@@ -118,18 +118,20 @@ expl = analyze(input, analyzer; layerwise_relevances=true)
118118expl. extras. layerwise_relevances
119119
120120# ## [Performance tips](@id docs-lrp-performance)
121+ # ### Using LRP with a GPU
122+ # Like all other analyzers, LRP can be used on GPUs.
123+ # Follow the instructions on [*GPU support*](@ref gpu-docs).
124+ #
121125# ### Using LRP without a GPU
122- # Since ExplainableAI.jl's LRP implementation makes use of
123- # [Tullio.jl](https://github.com/mcabbott/Tullio.jl),
124- # analysis can be accelerated by loading either
125- # - a package from the [JuliaGPU](https://juliagpu.org) ecosystem,
126- # e.g. [CUDA.jl](https://github.com/JuliaGPU/CUDA.jl), if a GPU is available
127- # - [LoopVectorization.jl](https://github.com/JuliaSIMD/LoopVectorization.jl)
128- # if only a CPU is available.
126+ # Using Julia's package extension mechanism,
127+ # ExplainableAI.jl's LRP implementation can optionally make use of
128+ # [Tullio.jl](https://github.com/mcabbott/Tullio.jl) and
129+ # [LoopVectorization.jl](https://github.com/JuliaSIMD/LoopVectorization.jl)
130+ # for faster LRP rules on dense layers.
129131#
130- # This only requires loading the LoopVectorization.jl package before ExplainableAI.jl:
132+ # This only requires loading the packages before loading ExplainableAI.jl:
131133# ```julia
132- # using LoopVectorization
134+ # using LoopVectorization, Tullio
133135# using ExplainableAI
134136# ```
135137#
0 commit comments