|
| 1 | +// Define a Node class to represent each node in the Huffman tree |
| 2 | +class Node { |
| 3 | + public: |
| 4 | + int data; // The frequency of the character (or combined frequencies) |
| 5 | + Node* right; // Pointer to the right child node |
| 6 | + Node* left; // Pointer to the left child node |
| 7 | + |
| 8 | + // Constructor to initialize a node with a given frequency |
| 9 | + Node(int d) { |
| 10 | + this -> data = d; // Set the frequency (data) of the node |
| 11 | + left = NULL; // Initialize the left child as NULL |
| 12 | + right = NULL; // Initialize the right child as NULL |
| 13 | + } |
| 14 | +}; |
| 15 | + |
| 16 | +// Comparator class for the priority queue to create a min-heap |
| 17 | +class cmp { |
| 18 | + public: |
| 19 | + bool operator()(Node* a, Node* b) { |
| 20 | + // Return true if the frequency of 'a' is greater than 'b', |
| 21 | + // which helps in maintaining a min-heap (lowest frequency at top) |
| 22 | + return a -> data > b -> data; |
| 23 | + } |
| 24 | +}; |
| 25 | + |
| 26 | +// Solution class that contains the logic for building Huffman codes |
| 27 | +class Solution { |
| 28 | + public: |
| 29 | + // Helper function to traverse the Huffman tree and store codes |
| 30 | + void traverse(Node* root, vector<string>& ans, string temp) { |
| 31 | + // Base case: If it's a leaf node, add the generated code to the answer |
| 32 | + if(root -> left == NULL && root -> right == NULL) { |
| 33 | + ans.push_back(temp); |
| 34 | + return; |
| 35 | + } |
| 36 | + |
| 37 | + // Recursively traverse the left subtree and append '0' to the code |
| 38 | + traverse(root -> left, ans, temp + "0"); |
| 39 | + |
| 40 | + // Recursively traverse the right subtree and append '1' to the code |
| 41 | + traverse(root -> right, ans, temp + "1"); |
| 42 | + } |
| 43 | + |
| 44 | + // Main function to build Huffman codes |
| 45 | + vector<string> huffmanCodes(string S, vector<int> f, int N) { |
| 46 | + // Priority queue to store nodes of the Huffman tree; min-heap based on frequency |
| 47 | + priority_queue<Node*, vector<Node*>, cmp> pq; |
| 48 | + |
| 49 | + // Step 1: Insert all the nodes into the priority queue (based on frequency) |
| 50 | + for(int i = 0; i < N; i++) { |
| 51 | + Node* temp = new Node(f[i]); // Create a new node with frequency f[i] |
| 52 | + pq.push(temp); // Push the node into the priority queue |
| 53 | + } |
| 54 | + |
| 55 | + // Step 2: Build the Huffman tree by combining the two nodes with the smallest frequencies |
| 56 | + while(pq.size() > 1) { |
| 57 | + // Extract the two nodes with the smallest frequencies |
| 58 | + Node* left = pq.top(); |
| 59 | + pq.pop(); |
| 60 | + |
| 61 | + Node* right = pq.top(); |
| 62 | + pq.pop(); |
| 63 | + |
| 64 | + // Create a new internal node with a frequency equal to the sum of the two nodes' frequencies |
| 65 | + Node* newNode = new Node(left -> data + right -> data); |
| 66 | + |
| 67 | + // Set the left and right children of the new node |
| 68 | + newNode -> left = left; |
| 69 | + newNode -> right = right; |
| 70 | + |
| 71 | + // Push the new node back into the priority queue |
| 72 | + pq.push(newNode); |
| 73 | + } |
| 74 | + |
| 75 | + // The final node in the priority queue is the root of the Huffman tree |
| 76 | + Node* root = pq.top(); |
| 77 | + |
| 78 | + // Step 3: Traverse the Huffman tree to generate the Huffman codes |
| 79 | + vector<string> ans; // This will store the final Huffman codes |
| 80 | + string temp = ""; // Temporary string to build the code for each character |
| 81 | + |
| 82 | + // Call the helper function to traverse the tree and build the codes |
| 83 | + traverse(root, ans, temp); |
| 84 | + |
| 85 | + // Return the final Huffman codes |
| 86 | + return ans; |
| 87 | + } |
| 88 | +}; |
0 commit comments