Skip to content

Commit b458453

Browse files
author
Frankie Robertson
committed
Add some mirtcat aliases
1 parent f97fa8e commit b458453

File tree

1 file changed

+65
-3
lines changed

1 file changed

+65
-3
lines changed

src/next_item_rules/aliases.jl

Lines changed: 65 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -13,16 +13,78 @@ const catr_next_item_aliases = Dict(
1313
ExhaustiveSearch1Ply(parallel),
1414
ExpectationBasedItemCriterion(ability_estimator,
1515
AbilityVarianceStateCriterion(ability_estimator)))
16+
#"MLWI",
17+
#"MPWI",
18+
#"MEI",
1619
)
1720

1821
#"thOpt",
19-
#"MLWI",
20-
#"MPWI",
21-
#"MEI",
2222
#"progressive",
2323
#"proportional",
2424
#"KL",
2525
#"KLP",
2626
#"GDI",
2727
#"GDIP",
2828
#"random"
29+
30+
const mirtcat_next_item_aliases = Dict(
31+
# "MI' for the maximum information
32+
"MI" => (ability_estimator) -> ItemStrategyNextItemRule(
33+
ExhaustiveSearch1Ply(false),
34+
InformationItemCriterion(ability_estimator)),
35+
# 'MEPV' for minimum expected posterior variance
36+
"MEPV" => (ability_estimator) -> ItemStrategyNextItemRule(
37+
ExhaustiveSearch1Ply(false),
38+
ExpectationBasedItemCriterion(ability_estimator,
39+
AbilityVarianceStateCriterion(ability_estimator))),
40+
# 'MLWI' for maximum likelihood weighted information
41+
#"MLWI" =>
42+
# 'MPWI' for maximum posterior weighted information
43+
# 'MEI' for maximum expected information
44+
# 'IKLP' as well as 'IKL' for the integration based Kullback-Leibler criteria with and without the prior density weight,
45+
# respectively, and their root-n items administered weighted counter-parts, 'IKLn' and 'IKLPn'.
46+
#=
47+
Possible inputs for multidimensional adaptive tests include: 'Drule' for the
48+
maximum determinant of the information matrix, 'Trule' for the maximum
49+
(potentially weighted) trace of the information matrix, 'Arule' for the minimum (potentially weighted) trace of the asymptotic covariance matrix, 'Erule'
50+
for the minimum value of the information matrix, and 'Wrule' for the weighted
51+
information criteria. For each of these rules, the posterior weight for the latent trait scores can also be included with the 'DPrule', 'TPrule', 'APrule',
52+
'EPrule', and 'WPrule', respectively.
53+
Applicable to both unidimensional and multidimensional tests are the 'KL' and
54+
'KLn' for point-wise Kullback-Leibler divergence and point-wise KullbackLeibler with a decreasing delta value (delta*sqrt(n), where n is the number
55+
of items previous answered), respectively. The delta criteria is defined in the
56+
design object
57+
Non-adaptive methods applicable even when no mo object is passed are: 'random'
58+
to randomly select items, and 'seq' for selecting items sequentially
59+
=#
60+
)
61+
62+
const mirtcat_ability_estimator_aliases = Dict(
63+
#=
64+
• "MAP" for the maximum a-posteriori (i.e, Bayes modal)
65+
• "ML" for maximum likelihood
66+
• "WLE" for weighted likelihood estimation
67+
• "EAPsum" for the expected a-posteriori for each sum score
68+
• "plausible" for a single plausible value imputation for each case. This is
69+
equivalent to setting plausible.draws = 1
70+
• "classify" for the posteriori classification probabilities (only applicable
71+
when the input model was of class MixtureClass)
72+
=#
73+
# "EAP" for the expected a-posteriori (default).
74+
)
75+
76+
function mirtcat_quadpts(nfact)
77+
if nfact == 1
78+
return 121
79+
elseif nfact == 2
80+
return 61
81+
elseif nfact == 3
82+
return 31
83+
elseif nfact == 4
84+
return 19
85+
elseif nfact == 5
86+
return 11
87+
else
88+
return 5
89+
end
90+
end

0 commit comments

Comments
 (0)