You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
Define a Model and compile it with an appropriate loss:
@@ -107,18 +107,18 @@ Now finally train the model:
107
107
108
108
```python
109
109
history = model.fit(
110
-
x=X_train,
111
-
y=y_train,
110
+
TrainingGenerator
112
111
batch_size=8,
113
112
epochs=50,
114
-
validation_data(x_val, y_val)
113
+
validation_data=ValidationGenerator
115
114
)
116
115
```
117
116
118
117
You can use the fit_generator method too, e.g. if you want to apply augmentations to the data.
119
118
For complete training pipelines, go to the <ahref="https://github.com/JanMarcelKezmann/TensorFlow-Advanced-Segmentation-Models/blob/master/examples">Examples</a> folder
-[Jupyter Notebook] Multi-class (11 classes) segmentation on CamVid dataset <ahref="https://github.com/JanMarcelKezmann/TensorFlow-Advanced-Segmentation-Models/blob/master/examples/TASM_Example_2.ipynb">here</a>
124
124
-[Jupyter Notebook] Multi-class (11 classes) segmentation on CamVid dataset with a custom training loop<ahref="https://github.com/JanMarcelKezmann/TensorFlow-Advanced-Segmentation-Models/blob/master/examples/TASM_Example_3.ipynb">here</a>
0 commit comments