1- using BlockArrays, FastTransforms, LazyArrays, LinearAlgebra, Test
1+ using BlockArrays, BlockBandedMatrices, FastTransforms, LazyArrays, LinearAlgebra, Test
22
33import FastTransforms: chebyshevmoments1, chebyshevabsmoments1, bivariatemoments
44
@@ -18,11 +18,6 @@ import FastTransforms: chebyshevmoments1, chebyshevabsmoments1, bivariatemoments
1818 WC = BivariateChebyshevGramMatrix (μ)
1919 @test W ≈ WC
2020
21- R = cholesky (W). U
22- RC = cholesky (WC). U
23-
24- @test R ≈ RC
25-
2621 Gx = FastTransforms. compute_skew_generators (Val (1 ), W)
2722 GxC = FastTransforms. compute_skew_generators (Val (1 ), WC)
2823 @test Gx ≈ GxC
@@ -34,4 +29,20 @@ import FastTransforms: chebyshevmoments1, chebyshevabsmoments1, bivariatemoments
3429 J = [zeros (n, n) Matrix {Float64} (I, n, n); Matrix {Float64} (- I, n, n) zeros (n, n)]
3530 @test W. X' W- W* W. X ≈ Gx* J* Gx'
3631 @test W. Y' W- W* W. Y ≈ Gy* J* Gy'
32+
33+ R = cholesky (W). U
34+ RC = cholesky (WC). U
35+
36+ @test R ≈ RC
37+
38+ μ1 = PaddedVector (1 ./ [1 ,2 ,3 ], 2 n- 1 )
39+ μ2 = PaddedVector (1 ./ [1 ,2 ,3 ,4 ,5 ,6 ], 2 n- 1 )
40+ μ = bivariatemoments (μ1, μ2)
41+ μ̂ = bivariatemoments (Vector (μ1), Vector (μ2))
42+ @test μ ≈ μ̂
43+
44+ W = BivariateGramMatrix (μ, X, Y)
45+ WC = BivariateChebyshevGramMatrix (μ)
46+ @test blockbandwidths (W) == blockbandwidths (WC) == subblockbandwidths (W) == subblockbandwidths (WC) == (7 , 7 )
47+ @test W ≈ WC
3748end
0 commit comments