|
| 1 | +class Solution { |
| 2 | +public: |
| 3 | + // Helper function to calculate the minimum edit distance using dynamic programming |
| 4 | + int solve(string word1, string word2) { |
| 5 | + int n = word1.length(); // Length of the first string |
| 6 | + int m = word2.length(); // Length of the second string |
| 7 | + |
| 8 | + // Create two 1D arrays to store the current and next row values of the dp table |
| 9 | + vector<int> curr(m+1, 0); // Current row (for the current i-th character in word1) |
| 10 | + vector<int> next(m+1, 0); // Next row (for the next i+1-th character in word1) |
| 11 | + |
| 12 | + // Initialize the next row for the case when word1 is empty |
| 13 | + for(int j = 0; j < m; j++) next[j] = m - j; |
| 14 | + |
| 15 | + // Iterate over word1 from bottom to top (i = n-1 to i = 0) |
| 16 | + for(int i = n-1; i >= 0; i--) { |
| 17 | + // Iterate over word2 from right to left (j = m-1 to j = 0) |
| 18 | + for(int j = m-1; j >= 0; j--) { |
| 19 | + // Set the base case for when word2 is empty (fill in the current row's last column) |
| 20 | + curr[m] = n - i; |
| 21 | + |
| 22 | + int ans = 0; |
| 23 | + // If characters match, take the result from the next row's next column |
| 24 | + if(word1[i] == word2[j]) ans = next[j+1]; |
| 25 | + else { |
| 26 | + // Otherwise, calculate the costs of insertion, deletion, and replacement: |
| 27 | + int insertAns = 1 + curr[j+1]; // Insert a character from word2 into word1 |
| 28 | + int deleteAns = 1 + next[j]; // Delete a character from word1 |
| 29 | + int replaceAns = 1 + next[j+1]; // Replace a character in word1 with word2 |
| 30 | + |
| 31 | + // Take the minimum of these three options |
| 32 | + ans = min({insertAns, deleteAns, replaceAns}); |
| 33 | + } |
| 34 | + |
| 35 | + // Store the result for the current cell in the current row |
| 36 | + curr[j] = ans; |
| 37 | + } |
| 38 | + // Update the next row to be the current row after finishing one iteration |
| 39 | + next = curr; |
| 40 | + } |
| 41 | + |
| 42 | + // The final result is stored in curr[0], which represents the minimum edit distance |
| 43 | + return curr[0]; |
| 44 | + } |
| 45 | + |
| 46 | + // Main function to calculate the minimum edit distance between word1 and word2 |
| 47 | + int minDistance(string word1, string word2) { |
| 48 | + // Edge case: if one of the strings is empty, the result is the length of the other string |
| 49 | + if(word1.length() == 0) return word2.length(); |
| 50 | + if(word2.length() == 0) return word1.length(); |
| 51 | + |
| 52 | + // Call the solve function to compute the result |
| 53 | + return solve(word1, word2); |
| 54 | + } |
| 55 | +}; |
0 commit comments