You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
Copy file name to clipboardExpand all lines: README.md
+4-4Lines changed: 4 additions & 4 deletions
Display the source diff
Display the rich diff
Original file line number
Diff line number
Diff line change
@@ -62,16 +62,16 @@ This research has received funding from
62
62
63
63
**Kindly cite this work** as follows:
64
64
65
-
- Fdesolver: A Julia package for solving fractional differential equations. M Khalighi, G Benedetti, L Lahti. [ACM Transactions on Mathematical Software](https://doi.org/10.1145/3680280), 2024.
65
+
- Fdesolver: A Julia package for solving fractional differential equations. M Khalighi, G Benedetti, L Lahti. ACM Transactions on Mathematical Software, 2024, [doi.org/10.1145/3680280](https://doi.org/10.1145/3680280).
66
66
67
67
68
68
The package development is further linked with the following publications/preprints:
69
69
70
-
- Ebola epidemic model with dynamic population and memory, F Ndaïrou, M Khalighi, and L Lahti, Chaos, Solitons \& Fractals, 170: 113361, 2023.[doi:10.1016/j.chaos.2023.113361](https://doi.org/10.1016/j.chaos.2023.113361)
70
+
- Ebola epidemic model with dynamic population and memory, F Ndaïrou, M Khalighi, and L Lahti, Chaos, Solitons \& Fractals, 170: 113361, 2023,[doi:10.1016/j.chaos.2023.113361](https://doi.org/10.1016/j.chaos.2023.113361).
71
71
72
-
- Quantifying the impact of ecological memory on the dynamics of interacting communities. M Khalighi, G Sommeria-Klein, D Gonze, K Faust, L Lahti. PLoS Computational Biology 18(6), 2022 [doi:10.1371/journal.pcbi.1009396](https://doi.org/10.1371/journal.pcbi.1009396)
72
+
- Quantifying the impact of ecological memory on the dynamics of interacting communities. M Khalighi, G Sommeria-Klein, D Gonze, K Faust, L Lahti. PLoS Computational Biology 18(6), 2022,[doi:10.1371/journal.pcbi.1009396](https://doi.org/10.1371/journal.pcbi.1009396).
73
73
74
-
- Three-species Lotka-Volterra model with respect to Caputo and Caputo-Fabrizio fractional operators. M Khalighi, L Eftekhari, S Hosseinpour, L Lahti. Symmetry 13 (3):368, 2021.[doi:10.3390/sym13030368](https://doi.org/10.3390/sym13030368)
74
+
- Three-species Lotka-Volterra model with respect to Caputo and Caputo-Fabrizio fractional operators. M Khalighi, L Eftekhari, S Hosseinpour, L Lahti. Symmetry 13 (3):368, 2021,[doi:10.3390/sym13030368](https://doi.org/10.3390/sym13030368).
## Example 3: [SIR model](https://en.wikipedia.org/wiki/Compartmental_models_in_epidemiology)
82
94
83
95
One application of using fractional calculus is taking into account effects of [memory](https://journals.aps.org/pre/abstract/10.1103/PhysRevE.95.022409) in modeling including epidemic evolution.
84
-
96
+
$$
97
+
\begin{align*}
98
+
D^{α_1}S &= -\beta IS, \\
99
+
D^{α_2}I &= \beta IS - \gamma I, \\
100
+
D^{α_3}R &= \gamma I.
101
+
\end{align*}
102
+
$$
85
103
By defining the Jacobian matrix, the user can achieve a faster convergence based on the modified [Newton–Raphson](https://www.mdpi.com/2227-7390/6/2/16/htm) method.
## Example 4: [Dynamics of interaction of N species microbial communities](https://doi.org/10.1371/journal.pcbi.1009396)
158
176
159
177
The impact of [ecological memory](https://doi.org/10.1371/journal.pcbi.1009396) on the dynamics of interacting communities can be quantified by solving fractional form ODE systems.
## Example 5: Fitting orders of a [COVID-19 model](https://doi.org/10.1016/j.chaos.2020.109846)
237
+
238
+
Different methods are used to adjust the order of fractional differential equation models, which helps in analyzing systems across various fields.
239
+
240
+
We use [Optim.jl](https://github.com/JuliaNLSolvers/Optim.jl) to demonstrate how modifying system parameters and the order of derivatives in FdeSolver can enhance the fitting of COVID-19 data. The model is as follows:
241
+
$$
242
+
\begin{align*}
243
+
{D}_t^{\alpha_S} S(t) =& -\beta \frac{I}{N} S - l\beta \frac{H}{N} S - \beta' \frac{P}{N} S, \\
244
+
{D}_t^{\alpha_E} E(t) =& \beta \frac{I}{N} S + l\beta \frac{H}{N} S + \beta' \frac{P}{N} S - \kappa E, \\
245
+
{D}_t^{\alpha_I} I(t) =& \kappa \rho_1 E - (\gamma_a + \gamma_i) I - \delta_i I, \\
246
+
{D}_t^{\alpha_P} P(t) =& \kappa \rho_2 E - (\gamma_a + \gamma_i) P - \delta_p P, \\
{D}_t^{\alpha_F} F(t) =& \delta_i I + \delta_p P + \delta_h H,
251
+
\end{align*}
252
+
$$
253
+
254
+
-**Model M1**: fits one parameter and uses integer orders.
255
+
-**Model Mf1**: fits one parameter, but adjusts the derivative orders; however, all orders are equal, representing a commensurate fractional order.
256
+
-**Model Mf8**: fits one parameter and allows for eight distinct derivative orders, accommodating incommensurate orders for more flexibility in modeling.
257
+
258
+
```@example fde
259
+
# Dataset subset
260
+
repo=HTTP.get("https://raw.githubusercontent.com/CSSEGISandData/COVID-19/master/csse_covid_19_data/csse_covid_19_time_series/time_series_covid19_confirmed_global.csv"); # dataset of Covid from CSSE
261
+
dataset_CC = CSV.read(repo.body, DataFrame); # all data of confirmed
262
+
Confirmed=dataset_CC[dataset_CC[!,2].=="Portugal",45:121]; #comulative confirmed data of Portugal from 3/2/20 to 5/17/20
263
+
C=diff(Float64.(Vector(Confirmed[1,:])));# Daily new confirmed cases
264
+
265
+
#preprocessing (map negative values to zero and remove outliers)
266
+
₋Ind=findall(C.<0);
267
+
C[₋Ind].=0.0;
268
+
outlier=findall(C.>1500);
269
+
C[outlier]=(C[outlier.-1]+C[outlier.-1])/2;
270
+
271
+
## System definition
272
+
273
+
# parameters
274
+
β=2.55; # Transmission coefficient from infected individuals
275
+
l=1.56; # Relative transmissibility of hospitalized patients
276
+
β′=7.65; # Transmission coefficient due to super-spreaders
277
+
κ=0.25; # Rate at which exposed become infectious
278
+
ρ₁=0.58; # Rate at which exposed people become infected I
279
+
ρ₂=0.001; # Rate at which exposed people become super-spreaders
280
+
γₐ=0.94; # Rate of being hospitalized
281
+
γᵢ=0.27; # Recovery rate without being hospitalized
282
+
γᵣ=0.5; # Recovery rate of hospitalized patients
283
+
δᵢ=1/23; # Disease induced death rate due to infected class
284
+
δₚ=1/23; # Disease induced death rate due to super-spreaders
285
+
δₕ=1/23; # Disease induced death rate due to hospitalized class
0 commit comments