You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
Copy file name to clipboardExpand all lines: README.md
+3-3Lines changed: 3 additions & 3 deletions
Display the source diff
Display the rich diff
Original file line number
Diff line number
Diff line change
@@ -99,7 +99,7 @@ plot(u; label="u")
99
99
Solve a nonlinear boundary value problem satisfying the ODE `0.001u'' + 6*(1-x^2)*u' + u^2 = 1` with boundary conditions `u(-1)==1`, `u(1)==-0.5` on `[-1,1]`:
100
100
101
101
```julia
102
-
x =Fun()
102
+
x =Fun()
103
103
u₀ =0.0x # initial guess
104
104
N = u -> [u(-1)-1, u(1)+0.5, 0.001u''+6*(1-x^2)*u'+ u^2-1]
105
105
u =newton(N, u₀) # perform Newton iteration in function space
@@ -112,7 +112,7 @@ One can also solve a system nonlinear ODEs with potentially nonlinear boundary c
112
112
113
113
```julia
114
114
115
-
x=Fun(identity, 0..1)
115
+
x=Fun(identity, 0..1)
116
116
N = (u1,u2) -> [u1'(0) -0.5*u1(0)*u2(0);
117
117
u2'(0) +1;
118
118
u1(1) -1;
@@ -193,7 +193,7 @@ so we specify a lower tolerance to avoid resolving these singularities
193
193
completely.
194
194
195
195
```julia
196
-
d =ChebyshevInterval()^2# Defines a rectangle
196
+
d =ChebyshevInterval()^2# Defines a rectangle
197
197
Δ =Laplacian(d) # Represent the Laplacian
198
198
f =ones(∂(d)) # one at the boundary
199
199
u =\([Dirichlet(d); Δ+100I], [f;0.]; # Solve the PDE
0 commit comments