@@ -321,27 +321,6 @@ def _preprocess_task_arguments(task_args):
321321 task_args ["dictionary_file_path_or_domain" ], task_args ["trace" ]
322322 )
323323
324- # Set the default discretization method for unsupervised analysis
325- # "target_variable" is mandatory if "discretization_method" or
326- # "grouping_method" are present
327- if "discretization_method" in task_args and task_args ["target_variable" ] == "" :
328- if task_args ["discretization_method" ] is None :
329- task_args ["discretization_method" ] = "MODL"
330-
331- # Remove discretization method if specified for supervised analysis:
332- # it is always MODL
333- if "discretization_method" in task_args and task_args ["target_variable" ] != "" :
334- del task_args ["discretization_method" ]
335-
336- # Set the default grouping method for unsupervised analysis
337- if "grouping_method" in task_args and task_args ["target_variable" ] == "" :
338- if task_args ["grouping_method" ] is None :
339- task_args ["grouping_method" ] = "MODL"
340-
341- # Remove grouping method if specified for supervised analysis: it is always MODL
342- if "grouping_method" in task_args and task_args ["target_variable" ] != "" :
343- del task_args ["grouping_method" ]
344-
345324 # Transform the use_complement_as_test bool parameter to its string counterpart
346325 if "use_complement_as_test" in task_args :
347326 if task_args ["use_complement_as_test" ]:
@@ -691,8 +670,8 @@ def train_predictor(
691670 all_possible_pairs = True ,
692671 specific_pairs = None ,
693672 group_target_value = False ,
694- discretization_method = None ,
695- grouping_method = None ,
673+ discretization_method = "MODL" ,
674+ grouping_method = "MODL" ,
696675 max_parts = 0 ,
697676 log_file_path = None ,
698677 output_scenario_path = None ,
@@ -797,13 +776,13 @@ def train_predictor(
797776 group_target_value : bool, default ``False``
798777 Allows grouping of the target variable values in classification. It can
799778 substantially increase the training time.
800- discretization_method : str
801- Name of the discretization method, for unsupervised analysis only .
802- Its valid values are: "MODL" (default) , "EqualWidth", "EqualFrequency"
803- or "None". Ignored for supervised analysis.
804- grouping_method : str
805- Name of the grouping method, for unsupervised analysis only .
806- Its valid values are: "MODL" (default) , "BasicGrouping" or "None ".
779+ discretization_method : str, default "MODL"
780+ Name of the discretization method in case of unsupervised analysis.
781+ Its valid values are: "MODL", "EqualWidth", "EqualFrequency" or "none".
782+ Ignored for supervised analysis.
783+ grouping_method : str, default "MODL"
784+ Name of the grouping method in case of unsupervised analysis.
785+ Its valid values are: "MODL", "BasicGrouping" or "none ".
807786 Ignored for supervised analysis.
808787 max_parts : int, default 0
809788 Maximum number of variable parts produced by preprocessing methods. If equal
@@ -1124,8 +1103,8 @@ def train_recoder(
11241103 numerical_recoding_method = "part Id" ,
11251104 pairs_recoding_method = "part Id" ,
11261105 group_target_value = False ,
1127- discretization_method = None ,
1128- grouping_method = None ,
1106+ discretization_method = "MODL" ,
1107+ grouping_method = "MODL" ,
11291108 max_parts = 0 ,
11301109 log_file_path = None ,
11311110 output_scenario_path = None ,
@@ -1227,9 +1206,9 @@ def train_recoder(
12271206 If ``True`` keeps only informative variables.
12281207 max_variables : int, default 0
12291208 Maximum number of variables to keep. If equal to 0 keeps all variables.
1230- keep_initial_categorical_variables : bool, default ``True ``
1209+ keep_initial_categorical_variables : bool, default ``False ``
12311210 If ``True`` keeps the initial categorical variables.
1232- keep_initial_numerical_variables : bool, default ``True ``
1211+ keep_initial_numerical_variables : bool, default ``False ``
12331212 If ``True`` keeps initial numerical variables.
12341213 categorical_recoding_method : str
12351214 Type of recoding for categorical variables. Types available:
@@ -1256,13 +1235,13 @@ def train_recoder(
12561235 - "0-1 binarization": A 0's and 1's coding the interval/group id
12571236 - "conditional info": Conditional information of the interval/group
12581237 - "none": Keeps the variable as-is
1259- discretization_method : str
1260- Name of the discretization method, for unsupervised analysis only .
1261- Its valid values are: "MODL" (default) , "EqualWidth", "EqualFrequency"
1262- or "None". Ignored for supervised analysis.
1263- grouping_method : str
1264- Name of the grouping method, for unsupervised analysis only .
1265- Its valid values are: "MODL" (default) , "BasicGrouping" or "None ".
1238+ discretization_method : str, default "MODL"
1239+ Name of the discretization method in case of unsupervised analysis.
1240+ Its valid values are: "MODL", "EqualWidth", "EqualFrequency" or "none".
1241+ Ignored for supervised analysis.
1242+ grouping_method : str, default "MODL"
1243+ Name of the grouping method in case of unsupervised analysis.
1244+ Its valid values are: "MODL", "BasicGrouping" or "none ".
12661245 Ignored for supervised analysis.
12671246 max_parts : int, default 0
12681247 Maximum number of variable parts produced by preprocessing methods. If equal
0 commit comments