@@ -5,10 +5,10 @@ using ApproxFun, IntervalSets, SpecialFunctions, LinearAlgebra, Random, Test
55@testset " Singularities" begin
66 @testset " sqrt" begin
77 x= Fun (identity);
8- @test sqrt (cos (π/ 2 * x))(.1 ) ≈ sqrt (cos (.1 π/ 2 ))
8+ @time @ test sqrt (cos (π/ 2 * x))(.1 ) ≈ sqrt (cos (.1 π/ 2 ))
99
1010 x= Fun (identity,- 2 .. 2 )
11- u= sqrt (4 - x^ 2 )/ (2 π)
11+ @time u= sqrt (4 - x^ 2 )/ (2 π)
1212
1313 @test u (.1 ) ≈ sqrt (4 - 0.1 ^ 2 )/ (2 π)
1414 @test sum (u) ≈ 1
@@ -25,19 +25,18 @@ using ApproxFun, IntervalSets, SpecialFunctions, LinearAlgebra, Random, Test
2525 @test (x/ u)(.1 ) ≈ tan (π* .1 / 2 )
2626
2727 f= Fun (x-> exp (- x^ 2 ),Line (0. ,0. ,- .5 ,- .5 ),400 )
28- @test sum (f) ≈ sqrt (π)
28+ @time @ test sum (f) ≈ sqrt (π)
2929
3030 f= Fun (x-> exp (x)/ sqrt (1 - x.^ 2 ),JacobiWeight (- .5 ,- .5 ))
3131 @test f (.1 ) ≈ (x-> exp (x)/ sqrt (1 - x.^ 2 ))(.1 )
3232
33- @test norm (Fun (exp,Legendre (0 .. 1 ))+ sqrt (Fun (0 .. 1 ))) ≈ 2.491141949903508
34-
35- # sampling Chebyshev
36- x= Fun (identity)
37- f = exp (x)/ sqrt (1 - x^ 2 )
38- g = cumsum (f)
39- @test abs (g (- 1 )) ≤ 1E-15
40- @test g' (0.1 ) ≈ f (0.1 )
33+ @testset " sampling Chebyshev" begin
34+ x= Fun (identity)
35+ f = exp (x)/ sqrt (1 - x^ 2 )
36+ @time g = cumsum (f)
37+ @test abs (g (- 1 )) ≤ 1E-15
38+ @test g' (0.1 ) ≈ f (0.1 )
39+ end
4140 end
4241
4342 @testset " JacobiWeight Derivative" begin
@@ -72,10 +71,7 @@ using ApproxFun, IntervalSets, SpecialFunctions, LinearAlgebra, Random, Test
7271 f = exp (x)/ (1 - x.^ 2 ). ^ 1.0
7372 @test f (.1 ) ≈ exp (.1 )/ (1 - .1 ^ 2 )
7473
75-
76-
7774 # # 1/f with poles
78-
7975 x= Fun (identity)
8076 f= sin (10 x)
8177 g= 1 / f
@@ -105,9 +101,9 @@ using ApproxFun, IntervalSets, SpecialFunctions, LinearAlgebra, Random, Test
105101 @test Line () ∩ Ray () == Ray ()
106102
107103 f= Fun (sech,Line ())
108- Fun (f,Ray ())(2.0 ) ≈ sech (2.0 )
109- Fun (f,Ray (0. ,π))(- 2.0 ) ≈ sech (- 2.0 )
110- Fun (sech,Ray (0. ,π))(- 2.0 ) ≈ sech (- 2.0 )
104+ @test Fun (f,Ray ())(2.0 ) ≈ sech (2.0 )
105+ @test Fun (f,Ray (0. ,π))(- 2.0 ) ≈ sech (- 2.0 )
106+ @test Fun (sech,Ray (0. ,π))(- 2.0 ) ≈ sech (- 2.0 )
111107 end
112108
113109 @testset " Ei (Exp Integral)" begin
@@ -186,8 +182,8 @@ using ApproxFun, IntervalSets, SpecialFunctions, LinearAlgebra, Random, Test
186182 δ= DiracDelta ()
187183 x= Fun ()
188184 w= sqrt (1 - x^ 2 )
189- w+ δ
190-
185+ @test ( w+ δ)( 0.1 ) ≈ w ( 0.1 )
186+ @test sum (w + δ) ≈ sum (w) + 1
191187
192188 # # PointSpace
193189
@@ -254,16 +250,16 @@ using ApproxFun, IntervalSets, SpecialFunctions, LinearAlgebra, Random, Test
254250 @test (1 / x^ 2 )(- 0.1 ) ≈ 100.
255251
256252 fc= x* (1 + x)^ 2
257- @test (1 / fc)(0.1 ) ≈ 1 / fc (0.1 )
253+ @time @ test (1 / fc)(0.1 ) ≈ 1 / fc (0.1 )
258254
259255 fc= x* (1 - x)^ 2
260256 @test (1 / fc)(0.1 ) ≈ 1 / fc (0.1 )
261257 end
262258
263259 @testset " special function singularities" begin
264260 x= Fun (0 .. 1 )
265- @test erf (sqrt (x))(0.1 ) ≈ erf (sqrt (0.1 ))
266- @test erfc (sqrt (x))(0.1 ) ≈ erfc (sqrt (0.1 ))
261+ @time @ test erf (sqrt (x))(0.1 ) ≈ erf (sqrt (0.1 ))
262+ @time @ test erfc (sqrt (x))(0.1 ) ≈ erfc (sqrt (0.1 ))
267263
268264 # # roots of log(abs(x-y))
269265 x= Fun (- 2 .. (- 1 ))
@@ -289,7 +285,7 @@ using ApproxFun, IntervalSets, SpecialFunctions, LinearAlgebra, Random, Test
289285
290286 @testset " #393" begin
291287 x = Fun (0 .. 1 )
292- f = exp (x)* sqrt (x)* log (1 - x)
288+ @time f = exp (x)* sqrt (x)* log (1 - x)
293289 @test f (0.1 ) ≈ exp (0.1 )* sqrt (0.1 )* log (1 - 0.1 )
294290 end
295291
0 commit comments