwHpyJREU/sXC6soiw5bgcL19QQ1QymjipskniVeQWs7jbIXVGP18amr5Gx0Z84cSIPP/wwf/nLX9LaH374YSZOnNhlHeutDCvIYvLgPN5aWoFuij4/j2HVszWJah0/D6kxmyveRHDI5VCoj2gEExqSBLIksb4mTL7P2URiueMVsLrbIHdVPV4bm75Gxkb/7rvv5pRTTuG9995LlSn8/PPP2bJlS4tShnsbSUP06dpqogkDSRI0CdHvk6iAQXosv4Rl2Nuad3UoVllGTcCyAaMACCRMFNUkkjCI6QYuh0JlQ4xAVCPH60xt25Gi5B0xyMMKOq+T35X1eG1s+hoZG/2pU6eyevVqHnnkEVauXAnAj3/8Y66++moGDBjQ5R3sLTQ1RD6XiixZiU19e5zfdlnF9nxWsiQhqxIJycXFP30YSbaqY2XpJpt3hKkLa0ACU8CiLfVMHJhLvs8y/NGEgVORCUQ1VlYEWhjsjhjkp7/cTL7XyfqacKeeArqyHu+ewp57sOkqOhWnP2DAgL16wrY5zQ1RQyQBEqn6uH0ZE2vkbpoCU+zMIm7L5stY18OpyOhY6pwuRSKmGciSpZTpcypE4joOWaY+HOerDbWMLM6iwOdkbXUISZJ45svNxA2zhcHelUH2OGQ+WFnFoH5ehhdmdcot07web3M68jSyJ7HnHmy6kozj9N9++20WLlyY+vzII48wadIkzj///FZLKe4NtGaIVFnu0xO4YLlx3A5LyVKSdi3aJmHdFOKGIJgw0EwroicQ1RACnKpMvywnBVlOhCQ1FlIx2VYXYeGaav77w3ZWlAeJJHTyfE6GFWSR63WwdHsDT326kbVVwSYGueV4RAjB9voYUc2gNNeD3+1AkSX8bgcji7KoDSd4d1nlLvMBmip8tkZvknBuWl0s1+to9ZrZ2GRCxkb/lltuIRAIAPDDDz9w0003MWPGDDZs2JCRMFtfoqkhqg0nWLy1gbiu92mjL2GJwmm6mSYh0XR5EqecLtqWXObWYnzwyMW88+BFZJlxCrNcJAxrUjjP50SVJSIJA0kG3TCRJevrFtcMNMNs1WB7HUqbBjkY06kOxfG5VFyqkrasuVumPZKht+UNsRY1mpMSziOKsnpcwrm16mKducnZ2DQl46HMhg0b2G+//QB48cUXOfXUU/nTn/7EokWLmDFjRpd3sDeQHBlur4+wpirMjmCsT2XgtoYkWcZba7QXsmSJsCWNv4w1wZvUEEoWW0+OEmQJHMDAQBUAwhSEEwYORaYwy0VdNEFCk/F7VByyTDih41QVcj0OQnGdddVh8rzOlKRy0mALaCG5nCSuG4TjOkP6+fC7W351O+qWaUvhM5owepWEc1+ce7Dp/WQ80nc6nUQiEQDee+89TjzxRADy8/NTTwB7G6W5HoYV+Fi6PUA4boUkSn18Es0UpMXlmwL0Rk19RQa58ZshAYoiIWP5/uXGZYospV0Dr9PyM48t8VMfSbChOkxNKM62+hhb6qKEYjoJ3cShymS5rSemYGyncfY4FeK6JVw3ff9i8n1O1lSFCMY0dNMkGNPYVh/F41AZkNvSCEJmbpmkwuf+A3Koj2hsrAlTH9EYX5rT4XDN7paZaM/VBTuvWW+Ze7DpG2Q80j/yyCO56aabOOKII/jqq6949tlnAVi9evVeK7wmyxKTBuXy4qKtJHSDiGbiUhQSet/9sbWmsZ+0o7Ikke91EIzr6KYgy6mQMARuh+VSMU2BLgRuc6eLxeuQ2VYfIRBJUB1KoJsChyIhYUk3m0JCxHWCMR2/WyUc10k0mQlvarDL8r2tSi4fMqQfwwvilAcst0xTw9+Zylod0f1viz0xudpadbGm9Ka5B5u+Q8Yj/YcffhhVVXnhhRd49NFHKS0tBeCtt97ipJNO6lQnHnnkEYYMGYLb7ebQQw/lq6++anPdefPmpVwCyZfb7e7UcTOhwO9iYL6XLLeDuGZgmH07QL/5mNShSrgdVu1bISCimWS5VIQAhyKjyDKmEMQ0k3DCIJIw0Jr4uASwoTrM1vo4MV1gCEjogoQBqiLhUiR0w6QqECOu6a2WQmzqRx9R5OenxwznZyeM4rrjR/KzE0bx02OGc/5hg1p9ClhTFeqUWyap8DmmJJuyfG+HDf6emFzdnbkHW+zOpi0yHiIMGjSIN954o0X7Aw880KkOPPvss9x000089thjHHroocydO5fp06ezatUqioqKWt0mOzubVatWpT7vieItNcE4O0JxogkdJOuYqiTQ95LfUkIXGLJAliQkSRCJ68iSikuVG3MSTEIxA1mWkCTL1eOWdo4ZYroJKNbTgtip5KkASBJOh4Kkm8R1k821UQbmefE42i+F2JrkckfLMXYXezKxq7NzD3aIp017dOq50DAMXn75ZVasWAHA2LFjmTlzJqqa+e7uv/9+Lr/8ci6++GIAHnvsMf773//y5JNP8stf/rLVbSRJoqSkpDNd7xRrq4K8+UM5umlVlM31OAjGtF6tmd8eMm1U9RKgNY4IBRCKG3hdClFdEGuM8JEMgUuVcKsKRmznBTBMaxuHLKE0ll9MGFbsv2GYBGON8tMSSCjUhOK8t7KSQfleDhyUl5HB3h23zO6ypydXM73J2fISNrsiYyu9bNkyTj31VCorKxk9ejQAf/7znyksLOT1119n//337/C+EokE3377LbfddluqTZZlpk2bxueff97mdqFQiMGDB2OaJgceeCB/+tOfGDduXKvrxuNx4vF46nOmk83JkV1dROOQIfks2dpAeX2EqNb31DWTNDX4yUIqJlaUTtNzcsiQ5VQxhMChyLgaR/y6KSypBVlmXeEgZEkibpgoDgkhdoqzJffbVNbHpcgcNCSPQr+L8oYYPpfKtP2KMjZEPVV4pScSuzp6k7PlJWw6QsY+/csuu4z999+frVu3smjRIhYtWsSWLVuYMGECV1xxRUb7qqmpwTAMiouL09qLi4upqKhodZvRo0fz5JNP8uqrr/J///d/mKbJ4Ycfnqri1Zw5c+aQk5OTepWVlWXUx6Yju35ZLgqynIQTRpu6NH2BFv/0xt9/a35+3TQJxzQ0w0QgyPWoZLsdFPvdjBtewpW/+AfX/OqfRFU3Hofl90/oJobZukSFKUy21kVwO1QOHJRHQjd5b3lVn/E591RiV0fmHjJ5CrHZd8nY6H/33XfMmTOHvLy8VFteXh5//OMfO1xAfXeYMmUKF154IZMmTWLq1Km89NJLFBYW8vjjj7e6/m233UZDQ0PqtWXLloyO1zRszjStalGyJJHjVlEzvnq9gxaF0ttIzArGTGrDCRKGQDROzDZEdUJxjcpgjNVVIeqjGqG41pg0pCLLkuXSacOG6wZsro3w9UZLhruvGaLenNi1qxBPt0OmLhJn6fYGe3J3Hybj4cioUaOorKxs4U6pqqpixIgRGe2roKAARVGorKxMa6+srOywz97hcHDAAQewdu3aVpe7XC5cLldG/WpK05FdIKrRENXwOBUUSUKK982QTYF1t1cU0FoJQmp5U2gctTcac+teZ+J2yATjOlWBOLleJ7oJblUGIYi1MsNtTeqCYcCGmjCbayOU5nl6lc7NrujNiV3thXjWhhMs395AVTDOs19vYb630p7c3Ufp0Fg1EAikXnPmzOH666/nhRdeYOvWrWzdupUXXniBG2+8kT//+c8ZHdzpdDJ58mQWLFiQajNNkwULFqRkm3eFYRj88MMP9O/fP6Njd5SmI7tIQscwRWqyUpH76FCfRl/7LqJOBaCbtJp9rBsgwhFeeuQK3nj8p7gTMQzDJJowWoyAofHpodEOqqoly7CqIkgkrrfpDumtYYddkdjVHbT1FFIbTrB4cx1b66MUZbsY1z/b1u/Zh+nQSD83N7dFIsw555yTakt+wU499VQMI7P49ZtuuolZs2Zx0EEHccghhzB37lzC4XAqmufCCy+ktLSUOXPmAPD73/+eww47jBEjRlBfX88999zDpk2buOyyyzI6bkdpOrJbWxVEapRUVmTo2zWzOk5zm5/8HIxpDK3aBEBcN6kzEsSb+XWS3xqB9ZSgNIa7ypIgENNYXxPm0KH9WrhDenvYYU9GELVFa08hbofM8u0NVIfiFGY52a9/Nqoi41dke3J3H6VDRv+DDz7otg6ce+65VFdX87vf/Y6KigomTZrE22+/nZrc3bx5M3KTEXVdXR2XX345FRUV5OXlMXnyZD777LOUHlB3kBzZvfV9OeurIzREE8hS6yPgfQUJMJqMvOOagd/vASy5haaD8qR+D1jzB6YhkGVLjtnnUlu4Q/pK2GFPRRC1R/MQz7pInKpgnIF5Hvbrn02+b6er09bv2TeRRGvP4p1k6dKlGYVs9gSBQICcnBwaGhrIzs7OaFvTFDz8wRr++vF6ErqJhCDetxNzO0WyspY3EWPp/WcBcPAvX6ZfcR7lDXESukG8meFviiyB36VSmufhVzPGcuTIwtQy0xQ8+uE6lm5vSAs7BOuJck1ViPGlOVw1dThArxpp9yaSRVeWbm/g2a+3MK5xhN8c3TTZWBPmuuNHMqYks9+DTdeyO4VyMrFrux1XFgwGeeaZZ/j73//Ot99+m7F7p6+hSDKjiv1srY1SE47veoO9EIFluJsOF9wOGVWWkCUs+QZ0Ys3q7ib1flyqzKB8Lyft35/DhxekrdPRsMNP19Xw/ZaGXuv+6WmaPoXM91YS1Qz8rRh9W7+nd7An3Zmdnon8+OOPmTVrFv379+fee+/luOOO44svvujKvvU6ttVHWbylDgmQJdEyzGUfwjDTff1xzaQmlEAIS8pBlSTUJjZbARyKpc3vdijIssQJ44pajGQ6oixZE4rzzFeb7cIiHaA3h5jaWOzpQjkZ3d4rKiqYN28eTzzxBIFAgHPOOYd4PM4rr7zSrT713sKK8gCrK4KocmPooiz1moiSnkaWJeKapa1juXYEDlVGbtRecKkyuinwuVQG53vJ8znxOFp+/XalLBmJ69SEEkgSTByY22eyTnuqxm1vDjG16Zks6g4b/VNPPZWPP/6YU045hblz53LSSSehKAqPPfZYl3Skt2Oagm821jUaLge1EW2fNPhNJZllCbZmW6J4uhBohmHJKDdm48pY8sp5PidOxRJdG1+aQ/8cD5t2hFuNzU+OTFsroiKEYH1NGAnBsIKsPaJ90xX0dCRST4vU2bRNTxTK6bDRf+utt7j++uv56U9/ysiRI7vk4H2JbfVRqoMx+ue4qQzErHj0nu7UHkaRLH9gstpW2OHmyJ8+aWnxA2gmigSiidKmIayCKwPzfQwv9JHvcxGMaW36kXc1MvU1yj37XG27f3pTsldviUTqjSGmNj2j5dRhn/7ChQsJBoNMnjyZQw89lIcffpiampou60hvJ5zQiRsmo0uycaoKmrGvROnvxBA7DX5TTBp9/I3VuAxhPQW4HTL9fA6Ks91MHpRHvs/Vrh85mYylm4KT9y9hXP/sFslP5x8yiIIsV58oat7batx2pnaATffSE1pOHd7TYYcdxmGHHcbcuXN59tlnefLJJ7npppswTZP58+dTVlaG37/3PiYm/zluh0xZnocNNeGe7lKvw5JWtm4AMlbR9VDcYFt9lK31EXI9DioC8Vb9yK25QIYV+jjjwFIK/a7UyBRgyZaGNt0/mVbP6k7sGrc2u2JX7szu+D5nHL3j8/m45JJLWLhwIT/88AM///nPueuuuygqKuK0007rso71NpL/nDWVIbbVRXq6O70Clxbn1X/8jFf/8TNcmhW+qplWDL8sWyP/SMKgOhjno1XVfLmhlv457pRLIzmyf3d5BQ8tWMsP29KjF5ZtD/D20grUxhGqLEsp909XVs/qLvb2Gre9VSajL9ET3+fdemYYPXo0d999N3PmzOH111/nySef7Kp+9TqSIYavLdnG1vrIPufaaQ1ZCCZWrEm9B8u3r8oSuikQEkjCKrTez+ekIMtFrFHwJzmyX1sVZFl5gFBMZ3C+l0K/M+UCaSt6oa9MTPbFGrcdjTLq6cnpvYk9/X3ukm+boijMnDmTmTNndsXuei2VgTh1kQSG2bysuE0SS5MIkEARYAAO2Sq5OKzAR2UwzjNfbiaqmdRFEmS5FCQg1+ugOhQnlNCZVJZLvs/VrgukL0xM9sSj++7QUUPeWyan9yb25Pe59wwxejmmKXjx260EovpOFTGbFggBhhBI0s7qWYpsVdbSTEFJtovP19dS6HcycWAuO8IJDFOQ7XGQ5bIUIddVh8nzOpEkqd3ohd6ofdOUvhQj31FDblfn6j721Pe572oD72G21EVYuq0BQ1jFAFX7+9wqptj5AiuCR5asooxOxUrQaogmyG806k5FRlVktEZFNqcqU14fZXtDFCHEbrlAeoPPubfKMDclkygjuzpX38ce6XeQDTVhAjHNikMXEpICeiuFQvZ1RJM3sgwORcYQgnyfE79bZdOOMHpjnd1AVCPLpZDndbKtPoJhCKK6QVwz+XZjHduyo6iqzJRhLaWXd0Vv8jn3dldUJoa8J+LKbboW2+hngBDWJKUprCIgNjtpaipkqfGzgHDCIMfjYL/+fnaE4ny7qY5w3GDx5jqyXCp5Phduh0QophPXTZyqjEuVUBWJ9TvCZLsdjC7xZ2Qge6PPuTe7ojIx5H1xctomHfs/00GGFfjI9TgJJ/RGvywk9mVBfawM3VpPtjVpK1vG3qFIOGQpJa2sSNAvy0F5Q4xvNtZZBWgUqIsk0E1BWDNIaCYuVcbjkGmI6bhUGUWSGFbgQ5VlVlUEOXZ0S3G21rB9zpmTiSHv7snpntIo2pewjX4HGZjn5ciR/XhxsSXB4HUqaKa5y5KDeysSkHC7OeTGpxFiZ6hmkd+NIktohokQAkWSqAsnqKiPYyIoy3fjUBTKG6IEYzqqbFUiy3KreBwKpbleRhZnUZjlwu9WCcX1jBKY7ISozMnEkHfn5HRvcsntzdhGv4PIssQFhw1mfU2ExVvqiGhGyzqC+xiJJjc8WYIct8pxowvRBThkCSEEO8IJvt5Yi6rAoHwfLocCQGmul9pwnNpwgkRjbd2BeV7GDcgh3+dM7TdTH/Hu+pz3xZFmpoa8O+LKe6NLbm/FNvoZMKLIz29/NJZH3l/L+6uqWhQJ2ZdIhmM6FEt2QQKimkl5Q4yibBerK8PURhIEonHqIhoORSaq6ThVORWKOcDhwe1Q2F4fxedSGVPiTzP4kLmPeHd8zvvySDNTQ96Vk9O2S27PYhv9TpAwTByK5YPWdJPEPmj7JSwZhn8+MxsBXHz2bOK4+HxDLR6HjFtV8DhlQnET0xTETIMNNWHyfDrFfhcep+VGyPU6qAnFMUyBs1llp874iDvrc7ZHmpkb8q6anLZdcnsW2+hngGkK3v6hgqXbAiR0y/C7VJmGqJ4q/L2v4FIlvELikM0/AOCUBAkJ4gkd3ZCJyibVIRNJAo9TxhBWda3aUBxNNynN8+B1qmiGiVNV6OdzUhGIIcvSbvmIO+NztkeaO+mJKCM7DHTPYhv9DNhWH+X7rfUEYxoS4FRkQgkdWZIak7b2DWSs5CutadiqJOFQZOKaiSFMYsIy+D6njGlKaIZVf0A3oSGqoRkmA3I91Ec1BuS4ufa4kayqCHaJjzhTV4U90uxZ7DDQPYt9FTMgnNCpjVoTj16HQlQzMU1wOWSEZqDv5W4eGWvu2sSSWmgqPySQrNh8ycqq1U2BjKXLFNOtJyGpcX0JCMctd8+AXA/nHTqI48YUcdyYoi6bRM3EVWGPNHuWvqZR1NfpFTIMjzzyCEOGDMHtdnPooYfy1Vdftbv+888/z5gxY3C73YwfP54333xzj/TT51RxykpKX0Y3TZTGOrl7u8G3Jm2bGMzGYilJPI6dUgpuRWrMXBZouoEiSchYFbVMGmUasNwqCc3gi3U7ePTDdayvCXVpkY+OFg3piUIWNjvpS3LZewM9bvSfffZZbrrpJm6//XYWLVrExIkTmT59OlVVVa2u/9lnn3Heeedx6aWXsnjx4pS659KlS7u9r6W5HsYNyEaWsJKPTIEQgvhenp3rkK2XiSD5u3M6ZFRl5zqRhAEIVFlCM62RP5LlzpEkAZKEEOBUwKFKqLKEyyETTuhENYOl2xt46tONrK0K7vHzS440yxtiiGZuuvYqfdl0HX1Bo2hvQRLNv+V7mEMPPZSDDz6Yhx9+GADTNCkrK+O6667jl7/8ZYv1zz33XMLhMG+88Uaq7bDDDmPSpEkdKtIeCATIycmhoaGB7OzsjPu7ujLAdU8vZtOOCIZpNo76916hZYdsqWQaZqMDRwKXKluTsIEgi+7+MQCTbn6RiNOF26EiS4Jw3ARJWIXUG6+RKSwBNsMUuFQZv0slENMZUZTF0SMLWFsdZnxpDldNHb7HR3XNo3eaT/7ahmfPsC/mSXQFmdi1Hh3pJxIJvv32W6ZNm5Zqk2WZadOm8fnnn7e6zeeff562PsD06dPbXD8ejxMIBNJeu8Oo4mxuPWkMg/t5AYm9VXPNIYNblcjxOPC6VFyqgiJb/npFlinJcVOW5yXqcBF1uPC4LLeXEAKvUyXbreJUFHTTGu3Ljfs0DBNFBq9TwcTaXyiuE4obParQaI80ewd2Hd/up0edlDU1NRiGQXFxcVp7cXExK1eubHWbioqKVtevqKhodf05c+Zwxx13dE2HGzl+bDFleV7ueWclH62uJjnOT+wlkgxKoxa+Q5FxKBIxXaDIEqosI0kykgxORULOy+bc+96jNpwgltAwozqGEAzK9zKiyE8opvHJ2hrqIxoCS6YBJPwuBVWWiWqWnIWElfuQ63X06IRpb1fDtLHpCnrcp9/d3HbbbTQ0NKReW7Zs6ZL9jirx85sf7cfBQ/IZUeinyO/B6+i7lzNNJRPLpSNMQShuYJgCv9uBQ1XI8Tno53NRF9GI6wYuh0y/LCc+p0q/LBcTB+aS63XiVGVK871MHpSHQ5VxqjJF2W68TgWBRFQzcCgSfreKqsg4FblXTJjaI02bvZ0eHekXFBSgKAqVlZVp7ZWVlZSUlLS6TUlJSUbru1wuXC5X13S4GWV5Xg4fXsAP2+opyXZTE06wfHsDG3dE6IF6Ha2iYJUslGicjG30rTtVCQEYpsAUO42+x6HgdSropkAzTGRJIs/nZHihj0SjL2twPy/rqsPURRKE4jqqJOF1qUwfUcC5Bw9i/vKd8fE+l8q4/tnUhBK4VImwBHHNINvjIN/nJJowKMp2keVSUj59e8LUxqb76FGj73Q6mTx5MgsWLEjV1zVNkwULFnDttde2us2UKVNYsGABN954Y6pt/vz5TJkyZQ/0OJ2m2Z+VwTj9c9wM2r+E7zbXs3hLPXrjhGU0YfRcxq4EHlVmQK6bXK+TUEynLpIgkjAQQuBWFdxOGVWWGVbg4/KjhzEo38vGHRGEEHicCtkeB36Xg6im84/PNrEjnGBMSRbEYpw152dohslLv5rLeYcOYkSRnxFF6S6SaMJg3mcb2VYfoSzfy5baKHHdsIqouFVKsl2srQ7boXk2NnuAHg88vummm5g1axYHHXQQhxxyCHPnziUcDnPxxRcDcOGFF1JaWsqcOXMAuOGGG5g6dSr33Xcfp5xyCv/5z3/45ptv+Otf/9oj/W+e/RnXDUpyPJxX4icY16kNWzHHgWiCHSENpdFhviOcQDMMHIqCKlsT2DKCqGYS1010Q7Qp4ikBfreK16UQiRvENQNTCCRJItvt4LSJ/Rldks17yy1pgSy3Qr7PxchiP9PGFlMZjPHe8go21EQwhcDnVJkwMIfp+5ekJiyHFGS1euym5ypCMcZ9txAA/6FlDG/ctrVU/kuO3LmdliOoCSWQEPTzuQBptxQabWxsOk6Ph2wCPPzww9xzzz1UVFQwadIk/vKXv3DooYcCcMwxxzBkyBDmzZuXWv/555/nN7/5DRs3bmTkyJHcfffdzJgxo0PH2t2QzbZoLdQMSGvrn+2mvHGi0q3IVARj1EU0+vmcTCrNpTIUJxjTCMV13E6ZTTURasMJInEdAbidMjIShT43hTkuDizLwzQF766soKIhTkmOixPHlOB0Km32KTmK3p3QuOS2kfoGRg8fYDWGQuDzdfgaeRzWBG5EM+wJUxub3SQTu9YrjP6epLuM/j5JOAxZjU8EHTD6NjY23UOfidO3sbGxsdmz2EbfxsbGZh/CNvo2NjY2+xA9Hr2zp0lOYeyuHIMNlk8/SSAAxl6Skmxj08dI2rOOTNHuc0Y/GLRUHMvKynq4J3sZAwb0dA9sbPZ5gsEgOTk57a6zz0XvmKbJ9u3bEUIwaNAgtmzZsk9H8QQCAcrKyuzrYF8HwL4OSfradRBCEAwGGTBgALLcvtd+nxvpy7LMwIEDU49D2dnZfeKf2t3Y18HCvg4W9nWw6EvXYVcj/CT2RK6NjY3NPoRt9G1sbGz2IfZZo+9yubj99tu7TYGzr2BfBwv7OljY18Fib74O+9xEro2Njc2+zD470rexsbHZF7GNvo2Njc0+hG30bWxsbPYhbKNvY2Njsw+xVxn9Rx55hCFDhuB2uzn00EP56quv2l3/+eefZ8yYMbjdbsaPH8+bb76ZtlwIwe9+9zv69++Px+Nh2rRprFmzpjtPoUvo6utw0UUXIUlS2uukk07qzlPoEjK5DsuWLePMM89kyJAhSJLE3Llzd3ufvYWuvg6zZ89u8X0YM2ZMN55B15DJdfjb3/7GUUcdRV5eHnl5eUybNq3F+n3VPiD2Ev7zn/8Ip9MpnnzySbFs2TJx+eWXi9zcXFFZWdnq+p9++qlQFEXcfffdYvny5eI3v/mNcDgc4ocffkitc9ddd4mcnBzxyiuviCVLlojTTjtNDB06VESj0T11WhnTHddh1qxZ4qSTThLl5eWpV21t7Z46pU6R6XX46quvxM033yyeeeYZUVJSIh544IHd3mdvoDuuw+233y7GjRuX9n2orq7u5jPZPTK9Dueff7545JFHxOLFi8WKFSvERRddJHJycsTWrVtT6/RF+yCEEHuN0T/kkEPENf+/vTsPirr+/wD+lJVdF4ElDmFxFBDl0ETxgMCDChHEA68Ew/uolJxsJNApRb+aFzo62TFaKGmOaHk1UYSQqENGDIpSErq4ox2CikciobD7/P3hj8/0ycWTZVXejxkG9n28Pu/Pi53X7ux+5vNOSJAeGwwGuru7c8WKFSbHjxs3jkOHDpW1BQcH8/XXXydJGo1Gurm5MTU1Veq/du0aVSoVd+zYYYYzaBpNnQfyTtGPiYkxy3rN5WHz8G8eHh4mi93jxLQUc+QhJSWFPXr0aMJVmt/j/u/q6+tpZ2fHzz//nOTTWx9I8pn4eOf27dsoKirCoEGDpDYrKysMGjQIR48eNTnn6NGjsvEAEBkZKY3X6/WoqKiQjdFoNAgODm40pqWZIw8N8vLy0K5dO/j6+mLWrFmoqqpq+hNoIo+SB0vENDdzrvnMmTNwd3dHp06dEB8fj/Pnzz/ucs2mKfJQU1ODuro6ODo6Ang660ODZ6LoX758GQaDAa6urrJ2V1dXVFRUmJxTUVFxz/ENvx8mpqWZIw8AEBUVha1btyI3NxerVq3CoUOHMGTIEBie0PvnP0oeLBHT3My15uDgYKSnpyMrKwuffPIJ9Ho9BgwYIN22/EnTFHlITk6Gu7u7VOSfxvrQoMXdZVN4eHFxcdLf3bt3R0BAALy9vZGXl4fw8HALrkywhCFDhkh/BwQEIDg4GB4eHti1axemT59uwZWZx8qVK5GRkYG8vDy0adPG0st5bM/EO31nZ2coFApUVlbK2isrK+Hm5mZyjpub2z3HN/x+mJiWZo48mNKpUyc4OztDp9M9/qLN4FHyYImY5tZca3ZwcICPj88z+XxYs2YNVq5ciezsbAQEBEjtT2N9aPBMFH2lUonevXsjNzdXajMajcjNzUVISIjJOSEhIbLxAHDgwAFpvJeXF9zc3GRj/v77bxQUFDQa09LMkQdT/vjjD1RVVUGr1TbNwpvYo+TBEjHNrbnWXF1djfLy8mfu+bB69WosXboUWVlZ6NOnj6zvaawPEkt/k9xUMjIyqFKpmJ6ezlOnTvG1116jg4MDKyoqSJITJ07k/PnzpfH5+fls3bo116xZw9LSUqakpJi8ZNPBwYH79+/nyZMnGRMT88RfktXUebhx4wYTExN59OhR6vV65uTksFevXuzSpQtra2stco4P4mHzcOvWLR4/fpzHjx+nVqtlYmIijx8/zjNnzjxwzCeROfIwb9485uXlUa/XMz8/n4MGDaKzszMvXrzY7Of3oB42DytXrqRSqeRXX30luzT1xo0bsjFPW30gn6FLNklyw4YN7NixI5VKJYOCgvjTTz9JfWFhYZw8ebJs/K5du+jj40OlUslu3boxMzNT1m80Grlw4UK6urpSpVIxPDycZWVlzXEqj6Up81BTU8PBgwfTxcWF1tbW9PDw4MyZM5/oQtfgYfKg1+sJ4K6fsLCwB475pGrqPMTGxlKr1VKpVLJ9+/aMjY2lTqdrxjN6NA+TBw8PD5N5SElJkcY8rfVB3FpZEAShBXkmPtMXBEEQHowo+oIgCC2IKPqCIAgtiCj6giAILYgo+oIgCC2IKPqCIAgtiCj6giAILYgo+oIgCC2IKPqCIAgtiCj6gtlMmTIFI0eOtPQynkg7duyAQqFAQkLCXX15eXnS3rNWVlbQaDQIDAxEUlISLly4cN/Ye/fuxQsvvACNRgM7Ozt069YNc+fONcNZCE8jUfSFFqWurs7SSwAApKWlISkpCTt27EBtba3JMWVlZfjrr79QWFiI5ORk5OTk4Pnnn0dJSUmjcXNzcxEbG4sxY8bg559/RlFREd5//32znrfBYIDRaDRbfKGJWfrmP8Kz635765aUlDAqKopt27Zlu3btOGHCBGmD7Y0bN1Kr1dJgMMjmjBgxglOnTpUe79u3j4GBgVSpVPTy8uLixYtZV1cn9QPgxx9/zOHDh9PGxoYpKSmsr6/ntGnT6OnpyTZt2tDHx4fr16+XHaeuro5z5syhRqOho6Mjk5KSOGnSJNn5GAwGLl++XIoTEBDAL7/88r55OXv2LNVqNa9du8bg4GBu375d1n/w4EEC4NWrV2XtNTU19PX1Zb9+/RqN/dZbb/HFF1+87xq+/vpr9unThyqVik5OThw5cqTUd+XKFU6cOJEODg5Uq9WMiori6dOnpf4tW7ZQo9Fw//799Pf3p0KhoF6vZ21tLefNm0d3d3fa2NgwKCiIBw8evO9ahOYlir5gNvcq+levXqWLiwsXLFjA0tJSHjt2jBEREXzppZdI3ik8SqWSOTk50pyqqipZ2+HDh2lvb8/09HSWl5czOzubnp6eXLx4sTQHANu1a8fNmzezvLyc586d4+3bt7lo0SIWFhby7Nmz/OKLL2hjY8OdO3dK85YtW0ZHR0fu2bOHpaWlfOONN2hvby87n2XLltHPz49ZWVksLy/nli1bqFKpmJeXd8+8LFy4kGPHjiV5586PL7/8sqy/saJPkuvWrSMAVlZWmoy9YsUKuri4yG4R/l/ffPMNFQoFFy1axFOnTrG4uJjLly+X+keMGEF/f38ePnyYxcXFjIyMZOfOnXn79m2Sd4q+tbU1Q0NDmZ+fz99++403b97kjBkzGBoaysOHD1On0zE1NZUqlUr2giFYnij6gtncq+gvXbqUgwcPlrX9/vvvBCDdnjYmJobTpk2T+jdu3Eh3d3fp3X94eLisWJHktm3bqNVqpccAOHfu3PuuNSEhgWPGjJEeu7q6MjU1VXpcX1/Pjh07SudTW1tLGxsb/vjjj7I406dP5/jx4xs9jsFgYIcOHbhv3z6S5KVLl6hUKnn27FlpzL2K/nfffUcALCgoMBm/urqa0dHRBEAPDw/GxsYyLS1NtvdBSEgI4+PjTc4/ffo0ATA/P19qu3z5MtVqNXft2kXyTtEHwOLiYmnMuXPnqFAo+Oeff8rihYeHc8GCBY3mQ2h+4jN9wSJOnDiBgwcPwtbWVvrx8/MDAJSXlwMA4uPjsXv3bty6dQsAsH37dsTFxcHKykqK8b///U8WY+bMmbhw4QJqamqkY/131yMA+Oijj9C7d2+4uLjA1tYWmzZtwvnz5wEA169fR2VlJYKCgqTxCoUCvXv3lh7rdDrU1NQgIiJCdvytW7dK6zflwIEDuHnzJqKjowHc2covIiICmzdvfqC88f/vhN6qVSuT/W3btkVmZiZ0Oh3ee+892NraYt68eQgKCpJyUlxc3OjexqWlpWjdujWCg4OlNicnJ/j6+qK0tFRqUyqVsu0DS0pKYDAY4OPjI8vHoUOH7pkPofmJjdEFi6iursbw4cOxatWqu/oatt0bPnw4SCIzMxN9+/bFkSNHsG7dOlmMJUuWYPTo0XfF+PcG1m3btpX1ZWRkIDExEWvXrkVISAjs7OyQmpqKgoKCh1o/AGRmZqJ9+/ayPpVK1ei8tLQ0XLlyBWq1WmozGo04efIklixZIr2gNaah8Hp6et5znLe3N7y9vTFjxgy8++678PHxwc6dOzF16lTZsR+VWq2WvfBUV1dDoVCgqKgICoVCNtbW1vaxjyc0HVH0BYvo1asXdu/eDU9PT7Rubfpp2KZNG4wePRrbt2+HTqeDr68vevXqJYtRVlaGzp07P9Sx8/PzERoaitmzZ0tt/343qtFo4OrqisLCQgwcOBDAnStUjh07hp49ewIAunbtCpVKhfPnzyMsLOyBjltVVYX9+/cjIyMD3bp1k9oNBgP69++P7OxsREVFNTr/n3/+waZNmzBw4EC4uLg88Pl6enrCxsYGN2/eBAAEBAQgNzcXU6dOvWusv78/6uvrUVBQgNDQUGndZWVl6Nq1a6PHCAwMhMFgwMWLFzFgwIAHXpvQ/ETRF8zq+vXrKC4ulrU5OTkhISEBn376KcaPH4+kpCQ4OjpCp9MhIyMDn332mfRuMT4+HsOGDcOvv/6KCRMmyOIsWrQIw4YNQ8eOHTF27FhYWVnhxIkT+OWXX7Bs2bJG19SlSxds3boV33//Pby8vLBt2zYUFhbCy8tLGjNnzhysWLECnTt3hp+fHzZs2ICrV69K727t7OyQmJiIt99+G0ajEf3798f169eRn58Pe3t7TJ48+a7jbtu2DU5OThg3btxdH89ER0cjLS1NVvQvXryI2tpa3LhxA0VFRVi9ejUuX76MPXv2NHpuixcvRk1NDaKjo+Hh4YFr167hgw8+QF1dHSIiIgAAKSkpCA8Ph7e3N+Li4lBfX49vv/0WycnJ6NKlC2JiYjBz5kxs3LgRdnZ2mD9/Ptq3b4+YmJhGj+vj44P4+HhMmjQJa9euRWBgIC5duoTc3FwEBARg6NChjc4Vmpmlv1QQnl2TJ082uc/o9OnTSd750nDUqFHSpYF+fn6cO3cujUajFMNgMFCr1RIAy8vL7zpGVlYWQ0NDqVaraW9vz6CgIG7atEnqB8C9e/fK5tTW1nLKlCnUaDR0cHDgrFmzOH/+fPbo0UMaU1dXxzfffJP29vZ87rnnmJyczFdeeYVxcXHSGKPRyPXr19PX15fW1tZ0cXFhZGQkDx06ZDIf3bt35+zZs0327dy5k0qlkpcuXZK+yAXAVq1a0c7Ojj169OA777zDCxcu3DPnP/zwA8eMGcMOHTpQqVTS1dWVUVFRPHLkiGzc7t272bNnTyqVSjo7O3P06NFSX8MlmxqNhmq1mpGRkSYv2fyvhquiPD09aW1tTa1Wy1GjRvHkyZP3XLPQvMQeuYLwAIxGI/z9/TFu3DgsXbrU0ssRhEcmPt4RBBPOnTuH7OxshIWF4datW/jwww+h1+vx6quvWnppgvBYxCWbgmCClZUV0tPT0bdvX/Tr1w8lJSXIycmBv7+/pZcmCI9FfLwjCILQgoh3+oIgCC2IKPqCIAgtiCj6giAILYgo+oIgCC2IKPqCIAgtiCj6giAILYgo+oIgCC2IKPqCIAgtyP8Bq0ZRLf1JATkAAAAASUVORK5CYII=", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" } ], "source": [ - "plt.figure(figsize=(4, 3))\n", - "plt.scatter(leverage_raw_scores, abs_errors, alpha=0.5)\n", - "plt.axvline(x=count_fp_pipe.named_steps['leverage'].threshold_, color='r', linestyle='--', label='AD Threshold')\n", - "plt.xlabel('Leverage AD Score')\n", - "plt.ylabel('Absolute Prediction Error')\n", - "plt.title('Prediction Errors vs Leverage Scores')\n", + "plt.figure(figsize=(10, 6))\n", + "plt.scatter(leverage_scores, abs_errors, alpha=0.5)\n", + "plt.axvline(x=leverage_ad.threshold_, color=\"r\", linestyle=\"--\", label=\"AD Threshold\")\n", + "plt.xlabel(\"Leverage AD Score\")\n", + "plt.ylabel(\"Absolute Prediction Error\")\n", + "plt.title(\"Prediction Errors vs Leverage Scores\")\n", "plt.legend()\n", - "\n", + "plt.show()\n", "\n", "# Calculate error statistics\n", - "in_domain = count_fp_pipe.named_steps['leverage'].predict(X_test_transformed)\n", + "in_domain = leverage_ad.predict(X_test_transformed)\n", "errors_in = abs_errors[in_domain == 1]\n", "errors_out = abs_errors[in_domain == -1]\n", "\n", @@ -1307,14 +798,6 @@ "print(f\"Fraction of samples outside domain: {(in_domain == -1).mean():.2f}\")" ] }, - { - "cell_type": "markdown", - "id": "86f8a09e", - "metadata": {}, - "source": [ - "Dissappointingly the error seems larger within the domain, than outside the domain." - ] - }, { "cell_type": "markdown", "id": "e22b19f0", @@ -1327,7 +810,7 @@ }, { "cell_type": "code", - "execution_count": 16, + "execution_count": null, "id": "1d33100d", "metadata": {}, "outputs": [ @@ -1346,206 +829,52 @@ "source": [ "# Define famous drugs\n", "famous_drugs = {\n", - " 'Aspirin': 'CC(=O)OC1=CC=CC=C1C(=O)O',\n", - " 'Viagra': 'CCc1nn(C)c2c(=O)[nH]c(nc12)c3cc(ccc3OCC)S(=O)(=O)N4CCN(C)CC4',\n", - " 'Heroin': 'CN1CC[C@]23[C@H]4Oc5c(O)ccc(CC1[C@H]2C=C[C@@H]4O3)c5',\n", + " \"Aspirin\": \"CC(=O)OC1=CC=CC=C1C(=O)O\",\n", + " \"Viagra\": \"CCc1nn(C)c2c(=O)[nH]c(nc12)c3cc(ccc3OCC)S(=O)(=O)N4CCN(C)CC4\",\n", + " \"Heroin\": \"CN1CC[C@]23[C@H]4Oc5c(O)ccc(CC1[C@H]2C=C[C@@H]4O3)c5\",\n", "}\n", "\n", "\n", - "Draw.MolsToGridImage([Chem.MolFromSmiles(drug) for drug in famous_drugs.values()], molsPerRow=3,\n", - " subImgSize=(250,250), legends=[f\"{name}\" for name, smiles in famous_drugs.items()])" - ] - }, - { - "cell_type": "code", - "execution_count": 17, - "id": "904ed0d0", - "metadata": {}, - "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/esben/envs/vscode/lib/python3.10/site-packages/sklearn/utils/deprecation.py:151: FutureWarning: 'force_all_finite' was renamed to 'ensure_all_finite' in 1.6 and will be removed in 1.8.\n", - " warnings.warn(\n", - "/home/esben/envs/vscode/lib/python3.10/site-packages/sklearn/metrics/pairwise.py:2466: DataConversionWarning: Data was converted to boolean for metric jaccard\n", - " warnings.warn(msg, DataConversionWarning)\n", - "/home/esben/envs/vscode/lib/python3.10/site-packages/sklearn/utils/deprecation.py:151: FutureWarning: 'force_all_finite' was renamed to 'ensure_all_finite' in 1.6 and will be removed in 1.8.\n", - " warnings.warn(\n", - "/home/esben/envs/vscode/lib/python3.10/site-packages/sklearn/utils/deprecation.py:151: FutureWarning: 'force_all_finite' was renamed to 'ensure_all_finite' in 1.6 and will be removed in 1.8.\n", - " warnings.warn(\n", - "/home/esben/envs/vscode/lib/python3.10/site-packages/sklearn/metrics/pairwise.py:2466: DataConversionWarning: Data was converted to boolean for metric jaccard\n", - " warnings.warn(msg, DataConversionWarning)\n", - "/home/esben/envs/vscode/lib/python3.10/site-packages/sklearn/utils/deprecation.py:151: FutureWarning: 'force_all_finite' was renamed to 'ensure_all_finite' in 1.6 and will be removed in 1.8.\n", - " warnings.warn(\n", - "/home/esben/envs/vscode/lib/python3.10/site-packages/sklearn/utils/deprecation.py:151: FutureWarning: 'force_all_finite' was renamed to 'ensure_all_finite' in 1.6 and will be removed in 1.8.\n", - " warnings.warn(\n", - "/home/esben/envs/vscode/lib/python3.10/site-packages/sklearn/utils/deprecation.py:151: FutureWarning: 'force_all_finite' was renamed to 'ensure_all_finite' in 1.6 and will be removed in 1.8.\n", - " warnings.warn(\n", - "/home/esben/envs/vscode/lib/python3.10/site-packages/sklearn/utils/deprecation.py:151: FutureWarning: 'force_all_finite' was renamed to 'ensure_all_finite' in 1.6 and will be removed in 1.8.\n", - " warnings.warn(\n", - "/home/esben/envs/vscode/lib/python3.10/site-packages/sklearn/metrics/pairwise.py:2466: DataConversionWarning: Data was converted to boolean for metric jaccard\n", - " warnings.warn(msg, DataConversionWarning)\n", - "/home/esben/envs/vscode/lib/python3.10/site-packages/sklearn/utils/deprecation.py:151: FutureWarning: 'force_all_finite' was renamed to 'ensure_all_finite' in 1.6 and will be removed in 1.8.\n", - " warnings.warn(\n", - "/home/esben/envs/vscode/lib/python3.10/site-packages/sklearn/utils/deprecation.py:151: FutureWarning: 'force_all_finite' was renamed to 'ensure_all_finite' in 1.6 and will be removed in 1.8.\n", - " warnings.warn(\n", - "/home/esben/envs/vscode/lib/python3.10/site-packages/sklearn/metrics/pairwise.py:2466: DataConversionWarning: Data was converted to boolean for metric jaccard\n", - " warnings.warn(msg, DataConversionWarning)\n", - "/home/esben/envs/vscode/lib/python3.10/site-packages/sklearn/utils/deprecation.py:151: FutureWarning: 'force_all_finite' was renamed to 'ensure_all_finite' in 1.6 and will be removed in 1.8.\n", - " warnings.warn(\n", - "/home/esben/envs/vscode/lib/python3.10/site-packages/sklearn/utils/deprecation.py:151: FutureWarning: 'force_all_finite' was renamed to 'ensure_all_finite' in 1.6 and will be removed in 1.8.\n", - " warnings.warn(\n", - "/home/esben/envs/vscode/lib/python3.10/site-packages/sklearn/utils/deprecation.py:151: FutureWarning: 'force_all_finite' was renamed to 'ensure_all_finite' in 1.6 and will be removed in 1.8.\n", - " warnings.warn(\n", - "/home/esben/envs/vscode/lib/python3.10/site-packages/sklearn/utils/deprecation.py:151: FutureWarning: 'force_all_finite' was renamed to 'ensure_all_finite' in 1.6 and will be removed in 1.8.\n", - " warnings.warn(\n", - "/home/esben/envs/vscode/lib/python3.10/site-packages/sklearn/metrics/pairwise.py:2466: DataConversionWarning: Data was converted to boolean for metric jaccard\n", - " warnings.warn(msg, DataConversionWarning)\n", - "/home/esben/envs/vscode/lib/python3.10/site-packages/sklearn/utils/deprecation.py:151: FutureWarning: 'force_all_finite' was renamed to 'ensure_all_finite' in 1.6 and will be removed in 1.8.\n", - " warnings.warn(\n", - "/home/esben/envs/vscode/lib/python3.10/site-packages/sklearn/utils/deprecation.py:151: FutureWarning: 'force_all_finite' was renamed to 'ensure_all_finite' in 1.6 and will be removed in 1.8.\n", - " warnings.warn(\n", - "/home/esben/envs/vscode/lib/python3.10/site-packages/sklearn/metrics/pairwise.py:2466: DataConversionWarning: Data was converted to boolean for metric jaccard\n", - " warnings.warn(msg, DataConversionWarning)\n", - "/home/esben/envs/vscode/lib/python3.10/site-packages/sklearn/utils/deprecation.py:151: FutureWarning: 'force_all_finite' was renamed to 'ensure_all_finite' in 1.6 and will be removed in 1.8.\n", - " warnings.warn(\n", - "/home/esben/envs/vscode/lib/python3.10/site-packages/sklearn/utils/deprecation.py:151: FutureWarning: 'force_all_finite' was renamed to 'ensure_all_finite' in 1.6 and will be removed in 1.8.\n", - " warnings.warn(\n", - "/home/esben/envs/vscode/lib/python3.10/site-packages/sklearn/utils/deprecation.py:151: FutureWarning: 'force_all_finite' was renamed to 'ensure_all_finite' in 1.6 and will be removed in 1.8.\n", - " warnings.warn(\n" - ] - }, - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
Predicted pIC50k-NN Scorek-NN StatusLeverage ScoreLeverage Status
Drug
Aspirin5.900.719194Outside0.020058Inside
Viagra9.050.786921Outside0.050743Inside
Heroin6.450.812649Outside0.021588Inside
\n", - "
" - ], - "text/plain": [ - " Predicted pIC50 k-NN Score k-NN Status Leverage Score \\\n", - "Drug \n", - "Aspirin 5.90 0.719194 Outside 0.020058 \n", - "Viagra 9.05 0.786921 Outside 0.050743 \n", - "Heroin 6.45 0.812649 Outside 0.021588 \n", - "\n", - " Leverage Status \n", - "Drug \n", - "Aspirin Inside \n", - "Viagra Inside \n", - "Heroin Inside " - ] - }, - "execution_count": 17, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "\n", - "leverage_ad = count_fp_pipe.named_steps['leverage']\n", - "\n", "# Function to process a drug through both AD pipelines\n", "def check_drug_applicability(smiles, name):\n", " mol = Chem.MolFromSmiles(smiles)\n", - " \n", + "\n", " # k-NN AD\n", - " fp_binary = binary_fp_pipe.named_steps['fp'].transform([mol])\n", + " fp_binary = binary_fp_pipe.named_steps[\"fp\"].transform([mol])\n", " knn_score = knn_ad.transform(fp_binary)[0][0]\n", " knn_status = \"Inside\" if knn_ad.predict(fp_binary)[0] == 1 else \"Outside\"\n", - " \n", + "\n", " # Leverage AD\n", - " fp_count = count_fp_pipe.named_steps['fp'].transform([mol])\n", - " fp_pca = count_fp_pipe.named_steps['pca'].transform(fp_count)\n", - " fp_scaled = count_fp_pipe.named_steps['scaler'].transform(fp_pca)\n", + " fp_count = count_fp_pipe.named_steps[\"fp\"].transform([mol])\n", + " fp_pca = count_fp_pipe.named_steps[\"pca\"].transform(fp_count)\n", + " fp_scaled = count_fp_pipe.named_steps[\"scaler\"].transform(fp_pca)\n", " leverage_score = leverage_ad.transform(fp_scaled)[0][0]\n", " leverage_status = \"Inside\" if leverage_ad.predict(fp_scaled)[0] == 1 else \"Outside\"\n", - " \n", - " # Get prediction\n", - " pred_pIC50 = binary_fp_pipe.predict([mol])[0]\n", - " \n", + "\n", " return {\n", - " 'knn_score': knn_score,\n", - " 'knn_status': knn_status,\n", - " 'leverage_score': leverage_score,\n", - " 'leverage_status': leverage_status,\n", - " 'pred_pIC50': pred_pIC50\n", + " \"knn_score\": knn_score,\n", + " \"knn_status\": knn_status,\n", + " \"leverage_score\": leverage_score,\n", + " \"leverage_status\": leverage_status,\n", " }\n", "\n", + "\n", "# Process each drug\n", "results = []\n", "for name, smiles in famous_drugs.items():\n", " result = check_drug_applicability(smiles, name)\n", - " results.append({\n", - " 'Drug': name,\n", - " 'Predicted pIC50': f\"{result['pred_pIC50']:.2f}\",\n", - " 'k-NN Score': result['knn_score'],\n", - " 'k-NN Status': result['knn_status'],\n", - " 'Leverage Score': result['leverage_score'],\n", - " 'Leverage Status': result['leverage_status']\n", - " })\n", + " results.append(\n", + " {\n", + " \"Drug\": name,\n", + " \"k-NN Score\": result[\"knn_score\"],\n", + " \"k-NN Status\": result[\"knn_status\"],\n", + " \"Leverage Score\": result[\"leverage_score\"],\n", + " \"Leverage Status\": result[\"leverage_status\"],\n", + " }\n", + " )\n", "\n", "# Display results\n", - "pd.DataFrame(results).set_index('Drug')" + "pd.DataFrame(results).set_index(\"Drug\")" ] }, { @@ -1558,7 +887,7 @@ }, { "cell_type": "code", - "execution_count": 19, + "execution_count": null, "id": "3aaf4485", "metadata": {}, "outputs": [ @@ -1577,31 +906,31 @@ "# Plot for k-NN AD\n", "plt.figure(figsize=(12, 5))\n", "plt.subplot(1, 2, 1)\n", - "plt.scatter(knn_scores, abs_errors, alpha=0.2, label='Test compounds')\n", - "plt.axvline(x=knn_ad.threshold_, color='r', linestyle='--', label='AD Threshold')\n", + "plt.scatter(knn_scores, abs_errors, alpha=0.2, label=\"Test compounds\")\n", + "plt.axvline(x=knn_ad.threshold_, color=\"r\", linestyle=\"--\", label=\"AD Threshold\")\n", "\n", "for result in results:\n", - " plt.axvline(x=result['k-NN Score'], color='g', alpha=0.5,\n", - " label=f\"{result['Drug']}\")\n", + " plt.axvline(x=result[\"k-NN Score\"], color=\"g\", alpha=0.5, label=f\"{result['Drug']}\")\n", "\n", - "plt.xlabel('k-NN AD Score')\n", - "plt.ylabel('Absolute Prediction Error')\n", - "plt.title('k-NN AD Scores')\n", - "#plt.legend(bbox_to_anchor=(1.05, 1), loc='upper left')\n", + "plt.xlabel(\"k-NN AD Score\")\n", + "plt.ylabel(\"Absolute Prediction Error\")\n", + "plt.title(\"k-NN AD Scores\")\n", + "plt.legend(bbox_to_anchor=(1.05, 1), loc=\"upper left\")\n", "\n", "# Plot for Leverage AD\n", "plt.subplot(1, 2, 2)\n", - "plt.scatter(leverage_raw_scores, abs_errors, alpha=0.2, label='Test compounds')\n", - "plt.axvline(x=leverage_ad.threshold_, color='r', linestyle='--', label='AD Threshold')\n", + "plt.scatter(leverage_scores, abs_errors, alpha=0.2, label=\"Test compounds\")\n", + "plt.axvline(x=leverage_ad.threshold_, color=\"r\", linestyle=\"--\", label=\"AD Threshold\")\n", "\n", "for result in results:\n", - " plt.axvline(x=result['Leverage Score'], color='g', alpha=0.5,\n", - " label=f\"{result['Drug']}\")\n", + " plt.axvline(\n", + " x=result[\"Leverage Score\"], color=\"g\", alpha=0.5, label=f\"{result['Drug']}\"\n", + " )\n", "\n", - "plt.xlabel('Leverage AD Score')\n", - "plt.ylabel('Absolute Prediction Error')\n", - "plt.title('Leverage AD Scores')\n", - "plt.legend(bbox_to_anchor=(1.05, 1), loc='upper left')\n", + "plt.xlabel(\"Leverage AD Score\")\n", + "plt.ylabel(\"Absolute Prediction Error\")\n", + "plt.title(\"Leverage AD Scores\")\n", + "plt.legend(bbox_to_anchor=(1.05, 1), loc=\"upper left\")\n", "\n", "plt.tight_layout()\n", "plt.show()" @@ -1612,7 +941,7 @@ "id": "3c018e68", "metadata": {}, "source": [ - "## Conclusions on testing the AD estimators\n", + "## Conclusions\n", "\n", "This notebook demonstrated two different approaches to applicability domain estimation:\n", "\n", @@ -1622,23 +951,20 @@ "2. The leverage-based approach with count-based fingerprints and dimensionality reduction focuses on the statistical\n", "novelty of compounds in the reduced feature space.\n", "\n", - "Heroin and Aspirin was predicted to have a low affinity, whereas Viagra was predicted as having a ~9 pXC50 corresponding to nanomolar affinity. As the regression model had only been trained on actives it will have a tendency to always predict things as active, which is hard to believe for compounds so dissimilar to the training set and with our prior knowledge about their primary targets.\n", - "\n", - "The famous drugs we tested showed marked differences between the two AD estimation techniques. \n", + "The famous drugs we tested showed varying degrees of being within the applicability domain, which makes sense given\n", + "that our training set is focused on SLC6A4 actives, while these drugs have different primary targets.\n", "\n", - "The kNN based method using tanimoto distance showed all test drugs to be distant from the training set and thus outside the applicability domain, whereas the leverage method gave the \"green light\" for all of them. As the drug have different primary targets than the SLC6A4 serotonin transporter, it seems like the kNN based method in this instance (dataset, featurization, ML-model) is a better way to estimate the AD for given novel compounds. This is consistent with our analysis of the 95 percentile of the absolute errors for two different methods, where kNN had a higher 95% percentile error outside the domain, it was lower for the leverage based method.\n", - "\n" + "The error analysis shows that compounds outside the applicability domain tend to have higher prediction errors,\n", + "validating the usefulness of these approaches for identifying potentially unreliable predictions." ] } ], "metadata": { "jupytext": { - "cell_metadata_filter": "-all", - "formats": "ipynb,py:percent", - "main_language": "python" + "formats": "docs//notebooks//ipynb,docs//notebooks//scripts//py:percent" }, "kernelspec": { - "display_name": "vscode", + "display_name": ".venv", "language": "python", "name": "python3" }, @@ -1652,7 +978,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.10.12" + "version": "3.12.6" } }, "nbformat": 4, diff --git a/docs/notebooks/scripts/01_basic_usage.py b/docs/notebooks/scripts/01_basic_usage.py index a0d7a71..062dc18 100644 --- a/docs/notebooks/scripts/01_basic_usage.py +++ b/docs/notebooks/scripts/01_basic_usage.py @@ -1,6 +1,7 @@ # --- # jupyter: # jupytext: +# formats: docs//notebooks//ipynb,docs//notebooks//scripts//py:percent # text_representation: # extension: .py # format_name: percent diff --git a/docs/notebooks/scripts/02_descriptor_transformer.py b/docs/notebooks/scripts/02_descriptor_transformer.py index d3312e4..6c1e9d8 100644 --- a/docs/notebooks/scripts/02_descriptor_transformer.py +++ b/docs/notebooks/scripts/02_descriptor_transformer.py @@ -1,13 +1,14 @@ # --- # jupyter: # jupytext: +# formats: docs//notebooks//ipynb,docs//notebooks//scripts//py:percent # text_representation: # extension: .py # format_name: percent # format_version: '1.3' # jupytext_version: 1.16.6 # kernelspec: -# display_name: Python 3.9.4 ('rdkit') +# display_name: .venv # language: python # name: python3 # --- diff --git a/docs/notebooks/scripts/03_example_pipeline.py b/docs/notebooks/scripts/03_example_pipeline.py index a5eb54c..5ea1303 100644 --- a/docs/notebooks/scripts/03_example_pipeline.py +++ b/docs/notebooks/scripts/03_example_pipeline.py @@ -1,13 +1,14 @@ # --- # jupyter: # jupytext: +# formats: docs//notebooks//ipynb,docs//notebooks//scripts//py:percent # text_representation: # extension: .py # format_name: percent # format_version: '1.3' # jupytext_version: 1.16.6 # kernelspec: -# display_name: Python 3.9.4 ('rdkit') +# display_name: .venv # language: python # name: python3 # --- @@ -30,7 +31,7 @@ import numpy as np # %% -csv_file = "../tests/data/SLC6A4_active_excapedb_subset.csv" # Hmm, maybe better to download directly +csv_file = "../../tests/data/SLC6A4_active_excapedb_subset.csv" # Hmm, maybe better to download directly data = pd.read_csv(csv_file) # %% [markdown] # The dataset is a subset of the SLC6A4 actives from ExcapeDB. They are hand selected to give test set performance despite the small size, and are provided as example data only and should not be used to build serious QSAR models. @@ -72,7 +73,7 @@ print(f"Train score is :{pipe.score(mol_list_train,y_train):0.2F}") print(f"Test score is :{pipe.score(mol_list_test, y_test):0.2F}") # %% [markdown] -# Nevermind the performance, or the exact value of the prediction, this is for demonstration purposes. We can easily predict on lists of molecules +# Nevermind the performance, or the exact value of the prediction, this is for demonstration purpures. We can easily predict on lists of molecules # %% pipe.predict([Chem.MolFromSmiles("c1ccccc1C(=O)[OH]")]) diff --git a/docs/notebooks/scripts/04_standardizer.py b/docs/notebooks/scripts/04_standardizer.py index 6b64ccb..7f9d089 100644 --- a/docs/notebooks/scripts/04_standardizer.py +++ b/docs/notebooks/scripts/04_standardizer.py @@ -1,6 +1,7 @@ # --- # jupyter: # jupytext: +# formats: docs//notebooks//ipynb,docs//notebooks//scripts//py:percent # text_representation: # extension: .py # format_name: percent diff --git a/docs/notebooks/scripts/05_smiles_sanitization.py b/docs/notebooks/scripts/05_smiles_sanitization.py index bc34f2f..e2f36da 100644 --- a/docs/notebooks/scripts/05_smiles_sanitization.py +++ b/docs/notebooks/scripts/05_smiles_sanitization.py @@ -1,6 +1,7 @@ # --- # jupyter: # jupytext: +# formats: docs//notebooks//ipynb,docs//notebooks//scripts//py:percent # text_representation: # extension: .py # format_name: percent @@ -20,7 +21,7 @@ import pandas as pd from rdkit.Chem import PandasTools -csv_file = "../tests/data/SLC6A4_active_excapedb_subset.csv" # Hmm, maybe better to download directly +csv_file = "../../tests/data/SLC6A4_active_excapedb_subset.csv" # Hmm, maybe better to download directly data = pd.read_csv(csv_file) @@ -31,7 +32,6 @@ data.loc[1, "SMILES"] = "CN(C)(C)(C)" # %% - PandasTools.AddMoleculeColumnToFrame(data, smilesCol="SMILES") print(f"Dataset contains {data.ROMol.isna().sum()} unparsable mols") diff --git a/docs/notebooks/scripts/06_hyperparameter_tuning.py b/docs/notebooks/scripts/06_hyperparameter_tuning.py index a068be4..e1408de 100644 --- a/docs/notebooks/scripts/06_hyperparameter_tuning.py +++ b/docs/notebooks/scripts/06_hyperparameter_tuning.py @@ -1,6 +1,7 @@ # --- # jupyter: # jupytext: +# formats: docs//notebooks//ipynb,docs//notebooks//scripts//py:percent # text_representation: # extension: .py # format_name: percent @@ -46,13 +47,12 @@ url = "https://ndownloader.figshare.com/files/25747817" urllib.request.urlretrieve(url, csv_file) else: - csv_file = "../tests/data/SLC6A4_active_excapedb_subset.csv" + csv_file = "../../tests/data/SLC6A4_active_excapedb_subset.csv" # %% [markdown] # The CSV data is loaded into a Pandas dataframe and the PandasTools utility from RDKit is used to add a column with RDKit molecules # %% - data = pd.read_csv(csv_file) PandasTools.AddMoleculeColumnToFrame(data, smilesCol="SMILES") @@ -62,7 +62,6 @@ # We use the train_test_split to, well, split the dataframe's molecule columns and pXC50 column into lists for train and testing # %% - mol_list_train, mol_list_test, y_train, y_test = train_test_split( data.ROMol, data.pXC50, random_state=42 ) @@ -84,7 +83,6 @@ # A simple pipeline with a MorganTransformer and a Ridge() regression for demonstration. # %% - moltransformer = MorganFingerprintTransformer() regressor = Ridge() @@ -104,14 +102,12 @@ # With the pipelines, getting the names of the parameters to tune is a bit more tricky, as they are concatenations of the name of the step and the parameter with double underscores in between. We can get the available parameters from the pipeline with the get_params() method, and select the parameters we want to change from there. # %% Which keys do we have? - optimization_pipe.get_params().keys() # %% [markdown] # We will tune the regularization strength of the Ridge regressor, and try out different parameters for the Morgan fingerprint, namely the number of bits, the radius of the fingerprint, wheter to use counts or bits and features. # %% - param_dist = { "ridge__alpha": loguniform(1e-2, 1e3), "morganfingerprinttransformer__fpSize": [256, 512, 1024, 2048, 4096], diff --git a/docs/notebooks/scripts/07_parallel_transforms.py b/docs/notebooks/scripts/07_parallel_transforms.py index b8068fe..2ff57a7 100644 --- a/docs/notebooks/scripts/07_parallel_transforms.py +++ b/docs/notebooks/scripts/07_parallel_transforms.py @@ -1,17 +1,20 @@ # --- # jupyter: # jupytext: +# formats: docs//notebooks//ipynb,docs//notebooks//scripts//py:percent # text_representation: # extension: .py # format_name: percent # format_version: '1.3' # jupytext_version: 1.16.6 # kernelspec: -# display_name: .venv +# display_name: Python 3.9.4 ('rdkit') # language: python # name: python3 # --- +# %% + # %% [markdown] # # Parallel calculations of transforms # diff --git a/docs/notebooks/scripts/08_external_library_skopt.py b/docs/notebooks/scripts/08_external_library_skopt.py index e8b0225..aa6e0ce 100644 --- a/docs/notebooks/scripts/08_external_library_skopt.py +++ b/docs/notebooks/scripts/08_external_library_skopt.py @@ -1,13 +1,14 @@ # --- # jupyter: # jupytext: +# formats: docs//notebooks//ipynb,docs//notebooks//scripts//py:percent # text_representation: # extension: .py # format_name: percent # format_version: '1.3' # jupytext_version: 1.16.6 # kernelspec: -# display_name: vscode +# display_name: .venv # language: python # name: python3 # --- @@ -94,7 +95,6 @@ def objective(**params): # %% THIS takes forever on my machine with a GradientBoostingRegressor - pipe_gp = gp_minimize(objective, search_space, n_calls=10, random_state=0) "Best score=%.4f" % pipe_gp.fun # %% diff --git a/docs/notebooks/scripts/09_Combinatorial_Method_Usage_with_FingerPrint_Transformers.py b/docs/notebooks/scripts/09_Combinatorial_Method_Usage_with_FingerPrint_Transformers.py index d9b55f0..ce275c2 100644 --- a/docs/notebooks/scripts/09_Combinatorial_Method_Usage_with_FingerPrint_Transformers.py +++ b/docs/notebooks/scripts/09_Combinatorial_Method_Usage_with_FingerPrint_Transformers.py @@ -1,15 +1,16 @@ # --- # jupyter: # jupytext: +# formats: docs//notebooks//ipynb,docs//notebooks//scripts//py:percent # text_representation: # extension: .py # format_name: percent # format_version: '1.3' # jupytext_version: 1.16.6 # kernelspec: -# display_name: aniEnv +# display_name: .venv # language: python -# name: anienv +# name: python3 # --- # %% [markdown] @@ -65,7 +66,7 @@ url = "https://ndownloader.figshare.com/files/25747817" urllib.request.urlretrieve(url, csv_file) else: - csv_file = "../tests/data/SLC6A4_active_excapedb_subset.csv" + csv_file = "../../tests/data/SLC6A4_active_excapedb_subset.csv" # Parse Database data = pd.read_csv(csv_file) @@ -82,7 +83,6 @@ # This way we can define multiple different scenarios in `param_grid`, that allow us to rapidly explore different combinations of settings and methodologies. # %% - regressor = Ridge() optimization_pipe = Pipeline( [ diff --git a/docs/notebooks/scripts/10_pipeline_pandas_output.py b/docs/notebooks/scripts/10_pipeline_pandas_output.py index 2e3d9e5..f49339f 100644 --- a/docs/notebooks/scripts/10_pipeline_pandas_output.py +++ b/docs/notebooks/scripts/10_pipeline_pandas_output.py @@ -1,13 +1,14 @@ # --- # jupyter: # jupytext: +# formats: docs//notebooks//ipynb,docs//notebooks//scripts//py:percent # text_representation: # extension: .py # format_name: percent # format_version: '1.3' # jupytext_version: 1.16.6 # kernelspec: -# display_name: scikit-mol +# display_name: .venv # language: python # name: python3 # --- @@ -35,7 +36,7 @@ from scikit_mol.fingerprints import MorganFingerprintTransformer # %% -csv_file = Path("../tests/data/SLC6A4_active_excapedb_subset.csv") +csv_file = Path("../../tests/data/SLC6A4_active_excapedb_subset.csv") assert csv_file.is_file() data = pd.read_csv(csv_file) data.drop_duplicates(subset="Ambit_InchiKey", inplace=True) @@ -130,7 +131,7 @@ # %% def compute_metrics(y_true, y_pred): result = { - "RMSE": mean_squared_error(y_true=y_true, y_pred=y_pred, squared=False), + "RMSE": mean_squared_error(y_true=y_true, y_pred=y_pred) ** 0.5, "MAE": mean_absolute_error(y_true=y_true, y_pred=y_pred), "R2": r2_score(y_true=y_true, y_pred=y_pred), } @@ -186,7 +187,7 @@ def compute_metrics(y_true, y_pred): # We have precomputed these features and stored them in a file: # %% -file_cddd_features = Path("../tests/data/CDDD_SLC6A4_active_excapedb_subset.csv.gz") +file_cddd_features = Path("../../tests/data/CDDD_SLC6A4_active_excapedb_subset.csv.gz") assert file_cddd_features.is_file() df_cddd = pd.read_csv(file_cddd_features) df_cddd diff --git a/docs/notebooks/scripts/11_safe_inference.py b/docs/notebooks/scripts/11_safe_inference.py index 45ae4af..c55045b 100644 --- a/docs/notebooks/scripts/11_safe_inference.py +++ b/docs/notebooks/scripts/11_safe_inference.py @@ -1,13 +1,14 @@ # --- # jupyter: # jupytext: +# formats: docs//notebooks//ipynb,docs//notebooks//scripts//py:percent # text_representation: # extension: .py # format_name: percent # format_version: '1.3' # jupytext_version: 1.16.6 # kernelspec: -# display_name: vscode +# display_name: .venv # language: python # name: python3 # --- diff --git a/docs/notebooks/scripts/12_custom_fingerprint_transformer.py b/docs/notebooks/scripts/12_custom_fingerprint_transformer.py index e128dbd..f905db7 100644 --- a/docs/notebooks/scripts/12_custom_fingerprint_transformer.py +++ b/docs/notebooks/scripts/12_custom_fingerprint_transformer.py @@ -1,12 +1,12 @@ # --- # jupyter: # jupytext: -# formats: ipynb,py:percent +# formats: docs//notebooks//ipynb,docs//notebooks//scripts//py:percent # text_representation: # extension: .py # format_name: percent # format_version: '1.3' -# jupytext_version: 1.16.1 +# jupytext_version: 1.16.6 # kernelspec: # display_name: .venv # language: python @@ -32,16 +32,20 @@ import numpy as np from rdkit import Chem + class DummyFingerprintTransformer(BaseFpsTransformer): - def __init__(self, fpSize=64, n_jobs=1, safe_inference_mode = False): + def __init__(self, fpSize=64, n_jobs=1, safe_inference_mode=False): self.fpSize = fpSize - super().__init__(n_jobs=n_jobs, safe_inference_mode=safe_inference_mode, name="dummy") + super().__init__( + n_jobs=n_jobs, safe_inference_mode=safe_inference_mode, name="dummy" + ) def _transform_mol(self, mol): return mol.GetNumAtoms() * np.ones(self.fpSize) - + + trans = DummyFingerprintTransformer(n_jobs=4) -mols = [Chem.MolFromSmiles('CC')] * 100 +mols = [Chem.MolFromSmiles("CC")] * 100 trans.transform(mols) # %% [markdown] @@ -55,15 +59,21 @@ def _transform_mol(self, mol): # %% from rdkit.Chem import rdFingerprintGenerator + class UnpickableFingerprintTransformer(BaseFpsTransformer): def __init__(self, fpSize=1024, n_jobs=1, safe_inference_mode=False, **kwargs): self.fpSize = fpSize - super().__init__(n_jobs=n_jobs, safe_inference_mode=safe_inference_mode, **kwargs) - self.fp_gen = rdFingerprintGenerator.GetRDKitFPGenerator(maxPath=2, fpSize=self.fpSize) + super().__init__( + n_jobs=n_jobs, safe_inference_mode=safe_inference_mode, **kwargs + ) + self.fp_gen = rdFingerprintGenerator.GetRDKitFPGenerator( + maxPath=2, fpSize=self.fpSize + ) def _transform_mol(self, mol): return self.fp_gen.GetFingerprintAsNumPy(mol) - + + trans = UnpickableFingerprintTransformer(n_jobs=4, fpSize=512) trans.transform(mols) @@ -76,6 +86,7 @@ class BadTransformer(BaseFpsTransformer): def __init__(self, generator, n_jobs=1): self.generator = generator super().__init__(n_jobs=n_jobs) + def _transform_mol(self, mol): return self.generator.GetFingerprint(mol) @@ -86,7 +97,9 @@ def _transform_mol(self, mol): try: BadTransformer(fp_gen, n_jobs=2).transform(mols) except Exception as e: - print("n_jobs=2 is not fine, because the generator passed as an argument is not picklable") + print( + "n_jobs=2 is not fine, because the generator passed as an argument is not picklable" + ) print(f"Error msg: {e}") @@ -104,13 +117,16 @@ def _transform_mol(self, mol): class NamedTansformer1(UnpickableFingerprintTransformer): pass + class NamedTansformer2(UnpickableFingerprintTransformer): def __init__(self): super().__init__(name="fp_fancy") + class FancyFingerprintTransformer(UnpickableFingerprintTransformer): pass + print(NamedTansformer1().get_feature_names_out()) print(NamedTansformer2().get_feature_names_out()) print(FancyFingerprintTransformer().get_feature_names_out()) diff --git a/docs/notebooks/scripts/13_applicability_domain.py b/docs/notebooks/scripts/13_applicability_domain.py index 7baa492..93ace0b 100644 --- a/docs/notebooks/scripts/13_applicability_domain.py +++ b/docs/notebooks/scripts/13_applicability_domain.py @@ -1,27 +1,14 @@ # --- # jupyter: # jupytext: -# cell_metadata_filter: -all -# formats: ipynb,py:percent +# formats: docs//notebooks//ipynb,docs//notebooks//scripts//py:percent # text_representation: # extension: .py # format_name: percent # format_version: '1.3' # jupytext_version: 1.16.6 -# --- - -# %% -# --- -# jupyter: -# jupytext: -# formats: ipynb,py:percent -# text_representation: -# extension: .py -# format_name: percent -# format_version: '1.3' -# jupytext_version: 1.16.1 # kernelspec: -# display_name: Python 3 (ipykernel) +# display_name: .venv # language: python # name: python3 # --- @@ -58,7 +45,7 @@ # %% # Load the dataset -csv_file = "../tests/data/SLC6A4_active_excapedb_subset.csv" +csv_file = "../../tests/data/SLC6A4_active_excapedb_subset.csv" data = pd.read_csv(csv_file) # Add RDKit mol objects @@ -70,7 +57,9 @@ y = data.pXC50 X_temp, X_test, y_temp, y_test = train_test_split(X, y, test_size=0.2, random_state=42) -X_train, X_val, y_train, y_val = train_test_split(X_temp, y_temp, test_size=0.25, random_state=42) +X_train, X_val, y_train, y_val = train_test_split( + X_temp, y_temp, test_size=0.25, random_state=42 +) # %% [markdown] # ## Example 1: k-NN Applicability Domain with Binary Morgan Fingerprints @@ -80,10 +69,12 @@ # %% # Create pipeline for binary fingerprints -binary_fp_pipe = Pipeline([ - ('fp', MorganFingerprintTransformer(fpSize=2048, radius=2)), - ('rf', RandomForestRegressor(n_estimators=100, random_state=42)) -]) +binary_fp_pipe = Pipeline( + [ + ("fp", MorganFingerprintTransformer(fpSize=2048, radius=2)), + ("rf", RandomForestRegressor(n_estimators=100, random_state=42)), + ] +) # Train the model binary_fp_pipe.fit(X_train, y_train) @@ -93,14 +84,14 @@ abs_errors = np.abs(y_test - y_pred_test) # Create and fit k-NN AD estimator -knn_ad = KNNApplicabilityDomain(n_neighbors=3, distance_metric='tanimoto') -knn_ad.fit(binary_fp_pipe.named_steps['fp'].transform(X_train)) +knn_ad = KNNApplicabilityDomain(n_neighbors=3, distance_metric="tanimoto") +knn_ad.fit(binary_fp_pipe.named_steps["fp"].transform(X_train)) # Fit threshold using validation set -knn_ad.fit_threshold(binary_fp_pipe.named_steps['fp'].transform(X_val)) +knn_ad.fit_threshold(binary_fp_pipe.named_steps["fp"].transform(X_val)) # Get AD scores for test set -knn_scores = knn_ad.transform(binary_fp_pipe.named_steps['fp'].transform(X_test)) +knn_scores = knn_ad.transform(binary_fp_pipe.named_steps["fp"].transform(X_test)) # %% [markdown] # Let's visualize the relationship between prediction errors and AD scores: @@ -108,15 +99,15 @@ # %% plt.figure(figsize=(10, 6)) plt.scatter(knn_scores, abs_errors, alpha=0.5) -plt.axvline(x=knn_ad.threshold_, color='r', linestyle='--', label='AD Threshold') -plt.xlabel('k-NN AD Score') -plt.ylabel('Absolute Prediction Error') -plt.title('Prediction Errors vs k-NN AD Scores') +plt.axvline(x=knn_ad.threshold_, color="r", linestyle="--", label="AD Threshold") +plt.xlabel("k-NN AD Score") +plt.ylabel("Absolute Prediction Error") +plt.title("Prediction Errors vs k-NN AD Scores") plt.legend() plt.show() # Calculate error statistics -in_domain = knn_ad.predict(binary_fp_pipe.named_steps['fp'].transform(X_test)) +in_domain = knn_ad.predict(binary_fp_pipe.named_steps["fp"].transform(X_test)) errors_in = abs_errors[in_domain == 1] errors_out = abs_errors[in_domain == -1] @@ -132,12 +123,14 @@ # %% # Create pipeline for count-based fingerprints with PCA -count_fp_pipe = Pipeline([ - ('fp', MorganFingerprintTransformer(fpSize=2048, radius=2, useCounts=True)), - ('pca', PCA(n_components=0.9)), # Keep 90% of variance - ('scaler', StandardScaler()), - ('rf', RandomForestRegressor(n_estimators=100, random_state=42)) -]) +count_fp_pipe = Pipeline( + [ + ("fp", MorganFingerprintTransformer(fpSize=2048, radius=2, useCounts=True)), + ("pca", PCA(n_components=0.9)), # Keep 90% of variance + ("scaler", StandardScaler()), + ("rf", RandomForestRegressor(n_estimators=100, random_state=42)), + ] +) # Train the model count_fp_pipe.fit(X_train, y_train) @@ -148,25 +141,25 @@ # Create and fit leverage AD estimator leverage_ad = LeverageApplicabilityDomain() -X_train_transformed = count_fp_pipe.named_steps['scaler'].transform( - count_fp_pipe.named_steps['pca'].transform( - count_fp_pipe.named_steps['fp'].transform(X_train) +X_train_transformed = count_fp_pipe.named_steps["scaler"].transform( + count_fp_pipe.named_steps["pca"].transform( + count_fp_pipe.named_steps["fp"].transform(X_train) ) ) leverage_ad.fit(X_train_transformed) # Fit threshold using validation set -X_val_transformed = count_fp_pipe.named_steps['scaler'].transform( - count_fp_pipe.named_steps['pca'].transform( - count_fp_pipe.named_steps['fp'].transform(X_val) +X_val_transformed = count_fp_pipe.named_steps["scaler"].transform( + count_fp_pipe.named_steps["pca"].transform( + count_fp_pipe.named_steps["fp"].transform(X_val) ) ) leverage_ad.fit_threshold(X_val_transformed) # Get AD scores for test set -X_test_transformed = count_fp_pipe.named_steps['scaler'].transform( - count_fp_pipe.named_steps['pca'].transform( - count_fp_pipe.named_steps['fp'].transform(X_test) +X_test_transformed = count_fp_pipe.named_steps["scaler"].transform( + count_fp_pipe.named_steps["pca"].transform( + count_fp_pipe.named_steps["fp"].transform(X_test) ) ) leverage_scores = leverage_ad.transform(X_test_transformed) @@ -177,10 +170,10 @@ # %% plt.figure(figsize=(10, 6)) plt.scatter(leverage_scores, abs_errors, alpha=0.5) -plt.axvline(x=leverage_ad.threshold_, color='r', linestyle='--', label='AD Threshold') -plt.xlabel('Leverage AD Score') -plt.ylabel('Absolute Prediction Error') -plt.title('Prediction Errors vs Leverage Scores') +plt.axvline(x=leverage_ad.threshold_, color="r", linestyle="--", label="AD Threshold") +plt.xlabel("Leverage AD Score") +plt.ylabel("Absolute Prediction Error") +plt.title("Prediction Errors vs Leverage Scores") plt.legend() plt.show() @@ -201,48 +194,52 @@ # %% # Define famous drugs famous_drugs = { - 'Aspirin': 'CC(=O)OC1=CC=CC=C1C(=O)O', - 'Viagra': 'CCc1nn(C)c2c(=O)[nH]c(nc12)c3cc(ccc3OCC)S(=O)(=O)N4CCN(C)CC4', - 'Heroin': 'CN1CC[C@]23[C@H]4Oc5c(O)ccc(CC1[C@H]2C=C[C@@H]4O3)c5', + "Aspirin": "CC(=O)OC1=CC=CC=C1C(=O)O", + "Viagra": "CCc1nn(C)c2c(=O)[nH]c(nc12)c3cc(ccc3OCC)S(=O)(=O)N4CCN(C)CC4", + "Heroin": "CN1CC[C@]23[C@H]4Oc5c(O)ccc(CC1[C@H]2C=C[C@@H]4O3)c5", } + # Function to process a drug through both AD pipelines def check_drug_applicability(smiles, name): mol = Chem.MolFromSmiles(smiles) - + # k-NN AD - fp_binary = binary_fp_pipe.named_steps['fp'].transform([mol]) + fp_binary = binary_fp_pipe.named_steps["fp"].transform([mol]) knn_score = knn_ad.transform(fp_binary)[0][0] knn_status = "Inside" if knn_ad.predict(fp_binary)[0] == 1 else "Outside" - + # Leverage AD - fp_count = count_fp_pipe.named_steps['fp'].transform([mol]) - fp_pca = count_fp_pipe.named_steps['pca'].transform(fp_count) - fp_scaled = count_fp_pipe.named_steps['scaler'].transform(fp_pca) + fp_count = count_fp_pipe.named_steps["fp"].transform([mol]) + fp_pca = count_fp_pipe.named_steps["pca"].transform(fp_count) + fp_scaled = count_fp_pipe.named_steps["scaler"].transform(fp_pca) leverage_score = leverage_ad.transform(fp_scaled)[0][0] leverage_status = "Inside" if leverage_ad.predict(fp_scaled)[0] == 1 else "Outside" - + return { - 'knn_score': knn_score, - 'knn_status': knn_status, - 'leverage_score': leverage_score, - 'leverage_status': leverage_status + "knn_score": knn_score, + "knn_status": knn_status, + "leverage_score": leverage_score, + "leverage_status": leverage_status, } + # Process each drug results = [] for name, smiles in famous_drugs.items(): result = check_drug_applicability(smiles, name) - results.append({ - 'Drug': name, - 'k-NN Score': result['knn_score'], - 'k-NN Status': result['knn_status'], - 'Leverage Score': result['leverage_score'], - 'Leverage Status': result['leverage_status'] - }) + results.append( + { + "Drug": name, + "k-NN Score": result["knn_score"], + "k-NN Status": result["knn_status"], + "Leverage Score": result["leverage_score"], + "Leverage Status": result["leverage_status"], + } + ) # Display results -pd.DataFrame(results).set_index('Drug') +pd.DataFrame(results).set_index("Drug") # %% [markdown] # Let's visualize where these drugs fall in our AD plots: @@ -251,31 +248,31 @@ def check_drug_applicability(smiles, name): # Plot for k-NN AD plt.figure(figsize=(12, 5)) plt.subplot(1, 2, 1) -plt.scatter(knn_scores, abs_errors, alpha=0.2, label='Test compounds') -plt.axvline(x=knn_ad.threshold_, color='r', linestyle='--', label='AD Threshold') +plt.scatter(knn_scores, abs_errors, alpha=0.2, label="Test compounds") +plt.axvline(x=knn_ad.threshold_, color="r", linestyle="--", label="AD Threshold") for result in results: - plt.axvline(x=result['k-NN Score'], color='g', alpha=0.5, - label=f"{result['Drug']}") + plt.axvline(x=result["k-NN Score"], color="g", alpha=0.5, label=f"{result['Drug']}") -plt.xlabel('k-NN AD Score') -plt.ylabel('Absolute Prediction Error') -plt.title('k-NN AD Scores') -plt.legend(bbox_to_anchor=(1.05, 1), loc='upper left') +plt.xlabel("k-NN AD Score") +plt.ylabel("Absolute Prediction Error") +plt.title("k-NN AD Scores") +plt.legend(bbox_to_anchor=(1.05, 1), loc="upper left") # Plot for Leverage AD plt.subplot(1, 2, 2) -plt.scatter(leverage_scores, abs_errors, alpha=0.2, label='Test compounds') -plt.axvline(x=leverage_ad.threshold_, color='r', linestyle='--', label='AD Threshold') +plt.scatter(leverage_scores, abs_errors, alpha=0.2, label="Test compounds") +plt.axvline(x=leverage_ad.threshold_, color="r", linestyle="--", label="AD Threshold") for result in results: - plt.axvline(x=result['Leverage Score'], color='g', alpha=0.5, - label=f"{result['Drug']}") + plt.axvline( + x=result["Leverage Score"], color="g", alpha=0.5, label=f"{result['Drug']}" + ) -plt.xlabel('Leverage AD Score') -plt.ylabel('Absolute Prediction Error') -plt.title('Leverage AD Scores') -plt.legend(bbox_to_anchor=(1.05, 1), loc='upper left') +plt.xlabel("Leverage AD Score") +plt.ylabel("Absolute Prediction Error") +plt.title("Leverage AD Scores") +plt.legend(bbox_to_anchor=(1.05, 1), loc="upper left") plt.tight_layout() plt.show() diff --git a/pyproject.toml b/pyproject.toml index 2320447..57d799b 100644 --- a/pyproject.toml +++ b/pyproject.toml @@ -105,6 +105,5 @@ docs = [ ] -[tool.jupytext.formats] -"docs/notebooks/" = "ipynb" -"docs/notebooks/scripts" = "py:percent" \ No newline at end of file +[tool.jupytext] +formats = "docs//notebooks//ipynb,docs//notebooks//scripts//py:percent" diff --git a/ruff.toml b/ruff.toml index 3a68459..a8c0dca 100644 --- a/ruff.toml +++ b/ruff.toml @@ -27,15 +27,16 @@ exclude = [ "node_modules", "site-packages", "venv", - "notebooks" + "notebooks", + "docs/notebooks/scripts", ] # Same as Black. line-length = 88 indent-width = 4 -# Assume Python 3.8 -target-version = "py38" +# Assume Python 3.9 +target-version = "py39" [lint] # Enable Pyflakes (`F`) and a subset of the pycodestyle (`E`) codes by default. diff --git a/scikit_mol/plotting.py b/scikit_mol/plotting.py index cf2001c..e331fe7 100644 --- a/scikit_mol/plotting.py +++ b/scikit_mol/plotting.py @@ -22,7 +22,7 @@ class ParallelTester: def __init__( self, transformer: object, - mols: list[Chem.Mol], + mols: list["Chem.Mol"], n_mols: Sequence[int] = (10, 100, 100, 1000, 10000, 100000), n_jobs: Sequence[int] = (1, 2, 4, 8), backend: str = "loky", diff --git a/uv.lock b/uv.lock index 0bc6bf1..3489a06 100644 --- a/uv.lock +++ b/uv.lock @@ -1,4 +1,5 @@ version = 1 +revision = 1 requires-python = ">=3.9, <3.14" resolution-markers = [ "python_full_version >= '3.12'",