From a9d1323fe39e52b620a39661c515ea76dc05ca48 Mon Sep 17 00:00:00 2001 From: yhteoh Date: Sun, 2 Mar 2025 11:53:20 -0500 Subject: [PATCH 1/5] [docs] Enabled search --- mkdocs.yaml | 17 +++++++++-------- 1 file changed, 9 insertions(+), 8 deletions(-) diff --git a/mkdocs.yaml b/mkdocs.yaml index 7439ad8..1b0add3 100644 --- a/mkdocs.yaml +++ b/mkdocs.yaml @@ -24,9 +24,9 @@ nav: - Tutorials: - Analog: - - Analog Tutorials: tutorials/index.md - - Rabi Flopping: tutorials/rabi-flopping.md - - Ising Model: tutorials/ising.md + - Analog Tutorials: tutorials/index.md + - Rabi Flopping: tutorials/rabi-flopping.md + - Ising Model: tutorials/ising.md - Examples: - Analog: - Rabi Flopping: examples/one_qubit_rabi_flopping.ipynb @@ -38,12 +38,12 @@ nav: - Ising model: examples/ising_model.ipynb - QAOA: examples/qaoa.ipynb - - Core: '!include ./oqd-core/mkdocs.yaml' + - Core: "!include ./oqd-core/mkdocs.yaml" - Emulators: - - Analog Emulators: '!include ./oqd-analog-emulator/mkdocs.yaml' -# - Atomic Emulators: '!include ./oqd-analog-emulator/mkdocs.yaml' - - Cloud: '!include ./oqd-cloud/mkdocs.yaml' - - Compiler Infrastructure: '!include ./oqd-compiler-infrastructure/mkdocs.yaml' + - Analog Emulators: "!include ./oqd-analog-emulator/mkdocs.yaml" + # - Atomic Emulators: '!include ./oqd-analog-emulator/mkdocs.yaml' + - Cloud: "!include ./oqd-cloud/mkdocs.yaml" + - Compiler Infrastructure: "!include ./oqd-compiler-infrastructure/mkdocs.yaml" - Hardware: - Open Hardware Devices: hardware/devices.md - About OQD Hardware: hardware/about-oqd.md @@ -88,6 +88,7 @@ theme: plugins: - monorepo: + - search - mkdocstrings: handlers: python: From 472d9797ffe28e9ff3b887a4bcbd4a0395fd579c Mon Sep 17 00:00:00 2001 From: yhteoh Date: Sun, 2 Mar 2025 11:53:50 -0500 Subject: [PATCH 2/5] [dependency] clean up dependency and added uv.lock file --- pyproject.toml | 58 +- uv.lock | 2755 ++++++++++++++++++++++++++++++++++++++++++++++++ 2 files changed, 2788 insertions(+), 25 deletions(-) create mode 100644 uv.lock diff --git a/pyproject.toml b/pyproject.toml index 5b1e654..4923ba1 100644 --- a/pyproject.toml +++ b/pyproject.toml @@ -6,10 +6,18 @@ build-backend = "setuptools.build_meta" [project] name = "equilux" version = "0.1.0" -requires-python = ">=3.10" +requires-python = ">=3.10,<3.13" readme = "README.md" -license = {text = "Apache 2.0"} -keywords = ["quantum", "computing", "analog", "digitial", "atomic", "simulation", "full-stack"] +license = { text = "Apache 2.0" } +keywords = [ + "quantum", + "computing", + "analog", + "digitial", + "atomic", + "simulation", + "full-stack", +] classifiers = [ "Development Status :: 3 - Alpha", @@ -28,35 +36,35 @@ classifiers = [ dependencies = [ - "matplotlib", - "seaborn", - "oqd-compiler-infrastructure", - "oqd-core", - "oqd-analog-emulator", - "oqd-cloud" + "matplotlib", + "seaborn", + "oqd-compiler-infrastructure", + "oqd-core", + "oqd-analog-emulator", + "oqd-cloud", ] [project.optional-dependencies] docs = [ - "pymdown-extensions", - "mkdocstrings", - "mkdocs-material", - "mkdocstrings-python", - "mdx_truly_sane_lists", - "jupyter==1.1.1", - "jupyter_contrib_nbextensions==0.7.0", - "mkdocs-jupyter==0.25.0", - "mkdocs-monorepo-plugin", - "notebook==6.4.12", + "pymdown-extensions", + "mkdocstrings", + "mkdocs-material", + "mkdocstrings-python", + "mdx_truly_sane_lists", + "jupyter==1.1.1", + "jupyter_contrib_nbextensions==0.7.0", + "mkdocs-jupyter==0.25.0", + "mkdocs-monorepo-plugin", + "notebook==6.4.12", ] -test = ["unittest_prettify"] - -#[tool.setuptools.packages.find] -#where = ["."] -#include = ["oqd-*"] [project.urls] Homepage = "https://github.com/OpenQuantumDesign/equilux" Documentation = "https://docs.openquantumdesign.org" Repository = "https://github.com/OpenQuantumDesign/equilux.git" -Issues = "https://github.com/OpenQuantumDesign/equilux/issues" \ No newline at end of file +Issues = "https://github.com/OpenQuantumDesign/equilux/issues" + +[dependency-groups] +dev = [ + "pre-commit>=4.1.0", +] diff --git a/uv.lock b/uv.lock new file mode 100644 index 0000000..f6f12bc --- /dev/null +++ b/uv.lock @@ -0,0 +1,2755 @@ +version = 1 +requires-python = ">=3.10, <3.13" +resolution-markers = [ + "python_full_version >= '3.12'", + "python_full_version == '3.11.*'", + "python_full_version < '3.11'", +] + +[[package]] +name = "annotated-types" +version = "0.7.0" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/ee/67/531ea369ba64dcff5ec9c3402f9f51bf748cec26dde048a2f973a4eea7f5/annotated_types-0.7.0.tar.gz", hash = "sha256:aff07c09a53a08bc8cfccb9c85b05f1aa9a2a6f23728d790723543408344ce89", size = 16081 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/78/b6/6307fbef88d9b5ee7421e68d78a9f162e0da4900bc5f5793f6d3d0e34fb8/annotated_types-0.7.0-py3-none-any.whl", hash = "sha256:1f02e8b43a8fbbc3f3e0d4f0f4bfc8131bcb4eebe8849b8e5c773f3a1c582a53", size = 13643 }, +] + +[[package]] +name = "anyio" +version = "4.8.0" +source = { registry = "https://pypi.org/simple" } +dependencies = [ + { name = "exceptiongroup", marker = "python_full_version < '3.11'" }, + { name = "idna" }, + { name = "sniffio" }, + { name = "typing-extensions" }, +] +sdist = { url = "https://files.pythonhosted.org/packages/a3/73/199a98fc2dae33535d6b8e8e6ec01f8c1d76c9adb096c6b7d64823038cde/anyio-4.8.0.tar.gz", hash = "sha256:1d9fe889df5212298c0c0723fa20479d1b94883a2df44bd3897aa91083316f7a", size = 181126 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/46/eb/e7f063ad1fec6b3178a3cd82d1a3c4de82cccf283fc42746168188e1cdd5/anyio-4.8.0-py3-none-any.whl", hash = "sha256:b5011f270ab5eb0abf13385f851315585cc37ef330dd88e27ec3d34d651fd47a", size = 96041 }, +] + +[[package]] +name = "appnope" +version = "0.1.4" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/35/5d/752690df9ef5b76e169e68d6a129fa6d08a7100ca7f754c89495db3c6019/appnope-0.1.4.tar.gz", hash = "sha256:1de3860566df9caf38f01f86f65e0e13e379af54f9e4bee1e66b48f2efffd1ee", size = 4170 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/81/29/5ecc3a15d5a33e31b26c11426c45c501e439cb865d0bff96315d86443b78/appnope-0.1.4-py2.py3-none-any.whl", hash = "sha256:502575ee11cd7a28c0205f379b525beefebab9d161b7c964670864014ed7213c", size = 4321 }, +] + +[[package]] +name = "argon2-cffi" +version = "23.1.0" +source = { registry = "https://pypi.org/simple" } +dependencies = [ + { name = "argon2-cffi-bindings" }, +] +sdist = { url = "https://files.pythonhosted.org/packages/31/fa/57ec2c6d16ecd2ba0cf15f3c7d1c3c2e7b5fcb83555ff56d7ab10888ec8f/argon2_cffi-23.1.0.tar.gz", hash = "sha256:879c3e79a2729ce768ebb7d36d4609e3a78a4ca2ec3a9f12286ca057e3d0db08", size = 42798 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/a4/6a/e8a041599e78b6b3752da48000b14c8d1e8a04ded09c88c714ba047f34f5/argon2_cffi-23.1.0-py3-none-any.whl", hash = "sha256:c670642b78ba29641818ab2e68bd4e6a78ba53b7eff7b4c3815ae16abf91c7ea", size = 15124 }, +] + +[[package]] +name = "argon2-cffi-bindings" +version = "21.2.0" +source = { registry = "https://pypi.org/simple" } +dependencies = [ + { name = "cffi" }, +] +sdist = { url = "https://files.pythonhosted.org/packages/b9/e9/184b8ccce6683b0aa2fbb7ba5683ea4b9c5763f1356347f1312c32e3c66e/argon2-cffi-bindings-21.2.0.tar.gz", hash = "sha256:bb89ceffa6c791807d1305ceb77dbfacc5aa499891d2c55661c6459651fc39e3", size = 1779911 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/d4/13/838ce2620025e9666aa8f686431f67a29052241692a3dd1ae9d3692a89d3/argon2_cffi_bindings-21.2.0-cp36-abi3-macosx_10_9_x86_64.whl", hash = "sha256:ccb949252cb2ab3a08c02024acb77cfb179492d5701c7cbdbfd776124d4d2367", size = 29658 }, + { url = "https://files.pythonhosted.org/packages/b3/02/f7f7bb6b6af6031edb11037639c697b912e1dea2db94d436e681aea2f495/argon2_cffi_bindings-21.2.0-cp36-abi3-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:9524464572e12979364b7d600abf96181d3541da11e23ddf565a32e70bd4dc0d", size = 80583 }, + { url = "https://files.pythonhosted.org/packages/ec/f7/378254e6dd7ae6f31fe40c8649eea7d4832a42243acaf0f1fff9083b2bed/argon2_cffi_bindings-21.2.0-cp36-abi3-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:b746dba803a79238e925d9046a63aa26bf86ab2a2fe74ce6b009a1c3f5c8f2ae", size = 86168 }, + { url = "https://files.pythonhosted.org/packages/74/f6/4a34a37a98311ed73bb80efe422fed95f2ac25a4cacc5ae1d7ae6a144505/argon2_cffi_bindings-21.2.0-cp36-abi3-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:58ed19212051f49a523abb1dbe954337dc82d947fb6e5a0da60f7c8471a8476c", size = 82709 }, + { url = "https://files.pythonhosted.org/packages/74/2b/73d767bfdaab25484f7e7901379d5f8793cccbb86c6e0cbc4c1b96f63896/argon2_cffi_bindings-21.2.0-cp36-abi3-musllinux_1_1_aarch64.whl", hash = "sha256:bd46088725ef7f58b5a1ef7ca06647ebaf0eb4baff7d1d0d177c6cc8744abd86", size = 83613 }, + { url = "https://files.pythonhosted.org/packages/4f/fd/37f86deef67ff57c76f137a67181949c2d408077e2e3dd70c6c42912c9bf/argon2_cffi_bindings-21.2.0-cp36-abi3-musllinux_1_1_i686.whl", hash = "sha256:8cd69c07dd875537a824deec19f978e0f2078fdda07fd5c42ac29668dda5f40f", size = 84583 }, + { url = "https://files.pythonhosted.org/packages/6f/52/5a60085a3dae8fded8327a4f564223029f5f54b0cb0455a31131b5363a01/argon2_cffi_bindings-21.2.0-cp36-abi3-musllinux_1_1_x86_64.whl", hash = "sha256:f1152ac548bd5b8bcecfb0b0371f082037e47128653df2e8ba6e914d384f3c3e", size = 88475 }, + { url = "https://files.pythonhosted.org/packages/8b/95/143cd64feb24a15fa4b189a3e1e7efbaeeb00f39a51e99b26fc62fbacabd/argon2_cffi_bindings-21.2.0-cp36-abi3-win32.whl", hash = "sha256:603ca0aba86b1349b147cab91ae970c63118a0f30444d4bc80355937c950c082", size = 27698 }, + { url = "https://files.pythonhosted.org/packages/37/2c/e34e47c7dee97ba6f01a6203e0383e15b60fb85d78ac9a15cd066f6fe28b/argon2_cffi_bindings-21.2.0-cp36-abi3-win_amd64.whl", hash = "sha256:b2ef1c30440dbbcba7a5dc3e319408b59676e2e039e2ae11a8775ecf482b192f", size = 30817 }, + { url = "https://files.pythonhosted.org/packages/5a/e4/bf8034d25edaa495da3c8a3405627d2e35758e44ff6eaa7948092646fdcc/argon2_cffi_bindings-21.2.0-cp38-abi3-macosx_10_9_universal2.whl", hash = "sha256:e415e3f62c8d124ee16018e491a009937f8cf7ebf5eb430ffc5de21b900dad93", size = 53104 }, +] + +[[package]] +name = "arrow" +version = "1.3.0" +source = { registry = "https://pypi.org/simple" } +dependencies = [ + { name = "python-dateutil" }, + { name = "types-python-dateutil" }, +] +sdist = { url = "https://files.pythonhosted.org/packages/2e/00/0f6e8fcdb23ea632c866620cc872729ff43ed91d284c866b515c6342b173/arrow-1.3.0.tar.gz", hash = "sha256:d4540617648cb5f895730f1ad8c82a65f2dad0166f57b75f3ca54759c4d67a85", size = 131960 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/f8/ed/e97229a566617f2ae958a6b13e7cc0f585470eac730a73e9e82c32a3cdd2/arrow-1.3.0-py3-none-any.whl", hash = "sha256:c728b120ebc00eb84e01882a6f5e7927a53960aa990ce7dd2b10f39005a67f80", size = 66419 }, +] + +[[package]] +name = "asttokens" +version = "3.0.0" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/4a/e7/82da0a03e7ba5141f05cce0d302e6eed121ae055e0456ca228bf693984bc/asttokens-3.0.0.tar.gz", hash = "sha256:0dcd8baa8d62b0c1d118b399b2ddba3c4aff271d0d7a9e0d4c1681c79035bbc7", size = 61978 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/25/8a/c46dcc25341b5bce5472c718902eb3d38600a903b14fa6aeecef3f21a46f/asttokens-3.0.0-py3-none-any.whl", hash = "sha256:e3078351a059199dd5138cb1c706e6430c05eff2ff136af5eb4790f9d28932e2", size = 26918 }, +] + +[[package]] +name = "async-lru" +version = "2.0.4" +source = { registry = "https://pypi.org/simple" } +dependencies = [ + { name = "typing-extensions", marker = "python_full_version < '3.11'" }, +] +sdist = { url = "https://files.pythonhosted.org/packages/80/e2/2b4651eff771f6fd900d233e175ddc5e2be502c7eb62c0c42f975c6d36cd/async-lru-2.0.4.tar.gz", hash = "sha256:b8a59a5df60805ff63220b2a0c5b5393da5521b113cd5465a44eb037d81a5627", size = 10019 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/fa/9f/3c3503693386c4b0f245eaf5ca6198e3b28879ca0a40bde6b0e319793453/async_lru-2.0.4-py3-none-any.whl", hash = "sha256:ff02944ce3c288c5be660c42dbcca0742b32c3b279d6dceda655190240b99224", size = 6111 }, +] + +[[package]] +name = "attrs" +version = "25.1.0" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/49/7c/fdf464bcc51d23881d110abd74b512a42b3d5d376a55a831b44c603ae17f/attrs-25.1.0.tar.gz", hash = "sha256:1c97078a80c814273a76b2a298a932eb681c87415c11dee0a6921de7f1b02c3e", size = 810562 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/fc/30/d4986a882011f9df997a55e6becd864812ccfcd821d64aac8570ee39f719/attrs-25.1.0-py3-none-any.whl", hash = "sha256:c75a69e28a550a7e93789579c22aa26b0f5b83b75dc4e08fe092980051e1090a", size = 63152 }, +] + +[[package]] +name = "babel" +version = "2.17.0" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/7d/6b/d52e42361e1aa00709585ecc30b3f9684b3ab62530771402248b1b1d6240/babel-2.17.0.tar.gz", hash = "sha256:0c54cffb19f690cdcc52a3b50bcbf71e07a808d1c80d549f2459b9d2cf0afb9d", size = 9951852 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/b7/b8/3fe70c75fe32afc4bb507f75563d39bc5642255d1d94f1f23604725780bf/babel-2.17.0-py3-none-any.whl", hash = "sha256:4d0b53093fdfb4b21c92b5213dba5a1b23885afa8383709427046b21c366e5f2", size = 10182537 }, +] + +[[package]] +name = "backrefs" +version = "5.8" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/6c/46/caba1eb32fa5784428ab401a5487f73db4104590ecd939ed9daaf18b47e0/backrefs-5.8.tar.gz", hash = "sha256:2cab642a205ce966af3dd4b38ee36009b31fa9502a35fd61d59ccc116e40a6bd", size = 6773994 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/bf/cb/d019ab87fe70e0fe3946196d50d6a4428623dc0c38a6669c8cae0320fbf3/backrefs-5.8-py310-none-any.whl", hash = "sha256:c67f6638a34a5b8730812f5101376f9d41dc38c43f1fdc35cb54700f6ed4465d", size = 380337 }, + { url = "https://files.pythonhosted.org/packages/a9/86/abd17f50ee21b2248075cb6924c6e7f9d23b4925ca64ec660e869c2633f1/backrefs-5.8-py311-none-any.whl", hash = "sha256:2e1c15e4af0e12e45c8701bd5da0902d326b2e200cafcd25e49d9f06d44bb61b", size = 392142 }, + { url = "https://files.pythonhosted.org/packages/b3/04/7b415bd75c8ab3268cc138c76fa648c19495fcc7d155508a0e62f3f82308/backrefs-5.8-py312-none-any.whl", hash = "sha256:bbef7169a33811080d67cdf1538c8289f76f0942ff971222a16034da88a73486", size = 398021 }, + { url = "https://files.pythonhosted.org/packages/0c/37/fb6973edeb700f6e3d6ff222400602ab1830446c25c7b4676d8de93e65b8/backrefs-5.8-py39-none-any.whl", hash = "sha256:a66851e4533fb5b371aa0628e1fee1af05135616b86140c9d787a2ffdf4b8fdc", size = 380336 }, +] + +[[package]] +name = "beautifulsoup4" +version = "4.13.3" +source = { registry = "https://pypi.org/simple" } +dependencies = [ + { name = "soupsieve" }, + { name = "typing-extensions" }, +] +sdist = { url = "https://files.pythonhosted.org/packages/f0/3c/adaf39ce1fb4afdd21b611e3d530b183bb7759c9b673d60db0e347fd4439/beautifulsoup4-4.13.3.tar.gz", hash = "sha256:1bd32405dacc920b42b83ba01644747ed77456a65760e285fbc47633ceddaf8b", size = 619516 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/f9/49/6abb616eb3cbab6a7cca303dc02fdf3836de2e0b834bf966a7f5271a34d8/beautifulsoup4-4.13.3-py3-none-any.whl", hash = "sha256:99045d7d3f08f91f0d656bc9b7efbae189426cd913d830294a15eefa0ea4df16", size = 186015 }, +] + +[[package]] +name = "bleach" +version = "6.2.0" +source = { registry = "https://pypi.org/simple" } +dependencies = [ + { name = "webencodings" }, +] +sdist = { url = "https://files.pythonhosted.org/packages/76/9a/0e33f5054c54d349ea62c277191c020c2d6ef1d65ab2cb1993f91ec846d1/bleach-6.2.0.tar.gz", hash = "sha256:123e894118b8a599fd80d3ec1a6d4cc7ce4e5882b1317a7e1ba69b56e95f991f", size = 203083 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/fc/55/96142937f66150805c25c4d0f31ee4132fd33497753400734f9dfdcbdc66/bleach-6.2.0-py3-none-any.whl", hash = "sha256:117d9c6097a7c3d22fd578fcd8d35ff1e125df6736f554da4e432fdd63f31e5e", size = 163406 }, +] + +[package.optional-dependencies] +css = [ + { name = "tinycss2" }, +] + +[[package]] +name = "certifi" +version = "2025.1.31" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/1c/ab/c9f1e32b7b1bf505bf26f0ef697775960db7932abeb7b516de930ba2705f/certifi-2025.1.31.tar.gz", hash = "sha256:3d5da6925056f6f18f119200434a4780a94263f10d1c21d032a6f6b2baa20651", size = 167577 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/38/fc/bce832fd4fd99766c04d1ee0eead6b0ec6486fb100ae5e74c1d91292b982/certifi-2025.1.31-py3-none-any.whl", hash = "sha256:ca78db4565a652026a4db2bcdf68f2fb589ea80d0be70e03929ed730746b84fe", size = 166393 }, +] + +[[package]] +name = "cffi" +version = "1.17.1" +source = { registry = "https://pypi.org/simple" } +dependencies = [ + { name = "pycparser" }, +] +sdist = { url = "https://files.pythonhosted.org/packages/fc/97/c783634659c2920c3fc70419e3af40972dbaf758daa229a7d6ea6135c90d/cffi-1.17.1.tar.gz", hash = "sha256:1c39c6016c32bc48dd54561950ebd6836e1670f2ae46128f67cf49e789c52824", size = 516621 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/90/07/f44ca684db4e4f08a3fdc6eeb9a0d15dc6883efc7b8c90357fdbf74e186c/cffi-1.17.1-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:df8b1c11f177bc2313ec4b2d46baec87a5f3e71fc8b45dab2ee7cae86d9aba14", size = 182191 }, + { url = "https://files.pythonhosted.org/packages/08/fd/cc2fedbd887223f9f5d170c96e57cbf655df9831a6546c1727ae13fa977a/cffi-1.17.1-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:8f2cdc858323644ab277e9bb925ad72ae0e67f69e804f4898c070998d50b1a67", size = 178592 }, + { url = "https://files.pythonhosted.org/packages/de/cc/4635c320081c78d6ffc2cab0a76025b691a91204f4aa317d568ff9280a2d/cffi-1.17.1-cp310-cp310-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:edae79245293e15384b51f88b00613ba9f7198016a5948b5dddf4917d4d26382", size = 426024 }, + { url = "https://files.pythonhosted.org/packages/b6/7b/3b2b250f3aab91abe5f8a51ada1b717935fdaec53f790ad4100fe2ec64d1/cffi-1.17.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:45398b671ac6d70e67da8e4224a065cec6a93541bb7aebe1b198a61b58c7b702", size = 448188 }, + { url = "https://files.pythonhosted.org/packages/d3/48/1b9283ebbf0ec065148d8de05d647a986c5f22586b18120020452fff8f5d/cffi-1.17.1-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:ad9413ccdeda48c5afdae7e4fa2192157e991ff761e7ab8fdd8926f40b160cc3", size = 455571 }, + { url = "https://files.pythonhosted.org/packages/40/87/3b8452525437b40f39ca7ff70276679772ee7e8b394934ff60e63b7b090c/cffi-1.17.1-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:5da5719280082ac6bd9aa7becb3938dc9f9cbd57fac7d2871717b1feb0902ab6", size = 436687 }, + { url = "https://files.pythonhosted.org/packages/8d/fb/4da72871d177d63649ac449aec2e8a29efe0274035880c7af59101ca2232/cffi-1.17.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:2bb1a08b8008b281856e5971307cc386a8e9c5b625ac297e853d36da6efe9c17", size = 446211 }, + { url = "https://files.pythonhosted.org/packages/ab/a0/62f00bcb411332106c02b663b26f3545a9ef136f80d5df746c05878f8c4b/cffi-1.17.1-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:045d61c734659cc045141be4bae381a41d89b741f795af1dd018bfb532fd0df8", size = 461325 }, + { url = "https://files.pythonhosted.org/packages/36/83/76127035ed2e7e27b0787604d99da630ac3123bfb02d8e80c633f218a11d/cffi-1.17.1-cp310-cp310-musllinux_1_1_i686.whl", hash = "sha256:6883e737d7d9e4899a8a695e00ec36bd4e5e4f18fabe0aca0efe0a4b44cdb13e", size = 438784 }, + { url = "https://files.pythonhosted.org/packages/21/81/a6cd025db2f08ac88b901b745c163d884641909641f9b826e8cb87645942/cffi-1.17.1-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:6b8b4a92e1c65048ff98cfe1f735ef8f1ceb72e3d5f0c25fdb12087a23da22be", size = 461564 }, + { url = "https://files.pythonhosted.org/packages/f8/fe/4d41c2f200c4a457933dbd98d3cf4e911870877bd94d9656cc0fcb390681/cffi-1.17.1-cp310-cp310-win32.whl", hash = "sha256:c9c3d058ebabb74db66e431095118094d06abf53284d9c81f27300d0e0d8bc7c", size = 171804 }, + { url = "https://files.pythonhosted.org/packages/d1/b6/0b0f5ab93b0df4acc49cae758c81fe4e5ef26c3ae2e10cc69249dfd8b3ab/cffi-1.17.1-cp310-cp310-win_amd64.whl", hash = "sha256:0f048dcf80db46f0098ccac01132761580d28e28bc0f78ae0d58048063317e15", size = 181299 }, + { url = "https://files.pythonhosted.org/packages/6b/f4/927e3a8899e52a27fa57a48607ff7dc91a9ebe97399b357b85a0c7892e00/cffi-1.17.1-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:a45e3c6913c5b87b3ff120dcdc03f6131fa0065027d0ed7ee6190736a74cd401", size = 182264 }, + { url = "https://files.pythonhosted.org/packages/6c/f5/6c3a8efe5f503175aaddcbea6ad0d2c96dad6f5abb205750d1b3df44ef29/cffi-1.17.1-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:30c5e0cb5ae493c04c8b42916e52ca38079f1b235c2f8ae5f4527b963c401caf", size = 178651 }, + { url = "https://files.pythonhosted.org/packages/94/dd/a3f0118e688d1b1a57553da23b16bdade96d2f9bcda4d32e7d2838047ff7/cffi-1.17.1-cp311-cp311-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:f75c7ab1f9e4aca5414ed4d8e5c0e303a34f4421f8a0d47a4d019ceff0ab6af4", size = 445259 }, + { url = "https://files.pythonhosted.org/packages/2e/ea/70ce63780f096e16ce8588efe039d3c4f91deb1dc01e9c73a287939c79a6/cffi-1.17.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:a1ed2dd2972641495a3ec98445e09766f077aee98a1c896dcb4ad0d303628e41", size = 469200 }, + { url = "https://files.pythonhosted.org/packages/1c/a0/a4fa9f4f781bda074c3ddd57a572b060fa0df7655d2a4247bbe277200146/cffi-1.17.1-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:46bf43160c1a35f7ec506d254e5c890f3c03648a4dbac12d624e4490a7046cd1", size = 477235 }, + { url = "https://files.pythonhosted.org/packages/62/12/ce8710b5b8affbcdd5c6e367217c242524ad17a02fe5beec3ee339f69f85/cffi-1.17.1-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:a24ed04c8ffd54b0729c07cee15a81d964e6fee0e3d4d342a27b020d22959dc6", size = 459721 }, + { url = "https://files.pythonhosted.org/packages/ff/6b/d45873c5e0242196f042d555526f92aa9e0c32355a1be1ff8c27f077fd37/cffi-1.17.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:610faea79c43e44c71e1ec53a554553fa22321b65fae24889706c0a84d4ad86d", size = 467242 }, + { url = "https://files.pythonhosted.org/packages/1a/52/d9a0e523a572fbccf2955f5abe883cfa8bcc570d7faeee06336fbd50c9fc/cffi-1.17.1-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:a9b15d491f3ad5d692e11f6b71f7857e7835eb677955c00cc0aefcd0669adaf6", size = 477999 }, + { url = "https://files.pythonhosted.org/packages/44/74/f2a2460684a1a2d00ca799ad880d54652841a780c4c97b87754f660c7603/cffi-1.17.1-cp311-cp311-musllinux_1_1_i686.whl", hash = "sha256:de2ea4b5833625383e464549fec1bc395c1bdeeb5f25c4a3a82b5a8c756ec22f", size = 454242 }, + { url = "https://files.pythonhosted.org/packages/f8/4a/34599cac7dfcd888ff54e801afe06a19c17787dfd94495ab0c8d35fe99fb/cffi-1.17.1-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:fc48c783f9c87e60831201f2cce7f3b2e4846bf4d8728eabe54d60700b318a0b", size = 478604 }, + { url = "https://files.pythonhosted.org/packages/34/33/e1b8a1ba29025adbdcda5fb3a36f94c03d771c1b7b12f726ff7fef2ebe36/cffi-1.17.1-cp311-cp311-win32.whl", hash = "sha256:85a950a4ac9c359340d5963966e3e0a94a676bd6245a4b55bc43949eee26a655", size = 171727 }, + { url = "https://files.pythonhosted.org/packages/3d/97/50228be003bb2802627d28ec0627837ac0bf35c90cf769812056f235b2d1/cffi-1.17.1-cp311-cp311-win_amd64.whl", hash = "sha256:caaf0640ef5f5517f49bc275eca1406b0ffa6aa184892812030f04c2abf589a0", size = 181400 }, + { url = "https://files.pythonhosted.org/packages/5a/84/e94227139ee5fb4d600a7a4927f322e1d4aea6fdc50bd3fca8493caba23f/cffi-1.17.1-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:805b4371bf7197c329fcb3ead37e710d1bca9da5d583f5073b799d5c5bd1eee4", size = 183178 }, + { url = "https://files.pythonhosted.org/packages/da/ee/fb72c2b48656111c4ef27f0f91da355e130a923473bf5ee75c5643d00cca/cffi-1.17.1-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:733e99bc2df47476e3848417c5a4540522f234dfd4ef3ab7fafdf555b082ec0c", size = 178840 }, + { url = "https://files.pythonhosted.org/packages/cc/b6/db007700f67d151abadf508cbfd6a1884f57eab90b1bb985c4c8c02b0f28/cffi-1.17.1-cp312-cp312-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:1257bdabf294dceb59f5e70c64a3e2f462c30c7ad68092d01bbbfb1c16b1ba36", size = 454803 }, + { url = "https://files.pythonhosted.org/packages/1a/df/f8d151540d8c200eb1c6fba8cd0dfd40904f1b0682ea705c36e6c2e97ab3/cffi-1.17.1-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:da95af8214998d77a98cc14e3a3bd00aa191526343078b530ceb0bd710fb48a5", size = 478850 }, + { url = "https://files.pythonhosted.org/packages/28/c0/b31116332a547fd2677ae5b78a2ef662dfc8023d67f41b2a83f7c2aa78b1/cffi-1.17.1-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:d63afe322132c194cf832bfec0dc69a99fb9bb6bbd550f161a49e9e855cc78ff", size = 485729 }, + { url = "https://files.pythonhosted.org/packages/91/2b/9a1ddfa5c7f13cab007a2c9cc295b70fbbda7cb10a286aa6810338e60ea1/cffi-1.17.1-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:f79fc4fc25f1c8698ff97788206bb3c2598949bfe0fef03d299eb1b5356ada99", size = 471256 }, + { url = "https://files.pythonhosted.org/packages/b2/d5/da47df7004cb17e4955df6a43d14b3b4ae77737dff8bf7f8f333196717bf/cffi-1.17.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:b62ce867176a75d03a665bad002af8e6d54644fad99a3c70905c543130e39d93", size = 479424 }, + { url = "https://files.pythonhosted.org/packages/0b/ac/2a28bcf513e93a219c8a4e8e125534f4f6db03e3179ba1c45e949b76212c/cffi-1.17.1-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:386c8bf53c502fff58903061338ce4f4950cbdcb23e2902d86c0f722b786bbe3", size = 484568 }, + { url = "https://files.pythonhosted.org/packages/d4/38/ca8a4f639065f14ae0f1d9751e70447a261f1a30fa7547a828ae08142465/cffi-1.17.1-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:4ceb10419a9adf4460ea14cfd6bc43d08701f0835e979bf821052f1805850fe8", size = 488736 }, + { url = "https://files.pythonhosted.org/packages/86/c5/28b2d6f799ec0bdecf44dced2ec5ed43e0eb63097b0f58c293583b406582/cffi-1.17.1-cp312-cp312-win32.whl", hash = "sha256:a08d7e755f8ed21095a310a693525137cfe756ce62d066e53f502a83dc550f65", size = 172448 }, + { url = "https://files.pythonhosted.org/packages/50/b9/db34c4755a7bd1cb2d1603ac3863f22bcecbd1ba29e5ee841a4bc510b294/cffi-1.17.1-cp312-cp312-win_amd64.whl", hash = "sha256:51392eae71afec0d0c8fb1a53b204dbb3bcabcb3c9b807eedf3e1e6ccf2de903", size = 181976 }, +] + +[[package]] +name = "cfgv" +version = "3.4.0" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/11/74/539e56497d9bd1d484fd863dd69cbbfa653cd2aa27abfe35653494d85e94/cfgv-3.4.0.tar.gz", hash = "sha256:e52591d4c5f5dead8e0f673fb16db7949d2cfb3f7da4582893288f0ded8fe560", size = 7114 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/c5/55/51844dd50c4fc7a33b653bfaba4c2456f06955289ca770a5dbd5fd267374/cfgv-3.4.0-py2.py3-none-any.whl", hash = "sha256:b7265b1f29fd3316bfcd2b330d63d024f2bfd8bcb8b0272f8e19a504856c48f9", size = 7249 }, +] + +[[package]] +name = "charset-normalizer" +version = "3.4.1" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/16/b0/572805e227f01586461c80e0fd25d65a2115599cc9dad142fee4b747c357/charset_normalizer-3.4.1.tar.gz", hash = "sha256:44251f18cd68a75b56585dd00dae26183e102cd5e0f9f1466e6df5da2ed64ea3", size = 123188 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/0d/58/5580c1716040bc89206c77d8f74418caf82ce519aae06450393ca73475d1/charset_normalizer-3.4.1-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:91b36a978b5ae0ee86c394f5a54d6ef44db1de0815eb43de826d41d21e4af3de", size = 198013 }, + { url = "https://files.pythonhosted.org/packages/d0/11/00341177ae71c6f5159a08168bcb98c6e6d196d372c94511f9f6c9afe0c6/charset_normalizer-3.4.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:7461baadb4dc00fd9e0acbe254e3d7d2112e7f92ced2adc96e54ef6501c5f176", size = 141285 }, + { url = "https://files.pythonhosted.org/packages/01/09/11d684ea5819e5a8f5100fb0b38cf8d02b514746607934134d31233e02c8/charset_normalizer-3.4.1-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:e218488cd232553829be0664c2292d3af2eeeb94b32bea483cf79ac6a694e037", size = 151449 }, + { url = "https://files.pythonhosted.org/packages/08/06/9f5a12939db324d905dc1f70591ae7d7898d030d7662f0d426e2286f68c9/charset_normalizer-3.4.1-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:80ed5e856eb7f30115aaf94e4a08114ccc8813e6ed1b5efa74f9f82e8509858f", size = 143892 }, + { url = "https://files.pythonhosted.org/packages/93/62/5e89cdfe04584cb7f4d36003ffa2936681b03ecc0754f8e969c2becb7e24/charset_normalizer-3.4.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:b010a7a4fd316c3c484d482922d13044979e78d1861f0e0650423144c616a46a", size = 146123 }, + { url = "https://files.pythonhosted.org/packages/a9/ac/ab729a15c516da2ab70a05f8722ecfccc3f04ed7a18e45c75bbbaa347d61/charset_normalizer-3.4.1-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:4532bff1b8421fd0a320463030c7520f56a79c9024a4e88f01c537316019005a", size = 147943 }, + { url = "https://files.pythonhosted.org/packages/03/d2/3f392f23f042615689456e9a274640c1d2e5dd1d52de36ab8f7955f8f050/charset_normalizer-3.4.1-cp310-cp310-musllinux_1_2_aarch64.whl", hash = "sha256:d973f03c0cb71c5ed99037b870f2be986c3c05e63622c017ea9816881d2dd247", size = 142063 }, + { url = "https://files.pythonhosted.org/packages/f2/e3/e20aae5e1039a2cd9b08d9205f52142329f887f8cf70da3650326670bddf/charset_normalizer-3.4.1-cp310-cp310-musllinux_1_2_i686.whl", hash = "sha256:3a3bd0dcd373514dcec91c411ddb9632c0d7d92aed7093b8c3bbb6d69ca74408", size = 150578 }, + { url = "https://files.pythonhosted.org/packages/8d/af/779ad72a4da0aed925e1139d458adc486e61076d7ecdcc09e610ea8678db/charset_normalizer-3.4.1-cp310-cp310-musllinux_1_2_ppc64le.whl", hash = "sha256:d9c3cdf5390dcd29aa8056d13e8e99526cda0305acc038b96b30352aff5ff2bb", size = 153629 }, + { url = "https://files.pythonhosted.org/packages/c2/b6/7aa450b278e7aa92cf7732140bfd8be21f5f29d5bf334ae987c945276639/charset_normalizer-3.4.1-cp310-cp310-musllinux_1_2_s390x.whl", hash = "sha256:2bdfe3ac2e1bbe5b59a1a63721eb3b95fc9b6817ae4a46debbb4e11f6232428d", size = 150778 }, + { url = "https://files.pythonhosted.org/packages/39/f4/d9f4f712d0951dcbfd42920d3db81b00dd23b6ab520419626f4023334056/charset_normalizer-3.4.1-cp310-cp310-musllinux_1_2_x86_64.whl", hash = "sha256:eab677309cdb30d047996b36d34caeda1dc91149e4fdca0b1a039b3f79d9a807", size = 146453 }, + { url = "https://files.pythonhosted.org/packages/49/2b/999d0314e4ee0cff3cb83e6bc9aeddd397eeed693edb4facb901eb8fbb69/charset_normalizer-3.4.1-cp310-cp310-win32.whl", hash = "sha256:c0429126cf75e16c4f0ad00ee0eae4242dc652290f940152ca8c75c3a4b6ee8f", size = 95479 }, + { url = "https://files.pythonhosted.org/packages/2d/ce/3cbed41cff67e455a386fb5e5dd8906cdda2ed92fbc6297921f2e4419309/charset_normalizer-3.4.1-cp310-cp310-win_amd64.whl", hash = "sha256:9f0b8b1c6d84c8034a44893aba5e767bf9c7a211e313a9605d9c617d7083829f", size = 102790 }, + { url = "https://files.pythonhosted.org/packages/72/80/41ef5d5a7935d2d3a773e3eaebf0a9350542f2cab4eac59a7a4741fbbbbe/charset_normalizer-3.4.1-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:8bfa33f4f2672964266e940dd22a195989ba31669bd84629f05fab3ef4e2d125", size = 194995 }, + { url = "https://files.pythonhosted.org/packages/7a/28/0b9fefa7b8b080ec492110af6d88aa3dea91c464b17d53474b6e9ba5d2c5/charset_normalizer-3.4.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:28bf57629c75e810b6ae989f03c0828d64d6b26a5e205535585f96093e405ed1", size = 139471 }, + { url = "https://files.pythonhosted.org/packages/71/64/d24ab1a997efb06402e3fc07317e94da358e2585165930d9d59ad45fcae2/charset_normalizer-3.4.1-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:f08ff5e948271dc7e18a35641d2f11a4cd8dfd5634f55228b691e62b37125eb3", size = 149831 }, + { url = "https://files.pythonhosted.org/packages/37/ed/be39e5258e198655240db5e19e0b11379163ad7070962d6b0c87ed2c4d39/charset_normalizer-3.4.1-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:234ac59ea147c59ee4da87a0c0f098e9c8d169f4dc2a159ef720f1a61bbe27cd", size = 142335 }, + { url = "https://files.pythonhosted.org/packages/88/83/489e9504711fa05d8dde1574996408026bdbdbd938f23be67deebb5eca92/charset_normalizer-3.4.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:fd4ec41f914fa74ad1b8304bbc634b3de73d2a0889bd32076342a573e0779e00", size = 143862 }, + { url = "https://files.pythonhosted.org/packages/c6/c7/32da20821cf387b759ad24627a9aca289d2822de929b8a41b6241767b461/charset_normalizer-3.4.1-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:eea6ee1db730b3483adf394ea72f808b6e18cf3cb6454b4d86e04fa8c4327a12", size = 145673 }, + { url = "https://files.pythonhosted.org/packages/68/85/f4288e96039abdd5aeb5c546fa20a37b50da71b5cf01e75e87f16cd43304/charset_normalizer-3.4.1-cp311-cp311-musllinux_1_2_aarch64.whl", hash = "sha256:c96836c97b1238e9c9e3fe90844c947d5afbf4f4c92762679acfe19927d81d77", size = 140211 }, + { url = "https://files.pythonhosted.org/packages/28/a3/a42e70d03cbdabc18997baf4f0227c73591a08041c149e710045c281f97b/charset_normalizer-3.4.1-cp311-cp311-musllinux_1_2_i686.whl", hash = "sha256:4d86f7aff21ee58f26dcf5ae81a9addbd914115cdebcbb2217e4f0ed8982e146", size = 148039 }, + { url = "https://files.pythonhosted.org/packages/85/e4/65699e8ab3014ecbe6f5c71d1a55d810fb716bbfd74f6283d5c2aa87febf/charset_normalizer-3.4.1-cp311-cp311-musllinux_1_2_ppc64le.whl", hash = "sha256:09b5e6733cbd160dcc09589227187e242a30a49ca5cefa5a7edd3f9d19ed53fd", size = 151939 }, + { url = "https://files.pythonhosted.org/packages/b1/82/8e9fe624cc5374193de6860aba3ea8070f584c8565ee77c168ec13274bd2/charset_normalizer-3.4.1-cp311-cp311-musllinux_1_2_s390x.whl", hash = "sha256:5777ee0881f9499ed0f71cc82cf873d9a0ca8af166dfa0af8ec4e675b7df48e6", size = 149075 }, + { url = "https://files.pythonhosted.org/packages/3d/7b/82865ba54c765560c8433f65e8acb9217cb839a9e32b42af4aa8e945870f/charset_normalizer-3.4.1-cp311-cp311-musllinux_1_2_x86_64.whl", hash = "sha256:237bdbe6159cff53b4f24f397d43c6336c6b0b42affbe857970cefbb620911c8", size = 144340 }, + { url = "https://files.pythonhosted.org/packages/b5/b6/9674a4b7d4d99a0d2df9b215da766ee682718f88055751e1e5e753c82db0/charset_normalizer-3.4.1-cp311-cp311-win32.whl", hash = "sha256:8417cb1f36cc0bc7eaba8ccb0e04d55f0ee52df06df3ad55259b9a323555fc8b", size = 95205 }, + { url = "https://files.pythonhosted.org/packages/1e/ab/45b180e175de4402dcf7547e4fb617283bae54ce35c27930a6f35b6bef15/charset_normalizer-3.4.1-cp311-cp311-win_amd64.whl", hash = "sha256:d7f50a1f8c450f3925cb367d011448c39239bb3eb4117c36a6d354794de4ce76", size = 102441 }, + { url = "https://files.pythonhosted.org/packages/0a/9a/dd1e1cdceb841925b7798369a09279bd1cf183cef0f9ddf15a3a6502ee45/charset_normalizer-3.4.1-cp312-cp312-macosx_10_13_universal2.whl", hash = "sha256:73d94b58ec7fecbc7366247d3b0b10a21681004153238750bb67bd9012414545", size = 196105 }, + { url = "https://files.pythonhosted.org/packages/d3/8c/90bfabf8c4809ecb648f39794cf2a84ff2e7d2a6cf159fe68d9a26160467/charset_normalizer-3.4.1-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:dad3e487649f498dd991eeb901125411559b22e8d7ab25d3aeb1af367df5efd7", size = 140404 }, + { url = "https://files.pythonhosted.org/packages/ad/8f/e410d57c721945ea3b4f1a04b74f70ce8fa800d393d72899f0a40526401f/charset_normalizer-3.4.1-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:c30197aa96e8eed02200a83fba2657b4c3acd0f0aa4bdc9f6c1af8e8962e0757", size = 150423 }, + { url = "https://files.pythonhosted.org/packages/f0/b8/e6825e25deb691ff98cf5c9072ee0605dc2acfca98af70c2d1b1bc75190d/charset_normalizer-3.4.1-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:2369eea1ee4a7610a860d88f268eb39b95cb588acd7235e02fd5a5601773d4fa", size = 143184 }, + { url = "https://files.pythonhosted.org/packages/3e/a2/513f6cbe752421f16d969e32f3583762bfd583848b763913ddab8d9bfd4f/charset_normalizer-3.4.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:bc2722592d8998c870fa4e290c2eec2c1569b87fe58618e67d38b4665dfa680d", size = 145268 }, + { url = "https://files.pythonhosted.org/packages/74/94/8a5277664f27c3c438546f3eb53b33f5b19568eb7424736bdc440a88a31f/charset_normalizer-3.4.1-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:ffc9202a29ab3920fa812879e95a9e78b2465fd10be7fcbd042899695d75e616", size = 147601 }, + { url = "https://files.pythonhosted.org/packages/7c/5f/6d352c51ee763623a98e31194823518e09bfa48be2a7e8383cf691bbb3d0/charset_normalizer-3.4.1-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:804a4d582ba6e5b747c625bf1255e6b1507465494a40a2130978bda7b932c90b", size = 141098 }, + { url = "https://files.pythonhosted.org/packages/78/d4/f5704cb629ba5ab16d1d3d741396aec6dc3ca2b67757c45b0599bb010478/charset_normalizer-3.4.1-cp312-cp312-musllinux_1_2_i686.whl", hash = "sha256:0f55e69f030f7163dffe9fd0752b32f070566451afe180f99dbeeb81f511ad8d", size = 149520 }, + { url = "https://files.pythonhosted.org/packages/c5/96/64120b1d02b81785f222b976c0fb79a35875457fa9bb40827678e54d1bc8/charset_normalizer-3.4.1-cp312-cp312-musllinux_1_2_ppc64le.whl", hash = "sha256:c4c3e6da02df6fa1410a7680bd3f63d4f710232d3139089536310d027950696a", size = 152852 }, + { url = "https://files.pythonhosted.org/packages/84/c9/98e3732278a99f47d487fd3468bc60b882920cef29d1fa6ca460a1fdf4e6/charset_normalizer-3.4.1-cp312-cp312-musllinux_1_2_s390x.whl", hash = "sha256:5df196eb874dae23dcfb968c83d4f8fdccb333330fe1fc278ac5ceeb101003a9", size = 150488 }, + { url = "https://files.pythonhosted.org/packages/13/0e/9c8d4cb99c98c1007cc11eda969ebfe837bbbd0acdb4736d228ccaabcd22/charset_normalizer-3.4.1-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:e358e64305fe12299a08e08978f51fc21fac060dcfcddd95453eabe5b93ed0e1", size = 146192 }, + { url = "https://files.pythonhosted.org/packages/b2/21/2b6b5b860781a0b49427309cb8670785aa543fb2178de875b87b9cc97746/charset_normalizer-3.4.1-cp312-cp312-win32.whl", hash = "sha256:9b23ca7ef998bc739bf6ffc077c2116917eabcc901f88da1b9856b210ef63f35", size = 95550 }, + { url = "https://files.pythonhosted.org/packages/21/5b/1b390b03b1d16c7e382b561c5329f83cc06623916aab983e8ab9239c7d5c/charset_normalizer-3.4.1-cp312-cp312-win_amd64.whl", hash = "sha256:6ff8a4a60c227ad87030d76e99cd1698345d4491638dfa6673027c48b3cd395f", size = 102785 }, + { url = "https://files.pythonhosted.org/packages/0e/f6/65ecc6878a89bb1c23a086ea335ad4bf21a588990c3f535a227b9eea9108/charset_normalizer-3.4.1-py3-none-any.whl", hash = "sha256:d98b1668f06378c6dbefec3b92299716b931cd4e6061f3c875a71ced1780ab85", size = 49767 }, +] + +[[package]] +name = "click" +version = "8.1.8" +source = { registry = "https://pypi.org/simple" } +dependencies = [ + { name = "colorama", marker = "sys_platform == 'win32'" }, +] +sdist = { url = "https://files.pythonhosted.org/packages/b9/2e/0090cbf739cee7d23781ad4b89a9894a41538e4fcf4c31dcdd705b78eb8b/click-8.1.8.tar.gz", hash = "sha256:ed53c9d8990d83c2a27deae68e4ee337473f6330c040a31d4225c9574d16096a", size = 226593 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/7e/d4/7ebdbd03970677812aac39c869717059dbb71a4cfc033ca6e5221787892c/click-8.1.8-py3-none-any.whl", hash = "sha256:63c132bbbed01578a06712a2d1f497bb62d9c1c0d329b7903a866228027263b2", size = 98188 }, +] + +[[package]] +name = "colorama" +version = "0.4.6" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/d8/53/6f443c9a4a8358a93a6792e2acffb9d9d5cb0a5cfd8802644b7b1c9a02e4/colorama-0.4.6.tar.gz", hash = "sha256:08695f5cb7ed6e0531a20572697297273c47b8cae5a63ffc6d6ed5c201be6e44", size = 27697 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/d1/d6/3965ed04c63042e047cb6a3e6ed1a63a35087b6a609aa3a15ed8ac56c221/colorama-0.4.6-py2.py3-none-any.whl", hash = "sha256:4f1d9991f5acc0ca119f9d443620b77f9d6b33703e51011c16baf57afb285fc6", size = 25335 }, +] + +[[package]] +name = "comm" +version = "0.2.2" +source = { registry = "https://pypi.org/simple" } +dependencies = [ + { name = "traitlets" }, +] +sdist = { url = "https://files.pythonhosted.org/packages/e9/a8/fb783cb0abe2b5fded9f55e5703015cdf1c9c85b3669087c538dd15a6a86/comm-0.2.2.tar.gz", hash = "sha256:3fd7a84065306e07bea1773df6eb8282de51ba82f77c72f9c85716ab11fe980e", size = 6210 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/e6/75/49e5bfe642f71f272236b5b2d2691cf915a7283cc0ceda56357b61daa538/comm-0.2.2-py3-none-any.whl", hash = "sha256:e6fb86cb70ff661ee8c9c14e7d36d6de3b4066f1441be4063df9c5009f0a64d3", size = 7180 }, +] + +[[package]] +name = "contourpy" +version = "1.3.1" +source = { registry = "https://pypi.org/simple" } +dependencies = [ + { name = "numpy" }, +] +sdist = { url = "https://files.pythonhosted.org/packages/25/c2/fc7193cc5383637ff390a712e88e4ded0452c9fbcf84abe3de5ea3df1866/contourpy-1.3.1.tar.gz", hash = "sha256:dfd97abd83335045a913e3bcc4a09c0ceadbe66580cf573fe961f4a825efa699", size = 13465753 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/b2/a3/80937fe3efe0edacf67c9a20b955139a1a622730042c1ea991956f2704ad/contourpy-1.3.1-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:a045f341a77b77e1c5de31e74e966537bba9f3c4099b35bf4c2e3939dd54cdab", size = 268466 }, + { url = "https://files.pythonhosted.org/packages/82/1d/e3eaebb4aa2d7311528c048350ca8e99cdacfafd99da87bc0a5f8d81f2c2/contourpy-1.3.1-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:500360b77259914f7805af7462e41f9cb7ca92ad38e9f94d6c8641b089338124", size = 253314 }, + { url = "https://files.pythonhosted.org/packages/de/f3/d796b22d1a2b587acc8100ba8c07fb7b5e17fde265a7bb05ab967f4c935a/contourpy-1.3.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:b2f926efda994cdf3c8d3fdb40b9962f86edbc4457e739277b961eced3d0b4c1", size = 312003 }, + { url = "https://files.pythonhosted.org/packages/bf/f5/0e67902bc4394daee8daa39c81d4f00b50e063ee1a46cb3938cc65585d36/contourpy-1.3.1-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:adce39d67c0edf383647a3a007de0a45fd1b08dedaa5318404f1a73059c2512b", size = 351896 }, + { url = "https://files.pythonhosted.org/packages/1f/d6/e766395723f6256d45d6e67c13bb638dd1fa9dc10ef912dc7dd3dcfc19de/contourpy-1.3.1-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:abbb49fb7dac584e5abc6636b7b2a7227111c4f771005853e7d25176daaf8453", size = 320814 }, + { url = "https://files.pythonhosted.org/packages/a9/57/86c500d63b3e26e5b73a28b8291a67c5608d4aa87ebd17bd15bb33c178bc/contourpy-1.3.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:a0cffcbede75c059f535725c1680dfb17b6ba8753f0c74b14e6a9c68c29d7ea3", size = 324969 }, + { url = "https://files.pythonhosted.org/packages/b8/62/bb146d1289d6b3450bccc4642e7f4413b92ebffd9bf2e91b0404323704a7/contourpy-1.3.1-cp310-cp310-musllinux_1_2_aarch64.whl", hash = "sha256:ab29962927945d89d9b293eabd0d59aea28d887d4f3be6c22deaefbb938a7277", size = 1265162 }, + { url = "https://files.pythonhosted.org/packages/18/04/9f7d132ce49a212c8e767042cc80ae390f728060d2eea47058f55b9eff1c/contourpy-1.3.1-cp310-cp310-musllinux_1_2_x86_64.whl", hash = "sha256:974d8145f8ca354498005b5b981165b74a195abfae9a8129df3e56771961d595", size = 1324328 }, + { url = "https://files.pythonhosted.org/packages/46/23/196813901be3f97c83ababdab1382e13e0edc0bb4e7b49a7bff15fcf754e/contourpy-1.3.1-cp310-cp310-win32.whl", hash = "sha256:ac4578ac281983f63b400f7fe6c101bedc10651650eef012be1ccffcbacf3697", size = 173861 }, + { url = "https://files.pythonhosted.org/packages/e0/82/c372be3fc000a3b2005061ca623a0d1ecd2eaafb10d9e883a2fc8566e951/contourpy-1.3.1-cp310-cp310-win_amd64.whl", hash = "sha256:174e758c66bbc1c8576992cec9599ce8b6672b741b5d336b5c74e35ac382b18e", size = 218566 }, + { url = "https://files.pythonhosted.org/packages/12/bb/11250d2906ee2e8b466b5f93e6b19d525f3e0254ac8b445b56e618527718/contourpy-1.3.1-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:3e8b974d8db2c5610fb4e76307e265de0edb655ae8169e8b21f41807ccbeec4b", size = 269555 }, + { url = "https://files.pythonhosted.org/packages/67/71/1e6e95aee21a500415f5d2dbf037bf4567529b6a4e986594d7026ec5ae90/contourpy-1.3.1-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:20914c8c973f41456337652a6eeca26d2148aa96dd7ac323b74516988bea89fc", size = 254549 }, + { url = "https://files.pythonhosted.org/packages/31/2c/b88986e8d79ac45efe9d8801ae341525f38e087449b6c2f2e6050468a42c/contourpy-1.3.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:19d40d37c1c3a4961b4619dd9d77b12124a453cc3d02bb31a07d58ef684d3d86", size = 313000 }, + { url = "https://files.pythonhosted.org/packages/c4/18/65280989b151fcf33a8352f992eff71e61b968bef7432fbfde3a364f0730/contourpy-1.3.1-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:113231fe3825ebf6f15eaa8bc1f5b0ddc19d42b733345eae0934cb291beb88b6", size = 352925 }, + { url = "https://files.pythonhosted.org/packages/f5/c7/5fd0146c93220dbfe1a2e0f98969293b86ca9bc041d6c90c0e065f4619ad/contourpy-1.3.1-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:4dbbc03a40f916a8420e420d63e96a1258d3d1b58cbdfd8d1f07b49fcbd38e85", size = 323693 }, + { url = "https://files.pythonhosted.org/packages/85/fc/7fa5d17daf77306840a4e84668a48ddff09e6bc09ba4e37e85ffc8e4faa3/contourpy-1.3.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:3a04ecd68acbd77fa2d39723ceca4c3197cb2969633836ced1bea14e219d077c", size = 326184 }, + { url = "https://files.pythonhosted.org/packages/ef/e7/104065c8270c7397c9571620d3ab880558957216f2b5ebb7e040f85eeb22/contourpy-1.3.1-cp311-cp311-musllinux_1_2_aarch64.whl", hash = "sha256:c414fc1ed8ee1dbd5da626cf3710c6013d3d27456651d156711fa24f24bd1291", size = 1268031 }, + { url = "https://files.pythonhosted.org/packages/e2/4a/c788d0bdbf32c8113c2354493ed291f924d4793c4a2e85b69e737a21a658/contourpy-1.3.1-cp311-cp311-musllinux_1_2_x86_64.whl", hash = "sha256:31c1b55c1f34f80557d3830d3dd93ba722ce7e33a0b472cba0ec3b6535684d8f", size = 1325995 }, + { url = "https://files.pythonhosted.org/packages/a6/e6/a2f351a90d955f8b0564caf1ebe4b1451a3f01f83e5e3a414055a5b8bccb/contourpy-1.3.1-cp311-cp311-win32.whl", hash = "sha256:f611e628ef06670df83fce17805c344710ca5cde01edfdc72751311da8585375", size = 174396 }, + { url = "https://files.pythonhosted.org/packages/a8/7e/cd93cab453720a5d6cb75588cc17dcdc08fc3484b9de98b885924ff61900/contourpy-1.3.1-cp311-cp311-win_amd64.whl", hash = "sha256:b2bdca22a27e35f16794cf585832e542123296b4687f9fd96822db6bae17bfc9", size = 219787 }, + { url = "https://files.pythonhosted.org/packages/37/6b/175f60227d3e7f5f1549fcb374592be311293132207e451c3d7c654c25fb/contourpy-1.3.1-cp312-cp312-macosx_10_13_x86_64.whl", hash = "sha256:0ffa84be8e0bd33410b17189f7164c3589c229ce5db85798076a3fa136d0e509", size = 271494 }, + { url = "https://files.pythonhosted.org/packages/6b/6a/7833cfae2c1e63d1d8875a50fd23371394f540ce809d7383550681a1fa64/contourpy-1.3.1-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:805617228ba7e2cbbfb6c503858e626ab528ac2a32a04a2fe88ffaf6b02c32bc", size = 255444 }, + { url = "https://files.pythonhosted.org/packages/7f/b3/7859efce66eaca5c14ba7619791b084ed02d868d76b928ff56890d2d059d/contourpy-1.3.1-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:ade08d343436a94e633db932e7e8407fe7de8083967962b46bdfc1b0ced39454", size = 307628 }, + { url = "https://files.pythonhosted.org/packages/48/b2/011415f5e3f0a50b1e285a0bf78eb5d92a4df000553570f0851b6e309076/contourpy-1.3.1-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:47734d7073fb4590b4a40122b35917cd77be5722d80683b249dac1de266aac80", size = 347271 }, + { url = "https://files.pythonhosted.org/packages/84/7d/ef19b1db0f45b151ac78c65127235239a8cf21a59d1ce8507ce03e89a30b/contourpy-1.3.1-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:2ba94a401342fc0f8b948e57d977557fbf4d515f03c67682dd5c6191cb2d16ec", size = 318906 }, + { url = "https://files.pythonhosted.org/packages/ba/99/6794142b90b853a9155316c8f470d2e4821fe6f086b03e372aca848227dd/contourpy-1.3.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:efa874e87e4a647fd2e4f514d5e91c7d493697127beb95e77d2f7561f6905bd9", size = 323622 }, + { url = "https://files.pythonhosted.org/packages/3c/0f/37d2c84a900cd8eb54e105f4fa9aebd275e14e266736778bb5dccbf3bbbb/contourpy-1.3.1-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:1bf98051f1045b15c87868dbaea84f92408337d4f81d0e449ee41920ea121d3b", size = 1266699 }, + { url = "https://files.pythonhosted.org/packages/3a/8a/deb5e11dc7d9cc8f0f9c8b29d4f062203f3af230ba83c30a6b161a6effc9/contourpy-1.3.1-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:61332c87493b00091423e747ea78200659dc09bdf7fd69edd5e98cef5d3e9a8d", size = 1326395 }, + { url = "https://files.pythonhosted.org/packages/1a/35/7e267ae7c13aaf12322ccc493531f1e7f2eb8fba2927b9d7a05ff615df7a/contourpy-1.3.1-cp312-cp312-win32.whl", hash = "sha256:e914a8cb05ce5c809dd0fe350cfbb4e881bde5e2a38dc04e3afe1b3e58bd158e", size = 175354 }, + { url = "https://files.pythonhosted.org/packages/a1/35/c2de8823211d07e8a79ab018ef03960716c5dff6f4d5bff5af87fd682992/contourpy-1.3.1-cp312-cp312-win_amd64.whl", hash = "sha256:08d9d449a61cf53033612cb368f3a1b26cd7835d9b8cd326647efe43bca7568d", size = 220971 }, + { url = "https://files.pythonhosted.org/packages/3e/4f/e56862e64b52b55b5ddcff4090085521fc228ceb09a88390a2b103dccd1b/contourpy-1.3.1-pp310-pypy310_pp73-macosx_10_15_x86_64.whl", hash = "sha256:b457d6430833cee8e4b8e9b6f07aa1c161e5e0d52e118dc102c8f9bd7dd060d6", size = 265605 }, + { url = "https://files.pythonhosted.org/packages/b0/2e/52bfeeaa4541889f23d8eadc6386b442ee2470bd3cff9baa67deb2dd5c57/contourpy-1.3.1-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:cb76c1a154b83991a3cbbf0dfeb26ec2833ad56f95540b442c73950af2013750", size = 315040 }, + { url = "https://files.pythonhosted.org/packages/52/94/86bfae441707205634d80392e873295652fc313dfd93c233c52c4dc07874/contourpy-1.3.1-pp310-pypy310_pp73-win_amd64.whl", hash = "sha256:44a29502ca9c7b5ba389e620d44f2fbe792b1fb5734e8b931ad307071ec58c53", size = 218221 }, +] + +[[package]] +name = "cycler" +version = "0.12.1" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/a9/95/a3dbbb5028f35eafb79008e7522a75244477d2838f38cbb722248dabc2a8/cycler-0.12.1.tar.gz", hash = "sha256:88bb128f02ba341da8ef447245a9e138fae777f6a23943da4540077d3601eb1c", size = 7615 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/e7/05/c19819d5e3d95294a6f5947fb9b9629efb316b96de511b418c53d245aae6/cycler-0.12.1-py3-none-any.whl", hash = "sha256:85cef7cff222d8644161529808465972e51340599459b8ac3ccbac5a854e0d30", size = 8321 }, +] + +[[package]] +name = "cython" +version = "3.0.12" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/5a/25/886e197c97a4b8e254173002cdc141441e878ff29aaa7d9ba560cd6e4866/cython-3.0.12.tar.gz", hash = "sha256:b988bb297ce76c671e28c97d017b95411010f7c77fa6623dd0bb47eed1aee1bc", size = 2757617 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/52/78/3bcb8ee7b6f5956dbd6bebf85818e075d863419db3661f25189c64cd6c70/Cython-3.0.12-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:ba67eee9413b66dd9fbacd33f0bc2e028a2a120991d77b5fd4b19d0b1e4039b9", size = 3271523 }, + { url = "https://files.pythonhosted.org/packages/dc/21/5b700dac60cc7af4261c7fa2e91f55fe5f38f6c183e1201ced7cc932201b/Cython-3.0.12-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:bee2717e5b5f7d966d0c6e27d2efe3698c357aa4d61bb3201997c7a4f9fe485a", size = 3630244 }, + { url = "https://files.pythonhosted.org/packages/a3/db/a42b8905bde467599927765ba12147f9d6ae3cd10fb33c4cda02011d7be0/Cython-3.0.12-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:7cffc3464f641c8d0dda942c7c53015291beea11ec4d32421bed2f13b386b819", size = 3685089 }, + { url = "https://files.pythonhosted.org/packages/1a/0f/64be4bbdf26679f44fe96e19078c4382800eb8ba9b265373cae73ac94493/Cython-3.0.12-cp310-cp310-musllinux_1_2_aarch64.whl", hash = "sha256:d3a8f81980ffbd74e52f9186d8f1654e347d0c44bfea6b5997028977f481a179", size = 3501991 }, + { url = "https://files.pythonhosted.org/packages/d4/7d/e2a48882a4cbb16f0dfbc406879b2a1ea6b5d27c7cbef080e8eb8234a96c/Cython-3.0.12-cp310-cp310-musllinux_1_2_x86_64.whl", hash = "sha256:8d32856716c369d01f2385ad9177cdd1a11079ac89ea0932dc4882de1aa19174", size = 3713604 }, + { url = "https://files.pythonhosted.org/packages/3b/df/ca69aab33ffd2a184269335f6240b042c21d41dad335d4abb4ead9f22687/Cython-3.0.12-cp310-cp310-win32.whl", hash = "sha256:712c3f31adec140dc60d064a7f84741f50e2c25a8edd7ae746d5eb4d3ef7072a", size = 2578290 }, + { url = "https://files.pythonhosted.org/packages/1f/4c/4f79129407a1e0d540c961835960d811356aa3a666f621aa07cd7a979b0a/Cython-3.0.12-cp310-cp310-win_amd64.whl", hash = "sha256:d6945694c5b9170cfbd5f2c0d00ef7487a2de7aba83713a64ee4ebce7fad9e05", size = 2778456 }, + { url = "https://files.pythonhosted.org/packages/7e/60/3d27abd940f7b80a6aeb69dc093a892f04828e1dd0b243dd81ff87d7b0e9/Cython-3.0.12-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:feb86122a823937cc06e4c029d80ff69f082ebb0b959ab52a5af6cdd271c5dc3", size = 3277430 }, + { url = "https://files.pythonhosted.org/packages/c7/49/f17b0541b317d11f1d021a580643ee2481685157cded92efb32e2fb4daef/Cython-3.0.12-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:dfdbea486e702c328338314adb8e80f5f9741f06a0ae83aaec7463bc166d12e8", size = 3444055 }, + { url = "https://files.pythonhosted.org/packages/6b/7f/c57791ba6a1c934b6f1ab51371e894e3b4bfde0bc35e50046c8754a9d215/Cython-3.0.12-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:563de1728c8e48869d2380a1b76bbc1b1b1d01aba948480d68c1d05e52d20c92", size = 3597874 }, + { url = "https://files.pythonhosted.org/packages/23/24/803a0db3681b3a2ef65a4bebab201e5ae4aef5e6127ae03683476a573aa9/Cython-3.0.12-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:398d4576c1e1f6316282aa0b4a55139254fbed965cba7813e6d9900d3092b128", size = 3644129 }, + { url = "https://files.pythonhosted.org/packages/27/13/9b53ba8336e083ece441af8d6d182b8ca83ad523e87c07b3190af379ebc3/Cython-3.0.12-cp311-cp311-musllinux_1_2_aarch64.whl", hash = "sha256:1e5eadef80143026944ea8f9904715a008f5108d1d644a89f63094cc37351e73", size = 3504936 }, + { url = "https://files.pythonhosted.org/packages/a9/d2/d11104be6992a9fe256860cae6d1a79f7dcf3bdb12ae00116fac591f677d/Cython-3.0.12-cp311-cp311-musllinux_1_2_x86_64.whl", hash = "sha256:5a93cbda00a5451175b97dea5a9440a3fcee9e54b4cba7a7dbcba9a764b22aec", size = 3713066 }, + { url = "https://files.pythonhosted.org/packages/d9/8c/1fe49135296efa3f460c760a4297f6a5b387f3e69ac5c9dcdbd620295ab3/Cython-3.0.12-cp311-cp311-win32.whl", hash = "sha256:3109e1d44425a2639e9a677b66cd7711721a5b606b65867cb2d8ef7a97e2237b", size = 2579935 }, + { url = "https://files.pythonhosted.org/packages/02/4e/5ac0b5b9a239cd3fdae187dda8ff06b0b812f671e2501bf253712278f0ac/Cython-3.0.12-cp311-cp311-win_amd64.whl", hash = "sha256:d4b70fc339adba1e2111b074ee6119fe9fd6072c957d8597bce9a0dd1c3c6784", size = 2787337 }, + { url = "https://files.pythonhosted.org/packages/e6/6c/3be501a6520a93449b1e7e6f63e598ec56f3b5d1bc7ad14167c72a22ddf7/Cython-3.0.12-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:fe030d4a00afb2844f5f70896b7f2a1a0d7da09bf3aa3d884cbe5f73fff5d310", size = 3311717 }, + { url = "https://files.pythonhosted.org/packages/ee/ab/adfeb22c85491de18ae10932165edd5b6f01e4c5e3e363638759d1235015/Cython-3.0.12-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:a7fec4f052b8fe173fe70eae75091389955b9a23d5cec3d576d21c5913b49d47", size = 3344337 }, + { url = "https://files.pythonhosted.org/packages/0d/72/743730d7c46b4c85abefb93187cbbcb7aae8de288d7722b990db3d13499e/Cython-3.0.12-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:0faa5e39e5c8cdf6f9c3b1c3f24972826e45911e7f5b99cf99453fca5432f45e", size = 3517692 }, + { url = "https://files.pythonhosted.org/packages/09/a1/29a4759a02661f8c8e6b703f62bfbc8285337e6918cc90f55dc0fadb5eb3/Cython-3.0.12-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:2d53de996ed340e9ab0fc85a88aaa8932f2591a2746e1ab1c06e262bd4ec4be7", size = 3577057 }, + { url = "https://files.pythonhosted.org/packages/d6/f8/03d74e98901a7cc2f21f95231b07dd54ec2f69477319bac268b3816fc3a8/Cython-3.0.12-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:ea3a0e19ab77266c738aa110684a753a04da4e709472cadeff487133354d6ab8", size = 3396493 }, + { url = "https://files.pythonhosted.org/packages/50/ea/ac33c5f54f980dbc23dd8f1d5c51afeef26e15ac1a66388e4b8195af83b7/Cython-3.0.12-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:c151082884be468f2f405645858a857298ac7f7592729e5b54788b5c572717ba", size = 3603859 }, + { url = "https://files.pythonhosted.org/packages/a2/4e/91fc1d6b5e678dcf2d1ecd8dce45b014b4b60d2044d376355c605831c873/Cython-3.0.12-cp312-cp312-win32.whl", hash = "sha256:3083465749911ac3b2ce001b6bf17f404ac9dd35d8b08469d19dc7e717f5877a", size = 2610428 }, + { url = "https://files.pythonhosted.org/packages/ff/c3/a7fdec227b9f0bb07edbeb016c7b18ed6a8e6ce884d08b2e397cda2c0168/Cython-3.0.12-cp312-cp312-win_amd64.whl", hash = "sha256:c0b91c7ebace030dd558ea28730de8c580680b50768e5af66db2904a3716c3e3", size = 2794755 }, + { url = "https://files.pythonhosted.org/packages/27/6b/7c87867d255cbce8167ed99fc65635e9395d2af0f0c915428f5b17ec412d/Cython-3.0.12-py2.py3-none-any.whl", hash = "sha256:0038c9bae46c459669390e53a1ec115f8096b2e4647ae007ff1bf4e6dee92806", size = 1171640 }, +] + +[[package]] +name = "debugpy" +version = "1.8.12" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/68/25/c74e337134edf55c4dfc9af579eccb45af2393c40960e2795a94351e8140/debugpy-1.8.12.tar.gz", hash = "sha256:646530b04f45c830ceae8e491ca1c9320a2d2f0efea3141487c82130aba70dce", size = 1641122 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/56/19/dd58334c0a1ec07babf80bf29fb8daf1a7ca4c1a3bbe61548e40616ac087/debugpy-1.8.12-cp310-cp310-macosx_14_0_x86_64.whl", hash = "sha256:a2ba7ffe58efeae5b8fad1165357edfe01464f9aef25e814e891ec690e7dd82a", size = 2076091 }, + { url = "https://files.pythonhosted.org/packages/4c/37/bde1737da15f9617d11ab7b8d5267165f1b7dae116b2585a6643e89e1fa2/debugpy-1.8.12-cp310-cp310-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:cbbd4149c4fc5e7d508ece083e78c17442ee13b0e69bfa6bd63003e486770f45", size = 3560717 }, + { url = "https://files.pythonhosted.org/packages/d9/ca/bc67f5a36a7de072908bc9e1156c0f0b272a9a2224cf21540ab1ffd71a1f/debugpy-1.8.12-cp310-cp310-win32.whl", hash = "sha256:b202f591204023b3ce62ff9a47baa555dc00bb092219abf5caf0e3718ac20e7c", size = 5180672 }, + { url = "https://files.pythonhosted.org/packages/c1/b9/e899c0a80dfa674dbc992f36f2b1453cd1ee879143cdb455bc04fce999da/debugpy-1.8.12-cp310-cp310-win_amd64.whl", hash = "sha256:9649eced17a98ce816756ce50433b2dd85dfa7bc92ceb60579d68c053f98dff9", size = 5212702 }, + { url = "https://files.pythonhosted.org/packages/af/9f/5b8af282253615296264d4ef62d14a8686f0dcdebb31a669374e22fff0a4/debugpy-1.8.12-cp311-cp311-macosx_14_0_universal2.whl", hash = "sha256:36f4829839ef0afdfdd208bb54f4c3d0eea86106d719811681a8627ae2e53dd5", size = 2174643 }, + { url = "https://files.pythonhosted.org/packages/ef/31/f9274dcd3b0f9f7d1e60373c3fa4696a585c55acb30729d313bb9d3bcbd1/debugpy-1.8.12-cp311-cp311-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:a28ed481d530e3138553be60991d2d61103ce6da254e51547b79549675f539b7", size = 3133457 }, + { url = "https://files.pythonhosted.org/packages/ab/ca/6ee59e9892e424477e0c76e3798046f1fd1288040b927319c7a7b0baa484/debugpy-1.8.12-cp311-cp311-win32.whl", hash = "sha256:4ad9a94d8f5c9b954e0e3b137cc64ef3f579d0df3c3698fe9c3734ee397e4abb", size = 5106220 }, + { url = "https://files.pythonhosted.org/packages/d5/1a/8ab508ab05ede8a4eae3b139bbc06ea3ca6234f9e8c02713a044f253be5e/debugpy-1.8.12-cp311-cp311-win_amd64.whl", hash = "sha256:4703575b78dd697b294f8c65588dc86874ed787b7348c65da70cfc885efdf1e1", size = 5130481 }, + { url = "https://files.pythonhosted.org/packages/ba/e6/0f876ecfe5831ebe4762b19214364753c8bc2b357d28c5d739a1e88325c7/debugpy-1.8.12-cp312-cp312-macosx_14_0_universal2.whl", hash = "sha256:7e94b643b19e8feb5215fa508aee531387494bf668b2eca27fa769ea11d9f498", size = 2500846 }, + { url = "https://files.pythonhosted.org/packages/19/64/33f41653a701f3cd2cbff8b41ebaad59885b3428b5afd0d93d16012ecf17/debugpy-1.8.12-cp312-cp312-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:086b32e233e89a2740c1615c2f775c34ae951508b28b308681dbbb87bba97d06", size = 4222181 }, + { url = "https://files.pythonhosted.org/packages/32/a6/02646cfe50bfacc9b71321c47dc19a46e35f4e0aceea227b6d205e900e34/debugpy-1.8.12-cp312-cp312-win32.whl", hash = "sha256:2ae5df899732a6051b49ea2632a9ea67f929604fd2b036613a9f12bc3163b92d", size = 5227017 }, + { url = "https://files.pythonhosted.org/packages/da/a6/10056431b5c47103474312cf4a2ec1001f73e0b63b1216706d5fef2531eb/debugpy-1.8.12-cp312-cp312-win_amd64.whl", hash = "sha256:39dfbb6fa09f12fae32639e3286112fc35ae976114f1f3d37375f3130a820969", size = 5267555 }, + { url = "https://files.pythonhosted.org/packages/38/c4/5120ad36405c3008f451f94b8f92ef1805b1e516f6ff870f331ccb3c4cc0/debugpy-1.8.12-py2.py3-none-any.whl", hash = "sha256:274b6a2040349b5c9864e475284bce5bb062e63dce368a394b8cc865ae3b00c6", size = 5229490 }, +] + +[[package]] +name = "decorator" +version = "5.2.1" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/43/fa/6d96a0978d19e17b68d634497769987b16c8f4cd0a7a05048bec693caa6b/decorator-5.2.1.tar.gz", hash = "sha256:65f266143752f734b0a7cc83c46f4618af75b8c5911b00ccb61d0ac9b6da0360", size = 56711 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/4e/8c/f3147f5c4b73e7550fe5f9352eaa956ae838d5c51eb58e7a25b9f3e2643b/decorator-5.2.1-py3-none-any.whl", hash = "sha256:d316bb415a2d9e2d2b3abcc4084c6502fc09240e292cd76a76afc106a1c8e04a", size = 9190 }, +] + +[[package]] +name = "defusedxml" +version = "0.7.1" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/0f/d5/c66da9b79e5bdb124974bfe172b4daf3c984ebd9c2a06e2b8a4dc7331c72/defusedxml-0.7.1.tar.gz", hash = "sha256:1bb3032db185915b62d7c6209c5a8792be6a32ab2fedacc84e01b52c51aa3e69", size = 75520 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/07/6c/aa3f2f849e01cb6a001cd8554a88d4c77c5c1a31c95bdf1cf9301e6d9ef4/defusedxml-0.7.1-py2.py3-none-any.whl", hash = "sha256:a352e7e428770286cc899e2542b6cdaedb2b4953ff269a210103ec58f6198a61", size = 25604 }, +] + +[[package]] +name = "distlib" +version = "0.3.9" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/0d/dd/1bec4c5ddb504ca60fc29472f3d27e8d4da1257a854e1d96742f15c1d02d/distlib-0.3.9.tar.gz", hash = "sha256:a60f20dea646b8a33f3e7772f74dc0b2d0772d2837ee1342a00645c81edf9403", size = 613923 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/91/a1/cf2472db20f7ce4a6be1253a81cfdf85ad9c7885ffbed7047fb72c24cf87/distlib-0.3.9-py2.py3-none-any.whl", hash = "sha256:47f8c22fd27c27e25a65601af709b38e4f0a45ea4fc2e710f65755fa8caaaf87", size = 468973 }, +] + +[[package]] +name = "equilux" +version = "0.1.0" +source = { editable = "." } +dependencies = [ + { name = "matplotlib" }, + { name = "oqd-analog-emulator" }, + { name = "oqd-cloud" }, + { name = "oqd-compiler-infrastructure" }, + { name = "oqd-core" }, + { name = "seaborn" }, +] + +[package.optional-dependencies] +docs = [ + { name = "jupyter" }, + { name = "jupyter-contrib-nbextensions" }, + { name = "mdx-truly-sane-lists" }, + { name = "mkdocs-jupyter" }, + { name = "mkdocs-material" }, + { name = "mkdocs-monorepo-plugin" }, + { name = "mkdocstrings" }, + { name = "mkdocstrings-python" }, + { name = "notebook" }, + { name = "pymdown-extensions" }, +] + +[package.dev-dependencies] +dev = [ + { name = "pre-commit" }, +] + +[package.metadata] +requires-dist = [ + { name = "jupyter", marker = "extra == 'docs'", specifier = "==1.1.1" }, + { name = "jupyter-contrib-nbextensions", marker = "extra == 'docs'", specifier = "==0.7.0" }, + { name = "matplotlib" }, + { name = "mdx-truly-sane-lists", marker = "extra == 'docs'" }, + { name = "mkdocs-jupyter", marker = "extra == 'docs'", specifier = "==0.25.0" }, + { name = "mkdocs-material", marker = "extra == 'docs'" }, + { name = "mkdocs-monorepo-plugin", marker = "extra == 'docs'" }, + { name = "mkdocstrings", marker = "extra == 'docs'" }, + { name = "mkdocstrings-python", marker = "extra == 'docs'" }, + { name = "notebook", marker = "extra == 'docs'", specifier = "==6.4.12" }, + { name = "oqd-analog-emulator" }, + { name = "oqd-cloud" }, + { name = "oqd-compiler-infrastructure" }, + { name = "oqd-core" }, + { name = "pymdown-extensions", marker = "extra == 'docs'" }, + { name = "seaborn" }, +] + +[package.metadata.requires-dev] +dev = [{ name = "pre-commit", specifier = ">=4.1.0" }] + +[[package]] +name = "exceptiongroup" +version = "1.2.2" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/09/35/2495c4ac46b980e4ca1f6ad6db102322ef3ad2410b79fdde159a4b0f3b92/exceptiongroup-1.2.2.tar.gz", hash = "sha256:47c2edf7c6738fafb49fd34290706d1a1a2f4d1c6df275526b62cbb4aa5393cc", size = 28883 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/02/cc/b7e31358aac6ed1ef2bb790a9746ac2c69bcb3c8588b41616914eb106eaf/exceptiongroup-1.2.2-py3-none-any.whl", hash = "sha256:3111b9d131c238bec2f8f516e123e14ba243563fb135d3fe885990585aa7795b", size = 16453 }, +] + +[[package]] +name = "executing" +version = "2.2.0" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/91/50/a9d80c47ff289c611ff12e63f7c5d13942c65d68125160cefd768c73e6e4/executing-2.2.0.tar.gz", hash = "sha256:5d108c028108fe2551d1a7b2e8b713341e2cb4fc0aa7dcf966fa4327a5226755", size = 978693 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/7b/8f/c4d9bafc34ad7ad5d8dc16dd1347ee0e507a52c3adb6bfa8887e1c6a26ba/executing-2.2.0-py2.py3-none-any.whl", hash = "sha256:11387150cad388d62750327a53d3339fad4888b39a6fe233c3afbb54ecffd3aa", size = 26702 }, +] + +[[package]] +name = "fastjsonschema" +version = "2.21.1" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/8b/50/4b769ce1ac4071a1ef6d86b1a3fb56cdc3a37615e8c5519e1af96cdac366/fastjsonschema-2.21.1.tar.gz", hash = "sha256:794d4f0a58f848961ba16af7b9c85a3e88cd360df008c59aac6fc5ae9323b5d4", size = 373939 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/90/2b/0817a2b257fe88725c25589d89aec060581aabf668707a8d03b2e9e0cb2a/fastjsonschema-2.21.1-py3-none-any.whl", hash = "sha256:c9e5b7e908310918cf494a434eeb31384dd84a98b57a30bcb1f535015b554667", size = 23924 }, +] + +[[package]] +name = "filelock" +version = "3.13.4" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/38/ff/877f1dbe369a2b9920e2ada3c9ab81cf6fe8fa2dce45f40cad510ef2df62/filelock-3.13.4.tar.gz", hash = "sha256:d13f466618bfde72bd2c18255e269f72542c6e70e7bac83a0232d6b1cc5c8cf4", size = 15093 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/6e/b5/15b3b36f298bcbc0be82a371ac744f4f5a10309ade0b8bbde286598dd612/filelock-3.13.4-py3-none-any.whl", hash = "sha256:404e5e9253aa60ad457cae1be07c0f0ca90a63931200a47d9b6a6af84fd7b45f", size = 11890 }, +] + +[[package]] +name = "fonttools" +version = "4.56.0" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/1c/8c/9ffa2a555af0e5e5d0e2ed7fdd8c9bef474ed676995bb4c57c9cd0014248/fonttools-4.56.0.tar.gz", hash = "sha256:a114d1567e1a1586b7e9e7fc2ff686ca542a82769a296cef131e4c4af51e58f4", size = 3462892 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/1e/5e/6ac30c2cc6a29454260f13c9c6422fc509b7982c13cd4597041260d8f482/fonttools-4.56.0-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:331954d002dbf5e704c7f3756028e21db07097c19722569983ba4d74df014000", size = 2752190 }, + { url = "https://files.pythonhosted.org/packages/92/3a/ac382a8396d1b420ee45eeb0f65b614a9ca7abbb23a1b17524054f0f2200/fonttools-4.56.0-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:8d1613abd5af2f93c05867b3a3759a56e8bf97eb79b1da76b2bc10892f96ff16", size = 2280624 }, + { url = "https://files.pythonhosted.org/packages/8a/ae/00b58bfe20e9ff7fbc3dda38f5d127913942b5e252288ea9583099a31bf5/fonttools-4.56.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:705837eae384fe21cee5e5746fd4f4b2f06f87544fa60f60740007e0aa600311", size = 4562074 }, + { url = "https://files.pythonhosted.org/packages/46/d0/0004ca8f6a200252e5bd6982ed99b5fe58c4c59efaf5f516621c4cd8f703/fonttools-4.56.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:bc871904a53a9d4d908673c6faa15689874af1c7c5ac403a8e12d967ebd0c0dc", size = 4604747 }, + { url = "https://files.pythonhosted.org/packages/45/ea/c8862bd3e09d143ef8ed8268ec8a7d477828f960954889e65288ac050b08/fonttools-4.56.0-cp310-cp310-musllinux_1_2_aarch64.whl", hash = "sha256:38b947de71748bab150259ee05a775e8a0635891568e9fdb3cdd7d0e0004e62f", size = 4559025 }, + { url = "https://files.pythonhosted.org/packages/8f/75/bb88a9552ec1de31a414066257bfd9f40f4ada00074f7a3799ea39b5741f/fonttools-4.56.0-cp310-cp310-musllinux_1_2_x86_64.whl", hash = "sha256:86b2a1013ef7a64d2e94606632683f07712045ed86d937c11ef4dde97319c086", size = 4728482 }, + { url = "https://files.pythonhosted.org/packages/2a/5f/80a2b640df1e1bb7d459d62c8b3f37fe83fd413897e549106d4ebe6371f5/fonttools-4.56.0-cp310-cp310-win32.whl", hash = "sha256:133bedb9a5c6376ad43e6518b7e2cd2f866a05b1998f14842631d5feb36b5786", size = 2155557 }, + { url = "https://files.pythonhosted.org/packages/8f/85/0904f9dbe51ac70d878d3242a8583b9453a09105c3ed19c6301247fd0d3a/fonttools-4.56.0-cp310-cp310-win_amd64.whl", hash = "sha256:17f39313b649037f6c800209984a11fc256a6137cbe5487091c6c7187cae4685", size = 2200017 }, + { url = "https://files.pythonhosted.org/packages/35/56/a2f3e777d48fcae7ecd29de4d96352d84e5ea9871e5f3fc88241521572cf/fonttools-4.56.0-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:7ef04bc7827adb7532be3d14462390dd71287644516af3f1e67f1e6ff9c6d6df", size = 2753325 }, + { url = "https://files.pythonhosted.org/packages/71/85/d483e9c4e5ed586b183bf037a353e8d766366b54fd15519b30e6178a6a6e/fonttools-4.56.0-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:ffda9b8cd9cb8b301cae2602ec62375b59e2e2108a117746f12215145e3f786c", size = 2281554 }, + { url = "https://files.pythonhosted.org/packages/09/67/060473b832b2fade03c127019794df6dc02d9bc66fa4210b8e0d8a99d1e5/fonttools-4.56.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:e2e993e8db36306cc3f1734edc8ea67906c55f98683d6fd34c3fc5593fdbba4c", size = 4869260 }, + { url = "https://files.pythonhosted.org/packages/28/e9/47c02d5a7027e8ed841ab6a10ca00c93dadd5f16742f1af1fa3f9978adf4/fonttools-4.56.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:003548eadd674175510773f73fb2060bb46adb77c94854af3e0cc5bc70260049", size = 4898508 }, + { url = "https://files.pythonhosted.org/packages/bf/8a/221d456d1afb8ca043cfd078f59f187ee5d0a580f4b49351b9ce95121f57/fonttools-4.56.0-cp311-cp311-musllinux_1_2_aarch64.whl", hash = "sha256:bd9825822e7bb243f285013e653f6741954d8147427aaa0324a862cdbf4cbf62", size = 4877700 }, + { url = "https://files.pythonhosted.org/packages/a4/8c/e503863adf7a6aeff7b960e2f66fa44dd0c29a7a8b79765b2821950d7b05/fonttools-4.56.0-cp311-cp311-musllinux_1_2_x86_64.whl", hash = "sha256:b23d30a2c0b992fb1c4f8ac9bfde44b5586d23457759b6cf9a787f1a35179ee0", size = 5045817 }, + { url = "https://files.pythonhosted.org/packages/2b/50/79ba3b7e42f4eaa70b82b9e79155f0f6797858dc8a97862428b6852c6aee/fonttools-4.56.0-cp311-cp311-win32.whl", hash = "sha256:47b5e4680002ae1756d3ae3b6114e20aaee6cc5c69d1e5911f5ffffd3ee46c6b", size = 2154426 }, + { url = "https://files.pythonhosted.org/packages/3b/90/4926e653041c4116ecd43e50e3c79f5daae6dcafc58ceb64bc4f71dd4924/fonttools-4.56.0-cp311-cp311-win_amd64.whl", hash = "sha256:14a3e3e6b211660db54ca1ef7006401e4a694e53ffd4553ab9bc87ead01d0f05", size = 2200937 }, + { url = "https://files.pythonhosted.org/packages/39/32/71cfd6877999576a11824a7fe7bc0bb57c5c72b1f4536fa56a3e39552643/fonttools-4.56.0-cp312-cp312-macosx_10_13_universal2.whl", hash = "sha256:d6f195c14c01bd057bc9b4f70756b510e009c83c5ea67b25ced3e2c38e6ee6e9", size = 2747757 }, + { url = "https://files.pythonhosted.org/packages/15/52/d9f716b072c5061a0b915dd4c387f74bef44c68c069e2195c753905bd9b7/fonttools-4.56.0-cp312-cp312-macosx_10_13_x86_64.whl", hash = "sha256:fa760e5fe8b50cbc2d71884a1eff2ed2b95a005f02dda2fa431560db0ddd927f", size = 2279007 }, + { url = "https://files.pythonhosted.org/packages/d1/97/f1b3a8afa9a0d814a092a25cd42f59ccb98a0bb7a295e6e02fc9ba744214/fonttools-4.56.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:d54a45d30251f1d729e69e5b675f9a08b7da413391a1227781e2a297fa37f6d2", size = 4783991 }, + { url = "https://files.pythonhosted.org/packages/95/70/2a781bedc1c45a0c61d29c56425609b22ed7f971da5d7e5df2679488741b/fonttools-4.56.0-cp312-cp312-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:661a8995d11e6e4914a44ca7d52d1286e2d9b154f685a4d1f69add8418961563", size = 4855109 }, + { url = "https://files.pythonhosted.org/packages/0c/02/a2597858e61a5e3fb6a14d5f6be9e6eb4eaf090da56ad70cedcbdd201685/fonttools-4.56.0-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:9d94449ad0a5f2a8bf5d2f8d71d65088aee48adbe45f3c5f8e00e3ad861ed81a", size = 4762496 }, + { url = "https://files.pythonhosted.org/packages/f2/00/aaf00100d6078fdc73f7352b44589804af9dc12b182a2540b16002152ba4/fonttools-4.56.0-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:f59746f7953f69cc3290ce2f971ab01056e55ddd0fb8b792c31a8acd7fee2d28", size = 4990094 }, + { url = "https://files.pythonhosted.org/packages/bf/dc/3ff1db522460db60cf3adaf1b64e0c72b43406717d139786d3fa1eb20709/fonttools-4.56.0-cp312-cp312-win32.whl", hash = "sha256:bce60f9a977c9d3d51de475af3f3581d9b36952e1f8fc19a1f2254f1dda7ce9c", size = 2142888 }, + { url = "https://files.pythonhosted.org/packages/6f/e3/5a181a85777f7809076e51f7422e0dc77eb04676c40ec8bf6a49d390d1ff/fonttools-4.56.0-cp312-cp312-win_amd64.whl", hash = "sha256:300c310bb725b2bdb4f5fc7e148e190bd69f01925c7ab437b9c0ca3e1c7cd9ba", size = 2189734 }, + { url = "https://files.pythonhosted.org/packages/bf/ff/44934a031ce5a39125415eb405b9efb76fe7f9586b75291d66ae5cbfc4e6/fonttools-4.56.0-py3-none-any.whl", hash = "sha256:1088182f68c303b50ca4dc0c82d42083d176cba37af1937e1a976a31149d4d14", size = 1089800 }, +] + +[[package]] +name = "fqdn" +version = "1.5.1" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/30/3e/a80a8c077fd798951169626cde3e239adeba7dab75deb3555716415bd9b0/fqdn-1.5.1.tar.gz", hash = "sha256:105ed3677e767fb5ca086a0c1f4bb66ebc3c100be518f0e0d755d9eae164d89f", size = 6015 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/cf/58/8acf1b3e91c58313ce5cb67df61001fc9dcd21be4fadb76c1a2d540e09ed/fqdn-1.5.1-py3-none-any.whl", hash = "sha256:3a179af3761e4df6eb2e026ff9e1a3033d3587bf980a0b1b2e1e5d08d7358014", size = 9121 }, +] + +[[package]] +name = "ghp-import" +version = "2.1.0" +source = { registry = "https://pypi.org/simple" } +dependencies = [ + { name = "python-dateutil" }, +] +sdist = { url = "https://files.pythonhosted.org/packages/d9/29/d40217cbe2f6b1359e00c6c307bb3fc876ba74068cbab3dde77f03ca0dc4/ghp-import-2.1.0.tar.gz", hash = "sha256:9c535c4c61193c2df8871222567d7fd7e5014d835f97dc7b7439069e2413d343", size = 10943 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/f7/ec/67fbef5d497f86283db54c22eec6f6140243aae73265799baaaa19cd17fb/ghp_import-2.1.0-py3-none-any.whl", hash = "sha256:8337dd7b50877f163d4c0289bc1f1c7f127550241988d568c1db512c4324a619", size = 11034 }, +] + +[[package]] +name = "griffe" +version = "1.6.0" +source = { registry = "https://pypi.org/simple" } +dependencies = [ + { name = "colorama" }, +] +sdist = { url = "https://files.pythonhosted.org/packages/a0/1a/d467b93f5e0ea4edf3c1caef44cfdd53a4a498cb3a6bb722df4dd0fdd66a/griffe-1.6.0.tar.gz", hash = "sha256:eb5758088b9c73ad61c7ac014f3cdfb4c57b5c2fcbfca69996584b702aefa354", size = 391819 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/bf/02/5a22bc98d0aebb68c15ba70d2da1c84a5ef56048d79634e5f96cd2ba96e9/griffe-1.6.0-py3-none-any.whl", hash = "sha256:9f1dfe035d4715a244ed2050dfbceb05b1f470809ed4f6bb10ece5a7302f8dd1", size = 128470 }, +] + +[[package]] +name = "h11" +version = "0.14.0" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/f5/38/3af3d3633a34a3316095b39c8e8fb4853a28a536e55d347bd8d8e9a14b03/h11-0.14.0.tar.gz", hash = "sha256:8f19fbbe99e72420ff35c00b27a34cb9937e902a8b810e2c88300c6f0a3b699d", size = 100418 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/95/04/ff642e65ad6b90db43e668d70ffb6736436c7ce41fcc549f4e9472234127/h11-0.14.0-py3-none-any.whl", hash = "sha256:e3fe4ac4b851c468cc8363d500db52c2ead036020723024a109d37346efaa761", size = 58259 }, +] + +[[package]] +name = "httpcore" +version = "1.0.7" +source = { registry = "https://pypi.org/simple" } +dependencies = [ + { name = "certifi" }, + { name = "h11" }, +] +sdist = { url = "https://files.pythonhosted.org/packages/6a/41/d7d0a89eb493922c37d343b607bc1b5da7f5be7e383740b4753ad8943e90/httpcore-1.0.7.tar.gz", hash = "sha256:8551cb62a169ec7162ac7be8d4817d561f60e08eaa485234898414bb5a8a0b4c", size = 85196 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/87/f5/72347bc88306acb359581ac4d52f23c0ef445b57157adedb9aee0cd689d2/httpcore-1.0.7-py3-none-any.whl", hash = "sha256:a3fff8f43dc260d5bd363d9f9cf1830fa3a458b332856f34282de498ed420edd", size = 78551 }, +] + +[[package]] +name = "httpx" +version = "0.28.1" +source = { registry = "https://pypi.org/simple" } +dependencies = [ + { name = "anyio" }, + { name = "certifi" }, + { name = "httpcore" }, + { name = "idna" }, +] +sdist = { url = "https://files.pythonhosted.org/packages/b1/df/48c586a5fe32a0f01324ee087459e112ebb7224f646c0b5023f5e79e9956/httpx-0.28.1.tar.gz", hash = "sha256:75e98c5f16b0f35b567856f597f06ff2270a374470a5c2392242528e3e3e42fc", size = 141406 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/2a/39/e50c7c3a983047577ee07d2a9e53faf5a69493943ec3f6a384bdc792deb2/httpx-0.28.1-py3-none-any.whl", hash = "sha256:d909fcccc110f8c7faf814ca82a9a4d816bc5a6dbfea25d6591d6985b8ba59ad", size = 73517 }, +] + +[[package]] +name = "identify" +version = "2.6.8" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/f9/fa/5eb460539e6f5252a7c5a931b53426e49258cde17e3d50685031c300a8fd/identify-2.6.8.tar.gz", hash = "sha256:61491417ea2c0c5c670484fd8abbb34de34cdae1e5f39a73ee65e48e4bb663fc", size = 99249 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/78/8c/4bfcab2d8286473b8d83ea742716f4b79290172e75f91142bc1534b05b9a/identify-2.6.8-py2.py3-none-any.whl", hash = "sha256:83657f0f766a3c8d0eaea16d4ef42494b39b34629a4b3192a9d020d349b3e255", size = 99109 }, +] + +[[package]] +name = "idna" +version = "3.10" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/f1/70/7703c29685631f5a7590aa73f1f1d3fa9a380e654b86af429e0934a32f7d/idna-3.10.tar.gz", hash = "sha256:12f65c9b470abda6dc35cf8e63cc574b1c52b11df2c86030af0ac09b01b13ea9", size = 190490 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/76/c6/c88e154df9c4e1a2a66ccf0005a88dfb2650c1dffb6f5ce603dfbd452ce3/idna-3.10-py3-none-any.whl", hash = "sha256:946d195a0d259cbba61165e88e65941f16e9b36ea6ddb97f00452bae8b1287d3", size = 70442 }, +] + +[[package]] +name = "ipykernel" +version = "6.29.5" +source = { registry = "https://pypi.org/simple" } +dependencies = [ + { name = "appnope", marker = "sys_platform == 'darwin'" }, + { name = "comm" }, + { name = "debugpy" }, + { name = "ipython", version = "8.33.0", source = { registry = "https://pypi.org/simple" }, marker = "python_full_version < '3.11'" }, + { name = "ipython", version = "9.0.0", source = { registry = "https://pypi.org/simple" }, marker = "python_full_version >= '3.11'" }, + { name = "jupyter-client" }, + { name = "jupyter-core" }, + { name = "matplotlib-inline" }, + { name = "nest-asyncio" }, + { name = "packaging" }, + { name = "psutil" }, + { name = "pyzmq" }, + { name = "tornado" }, + { name = "traitlets" }, +] +sdist = { url = "https://files.pythonhosted.org/packages/e9/5c/67594cb0c7055dc50814b21731c22a601101ea3b1b50a9a1b090e11f5d0f/ipykernel-6.29.5.tar.gz", hash = "sha256:f093a22c4a40f8828f8e330a9c297cb93dcab13bd9678ded6de8e5cf81c56215", size = 163367 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/94/5c/368ae6c01c7628438358e6d337c19b05425727fbb221d2a3c4303c372f42/ipykernel-6.29.5-py3-none-any.whl", hash = "sha256:afdb66ba5aa354b09b91379bac28ae4afebbb30e8b39510c9690afb7a10421b5", size = 117173 }, +] + +[[package]] +name = "ipython" +version = "8.33.0" +source = { registry = "https://pypi.org/simple" } +resolution-markers = [ + "python_full_version < '3.11'", +] +dependencies = [ + { name = "colorama", marker = "python_full_version < '3.11' and sys_platform == 'win32'" }, + { name = "decorator", marker = "python_full_version < '3.11'" }, + { name = "exceptiongroup", marker = "python_full_version < '3.11'" }, + { name = "jedi", marker = "python_full_version < '3.11'" }, + { name = "matplotlib-inline", marker = "python_full_version < '3.11'" }, + { name = "pexpect", marker = "python_full_version < '3.11' and sys_platform != 'emscripten' and sys_platform != 'win32'" }, + { name = "prompt-toolkit", marker = "python_full_version < '3.11'" }, + { name = "pygments", marker = "python_full_version < '3.11'" }, + { name = "stack-data", marker = "python_full_version < '3.11'" }, + { name = "traitlets", marker = "python_full_version < '3.11'" }, + { name = "typing-extensions", marker = "python_full_version < '3.11'" }, +] +sdist = { url = "https://files.pythonhosted.org/packages/99/5d/27844489a849a9ceb94ea59c1adac9323fb77175a3076742ed76dcc87f07/ipython-8.33.0.tar.gz", hash = "sha256:4c3e36a6dfa9e8e3702bd46f3df668624c975a22ff340e96ea7277afbd76217d", size = 5508284 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/13/e7/7b144d0c3a16f56b213b2d9f9bee22e50f6e54265a551db9f43f09e2c084/ipython-8.33.0-py3-none-any.whl", hash = "sha256:aa5b301dfe1eaf0167ff3238a6825f810a029c9dad9d3f1597f30bd5ff65cc44", size = 826720 }, +] + +[[package]] +name = "ipython" +version = "9.0.0" +source = { registry = "https://pypi.org/simple" } +resolution-markers = [ + "python_full_version >= '3.12'", + "python_full_version == '3.11.*'", +] +dependencies = [ + { name = "colorama", marker = "python_full_version >= '3.11' and sys_platform == 'win32'" }, + { name = "decorator", marker = "python_full_version >= '3.11'" }, + { name = "ipython-pygments-lexers", marker = "python_full_version >= '3.11'" }, + { name = "jedi", marker = "python_full_version >= '3.11'" }, + { name = "matplotlib-inline", marker = "python_full_version >= '3.11'" }, + { name = "pexpect", marker = "python_full_version >= '3.11' and sys_platform != 'emscripten' and sys_platform != 'win32'" }, + { name = "prompt-toolkit", marker = "python_full_version >= '3.11'" }, + { name = "pygments", marker = "python_full_version >= '3.11'" }, + { name = "stack-data", marker = "python_full_version >= '3.11'" }, + { name = "traitlets", marker = "python_full_version >= '3.11'" }, + { name = "typing-extensions", marker = "python_full_version == '3.11.*'" }, +] +sdist = { url = "https://files.pythonhosted.org/packages/de/39/264894738a202ddaf6abae39b3f84671ddee23fd292dbb3e10039e70300c/ipython-9.0.0.tar.gz", hash = "sha256:9368d65b3d4a471e9a698fed3ea486bbf6737e45111e915279c971b77f974397", size = 4364165 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/85/a1/894e4c0b6ac994045c6edeb2b6fdf69c59f20fcd2e348a42f4e40889181c/ipython-9.0.0-py3-none-any.whl", hash = "sha256:2cce23069b830a54a5b9d3d66ccd6433047c1503a7b9a3b34593c0b5c2c08477", size = 592040 }, +] + +[[package]] +name = "ipython-genutils" +version = "0.2.0" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/e8/69/fbeffffc05236398ebfcfb512b6d2511c622871dca1746361006da310399/ipython_genutils-0.2.0.tar.gz", hash = "sha256:eb2e116e75ecef9d4d228fdc66af54269afa26ab4463042e33785b887c628ba8", size = 22208 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/fa/bc/9bd3b5c2b4774d5f33b2d544f1460be9df7df2fe42f352135381c347c69a/ipython_genutils-0.2.0-py2.py3-none-any.whl", hash = "sha256:72dd37233799e619666c9f639a9da83c34013a73e8bbc79a7a6348d93c61fab8", size = 26343 }, +] + +[[package]] +name = "ipython-pygments-lexers" +version = "1.1.1" +source = { registry = "https://pypi.org/simple" } +dependencies = [ + { name = "pygments", marker = "python_full_version >= '3.11'" }, +] +sdist = { url = "https://files.pythonhosted.org/packages/ef/4c/5dd1d8af08107f88c7f741ead7a40854b8ac24ddf9ae850afbcf698aa552/ipython_pygments_lexers-1.1.1.tar.gz", hash = "sha256:09c0138009e56b6854f9535736f4171d855c8c08a563a0dcd8022f78355c7e81", size = 8393 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/d9/33/1f075bf72b0b747cb3288d011319aaf64083cf2efef8354174e3ed4540e2/ipython_pygments_lexers-1.1.1-py3-none-any.whl", hash = "sha256:a9462224a505ade19a605f71f8fa63c2048833ce50abc86768a0d81d876dc81c", size = 8074 }, +] + +[[package]] +name = "ipywidgets" +version = "8.1.5" +source = { registry = "https://pypi.org/simple" } +dependencies = [ + { name = "comm" }, + { name = "ipython", version = "8.33.0", source = { registry = "https://pypi.org/simple" }, marker = "python_full_version < '3.11'" }, + { name = "ipython", version = "9.0.0", source = { registry = "https://pypi.org/simple" }, marker = "python_full_version >= '3.11'" }, + { name = "jupyterlab-widgets" }, + { name = "traitlets" }, + { name = "widgetsnbextension" }, +] +sdist = { url = "https://files.pythonhosted.org/packages/c7/4c/dab2a281b07596a5fc220d49827fe6c794c66f1493d7a74f1df0640f2cc5/ipywidgets-8.1.5.tar.gz", hash = "sha256:870e43b1a35656a80c18c9503bbf2d16802db1cb487eec6fab27d683381dde17", size = 116723 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/22/2d/9c0b76f2f9cc0ebede1b9371b6f317243028ed60b90705863d493bae622e/ipywidgets-8.1.5-py3-none-any.whl", hash = "sha256:3290f526f87ae6e77655555baba4f36681c555b8bdbbff430b70e52c34c86245", size = 139767 }, +] + +[[package]] +name = "isoduration" +version = "20.11.0" +source = { registry = "https://pypi.org/simple" } +dependencies = [ + { name = "arrow" }, +] +sdist = { url = "https://files.pythonhosted.org/packages/7c/1a/3c8edc664e06e6bd06cce40c6b22da5f1429aa4224d0c590f3be21c91ead/isoduration-20.11.0.tar.gz", hash = "sha256:ac2f9015137935279eac671f94f89eb00584f940f5dc49462a0c4ee692ba1bd9", size = 11649 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/7b/55/e5326141505c5d5e34c5e0935d2908a74e4561eca44108fbfb9c13d2911a/isoduration-20.11.0-py3-none-any.whl", hash = "sha256:b2904c2a4228c3d44f409c8ae8e2370eb21a26f7ac2ec5446df141dde3452042", size = 11321 }, +] + +[[package]] +name = "jedi" +version = "0.19.2" +source = { registry = "https://pypi.org/simple" } +dependencies = [ + { name = "parso" }, +] +sdist = { url = "https://files.pythonhosted.org/packages/72/3a/79a912fbd4d8dd6fbb02bf69afd3bb72cf0c729bb3063c6f4498603db17a/jedi-0.19.2.tar.gz", hash = "sha256:4770dc3de41bde3966b02eb84fbcf557fb33cce26ad23da12c742fb50ecb11f0", size = 1231287 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/c0/5a/9cac0c82afec3d09ccd97c8b6502d48f165f9124db81b4bcb90b4af974ee/jedi-0.19.2-py2.py3-none-any.whl", hash = "sha256:a8ef22bde8490f57fe5c7681a3c83cb58874daf72b4784de3cce5b6ef6edb5b9", size = 1572278 }, +] + +[[package]] +name = "jinja2" +version = "3.1.5" +source = { registry = "https://pypi.org/simple" } +dependencies = [ + { name = "markupsafe" }, +] +sdist = { url = "https://files.pythonhosted.org/packages/af/92/b3130cbbf5591acf9ade8708c365f3238046ac7cb8ccba6e81abccb0ccff/jinja2-3.1.5.tar.gz", hash = "sha256:8fefff8dc3034e27bb80d67c671eb8a9bc424c0ef4c0826edbff304cceff43bb", size = 244674 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/bd/0f/2ba5fbcd631e3e88689309dbe978c5769e883e4b84ebfe7da30b43275c5a/jinja2-3.1.5-py3-none-any.whl", hash = "sha256:aba0f4dc9ed8013c424088f68a5c226f7d6097ed89b246d7749c2ec4175c6adb", size = 134596 }, +] + +[[package]] +name = "json5" +version = "0.10.0" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/85/3d/bbe62f3d0c05a689c711cff57b2e3ac3d3e526380adb7c781989f075115c/json5-0.10.0.tar.gz", hash = "sha256:e66941c8f0a02026943c52c2eb34ebeb2a6f819a0be05920a6f5243cd30fd559", size = 48202 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/aa/42/797895b952b682c3dafe23b1834507ee7f02f4d6299b65aaa61425763278/json5-0.10.0-py3-none-any.whl", hash = "sha256:19b23410220a7271e8377f81ba8aacba2fdd56947fbb137ee5977cbe1f5e8dfa", size = 34049 }, +] + +[[package]] +name = "jsonpointer" +version = "3.0.0" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/6a/0a/eebeb1fa92507ea94016a2a790b93c2ae41a7e18778f85471dc54475ed25/jsonpointer-3.0.0.tar.gz", hash = "sha256:2b2d729f2091522d61c3b31f82e11870f60b68f43fbc705cb76bf4b832af59ef", size = 9114 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/71/92/5e77f98553e9e75130c78900d000368476aed74276eb8ae8796f65f00918/jsonpointer-3.0.0-py2.py3-none-any.whl", hash = "sha256:13e088adc14fca8b6aa8177c044e12701e6ad4b28ff10e65f2267a90109c9942", size = 7595 }, +] + +[[package]] +name = "jsonschema" +version = "4.23.0" +source = { registry = "https://pypi.org/simple" } +dependencies = [ + { name = "attrs" }, + { name = "jsonschema-specifications" }, + { name = "referencing" }, + { name = "rpds-py" }, +] +sdist = { url = "https://files.pythonhosted.org/packages/38/2e/03362ee4034a4c917f697890ccd4aec0800ccf9ded7f511971c75451deec/jsonschema-4.23.0.tar.gz", hash = "sha256:d71497fef26351a33265337fa77ffeb82423f3ea21283cd9467bb03999266bc4", size = 325778 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/69/4a/4f9dbeb84e8850557c02365a0eee0649abe5eb1d84af92a25731c6c0f922/jsonschema-4.23.0-py3-none-any.whl", hash = "sha256:fbadb6f8b144a8f8cf9f0b89ba94501d143e50411a1278633f56a7acf7fd5566", size = 88462 }, +] + +[package.optional-dependencies] +format-nongpl = [ + { name = "fqdn" }, + { name = "idna" }, + { name = "isoduration" }, + { name = "jsonpointer" }, + { name = "rfc3339-validator" }, + { name = "rfc3986-validator" }, + { name = "uri-template" }, + { name = "webcolors" }, +] + +[[package]] +name = "jsonschema-specifications" +version = "2024.10.1" +source = { registry = "https://pypi.org/simple" } +dependencies = [ + { name = "referencing" }, +] +sdist = { url = "https://files.pythonhosted.org/packages/10/db/58f950c996c793472e336ff3655b13fbcf1e3b359dcf52dcf3ed3b52c352/jsonschema_specifications-2024.10.1.tar.gz", hash = "sha256:0f38b83639958ce1152d02a7f062902c41c8fd20d558b0c34344292d417ae272", size = 15561 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/d1/0f/8910b19ac0670a0f80ce1008e5e751c4a57e14d2c4c13a482aa6079fa9d6/jsonschema_specifications-2024.10.1-py3-none-any.whl", hash = "sha256:a09a0680616357d9a0ecf05c12ad234479f549239d0f5b55f3deea67475da9bf", size = 18459 }, +] + +[[package]] +name = "jupyter" +version = "1.1.1" +source = { registry = "https://pypi.org/simple" } +dependencies = [ + { name = "ipykernel" }, + { name = "ipywidgets" }, + { name = "jupyter-console" }, + { name = "jupyterlab" }, + { name = "nbconvert" }, + { name = "notebook" }, +] +sdist = { url = "https://files.pythonhosted.org/packages/58/f3/af28ea964ab8bc1e472dba2e82627d36d470c51f5cd38c37502eeffaa25e/jupyter-1.1.1.tar.gz", hash = "sha256:d55467bceabdea49d7e3624af7e33d59c37fff53ed3a350e1ac957bed731de7a", size = 5714959 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/38/64/285f20a31679bf547b75602702f7800e74dbabae36ef324f716c02804753/jupyter-1.1.1-py2.py3-none-any.whl", hash = "sha256:7a59533c22af65439b24bbe60373a4e95af8f16ac65a6c00820ad378e3f7cc83", size = 2657 }, +] + +[[package]] +name = "jupyter-client" +version = "8.6.3" +source = { registry = "https://pypi.org/simple" } +dependencies = [ + { name = "jupyter-core" }, + { name = "python-dateutil" }, + { name = "pyzmq" }, + { name = "tornado" }, + { name = "traitlets" }, +] +sdist = { url = "https://files.pythonhosted.org/packages/71/22/bf9f12fdaeae18019a468b68952a60fe6dbab5d67cd2a103cac7659b41ca/jupyter_client-8.6.3.tar.gz", hash = "sha256:35b3a0947c4a6e9d589eb97d7d4cd5e90f910ee73101611f01283732bd6d9419", size = 342019 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/11/85/b0394e0b6fcccd2c1eeefc230978a6f8cb0c5df1e4cd3e7625735a0d7d1e/jupyter_client-8.6.3-py3-none-any.whl", hash = "sha256:e8a19cc986cc45905ac3362915f410f3af85424b4c0905e94fa5f2cb08e8f23f", size = 106105 }, +] + +[[package]] +name = "jupyter-console" +version = "6.6.3" +source = { registry = "https://pypi.org/simple" } +dependencies = [ + { name = "ipykernel" }, + { name = "ipython", version = "8.33.0", source = { registry = "https://pypi.org/simple" }, marker = "python_full_version < '3.11'" }, + { name = "ipython", version = "9.0.0", source = { registry = "https://pypi.org/simple" }, marker = "python_full_version >= '3.11'" }, + { name = "jupyter-client" }, + { name = "jupyter-core" }, + { name = "prompt-toolkit" }, + { name = "pygments" }, + { name = "pyzmq" }, + { name = "traitlets" }, +] +sdist = { url = "https://files.pythonhosted.org/packages/bd/2d/e2fd31e2fc41c14e2bcb6c976ab732597e907523f6b2420305f9fc7fdbdb/jupyter_console-6.6.3.tar.gz", hash = "sha256:566a4bf31c87adbfadf22cdf846e3069b59a71ed5da71d6ba4d8aaad14a53539", size = 34363 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/ca/77/71d78d58f15c22db16328a476426f7ac4a60d3a5a7ba3b9627ee2f7903d4/jupyter_console-6.6.3-py3-none-any.whl", hash = "sha256:309d33409fcc92ffdad25f0bcdf9a4a9daa61b6f341177570fdac03de5352485", size = 24510 }, +] + +[[package]] +name = "jupyter-contrib-core" +version = "0.4.2" +source = { registry = "https://pypi.org/simple" } +dependencies = [ + { name = "jupyter-core" }, + { name = "notebook" }, + { name = "setuptools" }, + { name = "tornado" }, + { name = "traitlets" }, +] +sdist = { url = "https://files.pythonhosted.org/packages/50/94/0d37e5b49ea1c8bf204c46f9b0257c1f3319a4ab88acbd401da2cab25e55/jupyter_contrib_core-0.4.2.tar.gz", hash = "sha256:1887212f3ca9d4487d624c0705c20dfdf03d5a0b9ea2557d3aaeeb4c38bdcabb", size = 17490 } + +[[package]] +name = "jupyter-contrib-nbextensions" +version = "0.7.0" +source = { registry = "https://pypi.org/simple" } +dependencies = [ + { name = "ipython-genutils" }, + { name = "jupyter-contrib-core" }, + { name = "jupyter-core" }, + { name = "jupyter-highlight-selected-word" }, + { name = "jupyter-nbextensions-configurator" }, + { name = "lxml" }, + { name = "nbconvert" }, + { name = "notebook" }, + { name = "tornado" }, + { name = "traitlets" }, +] +sdist = { url = "https://files.pythonhosted.org/packages/50/91/78cc4362611dbde2b0cd068204aaf1b8899d0459c50d8ff9daca8c069791/jupyter_contrib_nbextensions-0.7.0.tar.gz", hash = "sha256:06e33f005885eb92f89cbe82711e921278201298d08ab0d886d1ba09e8c3e9ca", size = 23462252 } + +[[package]] +name = "jupyter-core" +version = "5.7.2" +source = { registry = "https://pypi.org/simple" } +dependencies = [ + { name = "platformdirs" }, + { name = "pywin32", marker = "platform_python_implementation != 'PyPy' and sys_platform == 'win32'" }, + { name = "traitlets" }, +] +sdist = { url = "https://files.pythonhosted.org/packages/00/11/b56381fa6c3f4cc5d2cf54a7dbf98ad9aa0b339ef7a601d6053538b079a7/jupyter_core-5.7.2.tar.gz", hash = "sha256:aa5f8d32bbf6b431ac830496da7392035d6f61b4f54872f15c4bd2a9c3f536d9", size = 87629 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/c9/fb/108ecd1fe961941959ad0ee4e12ee7b8b1477247f30b1fdfd83ceaf017f0/jupyter_core-5.7.2-py3-none-any.whl", hash = "sha256:4f7315d2f6b4bcf2e3e7cb6e46772eba760ae459cd1f59d29eb57b0a01bd7409", size = 28965 }, +] + +[[package]] +name = "jupyter-events" +version = "0.12.0" +source = { registry = "https://pypi.org/simple" } +dependencies = [ + { name = "jsonschema", extra = ["format-nongpl"] }, + { name = "packaging" }, + { name = "python-json-logger" }, + { name = "pyyaml" }, + { name = "referencing" }, + { name = "rfc3339-validator" }, + { name = "rfc3986-validator" }, + { name = "traitlets" }, +] +sdist = { url = "https://files.pythonhosted.org/packages/9d/c3/306d090461e4cf3cd91eceaff84bede12a8e52cd821c2d20c9a4fd728385/jupyter_events-0.12.0.tar.gz", hash = "sha256:fc3fce98865f6784c9cd0a56a20644fc6098f21c8c33834a8d9fe383c17e554b", size = 62196 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/e2/48/577993f1f99c552f18a0428731a755e06171f9902fa118c379eb7c04ea22/jupyter_events-0.12.0-py3-none-any.whl", hash = "sha256:6464b2fa5ad10451c3d35fabc75eab39556ae1e2853ad0c0cc31b656731a97fb", size = 19430 }, +] + +[[package]] +name = "jupyter-highlight-selected-word" +version = "0.2.0" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/cd/a5/3dfeb7c8643ef502e82969fdebb201b63b33ded15a7761b27299bacebc3a/jupyter_highlight_selected_word-0.2.0.tar.gz", hash = "sha256:9fa740424859a807950ca08d2bfd28a35154cd32dd6d50ac4e0950022adc0e7b", size = 12592 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/50/d7/19ab7cfd60bf268d2abbacc52d4295a40f52d74dfc0d938e4761ee5e598b/jupyter_highlight_selected_word-0.2.0-py2.py3-none-any.whl", hash = "sha256:9545dfa9cb057eebe3a5795604dcd3a5294ea18637e553f61a0b67c1b5903c58", size = 11699 }, +] + +[[package]] +name = "jupyter-lsp" +version = "2.2.5" +source = { registry = "https://pypi.org/simple" } +dependencies = [ + { name = "jupyter-server" }, +] +sdist = { url = "https://files.pythonhosted.org/packages/85/b4/3200b0b09c12bc3b72d943d923323c398eff382d1dcc7c0dbc8b74630e40/jupyter-lsp-2.2.5.tar.gz", hash = "sha256:793147a05ad446f809fd53ef1cd19a9f5256fd0a2d6b7ce943a982cb4f545001", size = 48741 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/07/e0/7bd7cff65594fd9936e2f9385701e44574fc7d721331ff676ce440b14100/jupyter_lsp-2.2.5-py3-none-any.whl", hash = "sha256:45fbddbd505f3fbfb0b6cb2f1bc5e15e83ab7c79cd6e89416b248cb3c00c11da", size = 69146 }, +] + +[[package]] +name = "jupyter-nbextensions-configurator" +version = "0.6.4" +source = { registry = "https://pypi.org/simple" } +dependencies = [ + { name = "jupyter-contrib-core" }, + { name = "jupyter-core" }, + { name = "jupyter-server" }, + { name = "notebook" }, + { name = "pyyaml" }, + { name = "tornado" }, + { name = "traitlets" }, +] +wheels = [ + { url = "https://files.pythonhosted.org/packages/05/fe/cffb14a4fbb43cf276aa3047e42c3f9ecfda851ba3c466295401f6b1e085/jupyter_nbextensions_configurator-0.6.4-py2.py3-none-any.whl", hash = "sha256:fe7a7b0805b5926449692fb077e0e659bab8b27563bc68cba26854532fdf99c7", size = 466890 }, +] + +[[package]] +name = "jupyter-server" +version = "2.15.0" +source = { registry = "https://pypi.org/simple" } +dependencies = [ + { name = "anyio" }, + { name = "argon2-cffi" }, + { name = "jinja2" }, + { name = "jupyter-client" }, + { name = "jupyter-core" }, + { name = "jupyter-events" }, + { name = "jupyter-server-terminals" }, + { name = "nbconvert" }, + { name = "nbformat" }, + { name = "overrides" }, + { name = "packaging" }, + { name = "prometheus-client" }, + { name = "pywinpty", marker = "os_name == 'nt'" }, + { name = "pyzmq" }, + { name = "send2trash" }, + { name = "terminado" }, + { name = "tornado" }, + { name = "traitlets" }, + { name = "websocket-client" }, +] +sdist = { url = "https://files.pythonhosted.org/packages/61/8c/df09d4ab646141f130f9977b32b206ba8615d1969b2eba6a2e84b7f89137/jupyter_server-2.15.0.tar.gz", hash = "sha256:9d446b8697b4f7337a1b7cdcac40778babdd93ba614b6d68ab1c0c918f1c4084", size = 725227 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/e2/a2/89eeaf0bb954a123a909859fa507fa86f96eb61b62dc30667b60dbd5fdaf/jupyter_server-2.15.0-py3-none-any.whl", hash = "sha256:872d989becf83517012ee669f09604aa4a28097c0bd90b2f424310156c2cdae3", size = 385826 }, +] + +[[package]] +name = "jupyter-server-terminals" +version = "0.5.3" +source = { registry = "https://pypi.org/simple" } +dependencies = [ + { name = "pywinpty", marker = "os_name == 'nt'" }, + { name = "terminado" }, +] +sdist = { url = "https://files.pythonhosted.org/packages/fc/d5/562469734f476159e99a55426d697cbf8e7eb5efe89fb0e0b4f83a3d3459/jupyter_server_terminals-0.5.3.tar.gz", hash = "sha256:5ae0295167220e9ace0edcfdb212afd2b01ee8d179fe6f23c899590e9b8a5269", size = 31430 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/07/2d/2b32cdbe8d2a602f697a649798554e4f072115438e92249624e532e8aca6/jupyter_server_terminals-0.5.3-py3-none-any.whl", hash = "sha256:41ee0d7dc0ebf2809c668e0fc726dfaf258fcd3e769568996ca731b6194ae9aa", size = 13656 }, +] + +[[package]] +name = "jupyterlab" +version = "4.3.5" +source = { registry = "https://pypi.org/simple" } +dependencies = [ + { name = "async-lru" }, + { name = "httpx" }, + { name = "ipykernel" }, + { name = "jinja2" }, + { name = "jupyter-core" }, + { name = "jupyter-lsp" }, + { name = "jupyter-server" }, + { name = "jupyterlab-server" }, + { name = "notebook-shim" }, + { name = "packaging" }, + { name = "setuptools" }, + { name = "tomli", marker = "python_full_version < '3.11'" }, + { name = "tornado" }, + { name = "traitlets" }, +] +sdist = { url = "https://files.pythonhosted.org/packages/19/17/6f3d73c3e54b71bbaf03edcc4a54b0aa6328e0a134755f297ea87d425711/jupyterlab-4.3.5.tar.gz", hash = "sha256:c779bf72ced007d7d29d5bcef128e7fdda96ea69299e19b04a43635a7d641f9d", size = 21800023 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/73/6f/94d4c879b3e2b7b9bca1913ea6fbbef180f8b1ed065b46ade40d651ec54d/jupyterlab-4.3.5-py3-none-any.whl", hash = "sha256:571bbdee20e4c5321ab5195bc41cf92a75a5cff886be5e57ce78dfa37a5e9fdb", size = 11666944 }, +] + +[[package]] +name = "jupyterlab-pygments" +version = "0.3.0" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/90/51/9187be60d989df97f5f0aba133fa54e7300f17616e065d1ada7d7646b6d6/jupyterlab_pygments-0.3.0.tar.gz", hash = "sha256:721aca4d9029252b11cfa9d185e5b5af4d54772bb8072f9b7036f4170054d35d", size = 512900 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/b1/dd/ead9d8ea85bf202d90cc513b533f9c363121c7792674f78e0d8a854b63b4/jupyterlab_pygments-0.3.0-py3-none-any.whl", hash = "sha256:841a89020971da1d8693f1a99997aefc5dc424bb1b251fd6322462a1b8842780", size = 15884 }, +] + +[[package]] +name = "jupyterlab-server" +version = "2.27.3" +source = { registry = "https://pypi.org/simple" } +dependencies = [ + { name = "babel" }, + { name = "jinja2" }, + { name = "json5" }, + { name = "jsonschema" }, + { name = "jupyter-server" }, + { name = "packaging" }, + { name = "requests" }, +] +sdist = { url = "https://files.pythonhosted.org/packages/0a/c9/a883ce65eb27905ce77ace410d83587c82ea64dc85a48d1f7ed52bcfa68d/jupyterlab_server-2.27.3.tar.gz", hash = "sha256:eb36caca59e74471988f0ae25c77945610b887f777255aa21f8065def9e51ed4", size = 76173 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/54/09/2032e7d15c544a0e3cd831c51d77a8ca57f7555b2e1b2922142eddb02a84/jupyterlab_server-2.27.3-py3-none-any.whl", hash = "sha256:e697488f66c3db49df675158a77b3b017520d772c6e1548c7d9bcc5df7944ee4", size = 59700 }, +] + +[[package]] +name = "jupyterlab-widgets" +version = "3.0.13" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/59/73/fa26bbb747a9ea4fca6b01453aa22990d52ab62dd61384f1ac0dc9d4e7ba/jupyterlab_widgets-3.0.13.tar.gz", hash = "sha256:a2966d385328c1942b683a8cd96b89b8dd82c8b8f81dda902bb2bc06d46f5bed", size = 203556 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/a9/93/858e87edc634d628e5d752ba944c2833133a28fa87bb093e6832ced36a3e/jupyterlab_widgets-3.0.13-py3-none-any.whl", hash = "sha256:e3cda2c233ce144192f1e29914ad522b2f4c40e77214b0cc97377ca3d323db54", size = 214392 }, +] + +[[package]] +name = "jupytext" +version = "1.16.7" +source = { registry = "https://pypi.org/simple" } +dependencies = [ + { name = "markdown-it-py" }, + { name = "mdit-py-plugins" }, + { name = "nbformat" }, + { name = "packaging" }, + { name = "pyyaml" }, + { name = "tomli", marker = "python_full_version < '3.11'" }, +] +sdist = { url = "https://files.pythonhosted.org/packages/a0/40/641e0a94d84dee18b7815233a1e0e3c54228169fad529f12c3549a12f9ac/jupytext-1.16.7.tar.gz", hash = "sha256:fc4e97f0890e22062c4ef10313c7ca960b07b3767246a1fef7585888cc2afe5d", size = 3734420 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/e1/4c/3d7cfac5b8351f649ce41a1007a769baacae8d5d29e481a93d799a209c3f/jupytext-1.16.7-py3-none-any.whl", hash = "sha256:912f9d9af7bd3f15470105e5c5dddf1669b2d8c17f0c55772687fc5a4a73fe69", size = 154154 }, +] + +[[package]] +name = "kiwisolver" +version = "1.4.8" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/82/59/7c91426a8ac292e1cdd53a63b6d9439abd573c875c3f92c146767dd33faf/kiwisolver-1.4.8.tar.gz", hash = "sha256:23d5f023bdc8c7e54eb65f03ca5d5bb25b601eac4d7f1a042888a1f45237987e", size = 97538 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/47/5f/4d8e9e852d98ecd26cdf8eaf7ed8bc33174033bba5e07001b289f07308fd/kiwisolver-1.4.8-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:88c6f252f6816a73b1f8c904f7bbe02fd67c09a69f7cb8a0eecdbf5ce78e63db", size = 124623 }, + { url = "https://files.pythonhosted.org/packages/1d/70/7f5af2a18a76fe92ea14675f8bd88ce53ee79e37900fa5f1a1d8e0b42998/kiwisolver-1.4.8-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:c72941acb7b67138f35b879bbe85be0f6c6a70cab78fe3ef6db9c024d9223e5b", size = 66720 }, + { url = "https://files.pythonhosted.org/packages/c6/13/e15f804a142353aefd089fadc8f1d985561a15358c97aca27b0979cb0785/kiwisolver-1.4.8-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:ce2cf1e5688edcb727fdf7cd1bbd0b6416758996826a8be1d958f91880d0809d", size = 65413 }, + { url = "https://files.pythonhosted.org/packages/ce/6d/67d36c4d2054e83fb875c6b59d0809d5c530de8148846b1370475eeeece9/kiwisolver-1.4.8-cp310-cp310-manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:c8bf637892dc6e6aad2bc6d4d69d08764166e5e3f69d469e55427b6ac001b19d", size = 1650826 }, + { url = "https://files.pythonhosted.org/packages/de/c6/7b9bb8044e150d4d1558423a1568e4f227193662a02231064e3824f37e0a/kiwisolver-1.4.8-cp310-cp310-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:034d2c891f76bd3edbdb3ea11140d8510dca675443da7304205a2eaa45d8334c", size = 1628231 }, + { url = "https://files.pythonhosted.org/packages/b6/38/ad10d437563063eaaedbe2c3540a71101fc7fb07a7e71f855e93ea4de605/kiwisolver-1.4.8-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:d47b28d1dfe0793d5e96bce90835e17edf9a499b53969b03c6c47ea5985844c3", size = 1408938 }, + { url = "https://files.pythonhosted.org/packages/52/ce/c0106b3bd7f9e665c5f5bc1e07cc95b5dabd4e08e3dad42dbe2faad467e7/kiwisolver-1.4.8-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:eb158fe28ca0c29f2260cca8c43005329ad58452c36f0edf298204de32a9a3ed", size = 1422799 }, + { url = "https://files.pythonhosted.org/packages/d0/87/efb704b1d75dc9758087ba374c0f23d3254505edaedd09cf9d247f7878b9/kiwisolver-1.4.8-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:d5536185fce131780ebd809f8e623bf4030ce1b161353166c49a3c74c287897f", size = 1354362 }, + { url = "https://files.pythonhosted.org/packages/eb/b3/fd760dc214ec9a8f208b99e42e8f0130ff4b384eca8b29dd0efc62052176/kiwisolver-1.4.8-cp310-cp310-musllinux_1_2_aarch64.whl", hash = "sha256:369b75d40abedc1da2c1f4de13f3482cb99e3237b38726710f4a793432b1c5ff", size = 2222695 }, + { url = "https://files.pythonhosted.org/packages/a2/09/a27fb36cca3fc01700687cc45dae7a6a5f8eeb5f657b9f710f788748e10d/kiwisolver-1.4.8-cp310-cp310-musllinux_1_2_i686.whl", hash = "sha256:641f2ddf9358c80faa22e22eb4c9f54bd3f0e442e038728f500e3b978d00aa7d", size = 2370802 }, + { url = "https://files.pythonhosted.org/packages/3d/c3/ba0a0346db35fe4dc1f2f2cf8b99362fbb922d7562e5f911f7ce7a7b60fa/kiwisolver-1.4.8-cp310-cp310-musllinux_1_2_ppc64le.whl", hash = "sha256:d561d2d8883e0819445cfe58d7ddd673e4015c3c57261d7bdcd3710d0d14005c", size = 2334646 }, + { url = "https://files.pythonhosted.org/packages/41/52/942cf69e562f5ed253ac67d5c92a693745f0bed3c81f49fc0cbebe4d6b00/kiwisolver-1.4.8-cp310-cp310-musllinux_1_2_s390x.whl", hash = "sha256:1732e065704b47c9afca7ffa272f845300a4eb959276bf6970dc07265e73b605", size = 2467260 }, + { url = "https://files.pythonhosted.org/packages/32/26/2d9668f30d8a494b0411d4d7d4ea1345ba12deb6a75274d58dd6ea01e951/kiwisolver-1.4.8-cp310-cp310-musllinux_1_2_x86_64.whl", hash = "sha256:bcb1ebc3547619c3b58a39e2448af089ea2ef44b37988caf432447374941574e", size = 2288633 }, + { url = "https://files.pythonhosted.org/packages/98/99/0dd05071654aa44fe5d5e350729961e7bb535372935a45ac89a8924316e6/kiwisolver-1.4.8-cp310-cp310-win_amd64.whl", hash = "sha256:89c107041f7b27844179ea9c85d6da275aa55ecf28413e87624d033cf1f6b751", size = 71885 }, + { url = "https://files.pythonhosted.org/packages/6c/fc/822e532262a97442989335394d441cd1d0448c2e46d26d3e04efca84df22/kiwisolver-1.4.8-cp310-cp310-win_arm64.whl", hash = "sha256:b5773efa2be9eb9fcf5415ea3ab70fc785d598729fd6057bea38d539ead28271", size = 65175 }, + { url = "https://files.pythonhosted.org/packages/da/ed/c913ee28936c371418cb167b128066ffb20bbf37771eecc2c97edf8a6e4c/kiwisolver-1.4.8-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:a4d3601908c560bdf880f07d94f31d734afd1bb71e96585cace0e38ef44c6d84", size = 124635 }, + { url = "https://files.pythonhosted.org/packages/4c/45/4a7f896f7467aaf5f56ef093d1f329346f3b594e77c6a3c327b2d415f521/kiwisolver-1.4.8-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:856b269c4d28a5c0d5e6c1955ec36ebfd1651ac00e1ce0afa3e28da95293b561", size = 66717 }, + { url = "https://files.pythonhosted.org/packages/5f/b4/c12b3ac0852a3a68f94598d4c8d569f55361beef6159dce4e7b624160da2/kiwisolver-1.4.8-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:c2b9a96e0f326205af81a15718a9073328df1173a2619a68553decb7097fd5d7", size = 65413 }, + { url = "https://files.pythonhosted.org/packages/a9/98/1df4089b1ed23d83d410adfdc5947245c753bddfbe06541c4aae330e9e70/kiwisolver-1.4.8-cp311-cp311-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:c5020c83e8553f770cb3b5fc13faac40f17e0b205bd237aebd21d53d733adb03", size = 1343994 }, + { url = "https://files.pythonhosted.org/packages/8d/bf/b4b169b050c8421a7c53ea1ea74e4ef9c335ee9013216c558a047f162d20/kiwisolver-1.4.8-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:dace81d28c787956bfbfbbfd72fdcef014f37d9b48830829e488fdb32b49d954", size = 1434804 }, + { url = "https://files.pythonhosted.org/packages/66/5a/e13bd341fbcf73325ea60fdc8af752addf75c5079867af2e04cc41f34434/kiwisolver-1.4.8-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:11e1022b524bd48ae56c9b4f9296bce77e15a2e42a502cceba602f804b32bb79", size = 1450690 }, + { url = "https://files.pythonhosted.org/packages/9b/4f/5955dcb376ba4a830384cc6fab7d7547bd6759fe75a09564910e9e3bb8ea/kiwisolver-1.4.8-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:3b9b4d2892fefc886f30301cdd80debd8bb01ecdf165a449eb6e78f79f0fabd6", size = 1376839 }, + { url = "https://files.pythonhosted.org/packages/3a/97/5edbed69a9d0caa2e4aa616ae7df8127e10f6586940aa683a496c2c280b9/kiwisolver-1.4.8-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:3a96c0e790ee875d65e340ab383700e2b4891677b7fcd30a699146f9384a2bb0", size = 1435109 }, + { url = "https://files.pythonhosted.org/packages/13/fc/e756382cb64e556af6c1809a1bbb22c141bbc2445049f2da06b420fe52bf/kiwisolver-1.4.8-cp311-cp311-musllinux_1_2_aarch64.whl", hash = "sha256:23454ff084b07ac54ca8be535f4174170c1094a4cff78fbae4f73a4bcc0d4dab", size = 2245269 }, + { url = "https://files.pythonhosted.org/packages/76/15/e59e45829d7f41c776d138245cabae6515cb4eb44b418f6d4109c478b481/kiwisolver-1.4.8-cp311-cp311-musllinux_1_2_i686.whl", hash = "sha256:87b287251ad6488e95b4f0b4a79a6d04d3ea35fde6340eb38fbd1ca9cd35bbbc", size = 2393468 }, + { url = "https://files.pythonhosted.org/packages/e9/39/483558c2a913ab8384d6e4b66a932406f87c95a6080112433da5ed668559/kiwisolver-1.4.8-cp311-cp311-musllinux_1_2_ppc64le.whl", hash = "sha256:b21dbe165081142b1232a240fc6383fd32cdd877ca6cc89eab93e5f5883e1c25", size = 2355394 }, + { url = "https://files.pythonhosted.org/packages/01/aa/efad1fbca6570a161d29224f14b082960c7e08268a133fe5dc0f6906820e/kiwisolver-1.4.8-cp311-cp311-musllinux_1_2_s390x.whl", hash = "sha256:768cade2c2df13db52475bd28d3a3fac8c9eff04b0e9e2fda0f3760f20b3f7fc", size = 2490901 }, + { url = "https://files.pythonhosted.org/packages/c9/4f/15988966ba46bcd5ab9d0c8296914436720dd67fca689ae1a75b4ec1c72f/kiwisolver-1.4.8-cp311-cp311-musllinux_1_2_x86_64.whl", hash = "sha256:d47cfb2650f0e103d4bf68b0b5804c68da97272c84bb12850d877a95c056bd67", size = 2312306 }, + { url = "https://files.pythonhosted.org/packages/2d/27/bdf1c769c83f74d98cbc34483a972f221440703054894a37d174fba8aa68/kiwisolver-1.4.8-cp311-cp311-win_amd64.whl", hash = "sha256:ed33ca2002a779a2e20eeb06aea7721b6e47f2d4b8a8ece979d8ba9e2a167e34", size = 71966 }, + { url = "https://files.pythonhosted.org/packages/4a/c9/9642ea855604aeb2968a8e145fc662edf61db7632ad2e4fb92424be6b6c0/kiwisolver-1.4.8-cp311-cp311-win_arm64.whl", hash = "sha256:16523b40aab60426ffdebe33ac374457cf62863e330a90a0383639ce14bf44b2", size = 65311 }, + { url = "https://files.pythonhosted.org/packages/fc/aa/cea685c4ab647f349c3bc92d2daf7ae34c8e8cf405a6dcd3a497f58a2ac3/kiwisolver-1.4.8-cp312-cp312-macosx_10_13_universal2.whl", hash = "sha256:d6af5e8815fd02997cb6ad9bbed0ee1e60014438ee1a5c2444c96f87b8843502", size = 124152 }, + { url = "https://files.pythonhosted.org/packages/c5/0b/8db6d2e2452d60d5ebc4ce4b204feeb16176a851fd42462f66ade6808084/kiwisolver-1.4.8-cp312-cp312-macosx_10_13_x86_64.whl", hash = "sha256:bade438f86e21d91e0cf5dd7c0ed00cda0f77c8c1616bd83f9fc157fa6760d31", size = 66555 }, + { url = "https://files.pythonhosted.org/packages/60/26/d6a0db6785dd35d3ba5bf2b2df0aedc5af089962c6eb2cbf67a15b81369e/kiwisolver-1.4.8-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:b83dc6769ddbc57613280118fb4ce3cd08899cc3369f7d0e0fab518a7cf37fdb", size = 65067 }, + { url = "https://files.pythonhosted.org/packages/c9/ed/1d97f7e3561e09757a196231edccc1bcf59d55ddccefa2afc9c615abd8e0/kiwisolver-1.4.8-cp312-cp312-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:111793b232842991be367ed828076b03d96202c19221b5ebab421ce8bcad016f", size = 1378443 }, + { url = "https://files.pythonhosted.org/packages/29/61/39d30b99954e6b46f760e6289c12fede2ab96a254c443639052d1b573fbc/kiwisolver-1.4.8-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:257af1622860e51b1a9d0ce387bf5c2c4f36a90594cb9514f55b074bcc787cfc", size = 1472728 }, + { url = "https://files.pythonhosted.org/packages/0c/3e/804163b932f7603ef256e4a715e5843a9600802bb23a68b4e08c8c0ff61d/kiwisolver-1.4.8-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:69b5637c3f316cab1ec1c9a12b8c5f4750a4c4b71af9157645bf32830e39c03a", size = 1478388 }, + { url = "https://files.pythonhosted.org/packages/8a/9e/60eaa75169a154700be74f875a4d9961b11ba048bef315fbe89cb6999056/kiwisolver-1.4.8-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:782bb86f245ec18009890e7cb8d13a5ef54dcf2ebe18ed65f795e635a96a1c6a", size = 1413849 }, + { url = "https://files.pythonhosted.org/packages/bc/b3/9458adb9472e61a998c8c4d95cfdfec91c73c53a375b30b1428310f923e4/kiwisolver-1.4.8-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:cc978a80a0db3a66d25767b03688f1147a69e6237175c0f4ffffaaedf744055a", size = 1475533 }, + { url = "https://files.pythonhosted.org/packages/e4/7a/0a42d9571e35798de80aef4bb43a9b672aa7f8e58643d7bd1950398ffb0a/kiwisolver-1.4.8-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:36dbbfd34838500a31f52c9786990d00150860e46cd5041386f217101350f0d3", size = 2268898 }, + { url = "https://files.pythonhosted.org/packages/d9/07/1255dc8d80271400126ed8db35a1795b1a2c098ac3a72645075d06fe5c5d/kiwisolver-1.4.8-cp312-cp312-musllinux_1_2_i686.whl", hash = "sha256:eaa973f1e05131de5ff3569bbba7f5fd07ea0595d3870ed4a526d486fe57fa1b", size = 2425605 }, + { url = "https://files.pythonhosted.org/packages/84/df/5a3b4cf13780ef6f6942df67b138b03b7e79e9f1f08f57c49957d5867f6e/kiwisolver-1.4.8-cp312-cp312-musllinux_1_2_ppc64le.whl", hash = "sha256:a66f60f8d0c87ab7f59b6fb80e642ebb29fec354a4dfad687ca4092ae69d04f4", size = 2375801 }, + { url = "https://files.pythonhosted.org/packages/8f/10/2348d068e8b0f635c8c86892788dac7a6b5c0cb12356620ab575775aad89/kiwisolver-1.4.8-cp312-cp312-musllinux_1_2_s390x.whl", hash = "sha256:858416b7fb777a53f0c59ca08190ce24e9abbd3cffa18886a5781b8e3e26f65d", size = 2520077 }, + { url = "https://files.pythonhosted.org/packages/32/d8/014b89fee5d4dce157d814303b0fce4d31385a2af4c41fed194b173b81ac/kiwisolver-1.4.8-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:085940635c62697391baafaaeabdf3dd7a6c3643577dde337f4d66eba021b2b8", size = 2338410 }, + { url = "https://files.pythonhosted.org/packages/bd/72/dfff0cc97f2a0776e1c9eb5bef1ddfd45f46246c6533b0191887a427bca5/kiwisolver-1.4.8-cp312-cp312-win_amd64.whl", hash = "sha256:01c3d31902c7db5fb6182832713d3b4122ad9317c2c5877d0539227d96bb2e50", size = 71853 }, + { url = "https://files.pythonhosted.org/packages/dc/85/220d13d914485c0948a00f0b9eb419efaf6da81b7d72e88ce2391f7aed8d/kiwisolver-1.4.8-cp312-cp312-win_arm64.whl", hash = "sha256:a3c44cb68861de93f0c4a8175fbaa691f0aa22550c331fefef02b618a9dcb476", size = 65424 }, + { url = "https://files.pythonhosted.org/packages/1f/f9/ae81c47a43e33b93b0a9819cac6723257f5da2a5a60daf46aa5c7226ea85/kiwisolver-1.4.8-pp310-pypy310_pp73-macosx_10_15_x86_64.whl", hash = "sha256:e7a019419b7b510f0f7c9dceff8c5eae2392037eae483a7f9162625233802b0a", size = 60403 }, + { url = "https://files.pythonhosted.org/packages/58/ca/f92b5cb6f4ce0c1ebfcfe3e2e42b96917e16f7090e45b21102941924f18f/kiwisolver-1.4.8-pp310-pypy310_pp73-macosx_11_0_arm64.whl", hash = "sha256:286b18e86682fd2217a48fc6be6b0f20c1d0ed10958d8dc53453ad58d7be0bf8", size = 58657 }, + { url = "https://files.pythonhosted.org/packages/80/28/ae0240f732f0484d3a4dc885d055653c47144bdf59b670aae0ec3c65a7c8/kiwisolver-1.4.8-pp310-pypy310_pp73-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:4191ee8dfd0be1c3666ccbac178c5a05d5f8d689bbe3fc92f3c4abec817f8fe0", size = 84948 }, + { url = "https://files.pythonhosted.org/packages/5d/eb/78d50346c51db22c7203c1611f9b513075f35c4e0e4877c5dde378d66043/kiwisolver-1.4.8-pp310-pypy310_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:7cd2785b9391f2873ad46088ed7599a6a71e762e1ea33e87514b1a441ed1da1c", size = 81186 }, + { url = "https://files.pythonhosted.org/packages/43/f8/7259f18c77adca88d5f64f9a522792e178b2691f3748817a8750c2d216ef/kiwisolver-1.4.8-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:c07b29089b7ba090b6f1a669f1411f27221c3662b3a1b7010e67b59bb5a6f10b", size = 80279 }, + { url = "https://files.pythonhosted.org/packages/3a/1d/50ad811d1c5dae091e4cf046beba925bcae0a610e79ae4c538f996f63ed5/kiwisolver-1.4.8-pp310-pypy310_pp73-win_amd64.whl", hash = "sha256:65ea09a5a3faadd59c2ce96dc7bf0f364986a315949dc6374f04396b0d60e09b", size = 71762 }, +] + +[[package]] +name = "lxml" +version = "5.3.1" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/ef/f6/c15ca8e5646e937c148e147244817672cf920b56ac0bf2cc1512ae674be8/lxml-5.3.1.tar.gz", hash = "sha256:106b7b5d2977b339f1e97efe2778e2ab20e99994cbb0ec5e55771ed0795920c8", size = 3678591 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/80/4b/73426192004a643c11a644ed2346dbe72da164c8e775ea2e70f60e63e516/lxml-5.3.1-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:a4058f16cee694577f7e4dd410263cd0ef75644b43802a689c2b3c2a7e69453b", size = 8142766 }, + { url = "https://files.pythonhosted.org/packages/30/c2/3b28f642b43fdf9580d936e8fdd3ec43c01a97ecfe17fd67f76ce9099752/lxml-5.3.1-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:364de8f57d6eda0c16dcfb999af902da31396949efa0e583e12675d09709881b", size = 4422744 }, + { url = "https://files.pythonhosted.org/packages/1f/a5/45279e464174b99d72d25bc018b097f9211c0925a174ca582a415609f036/lxml-5.3.1-cp310-cp310-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:528f3a0498a8edc69af0559bdcf8a9f5a8bf7c00051a6ef3141fdcf27017bbf5", size = 5229609 }, + { url = "https://files.pythonhosted.org/packages/f0/e7/10cd8b9e27ffb6b3465b76604725b67b7c70d4e399750ff88de1b38ab9eb/lxml-5.3.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:db4743e30d6f5f92b6d2b7c86b3ad250e0bad8dee4b7ad8a0c44bfb276af89a3", size = 4943509 }, + { url = "https://files.pythonhosted.org/packages/ce/54/2d6f634924920b17122445136345d44c6d69178c9c49e161aa8f206739d6/lxml-5.3.1-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:17b5d7f8acf809465086d498d62a981fa6a56d2718135bb0e4aa48c502055f5c", size = 5561495 }, + { url = "https://files.pythonhosted.org/packages/a2/fe/7f5ae8fd1f357fcb21b0d4e20416fae870d654380b6487adbcaaf0df9b31/lxml-5.3.1-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:928e75a7200a4c09e6efc7482a1337919cc61fe1ba289f297827a5b76d8969c2", size = 4998970 }, + { url = "https://files.pythonhosted.org/packages/af/70/22fecb6f2ca8dc77d14ab6be3cef767ff8340040bc95dca384b5b1cb333a/lxml-5.3.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:5a997b784a639e05b9d4053ef3b20c7e447ea80814a762f25b8ed5a89d261eac", size = 5114205 }, + { url = "https://files.pythonhosted.org/packages/63/91/21619cc14f7fd1de3f1bdf86cc8106edacf4d685b540d658d84247a3a32a/lxml-5.3.1-cp310-cp310-manylinux_2_28_aarch64.whl", hash = "sha256:7b82e67c5feb682dbb559c3e6b78355f234943053af61606af126df2183b9ef9", size = 4940823 }, + { url = "https://files.pythonhosted.org/packages/50/0f/27183248fa3cdd2040047ceccd320ff1ed1344167f38a4ac26aed092268b/lxml-5.3.1-cp310-cp310-manylinux_2_28_ppc64le.whl", hash = "sha256:f1de541a9893cf8a1b1db9bf0bf670a2decab42e3e82233d36a74eda7822b4c9", size = 5585725 }, + { url = "https://files.pythonhosted.org/packages/c6/8d/9b7388d5b23ed2f239a992a478cbd0ce313aaa2d008dd73c4042b190b6a9/lxml-5.3.1-cp310-cp310-manylinux_2_28_s390x.whl", hash = "sha256:de1fc314c3ad6bc2f6bd5b5a5b9357b8c6896333d27fdbb7049aea8bd5af2d79", size = 5082641 }, + { url = "https://files.pythonhosted.org/packages/65/8e/590e20833220eac55b6abcde71d3ae629d38ac1c3543bcc2bfe1f3c2f5d1/lxml-5.3.1-cp310-cp310-manylinux_2_28_x86_64.whl", hash = "sha256:7c0536bd9178f754b277a3e53f90f9c9454a3bd108b1531ffff720e082d824f2", size = 5161219 }, + { url = "https://files.pythonhosted.org/packages/4e/77/cabdf5569fd0415a88ebd1d62d7f2814e71422439b8564aaa03e7eefc069/lxml-5.3.1-cp310-cp310-musllinux_1_2_aarch64.whl", hash = "sha256:68018c4c67d7e89951a91fbd371e2e34cd8cfc71f0bb43b5332db38497025d51", size = 5019293 }, + { url = "https://files.pythonhosted.org/packages/49/bd/f0b6d50ea7b8b54aaa5df4410cb1d5ae6ffa016b8e0503cae08b86c24674/lxml-5.3.1-cp310-cp310-musllinux_1_2_ppc64le.whl", hash = "sha256:aa826340a609d0c954ba52fd831f0fba2a4165659ab0ee1a15e4aac21f302406", size = 5651232 }, + { url = "https://files.pythonhosted.org/packages/fa/69/1793d00a4e3da7f27349edb5a6f3da947ed921263cd9a243fab11c6cbc07/lxml-5.3.1-cp310-cp310-musllinux_1_2_s390x.whl", hash = "sha256:796520afa499732191e39fc95b56a3b07f95256f2d22b1c26e217fb69a9db5b5", size = 5489527 }, + { url = "https://files.pythonhosted.org/packages/d3/c9/e2449129b6cb2054c898df8d850ea4dadd75b4c33695a6c4b0f35082f1e7/lxml-5.3.1-cp310-cp310-musllinux_1_2_x86_64.whl", hash = "sha256:3effe081b3135237da6e4c4530ff2a868d3f80be0bda027e118a5971285d42d0", size = 5227050 }, + { url = "https://files.pythonhosted.org/packages/ed/63/e5da540eba6ab9a0d4188eeaa5c85767b77cafa8efeb70da0593d6cd3b81/lxml-5.3.1-cp310-cp310-win32.whl", hash = "sha256:a22f66270bd6d0804b02cd49dae2b33d4341015545d17f8426f2c4e22f557a23", size = 3475345 }, + { url = "https://files.pythonhosted.org/packages/08/71/853a3ad812cd24c35b7776977cb0ae40c2b64ff79ad6d6c36c987daffc49/lxml-5.3.1-cp310-cp310-win_amd64.whl", hash = "sha256:0bcfadea3cdc68e678d2b20cb16a16716887dd00a881e16f7d806c2138b8ff0c", size = 3805093 }, + { url = "https://files.pythonhosted.org/packages/57/bb/2faea15df82114fa27f2a86eec220506c532ee8ce211dff22f48881b353a/lxml-5.3.1-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:e220f7b3e8656ab063d2eb0cd536fafef396829cafe04cb314e734f87649058f", size = 8161781 }, + { url = "https://files.pythonhosted.org/packages/9f/d3/374114084abb1f96026eccb6cd48b070f85de82fdabae6c2f1e198fa64e5/lxml-5.3.1-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:0f2cfae0688fd01f7056a17367e3b84f37c545fb447d7282cf2c242b16262607", size = 4432571 }, + { url = "https://files.pythonhosted.org/packages/0f/fb/44a46efdc235c2dd763c1e929611d8ff3b920c32b8fcd9051d38f4d04633/lxml-5.3.1-cp311-cp311-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:67d2f8ad9dcc3a9e826bdc7802ed541a44e124c29b7d95a679eeb58c1c14ade8", size = 5028919 }, + { url = "https://files.pythonhosted.org/packages/3b/e5/168ddf9f16a90b590df509858ae97a8219d6999d5a132ad9f72427454bed/lxml-5.3.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:db0c742aad702fd5d0c6611a73f9602f20aec2007c102630c06d7633d9c8f09a", size = 4769599 }, + { url = "https://files.pythonhosted.org/packages/f9/0e/3e2742c6f4854b202eb8587c1f7ed760179f6a9fcb34a460497c8c8f3078/lxml-5.3.1-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:198bb4b4dd888e8390afa4f170d4fa28467a7eaf857f1952589f16cfbb67af27", size = 5369260 }, + { url = "https://files.pythonhosted.org/packages/b8/03/b2f2ab9e33c47609c80665e75efed258b030717e06693835413b34e797cb/lxml-5.3.1-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:d2a3e412ce1849be34b45922bfef03df32d1410a06d1cdeb793a343c2f1fd666", size = 4842798 }, + { url = "https://files.pythonhosted.org/packages/93/ad/0ecfb082b842358c8a9e3115ec944b7240f89821baa8cd7c0cb8a38e05cb/lxml-5.3.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:2b8969dbc8d09d9cd2ae06362c3bad27d03f433252601ef658a49bd9f2b22d79", size = 4917531 }, + { url = "https://files.pythonhosted.org/packages/64/5b/3e93d8ebd2b7eb984c2ad74dfff75493ce96e7b954b12e4f5fc34a700414/lxml-5.3.1-cp311-cp311-manylinux_2_28_aarch64.whl", hash = "sha256:5be8f5e4044146a69c96077c7e08f0709c13a314aa5315981185c1f00235fe65", size = 4791500 }, + { url = "https://files.pythonhosted.org/packages/91/83/7dc412362ee7a0259c7f64349393262525061fad551a1340ef92c59d9732/lxml-5.3.1-cp311-cp311-manylinux_2_28_ppc64le.whl", hash = "sha256:133f3493253a00db2c870d3740bc458ebb7d937bd0a6a4f9328373e0db305709", size = 5404557 }, + { url = "https://files.pythonhosted.org/packages/1e/41/c337f121d9dca148431f246825e021fa1a3f66a6b975deab1950530fdb04/lxml-5.3.1-cp311-cp311-manylinux_2_28_s390x.whl", hash = "sha256:52d82b0d436edd6a1d22d94a344b9a58abd6c68c357ed44f22d4ba8179b37629", size = 4931386 }, + { url = "https://files.pythonhosted.org/packages/a5/73/762c319c4906b3db67e4abc7cfe7d66c34996edb6d0e8cb60f462954d662/lxml-5.3.1-cp311-cp311-manylinux_2_28_x86_64.whl", hash = "sha256:1b6f92e35e2658a5ed51c6634ceb5ddae32053182851d8cad2a5bc102a359b33", size = 4982124 }, + { url = "https://files.pythonhosted.org/packages/c1/e7/d1e296cb3b3b46371220a31350730948d7bea41cc9123c5fd219dea33c29/lxml-5.3.1-cp311-cp311-musllinux_1_2_aarch64.whl", hash = "sha256:203b1d3eaebd34277be06a3eb880050f18a4e4d60861efba4fb946e31071a295", size = 4852742 }, + { url = "https://files.pythonhosted.org/packages/df/90/4adc854475105b93ead6c0c736f762d29371751340dcf5588cfcf8191b8a/lxml-5.3.1-cp311-cp311-musllinux_1_2_ppc64le.whl", hash = "sha256:155e1a5693cf4b55af652f5c0f78ef36596c7f680ff3ec6eb4d7d85367259b2c", size = 5457004 }, + { url = "https://files.pythonhosted.org/packages/f0/0d/39864efbd231c13eb53edee2ab91c742c24d2f93efe2af7d3fe4343e42c1/lxml-5.3.1-cp311-cp311-musllinux_1_2_s390x.whl", hash = "sha256:22ec2b3c191f43ed21f9545e9df94c37c6b49a5af0a874008ddc9132d49a2d9c", size = 5298185 }, + { url = "https://files.pythonhosted.org/packages/8d/7a/630a64ceb1088196de182e2e33b5899691c3e1ae21af688e394208bd6810/lxml-5.3.1-cp311-cp311-musllinux_1_2_x86_64.whl", hash = "sha256:7eda194dd46e40ec745bf76795a7cccb02a6a41f445ad49d3cf66518b0bd9cff", size = 5032707 }, + { url = "https://files.pythonhosted.org/packages/b2/3d/091bc7b592333754cb346c1507ca948ab39bc89d83577ac8f1da3be4dece/lxml-5.3.1-cp311-cp311-win32.whl", hash = "sha256:fb7c61d4be18e930f75948705e9718618862e6fc2ed0d7159b2262be73f167a2", size = 3474288 }, + { url = "https://files.pythonhosted.org/packages/12/8c/7d47cfc0d04fd4e3639ec7e1c96c2561d5e890eb900de8f76eea75e0964a/lxml-5.3.1-cp311-cp311-win_amd64.whl", hash = "sha256:c809eef167bf4a57af4b03007004896f5c60bd38dc3852fcd97a26eae3d4c9e6", size = 3815031 }, + { url = "https://files.pythonhosted.org/packages/3b/f4/5121aa9ee8e09b8b8a28cf3709552efe3d206ca51a20d6fa471b60bb3447/lxml-5.3.1-cp312-cp312-macosx_10_9_universal2.whl", hash = "sha256:e69add9b6b7b08c60d7ff0152c7c9a6c45b4a71a919be5abde6f98f1ea16421c", size = 8191889 }, + { url = "https://files.pythonhosted.org/packages/0a/ca/8e9aa01edddc74878f4aea85aa9ab64372f46aa804d1c36dda861bf9eabf/lxml-5.3.1-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:4e52e1b148867b01c05e21837586ee307a01e793b94072d7c7b91d2c2da02ffe", size = 4450685 }, + { url = "https://files.pythonhosted.org/packages/b2/b3/ea40a5c98619fbd7e9349df7007994506d396b97620ced34e4e5053d3734/lxml-5.3.1-cp312-cp312-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:a4b382e0e636ed54cd278791d93fe2c4f370772743f02bcbe431a160089025c9", size = 5051722 }, + { url = "https://files.pythonhosted.org/packages/3a/5e/375418be35f8a695cadfe7e7412f16520e62e24952ed93c64c9554755464/lxml-5.3.1-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:c2e49dc23a10a1296b04ca9db200c44d3eb32c8d8ec532e8c1fd24792276522a", size = 4786661 }, + { url = "https://files.pythonhosted.org/packages/79/7c/d258eaaa9560f6664f9b426a5165103015bee6512d8931e17342278bad0a/lxml-5.3.1-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:4399b4226c4785575fb20998dc571bc48125dc92c367ce2602d0d70e0c455eb0", size = 5311766 }, + { url = "https://files.pythonhosted.org/packages/03/bc/a041415be4135a1b3fdf017a5d873244cc16689456166fbdec4b27fba153/lxml-5.3.1-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:5412500e0dc5481b1ee9cf6b38bb3b473f6e411eb62b83dc9b62699c3b7b79f7", size = 4836014 }, + { url = "https://files.pythonhosted.org/packages/32/88/047f24967d5e3fc97848ea2c207eeef0f16239cdc47368c8b95a8dc93a33/lxml-5.3.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:1c93ed3c998ea8472be98fb55aed65b5198740bfceaec07b2eba551e55b7b9ae", size = 4961064 }, + { url = "https://files.pythonhosted.org/packages/3d/b5/ecf5a20937ecd21af02c5374020f4e3a3538e10a32379a7553fca3d77094/lxml-5.3.1-cp312-cp312-manylinux_2_28_aarch64.whl", hash = "sha256:63d57fc94eb0bbb4735e45517afc21ef262991d8758a8f2f05dd6e4174944519", size = 4778341 }, + { url = "https://files.pythonhosted.org/packages/a4/05/56c359e07275911ed5f35ab1d63c8cd3360d395fb91e43927a2ae90b0322/lxml-5.3.1-cp312-cp312-manylinux_2_28_ppc64le.whl", hash = "sha256:b450d7cabcd49aa7ab46a3c6aa3ac7e1593600a1a0605ba536ec0f1b99a04322", size = 5345450 }, + { url = "https://files.pythonhosted.org/packages/b7/f4/f95e3ae12e9f32fbcde00f9affa6b0df07f495117f62dbb796a9a31c84d6/lxml-5.3.1-cp312-cp312-manylinux_2_28_s390x.whl", hash = "sha256:4df0ec814b50275ad6a99bc82a38b59f90e10e47714ac9871e1b223895825468", size = 4908336 }, + { url = "https://files.pythonhosted.org/packages/c5/f8/309546aec092434166a6e11c7dcecb5c2d0a787c18c072d61e18da9eba57/lxml-5.3.1-cp312-cp312-manylinux_2_28_x86_64.whl", hash = "sha256:d184f85ad2bb1f261eac55cddfcf62a70dee89982c978e92b9a74a1bfef2e367", size = 4986049 }, + { url = "https://files.pythonhosted.org/packages/71/1c/b951817cb5058ca7c332d012dfe8bc59dabd0f0a8911ddd7b7ea8e41cfbd/lxml-5.3.1-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:b725e70d15906d24615201e650d5b0388b08a5187a55f119f25874d0103f90dd", size = 4860351 }, + { url = "https://files.pythonhosted.org/packages/31/23/45feba8dae1d35fcca1e51b051f59dc4223cbd23e071a31e25f3f73938a8/lxml-5.3.1-cp312-cp312-musllinux_1_2_ppc64le.whl", hash = "sha256:a31fa7536ec1fb7155a0cd3a4e3d956c835ad0a43e3610ca32384d01f079ea1c", size = 5421580 }, + { url = "https://files.pythonhosted.org/packages/61/69/be245d7b2dbef81c542af59c97fcd641fbf45accf2dc1c325bae7d0d014c/lxml-5.3.1-cp312-cp312-musllinux_1_2_s390x.whl", hash = "sha256:3c3c8b55c7fc7b7e8877b9366568cc73d68b82da7fe33d8b98527b73857a225f", size = 5285778 }, + { url = "https://files.pythonhosted.org/packages/69/06/128af2ed04bac99b8f83becfb74c480f1aa18407b5c329fad457e08a1bf4/lxml-5.3.1-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:d61ec60945d694df806a9aec88e8f29a27293c6e424f8ff91c80416e3c617645", size = 5054455 }, + { url = "https://files.pythonhosted.org/packages/8a/2d/f03a21cf6cc75cdd083563e509c7b6b159d761115c4142abb5481094ed8c/lxml-5.3.1-cp312-cp312-win32.whl", hash = "sha256:f4eac0584cdc3285ef2e74eee1513a6001681fd9753b259e8159421ed28a72e5", size = 3486315 }, + { url = "https://files.pythonhosted.org/packages/2b/9c/8abe21585d20ef70ad9cec7562da4332b764ed69ec29b7389d23dfabcea0/lxml-5.3.1-cp312-cp312-win_amd64.whl", hash = "sha256:29bfc8d3d88e56ea0a27e7c4897b642706840247f59f4377d81be8f32aa0cfbf", size = 3816925 }, + { url = "https://files.pythonhosted.org/packages/d2/b4/89a68d05f267f05cc1b8b2f289a8242955705b1b0a9d246198227817ee46/lxml-5.3.1-pp310-pypy310_pp73-macosx_10_15_x86_64.whl", hash = "sha256:afa578b6524ff85fb365f454cf61683771d0170470c48ad9d170c48075f86725", size = 3936118 }, + { url = "https://files.pythonhosted.org/packages/7f/0d/c034a541e7a1153527d7880c62493a74f2277f38e64de2480cadd0d4cf96/lxml-5.3.1-pp310-pypy310_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:67f5e80adf0aafc7b5454f2c1cb0cde920c9b1f2cbd0485f07cc1d0497c35c5d", size = 4233690 }, + { url = "https://files.pythonhosted.org/packages/35/5c/38e183c2802f14fbdaa75c3266e11d0ca05c64d78e8cdab2ee84e954a565/lxml-5.3.1-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:2dd0b80ac2d8f13ffc906123a6f20b459cb50a99222d0da492360512f3e50f84", size = 4349569 }, + { url = "https://files.pythonhosted.org/packages/18/5b/14f93b359b3c29673d5d282bc3a6edb3a629879854a77541841aba37607f/lxml-5.3.1-pp310-pypy310_pp73-manylinux_2_28_aarch64.whl", hash = "sha256:422c179022ecdedbe58b0e242607198580804253da220e9454ffe848daa1cfd2", size = 4236731 }, + { url = "https://files.pythonhosted.org/packages/f6/08/8471de65f3dee70a3a50e7082fd7409f0ac7a1ace777c13fca4aea1a5759/lxml-5.3.1-pp310-pypy310_pp73-manylinux_2_28_x86_64.whl", hash = "sha256:524ccfded8989a6595dbdda80d779fb977dbc9a7bc458864fc9a0c2fc15dc877", size = 4373119 }, + { url = "https://files.pythonhosted.org/packages/83/29/00b9b0322a473aee6cda87473401c9abb19506cd650cc69a8aa38277ea74/lxml-5.3.1-pp310-pypy310_pp73-win_amd64.whl", hash = "sha256:48fd46bf7155def2e15287c6f2b133a2f78e2d22cdf55647269977b873c65499", size = 3487718 }, +] + +[[package]] +name = "markdown" +version = "3.7" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/54/28/3af612670f82f4c056911fbbbb42760255801b3068c48de792d354ff4472/markdown-3.7.tar.gz", hash = "sha256:2ae2471477cfd02dbbf038d5d9bc226d40def84b4fe2986e49b59b6b472bbed2", size = 357086 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/3f/08/83871f3c50fc983b88547c196d11cf8c3340e37c32d2e9d6152abe2c61f7/Markdown-3.7-py3-none-any.whl", hash = "sha256:7eb6df5690b81a1d7942992c97fad2938e956e79df20cbc6186e9c3a77b1c803", size = 106349 }, +] + +[[package]] +name = "markdown-it-py" +version = "3.0.0" +source = { registry = "https://pypi.org/simple" } +dependencies = [ + { name = "mdurl" }, +] +sdist = { url = "https://files.pythonhosted.org/packages/38/71/3b932df36c1a044d397a1f92d1cf91ee0a503d91e470cbd670aa66b07ed0/markdown-it-py-3.0.0.tar.gz", hash = "sha256:e3f60a94fa066dc52ec76661e37c851cb232d92f9886b15cb560aaada2df8feb", size = 74596 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/42/d7/1ec15b46af6af88f19b8e5ffea08fa375d433c998b8a7639e76935c14f1f/markdown_it_py-3.0.0-py3-none-any.whl", hash = "sha256:355216845c60bd96232cd8d8c40e8f9765cc86f46880e43a8fd22dc1a1a8cab1", size = 87528 }, +] + +[[package]] +name = "markupsafe" +version = "3.0.2" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/b2/97/5d42485e71dfc078108a86d6de8fa46db44a1a9295e89c5d6d4a06e23a62/markupsafe-3.0.2.tar.gz", hash = "sha256:ee55d3edf80167e48ea11a923c7386f4669df67d7994554387f84e7d8b0a2bf0", size = 20537 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/04/90/d08277ce111dd22f77149fd1a5d4653eeb3b3eaacbdfcbae5afb2600eebd/MarkupSafe-3.0.2-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:7e94c425039cde14257288fd61dcfb01963e658efbc0ff54f5306b06054700f8", size = 14357 }, + { url = "https://files.pythonhosted.org/packages/04/e1/6e2194baeae0bca1fae6629dc0cbbb968d4d941469cbab11a3872edff374/MarkupSafe-3.0.2-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:9e2d922824181480953426608b81967de705c3cef4d1af983af849d7bd619158", size = 12393 }, + { url = "https://files.pythonhosted.org/packages/1d/69/35fa85a8ece0a437493dc61ce0bb6d459dcba482c34197e3efc829aa357f/MarkupSafe-3.0.2-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:38a9ef736c01fccdd6600705b09dc574584b89bea478200c5fbf112a6b0d5579", size = 21732 }, + { url = "https://files.pythonhosted.org/packages/22/35/137da042dfb4720b638d2937c38a9c2df83fe32d20e8c8f3185dbfef05f7/MarkupSafe-3.0.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:bbcb445fa71794da8f178f0f6d66789a28d7319071af7a496d4d507ed566270d", size = 20866 }, + { url = "https://files.pythonhosted.org/packages/29/28/6d029a903727a1b62edb51863232152fd335d602def598dade38996887f0/MarkupSafe-3.0.2-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:57cb5a3cf367aeb1d316576250f65edec5bb3be939e9247ae594b4bcbc317dfb", size = 20964 }, + { url = "https://files.pythonhosted.org/packages/cc/cd/07438f95f83e8bc028279909d9c9bd39e24149b0d60053a97b2bc4f8aa51/MarkupSafe-3.0.2-cp310-cp310-musllinux_1_2_aarch64.whl", hash = "sha256:3809ede931876f5b2ec92eef964286840ed3540dadf803dd570c3b7e13141a3b", size = 21977 }, + { url = "https://files.pythonhosted.org/packages/29/01/84b57395b4cc062f9c4c55ce0df7d3108ca32397299d9df00fedd9117d3d/MarkupSafe-3.0.2-cp310-cp310-musllinux_1_2_i686.whl", hash = "sha256:e07c3764494e3776c602c1e78e298937c3315ccc9043ead7e685b7f2b8d47b3c", size = 21366 }, + { url = "https://files.pythonhosted.org/packages/bd/6e/61ebf08d8940553afff20d1fb1ba7294b6f8d279df9fd0c0db911b4bbcfd/MarkupSafe-3.0.2-cp310-cp310-musllinux_1_2_x86_64.whl", hash = "sha256:b424c77b206d63d500bcb69fa55ed8d0e6a3774056bdc4839fc9298a7edca171", size = 21091 }, + { url = "https://files.pythonhosted.org/packages/11/23/ffbf53694e8c94ebd1e7e491de185124277964344733c45481f32ede2499/MarkupSafe-3.0.2-cp310-cp310-win32.whl", hash = "sha256:fcabf5ff6eea076f859677f5f0b6b5c1a51e70a376b0579e0eadef8db48c6b50", size = 15065 }, + { url = "https://files.pythonhosted.org/packages/44/06/e7175d06dd6e9172d4a69a72592cb3f7a996a9c396eee29082826449bbc3/MarkupSafe-3.0.2-cp310-cp310-win_amd64.whl", hash = "sha256:6af100e168aa82a50e186c82875a5893c5597a0c1ccdb0d8b40240b1f28b969a", size = 15514 }, + { url = "https://files.pythonhosted.org/packages/6b/28/bbf83e3f76936960b850435576dd5e67034e200469571be53f69174a2dfd/MarkupSafe-3.0.2-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:9025b4018f3a1314059769c7bf15441064b2207cb3f065e6ea1e7359cb46db9d", size = 14353 }, + { url = "https://files.pythonhosted.org/packages/6c/30/316d194b093cde57d448a4c3209f22e3046c5bb2fb0820b118292b334be7/MarkupSafe-3.0.2-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:93335ca3812df2f366e80509ae119189886b0f3c2b81325d39efdb84a1e2ae93", size = 12392 }, + { url = "https://files.pythonhosted.org/packages/f2/96/9cdafba8445d3a53cae530aaf83c38ec64c4d5427d975c974084af5bc5d2/MarkupSafe-3.0.2-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:2cb8438c3cbb25e220c2ab33bb226559e7afb3baec11c4f218ffa7308603c832", size = 23984 }, + { url = "https://files.pythonhosted.org/packages/f1/a4/aefb044a2cd8d7334c8a47d3fb2c9f328ac48cb349468cc31c20b539305f/MarkupSafe-3.0.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:a123e330ef0853c6e822384873bef7507557d8e4a082961e1defa947aa59ba84", size = 23120 }, + { url = "https://files.pythonhosted.org/packages/8d/21/5e4851379f88f3fad1de30361db501300d4f07bcad047d3cb0449fc51f8c/MarkupSafe-3.0.2-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:1e084f686b92e5b83186b07e8a17fc09e38fff551f3602b249881fec658d3eca", size = 23032 }, + { url = "https://files.pythonhosted.org/packages/00/7b/e92c64e079b2d0d7ddf69899c98842f3f9a60a1ae72657c89ce2655c999d/MarkupSafe-3.0.2-cp311-cp311-musllinux_1_2_aarch64.whl", hash = "sha256:d8213e09c917a951de9d09ecee036d5c7d36cb6cb7dbaece4c71a60d79fb9798", size = 24057 }, + { url = "https://files.pythonhosted.org/packages/f9/ac/46f960ca323037caa0a10662ef97d0a4728e890334fc156b9f9e52bcc4ca/MarkupSafe-3.0.2-cp311-cp311-musllinux_1_2_i686.whl", hash = "sha256:5b02fb34468b6aaa40dfc198d813a641e3a63b98c2b05a16b9f80b7ec314185e", size = 23359 }, + { url = "https://files.pythonhosted.org/packages/69/84/83439e16197337b8b14b6a5b9c2105fff81d42c2a7c5b58ac7b62ee2c3b1/MarkupSafe-3.0.2-cp311-cp311-musllinux_1_2_x86_64.whl", hash = "sha256:0bff5e0ae4ef2e1ae4fdf2dfd5b76c75e5c2fa4132d05fc1b0dabcd20c7e28c4", size = 23306 }, + { url = "https://files.pythonhosted.org/packages/9a/34/a15aa69f01e2181ed8d2b685c0d2f6655d5cca2c4db0ddea775e631918cd/MarkupSafe-3.0.2-cp311-cp311-win32.whl", hash = "sha256:6c89876f41da747c8d3677a2b540fb32ef5715f97b66eeb0c6b66f5e3ef6f59d", size = 15094 }, + { url = "https://files.pythonhosted.org/packages/da/b8/3a3bd761922d416f3dc5d00bfbed11f66b1ab89a0c2b6e887240a30b0f6b/MarkupSafe-3.0.2-cp311-cp311-win_amd64.whl", hash = "sha256:70a87b411535ccad5ef2f1df5136506a10775d267e197e4cf531ced10537bd6b", size = 15521 }, + { url = "https://files.pythonhosted.org/packages/22/09/d1f21434c97fc42f09d290cbb6350d44eb12f09cc62c9476effdb33a18aa/MarkupSafe-3.0.2-cp312-cp312-macosx_10_13_universal2.whl", hash = "sha256:9778bd8ab0a994ebf6f84c2b949e65736d5575320a17ae8984a77fab08db94cf", size = 14274 }, + { url = "https://files.pythonhosted.org/packages/6b/b0/18f76bba336fa5aecf79d45dcd6c806c280ec44538b3c13671d49099fdd0/MarkupSafe-3.0.2-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:846ade7b71e3536c4e56b386c2a47adf5741d2d8b94ec9dc3e92e5e1ee1e2225", size = 12348 }, + { url = "https://files.pythonhosted.org/packages/e0/25/dd5c0f6ac1311e9b40f4af06c78efde0f3b5cbf02502f8ef9501294c425b/MarkupSafe-3.0.2-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:1c99d261bd2d5f6b59325c92c73df481e05e57f19837bdca8413b9eac4bd8028", size = 24149 }, + { url = "https://files.pythonhosted.org/packages/f3/f0/89e7aadfb3749d0f52234a0c8c7867877876e0a20b60e2188e9850794c17/MarkupSafe-3.0.2-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:e17c96c14e19278594aa4841ec148115f9c7615a47382ecb6b82bd8fea3ab0c8", size = 23118 }, + { url = "https://files.pythonhosted.org/packages/d5/da/f2eeb64c723f5e3777bc081da884b414671982008c47dcc1873d81f625b6/MarkupSafe-3.0.2-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:88416bd1e65dcea10bc7569faacb2c20ce071dd1f87539ca2ab364bf6231393c", size = 22993 }, + { url = "https://files.pythonhosted.org/packages/da/0e/1f32af846df486dce7c227fe0f2398dc7e2e51d4a370508281f3c1c5cddc/MarkupSafe-3.0.2-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:2181e67807fc2fa785d0592dc2d6206c019b9502410671cc905d132a92866557", size = 24178 }, + { url = "https://files.pythonhosted.org/packages/c4/f6/bb3ca0532de8086cbff5f06d137064c8410d10779c4c127e0e47d17c0b71/MarkupSafe-3.0.2-cp312-cp312-musllinux_1_2_i686.whl", hash = "sha256:52305740fe773d09cffb16f8ed0427942901f00adedac82ec8b67752f58a1b22", size = 23319 }, + { url = "https://files.pythonhosted.org/packages/a2/82/8be4c96ffee03c5b4a034e60a31294daf481e12c7c43ab8e34a1453ee48b/MarkupSafe-3.0.2-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:ad10d3ded218f1039f11a75f8091880239651b52e9bb592ca27de44eed242a48", size = 23352 }, + { url = "https://files.pythonhosted.org/packages/51/ae/97827349d3fcffee7e184bdf7f41cd6b88d9919c80f0263ba7acd1bbcb18/MarkupSafe-3.0.2-cp312-cp312-win32.whl", hash = "sha256:0f4ca02bea9a23221c0182836703cbf8930c5e9454bacce27e767509fa286a30", size = 15097 }, + { url = "https://files.pythonhosted.org/packages/c1/80/a61f99dc3a936413c3ee4e1eecac96c0da5ed07ad56fd975f1a9da5bc630/MarkupSafe-3.0.2-cp312-cp312-win_amd64.whl", hash = "sha256:8e06879fc22a25ca47312fbe7c8264eb0b662f6db27cb2d3bbbc74b1df4b9b87", size = 15601 }, +] + +[[package]] +name = "matplotlib" +version = "3.10.1" +source = { registry = "https://pypi.org/simple" } +dependencies = [ + { name = "contourpy" }, + { name = "cycler" }, + { name = "fonttools" }, + { name = "kiwisolver" }, + { name = "numpy" }, + { name = "packaging" }, + { name = "pillow" }, + { name = "pyparsing" }, + { name = "python-dateutil" }, +] +sdist = { url = "https://files.pythonhosted.org/packages/2f/08/b89867ecea2e305f408fbb417139a8dd941ecf7b23a2e02157c36da546f0/matplotlib-3.10.1.tar.gz", hash = "sha256:e8d2d0e3881b129268585bf4765ad3ee73a4591d77b9a18c214ac7e3a79fb2ba", size = 36743335 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/ee/b1/f70e27cf1cd76ce2a5e1aa5579d05afe3236052c6d9b9a96325bc823a17e/matplotlib-3.10.1-cp310-cp310-macosx_10_12_x86_64.whl", hash = "sha256:ff2ae14910be903f4a24afdbb6d7d3a6c44da210fc7d42790b87aeac92238a16", size = 8163654 }, + { url = "https://files.pythonhosted.org/packages/26/af/5ec3d4636106718bb62503a03297125d4514f98fe818461bd9e6b9d116e4/matplotlib-3.10.1-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:0721a3fd3d5756ed593220a8b86808a36c5031fce489adb5b31ee6dbb47dd5b2", size = 8037943 }, + { url = "https://files.pythonhosted.org/packages/a1/3d/07f9003a71b698b848c9925d05979ffa94a75cd25d1a587202f0bb58aa81/matplotlib-3.10.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:d0673b4b8f131890eb3a1ad058d6e065fb3c6e71f160089b65f8515373394698", size = 8449510 }, + { url = "https://files.pythonhosted.org/packages/12/87/9472d4513ff83b7cd864311821793ab72234fa201ab77310ec1b585d27e2/matplotlib-3.10.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:8e875b95ac59a7908978fe307ecdbdd9a26af7fa0f33f474a27fcf8c99f64a19", size = 8586585 }, + { url = "https://files.pythonhosted.org/packages/31/9e/fe74d237d2963adae8608faeb21f778cf246dbbf4746cef87cffbc82c4b6/matplotlib-3.10.1-cp310-cp310-musllinux_1_2_x86_64.whl", hash = "sha256:2589659ea30726284c6c91037216f64a506a9822f8e50592d48ac16a2f29e044", size = 9397911 }, + { url = "https://files.pythonhosted.org/packages/b6/1b/025d3e59e8a4281ab463162ad7d072575354a1916aba81b6a11507dfc524/matplotlib-3.10.1-cp310-cp310-win_amd64.whl", hash = "sha256:a97ff127f295817bc34517255c9db6e71de8eddaab7f837b7d341dee9f2f587f", size = 8052998 }, + { url = "https://files.pythonhosted.org/packages/a5/14/a1b840075be247bb1834b22c1e1d558740b0f618fe3a823740181ca557a1/matplotlib-3.10.1-cp311-cp311-macosx_10_12_x86_64.whl", hash = "sha256:057206ff2d6ab82ff3e94ebd94463d084760ca682ed5f150817b859372ec4401", size = 8174669 }, + { url = "https://files.pythonhosted.org/packages/0a/e4/300b08e3e08f9c98b0d5635f42edabf2f7a1d634e64cb0318a71a44ff720/matplotlib-3.10.1-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:a144867dd6bf8ba8cb5fc81a158b645037e11b3e5cf8a50bd5f9917cb863adfe", size = 8047996 }, + { url = "https://files.pythonhosted.org/packages/75/f9/8d99ff5a2498a5f1ccf919fb46fb945109623c6108216f10f96428f388bc/matplotlib-3.10.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:56c5d9fcd9879aa8040f196a235e2dcbdf7dd03ab5b07c0696f80bc6cf04bedd", size = 8461612 }, + { url = "https://files.pythonhosted.org/packages/40/b8/53fa08a5eaf78d3a7213fd6da1feec4bae14a81d9805e567013811ff0e85/matplotlib-3.10.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:0f69dc9713e4ad2fb21a1c30e37bd445d496524257dfda40ff4a8efb3604ab5c", size = 8602258 }, + { url = "https://files.pythonhosted.org/packages/40/87/4397d2ce808467af86684a622dd112664553e81752ea8bf61bdd89d24a41/matplotlib-3.10.1-cp311-cp311-musllinux_1_2_x86_64.whl", hash = "sha256:4c59af3e8aca75d7744b68e8e78a669e91ccbcf1ac35d0102a7b1b46883f1dd7", size = 9408896 }, + { url = "https://files.pythonhosted.org/packages/d7/68/0d03098b3feb786cbd494df0aac15b571effda7f7cbdec267e8a8d398c16/matplotlib-3.10.1-cp311-cp311-win_amd64.whl", hash = "sha256:11b65088c6f3dae784bc72e8d039a2580186285f87448babb9ddb2ad0082993a", size = 8061281 }, + { url = "https://files.pythonhosted.org/packages/7c/1d/5e0dc3b59c034e43de16f94deb68f4ad8a96b3ea00f4b37c160b7474928e/matplotlib-3.10.1-cp312-cp312-macosx_10_13_x86_64.whl", hash = "sha256:66e907a06e68cb6cfd652c193311d61a12b54f56809cafbed9736ce5ad92f107", size = 8175488 }, + { url = "https://files.pythonhosted.org/packages/7a/81/dae7e14042e74da658c3336ab9799128e09a1ee03964f2d89630b5d12106/matplotlib-3.10.1-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:e9b4bb156abb8fa5e5b2b460196f7db7264fc6d62678c03457979e7d5254b7be", size = 8046264 }, + { url = "https://files.pythonhosted.org/packages/21/c4/22516775dcde10fc9c9571d155f90710761b028fc44f660508106c363c97/matplotlib-3.10.1-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:1985ad3d97f51307a2cbfc801a930f120def19ba22864182dacef55277102ba6", size = 8452048 }, + { url = "https://files.pythonhosted.org/packages/63/23/c0615001f67ce7c96b3051d856baedc0c818a2ed84570b9bf9bde200f85d/matplotlib-3.10.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:c96f2c2f825d1257e437a1482c5a2cf4fee15db4261bd6fc0750f81ba2b4ba3d", size = 8597111 }, + { url = "https://files.pythonhosted.org/packages/ca/c0/a07939a82aed77770514348f4568177d7dadab9787ebc618a616fe3d665e/matplotlib-3.10.1-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:35e87384ee9e488d8dd5a2dd7baf471178d38b90618d8ea147aced4ab59c9bea", size = 9402771 }, + { url = "https://files.pythonhosted.org/packages/a6/b6/a9405484fb40746fdc6ae4502b16a9d6e53282ba5baaf9ebe2da579f68c4/matplotlib-3.10.1-cp312-cp312-win_amd64.whl", hash = "sha256:cfd414bce89cc78a7e1d25202e979b3f1af799e416010a20ab2b5ebb3a02425c", size = 8063742 }, + { url = "https://files.pythonhosted.org/packages/c8/f6/10adb696d8cbeed2ab4c2e26ecf1c80dd3847bbf3891f4a0c362e0e08a5a/matplotlib-3.10.1-pp310-pypy310_pp73-macosx_10_15_x86_64.whl", hash = "sha256:648406f1899f9a818cef8c0231b44dcfc4ff36f167101c3fd1c9151f24220fdc", size = 8158685 }, + { url = "https://files.pythonhosted.org/packages/3f/84/0603d917406072763e7f9bb37747d3d74d7ecd4b943a8c947cc3ae1cf7af/matplotlib-3.10.1-pp310-pypy310_pp73-macosx_11_0_arm64.whl", hash = "sha256:02582304e352f40520727984a5a18f37e8187861f954fea9be7ef06569cf85b4", size = 8035491 }, + { url = "https://files.pythonhosted.org/packages/fd/7d/6a8b31dd07ed856b3eae001c9129670ef75c4698fa1c2a6ac9f00a4a7054/matplotlib-3.10.1-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:d3809916157ba871bcdd33d3493acd7fe3037db5daa917ca6e77975a94cef779", size = 8590087 }, +] + +[[package]] +name = "matplotlib-inline" +version = "0.1.7" +source = { registry = "https://pypi.org/simple" } +dependencies = [ + { name = "traitlets" }, +] +sdist = { url = "https://files.pythonhosted.org/packages/99/5b/a36a337438a14116b16480db471ad061c36c3694df7c2084a0da7ba538b7/matplotlib_inline-0.1.7.tar.gz", hash = "sha256:8423b23ec666be3d16e16b60bdd8ac4e86e840ebd1dd11a30b9f117f2fa0ab90", size = 8159 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/8f/8e/9ad090d3553c280a8060fbf6e24dc1c0c29704ee7d1c372f0c174aa59285/matplotlib_inline-0.1.7-py3-none-any.whl", hash = "sha256:df192d39a4ff8f21b1895d72e6a13f5fcc5099f00fa84384e0ea28c2cc0653ca", size = 9899 }, +] + +[[package]] +name = "mdit-py-plugins" +version = "0.4.2" +source = { registry = "https://pypi.org/simple" } +dependencies = [ + { name = "markdown-it-py" }, +] +sdist = { url = "https://files.pythonhosted.org/packages/19/03/a2ecab526543b152300717cf232bb4bb8605b6edb946c845016fa9c9c9fd/mdit_py_plugins-0.4.2.tar.gz", hash = "sha256:5f2cd1fdb606ddf152d37ec30e46101a60512bc0e5fa1a7002c36647b09e26b5", size = 43542 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/a7/f7/7782a043553ee469c1ff49cfa1cdace2d6bf99a1f333cf38676b3ddf30da/mdit_py_plugins-0.4.2-py3-none-any.whl", hash = "sha256:0c673c3f889399a33b95e88d2f0d111b4447bdfea7f237dab2d488f459835636", size = 55316 }, +] + +[[package]] +name = "mdurl" +version = "0.1.2" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/d6/54/cfe61301667036ec958cb99bd3efefba235e65cdeb9c84d24a8293ba1d90/mdurl-0.1.2.tar.gz", hash = "sha256:bb413d29f5eea38f31dd4754dd7377d4465116fb207585f97bf925588687c1ba", size = 8729 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/b3/38/89ba8ad64ae25be8de66a6d463314cf1eb366222074cfda9ee839c56a4b4/mdurl-0.1.2-py3-none-any.whl", hash = "sha256:84008a41e51615a49fc9966191ff91509e3c40b939176e643fd50a5c2196b8f8", size = 9979 }, +] + +[[package]] +name = "mdx-truly-sane-lists" +version = "1.3" +source = { registry = "https://pypi.org/simple" } +dependencies = [ + { name = "markdown" }, +] +sdist = { url = "https://files.pythonhosted.org/packages/e6/27/16456314311abac2cedef4527679924e80ac4de19dd926699c1b261e0b9b/mdx_truly_sane_lists-1.3.tar.gz", hash = "sha256:b661022df7520a1e113af7c355c62216b384c867e4f59fb8ee7ad511e6e77f45", size = 5359 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/3a/9e/dcd1027f7fd193aed152e01c6651a197c36b858f2cd1425ad04cb31a34fc/mdx_truly_sane_lists-1.3-py3-none-any.whl", hash = "sha256:b9546a4c40ff8f1ab692f77cee4b6bfe8ddf9cccf23f0a24e71f3716fe290a37", size = 6071 }, +] + +[[package]] +name = "mergedeep" +version = "1.3.4" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/3a/41/580bb4006e3ed0361b8151a01d324fb03f420815446c7def45d02f74c270/mergedeep-1.3.4.tar.gz", hash = "sha256:0096d52e9dad9939c3d975a774666af186eda617e6ca84df4c94dec30004f2a8", size = 4661 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/2c/19/04f9b178c2d8a15b076c8b5140708fa6ffc5601fb6f1e975537072df5b2a/mergedeep-1.3.4-py3-none-any.whl", hash = "sha256:70775750742b25c0d8f36c55aed03d24c3384d17c951b3175d898bd778ef0307", size = 6354 }, +] + +[[package]] +name = "mistune" +version = "3.1.2" +source = { registry = "https://pypi.org/simple" } +dependencies = [ + { name = "typing-extensions", marker = "python_full_version < '3.11'" }, +] +sdist = { url = "https://files.pythonhosted.org/packages/80/f7/f6d06304c61c2a73213c0a4815280f70d985429cda26272f490e42119c1a/mistune-3.1.2.tar.gz", hash = "sha256:733bf018ba007e8b5f2d3a9eb624034f6ee26c4ea769a98ec533ee111d504dff", size = 94613 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/12/92/30b4e54c4d7c48c06db61595cffbbf4f19588ea177896f9b78f0fbe021fd/mistune-3.1.2-py3-none-any.whl", hash = "sha256:4b47731332315cdca99e0ded46fc0004001c1299ff773dfb48fbe1fd226de319", size = 53696 }, +] + +[[package]] +name = "mkdocs" +version = "1.6.1" +source = { registry = "https://pypi.org/simple" } +dependencies = [ + { name = "click" }, + { name = "colorama", marker = "sys_platform == 'win32'" }, + { name = "ghp-import" }, + { name = "jinja2" }, + { name = "markdown" }, + { name = "markupsafe" }, + { name = "mergedeep" }, + { name = "mkdocs-get-deps" }, + { name = "packaging" }, + { name = "pathspec" }, + { name = "pyyaml" }, + { name = "pyyaml-env-tag" }, + { name = "watchdog" }, +] +sdist = { url = "https://files.pythonhosted.org/packages/bc/c6/bbd4f061bd16b378247f12953ffcb04786a618ce5e904b8c5a01a0309061/mkdocs-1.6.1.tar.gz", hash = "sha256:7b432f01d928c084353ab39c57282f29f92136665bdd6abf7c1ec8d822ef86f2", size = 3889159 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/22/5b/dbc6a8cddc9cfa9c4971d59fb12bb8d42e161b7e7f8cc89e49137c5b279c/mkdocs-1.6.1-py3-none-any.whl", hash = "sha256:db91759624d1647f3f34aa0c3f327dd2601beae39a366d6e064c03468d35c20e", size = 3864451 }, +] + +[[package]] +name = "mkdocs-autorefs" +version = "1.4.0" +source = { registry = "https://pypi.org/simple" } +dependencies = [ + { name = "markdown" }, + { name = "markupsafe" }, + { name = "mkdocs" }, +] +sdist = { url = "https://files.pythonhosted.org/packages/83/79/e846eb3323d1546b25d2ae4c957f5edf1bdfb7e0b695d43feae034c61553/mkdocs_autorefs-1.4.0.tar.gz", hash = "sha256:a9c0aa9c90edbce302c09d050a3c4cb7c76f8b7b2c98f84a7a05f53d00392156", size = 3128903 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/33/0e/a6ff5d3b3ac428fa8c43a356df449f366ff0dbe242dac9f87fa9d20515ed/mkdocs_autorefs-1.4.0-py3-none-any.whl", hash = "sha256:bad19f69655878d20194acd0162e29a89c3f7e6365ffe54e72aa3fd1072f240d", size = 4368332 }, +] + +[[package]] +name = "mkdocs-get-deps" +version = "0.2.0" +source = { registry = "https://pypi.org/simple" } +dependencies = [ + { name = "mergedeep" }, + { name = "platformdirs" }, + { name = "pyyaml" }, +] +sdist = { url = "https://files.pythonhosted.org/packages/98/f5/ed29cd50067784976f25ed0ed6fcd3c2ce9eb90650aa3b2796ddf7b6870b/mkdocs_get_deps-0.2.0.tar.gz", hash = "sha256:162b3d129c7fad9b19abfdcb9c1458a651628e4b1dea628ac68790fb3061c60c", size = 10239 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/9f/d4/029f984e8d3f3b6b726bd33cafc473b75e9e44c0f7e80a5b29abc466bdea/mkdocs_get_deps-0.2.0-py3-none-any.whl", hash = "sha256:2bf11d0b133e77a0dd036abeeb06dec8775e46efa526dc70667d8863eefc6134", size = 9521 }, +] + +[[package]] +name = "mkdocs-jupyter" +version = "0.25.0" +source = { registry = "https://pypi.org/simple" } +dependencies = [ + { name = "ipykernel" }, + { name = "jupytext" }, + { name = "mkdocs" }, + { name = "mkdocs-material" }, + { name = "nbconvert" }, + { name = "pygments" }, +] +sdist = { url = "https://files.pythonhosted.org/packages/a9/f6/e794c9ef38749d71f5808f8a30b16921a912e33d36410f1d4084a731630e/mkdocs_jupyter-0.25.0.tar.gz", hash = "sha256:e26c1d341916bc57f96ea3f93d8d0a88fc77c87d4cee222f66d2007798d924f5", size = 1626661 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/35/77/e2afd28ea0af09ed75fcd96c00ac854811e5cbe0658059d7770963a46be2/mkdocs_jupyter-0.25.0-py3-none-any.whl", hash = "sha256:d83d71deef19f0401505945bf92ec3bd5b40615af89308e72d5112929f8ee00b", size = 1456119 }, +] + +[[package]] +name = "mkdocs-material" +version = "9.6.6" +source = { registry = "https://pypi.org/simple" } +dependencies = [ + { name = "babel" }, + { name = "backrefs" }, + { name = "colorama" }, + { name = "jinja2" }, + { name = "markdown" }, + { name = "mkdocs" }, + { name = "mkdocs-material-extensions" }, + { name = "paginate" }, + { name = "pygments" }, + { name = "pymdown-extensions" }, + { name = "requests" }, +] +sdist = { url = "https://files.pythonhosted.org/packages/26/b2/4244c578bf00f88181c55a76e484efb429159a1a49db60eaf6b696783760/mkdocs_material-9.6.6.tar.gz", hash = "sha256:06141bd720b0b235829bd59e8afc11d5587c35ae7fc340612d2b3f554e6a69d8", size = 3947396 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/a4/2d/c71b689cbccef26806cea4f3dd98f1555cb5894e374c8c5ca6d2106d7fd4/mkdocs_material-9.6.6-py3-none-any.whl", hash = "sha256:904c422ec86086144495831cee2614bb8a0092572ef579af6392b8080309d3a3", size = 8696753 }, +] + +[[package]] +name = "mkdocs-material-extensions" +version = "1.3.1" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/79/9b/9b4c96d6593b2a541e1cb8b34899a6d021d208bb357042823d4d2cabdbe7/mkdocs_material_extensions-1.3.1.tar.gz", hash = "sha256:10c9511cea88f568257f960358a467d12b970e1f7b2c0e5fb2bb48cab1928443", size = 11847 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/5b/54/662a4743aa81d9582ee9339d4ffa3c8fd40a4965e033d77b9da9774d3960/mkdocs_material_extensions-1.3.1-py3-none-any.whl", hash = "sha256:adff8b62700b25cb77b53358dad940f3ef973dd6db797907c49e3c2ef3ab4e31", size = 8728 }, +] + +[[package]] +name = "mkdocs-monorepo-plugin" +version = "1.1.0" +source = { registry = "https://pypi.org/simple" } +dependencies = [ + { name = "mkdocs" }, + { name = "python-slugify" }, +] +sdist = { url = "https://files.pythonhosted.org/packages/f7/6c/5b2a34fd63fe20724e2edf1879e977b40453efe40e1c385a05f38b420664/mkdocs-monorepo-plugin-1.1.0.tar.gz", hash = "sha256:ccc566e166aac5ae7fade498c15c4a337a4892d238629b51aba8ef3fc7099034", size = 13435 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/d3/33/4cc6c70223aee511244f8fe7706df70d1cd253d1446ab466c73f9dfbaab5/mkdocs_monorepo_plugin-1.1.0-py3-none-any.whl", hash = "sha256:7bbfd9756a7fdecf64d6105dad96cce7e7bb5f0d6cfc2bfda31a1919c77cc3b9", size = 14312 }, +] + +[[package]] +name = "mkdocstrings" +version = "0.28.2" +source = { registry = "https://pypi.org/simple" } +dependencies = [ + { name = "jinja2" }, + { name = "markdown" }, + { name = "markupsafe" }, + { name = "mkdocs" }, + { name = "mkdocs-autorefs" }, + { name = "mkdocs-get-deps" }, + { name = "pymdown-extensions" }, +] +sdist = { url = "https://files.pythonhosted.org/packages/e8/83/5eab81d31953c725942eb663b6a4cf36ad06d803633c8e1c6ddc708af62d/mkdocstrings-0.28.2.tar.gz", hash = "sha256:9b847266d7a588ea76a8385eaebe1538278b4361c0d1ce48ed005be59f053569", size = 5691916 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/32/60/15ef9759431cf8e60ffda7d5bba3914cc764f2bd8e7f62e1bd301ea292e0/mkdocstrings-0.28.2-py3-none-any.whl", hash = "sha256:57f79c557e2718d217d6f6a81bf75a0de097f10e922e7e5e00f085c3f0ff6895", size = 8056702 }, +] + +[[package]] +name = "mkdocstrings-python" +version = "1.16.2" +source = { registry = "https://pypi.org/simple" } +dependencies = [ + { name = "griffe" }, + { name = "mkdocs-autorefs" }, + { name = "mkdocstrings" }, + { name = "typing-extensions", marker = "python_full_version < '3.11'" }, +] +sdist = { url = "https://files.pythonhosted.org/packages/ed/a9/5990642e1bb2d90b049f655b92f46d0a77acb76ed59ef3233d5a6934312e/mkdocstrings_python-1.16.2.tar.gz", hash = "sha256:942ec1a2e0481d28f96f93be3d6e343cab92a21e5baf01c37dd2d7236c4d0bd7", size = 423492 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/82/a2/60be7e17a2f2a9d4bfb7273cdb2071eeeb65bdca5c0d07ff16df63221ca2/mkdocstrings_python-1.16.2-py3-none-any.whl", hash = "sha256:ff7e719404e59ad1a72f1afbe854769984c889b8fa043c160f6c988e1ad9e966", size = 449141 }, +] + +[[package]] +name = "nbclient" +version = "0.10.2" +source = { registry = "https://pypi.org/simple" } +dependencies = [ + { name = "jupyter-client" }, + { name = "jupyter-core" }, + { name = "nbformat" }, + { name = "traitlets" }, +] +sdist = { url = "https://files.pythonhosted.org/packages/87/66/7ffd18d58eae90d5721f9f39212327695b749e23ad44b3881744eaf4d9e8/nbclient-0.10.2.tar.gz", hash = "sha256:90b7fc6b810630db87a6d0c2250b1f0ab4cf4d3c27a299b0cde78a4ed3fd9193", size = 62424 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/34/6d/e7fa07f03a4a7b221d94b4d586edb754a9b0dc3c9e2c93353e9fa4e0d117/nbclient-0.10.2-py3-none-any.whl", hash = "sha256:4ffee11e788b4a27fabeb7955547e4318a5298f34342a4bfd01f2e1faaeadc3d", size = 25434 }, +] + +[[package]] +name = "nbconvert" +version = "7.16.6" +source = { registry = "https://pypi.org/simple" } +dependencies = [ + { name = "beautifulsoup4" }, + { name = "bleach", extra = ["css"] }, + { name = "defusedxml" }, + { name = "jinja2" }, + { name = "jupyter-core" }, + { name = "jupyterlab-pygments" }, + { name = "markupsafe" }, + { name = "mistune" }, + { name = "nbclient" }, + { name = "nbformat" }, + { name = "packaging" }, + { name = "pandocfilters" }, + { name = "pygments" }, + { name = "traitlets" }, +] +sdist = { url = "https://files.pythonhosted.org/packages/a3/59/f28e15fc47ffb73af68a8d9b47367a8630d76e97ae85ad18271b9db96fdf/nbconvert-7.16.6.tar.gz", hash = "sha256:576a7e37c6480da7b8465eefa66c17844243816ce1ccc372633c6b71c3c0f582", size = 857715 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/cc/9a/cd673b2f773a12c992f41309ef81b99da1690426bd2f96957a7ade0d3ed7/nbconvert-7.16.6-py3-none-any.whl", hash = "sha256:1375a7b67e0c2883678c48e506dc320febb57685e5ee67faa51b18a90f3a712b", size = 258525 }, +] + +[[package]] +name = "nbformat" +version = "5.10.4" +source = { registry = "https://pypi.org/simple" } +dependencies = [ + { name = "fastjsonschema" }, + { name = "jsonschema" }, + { name = "jupyter-core" }, + { name = "traitlets" }, +] +sdist = { url = "https://files.pythonhosted.org/packages/6d/fd/91545e604bc3dad7dca9ed03284086039b294c6b3d75c0d2fa45f9e9caf3/nbformat-5.10.4.tar.gz", hash = "sha256:322168b14f937a5d11362988ecac2a4952d3d8e3a2cbeb2319584631226d5b3a", size = 142749 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/a9/82/0340caa499416c78e5d8f5f05947ae4bc3cba53c9f038ab6e9ed964e22f1/nbformat-5.10.4-py3-none-any.whl", hash = "sha256:3b48d6c8fbca4b299bf3982ea7db1af21580e4fec269ad087b9e81588891200b", size = 78454 }, +] + +[[package]] +name = "nest-asyncio" +version = "1.6.0" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/83/f8/51569ac65d696c8ecbee95938f89d4abf00f47d58d48f6fbabfe8f0baefe/nest_asyncio-1.6.0.tar.gz", hash = "sha256:6f172d5449aca15afd6c646851f4e31e02c598d553a667e38cafa997cfec55fe", size = 7418 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/a0/c4/c2971a3ba4c6103a3d10c4b0f24f461ddc027f0f09763220cf35ca1401b3/nest_asyncio-1.6.0-py3-none-any.whl", hash = "sha256:87af6efd6b5e897c81050477ef65c62e2b2f35d51703cae01aff2905b1852e1c", size = 5195 }, +] + +[[package]] +name = "nodeenv" +version = "1.9.1" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/43/16/fc88b08840de0e0a72a2f9d8c6bae36be573e475a6326ae854bcc549fc45/nodeenv-1.9.1.tar.gz", hash = "sha256:6ec12890a2dab7946721edbfbcd91f3319c6ccc9aec47be7c7e6b7011ee6645f", size = 47437 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/d2/1d/1b658dbd2b9fa9c4c9f32accbfc0205d532c8c6194dc0f2a4c0428e7128a/nodeenv-1.9.1-py2.py3-none-any.whl", hash = "sha256:ba11c9782d29c27c70ffbdda2d7415098754709be8a7056d79a737cd901155c9", size = 22314 }, +] + +[[package]] +name = "notebook" +version = "6.4.12" +source = { registry = "https://pypi.org/simple" } +dependencies = [ + { name = "argon2-cffi" }, + { name = "ipykernel" }, + { name = "ipython-genutils" }, + { name = "jinja2" }, + { name = "jupyter-client" }, + { name = "jupyter-core" }, + { name = "nbconvert" }, + { name = "nbformat" }, + { name = "nest-asyncio" }, + { name = "prometheus-client" }, + { name = "pyzmq" }, + { name = "send2trash" }, + { name = "terminado" }, + { name = "tornado" }, + { name = "traitlets" }, +] +sdist = { url = "https://files.pythonhosted.org/packages/d5/94/b15c0e44c37e49cf77866ff56cc7644632229b79c113a0eafd908fc7c7d7/notebook-6.4.12.tar.gz", hash = "sha256:6268c9ec9048cff7a45405c990c29ac9ca40b0bc3ec29263d218c5e01f2b4e86", size = 14389641 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/b5/62/229659241aee54be38990e06e684bcfe5c9c8727185f5e39335be8821583/notebook-6.4.12-py3-none-any.whl", hash = "sha256:8c07a3bb7640e371f8a609bdbb2366a1976c6a2589da8ef917f761a61e3ad8b1", size = 9934585 }, +] + +[[package]] +name = "notebook-shim" +version = "0.2.4" +source = { registry = "https://pypi.org/simple" } +dependencies = [ + { name = "jupyter-server" }, +] +sdist = { url = "https://files.pythonhosted.org/packages/54/d2/92fa3243712b9a3e8bafaf60aac366da1cada3639ca767ff4b5b3654ec28/notebook_shim-0.2.4.tar.gz", hash = "sha256:b4b2cfa1b65d98307ca24361f5b30fe785b53c3fd07b7a47e89acb5e6ac638cb", size = 13167 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/f9/33/bd5b9137445ea4b680023eb0469b2bb969d61303dedb2aac6560ff3d14a1/notebook_shim-0.2.4-py3-none-any.whl", hash = "sha256:411a5be4e9dc882a074ccbcae671eda64cceb068767e9a3419096986560e1cef", size = 13307 }, +] + +[[package]] +name = "numpy" +version = "1.26.4" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/65/6e/09db70a523a96d25e115e71cc56a6f9031e7b8cd166c1ac8438307c14058/numpy-1.26.4.tar.gz", hash = "sha256:2a02aba9ed12e4ac4eb3ea9421c420301a0c6460d9830d74a9df87efa4912010", size = 15786129 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/a7/94/ace0fdea5241a27d13543ee117cbc65868e82213fb31a8eb7fe9ff23f313/numpy-1.26.4-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:9ff0f4f29c51e2803569d7a51c2304de5554655a60c5d776e35b4a41413830d0", size = 20631468 }, + { url = "https://files.pythonhosted.org/packages/20/f7/b24208eba89f9d1b58c1668bc6c8c4fd472b20c45573cb767f59d49fb0f6/numpy-1.26.4-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:2e4ee3380d6de9c9ec04745830fd9e2eccb3e6cf790d39d7b98ffd19b0dd754a", size = 13966411 }, + { url = "https://files.pythonhosted.org/packages/fc/a5/4beee6488160798683eed5bdb7eead455892c3b4e1f78d79d8d3f3b084ac/numpy-1.26.4-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:d209d8969599b27ad20994c8e41936ee0964e6da07478d6c35016bc386b66ad4", size = 14219016 }, + { url = "https://files.pythonhosted.org/packages/4b/d7/ecf66c1cd12dc28b4040b15ab4d17b773b87fa9d29ca16125de01adb36cd/numpy-1.26.4-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:ffa75af20b44f8dba823498024771d5ac50620e6915abac414251bd971b4529f", size = 18240889 }, + { url = "https://files.pythonhosted.org/packages/24/03/6f229fe3187546435c4f6f89f6d26c129d4f5bed40552899fcf1f0bf9e50/numpy-1.26.4-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:62b8e4b1e28009ef2846b4c7852046736bab361f7aeadeb6a5b89ebec3c7055a", size = 13876746 }, + { url = "https://files.pythonhosted.org/packages/39/fe/39ada9b094f01f5a35486577c848fe274e374bbf8d8f472e1423a0bbd26d/numpy-1.26.4-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:a4abb4f9001ad2858e7ac189089c42178fcce737e4169dc61321660f1a96c7d2", size = 18078620 }, + { url = "https://files.pythonhosted.org/packages/d5/ef/6ad11d51197aad206a9ad2286dc1aac6a378059e06e8cf22cd08ed4f20dc/numpy-1.26.4-cp310-cp310-win32.whl", hash = "sha256:bfe25acf8b437eb2a8b2d49d443800a5f18508cd811fea3181723922a8a82b07", size = 5972659 }, + { url = "https://files.pythonhosted.org/packages/19/77/538f202862b9183f54108557bfda67e17603fc560c384559e769321c9d92/numpy-1.26.4-cp310-cp310-win_amd64.whl", hash = "sha256:b97fe8060236edf3662adfc2c633f56a08ae30560c56310562cb4f95500022d5", size = 15808905 }, + { url = "https://files.pythonhosted.org/packages/11/57/baae43d14fe163fa0e4c47f307b6b2511ab8d7d30177c491960504252053/numpy-1.26.4-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:4c66707fabe114439db9068ee468c26bbdf909cac0fb58686a42a24de1760c71", size = 20630554 }, + { url = "https://files.pythonhosted.org/packages/1a/2e/151484f49fd03944c4a3ad9c418ed193cfd02724e138ac8a9505d056c582/numpy-1.26.4-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:edd8b5fe47dab091176d21bb6de568acdd906d1887a4584a15a9a96a1dca06ef", size = 13997127 }, + { url = "https://files.pythonhosted.org/packages/79/ae/7e5b85136806f9dadf4878bf73cf223fe5c2636818ba3ab1c585d0403164/numpy-1.26.4-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:7ab55401287bfec946ced39700c053796e7cc0e3acbef09993a9ad2adba6ca6e", size = 14222994 }, + { url = "https://files.pythonhosted.org/packages/3a/d0/edc009c27b406c4f9cbc79274d6e46d634d139075492ad055e3d68445925/numpy-1.26.4-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:666dbfb6ec68962c033a450943ded891bed2d54e6755e35e5835d63f4f6931d5", size = 18252005 }, + { url = "https://files.pythonhosted.org/packages/09/bf/2b1aaf8f525f2923ff6cfcf134ae5e750e279ac65ebf386c75a0cf6da06a/numpy-1.26.4-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:96ff0b2ad353d8f990b63294c8986f1ec3cb19d749234014f4e7eb0112ceba5a", size = 13885297 }, + { url = "https://files.pythonhosted.org/packages/df/a0/4e0f14d847cfc2a633a1c8621d00724f3206cfeddeb66d35698c4e2cf3d2/numpy-1.26.4-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:60dedbb91afcbfdc9bc0b1f3f402804070deed7392c23eb7a7f07fa857868e8a", size = 18093567 }, + { url = "https://files.pythonhosted.org/packages/d2/b7/a734c733286e10a7f1a8ad1ae8c90f2d33bf604a96548e0a4a3a6739b468/numpy-1.26.4-cp311-cp311-win32.whl", hash = "sha256:1af303d6b2210eb850fcf03064d364652b7120803a0b872f5211f5234b399f20", size = 5968812 }, + { url = "https://files.pythonhosted.org/packages/3f/6b/5610004206cf7f8e7ad91c5a85a8c71b2f2f8051a0c0c4d5916b76d6cbb2/numpy-1.26.4-cp311-cp311-win_amd64.whl", hash = "sha256:cd25bcecc4974d09257ffcd1f098ee778f7834c3ad767fe5db785be9a4aa9cb2", size = 15811913 }, + { url = "https://files.pythonhosted.org/packages/95/12/8f2020a8e8b8383ac0177dc9570aad031a3beb12e38847f7129bacd96228/numpy-1.26.4-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:b3ce300f3644fb06443ee2222c2201dd3a89ea6040541412b8fa189341847218", size = 20335901 }, + { url = "https://files.pythonhosted.org/packages/75/5b/ca6c8bd14007e5ca171c7c03102d17b4f4e0ceb53957e8c44343a9546dcc/numpy-1.26.4-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:03a8c78d01d9781b28a6989f6fa1bb2c4f2d51201cf99d3dd875df6fbd96b23b", size = 13685868 }, + { url = "https://files.pythonhosted.org/packages/79/f8/97f10e6755e2a7d027ca783f63044d5b1bc1ae7acb12afe6a9b4286eac17/numpy-1.26.4-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:9fad7dcb1aac3c7f0584a5a8133e3a43eeb2fe127f47e3632d43d677c66c102b", size = 13925109 }, + { url = "https://files.pythonhosted.org/packages/0f/50/de23fde84e45f5c4fda2488c759b69990fd4512387a8632860f3ac9cd225/numpy-1.26.4-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:675d61ffbfa78604709862923189bad94014bef562cc35cf61d3a07bba02a7ed", size = 17950613 }, + { url = "https://files.pythonhosted.org/packages/4c/0c/9c603826b6465e82591e05ca230dfc13376da512b25ccd0894709b054ed0/numpy-1.26.4-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:ab47dbe5cc8210f55aa58e4805fe224dac469cde56b9f731a4c098b91917159a", size = 13572172 }, + { url = "https://files.pythonhosted.org/packages/76/8c/2ba3902e1a0fc1c74962ea9bb33a534bb05984ad7ff9515bf8d07527cadd/numpy-1.26.4-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:1dda2e7b4ec9dd512f84935c5f126c8bd8b9f2fc001e9f54af255e8c5f16b0e0", size = 17786643 }, + { url = "https://files.pythonhosted.org/packages/28/4a/46d9e65106879492374999e76eb85f87b15328e06bd1550668f79f7b18c6/numpy-1.26.4-cp312-cp312-win32.whl", hash = "sha256:50193e430acfc1346175fcbdaa28ffec49947a06918b7b92130744e81e640110", size = 5677803 }, + { url = "https://files.pythonhosted.org/packages/16/2e/86f24451c2d530c88daf997cb8d6ac622c1d40d19f5a031ed68a4b73a374/numpy-1.26.4-cp312-cp312-win_amd64.whl", hash = "sha256:08beddf13648eb95f8d867350f6a018a4be2e5ad54c8d8caed89ebca558b2818", size = 15517754 }, +] + +[[package]] +name = "oqd-analog-emulator" +version = "0.1.0" +source = { registry = "https://pypi.org/simple" } +dependencies = [ + { name = "cython" }, + { name = "filelock" }, + { name = "numpy" }, + { name = "oqd-compiler-infrastructure" }, + { name = "oqd-core" }, + { name = "pydantic" }, + { name = "qutip" }, +] +wheels = [ + { url = "https://files.pythonhosted.org/packages/72/5d/ad96965bab03244a555bb9e7d17b9e237113a295d5f3927061e777083ce5/oqd_analog_emulator-0.1.0-py3-none-any.whl", hash = "sha256:59b3016c979542954a7c0ed7f1be79c76f56af64b1f18901d6eb1616e918bf4c", size = 15026 }, +] + +[[package]] +name = "oqd-cloud" +version = "0.1.0" +source = { registry = "https://pypi.org/simple" } +dependencies = [ + { name = "numpy" }, + { name = "oqd-analog-emulator" }, + { name = "oqd-compiler-infrastructure" }, + { name = "oqd-core" }, + { name = "pydantic" }, + { name = "requests" }, +] +wheels = [ + { url = "https://files.pythonhosted.org/packages/59/c4/3f284c49d8cf21851841e6ebc40a9b85886075ba5c20741b8c6f28901fe8/oqd_cloud-0.1.0-py3-none-any.whl", hash = "sha256:76a1c5c750ed58fabd072627a081acf69a09f20813c03464ad1517d777adf5bc", size = 20426 }, +] + +[[package]] +name = "oqd-compiler-infrastructure" +version = "0.1.0" +source = { registry = "https://pypi.org/simple" } +dependencies = [ + { name = "pydantic" }, +] +wheels = [ + { url = "https://files.pythonhosted.org/packages/3c/da/4074a6de600dffc70dac471035725853e455e89e0390acdf7800ac96afcd/oqd_compiler_infrastructure-0.1.0-py3-none-any.whl", hash = "sha256:8b4a159f955857cebb76571fa33acf129b6edf698774aeedfb5296555aef84c0", size = 14702 }, +] + +[[package]] +name = "oqd-core" +version = "0.1.0" +source = { registry = "https://pypi.org/simple" } +dependencies = [ + { name = "cython" }, + { name = "filelock" }, + { name = "numpy" }, + { name = "oqd-compiler-infrastructure" }, + { name = "pydantic" }, + { name = "qutip" }, +] +wheels = [ + { url = "https://files.pythonhosted.org/packages/96/e6/b8e1ddb9ffd6bfc79e0de958bf275281077435c9c2d5684c1879292a1bfb/oqd_core-0.1.0-py3-none-any.whl", hash = "sha256:7beaf474fe7a9cb335f1329472d188f9b9a75b5c1124a9ec8c6cc97d7318b85b", size = 52549 }, +] + +[[package]] +name = "overrides" +version = "7.7.0" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/36/86/b585f53236dec60aba864e050778b25045f857e17f6e5ea0ae95fe80edd2/overrides-7.7.0.tar.gz", hash = "sha256:55158fa3d93b98cc75299b1e67078ad9003ca27945c76162c1c0766d6f91820a", size = 22812 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/2c/ab/fc8290c6a4c722e5514d80f62b2dc4c4df1a68a41d1364e625c35990fcf3/overrides-7.7.0-py3-none-any.whl", hash = "sha256:c7ed9d062f78b8e4c1a7b70bd8796b35ead4d9f510227ef9c5dc7626c60d7e49", size = 17832 }, +] + +[[package]] +name = "packaging" +version = "24.2" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/d0/63/68dbb6eb2de9cb10ee4c9c14a0148804425e13c4fb20d61cce69f53106da/packaging-24.2.tar.gz", hash = "sha256:c228a6dc5e932d346bc5739379109d49e8853dd8223571c7c5b55260edc0b97f", size = 163950 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/88/ef/eb23f262cca3c0c4eb7ab1933c3b1f03d021f2c48f54763065b6f0e321be/packaging-24.2-py3-none-any.whl", hash = "sha256:09abb1bccd265c01f4a3aa3f7a7db064b36514d2cba19a2f694fe6150451a759", size = 65451 }, +] + +[[package]] +name = "paginate" +version = "0.5.7" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/ec/46/68dde5b6bc00c1296ec6466ab27dddede6aec9af1b99090e1107091b3b84/paginate-0.5.7.tar.gz", hash = "sha256:22bd083ab41e1a8b4f3690544afb2c60c25e5c9a63a30fa2f483f6c60c8e5945", size = 19252 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/90/96/04b8e52da071d28f5e21a805b19cb9390aa17a47462ac87f5e2696b9566d/paginate-0.5.7-py2.py3-none-any.whl", hash = "sha256:b885e2af73abcf01d9559fd5216b57ef722f8c42affbb63942377668e35c7591", size = 13746 }, +] + +[[package]] +name = "pandas" +version = "2.2.3" +source = { registry = "https://pypi.org/simple" } +dependencies = [ + { name = "numpy" }, + { name = "python-dateutil" }, + { name = "pytz" }, + { name = "tzdata" }, +] +sdist = { url = "https://files.pythonhosted.org/packages/9c/d6/9f8431bacc2e19dca897724cd097b1bb224a6ad5433784a44b587c7c13af/pandas-2.2.3.tar.gz", hash = "sha256:4f18ba62b61d7e192368b84517265a99b4d7ee8912f8708660fb4a366cc82667", size = 4399213 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/aa/70/c853aec59839bceed032d52010ff5f1b8d87dc3114b762e4ba2727661a3b/pandas-2.2.3-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:1948ddde24197a0f7add2bdc4ca83bf2b1ef84a1bc8ccffd95eda17fd836ecb5", size = 12580827 }, + { url = "https://files.pythonhosted.org/packages/99/f2/c4527768739ffa4469b2b4fff05aa3768a478aed89a2f271a79a40eee984/pandas-2.2.3-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:381175499d3802cde0eabbaf6324cce0c4f5d52ca6f8c377c29ad442f50f6348", size = 11303897 }, + { url = "https://files.pythonhosted.org/packages/ed/12/86c1747ea27989d7a4064f806ce2bae2c6d575b950be087837bdfcabacc9/pandas-2.2.3-cp310-cp310-manylinux2014_aarch64.manylinux_2_17_aarch64.whl", hash = "sha256:d9c45366def9a3dd85a6454c0e7908f2b3b8e9c138f5dc38fed7ce720d8453ed", size = 66480908 }, + { url = "https://files.pythonhosted.org/packages/44/50/7db2cd5e6373ae796f0ddad3675268c8d59fb6076e66f0c339d61cea886b/pandas-2.2.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:86976a1c5b25ae3f8ccae3a5306e443569ee3c3faf444dfd0f41cda24667ad57", size = 13064210 }, + { url = "https://files.pythonhosted.org/packages/61/61/a89015a6d5536cb0d6c3ba02cebed51a95538cf83472975275e28ebf7d0c/pandas-2.2.3-cp310-cp310-musllinux_1_2_aarch64.whl", hash = "sha256:b8661b0238a69d7aafe156b7fa86c44b881387509653fdf857bebc5e4008ad42", size = 16754292 }, + { url = "https://files.pythonhosted.org/packages/ce/0d/4cc7b69ce37fac07645a94e1d4b0880b15999494372c1523508511b09e40/pandas-2.2.3-cp310-cp310-musllinux_1_2_x86_64.whl", hash = "sha256:37e0aced3e8f539eccf2e099f65cdb9c8aa85109b0be6e93e2baff94264bdc6f", size = 14416379 }, + { url = "https://files.pythonhosted.org/packages/31/9e/6ebb433de864a6cd45716af52a4d7a8c3c9aaf3a98368e61db9e69e69a9c/pandas-2.2.3-cp310-cp310-win_amd64.whl", hash = "sha256:56534ce0746a58afaf7942ba4863e0ef81c9c50d3f0ae93e9497d6a41a057645", size = 11598471 }, + { url = "https://files.pythonhosted.org/packages/a8/44/d9502bf0ed197ba9bf1103c9867d5904ddcaf869e52329787fc54ed70cc8/pandas-2.2.3-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:66108071e1b935240e74525006034333f98bcdb87ea116de573a6a0dccb6c039", size = 12602222 }, + { url = "https://files.pythonhosted.org/packages/52/11/9eac327a38834f162b8250aab32a6781339c69afe7574368fffe46387edf/pandas-2.2.3-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:7c2875855b0ff77b2a64a0365e24455d9990730d6431b9e0ee18ad8acee13dbd", size = 11321274 }, + { url = "https://files.pythonhosted.org/packages/45/fb/c4beeb084718598ba19aa9f5abbc8aed8b42f90930da861fcb1acdb54c3a/pandas-2.2.3-cp311-cp311-manylinux2014_aarch64.manylinux_2_17_aarch64.whl", hash = "sha256:cd8d0c3be0515c12fed0bdbae072551c8b54b7192c7b1fda0ba56059a0179698", size = 15579836 }, + { url = "https://files.pythonhosted.org/packages/cd/5f/4dba1d39bb9c38d574a9a22548c540177f78ea47b32f99c0ff2ec499fac5/pandas-2.2.3-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:c124333816c3a9b03fbeef3a9f230ba9a737e9e5bb4060aa2107a86cc0a497fc", size = 13058505 }, + { url = "https://files.pythonhosted.org/packages/b9/57/708135b90391995361636634df1f1130d03ba456e95bcf576fada459115a/pandas-2.2.3-cp311-cp311-musllinux_1_2_aarch64.whl", hash = "sha256:63cc132e40a2e084cf01adf0775b15ac515ba905d7dcca47e9a251819c575ef3", size = 16744420 }, + { url = "https://files.pythonhosted.org/packages/86/4a/03ed6b7ee323cf30404265c284cee9c65c56a212e0a08d9ee06984ba2240/pandas-2.2.3-cp311-cp311-musllinux_1_2_x86_64.whl", hash = "sha256:29401dbfa9ad77319367d36940cd8a0b3a11aba16063e39632d98b0e931ddf32", size = 14440457 }, + { url = "https://files.pythonhosted.org/packages/ed/8c/87ddf1fcb55d11f9f847e3c69bb1c6f8e46e2f40ab1a2d2abadb2401b007/pandas-2.2.3-cp311-cp311-win_amd64.whl", hash = "sha256:3fc6873a41186404dad67245896a6e440baacc92f5b716ccd1bc9ed2995ab2c5", size = 11617166 }, + { url = "https://files.pythonhosted.org/packages/17/a3/fb2734118db0af37ea7433f57f722c0a56687e14b14690edff0cdb4b7e58/pandas-2.2.3-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:b1d432e8d08679a40e2a6d8b2f9770a5c21793a6f9f47fdd52c5ce1948a5a8a9", size = 12529893 }, + { url = "https://files.pythonhosted.org/packages/e1/0c/ad295fd74bfac85358fd579e271cded3ac969de81f62dd0142c426b9da91/pandas-2.2.3-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:a5a1595fe639f5988ba6a8e5bc9649af3baf26df3998a0abe56c02609392e0a4", size = 11363475 }, + { url = "https://files.pythonhosted.org/packages/c6/2a/4bba3f03f7d07207481fed47f5b35f556c7441acddc368ec43d6643c5777/pandas-2.2.3-cp312-cp312-manylinux2014_aarch64.manylinux_2_17_aarch64.whl", hash = "sha256:5de54125a92bb4d1c051c0659e6fcb75256bf799a732a87184e5ea503965bce3", size = 15188645 }, + { url = "https://files.pythonhosted.org/packages/38/f8/d8fddee9ed0d0c0f4a2132c1dfcf0e3e53265055da8df952a53e7eaf178c/pandas-2.2.3-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:fffb8ae78d8af97f849404f21411c95062db1496aeb3e56f146f0355c9989319", size = 12739445 }, + { url = "https://files.pythonhosted.org/packages/20/e8/45a05d9c39d2cea61ab175dbe6a2de1d05b679e8de2011da4ee190d7e748/pandas-2.2.3-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:6dfcb5ee8d4d50c06a51c2fffa6cff6272098ad6540aed1a76d15fb9318194d8", size = 16359235 }, + { url = "https://files.pythonhosted.org/packages/1d/99/617d07a6a5e429ff90c90da64d428516605a1ec7d7bea494235e1c3882de/pandas-2.2.3-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:062309c1b9ea12a50e8ce661145c6aab431b1e99530d3cd60640e255778bd43a", size = 14056756 }, + { url = "https://files.pythonhosted.org/packages/29/d4/1244ab8edf173a10fd601f7e13b9566c1b525c4f365d6bee918e68381889/pandas-2.2.3-cp312-cp312-win_amd64.whl", hash = "sha256:59ef3764d0fe818125a5097d2ae867ca3fa64df032331b7e0917cf5d7bf66b13", size = 11504248 }, +] + +[[package]] +name = "pandocfilters" +version = "1.5.1" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/70/6f/3dd4940bbe001c06a65f88e36bad298bc7a0de5036115639926b0c5c0458/pandocfilters-1.5.1.tar.gz", hash = "sha256:002b4a555ee4ebc03f8b66307e287fa492e4a77b4ea14d3f934328297bb4939e", size = 8454 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/ef/af/4fbc8cab944db5d21b7e2a5b8e9211a03a79852b1157e2c102fcc61ac440/pandocfilters-1.5.1-py2.py3-none-any.whl", hash = "sha256:93be382804a9cdb0a7267585f157e5d1731bbe5545a85b268d6f5fe6232de2bc", size = 8663 }, +] + +[[package]] +name = "parso" +version = "0.8.4" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/66/94/68e2e17afaa9169cf6412ab0f28623903be73d1b32e208d9e8e541bb086d/parso-0.8.4.tar.gz", hash = "sha256:eb3a7b58240fb99099a345571deecc0f9540ea5f4dd2fe14c2a99d6b281ab92d", size = 400609 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/c6/ac/dac4a63f978e4dcb3c6d3a78c4d8e0192a113d288502a1216950c41b1027/parso-0.8.4-py2.py3-none-any.whl", hash = "sha256:a418670a20291dacd2dddc80c377c5c3791378ee1e8d12bffc35420643d43f18", size = 103650 }, +] + +[[package]] +name = "pathspec" +version = "0.12.1" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/ca/bc/f35b8446f4531a7cb215605d100cd88b7ac6f44ab3fc94870c120ab3adbf/pathspec-0.12.1.tar.gz", hash = "sha256:a482d51503a1ab33b1c67a6c3813a26953dbdc71c31dacaef9a838c4e29f5712", size = 51043 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/cc/20/ff623b09d963f88bfde16306a54e12ee5ea43e9b597108672ff3a408aad6/pathspec-0.12.1-py3-none-any.whl", hash = "sha256:a0d503e138a4c123b27490a4f7beda6a01c6f288df0e4a8b79c7eb0dc7b4cc08", size = 31191 }, +] + +[[package]] +name = "pexpect" +version = "4.9.0" +source = { registry = "https://pypi.org/simple" } +dependencies = [ + { name = "ptyprocess" }, +] +sdist = { url = "https://files.pythonhosted.org/packages/42/92/cc564bf6381ff43ce1f4d06852fc19a2f11d180f23dc32d9588bee2f149d/pexpect-4.9.0.tar.gz", hash = "sha256:ee7d41123f3c9911050ea2c2dac107568dc43b2d3b0c7557a33212c398ead30f", size = 166450 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/9e/c3/059298687310d527a58bb01f3b1965787ee3b40dce76752eda8b44e9a2c5/pexpect-4.9.0-py2.py3-none-any.whl", hash = "sha256:7236d1e080e4936be2dc3e326cec0af72acf9212a7e1d060210e70a47e253523", size = 63772 }, +] + +[[package]] +name = "pillow" +version = "11.1.0" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/f3/af/c097e544e7bd278333db77933e535098c259609c4eb3b85381109602fb5b/pillow-11.1.0.tar.gz", hash = "sha256:368da70808b36d73b4b390a8ffac11069f8a5c85f29eff1f1b01bcf3ef5b2a20", size = 46742715 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/50/1c/2dcea34ac3d7bc96a1fd1bd0a6e06a57c67167fec2cff8d95d88229a8817/pillow-11.1.0-cp310-cp310-macosx_10_10_x86_64.whl", hash = "sha256:e1abe69aca89514737465752b4bcaf8016de61b3be1397a8fc260ba33321b3a8", size = 3229983 }, + { url = "https://files.pythonhosted.org/packages/14/ca/6bec3df25e4c88432681de94a3531cc738bd85dea6c7aa6ab6f81ad8bd11/pillow-11.1.0-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:c640e5a06869c75994624551f45e5506e4256562ead981cce820d5ab39ae2192", size = 3101831 }, + { url = "https://files.pythonhosted.org/packages/d4/2c/668e18e5521e46eb9667b09e501d8e07049eb5bfe39d56be0724a43117e6/pillow-11.1.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:a07dba04c5e22824816b2615ad7a7484432d7f540e6fa86af60d2de57b0fcee2", size = 4314074 }, + { url = "https://files.pythonhosted.org/packages/02/80/79f99b714f0fc25f6a8499ecfd1f810df12aec170ea1e32a4f75746051ce/pillow-11.1.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:e267b0ed063341f3e60acd25c05200df4193e15a4a5807075cd71225a2386e26", size = 4394933 }, + { url = "https://files.pythonhosted.org/packages/81/aa/8d4ad25dc11fd10a2001d5b8a80fdc0e564ac33b293bdfe04ed387e0fd95/pillow-11.1.0-cp310-cp310-manylinux_2_28_aarch64.whl", hash = "sha256:bd165131fd51697e22421d0e467997ad31621b74bfc0b75956608cb2906dda07", size = 4353349 }, + { url = "https://files.pythonhosted.org/packages/84/7a/cd0c3eaf4a28cb2a74bdd19129f7726277a7f30c4f8424cd27a62987d864/pillow-11.1.0-cp310-cp310-manylinux_2_28_x86_64.whl", hash = "sha256:abc56501c3fd148d60659aae0af6ddc149660469082859fa7b066a298bde9482", size = 4476532 }, + { url = "https://files.pythonhosted.org/packages/8f/8b/a907fdd3ae8f01c7670dfb1499c53c28e217c338b47a813af8d815e7ce97/pillow-11.1.0-cp310-cp310-musllinux_1_2_aarch64.whl", hash = "sha256:54ce1c9a16a9561b6d6d8cb30089ab1e5eb66918cb47d457bd996ef34182922e", size = 4279789 }, + { url = "https://files.pythonhosted.org/packages/6f/9a/9f139d9e8cccd661c3efbf6898967a9a337eb2e9be2b454ba0a09533100d/pillow-11.1.0-cp310-cp310-musllinux_1_2_x86_64.whl", hash = "sha256:73ddde795ee9b06257dac5ad42fcb07f3b9b813f8c1f7f870f402f4dc54b5269", size = 4413131 }, + { url = "https://files.pythonhosted.org/packages/a8/68/0d8d461f42a3f37432203c8e6df94da10ac8081b6d35af1c203bf3111088/pillow-11.1.0-cp310-cp310-win32.whl", hash = "sha256:3a5fe20a7b66e8135d7fd617b13272626a28278d0e578c98720d9ba4b2439d49", size = 2291213 }, + { url = "https://files.pythonhosted.org/packages/14/81/d0dff759a74ba87715509af9f6cb21fa21d93b02b3316ed43bda83664db9/pillow-11.1.0-cp310-cp310-win_amd64.whl", hash = "sha256:b6123aa4a59d75f06e9dd3dac5bf8bc9aa383121bb3dd9a7a612e05eabc9961a", size = 2625725 }, + { url = "https://files.pythonhosted.org/packages/ce/1f/8d50c096a1d58ef0584ddc37e6f602828515219e9d2428e14ce50f5ecad1/pillow-11.1.0-cp310-cp310-win_arm64.whl", hash = "sha256:a76da0a31da6fcae4210aa94fd779c65c75786bc9af06289cd1c184451ef7a65", size = 2375213 }, + { url = "https://files.pythonhosted.org/packages/dd/d6/2000bfd8d5414fb70cbbe52c8332f2283ff30ed66a9cde42716c8ecbe22c/pillow-11.1.0-cp311-cp311-macosx_10_10_x86_64.whl", hash = "sha256:e06695e0326d05b06833b40b7ef477e475d0b1ba3a6d27da1bb48c23209bf457", size = 3229968 }, + { url = "https://files.pythonhosted.org/packages/d9/45/3fe487010dd9ce0a06adf9b8ff4f273cc0a44536e234b0fad3532a42c15b/pillow-11.1.0-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:96f82000e12f23e4f29346e42702b6ed9a2f2fea34a740dd5ffffcc8c539eb35", size = 3101806 }, + { url = "https://files.pythonhosted.org/packages/e3/72/776b3629c47d9d5f1c160113158a7a7ad177688d3a1159cd3b62ded5a33a/pillow-11.1.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:a3cd561ded2cf2bbae44d4605837221b987c216cff94f49dfeed63488bb228d2", size = 4322283 }, + { url = "https://files.pythonhosted.org/packages/e4/c2/e25199e7e4e71d64eeb869f5b72c7ddec70e0a87926398785ab944d92375/pillow-11.1.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:f189805c8be5ca5add39e6f899e6ce2ed824e65fb45f3c28cb2841911da19070", size = 4402945 }, + { url = "https://files.pythonhosted.org/packages/c1/ed/51d6136c9d5911f78632b1b86c45241c712c5a80ed7fa7f9120a5dff1eba/pillow-11.1.0-cp311-cp311-manylinux_2_28_aarch64.whl", hash = "sha256:dd0052e9db3474df30433f83a71b9b23bd9e4ef1de13d92df21a52c0303b8ab6", size = 4361228 }, + { url = "https://files.pythonhosted.org/packages/48/a4/fbfe9d5581d7b111b28f1d8c2762dee92e9821bb209af9fa83c940e507a0/pillow-11.1.0-cp311-cp311-manylinux_2_28_x86_64.whl", hash = "sha256:837060a8599b8f5d402e97197d4924f05a2e0d68756998345c829c33186217b1", size = 4484021 }, + { url = "https://files.pythonhosted.org/packages/39/db/0b3c1a5018117f3c1d4df671fb8e47d08937f27519e8614bbe86153b65a5/pillow-11.1.0-cp311-cp311-musllinux_1_2_aarch64.whl", hash = "sha256:aa8dd43daa836b9a8128dbe7d923423e5ad86f50a7a14dc688194b7be5c0dea2", size = 4287449 }, + { url = "https://files.pythonhosted.org/packages/d9/58/bc128da7fea8c89fc85e09f773c4901e95b5936000e6f303222490c052f3/pillow-11.1.0-cp311-cp311-musllinux_1_2_x86_64.whl", hash = "sha256:0a2f91f8a8b367e7a57c6e91cd25af510168091fb89ec5146003e424e1558a96", size = 4419972 }, + { url = "https://files.pythonhosted.org/packages/5f/bb/58f34379bde9fe197f51841c5bbe8830c28bbb6d3801f16a83b8f2ad37df/pillow-11.1.0-cp311-cp311-win32.whl", hash = "sha256:c12fc111ef090845de2bb15009372175d76ac99969bdf31e2ce9b42e4b8cd88f", size = 2291201 }, + { url = "https://files.pythonhosted.org/packages/3a/c6/fce9255272bcf0c39e15abd2f8fd8429a954cf344469eaceb9d0d1366913/pillow-11.1.0-cp311-cp311-win_amd64.whl", hash = "sha256:fbd43429d0d7ed6533b25fc993861b8fd512c42d04514a0dd6337fb3ccf22761", size = 2625686 }, + { url = "https://files.pythonhosted.org/packages/c8/52/8ba066d569d932365509054859f74f2a9abee273edcef5cd75e4bc3e831e/pillow-11.1.0-cp311-cp311-win_arm64.whl", hash = "sha256:f7955ecf5609dee9442cbface754f2c6e541d9e6eda87fad7f7a989b0bdb9d71", size = 2375194 }, + { url = "https://files.pythonhosted.org/packages/95/20/9ce6ed62c91c073fcaa23d216e68289e19d95fb8188b9fb7a63d36771db8/pillow-11.1.0-cp312-cp312-macosx_10_13_x86_64.whl", hash = "sha256:2062ffb1d36544d42fcaa277b069c88b01bb7298f4efa06731a7fd6cc290b81a", size = 3226818 }, + { url = "https://files.pythonhosted.org/packages/b9/d8/f6004d98579a2596c098d1e30d10b248798cceff82d2b77aa914875bfea1/pillow-11.1.0-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:a85b653980faad27e88b141348707ceeef8a1186f75ecc600c395dcac19f385b", size = 3101662 }, + { url = "https://files.pythonhosted.org/packages/08/d9/892e705f90051c7a2574d9f24579c9e100c828700d78a63239676f960b74/pillow-11.1.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:9409c080586d1f683df3f184f20e36fb647f2e0bc3988094d4fd8c9f4eb1b3b3", size = 4329317 }, + { url = "https://files.pythonhosted.org/packages/8c/aa/7f29711f26680eab0bcd3ecdd6d23ed6bce180d82e3f6380fb7ae35fcf3b/pillow-11.1.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:7fdadc077553621911f27ce206ffcbec7d3f8d7b50e0da39f10997e8e2bb7f6a", size = 4412999 }, + { url = "https://files.pythonhosted.org/packages/c8/c4/8f0fe3b9e0f7196f6d0bbb151f9fba323d72a41da068610c4c960b16632a/pillow-11.1.0-cp312-cp312-manylinux_2_28_aarch64.whl", hash = "sha256:93a18841d09bcdd774dcdc308e4537e1f867b3dec059c131fde0327899734aa1", size = 4368819 }, + { url = "https://files.pythonhosted.org/packages/38/0d/84200ed6a871ce386ddc82904bfadc0c6b28b0c0ec78176871a4679e40b3/pillow-11.1.0-cp312-cp312-manylinux_2_28_x86_64.whl", hash = "sha256:9aa9aeddeed452b2f616ff5507459e7bab436916ccb10961c4a382cd3e03f47f", size = 4496081 }, + { url = "https://files.pythonhosted.org/packages/84/9c/9bcd66f714d7e25b64118e3952d52841a4babc6d97b6d28e2261c52045d4/pillow-11.1.0-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:3cdcdb0b896e981678eee140d882b70092dac83ac1cdf6b3a60e2216a73f2b91", size = 4296513 }, + { url = "https://files.pythonhosted.org/packages/db/61/ada2a226e22da011b45f7104c95ebda1b63dcbb0c378ad0f7c2a710f8fd2/pillow-11.1.0-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:36ba10b9cb413e7c7dfa3e189aba252deee0602c86c309799da5a74009ac7a1c", size = 4431298 }, + { url = "https://files.pythonhosted.org/packages/e7/c4/fc6e86750523f367923522014b821c11ebc5ad402e659d8c9d09b3c9d70c/pillow-11.1.0-cp312-cp312-win32.whl", hash = "sha256:cfd5cd998c2e36a862d0e27b2df63237e67273f2fc78f47445b14e73a810e7e6", size = 2291630 }, + { url = "https://files.pythonhosted.org/packages/08/5c/2104299949b9d504baf3f4d35f73dbd14ef31bbd1ddc2c1b66a5b7dfda44/pillow-11.1.0-cp312-cp312-win_amd64.whl", hash = "sha256:a697cd8ba0383bba3d2d3ada02b34ed268cb548b369943cd349007730c92bddf", size = 2626369 }, + { url = "https://files.pythonhosted.org/packages/37/f3/9b18362206b244167c958984b57c7f70a0289bfb59a530dd8af5f699b910/pillow-11.1.0-cp312-cp312-win_arm64.whl", hash = "sha256:4dd43a78897793f60766563969442020e90eb7847463eca901e41ba186a7d4a5", size = 2375240 }, + { url = "https://files.pythonhosted.org/packages/fa/c5/389961578fb677b8b3244fcd934f720ed25a148b9a5cc81c91bdf59d8588/pillow-11.1.0-pp310-pypy310_pp73-macosx_10_15_x86_64.whl", hash = "sha256:8c730dc3a83e5ac137fbc92dfcfe1511ce3b2b5d7578315b63dbbb76f7f51d90", size = 3198345 }, + { url = "https://files.pythonhosted.org/packages/c4/fa/803c0e50ffee74d4b965229e816af55276eac1d5806712de86f9371858fd/pillow-11.1.0-pp310-pypy310_pp73-macosx_11_0_arm64.whl", hash = "sha256:7d33d2fae0e8b170b6a6c57400e077412240f6f5bb2a342cf1ee512a787942bb", size = 3072938 }, + { url = "https://files.pythonhosted.org/packages/dc/67/2a3a5f8012b5d8c63fe53958ba906c1b1d0482ebed5618057ef4d22f8076/pillow-11.1.0-pp310-pypy310_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:a8d65b38173085f24bc07f8b6c505cbb7418009fa1a1fcb111b1f4961814a442", size = 3400049 }, + { url = "https://files.pythonhosted.org/packages/e5/a0/514f0d317446c98c478d1872497eb92e7cde67003fed74f696441e647446/pillow-11.1.0-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:015c6e863faa4779251436db398ae75051469f7c903b043a48f078e437656f83", size = 3422431 }, + { url = "https://files.pythonhosted.org/packages/cd/00/20f40a935514037b7d3f87adfc87d2c538430ea625b63b3af8c3f5578e72/pillow-11.1.0-pp310-pypy310_pp73-manylinux_2_28_aarch64.whl", hash = "sha256:d44ff19eea13ae4acdaaab0179fa68c0c6f2f45d66a4d8ec1eda7d6cecbcc15f", size = 3446208 }, + { url = "https://files.pythonhosted.org/packages/28/3c/7de681727963043e093c72e6c3348411b0185eab3263100d4490234ba2f6/pillow-11.1.0-pp310-pypy310_pp73-manylinux_2_28_x86_64.whl", hash = "sha256:d3d8da4a631471dfaf94c10c85f5277b1f8e42ac42bade1ac67da4b4a7359b73", size = 3509746 }, + { url = "https://files.pythonhosted.org/packages/41/67/936f9814bdd74b2dfd4822f1f7725ab5d8ff4103919a1664eb4874c58b2f/pillow-11.1.0-pp310-pypy310_pp73-win_amd64.whl", hash = "sha256:4637b88343166249fe8aa94e7c4a62a180c4b3898283bb5d3d2fd5fe10d8e4e0", size = 2626353 }, +] + +[[package]] +name = "platformdirs" +version = "4.3.6" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/13/fc/128cc9cb8f03208bdbf93d3aa862e16d376844a14f9a0ce5cf4507372de4/platformdirs-4.3.6.tar.gz", hash = "sha256:357fb2acbc885b0419afd3ce3ed34564c13c9b95c89360cd9563f73aa5e2b907", size = 21302 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/3c/a6/bc1012356d8ece4d66dd75c4b9fc6c1f6650ddd5991e421177d9f8f671be/platformdirs-4.3.6-py3-none-any.whl", hash = "sha256:73e575e1408ab8103900836b97580d5307456908a03e92031bab39e4554cc3fb", size = 18439 }, +] + +[[package]] +name = "pre-commit" +version = "4.1.0" +source = { registry = "https://pypi.org/simple" } +dependencies = [ + { name = "cfgv" }, + { name = "identify" }, + { name = "nodeenv" }, + { name = "pyyaml" }, + { name = "virtualenv" }, +] +sdist = { url = "https://files.pythonhosted.org/packages/2a/13/b62d075317d8686071eb843f0bb1f195eb332f48869d3c31a4c6f1e063ac/pre_commit-4.1.0.tar.gz", hash = "sha256:ae3f018575a588e30dfddfab9a05448bfbd6b73d78709617b5a2b853549716d4", size = 193330 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/43/b3/df14c580d82b9627d173ceea305ba898dca135feb360b6d84019d0803d3b/pre_commit-4.1.0-py2.py3-none-any.whl", hash = "sha256:d29e7cb346295bcc1cc75fc3e92e343495e3ea0196c9ec6ba53f49f10ab6ae7b", size = 220560 }, +] + +[[package]] +name = "prometheus-client" +version = "0.21.1" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/62/14/7d0f567991f3a9af8d1cd4f619040c93b68f09a02b6d0b6ab1b2d1ded5fe/prometheus_client-0.21.1.tar.gz", hash = "sha256:252505a722ac04b0456be05c05f75f45d760c2911ffc45f2a06bcaed9f3ae3fb", size = 78551 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/ff/c2/ab7d37426c179ceb9aeb109a85cda8948bb269b7561a0be870cc656eefe4/prometheus_client-0.21.1-py3-none-any.whl", hash = "sha256:594b45c410d6f4f8888940fe80b5cc2521b305a1fafe1c58609ef715a001f301", size = 54682 }, +] + +[[package]] +name = "prompt-toolkit" +version = "3.0.50" +source = { registry = "https://pypi.org/simple" } +dependencies = [ + { name = "wcwidth" }, +] +sdist = { url = "https://files.pythonhosted.org/packages/a1/e1/bd15cb8ffdcfeeb2bdc215de3c3cffca11408d829e4b8416dcfe71ba8854/prompt_toolkit-3.0.50.tar.gz", hash = "sha256:544748f3860a2623ca5cd6d2795e7a14f3d0e1c3c9728359013f79877fc89bab", size = 429087 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/e4/ea/d836f008d33151c7a1f62caf3d8dd782e4d15f6a43897f64480c2b8de2ad/prompt_toolkit-3.0.50-py3-none-any.whl", hash = "sha256:9b6427eb19e479d98acff65196a307c555eb567989e6d88ebbb1b509d9779198", size = 387816 }, +] + +[[package]] +name = "psutil" +version = "7.0.0" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/2a/80/336820c1ad9286a4ded7e845b2eccfcb27851ab8ac6abece774a6ff4d3de/psutil-7.0.0.tar.gz", hash = "sha256:7be9c3eba38beccb6495ea33afd982a44074b78f28c434a1f51cc07fd315c456", size = 497003 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/ed/e6/2d26234410f8b8abdbf891c9da62bee396583f713fb9f3325a4760875d22/psutil-7.0.0-cp36-abi3-macosx_10_9_x86_64.whl", hash = "sha256:101d71dc322e3cffd7cea0650b09b3d08b8e7c4109dd6809fe452dfd00e58b25", size = 238051 }, + { url = "https://files.pythonhosted.org/packages/04/8b/30f930733afe425e3cbfc0e1468a30a18942350c1a8816acfade80c005c4/psutil-7.0.0-cp36-abi3-macosx_11_0_arm64.whl", hash = "sha256:39db632f6bb862eeccf56660871433e111b6ea58f2caea825571951d4b6aa3da", size = 239535 }, + { url = "https://files.pythonhosted.org/packages/2a/ed/d362e84620dd22876b55389248e522338ed1bf134a5edd3b8231d7207f6d/psutil-7.0.0-cp36-abi3-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:1fcee592b4c6f146991ca55919ea3d1f8926497a713ed7faaf8225e174581e91", size = 275004 }, + { url = "https://files.pythonhosted.org/packages/bf/b9/b0eb3f3cbcb734d930fdf839431606844a825b23eaf9a6ab371edac8162c/psutil-7.0.0-cp36-abi3-manylinux_2_12_x86_64.manylinux2010_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:4b1388a4f6875d7e2aff5c4ca1cc16c545ed41dd8bb596cefea80111db353a34", size = 277986 }, + { url = "https://files.pythonhosted.org/packages/eb/a2/709e0fe2f093556c17fbafda93ac032257242cabcc7ff3369e2cb76a97aa/psutil-7.0.0-cp36-abi3-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:a5f098451abc2828f7dc6b58d44b532b22f2088f4999a937557b603ce72b1993", size = 279544 }, + { url = "https://files.pythonhosted.org/packages/50/e6/eecf58810b9d12e6427369784efe814a1eec0f492084ce8eb8f4d89d6d61/psutil-7.0.0-cp37-abi3-win32.whl", hash = "sha256:ba3fcef7523064a6c9da440fc4d6bd07da93ac726b5733c29027d7dc95b39d99", size = 241053 }, + { url = "https://files.pythonhosted.org/packages/50/1b/6921afe68c74868b4c9fa424dad3be35b095e16687989ebbb50ce4fceb7c/psutil-7.0.0-cp37-abi3-win_amd64.whl", hash = "sha256:4cf3d4eb1aa9b348dec30105c55cd9b7d4629285735a102beb4441e38db90553", size = 244885 }, +] + +[[package]] +name = "ptyprocess" +version = "0.7.0" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/20/e5/16ff212c1e452235a90aeb09066144d0c5a6a8c0834397e03f5224495c4e/ptyprocess-0.7.0.tar.gz", hash = "sha256:5c5d0a3b48ceee0b48485e0c26037c0acd7d29765ca3fbb5cb3831d347423220", size = 70762 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/22/a6/858897256d0deac81a172289110f31629fc4cee19b6f01283303e18c8db3/ptyprocess-0.7.0-py2.py3-none-any.whl", hash = "sha256:4b41f3967fce3af57cc7e94b888626c18bf37a083e3651ca8feeb66d492fef35", size = 13993 }, +] + +[[package]] +name = "pure-eval" +version = "0.2.3" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/cd/05/0a34433a064256a578f1783a10da6df098ceaa4a57bbeaa96a6c0352786b/pure_eval-0.2.3.tar.gz", hash = "sha256:5f4e983f40564c576c7c8635ae88db5956bb2229d7e9237d03b3c0b0190eaf42", size = 19752 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/8e/37/efad0257dc6e593a18957422533ff0f87ede7c9c6ea010a2177d738fb82f/pure_eval-0.2.3-py3-none-any.whl", hash = "sha256:1db8e35b67b3d218d818ae653e27f06c3aa420901fa7b081ca98cbedc874e0d0", size = 11842 }, +] + +[[package]] +name = "pycparser" +version = "2.22" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/1d/b2/31537cf4b1ca988837256c910a668b553fceb8f069bedc4b1c826024b52c/pycparser-2.22.tar.gz", hash = "sha256:491c8be9c040f5390f5bf44a5b07752bd07f56edf992381b05c701439eec10f6", size = 172736 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/13/a3/a812df4e2dd5696d1f351d58b8fe16a405b234ad2886a0dab9183fb78109/pycparser-2.22-py3-none-any.whl", hash = "sha256:c3702b6d3dd8c7abc1afa565d7e63d53a1d0bd86cdc24edd75470f4de499cfcc", size = 117552 }, +] + +[[package]] +name = "pydantic" +version = "2.10.6" +source = { registry = "https://pypi.org/simple" } +dependencies = [ + { name = "annotated-types" }, + { name = "pydantic-core" }, + { name = "typing-extensions" }, +] +sdist = { url = "https://files.pythonhosted.org/packages/b7/ae/d5220c5c52b158b1de7ca89fc5edb72f304a70a4c540c84c8844bf4008de/pydantic-2.10.6.tar.gz", hash = "sha256:ca5daa827cce33de7a42be142548b0096bf05a7e7b365aebfa5f8eeec7128236", size = 761681 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/f4/3c/8cc1cc84deffa6e25d2d0c688ebb80635dfdbf1dbea3e30c541c8cf4d860/pydantic-2.10.6-py3-none-any.whl", hash = "sha256:427d664bf0b8a2b34ff5dd0f5a18df00591adcee7198fbd71981054cef37b584", size = 431696 }, +] + +[[package]] +name = "pydantic-core" +version = "2.27.2" +source = { registry = "https://pypi.org/simple" } +dependencies = [ + { name = "typing-extensions" }, +] +sdist = { url = "https://files.pythonhosted.org/packages/fc/01/f3e5ac5e7c25833db5eb555f7b7ab24cd6f8c322d3a3ad2d67a952dc0abc/pydantic_core-2.27.2.tar.gz", hash = "sha256:eb026e5a4c1fee05726072337ff51d1efb6f59090b7da90d30ea58625b1ffb39", size = 413443 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/3a/bc/fed5f74b5d802cf9a03e83f60f18864e90e3aed7223adaca5ffb7a8d8d64/pydantic_core-2.27.2-cp310-cp310-macosx_10_12_x86_64.whl", hash = "sha256:2d367ca20b2f14095a8f4fa1210f5a7b78b8a20009ecced6b12818f455b1e9fa", size = 1895938 }, + { url = "https://files.pythonhosted.org/packages/71/2a/185aff24ce844e39abb8dd680f4e959f0006944f4a8a0ea372d9f9ae2e53/pydantic_core-2.27.2-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:491a2b73db93fab69731eaee494f320faa4e093dbed776be1a829c2eb222c34c", size = 1815684 }, + { url = "https://files.pythonhosted.org/packages/c3/43/fafabd3d94d159d4f1ed62e383e264f146a17dd4d48453319fd782e7979e/pydantic_core-2.27.2-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:7969e133a6f183be60e9f6f56bfae753585680f3b7307a8e555a948d443cc05a", size = 1829169 }, + { url = "https://files.pythonhosted.org/packages/a2/d1/f2dfe1a2a637ce6800b799aa086d079998959f6f1215eb4497966efd2274/pydantic_core-2.27.2-cp310-cp310-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:3de9961f2a346257caf0aa508a4da705467f53778e9ef6fe744c038119737ef5", size = 1867227 }, + { url = "https://files.pythonhosted.org/packages/7d/39/e06fcbcc1c785daa3160ccf6c1c38fea31f5754b756e34b65f74e99780b5/pydantic_core-2.27.2-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:e2bb4d3e5873c37bb3dd58714d4cd0b0e6238cebc4177ac8fe878f8b3aa8e74c", size = 2037695 }, + { url = "https://files.pythonhosted.org/packages/7a/67/61291ee98e07f0650eb756d44998214231f50751ba7e13f4f325d95249ab/pydantic_core-2.27.2-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:280d219beebb0752699480fe8f1dc61ab6615c2046d76b7ab7ee38858de0a4e7", size = 2741662 }, + { url = "https://files.pythonhosted.org/packages/32/90/3b15e31b88ca39e9e626630b4c4a1f5a0dfd09076366f4219429e6786076/pydantic_core-2.27.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:47956ae78b6422cbd46f772f1746799cbb862de838fd8d1fbd34a82e05b0983a", size = 1993370 }, + { url = "https://files.pythonhosted.org/packages/ff/83/c06d333ee3a67e2e13e07794995c1535565132940715931c1c43bfc85b11/pydantic_core-2.27.2-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:14d4a5c49d2f009d62a2a7140d3064f686d17a5d1a268bc641954ba181880236", size = 1996813 }, + { url = "https://files.pythonhosted.org/packages/7c/f7/89be1c8deb6e22618a74f0ca0d933fdcb8baa254753b26b25ad3acff8f74/pydantic_core-2.27.2-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:337b443af21d488716f8d0b6164de833e788aa6bd7e3a39c005febc1284f4962", size = 2005287 }, + { url = "https://files.pythonhosted.org/packages/b7/7d/8eb3e23206c00ef7feee17b83a4ffa0a623eb1a9d382e56e4aa46fd15ff2/pydantic_core-2.27.2-cp310-cp310-musllinux_1_1_armv7l.whl", hash = "sha256:03d0f86ea3184a12f41a2d23f7ccb79cdb5a18e06993f8a45baa8dfec746f0e9", size = 2128414 }, + { url = "https://files.pythonhosted.org/packages/4e/99/fe80f3ff8dd71a3ea15763878d464476e6cb0a2db95ff1c5c554133b6b83/pydantic_core-2.27.2-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:7041c36f5680c6e0f08d922aed302e98b3745d97fe1589db0a3eebf6624523af", size = 2155301 }, + { url = "https://files.pythonhosted.org/packages/2b/a3/e50460b9a5789ca1451b70d4f52546fa9e2b420ba3bfa6100105c0559238/pydantic_core-2.27.2-cp310-cp310-win32.whl", hash = "sha256:50a68f3e3819077be2c98110c1f9dcb3817e93f267ba80a2c05bb4f8799e2ff4", size = 1816685 }, + { url = "https://files.pythonhosted.org/packages/57/4c/a8838731cb0f2c2a39d3535376466de6049034d7b239c0202a64aaa05533/pydantic_core-2.27.2-cp310-cp310-win_amd64.whl", hash = "sha256:e0fd26b16394ead34a424eecf8a31a1f5137094cabe84a1bcb10fa6ba39d3d31", size = 1982876 }, + { url = "https://files.pythonhosted.org/packages/c2/89/f3450af9d09d44eea1f2c369f49e8f181d742f28220f88cc4dfaae91ea6e/pydantic_core-2.27.2-cp311-cp311-macosx_10_12_x86_64.whl", hash = "sha256:8e10c99ef58cfdf2a66fc15d66b16c4a04f62bca39db589ae8cba08bc55331bc", size = 1893421 }, + { url = "https://files.pythonhosted.org/packages/9e/e3/71fe85af2021f3f386da42d291412e5baf6ce7716bd7101ea49c810eda90/pydantic_core-2.27.2-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:26f32e0adf166a84d0cb63be85c562ca8a6fa8de28e5f0d92250c6b7e9e2aff7", size = 1814998 }, + { url = "https://files.pythonhosted.org/packages/a6/3c/724039e0d848fd69dbf5806894e26479577316c6f0f112bacaf67aa889ac/pydantic_core-2.27.2-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:8c19d1ea0673cd13cc2f872f6c9ab42acc4e4f492a7ca9d3795ce2b112dd7e15", size = 1826167 }, + { url = "https://files.pythonhosted.org/packages/2b/5b/1b29e8c1fb5f3199a9a57c1452004ff39f494bbe9bdbe9a81e18172e40d3/pydantic_core-2.27.2-cp311-cp311-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:5e68c4446fe0810e959cdff46ab0a41ce2f2c86d227d96dc3847af0ba7def306", size = 1865071 }, + { url = "https://files.pythonhosted.org/packages/89/6c/3985203863d76bb7d7266e36970d7e3b6385148c18a68cc8915fd8c84d57/pydantic_core-2.27.2-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:d9640b0059ff4f14d1f37321b94061c6db164fbe49b334b31643e0528d100d99", size = 2036244 }, + { url = "https://files.pythonhosted.org/packages/0e/41/f15316858a246b5d723f7d7f599f79e37493b2e84bfc789e58d88c209f8a/pydantic_core-2.27.2-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:40d02e7d45c9f8af700f3452f329ead92da4c5f4317ca9b896de7ce7199ea459", size = 2737470 }, + { url = "https://files.pythonhosted.org/packages/a8/7c/b860618c25678bbd6d1d99dbdfdf0510ccb50790099b963ff78a124b754f/pydantic_core-2.27.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:1c1fd185014191700554795c99b347d64f2bb637966c4cfc16998a0ca700d048", size = 1992291 }, + { url = "https://files.pythonhosted.org/packages/bf/73/42c3742a391eccbeab39f15213ecda3104ae8682ba3c0c28069fbcb8c10d/pydantic_core-2.27.2-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:d81d2068e1c1228a565af076598f9e7451712700b673de8f502f0334f281387d", size = 1994613 }, + { url = "https://files.pythonhosted.org/packages/94/7a/941e89096d1175d56f59340f3a8ebaf20762fef222c298ea96d36a6328c5/pydantic_core-2.27.2-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:1a4207639fb02ec2dbb76227d7c751a20b1a6b4bc52850568e52260cae64ca3b", size = 2002355 }, + { url = "https://files.pythonhosted.org/packages/6e/95/2359937a73d49e336a5a19848713555605d4d8d6940c3ec6c6c0ca4dcf25/pydantic_core-2.27.2-cp311-cp311-musllinux_1_1_armv7l.whl", hash = "sha256:3de3ce3c9ddc8bbd88f6e0e304dea0e66d843ec9de1b0042b0911c1663ffd474", size = 2126661 }, + { url = "https://files.pythonhosted.org/packages/2b/4c/ca02b7bdb6012a1adef21a50625b14f43ed4d11f1fc237f9d7490aa5078c/pydantic_core-2.27.2-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:30c5f68ded0c36466acede341551106821043e9afaad516adfb6e8fa80a4e6a6", size = 2153261 }, + { url = "https://files.pythonhosted.org/packages/72/9d/a241db83f973049a1092a079272ffe2e3e82e98561ef6214ab53fe53b1c7/pydantic_core-2.27.2-cp311-cp311-win32.whl", hash = "sha256:c70c26d2c99f78b125a3459f8afe1aed4d9687c24fd677c6a4436bc042e50d6c", size = 1812361 }, + { url = "https://files.pythonhosted.org/packages/e8/ef/013f07248041b74abd48a385e2110aa3a9bbfef0fbd97d4e6d07d2f5b89a/pydantic_core-2.27.2-cp311-cp311-win_amd64.whl", hash = "sha256:08e125dbdc505fa69ca7d9c499639ab6407cfa909214d500897d02afb816e7cc", size = 1982484 }, + { url = "https://files.pythonhosted.org/packages/10/1c/16b3a3e3398fd29dca77cea0a1d998d6bde3902fa2706985191e2313cc76/pydantic_core-2.27.2-cp311-cp311-win_arm64.whl", hash = "sha256:26f0d68d4b235a2bae0c3fc585c585b4ecc51382db0e3ba402a22cbc440915e4", size = 1867102 }, + { url = "https://files.pythonhosted.org/packages/d6/74/51c8a5482ca447871c93e142d9d4a92ead74de6c8dc5e66733e22c9bba89/pydantic_core-2.27.2-cp312-cp312-macosx_10_12_x86_64.whl", hash = "sha256:9e0c8cfefa0ef83b4da9588448b6d8d2a2bf1a53c3f1ae5fca39eb3061e2f0b0", size = 1893127 }, + { url = "https://files.pythonhosted.org/packages/d3/f3/c97e80721735868313c58b89d2de85fa80fe8dfeeed84dc51598b92a135e/pydantic_core-2.27.2-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:83097677b8e3bd7eaa6775720ec8e0405f1575015a463285a92bfdfe254529ef", size = 1811340 }, + { url = "https://files.pythonhosted.org/packages/9e/91/840ec1375e686dbae1bd80a9e46c26a1e0083e1186abc610efa3d9a36180/pydantic_core-2.27.2-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:172fce187655fece0c90d90a678424b013f8fbb0ca8b036ac266749c09438cb7", size = 1822900 }, + { url = "https://files.pythonhosted.org/packages/f6/31/4240bc96025035500c18adc149aa6ffdf1a0062a4b525c932065ceb4d868/pydantic_core-2.27.2-cp312-cp312-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:519f29f5213271eeeeb3093f662ba2fd512b91c5f188f3bb7b27bc5973816934", size = 1869177 }, + { url = "https://files.pythonhosted.org/packages/fa/20/02fbaadb7808be578317015c462655c317a77a7c8f0ef274bc016a784c54/pydantic_core-2.27.2-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:05e3a55d124407fffba0dd6b0c0cd056d10e983ceb4e5dbd10dda135c31071d6", size = 2038046 }, + { url = "https://files.pythonhosted.org/packages/06/86/7f306b904e6c9eccf0668248b3f272090e49c275bc488a7b88b0823444a4/pydantic_core-2.27.2-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:9c3ed807c7b91de05e63930188f19e921d1fe90de6b4f5cd43ee7fcc3525cb8c", size = 2685386 }, + { url = "https://files.pythonhosted.org/packages/8d/f0/49129b27c43396581a635d8710dae54a791b17dfc50c70164866bbf865e3/pydantic_core-2.27.2-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:6fb4aadc0b9a0c063206846d603b92030eb6f03069151a625667f982887153e2", size = 1997060 }, + { url = "https://files.pythonhosted.org/packages/0d/0f/943b4af7cd416c477fd40b187036c4f89b416a33d3cc0ab7b82708a667aa/pydantic_core-2.27.2-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:28ccb213807e037460326424ceb8b5245acb88f32f3d2777427476e1b32c48c4", size = 2004870 }, + { url = "https://files.pythonhosted.org/packages/35/40/aea70b5b1a63911c53a4c8117c0a828d6790483f858041f47bab0b779f44/pydantic_core-2.27.2-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:de3cd1899e2c279b140adde9357c4495ed9d47131b4a4eaff9052f23398076b3", size = 1999822 }, + { url = "https://files.pythonhosted.org/packages/f2/b3/807b94fd337d58effc5498fd1a7a4d9d59af4133e83e32ae39a96fddec9d/pydantic_core-2.27.2-cp312-cp312-musllinux_1_1_armv7l.whl", hash = "sha256:220f892729375e2d736b97d0e51466252ad84c51857d4d15f5e9692f9ef12be4", size = 2130364 }, + { url = "https://files.pythonhosted.org/packages/fc/df/791c827cd4ee6efd59248dca9369fb35e80a9484462c33c6649a8d02b565/pydantic_core-2.27.2-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:a0fcd29cd6b4e74fe8ddd2c90330fd8edf2e30cb52acda47f06dd615ae72da57", size = 2158303 }, + { url = "https://files.pythonhosted.org/packages/9b/67/4e197c300976af185b7cef4c02203e175fb127e414125916bf1128b639a9/pydantic_core-2.27.2-cp312-cp312-win32.whl", hash = "sha256:1e2cb691ed9834cd6a8be61228471d0a503731abfb42f82458ff27be7b2186fc", size = 1834064 }, + { url = "https://files.pythonhosted.org/packages/1f/ea/cd7209a889163b8dcca139fe32b9687dd05249161a3edda62860430457a5/pydantic_core-2.27.2-cp312-cp312-win_amd64.whl", hash = "sha256:cc3f1a99a4f4f9dd1de4fe0312c114e740b5ddead65bb4102884b384c15d8bc9", size = 1989046 }, + { url = "https://files.pythonhosted.org/packages/bc/49/c54baab2f4658c26ac633d798dab66b4c3a9bbf47cff5284e9c182f4137a/pydantic_core-2.27.2-cp312-cp312-win_arm64.whl", hash = "sha256:3911ac9284cd8a1792d3cb26a2da18f3ca26c6908cc434a18f730dc0db7bfa3b", size = 1885092 }, + { url = "https://files.pythonhosted.org/packages/46/72/af70981a341500419e67d5cb45abe552a7c74b66326ac8877588488da1ac/pydantic_core-2.27.2-pp310-pypy310_pp73-macosx_10_12_x86_64.whl", hash = "sha256:2bf14caea37e91198329b828eae1618c068dfb8ef17bb33287a7ad4b61ac314e", size = 1891159 }, + { url = "https://files.pythonhosted.org/packages/ad/3d/c5913cccdef93e0a6a95c2d057d2c2cba347815c845cda79ddd3c0f5e17d/pydantic_core-2.27.2-pp310-pypy310_pp73-macosx_11_0_arm64.whl", hash = "sha256:b0cb791f5b45307caae8810c2023a184c74605ec3bcbb67d13846c28ff731ff8", size = 1768331 }, + { url = "https://files.pythonhosted.org/packages/f6/f0/a3ae8fbee269e4934f14e2e0e00928f9346c5943174f2811193113e58252/pydantic_core-2.27.2-pp310-pypy310_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:688d3fd9fcb71f41c4c015c023d12a79d1c4c0732ec9eb35d96e3388a120dcf3", size = 1822467 }, + { url = "https://files.pythonhosted.org/packages/d7/7a/7bbf241a04e9f9ea24cd5874354a83526d639b02674648af3f350554276c/pydantic_core-2.27.2-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:3d591580c34f4d731592f0e9fe40f9cc1b430d297eecc70b962e93c5c668f15f", size = 1979797 }, + { url = "https://files.pythonhosted.org/packages/4f/5f/4784c6107731f89e0005a92ecb8a2efeafdb55eb992b8e9d0a2be5199335/pydantic_core-2.27.2-pp310-pypy310_pp73-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:82f986faf4e644ffc189a7f1aafc86e46ef70372bb153e7001e8afccc6e54133", size = 1987839 }, + { url = "https://files.pythonhosted.org/packages/6d/a7/61246562b651dff00de86a5f01b6e4befb518df314c54dec187a78d81c84/pydantic_core-2.27.2-pp310-pypy310_pp73-musllinux_1_1_aarch64.whl", hash = "sha256:bec317a27290e2537f922639cafd54990551725fc844249e64c523301d0822fc", size = 1998861 }, + { url = "https://files.pythonhosted.org/packages/86/aa/837821ecf0c022bbb74ca132e117c358321e72e7f9702d1b6a03758545e2/pydantic_core-2.27.2-pp310-pypy310_pp73-musllinux_1_1_armv7l.whl", hash = "sha256:0296abcb83a797db256b773f45773da397da75a08f5fcaef41f2044adec05f50", size = 2116582 }, + { url = "https://files.pythonhosted.org/packages/81/b0/5e74656e95623cbaa0a6278d16cf15e10a51f6002e3ec126541e95c29ea3/pydantic_core-2.27.2-pp310-pypy310_pp73-musllinux_1_1_x86_64.whl", hash = "sha256:0d75070718e369e452075a6017fbf187f788e17ed67a3abd47fa934d001863d9", size = 2151985 }, + { url = "https://files.pythonhosted.org/packages/63/37/3e32eeb2a451fddaa3898e2163746b0cffbbdbb4740d38372db0490d67f3/pydantic_core-2.27.2-pp310-pypy310_pp73-win_amd64.whl", hash = "sha256:7e17b560be3c98a8e3aa66ce828bdebb9e9ac6ad5466fba92eb74c4c95cb1151", size = 2004715 }, +] + +[[package]] +name = "pygments" +version = "2.19.1" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/7c/2d/c3338d48ea6cc0feb8446d8e6937e1408088a72a39937982cc6111d17f84/pygments-2.19.1.tar.gz", hash = "sha256:61c16d2a8576dc0649d9f39e089b5f02bcd27fba10d8fb4dcc28173f7a45151f", size = 4968581 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/8a/0b/9fcc47d19c48b59121088dd6da2488a49d5f72dacf8262e2790a1d2c7d15/pygments-2.19.1-py3-none-any.whl", hash = "sha256:9ea1544ad55cecf4b8242fab6dd35a93bbce657034b0611ee383099054ab6d8c", size = 1225293 }, +] + +[[package]] +name = "pymdown-extensions" +version = "10.14.3" +source = { registry = "https://pypi.org/simple" } +dependencies = [ + { name = "markdown" }, + { name = "pyyaml" }, +] +sdist = { url = "https://files.pythonhosted.org/packages/7c/44/e6de2fdc880ad0ec7547ca2e087212be815efbc9a425a8d5ba9ede602cbb/pymdown_extensions-10.14.3.tar.gz", hash = "sha256:41e576ce3f5d650be59e900e4ceff231e0aed2a88cf30acaee41e02f063a061b", size = 846846 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/eb/f5/b9e2a42aa8f9e34d52d66de87941ecd236570c7ed2e87775ed23bbe4e224/pymdown_extensions-10.14.3-py3-none-any.whl", hash = "sha256:05e0bee73d64b9c71a4ae17c72abc2f700e8bc8403755a00580b49a4e9f189e9", size = 264467 }, +] + +[[package]] +name = "pyparsing" +version = "3.2.1" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/8b/1a/3544f4f299a47911c2ab3710f534e52fea62a633c96806995da5d25be4b2/pyparsing-3.2.1.tar.gz", hash = "sha256:61980854fd66de3a90028d679a954d5f2623e83144b5afe5ee86f43d762e5f0a", size = 1067694 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/1c/a7/c8a2d361bf89c0d9577c934ebb7421b25dc84bf3a8e3ac0a40aed9acc547/pyparsing-3.2.1-py3-none-any.whl", hash = "sha256:506ff4f4386c4cec0590ec19e6302d3aedb992fdc02c761e90416f158dacf8e1", size = 107716 }, +] + +[[package]] +name = "python-dateutil" +version = "2.9.0.post0" +source = { registry = "https://pypi.org/simple" } +dependencies = [ + { name = "six" }, +] +sdist = { url = "https://files.pythonhosted.org/packages/66/c0/0c8b6ad9f17a802ee498c46e004a0eb49bc148f2fd230864601a86dcf6db/python-dateutil-2.9.0.post0.tar.gz", hash = "sha256:37dd54208da7e1cd875388217d5e00ebd4179249f90fb72437e91a35459a0ad3", size = 342432 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/ec/57/56b9bcc3c9c6a792fcbaf139543cee77261f3651ca9da0c93f5c1221264b/python_dateutil-2.9.0.post0-py2.py3-none-any.whl", hash = "sha256:a8b2bc7bffae282281c8140a97d3aa9c14da0b136dfe83f850eea9a5f7470427", size = 229892 }, +] + +[[package]] +name = "python-json-logger" +version = "3.2.1" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/e3/c4/358cd13daa1d912ef795010897a483ab2f0b41c9ea1b35235a8b2f7d15a7/python_json_logger-3.2.1.tar.gz", hash = "sha256:8eb0554ea17cb75b05d2848bc14fb02fbdbd9d6972120781b974380bfa162008", size = 16287 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/4b/72/2f30cf26664fcfa0bd8ec5ee62ec90c03bd485e4a294d92aabc76c5203a5/python_json_logger-3.2.1-py3-none-any.whl", hash = "sha256:cdc17047eb5374bd311e748b42f99d71223f3b0e186f4206cc5d52aefe85b090", size = 14924 }, +] + +[[package]] +name = "python-slugify" +version = "8.0.4" +source = { registry = "https://pypi.org/simple" } +dependencies = [ + { name = "text-unidecode" }, +] +sdist = { url = "https://files.pythonhosted.org/packages/87/c7/5e1547c44e31da50a460df93af11a535ace568ef89d7a811069ead340c4a/python-slugify-8.0.4.tar.gz", hash = "sha256:59202371d1d05b54a9e7720c5e038f928f45daaffe41dd10822f3907b937c856", size = 10921 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/a4/62/02da182e544a51a5c3ccf4b03ab79df279f9c60c5e82d5e8bec7ca26ac11/python_slugify-8.0.4-py2.py3-none-any.whl", hash = "sha256:276540b79961052b66b7d116620b36518847f52d5fd9e3a70164fc8c50faa6b8", size = 10051 }, +] + +[[package]] +name = "pytz" +version = "2025.1" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/5f/57/df1c9157c8d5a05117e455d66fd7cf6dbc46974f832b1058ed4856785d8a/pytz-2025.1.tar.gz", hash = "sha256:c2db42be2a2518b28e65f9207c4d05e6ff547d1efa4086469ef855e4ab70178e", size = 319617 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/eb/38/ac33370d784287baa1c3d538978b5e2ea064d4c1b93ffbd12826c190dd10/pytz-2025.1-py2.py3-none-any.whl", hash = "sha256:89dd22dca55b46eac6eda23b2d72721bf1bdfef212645d81513ef5d03038de57", size = 507930 }, +] + +[[package]] +name = "pywin32" +version = "308" +source = { registry = "https://pypi.org/simple" } +wheels = [ + { url = "https://files.pythonhosted.org/packages/72/a6/3e9f2c474895c1bb61b11fa9640be00067b5c5b363c501ee9c3fa53aec01/pywin32-308-cp310-cp310-win32.whl", hash = "sha256:796ff4426437896550d2981b9c2ac0ffd75238ad9ea2d3bfa67a1abd546d262e", size = 5927028 }, + { url = "https://files.pythonhosted.org/packages/d9/b4/84e2463422f869b4b718f79eb7530a4c1693e96b8a4e5e968de38be4d2ba/pywin32-308-cp310-cp310-win_amd64.whl", hash = "sha256:4fc888c59b3c0bef905ce7eb7e2106a07712015ea1c8234b703a088d46110e8e", size = 6558484 }, + { url = "https://files.pythonhosted.org/packages/9f/8f/fb84ab789713f7c6feacaa08dad3ec8105b88ade8d1c4f0f0dfcaaa017d6/pywin32-308-cp310-cp310-win_arm64.whl", hash = "sha256:a5ab5381813b40f264fa3495b98af850098f814a25a63589a8e9eb12560f450c", size = 7971454 }, + { url = "https://files.pythonhosted.org/packages/eb/e2/02652007469263fe1466e98439831d65d4ca80ea1a2df29abecedf7e47b7/pywin32-308-cp311-cp311-win32.whl", hash = "sha256:5d8c8015b24a7d6855b1550d8e660d8daa09983c80e5daf89a273e5c6fb5095a", size = 5928156 }, + { url = "https://files.pythonhosted.org/packages/48/ef/f4fb45e2196bc7ffe09cad0542d9aff66b0e33f6c0954b43e49c33cad7bd/pywin32-308-cp311-cp311-win_amd64.whl", hash = "sha256:575621b90f0dc2695fec346b2d6302faebd4f0f45c05ea29404cefe35d89442b", size = 6559559 }, + { url = "https://files.pythonhosted.org/packages/79/ef/68bb6aa865c5c9b11a35771329e95917b5559845bd75b65549407f9fc6b4/pywin32-308-cp311-cp311-win_arm64.whl", hash = "sha256:100a5442b7332070983c4cd03f2e906a5648a5104b8a7f50175f7906efd16bb6", size = 7972495 }, + { url = "https://files.pythonhosted.org/packages/00/7c/d00d6bdd96de4344e06c4afbf218bc86b54436a94c01c71a8701f613aa56/pywin32-308-cp312-cp312-win32.whl", hash = "sha256:587f3e19696f4bf96fde9d8a57cec74a57021ad5f204c9e627e15c33ff568897", size = 5939729 }, + { url = "https://files.pythonhosted.org/packages/21/27/0c8811fbc3ca188f93b5354e7c286eb91f80a53afa4e11007ef661afa746/pywin32-308-cp312-cp312-win_amd64.whl", hash = "sha256:00b3e11ef09ede56c6a43c71f2d31857cf7c54b0ab6e78ac659497abd2834f47", size = 6543015 }, + { url = "https://files.pythonhosted.org/packages/9d/0f/d40f8373608caed2255781a3ad9a51d03a594a1248cd632d6a298daca693/pywin32-308-cp312-cp312-win_arm64.whl", hash = "sha256:9b4de86c8d909aed15b7011182c8cab38c8850de36e6afb1f0db22b8959e3091", size = 7976033 }, +] + +[[package]] +name = "pywinpty" +version = "2.0.15" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/2d/7c/917f9c4681bb8d34bfbe0b79d36bbcd902651aeab48790df3d30ba0202fb/pywinpty-2.0.15.tar.gz", hash = "sha256:312cf39153a8736c617d45ce8b6ad6cd2107de121df91c455b10ce6bba7a39b2", size = 29017 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/a6/b7/855db919ae526d2628f3f2e6c281c4cdff7a9a8af51bb84659a9f07b1861/pywinpty-2.0.15-cp310-cp310-win_amd64.whl", hash = "sha256:8e7f5de756a615a38b96cd86fa3cd65f901ce54ce147a3179c45907fa11b4c4e", size = 1405161 }, + { url = "https://files.pythonhosted.org/packages/5e/ac/6884dcb7108af66ad53f73ef4dad096e768c9203a6e6ce5e6b0c4a46e238/pywinpty-2.0.15-cp311-cp311-win_amd64.whl", hash = "sha256:9a6bcec2df2707aaa9d08b86071970ee32c5026e10bcc3cc5f6f391d85baf7ca", size = 1405249 }, + { url = "https://files.pythonhosted.org/packages/88/e5/9714def18c3a411809771a3fbcec70bffa764b9675afb00048a620fca604/pywinpty-2.0.15-cp312-cp312-win_amd64.whl", hash = "sha256:83a8f20b430bbc5d8957249f875341a60219a4e971580f2ba694fbfb54a45ebc", size = 1405243 }, +] + +[[package]] +name = "pyyaml" +version = "6.0.2" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/54/ed/79a089b6be93607fa5cdaedf301d7dfb23af5f25c398d5ead2525b063e17/pyyaml-6.0.2.tar.gz", hash = "sha256:d584d9ec91ad65861cc08d42e834324ef890a082e591037abe114850ff7bbc3e", size = 130631 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/9b/95/a3fac87cb7158e231b5a6012e438c647e1a87f09f8e0d123acec8ab8bf71/PyYAML-6.0.2-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:0a9a2848a5b7feac301353437eb7d5957887edbf81d56e903999a75a3d743086", size = 184199 }, + { url = "https://files.pythonhosted.org/packages/c7/7a/68bd47624dab8fd4afbfd3c48e3b79efe09098ae941de5b58abcbadff5cb/PyYAML-6.0.2-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:29717114e51c84ddfba879543fb232a6ed60086602313ca38cce623c1d62cfbf", size = 171758 }, + { url = "https://files.pythonhosted.org/packages/49/ee/14c54df452143b9ee9f0f29074d7ca5516a36edb0b4cc40c3f280131656f/PyYAML-6.0.2-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:8824b5a04a04a047e72eea5cec3bc266db09e35de6bdfe34c9436ac5ee27d237", size = 718463 }, + { url = "https://files.pythonhosted.org/packages/4d/61/de363a97476e766574650d742205be468921a7b532aa2499fcd886b62530/PyYAML-6.0.2-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:7c36280e6fb8385e520936c3cb3b8042851904eba0e58d277dca80a5cfed590b", size = 719280 }, + { url = "https://files.pythonhosted.org/packages/6b/4e/1523cb902fd98355e2e9ea5e5eb237cbc5f3ad5f3075fa65087aa0ecb669/PyYAML-6.0.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:ec031d5d2feb36d1d1a24380e4db6d43695f3748343d99434e6f5f9156aaa2ed", size = 751239 }, + { url = "https://files.pythonhosted.org/packages/b7/33/5504b3a9a4464893c32f118a9cc045190a91637b119a9c881da1cf6b7a72/PyYAML-6.0.2-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:936d68689298c36b53b29f23c6dbb74de12b4ac12ca6cfe0e047bedceea56180", size = 695802 }, + { url = "https://files.pythonhosted.org/packages/5c/20/8347dcabd41ef3a3cdc4f7b7a2aff3d06598c8779faa189cdbf878b626a4/PyYAML-6.0.2-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:23502f431948090f597378482b4812b0caae32c22213aecf3b55325e049a6c68", size = 720527 }, + { url = "https://files.pythonhosted.org/packages/be/aa/5afe99233fb360d0ff37377145a949ae258aaab831bde4792b32650a4378/PyYAML-6.0.2-cp310-cp310-win32.whl", hash = "sha256:2e99c6826ffa974fe6e27cdb5ed0021786b03fc98e5ee3c5bfe1fd5015f42b99", size = 144052 }, + { url = "https://files.pythonhosted.org/packages/b5/84/0fa4b06f6d6c958d207620fc60005e241ecedceee58931bb20138e1e5776/PyYAML-6.0.2-cp310-cp310-win_amd64.whl", hash = "sha256:a4d3091415f010369ae4ed1fc6b79def9416358877534caf6a0fdd2146c87a3e", size = 161774 }, + { url = "https://files.pythonhosted.org/packages/f8/aa/7af4e81f7acba21a4c6be026da38fd2b872ca46226673c89a758ebdc4fd2/PyYAML-6.0.2-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:cc1c1159b3d456576af7a3e4d1ba7e6924cb39de8f67111c735f6fc832082774", size = 184612 }, + { url = "https://files.pythonhosted.org/packages/8b/62/b9faa998fd185f65c1371643678e4d58254add437edb764a08c5a98fb986/PyYAML-6.0.2-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:1e2120ef853f59c7419231f3bf4e7021f1b936f6ebd222406c3b60212205d2ee", size = 172040 }, + { url = "https://files.pythonhosted.org/packages/ad/0c/c804f5f922a9a6563bab712d8dcc70251e8af811fce4524d57c2c0fd49a4/PyYAML-6.0.2-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:5d225db5a45f21e78dd9358e58a98702a0302f2659a3c6cd320564b75b86f47c", size = 736829 }, + { url = "https://files.pythonhosted.org/packages/51/16/6af8d6a6b210c8e54f1406a6b9481febf9c64a3109c541567e35a49aa2e7/PyYAML-6.0.2-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:5ac9328ec4831237bec75defaf839f7d4564be1e6b25ac710bd1a96321cc8317", size = 764167 }, + { url = "https://files.pythonhosted.org/packages/75/e4/2c27590dfc9992f73aabbeb9241ae20220bd9452df27483b6e56d3975cc5/PyYAML-6.0.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:3ad2a3decf9aaba3d29c8f537ac4b243e36bef957511b4766cb0057d32b0be85", size = 762952 }, + { url = "https://files.pythonhosted.org/packages/9b/97/ecc1abf4a823f5ac61941a9c00fe501b02ac3ab0e373c3857f7d4b83e2b6/PyYAML-6.0.2-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:ff3824dc5261f50c9b0dfb3be22b4567a6f938ccce4587b38952d85fd9e9afe4", size = 735301 }, + { url = "https://files.pythonhosted.org/packages/45/73/0f49dacd6e82c9430e46f4a027baa4ca205e8b0a9dce1397f44edc23559d/PyYAML-6.0.2-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:797b4f722ffa07cc8d62053e4cff1486fa6dc094105d13fea7b1de7d8bf71c9e", size = 756638 }, + { url = "https://files.pythonhosted.org/packages/22/5f/956f0f9fc65223a58fbc14459bf34b4cc48dec52e00535c79b8db361aabd/PyYAML-6.0.2-cp311-cp311-win32.whl", hash = "sha256:11d8f3dd2b9c1207dcaf2ee0bbbfd5991f571186ec9cc78427ba5bd32afae4b5", size = 143850 }, + { url = "https://files.pythonhosted.org/packages/ed/23/8da0bbe2ab9dcdd11f4f4557ccaf95c10b9811b13ecced089d43ce59c3c8/PyYAML-6.0.2-cp311-cp311-win_amd64.whl", hash = "sha256:e10ce637b18caea04431ce14fabcf5c64a1c61ec9c56b071a4b7ca131ca52d44", size = 161980 }, + { url = "https://files.pythonhosted.org/packages/86/0c/c581167fc46d6d6d7ddcfb8c843a4de25bdd27e4466938109ca68492292c/PyYAML-6.0.2-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:c70c95198c015b85feafc136515252a261a84561b7b1d51e3384e0655ddf25ab", size = 183873 }, + { url = "https://files.pythonhosted.org/packages/a8/0c/38374f5bb272c051e2a69281d71cba6fdb983413e6758b84482905e29a5d/PyYAML-6.0.2-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:ce826d6ef20b1bc864f0a68340c8b3287705cae2f8b4b1d932177dcc76721725", size = 173302 }, + { url = "https://files.pythonhosted.org/packages/c3/93/9916574aa8c00aa06bbac729972eb1071d002b8e158bd0e83a3b9a20a1f7/PyYAML-6.0.2-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:1f71ea527786de97d1a0cc0eacd1defc0985dcf6b3f17bb77dcfc8c34bec4dc5", size = 739154 }, + { url = "https://files.pythonhosted.org/packages/95/0f/b8938f1cbd09739c6da569d172531567dbcc9789e0029aa070856f123984/PyYAML-6.0.2-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:9b22676e8097e9e22e36d6b7bda33190d0d400f345f23d4065d48f4ca7ae0425", size = 766223 }, + { url = "https://files.pythonhosted.org/packages/b9/2b/614b4752f2e127db5cc206abc23a8c19678e92b23c3db30fc86ab731d3bd/PyYAML-6.0.2-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:80bab7bfc629882493af4aa31a4cfa43a4c57c83813253626916b8c7ada83476", size = 767542 }, + { url = "https://files.pythonhosted.org/packages/d4/00/dd137d5bcc7efea1836d6264f049359861cf548469d18da90cd8216cf05f/PyYAML-6.0.2-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:0833f8694549e586547b576dcfaba4a6b55b9e96098b36cdc7ebefe667dfed48", size = 731164 }, + { url = "https://files.pythonhosted.org/packages/c9/1f/4f998c900485e5c0ef43838363ba4a9723ac0ad73a9dc42068b12aaba4e4/PyYAML-6.0.2-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:8b9c7197f7cb2738065c481a0461e50ad02f18c78cd75775628afb4d7137fb3b", size = 756611 }, + { url = "https://files.pythonhosted.org/packages/df/d1/f5a275fdb252768b7a11ec63585bc38d0e87c9e05668a139fea92b80634c/PyYAML-6.0.2-cp312-cp312-win32.whl", hash = "sha256:ef6107725bd54b262d6dedcc2af448a266975032bc85ef0172c5f059da6325b4", size = 140591 }, + { url = "https://files.pythonhosted.org/packages/0c/e8/4f648c598b17c3d06e8753d7d13d57542b30d56e6c2dedf9c331ae56312e/PyYAML-6.0.2-cp312-cp312-win_amd64.whl", hash = "sha256:7e7401d0de89a9a855c839bc697c079a4af81cf878373abd7dc625847d25cbd8", size = 156338 }, +] + +[[package]] +name = "pyyaml-env-tag" +version = "0.1" +source = { registry = "https://pypi.org/simple" } +dependencies = [ + { name = "pyyaml" }, +] +sdist = { url = "https://files.pythonhosted.org/packages/fb/8e/da1c6c58f751b70f8ceb1eb25bc25d524e8f14fe16edcce3f4e3ba08629c/pyyaml_env_tag-0.1.tar.gz", hash = "sha256:70092675bda14fdec33b31ba77e7543de9ddc88f2e5b99160396572d11525bdb", size = 5631 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/5a/66/bbb1dd374f5c870f59c5bb1db0e18cbe7fa739415a24cbd95b2d1f5ae0c4/pyyaml_env_tag-0.1-py3-none-any.whl", hash = "sha256:af31106dec8a4d68c60207c1886031cbf839b68aa7abccdb19868200532c2069", size = 3911 }, +] + +[[package]] +name = "pyzmq" +version = "26.2.1" +source = { registry = "https://pypi.org/simple" } +dependencies = [ + { name = "cffi", marker = "implementation_name == 'pypy'" }, +] +sdist = { url = "https://files.pythonhosted.org/packages/5a/e3/8d0382cb59feb111c252b54e8728257416a38ffcb2243c4e4775a3c990fe/pyzmq-26.2.1.tar.gz", hash = "sha256:17d72a74e5e9ff3829deb72897a175333d3ef5b5413948cae3cf7ebf0b02ecca", size = 278433 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/70/3d/c2d9d46c033d1b51692ea49a22439f7f66d91d5c938e8b5c56ed7a2151c2/pyzmq-26.2.1-cp310-cp310-macosx_10_15_universal2.whl", hash = "sha256:f39d1227e8256d19899d953e6e19ed2ccb689102e6d85e024da5acf410f301eb", size = 1345451 }, + { url = "https://files.pythonhosted.org/packages/0e/df/4754a8abcdeef280651f9bb51446c47659910940b392a66acff7c37f5cef/pyzmq-26.2.1-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:a23948554c692df95daed595fdd3b76b420a4939d7a8a28d6d7dea9711878641", size = 942766 }, + { url = "https://files.pythonhosted.org/packages/74/da/e6053a3b13c912eded6c2cdeee22ff3a4c33820d17f9eb24c7b6e957ffe7/pyzmq-26.2.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:95f5728b367a042df146cec4340d75359ec6237beebf4a8f5cf74657c65b9257", size = 678488 }, + { url = "https://files.pythonhosted.org/packages/9e/50/614934145244142401ca174ca81071777ab93aa88173973ba0154f491e09/pyzmq-26.2.1-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:95f7b01b3f275504011cf4cf21c6b885c8d627ce0867a7e83af1382ebab7b3ff", size = 917115 }, + { url = "https://files.pythonhosted.org/packages/80/2b/ebeb7bc4fc8e9e61650b2e09581597355a4341d413fa9b2947d7a6558119/pyzmq-26.2.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:80a00370a2ef2159c310e662c7c0f2d030f437f35f478bb8b2f70abd07e26b24", size = 874162 }, + { url = "https://files.pythonhosted.org/packages/79/48/93210621c331ad16313dc2849801411fbae10d91d878853933f2a85df8e7/pyzmq-26.2.1-cp310-cp310-manylinux_2_28_x86_64.whl", hash = "sha256:8531ed35dfd1dd2af95f5d02afd6545e8650eedbf8c3d244a554cf47d8924459", size = 874180 }, + { url = "https://files.pythonhosted.org/packages/f0/8b/40924b4d8e33bfdd54c1970fb50f327e39b90b902f897cf09b30b2e9ac48/pyzmq-26.2.1-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:cdb69710e462a38e6039cf17259d328f86383a06c20482cc154327968712273c", size = 1208139 }, + { url = "https://files.pythonhosted.org/packages/c8/b2/82d6675fc89bd965eae13c45002c792d33f06824589844b03f8ea8fc6d86/pyzmq-26.2.1-cp310-cp310-musllinux_1_1_i686.whl", hash = "sha256:e7eeaef81530d0b74ad0d29eec9997f1c9230c2f27242b8d17e0ee67662c8f6e", size = 1520666 }, + { url = "https://files.pythonhosted.org/packages/9d/e2/5ff15f2d3f920dcc559d477bd9bb3faacd6d79fcf7c5448e585c78f84849/pyzmq-26.2.1-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:361edfa350e3be1f987e592e834594422338d7174364763b7d3de5b0995b16f3", size = 1420056 }, + { url = "https://files.pythonhosted.org/packages/40/a2/f9bbeccf7f75aa0d8963e224e5730abcefbf742e1f2ae9ea60fd9d6ff72b/pyzmq-26.2.1-cp310-cp310-win32.whl", hash = "sha256:637536c07d2fb6a354988b2dd1d00d02eb5dd443f4bbee021ba30881af1c28aa", size = 583874 }, + { url = "https://files.pythonhosted.org/packages/56/b1/44f513135843272f0e12f5aebf4af35839e2a88eb45411f2c8c010d8c856/pyzmq-26.2.1-cp310-cp310-win_amd64.whl", hash = "sha256:45fad32448fd214fbe60030aa92f97e64a7140b624290834cc9b27b3a11f9473", size = 647367 }, + { url = "https://files.pythonhosted.org/packages/27/9c/1bef14a37b02d651a462811bbdb1390b61cd4a5b5e95cbd7cc2d60ef848c/pyzmq-26.2.1-cp310-cp310-win_arm64.whl", hash = "sha256:d9da0289d8201c8a29fd158aaa0dfe2f2e14a181fd45e2dc1fbf969a62c1d594", size = 561784 }, + { url = "https://files.pythonhosted.org/packages/b9/03/5ecc46a6ed5971299f5c03e016ca637802d8660e44392bea774fb7797405/pyzmq-26.2.1-cp311-cp311-macosx_10_15_universal2.whl", hash = "sha256:c059883840e634a21c5b31d9b9a0e2b48f991b94d60a811092bc37992715146a", size = 1346032 }, + { url = "https://files.pythonhosted.org/packages/40/51/48fec8f990ee644f461ff14c8fe5caa341b0b9b3a0ad7544f8ef17d6f528/pyzmq-26.2.1-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:ed038a921df836d2f538e509a59cb638df3e70ca0fcd70d0bf389dfcdf784d2a", size = 943324 }, + { url = "https://files.pythonhosted.org/packages/c1/f4/f322b389727c687845e38470b48d7a43c18a83f26d4d5084603c6c3f79ca/pyzmq-26.2.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:9027a7fcf690f1a3635dc9e55e38a0d6602dbbc0548935d08d46d2e7ec91f454", size = 678418 }, + { url = "https://files.pythonhosted.org/packages/a8/df/2834e3202533bd05032d83e02db7ac09fa1be853bbef59974f2b2e3a8557/pyzmq-26.2.1-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:6d75fcb00a1537f8b0c0bb05322bc7e35966148ffc3e0362f0369e44a4a1de99", size = 915466 }, + { url = "https://files.pythonhosted.org/packages/b5/e2/45c0f6e122b562cb8c6c45c0dcac1160a4e2207385ef9b13463e74f93031/pyzmq-26.2.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:f0019cc804ac667fb8c8eaecdb66e6d4a68acf2e155d5c7d6381a5645bd93ae4", size = 873347 }, + { url = "https://files.pythonhosted.org/packages/de/b9/3e0fbddf8b87454e914501d368171466a12550c70355b3844115947d68ea/pyzmq-26.2.1-cp311-cp311-manylinux_2_28_x86_64.whl", hash = "sha256:f19dae58b616ac56b96f2e2290f2d18730a898a171f447f491cc059b073ca1fa", size = 874545 }, + { url = "https://files.pythonhosted.org/packages/1f/1c/1ee41d6e10b2127263b1994bc53b9e74ece015b0d2c0a30e0afaf69b78b2/pyzmq-26.2.1-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:f5eeeb82feec1fc5cbafa5ee9022e87ffdb3a8c48afa035b356fcd20fc7f533f", size = 1208630 }, + { url = "https://files.pythonhosted.org/packages/3d/a9/50228465c625851a06aeee97c74f253631f509213f979166e83796299c60/pyzmq-26.2.1-cp311-cp311-musllinux_1_1_i686.whl", hash = "sha256:000760e374d6f9d1a3478a42ed0c98604de68c9e94507e5452951e598ebecfba", size = 1519568 }, + { url = "https://files.pythonhosted.org/packages/c6/f2/6360b619e69da78863c2108beb5196ae8b955fe1e161c0b886b95dc6b1ac/pyzmq-26.2.1-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:817fcd3344d2a0b28622722b98500ae9c8bfee0f825b8450932ff19c0b15bebd", size = 1419677 }, + { url = "https://files.pythonhosted.org/packages/da/d5/f179da989168f5dfd1be8103ef508ade1d38a8078dda4f10ebae3131a490/pyzmq-26.2.1-cp311-cp311-win32.whl", hash = "sha256:88812b3b257f80444a986b3596e5ea5c4d4ed4276d2b85c153a6fbc5ca457ae7", size = 582682 }, + { url = "https://files.pythonhosted.org/packages/60/50/e5b2e9de3ffab73ff92bee736216cf209381081fa6ab6ba96427777d98b1/pyzmq-26.2.1-cp311-cp311-win_amd64.whl", hash = "sha256:ef29630fde6022471d287c15c0a2484aba188adbfb978702624ba7a54ddfa6c1", size = 648128 }, + { url = "https://files.pythonhosted.org/packages/d9/fe/7bb93476dd8405b0fc9cab1fd921a08bd22d5e3016aa6daea1a78d54129b/pyzmq-26.2.1-cp311-cp311-win_arm64.whl", hash = "sha256:f32718ee37c07932cc336096dc7403525301fd626349b6eff8470fe0f996d8d7", size = 562465 }, + { url = "https://files.pythonhosted.org/packages/9c/b9/260a74786f162c7f521f5f891584a51d5a42fd15f5dcaa5c9226b2865fcc/pyzmq-26.2.1-cp312-cp312-macosx_10_15_universal2.whl", hash = "sha256:a6549ecb0041dafa55b5932dcbb6c68293e0bd5980b5b99f5ebb05f9a3b8a8f3", size = 1348495 }, + { url = "https://files.pythonhosted.org/packages/bf/73/8a0757e4b68f5a8ccb90ddadbb76c6a5f880266cdb18be38c99bcdc17aaa/pyzmq-26.2.1-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:0250c94561f388db51fd0213cdccbd0b9ef50fd3c57ce1ac937bf3034d92d72e", size = 945035 }, + { url = "https://files.pythonhosted.org/packages/cf/de/f02ec973cd33155bb772bae33ace774acc7cc71b87b25c4829068bec35de/pyzmq-26.2.1-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:36ee4297d9e4b34b5dc1dd7ab5d5ea2cbba8511517ef44104d2915a917a56dc8", size = 671213 }, + { url = "https://files.pythonhosted.org/packages/d1/80/8fc583085f85ac91682744efc916888dd9f11f9f75a31aef1b78a5486c6c/pyzmq-26.2.1-cp312-cp312-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:c2a9cb17fd83b7a3a3009901aca828feaf20aa2451a8a487b035455a86549c09", size = 908750 }, + { url = "https://files.pythonhosted.org/packages/c3/25/0b4824596f261a3cc512ab152448b383047ff5f143a6906a36876415981c/pyzmq-26.2.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:786dd8a81b969c2081b31b17b326d3a499ddd1856e06d6d79ad41011a25148da", size = 865416 }, + { url = "https://files.pythonhosted.org/packages/a1/d1/6fda77a034d02034367b040973fd3861d945a5347e607bd2e98c99f20599/pyzmq-26.2.1-cp312-cp312-manylinux_2_28_x86_64.whl", hash = "sha256:2d88ba221a07fc2c5581565f1d0fe8038c15711ae79b80d9462e080a1ac30435", size = 865922 }, + { url = "https://files.pythonhosted.org/packages/ad/81/48f7fd8a71c427412e739ce576fc1ee14f3dc34527ca9b0076e471676183/pyzmq-26.2.1-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:1c84c1297ff9f1cd2440da4d57237cb74be21fdfe7d01a10810acba04e79371a", size = 1201526 }, + { url = "https://files.pythonhosted.org/packages/c7/d8/818f15c6ef36b5450e435cbb0d3a51599fc884a5d2b27b46b9c00af68ef1/pyzmq-26.2.1-cp312-cp312-musllinux_1_1_i686.whl", hash = "sha256:46d4ebafc27081a7f73a0f151d0c38d4291656aa134344ec1f3d0199ebfbb6d4", size = 1512808 }, + { url = "https://files.pythonhosted.org/packages/d9/c4/b3edb7d0ae82ad6fb1a8cdb191a4113c427a01e85139906f3b655b07f4f8/pyzmq-26.2.1-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:91e2bfb8e9a29f709d51b208dd5f441dc98eb412c8fe75c24ea464734ccdb48e", size = 1411836 }, + { url = "https://files.pythonhosted.org/packages/69/1c/151e3d42048f02cc5cd6dfc241d9d36b38375b4dee2e728acb5c353a6d52/pyzmq-26.2.1-cp312-cp312-win32.whl", hash = "sha256:4a98898fdce380c51cc3e38ebc9aa33ae1e078193f4dc641c047f88b8c690c9a", size = 581378 }, + { url = "https://files.pythonhosted.org/packages/b6/b9/d59a7462848aaab7277fddb253ae134a570520115d80afa85e952287e6bc/pyzmq-26.2.1-cp312-cp312-win_amd64.whl", hash = "sha256:a0741edbd0adfe5f30bba6c5223b78c131b5aa4a00a223d631e5ef36e26e6d13", size = 643737 }, + { url = "https://files.pythonhosted.org/packages/55/09/f37e707937cce328944c1d57e5e50ab905011d35252a0745c4f7e5822a76/pyzmq-26.2.1-cp312-cp312-win_arm64.whl", hash = "sha256:e5e33b1491555843ba98d5209439500556ef55b6ab635f3a01148545498355e5", size = 558303 }, + { url = "https://files.pythonhosted.org/packages/65/d1/e630a75cfb2534574a1258fda54d02f13cf80b576d4ce6d2aa478dc67829/pyzmq-26.2.1-pp310-pypy310_pp73-macosx_10_15_x86_64.whl", hash = "sha256:380816d298aed32b1a97b4973a4865ef3be402a2e760204509b52b6de79d755d", size = 847743 }, + { url = "https://files.pythonhosted.org/packages/27/df/f94a711b4f6c4b41e227f9a938103f52acf4c2e949d91cbc682495a48155/pyzmq-26.2.1-pp310-pypy310_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:97cbb368fd0debdbeb6ba5966aa28e9a1ae3396c7386d15569a6ca4be4572b99", size = 570991 }, + { url = "https://files.pythonhosted.org/packages/bf/08/0c6f97fb3c9dbfa23382f0efaf8f9aa1396a08a3358974eaae3ee659ed5c/pyzmq-26.2.1-pp310-pypy310_pp73-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:abf7b5942c6b0dafcc2823ddd9154f419147e24f8df5b41ca8ea40a6db90615c", size = 799664 }, + { url = "https://files.pythonhosted.org/packages/05/14/f4d4fd8bb8988c667845734dd756e9ee65b9a17a010d5f288dfca14a572d/pyzmq-26.2.1-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:3fe6e28a8856aea808715f7a4fc11f682b9d29cac5d6262dd8fe4f98edc12d53", size = 758156 }, + { url = "https://files.pythonhosted.org/packages/e3/fe/72e7e166bda3885810bee7b23049133e142f7c80c295bae02c562caeea16/pyzmq-26.2.1-pp310-pypy310_pp73-win_amd64.whl", hash = "sha256:bd8fdee945b877aa3bffc6a5a8816deb048dab0544f9df3731ecd0e54d8c84c9", size = 556563 }, +] + +[[package]] +name = "qutip" +version = "5.0.1" +source = { registry = "https://pypi.org/simple" } +dependencies = [ + { name = "numpy" }, + { name = "packaging" }, + { name = "scipy" }, +] +sdist = { url = "https://files.pythonhosted.org/packages/43/41/cae32aa94bfe0b22d2aec9392b2676210e5473ce097b10c689297b254a80/qutip-5.0.1.tar.gz", hash = "sha256:e3f2ce7d1eeb06abeebe2cec84e418c624fecd3c741b01d42523de774322efcd", size = 6356821 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/f9/68/940b1115a3c39bc53bd6956f9cc8856de3aa5fcd473f35723a93bbc2bed6/qutip-5.0.1-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:7de83a6d37466e161c45c7a1064a816b7362eacacd5971ed4bf090d6ebbc6fb7", size = 10254803 }, + { url = "https://files.pythonhosted.org/packages/cb/b8/73ade5354319ffcc6e5d2b36968dbeb90b59068d402c4bb6384510d300c4/qutip-5.0.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:0997cd275cf7c984b913ab41c2d1e3b1c9612dd67d03f9dd081e4c4ce1652134", size = 27850173 }, + { url = "https://files.pythonhosted.org/packages/3c/bb/0047bd82f7fdc85295b0161e97079478ea3e276a966481d207b7a631bd80/qutip-5.0.1-cp310-cp310-win_amd64.whl", hash = "sha256:2fc72241226e67753c34d27ee131cfa5f12b2ec95539d3ff4d4c92bb4b9d73db", size = 9580357 }, + { url = "https://files.pythonhosted.org/packages/ca/b0/41fd7eb4e803fd6dcf1867a7134274add778f1df6e27730f50b14c9878d0/qutip-5.0.1-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:b0fe87fc33d2d0fc03dce2ef340f313c59965f573a714cc30104252300800efb", size = 10258060 }, + { url = "https://files.pythonhosted.org/packages/e1/60/5dbcd7d276159d5b6e68af5323b2a17c8ae33d5392d89b20b0afa720b565/qutip-5.0.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:5c87c9f55079cd524eb7c9e711e0947ee51ef19c12aa6e3480a08c1e8ff63d3e", size = 29553273 }, + { url = "https://files.pythonhosted.org/packages/62/60/b742df0c5e3b9354d5d5b33bae633c02c60412fec674bcf88f6cbbfded10/qutip-5.0.1-cp311-cp311-win_amd64.whl", hash = "sha256:325b86e10be5bcb6fc95c5b36bdaa4368326bb7a9424dcb052168a75e20d9bd5", size = 9585948 }, + { url = "https://files.pythonhosted.org/packages/b4/31/40ac9d7a1e53a4f1f7e74d39dd24bc436694b7d0d643060506f978075487/qutip-5.0.1-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:18a45741751e7fac4b34e4c6e99f6f3e29a306f9173b659cbacbc9575936aa16", size = 10188509 }, + { url = "https://files.pythonhosted.org/packages/60/8d/1902179e8d28eb7fa54ca9c763a4373740e3259639c86ef2eddf23fbb33a/qutip-5.0.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:f5bd8bf4a07480c06f38472869d9bd823bbf470df20d93b7bc57f7c15f0a239a", size = 29177974 }, + { url = "https://files.pythonhosted.org/packages/f5/0e/b091b2b9c1fa5e8ded655619aafe2a5afa86279a5f333cf595ea60dcb1f6/qutip-5.0.1-cp312-cp312-win_amd64.whl", hash = "sha256:cf112ad072d97b2e58f99458bce624d0e265b89f289714c1d5ad6c76a68c3868", size = 9550936 }, +] + +[[package]] +name = "referencing" +version = "0.36.2" +source = { registry = "https://pypi.org/simple" } +dependencies = [ + { name = "attrs" }, + { name = "rpds-py" }, + { name = "typing-extensions" }, +] +sdist = { url = "https://files.pythonhosted.org/packages/2f/db/98b5c277be99dd18bfd91dd04e1b759cad18d1a338188c936e92f921c7e2/referencing-0.36.2.tar.gz", hash = "sha256:df2e89862cd09deabbdba16944cc3f10feb6b3e6f18e902f7cc25609a34775aa", size = 74744 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/c1/b1/3baf80dc6d2b7bc27a95a67752d0208e410351e3feb4eb78de5f77454d8d/referencing-0.36.2-py3-none-any.whl", hash = "sha256:e8699adbbf8b5c7de96d8ffa0eb5c158b3beafce084968e2ea8bb08c6794dcd0", size = 26775 }, +] + +[[package]] +name = "requests" +version = "2.32.3" +source = { registry = "https://pypi.org/simple" } +dependencies = [ + { name = "certifi" }, + { name = "charset-normalizer" }, + { name = "idna" }, + { name = "urllib3" }, +] +sdist = { url = "https://files.pythonhosted.org/packages/63/70/2bf7780ad2d390a8d301ad0b550f1581eadbd9a20f896afe06353c2a2913/requests-2.32.3.tar.gz", hash = "sha256:55365417734eb18255590a9ff9eb97e9e1da868d4ccd6402399eaf68af20a760", size = 131218 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/f9/9b/335f9764261e915ed497fcdeb11df5dfd6f7bf257d4a6a2a686d80da4d54/requests-2.32.3-py3-none-any.whl", hash = "sha256:70761cfe03c773ceb22aa2f671b4757976145175cdfca038c02654d061d6dcc6", size = 64928 }, +] + +[[package]] +name = "rfc3339-validator" +version = "0.1.4" +source = { registry = "https://pypi.org/simple" } +dependencies = [ + { name = "six" }, +] +sdist = { url = "https://files.pythonhosted.org/packages/28/ea/a9387748e2d111c3c2b275ba970b735e04e15cdb1eb30693b6b5708c4dbd/rfc3339_validator-0.1.4.tar.gz", hash = "sha256:138a2abdf93304ad60530167e51d2dfb9549521a836871b88d7f4695d0022f6b", size = 5513 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/7b/44/4e421b96b67b2daff264473f7465db72fbdf36a07e05494f50300cc7b0c6/rfc3339_validator-0.1.4-py2.py3-none-any.whl", hash = "sha256:24f6ec1eda14ef823da9e36ec7113124b39c04d50a4d3d3a3c2859577e7791fa", size = 3490 }, +] + +[[package]] +name = "rfc3986-validator" +version = "0.1.1" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/da/88/f270de456dd7d11dcc808abfa291ecdd3f45ff44e3b549ffa01b126464d0/rfc3986_validator-0.1.1.tar.gz", hash = "sha256:3d44bde7921b3b9ec3ae4e3adca370438eccebc676456449b145d533b240d055", size = 6760 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/9e/51/17023c0f8f1869d8806b979a2bffa3f861f26a3f1a66b094288323fba52f/rfc3986_validator-0.1.1-py2.py3-none-any.whl", hash = "sha256:2f235c432ef459970b4306369336b9d5dbdda31b510ca1e327636e01f528bfa9", size = 4242 }, +] + +[[package]] +name = "rpds-py" +version = "0.23.1" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/0a/79/2ce611b18c4fd83d9e3aecb5cba93e1917c050f556db39842889fa69b79f/rpds_py-0.23.1.tar.gz", hash = "sha256:7f3240dcfa14d198dba24b8b9cb3b108c06b68d45b7babd9eefc1038fdf7e707", size = 26806 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/34/fe/e5326459863bd525122f4e9c80ac8d7c6cfa171b7518d04cc27c12c209b0/rpds_py-0.23.1-cp310-cp310-macosx_10_12_x86_64.whl", hash = "sha256:2a54027554ce9b129fc3d633c92fa33b30de9f08bc61b32c053dc9b537266fed", size = 372123 }, + { url = "https://files.pythonhosted.org/packages/f9/db/f10a3795f7a89fb27594934012d21c61019bbeb516c5bdcfbbe9e9e617a7/rpds_py-0.23.1-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:b5ef909a37e9738d146519657a1aab4584018746a18f71c692f2f22168ece40c", size = 356778 }, + { url = "https://files.pythonhosted.org/packages/21/27/0d3678ad7f432fa86f8fac5f5fc6496a4d2da85682a710d605219be20063/rpds_py-0.23.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:3ee9d6f0b38efb22ad94c3b68ffebe4c47865cdf4b17f6806d6c674e1feb4246", size = 385775 }, + { url = "https://files.pythonhosted.org/packages/99/a0/1786defa125b2ad228027f22dff26312ce7d1fee3c7c3c2682f403db2062/rpds_py-0.23.1-cp310-cp310-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:f7356a6da0562190558c4fcc14f0281db191cdf4cb96e7604c06acfcee96df15", size = 391181 }, + { url = "https://files.pythonhosted.org/packages/f1/5c/1240934050a7ffd020a915486d0cc4c7f6e7a2442a77aedf13664db55d36/rpds_py-0.23.1-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:9441af1d25aed96901f97ad83d5c3e35e6cd21a25ca5e4916c82d7dd0490a4fa", size = 444607 }, + { url = "https://files.pythonhosted.org/packages/b7/1b/cee6905b47817fd0a377716dbe4df35295de46df46ee2ff704538cc371b0/rpds_py-0.23.1-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:3d8abf7896a91fb97e7977d1aadfcc2c80415d6dc2f1d0fca5b8d0df247248f3", size = 445550 }, + { url = "https://files.pythonhosted.org/packages/54/f7/f0821ca34032892d7a67fcd5042f50074ff2de64e771e10df01085c88d47/rpds_py-0.23.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:1b08027489ba8fedde72ddd233a5ea411b85a6ed78175f40285bd401bde7466d", size = 386148 }, + { url = "https://files.pythonhosted.org/packages/eb/ef/2afe53bc857c4bcba336acfd2629883a5746e7291023e017ac7fc98d85aa/rpds_py-0.23.1-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:fee513135b5a58f3bb6d89e48326cd5aa308e4bcdf2f7d59f67c861ada482bf8", size = 416780 }, + { url = "https://files.pythonhosted.org/packages/ae/9a/38d2236cf669789b8a3e1a014c9b6a8d7b8925b952c92e7839ae2749f9ac/rpds_py-0.23.1-cp310-cp310-musllinux_1_2_aarch64.whl", hash = "sha256:35d5631ce0af26318dba0ae0ac941c534453e42f569011585cb323b7774502a5", size = 558265 }, + { url = "https://files.pythonhosted.org/packages/e6/0a/f2705530c42578f20ed0b5b90135eecb30eef6e2ba73e7ba69087fad2dba/rpds_py-0.23.1-cp310-cp310-musllinux_1_2_i686.whl", hash = "sha256:a20cb698c4a59c534c6701b1c24a968ff2768b18ea2991f886bd8985ce17a89f", size = 585270 }, + { url = "https://files.pythonhosted.org/packages/29/4e/3b597dc84ed82c3d757ac9aa620de224a94e06d2e102069795ae7e81c015/rpds_py-0.23.1-cp310-cp310-musllinux_1_2_x86_64.whl", hash = "sha256:5e9c206a1abc27e0588cf8b7c8246e51f1a16a103734f7750830a1ccb63f557a", size = 553850 }, + { url = "https://files.pythonhosted.org/packages/00/cc/6498b6f79e4375e6737247661e52a2d18f6accf4910e0c8da978674b4241/rpds_py-0.23.1-cp310-cp310-win32.whl", hash = "sha256:d9f75a06ecc68f159d5d7603b734e1ff6daa9497a929150f794013aa9f6e3f12", size = 220660 }, + { url = "https://files.pythonhosted.org/packages/17/2b/08db023d23e8c7032c99d8d2a70d32e450a868ab73d16e3ff5290308a665/rpds_py-0.23.1-cp310-cp310-win_amd64.whl", hash = "sha256:f35eff113ad430b5272bbfc18ba111c66ff525828f24898b4e146eb479a2cdda", size = 232551 }, + { url = "https://files.pythonhosted.org/packages/1c/67/6e5d4234bb9dee062ffca2a5f3c7cd38716317d6760ec235b175eed4de2c/rpds_py-0.23.1-cp311-cp311-macosx_10_12_x86_64.whl", hash = "sha256:b79f5ced71efd70414a9a80bbbfaa7160da307723166f09b69773153bf17c590", size = 372264 }, + { url = "https://files.pythonhosted.org/packages/a7/0a/3dedb2daee8e783622427f5064e2d112751d8276ee73aa5409f000a132f4/rpds_py-0.23.1-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:c9e799dac1ffbe7b10c1fd42fe4cd51371a549c6e108249bde9cd1200e8f59b4", size = 356883 }, + { url = "https://files.pythonhosted.org/packages/ed/fc/e1acef44f9c24b05fe5434b235f165a63a52959ac655e3f7a55726cee1a4/rpds_py-0.23.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:721f9c4011b443b6e84505fc00cc7aadc9d1743f1c988e4c89353e19c4a968ee", size = 385624 }, + { url = "https://files.pythonhosted.org/packages/97/0a/a05951f6465d01622720c03ef6ef31adfbe865653e05ed7c45837492f25e/rpds_py-0.23.1-cp311-cp311-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:f88626e3f5e57432e6191cd0c5d6d6b319b635e70b40be2ffba713053e5147dd", size = 391500 }, + { url = "https://files.pythonhosted.org/packages/ea/2e/cca0583ec0690ea441dceae23c0673b99755710ea22f40bccf1e78f41481/rpds_py-0.23.1-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:285019078537949cecd0190f3690a0b0125ff743d6a53dfeb7a4e6787af154f5", size = 444869 }, + { url = "https://files.pythonhosted.org/packages/cc/e6/95cda68b33a6d814d1e96b0e406d231ed16629101460d1740e92f03365e6/rpds_py-0.23.1-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:b92f5654157de1379c509b15acec9d12ecf6e3bc1996571b6cb82a4302060447", size = 444930 }, + { url = "https://files.pythonhosted.org/packages/5f/a7/e94cdb73411ae9c11414d3c7c9a6ad75d22ad4a8d094fb45a345ba9e3018/rpds_py-0.23.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:e768267cbe051dd8d1c5305ba690bb153204a09bf2e3de3ae530de955f5b5580", size = 386254 }, + { url = "https://files.pythonhosted.org/packages/dd/c5/a4a943d90a39e85efd1e04b1ad5129936786f9a9aa27bb7be8fc5d9d50c9/rpds_py-0.23.1-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:c5334a71f7dc1160382d45997e29f2637c02f8a26af41073189d79b95d3321f1", size = 417090 }, + { url = "https://files.pythonhosted.org/packages/0c/a0/80d0013b12428d1fce0ab4e71829400b0a32caec12733c79e6109f843342/rpds_py-0.23.1-cp311-cp311-musllinux_1_2_aarch64.whl", hash = "sha256:d6adb81564af0cd428910f83fa7da46ce9ad47c56c0b22b50872bc4515d91966", size = 557639 }, + { url = "https://files.pythonhosted.org/packages/a6/92/ec2e6980afb964a2cd7a99cbdef1f6c01116abe94b42cbe336ac93dd11c2/rpds_py-0.23.1-cp311-cp311-musllinux_1_2_i686.whl", hash = "sha256:cafa48f2133d4daa028473ede7d81cd1b9f9e6925e9e4003ebdf77010ee02f35", size = 584572 }, + { url = "https://files.pythonhosted.org/packages/3d/ce/75b6054db34a390789a82523790717b27c1bd735e453abb429a87c4f0f26/rpds_py-0.23.1-cp311-cp311-musllinux_1_2_x86_64.whl", hash = "sha256:0fced9fd4a07a1ded1bac7e961ddd9753dd5d8b755ba8e05acba54a21f5f1522", size = 553028 }, + { url = "https://files.pythonhosted.org/packages/cc/24/f45abe0418c06a5cba0f846e967aa27bac765acd927aabd857c21319b8cc/rpds_py-0.23.1-cp311-cp311-win32.whl", hash = "sha256:243241c95174b5fb7204c04595852fe3943cc41f47aa14c3828bc18cd9d3b2d6", size = 220862 }, + { url = "https://files.pythonhosted.org/packages/2d/a6/3c0880e8bbfc36451ef30dc416266f6d2934705e468db5d21c8ba0ab6400/rpds_py-0.23.1-cp311-cp311-win_amd64.whl", hash = "sha256:11dd60b2ffddba85715d8a66bb39b95ddbe389ad2cfcf42c833f1bcde0878eaf", size = 232953 }, + { url = "https://files.pythonhosted.org/packages/f3/8c/d17efccb9f5b9137ddea706664aebae694384ae1d5997c0202093e37185a/rpds_py-0.23.1-cp312-cp312-macosx_10_12_x86_64.whl", hash = "sha256:3902df19540e9af4cc0c3ae75974c65d2c156b9257e91f5101a51f99136d834c", size = 364369 }, + { url = "https://files.pythonhosted.org/packages/6e/c0/ab030f696b5c573107115a88d8d73d80f03309e60952b64c584c70c659af/rpds_py-0.23.1-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:66f8d2a17e5838dd6fb9be6baaba8e75ae2f5fa6b6b755d597184bfcd3cb0eba", size = 349965 }, + { url = "https://files.pythonhosted.org/packages/b3/55/b40170f5a079c4fb0b6a82b299689e66e744edca3c3375a8b160fb797660/rpds_py-0.23.1-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:112b8774b0b4ee22368fec42749b94366bd9b536f8f74c3d4175d4395f5cbd31", size = 389064 }, + { url = "https://files.pythonhosted.org/packages/ab/1c/b03a912c59ec7c1e16b26e587b9dfa8ddff3b07851e781e8c46e908a365a/rpds_py-0.23.1-cp312-cp312-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:e0df046f2266e8586cf09d00588302a32923eb6386ced0ca5c9deade6af9a149", size = 397741 }, + { url = "https://files.pythonhosted.org/packages/52/6f/151b90792b62fb6f87099bcc9044c626881fdd54e31bf98541f830b15cea/rpds_py-0.23.1-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:0f3288930b947cbebe767f84cf618d2cbe0b13be476e749da0e6a009f986248c", size = 448784 }, + { url = "https://files.pythonhosted.org/packages/71/2a/6de67c0c97ec7857e0e9e5cd7c52405af931b303eb1e5b9eff6c50fd9a2e/rpds_py-0.23.1-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:ce473a2351c018b06dd8d30d5da8ab5a0831056cc53b2006e2a8028172c37ce5", size = 440203 }, + { url = "https://files.pythonhosted.org/packages/db/5e/e759cd1c276d98a4b1f464b17a9bf66c65d29f8f85754e27e1467feaa7c3/rpds_py-0.23.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:d550d7e9e7d8676b183b37d65b5cd8de13676a738973d330b59dc8312df9c5dc", size = 391611 }, + { url = "https://files.pythonhosted.org/packages/1c/1e/2900358efcc0d9408c7289769cba4c0974d9db314aa884028ed7f7364f61/rpds_py-0.23.1-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:e14f86b871ea74c3fddc9a40e947d6a5d09def5adc2076ee61fb910a9014fb35", size = 423306 }, + { url = "https://files.pythonhosted.org/packages/23/07/6c177e6d059f5d39689352d6c69a926ee4805ffdb6f06203570234d3d8f7/rpds_py-0.23.1-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:1bf5be5ba34e19be579ae873da515a2836a2166d8d7ee43be6ff909eda42b72b", size = 562323 }, + { url = "https://files.pythonhosted.org/packages/70/e4/f9097fd1c02b516fff9850792161eb9fc20a2fd54762f3c69eae0bdb67cb/rpds_py-0.23.1-cp312-cp312-musllinux_1_2_i686.whl", hash = "sha256:d7031d493c4465dbc8d40bd6cafefef4bd472b17db0ab94c53e7909ee781b9ef", size = 588351 }, + { url = "https://files.pythonhosted.org/packages/87/39/5db3c6f326bfbe4576ae2af6435bd7555867d20ae690c786ff33659f293b/rpds_py-0.23.1-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:55ff4151cfd4bc635e51cfb1c59ac9f7196b256b12e3a57deb9e5742e65941ad", size = 557252 }, + { url = "https://files.pythonhosted.org/packages/fd/14/2d5ad292f144fa79bafb78d2eb5b8a3a91c358b6065443cb9c49b5d1fedf/rpds_py-0.23.1-cp312-cp312-win32.whl", hash = "sha256:a9d3b728f5a5873d84cba997b9d617c6090ca5721caaa691f3b1a78c60adc057", size = 222181 }, + { url = "https://files.pythonhosted.org/packages/a3/4f/0fce63e0f5cdd658e71e21abd17ac1bc9312741ebb8b3f74eeed2ebdf771/rpds_py-0.23.1-cp312-cp312-win_amd64.whl", hash = "sha256:b03a8d50b137ee758e4c73638b10747b7c39988eb8e6cd11abb7084266455165", size = 237426 }, + { url = "https://files.pythonhosted.org/packages/95/a9/6fafd35fc6bac05f59bcbc800b57cef877911ff1c015397c519fec888642/rpds_py-0.23.1-pp310-pypy310_pp73-macosx_10_12_x86_64.whl", hash = "sha256:c1f8afa346ccd59e4e5630d5abb67aba6a9812fddf764fd7eb11f382a345f8cc", size = 373463 }, + { url = "https://files.pythonhosted.org/packages/5b/ac/44f00029b8fbe0903a19e9a87a9b86063bf8700df2cc58868373d378418c/rpds_py-0.23.1-pp310-pypy310_pp73-macosx_11_0_arm64.whl", hash = "sha256:fad784a31869747df4ac968a351e070c06ca377549e4ace94775aaa3ab33ee06", size = 358400 }, + { url = "https://files.pythonhosted.org/packages/5e/9c/3da199346c68d785f10dccab123b74c8c5f73be3f742c9e33d1116e07931/rpds_py-0.23.1-pp310-pypy310_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:b5a96fcac2f18e5a0a23a75cd27ce2656c66c11c127b0318e508aab436b77428", size = 386815 }, + { url = "https://files.pythonhosted.org/packages/d3/45/8f6533c33c0d33da8c2c8b2fb8f2ee90b23c05c679b86b0ac6aee4653749/rpds_py-0.23.1-pp310-pypy310_pp73-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:3e77febf227a1dc3220159355dba68faa13f8dca9335d97504abf428469fb18b", size = 392974 }, + { url = "https://files.pythonhosted.org/packages/ca/56/6a9ac1bf0455ba07385d8fe98c571c519b4f2000cff6581487bf9fab9272/rpds_py-0.23.1-pp310-pypy310_pp73-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:26bb3e8de93443d55e2e748e9fd87deb5f8075ca7bc0502cfc8be8687d69a2ec", size = 446019 }, + { url = "https://files.pythonhosted.org/packages/f4/83/5d9a3f9731cdccf49088bcc4ce821a5cf50bd1737cdad83e9959a7b9054d/rpds_py-0.23.1-pp310-pypy310_pp73-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:db7707dde9143a67b8812c7e66aeb2d843fe33cc8e374170f4d2c50bd8f2472d", size = 445811 }, + { url = "https://files.pythonhosted.org/packages/44/50/f2e0a98c62fc1fe68b176caca587714dc5c8bb2c3d1dd1eeb2bd4cc787ac/rpds_py-0.23.1-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:1eedaaccc9bb66581d4ae7c50e15856e335e57ef2734dbc5fd8ba3e2a4ab3cb6", size = 388070 }, + { url = "https://files.pythonhosted.org/packages/f2/d0/4981878f8f157e6dbea01d95e0119bf3d6b4c2c884fe64a9e6987f941104/rpds_py-0.23.1-pp310-pypy310_pp73-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:28358c54fffadf0ae893f6c1050e8f8853e45df22483b7fff2f6ab6152f5d8bf", size = 419173 }, + { url = "https://files.pythonhosted.org/packages/ce/13/fc971c470da96b270d2f64fedee987351bd935dc3016932a5cdcb1a88a2a/rpds_py-0.23.1-pp310-pypy310_pp73-musllinux_1_2_aarch64.whl", hash = "sha256:633462ef7e61d839171bf206551d5ab42b30b71cac8f10a64a662536e057fdef", size = 559048 }, + { url = "https://files.pythonhosted.org/packages/42/02/be91e1de139ec8b4f9fec4192fd779ba48af281cfc762c0ca4c15b945484/rpds_py-0.23.1-pp310-pypy310_pp73-musllinux_1_2_i686.whl", hash = "sha256:a98f510d86f689fcb486dc59e6e363af04151e5260ad1bdddb5625c10f1e95f8", size = 584773 }, + { url = "https://files.pythonhosted.org/packages/27/28/3af8a1956df3edc41d884267d766dc096496dafc83f02f764a475eca0b4a/rpds_py-0.23.1-pp310-pypy310_pp73-musllinux_1_2_x86_64.whl", hash = "sha256:e0397dd0b3955c61ef9b22838144aa4bef6f0796ba5cc8edfc64d468b93798b4", size = 555153 }, + { url = "https://files.pythonhosted.org/packages/5e/bb/e45f51c4e1327dea3c72b846c6de129eebacb7a6cb309af7af35d0578c80/rpds_py-0.23.1-pp310-pypy310_pp73-win_amd64.whl", hash = "sha256:75307599f0d25bf6937248e5ac4e3bde5ea72ae6618623b86146ccc7845ed00b", size = 233827 }, +] + +[[package]] +name = "scipy" +version = "1.15.2" +source = { registry = "https://pypi.org/simple" } +dependencies = [ + { name = "numpy" }, +] +sdist = { url = "https://files.pythonhosted.org/packages/b7/b9/31ba9cd990e626574baf93fbc1ac61cf9ed54faafd04c479117517661637/scipy-1.15.2.tar.gz", hash = "sha256:cd58a314d92838f7e6f755c8a2167ead4f27e1fd5c1251fd54289569ef3495ec", size = 59417316 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/95/df/ef233fff6838fe6f7840d69b5ef9f20d2b5c912a8727b21ebf876cb15d54/scipy-1.15.2-cp310-cp310-macosx_10_13_x86_64.whl", hash = "sha256:a2ec871edaa863e8213ea5df811cd600734f6400b4af272e1c011e69401218e9", size = 38692502 }, + { url = "https://files.pythonhosted.org/packages/5c/20/acdd4efb8a68b842968f7bc5611b1aeb819794508771ad104de418701422/scipy-1.15.2-cp310-cp310-macosx_12_0_arm64.whl", hash = "sha256:6f223753c6ea76983af380787611ae1291e3ceb23917393079dcc746ba60cfb5", size = 30085508 }, + { url = "https://files.pythonhosted.org/packages/42/55/39cf96ca7126f1e78ee72a6344ebdc6702fc47d037319ad93221063e6cf4/scipy-1.15.2-cp310-cp310-macosx_14_0_arm64.whl", hash = "sha256:ecf797d2d798cf7c838c6d98321061eb3e72a74710e6c40540f0e8087e3b499e", size = 22359166 }, + { url = "https://files.pythonhosted.org/packages/51/48/708d26a4ab8a1441536bf2dfcad1df0ca14a69f010fba3ccbdfc02df7185/scipy-1.15.2-cp310-cp310-macosx_14_0_x86_64.whl", hash = "sha256:9b18aa747da280664642997e65aab1dd19d0c3d17068a04b3fe34e2559196cb9", size = 25112047 }, + { url = "https://files.pythonhosted.org/packages/dd/65/f9c5755b995ad892020381b8ae11f16d18616208e388621dfacc11df6de6/scipy-1.15.2-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:87994da02e73549dfecaed9e09a4f9d58a045a053865679aeb8d6d43747d4df3", size = 35536214 }, + { url = "https://files.pythonhosted.org/packages/de/3c/c96d904b9892beec978562f64d8cc43f9cca0842e65bd3cd1b7f7389b0ba/scipy-1.15.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:69ea6e56d00977f355c0f84eba69877b6df084516c602d93a33812aa04d90a3d", size = 37646981 }, + { url = "https://files.pythonhosted.org/packages/3d/74/c2d8a24d18acdeae69ed02e132b9bc1bb67b7bee90feee1afe05a68f9d67/scipy-1.15.2-cp310-cp310-musllinux_1_2_aarch64.whl", hash = "sha256:888307125ea0c4466287191e5606a2c910963405ce9671448ff9c81c53f85f58", size = 37230048 }, + { url = "https://files.pythonhosted.org/packages/42/19/0aa4ce80eca82d487987eff0bc754f014dec10d20de2f66754fa4ea70204/scipy-1.15.2-cp310-cp310-musllinux_1_2_x86_64.whl", hash = "sha256:9412f5e408b397ff5641080ed1e798623dbe1ec0d78e72c9eca8992976fa65aa", size = 40010322 }, + { url = "https://files.pythonhosted.org/packages/d0/d2/f0683b7e992be44d1475cc144d1f1eeae63c73a14f862974b4db64af635e/scipy-1.15.2-cp310-cp310-win_amd64.whl", hash = "sha256:b5e025e903b4f166ea03b109bb241355b9c42c279ea694d8864d033727205e65", size = 41233385 }, + { url = "https://files.pythonhosted.org/packages/40/1f/bf0a5f338bda7c35c08b4ed0df797e7bafe8a78a97275e9f439aceb46193/scipy-1.15.2-cp311-cp311-macosx_10_13_x86_64.whl", hash = "sha256:92233b2df6938147be6fa8824b8136f29a18f016ecde986666be5f4d686a91a4", size = 38703651 }, + { url = "https://files.pythonhosted.org/packages/de/54/db126aad3874601048c2c20ae3d8a433dbfd7ba8381551e6f62606d9bd8e/scipy-1.15.2-cp311-cp311-macosx_12_0_arm64.whl", hash = "sha256:62ca1ff3eb513e09ed17a5736929429189adf16d2d740f44e53270cc800ecff1", size = 30102038 }, + { url = "https://files.pythonhosted.org/packages/61/d8/84da3fffefb6c7d5a16968fe5b9f24c98606b165bb801bb0b8bc3985200f/scipy-1.15.2-cp311-cp311-macosx_14_0_arm64.whl", hash = "sha256:4c6676490ad76d1c2894d77f976144b41bd1a4052107902238047fb6a473e971", size = 22375518 }, + { url = "https://files.pythonhosted.org/packages/44/78/25535a6e63d3b9c4c90147371aedb5d04c72f3aee3a34451f2dc27c0c07f/scipy-1.15.2-cp311-cp311-macosx_14_0_x86_64.whl", hash = "sha256:a8bf5cb4a25046ac61d38f8d3c3426ec11ebc350246a4642f2f315fe95bda655", size = 25142523 }, + { url = "https://files.pythonhosted.org/packages/e0/22/4b4a26fe1cd9ed0bc2b2cb87b17d57e32ab72c346949eaf9288001f8aa8e/scipy-1.15.2-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:6a8e34cf4c188b6dd004654f88586d78f95639e48a25dfae9c5e34a6dc34547e", size = 35491547 }, + { url = "https://files.pythonhosted.org/packages/32/ea/564bacc26b676c06a00266a3f25fdfe91a9d9a2532ccea7ce6dd394541bc/scipy-1.15.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:28a0d2c2075946346e4408b211240764759e0fabaeb08d871639b5f3b1aca8a0", size = 37634077 }, + { url = "https://files.pythonhosted.org/packages/43/c2/bfd4e60668897a303b0ffb7191e965a5da4056f0d98acfb6ba529678f0fb/scipy-1.15.2-cp311-cp311-musllinux_1_2_aarch64.whl", hash = "sha256:42dabaaa798e987c425ed76062794e93a243be8f0f20fff6e7a89f4d61cb3d40", size = 37231657 }, + { url = "https://files.pythonhosted.org/packages/4a/75/5f13050bf4f84c931bcab4f4e83c212a36876c3c2244475db34e4b5fe1a6/scipy-1.15.2-cp311-cp311-musllinux_1_2_x86_64.whl", hash = "sha256:6f5e296ec63c5da6ba6fa0343ea73fd51b8b3e1a300b0a8cae3ed4b1122c7462", size = 40035857 }, + { url = "https://files.pythonhosted.org/packages/b9/8b/7ec1832b09dbc88f3db411f8cdd47db04505c4b72c99b11c920a8f0479c3/scipy-1.15.2-cp311-cp311-win_amd64.whl", hash = "sha256:597a0c7008b21c035831c39927406c6181bcf8f60a73f36219b69d010aa04737", size = 41217654 }, + { url = "https://files.pythonhosted.org/packages/4b/5d/3c78815cbab499610f26b5bae6aed33e227225a9fa5290008a733a64f6fc/scipy-1.15.2-cp312-cp312-macosx_10_13_x86_64.whl", hash = "sha256:c4697a10da8f8765bb7c83e24a470da5797e37041edfd77fd95ba3811a47c4fd", size = 38756184 }, + { url = "https://files.pythonhosted.org/packages/37/20/3d04eb066b471b6e171827548b9ddb3c21c6bbea72a4d84fc5989933910b/scipy-1.15.2-cp312-cp312-macosx_12_0_arm64.whl", hash = "sha256:869269b767d5ee7ea6991ed7e22b3ca1f22de73ab9a49c44bad338b725603301", size = 30163558 }, + { url = "https://files.pythonhosted.org/packages/a4/98/e5c964526c929ef1f795d4c343b2ff98634ad2051bd2bbadfef9e772e413/scipy-1.15.2-cp312-cp312-macosx_14_0_arm64.whl", hash = "sha256:bad78d580270a4d32470563ea86c6590b465cb98f83d760ff5b0990cb5518a93", size = 22437211 }, + { url = "https://files.pythonhosted.org/packages/1d/cd/1dc7371e29195ecbf5222f9afeedb210e0a75057d8afbd942aa6cf8c8eca/scipy-1.15.2-cp312-cp312-macosx_14_0_x86_64.whl", hash = "sha256:b09ae80010f52efddb15551025f9016c910296cf70adbf03ce2a8704f3a5ad20", size = 25232260 }, + { url = "https://files.pythonhosted.org/packages/f0/24/1a181a9e5050090e0b5138c5f496fee33293c342b788d02586bc410c6477/scipy-1.15.2-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:5a6fd6eac1ce74a9f77a7fc724080d507c5812d61e72bd5e4c489b042455865e", size = 35198095 }, + { url = "https://files.pythonhosted.org/packages/c0/53/eaada1a414c026673eb983f8b4a55fe5eb172725d33d62c1b21f63ff6ca4/scipy-1.15.2-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:2b871df1fe1a3ba85d90e22742b93584f8d2b8e6124f8372ab15c71b73e428b8", size = 37297371 }, + { url = "https://files.pythonhosted.org/packages/e9/06/0449b744892ed22b7e7b9a1994a866e64895363572677a316a9042af1fe5/scipy-1.15.2-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:03205d57a28e18dfd39f0377d5002725bf1f19a46f444108c29bdb246b6c8a11", size = 36872390 }, + { url = "https://files.pythonhosted.org/packages/6a/6f/a8ac3cfd9505ec695c1bc35edc034d13afbd2fc1882a7c6b473e280397bb/scipy-1.15.2-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:601881dfb761311045b03114c5fe718a12634e5608c3b403737ae463c9885d53", size = 39700276 }, + { url = "https://files.pythonhosted.org/packages/f5/6f/e6e5aff77ea2a48dd96808bb51d7450875af154ee7cbe72188afb0b37929/scipy-1.15.2-cp312-cp312-win_amd64.whl", hash = "sha256:e7c68b6a43259ba0aab737237876e5c2c549a031ddb7abc28c7b47f22e202ded", size = 40942317 }, +] + +[[package]] +name = "seaborn" +version = "0.13.2" +source = { registry = "https://pypi.org/simple" } +dependencies = [ + { name = "matplotlib" }, + { name = "numpy" }, + { name = "pandas" }, +] +sdist = { url = "https://files.pythonhosted.org/packages/86/59/a451d7420a77ab0b98f7affa3a1d78a313d2f7281a57afb1a34bae8ab412/seaborn-0.13.2.tar.gz", hash = "sha256:93e60a40988f4d65e9f4885df477e2fdaff6b73a9ded434c1ab356dd57eefff7", size = 1457696 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/83/11/00d3c3dfc25ad54e731d91449895a79e4bf2384dc3ac01809010ba88f6d5/seaborn-0.13.2-py3-none-any.whl", hash = "sha256:636f8336facf092165e27924f223d3c62ca560b1f2bb5dff7ab7fad265361987", size = 294914 }, +] + +[[package]] +name = "send2trash" +version = "1.8.3" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/fd/3a/aec9b02217bb79b87bbc1a21bc6abc51e3d5dcf65c30487ac96c0908c722/Send2Trash-1.8.3.tar.gz", hash = "sha256:b18e7a3966d99871aefeb00cfbcfdced55ce4871194810fc71f4aa484b953abf", size = 17394 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/40/b0/4562db6223154aa4e22f939003cb92514c79f3d4dccca3444253fd17f902/Send2Trash-1.8.3-py3-none-any.whl", hash = "sha256:0c31227e0bd08961c7665474a3d1ef7193929fedda4233843689baa056be46c9", size = 18072 }, +] + +[[package]] +name = "setuptools" +version = "75.8.2" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/d1/53/43d99d7687e8cdef5ab5f9ec5eaf2c0423c2b35133a2b7e7bc276fc32b21/setuptools-75.8.2.tar.gz", hash = "sha256:4880473a969e5f23f2a2be3646b2dfd84af9028716d398e46192f84bc36900d2", size = 1344083 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/a9/38/7d7362e031bd6dc121e5081d8cb6aa6f6fedf2b67bf889962134c6da4705/setuptools-75.8.2-py3-none-any.whl", hash = "sha256:558e47c15f1811c1fa7adbd0096669bf76c1d3f433f58324df69f3f5ecac4e8f", size = 1229385 }, +] + +[[package]] +name = "six" +version = "1.17.0" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/94/e7/b2c673351809dca68a0e064b6af791aa332cf192da575fd474ed7d6f16a2/six-1.17.0.tar.gz", hash = "sha256:ff70335d468e7eb6ec65b95b99d3a2836546063f63acc5171de367e834932a81", size = 34031 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/b7/ce/149a00dd41f10bc29e5921b496af8b574d8413afcd5e30dfa0ed46c2cc5e/six-1.17.0-py2.py3-none-any.whl", hash = "sha256:4721f391ed90541fddacab5acf947aa0d3dc7d27b2e1e8eda2be8970586c3274", size = 11050 }, +] + +[[package]] +name = "sniffio" +version = "1.3.1" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/a2/87/a6771e1546d97e7e041b6ae58d80074f81b7d5121207425c964ddf5cfdbd/sniffio-1.3.1.tar.gz", hash = "sha256:f4324edc670a0f49750a81b895f35c3adb843cca46f0530f79fc1babb23789dc", size = 20372 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/e9/44/75a9c9421471a6c4805dbf2356f7c181a29c1879239abab1ea2cc8f38b40/sniffio-1.3.1-py3-none-any.whl", hash = "sha256:2f6da418d1f1e0fddd844478f41680e794e6051915791a034ff65e5f100525a2", size = 10235 }, +] + +[[package]] +name = "soupsieve" +version = "2.6" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/d7/ce/fbaeed4f9fb8b2daa961f90591662df6a86c1abf25c548329a86920aedfb/soupsieve-2.6.tar.gz", hash = "sha256:e2e68417777af359ec65daac1057404a3c8a5455bb8abc36f1a9866ab1a51abb", size = 101569 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/d1/c2/fe97d779f3ef3b15f05c94a2f1e3d21732574ed441687474db9d342a7315/soupsieve-2.6-py3-none-any.whl", hash = "sha256:e72c4ff06e4fb6e4b5a9f0f55fe6e81514581fca1515028625d0f299c602ccc9", size = 36186 }, +] + +[[package]] +name = "stack-data" +version = "0.6.3" +source = { registry = "https://pypi.org/simple" } +dependencies = [ + { name = "asttokens" }, + { name = "executing" }, + { name = "pure-eval" }, +] +sdist = { url = "https://files.pythonhosted.org/packages/28/e3/55dcc2cfbc3ca9c29519eb6884dd1415ecb53b0e934862d3559ddcb7e20b/stack_data-0.6.3.tar.gz", hash = "sha256:836a778de4fec4dcd1dcd89ed8abff8a221f58308462e1c4aa2a3cf30148f0b9", size = 44707 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/f1/7b/ce1eafaf1a76852e2ec9b22edecf1daa58175c090266e9f6c64afcd81d91/stack_data-0.6.3-py3-none-any.whl", hash = "sha256:d5558e0c25a4cb0853cddad3d77da9891a08cb85dd9f9f91b9f8cd66e511e695", size = 24521 }, +] + +[[package]] +name = "terminado" +version = "0.18.1" +source = { registry = "https://pypi.org/simple" } +dependencies = [ + { name = "ptyprocess", marker = "os_name != 'nt'" }, + { name = "pywinpty", marker = "os_name == 'nt'" }, + { name = "tornado" }, +] +sdist = { url = "https://files.pythonhosted.org/packages/8a/11/965c6fd8e5cc254f1fe142d547387da17a8ebfd75a3455f637c663fb38a0/terminado-0.18.1.tar.gz", hash = "sha256:de09f2c4b85de4765f7714688fff57d3e75bad1f909b589fde880460c753fd2e", size = 32701 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/6a/9e/2064975477fdc887e47ad42157e214526dcad8f317a948dee17e1659a62f/terminado-0.18.1-py3-none-any.whl", hash = "sha256:a4468e1b37bb318f8a86514f65814e1afc977cf29b3992a4500d9dd305dcceb0", size = 14154 }, +] + +[[package]] +name = "text-unidecode" +version = "1.3" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/ab/e2/e9a00f0ccb71718418230718b3d900e71a5d16e701a3dae079a21e9cd8f8/text-unidecode-1.3.tar.gz", hash = "sha256:bad6603bb14d279193107714b288be206cac565dfa49aa5b105294dd5c4aab93", size = 76885 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/a6/a5/c0b6468d3824fe3fde30dbb5e1f687b291608f9473681bbf7dabbf5a87d7/text_unidecode-1.3-py2.py3-none-any.whl", hash = "sha256:1311f10e8b895935241623731c2ba64f4c455287888b18189350b67134a822e8", size = 78154 }, +] + +[[package]] +name = "tinycss2" +version = "1.4.0" +source = { registry = "https://pypi.org/simple" } +dependencies = [ + { name = "webencodings" }, +] +sdist = { url = "https://files.pythonhosted.org/packages/7a/fd/7a5ee21fd08ff70d3d33a5781c255cbe779659bd03278feb98b19ee550f4/tinycss2-1.4.0.tar.gz", hash = "sha256:10c0972f6fc0fbee87c3edb76549357415e94548c1ae10ebccdea16fb404a9b7", size = 87085 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/e6/34/ebdc18bae6aa14fbee1a08b63c015c72b64868ff7dae68808ab500c492e2/tinycss2-1.4.0-py3-none-any.whl", hash = "sha256:3a49cf47b7675da0b15d0c6e1df8df4ebd96e9394bb905a5775adb0d884c5289", size = 26610 }, +] + +[[package]] +name = "tomli" +version = "2.2.1" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/18/87/302344fed471e44a87289cf4967697d07e532f2421fdaf868a303cbae4ff/tomli-2.2.1.tar.gz", hash = "sha256:cd45e1dc79c835ce60f7404ec8119f2eb06d38b1deba146f07ced3bbc44505ff", size = 17175 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/43/ca/75707e6efa2b37c77dadb324ae7d9571cb424e61ea73fad7c56c2d14527f/tomli-2.2.1-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:678e4fa69e4575eb77d103de3df8a895e1591b48e740211bd1067378c69e8249", size = 131077 }, + { url = "https://files.pythonhosted.org/packages/c7/16/51ae563a8615d472fdbffc43a3f3d46588c264ac4f024f63f01283becfbb/tomli-2.2.1-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:023aa114dd824ade0100497eb2318602af309e5a55595f76b626d6d9f3b7b0a6", size = 123429 }, + { url = "https://files.pythonhosted.org/packages/f1/dd/4f6cd1e7b160041db83c694abc78e100473c15d54620083dbd5aae7b990e/tomli-2.2.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:ece47d672db52ac607a3d9599a9d48dcb2f2f735c6c2d1f34130085bb12b112a", size = 226067 }, + { url = "https://files.pythonhosted.org/packages/a9/6b/c54ede5dc70d648cc6361eaf429304b02f2871a345bbdd51e993d6cdf550/tomli-2.2.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:6972ca9c9cc9f0acaa56a8ca1ff51e7af152a9f87fb64623e31d5c83700080ee", size = 236030 }, + { url = "https://files.pythonhosted.org/packages/1f/47/999514fa49cfaf7a92c805a86c3c43f4215621855d151b61c602abb38091/tomli-2.2.1-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:c954d2250168d28797dd4e3ac5cf812a406cd5a92674ee4c8f123c889786aa8e", size = 240898 }, + { url = "https://files.pythonhosted.org/packages/73/41/0a01279a7ae09ee1573b423318e7934674ce06eb33f50936655071d81a24/tomli-2.2.1-cp311-cp311-musllinux_1_2_aarch64.whl", hash = "sha256:8dd28b3e155b80f4d54beb40a441d366adcfe740969820caf156c019fb5c7ec4", size = 229894 }, + { url = "https://files.pythonhosted.org/packages/55/18/5d8bc5b0a0362311ce4d18830a5d28943667599a60d20118074ea1b01bb7/tomli-2.2.1-cp311-cp311-musllinux_1_2_i686.whl", hash = "sha256:e59e304978767a54663af13c07b3d1af22ddee3bb2fb0618ca1593e4f593a106", size = 245319 }, + { url = "https://files.pythonhosted.org/packages/92/a3/7ade0576d17f3cdf5ff44d61390d4b3febb8a9fc2b480c75c47ea048c646/tomli-2.2.1-cp311-cp311-musllinux_1_2_x86_64.whl", hash = "sha256:33580bccab0338d00994d7f16f4c4ec25b776af3ffaac1ed74e0b3fc95e885a8", size = 238273 }, + { url = "https://files.pythonhosted.org/packages/72/6f/fa64ef058ac1446a1e51110c375339b3ec6be245af9d14c87c4a6412dd32/tomli-2.2.1-cp311-cp311-win32.whl", hash = "sha256:465af0e0875402f1d226519c9904f37254b3045fc5084697cefb9bdde1ff99ff", size = 98310 }, + { url = "https://files.pythonhosted.org/packages/6a/1c/4a2dcde4a51b81be3530565e92eda625d94dafb46dbeb15069df4caffc34/tomli-2.2.1-cp311-cp311-win_amd64.whl", hash = "sha256:2d0f2fdd22b02c6d81637a3c95f8cd77f995846af7414c5c4b8d0545afa1bc4b", size = 108309 }, + { url = "https://files.pythonhosted.org/packages/52/e1/f8af4c2fcde17500422858155aeb0d7e93477a0d59a98e56cbfe75070fd0/tomli-2.2.1-cp312-cp312-macosx_10_13_x86_64.whl", hash = "sha256:4a8f6e44de52d5e6c657c9fe83b562f5f4256d8ebbfe4ff922c495620a7f6cea", size = 132762 }, + { url = "https://files.pythonhosted.org/packages/03/b8/152c68bb84fc00396b83e7bbddd5ec0bd3dd409db4195e2a9b3e398ad2e3/tomli-2.2.1-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:8d57ca8095a641b8237d5b079147646153d22552f1c637fd3ba7f4b0b29167a8", size = 123453 }, + { url = "https://files.pythonhosted.org/packages/c8/d6/fc9267af9166f79ac528ff7e8c55c8181ded34eb4b0e93daa767b8841573/tomli-2.2.1-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:4e340144ad7ae1533cb897d406382b4b6fede8890a03738ff1683af800d54192", size = 233486 }, + { url = "https://files.pythonhosted.org/packages/5c/51/51c3f2884d7bab89af25f678447ea7d297b53b5a3b5730a7cb2ef6069f07/tomli-2.2.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:db2b95f9de79181805df90bedc5a5ab4c165e6ec3fe99f970d0e302f384ad222", size = 242349 }, + { url = "https://files.pythonhosted.org/packages/ab/df/bfa89627d13a5cc22402e441e8a931ef2108403db390ff3345c05253935e/tomli-2.2.1-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:40741994320b232529c802f8bc86da4e1aa9f413db394617b9a256ae0f9a7f77", size = 252159 }, + { url = "https://files.pythonhosted.org/packages/9e/6e/fa2b916dced65763a5168c6ccb91066f7639bdc88b48adda990db10c8c0b/tomli-2.2.1-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:400e720fe168c0f8521520190686ef8ef033fb19fc493da09779e592861b78c6", size = 237243 }, + { url = "https://files.pythonhosted.org/packages/b4/04/885d3b1f650e1153cbb93a6a9782c58a972b94ea4483ae4ac5cedd5e4a09/tomli-2.2.1-cp312-cp312-musllinux_1_2_i686.whl", hash = "sha256:02abe224de6ae62c19f090f68da4e27b10af2b93213d36cf44e6e1c5abd19fdd", size = 259645 }, + { url = "https://files.pythonhosted.org/packages/9c/de/6b432d66e986e501586da298e28ebeefd3edc2c780f3ad73d22566034239/tomli-2.2.1-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:b82ebccc8c8a36f2094e969560a1b836758481f3dc360ce9a3277c65f374285e", size = 244584 }, + { url = "https://files.pythonhosted.org/packages/1c/9a/47c0449b98e6e7d1be6cbac02f93dd79003234ddc4aaab6ba07a9a7482e2/tomli-2.2.1-cp312-cp312-win32.whl", hash = "sha256:889f80ef92701b9dbb224e49ec87c645ce5df3fa2cc548664eb8a25e03127a98", size = 98875 }, + { url = "https://files.pythonhosted.org/packages/ef/60/9b9638f081c6f1261e2688bd487625cd1e660d0a85bd469e91d8db969734/tomli-2.2.1-cp312-cp312-win_amd64.whl", hash = "sha256:7fc04e92e1d624a4a63c76474610238576942d6b8950a2d7f908a340494e67e4", size = 109418 }, + { url = "https://files.pythonhosted.org/packages/6e/c2/61d3e0f47e2b74ef40a68b9e6ad5984f6241a942f7cd3bbfbdbd03861ea9/tomli-2.2.1-py3-none-any.whl", hash = "sha256:cb55c73c5f4408779d0cf3eef9f762b9c9f147a77de7b258bef0a5628adc85cc", size = 14257 }, +] + +[[package]] +name = "tornado" +version = "6.4.2" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/59/45/a0daf161f7d6f36c3ea5fc0c2de619746cc3dd4c76402e9db545bd920f63/tornado-6.4.2.tar.gz", hash = "sha256:92bad5b4746e9879fd7bf1eb21dce4e3fc5128d71601f80005afa39237ad620b", size = 501135 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/26/7e/71f604d8cea1b58f82ba3590290b66da1e72d840aeb37e0d5f7291bd30db/tornado-6.4.2-cp38-abi3-macosx_10_9_universal2.whl", hash = "sha256:e828cce1123e9e44ae2a50a9de3055497ab1d0aeb440c5ac23064d9e44880da1", size = 436299 }, + { url = "https://files.pythonhosted.org/packages/96/44/87543a3b99016d0bf54fdaab30d24bf0af2e848f1d13d34a3a5380aabe16/tornado-6.4.2-cp38-abi3-macosx_10_9_x86_64.whl", hash = "sha256:072ce12ada169c5b00b7d92a99ba089447ccc993ea2143c9ede887e0937aa803", size = 434253 }, + { url = "https://files.pythonhosted.org/packages/cb/fb/fdf679b4ce51bcb7210801ef4f11fdac96e9885daa402861751353beea6e/tornado-6.4.2-cp38-abi3-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:1a017d239bd1bb0919f72af256a970624241f070496635784d9bf0db640d3fec", size = 437602 }, + { url = "https://files.pythonhosted.org/packages/4f/3b/e31aeffffc22b475a64dbeb273026a21b5b566f74dee48742817626c47dc/tornado-6.4.2-cp38-abi3-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:c36e62ce8f63409301537222faffcef7dfc5284f27eec227389f2ad11b09d946", size = 436972 }, + { url = "https://files.pythonhosted.org/packages/22/55/b78a464de78051a30599ceb6983b01d8f732e6f69bf37b4ed07f642ac0fc/tornado-6.4.2-cp38-abi3-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:bca9eb02196e789c9cb5c3c7c0f04fb447dc2adffd95265b2c7223a8a615ccbf", size = 437173 }, + { url = "https://files.pythonhosted.org/packages/79/5e/be4fb0d1684eb822c9a62fb18a3e44a06188f78aa466b2ad991d2ee31104/tornado-6.4.2-cp38-abi3-musllinux_1_2_aarch64.whl", hash = "sha256:304463bd0772442ff4d0f5149c6f1c2135a1fae045adf070821c6cdc76980634", size = 437892 }, + { url = "https://files.pythonhosted.org/packages/f5/33/4f91fdd94ea36e1d796147003b490fe60a0215ac5737b6f9c65e160d4fe0/tornado-6.4.2-cp38-abi3-musllinux_1_2_i686.whl", hash = "sha256:c82c46813ba483a385ab2a99caeaedf92585a1f90defb5693351fa7e4ea0bf73", size = 437334 }, + { url = "https://files.pythonhosted.org/packages/2b/ae/c1b22d4524b0e10da2f29a176fb2890386f7bd1f63aacf186444873a88a0/tornado-6.4.2-cp38-abi3-musllinux_1_2_x86_64.whl", hash = "sha256:932d195ca9015956fa502c6b56af9eb06106140d844a335590c1ec7f5277d10c", size = 437261 }, + { url = "https://files.pythonhosted.org/packages/b5/25/36dbd49ab6d179bcfc4c6c093a51795a4f3bed380543a8242ac3517a1751/tornado-6.4.2-cp38-abi3-win32.whl", hash = "sha256:2876cef82e6c5978fde1e0d5b1f919d756968d5b4282418f3146b79b58556482", size = 438463 }, + { url = "https://files.pythonhosted.org/packages/61/cc/58b1adeb1bb46228442081e746fcdbc4540905c87e8add7c277540934edb/tornado-6.4.2-cp38-abi3-win_amd64.whl", hash = "sha256:908b71bf3ff37d81073356a5fadcc660eb10c1476ee6e2725588626ce7e5ca38", size = 438907 }, +] + +[[package]] +name = "traitlets" +version = "5.14.3" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/eb/79/72064e6a701c2183016abbbfedaba506d81e30e232a68c9f0d6f6fcd1574/traitlets-5.14.3.tar.gz", hash = "sha256:9ed0579d3502c94b4b3732ac120375cda96f923114522847de4b3bb98b96b6b7", size = 161621 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/00/c0/8f5d070730d7836adc9c9b6408dec68c6ced86b304a9b26a14df072a6e8c/traitlets-5.14.3-py3-none-any.whl", hash = "sha256:b74e89e397b1ed28cc831db7aea759ba6640cb3de13090ca145426688ff1ac4f", size = 85359 }, +] + +[[package]] +name = "types-python-dateutil" +version = "2.9.0.20241206" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/a9/60/47d92293d9bc521cd2301e423a358abfac0ad409b3a1606d8fbae1321961/types_python_dateutil-2.9.0.20241206.tar.gz", hash = "sha256:18f493414c26ffba692a72369fea7a154c502646301ebfe3d56a04b3767284cb", size = 13802 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/0f/b3/ca41df24db5eb99b00d97f89d7674a90cb6b3134c52fb8121b6d8d30f15c/types_python_dateutil-2.9.0.20241206-py3-none-any.whl", hash = "sha256:e248a4bc70a486d3e3ec84d0dc30eec3a5f979d6e7ee4123ae043eedbb987f53", size = 14384 }, +] + +[[package]] +name = "typing-extensions" +version = "4.12.2" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/df/db/f35a00659bc03fec321ba8bce9420de607a1d37f8342eee1863174c69557/typing_extensions-4.12.2.tar.gz", hash = "sha256:1a7ead55c7e559dd4dee8856e3a88b41225abfe1ce8df57b7c13915fe121ffb8", size = 85321 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/26/9f/ad63fc0248c5379346306f8668cda6e2e2e9c95e01216d2b8ffd9ff037d0/typing_extensions-4.12.2-py3-none-any.whl", hash = "sha256:04e5ca0351e0f3f85c6853954072df659d0d13fac324d0072316b67d7794700d", size = 37438 }, +] + +[[package]] +name = "tzdata" +version = "2025.1" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/43/0f/fa4723f22942480be4ca9527bbde8d43f6c3f2fe8412f00e7f5f6746bc8b/tzdata-2025.1.tar.gz", hash = "sha256:24894909e88cdb28bd1636c6887801df64cb485bd593f2fd83ef29075a81d694", size = 194950 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/0f/dd/84f10e23edd882c6f968c21c2434fe67bd4a528967067515feca9e611e5e/tzdata-2025.1-py2.py3-none-any.whl", hash = "sha256:7e127113816800496f027041c570f50bcd464a020098a3b6b199517772303639", size = 346762 }, +] + +[[package]] +name = "uri-template" +version = "1.3.0" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/31/c7/0336f2bd0bcbada6ccef7aaa25e443c118a704f828a0620c6fa0207c1b64/uri-template-1.3.0.tar.gz", hash = "sha256:0e00f8eb65e18c7de20d595a14336e9f337ead580c70934141624b6d1ffdacc7", size = 21678 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/e7/00/3fca040d7cf8a32776d3d81a00c8ee7457e00f80c649f1e4a863c8321ae9/uri_template-1.3.0-py3-none-any.whl", hash = "sha256:a44a133ea12d44a0c0f06d7d42a52d71282e77e2f937d8abd5655b8d56fc1363", size = 11140 }, +] + +[[package]] +name = "urllib3" +version = "2.3.0" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/aa/63/e53da845320b757bf29ef6a9062f5c669fe997973f966045cb019c3f4b66/urllib3-2.3.0.tar.gz", hash = "sha256:f8c5449b3cf0861679ce7e0503c7b44b5ec981bec0d1d3795a07f1ba96f0204d", size = 307268 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/c8/19/4ec628951a74043532ca2cf5d97b7b14863931476d117c471e8e2b1eb39f/urllib3-2.3.0-py3-none-any.whl", hash = "sha256:1cee9ad369867bfdbbb48b7dd50374c0967a0bb7710050facf0dd6911440e3df", size = 128369 }, +] + +[[package]] +name = "virtualenv" +version = "20.29.2" +source = { registry = "https://pypi.org/simple" } +dependencies = [ + { name = "distlib" }, + { name = "filelock" }, + { name = "platformdirs" }, +] +sdist = { url = "https://files.pythonhosted.org/packages/f1/88/dacc875dd54a8acadb4bcbfd4e3e86df8be75527116c91d8f9784f5e9cab/virtualenv-20.29.2.tar.gz", hash = "sha256:fdaabebf6d03b5ba83ae0a02cfe96f48a716f4fae556461d180825866f75b728", size = 4320272 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/93/fa/849483d56773ae29740ae70043ad88e068f98a6401aa819b5d6bee604683/virtualenv-20.29.2-py3-none-any.whl", hash = "sha256:febddfc3d1ea571bdb1dc0f98d7b45d24def7428214d4fb73cc486c9568cce6a", size = 4301478 }, +] + +[[package]] +name = "watchdog" +version = "6.0.0" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/db/7d/7f3d619e951c88ed75c6037b246ddcf2d322812ee8ea189be89511721d54/watchdog-6.0.0.tar.gz", hash = "sha256:9ddf7c82fda3ae8e24decda1338ede66e1c99883db93711d8fb941eaa2d8c282", size = 131220 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/0c/56/90994d789c61df619bfc5ce2ecdabd5eeff564e1eb47512bd01b5e019569/watchdog-6.0.0-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:d1cdb490583ebd691c012b3d6dae011000fe42edb7a82ece80965b42abd61f26", size = 96390 }, + { url = "https://files.pythonhosted.org/packages/55/46/9a67ee697342ddf3c6daa97e3a587a56d6c4052f881ed926a849fcf7371c/watchdog-6.0.0-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:bc64ab3bdb6a04d69d4023b29422170b74681784ffb9463ed4870cf2f3e66112", size = 88389 }, + { url = "https://files.pythonhosted.org/packages/44/65/91b0985747c52064d8701e1075eb96f8c40a79df889e59a399453adfb882/watchdog-6.0.0-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:c897ac1b55c5a1461e16dae288d22bb2e412ba9807df8397a635d88f671d36c3", size = 89020 }, + { url = "https://files.pythonhosted.org/packages/e0/24/d9be5cd6642a6aa68352ded4b4b10fb0d7889cb7f45814fb92cecd35f101/watchdog-6.0.0-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:6eb11feb5a0d452ee41f824e271ca311a09e250441c262ca2fd7ebcf2461a06c", size = 96393 }, + { url = "https://files.pythonhosted.org/packages/63/7a/6013b0d8dbc56adca7fdd4f0beed381c59f6752341b12fa0886fa7afc78b/watchdog-6.0.0-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:ef810fbf7b781a5a593894e4f439773830bdecb885e6880d957d5b9382a960d2", size = 88392 }, + { url = "https://files.pythonhosted.org/packages/d1/40/b75381494851556de56281e053700e46bff5b37bf4c7267e858640af5a7f/watchdog-6.0.0-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:afd0fe1b2270917c5e23c2a65ce50c2a4abb63daafb0d419fde368e272a76b7c", size = 89019 }, + { url = "https://files.pythonhosted.org/packages/39/ea/3930d07dafc9e286ed356a679aa02d777c06e9bfd1164fa7c19c288a5483/watchdog-6.0.0-cp312-cp312-macosx_10_13_universal2.whl", hash = "sha256:bdd4e6f14b8b18c334febb9c4425a878a2ac20efd1e0b231978e7b150f92a948", size = 96471 }, + { url = "https://files.pythonhosted.org/packages/12/87/48361531f70b1f87928b045df868a9fd4e253d9ae087fa4cf3f7113be363/watchdog-6.0.0-cp312-cp312-macosx_10_13_x86_64.whl", hash = "sha256:c7c15dda13c4eb00d6fb6fc508b3c0ed88b9d5d374056b239c4ad1611125c860", size = 88449 }, + { url = "https://files.pythonhosted.org/packages/5b/7e/8f322f5e600812e6f9a31b75d242631068ca8f4ef0582dd3ae6e72daecc8/watchdog-6.0.0-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:6f10cb2d5902447c7d0da897e2c6768bca89174d0c6e1e30abec5421af97a5b0", size = 89054 }, + { url = "https://files.pythonhosted.org/packages/30/ad/d17b5d42e28a8b91f8ed01cb949da092827afb9995d4559fd448d0472763/watchdog-6.0.0-pp310-pypy310_pp73-macosx_10_15_x86_64.whl", hash = "sha256:c7ac31a19f4545dd92fc25d200694098f42c9a8e391bc00bdd362c5736dbf881", size = 87902 }, + { url = "https://files.pythonhosted.org/packages/5c/ca/c3649991d140ff6ab67bfc85ab42b165ead119c9e12211e08089d763ece5/watchdog-6.0.0-pp310-pypy310_pp73-macosx_11_0_arm64.whl", hash = "sha256:9513f27a1a582d9808cf21a07dae516f0fab1cf2d7683a742c498b93eedabb11", size = 88380 }, + { url = "https://files.pythonhosted.org/packages/a9/c7/ca4bf3e518cb57a686b2feb4f55a1892fd9a3dd13f470fca14e00f80ea36/watchdog-6.0.0-py3-none-manylinux2014_aarch64.whl", hash = "sha256:7607498efa04a3542ae3e05e64da8202e58159aa1fa4acddf7678d34a35d4f13", size = 79079 }, + { url = "https://files.pythonhosted.org/packages/5c/51/d46dc9332f9a647593c947b4b88e2381c8dfc0942d15b8edc0310fa4abb1/watchdog-6.0.0-py3-none-manylinux2014_armv7l.whl", hash = "sha256:9041567ee8953024c83343288ccc458fd0a2d811d6a0fd68c4c22609e3490379", size = 79078 }, + { url = "https://files.pythonhosted.org/packages/d4/57/04edbf5e169cd318d5f07b4766fee38e825d64b6913ca157ca32d1a42267/watchdog-6.0.0-py3-none-manylinux2014_i686.whl", hash = "sha256:82dc3e3143c7e38ec49d61af98d6558288c415eac98486a5c581726e0737c00e", size = 79076 }, + { url = "https://files.pythonhosted.org/packages/ab/cc/da8422b300e13cb187d2203f20b9253e91058aaf7db65b74142013478e66/watchdog-6.0.0-py3-none-manylinux2014_ppc64.whl", hash = "sha256:212ac9b8bf1161dc91bd09c048048a95ca3a4c4f5e5d4a7d1b1a7d5752a7f96f", size = 79077 }, + { url = "https://files.pythonhosted.org/packages/2c/3b/b8964e04ae1a025c44ba8e4291f86e97fac443bca31de8bd98d3263d2fcf/watchdog-6.0.0-py3-none-manylinux2014_ppc64le.whl", hash = "sha256:e3df4cbb9a450c6d49318f6d14f4bbc80d763fa587ba46ec86f99f9e6876bb26", size = 79078 }, + { url = "https://files.pythonhosted.org/packages/62/ae/a696eb424bedff7407801c257d4b1afda455fe40821a2be430e173660e81/watchdog-6.0.0-py3-none-manylinux2014_s390x.whl", hash = "sha256:2cce7cfc2008eb51feb6aab51251fd79b85d9894e98ba847408f662b3395ca3c", size = 79077 }, + { url = "https://files.pythonhosted.org/packages/b5/e8/dbf020b4d98251a9860752a094d09a65e1b436ad181faf929983f697048f/watchdog-6.0.0-py3-none-manylinux2014_x86_64.whl", hash = "sha256:20ffe5b202af80ab4266dcd3e91aae72bf2da48c0d33bdb15c66658e685e94e2", size = 79078 }, + { url = "https://files.pythonhosted.org/packages/07/f6/d0e5b343768e8bcb4cda79f0f2f55051bf26177ecd5651f84c07567461cf/watchdog-6.0.0-py3-none-win32.whl", hash = "sha256:07df1fdd701c5d4c8e55ef6cf55b8f0120fe1aef7ef39a1c6fc6bc2e606d517a", size = 79065 }, + { url = "https://files.pythonhosted.org/packages/db/d9/c495884c6e548fce18a8f40568ff120bc3a4b7b99813081c8ac0c936fa64/watchdog-6.0.0-py3-none-win_amd64.whl", hash = "sha256:cbafb470cf848d93b5d013e2ecb245d4aa1c8fd0504e863ccefa32445359d680", size = 79070 }, + { url = "https://files.pythonhosted.org/packages/33/e8/e40370e6d74ddba47f002a32919d91310d6074130fe4e17dabcafc15cbf1/watchdog-6.0.0-py3-none-win_ia64.whl", hash = "sha256:a1914259fa9e1454315171103c6a30961236f508b9b623eae470268bbcc6a22f", size = 79067 }, +] + +[[package]] +name = "wcwidth" +version = "0.2.13" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/6c/63/53559446a878410fc5a5974feb13d31d78d752eb18aeba59c7fef1af7598/wcwidth-0.2.13.tar.gz", hash = "sha256:72ea0c06399eb286d978fdedb6923a9eb47e1c486ce63e9b4e64fc18303972b5", size = 101301 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/fd/84/fd2ba7aafacbad3c4201d395674fc6348826569da3c0937e75505ead3528/wcwidth-0.2.13-py2.py3-none-any.whl", hash = "sha256:3da69048e4540d84af32131829ff948f1e022c1c6bdb8d6102117aac784f6859", size = 34166 }, +] + +[[package]] +name = "webcolors" +version = "24.11.1" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/7b/29/061ec845fb58521848f3739e466efd8250b4b7b98c1b6c5bf4d40b419b7e/webcolors-24.11.1.tar.gz", hash = "sha256:ecb3d768f32202af770477b8b65f318fa4f566c22948673a977b00d589dd80f6", size = 45064 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/60/e8/c0e05e4684d13459f93d312077a9a2efbe04d59c393bc2b8802248c908d4/webcolors-24.11.1-py3-none-any.whl", hash = "sha256:515291393b4cdf0eb19c155749a096f779f7d909f7cceea072791cb9095b92e9", size = 14934 }, +] + +[[package]] +name = "webencodings" +version = "0.5.1" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/0b/02/ae6ceac1baeda530866a85075641cec12989bd8d31af6d5ab4a3e8c92f47/webencodings-0.5.1.tar.gz", hash = "sha256:b36a1c245f2d304965eb4e0a82848379241dc04b865afcc4aab16748587e1923", size = 9721 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/f4/24/2a3e3df732393fed8b3ebf2ec078f05546de641fe1b667ee316ec1dcf3b7/webencodings-0.5.1-py2.py3-none-any.whl", hash = "sha256:a0af1213f3c2226497a97e2b3aa01a7e4bee4f403f95be16fc9acd2947514a78", size = 11774 }, +] + +[[package]] +name = "websocket-client" +version = "1.8.0" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/e6/30/fba0d96b4b5fbf5948ed3f4681f7da2f9f64512e1d303f94b4cc174c24a5/websocket_client-1.8.0.tar.gz", hash = "sha256:3239df9f44da632f96012472805d40a23281a991027ce11d2f45a6f24ac4c3da", size = 54648 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/5a/84/44687a29792a70e111c5c477230a72c4b957d88d16141199bf9acb7537a3/websocket_client-1.8.0-py3-none-any.whl", hash = "sha256:17b44cc997f5c498e809b22cdf2d9c7a9e71c02c8cc2b6c56e7c2d1239bfa526", size = 58826 }, +] + +[[package]] +name = "widgetsnbextension" +version = "4.0.13" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/56/fc/238c424fd7f4ebb25f8b1da9a934a3ad7c848286732ae04263661eb0fc03/widgetsnbextension-4.0.13.tar.gz", hash = "sha256:ffcb67bc9febd10234a362795f643927f4e0c05d9342c727b65d2384f8feacb6", size = 1164730 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/21/02/88b65cc394961a60c43c70517066b6b679738caf78506a5da7b88ffcb643/widgetsnbextension-4.0.13-py3-none-any.whl", hash = "sha256:74b2692e8500525cc38c2b877236ba51d34541e6385eeed5aec15a70f88a6c71", size = 2335872 }, +] From 16a0ed4bb110c77bc7b4025cc46f45eb4c005909 Mon Sep 17 00:00:00 2001 From: yhteoh Date: Sun, 2 Mar 2025 12:06:41 -0500 Subject: [PATCH 3/5] [format] ran ruff and pre-commit formatter --- .gitignore | 1 + CODE_OF_CONDUCT.md | 2 +- README.md | 44 ++++---- docs/about.md | 8 +- docs/get-started.md | 8 +- docs/hardware/devices.md | 38 +++---- docs/index.md | 36 +++--- docs/stylesheets/admonition_template.css | 2 +- docs/stylesheets/admonitions.css | 1 - docs/tutorials/index.md | 2 +- docs/tutorials/ising.md | 8 +- docs/tutorials/rabi-flopping.md | 13 +-- examples/adiabatic_linear.ipynb | 97 +++++++++------- examples/adiabatic_sigmoid.ipynb | 76 +++++++++---- examples/bell_state.ipynb | 137 ++++++++++++++--------- examples/ghz_state.ipynb | 76 +++++++------ examples/ising_model.ipynb | 79 ++++++------- examples/one_qubit_rabi_flopping.ipynb | 59 +++++----- examples/qaoa.ipynb | 40 ++++--- pyproject.toml | 8 +- 20 files changed, 416 insertions(+), 319 deletions(-) diff --git a/.gitignore b/.gitignore index e150bd1..5ff6be5 100644 --- a/.gitignore +++ b/.gitignore @@ -177,3 +177,4 @@ _scripts/ docs/examples/ tests/test.bat *.zip +.pre-commit-config.yaml diff --git a/CODE_OF_CONDUCT.md b/CODE_OF_CONDUCT.md index 9759a3d..e4623e3 100644 --- a/CODE_OF_CONDUCT.md +++ b/CODE_OF_CONDUCT.md @@ -129,4 +129,4 @@ at [https://www.contributor-covenant.org/translations][translations]. [v2.1]: https://www.contributor-covenant.org/version/2/1/code_of_conduct.html [Mozilla CoC]: https://github.com/mozilla/diversity [FAQ]: https://www.contributor-covenant.org/faq -[translations]: https://www.contributor-covenant.org/translations \ No newline at end of file +[translations]: https://www.contributor-covenant.org/translations diff --git a/README.md b/README.md index d9f5ace..94b5381 100644 --- a/README.md +++ b/README.md @@ -31,7 +31,7 @@ classical emulation backends, compiler infrastructure, and cloud server containe ## Quick start ## Installation -To install `equilux` and the suite Open Quantum Design software tools, +To install `equilux` and the suite Open Quantum Design software tools, ```bash pip install equilux ``` @@ -49,47 +49,47 @@ Open Quantum Design's quantum computing stack can be interfaced at different lev ```mermaid block-beta columns 3 - + block:Interface columns 1 InterfaceTitle("Interfaces") - InterfaceDigital["Digital Interface\nQuantum circuits with discrete gates"] + InterfaceDigital["Digital Interface\nQuantum circuits with discrete gates"] space - InterfaceAnalog["Analog Interface\n Continuous-time evolution with Hamiltonians"] + InterfaceAnalog["Analog Interface\n Continuous-time evolution with Hamiltonians"] space InterfaceAtomic["Atomic Interface\nLight-matter interactions between lasers and ions"] space end - + block:IR columns 1 IRTitle("IRs") - IRDigital["Quantum circuit IR\nopenQASM, LLVM+QIR"] + IRDigital["Quantum circuit IR\nopenQASM, LLVM+QIR"] space IRAnalog["openQSIM"] space IRAtomic["openAPL"] space end - + block:Emulator columns 1 EmulatorsTitle("Classical Emulators") - - EmulatorDigital["Pennylane, Qiskit"] + + EmulatorDigital["Pennylane, Qiskit"] space EmulatorAnalog["QuTiP, QuantumOptics.jl"] space EmulatorAtomic["TrICal, QuantumIon.jl"] space end - + space block:RealTime columns 1 RealTimeTitle("Real-Time") space - RTSoftware["ARTIQ, DAX, OQDAX"] + RTSoftware["ARTIQ, DAX, OQDAX"] space RTGateware["Sinara Real-Time Control"] space @@ -99,24 +99,24 @@ block-beta space end space - + InterfaceDigital --> IRDigital InterfaceAnalog --> IRAnalog InterfaceAtomic --> IRAtomic - + IRDigital --> IRAnalog IRAnalog --> IRAtomic - + IRDigital --> EmulatorDigital IRAnalog --> EmulatorAnalog IRAtomic --> EmulatorAtomic - + IRAtomic --> RealTimeTitle - + RTSoftware --> RTGateware RTGateware --> RTHardware RTHardware --> RTApparatus - + classDef title fill:#d6d4d4,stroke:#333,color:#333; classDef digital fill:#E7E08B,stroke:#333,color:#333; classDef analog fill:#E4E9B2,stroke:#333,color:#333; @@ -124,7 +124,7 @@ block-beta classDef realtime fill:#B5CBB7,stroke:#333,color:#333; classDef highlight fill:#f2bbbb,stroke:#333,color:#333,stroke-dasharray: 5 5; - + class InterfaceTitle,IRTitle,EmulatorsTitle,RealTimeTitle title class InterfaceDigital,IRDigital,EmulatorDigital digital class InterfaceAnalog,IRAnalog,EmulatorAnalog analog @@ -133,19 +133,19 @@ block-beta ``` ### Software -OQD's software stack components include Python interfaces at the digital, analog, and atomic layers, -classical emulators, compiler infrastructure, and cloud server components. +OQD's software stack components include Python interfaces at the digital, analog, and atomic layers, +classical emulators, compiler infrastructure, and cloud server components. ### Hardware -Planned supported hardware backends include +Planned supported hardware backends include the [Bloodstone](docs/hardware/devices.md) processor based on171Yb+ ions and the [Beryl](docs/hardware/devices.md) processor based on133Ba+ ions. ## Getting started -Below is a short example of how to use the analog interface to specify, serialize, +Below is a short example of how to use the analog interface to specify, serialize, and simulate an analog quantum program - here, a single-qubit Rabi-flopping experiment. ```python diff --git a/docs/about.md b/docs/about.md index 5e93c54..9cf5f1a 100644 --- a/docs/about.md +++ b/docs/about.md @@ -1,12 +1,12 @@ -Open Quantum Design (OQD) is a non-profit organization. Our mission is to develop full-stack open-source quantum computer designs by fostering a collaborative community of diverse contributors from academia, industry, and government. -OQD's current designs are based on laser-cooled trapped ion quantum computing hardware and software. +Open Quantum Design (OQD) is a non-profit organization. Our mission is to develop full-stack open-source quantum computer designs by fostering a collaborative community of diverse contributors from academia, industry, and government. +OQD's current designs are based on laser-cooled trapped ion quantum computing hardware and software. The OQD intellectual property was developed by University of Waterloo Professors Crystal Senko, Rajibul Islam and Roger Melko, with physicists, engineers, and computer scientists working at the [Institute for Quantum Computing](https://uwaterloo.ca/institute-for-quantum-computing/) and the [Perimeter Institute Quantum Intelligence Lab](https://perimeterinstitute.ca/perimeter-institute-quantum-intelligence-lab-piquil). OQD’s technology features novel and scalable approaches for the trapping, control, and read-out of ions. This includes a unique blade trap design, agile optical scheme for low crosstalk addressing of the ions, high-fidelity and all-to-all gate connectivity, and native support for mid-circuit measurements. -All components of the stack will be open under an Apache 2.0 or similar license - from hardware designs and the middleware control stack, to the top level programming interfaces. OQD’s vision is to be a global leader in open quantum technology, driving breakthroughs that revolutionize science, industry, and society, in order to improve the quality of life for future generations. +All components of the stack will be open under an Apache 2.0 or similar license - from hardware designs and the middleware control stack, to the top level programming interfaces. OQD’s vision is to be a global leader in open quantum technology, driving breakthroughs that revolutionize science, industry, and society, in order to improve the quality of life for future generations. ## Why Open? @@ -14,7 +14,7 @@ Open-source is more accessible and a proven environment for innovation. By shari ## OQD’s open-source approach: - + * Provides transparency and accessibility to software and hardware * Deepens connections between academia, industry, and government through a collaborative sandbox with clear rules of engagement * Builds trust through collective decision-making to the benefit of the ecosystem and technology diff --git a/docs/get-started.md b/docs/get-started.md index 8bf0ffa..40007e2 100644 --- a/docs/get-started.md +++ b/docs/get-started.md @@ -1,5 +1,5 @@ -## Installation -To install, +## Installation +To install, ```bash pip install git+https://github.com/OpenQuantumDesign/equilux.git ``` @@ -11,7 +11,7 @@ git clone https://github.com/OpenQuantumDesign/equilux pip install . ``` -## Documentation +## Documentation Documentation is implemented with [MkDocs](https://www.mkdocs.org/) and can be read from the [docs](https://github.com/OpenQuantumDesign/midstack/tree/main/docs) folder. @@ -26,4 +26,4 @@ To deploy the documentation server locally: ``` cp -r examples/ docs/examples/ mkdocs serve -``` \ No newline at end of file +``` diff --git a/docs/hardware/devices.md b/docs/hardware/devices.md index 6be6083..64412fa 100644 --- a/docs/hardware/devices.md +++ b/docs/hardware/devices.md @@ -16,9 +16,9 @@ This documentation is still under development, we welcome contributions! © Open ## What's Here The heart of Open Quantum Design's mission and vision is to build open-source, full-stack -quantum computers. The second generation of trapped-ion devices, coined [Bloodstone](#bloodstone) and [Beryl](#beryl), +quantum computers. The second generation of trapped-ion devices, coined [Bloodstone](#bloodstone) and [Beryl](#beryl), are currently under construction and testing. Designs, including electrical, photonic, and mechanical, -will be opened sourced for community use and contribution. +will be opened sourced for community use and contribution. The real-time control stack builds on top of the open-hardware [Sinara](#sinara) ecosystem, including [ARTIQ](#artiq) and [DAX](#dax) @@ -26,47 +26,47 @@ including [ARTIQ](#artiq) and [DAX](#dax) ```mermaid block-beta columns 3 - + block:Interface columns 1 InterfaceTitle("Interfaces") - InterfaceDigital["Digital Interface\nQuantum circuits with discrete gates"] + InterfaceDigital["Digital Interface\nQuantum circuits with discrete gates"] space - InterfaceAnalog["Analog Interface\n Continuous-time evolution with Hamiltonians"] + InterfaceAnalog["Analog Interface\n Continuous-time evolution with Hamiltonians"] space InterfaceAtomic["Atomic Interface\nLight-matter interactions between lasers and ions"] space end - + block:IR columns 1 IRTitle("IRs") - IRDigital["Quantum circuit IR\nopenQASM, LLVM+QIR"] + IRDigital["Quantum circuit IR\nopenQASM, LLVM+QIR"] space IRAnalog["openQSIM"] space IRAtomic["openAPL"] space end - + block:Emulator columns 1 EmulatorsTitle("Classical Emulators") - - EmulatorDigital["Pennylane, Qiskit"] + + EmulatorDigital["Pennylane, Qiskit"] space EmulatorAnalog["QuTiP, QuantumOptics.jl"] space EmulatorAtomic["TrICal, QuantumIon.jl"] space end - + space block:RealTime columns 1 RealTimeTitle("Real-Time") space - RTSoftware["ARTIQ, DAX, OQDAX"] + RTSoftware["ARTIQ, DAX, OQDAX"] space RTGateware["Sinara Real-Time Control"] space @@ -76,24 +76,24 @@ block-beta space end space - + InterfaceDigital --> IRDigital InterfaceAnalog --> IRAnalog InterfaceAtomic --> IRAtomic - + IRDigital --> IRAnalog IRAnalog --> IRAtomic - + IRDigital --> EmulatorDigital IRAnalog --> EmulatorAnalog IRAtomic --> EmulatorAtomic - + IRAtomic --> RealTimeTitle - + RTSoftware --> RTGateware RTGateware --> RTHardware RTHardware --> RTApparatus - + classDef title fill:#d6d4d4,stroke:#333,color:#333; classDef digital fill:#E7E08B,stroke:#333,color:#333; classDef analog fill:#E4E9B2,stroke:#333,color:#333; @@ -107,7 +107,7 @@ block-beta class InterfaceAnalog,IRAnalog,EmulatorAnalog analog class InterfaceAtomic,IRAtomic,EmulatorAtomic atomic class RTSoftware,RTGateware,RTHardware,RTApparatus realtime - + class RealTime highlight ``` diff --git a/docs/index.md b/docs/index.md index 37902bf..78e5313 100644 --- a/docs/index.md +++ b/docs/index.md @@ -27,47 +27,47 @@ OQD's quantum computer stack can be interfaced at different levels, including th ```mermaid block-beta columns 3 - + block:Interface columns 1 InterfaceTitle("Interfaces") - InterfaceDigital["Digital Interface\nQuantum circuits with discrete gates"] + InterfaceDigital["Digital Interface\nQuantum circuits with discrete gates"] space - InterfaceAnalog["Analog Interface\n Continuous-time evolution with Hamiltonians"] + InterfaceAnalog["Analog Interface\n Continuous-time evolution with Hamiltonians"] space InterfaceAtomic["Atomic Interface\nLight-matter interactions between lasers and ions"] space end - + block:IR columns 1 IRTitle("IRs") - IRDigital["Quantum circuit IR\nopenQASM, LLVM+QIR"] + IRDigital["Quantum circuit IR\nopenQASM, LLVM+QIR"] space IRAnalog["openQSIM"] space IRAtomic["openAPL"] space end - + block:Emulator columns 1 EmulatorsTitle("Classical Emulators") - - EmulatorDigital["Pennylane, Qiskit"] + + EmulatorDigital["Pennylane, Qiskit"] space EmulatorAnalog["QuTiP, QuantumOptics.jl"] space EmulatorAtomic["TrICal, QuantumIon.jl"] space end - + space block:RealTime columns 1 RealTimeTitle("Real-Time") space - RTSoftware["ARTIQ, DAX, OQDAX"] + RTSoftware["ARTIQ, DAX, OQDAX"] space RTGateware["Sinara Real-Time Control"] space @@ -77,24 +77,24 @@ block-beta space end space - + InterfaceDigital --> IRDigital InterfaceAnalog --> IRAnalog InterfaceAtomic --> IRAtomic - + IRDigital --> IRAnalog IRAnalog --> IRAtomic - + IRDigital --> EmulatorDigital IRAnalog --> EmulatorAnalog IRAtomic --> EmulatorAtomic - + IRAtomic --> RealTimeTitle - + RTSoftware --> RTGateware RTGateware --> RTHardware RTHardware --> RTApparatus - + classDef title fill:#d6d4d4,stroke:#333,color:#333; classDef digital fill:#E7E08B,stroke:#333,color:#333; classDef analog fill:#E4E9B2,stroke:#333,color:#333; @@ -102,7 +102,7 @@ block-beta classDef realtime fill:#B5CBB7,stroke:#333,color:#333; classDef highlight fill:#f2bbbb,stroke:#333,color:#333,stroke-dasharray: 5 5; - + class InterfaceTitle,IRTitle,EmulatorsTitle,RealTimeTitle title class InterfaceDigital,IRDigital,EmulatorDigital digital class InterfaceAnalog,IRAnalog,EmulatorAnalog analog @@ -111,7 +111,7 @@ block-beta ``` ## Getting Started -Here's a short example of how to use the analog interface to specify, serialize, and simulate an analog quantum program. +Here's a short example of how to use the analog interface to specify, serialize, and simulate an analog quantum program. We use a simple, single-qubit Rabi-flopping experiment as an example: ```python from oqd_core.interface.analog.operator import PauliZ, PauliX diff --git a/docs/stylesheets/admonition_template.css b/docs/stylesheets/admonition_template.css index f32ebeb..94fee5c 100644 --- a/docs/stylesheets/admonition_template.css +++ b/docs/stylesheets/admonition_template.css @@ -14,4 +14,4 @@ background-color: #FFFFFF; -webkit-mask-image: var(--md-admonition-icon--template); mask-image: var(--md-admonition-icon--template); - } \ No newline at end of file + } diff --git a/docs/stylesheets/admonitions.css b/docs/stylesheets/admonitions.css index 2449db2..7a10a63 100644 --- a/docs/stylesheets/admonitions.css +++ b/docs/stylesheets/admonitions.css @@ -110,4 +110,3 @@ -webkit-mask-image: var(--md-admonition-icon--example); mask-image: var(--md-admonition-icon--example); } - diff --git a/docs/tutorials/index.md b/docs/tutorials/index.md index 44a4b0a..184a5d1 100644 --- a/docs/tutorials/index.md +++ b/docs/tutorials/index.md @@ -1 +1 @@ -Here you will find some tutorials on using the analog interface for defining and running quantum programs. +Here you will find some tutorials on using the analog interface for defining and running quantum programs. diff --git a/docs/tutorials/ising.md b/docs/tutorials/ising.md index c6bcd9a..9afe31b 100644 --- a/docs/tutorials/ising.md +++ b/docs/tutorials/ising.md @@ -1,4 +1,4 @@ -# Transverse field Ising model +# Transverse field Ising model Next, let's implement everyone's favourite many-body Hamiltonian -- the transverse-field Ising model. The Hamiltonian is of the form, @@ -67,8 +67,8 @@ circuit.measure() ### Setting up and running the classical emulation -Similarly, we set up the settings for the classical emulation backend, -including the number of shots and metrics (e.g., expectation values, entropy of entanglement) +Similarly, we set up the settings for the classical emulation backend, +including the number of shots and metrics (e.g., expectation values, entropy of entanglement) which we want to track through the time evolution. ```py @@ -82,4 +82,4 @@ args = TaskArgsAnalog( backend = QutipBackend() results = backend.run(task = task) -``` \ No newline at end of file +``` diff --git a/docs/tutorials/rabi-flopping.md b/docs/tutorials/rabi-flopping.md index d0f3935..ff2890d 100644 --- a/docs/tutorials/rabi-flopping.md +++ b/docs/tutorials/rabi-flopping.md @@ -1,6 +1,6 @@ # Single qubit Rabi flopping -First, let's implement a single-qubit Rabi flopping experiment. +First, let's implement a single-qubit Rabi flopping experiment. Here, a two-level system, initialized in the $\ket{0}$ basis state, oscillates between $\ket{0}$ and $\ket{1}$ during evolution. The Hamiltonian under which the state evolves is, $$ @@ -30,8 +30,8 @@ X = PauliX() gate = AnalogGate(hamiltonian= -(np.pi / 4) * X) ``` -The [`AnalogCircuit`][oqd_core.interface.analog.operation.AnalogCircuit] represents a sequence of Hamiltonians -which the quantum system evolves under for a fixed duration. Let's construct a circuit and add the gate from above and +The [`AnalogCircuit`][oqd_core.interface.analog.operation.AnalogCircuit] represents a sequence of Hamiltonians +which the quantum system evolves under for a fixed duration. Let's construct a circuit and add the gate from above and then measure, ```py circuit = AnalogCircuit() @@ -40,10 +40,10 @@ circuit.measure() ``` ### Setting up the backend -Now, let's emulate the time dynamics of our quantum system. We use one of the provided backends, +Now, let's emulate the time dynamics of our quantum system. We use one of the provided backends, here the [`QutipBackend`][oqd_analog_emulator.qutip_backend.QutipBackend], to solve the evolution of the quantum state -through the circuit. We first initialize the backend and a [`TaskArgsAnalog`][oqd_core.backend.task.TaskArgsAnalog] -object with the settings for the emulation, such as the number of shots, +through the circuit. We first initialize the backend and a [`TaskArgsAnalog`][oqd_core.backend.task.TaskArgsAnalog] +object with the settings for the emulation, such as the number of shots, the metrics to track through the evolution (e.g., an expectation value), and the time step. ```py backend = QutipBackend() @@ -62,4 +62,3 @@ Now, we simply use the `.run()` method of the backend to run the emulation of th ``` py results = backend.run(task = task) ``` - diff --git a/examples/adiabatic_linear.ipynb b/examples/adiabatic_linear.ipynb index 55c17da..25af3c1 100644 --- a/examples/adiabatic_linear.ipynb +++ b/examples/adiabatic_linear.ipynb @@ -11,7 +11,7 @@ "In this example, the Hamiltonian $H(t)$ is a **linear interpolation** between two Hamiltonians:\n", "\n", "1. **Initial Hamiltonian, $ H_z $:** Encodes the starting state. Here, $ H_z = I \\otimes Z + Z \\otimes I $, which introduces interactions based on the $ Z $-basis of the qubits.\n", - "2. **Target Hamiltonian, $ H_{xx} $:** Encodes the desired end state. Here, $ H_{xx} = X \\otimes X $, which induces transitions that align the final state along the $ X $-axis.\n", + "2. **Target Hamiltonian, $ H\\_{xx} $:** Encodes the desired end state. Here, $ H\\_{xx} = X \\otimes X $, which induces transitions that align the final state along the $ X $-axis.\n", "\n", "The time-dependent Hamiltonian is given by:\n", "\n", @@ -19,14 +19,14 @@ "H(t) = -(1 - \\text{linear}) \\cdot H_z - \\text{linear} \\cdot H_{xx}\n", "$$\n", "\n", - "where $\\text{linear} = 0.05 \\cdot t$ provides a gradual increase over time. The `AnalogGate` with Hamiltonian $ H(t) $ simulates this gradual evolution. \n", + "where $\\text{linear} = 0.05 \\cdot t$ provides a gradual increase over time. The `AnalogGate` with Hamiltonian $ H(t) $ simulates this gradual evolution.\n", "\n", - "In this setup, we prepare a **two-qubit system** with `AnalogCircuit`, evolving it first under the time-dependent Hamiltonian $ H(t) $ over 20 units of time, and then under $ H_{xx} $ for an additional 10 units. The final `measure()` captures the state, which ideally approximates the ground state of $ H_{xx} $, aligning with the target configuration." + "In this setup, we prepare a **two-qubit system** with `AnalogCircuit`, evolving it first under the time-dependent Hamiltonian $ H(t) $ over 20 units of time, and then under $ H*{xx} $ for an additional 10 units. The final `measure()` captures the state, which ideally approximates the ground state of $ H*{xx} $, aligning with the target configuration.\n" ] }, { "cell_type": "code", - "execution_count": 19, + "execution_count": 1, "metadata": { "ExecuteTime": { "end_time": "2024-10-23T03:09:15.366105Z", @@ -35,25 +35,25 @@ }, "outputs": [], "source": [ - "import numpy as np\n", - "import matplotlib.pyplot as plt\n", - "import seaborn as sns\n", "import itertools\n", "import warnings\n", - "warnings.filterwarnings(\"ignore\")\n", "\n", - "from oqd_core.interface.math import *\n", - "from oqd_core.interface.analog.operator import *\n", - "from oqd_core.interface.analog.operation import *\n", - "from oqd_core.backend.metric import *\n", + "import matplotlib.pyplot as plt\n", + "import numpy as np\n", + "import seaborn as sns\n", + "from oqd_analog_emulator.qutip_backend import QutipBackend\n", + "from oqd_core.backend.metric import Expectation\n", "from oqd_core.backend.task import Task, TaskArgsAnalog\n", + "from oqd_core.interface.analog.operation import AnalogCircuit, AnalogGate\n", + "from oqd_core.interface.analog.operator import PauliI, PauliX, PauliY, PauliZ\n", + "from oqd_core.interface.math import MathStr\n", "\n", - "from oqd_analog_emulator.qutip_backend import QutipBackend" + "warnings.filterwarnings(\"ignore\")" ] }, { "cell_type": "code", - "execution_count": 20, + "execution_count": 2, "metadata": { "ExecuteTime": { "end_time": "2024-10-23T03:09:16.357506Z", @@ -62,12 +62,12 @@ }, "outputs": [], "source": [ - "X, Y, Z, I = PauliX(), PauliY(), PauliZ(), PauliI()" + "X, Y, Z, I = PauliX(), PauliY(), PauliZ(), PauliI() # noqa: E741" ] }, { "cell_type": "code", - "execution_count": 21, + "execution_count": 3, "metadata": { "ExecuteTime": { "end_time": "2024-10-23T03:09:16.962689Z", @@ -90,7 +90,7 @@ }, { "cell_type": "code", - "execution_count": 22, + "execution_count": 4, "metadata": { "ExecuteTime": { "end_time": "2024-10-23T03:09:17.597167Z", @@ -109,7 +109,7 @@ }, { "cell_type": "code", - "execution_count": 23, + "execution_count": 5, "metadata": { "ExecuteTime": { "end_time": "2024-10-23T03:09:18.247020Z", @@ -132,14 +132,27 @@ }, { "cell_type": "code", - "execution_count": 24, + "execution_count": 6, "metadata": { "ExecuteTime": { "end_time": "2024-10-23T03:09:21.694319Z", "start_time": "2024-10-23T03:09:18.856462Z" } }, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1/1] Cythonizing qtcoeff_be2b8a7b080282c382b3bc365b5cd7.pyx\n", + "running build_ext\n", + "building 'qtcoeff_be2b8a7b080282c382b3bc365b5cd7' extension\n", + "\"C:\\Program Files\\Microsoft Visual Studio\\2022\\Community\\VC\\Tools\\MSVC\\14.42.34433\\bin\\HostX86\\x64\\cl.exe\" /c /nologo /O2 /W3 /GL /DNDEBUG /MD -Id:\\work\\Projects\\equilux\\.venv\\Lib\\site-packages\\qutip\\core\\data -Id:\\work\\Projects\\equilux\\.venv\\Lib\\site-packages\\numpy\\core\\include -Id:\\work\\Projects\\equilux\\.venv\\include -IC:\\Users\\Salieri\\AppData\\Roaming\\uv\\python\\cpython-3.12.9-windows-x86_64-none\\include -IC:\\Users\\Salieri\\AppData\\Roaming\\uv\\python\\cpython-3.12.9-windows-x86_64-none\\Include \"-IC:\\Program Files\\Microsoft Visual Studio\\2022\\Community\\VC\\Tools\\MSVC\\14.42.34433\\include\" \"-IC:\\Program Files\\Microsoft Visual Studio\\2022\\Community\\VC\\Tools\\MSVC\\14.42.34433\\ATLMFC\\include\" \"-IC:\\Program Files\\Microsoft Visual Studio\\2022\\Community\\VC\\Auxiliary\\VS\\include\" \"-IC:\\Program Files (x86)\\Windows Kits\\10\\include\\10.0.22621.0\\ucrt\" \"-IC:\\Program Files (x86)\\Windows Kits\\10\\\\include\\10.0.22621.0\\\\um\" \"-IC:\\Program Files (x86)\\Windows Kits\\10\\\\include\\10.0.22621.0\\\\shared\" \"-IC:\\Program Files (x86)\\Windows Kits\\10\\\\include\\10.0.22621.0\\\\winrt\" \"-IC:\\Program Files (x86)\\Windows Kits\\10\\\\include\\10.0.22621.0\\\\cppwinrt\" /EHsc /Tpqtcoeff_be2b8a7b080282c382b3bc365b5cd7.cpp /Fobuild\\temp.win-amd64-cpython-312\\Release\\qtcoeff_be2b8a7b080282c382b3bc365b5cd7.obj\n", + "\"C:\\Program Files\\Microsoft Visual Studio\\2022\\Community\\VC\\Tools\\MSVC\\14.42.34433\\bin\\HostX86\\x64\\link.exe\" /nologo /INCREMENTAL:NO /LTCG /DLL /MANIFEST:EMBED,ID=2 /MANIFESTUAC:NO /LIBPATH:d:\\work\\Projects\\equilux\\.venv\\libs /LIBPATH:C:\\Users\\Salieri\\AppData\\Roaming\\uv\\python\\cpython-3.12.9-windows-x86_64-none\\libs /LIBPATH:C:\\Users\\Salieri\\AppData\\Roaming\\uv\\python\\cpython-3.12.9-windows-x86_64-none /LIBPATH:d:\\work\\Projects\\equilux\\.venv\\PCbuild\\amd64 \"/LIBPATH:C:\\Program Files\\Microsoft Visual Studio\\2022\\Community\\VC\\Tools\\MSVC\\14.42.34433\\ATLMFC\\lib\\x64\" \"/LIBPATH:C:\\Program Files\\Microsoft Visual Studio\\2022\\Community\\VC\\Tools\\MSVC\\14.42.34433\\lib\\x64\" \"/LIBPATH:C:\\Program Files (x86)\\Windows Kits\\10\\lib\\10.0.22621.0\\ucrt\\x64\" \"/LIBPATH:C:\\Program Files (x86)\\Windows Kits\\10\\\\lib\\10.0.22621.0\\\\um\\x64\" /EXPORT:PyInit_qtcoeff_be2b8a7b080282c382b3bc365b5cd7 build\\temp.win-amd64-cpython-312\\Release\\qtcoeff_be2b8a7b080282c382b3bc365b5cd7.obj /OUT:build\\lib.win-amd64-cpython-312\\qtcoeff_be2b8a7b080282c382b3bc365b5cd7.cp312-win_amd64.pyd /IMPLIB:build\\temp.win-amd64-cpython-312\\Release\\qtcoeff_be2b8a7b080282c382b3bc365b5cd7.cp312-win_amd64.lib\n", + "copying build\\lib.win-amd64-cpython-312\\qtcoeff_be2b8a7b080282c382b3bc365b5cd7.cp312-win_amd64.pyd -> \n" + ] + } + ], "source": [ "backend = QutipBackend()\n", "results = backend.run(task=task);" @@ -147,7 +160,7 @@ }, { "cell_type": "code", - "execution_count": 25, + "execution_count": 7, "metadata": { "ExecuteTime": { "end_time": "2024-10-23T03:09:23.119097Z", @@ -157,8 +170,10 @@ "outputs": [ { "data": { - "text/plain": "
", - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAhUAAAEmCAYAAADV4mLgAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAABjjElEQVR4nO3dd1hUV/7H8ffM0HtHRSyoKCBN7GJFjT2oMZvyi8mmmOxuzO4m2STGbDRtE9M2bXeTmJiYHjX23kvsojQVBFQQUYo06TBzf3+gRCIoowOX8n09Dw/OnTt3Phwv8OXcc8/RKIqiIIQQQghxm7RqBxBCCCFE6yBFhRBCCCFMQooKIYQQQpiEFBVCCCGEMAkpKoQQQghhElJUCCGEEMIkpKgQQgghhElIUSGEEEIIkzBTO0BTMRgMVFVVodVq0Wg0ascRQgghWgxFUTAYDJiZmaHV1t8f0WaKiqqqKuLi4tSOIYQQQrRYgYGBWFhY1Pt8mykqrlZWgYGB6HQ6kxxTr9cTFxdn0mO2BtIu9ZO2qZu0S/2kbeom7VK/xmibq8e8US8FtKGi4uolD51OZ/ITsDGO2RpIu9RP2qZu0i71k7apm7RL/RqjbW42fEAGagohhBDCJKSoEEIIIYRJNIuioqKigkmTJnHw4MF69zlx4gQzZswgODiY6dOnEx8f34QJhRBCCHEzqhcV5eXlPP300yQlJdW7T0lJCbNmzaJv374sX76c0NBQHn/8cUpKSpowqRBCCCFuRNWiIjk5mbvvvpu0tLQb7rd+/XosLS157rnn6NatG3PnzsXW1paNGzc2UVIhhBBC3IyqRcWhQ4cYMGAAP//88w33i4mJISwsrGbUqUajoU+fPkRHRzdBSiGEEEI0hKq3lN53330N2i87O5vu3bvX2ubq6nrDSyb10ev1Rr+mLhX6Kr45upGMvCy27ElAq9Gg0WjQoEGjoebf2ppttZ/TokGn1aHTatFprn7WotNqMdPq0GqqP/+2XVfzvO7Kc1qtFjNN7X3MtFosdOZYmJljqTOv/rfOrElnEb3axqZq69ZE2qZuba1dFEWhpKKCnOJicoqLKCgtpaSyguKKckoqKiitrMSgKCiKQpXBwKVLl9iWmy2zAV9DURRy8/KkXepgaWZGgIW1Sb+fGnqsFjFPRWlp6XUzeFlYWFBRUWH0sUw1q2ZRVRnHs88CkHe5+Y/tMNNUFyBmGh3mmupCxkxzpUCp+XylcLmyzUyjxVJrjrXWAmtd9WdLrTnaBn4Dywym9ZO2qVtrbJeC8nLSiy+TWVpCVkkJmaUlXCoro8Jg5A/87MzGCdjSSbvUSd+pK04qfD+1iKLC0tLyugKioqICKysro49lyhnGuhf24OiJWLp07YJGo8VA9V8WytXPioIC1z9WFAyKAb1ioMqgr16XRDFc+axHbzCgN+jRK4Za/64yGNDXPH/Nv5Xf9qnU66nQV1Khr6JCX1mTtUqpfg+orO/LaRCtRoO9hQ2OVrY4WtlVf7a0xdHaDifL6sd25tacOpkgM93VQWYBrFtraRdFUTiXn8fR9HOcvHiBE5kXyC4qqnd/O0tL3GztcLa2wdbSAhtzC2wsLLAyM0en1aDVaEFRyMrKol27duhuMpthW2IwGLh48SLt2rW76SyPbY2lTodHRVWjzKh5My2iqPD09CQnJ6fWtpycHDw8PIw+lilnGGvn4EoHK2f8Pbs2yx+EBkWhUl9Jub6S8qpKKq75XKnXU3ml8Kg0VNUUI5X6qivbqz+KKkq5XF5MYVkxRRWlGBSFgvJiCsqLoSCr3vc21+hwKTyOk5UdDla22FvYYGtpjb2FNXaW1thb2GBnaYOdhTWWZuZN2CrNg8wCWLeW2C4VVVVEnUvjUOoZDqedJfPy5VrPazUauri40tXVjS4urnRyccHbyRk3O3uszW9+7uv1eqKjowkJCWlxbdOYpF3qd7Vt1Ph+ahFFRXBwMAsXLkRRFDQaDYqicPToUZ544gm1ozVrWo0GSzMLLM0swPL2j6c3GCiqKCG/rIiC0uLqz2VFFJT99u/8smLKqyqoVPRkFuWRWZR30+Na6Myws7DBxcYeTztnPGyd8bRzwcvRDUcru9sPLoSJVer1HD2Xxs7kU+w7nUJJ5W89qeZaHYEdvAjy6oh/u/b08vDE+gYLMAnRmjTboiI7Oxt7e3usrKwYN24c7733Hm+88Qb33HMPP/30E6WlpYwfP17tmG2KTqu9csnDDpzq36+4vJSDx47Qvqs3lytKKSyv7uUoKi+lqKKEy+WlFJWXcLmilCqDngp9FbmlheSWFpJ86XytYzla2dHZyZNOTp41n63NTVAhCXELkrOzWH8inp1Jp7hcXlaz3d3OjkFdu9G/UxeCvDo2qAdCiNao2RYV4eHhvPnmm0ybNg07Ozs+++wz5s2bx5IlS+jZsyeff/45NjY2ascUdbAys8DR3AZfN+8bdr0pikK5vpLL5SVcLi/hUkkhmUW51T0cl6s/F5QVEXuxiNiLKQBogHb2rnRxbkcX5/Z0cW6Hp51LgwePCmGskooKdiQlsv5EPKeyfhsU6Gxtw/Duvgzv4Yt/u/ZyDgpBMyoqEhMTb/g4KCiIFStWNGUk0cg0Gg1WZhZYmVngbuuEj0uHWs+XV1WQXpBNan4mafmZnM27SG5pIRcuX+LC5UvsTzsOgLWZBZ2d29UUGp2d2mFrYfwgXiGudaGggOUxx9iUcJzSyuoBzmZaLUN8ujHevzchXt4ycFKI32k2RYUQv2dpZkE3Vy+6uXrVbCssK+Zs/kXO5l3gbN5F0vIzKa2qICE7jYTs32Zm9bB1pqtLOzo5eeLt6EkHBzcsdHK6ixtTFIXjFy/wS/RR9p5ORrmyvaOTMxP8ezOmlx9O1tJDKkR95KesaFEcrGwJateNoHbdgOrBoxmXczib91uhkV2cT1ZxHlnFeRw8dxKoHrTazs4FbycPvB098Xb0wMvBDYs2eOeJuJ6iKBxKPcv3Rw5yMvNizfZ+nTozPaQPfTp2kgmWhGgAKSpEi6bTavF29MDb0YOhXYIAKCovJTX/Yk1PxrmCLIoqSsm4fImMy5dqCg0NGtrZu+Dt6EE31w70cu+Ms7W9ml+OaGKKonAw9QzfHj5YM17CXKcjwrcX04P70MXVVeWEQrQsUlSIVsfO0poAz64EeHYFqn9x5JcVca4gi3P5WaQXZHGuIIvC8pKa8RmH0qsLjXZ2Lvh7dCGkQw86O3nKX6etlKIoHE47y9cH95OUXT3fipWZGVMCg7krpA/ONrYqJxSiZZKiQrR6Go0GZ2t7nK3tay6bABRcKTRS8zJJzEkjNS+Ti0W5XCzKZfvpo7hYO9DHy5cBHf3wtHdR8SsQppScncXCfb9yNL16DI6VmTlTAoO4KyQMZ7mjTIjbIkWFaLOuzrnR29OHiQyipKKMxJxzxF5MIe7iaXJLC9mafIStyUfo4dqR8C5BBLXzQaeV2ftaopyiIr46uI8tCSdQqJ6kakpgMPeE9ZXBl0KYiBQVQlxhY2FFaIcehHboQUVVJcezznIo/SQnMs+SdCmdpEvpOFjaMLRLMOFdguS21RZCbzCwKi6Grw/uq7k1dEQPXx4eOIT2Do4qpxOidZGiQog6WJiZ1xQYuSWF7E87zv60eArLS1iXuJ8tyUcY3CmAET6huNg4qB1X1CMx8yIf7tpeM27Cz7Mdfwofjl+79ionE6J1kqJCiJtwsXFgYq9BjPPtz9GMJLanRHG+MIedZ6LZfTaGPh18iegWhpeju9pRxRUVVVV8dXAfv0QfRaF6NdBHB4Uz3r+3zHwpRCOSokKIBtJpdfTr2Iu+Xj1JyE5jW0oUp3LOceR8IkfOJ9LLvTOju4fRw7Wj3DWiouTsLBZs3cTZ3EsARPj24vEhQ+WODiGagBQVQhhJo9Hg59EZP4/OpOVnsj3lKMcykkjITiUhO5VOjh5EdO9LcPtuaDUyjXNTMSgKS44eYfGh/VQZDDhb2/D0qNEM7OKjdjQh2gwpKoS4DZ2cPHkobDyTeg1mx+mjHEg7TlpBFl9FrcfNxpFR3frQ39tfpghvZIVlpby1ZROH084CMMSnG38bESF3dQjRxOQnnRAm4GbryIzAkYzzHcCeszHsPhNLTkkBS+J2sD7xAMO7hhDeJQgrnUwLbmqJmRd5deM6soouY6HTMXvYKO7w85dLUEKoQIoKIUzI3tKGCT0HEdGtLwfOHWdHylFySy/X3DEy0Nsf9yopLExl44njfLRrO5UGPR0cnZg3biI+bjJgVgi1SFEhRCOwNDOv7p3oHMSxjFNsu3LHyO6zMWiAs9GFjO7eV+4YuUUGRWHRgb38fPQIAEO6duMfEWOxtbRUOZkQbZsUFUI0Ip1WS9+OvQi7csfI1uQjJF1KJyrjFFEZp+jl3omIbmH4unlLd30DlVVW8va2TexJSQbggX4DeKDfQGk/IZoBKSqEaAJX7xjxde3ItkO/ct68mOgLySRkp5GQnYaXgzuju4cR0r4HOq3cMVKf/NIS/rl2FQlZmZhrdTw9ajSje/qpHUsIcYUUFUI0MVcLOyJCwpniP4Qdp49xIO045wuzWXx0I2tt9jHedyB9O/aU21F/J7voMs+vWs65/DzsLa14ZcJkAjt4qR1LCHENKSqEUImrjSN39R7BeN8B7Dkby64zMVwqKeS76M1sT4likt9gAjy6Src+kJ6fxwurl5N5+TLudvYsmDIVb2dZOVaI5kaKCiFUZmthzTjfAYz06cPuM9FsTT5CxuVLfH5oDT1cOzIjcCTt2vDS66dzsnlh9QrySkvwcnTi7Tun4WEv660I0RxJ/6oQzYSlmTljevTj5Yg/Mrp7GOZaHUmX0lmw63tWn9xLeVWl2hGbXHJ2Fs+uXEZeaQk+rm78e9oMKSiEaMakqBCimbG1sGKKXzgvjpxJb8+u6BUDW5OP8ObO70i+dF7teE0mNTeXF1av4HJ5OX6e7Xg38i5Zv0OIZk6KCiGaKVcbB2b1n8Jj/SbjbG1PbmkhH+9bxqoTv1Kpr1I7XqO6WFjAC6uXU1BWSg93D96cPBV7Kyu1YwkhbkKKCiGaucB2Prww/H4GePujANtSonj/15/JKspTO1qjuFRczPOrlpNTXERnZxfenDxVJrUSooWQokKIFsDa3JL7Q8bwaL9J2FlYc74wh3f3/ETsxRS1o5lUYVkpL6xeTkZhAe0cHHjrzmk4WlurHUsI0UBSVAjRggS168bzw+/Dx7k9ZVUVfHF4LWtO7sWgGNSOdtvKqqqYu241Z3Mv4Wpry9tTpuNma6d2LCGEEaSoEKKFcbSyY/bg6QzvGgLAluQjfHF4XYu+O6SsspLFicdJys7CwcqKBVOm0d7RUe1YQggjSVEhRAuk0+qY3ns4D/YZh5lWR3zmaT7ct4yCsiK1oxmtUq/njc0bOHO5EBsLC96cPJXOLq5qxxJC3AJVi4ry8nJefPFF+vbtS3h4OIsWLap33y1btjB+/HhCQ0O59957OX78eBMmFaJ5CvPqyexB07GzsCa9IIv39vzM+cJstWM1mN5g4K0tGzl8LhVzrZZXx0/C18NT7VhCiFukalHx9ttvEx8fz+LFi5k3bx6ffPIJGzduvG6/pKQknnnmGR5//HFWrVqFn58fjz/+OKWlpSqkFqJ56erSnqfD/4CHrTP5ZUV8uHcZKS1gPguDovDBzm3sTknCTKvlAV9/ereXtTyEaMlUKypKSkpYunQpc+fOJSAggDFjxvDoo4/y/fffX7fv3r176d69O5GRkXTq1Imnn36a7OxskpOTVUguRPPjZuvI0+F3082lA2VVFfz3wAqOZ55RO1a9FEXhs7272XjyOFqNhhdG34Gvk7PasYQQt0m1oiIhIYGqqipCQ0NrtoWFhRETE4PBUHsku5OTE8nJyURFRWEwGFi+fDl2dnZ06tSpqWML0WzZWFjxpwGRBHh0odKgZ+HhtUSdT1Q7Vp2+PXyA5THHAHhm1BjCfbqrnEgIYQqqLSiWnZ2Ns7MzFhYWNdvc3NwoLy8nPz8fF5ffFlCaMGEC27dv57777kOn06HVavnss89wvIXR4Xq93iT5rz2WKY/ZGki71K+x20an0fLHPuP5IXYbRzNO8c3RjRSXlzKkc2CjvN+t+CXmGN8ePgjAn4YMI6JHTzlnbkDapm7SLvVrjLZp6LFUKypKS0trFRRAzeOKiopa2/Py8sjOzubll18mODiYH3/8kTlz5rBixQpcXY0bJR4XF3d7wZvomK2BtEv9GrtteivuFNtcJrHkAsuO7+LMuVR623Vs1PdsiEOZF1h+pvqy5VjvznTWK0RHR9c8L+dM/aRt6ibtUj812ka1osLS0vK64uHqY6vfzfH/7rvv4uvry/333w/Aa6+9xvjx4/nll1+YNWuWUe8bGBiITqe7jeS/0ev1xMXFmfSYrYG0S/2asm1ClBDWnzrA1pQoogrP0q5dO0Z379uo73kjO5NPseJAdUFxV3AfHhk4GI1GA8g5cyPSNnWTdqlfY7TN1WPejGpFhaenJ3l5eVRVVWFmVh0jOzsbKysrHBxqL218/PhxHnjggZrHWq2WXr16kZGRYfT76nQ6k5+AjXHM1kDapX5N1TZT/MOxMDNnfeIB1p06gEED430HNPr7/t6Bs6d5Z/sWFGBSQCCzhgytKSiuJedM/aRt6ibtUj812ka1gZp+fn6YmZnV6vqMiooiMDAQrbZ2LA8PD1JSaq9xcObMGTp2VL87V4jmbpzvACb3GgzAhsQDrEvYj6IoTfb+0enneHXjOvQGA6N69GT28FF1FhRCiJZPtaLC2tqayMhI5s+fT2xsLFu3bmXRokXMnDkTqO61KCsrA+Duu+9myZIlrFy5ktTUVN59910yMjKYOnWqWvGFaFHG9OhHpP9QADYlHWJNwt4mKSwSMi/y8vrVVOr1DOriwz8ixqKVgkKIVku1yx8Ac+bMYf78+Tz44IPY2dkxe/Zsxo4dC0B4eDhvvvkm06ZNY8KECRQXF/PZZ59x8eJF/Pz8WLx4sdGDNIVoy0Z164NOo+WX47vYmhxFlcHAVP+6L0OYQnJ2FnPWrKC0spIQL29eumMCZtJNLUSrpmpRYW1tzYIFC1iwYMF1zyUm1r6/fsaMGcyYMaOpognRKg33CUGr1bI0bgc7Tx/DYDAwvfdwkxcWZy7l8Pzq5RSVl+Pfrj2vTpiMhZmqP26EEE1AFhQToo0Z2iWIe4Ii0AC7z8awJG4HBhNeCknLy+W5VcspLCujp4cn/5oUifXvbh8XQrROUlQI0QYN7tyb+0LGoAH2psax1ESFRUZBPs+t+oX80hK6ubnz5uSp2Fpa3n5gIUSLIEWFEG3UAG9/7g8Za7LCIrOwkH+s/IVLxcV0cXHlrSlTsf/dnDNCiNZNLnIK0Yb19/YD4PvozexNrZ7YZkbgSKPv0MgpKuIfq34hq+gyHZ2cWTBlGk7WNibPK4Ro3m6pp0Kv17Nz506+/vprCgsLiYmJ4fLly6bOJoRoAv29/X7XY7HdqB6L3OJi/rHqFy4UFtDewZF37pyOi61t4wUWQjRbRvdUXLhwgUceeYT8/HwKCgqIiIjgiy++4NixY3z55Zf07NmzMXIKIRpR7R6LeABmBI66aY9FQWkpz69eTnp+Hh529rxz53Tc7OwaPa8Qonkyuqfi1VdfJSwsjD179tQsAPb+++8zePBgXn/9dZMHFEI0jdo9FvE37bG4XFbG86uXczb3Eq62trx953Q8fzfFvhCibTG6qDhy5AgPP/xwrfnEzc3N+fOf/0x8fLxJwwkhmlZ/bz/+L/SOmxYWxRXlvLhmBSk52ThZ2/D2ndPxcnJq8rxCiObF6KLCysqKS5cuXbf9zJkz2Em3pxAtXr+OvWoVFktiaxcWpRUVzF27ioSsTBysrHj7zml0cnZRL7AQotkwuqi45557ePnll9m5cydQXUz88ssv/POf/+Suu+4ydT4hhAquLSz2pf1WWJRXVfHy+tUcv5CBnaUlb02ZRldXN7XjCiGaCaMHav7lL3/BwcGB+fPnU1payqxZs3B1deWhhx7ikUceaYyMQggV9OvYC4Dvjm1mX1o8eoOBuHNFRJ9Px8bcgn9NiqSHu4fKKYUQzcktzVPxwAMP8MADD1BSUoJer8fe3t7UuYQQzcDVwuLbo5tYduw4RaVgaWbGG5PuxK9de5XTCSGaG6OLipUrV97w+cjIyFuMIoRojvp08OXHw9EUlV5Eo4FRvbzxb99B7VhCiGbI6KLio48+qvVYr9dz6dIlzMzMCAoKkqJCiFbEoCi8t2MLcRkX0Wk0dHCDs4VnWXF8N9MChjXasulCiJbJ6KJi+/bt120rLi7m5ZdflomvhGhFFEXh413b2ZJwEq1Gw0vjJmJhXsl30ZvZdSYaWwsrxvkOUDumEKIZMcmCYra2tsyePZuvvvrKFIcTQqhMURQ+37eHtcfj0ADPj76DcJ/u9Pf2Y3rAcADWJx5g95kYdYMKIZoVk61SmpCQgMFgMNXhhBAq+ubQAZZFHwXg7yNHM8q3V81zw31CanoolsXv5Eh6gioZhRDNj9GXPx544IHrrqMWFxeTmJjIQw89ZKpcQgiVLD0WxXdHDgLwl6EjGO/f+7p9xvsOoKSijN1nY/guegs2Flb4e3Rp4qRCiObG6KJiwIDrr6FaWFjw7LPPMmjQIJOEEkKoY0viST7ftweAhwcOJjIopM79NBoN03oPp6SyjCPnE/nqyHr+Fj4DLwf3JkwrhGhujC4qnnzyycbIIYRQ2eG0s7y3fQsA04NDuadPvxvur9VouC9kDAVlxSRdSufzg6t5eug9OFrJsudCtFUNKirmzJnT4AO++eabtxxGCKGOxMyLvLphHXqDgVE9ejJrSMNuFzXT6nik70T+vXcJmUV5fH5oNU8NvgtLM/MmSC2EaG5MNlBTCNEypefnMXftKsqqKunTsRPPRoxFa8T8EzYWVjze/05sLaw5V5DFN0c33nDJdCFE69WgngrpfRCidSosK+XFNSspKCulh7sH88ZPwlynM/o4braOPNZvEp/sX05c5mk2njrAhJ4yxkqItsboMRWKorBt2zaSkpLQ6/U12ysqKjhx4gRffPGFSQMKIRqH3mDgtY3ruVBYQDsHB96YdCc2Fha3fDwflw7cExTBd9Gb2XjqEN6OngS28zFhYiFEc2d0UfHaa6+xbNky/P39iY2NJTQ0lLS0NHJycrj33nsbI6MQohF8vm8P0efPYWVmzqsTpuBsc/sDLPt7+5GWn8nuszF8e2wTzw69Bw87ZxOkFUK0BEaPqVi/fj3vvvsuP/30E506dWL+/Pns2LGDiRMnUllZ2RgZhRAmtiXhBMtjjgHw3Og76OrqZrJjRwYMxce5PWVVFXxxeC3lVRUmO7YQonkzuqgoKiqid+/qyXB8fX2JjY3FzMyMxx9/nF27dpk8oBDCtBIzL/LvndsAuL9vf4Z2627S45tpdfyx70QcLG25WJTLT7HbUWTgphBtgtFFhbe3NydOnACgR48exMbGAtVjLS5fvmzadEIIk8orKWb+hrVU6vUM7NKVmf0bZzClo5UtD/edgFajIep8IofSTzbK+wghmheji4qHH36YZ599lvXr1zNhwgRWrlzJa6+9xgsvvEBYWJhRxyovL+fFF1+kb9++hIeHs2jRonr3TUxM5N577yUoKIjJkydz4MABY6ML0aZV6vW8snEdOcVFeDs588LocUbdOmosH5cOjPcdCMDSuJ1kFeU12nsJIZqHBhUVX375JZmZmQDMmDGDhQsX0rlzZ7p168Ynn3xCdnY2vXv3NvrW07fffpv4+HgWL17MvHnz+OSTT9i4ceN1+12+fJmHH36Y7t27s2bNGsaMGcOTTz7JpUuXjHo/Idqy/+7ZyfELGdhYWPDKhMnYWlo2+nuO6dGX7q4dqdBX8nXUBir1VY3+nkII9TTo7o8lS5bw3nvvERYWxuTJk7njjjtwdHQEYOjQoQwdOtToNy4pKWHp0qUsXLiQgIAAAgICSEpK4vvvv2fcuHG19l2xYgU2NjbMnz8fnU7HU089xa5du4iPj2f48OFGv7cQbc2643E1y5i/OGY83s4uTfK+Wo2WmaF3sGDX96QXZrP65F6m95bvWSFaqwYVFZs2beLEiRNs3LiRL774gtdee43w8HAmT55MREQElrfwF09CQgJVVVWEhobWbAsLC+PTTz/FYDCg1f7WiXLo0CEiIiLQXTMpzy+//GL0ewrRFsVfyOCT3TsAeGjAYAZ06dqk7+9kbcf9oWP4/NAadp2JprdnV3q6d2rSDKJt0ev1bfpuxKtzSJWVldX6vXkj5ubmDd73Rho8T4W/vz/+/v48/fTTxMfHs3HjRt5//31eeuklIiIimDRpEuHh4Q0OlZ2djbOzMxbXTLbj5uZGeXk5+fn5uLj89pfUuXPnCAoK4p///Cfbt2/Hy8uL559/3ugxHEK0NdlFl3l1w1qqDAaGduvBvWE3XiSssfT29GFI50D2psbxQ8xWXhh+P9bmjX/5RbQtiqJw8eJF8vPz1Y6iKkVRMDMzIzU1tUFr+Fzl5OREu3btjHrN7xk9+RVA79696d27N88++yxxcXFs3bqVBQsWMGfOHPbt29egY5SWltYqKICaxxUVte9rLykp4fPPP2fmzJksXLiQdevW8cgjj7Bhwwbat29vVPZrZwG9XVePZcpjtgbSLvVryrapqKpi/vo15JWW0MXFladHjMJgMDT6+9Zncs9BnMxKJbe0kOXxu7knaFTNc3LO1E/apm51tcvFixcpLCzE3d0dGxub2/rl2JIpikJZWRlWVlYNagNFUSgpKSE7OxuDwUC7du2u26eh598tFRVX5ebmkpCQQEJCAhcuXKBXr14Nfq2lpeV1xcPVx1ZWVrW263Q6/Pz8eOqpp4DqXpO9e/eyatUqnnjiCaMyx8XFGbW/WsdsDaRd6tfYbaMoCktTTnEqJwsbMzNmdOpK4vETjfqeDdHPpjObSuM4mH4CuxLoaFV7bIecM/WTtqnbte2i1Wrx9PTE2toaRVHa9PwolpaWRrWBtbU1jo6OZGZmcvHixVt+X6OLiszMTDZv3szmzZs5evQoPXr0YMKECcybN48OHTo0+Dienp7k5eVRVVWFmVl1jOzsbKysrHBwcKi1r7u7Oz4+tdcQ6NKlCxcuXDA2PoGBgSa5bgTVlVtcXJxJj9kaSLvUr6naZmVsNEdzstBqNLw0biJ9OjafMQxlJ7TsOhvD4eKzjOwzGFsLKzlnbkDapm6/b5eysjJSU1NxcnLC2tpa7XiqUhSF0tJSrK2tjeqt0Wg05Ofn07lz5+v+uL/a3jfToKIiLS2tppCIj4/Hy8uLiRMnMm/ePLp3v7XZ+Pz8/DAzMyM6Opq+ffsCEBUVRWBgYK1BmgAhISEcPny41rbTp08zadIko99Xp9OZ/BuzMY7ZGki71K8x2+ZY+jk+3/8rALMGD6Vf56YdmHkzk/3DOZmdRlZxHqsSfuWB0DtqnpNzpn7SNnW72i46nQ6NRoNWq22zlz1+T6PRGNUWV9vuds61Bs1TMXbsWBYvXkxwcDA//fQTW7Zs4W9/+9stFxRQ3dUSGRnJ/PnziY2NZevWrSxatIiZM2cC1b0WZWVlANxzzz0kJiby8ccfk5qayocffsi5c+e48847b/n9hWiNLhQW8PqmdRgUhQjfXkwLDr35i5qYhc6M/wsdiwY4nJ7AyaxUtSMJIUykQUXFV199xa5du5g7dy5BQUEme/M5c+YQEBDAgw8+yCuvvMLs2bMZO3YsAOHh4axfvx4ALy8vvvjiC3bs2MGkSZPYsWMHn3/+OZ6enibLIkRLV1pZyfz1aygsK8PXw5O/jxzdbP9i6+LcjmFdQwBYEredCn3bvf1PiNakQZc/Bg1qnPUBrK2tWbBgAQsWLLjuucTExFqPw8LCWL58eaPkEKKlUxSF97Zv5vSlHJysbZg3bhKWZrc1DrvRTew1iNgLyVwqKWRj0iE6cftLrwsh1GX02h9CiObn56NH2JWchE6r5eVxE/Gwt1c70k1ZmVkwI2gkALvORHOpskjlREKo79tvv61ZFqMhli1bRkpKSiMmMk7z/lNGCHFTB86eZtGBvQD8ZegIAjt4qZyo4Xp7+hDaoQfHMpLYn5/MCMNgGYwo2qzU1FTeffddZsyYAcCuXbuYNWtWvfuPHz8eBwcHTp06xYsvvthUMW9IeiqEaMHOXrrEm5s3ogATAwKZFBCodiSjTQ8YjrWZJZcqi9hzNkbtOEKoZtu2bQwePLjmds4BAwbw66+/1vrYvXs3Q4YMwcnJiSeeeIKIiAi2b9+ucvLfGN1TUVlZycqVK4mLi6Oqquq6iTWMXalUCHFrCstKeXn9akoqKwjq4MWTQ0c024GZN+JgZcsUv8H8HLeDDUmH6NOxJ87Wzf/yjRCmtm3bNiIjI2seW1lZ1ZovQq/X8+yzz3L8+HEWL15Mr1698PHx4dKlS5w6dQpfX18VUtdmdE/F3LlzeeONN8jLy2vTs5UJoaYqvZ7XNq7nQmEB7ewdeHncJMxa8GWDAR398bBwoEJfyYrju9WOI1oRRVEor6psso9b/b2Ym5tLTEwMI0eOrPN5vV7PP/7xD/bt21dTUED18hZDhgxpNr0VRvdUbNmyhf/85z8MGTKkMfIIIW5CURT+++suos+fw9rcnFcnTsGxhc8gqNFoGODYjXU50URfSOZkVip+Hp3VjiVaOEVR+GDvUs7kGT/78q3ycW7PX4fMMLrXcOfOnfTu3Rs3N7frnrtaUOzdu5evv/76uiUxIiIi+PHHH41etqIxGN1TYW9vL/NDCKGiZdFHWRMfiwZ4YfQ4urpe/0OoJXIxtyW8c/U8OMvid1Cpr1I5kWgNWsoFwV27djFs2LDrtuv1ep577rmagsLPz++6fYYPH05sbCy5ublNEfWGjO6p+NOf/sQbb7zBSy+9ROfOnWvW7RBCNL7tpxL4fN8eAGYNGcZgn24qJzKt8T0GEH0hmeziAralRDHOd4DakUQLptFo+OuQGVQ0YYFqoTO7pbFNXl5epKen19p2taD49ddf+eqrr+osKADS09NxcHC4bt0sNRhdESxcuJCsrKx61904efLkbYcSQlwvOv0c72zbDMC04FDuCumjciLTszK3YGrAUBYf3ciWpMP069gLVxtHtWOJFkyj0WBpZq52jJuKiIjgqaeewmAwoNVqryso/P39633ttm3bGDZsWLP4I9/oBG+99VZj5BBC3MDpnGzmbVhDlcHAsG49eHzI9d2krUWfDr7sS40n6VI6y+J38Xj/KWpHEqLRhYaGoigKMTExBAcH89xzz7Ft2zY+/PBD3N3dyc7OrrW/i4tLzZwu27dv589//rMasa9jdFHRv39/AM6ePUtKSgoGg4GuXbve1uJiQoj6peZe4vnVyympqCCwgxfPj74DbQu8dbShNBoNMwJHsmDX9xzPPEPcxdMEtvNRO5YQjUqr1TJixAi2bduGVqtl7dq1AHVOfqXRaDhy5Ah2dnacO3eOM2fOMHTo0KaOXCeji4rCwkLmzJnDtm3bcHR0RK/XU1xcTL9+/fjPf/6DfQuYHliIliI9P4/nVv1CfmkpPdw9eHXCZCyaQRdnY2tn78LIbqFsTY7il/id9HTzxqIFdGELcTsiIiJ47733ePbZZ69b/6o+27dvZ8CAAdjZ2TVyuoYx+u6P119/nYsXL7J+/XoOHjzIkSNHWLNmDSUlJTLxlRAmdKGwgOdW/UJuSQk+rm68NWUqdpZWN39hK3FHjwE4W9mRW3qZzcmH1Y4jRKMbMmQIGRkZpKamNvg127dvZ9SoUY2YyjhG/8mzfft2vvrqK3x8fuuO7N69Oy+//DKPPfaYScMJ0VadvXSJF9euILuoiE7OLrw1ZRoOVi17LgpjWZqZM633cL48so5tKUfp39EPDztntWMJ0WisrKyIjo426jWLFy9unDC3yOieCktLS7Ta61+m0WjQ6/UmCSVEWxaXcZ6/r1hCdlER3s7OvH3ndJxtbNSOpYqgdt3w9+iM3qBnadwOmcVXiGbO6KJi1KhRvPLKK6SlpdVsO3v2LK+//jrDhw83aTgh2po9Kck8v3o5ReXl+LdrzwfT7sbV1lbtWKrRaDRM7z0CM62OxJxzHLuQpHYkIcQNGF1U/OMf/8DS0pI77riDAQMGMGDAAMaPH4+joyP//Oc/GyOjEG3CmvgYXtu4lkq9nkFdfHj7zult7pJHXdxtnRjdvS8AK47vpqyqQuVEQoj6GD2mwsHBgW+//ZaEhAROnz6NpaUlXbt2rTXGQgjRcIqi8PXB/fwQdQiAif69mT18FLo6LjO2VaO79+VwegKXSgrYmHiQyIDmcfucEKK2Bv3UysjIqLmWmZGRQUZGBg4ODoSEhODn54eVlVXNdiFEw1Xp9by/Y2tNQTGz/0D+OiJCCorfsdCZMaP3CAB2njlGRmGOuoGEEHVqUE/FqFGj2Lt3L66urowaNarOec0VRUGj0cg03UI0UGllJa9vWseh1LNoNRr+OiKCCf691Y7VbPl7diGoXTdiL6awNG4HTw2+65bWWBBCNJ4GFRXbtm3D2dm55t9CiNuTX1rK/A1rSMjKxNLMjLljJzCoq1xCvJlpAcNIyE4lJTeDw+kJ9Peue4ElIYQ6GtTH6uXlVXMb6Zw5c7C3t8fLy6vWh7W1NbNnz27UsEK0BrllZTyzchkJWZnYW1rx9p3TpKBoIBcbB+64snLpqhN7KKkoUzmREOJaDeqp2L17N7GxsQAcPnyYTz/9FJvf3TefmprK+fPnTZ9QiFYkOSeb/x2P5nJlJR529rw5ZSqdnF3UjtWijPQJ5dC5k2QW5bI2cT93B45UO5IQ4ooGFRVdu3bliy++QFEUFEXh6NGjmJv/Ng+/RqPBxsaGN954o9GCCtHSRaefY9761ZRUVtLV1ZV/TZ6Km23zmK+/JTHT6pgROIJP9i9n79lYBnr708nJU+1YQggaWFR4e3vzzTffANWXP+bOndtsFi8RoiXYk5LMm5s3UGnQ4+PgyDtTpuPQRmfJNAVfN2/CvHyJOn+KpXE7+Hv4H1r1yq2i7fj2228ZO3Ysnp6mLZSXLVtGaGgo3bp1M+lxf8/o+9befPNNrKysyMzMrLmN9Pz585w5c4b169c3RkYhWrT1x+N4fdM6Kg16hnTtxh979cbW0lLtWC1epP8wLM0sSM3PZH9avNpxhLhtqampvPvuuzg6OgJgMBgYN24c//73v2vtt3PnTnr37s3mzZvr3WfPnj0EBgayefNmAGJjY/n5558b/WswuqjYtm0bQ4cOZcSIEURERBAREcHo0aOZMGECb731VmNkFKLF+inqMP/euQ2DojDevzcvjhmHucxBYRKOVrZM7DkQgDUn93K5vETlRELcnm3btjF48GCsrKpXI9ZqtTz++ON8//33XL58GYDjx4/z97//nWeffZaxY8fWu88LL7zAM888w9ixY4HqZdW3b9/e6F+D0T/d3n33XcaMGcO6detwcHDgp59+4tNPP8XLy4u//e1vjRBRiJbp28MH+PLAXgDu6dOPv8ukViY3tEswXg5ulFSWs+bkXrXjCHFbtm3bdt0y5pMnT8bR0ZHvvvuOjIwMHn/8caZNm8ZDDz1U7z5PPPEEU6ZMqbXPoEGDuHTpEqdOnWrUr8Hon3Dnzp3j0UcfxcfHh969e5Odnc3w4cOZN28eX331VWNkFKLF+fbwAb45dACARwYN4ZFBQ2Sipkag02qZceXujwPnTnA6V2b1FbUpikJpZWWTfdzqSrq5ubnExMQwcmTtu5nMzMx47LHHWLx4MbNmzSIwMJC5c+fedJ9//OMftfaxsLBgyJAhjd5bcUtrf5SWlgLVd4UkJCQwevRofHx8SE9PN+pY5eXlvPLKK2zevBkrKysefvhhHn744Ru+Jj09ncmTJ/Ppp58yYMAAY+ML0eiuLSgeHRTOH/r0VTlR6+bj0oGB3v4cOHeCn2O3849h92Km1akdSzQDiqLwt+VLOHHxQpO9Z0D7Dvx76gyj/4i4Ok7Czc3tuucmT57Mv/71LzQaDe+//37NvFH17fPee+/VWdxERETw448/8sQTTxiVzRhG91QMHz6cV155heTkZAYMGMCqVas4fvw4P//8M+7u7kYd6+233yY+Pp7Fixczb948PvnkEzZu3HjD18yfP5+SErl2KpqnH44ckoJCBXf6h2NnYc2Fy5fYmnxE7TiiGWkpPYS7du1i2LBhdT732muvAZCXl1dnQdHQfYYPH05sbCy5ubkmSFw3o3sq5s6dyxtvvEF8fDx33nknmzZt4q677sLGxoZ33nmnwccpKSlh6dKlLFy4kICAAAICAkhKSuL7779n3Lhxdb5m9erVFBcXGxtZiCaxNj6Wrw7uA6SgaGq2FtZMCxjGN8c2sSnpMKHte+BpL5OKtXUajYZ/T51BWVVVk72nlZnZLRUyXl5edfb2f/DBB+zcuZMlS5bw0EMPsWzZMu6///6b7jN16tTrjpWeno6DgwMODg5G52soo3sqCgsLeeONN4iMjESj0fDuu+9y+PBhDhw4YNR9tQkJCVRVVREaGlqzLSwsjJiYGAwGw3X75+Xl8c477/Dqq68aG1mIRrcnJYmPd+8A4P6+/aWgUEGYV0/83DujN+j5Kbb6jhshNBoN1ubmTfZxqz0jERER7Nq1q9bvvyVLlvDVV1/x6aef0qtXLx588EG++OILKisrb7jPl19+WWufq7Zt28awYcMwMzO6P6HBjD5yREQEe/fuxcXlt78C7OzsSEtL47777iMmJqZBx8nOzsbZ2RkLC4uabW5ubpSXl5Ofn1/r+ABvvfUWU6dOpUePHsZGrkWv19/W6+s6limP2Rq0tXaJOZ/Om5s3VN826hfA/4X1r/drb2tt01Cmape7AoazYM8PpORmsO9sHIM6BZginqrknKnb79tFr9fXzPp8q4Ml1RQSEoKiKERHRxMaGsquXbt49dVXef/99wkODkZRFO6//36+/PJLVq1axfTp02+4z7p167j33ntrvcf27dv585//XG/7XG07vV5/3fnW0POvQUXF0qVL+fTTT2vedPr06dddsyksLDRqpq7S0tJaBQVQ87iioqLW9n379hEVFcXatWsbfPz6xMXF3fYxmuKYrUFbaJfzxUV8fiKWSoOBAGdXhjo4N6iwbgttcytM0S5Btt4cKTzDiuO7UbKLsdFZ3PxFLYCcM3W7tl3MzMwoLS2ts7e7JQgPD2fTpk3o9Xr+9re/8de//pUhQ4bUjCPU6XTcc889fPbZZ3Tu3PmG+3z99ddMnjwZna560PLVSSrDwsLqHZdYXl5OZWUlCQkJt/w1NKioiIyMxNzcHIPBwIsvvsgf//hH7O3ta57XaDRYW1szcODABr+xpaXldcXD1cdXJ/4AKCsr4+WXX2bevHm1tt+qwMDAmka+XXq9nri4OJMeszVoK+2SUVDAgpXLKNfrCWzvxRsTp2Bxk27FttI2xjJluwQpQWTuW8a5gixOaS7xUMh4E6VUh5wzdft9u5SVlZGamoq1tbVJfleo4Y477uC9997jhRde4NixY3Xu88wzz/DMM88A1LvP008/zZ/+9Cesra1rLsfs37+f/v373/CGCq1Wi7m5Od27d7+uDa+29800qKgwNzcnMjISgI4dO9KnTx8KCgpwdXWt+cICAgKu63m4EU9PT/Ly8qiqqqq5vpOdnY2VlVWtQSSxsbGcO3eOp556qtbrH3vsMSIjI40eY6HT6Uz+jdkYx2wNWnO75BYXM3fdKvJKS/BxdeO1iVOwNmLq7dbcNrfDFO2iQ8d9waN5Z8+PxFxM4UR2KoHtWv7S8nLO1O1qu+h0OjQaTc1HSzRkyBCeeeYZ0tLS6Ny5820f79q22L59O2PHjr1h21zd/3bONaPHVNjb2xMREcHEiRN57rnnAHj22WdRFIXPPvuswWMe/Pz8MDMzIzo6mr59qwe1RUVFERgYWOvSSlBQUM3c5VeNHTuW119/nSFDhhgbX4jbVlxezotrV3KhsIB2Dg78a/JUWcujmfFydGdUtz5sTY5iSdwOurt6YW0u/0eiebOysiI6OrpRjr148eJGOe7vGX33x6uvvsqYMWP4+9//XrNty5YtjBo1yqheA2trayIjI5k/fz6xsbFs3bqVRYsWMXPmTKC616KsrAwrKys6d+5c6wOqezqu9pQI0VQqqqqYt2ENKTnZOFnb8Nbkabja2qodS9RhnO9A3GwcKSgrYk3CPrXjCNEmGF1UnDx5kgcffBBzc/PfDqLVMnPmTOLjjVspcM6cOQQEBPDggw/yyiuvMHv27JrFT8LDw2XVU9Gs6A0G3tyykZjz6diYW/CvyZF4OTmpHUvUw0Jnxj3BEQD8ejZWpvAWogkYffmjffv27N+/H29v71rbjx49Wuf0ojdibW3NggULWLBgwXXPJSYm1vu6Gz0nRGNQFIWPd23n19PJmGt1vDJhMj3cPdSOJW7C1827ZgrvH2O28tyw+zDXNd49+kK0dUZ/dz3xxBPMnTuXY8eO0bt3b6B6IqvVq1czb948kwcUojlYfOgA607EowHmjB1HSEfvm75GNA+R/kM5kXWWzKI8NicdZmKvQWpHEo2oJc5R0VyYou2Mvvxx55138r///Y+ioiJ+/PFHli5dSmFhIV9++SXTpk277UBCNDcrY6P5/shBAJ4aPoqh3W5vAjbRtGwsrLir9wgAtiQf4XxhtrqBRKO4ekle1oa6dVfb7trhDca6pX7AoUOHMnTo0Ft+UyFaitVxMfxnz04AZvYfyKTeQarmEbcmpEMPgs53I/ZiCj/GbOPp8LvRaoz+m0o0YzqdDicnJ7KysgCwsbFpsbeW3i5FUSgvL0er1TaoDRRFoaSkhKysLJycnG7r1uVbKipWr17N119/TVpaGitWrODbb7/Fzc2NWbNm3XIQIZqbNfGxNet53B0axv/1HaByInE7ZgSOICnnHGn5mew6Hc3Ibn3UjiRMrF27dgA1hUVbpSgKlZWVmBu5FomTk1NNG94qo4uKH374gf/+97888cQTNauSBgQE8K9//YuKigqefPLJ2wokRHOwJj6Gj3ZVFxQzQsJ4dFB4m/2rp7VwtLLjTv+h/BS7jXWJ+wlq3w1XG0e1YwkT0mg0tG/fHg8PjzoX1Gor9Ho9CQkJdO/evcG9Dubm5iaZXM3oouLbb7/l9ddfZ8SIEbz33ntA9TgLJycnXn75ZSkqRIumKArfHDrAd1fGUEwPDuWxwVJQtBaDOgVw5HwiyZfS+SlmG38eOFX+b1uhtj776NXFv6ysrJq8HYy+qJiRkVHnwmHe3t7k5+ebIpMQqtAbDHy4c1tNQfFAvwE8PmSY/NJpRTQaDfcGR2Cu1ZGYc45D6SfVjiREq2J0UREcHMzKlStrbVMUhUWLFhEUJIPYRMuUX1rCC6uXs+5EPFqNhqeGj2Jm/0FSULRC7rZOjO9ZvfjhiuO7KSwvVjmREK2H0Zc/XnrpJWbNmsXOnTupqKjglVde4ezZs5SVlbFw4cLGyChEo0rIvMirG9eRXXQZKzNzXhhzB0N8uqsdSzSikT59OHr+FOmF2SyL28XDfSeoHUmIVsHoosLX15dNmzaxZs0aUlJS0Ov1REREMGXKFGxlDQTRgpRWVvLNof0sjzmGQVHo6OTM/PGT6Owia8q0djqtlntDRvPenp+IvpBE7MUUgtpdf1lXCGGcW7ql1NLSkpCQEOzt7dFqtfTs2VMKCtGiHEo9w0e7tpN5+TIAI7r78rcREbLaaBvi7ehRs5Lp0rgd9HDtKCuZCnGbjC4qcnJymD17NtHR0Tg4OGAwGCgqKmLIkCH8+9//xt7evjFyCmESeSXF/PfXXexMOgWAh509Tw0fxYAuXVVOJtQwzncgMRdSyC7OZ/XJX/lDUITakYRo0YweqDl37lzMzc3ZsmULBw8e5PDhw2zcuJGysjLmz5/fCBGFuH2KorDhRDwP//ANO5NOodVomB4cyhf3PiAFRRtmoTPjniuFxN7UeJJy0lVOJETLZnRPxaFDh1iyZAkdO3as2da5c2deeukl7rvvPpOGE8IU0vJy+WDnNuIyzgPQ3c2dv48cja+Hp8rJRHPQw60jgzv1Zl9aPD/FbuP54fdjISuZCnFLjP7O8fb2JjExkR49ai+qlJGRQYcOHUwWTIjbVanX89PRw/x45DCVBj1WZmbM7D+IacGh6LSy7oP4zRT/cOIzz5BdnM+mUweZ7DdE7UhCtEhGFxXTp0/nlVde4fjx44SGhmJmZsbJkyf55ptvmDZtWq05LCIjI00YVYiGS8zK5N1tmzmbewmAfp268NTwkbRzkGmZxfVszC25O3AkXxxZy7aUKEI7+NLR0V3tWEK0OEYXFYsXL8be3p5NmzaxadOmmu22tra1tmk0GikqRJOr1Ov55tB+lhyLwqAoOFlb8+ehIxjR3VcmshI3FNS+GyHtuxN9IZkfYrbyTPgfpEdLCCMZXVRs3769MXIIcdsuFhbw+qb1JGZlAjCyR0/+PHQ4TtY2KicTLcVdvUdwKucc6QVZ7Dx9jIjuYWpHEqJFMboMf+utt6ioqLhue0pKCvfff79JQglhrH2nU/jTkh9IzMrE3tKSeeMn8eLY8VJQCKM4WNkS6T8UgPWJ+8kuzlc3kBAtjNFFxY4dO5g8eTJHjhwBoLKyko8//pjIyEiZo0KoYnnMMeZtWENReTl+nu349A/3Ey7TbItbNMDbH183byoNen6K2YaiKGpHEqLFMPryx5o1a/jPf/7Dww8/zJQpUzh27BiVlZV89NFHjBw5sjEyClEnRVH46uA+fow6DMDk3kH8KXw45m14yWNx+zQaDfcERfDmzu9IupTOgXPHGdSpt9qxhGgRjO6psLCwYNasWYwaNYply5aRmprKU089JQWFaFJ6g4EPdm6rKSj+OGAws4eNlIJCmISbrSMTew0CYOXxPbKSqRANZHRRsWrVKsaPH09SUhLffvstzz33HPPmzeOxxx4jLS2tMTIKUUtFVRWvb1rP+ivLlP99RAT39e0vd3cIkxreNYSOjh6UVlWw5uQ+teMI0SIYXVS89NJLzJgxgxUrVtCvXz9mzpzJunXrMDMzY9KkSY2RUYgaxRXlzF27kl9PJ2Ou1fHSHROZEBCodizRCum0WmYEjgDg4LkTnMm9oG4gIVoAo8dUrFy5km7dai8R3K5dO/73v/+xefNmkwUT4vfySkqYu3YlSdlZ2Jhb8MqEyYR09FY7lmjFujq3Z4C3PwfPnWBp/E6eHfoHtBqZu0KI+jTou+Pw4cNUVVUBXFdQXFVaWsrp06dNl0yIa1woLOBvy5eQlJ2Fk7U17069SwoK0SSm+A3B2syC9IIs9qXGqx1HiGatQUXFzJkzKSgoqLVt8uTJXLjwW3dgcXExH374oWnTCQGcuZTD335ZQkZBPu3sHfj3tLvp4e6hdizRRthb2jDhyqDNtQn7KCovVTmREM1Xg4qKuu7TTk9Pr+m9EKKxxGak8/SKpeSWFNPFxZV/T7+bjk7OascSbUx45yA6OLhRUlnO2gQZtClEfVS9OFheXs6LL75I3759CQ8PZ9GiRfXuu3PnTu68805CQ0OZPHky27Zta8KkQg27kk/xwqoVFJWXE9C+A+9PnYGbrZ3asUQbpNNqmdF7BAD70+JJy89UN5AQzZSqRcXbb79NfHw8ixcvZt68eXzyySds3Ljxuv0SEhJ48sknmT59OitXruSee+7hr3/9KwkJCSqkFo1NURSWHovi9U3rqTToGeLTjQVTpmFvZaV2NNGGdXP1oq9XLxRgadwODDLTphDXMfruD1MpKSlh6dKlLFy4kICAAAICAkhKSuL7779n3LhxtfZdu3YtAwcOZObMmQB07tyZ7du3s2HDBnr16qVGfNFISisqeH/nVnYmnQIgMjCEJ8KHyWqRolm40z+cuMzTpOZncjj9JAO8/dWOJESz0uCiYsOGDdjZ/db1bDAY2LJlCy4uLgBcvnzZqDdOSEigqqqK0NDQmm1hYWF8+umnGAwGtNf8Epk6dSqVlZXXHcPY9xTN26msTBZs3URaXi46rZbHBw8lMihEJrUSzYajlS139OjH6pN7WXNyHyHtu2NpZqF2LCGajQYVFR06dLhuvIOrqyvfffddrW3t27dv8BtnZ2fj7OyMhcVv35Bubm6Ul5eTn59fU6zA9bexJiUlsX//fu65554Gv99Ver3e6Nfc7FimPGZrYGy7lFVW8sPRwyyLPopBUXC1seXFMeMIaN8Bg8HQmFGbnJwzdWtJ7TK0UxB7U+O4VFLI5qTDTPAd2Kjv15LapilJu9SvMdqmocdqUFGxffv22wpTl9LS0loFBVDzuK6l1a/Kzc1l9uzZ9OnTh4iICKPfNy4uzujXqHHM1uBm7VJlMHAkO5Nt6alcvtITFezqzuQuPlRmZhGdmdUUMVUh50zdWkq7BFp2YGdJIduTj+JQCHZmjT/ep6W0TVOTdqmfGm2j2pgKS0vL64qHq4+t6hmQl5OTwx//+EcUReGjjz6qdYmkoQIDA9GZaNEpvV5PXFycSY/ZGtysXfJKSlh/Mp51x+PJLaleqKm9gwOzBg1lUFefpo7bpOScqVtLa5dgRSH94GWSc89zWlfAzJDG661oaW3TVKRd6tcYbXP1mDejWlHh6elJXl4eVVVVmJlVx8jOzsbKygoHB4fr9s/MzKwZqPnNN9/UujxiDJ1OZ/ITsDGO2Rpc2y4GReFYehobTx5nb0oKlYbqrjQXGxvuDevPxIDANrXCqJwzdWtJ7TKt93De2f0Dxy4kMdwnBB+XDo36fi2pbZqStEv91Ggb1YoKPz8/zMzMiI6Opm/fvgBERUURGBh4XQ9ESUkJjz76KFqtlm+++QZ3d3c1IotbkF10mY0njrMp4TiZ1wys7eXZjqlBIQzt1qNNFROi9ejo6M6gTr3ZlxbP8vhdPD30HrQyqFi0caoVFdbW1kRGRjJ//nz+9a9/kZWVxaJFi3jzzTeB6l4Le3t7rKys+Oyzz0hLS+Pbb7+teQ6qL5PY29ur9SWIG7hYUsw72zezMzkJ/ZXBlnaWlozs0ZNxfgH4eniqnFCI2zeh10CiMk6RVpDFkfQE+nv7qR1JCFWpVlQAzJkzh/nz5/Pggw9iZ2fH7NmzGTt2LADh4eG8+eabTJs2jU2bNlFWVsaMGTNqvX7q1Km89dZbakQX9cgpLmLR/r1sTTzJ1amBgjp4MTEgkCE+3bE0U/WUE8KkHCyvucU0YS/B7bvJLaaiTVP1J7y1tTULFixgwYIF1z2XmJhY8++6ZtkUzYtBUVgTH8sX+36lrKr6To5wn+7cE9aPntIrIVqx4V1D2Jsaz6WSArYmRzHxyuJjQrRF8mejuG05RUW8s30zR8+lAdXjJUa5eTJl6DAZQCVaPXOdGZH+4Xx5ZB3bU6IY1CkAF5vrB5sL0RbI3MfitsRmpPOnJd9z9FwalmZm/GXoCN6PvItO9vJDVbQdQe260d21I5UGPatP7lU7jhCqkaJC3LI18bE8t2o5+aWldHNz539330dkUIiMgBdtjkajYVrAMDTA0YxTnM7NUDuSEKqQokIYrVKv54Od2/ho13b0BgMjuvvywbS78Xa+tblDhGgNrt5iCvBL/C5ZxVS0SVJUCKPklZTw/KrlrDsehwZ4ZOAQXhw7Hitzc7WjCaG6ib0GYWVmwbmCLA6dO6F2HCGanBQVosGSs7N4cumPxF04j42FBa9NvJN7wvrJKqJCXGFvacM43wEArEnYR2llucqJhGhaUlSIBtmVdIq/LV9CVtFlvByd+PiuexjQpavasYRodoZ1Dcbd1onL5SVsST6sdhwhmpQUFeKGyior+WjXdl7fvJ7yqir6durMx3fdQycZPyFEncy0OqYGDAVgx+losovz1Q0kRBOSokLUK+Z8On9Z+iNr4mMBuDs0jNcn3ol9PavICiGqBXh0pZd7J/QGPSuP71E7jhBNRia/Etc5nZPN90cOsTslCQAXG1ueGz2WMO/OKicTomXQaDRMDRjGgl3fE5d5msTsNHq6d1I7lhCNTooKgd5gICk7i2PpaRxJSyU24zwAWo2GiQGBPDRgEA5W1iqnFKJlaW/vSniXIHafiWH58d08N+w+dFrpHBatmxQVbZCiKKTl5XIs/RzH0tOIOZ9OcUVFzfNajYZwn+7c17c/3dxkmXkhbtV434EcSU/kwuVL7EuLY2iXYLUjCdGopKhoI/QGA0fSUtl3JoVDqWfJKS6q9bythQUhXt6EdPRmYJeutHNwVCmpEK2HrYUVE3oOZFn8TtYlHKBPh57YWsiYJNF6SVHRypVUVLAiNpp1x2PJLvqtkLDQ6ejd3ovQjt6EdvSmu7uHdM0K0QiGdA5kb2ocFy5fYkPiAe4KHKF2JCEajRQVrZRBUVh/PI7Fhw6QX1oCgKOVNcN7+DKwS1eCO3TEwkz++4VobDqtlmkBw/jPgRXsORvLgE7+eDt6qB1LiEYhv1VaobySYt7etpkjaakAeDk6cX+/AQzv3gMLnfyXC9HUerp3ok8HX45mnGJJ7Hb+Hn43Wo30DIrWR37DtDJH0lJ5e+sm8kpLsDQz4+GBQ5jSOwgznU7taEK0aVMDhnI86yyp+ZnsS40nvEuQ2pGEMDkplVuJSr2ehfv2MGfNCvJKS+ji4sp/ZtzLtOBQKSiEaAYcreyY1GsQAGtO7qWwvFjlREKYnhQVrcCFggKeXr6EJceiAJjcO4hPZtxLZxdXlZMJIa41tEsQ3o4elFZVyEybolWSoqIFUxSFLQkneOLn70nIysTO0pKXx03iqeGjsJRBmEI0O1qNlj8EjUIDHDmfyKmcc2pHEsKkpKhooXKLi3l903re3raZksoKAtp34LM/3M/Qbt3VjiaEuIFOTp414yl+jt1Ohb5K5URCmI78OdvCFJWXsToulp+OHqa0shKdVsvMfgP5Q5++Ms+EEC3EpF6Dib2YQnZxPusT9xPpP1TtSEKYhBQVzVxFVRUXLxdyJieHg2ln2JOcRFlV9V82vTw8eXL4KHp6eKqcUghhDGtzS+4JiuCzQ6vZkXKM4Hbd6erSXu1YQtw2KSqaibySYuIvZJCWl0t6fj4XCgu4UFBAbsn1I8S7uLjyhz59GeXbC61Go0JaIcTtCvDsSr+OvTicnsD30Vt4bvh9tzyPTFF5KYfPJ5CYnUZe6WUsdGZ0dPQgzKsn3Vw6oGlmPycq9VXEZZ4m9kIKmUV5AHjaORPg2ZWQ9t0xb2bz6SiKwuncDI6cTyS9IJtKfSVO1nb0cPNmQEd/7CxlwcWrmtf/XBtTWlHB1lMJbDgRT1J2Vr372Zhb0N7RkRAvb4b4dKN3++b3Q0IIYbxpAcNJzE4jqziPDYkHuNM/3KjX6w0Gdp4+xoZTB6nQV9Z6LjU/k72pcXR39eIPgaPwtHcxZfRbdjzzDMvid3GppKDW9vOF2RzNOMXahH3MCBxBb08flRLWllmUx9K4HdcNqs24fIkTWamsTzjAON/+jOrWB51W/dv3y6oqOJl5liqDXpX3l6JCJfvPnOaDndtq9UT4uLrRzd0dbydnOjg40c7BgXYOjjhYWUkRIUQrZGthxR+CIlh4eA3bU44S1L4bXZ0bdhmkuKKUr6I21Pyy83Jwo7+3P+3sXCirqiAhO5Uj6QkkXzrPO3t+5P6QsYR26NGYX84NGRQDaxP2szX5CAAOljYM9A6gi0s7AFLzMtmfdpy80st8fmgNo7r1YYrfEFVnHo25kMx3xzZTrq/ETKsjzKsn/h5dsDa34OLlXA6lJ5BekMWahH2czE7jkb4TsLVQr9fi4uVcvji8lqziPMIcutBXhQxSVDSxwrJS/rN7J9uTEgFo7+BIZFAII3v0xNnGRuV0QoimFtjOh75ePTlyPpFvjm7i+eH3YWVmccPXFJYX8/G+X8gsysNCZ8703sMZ4O1f63JoaIcejO3Rnx9jtnIq5xxfRa3ncvkIhnVt+uXX9QYD30VvIur8KQCGdw1hUq9BWF7zdfb29GF0976sT9zPjtPH2J5ylEslhTzUZ5wqPQB7U+P4OXY7AN1dO3Jf8GjcbH9bvbmXe2eGdw3hUPpJlsXvIvlSOu//uoTZg6bjZG3X5HnT8jP574EVlFSW42RlRycrdeYpktsFmtCelCQe+eFbticlotVouDs0jIX3PsC04FApKIRow+4KHImztT2XSgpYGrfjhvsWlhfzyb7lZBbl4WRlx9PhdzOoU0Cd46tcbRz404BIhncNAWBZ/E72nI1tjC+hXgblt4JCq9EyM/QOpvceXquguMrSzJypAcN48EohEXMhmW+PbUZvMDRp5msLivAuQfxl4NRaBcVVGo2GAd7+PB1+Ny7W9mQX5/PJ/l8oLGva2VLPFWTxnysFRRfndjw95G4czNTpMVG1qCgvL+fFF1+kb9++hIeHs2jRonr3PXHiBDNmzCA4OJjp06cTHx/fhElvT15JCa9tXMerG9eRX1pCZ2cXPpz+Bx4bPFQmqRJCYGNuyczQO9Cg4XB6AofTE+rcr1JfxcJDa7hYlIuTlR2zB0+ng4PbDY99dZXUiG5hACyN20HMhWSTfw31WZuwv6ageLjvBPp27HXT14R59eSRvhPQabQczTjFiuO7myBptZNZqSyJrS7sRvqEMqP3iJvert/e3pXZg+/C2dqerOJ8Pj24ivKqyhu+xlQKyor5/NBqSivL6ercnj8NiMTeUr0/UlUtKt5++23i4+NZvHgx8+bN45NPPmHjxo3X7VdSUsKsWbPo27cvy5cvJzQ0lMcff5ySkhIVUjecoihsP5XAYz9+y+6UJLQaDfeG9eO/f7iPXp7t1I4nhGhGurl6cYdvfwCWxO0gp7j2QEZFUfg5djup+ZnYmFvx5KBpuNs6NejYGo2GKX5Daibd+uboJtLyM02avy5R5xNrxlD8X8gYgtp1a/Bre3v68GCfcQDsPhvD7jMxjZLxWtnF+Xx9dAMKCgO8/Yn0H9rg8WyuNg48OWgadhbWpBdm8+2xTRgUpVHzVuqr+PLIWgrKimln58ITA+7E2tyyUd/zZlQrKkpKSli6dClz584lICCAMWPG8Oijj/L9999ft+/69euxtLTkueeeo1u3bsydOxdbW9s6C5Dm4sylHF5YvYI3t2ykoKyUrq5ufHzXPTw8cIgsPy6EqNMdPfrj49ye8qoKvjm2sdYI/t1nYziUfhKtRsMfw8bjYeds1LE1Gg3TA4bTy70zlYYqFh5eQ0FZkam/hBpp+Zn8EL0FgNHdwxrUQ/F7IR16MNlvCAC/xO/iZFaqSTNeq7SynM8PraH0yiWEuwNHGj1A3t3WiUf7TUKn1RF7MYW1CXsbKW11kbkkbgdn8y5ibW7JY/0nq15QgIpFRUJCAlVVVYSGhtZsCwsLIyYmBsPvrp/FxMQQFhZW8x+s0Wjo06cP0dHRTRn5hhRFIevyZbYmnmTu2pXM+uk7jqanYa7T8WD/Qfxnxr34yiRVQogb0Gm1zOwzDmszC87mXWTViV8ByCjPZ9XJ6l9Qd/oPpad7p1s+/h/DxtPOzoWCsmIWHl7bKNOEF5YX88XhtVQa9Ph7dGFSr8G3fKzR3cIY4O2HgsLXUevJujKvhSkZFIVvj20isygXRys7Huk76ZbnyvBx6cB9waMB2JocVe+lrNu1+0wMB8+dQIOGh/qMb3CvVWNT7U/m7OxsnJ2dsbD4bbCOm5sb5eXl5Ofn4+LiUmvf7t1rr2nh6upKUlKS0e+r15vm3t3yqipe27SO01lZEBtFSUUlZddcQ9MA4T7d+eOAQXRwdDLpezd3V7/OtvL1GkPapm7SLr9xtLTl3uDRLIpaz64z0diZW7ErNwEFhX5evRjaKfC22slCa8YjYRP5974lpOVn8mP0Vu4PHm2y29ar9Hq+PLyO/LIiPGyd+L/gMSgGBT23nvku/xFkFuVxNu8inx9azd8Gz8BCW/3ryxTnzPpTB4jPPIOZVsfDfcZjZ251W8ft074HGQXZbDt9lJ9ituJm7UAnJ9P9UXkq5xwrTlSPM5niNwRf14618jbG91NDj6VaUVFaWlqroABqHldUVDRo39/v1xBxcXFGv6YueeVlRJ1L49orZlqNBg9rG/ydXQh188Dd2oasM2epf1qr1s1Ubd0aSdvUTdrlN73tvIgvOs+6UwcAcDO3o6fBhZgY04wtCHfowZZL8URlJEJROb3tOt72MRVFYX9BMmdKMjHX6Bhs60Pi8ZMmSAv9LTqRpc0lqzif/+xexiiX6ltob/ecOVuaw6686t6EgQ7dyD17gVwu3HbeDoo1HS2dSS/P49MDq5jkHoKN7sa3CjdEYVUp67JjMCgK3aw9cMxX6u21V+P7SbWiwtLS8rqi4OpjKyurBu37+/0aIjAwEJ3ONPc8+/r25Eh8HH49e2JrYYm7vT0WJjp2S6bX64mLizNpW7cW0jZ1k3a5XqAhiP8dWklKbgbWWnP+NHgaLrYOJjt+CGB/1oVfTuzmaOFZ+vj2xt+jy20dc8/ZWJIuZKIBHgobf9vH+72OBV34eP8vnC/P45xlMZ0r7G7rnEkvyObHA9VF24iuIdzpZ9yMpjfjXxnAB/uXklmUx6HyVP4yYOptTUFeVlnBh/uXUaFU0cnRk8cH1n28xvh+unrMm1GtqPD09CQvL4+qqirMrtxWmZ2djZWVFQ4ODtftm5OTU2tbTk4OHh4eRr+vTqczWSN7OTuTbe+Ar4en/CCsgynburWRtqmbtMtvdDodj/abxO4zMVjmVeJi62DythnmE8KFolz2pcXzbfRmngn/wy1P552QncrKk3sAmOw3hMD2Db/To6G6uLTnvpAxLD66kZ1noxnq5EvILZ4zBWXFfBm1jgp9Fb3cOxMZMNTks3fa6qyZ1X8K7+35idT8TH45sYv7gsfc0qUmg2Lg25jNXCzKxcHSlkf7TcLK4sYDM9X4flJtoKafnx9mZma1um2ioqIIDAxE+7t7goODgzl27BjKldtzFEXh6NGjBAc3/cxwQgjRVGwtrBnbvR+O5o0z74BGo+GuwBF0c+lAWVUFnx9eQ0lFmdHHySzK46uoDRgUhf4d/WrmxGgMYV49GdO9egLqvflJt3RrbIW+ii8OryG/rAhPO2f+GDa+0aYDd7d14qGw8WjQcPDcSXaePnZLx1l14ldOZJ3FXKvjsf6TVJm1syFUKyqsra2JjIxk/vz5xMbGsnXrVhYtWsTMmTOB6l6LsrLqk3vcuHEUFhbyxhtvkJyczBtvvEFpaSnjx49XK74QQrQKZlodD/ediPOVGSG/itpApRF3hOSWFPLf/cuv3IrZnj8EjWr0tYom9hqMv0cXDCgsilpPbklhg19bqa9i0ZG1NfN9zOo/pdFvxezl3pmpAUMBWHniV45nnjHq9VuSDrPjSjFyf8hYOjs133mOVJ38as6cOQQEBPDggw/yyiuvMHv2bMaOHQtAeHg469evB8DOzo7PPvuMqKgopk2bRkxMDJ9//jk2MrW1EELcNntLGx7rNxkLnRmJOWl8cXgtFQ2YEfJSSQGf7F9O3pW/+B/rd+u3YhpDq9HwQPBYHM1sKCgv5sN9y8guzr/p6yr0VXwdtYETWamYa814rN+kJrsVc3jXEAZ6+6Og8MXhtcReSLnpaxRFYVtKFGsS9gHVl5X6ePk2dtTbouosTNbW1ixYsIAFCxZc91xiYmKtx0FBQaxYsaKpogkhRJvS0dGdx/pNZuHhNZzMTuXj/b/wUNgEXG3qHhyafOk8Xx1Zx+WKUlxtHPjLwGlNOj20lbkFY1wD2F2URFZxPh/8uoSZfcbVO4dHfmkRi6LWcTbvImZaHbP6T6abq1eT5dVoNPwhaBRlVZVEX0hiUdQ6JvsNYZRPnzp7dir1Vaw4vptfU6sHR47z7V9z2ac5kwXFhBBCANDTvRN/HjgVa3NLUvMzWbDre7YkHaa4orRmn+zifH6O3cbH+5ZxuaKUjg7u/HXwDFWu8dvqLHly4DS8HNy5XFHKfw+s4IeYrbUmyCqpKGNbShT/2vktZ/MuYmNuyZ8GRN7yBGK3Q6fV8WCfcQzw9segKKw68Ssf7VtGUk56zZTelfoqjmUksWDXD/yaGocGuNM/nPG+A5s8762Q+aKFEELU8HHpwHPD7uXrqI2k5l9kTcI+1iXux8nKniqDnsLy31bgHOjtX++Ko03F3tKGv4ffzS/xO9mfdpwDVz4crWwx0+rILbmMcmVGoc5O7XggdKzRU5ybkk6r5b7g0XRxasfy47tIyc3g4/2/YG1mgZ2lDQVlRTWznDpY2nBv8GgCPLuqltdYUlQIIYSoxdXGkb+Hz+BIeiI7Th/jfGE2uaXVgyG1Gg2+bp0Y070vPdxuf8IsU7DQmXFv8GgGePuzOekQCdlpFFyz/HgHe1eG+4QywNuv0e7yMIZGo2FIl0D8Pbuw6dQhjmacorSqgtKq6vmY7C1tGNypNyN9QrGxMH4+JjVJUSGEEOI6Wo2W/t5+9Pf2o6CsiEslhei0WjxsnZvFwlV18XHpwBMDIimtLCerKA+9YsDVxgFHq+Z5+6WztT33BEdwV+AIsoryKK0sx87SBg9bp0a/g6axSFEhhBDihhyt7JrtL+a6WJtb0tm5+d52+XtmWh0dHNzUjmES6vcDCSGEEKJVkKJCCCGEECYhRYUQQgghTEKKCiGEEEKYhBQVQgghhDAJKSqEEEIIYRJSVAghhBDCJNrMPBXKlXnV9Xq9yY559VimPGZrIO1SP2mbukm71E/apm7SLvVrjLa5eqyrv0vro1FutkcrUVFRQVxcnNoxhBBCiBYrMDAQC4v613ppM0WFwWCgqqoKrVbbYqc/FUIIIdSgKAoGgwEzMzO02vpHTrSZokIIIYQQjUsGagohhBDCJKSoEEIIIYRJSFEhhBBCCJOQokIIIYQQJiFFhRBCCCFMQooKIYQQQpiEFBVCCCGEMAkpKm5ReXk5L774In379iU8PJxFixapHalZ2LJlCz179qz18dRTT6kdS1UVFRVMmjSJgwcP1mw7d+4cDz30ECEhIUyYMIFff/1VxYTqqKtdXn/99evOn++++07FlE0nMzOTp556iv79+zN06FDefPNNysvLATlfbtQ2bfmcSU1N5ZFHHiE0NJQRI0bwxRdf1Dyn1jnTZtb+MLW3336b+Ph4Fi9eTEZGBs8//zwdOnRg3LhxakdTVXJyMiNHjuS1116r2WZpaaliInWVl5fzzDPPkJSUVLNNURT+8pe/4Ovryy+//MLWrVt58sknWb9+PR06dFAxbdOpq10AUlJSeOaZZ5g6dWrNNjs7u6aO1+QUReGpp57CwcGB77//noKCAl588UW0Wi3PPfdcmz5fbtQ2zz//fJs9ZwwGA7NmzSIwMJAVK1aQmprK008/jaenJ5MmTVLtnJGi4haUlJSwdOlSFi5cSEBAAAEBASQlJfH999+3+aIiJSUFX19f3N3d1Y6iuuTkZJ555pnrFuA5cOAA586d46effsLGxoZu3bqxf/9+fvnlF2bPnq1S2qZTX7tA9fnzyCOPtLnz5/Tp00RHR7N3717c3NwAeOqpp1iwYAHDhg1r0+fLjdrmalHRFs+ZnJwc/Pz8mD9/PnZ2dnTp0oVBgwYRFRWFm5ubaueMXP64BQkJCVRVVREaGlqzLSwsjJiYGAwGg4rJ1JeSkkKXLl3UjtEsHDp0iAEDBvDzzz/X2h4TE4O/vz82NjY128LCwoiOjm7ihOqor12KiorIzMxsk+ePu7s7X3zxRc0vzauKiora/Plyo7Zpy+eMh4cHH3zwAXZ2diiKQlRUFIcPH6Z///6qnjPSU3ELsrOzcXZ2rrVSm5ubG+Xl5eTn5+Pi4qJiOvUoisKZM2f49ddf+eyzz9Dr9YwbN46nnnrqhqvatVb33Xdfnduzs7Px8PCotc3V1ZWLFy82RSzV1dcuKSkpaDQaPv30U3bv3o2TkxN//OMfa3Vrt1YODg4MHTq05rHBYOC7775j4MCBbf58uVHbtOVz5lqjRo0iIyODkSNHcscdd/Cvf/1LtXNGiopbUFpaet0vyauPKyoq1IjULGRkZNS0zQcffEB6ejqvv/46ZWVlvPTSS2rHazbqO3/a8rkD1d3cGo0GHx8f/u///o/Dhw/zz3/+Ezs7O8aMGaN2vCb1zjvvcOLECZYtW8bXX38t58s1rm2b48ePyzkDfPTRR+Tk5DB//nzefPNNVX/GSFFxCywtLa/7z7n62MrKSo1IzYKXlxcHDx7E0dERjUaDn58fBoOBf/zjH8yZMwedTqd2xGbB0tKS/Pz8WtsqKira9LkDEBkZyciRI3FycgKgV69enD17lh9//LFN/YJ45513WLx4Mf/+97/x9fWV8+Uav2+bHj16yDkDBAYGAtUDoJ999lmmT59OaWlprX2a6pyRMRW3wNPTk7y8PKqqqmq2ZWdnY2VlhYODg4rJ1Ofk5IRGo6l53K1bN8rLyykoKFAxVfPi6elJTk5OrW05OTnXdVe2NRqNpuaXw1U+Pj5kZmaqE0gFr732Gl999RXvvPMOd9xxByDny1V1tU1bPmdycnLYunVrrW3du3ensrISd3d31c4ZKSpugZ+fH2ZmZrUGvURFRREYGIhW23abdM+ePQwYMKBWhXzy5EmcnJza7DiTugQHB3P8+HHKyspqtkVFRREcHKxiKvV9+OGHPPTQQ7W2JSQk4OPjo06gJvbJJ5/w008/8f777zNx4sSa7XK+1N82bfmcSU9P58knn6xVQMXHx+Pi4kJYWJhq50zb/Q14G6ytrYmMjGT+/PnExsaydetWFi1axMyZM9WOpqrQ0FAsLS156aWXOH36NLt27eLtt9/m0UcfVTtas9K/f3/at2/PnDlzSEpK4vPPPyc2Npa77rpL7WiqGjlyJIcPH+bLL78kLS2NH374gZUrV/Lwww+rHa3RpaSk8N///pfHHnuMsLAwsrOzaz7a+vlyo7Zpy+dMYGAgAQEBvPjiiyQnJ7Nr1y7eeecdnnjiCXXPGUXckpKSEuW5555TQkJClPDwcOWrr75SO1KzcOrUKeWhhx5SQkJClCFDhigff/yxYjAY1I6lOl9fX+XAgQM1j8+ePavcf//9Su/evZWJEycqe/fuVTGden7fLlu2bFEmT56sBAYGKuPGjVM2bdqkYrqm89lnnym+vr51fihK2z5fbtY2bfWcURRFuXjxovKXv/xF6dOnjzJkyBDlf//7X83PW7XOGY2i1DEDjRBCCCGEkeTyhxBCCCFMQooKIYQQQpiEFBVCCCGEMAkpKoQQQghhElJUCCGEEMIkpKgQQgghhElIUSGEEEIIk5AFxYQQJvPCCy+wYsWKG+6zbds2Onbs2ESJhBBNSSa/EkKYzOXLl2vWG1i/fj2LFi1i2bJlABgMBvR6PZ6enrJirRCtlPRUCCFMxt7eHnt7+5p/63Q63N3dVU4lhGgqMqZCCNEk0tPT6dmzJ+np6QD07NmTDRs2MH78eIKDg3n66ac5d+4cM2fOJDg4mPvuu6/WCoxbtmxhwoQJBAcHc9ddd3Ho0CG1vhQhRD2kqBBCqOajjz7irbfe4rPPPmPz5s3ce++93Hvvvfz0009kZ2ezcOFCoHo56+eff54//elPrF69milTpvDYY4+Rmpqq8lcghLiWXP4QQqjmoYceIjg4GAA/Pz+6du3K+PHjARg7diwJCQkAfPnll9x9991MnjwZgJkzZ3L48GF+/PFHXnjhBXXCCyGuI0WFEEI13t7eNf+2srLCy8ur1uOKigoAUlJS2LBhAz///HPN85WVlYSHhzddWCHETUlRIYRQze/vAtFq674iq9freeyxx4iMjKy13crKqrGiCSFugYypEEI0e127diU9PZ3OnTvXfPz888/s3r1b7WhCiGtIUSGEaPYeeugh1q9fzzfffENaWhpff/01X3/9NV26dFE7mhDiGlJUCCGavZCQEN5++21++OEHJkyYwJIlS3jvvffo16+f2tGEENeQGTWFEEIIYRLSUyGEEEIIk5CiQgghhBAmIUWFEEIIIUxCigohhBBCmIQUFUIIIYQwCSkqhBBCCGESUlQIIYQQwiSkqBBCCCGESUhRIYQQQgiTkKJCCCGEECYhRYUQQgghTEKKCiGEEEKYxP8DWt2MDZqG+20AAAAASUVORK5CYII=" + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAhgAAAEmCAYAAAAgHOlQAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAPYQAAD2EBqD+naQAAVqJJREFUeJzt3Qdc1fX6B/CP7CFTZCggKCqiuFAR98q9rczK0tbNrFtZt7Sh1b1l2a3bv7K9p6Pc29wDHOBeuBCUJcre6/96vgihInLwwFmft6/fi3MOh8OX44Hfc77f53m+DUpLS0tBREREpEVm2nwwIiIiIsEAg4iIiLSOAQYRERFpHQMMIiIi0joGGERERKR1DDCIiIhI6xhgEBERkdYxwCAiIiKts4CJKSkpQXx8PBwcHNCgQQNdD4eIiMhgSG/OzMxMNGnSBGZm1c9RmFyAIcGFj4+ProdBRERksOLi4uDt7V3tfUwuwJCZi/Inx9HRUdfDISIiMhgZGRnqTXr5ubQ6JhdglC+LSHDBAIOIiEhzNUkxYJInERERaR0DDCIiItI6BhhERERkXAHG9u3bMWrUKFXuIus5y5Ytu+3XbN26FZ07d4a1tTUCAgLwww8/1MtYiYiIyEACjOzsbHTo0AHz58+v0f3Pnz+PESNGoH///jh48CCee+45PPbYY1i/fn2dj5WIiIhqTqdVJMOGDVNHTX3xxRfw9/fHBx98oK63adMGO3fuxP/+9z8MGTKkDkdKREREmjCoMtXw8HAMGjToutsksJCZjFvJz89XR+UaXm1bdWI3jiadU8s86p98rHRZpoluvK3icw0AswZmMDczh3kDM1iYmavuaBblt6nL124zM4N5g7LbzCtdtrj2teX3L38cC3NzWJtbwdrCElbmluqj3E5E+qO4pARpublIyc7ClawsZObnIbugADnXjoLiIpSUllYcpdcOopp6qFt3uDvUf1sGgwowEhMT4eHhcd1tcl2ChtzcXNja2t70NXPnzsWbb75Zp+NKzctEfOYVGAIJZioCDnP5aAFLc4uKjxWXzeSj5bXbygIVB2s7dTjZ2KuPNhZWbLdOpEEgcf5KCs6mXMaFq1dxIfUKYq9eRXJWpgociOrKuA6d4H77vlimHWDUxqxZszBjxoybupBp06CALujm3Qal8q+0rFe7/FPvNtRt1w7c8Llrl+UPT3FpCYpLiis+FpWUqH1TikqLyz5f8Tm5b9nn1W3XrsvHosqPU1KMwuIi5KujUF0XJaUlyC3MV8edkkBEgg0nm4bqcL52qNtsyy47WtupmRUiUyMzD0fj43Ho0kUcT4zHyaQk5BUVVnlfswYN4GpnDzd7ezja2sLOygr2llaws7KGlYW5+nzZjKeZmvVkYE+akNeWLhhUgOHp6YmkpKTrbpPr0pGzqtkLIdUmctQlL4dG6tBnEmBIsFFQVKgCjoqPxYUqEJE/hvJRXS75+3L59fyiAmTk5SAzPxvp+TnqunzN5ex0ddyK/Bksm/UoC0Ik4GhobYuGVrbqdvko1x2s7GBvZauWeIgM1eWsTISfP4d9sRdw8GLcTQGFBA6tGrujmWsjdfi6uKKpkzNc7CQQ52ufjItBBRhhYWFYs2bNdbdt3LhR3U7Vk1kEOzkstRNs5RcVIiM/G2m5WUjPkyMbaepjFtLysitukxmTjPwcdcSlJ9/2ce0sbVTg0djeGR4NXeDe0AWeDV3R1NENVhaWWhk7kTal5mRj+9kz2Hr6FI4mxF/3OVc7O4T4NENbryYI8vRSAQUDCTIVOg0wsrKycObMmevKUKX81NXVFb6+vmp549KlS/jpp5/U55988kl8+umneOmll/DII49g8+bNWLRoEVavXq3Dn8I0SR5HYwtnFQjciiwDZRXkID337+AjsyAX2fm5yCyQ2ZBcZBfkIjM/R32UJaScwjx1JGVdxdFKk1UyRSyzRL7OHmjm7Ilmzh7wcmykpoyJ6pvM3oWfO4c1J46qmYrKORQSTIQ280NXXz+0cGvM5QwyWQ1KdZiOLE2zpKfFjR5++GHVQGvKlCmIiYlR96v8Nc8//zyOHz+utop9/fXX1f1qSnIwnJyckJ6ezs3O9IjMdGQX5CGrIFcFIslZaUjOSkVSVioSMlPUDMiNJAlVAg0/F0/4uXipjzL7QVRX4lKvYs3xo9h48gTS83Irbg9090C/lq3RJ6AlGjfUQTYdUT3R5Byq0wBDFxhgGB55icoMSGxakjouXDskD+RGbnZO1wUcsrTCJFO6EzI7se9CDP48FIUDF+Mqbm9kb4+hbdpicGAQmjjdeiaPyJgwwKgGAwzjmfFIzLyKmNRExKQmqI+JWVdvup+lmTl8rs1y+Dp5wMfZXQUhnLam28kvKsKmUyfwx6EoxKWmVizVdWvmh+FBweoj8ynI1GQwwLg1BhjGK6cwHxck4EhLRMzVBPWxqnJcWwsreDu5w0cO57KPbvbO6uRBlF2Qj+WHD2Hp4QOqAVZ59cfwoHYYG9wRHvy7QSYsgwHGrTHAMK2p7ctZqWUBR2qiqmKJz0hB0bWeIJVZS9Dh2FjldLRy80FAo6asWjEx2fn5WHbkIP48GIXMa91/PRwcMK59JwwNagt7q7otdycyBAwwqsEAw7RJPxBZWolNT1YBx8X0ZFxKv4zCG4IOaanewrUJ2nk0R8cmLVXzMDJOuYWFWHIoCn8cjELWtcDCx9kFD3QJRb+WrbgMQlQJA4xqMMCgG0kXVCmLlYDj3NV4nLwci9TczIrPy8JJQCNvhDRtjc5NW6kW6WQc/+9SDfL9nt24mpOtbvNxccGDXULRN4CBBVFVGGBUgwEG3Y78SkiJ7PHkGBxIOKOSSMvJ/i1dvQPR0y8YTR0b63ScVHuRcRfw5a4dam8Q4engiKndezCwILoNBhjVYIBBmrqSk4Go+GjsiT2O5OyyagLR3LUJBrYIQVsPfyaIGgjZsfSzHduw4+xpdb2htbVaChkd3F7trUNE1WOAUQ0GGFRb8qty+spF7Iw5gsOJZ1WprJCW5gNadEaXpoFq91nSz+WQlUcP4/uI3cgpLFAB4ZjgDniwa3c42tjoenhEBoMBRjUYYJA2SLfRbecPYVfMYeRea/glG7n19e+Inn7ttbbnC9252NSreP+v9TiZXNZ7PtDDE8/1G6jaeBORZhhgVIMBBmmT9NkIjz2GrecOqG6j5SWvPZu1Qz//TnC2bajrIZp0mfKKI4fw9e4dKCguhr2VFR4N64URbYO5pEVUSwwwqsEAg+qC9NaIvHQKm89GISHzirrNvIEZuni3xoAWIWqjNqrfXIv3N21AVFysuh7i44sXBwyGW0MGfER3ggFGNRhgUF2SXyepPvnrTCTOXr1UcXs7D3+VENqiUVOdjs8UHLoUh/+sX4u03BxYW1jg8R69Mbpde7aHJ9ICBhjVYIBB9eV8agI2n4lUCaHlv2T+Ll4YGBCiGnhxml77SyKLovarvhZyuXkjN7w2ZDh8XFx1PTQio8EAoxoMMKi+SU8NWTrZc/GE6iQqWHmiXbkFBXjvr/XYdf6sun5XYBv8s88A2Fiy3TuRNjHAqAYDDNKVjLxsbDt/EDtZeaJVl7My8frqFTibchmW5uZ4unc/DAtqxyURojrAAKMaDDBI1/KKCrD7wtHrK0/MLdFDKk+ad4KLrYOuh2gwzlxOxmurl+NKdjacbe3w5vBRCPL00vWwiIwWA4xqMMAgfao8iboUjU1nIysqT8wamKFzk1YYGNCZrchvY0/Mefxn/RrkFRWimYsr/jNyDDwdnXQ9LCKjlsEA49YYYJC+kV/BE8kXVKAhnUIrV56MDOyBJo5uOh2fPtocfRLzNm1QHTo7e/vi9aHD0dCaHTmJ6hoDjGowwCB9FpuWpAKNg/FnUIpStZNrV+82GNa6OxrZ8fUqVh09jI+3bVaVOQNbBeLFAXfBwtxc18MiMgkZDDBujQEGGYKkzKtYfSocBxPOqOvmZuYY2LwzBrfsCisL062MWBi1H9+E71SXR7Vrj6f79Ge5L1E9YoBRDQYYZEgupCVi5YndiE6JU9ddbR1xd3Bf1UfD1Py8NwI/7YtQl+/r3BWPdO/BShGiesYAoxoMMMjQyK/okcRz+PPoVqReqzrp6NUSE9v3h72VLUzB4gOR+Gr3DnX50bCeKsAgIv0+h7LDD5Gek3fp7b1aoHVjX6yL3oMt56JwMOE0zl2Nx/0dByHI3Q/GbM2xIxXBxdTQHgwuiAyEma4HQEQ1Y21hiTFBvTCj10TVCTQjPxtf7FmOP49uUyWvxmjL6VP4aOsmdfneTiGYFMLggshQMMAgMjC+zh74V5/7VQdQId1BP9n9J9KvLZ8Yi4iYc6r9t6zhjmwbjMfCejHngsiAMMAgMkBW5haY0K4vHu86CrYWVmpjtXnbf8fplL/7aBiygxfj8Na61arPhZSiPtN3AIMLIgPDAIPIgAV7NseLfSapZlyZ+TmYH7EU4bHHYMhOJCZg9poVKCwuRg//5qrPBUtRiQwPAwwiA9fY3hkzet6LkKatUFJagt8P/YVVJ8q2LDc051Iu49VVy5BbWIhO3j54dfBwNtEiMlAMMIiMgDTfeqjTUAxp2U1d33BmH36KWofC4iIYiotpqZi5Yiky8/PRxsMTbw4bBSsLFroRGSqdBxjz58+Hn58fbGxsEBoair1791Z7/48++gitW7eGra0tfHx88PzzzyMvL6/exkukryRHYURgGB7oKEsKZoiKj8bne2Q2IB/6LjkzAy8vX4LU3Bw0b+SGt0eOha2Vla6HRUSGGmAsXLgQM2bMwJw5cxAVFYUOHTpgyJAhSE5OrvL+v/32G2bOnKnuf+LECXz77bfqMV555ZV6HzuRvgr1CcJT3cfC2sIKZ65cwqfhS1R+hr5KzcnGyyuWIjkrE97OLnh39Dg42HDjMiJDp9MA48MPP8Tjjz+OqVOnIigoCF988QXs7Ozw3XffVXn/3bt3o2fPnrj//vvVrMfgwYMxadKk2856EJmaVm4+eCZsvOr0GZeejI93/4HU3Ezom8y8PLUsIssj7g0d8N7o8XCxs9f1sIjIkAOMgoICREZGYtCgQX8PxsxMXQ8PD6/ya3r06KG+pjygOHfuHNasWYPhw4ff8vvk5+er1qaVDyJT6ZfxXI+74WLTEElZqfho12IkZ6VCX+QWFKiEznNXUuBia4f3xoyHu4ODrodFRIYeYKSkpKC4uBgeHh7X3S7XExMTq/wambl466230KtXL1haWqJFixbo169ftUskc+fOVX3Tyw/J2yAyFR4Orni25z1wt3dWMxj/t2sxEjKv6HpYKCgqwpy1K3EiKREO1tZqWUSWR4jIeOg8yVMTW7duxTvvvIPPPvtM5WwsWbIEq1evxr///e9bfs2sWbPUpizlR1xc2a6URKbC1c5RBRlNHRsjsyAXH+/+E5cyLutsPEXFxfjP+jU4cDEONhaWKqGzuVtjnY2HiIwswHBzc4O5uTmSkpKuu12ue3p6Vvk1r7/+OiZPnozHHnsMwcHBGDdunAo4ZJaipKSkyq+xtrZWO75VPohMjYO1HZ4OGw8fJ3dkF+Tik91LEJdWdTJ1XZLeHO9v2oDwmHOwNDfHv0eMRhtPr3ofBxEZcYBhZWWFkJAQbNpUtpGRkCBBroeFhVX5NTk5OSpPozIJUoSJ7TpPpDF7KxtMDxuPZs6eyCnMw6cRS3AhrerlyLogv6OfbNuMzadPwdzMDLOHjkBHby5ZEhmrWgUYaWlp+Oabb9Tyw9WrV9VtsmRx6dIljR5HSlS//vpr/Pjjj6rsdNq0acjOzlZVJeKhhx5S36PcqFGj8Pnnn2PBggU4f/48Nm7cqGY15PbyQIOIbs3O0lqVsPq7eKn+GPPDl+L81YR6CS6+Cd+JVceOQJp+vzxoCLr7Na/z70tEuqNxm7zDhw+rSg9JmIyJiVFlpq6uriofIjY2Fj/99FONH2vixIm4fPkyZs+erRI7O3bsiHXr1lUkfsrjVZ6xeO2111QzIfkowUzjxo1VcPH2229r+mMQmSxbS2tM6z4WX+5ZgbNXL+GziKV4MnQMWjRqWmff85d9e7DoQKS6/Fy/gejfsnWdfS8i0g8NSjVcW5DgonPnzpg3bx4cHBxw6NAhNG/eXPWokCoPCTr0mZSpSnAkCZ/MxyBTll9UiK/3rUB0ykVYmVviH91Go6Wbt9a/z4LIffg2Ype6/GTPPpjQsbPWvwcR6d85VOMlkn379uEf//jHTbc3bdr0luWlRKR/rC0s8UTX0Qhs7IuC4kJ8sWc5Tl2O1er3WHIoqiK4eLR7TwYXRCZE4wBDqjKqalYVHR2tliyIyLA2SXu86ygEufuhsKQIX+1dqbUgY+XRQ/h853Z1eXLXUNwX0lUrj0tERhpgjB49WjW7KiwsVNclJ0JyJV5++WVMmDChLsZIRHXI0twCj3YZgbZaDDLWHT+Gj7dtUZcndu6CyV27a2m0RGS0AcYHH3yArKwsuLu7Izc3F3379kVAQIDKx2CyJZHhBhmPaCnI2Bx9Eh9u2aguj2vfUS2NyBsRIjItGid5ltu5c6eqKJFgQ5I+K+8pos+Y5El0a4XFRfhu/2ocS46BpZk5nug2Gq0b+9b467efOY23N6xRDbVGtg3GP/sOYHBBZEQ0OYfWOsAwVAwwiOomyAg/fw5vrluF4pISDA4MwgsD7oIZgwsio1KnAYbkX1RHelroMwYYRDUMMiLX4FjS+RoFGftiYzBn9UoUlhSrHhfSSEu6dRKRcanTAKNTp07XXZdkT+mqaWFhoXY3lY6e+owBBpF2g4xDl+LwysplKCguRu8WAXh18HAGF0RGSpNzqMadPA8cOFDlN5wyZYrafIyIjCjxM2R4RZDx1d4VNwUZRxPi8dqqFSq46O7nj1l3DWNwQUSKVv4SSBTz5ptvqn1BiMj4goy2Hv5q+UOCjPLqkpNJiXh15TLkFRUixMcXrw8ZoXZIJSISWnurIdMlchCRcQYZ7SoFGZuiD2PWyqXIKSxAh6beeGPYKFhZaDwhSkRGTOO/CB9//PF11yWFIyEhAT///DOGDRumzbERkR4FGVNDhuP7yDWIjDuH9zdtRnEJEOTphX8PHw0bS0tdD5GIDD3A+N///nfdddntVFqEP/zww9dtrU5ExhdkDG7RAysOXEBxSTFsrYAp3UNga2Wl66ERkTEEGFIxQkSmJzEjHa+sWo78omI42VrBw7UAvxxcDydbOzR3baLr4RGRnmG6NxHdVkpWFl5avgSXszLh4+KCz+99EMFeZW3Fv9y7ApcyLut6iESkZ2rUB2P8+PE1fsAlS5ZAn7EPBpFmUnNy8MKyxYhLTYWXoxM+HHcP3Bo2REFRIT6LWIpzqQlwsLbDcz3vQWN7Z10Pl4j05BxaoxkMebCaHkRkPDLy8jBzxRIVXDRu6IB5Y8ar4KJ8q/cnQsegqaMbMvNzMD98KdLzsnQ9ZCLSE9yLhIiqlFtYiJeW/6n6XbjY2uHD8ffA29nlpvtl5GXjo12LkZKTDi+HRni25z2ws7TWyZiJyMBmMIjItBQVF+Pf61ar4MLB2gbvjRlfZXAhHG3sMT1sHJxs7JGQeUVtlCZVJkRk2mrVGeePP/7AokWLEBsbi4KCgus+p+97kRBR9WRS88Mtf6kNzKwtLPCfkWPg38it2q9pZOeEf3Qbo2YyolPisOjIFtzXfiC3aicyYWa1abQ1depUeHh4qH1JunXrhkaNGuHcuXNstEVkBL6N2IWNp06ordal/bc006oJb6fGmBoyDA3QAOGxx7DpbGSdj5WIjCjA+Oyzz/DVV1/hk08+gZWVFV566SVs3LgR//znP9kqnMjALTl0AAuj9qvLz/cfhFA/f42+XvYsGd+uj7q84sQuHIg/XSfjJCIjDDBkWaRHjx7qsq2tLTIzM9XlyZMn4/fff9f+CImoXuw4ewaf79ymLk8N7YGhbdrW6nH6+ndEH/8O6vKvBzcgPiNFq+MkIiMNMDw9PXH16lV12dfXFxERERUdPk2sIIXIaJy/koJ5f61Xl0cHd8CkkK539Hjj2/ZBazdfFBQX4Zt9q5BTmK+lkRKR0QYYAwYMwIoVK9RlycV4/vnncdddd2HixIkYN25cXYyRiOq418WcNSvVtuudvH3wVK++d5ycadbADA93HgpXWwdVvvpz1DqU8A0IkUmpcR+MVatWYfjw4epySUkJLK5tzbxgwQLs3r0bLVu2xD/+8Q+Vl6HP2AeD6G/FJSV4ZdUyRMXFwtPBEfPvnQRHG1utPX5cWjI+2rVIbfM+tFUohrfurrXHJiL9PofWOMCQgEIqR6ZMmYJHHnkELVq0gCFigEH0ty93bccfB6NgY2GB/5swEc3dGmv9e+yJO45fD25Ul6eFjkUb92Za/x5EZMCNtiTHQmYoZMaiVatW6Nu3L37++Wfk5uZqY8xEVM82nTqpggvx4sDBdRJciFCfIPRsFqwu/3JwAzLys+vk+xCRfqlxgOHj44PZs2fj7Nmz+Ouvv+Dn54dp06bBy8sLTz75JPbt21e3IyUirYlOTsKHW8pmFe7r3BV9A1rV6fcb17aPaiMue5b8cmAD8zGITECtWoX3798fP/74IxISEvD+++/jyJEj6N69Ozp0KCtN08T8+fNVsGJjY4PQ0FDs3bu32vunpaVh+vTpKrCxtrZWsylr1qypzY9BZLK7o76xdhUKiovRrZkfpoSG1fn3tDK3wJSQYbA0s8DJy7HYcpYdf4mM3R3tReLg4ICBAweqgMPZ2RnHjx/X6OsXLlyIGTNmYM6cOarFuAQoQ4YMQXJycpX3l7bkUrESExOj2pWfOnUKX3/9NZo2bXonPwaRae0xsn41Lmdlqr1FZt01FOZm9bMlkcxglDfhWnlyNy6kJtbL9yUiA9pNVfIuFi9ejO+++w47duyAv7+/KlmVBFBNTvYyY9G1a1d8+umnFdUpshTzzDPPYObMmTfd/4svvlAzJidPnoSlpSVqg0meZMo+3rYZK48ehp2lFT6++z40c3Wt1+8vf26+j1yLgwmn4W7vjJf63K+2fSeqK8XFxSgsLNT1MAyKVIOa3eKNhybnUI02O5OmWhJUyEZnMpswfvx4lY8hMxiakq+PjIzErFmzKm6TH2jQoEEIDw+v8muk/0ZYWJhaIlm+fDkaN26M+++/Hy+//DLMzc01HgORKVlz/KgKLsTMu4bWe3AhpL/Gfe0H4NzVeCRnp2HVyd0Y365vvY+DjJ8Es4mJiWpZnTQj52KZOLjTthM1DjCCgoLUkkSnTp0wd+5cdWKXKKa2UlJSVGQppa+VyXWZoaiKbKi2efNmPPDAAyrv4syZM3jqqadUdCrLLFXJz89XR+Xoi8jUHE+MxyfbNqvLD3cLQ5h/c52Nxc7KBpM6DMSXe1dg2/mDCPZsgZZu3jobDxmn8uDC3d0ddnZ23Nm3hmQlIT4+XuVYSrfuO3neahxgyMyC7DVSm0RObf7g8mKRzdZkxiIkJASXLl1Syya3CjAkGHrzzTfrfaxE+iIlOwtvrl2FopIS9GoegPu7dNP1kNSmaN192yIi9hh+O7QRM/s+AGsL/W7SR4ZD3ryWBxey2zdpRlYHJMgoKiqqdTqCMNNkm3ZtBhdubm4qSEhKSrrudrku+51URSpHpGqk8nJImzZtVKQqSy5VkSUYWSsqP+Li4rT2MxDpu4KiIhVcXM3JgZ9rI/xr4GC1Dbs+GBfUGy62DriSk4Flx3fqejhkRMpzLmTmgjRXvjQigdqdqJ/08Vv8ADIDsWnTputmKOS65FlUpWfPnmpZRO5XLjo6WgUet1orklJWSUSpfBCZyhr0J9u34GRSIhpaW+PN4aNgp0et/G0trfFAx7vU5V0XjuDU5VhdD4mMDJdFdPu86SzAEFKiKmWm0lPjxIkTqnFXdna2qkgRDz300HVJoPJ52cn12WefVYHF6tWr8c4776ikTyK63vIjh7DuxDE1Y/Hq4OFo4uQMfdPKzQe9/NqrywsPb1a7rxKRcdCoikTbZAfWy5cvqw6hsszRsWNHrFu3riLxMzY29rpSGSlhXb9+vdrBtX379qokVoINqSIhor8duhSHz3duU5cfC+uFLr76u//HqMAeOJJ4Tu26ui56D0a36anrIRGRrvpgGDL2wSBjl5SRgemLf0d6Xi4GtGytSlL1far4cOJZfLNvlZpt+VfvSWjqVDf7opBpyMvLU/tnSamldIkm7T1/ddYHo5zkScghHTcr50MI6ZNBRLqRV1iIN9auVMFFgFtjPN9/kN4HF6K9Zwt08ArAoYQz+P3wJszodS/MGuh0BZdIpz755BNMmDABTZo0qdH95dzbo0cPBAYGQl9o/BssJZ+DBw9WAYb0skhNTb3uICLdkMnI/27egDMpl+Fsa6uSOm3uoMSsvt3drh9sLawQm5aE7ecP6Xo4RDpz5swZtfTv4uKirkvfJ3mjcKtD0g327NmDL7/8EvpE4xkMadf9ww8/YPLkyXUzIiKqld8i92LbmdNqb5HXh46Au4NhLQE62dhjdFAvley56mS4mtVwtTOsn4FIG5YvX6723bK1tVXXpVu2NL6qTEpIpSBC9vF65ZVXVE8o2Wbjf//7Hwx2BkP6Tcg0DBHpj53nzuCHPWUt9v/Zpz/aNzHMzphhvu3QwrUJCooL8efRsiRVIlMMMEaPHl1xXQIN6Q9VfkgjrBdeeEEFF7KaID2qZONR6SN19OhRGGyA8dhjj+G3336rm9EQkcbOpVzGexvXq8tjgztieNtgGCpJ8ry3/QCVf3Ek6RyOJp3T9ZDISJYP84sKdXKUalhHIakHsu/XyJEjq/y8zFw8+OCDah+w8uCivOeTpC/Inl0Gu0Qi2aXSqlt+OCkVvbGN6IcffqjN8RFRNVJzcjBnzUrkFRWik7cPnuxVth26IZNt3fs374RNZyPVLEYrN19Ymeu0op4MnPRX+dfaz3Tyvd8f9hSsNdgxeNWqVejSpctN+3RVDi42bNhwXXBRbsyYMfj888/Vkok+0Pi39vDhw6pfhbhxKsYQstWJjEVuYSFeX70ciZkZqonWa0NGqPwLYzC0VTdEXjql2ohvPL0PIwKr7u5LZGzWrFmD4cOHVxlcSO5jeXBRfh6uTL5O8jJkFkS24zC4AGPLli11MxIiqrHikhK8vX4NTiUnwdHGBv8ZMVp9NBay8dm4tn3wfeQa/HU2El29A+HesCyjnkhTMgMmMwm6+t6a8PPzUz0oqgoupNGkrB5UFVwI+TpnZ2d16IM7mne8ePGi+ujtbZgJZUSGSNZ0P962GXsunIeVuTn+PWI0fFxcYWw6egUgsLEvTl6OxR9Ht2Fa6BjOklKtyOtGk2UKXRozZozqfyE9pqSTtQQXsm1GeXDRqVOnW36t5F/ILIaFhX4sKWo8nyo/9FtvvaU6eTVr1kwdEi39+9//vqnpFhFp3y/792DN8aMVe4wEedasEY8hnhSkN4a5mTlOXr6gmnARGbuwsDD1JkL6Wsg5VYKLZcuW4ZdfflEbe8q2GpWPyjueSoAhAYq+0DjMefXVV/Htt9/i3XffVbubip07d+KNN95QCaBvv/12XYyTiAAsPhCJn/ZGqMtP9+mHHs1bwJjJssigFiFYf3ovlhzbjjbuzdTyCZGxMjMzUxUkUqoql8urNqvKy5AgPC0tTbXsluWRU6dOYejQodAXGs9gyM6n33zzjdrZVKpI5HjqqafUrqjSgIuI6saywwfx1e4d6vKU0DCMand9BrmxuiugC1xtHZGWl4V10Xt1PRyiOjdmzBg1GxEaGqpmM251yAxH+X4gcv9+/frBwcEBBhtgyHbpVfU6l9vkc0SkfauPHcH8HVvV5Qe6dMMDXUJhKqwsLDGhXV91ecu5A0jIvKLrIRHVqbvuugsXLlxQLcNrSgKMys25DDLAkLrbTz/99Kbb5bYba3KJ6M4tORSFj7ZuUpfv6RiCh7uZXslmsGdztPPwR0lpCRYf2apx8yIiQ2Jra4vs7GwEBATU+GukdHX69OnQJxrnYMybNw8jRoxQ2aySjCLCw8MRFxen6neJSDtKSkvxbfhOLDoQqa6P79AJj/foZbKVFBPa9cOpy3E4c+Wi6pHRxVt/do0kIi3MYPTt2xfR0dEYN26cSi6RY/z48Sq5pHfv3po+HBFVobC4GPP+Wl8RXDzavSee7NnHZIML0cjOEYNbdlWXlx7fgdzCfF0PiYiqUatiWdmfntUiRHUjp6AAb65bhai4WFWK+sKAuzA4MEjXw9ILA1p0xr6LJ5CcnYY1pyIqcjOIyEADDGkP3q5dO1UyI5erI1UlRFQ7qTnZeHXVcpy+nAwbC0vMHjoCXZv56XpYesPS3AJ3B/fDZxHLsP38IYT6BMHbqbGuh0VEtQ0wpC2pNPRwd3dXl2WatqokK7m9ctMPIqq5i2mpeGXlMiRkpMPZ1hb/GTEGrT08dT0svRPYuBk6NWmJA/GnsejIFjzX8x4100NEBhhgSAMP2X++/DIRadeppEQ1c5GelwsvRyfMHTUOTfVkPwF9NC6oD44nxSAmNQF74o4hzLedrodERLVJ8pR24OXJZVKb27Rp04o24eWH3CafIyLN7L1wHi8u+0MFFy0bu+P/JtzL4OI2nG0bYljr7uryiuO7kF2Qq+shEdGdVpH079+/yoZa6enp6nNEVHMbTh7H66tXIK+oCCE+vvjv2LvhYmev62EZhL7+HeDl0AjZhXlYeWK3rodDRHcaYEjuRVWlcleuXIG9Pf8wEtX09+j3yL14f9MG1e9iYKtA/HvEGNhZcZ+NmpJN0O4NLntTEx57FDGpiboeEhHVpkxVel0ICS6mTJkCa2vris9JYqdUl/To0aOmD0dksiSg+HznNrW3iLi3UwgeDevFRMVaaNGoKbp5t8HeiydUwueLvSfCrIHG75uIqA7U+DdRtmeXQ955yWYq5dfl8PT0xBNPPKG2kyWi6htovbdxXUVwMa1XXzzeozeDizswOqgnbC2scDE9GTtjjuh6OERa8cknnyA+Pl7rj/vdd9/h5MmT0KsA4/vvv1fHnDlz1Hbt5dfl+PLLLzFr1iy4ubnV7WiJDFhuYSHmrFmBzadPwdzMDLPuGqraf9OdcbS2x8g2ZbOnq0/uRkZ+tq6HRHRHZJOzl19+GS4uLuq67JoqG4q++uqr191v9erVsLKywpIlS2p0H7Fnzx51zq4PGs8lSoDBXAsizWTm5WHmiiXYF3sB1hYWeGv4KAxoxb00tKVns2D4OLkjt6gAy4/v1PVwiO7I8uXL1Y6qsumZkCaX8iZ+/vz5qqBCREVFYeLEiXjvvfdUCkNN7lN5K/j6UKvFyj/++AP33nsvunfvjs6dO193ENHNwcXLK5bgeGICHKytMW/MeHRr5q/rYRkVybuQhE9ZaNp38STOXLmk6yER3VGAcePW6w888ABcXV3VzuWxsbEYOXIkpk6diueff16j+wwcOBBJSUk4evQo9C7A+Pjjj9WAPTw8cODAAXTr1g2NGjXCuXPnMGzYsLoZJZGBBxfS+lu6c34w7h4EeTbR9bCMUjMXT/RoVtZwa/GRLSguYVdhKiO5g7JEqYujtIqu19VJSUlBRESECg4qs7CwUMsmH330EYYPH46uXbvi//7v/zS+jxRoDB48uF5mMRqUavjTyxqPLJNMmjRJJXseOnQIzZs3x+zZs1V/DImc9FlGRoZKTJUpJEdHR10Ph0wouJg3ZgL8GzFPqS5lF+ThP1t+Uo23RgaGYXDLbroeEulAXl6e6jrt7+8PGxsbdaIf/dV8nYxlxRPTYWtpWeP7//DDD/jqq6+we/fNvV2ysrJUV+2AgACVS2FnZ1er+/z444/4/PPPVSBTk+evtudQjWcwZNqlvBxV1ocyMzPV5cmTJ+P3339HbciakZ+fn/pBQkNDsXfv3hp93YIFC1TZ7NixY2v1fYnqSnZ+PoMLHbC3ssG4oN7q8rrovUjOStX1kIg0smbNGjX7UJWnn366YpZDci5qex95fDnPyn30art2KUmVmQppD+7r66sioA4dOqhoR9OpILFw4ULMmDEDX3zxhQouZGpnyJAhOHXqlNpc7VZiYmLw4osvonfvsj8mRPqioKgIc9auZHChI129A1UexqmUWCw4vBnPhI2vsjkgmQ4bCws1k6Cr760JebNd1Z5fr7/+uqoIkXPuoEGDVDXn9OnTNb6PkMd3dnZWR13SeAZjwIABFWs35ckjku0qmarjxo3TeAAffvghHn/8cfVYQUFBKtCQKR2p1b0VaewlySxvvvmmWp4h0hfFJSWYu3EdDl26CDtLK7VpGYOL+iXBxMT2A2BpZoEzVy4iIu6YrodEevCakGUKXRwNNAxupcpDggQpOy339ddf44MPPsDKlSvVG/rnnnsO8+bNQ2FhoUb3KSfncJnFkJwNvQowZG2ovM5WIiMJBNq0aYO33npLrelooqCgAJGRkSrSqhiQmZm6Hh4efsuvk+8lsxuPPvrobb9Hfn6+WjOqfBDVBZnB+2TbZuw8dwaWZuZ4c/goBDS+9Swc1R03eycMDyzbDG3Z8Z3sjUEGIywsTP0tkfyJ8iUTWfb49ddfVeWmkOuSA/Hzzz/X+D43BhgSyNQ1jQOMixcvwtzcvOL6fffdpypL5IdJTNRsLwBZ/5HZCKlIqUyu3+qxdu7cqaZ9JFqriblz517XddTHx0ejMRLV1I97I7D6+FFVKjnzrqHo6M3Xmi718+8Eb+mNUZiPJUe363o4RDUib7KlgkRKVeUNuLSEkJmIyisEci775z//iXfffbdG95HzbOXlEUlBGDp0KPQuwJCs0suXL990u+RlyOfqkiSUSjKpBBc17RoqjUckiis/4uLi6nSMZJqk9fev+8vecTzTdwD6BLTU9ZBMnnRLndR+oGrDHhUfjWNJN69rE+mjMdeaYYWEhKiqkGeffbbKmfzo6Oga3afypIA8br9+/VQVqMHspio/4I3lLLcjQYL84NL0ozK5LsmkNzp79qxK7hw1apRaO5Ljp59+Uk+YXJbP30hqfqWUpvJBpE3bTkfjsx1b1eWHunbHqHbtdT0kusbH2R39mpe1Y190eDPyigp0PSSi25K8xgsXLqiW4dom58sbm3jVlRpneEilh5DgQjJVK9fWyvSLrBd17NhRo28u/dEl+tq0aVNFqakktsj18lKbG3twHDly/WZGr732mprZkGYiXP6g+hYVF4t3/1oHqZ+SwOLBrqG6HhLdYHir7jiUcAZXcjKw+mQ4JrTrq+shEVVLWkBkZ9dN3pCcX+tLjQMM6dpZPoMhJ3kJDsrJZclalbJRTUng8vDDD6NLly6qK6iUqcoTK1Ul4qGHHkLTpk1VLoXMkLRrV9apr1x5mc2NtxPVtejkJLyxdiWKSkrQu0VLTO/dj+WQesjKwlJVlXwWsQzbzx9E56at4O/ipethERm9GgcYW7ZsUR/lxC+zBdpaapDyVsnpkE6gktgpsyDr1q2rSPyUxl63ahZCpCsX01Lx6qplqkNgx6Y+mHnXELXmT/opsHEzdPNug70XT2DBoU34V59JsDD7e12aiPSgVbgkSsqSiGyocmOSp+RB6HuOA1uF051Kyc7Cc38uRFJmJlo2dsd/x94Nu0ozeqSfpH3421t+RlZBLoa17o5hrbicZayqa3VNt6ezVuFSliotum+0aNEi9TkiY5aVn4dXVi5TwUUTJ2e8PXIsgwsDYW9lW5F/sSF6LxIyr+h6SFTHatNdmqC1503jAEOSOfv373/T7VL2Ut4YhMgYyXLI66tX4PyVFLja2eHd0ePgUsVGQqS/OjdphbYe/iguLcHvhzahpPTvbolkPCyvbS6Wk5Oj66EYJGmCKSqXt9aGxn1CpTNmUVHRTbdLO9Lc3Nw7GgyRvspTwcVyHE2Ih71VWQtwL0cnXQ+LNCRJuPcG98c7Vy4hJjUBO2IOo6+/ZtVvpP/kxCgFAMnJyeq6VD0yAbtmpJJT8iLlObvTVuIaf7VUeki78E8++eS622UPESk5JTLO4GJFxf4i74wah+ZujXU9LKolF1sHjG7TA4uPbMXKE7sR7NEcrnbMxzI25b2UyoMMqjkprJDNTO80KNM4wPjPf/6j9go5dOgQBg4cWFFXu2/fPmzYsOGOBkOkb3ILCtTOqAcvxamNi+aOHosgT5Y4Grqezdoj8lI0zl2Nx6Ijm/GPbmP4DtfIyP+nl5eX2reqqg2/6Nak9YQ2qjc1riIRBw8eVH3PJciQhiDt27dXLblbttT/9sisIqGaSs3JwWurl6t+FzYWElyMQzuvJroeFmlJUuZVvLv9NxSXFGNypyFqm3ci0t45tFYBhiFjgEE1EZ+ehlkrl6mPTja2+M/IMQj0uLl9PRm29dF7sfpUOOwtbfBK/8lwsGbSLlF16rRMVcieH9Ki+/77769Y31q7di2OHTtWm4cj0iv7Yy/g6cULVHDh6eCIjybcy+DCSA0KCEETRzdkF+ZhyTHuuEqkTRoHGNu2bUNwcLAqSf3zzz/VJmdClkvmzJmj1cER1aeS0lIsiNynOnRm5uehlbsHPpowEd7OLroeGtURczNzTOowEA3QAJGXTnHHVSJdBhgzZ85UiZ4bN268bj+SAQMGICIiQptjI6o30tvi+SWL8G3ELhVoDG3TFv8bdw8a2dvremhUx5o5e6Jf87JSVe64SqQ9GleRyEZnv/322023S6ZuSkqKtsZFVC/yi4rw6/49WHQgEsUlJapS5MlefTE8iJvnmZLhrcNwOPGs2nF11YnduDu4n66HRGR6MxjSvCQhIaHK3VZl11MiQ3HgYhyeWPALfo/cp4KLHv7N8c2khxhcmCBrC0vc176s7H5HzCFVvkpEd6ZWe5G8/PLLaudTqTOWrl+7du1SW7XL1upE+i49NxfzNq3HS8v/VImcsgwyZ9hIvDl8NNwdHHQ9PNKR1o19EeoTBCmrkzbihcU3dywmojpcInnnnXcwffp0+Pj4qF1Vg4KC1EepKJHKEiJ9JRXZf0WfxJc7tyM9LxfSVmlku/Z4tHtP2Ftb63p4pAfGBvXG8eQYJGVdxYbT+zAiMEzXQyIyWLXugxEbG4ujR4+qKpJOnToZRJMtwT4YpikhPR0fbd2EqIux6rqfayM8338ggjzZOIuudyD+NL6PXAOzBmZ4qc8kVcZKRJqfQ2u9k4n0KZdZDMEWu6SvJLdi+ZFD+D5iF/KKimBlbo4Hu4bino4hsLjDnQLJOHX0ClD7kxxJOqeWSp7vdY8KNohIM7X6rfn222/Rrl072NjYqEMuf/PNN7V5KKI6czEtFTOWLsbnO7ep4KJjU298dd9kTArpxuCCbkneMN0T3B82Fla4kJaIbecP6XpIRAZJ4xmM2bNn48MPP8QzzzyDsLCy9cnw8HA8//zzatnkrbfeqotxEmlk6+lT+HDLX8gtLFQ7oD7eoxeGtw2GGWfbqAacbRtiTFAvLDy8GatP7kZ7z+ZoZOek62ERGXcORuPGjfHxxx9j0qRJ193++++/q6BD33thMAfDuBUUFakZi1XHjqjr7Zs0xcuDhsDdgf/XpBlpuPZp+J84c+USWrv54qnuY7kcTCYvoy73IpFtb7t06XLT7SEhISgqYlkX6U52fj5mrVxaEVzcH9IN88ZMYHBBtSKzXdIbw8LMHKdSYrHv4kldD4nIoGgcYEyePBmff/75Tbd/9dVXeOCBB7Q1LiKNpOZk44Vlf+Bw/CW1JPLOyLGY2r0HzM2YnEe1597QBcNaharLshlaZn6OrodEZDAsapvkuWHDBnTv3l1dl43PJP9CGm3NmDGj4n6Sq0FUHyWoM1csQXxGOpxt7TB31FgENHbX9bDISAxo0RlR8adxKeMylhzbhoc7D9P1kIiMMwejf//+NXvgBg2wefNm6BvmYBiXcymX1bLI1ZwceDo64t1R49HU2VnXwyIjE5uWhA92LFBdPp8Jm4CWbt66HhKR8fXB2LJly52MjUhrjsRfwuurlyO7oAD+jdwwd9Q47n5KdcLX2QM9mwVj54Uj+OPoVtWAS7Z6J6Jb03iB+vLly9XutEpUH8LPn1PLIhJctPNqgg/H3c3ggurUiMAesLe0QULmFWyPOazr4RAZX4ARHByM1atX33T7f//7X3Tr1k1b4yK6pQ0nj+ONtStRUFyM7n7N8e7o8WhobaPrYZGRs7eywag2PdXltacikJGXreshERlXgCFJnBMmTMC0adOQm5uLS5cuYeDAgZg3bx5+++23uhkl0TWLD0Ti/U0bVI+CuwLb4I1hI2FtUeuO90Qa6e4bBF8nd+QVFWDFiV26Hg6RcQUYL730kurcuWPHDrRv314d1tbWOHz4MMaNG1c3oySTJwHFV7t24KvdO9R12UvkXwMGswyV6pXsSSJtxMXeiydw7mq8rodEpLdq9dc5ICBA7T8SExOjMkonTpwIT09P7Y+OSLpzFhdh7sa1WHwwUl1/LKwXnujZm10VSSeauXiiu29bdXnxka0oKS3R9ZCIjCPA2LVrl5q1OH36tJq1kKZb0iJcgozU1NRaDWL+/Pnw8/NTG6eFhoZi7969t7zv119/jd69e8PFxUUdgwYNqvb+ZNgy8vLwyspl2Ho6GhZmZqrt98TON3eSJapPowJ7wNbSWvXG2BnD5HYirQQYAwYMUMFEREQE2rRpg8ceewwHDhxQjbYkAVRTCxcuVHkdc+bMQVRUFDp06IAhQ4YgOTm5yvtv3bpV7YMi5bKyVCNbxg8ePFjlgpBxiU5OwlOLfsWhSxdVd863R47FoNZtdD0sIjhY22FE67LNHtecCkd2QZ6uh0Rk+I22tm3bhr59+950e0lJCd5++228/vrrGg1AZiy6du2KTz/9tOJxJGiQWZGZM2fe9uuLi4vVTIZ8vXQSvR022jKMfIvlhw/i6/CdKCwuRhNHJ7wxfJTqdUGkL4pLSjBv+2+qbLWvf0dMaHfz30UiY1Onm51VFVyoBzIz0zi4KCgoQGRkpFrmqPw4cl1mJ2oiJydHbcDm6upa5efz8/PVE1L5IP114eoVzFi6GJ/t3KaCizC/5ph/7yQGF6R3JMF4fNs+6vKOmENIzLyq6yER6ZUaBxjDhw9XEUu5d999F2lpaRXXr1y5gqCgII2+uWztLjMQHh4e190u1xMTE2v0GC+//DKaNGlyXZBS2dy5c1W0VX7I7Ajpn8tZmfhg80Y8seAXHEuIh62lJf7Zd4CauWCPC9JXrRv7op1HczXrtux4WYUTEWkYYKxfv17NBpR75513cPXq3xG7bNV+6tQp1CcJchYsWIClS5eqBNGqzJo1SwVG5UdcXFy9jpFuTVbnjicm4J0NazH55++x7sQx9Ye6Z/MW+GbSZIxq115tmU2kz8YG9YJ5AzMcT45RBxGVqXGHohtTNTRM3aiSm5sbzM3NkZSUdN3tcv12Za/SOVQCjL/++ktVtdyK9OiQg/RHVn4eNkefUgHF6ct/J/O2b9IUj4b1RJBnE52Oj0jTLd37+HfAlnMHsPTYDrR28+E+JUS13a5dW6ysrBASEoJNmzZh7NixFUmecv3pp5++5ddJ11BJKJVZlS5dWLJoCCQgPRx/EWuPH8OOs6dVm29haWaO/q1aY2z7jmjJLdbJQA1pFYq9F08iKesqdl04qgIOIlNX4wBDmhrd2NhIG42OpET14YcfVoGC7GXy0UcfITs7G1OnTlWfl8qQpk2bqlwK8d5772H27NmqLbn0zijP1WjYsKE6SP8y7befPa1afFeerfBzbYRhQW0xsFUbONna6nSMRHfKztIaI1p3x6IjW7DmVARCmrZWe5cQmTKNlkimTJlSsdyQl5eHJ598EvbXdrCsnJ+hCempITu0StAgwULHjh2xbt26isRP6a8hlSXlpLGXVJ/cfffd1z2O9NF44403ajUGqhuRcRfwxc7tiLl6RV23sbDAwNZtMKxNW7Ry92AnTjIqYb7tsCPmsCpbXRe9h2WrZPJq3AejfEbhdr7//nvoM/bBqHtpuTn4eNtm7Dh7Rl13sLbG+A6dMTq4PRxtOFtBxuvk5Qv4LGKZ2rNkVt8H4OFQdfk8kaHS5Bxa4xkMfQ8cSD+Enz+HD7f8pYIM6RMwul17PNi1OxxvUeVDZEwCGzdDOw9/HE06r8pW/xE6RtdDItIZ7nNNWsu1+GFPOBZE7avIsZB9QwKYuEkmZmxQb5xIvoBjyTHqYxv3ZroeEpFOcK9rumPZ+fmYs2ZlRXAxvkMnzL9nEoMLMumyVbHk2HYUl5RVTBGZGgYYdEcupqXimT8WYM+F87AyN8fMQUMxrVdfWFlwcoxMu2zV3spWla3uvMDdVsk0McCgWtt3IQZPL/4dcWmpaNywIT4cfy8Gtg7U9bCI9KJsdWTFbqsRyMrP1fWQiOodAwzSmBQeSV+L11YvR3ZBAYI8vfDp3ZPQ2v36PWWITFlYs7Zo4uiG3MJ8rImO0PVwiOodAwzSSH5REd77az2+2r1D7RsytE1bvD92Alyv9UMhojJSqjqhbVkvjF0xRxCfkaLrIRHVKwYYVGPnr6SoJZFN0SfVJmTTe/fDjP6DYGXOfAuiqrR080YHrwCUohRLjm3Tyh5ORIaCZwa6rYLiIiw5eAA/7YtAYXExnG3t8MrgYejk7aProREZxG6rx5LOIzrlIo4knkN7rxa6HhJRvWCAQdX2tth2Jho/7Y3ApfQ0dVu3Zn54ccBguNjZ6Xp4RAahkZ0TBjTvjA1n9mHp8R2qL4YlZ/3IBPBVTjdtpX740iUcuBiH3efPIjkrU93uameHx8J6YVDrNtxDhEhDd7Xsgoi447iSk46t5w/irgDuAk3GjwGGiSsoKsLRhHgVUBy8GIvoy8kqebOcs60tRgd3UM2z7K3KNrojIs1YW1hhdJue+OXgBmyI3otQ7zZwtGFiNBk3BhgmSPYJ2X7mNCJizuPQpTgUFF/fadDb2UXlV8jRrZk/rNk0i+iOdfEOxI6YQ7iQloSVJ3fjgY536XpIRHWKZw4TqwJZELlP7XJaWKl9cSN7e3Ty9q0IKho3dNDpOImMkVRejW/bF//btQh74o6jl18wmjl76npYRHWGAYYJSM3Jxrfhu7Dh5HGUL360cvdA7xYBCG3mrzYmY14FUd3zd/VCl6aB2H/pJBYf3oIZvSeqfhlExogBhpHbH3tBNcaSZRHRu0VLTOzchV03iXRatnoOsenJ2BlzpGJjNCJjwwDDSEm/ih/27MaiA5Hqun8jNzzXb6Bq601EuiPJnSMCe+CPo1ux6uRudPQKYMInGSXOzRmh+PQ0PL9kUUVwMapde3xy930MLoj0hORf+Dq5I6+oAEuPb9f1cIjqBAMMI7M5+iSmLfwNp5KT4GBtjTnDRuKffQewEoRIj0jexb3tB6ABGiDyUjROXr6g6yERaR0DDCORnZ+PeX+tx9yN65BTWIB2Xk3wxcQH0Kt5gK6HRkRV8HX2qMi/WHxkKwqLi3Q9JCKt4ttaIxAVF4sPt2xEUmamKoW7P6QbHuwaCnMzxo9E+mx46+44EH8al7PTsOH0PowIDNP1kIi0hgGGATuXclntE7Lr/Fl13dPRES8PGqpmL4hI/9laWmNCu774PnINNp7ZrzZC83Fy1/WwiLSCAYaBkG2eM/PzkJCerlp77zp3FkcSLqnPyayFJHJO7d6D7byJDEynJi1xID4ABxPO4LeDG/FC7/tgYWau62ER3TEGGHpG9gGRmQnZE+RiaqqqCEnISEdiRobKrahMAgvJsZjctTv8GjXS2ZiJ6M7cE9wfp1Mu4lJGCjae3odhrbvX+rHi0pKx9+IJxKYlIb+oAA7Wdgho5I3uvkFwsmkIfZOWm4W9F4/jzJVLSM/LVvu2NHP2QFfvQJWnom/yiwpxID4ax5LO43JOukrYbeLQCO09W6Cdpz8bp1XSoFTeGpuQjIwMODk5IT09HY6OjtAXcalXsfLoYWw5HV3RFKsqrnb2Kpjo5uunmma5O7CtN5ExiLx0Cj9GrVMnqH/1vg9NnRpr9PWpuZn48+g2HE4sWzK9kXkDMwxsEYLBrbrBSg+2iy8oLlIbv206G4ni0pIq7xPs0Rx3B/eDi63u/87JqXL/pVNYdnwHMvOr/hvt2dAVE9sPQItGTaEPzl9NwInLF1Sujy7OoQwwdCyvsBA/7AnHkkNRFW28bSwsVc8KXxdXNHV2hpejE7ycnODh4MhyUyIjJX+Kv92/WgUITR0b44XeE2u8VBKdEofv969BdmGemtns6NUSwZ7NYW9lg8vZ6Sp4OXc1Xt3X28kdj3cdqdOTtgRD3+xbhbj0ZHW9uYsXQrwD0djeCVn5uTiWHKOSX0tKS2BnaYNHugxHKzcfnY1XKnwWHdmi9pARrraOakbI18lDBUdnr1xCRNwx5BTmQzZdGN2mFwa06KzTLRh2xRxRzdxkfFNDhqulOG1ggGEgAcaR+Ev47+aNahlEdPfzV7kUsvGYpTnXYIlMTUZeNt7Z+gtyCvPUbMOYoF63/ZqD8afxQ9RatbwqCaKyS2sTR7eb7nco4QwWHN6M7IJcOFrb4589JsC9oQvqW3JWKj4J/1Mth9hb2mBSh0EqGLrxZByfkYJfD25UQYjM6jzceajWTpKaKCgqxNf7VuJUSpzqWzKsdaj6v7G8YRYouyAPS49tV8tTordfe9zdrl+9BxlySl8bvQfroveo69IpVl4TsvSkDQww9DzAyC0sxHfhu7D8yEE1a+Fm31C18Q7189fJeIhIf0ggIDMZYnr3cWjd2Lfa+34fKcFFCTo3aYX7O95V7fLHlZwMfLV3BRIyr8DJRoKMu9HY3hn1RcpxP979hwouZDnhH6Fj0MjOsdplFEl8jYqPVkHG1JBh6OAVUK8zF1/uXY7olIuwNrfEI11GoI17s1veX06n22MOYcnRbepve1//jhjftk+9BhlrTkVUBBeyNDKkZTetfn9NzqHMRqlnBy/G4YkFP2PZteBiaJu2+GbSZAYXRKTICbRns3bq8s8HNtxyvf98agJ+iFqnggvZofWhzkNum1shJ/Onw8ark7uc5D+PWKaWJOqDLB98uWe5+r5eDo3wTI8J1QYXQn4e+bnk55OfU37e8qWeuibBwu+HNlUEF9O6j602uBByIpeg4r4Og9T1becP4q8z+1Ff9sadqAguxgb1xtBWoTpdptGLAGP+/Pnw8/ODjY0NQkNDsXfv3mrvv3jxYgQGBqr7BwcHY82aNdB3Wfl5+L+tm/Cv5X+qihD3hg6YO2ocXhhwF+ytWVpKRH8bF9QHHg1dkJGfjd8P/aVOdpWl52Xh232rUVxSrKoXHux0V42rF6SqRIIMObmn5KTj2/2r6ryLqAQHP0WtRXJ2GlxsGqqZGRlHTcjPJVP88nPKz/v1vlVIyU5HXdty7gD2Xzqpcloe6zoSzV1r3l8ozLetWh4RK0/uVjNNde1CaiIWHN6kLsusheSA6JrOA4yFCxdixowZmDNnDqKiotChQwcMGTIEycllyT832r17NyZNmoRHH30UBw4cwNixY9Vx9OhR6KPikhJsPHUCj/72E1YdO6JuG9k2GF9NehBdfKuPhonINFlZWGJK52EwNzPH0aTzatq9nAQDkiApwYfMBDzYabDGpZGye+sT3UbDxsIKZ6/GY9GRzTcFMdq08sRuHE++AEszczzWdZTGu8dKV+LJnYaoBFXJIZFlntzC/Dob74nkC1h+fKe6PK5tn2qXqW6lj3+HilbwP0WtV2XDdUVmhb7ZvwpFJcVo59H8jsqctUnnORgyY9G1a1d8+umn6npJSQl8fHzwzDPPYObMmTfdf+LEicjOzsaqVasqbuvevTs6duyIL774Qi9yMGSr9AtXr2DPhRhsOHEM8Rll0ba3swue7TsAHb11lw1NRIZj67kDWHJsuyoxfbbnPao/hCQ+SiKhnaW1asp1JzkUciL9Ys9ylKIU44J6o38dvOvdf/EkfjqwXl2WRM2Qpq3vqGfGBzsXqBNqWw9/VQ2j7b4TkoT6wc6FKoDp7hOkklBru8xQXFKigiEpFXW2aYgXe9+ncXB1OxJwfrz7T1xIS1RLX8/3uld1iK0rmpxDdVrzWFBQgMjISMyaNaviNjMzMwwaNAjh4eFVfo3cLjMelcmMx7Jly6q8f35+vjoqPzna9m34TtWuu6CoCPlFRcjMz1cvrHKONja4u2NnTOjYWS/qz4nIMMh6vpRAHko8i+/3r0aob1sVXEg1g5Qe3mmCpuQUjGvbWwUxy47vhKdDo9vmGWhC3rXLEo8YFNDljoIL4WzbUC1XfLzrD9XoavXJcIxq01OLCfj5aglGPvq5eKkGaHeSw2BuZoYpIcPwwY6FSM5OVcm7sjx1YwVKbcn8gMw+SXAhAefj3UbVaXBhUEskKSkpKC4uhofH9d3a5HpiYmKVXyO3a3L/uXPnqmir/JDZEW27mpODuNRUtdlYWm6uCi7srazQ1bcZZvQfhF8eehSTQvSjuQ0RGQ45uUlliPSHSM3L+juBr23vWk3b3yqIkXfqMovxQ+Qa9Q5eWyW3spRTWFKMIHc/jNTSRm7NnD3VrIKQ/Vukx4c2SJnvzwfWIynrqup4+miXEVoJBGwtrfGEnPgtrFRi7uIjW7S2HCVJpHviygJOCWTqsyKoJoz+jCezI5VnPGQGQ9tBxr2dQjA4MAg2FhawsrCAg7UNGtnb6zR7l4iMg5ygpDzywx2LUFhShG7ebdDPv6PWHl/+Tsk79aSsVHUC/GrvStXk607eCas8kf2rkZaXBXd7F7U0os2ljC7egaqtunQBlTJWObHeaVvxNSfDVb6LNDd7rOsIVcarLe4NXTAlZLhajoqIO64aqfVtfmf/h7K8JV1FxdigXghsrH85fTqdwXBzc4O5uTmSkq5PfpHrnp6eVX6N3K7J/a2trdU6UeVD25q5NkKHpt5o7eEJ/0ZucGvYkMEFEWmNnJCmh43DmDa9VCtqbf99kXfqj3YdofIEZCr/R9W4q+r23bcj784XHt6MmNQE9a69rqbtR7XpoWZGZIZEJb3mZdf6sfZdPIkNZ/apyzI7IrMk2tbGvVlF47Slx7fj1OXYWj9WUuZVNdsksy4q4GzeCfpIpwGGlZUVQkJCsGlTWWlNeZKnXA8Lq3o6TW6vfH+xcePGW96fiMgYSJnkwICbO0hqi3T3fLzrKFiaWaiKD6n8qI3NZ6NUnoiUd8q7dim3rQvl3T3l8WWmRGZMalNuK301fruWJ3JXQBe1yVpd6d+8kwoIJDD4PnKNajymKVVFs28FcosKVIv1ugg4jaZMVZYvvv76a/z44484ceIEpk2bpqpEpk6dqj7/0EMPXZcE+uyzz2LdunX44IMPcPLkSbzxxhvYv38/nn76aR3+FEREhs/HuazVuJDlh4jYYxp9fXjsMSw/8Xd5pzYTRqsiMyMSFMlMicyYyMyJnLxr6lL6ZVXlUd5PZERgjzodb4MGDVRAIDMk0njs670rVcBQU5J8+vme5Wp/GVdbBzzadWSdBZxGEWBI2el///tfzJ49W5WaHjx4UAUQ5YmcsbGxSEhIqLh/jx498Ntvv+Grr75SPTP++OMPVUHSrl1Z5zsiIqq9zk1bYXDLruqyVIDsvlCzHkOyEdiCazMB8k69j19ZD4i6Vp7fIImOMnPy68EN11XxVRdczI9Yqk70fi6emKz6idT9TICluYWqhJEcj8Ssq6rEVHqa3E5OQZ7qhCqVObKHi7RZr2mzMpPtg2GKe5EQEekzmQWQaoddF8qaAw4O6KqaN0nZ5Y3kZL42OgIbTpflMPRsFox777C8szaiLkXjpwPSOr1UJTw+1GkIGlrbVnlf2bH256j1yC8uVBvETQ8br8o861Ni5lV8Gr5EBRfSVVXKjm+VqCoJuN/sW6k+ymzN02ET1GyTLnCzs2owwCAiuj05Naw4sUstlQjpojmidXd18pZAQwKLk5cvYPWpCFy8tu269LoYGdijXmYCqnI44Sx+jFqnqm3k3b3sxSE5FdKxVH6e+MwUbDy9X22eJlq5eeORkBGws7LRyXgvZ6fhs4ilahM6aaYmnT+lbNj12h4tkri6I+aw+j+QLp2ShPuPbqPR1KmxTsarxsQA49YYYBARaTYzIHtc5BUVqOuy8ZejjR0y8nLUDEB5LsQ97fqp8lFdk23eJYFS3u0LOXG72Dqo8Wddy3eQ5ZT+LTphVGAP1Y5dl3IK8lSSqcyqlJP9WmQG6GpuZsVtgY19VX6M9OjQJQYY1WCAQUSkGdnRVZpaSTln5aREO0sbdPNpg0EtQrTeAvtOyLt9Wd7Zcf6wKrstJ8FEOw9/teSjqyWGqshp+OTlWGw8s091bq18UpaEUNm4rKNXgF5UizDAqAYDDCKi2pFlETlhZxfkwd7KRpWIansvEG2S01tqbqY6JLlSWqHre0fl7IJcJGelyTQL3Oyc9C6R02D2IiEiIsMhuReyg6uhkHf8ks9QntNgCOytbOHvWnVyqqHR39CTiIiIDBYDDCIiItI6BhhERESkdQwwiIiISOsYYBAREZHWMcAgIiIirWOAQURERFpncn0wyvuKSbMQIiIiqrnyc2dNenSaXICRmVnW293Hx0fXQyEiIjLYc6l09KyOybUKLykpQXx8PBwcHLTW110iOglY4uLi2H78Bnxuqsbn5db43FSNz8ut8bmpv+dFQgYJLpo0aQIzs+qzLExuBkOeEG9v7zp5bPkP5Iu7anxuqsbn5db43FSNz8ut8bmpn+fldjMX5ZjkSURERFrHAIOIiIi0jgGGFlhbW2POnDnqI12Pz03V+LzcGp+bqvF5uTU+N/r5vJhckicRERHVPc5gEBERkdYxwCAiIiKtY4BBREREWscAg4iIiLSOAYYWzJ8/H35+frCxsUFoaCj27t0LU/fGG2+oTqmVj8DAQJia7du3Y9SoUarrnTwHy5Ytu+7zkmM9e/ZseHl5wdbWFoMGDcLp06dhCm733EyZMuWm19DQoUNhzObOnYuuXbuqTsPu7u4YO3YsTp06dd198vLyMH36dDRq1AgNGzbEhAkTkJSUBGNXk+emX79+N71mnnzySRizzz//HO3bt69ophUWFoa1a9fqxeuFAcYdWrhwIWbMmKFKgaKiotChQwcMGTIEycnJMHVt27ZFQkJCxbFz506YmuzsbPWakCC0KvPmzcPHH3+ML774Anv27IG9vb16/cgfBVN/boQEFJVfQ7///juM2bZt29TJICIiAhs3bkRhYSEGDx6snqtyzz//PFauXInFixer+8vWB+PHj4exq8lzIx5//PHrXjPyO2bMvL298e677yIyMhL79+/HgAEDMGbMGBw7dkz3rxcpU6Xa69atW+n06dMrrhcXF5c2adKkdO7cuaWmbM6cOaUdOnTQ9TD0ivy6LV26tOJ6SUlJqaenZ+n7779fcVtaWlqptbV16e+//15qys+NePjhh0vHjBlTasqSk5PVc7Nt27aK14elpWXp4sWLK+5z4sQJdZ/w8PBSU35uRN++fUufffbZUlPn4uJS+s033+j89cIZjDtQUFCgokaZ1q6814lcDw8Ph6mTqX6Z/m7evDkeeOABxMbG6npIeuX8+fNITEy87vUjPf5lmY2vnzJbt25V0+GtW7fGtGnTcOXKFZiS9PR09dHV1VV9lL838s698mtGlh59fX1N7jVz43NT7tdff4WbmxvatWuHWbNmIScnB6aiuLgYCxYsULM6slSi69eLyW12pk0pKSnqP9TDw+O62+X6yZMnYcrkJPnDDz+oE4NMU7755pvo3bs3jh49qtZQCSq4EFW9fso/Z8pkeUSmcv39/XH27Fm88sorGDZsmPrDaG5uDlPY+fm5555Dz5491clSyOvCysoKzs7OJv2aqeq5Effffz+aNWum3tgcPnwYL7/8ssrTWLJkCYzZkSNHVEAhS6uSZ7F06VIEBQXh4MGDOn29MMCgOiEngnKSgCQBh/ziL1q0CI8++qhOx0aG4b777qu4HBwcrF5HLVq0ULMaAwcOhLGTfAMJyE0xd6m2z80TTzxx3WtGkqfltSIBqrx2jFXr1q1VMCGzOn/88QcefvhhlW+ha1wiuQMyDSfvpG7MyJXrnp6eOhuXPpIIulWrVjhz5oyuh6I3yl8jfP3UjCy1ye+cKbyGnn76aaxatQpbtmxRSXzl5HUhS7NpaWkm+5q51XNTFXljI4z9NWNlZYWAgACEhISoahtJnv6///s/nb9eGGDc4X+q/Idu2rTpuqk7uS7TVfS3rKws9S5C3lFQGZn6l1/yyq+fjIwMVU3C18/NLl68qHIwjPk1JPmucgKVKe7Nmzer10hl8vfG0tLyuteMLAFIfpOxv2Zu99xURd7VC2N+zVRFzkP5+fm6f73UeRqpkVuwYIHK+v/hhx9Kjx8/XvrEE0+UOjs7lyYmJpaashdeeKF069atpefPny/dtWtX6aBBg0rd3NxU5rcpyczMLD1w4IA65Nftww8/VJcvXLigPv/uu++q18vy5ctLDx8+rKom/P39S3Nzc0tN+bmRz7344osq011eQ3/99Vdp586dS1u2bFmal5dXaqymTZtW6uTkpH53EhISKo6cnJyK+zz55JOlvr6+pZs3by7dv39/aVhYmDqM3e2emzNnzpS+9dZb6jmR14z8TjVv3ry0T58+pcZs5syZqpJGfmb5GyLXGzRoULphwwadv14YYGjBJ598ov4DraysVNlqREREqambOHFiqZeXl3pOmjZtqq7LHwBTs2XLFnXyvPGQEszyUtXXX3+91MPDQwWqAwcOLD116lSpqT83ctIYPHhwaePGjVWZXbNmzUoff/xxow/cq3o+5Pj+++8r7iPB51NPPaVKEe3s7ErHjRunTrTG7nbPTWxsrAomXF1d1e9SQEBA6b/+9a/S9PT0UmP2yCOPqN8P+Vsrvy/yN6Q8uND164XbtRMREZHWMQeDiIiItI4BBhEREWkdAwwiIiLSOgYYREREpHUMMIiIiEjrGGAQERGR1jHAICIiIq1jgEFE9W7KlCkYO3asrodBRHWIu6kSkVY1aNCg2s/PmTNHbcTEHn9Exo0BBhFpVUJCQsXlhQsXYvbs2WqDpXINGzZUBxEZNy6REJFWyQ6x5YeTk5Oa0ah8mwQXNy6R9OvXD8888wyee+45uLi4wMPDA19//TWys7MxdepUODg4qO2o165de933Onr0KIYNG6YeU75m8uTJSElJ0cFPTUQ3YoBBRHrhxx9/hJubG/bu3auCjWnTpuGee+5Bjx49EBUVhcGDB6sAIicnR90/LS0NAwYMQKdOnbB//36sW7cOSUlJuPfee3X9oxARAwwi0hcdOnTAa6+9hpYtW2LWrFmwsbFRAcfjjz+ubpOllitXruDw4cPq/p9++qkKLt555x0EBgaqy9999x22bNmC6OhoXf84RCaPORhEpBfat29fcdnc3ByNGjVCcHBwxW2yBCKSk5PVx0OHDqlgoqp8jrNnz6JVq1b1Mm4iqhoDDCLSC5aWltddl9yNyreVV6eUlJSoj1lZWRg1ahTee++9mx7Ly8urzsdLRNVjgEFEBqlz5874888/4efnBwsL/ikj0jfMwSAigzR9+nRcvXoVkyZNwr59+9SyyPr161XVSXFxsa6HR2TyGGAQkUFq0qQJdu3apYIJqTCRfA0pc3V2doaZGf+0Eelag1K20yMiIiItY5hPREREWscAg4iIiLSOAQYRERFpHQMMIiIi0joGGERERKR1DDCIiIhI6xhgEBERkdYxwCAiIiKtY4BBREREWscAg4iIiLSOAQYRERFpHQMMIiIigrb9P7bRxIePSVqzAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] }, "metadata": {}, "output_type": "display_data" @@ -176,7 +191,7 @@ }, { "cell_type": "code", - "execution_count": 26, + "execution_count": 8, "metadata": { "ExecuteTime": { "end_time": "2024-10-23T03:09:25.578842Z", @@ -184,10 +199,23 @@ } }, "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Using categorical units to plot a list of strings that are all parsable as floats or dates. If these strings should be plotted as numbers, cast to the appropriate data type before plotting.\n", + "Using categorical units to plot a list of strings that are all parsable as floats or dates. If these strings should be plotted as numbers, cast to the appropriate data type before plotting.\n", + "Using categorical units to plot a list of strings that are all parsable as floats or dates. If these strings should be plotted as numbers, cast to the appropriate data type before plotting.\n", + "Using categorical units to plot a list of strings that are all parsable as floats or dates. If these strings should be plotted as numbers, cast to the appropriate data type before plotting.\n", + "Using categorical units to plot a list of strings that are all parsable as floats or dates. If these strings should be plotted as numbers, cast to the appropriate data type before plotting.\n" + ] + }, { "data": { - "text/plain": "
", - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAdAAAAL0CAYAAAC8iGa9AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAABUiElEQVR4nO3deXRU9f3/8ddksgoESAKBgCKNCCTEgARBDS5ssqiECFpc0KpFK4G2FsUEhLAIBAR/IihVi5VFsawqmwtq/SqKECUEIymbiqAQNlkSEjIzvz9opsSwJDf3zgyT5+Mcz8nc7fO+Hy/3NZ87d+7YXC6XSwAAoEoCvF0AAAAXIwIUAAADCFAAAAwgQAEAMIAABQDAAAIUAAADCFAAAAwgQAEAMCDQ2wX4CqfTqdLSUgUEBMhms3m7HACAF7hcLjmdTgUGBiog4PxjTAL0v0pLS5Wbm+vtMgAAPiAhIUHBwcHnXYYA/a+ydxoJCQmy2+1ersY8DodDubm5frdfvow+9zz63PP8tc/L9utCo0+JAHUru2xrt9v96mAo46/75cvoc8+jzz3PX/u8Mh/lcRMRAAAGEKAAABhAgAIAYAABWgOEhYV5uwQA8DsEqMmcLqe3SyjHbrcrLi7OJz/k97W+AoCq4C5ckwXYAjT36zX65fghb5fi0xrVjtCgq3t6uwwAMIwAtcAvxw/pp18LvF0GAMBCXMIFAMAAAhQAAAMIUAAADCBAAQAwgAAFAMAAAhQAAAMIUACAITX9KWcEKABcBHztyV2++pQzT/YTD1IAgIsATzm7ME8/4YwABYCLBE858y1cwgUAwAACFAAAAwhQAAAMIEABADCAAAUAwAACFAAAAwhQAAAMIEABADCAAAUAwAACFAAAAwhQAAAMIEABADCAAAUAwAACFAAAAwhQAAAM8OkALS4uVkZGhpKSkpScnKw5c+ZccJ2ffvpJ7dq10/r16z1QIQCgpvLpH9SeMmWKtmzZotdff1179+7ViBEjFBMTo549z/2L45mZmSosLPRglQCAmshnA7SwsFCLFi3SK6+8ovj4eMXHx2vbtm1asGDBOQP0nXfe0YkTJzxcKQCgJvLZS7hbt25VaWmp2rVr557Wvn175eTkyOl0Vlj+8OHDmjp1qsaNG+fJMgEANZTPjkALCgpUv359BQcHu6dFRUWpuLhYR44cUURERLnlJ0+erH79+qlFixbVatfhcFRrfbvdXq31a5rq9rcvKtsnf9w3X1UT+pxzS+VV5zioyro+G6BFRUXlwlOS+3VJSUm56evWrVN2drZWrFhR7XZzc3MNrxsWFqa4uLhq11CT5Ofnq6ioyNtlWKI6xxKM8dc+59xSNZ46r/hsgIaEhFQIyrLXoaGh7mknT57U6NGjNWbMmHLTjUpISOCdnge1bNnS2yWYzuFwKDc3l2PJg+hznKk655WyY6kyfDZAo6OjdfjwYZWWliow8HSZBQUFCg0NVXh4uHu5zZs3a/fu3Ro2bFi59f/4xz8qJSWlyp+J2u12/gF6kD/3NceS59HnkDx3XvHZAG3durUCAwO1adMmJSUlSZKys7OVkJCggID/3ft01VVX6f333y+3bo8ePTRhwgRdf/31Hq0ZAFBz+GyAhoWFKSUlRZmZmZo4caL279+vOXPmaNKkSZJOj0br1Kmj0NBQNWvWrML60dHRioyM9HTZAIAawme/xiJJ6enpio+P1/3336+xY8dq6NCh6tGjhyQpOTlZq1at8nKFAICaypIR6M0336w+ffqod+/e1bpzLCwsTFlZWcrKyqowLz8//5zrnW8eAABmsGQE+tRTT2nPnj2655571LNnT82YMUM7duywoikAALzCkhHoLbfcoltuuUUnT57Uxx9/rPfff1933323oqOjdeutt6p3795q2rSpFU0DAOARln4GGhoaqltuuUV33nmnbr31Vv3www/65z//qVtvvVUPPvigdu3aZWXzAABYxpIAdTqdWrdunUaPHq3k5GT95S9/UXFxsWbPnq3PPvtMn332merXr68//elPVjQPAIDlLLmEe+2116qkpEQ33XSTxo0bpxtuuKHcY/lq166t7t27Kycnx4rmAQCwnCUBOmrUKHXt2lWXXHJJhXmHDh1SRESEevbsed7f9QQAwJdZcgn3ySef1MmTJytM37Nnj7p27WpFkwAAeJRpI9Dly5dr6dKlkiSXy6UhQ4YoKCio3DL79+9XgwYNzGoSAACvMS1Au3fvrp9++kmS9NVXX6lt27aqVatWuWUuueQSde/e3awmAQDwGtMCtFatWkpLS5MkNWnSRH369Knwe54AAPgLUy/h9u7dW8HBwbLZbOd9Tm1KSopZzQIA4BWmBeiMGTN04403Kjg4WDNmzDjncjabjQAFAFz0TAvQjz766Kx/AwDgj0wL0A0bNlRqOZvN5v6BbAAALlamBeh9991XqeVsNpu+++47s5oFAMArTAvQrVu3mrUpAAB8nmkBunfvXjVu3Fg2m0179+4977IxMTFmNQsAgFeYFqBdunTR559/rsjISHXp0kU2m00ul8s9v+w1l3ABAP7AtABdu3atIiIi3H8DAODPTAvQJk2aVPh7165d2rFjh4KCgvS73/1Ol156qVnNAQDgVZb8nNnPP/+sJ598Uhs2bFDdunXlcrl07NgxdenSRc8884zq1atnRbMAAHiMJT9nNmrUKNntdq1du1br16/XV199pdWrV+vw4cMaPXq0FU0CAOBRloxAN2zYoKVLl5a7rHv55Zdr9OjR+v3vf29FkwAAeJQlI9DY2Fj95z//qTB99+7d5UIVAICLlam/xlKmU6dOGjlypPLy8pSQkCC73a78/Hz985//1B/+8AezmgQAwGtM/TWWM9WvX1+rVq0q97NmderU0ZIlS/TYY4+Z1SwAAF5hya+xAADg7yy5iUiSDh06pF27dsnpdEqSXC6XSkpKlJeXp8GDB1vVLAAAHmFJgP7rX//SuHHjVFpaWu6RfjabTVdddRUBCgC46FlyF+7s2bP16KOPavPmzYqMjNTHH3+sFStWqHXr1urevbsVTQIA4FGWBOj+/fuVkpKi4OBgxcfHa9OmTbriiiuUkZGhRYsWWdEkAAAeZUmARkRE6NChQ5Kk3/3ud+5fX4mOjta+ffusaBIAAI+yJEB79eqlESNG6Ouvv1bnzp21dOlSvffee5o1a5aaNWtmRZMAAHiUJTcRDR8+XHXq1NHhw4fVtWtX3XHHHRozZozq1aunSZMmWdEkAAAeZUmABgUFKS0tzf36r3/9q/76179a0RQAAF5h2fdAN2zYoIULF7p/DzQ2Nlb333+/WrdubVWTAAB4jCWfgc6fP18PPviggoOD1b9/f912220qLS3VnXfeqZUrV1rRJAAAHmXJCPSVV17R+PHjlZKSUm56UlKSpk+frj59+ljRLAAAHmPJCPT48eNKSEioMD0pKcn99RYAAC5mlgTovffeq6lTp+ro0aPuacXFxZo5c6buvPNOK5oEAMCjTLuE26VLF9lsNkmnHxy/d+9e3XDDDbr00ksVEBCgH3/8UcXFxdxEBADwC6YF6NChQ83aFAAAPs+0AO3Xr1+FaUVFRfrhhx/kdDp12WWXqXbt2mY1BwCAV1nyGeipU6c0ceJEdejQQf369VNqaqo6deqk9PR0lZSUVHo7xcXFysjIUFJSkpKTkzVnzpxzLvvJJ5+ob9++ateunW677TatXbvWjF0BAOCsLAnQrKwsffzxx3rppZe0YcMGffXVV5o1a5Y2btyo5557rtLbmTJlirZs2aLXX39dY8aM0cyZM7VmzZoKy23dulVpaWm64447tHz5cv3+97/Xn//8Z23dutXM3QIAwM2S74GuWLFCzz//vDp27OieduONNyokJETDhw/XiBEjLriNwsJCLVq0SK+88ori4+MVHx+vbdu2acGCBerZs2eF9jp16qRBgwZJkpo1a6aPPvpIq1evVqtWrczdOQAAZFGAulwuRUZGVpgeERGhEydOVGobW7duVWlpqdq1a+ee1r59e82ePVtOp1MBAf8bPPfr10+nTp2qsI1jx44ZqB4AgAuzJEA7deqkZ599Vs8++6z7xqGjR49q+vTp5Ual51NQUKD69esrODjYPS0qKkrFxcU6cuSIIiIi3NNjY2PLrbtt2zZ98cUX+v3vf1/l2h0OR5XXOZPdbq/W+jVNdfvbF5Xtkz/um6+qCX3OuaXyqnMcVGVdSwI0IyNDgwYNUufOndW8eXNJ0q5du3TppZfqpZdeqtQ2ioqKyoWnJPfr892IdOjQIQ0dOlRXX321unbtWuXac3Nzq7xOmbCwMMXFxRlevybKz89XUVGRt8uwRHWOJRjjr33OuaVqPHVesSRA69SpoxUrVujTTz/Vzp07FRISoubNm+v6668vd+n1fEJCQioEZdnr0NDQs65z4MAB/eEPf5DL5dKMGTMq3daZEhISeKfnQS1btvR2CaZzOBzKzc3lWPIg+hxnqs55pexYqgxLAvTWW2/VzJkz1bVrV0OjQEmKjo7W4cOHVVpaqsDA02UWFBQoNDRU4eHhFZbft2+f+yaiuXPnlrvEWxV2u51/gB7kz33NseR59Dkkz51XLPkaS0BAwFlv6qmK1q1bKzAwUJs2bXJPy87OVkJCQoWRZWFhoR5++GEFBARo/vz5io6OrlbbAABciCUj0Jtuukl/+MMfdPPNN6tJkyYVPstMS0u74DbCwsKUkpKizMxMTZw4Ufv379ecOXM0adIkSadHo3Xq1FFoaKj+/ve/68cff9S8efPc86TTl3rr1Klj8t4BAGBRgObn5ys+Pl779+/X/v37y80re+B8ZaSnpyszM1P333+/ateuraFDh6pHjx6SpOTkZE2aNEmpqal67733dPLkSQ0YMKDc+v369dPkyZOrv0MAAPyGqQH69ttv64MPPlBUVJS6du2qW2+9tVrbCwsLU1ZWlrKysirMy8/Pd/99tqcTAQBgJdM+A3399deVkZGhkydPqqioSOnp6Zo+fbpZmwcAwKeYNgJduHChnnnmGaWkpEiS3n//faWnp+uvf/1rlS7bAgBwMTBtBLp7925de+217tddunRRUVFRhc9AAQDwB6YF6Jnf15SkwMDAsz4MAQAAf2DJ90ABAPB3pt6Fu3r1avfD4yXJ6XTqgw8+qPBUoLLPSQEAuFiZFqAxMTGaM2dOuWmRkZGaP39+uWk2m40ABQBc9EwL0I8++sisTQEA4PP4DBQAAAMIUAAADCBAAQAwgAAFAMAAAhQAAAMIUAAADCBAAQAwgAAFAMAAAhQAAAMIUAAADCBAAQAwgAAFAMAAAhQAAAMIUAAADCBAAQAwgAAFAMAAAhQAAAMIUAAADCBAAQAwgAAFAMAAAhQAAAMIUAAADCBAAQAwgAAFAMAAAhQAAAMIUAAADCBAAQAwgAAFAMAAAhQAAAMIUAAADCBAAQAwgAAFAMAAAhQAAAMIUAAADCBAAQAwwKcDtLi4WBkZGUpKSlJycrLmzJlzzmXz8vI0YMAAJSYm6o477tCWLVs8WCkAoKbx6QCdMmWKtmzZotdff11jxozRzJkztWbNmgrLFRYWavDgwUpKStLSpUvVrl07PfLIIyosLPRC1QCAmsBnA7SwsFCLFi3SyJEjFR8fr+7du+vhhx/WggULKiy7atUqhYSE6Mknn1RsbKxGjhypWrVqnTVsAQAwg88G6NatW1VaWqp27dq5p7Vv3145OTlyOp3lls3JyVH79u1ls9kkSTabTVdffbU2bdrkyZIBADVIoLcLOJeCggLVr19fwcHB7mlRUVEqLi7WkSNHFBERUW7ZK664otz6kZGR2rZtW6Xbc7lckqSSkhLZ7XbDddvtdsXUipTdd9+b+IToWvXlcDjkcDi8XYrpnE6nQkNDderUKb/cP19UE/qcc8uFmXFeKVu3LBPOx2cDtKioqFx4SnK/LikpqdSyv13ufMpGtXl5eUbKLae1otS6VlS1t+Pv/P0KwbfffuvtEmocf+9zzi0XZtZ55bdXOs/GZwM0JCSkQgCWvQ4NDa3Usr9d7nwCAwOVkJCggIAA96VgAEDN4nK55HQ6FRh44Xj02QCNjo7W4cOHVVpa6t6RgoIChYaGKjw8vMKyBw4cKDftwIEDatiwYaXbCwgIqDCKBQDgXHz2Ynrr1q0VGBhYbjienZ3tHiWeKTExUd988437mrXL5dLXX3+txMRET5YMAKhBfDZAw8LClJKSoszMTG3evFkffvih5syZo0GDBkk6PRo9efKkJKlnz546evSonnnmGW3fvl3PPPOMioqK1KtXL2/uAgDAj9lclbnVyEuKioqUmZmp999/X7Vr19ZDDz2kBx54QJLUsmVLTZo0SampqZKkzZs3a8yYMdqxY4datmypsWPHKi4uzovVAwD8mU8HKAAAvspnL+ECAODLCFAAAAwgQAEAMIAABQDAAAIUAAADCFAAAAwgQAEAMIAABQDAAAIUAAADCFAAAAwgQAEAMIAABQDAAAIUAAADCFAAAAwgQAEAMIAABQDAAAIUAAADCFAAAAwgQAEAMIAABQDAAAIUAAADCFAAAAwgQAEAMCDQ2wX4CqfTqdLSUgUEBMhms3m7HACAF7hcLjmdTgUGBiog4PxjTAL0v0pLS5Wbm+vtMgAAPiAhIUHBwcHnXYYA/a+ydxoJCQmy2+1ersY8DodDubm5frdfvow+9zz63PP8tc/L9utCo0+JAHUru2xrt9v96mAo46/75cvoc8+jzz3PX/u8Mh/lcRMRAAAGEKAAABhAgAIAYAABCgAwJCwszNsleBUBCgAXAYfT6e0SyrHb7YqLi/O5G4g82U/chVsD1PR3iYA/sAcEaNIHq/XjoUPeLsVnXRYRofTuvTzWHgFqMofTKXslvj/kKWXvEn2Rr/UV4Ot+PHRI2w8UeLsM/BcBajLeJVaOp98pAoDZCFAL8C4RAPwf188AADCAAAUAwAACFAAAAwhQAAAMIEABADCAAAUAwAACFAAAAwhQAAAMIEABADCAAAUAwAACFAAAAwhQAAAMIEABADCAAAUAwAACFAAAAwhQAAAMIEABADCAAAUAwAACFAAAA3w2QAcPHqynnnrK/TovL08DBgxQYmKi7rjjDm3ZsqXc8itWrFC3bt2UmJioIUOG6NChQ54uGQBQg/hkgK5cuVL//ve/3a8LCws1ePBgJSUlaenSpWrXrp0eeeQRFRYWSpI2b96skSNHKi0tTW+99ZaOHj2q9PR0b5UPAKgBfC5Ajxw5oilTpighIcE9bdWqVQoJCdGTTz6p2NhYjRw5UrVq1dKaNWskSfPnz1evXr2UkpKiVq1aacqUKfr3v/+t3bt3e2s3AAB+zucCNCsrS3379tUVV1zhnpaTk6P27dvLZrNJkmw2m66++mpt2rTJPT8pKcm9fOPGjRUTE6OcnByP1g4AqDkCvV3Amb744gtt3LhR7777rjIzM93TCwoKygWqJEVGRmrbtm2SpP3796thw4YV5v/yyy9VrsHhcFS98DPY7fZqrV/TVLe/fVHZPvnjvvmqmtDnnFsqrzrHQVXW9ZkALS4u1pgxYzR69GiFhoaWm1dUVKTg4OBy04KDg1VSUiJJOnny5HnnV0Vubm6V1ykTFhamuLg4w+vXRPn5+SoqKvJ2GZaozrEEY/y1zzm3VI2nzis+E6AzZ85UmzZt1Llz5wrzQkJCKoRhSUmJO2jPNT8sLKzKdSQkJPBOz4Natmzp7RJM53A4lJuby7HkQfQ5zlSd80rZsVQZPhOgK1eu1IEDB9SuXTtJcgfie++9p1tvvVUHDhwot/yBAwfcl22jo6PPOr9BgwZVrsNut/MP0IP8ua85ljyPPofkufOKzwTovHnzVFpa6n797LPPSpKGDx+uDRs26JVXXpHL5ZLNZpPL5dLXX3+tRx99VJKUmJio7OxspaamSpJ+/vln/fzzz0pMTPT8jgAAagSfCdAmTZqUe12rVi1JUrNmzRQZGalp06bpmWee0e9//3stXLhQRUVF6tWrlyRp4MCBuu+++9S2bVslJCTomWee0U033aRLL73U4/sBAKgZfO5rLGdTu3Zt/f3vf3ePMnNycvTyyy/rkksukSS1a9dO48aN06xZszRw4EDVrVtXkyZN8nLVAAB/5jMj0N+aPHlyuddXXXWVli1bds7lU1NT3ZdwAQCw2kUxAgUAwNcQoAAAGECAAgBgAAEKAIABBCgAAAYQoAAAGECAAgBgAAEKAIABBCgAAAYQoAAAGECAAgBgAAEKAIABBCgAAAYQoAAAGECAAgBggOUBeujQIaubAADA40wJ0NatW581KPfs2aOuXbua0QQAAD4l0OiKy5cv19KlSyVJLpdLQ4YMUVBQULll9u/frwYNGlSvQgAAfJDhAO3evbt++uknSdJXX32ltm3bqlatWuWWueSSS9S9e/fqVQgAgA8yHKC1atVSWlqaJKlJkybq3bu3QkJCTCsMAABfZjhAz9SvXz/98MMP2rJli06dOlVhfkpKihnNAADgM0wJ0FdffVXPPvus6tatW+Eyrs1mI0ABAH7HlACdM2eOnnjiCT300ENmbA4AAJ9nytdYiouL1aNHDzM2BQDARcGUAL3tttv0xhtvyOVymbE5AAB8nimXcI8fP67FixdrxYoVatq0aYXvg86dO9eMZgAA8BmmBOjll1+uRx991IxNAQBwUTAlQMu+DwoAQE1hSoCmp6efd/6kSZPMaAYAAJ9hya+xlJaWateuXVq1apUiIiKsaAIAAK8yZQR6rhHmq6++qv/85z9mNAEAgE+x9PdAe/bsqQ8++MDKJgAA8ArLArSwsFD/+te/VL9+fauaAADAa0y5hNuqVSvZbLYK00NCQjRhwgQzmgAAwKeYEqC/fVCCzWZTUFCQrrjiCtWuXduMJgAA8CmmBOg111wjSfr++++1Y8cOOZ1ONW/enPAEAPgtUwL06NGjSk9P19q1a1W3bl05HA6dOHFCHTp00KxZs1SnTh0zmgEAwGeYchPRhAkT9Msvv2jVqlVav369Nm7cqHfffVeFhYU8RAEA4JdMCdCPPvpImZmZ+t3vfueedsUVV2j06NFau3atGU0AAOBTTAnQkJAQBQRU3JTNZpPD4TCjCQAAfIopAdqlSxeNHTtWP/74o3va999/rwkTJujGG280owkAAHyKKTcRPfHEExoyZIhuueUWhYeHS5J+/fVX3XDDDXr66afNaAIAAJ9S7QD94YcfFBMTo3nz5ik/P187duxQSEiILr/8csXGxppRIwAAPsfwJVyXy6UJEyaoV69e+uabbyRJLVu2VO/evbVkyRLdeuutmjx5slwul2nFAgDgKwwH6Ny5c7Vq1SrNmjXL/SCFMi+++KJmzZqlZcuW6c0336x2kQAA+BrDAfqvf/1LTz/9tG6++eazzu/SpYuGDx9epQDdt2+fhg0bpmuuuUadO3fWpEmTVFxcLEnavXu3HnjgAbVt21a9e/fWZ599Vm7ddevW6dZbb1ViYqIGDRqk3bt3G901AAAuyHCA7tmzR1ddddV5l+nUqVOlg8zlcmnYsGEqKirSggUL9Nxzz+njjz/W//t//08ul0tDhgxRVFSUlixZor59+yotLU179+6VJO3du1dDhgxRamqqFi9erIiICD322GNcPgYAWMbwTUSRkZHas2ePmjRpcs5lfvnlF9WrV69S29u5c6c2bdqkzz//XFFRUZKkYcOGKSsrSzfccIN2796thQsX6pJLLlFsbKy++OILLVmyREOHDtWiRYvUpk0bPfjgg5JO/8D39ddfr6+++kodO3Y0uosAAJyT4RFo9+7d9cILL+jUqVNnnV9aWqqZM2cqOTm5Uttr0KCBXn31VXd4ljl+/LhycnIUFxenSy65xD29ffv22rRpkyQpJydHSUlJ7nlhYWGKj493zwcAwGyGR6CPPfaY+vfvr9TUVN13331q06aN6tSpo19//VXffvut5s+frxMnTmjKlCmV2l54eLg6d+7sfu10OjV//nx16tRJBQUFatiwYbnlIyMj9csvv0jSBedXRXWfnGS326u1fk3jj0+qKtsnf9w3X1UT+pxzS+VV5zioyrqGAzQ8PFz/+te/9Oyzz2ry5MkqKiqSdPqzzDp16qh3794aOnRohRFlZU2dOlV5eXlavHix/vnPfyo4OLjc/ODgYJWUlEiSioqKzju/KnJzcw3VK50e+cbFxRlevybKz893Hzv+pjrHEozx1z7n3FI1njqvVOtBCvXq1dOECRM0evRo7d69W0ePHlW9evV02WWXVevd0tSpU/X666/rueee05VXXqmQkBAdOXKk3DIlJSUKDQ2VdPpZvL8Ny5KSEvdTkaoiISGBd3oe1LJlS2+XYDqHw6Hc3FyOJQ+iz3Gm6pxXyo6lyjDlUX7BwcGmPXVo/PjxevPNNzV16lTdcsstkqTo6Ght37693HIHDhxwX7aNjo7WgQMHKsxv3bp1ldu32+38A/Qgf+5rjiXPo88hee68YsrD5M0yc+ZMLVy4UNOnT1efPn3c0xMTE/Xtt9/q5MmT7mnZ2dlKTEx0z8/OznbPKyoqUl5enns+AABm85kA3bFjh1588UX98Y9/VPv27VVQUOD+75prrlHjxo2Vnp6ubdu26eWXX9bmzZvVv39/SdIdd9yhr7/+Wi+//LK2bdum9PR0NW3alK+wAAAs4zMBunbtWjkcDr300ktKTk4u95/dbteLL76ogoICpaam6p133tGsWbMUExMjSWratKleeOEFLVmyRP3799eRI0c0a9Ys2Ww2L+8VAMBfmfIZqBkGDx6swYMHn3N+s2bNNH/+/HPOv/HGG/ntUQCAx/jMCBQAgIsJAQoAgAEEKAAABhCgAAAYQIACAGAAAQoAgAEEKAAABhCgAAAYQIACAGAAAQoAgAEEKAAABhCgAAAYQIACAGAAAQoAgAEEKAAABhCgAAAYQIACAGAAAQoAgAEEKAAABhCgAAAYQIACAGAAAQoAgAEEKAAABhCgAAAYQIACAGAAAQoAgAEEKAAABhCgAAAYQIACAGAAAQoAgAEEKAAABhCgAAAYQIACAGAAAQoAgAEEKAAABhCgAAAYQIACAGAAAQoAgAEEKAAABhCgAAAYQIACAGAAAQoAgAEEKAAABhCgAAAYQIACAGCAXwVocXGxMjIylJSUpOTkZM2ZM8fbJQEA/FSgtwsw05QpU7Rlyxa9/vrr2rt3r0aMGKGYmBj17NnT26UBAPyM3wRoYWGhFi1apFdeeUXx8fGKj4/Xtm3btGDBAgIUAGA6v7mEu3XrVpWWlqpdu3buae3bt1dOTo6cTqcXKwMA+CO/GYEWFBSofv36Cg4Odk+LiopScXGxjhw5ooiIiPOu73K5JEklJSWy2+2G67Db7WoeEakgm9+8N7FE0/r15XA45HA4vF2K6ZxOp0JDQ3Xq1Cm/3D9fVBP6nHPLhZlxXilbtywTzsdvArSoqKhceEpyvy4pKbng+mWj1Ly8vGrX0jWigRTRoNrb8XebNm3ydgmW+vbbb71dQo3j733OueXCzDqvVObKpd8EaEhISIWgLHsdGhp6wfUDAwOVkJCggIAA2Ww2S2oEAPg2l8slp9OpwMALx6PfBGh0dLQOHz6s0tJS944XFBQoNDRU4eHhF1w/ICCgwggWAIBz8ZuL6a1bt1ZgYGC54Xt2drZ7VAkAgJn8JlnCwsKUkpKizMxMbd68WR9++KHmzJmjQYMGebs0AIAfsrkqc6vRRaKoqEiZmZl6//33Vbt2bT300EN64IEHvF0WAMAP+VWAAgDgKX5zCRcAAE8iQAEAMIAABQDAAAIUAAADCFAAAAwgQAEAMIAABQDAAAIUAAADCFAAAAwgQAEAMIAABQDAAAIUAAADCFAAAAwgQAEAMIAABQDAAAIUAAADCFAAAAwgQAEAMMCnA7S4uFgZGRlKSkpScnKy5syZc85l8/LyNGDAACUmJuqOO+7Qli1bPFgpAKCm8ekAnTJlirZs2aLXX39dY8aM0cyZM7VmzZoKyxUWFmrw4MFKSkrS0qVL1a5dOz3yyCMqLCz0QtUAgJrAZwO0sLBQixYt0siRIxUfH6/u3bvr4Ycf1oIFCyosu2rVKoWEhOjJJ59UbGysRo4cqVq1ap01bAEAMIPPBujWrVtVWlqqdu3auae1b99eOTk5cjqd5ZbNyclR+/btZbPZJEk2m01XX321Nm3a5MmSAQA1SKC3CziXgoIC1a9fX8HBwe5pUVFRKi4u1pEjRxQREVFu2SuuuKLc+pGRkdq2bVul23M6nSotLVVAQIA7iAEANYvL5ZLT6VRgYKACAs4/xvTZAC0qKioXnpLcr0tKSiq17G+XO5/S0lLl5uYarBYA4E8SEhIq5Mpv+WyAhoSEVAjAstehoaGVWva3y51P2TuNuLg42e12IyVLkux2uzIWv6edBYcMb6Mm+F2DCE3sf4scDoe3SzGd0+nUjh07FBsbe8F3sDBHTehzzi0XZsZ5xeFwKC8vr1LHkc8GaHR0tA4fPqzS0lIFBp4us6CgQKGhoQoPD6+w7IEDB8pNO3DggBo2bFjp9sou2wYHB1crQCVp6y8HlLd3f7W24e9KHE7Z7fZq97UvcjgcOnnypIKCgvxy/3xRTelzzi3nZ8Z5pSx8K/NRns++VWvdurUCAwPL3QiUnZ2thISECu8MEhMT9c0338jlckk6fQ3766+/VmJioidLBgDUID4boGFhYUpJSVFmZqY2b96sDz/8UHPmzNGgQYMknR6Nnjx5UpLUs2dPHT16VM8884y2b9+uZ555RkVFRerVq5c3dwEA4Md8NkAlKT09XfHx8br//vs1duxYDR06VD169JAkJScna9WqVZKk2rVr6+9//7uys7OVmpqqnJwcvfzyy7rkkku8WT4AwI/57Geg0ulRaFZWlrKysirMy8/PL/f6qquu0rJlyzxVGgCghvPpESgAAL6KAAUAwAACFAAAAwhQAAAMIEABADCAAAUAwAACFAAAAwhQAAAMIEABADCAAAUAwAACFAAAAwhQAAAMIEABADCAAAUAwAACFAAAAwhQAAAMIEABADCAAAUAwAACFAAAAwhQAAAMIEABADAgsKorHD9+XBs2bNC3336rQ4cOKSAgQFFRUYqLi1PHjh0VEhJiRZ0AAPiUSgfoDz/8oJdfflkrV65U3bp1dcUVV6hevXpyOp3avn275s6dq8LCQt1222168MEH1bx5cyvrBgDAqyoVoM8995w++OAD9evXT0uWLFFsbOxZl9u5c6dWrVqlRx55RD179tTjjz9uarEAAPiKSgVo06ZN9e6778put593ud/97ndKS0vTo48+qiVLlphSIAAAvqhSATpgwICqbTQwUHfddZehggAAuBhUKkBnzpxZ6Q2mpaUZLgYAgItFpQJ0/fr1ldqYzWarVjEAAFwsKhWg8+bNs7oOAAAuKlX+Hqgkfffdd9q2bZucTqckyeVyqaSkRHl5eRo7dqypBQIA4IuqHKAzZ87UzJkzFRUVpYMHDyo6OloHDhyQw+FQ9+7dragRAACfU+VH+b311lsaO3asPvvsMzVu3Fjz5s3TunXrdN111+myyy6zokYAAHxOlQP08OHD6ty5sySpdevW+uabbxQeHq6//vWvWrVqlekFAgDgi6ocoNHR0dq9e7ckKTY2Vnl5eZKk2rVr69ChQ+ZWBwCAj6ryZ6ADBgzQ448/rokTJ6pbt2564IEH1LBhQ61bt06tWrWyokYAAHxOlQP00UcfVaNGjRQWFqarrrpK6enpWrhwoerVq6eJEydaUSMAAD7H0NdYUlJS3H8PGDCgyo/6AwDgYmfoB7XfeecdpaamKikpSbt379bEiRP18ssvm10bAAA+q8oB+sYbb2jKlClKTU3VqVOnJEnx8fH6xz/+UaVn5gIAcDGrcoDOmzdPEyZM0L333quAgNOr9+3bV1OmTNGiRYtMLxAAAF9U5QDdu3fvWX9Q+9JLL9WRI0fMqAkAAJ9X5QBNTEzU8uXLy01zuVyaM2eOrrrqKrPqAgDAp1X5LtxRo0Zp8ODB+uSTT1RSUqKxY8fq+++/18mTJ/XKK69YUSMAAD6nygF65ZVX6r333tO7776rHTt2yOFwqGvXrrr99ttVq1YtK2oEAMDnVDlAU1NTNWnSJPXv39+KegAAuChU+TPQ/fv3y263W1ELAAAXjSqPQFNSUvTwww/r9ttvV5MmTRQSElJhvhlcLpemTZumxYsXy+l0qn///ho+fLj7qzO/tWnTJk2ePFn5+flq2LChHn74YZ6QBACwTJUDdNWqVQoICNCKFSsqzLPZbKYF6GuvvaYVK1Zo5syZKi0t1RNPPKHIyEg99NBDFZYtKCjQH//4Rw0cOFCTJ0/Wt99+q/T0dDVo0EA33XSTKfUAAHCmKgfoRx99ZEUdFcydO1fDhg1TUlKSJGn48OF6/vnnzxqgH374oaKiovT4449Lki6//HKtX79e7777LgEKALBEpT4Dff7553X8+PFKb/To0aN67rnnDBe1b98+/fzzz+rQoYN7Wvv27bVnzx7t37+/wvKdO3fWpEmTKkyvSs0AAFRFpUagjRs3Vt++fdW5c2d169ZNHTt2VFBQULllioqK9M0332jFihVat26dHn30UcNFFRQUSJIaNmzonhYVFSVJ+uWXX8pNl6SmTZuqadOm7tcHDx7UypUrNXTo0Cq37XA4jJTsxg1WVVPd/vZFZfvkj/vmq2pCn3NuqbzqHAdVWbdSAXrnnXeqR48eWrBggTIyMnTo0CE1bdpU9evXl9Pp1JEjR/TTTz+pQYMG6t+/v5YtW6b69eufd5snT57Uvn37zjqvsLBQkhQcHOyeVvZ3SUnJBbc7dOhQRUVF6a677qrM7pWTm5tb5XXKhIWFKS4uzvD6NVF+fr6Kioq8XYYlqnMswRh/7XPOLVXjqfNKpT8DrVevnoYMGaLHHntM+fn5ysvL06FDh2Sz2RQZGam4uDhdeeWVlW44JydHgwYNOuu8J554QtLpsCy7y7csOMPCws65zRMnTuixxx7T999/rzfeeOO8y55LQkIC7/Q8qGXLlt4uwXQOh0O5ubkcSx5En+NM1TmvlB1LlVHlm4hsNptatWqlVq1aVbmwM3Xs2FH5+flnnbdv3z5NnTpVBQUF7kuzZZd1GzRocNZ1jh8/rocfflg//vijXn/9dV1++eWG6rLb7fwD9CB/7muOJc+jzyF57rxi6Ae1rRYdHa2YmBhlZ2e7p2VnZysmJqbC55+S5HQ6lZaWpp9++knz5s1TixYtPFkuAKAGqvII1FMGDhyoZ599Vo0aNZIkTZs2TQ8++KB7/qFDhxQSEqJatWpp8eLFWr9+vV566SWFh4e7R6tBQUGqV6+eN8oHAPg5nw3Qhx56SAcPHlRaWprsdrv69++vBx54wD2/f//+6tevn4YOHar33ntPTqdTjzzySLltXHPNNZo3b56HKwcA1ATVCtBff/1VderUkc1mk81mM6smSaevYaenpys9Pf2s8898oMM//vEPU9sGAOBCqvwZqMvl0ksvvaSOHTvq2muv1Z49e/TEE09o9OjRF/yKCQAA/qLKATpr1iy98847mjx5svu7mf369dPnn3+uKVOmmF4gAAC+qMoBumzZMo0bN04333yz+7Lt9ddfr6ysLK1evdr0AgEA8EVVDtCDBw+e9ask4eHh7icIAQDg76ocoJ06dapw087x48c1ffp0dezY0bTCAADwZVUO0MzMTOXl5en6669XcXGxHnvsMd14443as2ePRo0aZUWNAAD4nCp/jaVRo0ZavHixvvjiC+3cuVOlpaVq3ry5kpOTFRDgkw82AgDAdIa/B3rttdfq2muvNbMWAAAuGpUK0FatWlX6QQnfffddtQoCAOBiUKkAnTt3rvvv3Nxcvfbaa3rssceUkJCgoKAg5eXlaebMmef8eTIAAPxNpQL0mmuucf89evRoZWVl6frrr3dPa9WqlZo0aaL09PRyz6sFAMBfVfmun/379ysyMrLC9LCwMB09etSUogAA8HVVDtCbbrpJGRkZ+vrrr1VYWKgTJ07oyy+/VEZGhnr16mVFjQAA+Jwq34U7btw4jRkzRvfdd5+cTqek07+ckpKSwvdAAQA1RpUDtHbt2po2bZrGjh2rXbt2SZKaN2+u2rVrm14cAAC+qsoBumHDhgrTzvzqSocOHapXEQAAF4EqB+h999131unBwcFq0KCB1q5dW+2iAADwdVUO0K1bt5Z77XA49OOPP2r8+PG67bbbTCsMAABfVu2H19rtdjVv3lxPPfWUnn/+eTNqAgDA55n29PeDBw/yPVAAQI1R5Uu46enpFaadOHFC69atU8+ePU0pCgAAX2f411jOVK9ePY0YMUJ9+/Y1Y3MAAPi8Kgdoamqq2rZtq6CgoHLTS0pK9Omnn6pbt26mFQcAgK+q8meggwYN0rFjxypM37Ztmx5//HFTigIAwNdVagT6xhtvaNy4cbLZbHK5XOV+ieVM1113nanFAQDgqyoVoHfffbdatGghp9Op+++/XzNmzFDdunXd8202m8LCwnTllVdaVigAAL6k0p+Blj2ib+3atYqJiZHNZrOsKAAAfF2lAjQ9PV0jR45U7dq1NXPmzPMuO2nSJFMKAwDAl5n2IAUAAGqSSo1AzxxVMsIEAKCSAXqhy7ZnSktLM1wMAAAXi0oF6Pr16yu1MW4sAgDUFJUK0Hnz5lldBwAAFxVDz8Jdt26d3nrrLe3cuVM2m00tW7bUPffco7Zt25pcHgAAvqnKd+EuWrRIgwcPVlhYmO666y7dcccdkk4/4u/99983vUAAAHxRlUegL730ksaOHesOzjIdOnTQtGnT1KNHD9OKAwDAV1V5BHrkyBElJiZWmJ6UlKT9+/ebUhQAAL6uygF6zz33KCsrS4cPH3ZPKyoq0uzZs3X33XebWhwAAL6qypdws7OztXnzZt1000267LLLFBQUpB9++EEnTpxQTEyM1qxZ41527dq1phYLAICvqHKADhgwQAMGDLCiFgAALhpVDtB+/fpZUQcAABeVKgfojh07NH36dO3cuVMlJSUV5nPZFgBQE1Q5QP/2t78pNDRUgwYNUmhoqBU1AQDg86ocoN9//72WLFmi2NhYK+oBAOCiUOWvsdxwww3Kzs62ohYAAC4aVR6BPvXUU+rXr5/effddNWnSpMIvsPB7oQCAmqDKI9Cnn35aAQEBioqKsvTny1wul5599ll16tRJ11xzjaZMmSKn03nB9Y4dO6bOnTtr6dKlltUGAECVR6AbN27Um2++qbi4OCvqcXvttde0YsUKzZw5U6WlpXriiScUGRmphx566LzrTZ06lUcKAgAsV+URaIsWLXT06FErailn7ty5GjZsmJKSktSpUycNHz5cCxYsOO86Gzdu1JdffqkGDRpYXh8AoGar8gh04MCBevLJJ5WamqqmTZsqMLD8JlJSUqpd1L59+/Tzzz+rQ4cO7mnt27fXnj17tH//fjVs2LDCOiUlJXr66ac1evRojR49uto1AABwPlUO0FmzZikwMFDvvPNOhXn79+83JUALCgokqVxQRkVFSZJ++eWXswbo7NmzFRcXp+Tk5Gq17XA4qrW+3W6v1vo1TXX72xeV7ZM/7puvqgl9zrml8qpzHFRl3SoH6EcffVTudXFxsT744AMtW7ZM+/btq/R2Tp48ec7lCwsLJUnBwcHuaWV/n+3pR9u3b9fChQvPGupVlZuba3jdsLAwyz8b9jf5+fkqKirydhmWqM6xBGP8tc85t1SNp84rVQ7QMtnZ2Vq+fLnWrFmj48ePKzY2VhkZGZVePycnR4MGDTrrvCeeeELS6bAMCQlx/y2dPpDO5HK5NGrUKA0bNsw9Sq2OhIQE3ul5UMuWLb1dgukcDodyc3M5ljyIPseZqnNeKTuWKqNKAbpnzx4tX75cb7/9tnbv3q3w8HAdP35c06ZNU+/evatUZMeOHZWfn3/Wefv27dPUqVNVUFCgpk2bSvrfZd3f3iC0d+9effPNN8rPz1dWVpak079POmbMGK1atUqvvvpqleqy2+38A/Qgf+5rjiXPo88hee68UqkAXbJkiZYvX66NGzeqYcOG6tKli3r06KEOHTooMTFRV155palFRUdHKyYmRtnZ2e4Azc7OVkxMTIXPP6Ojo/X++++Xm3bffffpvvvu0+23325qXQAAlKlUgI4cOVLNmjVTVlaWx0Jp4MCBevbZZ9WoUSNJ0rRp0/Tggw+65x86dEghISGqVauWmjVrVm7dwMBARUZGKjo62iO1AgBqnkp9D3TixIlq2rSp0tPTde211yo9PV1r165VcXGxZYU99NBD6t27t9LS0vTnP/9Zffv21QMPPOCe379/f82ZM8ey9gEAOJ9KjUBTU1OVmpqqQ4cOafXq1Vq1apXS0tIUGhoqp9Op9evXq1mzZgoKCjKtMLvdrvT0dKWnp591/m/vBq7sPAAAzFClJxFFRETonnvu0YIFC/Txxx9ryJAhat26tcaPH6/OnTvzIHkAQI1R5Uf5lWnUqJEefvhhLV26VGvWrNG9996r//u//zOzNgAAfJbhAD3T5ZdfrrS0NK1atcqMzQEA4PNMCVAAAGoaAhQAAAMIUAAADCBAAQAwgAAFAMAAAhQAAAMIUAAADCBAAQAwgAAFAMAAAhQAAAMIUAAADCBAAQAwgAAFAMAAAhQAAAMIUAAADAj0dgEAgMq5omGkt0vwaZ7uHwIUAC4CDqdT0wb28XYZPs/hdMoe4JmLqwSoBXiXeGH0EVA1ngqFynI4HMrPz1fLli1lt9u9XY6bJ/uJADUZ7xIrz5PvFAGYr6ioyNsleBVnL5P5WiA4HA7l5eXJ4XB4u5QKfK2vAKAqOIPVADX9XSIAWIEABQDAAAIUAAADCFAAAAzgLtz/crlckuSTN9tUR9n++Nt++TL63PPoc8/z1z4v25+yTDgfm6syS9UAJSUlys3N9XYZAAAfkJCQoODg4PMuQ4D+l9PpVGlpqQICAmSz2bxdDgDAC1wul5xOpwIDAxVwga/aEaAAABjATUQAABhAgAIAYAABCgCAAQQoAAAGEKAAABhAgAIAYAABCgCAAQQoAAAGEKAAABhAgAIAYAABCgCAAQQoAAAGEKAAABhAgAIAYAABCgCAAQQoAAAGEKAAABhAgAIAYAABCgCAAQQoAAAGEKAAABhAgAIAYAABCgCAAQQoAAAGEKAAABhAgAIAYECgtwvwFU6nU6WlpQoICJDNZvN2OQAAL3C5XHI6nQoMDFRAwPnHmATof5WWlio3N9fbZQAAfEBCQoKCg4PPuwwB+l9l7zQSEhJkt9u9XI15HA6HcnNz/W6/fBl97nn0uef5a5+X7deFRp8SAepWdtnWbrf71cFQxl/3y5fR555Hn3uev/Z5ZT7K4yYiAAAMIEABADCAAAUAwAACFAAAAwhQAAAMIEABADCAAAUAwAACFAAAAwhQAAAMIEABADCAAAUAwAACFAAAAwhQAAAMIEABADCAAAUAwAACFAAAAwhQAAAMIEABADCAAAUAwAC/CtB9+/Zp2LBhuuaaa9S5c2dNmjRJxcXF3i4LAOCHAr1dgFlcLpeGDRum8PBwLViwQL/++qsyMjIUEBCgESNGeLs8AICf8UiA/uc//1FeXp4OHjyogIAARUVFKS4uTrGxsaa1sXPnTm3atEmff/65oqKiJEnDhg1TVlYWAQoAMJ1lAfrrr79qwYIFeuutt3TgwAE1bdpU9evXl9Pp1OHDh7Vnzx41atRId955pwYOHKi6detWq70GDRro1VdfdYdnmePHj1druwAAnI0lAbpo0SL9/e9/V+fOnTV+/Hh16tRJwcHB5ZY5ceKEvvnmG61cuVJ9+/bVn/70J911112G2wwPD1fnzp3dr51Op+bPn69OnTpVaTsOh8NwDb6obH/8bb98GX3uefS55/lrn1dlfywJ0J9++knLli1TnTp1zrlMrVq1lJycrOTkZB0+fFivvfaaqTVMnTpVeXl5Wrx4cZXWy83NNbUOX+Gv++XL6HPPo889ryb3uc3lcrm8XYTZpk6dqtdee03PPfecbrnllkqt43A4tGnTJiUkJMhut1tcoec4HA7l5ub63X75Mvrc8+hzz/PXPi/br7Zt215wvyy/iWjmzJlnnW6z2RQUFKSGDRuqc+fOioyMNKW98ePH680339TUqVMrHZ5nstvtfnUwlPHX/fJl9Lnn0eeeV5P73PIA3bVrl1atWqVGjRqpTZs2crlc+u6777R37161bdtWx44d04QJE/Tqq6+qbdu21Wpr5syZWrhwoaZPn66ePXuaswMAAJyFR77G0r9/f2VmZrrfpTidTj3zzDMqLCzUpEmTNHv2bE2ePFkLFy403MaOHTv04osvavDgwWrfvr0KCgrc8xo0aFDtfQAA4EyWP4noo48+0oMPPlhuiB8QEKB7771Xa9askST16dNHW7durVY7a9eulcPh0EsvveS+OansPwAAzGb5CDQqKkobN25U8+bNy03Pzs5WvXr1JEkHDhxQ7dq1q9XO4MGDNXjw4GptAwCAyrI8QIcOHaqRI0cqOztbCQkJcrlc+vbbb7Vy5UqNHj1au3bt0ogRI9SnTx+rSwEAwDSWB+jtt9+umJgYvfnmm1q4cKHsdruuuOIKzZ07V23bttXmzZt177336p577rG6FAAATOORm4iSkpKUlJR01nlXXXWVrrrqKk+UAQCAaSwP0KKiIr311lvavn17uUcklZSUKC8vT6tXr7a6BAAATGf5XbijRo3Syy+/rKKiIr3zzjs6deqUtm/frpUrV/K5JwDgomX5CPTTTz/V888/r+uuu07btm3TAw88oDZt2mjy5Mnatm2b1c0DAGAJy0egxcXFuvzyyyVJLVq00JYtWyRJd911lzZu3Gh18wAAWMLyAI2NjdW6desknQ7Q7OxsSdKxY8dUXFxsdfMAAFjC8ku4aWlp+vOf/yyn06m+ffuqT58+evTRR5Wfn1/u9zsBALiYWB6gXbt21erVq+V0OtW4cWO98cYbevvtt3X11Vfrvvvus7p5AAAs4ZHvgV566aXuv1u1aqVWrVp5olkAACxjeYBu3LhREyZM0M6dO3Xq1KkK87/77jurSwAAwHSWB+jIkSPVokULPf744woNDbW6OQAAPMLyAN2/f79mz55d4ddYAAC4mFn+NZbbbrtNK1eutLoZAAA8yvIR6MMPP6z+/ftr6dKlatKkiWw2W7n5c+fOtboEAABMZ3mADh8+XBEREerWrRufgQIA/IblAZqfn6+lS5cqNjbW6qYAAPAYyz8Dbd++vXbs2GF1MwAAeJTlI9Dk5GRlZGTo/fff16WXXiq73V5uflpamtUlAABgOssD9OOPP1br1q21b98+7du3r9y8395QBADAxcLyAJ03b57VTQAA4HGWBOjy5cvVu3dvBQcHa/ny5eddNiUlxYoSAACwlCUBOmPGDN14440KDg7WjBkzzrmczWYjQAEAFyVLAvSjjz46698AAPgLS77G8vzzz+v48eOVXv7o0aN67rnnrCgFAABLWBKgjRo1Ut++fZWZmanPPvvsrD9jVlRUpHXr1ikjI0O33367GjdubEUpAABYwpJLuHfddZduueUWLViwQBkZGTp06JCaNm2q+vXry+l06siRI/rpp5/UoEED9e/fX8uWLVP9+vWtKAUAAEtY9jWWevXqaciQIXrssceUn5+vvLw8HTp0SDabTZGRkYqLi9OVV15pVfM4Q1hYmLdLAAC/Y/n3QG02m1q1aqVWrVpZ3ZRPcDidsgdY/oTESrPb7YqLi/N2GWfla30FoGpq+ptzywO0prEHBOivM5Zr+56D3i7Fp13RJFLPDUvxdhnARcPX3nD66ptzT/YTAWqB7XsO6ttdv3i7DAB+hDfnF+bpN+YEKABcJHhz7ls8ej3g119/ldPplMvl8mSzAACYzvIAdblceumll9SxY0dde+212rNnj5544gmNHj1aJSUlVjcPAIAlLA/QWbNm6Z133tHkyZMVHBwsSerXr58+//xzTZkyxermAQCwhOUBumzZMo0bN04333yz+/c/r7/+emVlZWn16tWmtlVcXKyMjAwlJSUpOTlZc+bMMXX7AACUsfwmooMHD6phw4YVpoeHh6uwsNDUtqZMmaItW7bo9ddf1969ezVixAjFxMSoZ8+eprYDAIDlI9BOnTrpH//4R7lpx48f1/Tp09WxY0fT2iksLNSiRYs0cuRIxcfHq3v37nr44Ye1YMEC09oAAKCM5QGamZmpvLw8XX/99SouLtZjjz2mG2+8UXv27NGoUaNMa2fr1q0qLS1Vu3bt3NPat2+vnJwcOZ1O09oBAEDywCXcRo0aafHixfriiy+0c+dOlZaWqnnz5kpOTlaAiU+LKCgoUP369d03KklSVFSUiouLdeTIEUVERFRqOw6Ho1p12O12XdEkslrbqAnK+qi6/e2LnE6nwsLCeOPmQTWhzzm3XJgZ55WqrOuxBylce+21uvbaay3bflFRUbnwlOR+XZWvy+Tm5hquISgoSK3j4nlEXSWdKnXou7xvz/pzd1XRuHFjxcTEmFRV9fnqI8727t2rn3/+2ZRt0eeVY1afc26pPLPOK5VhSYC2atXKfcfthXz33XemtBkSElIhKMteh4aGVno7CQkJstvt1arFl0ZVTqdT27ZtU4sWLUwd8ZshwCbFx8ebsi36/MKio6MVHR1t2vbo8wujzz2vuucVh8NR6YGUJQE6d+5c99+5ubl67bXX9NhjjykhIUFBQUHKy8vTzJkzNWjQINPajI6O1uHDh1VaWqrAwNO7VVBQoNDQUIWHh1d6O3a7vdoB6muKiooUEBDgd/vly+hzz6PPPa+m97klAXrNNde4/x49erSysrJ0/fXXu6e1atVKTZo0UXp6uh544AFT2mzdurUCAwO1adMmJSUlSZKys7OVkJDgU++OAAD+wfJk2b9/vyIjK37wHRYWpqNHj5rWTlhYmFJSUpSZmanNmzfrww8/1Jw5c0wd5QIAUMbyAL3pppuUkZGhr7/+WoWFhTpx4oS+/PJLZWRkqFevXqa2lZ6ervj4eN1///0aO3ashg4dqh49epjaBgAAkgfuwh03bpzGjBmj++67z32Lud1uV0pKiqnfA5VOj0KzsrKUlZVl6nYBAPgtywO0du3amjZtmsaOHatdu3ZJkpo3b67atWtb3TQAAJaxPEA3bNhQYdqZX13p0KGD1SUAAGA6ywP0vvvuO+v04OBgNWjQQGvXrrW6BAAATGd5gG7durXca4fDoR9//FHjx4/XbbfdZnXzAABYwuNfkLTb7WrevLmeeuopPf/8855uHgAAU3jtCQMHDx409XugAAB4kuWXcNPT0ytMO3HihNatW8cPXQMALloe+zWWM9WrV08jRoxQ3759vdE8AADVZnmApqamqm3btgoKCio3vaSkRJ9++qm6detmdQkAAJjO8s9ABw0apGPHjlWYvm3bNj3++ONWNw8AgCUsGYG+8cYbGjdunGw2m1wuV7lfYjnTddddZ0XzAABYzpIAvfvuu9WiRQs5nU7df//9mjFjhurWreueb7PZFBYWpiuvvNKK5gEAsJxln4GWPaJv7dq1iomJkc1ms6opAAA8zpIATU9P18iRI1W7dm3NnDnzvMtOmjTJihIAALCU1x6kAADAxcySEeiZo0pGmAAAf2RJgF7osu2Z0tLSrCgBAABLWRKg69evr9Ry3FgEALhYWRKg8+bNs2KzAAD4DI88C3fdunV66623tHPnTtlsNrVs2VL33HOP2rZt64nmAQAwneV34S5atEiDBw9WWFiY7rrrLt1xxx2STj/i7/3337e6eQAALGH5CPSll17S2LFj3cFZpkOHDpo2bZp69OhhdQkAAJjO8hHokSNHlJiYWGF6UlKS9u/fb3XzAABYwvIAveeee5SVlaXDhw+7pxUVFWn27Nm6++67rW4eAABLWH4JNzs7W5s3b9ZNN92kyy67TEFBQfrhhx904sQJxcTEaM2aNe5l165da3U5AACYwvIAHTBggAYMGGB1MwAAeJTlAdqvXz+rmwAAwOMsD9AdO3Zo+vTp2rlzp0pKSirM57ItAOBiZHmA/u1vf1NoaKgGDRqk0NBQq5sDAMAjLA/Q77//XkuWLFFsbKzVTQEA4DGWf43lhhtuUHZ2ttXNAADgUZaPQJ966in169dP7777rpo0aVLhF1j4vVAAwMXI8hHo008/rYCAAEVFRfHzZQAAv2H5CHTjxo168803FRcXZ3VTAAB4jOUj0BYtWujo0aNWNwMAgEdZPgIdOHCgnnzySaWmpqpp06YKDCzfZEpKitUlAABgOssDdNasWQoMDNQ777xTYd7+/ftNC9CjR48qKytLH3/8sZxOp2666SZlZGQoPDzclO0DAHAmywP0o48+Kve6uLhYH3zwgZYtW6Z9+/aZ1s6YMWP0448/6uWXX5bNZlNmZqZGjRqlGTNmmNYGAABlLA/QMtnZ2Vq+fLnWrFmj48ePKzY2VhkZGaZsu7CwUO+9957efPNNtWnTRpKUkZGhe+65R8XFxQoJCTGlHQAAylgaoHv27NHy5cv19ttva/fu3QoPD9fx48c1bdo09e7d27R2AgICNHv2bLVu3brcdIfDoRMnThCgAADTWRKgS5Ys0fLly7Vx40Y1bNhQXbp0UY8ePdShQwclJibqyiuvNLW90NBQ3XDDDeWmzZ07Vy1btlRERESVtuVwOMwszevK9sff9suX0eeeR597nr/2eVX2x5IAHTlypJo1a6asrCzdfvvtpmzz5MmT5/zMtEGDBrrkkkvcr+fPn6/Vq1fr1VdfrXI7ubm5hmv0Zf66X76MPvc8+tzzanKfWxKgEydO1MqVK5Wenq5JkybppptuUrdu3ZScnGx4mzk5ORo0aNBZ582aNUvdunWTJC1YsEATJkxQenq6ofYSEhJkt9sN1+lrHA6HcnNz/W6/fBl97nn0uef5a5+X7VdlWBKgqampSk1N1aFDh7R69WqtWrVKaWlpCg0NldPp1Pr169WsWTMFBQVVepsdO3ZUfn7+eZf5xz/+oSlTpujJJ5/U/fffb6h2u93uVwdDGX/dL19Gn3sefe55NbnPLX0SUUREhO655x4tWLBAH3/8sYYMGaLWrVtr/Pjx6ty5s6kPkl+2bJmmTJmi9PR0PfTQQ6ZtFwCAs7H8UX5lGjVqpIcfflhLly7VmjVrdO+99+r//u//TNn2kSNHNG7cOPXr1099+vRRQUGB+z9/+4AbAOAbPPY90DNdfvnlSktLU1paminb+/zzz1VYWKhly5Zp2bJl5eatXbtWTZs2NaUdAADKeCVAzdanTx/16dPH22UAAGoQj13CBQDAnxCgAAAYQIACAGAAAQoAgAEEKAAABhCgAAAYQIACAGAAAQoAgAEEKAAABhCgAAAYQIACAGAAAQoAgAEEKAAABhCgAAAYQIACAGAAAQoAgAEEKAAABhCgAAAYQIACAGAAAQoAgAGB3i7AV7hcLkmSw+HwciXmKtsff9svX0afex597nn+2udl+1OWCedjc1VmqRqgpKREubm53i4DAOADEhISFBwcfN5lCND/cjqdKi0tVUBAgGw2m7fLAQB4gcvlktPpVGBgoAICzv8pJwEKAIAB3EQEAIABBCgAAAYQoAAAGECAAgBgAAEKAIABBCgAAAYQoAAAGECA+pHi4mJlZGQoKSlJycnJmjNnjnve7t279cADD6ht27bq3bu3PvvsMy9W6j/O1+dlfvjhB1111VVeqM6/lZSU6NZbb9X69evd0zjOrXW2Ppdq7jFOgPqRKVOmaMuWLXr99dc1ZswYzZw5U2vWrJHL5dKQIUMUFRWlJUuWqG/fvkpLS9PevXu9XfJF71x9Xubnn3/WI488ouLiYi9W6X+Ki4v1+OOPa9u2be5pHOfWOlufSzX7GOdh8n6isLBQixYt0iuvvKL4+HjFx8dr27ZtWrBggerWravdu3dr4cKFuuSSSxQbG6svvvhCS5Ys0dChQ71d+kXrfH3es2dPffjhh3r66afVoEEDb5fqV7Zv366//e1vFR72/eWXX3KcW+RcfV7Tj3FGoH5i69atKi0tVbt27dzT2rdvr5ycHOXk5CguLk6XXHJJuXmbNm3yQqX+43x97nQ69cknn+jPf/6zRo4c6cUq/c9XX32ljh076q233io3nePcOufq85p+jDMC9RMFBQWqX79+uV8PiIqKUnFxsX7++Wc1bNiw3PKRkZH65ZdfPF2mXzlfnx85ckQTJkyQpAqfF6F67r777rNOLygo4Di3yLn6vKYf44xA/URRUVGFn94pe33q1KmzzispKfFYff7ofH1O33reuf5/8P8CViFA/URISEiFE0XZ66CgoLPOCw0N9Vh9/uh8fU7fet65/n/w/wJWIUD9RHR0tA4fPqzS0lL3tIKCAoWGhqpx48Y6cOBAueUPHDhQ4XIXquZ8fR4eHu7Fymqm6OhojnN4FAHqJ1q3bq3AwMByN0xkZ2crISFBiYmJ+vbbb3Xy5Mly8xITE71Qqf84X59f6Id4YT6Oc3ga/8r9RFhYmFJSUpSZmanNmzfrww8/1Jw5czRo0CBdc801aty4sdLT07Vt2za9/PLL2rx5s/r37+/tsi9q5+tzeB7HOTyNAPUj6enpio+P1/3336+xY8dq6NCh6tGjh+x2u1588UUVFBQoNTVV77zzjmbNmqWYmBhvl3zRO1efw/M4zuFpNtdvvxkLAAAuiBEoAAAGEKAAABhAgAIAYAABCgCAAQQoAAAGEKAAABhAgAIAYAABCviQli1blvuvU6dOGjVqlE6cOFHtba9fv14tW7Y0ocr/cblcWrBgQaWXP3jwoFavXm1qDYC3EKCAj3nhhRf02Wef6dNPP9Xs2bO1efNmTZkypdrbbdeunT777DMTKvyfDRs2aNy4cZVe/tlnn9W///1vU2sAvIUABXxM3bp11aBBA0VHR6tt27Z65JFHTBm1BQcHq0GDBiZU+D9VfZAZDz6DPyFAAR8XFhZW7vW+ffs0bNgwdejQQW3atFG/fv2UnZ3tnj937lzdfPPNSkhIUGpqqjZu3Cip4iXccy33W6dOndKoUaPUsWNHtWvXTo8++qj27dunn376yf3g/JYtW2r9+vUqKSnRpEmT1LlzZ8XHx6tLly566623JJ0eWS9btkzLli1Tly5dJElHjx7VE088oauvvlrJyckaP358uV9TAXwZAQr4sEOHDmnevHm6/fbb3dOGDx8uh8OhhQsXavny5YqOjlZmZqYkKS8vT1OmTNGYMWO0evVqJSUl6S9/+YucTme57VZ2OUlasGCBNmzYoDlz5mjx4sU6ceKEJk6cqMaNG+uFF16QJH322Wdq166dXn75ZX3yySd64YUXtGbNGqWkpGj8+PE6cOCAHnzwQfXq1Uu9evXS4sWLJUkjR47UsWPH9Oabb+rFF19Ubm5ulS4JA94U6O0CAJT3xz/+UXa7XS6XS0VFRapXr547IF0ul7p166ZbbrlFjRo1kiTdc889Gjx4sCRpz549stlsiomJUdOmTfWXv/xFN998c4VgPN9yv/0t059++kkhISFq0qSJ6tWrp8mTJ+vIkSOy2+2qW7euJLkvDbdq1UqdOnVS27ZtJUmPPvqoZs2ape+//15JSUkKDQ2VJEVEROjHH3/Uhx9+qK+++kp16tSRJI0fP14pKSlKT093TwN8FQEK+JgJEyYoMTFRLpdLhw8f1vz58zVw4EC9++67ioyM1MCBA7Vq1Sp9/fXX2rVrl7Zs2eIOyOTkZF155ZW67bbbFBcXp65du2rAgAEKDCz/T72yy0nSXXfdpZUrVyo5OVnXXHONunXrptTU1LPW3q1bN33++eeaPHmydu7cqby8PEmSw+GosOyOHTvkdDp1ww03lJvudDr1ww8/qE2bNob6D/AUAhTwMdHR0WrWrJkk6fLLL1d8fLw6duyo1atX6+6779aDDz6oo0ePqnfv3urSpYtOnTqltLQ0Sac/L120aJG++uorffzxx1q6dKnefPNNLV26tFwb51suOjq63LItWrTQRx99pE8++USffPKJpk+frhUrVpz16yvPPfecFi1apNTUVKWkpGjMmDHuzzt/y+FwqE6dOlqyZMlZ+wDwdQQo4OMCAgLkcrnkcDi0fft2bdiwQV988YUiIiIkyR1kLpdLmzZt0pdffqk//elP6tSpk/72t7/puuuuU3Z2tiIjI93b/Oabb865XO/evcu1v3z5cgUHB6t3797q1auXNm3apLvuuksHDx6UzWYrt+zChQuVmZmpXr16SZK2b9/urk2SbDab++/mzZvr2LFjstlsuuyyyyRJ+fn5mjFjhiZNmuS+3Av4KgIU8DG//vqrCgoKJEknTpzQnDlz5HA41KVLFwUFBSkgIEArV65Uly5dlJub676Rp6SkRKGhoZo1a5aioqJ07bXXasOGDSosLFTLli114MABdxvnW+63jh07ptmzZ6t+/fpq2rSp3n33XTVq1Ej169d33yG8ZcsWtWjRQvXq1dPHH3+sNm3aaN++fZo4caK7Nun0yHfbtm3at2+fYmNj1blzZw0fPlyjRo2S3W7X008/rbp16yo8PNzSPgbMYHPxxSzAZ/w2wMLCwtSmTRulpaWpU6dOkqS33npLs2bN0rFjx9S8eXM9+OCDGjFihObPn6927drp7bff1osvvqi9e/cqJiZGw4YNU58+fbR+/XoNGjRI+fn5knTO5X7L6XRq2rRpevvtt/Xrr7+qTZs2evrppxUXF6eSkhI9+uij+uqrrzR9+nRFRkYqMzNTP/zwg6KjozVgwAB98MEH6tatmx555BHl5ORoyJAhOnXqlL788ksdPnxYEyZM0CeffKLAwEB17txZo0aNUv369a3vbKCaCFAAAAzge6AAABhAgAIAYAABCgCAAQQoAAAGEKAAABhAgAIAYAABCgCAAQQoAAAGEKAAABhAgAIAYAABCgCAAQQoAAAG/H/yIddUwPBq9AAAAABJRU5ErkJggg==" + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAdYAAAL0CAYAAACxlhb6AAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAPYQAAD2EBqD+naQAASQ1JREFUeJzt3QucznX+///XzDDjNEPOhkFKyRIhh04KoSzpKBVDslZOmbZFK8K2pBwSkhJ7yGG1sbJWSSQZ0VDIoRKZxRiHGDnMMHP9b6/3939dv7nMmAPv6zMzn+txv90+O9f1+Xyu6/P2yXrO+/15H0I8Ho9HAACAFaF2vgYAACiCFQAAiwhWAAAsIlgBALCIYAUAwCKCFQAAiwhWAAAsIlgBALComM0vc6OMjAw5dOiQREZGSkhISEEXBwBQAHQupdOnT0t0dLSEhuZcJyVYc6GhGhMTU9DFAAAUAomJiVKjRo0czyFYc6E1Ve/NjIqKKujiAAAKQEpKiqlkeTMhJwRrLrzNvxqqBCsABLeQPDwSpPMSAAAWEawAAFhEsAIAYBHBCgCARXRecsjgj94o6CIUGdM6DynoIgDAFaPGCgCARQQrAAAWEawAAFhEsAIAYBHBCgCARQQrAAAWEawAAFhEsAIAYBHBCgCARcy8BABFGLO6Fb4Z3aixAgBgEcEKAIBFBCsAABYRrAAAWESwAgBgEcEKAIBFBCsAABYRrAAAWESwAgBgEcEKAIBFBCsAABYRrAAAWESwAgBgEcEKAIBFBCsAABYRrAAAWESwAgBgEcEKAEAwB+uMGTOkdu3aUqJECWnRooVs2rQpT59buHChhISESNeuXQNeRgBA8CpSwbpo0SKJi4uT0aNHy5YtW6RRo0bSoUMHSU5OzvFz+/fvlz/84Q9y5513OlZWAEBwKlLBOnnyZOnbt6/07t1b6tevL7NmzZJSpUrJe++9d9nPpKeny5NPPiljxoyROnXqOFpeAEDwKTLBmpaWJgkJCdKuXTvfvtDQUPM+Pj7+sp8bO3asVK5cWfr06ZOn66SmpkpKSorfBgCA64L12LFjpvZZpUoVv/36PikpKdvPrF+/XubMmSPvvPNOnq8zfvx4KVu2rG+LiYm56rIDAIKHI8G6Zs0acdrp06elR48eJlQrVqyY58+NGDFCTp065dsSExMDWk4AgLsUc+IiHTt2lBo1aphno7GxsVdUC9RwDAsLkyNHjvjt1/dVq1bNcv7evXtNp6XOnTv79mVkZJifxYoVkz179sh1112X5XMRERFmAwCg0NZYDx48KAMHDpQPPvjAdCDSnrz//Oc/zXPTvAoPD5emTZvK6tWr/YJS37dq1SrL+fXq1ZPt27fLN99849u6dOki99xzj3lNEy8AoMgGq9Y2hw4dagLtq6++khtuuEGeffZZiY6OlsGDB8u3336bp+/RoTbatPvXv/5Vdu3aJf3795czZ86YmrDq2bOnacpVOs61QYMGflu5cuUkMjLSvNagBgCgSDYFZ9akSRPTdFuhQgWZMGGCGSozc+ZMU+vU4TO/+c1vLvvZbt26ydGjR2XUqFGmw1Ljxo1l5cqVvg5NBw4cMD2FAQAoKI6l0IULF0xT8P333y+1atWSjz/+WKZPn26ekf74449m36OPPprr92iT8s8//2yGxWjtV2df8lq7dq3Mmzfvsp/VY0uXLrX2ZwIAoEBqrIMGDZIFCxaIx+MxPXUnTpxommO9SpcuLa+//rppGgYAoChzJFh37twpb775pjz00EOX7XGrz2ELYlgOAABFrilY5/bVZt5LQ/XixYuybt063xCY1q1bO1EcAACKdrDqEJcTJ05k2a8TMOgxAADcwpFg1WerumTbpY4fP26erwIA4BYBfcaqz1SVhmqvXr38moJ13t9t27bJbbfdFsgiAADgnmDVSey9NVadmKFkyZK+YzpBQ8uWLc0ycAAAuEVAg3Xu3LnmZ+3atc1C4zT7AgDcrphTvYIBAAgGxQI5daFOkH/NNdfILbfckm3nJa8tW7YEqhgAALgjWB944AFfZ6WuXbsG6jIAAARHsGZu/qUpGAAQLFgKBgCAolBj1WerOT1XzSy7WZkAACiKAhasU6dODdRXAwAQfMEaGxsbqK8GACD4gjUlJUWioqJ8r3PiPQ8AgKIuoM9YDx8+LJUrV5Zy5cpl+7zVOzm/zhsMAIAbBCxYP/vsMylfvrx5zQLmAIBgEbBgzbxoOQuYAwCChSNzBatffvlF5syZI7t27TLv69evL7179/bVagEAcANHJohYt26dWeFm2rRpJmB109fXXnutOQYAgFs4UmMdMGCAdOvWTd566y0JCwsz+7TD0rPPPmuObd++3YliAADgjhrrjz/+KM8//7wvVJW+jouLM8cAAHALR4JVl5DzPlvNTPc1atTIiSIAAFC0m4K3bdvmez148GAZMmSIqZ22bNnS7Nu4caPMmDFDJkyYEKgiAADgnmBt3LixmfxBJ4Hw+uMf/5jlvCeeeMI8fwUAwA0CFqz79u0L1FcDABB8wVqrVq1AfTUAAIWWYxNEqJ07d8qBAwckLS3Nb3+XLl2cLAYAAAHjSLD+9NNP8uCDD5rxqpmfu3on5mcSfgCAWzgy3EZ7BOssS8nJyVKqVCn57rvvzIxLzZo1k7Vr1zpRBAAA3FNjjY+PN6vdVKxYUUJDQ812xx13yPjx481QnK1btzpRDAAA3FFj1abeyMhI81rD9dChQ74OTnv27HGiCAAAuKfG2qBBA/n2229Nc3CLFi1k4sSJEh4eLrNnz5Y6deo4UQQAANwTrCNHjpQzZ86Y12PHjpXf/va3cuedd0qFChVk0aJFThQBAAD3BGuHDh18r6+//nrZvXu3nDhxQq655hpfz2AAANzA0XGsKjEx0fyMiYlx+tIAALij89LFixflpZdekrJly5oFz3XT19pEfOHCBSeKAACAe2qsgwYNkg8//NB0WmrVqpVvCM7LL78sx48fNwugAwDgBo4E6/z582XhwoVy3333+fbdfPPNpjm4e/fuBCsAwDUcaQqOiIgwzb+X0uE3OuwGAAC3cCRYBw4cKOPGjZPU1FTfPn39yiuvmGMAALhFwJqCH3roIb/3n376qdSoUUMaNWpk3uuEEbrKTdu2bQNVBAAA3FNj1V6/mbeHH37YTAyhz1V109cavnosP2bMmGGalUuUKGFmcdq0adNlz33nnXfMRBQ6Xla3du3a5Xg+AACFtsY6d+5c69+pszTFxcXJrFmzTKhOnTrVTD6h8w1Xrlw5y/m6co52jrrttttMEL/66qvSvn17s7pO9erVrZcPAABHnrF6HT16VNavX282fZ1fkydPlr59+0rv3r2lfv36JmB1Gbr33nsv2/Pff/99efbZZ6Vx48ZSr149effddyUjI0NWr15t4U8DAEABBavOE/z0009LtWrV5K677jJbdHS09OnTR86ePZun79DnsQkJCaY510uXn9P3OiY2L/RaOiFF+fLlL3uOdqpKSUnx2wAAKFTBqs23n3/+uXz00Udy8uRJs/373/82+55//vk8fcexY8fM8nNVqlTx26/vk5KS8vQdw4YNM4GeOZwvpWvEZn42zNSLAIBCF6z/+te/ZM6cOWaCiKioKLPdf//9pnPRBx984EQRZMKECWaSiiVLlpjnrZczYsQIOXXqlG/zzm0MAEChmXlJm2AvrWkq7XCU16ZgXSA9LCxMjhw54rdf31etWjXHz77++usmWHXIj874lNtkFroBAFBoa6w6P/Do0aPl/Pnzvn3nzp2TMWPG+OYOzo3O0NS0aVO/jkfejkg5fYfOT6yTU6xcuVKaNWt2lX8SAAAKQY1Vh8V07NgxywQR2iT78ccf5+tZbWxsrAnI5s2bm+/VjlHaS1j17NnTDKPR56RKh9eMGjXKzFWsY1+9z2LLlCljNgAAimSwNmzYUH744Qcz/EUXOVc6vvTJJ5+UkiVL5vl7unXrZobpaFhqSOowGq2JepuZDxw4YHoKe+nk/tqb+JFHHvH7Hq0968o6AAAUuWDV4S06hnT58uVmDOrV0rmFLze/sE4Ikdn+/fuv+noAABSqZ6zFixf3e7YKAICbOdJ5acCAAeZ558WLF524HAAA7n7GunnzZtN795NPPjHPW0uXLu13/MMPP3SiGAAAuCNYy5UrZ1a3AQDA7QIarDrO9LXXXpPvv//e9M5t06aN6Y2bn57AAAAUJQF9xvrKK6/Iiy++aMaM6vjSadOmmeetAAC4VUCD9W9/+5vMnDnTTAKxdOlSMwm/jmXVmiwAAG4U0GDVCRt0sn0vXVUmJCREDh06FMjLAgDgzmDV4TWXriSj41p10ggAANwooJ2XPB6P9OrVy2+1GJ0s4ve//73fkBuG2wAA3CKgwaoT5l/qqaeeCuQlAQBwb7DOnTs3kF8PAEBwTmkIAECwIFgBALCIYAUAwCKCFQAAiwhWAAAsIlgBALCIYAUAwCKCFQAAiwhWAAAsIlgBALCIYAUAwCKCFQAAiwhWAAAsIlgBALCIYAUAwCKCFQAAiwhWAAAsIlgBALCIYAUAwCKCFQAAiwhWAAAsIlgBALCIYAUAwCKCFQAAiwhWAAAsIlgBALCIYAUAwCKCFQAAiwhWAAAsIlgBALCIYAUAwCKCFQCAYA7WGTNmSO3ataVEiRLSokUL2bRpU47nL168WOrVq2fOb9iwoaxYscKxsgIAgk+RCtZFixZJXFycjB49WrZs2SKNGjWSDh06SHJycrbnb9iwQbp37y59+vSRrVu3SteuXc22Y8cOx8sOAAgORSpYJ0+eLH379pXevXtL/fr1ZdasWVKqVCl57733sj3/jTfekI4dO8oLL7wgN910k4wbN06aNGki06dPd7zsAIDgUEyKiLS0NElISJARI0b49oWGhkq7du0kPj4+28/ofq3hZqY13KVLl172OqmpqWbzOnXqlPmZkpJydeU/e/6qPh9MrvZeA8GEf1uc+XfF+3mPx+OeYD127Jikp6dLlSpV/Pbr+927d2f7maSkpGzP1/2XM378eBkzZkyW/TExMVdcduTP2zK8oIsAwGXetvTvyunTp6Vs2bLuCFanaI04cy03IyNDTpw4IRUqVJCQkBBxC/3tS39ZSExMlKioqIIuTlDgnjuPe+68FJfec62paqhGR0fnem6RCdaKFStKWFiYHDlyxG+/vq9atWq2n9H9+TlfRUREmC2zcuXKiVvpX3w3/eUvCrjnzuOeOy/Khfc8t5pqkeu8FB4eLk2bNpXVq1f71Sb1fatWrbL9jO7PfL5atWrVZc8HAOBqFZkaq9Im2tjYWGnWrJk0b95cpk6dKmfOnDG9hFXPnj2levXq5jmpGjJkiLRu3VomTZoknTp1koULF8rXX38ts2fPLuA/CQDArYpUsHbr1k2OHj0qo0aNMh2QGjduLCtXrvR1UDpw4IDpKex12223yfz582XkyJHy4osvSt26dU2P4AYNGkiw0+ZuHQ98abM3Aod77jzuufMiuOcS4slL32EAAOCuZ6wAABQFBCsAABYRrAAAWESwAgBgEcEKAIBFBCsAABYRrAAAWESwAgBgEcEKAIBFBCsAABYRrAAAWESwAgBgEcEKAIBFBCsAABYRrAAAWESwAgBgEcEKAIBFBCsAABYRrAAAWESwAgBgEcEKAIBFBCsAABYRrAAAWFTM5pe5UUZGhhw6dEgiIyMlJCSkoIsDACgAHo9HTp8+LdHR0RIamnOdlGDNhYZqTExMQRcDAFAIJCYmSo0aNXI8h2DNhdZUvTczKiqqoIsDACgAKSkpppLlzYScEKy58Db/aqgSrAAQ3ELy8EiQzksAAFhEsAIAYBHBCgCARQQrAAAW0XnJIffOmFrQRSgyVg14rqCLAABXjBorAAAWEawAAFhEsAIAYBHBCgCARQQrAAAWEawAAFhEsAIAYBHBCgCARQQrAAAWEawAAFhEsAIAYBHBCgCARUzCDwBFGAt8FL7FPaixAgBgEcEKAIBFBCsAABYRrAAAWESwAgBgEcEKAIBFBCsAABYRrAAAWESwAgBgEcEKAIBFBCsAABYRrAAAWESwAgBgEcEKAIBFBCsAABYRrAAABFuwTpgwQUJCQuS55/7fQrXnz5+XAQMGSIUKFaRMmTLy8MMPy5EjR/w+d+DAAenUqZOUKlVKKleuLC+88IJcvHixAP4EAIBgUeiDdfPmzfL222/LzTff7Ld/6NCh8tFHH8nixYvl888/l0OHDslDDz3kO56enm5CNS0tTTZs2CB//etfZd68eTJq1KgC+FMAAIJFoQ7WX3/9VZ588kl555135JprrvHtP3XqlMyZM0cmT54sbdq0kaZNm8rcuXNNgG7cuNGc88knn8jOnTvlH//4hzRu3Fjuu+8+GTdunMyYMcOELQAAQRes2tSrtc527dr57U9ISJALFy747a9Xr57UrFlT4uPjzXv92bBhQ6lSpYrvnA4dOkhKSop89913l71mamqqOSfzBgBAXhWTQmrhwoWyZcsW0xR8qaSkJAkPD5dy5cr57dcQ1WPeczKHqve499jljB8/XsaMGWPpTwEACDaFssaamJgoQ4YMkffff19KlCjh6LVHjBhhmpq9m5YFAIAiHaza1JucnCxNmjSRYsWKmU07KE2bNs281pqnPic9efKk3+e0V3DVqlXNa/15aS9h73vvOdmJiIiQqKgovw0AgCIdrG3btpXt27fLN99849uaNWtmOjJ5XxcvXlxWr17t+8yePXvM8JpWrVqZ9/pTv0MD2mvVqlUmKOvXr18gfy4AgPsVymeskZGR0qBBA799pUuXNmNWvfv79OkjcXFxUr58eROWgwYNMmHasmVLc7x9+/YmQHv06CETJ040z1VHjhxpOkRprRQAgKAJ1ryYMmWKhIaGmokhtCev9vidOXOm73hYWJgsX75c+vfvbwJXgzk2NlbGjh1boOUGALhbkQnWtWvX+r3XTk06JlW3y6lVq5asWLHCgdIBAFCIn7ECAFBUEawAAFhEsAIAYBHBCgCARQQrAAAWEawAAFhEsAIAYBHBCgCARQQrAACFOVjr1Kkjx48fz7JfV6LRYwAAuJn1YN2/f7+kp6dn2a/z+R48eND25QAAcOdcwcuWLfO9/vjjj6Vs2bK+9xq0usRb7dq1bV0OAAB3B2vXrl3Nz5CQELOKTGa6dqqG6qRJk2xdDgAAdwdrRkaG+XnttdfK5s2bpWLFira+GgCA4F02bt++fba/EgCA4F6PVZ+n6pacnOyryXq99957gbgkAADuDNYxY8bI2LFjpVmzZlKtWjXzzBUAgGBhPVhnzZol8+bNkx49etj+agAAgm8ca1pamtx22222vxYAgOAM1meeeUbmz59v+2sBAAjOpuDz58/L7Nmz5dNPP5Wbb77ZjGHNbPLkybYvCQCAe4N127Zt0rhxY/N6x44dfsfoyAQAcDvrwbpmzRrbXwkAQJHBsnEAABTmGus999yTY5PvZ599ZvuSAAC4N1i9z1e9Lly4IN9884153nrp5PwAALiN9WCdMmVKtvtffvll+fXXX21fDgCA4HzG+tRTTzFPMADA9RwL1vj4eClRooRTlwMAwB1NwQ899JDfe4/HI4cPH5avv/5aXnrpJduXAwDA3cFatmxZv/ehoaFy4403mhVv2rdvb/tyAAC4O1jnzp1r+ysBAAjuhc5VQkKC7Nq1y7z+zW9+I7fcckugLgUAgHuDNTk5WR5//HFZu3atlCtXzuw7efKkmThi4cKFUqlSJduXBADAvb2CBw0aJKdPn5bvvvtOTpw4YTadHCIlJUUGDx5s+3IAALi7xrpy5UqzZNxNN93k21e/fn2ZMWMGnZcAAK5nvcaakZGRZQ1Wpfv0GAAAbmY9WNu0aSNDhgyRQ4cO+fYdPHhQhg4dKm3btrV9OQAA3B2s06dPN89Ta9euLdddd53Zrr32WrPvzTfftH05AADc/Yw1JiZGtmzZYp6z7t692+zT563t2rWzfSkAANxbY9V1VrWTktZMdT3We++91/QQ1u3WW281Y1m/+OILW5cDAMDdwTp16lTp27evREVFZTvNYb9+/WTy5Mm2LgcAgLuD9dtvv5WOHTte9rgOtdHZmAAAcDNrwXrkyJFsh9l4FStWTI4ePZrn7xs/frxpQo6MjJTKlStL165dZc+ePX7nnD9/XgYMGCAVKlSQMmXKyMMPP2zKkdmBAwekU6dOUqpUKfM9L7zwgly8ePEK/oQAADgYrNWrVzczLF3Otm3bpFq1ann+vs8//9yE5saNG2XVqlVy4cIFU+s9c+aM7xwdwvPRRx/J4sWLzfk6xCfzsnXp6ekmVNPS0mTDhg3y17/+VebNmyejRo26ij8pAAAO9Aq+//77zXqr2hx86YLm586dk9GjR8tvf/vbfM3glJkGotY4tTn5rrvuklOnTsmcOXNk/vz5Zuysd2Ud7YGsYdyyZUv55JNPZOfOnaaHcpUqVaRx48Yybtw4GTZsmLz88ssSHh5u6U8PAIDlGuvIkSPNvMA33HCDTJw4Uf7973+b7dVXXzXrseqxP/3pT1f8/Rqkqnz58uanBqzWYjMP46lXr57UrFlT4uPjzXv92bBhQxOqXh06dDA9l3Uu4+ykpqaa45k3AAAcr7FqeGlza//+/WXEiBHi8XjMfh16o2GmcwVnDrj80KkQn3vuObn99tulQYMGZl9SUpKpcXpX0MlcDj3mPefSa3rfe8/J7tnumDFjrqicAABYnSCiVq1asmLFCvnll1/kxx9/NOFat25dueaaa67qe/VZqz6/Xb9+vQSa/lIQFxfne681Vp30AgCAAlvoXINUe/TaMHDgQFm+fLmsW7dOatSo4dtftWpV0ylJ13rNXGvVXsF6zHvOpk2b/L7P22vYe86lIiIizAYAQKGYK9gWre1qqC5ZssTM6qTzDWfWtGlTM7xn9erVvn06HEeH17Rq1cq815/bt283i697aQ9jncRCZ4kCAKBI1Fht0OZf7fGrHaB0LKv3majO4lSyZEnzs0+fPqbZVjs0aVjq9IkaptojWOnwHA3QHj16mA5V+h3ayUq/m1opACCogvWtt94yP++++26//TqkplevXub1lClTJDQ01EwMob15tZPUzJkzfeeGhYWZZmTtUKWBW7p0aYmNjZWxY8c6/KcBAASLQhus3l7FOdHxstrbWLfcOlQBABDUz1gBACiKCFYAACwiWAEAsIhgBQDAIoIVAACLCFYAACwiWAEAsIhgBQDAIoIVAACLCFYAACwiWAEAsIhgBQDAIoIVAACLCFYAACwiWAEAsIhgBQDAIoIVAACLCFYAACwiWAEAsIhgBQDAIoIVAACLCFYAACwiWAEAsIhgBQDAIoIVAACLCFYAACwiWAEAsIhgBQDAIoIVAACLCFYAACwiWAEAsIhgBQDAIoIVAACLCFYAACwiWAEAsIhgBQDAIoIVAACLCFYAACwiWAEAsIhgBQDAIoIVAACLCFYAACwiWAEAsIhgBQDAoqAI1hkzZkjt2rWlRIkS0qJFC9m0aVNBFwkA4FKuD9ZFixZJXFycjB49WrZs2SKNGjWSDh06SHJyckEXDQDgQq4P1smTJ0vfvn2ld+/eUr9+fZk1a5aUKlVK3nvvvYIuGgDAhYqJi6WlpUlCQoKMGDHCty80NFTatWsn8fHx2X4mNTXVbF6nTp0yP1NSUq6qLBfPnb+qzweTq73XQDDh3xZn/l3xft7j8QR3sB47dkzS09OlSpUqfvv1/e7du7P9zPjx42XMmDFZ9sfExASsnPBX9oX/94sQABSmf1dOnz4tZcuWDd5gvRJau9Vnsl4ZGRly4sQJqVChgoSEhIhb6G9f+stCYmKiREVFFXRxggL33Hncc+eluPSea01VQzU6OjrXc10drBUrVpSwsDA5cuSI3359X7Vq1Ww/ExERYbbMypUrJ26lf/Hd9Je/KOCeO4977rwoF97z3GqqQdF5KTw8XJo2bSqrV6/2q4Hq+1atWhVo2QAA7uTqGqvSZt3Y2Fhp1qyZNG/eXKZOnSpnzpwxvYQBALDN9cHarVs3OXr0qIwaNUqSkpKkcePGsnLlyiwdmoKNNnfr2N5Lm70RONxz53HPnRfBPZcQT176DgMAgDxx9TNWAACcRrACAGARwQoAgEUEKwAAFhGsAABYRLACAGARwQoAgEUEKwAAFhGsAABYRLACAGARwQoAgEUEKwAAFhGsAABYRLACAGARwQoAgEUEKwAAFhGsAABYRLACAGARwQoAQDAH64wZM6R27dpSokQJadGihWzatCnH8xcvXiz16tUz5zds2FBWrFjhWFkBAMGnSAXrokWLJC4uTkaPHi1btmyRRo0aSYcOHSQ5OTnb8zds2CDdu3eXPn36yNatW6Vr165m27Fjh+NlBwAEhxCPx+ORIkJrqLfeeqtMnz7dvM/IyJCYmBgZNGiQDB8+PMv53bp1kzNnzsjy5ct9+1q2bCmNGzeWWbNmOVp2AEBwKCZFRFpamiQkJMiIESN8+0JDQ6Vdu3YSHx+f7Wd0v9ZwM9Ma7tKlSy97ndTUVLN5aXifOHFCKlSoICEhIVb+LACAokXroKdPn5bo6GiTPa4I1mPHjkl6erpUqVLFb7++3717d7afSUpKyvZ83X8548ePlzFjxlgqNQDATRITE6VGjRruCFanaI04cy331KlTUrNmTXMzo6Kirvh7bxk1zVIJ3W/r2MEFXQSgyODfFmf+XUlJSTGPHiMjI3M9t8gEa8WKFSUsLEyOHDnit1/fV61aNdvP6P78nK8iIiLMdikN1asJ1tCIElf82WBzNfcZCDb82+Lsvyt5eSRYZHoFh4eHS9OmTWX16tV+zz/1fatWrbL9jO7PfL5atWrVZc8HAOBqFZkaq9Im2tjYWGnWrJk0b95cpk6danr99u7d2xzv2bOnVK9e3TwnVUOGDJHWrVvLpEmTpFOnTrJw4UL5+uuvZfbs2QX8JwEAuFWRClYdPnP06FEZNWqU6YCkw2ZWrlzp66B04MABv95at912m8yfP19GjhwpL774otStW9f0CG7QoEEB/ikAAG5WpIJVDRw40GzZWbt2bZZ9jz76qNkAAHBCkXnGCgBAUUCwAgBgEcEKAIBFBCsAABYRrAAAWESwAgBgEcEKAIBFBCsAABYRrAAAWESwAgBgEcEKAIBFBCsAABYRrAAAWESwAgBQUMvGnTx5UpYsWSJffPGF/Pzzz3L27FmpVKmS3HLLLdKhQwez/ikAAMEsTzXWQ4cOyTPPPCPVqlWTP//5z3Lu3DmzyHjbtm2lRo0asmbNGrn33nulfv36smjRosCXGgCAolxj1RppbGysJCQkmPDMjobt0qVLZerUqZKYmCh/+MMfbJcVAAB3BOvOnTulQoUKOZ5TsmRJ6d69u9mOHz9uq3wAALivKTi3UL3a8wEACKoa67Jly/L8hV26dLma8gAA4P5g7dq1a56+LCQkRNLT06+2TAAAuDtYMzIyAl8SAABcgAkiAAAoqAkivM6cOSOff/65HDhwQNLS0vyODR482FbZAABwf7Bu3bpV7r//fjPrkgZs+fLl5dixY1KqVCmpXLkywQoACGr5bgoeOnSodO7cWX755RczdnXjxo1mesOmTZvK66+/HphSAgDg1mD95ptv5Pnnn5fQ0FAJCwuT1NRUiYmJkYkTJ8qLL74YmFICAODWYC1evLgJVaVNv/qcVZUtW9ZMZQgAQDDL9zNWnTd48+bNUrduXWndurWMGjXKPGP9+9//Lg0aNAhMKQEAcGuN9S9/+YtZ5Ua98sorcs0110j//v3l6NGjMnv27ECUEQAA99ZYmzVr5nutTcErV660XSYAAIJrgoiLFy/Kp59+Km+//bacPn3at2brr7/+art8AAC4u8aqQ2s6duxoOi1pj2Bd4DwyMlJeffVV837WrFmBKSkAAG6ssQ4ZMsQ0B3vHsXo9+OCDsnr1atvlAwDA3TXWL774QjZs2CDh4eF++2vXri0HDx60WTYAANxfY9WVbrJbGu5///ufaRIGACCY5TtY27dvL1OnTvVbg1U7LY0ePdrMIQwAQDDLd1OwzgesnZfq168v58+flyeeeEJ++OEHqVixoixYsCAwpQQAwK3BqvMCf/vtt7Jo0SLzU2urffr0kSeffNKvMxMAAMEoX8F64cIFqVevnixfvtwEqW4AAOAKn7HqBPza/AsAACx1XhowYICZDEJnXwIAAFf5jFVXttGJID755BNp2LChlC5d2u/4hx9+mN+vBAAgeIO1XLly8vDDDwemNAAABFuwzp07NzAlAQAgWFe3AQAAVxGsOiHExo0bcz1Pl5DTjk0zZszIy9cCABCcwfroo4+a56o629KwYcNk8eLF8uWXX0pCQoJZl3XatGny2GOPSbVq1WTLli3SuXNn6wU9ceKEGTcbFRVlnvPqpBQ5rf+q5w8aNEhuvPFGM3FFzZo1ZfDgwXLq1CnrZQMAIF/PWDXEnnrqKROoOuPS7NmzfQGlcwVr4Hbo0MH0GL7pppskEDRUDx8+LKtWrTITVfTu3Vt+97vfyfz587M9Xxde102nYNTy6Tqyv//9782+Dz74ICBlBAAgxOPxeK7kgxqs586dkwoVKpiJIwJp165dJhw1uHUtWLVy5Uoz6b+uqhMdHZ2n79FfDPQXhDNnzkixYnnrt5WSkiJly5Y1f16tLV+pusNev+LPBpsfXv1DQRcBKDL4t8WZf1fykwVX3HlJL1C1atWAh6qKj483zb/eUFXt2rWT0NBQ+eqrr/L8Pd4bklOopqammhuYeQMAwFW9gpOSkqRy5cp++zQcy5cvb47lxbFjx2TcuHGm+Tgn48ePN780eDdddAAAgCIRrMOHDzfPaHPadu/efdXX0Vpnp06dTHPyyy+/nOO5I0aMMDVb75aYmHjV1wcABI98TxBh0/PPPy+9evXK8Zw6deqYJufk5GS//TpXsfb81WO5DQHS4UKRkZGyZMmSXJuuIyIizAYAQJEL1kqVKpktN61atZKTJ0+a4T1NmzY1+z777DPJyMiQFi1a5FhT1d7KGpTLli2TEiVKWC0/AABWmoI15N59913TbKq1RqXjVw8ePCiBoEN4tNbZt29f2bRpkxlDO3DgQHn88cd9PYL12rpWrB73hmr79u1ND+A5c+aY9/o8Vrf09PSAlBMAgHzXWLdt22Z65GrHnv3795uw005EuqrNgQMH5G9/+1tACvr++++bMG3btq3pDawTVujEFF46tnXPnj1y9uxZX9B7ewxff/31ft+1b98+qV27dkDKCQAIbvkO1ri4OPNcdOLEiea5pZeOKX3iiSckUDS8LzcZhNKgzDwk9+677/Z7DwBAoWwK1kka+vXrl2V/9erV8zz0BQAAt8p3sGpHoOwmTfj+++/z1BEJAAA3y3ewdunSRcaOHWueaSoda6rPVnVyfhZABwAEu3wH66RJk8yqMjoTks4V3Lp1a9M5SJ+3vvLKK4EpJQAAbu28pL2BdYWZ9evXmx7CGrJNmjQxPYUBAAh2VzxBxB133GE2AACQz2DNPF40N7qYOAAAwSpPwTplyhS/90ePHjUTMehSbt6ZmEqVKmWeuxKsAIBglqfOSzpTkXfTDkqNGzc2i4/rdIa66Wt9zqrLsgEAEMzy3Sv4pZdekjfffFNuvPFG3z59rbXakSNH2i4fAADuDtbDhw+bJdsupRPbHzlyxFa5AAAIjmDVSfB1SkOd5N5Ll3Pr378/Q24AAEEv38H63nvvmcXFmzVr5lsUvHnz5lKlShWzlBwAAMEs3+NYdT7gFStWmLmBd+/ebfbpOqg33HBDIMoHAEBwTBChQUqYAgBwlcH69NNP59pUDABAsMp3sP7yyy9+73WVmx07dphJItq0aWOzbAAAuD9YlyxZkmVfRkaG6RV83XXX2SoXAADB0Ss42y8JDZW4uLgsUx8CABBsrASr2rt3b7YTRwAAEEzy3RSsNdPMPB6PmY3pP//5j8TGxtosGwAA7g/WrVu3ZmkG1rGtkyZNyrXHMAAAbpfvYF2zZk1gSgIAQDA+Y9UhNTq05lIpKSkMtwEABL18B+vatWslLS0ty/7z58/LF198YatcAAC4uyl427Ztvtc7d+6UpKQkvyXjVq5cKdWrV7dfQgAA3BisjRs3lpCQELNl1+RbsmRJswA6AADBLM/Bum/fPjO0pk6dOrJp0ybTE9grPDxcKleuLGFhYYEqJwAA7grWWrVq+aYvBAAAVxGsy5Ytk/vuu0+KFy9uXuekS5cueflKAACCN1i7du1qOitpc6++vhx9/qodmQAACFZ5CtbMzb80BQMA4MAk/AAAII811mnTpuX5CwcPHnw15QEAwP3Bmtd1VvUZK8EKAAhmxfI6hhUAAAT4GatOGKEbAAC4imCdM2eONGjQQEqUKGE2ff3uu+9eyVcBABDc67GOGjVKJk+eLIMGDZJWrVqZffHx8TJ06FA5cOCAjB07NhDlBADAncH61ltvyTvvvCPdu3f3m23p5ptvNmFLsAIAglm+m4IvXLggzZo1y7K/adOmcvHiRVvlAgAgOIK1R48eptZ6qdmzZ8uTTz5pq1wAAARHU7C389Inn3wiLVu2NO+/+uor83y1Z8+eEhcX5ztPn8UCABBM8h2sO3bskCZNmpjXe/fuNT8rVqxoNj2WebIIAACCTb6Ddc2aNYEpCQAALsAk/AAAFGSN9fz58/Lmm2+ammtycnKWZeS2bNlis3wAALg7WPv06WM6Lj3yyCPSvHlzx56lnjhxwoyT/eijjyQ0NFQefvhheeONN6RMmTK5flanXbz//vtl5cqVsmTJkhwXawcAwNFgXb58uaxYsUJuv/12cZIO5Tl8+LCsWrXKjKXt3bu3/O53v5P58+fn+tmpU6fSmQoAUDiDtXr16hIZGSlO2rVrl6ltbt682Tc5hTZHay309ddfl+jo6Mt+9ptvvpFJkybJ119/LdWqVXOw1ACAYJTvzksaUsOGDZOff/5ZnKJzEZcrV85vxqd27dqZJmEdQ3s5Z8+elSeeeEJmzJghVatWzdO1UlNTJSUlxW8DACBgwarhph2Y6tSpY2qu5cuX99sCISkpSSpXruy3r1ixYuZ6euxydGGA2267TR544IE8X2v8+PFStmxZ3xYTE3NVZQcABJd8NwXr5PsHDx6Uv/zlL1KlSpWrenY5fPhwefXVV3NtBr4Sy5Ytk88++0y2bt2ar8+NGDHCb/YorbESrgCAgAXrhg0bTNNso0aN5Go9//zz0qtXrxzP0ZqxNuPq0J7MdMJ/7Sl8uSZeDVWdGUqbkDPT3sR33nmnrF27NtvPRUREmA0AAEeCtV69enLu3DmxoVKlSmbLja77evLkSUlISDCr6HiDU8fQtmjR4rK14WeeecZvX8OGDWXKlCnSuXNnK+UHAOCqn7FOmDDB1DS1xnf8+HFHOvrcdNNN0rFjR+nbt69s2rRJvvzySxk4cKA8/vjjvh7B2jytoa/HldZkGzRo4LepmjVryrXXXhuQcgIAkO8aqwacatu2bZZJGPR5a3p6ugTC+++/b8JUr+udIGLatGm+4zq2dc+ePaYnMAAABaXITMKvPYBzmgyidu3aJtxzkttxAAAcD9bWrVtf9ljmZeMAAAhGV726zenTp2X27Nlm3mAbPYUBAAjKYF23bp3ExsaaaQJ1WsE2bdrIxo0b7ZYOAAA3NwXrLEfz5s2TOXPmmB7Ajz32mJkCcOnSpVK/fv3AlRIAALfVWHXs54033ijbtm0zq8UcOnTITIQPAACuoMb63//+VwYPHiz9+/eXunXr5vVjAAAElTzXWNevX286KunMRzrb0fTp0+XYsWOBLR0AAG4N1pYtW8o777xjFhvv16+fLFy40Mx6pNMK6uLjGroAAAS7fPcKLl26tDz99NOmBrt9+3YzvaFOc6jLunXp0iUwpQQAIBjGsWpnpokTJ8r//vc/WbBggb1SAQAQrBNEqLCwMOnatatZAxUAgGBmJVgBAMD/IVgBALCIYAUAwCKCFQAAiwhWAAAsIlgBALCIYAUAwCKCFQCAglqPFQBQuPzw6h8Kugi4BDVWAAAsosbqEH6rBIDgQI0VAACLCFYAACwiWAEAsIhgBQDAIoIVAACL6BWcC4/HY36mpKQUdFEAAAXEmwHeTMgJwZqL06dPm58xMTEFXRQAQCHIhLJly+Z4TognL/EbxDIyMuTQoUMSGRkpISEh4qbfvvSXhcTERImKiiro4gQF7rnzuOfOS3HpPdeo1FCNjo6W0NCcn6JSY82F3sAaNWqIW+lffDf95S8KuOfO4547L8qF9zy3mqoXnZcAALCIYAUAwCKCNUhFRETI6NGjzU84g3vuPO658yK453ReAgDAJmqsAABYRLACAGARwQoAgEUEKwAAFhGsAABYRLACAGARwQoAgEUEKwAAFhGsAABYRLACAGARwQoAgEUEKwAAFhGsAABYRLACAGARwQoAgEUEKwAAFhGsAABYRLACAGARwQoAgEUEKwAAFhGsAABYRLACAGBRMZtf5kYZGRly6NAhiYyMlJCQkIIuDgCgAHg8Hjl9+rRER0dLaGjOdVKCNRcaqjExMQVdDABAIZCYmCg1atTI8RyCNRdaU/XezKioqIIuDgCgAKSkpJhKljcTckKw5sLb/KuhSrACQHALycMjQTovAQBgEcEKAIBFBCsAABYRrAAAWESwAgBgEcEKAIBFBCsAABYRrAAAWESwAgBgEcEKAIBFBCsAABYRrAAAWESwAgBgkWOr21y4cEGSkpLk7NmzUqlSJSlfvrxTlwYAwB01Vl1t/a233pLWrVubJddq164tN910kwnWWrVqSd++fWXz5s2BLAIAAO4I1smTJ5sgnTt3rrRr106WLl0q33zzjXz//fcSHx8vo0ePlosXL0r79u2lY8eO8sMPPwSqKAAAOCbE4/F4AvHF3bt3l5EjR8pvfvObHM9LTU014RseHi5PP/20FMZV48uWLSunTp1ioXMACFIp+ciCgAWrWxCsAICUfGQBvYIBAChqvYIffPBBCQkJybJf95UoUUKuv/56eeKJJ+TGG290ojgAAASMIzVWrT5/9tlnsmXLFhOmum3dutXs0w5MixYtkkaNGsmXX35p9brjx4+XW2+9VSIjI6Vy5crStWtX2bNnj9VrAADgeLBWrVrV1Eh/+ukn+de//mW2vXv3ylNPPSXXXXed7Nq1S2JjY2XYsGFWr/v555/LgAEDZOPGjbJq1SozllZ7IZ85c8bqdQAAcLTzko5b1droDTfc4Ldfh97cdtttcuzYMdm+fbvceeedcvLkyYCV4+jRo6bmqoF711135ekzdF4CAKQUts5L2ty7e/fuLPt1X3p6unmtz1qzew5rk94QldOsTzr8R29g5g0AgELVealHjx7Sp08fefHFF80zT6UzLv3lL3+Rnj17mvdai8xtzOvVyMjIkOeee05uv/12adCgQY7PZceMGROwcgAA3M2RpmCtlU6YMEGmT58uR44cMfuqVKkigwYNMs9Vw8LC5MCBAxIaGio1atQISBn69+8v//3vf2X9+vU5XkNrrLp5aY01JiaGpmAACGIphXmCCG/TqpMhNXDgQPn3v/8t69atk2uvvTZfn+UZKwAgJR9Z4NjqNl5OhpP+zqC14iVLlsjatWvzHaoAAOSXY8H6wQcfyD//+U/T5JuWluZ3TMe3BoIOtZk/f76prepYVl22TulvHSVLlgzINQEAwc2RXsHTpk2T3r17m+eqOjFE8+bNpUKFCmZc63333Rew6+qSdVptv/vuu6VatWq+TSekAACgyNZYZ86cKbNnzzYr3sybN0/++Mc/Sp06dWTUqFFy4sSJgF2X9QUAAK6ssWrzr04EobQJVhdA9w7DWbBggRNFAADAXVMaemumNWvWNFMMqn379lGrBAC4iiPB2qZNG1m2bJl5rc9ahw4dKvfee69069bNrHwDAIBbODKOVWc90q1Ysf97pLtw4ULZsGGD1K1bV/r16yfh4eFSWDGOFQCQUpgniChqCFYAQEphnCDi/Pnzsm3bNklOTja118y6dOniVDEAAAgoR4J15cqVZrJ9XR7uUrqijXeFGwAAijpHOi/ptIKPPvqoHD582Pe81bsRqgAAN3EkWHVFm7i4ODPzEgAAbuZIsD7yyCNmEnwAANzOkV7BZ8+eNU3BlSpVkoYNG0rx4sX9jg8ePFgKK3oFAwBSCluvYJ228JNPPpESJUqYmqt2WPLS14U5WAEAyA9HgvVPf/qTjBkzRoYPHy6hoY60PgMAUCAcSTldf1WnLyRUAQBu50jSxcbGsgYqACAoONIUrGNVJ06cKB9//LHcfPPNWTovTZ482YliAADgjmDdvn273HLLLeb1jh07/I5l7sgEAEBR50iwrlmzxonLAABQ4OhNBABAUaixPvTQQzJv3jwzkFZf5+TDDz8MVDEAAHBHsOoMFd7np/oaAIBgwELnuWBKQwBASj6ygGesAABYFLBg7dixo2zcuDHX806fPi2vvvqqzJgxI1BFAQCg6D9j1dVsHn74YVN17ty5szRr1kyio6PNRPy//PKL7Ny5U9avXy8rVqyQTp06yWuvvRaoogAA4I5nrKmpqbJ48WIznaGGqLZNm4uGhEj9+vWlQ4cO0qdPH7npppuksOIZKwAgJR9Z4GjnJS3QuXPnpEKFClmmNSysCFYAQEphW4/VSwvF0BsAgJvRKxgAAIscrbEGszqPvVLQRSgyfvrnnwq6CABwxQhWACjC+KW98P3CTlMwAABFMVhPnjwp7777rowYMUJOnDhh9m3ZskUOHjzoVBEAAHBHU/C2bdukXbt2pkfw/v37pW/fvlK+fHmzqs2BAwfkb3/7mxPFAADAHTXWuLg46dWrl/zwww9m5iWv+++/X9atW+dEEQAAcE+wbt68Wfr165dlf/Xq1SUpKcmJIgAA4J5gjYiIMLNWXOr777+XSpUqOVEEAADcE6xdunSRsWPHyoULF3xzBeuz1WHDhpmJ+gNNV86pXbu2aYZu0aKFbNq0KeDXBAAEJ0eCddKkSfLrr79K5cqVzVzBrVu3luuvv14iIyPllVcCOwZLFwDQZ7yjR482vZAbNWpkJv9PTk4O6HUBAMHJkV7B2ht41apVZoUb7SGsIdukSRPTUzjQJk+ebHoh9+7d27yfNWuW/Oc//5H33ntPhg8fHvDrAwCCi6MzL91xxx1mc0paWpokJCSYsbNeoaGhJtDj4+Mvu9Sdbl7ZPRsGAOByAhas06ZNy/O5gwcPDkgZjh07Junp6VKlShW//fp+9+7d2X5m/PjxMmbMGOtlYf5bAIHAvy1BFKxTpkzxe3/06FE5e/aslCtXzjcTU6lSpcxz10AF65XQ2q0+k81cY42JiSnQMgEAio6ABeu+fft8r+fPny8zZ86UOXPmyI033mj27dmzxzz7zG58qy0VK1aUsLAwOXLkiN9+fV+1atXLDg3SDQCAQtsr+KWXXpI333zTF6pKX2utduTIkQG7bnh4uDRt2lRWr17t25eRkWHet2rVKmDXBQAEL0c6Lx0+fFguXryYZb8+/7y0NmmbNuvGxsZKs2bNpHnz5jJ16lQ5c+aMr5cwAABFLljbtm1rmnx1dRsdZqO0t27//v0DPuSmW7du5vnuqFGjzPSJjRs3lpUrV2bp0AQAgA0hHo/HIwGmwaa1Rg204sWLm31ag9WJGubNm2c6MBVW2nlJx+GeOnVKoqKiCro4AIBCngWO1Fh1PuAVK1aYuYG9w1zq1asnN9xwgxOXBwDAnRNEaJASpgAAN3MkWJ9++ukcj+v0ggAAuIEjwfrLL7/4vddVbnbs2GEmiWjTpo0TRQAAwD3BumTJkiz7dDyp9gq+7rrrnCgCAADumSAi2wuHhpoxppdOfQgAQFFWYMGq9u7dm+3EEQAAFFWONAVnntRe6dBZnY1J10XV8a0AALiFI8G6devWLM3AOrZ10qRJufYYBgCgKHEkWNesWePEZQAACI5nrDqkRofWZDdFFMNtAABu4kiwrl27VtLS0rLsP3/+vHzxxRdOFAEAgKLfFLxt2zbf6507d5rVZTIvGaeT8levXj2QRQAAwD3Bqku0hYSEmC27Jt+SJUuaBdABAHCLgAbrvn37zNCaOnXqyKZNm0xPYK/w8HCzXFxYWFggiwAAgHuCtVatWr7pCwEACAYBC9Zly5bJfffdZxY219c56dKlS6CKAQCAo0I82lYbADoJhHZW0uZefX3ZAoSEmI5Mblg1HgDgTvnJgoDVWDM3/9IUDAAIFgU6CT8AAG4TsBrrtGnT8nzu4MGDA1UMAADc8Yz12muvzVsBQkLkp59+ksKKZ6wAgJTC8IxVx7ACABBsHH/GqhXkAFWSAQAInmCdM2eONGjQQEqUKGE2ff3uu+86dXkAANyzHuuoUaNk8uTJMmjQIGnVqpXZFx8fL0OHDpUDBw7I2LFjnSgGAABFt/NSZjpHsPYS7t69u9/+BQsWmLA9duyYFFZ0XgIApOQjCxxpCr5w4YI0a9Ysy/6mTZvKxYsXnSgCAACOcCRYe/ToIW+99VaW/bNnz5Ynn3zSiSIAAOCeZ6zezkuffPKJtGzZ0rz/6quvzPPVnj17SlxcnO88fRYLAEBR5Uiw7tixQ5o0aWJe79271/ysWLGi2fRY5skiAAAoyhwJ1jVr1jhxGQAAChyT8AMAUNRqrOfPn5c333zT1FyTk5OzLCO3ZcsWJ4oBAIA7grVPnz6m49IjjzwizZs351kqAMC1HAnW5cuXy4oVK+T222934nIAALj7GWv16tUlMjLSiUsBAOD+YJ00aZIMGzZMfv75Z3HK/v37TRO0rgtbsmRJue6662T06NGSlpbmWBkAAMHHkaZgnc5QOzDVqVNHSpUqJcWLF/c7fuLECevX3L17t+kk9fbbb8v1119vxsv27dtXzpw5I6+//rr16wEA4Ngk/O3atTOzLGkNskqVKlk6L8XGxjryX+O1114zUyv+9NNPef4Mk/ADAFLykQWO1Fg3bNhglolr1KiRFCS9IeXLl8/xnNTUVLNlvpkAABSqZ6z16tWTc+fOSUH68ccfzVjafv365Xje+PHjzW8l3i0mJsaxMgIAij5HgnXChAny/PPPy9q1a+X48eOmFph5y4/hw4ebpuScNn2+mtnBgwelY8eO8uijj5rnrDkZMWKEqdl6t8TExCv6MwMAgpMjz1hDQ/8vvy99tqqX1n3p6el5/q6jR4+acM6JdpIKDw83rw8dOiR33323WVVn3rx5vrLkFc9YAQAphe0Zq81J+CtVqmS2vNCa6j333GMWVJ87d26+QxUAgPxyJFhbt2592WOZl42zSUNVa6q1atUyw2u0putVtWrVgFwTAADHFjrP7PTp07JgwQJ59913JSEhIV9NwXm1atUq02FJtxo1avgdc6D1GwAQpBxtG123bp0Zs1qtWjVTi2zTpo1s3LgxINfq1auXCdDsNgAAimyNNSkpyXQamjNnjnn4+9hjj5lxokuXLpX69esH+vIAALinxtq5c2e58cYbZdu2bTJ16lTTQ1fHkgIA4FYBrbH+97//lcGDB0v//v2lbt26gbwUAADur7GuX7/edFTS4S4tWrSQ6dOny7FjxwJ5SQAA3BusOinDO++8I4cPHzZTCS5cuFCio6PNqjPaa1dDFwAAN3Fk5qXM9uzZYzoy/f3vf5eTJ0/KvffeK8uWLZPCipmXAAAp+cgCx6ci0s5MEydOlP/9739mLCsAAG7ieI21qKHGCgBIKcw1VgAA3IxgBQDAIoIVAACLCFYAACwiWAEAsIhgBQDAIoIVAACLCFYAACwiWAEAsIhgBQDAIoIVAACLCFYAACwqZvPL3Mi7RoFOwAwACE4p/38G5GXdGoI1F97F2GNiYgq6KACAQpAJuspNTlg2LhcZGRly6NAhiYyMlJCQEHHTb1/6y0JiYiLL4TmEe+487rnzUlx6zzUqNVSjo6MlNDTnp6jUWHOhN7BGjRriVvoX301/+YsC7rnzuOfOi3LhPc+tpupF5yUAACwiWAEAsIhgDVIREREyevRo8xPO4J47j3vuvAjuOZ2XAACwiRorAAAWEawAAFhEsAIAYBHBCgCARQRrkJgxY4bUrl1bSpQoIS1atJBNmzb5jp0/f14GDBggFSpUkDJlysjDDz8sR44cKdDyuvl+z549W+6++24zeF5n8zp58mSBltUN1q1bJ507dzaz4ug9Xbp0qd9x7aM5atQoqVatmpQsWVLatWsnP/zwQ4GV1+33+8MPP5T27dubf1P0+DfffCPBhGANAosWLZK4uDjTBX7Lli3SqFEj6dChgyQnJ5vjQ4cOlY8++kgWL14sn3/+uZnC8aGHHiroYrv2fp89e1Y6duwoL774YkEX1TXOnDlj7rP+QpOdiRMnyrRp02TWrFny1VdfSenSpc1/E/2lEvbv95kzZ+SOO+6QV199VYKSDreBuzVv3twzYMAA3/v09HRPdHS0Z/z48Z6TJ096ihcv7lm8eLHv+K5du3QIlic+Pr6ASuze+53ZmjVrzH3+5ZdfCqCU7qX3dMmSJb73GRkZnqpVq3pee+013z79ex8REeFZsGBBAZXSvfc7s3379pnjW7du9QQTaqwul5aWJgkJCabpK/P8x/o+Pj7eHLtw4YLf8Xr16knNmjXNcdi933Devn37JCkpye+/ic75qk30/DdBIBCsLnfs2DFJT0+XKlWq+O3X9/qPjW7h4eFSrly5bI/D7v2G87z3nf8mcArBCgCARQSry1WsWFHCwsKy9PLV91WrVjWbNl9e2jPVexx27zec573v/DeBUwhWl9Nm3qZNm8rq1av9Fm/X961atTLHihcv7nd8z549cuDAAXMcdu83nHfttdeaAM3830QX49bewfw3QSCw0HkQ0KEfsbGx0qxZM2nevLlMnTrVdIfv3bu36cTRp08fc0758uXN2MpBgwaZf3BatmxZ0EV33f1W3mfbP/74o3m/fft2iYyMNB3G9L8B8u/XX3/13U9vhyUdO6n3U+/rc889J3/+85+lbt26JmhfeuklMwaza9euBVput97vEydOmF/Odeie95d15W0lc72C7pYMZ7z55puemjVresLDw81wkI0bN/qOnTt3zvPss896rrnmGk+pUqU8Dz74oOfw4cMFWl433+/Ro0ebIQiXbnPnzi3QMhdl3qFLl26xsbG+ITcvvfSSp0qVKmaYTdu2bT179uwp6GK79n7PnTs32+P6dz8YsGwcAAAW8YwVAACLCFYAACwiWAEAsIhgBQDAIoIVAACLCFYAACwiWAEAsIhgBYLUvHnzsqxqBODqEaxAIdSrVy8JCQnxbRUqVJCOHTvKtm3brF2jW7du8v3330sg1K5d20zlmF933323mX4QKMoIVqCQ0iA9fPiw2XQC+WLFislvf/tba99fsmRJqVy5srXvA/B/CFagkIqIiPBNWt64cWMZPny4JCYmytGjR33nDBs2TG644QYpVaqU1KlTx0wuf+HCBd/xb7/9Vu655x4zyb8usKAr73z99dfZNgXndO6ldCbUl19+2Uy4ruXUCe0HDx7sq3X+/PPPMnToUF+NWx0/fly6d+8u1atXN+Vt2LChLFiwwK+W/vnnn8sbb7zh+9z+/fvNsR07dsh9990nZcqUMQuU9+jRwywqDxRGBCtQRFYT+cc//iHXX3+9aRb20hDUgNy5c6cJpHfeeUemTJniO/7kk09KjRo1ZPPmzZKQkGDCWZcJzE5+zv3Xv/5lrvP222/LDz/8IEuXLjVBqT788EPzPWPHjvXVuNX58+dNWP/nP/8xQfm73/3OBOSmTZvMcS2/rqrUt29f3+diYmLMWsFt2rSRW265xQT9ypUrzVqqjz32mNV7DFhT0KsAAMhKVwkJCwvzlC5d2mz6f9Vq1ap5EhIScvzca6+95mnatKnvfWRkpGfevHnZnqsrkJQtWzZP515q0qRJnhtuuMGTlpaW7fFatWp5pkyZkuv3dOrUyfP888/73rdu3dozZMgQv3PGjRvnad++vd++xMREc09YoQaFETVWoJDSZlld41I3rdV16NDBNIdqM6vXokWL5PbbbzfNxdpMOnLkSLMOZua1YZ955hlp166dTJgwQfbu3XvZ6+Xn3EcffVTOnTtnmp+1hrlkyRK5ePFijn+e9PR0GTdunKnZ6rqdWt6PP/7Yr7zZ0SbqNWvWmPO9W7169cyxnMoIFBSCFSikSpcubZp+dbv11lvl3XffNQuma3Ovio+PN823999/vyxfvly2bt0qf/rTnyQtLc33Hfoc9LvvvpNOnTrJZ599JvXr1zchmJ38nKtNtLp49cyZM00nqGeffVbuuusuv+e7l3rttddMc68+F9ag1F8Y9JeFzOW9XDN4586dfb9keDdtgtZrAoVNsYIuAIC80c48oaGhpqaoNmzYILVq1TJh6pW5NuulnZt0085E2nlo7ty58uCDD2Z7jfycq4GqgafbgAEDTC1y+/bt0qRJEwkPDzc11My+/PJLeeCBB+Spp54y7zMyMsxwHw1wr+w+p9+nz3R1CI/2jAYKO2qsQCGVmpoqSUlJZtu1a5cMGjTIV3tTdevWNc2oCxcuNE2i06ZN86thagAPHDhQ1q5dawJXg007Jt10001ZrpWfc5V2mJozZ47phPTTTz+ZjlUatBr0SkNw3bp1cvDgQV/vXS3vqlWrzC8E+ufp16+f6YSUmX7uq6++Mr2B9XMavhraJ06cMEGvZdI/qzYh9+7dO0sIA4VCQT/kBZB95yX9v6d3045Ft956q+eDDz7wO++FF17wVKhQwVOmTBlPt27dTIchb4ek1NRUz+OPP+6JiYnxhIeHe6Kjoz0DBw70nDt3LkvnpdzOvdSSJUs8LVq08ERFRZnOVS1btvR8+umnvuPx8fGem2++2RMREWHKr44fP+554IEHTFkrV67sGTlypKdnz55mn5d2RtLvKlmypPncvn37zP7vv//e8+CDD3rKlStnjtWrV8/z3HPPeTIyMqzfe+Bqhej/FHS4AwDgFjQFAwBgEcEKAIBFBCsAABYRrAAAWESwAgBgEcEKAIBFBCsAABYRrAAAWESwAgBgEcEKAIBFBCsAABYRrAAAiD3/HzVMPzd9GzqfAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] }, "metadata": {}, "output_type": "display_data" @@ -218,24 +246,11 @@ "ax.bar(x=bases, height=state.imag, color=colors[3])\n", "ax.set(xlabel=\"Basis state\", ylabel=\"Amplitude (imag)\", ylim=[-np.pi, np.pi]);" ] - }, - { - "cell_type": "code", - "outputs": [], - "source": [], - "metadata": { - "collapsed": false, - "ExecuteTime": { - "end_time": "2024-10-23T03:09:27.947044Z", - "start_time": "2024-10-23T03:09:27.920107Z" - } - }, - "execution_count": 26 } ], "metadata": { "kernelspec": { - "display_name": "frostenv", + "display_name": ".venv", "language": "python", "name": "python3" }, @@ -249,7 +264,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.10.14" + "version": "3.12.9" } }, "nbformat": 4, diff --git a/examples/adiabatic_sigmoid.ipynb b/examples/adiabatic_sigmoid.ipynb index 5b6d83b..11df138 100644 --- a/examples/adiabatic_sigmoid.ipynb +++ b/examples/adiabatic_sigmoid.ipynb @@ -11,7 +11,7 @@ "In this example, the Hamiltonian $ H(t) $ is adjusted over time using a sigmoid function:\n", "\n", "1. **Initial Hamiltonian, $ H_z $:** Encodes the initial ground state. Here, $ H_z = I \\otimes Z + Z \\otimes I $.\n", - "2. **Target Hamiltonian, $ H_{xx} $:** Represents the desired end state. Here, $ H_{xx} = X \\otimes X $, which applies $X$-basis interactions.\n", + "2. **Target Hamiltonian, $ H\\_{xx} $:** Represents the desired end state. Here, $ H\\_{xx} = X \\otimes X $, which applies $X$-basis interactions.\n", "\n", "The time-dependent Hamiltonian is given by:\n", "\n", @@ -19,9 +19,9 @@ "H(t) = -(1 - \\text{sigmoid}) \\cdot H_z - \\text{sigmoid} \\cdot H_{xx}\n", "$$\n", "\n", - "where $\\text{sigmoid} = \\frac{1}{1 + e^{-0.5 \\cdot (t - 10)}}$ is a sigmoid function that smoothly shifts the weight from $ H_z $ to $ H_{xx} $ as $ t $ progresses. Initially, $ H_z $ dominates; over time, the system increasingly aligns with $ H_{xx} $.\n", + "where $\\text{sigmoid} = \\frac{1}{1 + e^{-0.5 \\cdot (t - 10)}}$ is a sigmoid function that smoothly shifts the weight from $ H*z $ to $ H*{xx} $ as $ t $ progresses. Initially, $ H*z $ dominates; over time, the system increasingly aligns with $ H*{xx} $.\n", "\n", - "In this setup, a **two-qubit system** evolves under the `AnalogGate` defined by $ H(t) $ over 30 units of time. The gradual transition led by the sigmoid function allows the state to evolve gently towards the target ground state of $ H_{xx} $, which is captured by `measure()` at the end, approximating the desired solution." + "In this setup, a **two-qubit system** evolves under the `AnalogGate` defined by $ H(t) $ over 30 units of time. The gradual transition led by the sigmoid function allows the state to evolve gently towards the target ground state of $ H\\_{xx} $, which is captured by `measure()` at the end, approximating the desired solution.\n" ] }, { @@ -35,20 +35,20 @@ }, "outputs": [], "source": [ - "import numpy as np\n", - "import matplotlib.pyplot as plt\n", - "import seaborn as sns\n", "import itertools\n", "import warnings\n", - "warnings.filterwarnings(\"ignore\")\n", "\n", - "from oqd_core.interface.math import *\n", - "from oqd_core.interface.analog.operator import *\n", - "from oqd_core.interface.analog.operation import *\n", - "from oqd_core.backend.metric import *\n", + "import matplotlib.pyplot as plt\n", + "import numpy as np\n", + "import seaborn as sns\n", + "from oqd_analog_emulator.qutip_backend import QutipBackend\n", + "from oqd_core.backend.metric import Expectation\n", "from oqd_core.backend.task import Task, TaskArgsAnalog\n", + "from oqd_core.interface.analog.operation import AnalogCircuit, AnalogGate\n", + "from oqd_core.interface.analog.operator import PauliI, PauliX, PauliY, PauliZ\n", + "from oqd_core.interface.math import MathStr\n", "\n", - "from oqd_analog_emulator.qutip_backend import QutipBackend" + "warnings.filterwarnings(\"ignore\")" ] }, { @@ -62,12 +62,12 @@ }, "outputs": [], "source": [ - "X, Y, Z, I = PauliX(), PauliY(), PauliZ(), PauliI()" + "X, Y, Z, I = PauliX(), PauliY(), PauliZ(), PauliI() # noqa: E741" ] }, { "cell_type": "code", - "execution_count": 5, + "execution_count": 3, "metadata": { "ExecuteTime": { "end_time": "2024-10-30T18:40:00.866512Z", @@ -136,7 +136,26 @@ "start_time": "2024-10-23T02:59:22.762646Z" } }, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1/1] Cythonizing qtcoeff_4c40d521ad5adc5cbe1184ce8eeeca.pyx\n", + "running build_ext\n", + "building 'qtcoeff_4c40d521ad5adc5cbe1184ce8eeeca' extension\n", + "\"C:\\Program Files\\Microsoft Visual Studio\\2022\\Community\\VC\\Tools\\MSVC\\14.42.34433\\bin\\HostX86\\x64\\cl.exe\" /c /nologo /O2 /W3 /GL /DNDEBUG /MD -Id:\\work\\Projects\\equilux\\.venv\\Lib\\site-packages\\qutip\\core\\data -Id:\\work\\Projects\\equilux\\.venv\\Lib\\site-packages\\numpy\\core\\include -Id:\\work\\Projects\\equilux\\.venv\\include -IC:\\Users\\Salieri\\AppData\\Roaming\\uv\\python\\cpython-3.12.9-windows-x86_64-none\\include -IC:\\Users\\Salieri\\AppData\\Roaming\\uv\\python\\cpython-3.12.9-windows-x86_64-none\\Include \"-IC:\\Program Files\\Microsoft Visual Studio\\2022\\Community\\VC\\Tools\\MSVC\\14.42.34433\\include\" \"-IC:\\Program Files\\Microsoft Visual Studio\\2022\\Community\\VC\\Tools\\MSVC\\14.42.34433\\ATLMFC\\include\" \"-IC:\\Program Files\\Microsoft Visual Studio\\2022\\Community\\VC\\Auxiliary\\VS\\include\" \"-IC:\\Program Files (x86)\\Windows Kits\\10\\include\\10.0.22621.0\\ucrt\" \"-IC:\\Program Files (x86)\\Windows Kits\\10\\\\include\\10.0.22621.0\\\\um\" \"-IC:\\Program Files (x86)\\Windows Kits\\10\\\\include\\10.0.22621.0\\\\shared\" \"-IC:\\Program Files (x86)\\Windows Kits\\10\\\\include\\10.0.22621.0\\\\winrt\" \"-IC:\\Program Files (x86)\\Windows Kits\\10\\\\include\\10.0.22621.0\\\\cppwinrt\" /EHsc /Tpqtcoeff_4c40d521ad5adc5cbe1184ce8eeeca.cpp /Fobuild\\temp.win-amd64-cpython-312\\Release\\qtcoeff_4c40d521ad5adc5cbe1184ce8eeeca.obj\n", + "\"C:\\Program Files\\Microsoft Visual Studio\\2022\\Community\\VC\\Tools\\MSVC\\14.42.34433\\bin\\HostX86\\x64\\link.exe\" /nologo /INCREMENTAL:NO /LTCG /DLL /MANIFEST:EMBED,ID=2 /MANIFESTUAC:NO /LIBPATH:d:\\work\\Projects\\equilux\\.venv\\libs /LIBPATH:C:\\Users\\Salieri\\AppData\\Roaming\\uv\\python\\cpython-3.12.9-windows-x86_64-none\\libs /LIBPATH:C:\\Users\\Salieri\\AppData\\Roaming\\uv\\python\\cpython-3.12.9-windows-x86_64-none /LIBPATH:d:\\work\\Projects\\equilux\\.venv\\PCbuild\\amd64 \"/LIBPATH:C:\\Program Files\\Microsoft Visual Studio\\2022\\Community\\VC\\Tools\\MSVC\\14.42.34433\\ATLMFC\\lib\\x64\" \"/LIBPATH:C:\\Program Files\\Microsoft Visual Studio\\2022\\Community\\VC\\Tools\\MSVC\\14.42.34433\\lib\\x64\" \"/LIBPATH:C:\\Program Files (x86)\\Windows Kits\\10\\lib\\10.0.22621.0\\ucrt\\x64\" \"/LIBPATH:C:\\Program Files (x86)\\Windows Kits\\10\\\\lib\\10.0.22621.0\\\\um\\x64\" /EXPORT:PyInit_qtcoeff_4c40d521ad5adc5cbe1184ce8eeeca build\\temp.win-amd64-cpython-312\\Release\\qtcoeff_4c40d521ad5adc5cbe1184ce8eeeca.obj /OUT:build\\lib.win-amd64-cpython-312\\qtcoeff_4c40d521ad5adc5cbe1184ce8eeeca.cp312-win_amd64.pyd /IMPLIB:build\\temp.win-amd64-cpython-312\\Release\\qtcoeff_4c40d521ad5adc5cbe1184ce8eeeca.cp312-win_amd64.lib\n", + "copying build\\lib.win-amd64-cpython-312\\qtcoeff_4c40d521ad5adc5cbe1184ce8eeeca.cp312-win_amd64.pyd -> \n", + "[1/1] Cythonizing qtcoeff_48c14ae02a35a794064262699a8766.pyx\n", + "running build_ext\n", + "building 'qtcoeff_48c14ae02a35a794064262699a8766' extension\n", + "\"C:\\Program Files\\Microsoft Visual Studio\\2022\\Community\\VC\\Tools\\MSVC\\14.42.34433\\bin\\HostX86\\x64\\cl.exe\" /c /nologo /O2 /W3 /GL /DNDEBUG /MD -Id:\\work\\Projects\\equilux\\.venv\\Lib\\site-packages\\qutip\\core\\data -Id:\\work\\Projects\\equilux\\.venv\\Lib\\site-packages\\numpy\\core\\include -Id:\\work\\Projects\\equilux\\.venv\\include -IC:\\Users\\Salieri\\AppData\\Roaming\\uv\\python\\cpython-3.12.9-windows-x86_64-none\\include -IC:\\Users\\Salieri\\AppData\\Roaming\\uv\\python\\cpython-3.12.9-windows-x86_64-none\\Include \"-IC:\\Program Files\\Microsoft Visual Studio\\2022\\Community\\VC\\Tools\\MSVC\\14.42.34433\\include\" \"-IC:\\Program Files\\Microsoft Visual Studio\\2022\\Community\\VC\\Tools\\MSVC\\14.42.34433\\ATLMFC\\include\" \"-IC:\\Program Files\\Microsoft Visual Studio\\2022\\Community\\VC\\Auxiliary\\VS\\include\" \"-IC:\\Program Files (x86)\\Windows Kits\\10\\include\\10.0.22621.0\\ucrt\" \"-IC:\\Program Files (x86)\\Windows Kits\\10\\\\include\\10.0.22621.0\\\\um\" \"-IC:\\Program Files (x86)\\Windows Kits\\10\\\\include\\10.0.22621.0\\\\shared\" \"-IC:\\Program Files (x86)\\Windows Kits\\10\\\\include\\10.0.22621.0\\\\winrt\" \"-IC:\\Program Files (x86)\\Windows Kits\\10\\\\include\\10.0.22621.0\\\\cppwinrt\" /EHsc /Tpqtcoeff_48c14ae02a35a794064262699a8766.cpp /Fobuild\\temp.win-amd64-cpython-312\\Release\\qtcoeff_48c14ae02a35a794064262699a8766.obj\n", + "\"C:\\Program Files\\Microsoft Visual Studio\\2022\\Community\\VC\\Tools\\MSVC\\14.42.34433\\bin\\HostX86\\x64\\link.exe\" /nologo /INCREMENTAL:NO /LTCG /DLL /MANIFEST:EMBED,ID=2 /MANIFESTUAC:NO /LIBPATH:d:\\work\\Projects\\equilux\\.venv\\libs /LIBPATH:C:\\Users\\Salieri\\AppData\\Roaming\\uv\\python\\cpython-3.12.9-windows-x86_64-none\\libs /LIBPATH:C:\\Users\\Salieri\\AppData\\Roaming\\uv\\python\\cpython-3.12.9-windows-x86_64-none /LIBPATH:d:\\work\\Projects\\equilux\\.venv\\PCbuild\\amd64 \"/LIBPATH:C:\\Program Files\\Microsoft Visual Studio\\2022\\Community\\VC\\Tools\\MSVC\\14.42.34433\\ATLMFC\\lib\\x64\" \"/LIBPATH:C:\\Program Files\\Microsoft Visual Studio\\2022\\Community\\VC\\Tools\\MSVC\\14.42.34433\\lib\\x64\" \"/LIBPATH:C:\\Program Files (x86)\\Windows Kits\\10\\lib\\10.0.22621.0\\ucrt\\x64\" \"/LIBPATH:C:\\Program Files (x86)\\Windows Kits\\10\\\\lib\\10.0.22621.0\\\\um\\x64\" /EXPORT:PyInit_qtcoeff_48c14ae02a35a794064262699a8766 build\\temp.win-amd64-cpython-312\\Release\\qtcoeff_48c14ae02a35a794064262699a8766.obj /OUT:build\\lib.win-amd64-cpython-312\\qtcoeff_48c14ae02a35a794064262699a8766.cp312-win_amd64.pyd /IMPLIB:build\\temp.win-amd64-cpython-312\\Release\\qtcoeff_48c14ae02a35a794064262699a8766.cp312-win_amd64.lib\n", + "copying build\\lib.win-amd64-cpython-312\\qtcoeff_48c14ae02a35a794064262699a8766.cp312-win_amd64.pyd -> \n" + ] + } + ], "source": [ "backend = QutipBackend()\n", "results = backend.run(task=task)" @@ -154,8 +173,10 @@ "outputs": [ { "data": { - "text/plain": "
", - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAgoAAAESCAYAAACcrP0+AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAABQ4ElEQVR4nO3deVwV57348c+cc4DDvu+oCIogIiqucUmiiTHGrLVtctssjUmT2xp7b2uSn2l7m960zW3U26ZNe9Mkjdls9l2zGCVqNHFDQUBZBQTZDvvO2eb3B0JEDwp6YEC+79eLBGae88yXr8PhyzPPPKOoqqoihBBCCOGATusAhBBCCDF8SaEghBBCiD5JoSCEEEKIPkmhIIQQQog+SaEghBBCiD5JoSCEEEKIPkmhIIQQQog+GbQO4GLZ7XasVis6nQ5FUbQORwghhBgxVFXFbrdjMBjQ6c4/ZjBiCwWr1UpmZqbWYQghhBAjVlJSEq6urudtM2ILhe4KKCkpCb1e75Q+bTYbmZmZTu3zciG5cUzy0jfJjWOSl75JbhwbjLx093mh0QQYwYVC9+UGvV7v9BNqMPq8XEhuHJO89E1y45jkpW+SG8cGIy/9uXQvkxmFEEII0ScpFIQQQgjRJykUhBBCCNEnKRSEEEII0ScpFIQQQgjRJykUhBBCCNGnEXt7pBBCCHGmVnMHbZYO7KqKl6s7Hi5uw3blXruqUtfWRLO5DavNhoeLG37u3ni6GrUO7RxOLxQ6Ozv57W9/y7Zt2zAajdx7773ce++9DtseO3aM3/zmN+Tl5TFhwgR++9vfMmXKFGeHJIQQop/MNisFtWWUNFRhammgzdKOTtHh4WIk1DuAaL8wYgLC0eu0X+egubONzMoTZFWdoKS+kmZze6/9Hi5uRPuHkRAczfSIifgYPTWKtEtLZzuHy/PIqiriRF05ZpvlnDbBnr5MDBzDjMg4JgRGolO0H/h3eqHw1FNPkZWVxcsvv0x5eTmPPvooERERLFu2rFe7trY2fvzjH3PjjTfyP//zP7z++us88MADfPHFF3h4eDg7LCGEEOdR3lTD9oJDZFaeoNPBL7Azebi4MTV8Aouik4nyDR6iCL9V1mhi54kjpJXnYbPbeu1z07ugKAodVjNtlk6OVZdwrLqE97J3MzUshiUTZhLtHzak8ZY31fDliSOkncrFeka8Bp0eHzdPDDo9bZYOWsztmFobMbU28vXJLAI9fFkcO4OZEZOGNN6zObVQaGtr4+233+b5558nMTGRxMRE8vPz2bx58zmFwieffIKbmxuPPPIIiqLwy1/+kt27d/PZZ59x2223OTMsIYTQVLulk4LaU5Q31VDb1oipvoa8zHqCvfyI8A4iNjACN8P519sfLPXtzXySu48DpcdQT2/zN3oRGxhFhE8gXq7u2FWV5s42TjXVUFBbRou5nX0ns9l3MpsJgVHcMGkusYGRgx5rTWsjW3K+5nB5Xs+2KN8QpoXHEhc0lnDvQNwMLkDXyEhlcy0FtadIr8inuL6SjMpCMioLiQsaw80JCxjjFzKo8da1NfFJ7j4Olh3vyW2UbwgpEXEkhIwj1CsA/RlLKLeZOyiqr+BoZSHpFQXUtjXyduaXfJq7j2keUUwb1Gj75tRCIScnB6vVyvTp03u2paSk8Oyzz2K323utKZ2RkUFKSkrP9SNFUZgxYwbp6emaFQpWm42S5iY8qqvw8/AkxNu71z+iEEL0l121k1VVxNclWeSYSrCraq/9haXVPZ/rFR0Tg8Ywd+xkkkJjcNEP/vSxdksnOwrS+PLEESx2KwDTwidydex0ov3C+ry2b1ftFNaWs7ckk/SKAgpqy3j663eYHBLNivgrBmWEoaWznc/zD7Cn+Cg21Y4CTI+I46qY6X2ODrjqDYz1C2WsXyiLY2dQ0VxLamEah8pyyaspZf1XrzMzMp4V8fMI8PBxarxt5g62FRxkd1FGzwhCcvgEFsfMINq/79x6uBpJDB1PYuh4bku8kv2lx0gtPExdexN7zPncaFuMuwZLWzv1bDSZTPj7+/d6ElVQUBCdnZ00NDQQEBDQq+2ECRN6vT4wMJD8/PwBHdNms124UT+9uP9r3svOgOwMAFx0OiJ8/YgODCQmMKjnI8DD84ITZNrMZmpaW6hpaaGmtZU2ixkPF1d83Y2M9Q8gxGtkFSHdeXZmvi8Hkpe+jdbcqKpKdnUxn+R+Q0VLXc/2YE8/ov3C8Dd6UVNdQ0BwIHUdzRTXV1DX3kyOqYQcUwleru5cGZ3M/HFJuLu4OT0+q93G1yez2FZwkFZzBwDj/cO5KX5+zy9du91+3j5i/MOJ8Q9nxaR5fFFwiP1lxzhWXcyx6mKmh0/k+rg5BHv6DTi2s88Zi83KVyVH+aLgEB1WMwDxQWNZEX8FkT5BvdpeSIiHH7cnLWFp7Cy25u3jcHkeh07lkF6Rz4JxSVwTm4Knq/uAYz6T1WZjz8lMvig4SJulE4AJAZHcGH8FY/1CgQvntptB0TF/7BTmRiVwsCyHsrIydKritJ+ngfTj1EKhvb39nMdVdn9tNpv71fbsdhfizEdN+5othHt40ma10mqxYLHbKamvo6S+jl0F3xYwngYD4R5eBBqNGHQ6VKDNYqHFaqHJ3Emj2UznBf4RXHU6xnn7EO3ty3gfX8Z4eeEyDCYHXYg82tsxyUvfRlNuWm2dfN2QT3lnAwCuip6JHmHEeYbhY3AHFWiHcO8o6IBI3JniF0yTdzsn2kwUtFXRYm5na94+tuUfJN4znMmekRj1Lpccm6qqlHTUcripmGZbV4HgY3AnxTuaMcYAGkoqSS+pHHC/cfgTFjyD9OaTFLWbOFKRT3pFARM9Qkn2HoOHfuDFztGjRynuqOFwUzEttq5fuAEGT1J8oolw9cd0ogwTZQPut1sSIYQHuZPWVEyluZGdRensLc4kySuKBM8IDAN8L7arKiUdNRxuKqHldG79DB6k+EQT6eZPXXEFdVRcdLxGYIJHKFlZWRfdx6VwaqHg5uZ2zi/67q+NRmO/2p7d7kKc+djNJJuNSZkBJCUloeh0VDc3c7K+jqK6Gk7U1lBUW0NZQwOtVisFTQ0UNJ2/P09XVwI9vQjy9MLT1ZV2i5natlbKGhow22zkNzaQ39gAgF6nIyYwiITQMKL8/Aj28sbDxRW9TqHDYqW5s+P0RyetnZ20mM10Wi24GVzwdHEl3NeXsf7+xIeEYXS59DeVs8njXx2TvPRtNOVGVVUOnsphy7EDdFjNGHR6roxOZnHsDDxcer+n9ZWXKwGb3caRigK2F6ZR1VJHZksZOW2VzBubyFXjp+Hv7n1R8eXXlLE17xtKGqoA8HJ1Z9nEOcwdM9lpI5uLmMepJhNbc/dx3FRCXlslRR01zBubyIJxSf0aYei0mPn44JfkW2qobq0HwNfNk+WT5jIzcpLT7wBYoi4gp+YkW3K+pry5lsPNJeR1VjNvbCJXjJmCn7vXeV/fbunkcHkeO4vSqWlrBMDHzYPr4+YyOyreafEO5mOm+8OphUJoaCj19fVYrVYMhq6uTSYTRqMRHx+fc9rW1NT02lZTU0NIyMAmlwzmY6Yj/f2J9PdnXkxsz75Oq5XiulqKamqobG7qmXHrY3THz92dQE8vgr26igN3V8eTk2x2Oyfr6zhafoqjp8rIqjhFXVsb+aZq8k3VDl/TXwadjoTQcFLGjmPOuGhig4Kdeh+xPP7VMclL3y733DR1tPLG0R1kVRUBMM4vlB9OW0qod8B5X+coL3q9njljJzNrTAKZlYV8kX+Qk43V7C7OYG9JJrPGJHBldDKR/ZgHYFftHK8uIbXwMPm1XX99u+oNLI5NYXHsDIyDMHlyrH8Y/z73FgpqT/Hx8b0U1VewuziD3cUZxAZEMiV0PDEBEYR4+WM0uGJX7TR0tHCyoYrcmlIyygtot3aNILgbXLkqdgaLY2b0TFAcDFPCYpgcOp60U7lszfmauvZmvig4xPaCQ0T7hxMfPJYInyC83TzQKzqazW1UNddTUHeKHNPJnt8BHi5GroqZxtWDGK9WP0tOLRQSEhIwGAykp6czc+ZMANLS0khKSuo1kREgOTmZ559/HlVVURQFVVU5fPgwDz74oDNDcjo3g4FJIaFMCgm96D70Oh3jA4MYHxjEzUnJqKpKVXMTx6sqya2qpLK5CVNLC50WC1a7HTeDAR+jO95GN7zdjHi5ueHl5oabwUCn1UpTRwenGhoorDFR3dJMZsUpMitO8dL+rwn09GT2uPHMGRfNjKixfRYvQoiBO3wqj7cyv6TN0oFe0XH9pLksiU255L/SdYpCcvgEpobFkltzkm35hyioLeu50yDCO5CksFhiAiII9fLH280DFWjubKWiuZZcUylHKwupb28GQK/TM3/cFK6dMAvfIVhLYEJgJP8x/7scry5hd3EGx6uLKaw7RWHdqQu+1kPnyuKJM1k4fuqgzNFwRKcozIqKZ0bERI5WnmB3UTqFdeUU1VdQVH/+SwZhXgHMH5fE3LGJg1rQaMmphYK7uzu33HILjz/+OH/4wx+orq7mxRdf5MknnwS6Rhe8vb0xGo0sW7aMjRs38vvf/57bb7+dN954g/b2dq6//npnhjQiKIpCmI8vYT6+XD3x4u+XVVWViqZGDpee5EBJMUfKTlLb2sqnx7L49FgWLjo9SRGRzBoXzTj/AEJ9fPBzd8fdxRWXy/gvPiGcrbmzjbczd5Je0TV3KconmB9OX0rE6Ql2zqIoCvHB44gPHseJunK+PHGErKoiyptrKW+uveDrPVzcmB2VwFUx050+s/9CFEVhcmg0k0OjqWtrIquqiGPVxZxqqqGxo6WnnYvOQKiXP7GBkSSGRNNy0sT02Oma/OWs1+mZHjGR6RETqW9vJruqiOL6Siqba2mzdGKz2/B08yDQ3ZvxARFMCh5DhHfQsF390Vmcfg/OunXrePzxx7n77rvx8vLioYceYunSpQAsWLCAJ598kttuuw0vLy/+8Y9/8Jvf/Ia33nqLSZMm8dxzz8liS5dAURQifP2I8PVjxZSpmK1WMsrLOFBczP6Soq4iouwkh8tOnvNaF50eD1dXfIxGfNzd8Xf3YFxAILFBwSRHRuE5CPMehBhpVFXlcHke72TtotXctWLh0omzuG7irEFfqTAmIIKYgAjazB0crSwkv7as646JtmZsatdMeoNOT5CHLzEBEcQHj2Vy6Hhch+BWywsJ8PBh0fhkFo1PBrrWOLDYLCgouJ+xzLLNZiO9tOZ8XQ0Zf3dvFkRPZUH0VK1D0ZzTzyB3d3f++Mc/8sc//vGcfbm5ub2+njp1Ku+//76zQxCnuRoMzBobzayx0fxEvZKyhnr2lxSTWV5GRVMTVU1NtFm6JpRa7DYaO9pp7GiHhq5JRHtOFABdw3KJYeHEuXsSb7HgKaMPYhhqNbdT09rYs6qgt5sHfkYvpw1fVzTX8kH2Vxw3lQAQ4RPED5KvHfRFe87m4Wpk7thE5o5NBLrmInRYLegUBVe9YVgs+XshrnrDsChgRP/Iv9QooSgKY/wDGOMfwMppM3q2W2022i0W2i1mWs1mmjo6aOrowNTSTFFtDccrKyipryOzopxM4LOyEm6cMpWV01Lwdb+0e46FuBSqqlJUX8GhU7lkVxX1XI8/W4C7N1G+IYz1C2GcXxhj/UIHVDx0Lxd8sCwHFRX96VGEayfOGvBtdIOh6zkMQ3MtX4xOUiiMcga9Hm+9Hu/z3JZa2dTIl3m5fJB+mLrODt44fIgPjmZwU1JXweAvl4vEECusPcWHx/dSfNZEM1+jF+4GV1RUmjvbabN0UNfeTF17M0crCwFQgDDvQMb5hTLOP4xo/zACPXxx07tgV1XaLB1UNNdSVNe1lG5p47d3IiWHxXLT5AUXtZiQECOVFArigsJ8fPne9BQmoKPTz5d/HT5Ivqmat46k8VFmBjdOSea706VgEIOv3dLJe9m72V96DOiafDYzMo5p4ROJDYw855a/NksnpxpNlDZWU9JQSUl9JXXtzVQ011LRXMu+0/0AKCio9F5mGbouvU0Ln8jVMdMZN8QPExJiOJBCQfSbTlGYNz6G+bET2F9SxKsH95NXXcXb6Wl8nCUFgxhc5U01vHhoK9WtDQBcMXYK10+ae97b/Txc3JgYFMXEoKiebU0drRSfLhpKGiopaaim02ruVSQEevgS5RNEQkg0U8LG4+Om7eOJhdCSFApiwBRFYW50DHPGjedASTGvHtxH7umC4aOsDK6eOIkbEpOYFBJ62d82JIZGXk0pzx/4mE6bBT+jF3fPWHbRTyv0MXoyNSyWqWFdC6mpqorFZqXdasag02E0uA76HQxCjCRSKIiLpigKc6LHM3tcNAdPFvPqgX3kVFfx2fFsPjueTWxQMMsSErl64iSZ+Cgu2tGKQjYd/hSb3caEwCh+lHI93m7OG7VSFAVXgwuul+liOUJcKikUxCVTFIXZ48Yza2w02RXlbMnOZHdhPoU1Jv721U7+sXc3c6NjWBo/mVljx2GQ2ytFPx2tKOTFtK3YVZXksFjumrFsSB7BLIT4lvzECadRFIUpEZFMiYjkJwuvZEduDl/kHiffVM2eEwXsOVGAn7sHS+LiuS5hMuMDnbuKnbi85NWU8tLhT7GrKrOi4vm35GtH1KPZhbhcSKEgBoWP0Z1bk6dza/J0TtSY2JZznB15OTS0t/FuxmHezThMfEgoP5o7nxljxmodrhhmTjZU8fzBLVjtNqaGxUqRIISGpFAQgy4mKJgHFwRz37z5HDxZwracY+wrPkFOdRWPfvQes8aO46ErFxPu46t1qGIYaOxo4bkDH9NpNTMxMIq7ZyyTIkEIDUmhIIaMQa9n3vgY5o2Pob6tjdfTDvBx1lEOnizhx6+/xo/nL2RFYpLcKTGKWWxWXji4labOVsK9A7lv1gqZkyCExqRMF5rw9/DgJwuv4vk77iQpIpIOq4W/7Erl99s+od1i0To8oQFVVXnzaColDZV4uLhx36wVQ/aYYSFE36RQEJqK8vNnwy0reXD+IvQ6HbsK8vmPd9+ksqlR69DEENtVlM6BsuMoKPwoZbkskyzEMCGFgtCcTlH4zrQZbLj5O/i7e3CitoafvfsWRbXD43GzYvDlmk7ywbGvALhl8gImBcsEVyGGCykUxLAxJSKSv33vDsYHBlHX1srP33+brPJTWoclBpmptYFNaZ9gV1VmRyVwVcx0rUMSQpxBCgUxrAR7ebPxlpUkhkfQ0tnJox+9R1ppidZhiUHSYTXzwsEttFk6GesXyvenLpbJrEIMM1IoiGHH22jkf268lTnjxmO22fivrR9xuPSk1mEJJ7OrKq8d2UZFcy0+bh7cN1PucBBiOJJCQQxLRhcXfnP9CuZGx2C22fj11g+lWLjMfJ63n6OVheh1elbNXIGfu5fWIQkhHJBCQQxbLno9v162nLnR46VYuMxkVBTwad5+AL6fdDXjA8I1jkgI0RcpFMSw5qo38OtlN3x7GeKTjzhSVqp1WOISlDfV8OqRbQBcOX4ac8cmahyREOJ8pFAQw56r3sB/Xd9VLHRarfzX1o/IqijXOixxEVrN7Tx/cAtmm4W4oChumbxA65CEEBcghYIYEbqLhZQxY+mwWvjllg/Ira7SOiwxABablecPbqG2rZFADx9+lLIcvU4eOS7EcCeFghgxXPUGHr/+RpIiImkzm1n30XucqDFpHZboB7uq8uqRbZyoK8fd4Mr9s27E09Vd67CEEP0ghYIYUYwuLvzuhpuJDw2jubOTRz96n5P1dVqHJS7gw2NfkV6Rj17RsWrWCiJ8grQOSQjRT1IoiBHHw9WVJ2+8hQlBwTS0t/Hoh+9R0SjPhhiudhQe5ssTRwD4wbRriQsao3FEQoiBkEJBjEhebkb+56bbGOcfQE1rC498+C7Vzc1ahyXOcqzlFFtyvwbgpoT5zIyK1zgiIcRASaEgRixfd3f+ePN3iPT1o7K5iUc+fJe61latwxKn7S3J5GBTEQDL4mZzzYSZGkckhLgYUiiIES3Q05Onbv4Ood7enGps4NGP3qOxvV3rsEa93UUZvJO9C4DFMTO4Pm6uxhEJIS6WFApixAvx9mb9zSsJ9PSkuK6W//fRe7R0dmgd1qikqiqf5u3nnaydAEz2jGDFpHnyoCchRjCnFgqqqrJhwwbmzp3L7Nmzeeqpp7Db7X22T09P5/bbb2f69Olcd911vP32284MR4wi4b6+PHXzd/Bz96CgxsSvt36E2WbVOqxRxa6qvJu9i09z9wGwbOJsZvqMlyJBiBHOqYXCpk2b2LJlC8888wx/+ctf+Pjjj9m0aZPDtiaTifvvv5/Zs2fz/vvvs2bNGp544gl27tzpzJDEKDLWP4A/3nQrnq6uZFWUs3HHF6iqqnVYo4LVbuO1I5+zuygDgJVTruK6ibOlSBDiMuDUQuGVV15hzZo1zJw5k7lz57J27Vo2b97ssO327dsJCgri5z//OdHR0dxwww3ccsstfPzxx84MSYwyMUHB/NeyFeh1OlLzc3nlwD6tQ7rstVs6+cf+Dzl0KhedouOu6dexaHyy1mEJIZzEaYVCVVUVFRUVzJo1q2dbSkoKp06dorq6+pz2Cxcu5Mknnzxne0tLi7NCEqPUjDFj+dmViwF47dB+duTmaBzR5auxo4Wnv36H3JpSXPUu/Hj2jXILpBCXGYOzOjKZupbSDQkJ6dkWFNS1+lplZWWv7QBRUVFERUX1fF1bW8vWrVt56KGHBnRcm812sSH32Zcz+7xcjLTcLJ2UQFlDPW8dSeNPO7cTHRBAdECg048z0vLiTBXNtTx38GMaOlrwdvXg/lkrGOMbck5ORmNuzkfy0jfJjWODkZeB9KWoA7iI29HRQVWV4wfxVFVVceedd5KTk9NzXdJut5OQkMDmzZuZObPve6g7Ojq49957qa2t5YMPPsDd/cJrwNtsNtLT0/sbuhiF7KrKppws8hsbCDK681DSNNz0TquNR7XKzka+rDuGWbXhY3DnmoBEvA1GrcMSQgzQtGnT0OvP/3C2Ab1rZmRkcNdddznc9/DDDwNgNptxc3Pr+Rw47y/+1tZWfvKTn1BcXMy//vWvfhUJZ0pKSrrgN9lfNpuNzMxMp/Z5uRipuYmNj+en77xBTWsL22tNPHbtMqdOsBupebkUOaYSUtO+waLaiPYP476UGxw+4Gk05qY/JC99k9w4Nhh56e6zPwZUKMyZM4fc3FyH+6qqqli/fj0mk6nnkkL35Yjg4GCHr2lpaeG+++7j5MmTvPzyy0RHRw8kHAD0er3TT6jB6PNyMdJyE+Dlxa+X3cDP33+br04UsCM/l+sSEp1+nJGWl4uVWXmCF9M+wWa3kRg6nh+lLMf1AqM0oyU3AyV56ZvkxjGt8uK0yYyhoaFERESQlpbWsy0tLY2IiIhz5idA12WJ1atXU1ZWxquvvsrEiROdFYoQvUwOC+ee2fMA+PueXVQ3N2kc0ch0tLKQfx7ais1uIzl8Aqtm3nDBIkEIMfI59fbIO+64gw0bNrB//37279/Pxo0be12qqKuro/X0WvzvvPMO+/fv53e/+x0+Pj6YTCZMJhMNDQ3ODEkIAL47PYXJYeG0mc2s3/EFdllfYUAKak/xUtqn2FU7KZFx3DPjegw6+YtPiNHAqX8OrFq1itraWlavXo1er2flypXcc889PftXrlzJrbfeykMPPcTnn3+O3W7ngQce6NXH7NmzefXVV50ZlhDodToeXrKUf39zM+mnStmSdZSbkuRe//441WjiuQMfYbXbSAqN4YfTrkOvk9XfhRgtnFoo6PV61q1bx7p16xzuT01N7fn8n//8pzMPLcQFRfn5s2reAv721U7+uW8vC2ImEODpqXVYw1pzZxvPHfiIDquZ2IAI7k65XooEIUYZ+YkXo8qNU6YSFxJKm9nMP/bu1jqcYc1mt7Mp7VPqO1oI8fTj/tk3yZwEIUYhKRTEqKLX6fjZlYvRKQqp+bkcLj2pdUjD1sc5eymoLcNN78KqWSvwcHHTOiQhhAakUBCjTlxIKDdN6Zqf8MzuL7HKKnDnyDWdJLXwMAA/mHYt4d7OX9VSCDEySKEgRqV75szDz92d0oZ6th7L0jqcYaXN0snm9C8AWDAuiWkRcuuyEKOZFApiVPJ0c+Ou2XMBePXAPlo7OzWOaPh4L2sXDR0tBHv6cvPkhVqHI4TQmBQKYtRaPjmJMf7+NHa08/rhg1qHMyzk1ZRyoOw4CvDDadfhZnDROiQhhMakUBCjll6n48dXdP3F/F7GEaqaRveKjTa7jbczdwIwP3oq4wPCNY1HCDE8SKEgRrU548YzLTIKi83Ga4f2ax2OpnYWpVPVUoeXqzsrJs3TOhwhxDAhhYIY1RRF4UdzrwBgW84xyhsbtA1IIy2d7XyedwCAmxLm4+Eqj4wWQnSRQkGMepPDIpg1Nhq7qo7aUYXtBYfosJqJ9Alm9pjJWocjhBhGpFAQArj79B0QO3JzKGuo1ziaoVXf3szu4gwAbky4Ap2iaByREGI4kUJBCGBSaBhzo2O6RhUOjq5RhU/z9mO124gNiCQheJzW4QghhhkpFIQ4rXtUITUvh5P1dRpHMzRq25o4UHoM6BpNUGQ0QQhxFikUhDhtQnAIV4yPQQXeOnxI63CGxJeFh7GrKpOCxhATEKF1OEKIYUgKBSHO8P0ZswDYkZdDdXOzxtEMrubONr452bV89bUTZ2kcjRBiuJJCQYgzTA4LJzkyCqvdznsZh7UOZ1DtLsrAYrcx1i+UiYFRWocjhBimpFAQ4izfnzETgK3ZWTR1tGsczeDotJp77nS4dsJMmZsghOiTFApCnGXmmHHEBgXTYbXwYWaG1uEMikNlubRbOgn29CUpLFbrcIQQw5gUCkKcRVEUbj89qvDB0XTaLRaNI3IuVVX56vRowoLoZFk3QQhxXlIoCOHAwtiJRPj40tTRwefHs7UOx6kK68opb67FVW9gjqzCKIS4ACkUhHBAr9Nx27QZQNeogl1VNY7IebpHE2ZGxuPh4qZxNEKI4U4KBSH6sHRSAl5ubpxqbOBASZHW4ThFY0cLGRWFACwcP1XjaIQQI4EUCkL0wd3VleWTpwDwbvoRjaNxjv2lx7CrdmL8w4n0CdY6HCHECCCFghDncXNS12S/9FOlnKgxaR3OJVFVlf2nl2ueN26KxtEIIUYKKRSEOI8Qbx8Wxk4A4L2MkT2qcKKuHFNrI656F6aFT9A6HCHECCGFghAXcFvydABS83Kpb2vTOJqL1z2aMD1iIm4GV42jEUKMFAatAxBiuEsIDSc+JJSc6iq2ZB3lztNPmRxJOq0WjpTnAzBXbokUI4zdbsdsNmsdhmZsNhsAHR0d6PX6fr/O1dUVne7SxwOkUBDiAhRF4bZpM/jDtk/5KOso30+Ziat+ZP3opFfk02mzEOzpK0+JFCOK2WymqKgIu92udSiaUVUVg8FASUnJgJZb1+l0jB8/HlfXSxtBHFnvdkJoZGHMBAI9PaltbWVPYQGL4+K1DmlA9pceB2B21GR5roMYMVRVpaKiAr1ez5gxY5zy1/FIpKoq7e3tuLu79/vn1263U15eTkVFBWPHjr2kn3unFgqqqrJx40beeecd7HY7K1euZO3atRf8x21ubmb58uX853/+J7fddpszQxLCKQx6PTdMTuKVg/v4OOvoiCoU6tubKawtA2BW1MiJWwir1UpbWxsRERF4eHhoHY5mVFXFbrdjNBoH9As/ODiY8vJyrFYrLi4uF318p5ZnmzZtYsuWLTzzzDP85S9/4eOPP2bTpk0XfN369euprq52ZihCON31iVPQ63RkVZSPqFslj5TnowIxAREEePhoHY4Q/dZ9bf5Sh85Hq+68defxYjm1UHjllVdYs2YNM2fOZO7cuaxdu5bNmzef9zWHDh1i3759BAfL4i9ieAvy9GL++K4nLX6cdVTjaPrvcHkeADMi4jSORIiLI5fLLo6z8ua0QqGqqoqKigpmzZrVsy0lJYVTp071OVpgNpv59a9/zX/9139JxShGhJuSupY93p6bQ6u5U+NoLszU2sDJhioUFKZHTNQ6HCHECOS0OQomU9dQbEhISM+2oKAgACorK3tt7/bss88yefJkFixYcNHHvdQhFUd9ObPPy4XkpktiaDhj/f05WV/PtuPHuCEhERi+eUkrywVgYlAUHga3IY1TzhnHJC99Ozs3NpsNVVV7Pkar7u99oDnozpvNZjvnfBvI+TegQqGjo4OqqiqH+9pOL0Rz5shA9+eO7n8tKCjgjTfe4KOPPhpICOfIzMy8pNcPVZ+XC8kNTPMN4GR9Pe+kHWCMxYaiKMM2L19Xd10iCbIaSU9P1ySG4ZobrUle+nZmbgwGA+3t7aP69shu7e3tA2rf2dmJxWIhJyfnko47oEIhIyODu+66y+G+hx9+GOgqCtzc3Ho+B3B3d+/VVlVVfvWrX7FmzZqeUYeLlZSUNKAFKM7HZrORmZnp1D4vF5Kbb03sTGDbqyepbm+HoECorRuWealorqWhfA96nY4Vs67CfYgfKS3njGOSl76dnZuOjg5KSkpwd3fHaDRqHd5FefXVV1m6dCmhoaH9av/uu+8yffp0YmJierZdzO2R0LWOgouLCxMmTDgnf9257o8BFQpz5swhNzfX4b6qqirWr1+PyWQiKioK+PZyxNkTFcvLyzly5Ai5ubn88Y9/BLoqpd/85jd88sknvPDCC/2OSa/XO/2HbTD6vFxIbsDHw4NrJsWzJTuTT45nc0NI+LDMS3plAQCTg6PxMmp3a9lwzM1wIHnpW3du9Ho9iqL0fIw0JSUlbNy4ke9973soisKuXbv48Y9/3Gf766+/Hh8fH/Ly8njsscfO2T/QPHS3v9RzzWlzFEJDQ4mIiCAtLa2nUEhLSyMiIuKc+QmhoaFs27at17Y777yTO++8k5tuuslZIQkxaG6cMpUt2Zl8XXyChX4BWodzDlVVe5ZsnhEpdzsIoYUdO3ZwxRVX9Pw1P2fOHPbs2dOrjd1uZ926dWRnZ/Pggw9SVVXFE0884bBQ0IpTF1y644472LBhA2FhYQBs3LiRe++9t2d/XV0dbm5ueHp6Mm7cuN6BGAwEBgb2e3hGCC3FBAUzJTyCrIpyDlZXsUjrgM5S2VKHqbUBvU5PYuh4rcMRwmlUVcVssw7pMV31hosa0dixYwe33HJLz9dGo7HXJQCbzcbatWvJzs7m5ZdfJj4+npiYGGpra8nLyyMubngU+U4tFFatWkVtbS2rV69Gr9ezcuVK7rnnnp79K1eu5NZbb+Whhx5y5mGF0MTyxCSyKso5ZKrErqoMp0HkzMoTAEwKisIoT4oUlwlVVfnz3rcpqq8Y0uPG+Ifzs/nfHVCxUFdXR0ZGBk8//bTD/TabjYcffpivv/66p0iArpsA5s+fT2pq6uVZKOj1etatW8e6desc7k9NTe3ztefbJ8RwtCh2In/fvZP6zk6OlJUyO3r4/OWeWVkIQFJYrMaRCOFcI2Wmws6dO5kyZYrDCfvdRcLevXt56aWXeoqEbkuWLOH111/nwQcfHKpwz0seCiXERXIzGFgcN4mPso7y6fHsYVMoNHa0UNLQdRvzlNCYC7QWYuRQFIWfzf/uiLj0sGvXLhYtOveipM1m45FHHukpEhISEs5pc+WVV7Ju3Trq6uoICNB+DpQUCkJcgmUJiXyUdZR9xSeob2vDfxg8uKb7skO0fxi+Rk+NoxHCuRRFwc1w8Q84GiqRkZGUlZX12tZdJOzZs4dNmzY5LBIAysrK8PHxwcdneDybZXQ+s1MIJ4kJDGKMpzdWu50vco5pHQ7wbaGQJKMJQmhmyZIl7Nq1q2ehqLOLhMmTJ/f52h07drBo0SIMhuHxt7wUCkJcolmhXXf5fHo8W/NlZtstneSdfqS0zE8QQjvTp09HVVUyMjKw2+088sgj7Nixg6eeeorg4GBMJlOvjzOXVE5NTWXJkiUaRt/b8ChXhBjBkgOD+ORkMWUN9RwtP0VyZJRmsRw3lWCz2wjx9CPUy1+zOIQY7XQ6HVdddRU7duxAp9OxZcsWAIcLLimKwqFDh/Dy8qK0tJSioiIWLlw41CH3SQoFIS6Rm97AVRMm8lnOMT49lqVpodBz2SEsdkSuZCfE5WTJkiVs3LiRtWvX9rmq8dlSU1OZM2cOXl5egxxd/8mlByGc4PrTT5HcXZhPU0eHJjHY7DaOVRUBkBQm8xOE0Nr8+fMpLy+npKSk369JTU1l8eLFgxjVwMmIghBOEBcSSkxgECdqa9iRe5xbk6cPeQwFtadot5rxdnUn2j9syI8vhOjNaBz4U1tffvnlwQnmEsiIghBOoCgK10+eAsAnx7I0mdTYfdkhMSwGnSI/2kII55B3EyGcZElcPK56PcV1teRWVw3psVVV7VmNcapcdhBCOJEUCkI4ibfRyMLYiQBsG+I1FcoaTdR3tOCqNxAXNHZIjy2EuLxJoSCEEy2N71pE5cv8XMzWoVtm9ujp0YSE4HG46mXqkRDCeaRQEMKJkiOjCPbypqWzk6+LCofsuJlV394WKYQQziSFghBOpNfpWBrftX77UF1+qG1rpLypBp2ikBgaPSTHFEKMHlIoCOFk107quvyQVnqSmpaWQT/e0dN3O8QEROLp6j7oxxNCjC5SKAjhZJF+fkwJj8CuqmzPPT7ox/t2NUa520EI4XxSKAgxCK6L71qpcVvOsUFdU6HV3E5h7SlAbosUQgwOKRSEGASLJkzEaDBQ2lDP8arKQTtOdlUxKioRPkEEevgO2nGEEKOXFApCDAIPV1cWDMGaCt2LLCWFymiCEMPRq6++SlWV8xdge+eddygsHJo7q6RQEGKQXHd6TYWd+bl0DsKaCmableOmrofNTJXbIoUYdkpKStiwYQO+vl2jfXa7nWXLlvGnP/2pV7udO3cyZcoUtm3b1mebr776iqSkJLZt2wbA0aNHefPNN4fk+5BCQYhBMjUyijBvH1rNZvaeKHB6/3k1JzHbrPgbvYjyDXZ6/0KIS7Njxw6uuOIKjEYjADqdjgceeIDNmzfT3NwMQHZ2Nv/5n//J2rVrWbp0aZ9t/t//+3/84he/YOnSpUDXI6xTU1OH5PuQQkGIQaJTFK4dxDUVjlZ+u8iSoihO71+I4UhVVdotliH9uNgJyTt27DjnkdE33ngjvr6+vPbaa5SXl/PAAw9w2223cc899/TZ5sEHH+Smm27q1WbevHnU1taSl5d3UbENhKz1KsQgunbSZF49uJ/DpSepbm4mxNvbKf3aVTvZclukGGVUVeU/3nuLY5UVQ3rcxPAI/nTrdwdUkNfV1ZGRkcHTTz/da7vBYOD+++/nz3/+M1u3biUpKYlf/vKXF2zz8MMP92rj6urK/PnzSU1NJS4u7uK/uX6QEQUhBlG4ry9TIyJRgdT8HKf1W1xfSbO5HXeDKxMCI53WrxDD3UgZPeuedxAUFHTOvhtvvJG2tjYUReF///d/0enO/VV8ZpuNGzc6bDNUlx9kREGIQXbNpASOlp9iR24O358+0ylvdN2LLE0OHY9ep7/k/oQYCRRF4U+3fpeOIXzgGoDRYBjwz+2uXbtYtGiRw31PPPEEAPX19Q4LAEdtbDbbOW2uvPJK1q1bR11dHQEBAQOKbyBkREGIQbYwdgIuej3FdbUU1pguuT9VVXueFimXHcRooygK7i4uQ/pxMcV9ZGQkZWVl52z/85//zM6dO3nrrbewWq288847F9UGoKysDB8fH3x8fAYc30BIoSDEIPNyMzIvuusXujOWdK5qqcfU2oBepycheNwl9yeEcL4lS5awa9cu7HZ7z7a33nqLTZs28eyzzxIfH8/dd9/NCy+8gMViOW+bf/7zn73adNuxYweLFi3CYBjciwNSKAgxBK6Z1HX3w5f5udjOeOO4GN2LLMUFRuHu4nbJsQkhnG/69OmoqkpGRgbQdSniv//7v9mwYQPTpk0D4Ic//CHNzc18+OGHF2yzdevWc46RmprKkiVLBv17kUJBiCEwc+w4fIxG6traOFx28pL6yqySux2EGO50Oh1XXXUVO3bsICsri//4j//g4Ycf5tprr+1p4+3tzZ133snzzz9/wTYvvfRSr3kKpaWlFBUVsXDhwsH/Xgb9CEIIXPR6rpo4CYAduRd/90NjRyvF9V3PjpBCQYjhrfuuhClTpnDkyBHuvvvuc9r87Gc/4/PPPz9vmzVr1vDBBx+g1387cTk1NZU5c+bg5eU1qN8DOLlQUFWVDRs2MHfuXGbPns1TTz3V6/rM2crLy7n//vtJTk7m2muv5ZNPPnFmOEIMK9fExQOw90QB7WbzRfWRdfpuh3F+ofgaB/8NQghx8ebPn095eTklJSVO7zs1NfWcxZwGi1NnQGzatIktW7bwzDPPYLVaefjhhwkMDGTVqlXntLVarTzwwANERUXx/vvvc+DAAR555BEmTJgw6ItHCKGF+NAwIn39ONXYwJ6iQq49PW9hILrvdpBnOwgx/BmNRtLT0wel75dffnlQ+nXEqSMKr7zyCmvWrGHmzJnMnTuXtWvXsnnzZodtd+3aRUVFBevXrycmJobbb7+dRYsWceTIEWeGJMSwoSgKSyZ1jSpczN0P7ZZO8mpKASkUhBBDx2kjClVVVVRUVDBr1qyebSkpKZw6dYrq6mpCQkJ6tT9w4ADz5s3rdX3l73//+4CP62gRiovV3Zcz+7xcSG4cG2herp4QxysH9pFeVkp1UyOBnv2/fJBVeQKbaifE048gD99h/28h54xjkpe+nZ0bm82Gqqo9H6NV9/c+0Bx0581ms51zvg3k/HNaoWAydS0kc2ZB0L10ZWVl5TmFQmlpKZGRkWzYsIEPP/wQf39/1qxZwzXXXDOg42ZmZl5i5EPT5+VCcuPYQPIyztuHkuYmNu/ayaKIqH6/7qu6rkmQIYrXoA1nDgY5ZxyTvPTtzNwYDAba29vPO99ttGhvbx9Q+87OTiwWCzk5l7Z8/IAKhY6ODqqqqhzua2trA7oeVNGt+3Ozg4lbbW1tvP/++yxfvpxnn32W/fv3s2bNGt58802SkpL6HVNSUlKvmaCXwmazkZmZ6dQ+LxeSG8cuJi83uej561c7Od7axJrT90pfiNVm440d+wG4ZupcxvmFXVzAQ0jOGcckL307OzcdHR2UlJRgNBpxd3fXOjzNqKpKe3s77u7uA1olUlEUXFxcmDBhQs+jrrt157o/BlQoZGRkcNdddznc1/1kK7PZjJubW8/ngMN/YL1ej5+fH48//jg6nY7ExEQOHTrEW2+9NaBCQa/XO/2HbTD6vFxIbhwbSF6uiovn2b1fUVRbS0l9HTFBwRd8TW5NKZ1WCz5unkQHRKAbIQ/GATln+iJ56Vt3blxdXVEUBYvFgoeHh9ZhaU5RlAEVChaLBUVRcHV1vaRzbUCFwpw5c8jNzXW4r6qqivXr12MymYiK6hpO7b4cERx87hthSEgIiqL0eiDG+PHj++xfiMuFj9HI7Oho9p4oZEdeTr8KhW/vdogZUUWCEJfCYDDg4eGByWTCxcWlzwcoXe5UVaWzsxOdTtfvQsFut2MymfDw8LjkJZ6dNkchNDSUiIgI0tLSegqFtLQ0IiIizpmfAJCcnMz//d//YbPZeiqdwsJCIiPlkbni8rckLqGnULh37nz053kDtKvqGasxyt0OYvRQFIXw8HCKiooGZS2CkUJVVSwWCy4DfECVTqdj7Nixl/zEWqeuo3DHHXewYcMGwsK6rp9u3LiRe++9t2d/XV0dbm5ueHp6smLFCv72t7/x29/+llWrVrFnzx6++uor3nrrLWeGJMSwNCc6Gm83N2pbW8k4VcaMMWP7bFtSX0lzZxvuBlcmBvV/8qMQlwNXV1cmTpzocK7baGGz2cjJyWHChAkDuoTg6urqlFEYpxYKq1atora2ltWrV6PX61m5ciX33HNPz/6VK1dy66238tBDD+Hl5cWmTZt4/PHHWbFiBREREfzpT38iMTHRmSEJMSy56g0smhDH1uxMtucdP2+h0H3ZYXLoeAw6uaYtRh+dTnfOZLzRpPtWRqPRqMm8FqcWCnq9nnXr1rFu3TqH+1NTU3t9PWHCBF577TVnhiDEiHHNpAS2Zmeyp7CAhxYtxt3F5Zw2qqpytLIAkEWWhBDaGJ0zQ4QYBhLDwgn38aXdYuHrE4UO21S21GFqbcSg05MQMm6IIxRCCCkUhNCMoigsOf2gqO15jpd0PlKeD0B88FiMBleHbYQQYjBJoSCEhrqf/XC49CS1ra3n7O8uFKaFTxzSuIQQopsUCkJoKMrPn8lh4dhVldS83susVjTXUtVSh16nJyksRqMIhRCjnRQKQmjsmj6eKHmkPA+AhOBxuLu4DXlcQggBUigIobkrJ0zCoNNxoraGEzVdq5mqqtpz2WF6hFx2EEJoRwoFITTmYzQyJ3o8ANtzuy4/dF12qMeg0zMldLyW4QkhRjkpFIQYBq6ZlADAjrwcbHb7GXc7yGUHIYS2pFAQYhiYPS4abzcjdW2tHC49SXqFXHYQQgwPUigIMQy46g1cNTEOgC3ZGXLZQQgxbEihIMQw0X354UBJCXa7KpcdhBDDghQKQgwTCaFhRPr6YbXbaWqDmVGTtA5JCCGkUBBiuFAUhRljIgFobleYEiqLLAkhtCeFghDDiNFoBaClXaWpvUPjaIQQQgoFIYYNi81KYX0J7qenJew4a0lnIYTQghQKQgwTx6qLabd0EubbVSlszz2OqqoaRyWEGO2kUBBimDhU1jWCcE1cAi56PcV1tRSeXtJZCCG0IoWCEMNAm7mDrOpiAOaPT2RedNdExrMfFCWEEENNCgUhhoG08jxsdhsR3oFE+gT3rKmQmpeLzW7XODohxGgmhYIQw8A3JVkAzB2bCMCssePwNbpT397GoZMlWoYmhBjlpFAQQmOlDdWUNZnQ6/TMiooHwKDXsziua8Glz3OytQxPCDHKSaEghMa+Odk1mpAcFounq3vP9usnTwHg66IT1Le1aRKbEEJIoSCEhsxWC4dO5QIw7/Rlh27jA4OIDwnFZrfLpEYhhGakUBBCQ+kVBXRYzQR6+DAxaMw5+7tHFT49niVrKgghNCGFghAa+vr0ZYd5YxPRKco5+6+cGIfRYKC0vp7syoqhDk8IIaRQEEIrpxpNnKgrR6cozI6a7LCNp6sbV06IA+DTY1lDGZ4QQgBSKAihmV3FGQAkh0/Az92rz3bLTl9+2F2QR6u5c0hiE0KIblIoCKGBVnM7aaeXbF4UnXzetolh4Yzx96fDamVnft5QhCeEED2kUBBCA1+fzMZitxHlE0xMQMR52yqKwvUJpyc1yuUHIcQQc2qhoKoqGzZsYO7cucyePZunnnoK+3mWnz106BC33XYb06ZN4+abb+brr792ZjhCDEs2u509RV2XHa6MmYbiYBLj2a6ZlIBepyO3uooCU/VghyiEED2cWihs2rSJLVu28Mwzz/CXv/yFjz/+mE2bNjlsW1tby4MPPsjy5cv5+OOPuf766/nJT35CZWWlM0MSYtjJrCykvqMFT1d3ZkTE9es1/h4eLIyZAMBHWUcHMzwhhOjFqYXCK6+8wpo1a5g5cyZz585l7dq1bN682WHbw4cPo9frue+++xgzZgwPPvggbm5upKenOzMkIYYVVVXZUZgGwPxxU3DRG/r92puTuuYypObl0NTRMSjxCSHE2ZxWKFRVVVFRUcGsWbN6tqWkpHDq1Cmqq88dKvXz86OhoYFt27ahqirbt2+ntbWVuLj+/YUlxEiUX1tGSUMVLjo9V46fNqDXJoZHEBMYRKfVyufH5fkPQoih0f8/Zy7AZDIBEBIS0rMtKCgIgMrKyl7bAWbOnMkPfvAD1qxZg06nw2az8eSTTxITEzOg49pstkuM/Ny+nNnn5UJy49hA87It/yAAc8ZMxsPgNuB83piYxNO7v+TjrAxunjIVvW74zkeWc8YxyUvfJDeODUZeBtLXgAqFjo4OqqqqHO5rO/3QGldX155t3Z+bzeZz2re2tlJaWsrq1au5+uqr2bZtG7/73e9ITk4mNja23zFlZmYO5FvQrM/LheTGsf7kpdbcQl5NKQoQ2n5xl9kCbTaMegMVTU28vWsn8f4BAw92iMk545jkpW+SG8e0ysuACoWMjAzuuusuh/sefvhhoKsocHNz6/kcwN3d/Zz2L7zwAqqqsnr1agASExM5evQor7zyCr/97W/7HVNSUhJ6vX4g30afbDYbmZmZTu3zciG5cWwgedl0+FMAZkRMYsG0uRd9zOWdbbx3NJ2stmZuv3rxRfcz2OSccUzy0jfJjWODkZfuPvtjQIXCnDlzyM3NdbivqqqK9evXYzKZiIqKAr69HBEcHHxO++zsbOLj43ttS0hIID8/fyAhodfrnX5CDUaflwvJjWMXyktZo4mjlYUowNK4WZeUw5uSpvH+0XQOlZ6kormJKD//i+5rKMg545jkpW+SG8e0yovTLnCGhoYSERFBWlpaz7a0tDQiIiLOmZ8AXXMZCgoKem07ceJET5EhxOVka+43AEyPiCPcO/CS+or082P2uPEAvJN++JJjE0KI83HqTKg77riDDRs2sH//fvbv38/GjRt7Xaqoq6ujtbUVgO9+97vs3r2bl156idLSUl566SX27NnDv/3bvzkzJCE0V1RfQXZVETpFYfmki7/kcKbvzUgBYFvOMerbWp3SpxBCOOLUQmHVqlUsX76c1atX87Of/Yybb76Ze+65p2f/ypUrefHFFwGYNm0af/3rX3n//fe56aab+Oijj3juueeYOHGiM0MSQnNbc7pWHJ0dlUCIl3MuEySFRxIfGobFZuPDzAyn9CmEEI447fZI6Lp+sm7dOtatW+dwf2pqaq+vlyxZwpIlS5wZghDDyvHqEvJqytArOpbFzXFav4qi8L3pKfz3Z1v5KDOD70+fifsZdxwJIYSzDN+bsIUY4Wx2O+9n7wZgQfRUAjx8nNr/FeNjifD1o7mzk09lASYhxCCRQkGIQbK3JJPKljo8XYxc78TRhG56nY7vTpsBdE1qNNusTj+GEEJIoSDEIGg1t/PJ6TsdlsfPw8PVOCjHWRo/mUBPT0wtzXx2TEYVhBDOJ4WCEINga843tFk6ifAO5IqxUwbtOK4GA3ekzAbgX2kHMFtlVEEI4VxSKAjhZCfqytlb0rXi2W1Trhz05zFcPzmRYC9valtb2ZotS98KIZxLCgUhnMhis/J6xg5UYO6YycQFjRn0Y7rqDfxgZteowutpB+mwWAb9mEKI0UMKBSGc6IuCQ1S11OHt5sHNkxcO2XGvi59MmI8P9e1tfHA0fciOK4S4/EmhIISTlDZU88Xpx0h/Z8qVeA7SBEZHDHo9d8+eB3SNKtS1ymqNQgjnkEJBCCfotFp4+fBn2FQ7yWGxTA8f+hVGF8fFEx8SSpvFzEsHvhny4wshLk9SKAjhBB8e30N1az2+Rk9uT16CoihDHoNOUfj3hVcC8NmxLApM1UMegxDi8iOFghCXqKS9hm9Ks1GAH05biqeru2axTA6L4OqJk1CBv+7+EruqahaLEOLyIIWCEJegsrmOPQ35ACyOTWFS8FiNI4L75i3A3cWFY5UVbM0+qnU4QogRTgoFIS5Su6WTF9O2YlVtTAiMZEX8FVqHBECItzf3zp0PwAtf78XU0qxxREKIkUwKBSEugs1u5+XDn2Fqa8RT78bd05YN+sJKA3HjlKlMDgunzWLmT1/uQJVLEEKIizR83tmEGCFUVeWtzFSOVRfjotNztX8CXm7azUtwRK/T8Z9XXYOLXs/Bk8W8L2srCCEukhQKQgzQp3n7+eZkNgoKd06/jkBXL61Dcig6MJAH5i8C4IWv98hdEEKIiyKFghADsOtEOp/l7Qfge0lXkxQao3FE53fTlKnMHx+LxW7jic+20tTRoXVIQogRRgoFIfrpy8LDvJu9C4BlcbOZH52kcUQXpigKP198LaHe3pQ3NfLEZ1uw2GxahyWEGEGkUBCiH3YUpPH+sa8AWDpxFtfHzdU4ov7zMRp54oabcXdxIf1UGU/vlMmNQoj+k0JBiPOwq3bezdrFh8f3AHDdxNncMGmeJisvXorxgUH8culydIrC5znH+NtXO6VYEEL0ixQKQvSh02rhxUOfsKsoHYCbEuazfNLcEVckdJsTPZ6fX30NAB9mZvB/e3bJyo1CiAsyaB2AEMNRVXMdL6Z9QkVzLXqdnjunLWVGZJzWYV2y6xISsdnt/GnnDt4/mk5tayuPXnMdrgZ5KxBCOCbvDkKcQVVVDp3K5c2jqZhtFnzcPPhRynJiAyO1Ds1plicm4WZwYUPqNnYX5lPV3MQvly4n3NdX69CEEMOQFApCnNbY0cKbR78kq+oEABMDo7h7xjJ8jJ4aR+Z8SybFE+TlyW8/3UJudRUPvrmZny66imsnJYzYSytCiMEhcxTEqGe129h54gh/+PJVsqpOoFd0LJ80l5/Ou/WyLBK6JUeO4dnv/4DE8AjaLGbW79jGL95/RxZmEkL0IiMKYtSy2e2kV+SzJecbatsaARjnF8odydcQ4ROkcXRDI8Tbh423rOTtI2m8dmg/mRWn+Pe3/sW86BhuT5lFQmiYjDAIMcpJoSBGnQ6rmf2lx9h54gi1bU0A+Lh5sHzSPOaOnYxOGV0DbXqdjttTZrE4bhLPf7OHXfl5fFN8gm+KTzA+MIjr4iezMHYCId4+WocqhNCAFApiVLDZbeTVlHGw7DhHKwsx26wAeLoYuTJmGlfHTMfN4KpxlNoK8fbhl0uXc9esubxx+BBf5udSVFvDs3t38+ze3UQHBDJ7XDSJ4RFMDgvHz91D65CFEENACgVxWVJVlZq2RvJryjhWXUxuTSmdVnPP/hBPP66Mmc6cqARcDS4aRjr8jPEP4OElS/n3BYv4Mj+P1LwcjlVWUFxXS3FdLRxJAyDCx5e4kFCiAwMZHxBEdGAgYT6+6ORShRCXlUEpFFRVZdWqVaxYsYLbbrutz3alpaX8+te/Jj09nYiICB577DEWLFgwGCGJy5hdValra6KypZbSRhMl9ZWU1FfSaun9ACQvV3emR0xkVlQC4/xC5dr7BXi5GblxylRunDKVpo4ODp0s5khZKccqKzhZX0d5UyPlTY1Q8O1rjAYD4wICGeMfQJSvL9aGRvzqahkTEICrXv4uEWIkcvpPrt1u5/e//z179+5lxYoVfbZTVZWf/vSnxMXF8e6777J9+3ZWr17NJ598QkREhLPDEpeBdksntW1N1LY1Ut1ST0VzHZUtdVQ112GxW89pb9DpGesbQnzIOBJCxjHGN1T+2r1IPkYji+PiWRwXD0BLZwfHqyo5UVNDcV0tRbU1nKyro8NqJbe6itzqqp7XvpZ3HJ2iEObjyxg/f8b4+zPGP6Dnc1+juxRtQgxjTi0UqqqqWLt2LWVlZfj4nH/i0759+ygtLeWNN97Aw8OD2NhYvvnmG959910eeughZ4YlhiFVVbHabVjtNix2KxabjTZLB80dbTSb22jqbKO5s42G9hZq2xqpbWuizdL3I5L1Oj2hXv5EeAcyzj+MaP8wIn2CMej0Q/hdjR5ebkZmjY1m1tjonm02u51TjQ0U19ZS2lDPybpa8spPUWfupM1iobyxgfLGBvaXFPXqy9vN2FU8+PkT4etHsLc3IV5eBHl6E+zlJatGCqExp/4EZmdnEx4eztNPP83KlSvP2zYjI4PJkyfj4fHthKiUlBTS09OdGdKA2Ow2KjsbyTWdRNGdO/NdRe3+5NxtDto5Wka/P32c+bAeRyvxn92HwxjO04ejhwH11YdNtWOz27HabJS2lFFTYEVVun4p2FQ7dtXe9Qvf1v0L34rFbsNqO+Nzuw2zzYq1e7/NhtVudfi9XYiXqzuBHj4EefoS5hVIuHcgYd4BBHr4onfwbyaGjl6nY6x/AGP9AwCw2Wykp6eTnJxMQ2cHZfX1lDbUcbK+nrKGekrr66hqbqa5s4NjlRUcq6xw2K+v0R0fdyPebka83Nx6/u9mMGDQ6THodbjo9Bj0evSKgoqKqtLzHAtVVbGjwpnbenrv/bPq6OcTBRQUFEVBAXTKt58rpz/XndnmzH292isoSlc8paYqavNyMOj1Z7Xv7gN0XQceVex2O0V1tbQXn0AnP8897HY7rR3tmh3fqYXC4sWLWbx4cb/amkwmQkJCem0LDAyksrJyQMe02WwDan8+H+d8za7aTKjNdFqfl52m4kHp1kWnx2hww9vNA28399P/98DXzZMADx8C3X0I8PDB2NedCarq1HOhv7qPqcWxh7vunNjtdvyN7viHu5MU3vuyYsfpkYbShnpKG+qpbGqiprUFU0sLNa0tdFqtNHa006jhm+SgKczTOoLhK++Y1hEMOwZFx7xp0/E0Gp3S30DeswZUKHR0dFBVVeVwX3BwcK/RgQtpb2/H1bX3m76rqytms7mPVziWmem8X+ouHVYCXbywq/bTW5Qz/ttr0xlf9l3yKw6+Ot8fCOe7TutoT1/HdnTcs/7Xr36g668h3em/cnSc/lB0KCg9+3SKgl7RffuBDsOZX5+1T6/03t/dfy8q0NH1YWtsopomhvN6gc48Dy83/cmNL+BrcGNKQDAEBANdf3m326w0dppps1pot1lpt57+sFm7RrpUtdf/7ara8xd6z0gA3/51D9/+nJ191p/z9el2qvrteNuZIxLd29XToxVnb+v6mtPtu0Y5uv9Przbftj1zNLJ7/ygbVBiw0fL80yhPL/KOH9dkPs+ACoWMjAzuuusuh/v+9re/cc011/S7Lzc3NxoaGnptM5vNGAdYLSUlJaHXO+c6dJLNRmRmplP7vFzYbDYyJTfnkLz0TXLjmOSlb5IbxwYjL9199seACoU5c+aQm5t7UUGdLTQ0lIKCgl7bampqzrkccSF6vd7pJ9Rg9Hm5kNw4Jnnpm+TGMclL3yQ3jmmVF81miyQnJ5OdnU1Hx7cz2dPS0khOTtYqJCGEEEKcZUgLhbq6OlpbWwGYPXs24eHhrFu3jvz8fJ577jmOHj16wbslhBBCCDF0hrRQWLlyJS+++CLQNYTy97//HZPJxG233cZHH33E3/72N1lsSQghhBhGBm0lk9TU1AtuGzduHK+99tpghSCEEEKISyQrWgghhBCiT1IoCCGEEKJPI3YR9e5liJ25Ip6sstc3yY1jkpe+SW4ck7z0TXLj2GDkpbsvR0v6n01R+9NqGDKbzbIanhBCCHEJkpKSzlkl+WwjtlCw2+1YrVZ0Op08olYIIYQYAFVVsdvtGAyGCz6Aa8QWCkIIIYQYfDKZUQghhBB9kkJBCCGEEH2SQkEIIYQQfZJCQQghhBB9kkJBCCGEEH2SQkEIIYQQfZJCQQghhBB9kkJBCCGEEH2SQuG0zs5OHnvsMWbOnMmCBQt48cUXtQ5p2Pjiiy+YNGlSr481a9ZoHZZmzGYzK1asYP/+/T3bSktLueeee5g2bRrLly9nz549GkaoHUe5+d3vfnfO+TNaHi9fVVXFmjVrmD17NgsXLuTJJ5+ks7MTGN3nzPnyMprPF4CSkhJWrVrF9OnTueqqq3jhhRd69ml1zozYh0I521NPPUVWVhYvv/wy5eXlPProo0RERLBs2TKtQ9NcQUEBV199NU888UTPNjc3Nw0j0k5nZye/+MUvyM/P79mmqio//elPiYuL491332X79u2sXr2aTz75hIiICA2jHVqOcgNQWFjIL37xC2699daebV5eXkMd3pBTVZU1a9bg4+PD5s2baWxs5LHHHkOn0/HII4+M2nPmfHl59NFHR+35Al2PJvjxj39MUlIS77//PiUlJfz85z8nNDSUFStWaHbOSKEAtLW18fbbb/P888+TmJhIYmIi+fn5bN68WQoFut7o4+LiCA4O1joUTRUUFPCLX/zinKet7du3j9LSUt544w08PDyIjY3lm2++4d133+Whhx7SKNqh1VduoOv8WbVq1ag7f06cOEF6ejp79+4lKCgIgDVr1vDHP/6RRYsWjdpz5nx56S4URuP5AlBTU0NCQgKPP/44Xl5eREdHM2/ePNLS0ggKCtLsnJFLD0BOTg5Wq5Xp06f3bEtJSSEjIwO73a5hZMNDYWEh0dHRWoehuQMHDjBnzhzefPPNXtszMjKYPHkyHh4ePdtSUlJIT08f4gi101duWlpaqKqqGpXnT3BwMC+88ELPL8NuLS0to/qcOV9eRvP5AhASEsKf//xnvLy8UFWVtLQ0Dh48yOzZszU9Z2REATCZTPj7+/d61GZQUBCdnZ00NDQQEBCgYXTaUlWVoqIi9uzZwz/+8Q9sNhvLli1jzZo1F3w06eXm3/7t3xxuN5lMhISE9NoWGBhIZWXlUIQ1LPSVm8LCQhRF4dlnn2X37t34+fnxox/9qNew8uXKx8eHhQsX9nxtt9t57bXXmDt37qg+Z86Xl9F8vpxt8eLFlJeXc/XVV3Pdddfxhz/8QbNzRgoFoL29/Zxfet1fm81mLUIaNsrLy3vy8+c//5mysjJ+97vf0dHRwa9+9SutwxsW+jp/Rvu5A13DzIqiEBMTww9/+EMOHjzIr3/9a7y8vLj22mu1Dm9IrV+/nmPHjvHOO+/w0ksvyTlz2pl5yc7OlvPltL/85S/U1NTw+OOP8+STT2r6PiOFAl0T885OdvfXRqNRi5CGjcjISPbv34+vry+KopCQkIDdbufhhx9m3bp16PV6rUPUnJubGw0NDb22mc3mUX/uANxyyy1cffXV+Pn5ARAfH09xcTGvv/76qHrjX79+PS+//DJ/+tOfiIuLk3PmtLPzMnHiRDlfTktKSgK6JgmvXbuW73znO7S3t/dqM1TnjMxRAEJDQ6mvr8dqtfZsM5lMGI1GfHx8NIxsePDz80NRlJ6vY2Nj6ezspLGxUcOoho/Q0FBqamp6baupqTlnmHA0UhSl502/W0xMDFVVVdoEpIEnnniCTZs2sX79eq677jpAzhlwnJfRfr7U1NSwffv2XtsmTJiAxWIhODhYs3NGCgUgISEBg8HQa1JIWloaSUlJ6HSjO0VfffUVc+bM6VXJHj9+HD8/v1E9d+NMycnJZGdn09HR0bMtLS2N5ORkDaMaHp5++mnuueeeXttycnKIiYnRJqAh9swzz/DGG2/wv//7v9xwww0920f7OdNXXkb7+VJWVsbq1at7FUZZWVkEBASQkpKi2Tkzun8Lnubu7s4tt9zC448/ztGjR9m+fTsvvvgid911l9ahaW769Om4ubnxq1/9ihMnTrBr1y6eeuop7rvvPq1DGzZmz55NeHg469atIz8/n+eee46jR4+ycuVKrUPT3NVXX83Bgwf55z//ycmTJ/nXv/7FBx98wL333qt1aIOusLCQv//979x///2kpKRgMpl6PkbzOXO+vIzm8wW6LjckJiby2GOPUVBQwK5du1i/fj0PPvigtueMKlRVVdW2tjb1kUceUadNm6YuWLBA3bRpk9YhDRt5eXnqPffco06bNk2dP3+++te//lW12+1ah6WpuLg4dd++fT1fFxcXqz/4wQ/UKVOmqDfccIO6d+9eDaPT1tm5+eKLL9Qbb7xRTUpKUpctW6Z+/vnnGkY3dP7xj3+ocXFxDj9UdfSeMxfKy2g9X7pVVlaqP/3pT9UZM2ao8+fPV//v//6v5/1Wq3NGUVUHK6QIIYQQQiCXHoQQQghxHlIoCCGEEKJPUigIIYQQok9SKAghhBCiT1IoCCGEEKJPUigIIYQQok9SKAghhBCiT1IoCCGEEKJPUigIIYQQok9SKAghhBCiT1IoCCGEEKJP/x/fF4axJgKBDwAAAABJRU5ErkJggg==" + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAhAAAAESCAYAAACsIOwfAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAPYQAAD2EBqD+naQAARbVJREFUeJzt3QeclNXZNvBr22zvvRcWtlB26VVAFxAQxZJXMVhjJDGWWJKIiUbNmwQ1yZfEEjVRXzWxYkSaghQBgWXpZdnC7rK9L9t7mfl+5wwz7uK2gZl9Znauf/I4z/Szw8w895xzn/vYaDQaDYiIiIgMYGvIjYmIiIgEBhBERERkMAYQREREZDAGEERERGQwBhBERERkMAYQREREZDAGEERERGQwe4wyarUaZWVlcHd3h42NjdLNISIishiiNFRTUxNCQkJga2trXQGECB7Cw8OVbgYREZHFKi4uRlhYmHUFEKLnQffHe3h4KN0cIiIii9HY2Ch/hOuOpVYVQOiGLUTwwACCiIjIcMNJAWASJRERERmMAQQREREZjAEEERERGYwBBBERERmMAQQREREZjAEEERERGWzUTeMkIiLqra2rAy2d7ehR98BF5QRXlTNszbRSsUajQX17MxrbW9DZ0w0nexW8nN3g7ugCc8MAgoiIhiQOvudry1FQX4HKplq0dLbJy50dHBHg5o0Ir0DE+oZBZWdvFgFDemU+zlScR35dORram/tcr7JzQKRXIOL9IzAldBx8XTyhpPbuTpwsy5FtzrlQItt/KW8nN4zxDcOU0LGI94+Eva0dlGajEeGOib322mv405/+hIqKCiQlJeGVV17BjBkzBrz9+vXr8cwzz6CgoABjx47Fiy++iOXLlw+7ipanpycaGhpYSIqI6ApdaG3EztwjOFmWi5au9kFvKw7MEwKjMS9qEsb4hIz4ekTVLfXYm38SaUUZ6OjpuqRt9rCzsUVbd+f37jfOLxwpY6bKgGIk23yhtRF7zp/AoeIMdPRql62NLbycXOFgZy+DiaaOVvQ+UHs4umBBdDLmRk2Ci4OjUdtkyDHU5AHEJ598grvuugtvvPEGZs6cib/97W8yQMjOzkZAQMD3bn/w4EHMnz8f69atw4oVK/Dhhx/KAOL48eOYMGHCkM/HAIKILEVndxfyastQ0liN2tZGdKu7YWdjB29ndwS5+8hf9K4qJ0XaJrr8d+Qcwd6CU7L3QXBTOcs2hXn6wU3lIg+2oieirPEC8i6UoK7XL/0wzwAsGzdTBhSmPig3drRgW3YaDhalQ33xkBbg6oXkEO2v9VAPP9lTInSre1DVXCdf91PlucipKYHm4uE53DMAKxPnyYDClJo72rA95zD2F5xGj0atb+/U0DiMD4xGsLuvDB50RHBRWF8pe1ROlJ1DY0ervFwMb1w9Zgqujpks90ddACGChunTp+PVV1/Vr5Yp6mw//PDDWLt27fduf9ttt6GlpQVbtmzRXzZr1iwkJyfLIESJAKKorhY1zc1wUang5uiIQHcPONgp331ERJZHfOWKbuqDhek4XZEnD2gDsYENon2CMTM8AZNDxhntIDGYrp5u7Cs4ha9zjui70sUBdXHsNIz1C5O/jgf6u4oaKpFaeBZHSrLQpe6Wl0d7B2NF/Bx5X2MTB9bd509gV+4xdF7scUjwj8TVYyYjzm94vQkicPvm/AmkFqXLnAMhMSBKBhLiQG7sgHFP/knszD0qhy16937E+UcMKy9DBHPHSs9hV94xlDddkJetmpSCOZFD/8C2qACis7MTLi4u+Oyzz3DjjTfqL7/77rtRX1+PjRs3fu8+ERERePzxx/Hoo4/qL3v22WfxxRdf4NSpU9+7fUdHh9wuXQjEmAHEmwf24bOTx/XnxT9yiKcXonx8EePnhzG+/vJUBBZDvWHbu7pQ09IsA5LqlmY0t7fD2UEFDycnhHl7I8TDE/YMTohGpbwLpdiceQDn68r7jG3H+IbCz8UTjvYO8gAuurbFL87K5lr97RztVbgqaiIWxkyGh6Or0dsmfrkfK83G1qyDqG1rkpeFuPvihsR58qBsSC+C6JXYlXcce8+f1AcSoifg+vg5CPcKMEJb1UgrzsDWrFT9r3GRg7EyYd5lBypimGDbuTQcKBS9GGoZvInAbVncLNkjdKXtPVKShS1Zqfp8jFAPf9yQMBcJAZGX+ZgamTchXoc1M66HnZFyIgwJIEya7VJTU4Oenh4EBgb2uVycz8rK6vc+Ik+iv9uLy/sjhjqef/55mJKns7MMFlo7O9HY3ob27m6U1NfJbf/5XP3tXFUqxPj6I9zbGyp7e4iPW2N7Oxra23ChpQU1zU1o6hXs9Ef0bMQHBGFiSCgmhYYiPjAIrirjjnER0chq7WzHZ+l7cLQ0W553sLXDjPBE+asxzMN/wINzXVuTvE9a0VlUtdRjZ+4xeVCeFTFe/mr1cTHOj6RzNcX4ImM/Shqq5HlPJzdcFzcLM8ITBuxxGIyY5SAOjmKcXnTVi96WrOpCuU0JGYflcbNk4qWhxO/drOoibMzcj7LGGnmZSIAUz5UcHHtFQyVilsP/TLxatlkEeacq8mRuggiq5kcnY1HsNIOHkzQaDTKrC7E58yBKG6vlZT7O7rgufo4crriSmSDiviIBVGxKMWkPRFlZGUJDQ2Vew+zZs/WX/+pXv8LevXuRlpb2vfuoVCq89957uP322/WX/eMf/5BBQmVlpSI9EL2Jl0sEA2JY4/yFGpyvqUZeTbU8363WjmUNxcneAf5ubvBzE1NznNDe3YW61lYU19XJ/d7E2yvK1w8JgUGI9PFBgLsH3FSOsLO1ld1tTe3tMkgRgUlLRweaOzvQ1tUpE4ZcHFQI9vRAuJcPEoKC4OaozFgqkTU7W5mPj07tkuP04lft7IjxWBY3Ux6kDfm1KR5HDCsU1mt/TIkD+7TQODm0EOjuc1ltK6qvlL/ixUFO18shHm9hdDJU9g4wZnLjV9mH5MFYc/HgNz0sAfOjk2TewVB61Gr59+/IFX+/9jggchqWjp0hEzZ75wsYi5i9sSljv8yVEMTw0czwRFwVNWnI4Kezu0sGILvzjusDB2d7FZaMm4H5UUkmaa+xmE0PhJ+fH+zs7L534Bfng4KC+r2PuNyQ2zs6OsptpIgIVxz4xTYlPEJ/eVdPD4rrapF3oQblDfXo6lHLxBwRIIgeDD9XN7mJwEHkUvQXKYsvibKGepwpK8XpslKcKStBZVMT8i/UyO1KiA/sWP8ATA2PxIzIKNmzIYIQIjINkT+wIeNbHCo6q0+SWz15icwJuJzP78SgGJmQKPInRHJjdk0xDpdk4khJJpKCY+XQhnjsoX6Fix9B52vL5Li/yMHQPr4t5kVNxLVjZ5ik3oC/qxfumrJU9ppsyTqIs1UFsutdbCKAmBAUg7G+YQh085azCkSQIeoglDRUy7+3d+Kg6L2ZGzkR146bIXs6TEW8lo/M+QEyqgqwKfOAzDcQMzzEJoYfEgIiZe+Rp5OrnFIpkk5FoCQCjsyqAv0sEDEzZW7kBCwZO92k7VXCiCRRiimbYuqmLolS5Dk89NBDAyZRtra2YvPmzfrL5syZg0mTJimWRKkk0duRWVmOrMoKlDc0oKq5SeZRiIhcBAAid8LDyVkmd2o3Jzg72KOzu0f2RoiA5HxNDUob6vs8rrjf9IgoGUxMi4iS54nIOLKri/DhqZ1yCEIczhfETMaKuNlG/VVfUFchA4kzlef1l4nu/KTgMRjjEyoTAD2cXPU5CSKf4lxNCc5U5KGyuU5eLto2NTRe9oiIg/xIEQHMvvxTchaEbhbCUFwdnOSQz4KYZJPkgAxG/LgT/6b78k/KgGI4B00fZw/MihA9FkmKzaSx6CRK3TROkTT55ptvykBCTOP89NNPZQ6EyG0QUzzFMIfIZRDEcMeCBQvwwgsv4LrrrsPHH3+MP/7xj5zGeYWqm5twoqQYRwoLcLS4EM29hn3Er5uEoGDMiIhCtK8fgjw84OPiCmeVg1kUhSGyFGJWwMbMA3J6nuDr4oHVyUsQ6xtqsucUuQDfnD+OE2W5+pkIQxGf6ymhcXL6n7FnGhiauJheeR4ZlQUobqhGbVuj/jqRFOjv4okxviFIDIhGYkCk0RIFr7TNIog4X1uG8osFtbp7umWFS5FsGekVhHH+4YjyChrxOhijLoAQxBROXSEpMR3z5Zdflj0TwsKFCxEVFYV3331Xf3tRJ+Lpp5/WF5J66aWXWEjKiOR4YkUZDhcWIK0gHwW12qlA/bG3tdXPEhGbl7MLInx8EOPrh6TQcPi6juwvASJzJX6hfnRqp34Gw7zIiXIqoMgrGAkd3V0yT0AkRIpu9AutDfopomKIQgQzovpiQkCUHArR1UUwJ2IGinYqpQYuDk4WeQC2dGYXQIwkBhCGq2xsxOGifJwoKZH5GxVNjX16KAYzLiAQKePisTguAe4cBiEzzUUQY9PiACvykkR3speTm9HGo0Udgc1ZB2WCoK7r+vakFDmvX0niq13UGhAHYQdbe+Y80bAwgGAAYZReCpFr0drVeXH6qpjtoZ2OKnosRE5GTrV2ypegsrPDtQnjsWrKNDlThEhJIvNdzLtPrzgvpz/2R4yjh3n6I8IrQHY7R3kHGRRUyLLJ50/K6ofil774rSxmBIgphSPV60BkbAwgGECMiNqWFlkHY+vZM3JKq27IY0l8Im6fOh1BHsouUEPWR+QDbMzYr5+WqCNmFogucUGMWYutvy8+f1fPi8FEMCK9AxHg6n0xGNDInoyKplp9SeHztaX6xxDlnW9KvMooRZKIlMQAggHEiBJvodNlJfjPkTScLC2Rl9n1CiSCGUiQiYkeAFHPQCQTiox5UW9hUvAYWbRIlAq+NAteJDuWNtbIaYKirkJhXcWAPRWiZ2GgL0lR8lgkIorn4Hg9jQYMIBhAKEbUsBCBxPGSInmegQSZmpgq+X/HvpTTGoWkoDGy/LKh0xLFPH5dMCFOC+oq0XrJ6pMid0IszCTKMou6DMaqBElkLhhAMIBQXHp5Gf595BCOF38XSMyNHoPrxk9Eclj4FZVwJeqd6/D6oS9kkSExq2B10mLZ82DMWQFi6EL0LojHFwWDiEazRgYQDCDMxdmLgcSxi4GEIBYiW5qQiEVxCfB3u7JFash6iXn4bx7eJA/wYtGnH0+/Hn6u7OUiuhIMIBhAmB2xXohIttyVnSVndgiiD0KUAxdDHHNjYuFoz6JVNPx1Cl5L3SALJ8V4B2PNzJWyBDIRXRkGEAwgzFZbZyf25ubg6+wMmS+hI9YHuTp2HJYkJCIhcOh6/mS9xJoEfz+wHq1dHYjzC8f90683aoloImvWyACCAYQlEOt07MjKxI7sDLlomI5YDv3u6bMxP3YsAwnq40JrI/524FM0tLfIug0PzroZjgweiIyGAQQDCIsipt2dLi3B11kZ+DYvB+3dopQt5IqhP19wDWL9ObeeIKsq/nX/p7IHQqzfIFZKtKRFiogsAQMIBhAWq6WzA5+fPIFPTxxDe3eXnL1xx7SZssKlvR0z4K05yHzn6Fa5/LSoIPmLq1bBy9lN6WYRjTqGHENZHJ3MiqvKEXfOmIV377gHc2PGyJLa7x1OxdrNG1Df1qp080gh28+lyeBBrMZ43/TrGDwQmQEGEGSWxCqfzy5dgbWLlsLZwQGnSkvw4KcfIbfX+htkHU6V5+Krc2ly/7aJVyPaO1jpJhERAwgyZyKBMiUuHq/8YBVCPb1Q1dyEJzZ8hpMlxUo3jUZwbYt/n/ha7i+ITsasiPFKN4mILmIAQWYv0scXr/7PKiSHhskaEr/e/AW+zctVullkYmLBq38d2SxrPYzzC8ONifOUbhIR9cIAgiyCm6MT/rDiRsyLiUWXuge/374VO7IylG4WmYjIffm/Y1/JaZu+Lh64d+pymf9AROaDAQRZDJW9PZ6+djmWJU6QWfl/2vU1g4hRamPGtzhXUwyVnYMsFOWqcla6SUR0CQYQZFHEtM5HF6ZgxfiJcollGURkZyrdLDKitOIM7Mk/KffvSF6MEA8/pZtERP1gAEEWR6zk+fCCa+TKnjKI2LkdOxlEjApiSe6PT++W+0vHzUByyFilm0REA2AAQRYbRDwigojECfqeCLFQF1muhvZmvHVkC3rUPZgYGIOl42Yp3SQiGgQDCLLsIGJhigwiRE7ES7u2y1LYZHm6errx1pGtaOxokWWq75xyrfz3JSLzxQCCRkUQIZYEF0HEH7/+CmkF+Uo3iwwg/t3+c/JrFNZXyCW5fzx9BZzsVUo3i4iGwACCRkUQ8fjVi7Awdhy61Wo8v20LjhcXKd0sGqZNGftxoiwHdja2+NG06+Dv6qV0k4hoGBhA0KiZnfHkomsxJzoGXT09ePbLTUgvK1W6WTSEvfknsfv8cbn/w+TFGOcXrnSTiGiYGEDQqCFW6/zNtcsxLSJSLgn+my0bkV1ZoXSzaADHSrPxefpeub8ifg6mh8Ur3SQiMgADCBpVVHb2chGupItlr5/avAHna6qVbhZd4mRZDv59YrucQTMvciIWx05TuklEZCAGEDTqODk44HfLb0BiUDCaOjrw5KbPUVRXq3Sz6KIzFefx7vFtMnlyZngCfjDxarlwGhFZFgYQNCq5qFT4w4qVGOsfgPq2Nvxq439R1lCvdLOsnlia+51jX0KtUWNqaBxuT1rE6ZpEFooBBI3qBbheuOEmRPn44kJLiwwiqpoalW6W1UotOot3jn4pC0UlB4/FHclLYGvDryAiS8VPL41qHk7OePGGmxHm5Y3Kpias3bQBje3tSjfL6uzKO4aPTu2EBhrMihiPe6YulTNniMhymfQTXFtbi9WrV8PDwwNeXl6477770NzcPOjtH374YcTFxcHZ2RkRERF45JFH0NDQYMpm0ijn4+qKl1beDH83dxTX1+H5rzbLqZ5kehqNBpsy92Njxn55PmXMVNw+KYU9D0SjgEk/xSJ4OHv2LHbs2IEtW7Zg3759WLNmzYC3Lysrk9uf//xnpKen491338W2bdtk4EF0JUTwIHIiXBxUOF1Wir9+s1Me3Mh0utU9+PeJr7Ez95g8f0PCXKxMnMeESaJRwkZjom/RzMxMJCYm4siRI5g2TTtFSwQDy5cvR0lJCUJCQob1OOvXr8cdd9yBlpYW2NvbD3n7xsZGeHp6yl4L0fNB1NuRogI8vWWjnAFw78w5+OG0GUo3aVRq6+rA20e34lxNsextuD0pBTPDE5VuFhEZ8Rhqsh6I1NRUOWyhCx6ERYsWwdbWFmlpacN+HN0fMVDw0NHRIf/g3hvRQKZHROHh+VfL/XfTDrLktQnUtzXj7wc/k8GDo50DfjLjBgYPRKOQyQKIiooKBAQE9LlMBAE+Pj7yuuGoqanB//7v/w467LFu3ToZLem28HCWwqXBrZgwCUsTxssiRmLxrermJqWbNGqUN13AX/d/grLGGng4uuCROT9AQkCk0s0iInMIINauXSvHMAfbsrKyrrhhoifhuuuuk8Mgzz333IC3e+qpp2QvhW4rLi6+4uem0e+h+VdjjJ8/Gtrb8PvtX6KbSZVXrLi+Ci8f+Ax17c0IdPPGY/NuQ7hX3x8RRDR6DJ1UcIknnngC99xzz6C3iYmJQVBQEKqqqvpc3t3dLWdaiOsG09TUhKVLl8Ld3R0bNmyAg4PDgLd1dHSUG5EhHO3t8dul1+Fnn36IjIpyfHjsMO6aMVvpZlmsgroKvH5oA9q6OxHpFYifzrwRrionpZtFROYUQPj7+8ttKLNnz0Z9fT2OHTuGqVOnyst2794NtVqNmTNnDtrzcO2118qgYNOmTXBy4pcQmUaIpxd+vjBFDmN8cPQwZkbFIC4gUOlmWWTw8Frq5+jo6UKMdzB+MnMlnB0Y1BONdibLgUhISJC9CPfffz8OHz6MAwcO4KGHHsKqVav0MzBKS0sRHx8vr9cFD0uWLJEzLt5++215XuRLiK2HXcxkAlePjcOC2LFyVsZLO7ejo7tb6SZZlIqmWryRtlEGD2N9w/DArBsZPBBZCZPWgfjggw9kgJCSkiKnb86bNw///Oc/9dd3dXUhOzsbra2t8vzx48flDI0zZ84gNjYWwcHB+o25DWQqjyy4Bj4uLnLBrfcPpyrdHItR19aEfxzagNaudjlssWbG9XC0VyndLCKy9DoQSmEdCLochwrO45mtm+TCTm/cthrRvn5KN8msdfZ042/7P0VJYzUCXL3x6Nz/gZujs9LNIqLRUAeCyJLMiorBvJhYOZTx97275Sn1T/zm+OT0Lhk8uKmc8bNZNzJ4ILJCDCCILvrZVQvg7OCAs+Vl2J55VunmmK1vC07jSEmW7K25Z+oy+Liwp4/IGjGAIOq1XoZuKudbqfvR3MFVO/srFPVFxrdy/4aEeRjnx8JtRNaKAQRRLzdNSkaUj69c8vvDo0eUbo75LY51fLs8TQyIxNUxk5VuEhEpiAEEUS92tra4f848uf/F6ZMob+RS8jpf5xyWeQ8uDk64PWkxV9UksnIMIIj6WXBrSlgEutQ9eCf1gNLNMQuVzXXYkXNU7t866Wp4Orkq3SQiUhgDCKJLiF/Wa+ZeBfH7ek/uOVnq2tpnXXx2Zg96NGokBkRhcvBYpZtERGaAAQRRP8RCW0viE/XLfluzk+W5yK4pgr2tHW6ZsIBDF0QkMYAgGsCd02fB3tYWJ0qKcaq0BNZIJExuzNgv9xfFToW/q5fSTSIiM8EAgmgAgR4eWJY4Qe6/dzhVduVbm4OF6ahta4SHoysWjZmmdHOIyIwwgCAaxO1Tp8PB1g5nykpx0sp6ITq6O7H9XJrcXzpuBlT2Dko3iYjMCAMIoiGKS103fqJV9kLsOX8STZ1t8HPxxOyI8Uo3h4jMDAMIoiHcNnUaVHZ2ssT18ZIiWIP27k7sPn9c7i+PmwU7Wzulm0REZoYBBNEQ/Fzd9L0QHx87YjW5D21dHQhw9cKU0HFKN4eIzBADCKJh+EHyVFmlUuRBZI7yuhBdPd345mLvQ0rsNNja8GuCiL6P3wxEwxDg7o6UcfFy/5MT2oqMo9XR0iw0tLfA08kN00LjlG4OEZkpBhBEw3TrZO00xgPn81BYW4vRSK3RYFeutvdBLJblYGevdJOIyEwxgCAapkgfH8yNHiP314/SXojs6iJUtdTB2V6FuZHaGhhERP1hAEFkgFunaHshdp3LQlVTE0abbwtOydMZ4YlwtFcp3RwiMmMMIIgMkBgUjKTQMHSr1dhw+gRGkwutDThbmS/3r4qapHRziMjMMYAgMtD/JE+Vp19lpKOtsxOjxf6CMxBlsuL9IxDg5q10c4jIzDGAIDLQ9MgohHl5o6WzE9uzMjBapm4eKjor96+KSlK6OURkARhAEBnI1sYGN01KlvsbTp+UMxcs3anyXLR0tcPb2R3jA6OUbg4RWQAGEESXYXFcAtwcHVHWUI+0Am3egCVLK9b2pMwMT2ThKCIaFn5TEF0GZ5UKyy8u9f35KW3dBEtV29qIczXFcn9meILSzSEiC8EAgugyrZyYJIczRHnrvJpqWKrDJZkyeXKsbxh8XTyVbg4RWQiWmSO6TAHuHrhqTCz25ubg81Mn8MuUJbA0In8jrThTP3xBZGl6enrQ1dWldDMsikqlgq3tlfcfMIAgugI3J02RAcQ357Lx49nz4O3iAkuSd6FU1n8QRaOSg2OVbg7RsGk0GlRUVKC+vl7pplgcETxER0fLQOJKMIAgusLCUvEBgciqqsS2zHTcPnUGLMnhEm3y5JSQsVDZOyjdHKJh0wUPAQEBcHFxgY2NjdJNsghqtRplZWUoLy9HRETEFb1uDCCIrtD1E5OQtetrbEk/IxfcEst+W0rth5PleXJ/RhiTJ8myhi10wYOvr6/SzbE4/v7+Mojo7u6Gg8Pl/3Aw6TddbW0tVq9eDQ8PD3h5eeG+++5Dc3PzsLunli1bJqOjL774wpTNJLoiC2LHwd3RCVXNTThcWABLkVFVgI7uTng7uSHaJ0Tp5hANmy7nQfQ8kOF0QxciELsSJg0gRPBw9uxZ7NixA1u2bMG+ffuwZs2aYd33b3/7G7ukyCI42ttjWeJ4ub85XbsYlSU4VnpOnk4OHSdnkxBZGh4jlH3dTBZAZGZmYtu2bXjrrbcwc+ZMzJs3D6+88go+/vhj2XUymJMnT+Ivf/kL3nnnHVM1j8iorhs/EeIjeaSoUBaXMnft3Z04W3le7k8NiVO6OURkgUwWQKSmpsphi2nTtMsfC4sWLZLZn2lpaQPer7W1FT/84Q/x2muvISgoaMjn6ejoQGNjY5+NaKSFeHphWoS2BLTIhTB3ZyrOo0vdA39XL4R5+ivdHCKyQLamzJAVCS692dvbw8fHR143kMceewxz5szBypUrh/U869atg6enp34LDw+/4rYTXY4bJmqXwN6WeRYd3d0wZ8dLs+Xp1NBx7AYmopEJINauXSu/cAbbsrKyLqsxmzZtwu7du2X+w3A99dRTaGho0G/FxdqSvEQjbXpEFALd3dHU0Y49OdoDtDlq6WxHZnWR3J/C4QsiRbzyyitDDuf3Job0L/fYajYBxBNPPCHzGwbbYmJi5PBDVVVVn/uKKSNiZsZAQxMieMjLy5NDH6K3QmzCLbfcgoULF/Z7H0dHRznLo/dGpAQxfXPFBG0vxOb000o3Z9CVN9UaNUI9/BDk7qN0c4isTm5uLp588kl4e3vL819++eWgP8pvu+02OfT/5ptvwpzYX878UbENZfbs2XKe7rFjxzB16lR9gCCKWIikyoF6N3784x/3uWzixIn461//iuuvv97QphKNuKUJ4/F+2iFkV1Uiu7ICcYFD5/GMtBNlOfJ0csg4pZtCZJU2btyIxYsXw9nZWZ6/+uqrZWGn3sQUy3vvvRfHjx/Hr3/9a5SWluLhhx+Wx0NzYbJCUgkJCVi6dCnuv/9+vPHGG3Le7kMPPYRVq1YhJEQ751y8ICkpKXj//fcxY8YM2TPRX++EqJYlym4SmTsvZxfMjx2LXeeysOXsGbMLIFq7OpBzoUTus3Q1jRaiblBnjzJ5Ryo7e4PziEQAcffdd+vPi0BCF0zoggdRBkEED7t27UJSUhLi4+NRWVmJ9PR0TJigXQlYaSatRPnBBx/IoEEECWL2hRiKePnll/XXi6AiOztbzrwgGk1TOkUAsSfnHB6YtwAuV1hv3pgyqwrk8EWgmw8C3LTdp0SWTgQPv/zqH4o895+W/QyOBpSBr6mpwaFDh7B+/fp+rxfBwx133IGdO3fqgwfdcP2SJUtkrqBVBBBixsWHH3444PVRUVEychzMUNcTmZsJwSEI9/ZGcV0dvsnJlgGFuThdoS1dPSkoRummEFmlLVu2yPIGgYGBAwYPX3/9dZ/gQUfMTnz99dflkIY54FoYREYmujOXJUzAPw9+iy8z0s0mgBBrX2RUFcr9iUFjlG4OkVGHEURPgFLPbQiRMLl8+fJ+g4c777xTHzwkJyd/7zbifiIvQvRi+Pn5QWkMIIhMYHF8At45dADnqiqRW12FWP++NVGUIHIfxNoXHo6uiPD6/q8fIksO2g0ZRlBSVFQU8vPz+w0etm/fLocu+gseBHE/MUtRbObAMpYNJLLAZMq5Mdpf+aIXwlyqTwoTg6K59gWRQlauXImtW7fKGYm64OGuu+7SBw+TJ08e8L4i/0H0QuhKHCiNAQSRiSxP1A5d7D6XhfaLqwcqRa3RIP3i2hcTAzl8QaSU2bNny9w+UddBBBEieBArTv/nP/9BcHCwrNTce+u9YqYIIIZbpXkkmEcYQzQKJYeFI8jDAxWNjdiXl4Ml8YmKtaW4vhIN7S1wtHPAWL8wxdpBZO1sRcG5FSvkVE6xr5to0F9ehBiaEfWURIFEMXwhZi2K8gjmgj0QRCYihgmWJkwwi2EM3fBFQkAUHAxM+iIi41q5cqXsTRBFFUVvxECb6KHQVVcWtxcVmd3d3WEuGEAQmdC1CYkykDhbXobC2guKtYPTN4nMx+LFi1FYWChLWg+XCCBuuOEGmBP+FCEyIT9XN8yMjEZqwXl8lZGOn85bMOJtqG6pR0VzLWxtbJEYyIquREpzdnZGS0uLQfcRUzvNDXsgiExs+XjtMMaO7ExFyu3qhi9ifUPh4uA44s9PRKMTAwiiEVjmW/RENLa3I/W89mCuzPAFZ18QkfEwgCAagWW+dTMwtmdljOhzN3W0Ir9Wu8rfBA5fEJERMYAgGqHKlMKx4kLUtDSP2POmV+ZDAw3CPAPg46LN5iYiMgYGEEQjIMzLG+ODQ2RBp53ZmQpUn+TsCyIyLgYQRCPk2ovDGF9nZYzIKrOd3V3Iri6S+5MCGUAQkXExgCAaIfNjx8LR3l4u851VWWHy58uqLkKXuhs+zh4I8VB+5T4iGl0YQBCNEFeVI+bFxI5YMuWZyjz98IUoiUtEZEwMIIhG0LUJ4+XpnpxsdHSbriZEj1qN9ArtksGcvklEpsAAgmgEJYWGIcDNHS2dnTiYr+0hMIX8unK0dLXDxcEJMT4hJnseIrJeDCCIRpBYF2Nxr2RKUzlzsXjU+MAoWYeCiMzLK6+8grKyMqM/7jvvvIOsrCyMBH6zEI2wJbqaEEWFqG5uMvrjixkepy9O3+TwBZH5yc3NxZNPPglvb295Xqy6GR8fj9/85jd9brd161aoVCp8/vnnw7qNkJaWhjfffHNE/g4GEEQjLMTTCxNDQiEmcpqiJkR50wVcaG2Ava0d4v0jjP74RHRlNm7cKFfkFItqCba2tnjqqafw2muvoaGhQV52/Phx3HbbbXjxxRdx8803D+s2vZcKHwkMIIgUrQmRafSaELriUXH+EXC0Vxn1sYnMkfgMtXV1KbJpLuPzKwKIS5fmXr16NXx8fPDqq6+iqKgIK1aswL333ovHHnvMoNukpKSgsrIS6enpMDUu502kgPljxuLVfXtQUl+HjIpyWaXS2PkPE1k8iqxEe3c3bvjna4o896Y1D8LZwWHYt6+pqcGhQ4ewfv36Ppfb29vLYY2nn34aH330EaZPn46///3vBt/G0dERS5Yskb0QEyZoVwI2FfZAECnAWaXCVbHamhDGHMaoa2tCUUMVRNWHCUFcPIvI3GzZsgXTpk1DYGDg964TPQzNzc2ybosIEMSwxeXcZqSGMdgDQaSQReMSsCMrE3tzz+GBqxZAZXflH8f0Su3wRZR3MDwcXY3QSiLz52RvL3sClHpuQ3z55ZdYvnx5v9c99NBD+l6K/gKD4d5GPL4Y2hC38fMzXRVa9kAQKVgTwtfVFU0dHThcWGCUx+TiWWSNxK9xMYygxGZjYJXXqKgo5Odri7z19swzz8gZFWJ4o7u7G2+//fZl3UYQj+/l5SU3U2IAQaQQUZ8hZVy80YYx2ro6kFNTIvc5fZPIPK1cuVIGAWJaps6//vUv/OUvf8HmzZuRlJSERx99FC+99BK6uroMuo2OGL4QvRAiZ8KUGEAQKWhRnLYmxOGCAjS2t1/RY2VUFaBHo0agmzcC3LTzy4nIvMyePVvO3BD1GnRDGmJY4oMPPsCsWbPkZeK8mKr573//e9i3uTSAEIGKqTGAIFJQtK8fYnz90KXuwb7cc1f0WBy+IDJ/tra2cvqlmMp57Ngx3HrrrbIn4aabbtLfxtPTE4888gheeOGFYd2mp6enz/BFdnY2li5davq/xeTPQETD6oXYee7yy892q3tkD4QwkcMXRGZt5cVZElOnTpUzKn7+859/7za/+93vcO7cuWHdxs7OTn+ZeNyFCxfC3d3d5H8HAwgihV09Lk5OuzxbXobyixXmDCVyH9q7O+Hh6IJIryCjt5GIjGfx4sUoLCyUJa2NTQQQlxapsrgAora2Vs5X9fDwkJmg9913n4yihpKamoprrrkGrq6u8r7z589HW1ubqZpJpDg/VzdMDtOWnN51mb0Qp3XFo4Ji5IJdRGS+nJ2d0dLSgtiLtWCMadeuXXjwwQctO4AQwcPZs2exY8cOWThj3759WLNmzZDBgxi3EVW0Dh8+jCNHjshEkYHmuhKNFovivpuNYWhpXLVG0yv/gcMXRDQyTDLHIzMzE9u2bZMBgKi4pVu6VEwr+fOf/4yQkP7L9op63iIpZO3atfrL4uLiBn2ujo4Ouek0NjYa7e8gGinzYmLx8t7dKG2oR1ZlBRKCgod938L6CjR2tMh1L8b6hpm0nUREOib5aS96EsSwhS54EBYtWiR7EnRTVy5VVVUlrwsICMCcOXNkmc8FCxZg//79gz7XunXrZDaqbgsPDzf630M0EqWt58ZcLG1t4DCGbu2L8QFRcDBCNUsiIsUCiIqKChkI9CYKWohVxMR1/Tl/XtsF+9xzz+H++++XPRhTpkyRK4vl5OQM+FxieVMxF1a3FRcXG/mvIRoZuqJSe3Ky0dVrWtZQTpdrPzssHkXWxtgr2VoLjZFeN4MCCDG0IMp2DrZlZV1eEpiuKtdPfvITWcN78uTJ+Otf/yqHMN55550B7ydWHhPJlr03Iks0JTwC3s4usqDU0aLCYd2noqkWVS11sLO1Q0JApMnbSGQOHC6uftna2qp0UyxSZ2enPO09/fNyGNTf+cQTT+Cee+4Z9DYxMTEICgqSQxK9ibrdYmaGuK4/wcHaMd/ExMQ+lyckJMh1z4msobT1NePi8N9TJ2Qy5ezomGHPvojzC4Ozg+MItJJIeeLAJ4bJdccZFxcXg9eksFZqtRrV1dXyNbvSUtcG3dvf319uwynVWV9fLytoiSIYwu7du2XDZ86cOeACIyK5UlTQ6k0UyVi2bJkhzSSyWClxCTKASC04j+aOdrg5Og0r/4GzL8ja6H6MXvpjlYYm8hEjIiKuOOgyScaV6DUQ0zFFLsMbb7whF/sQ0zFXrVqln4FRWloq8xvef/99zJgxQ/4hv/zlL/Hss8/KhUKSk5Px3nvvySGRzz77zBTNJDI7sX7+iPT2QWFdLfbl5WJ54oQBb1vf1ozC+kpZhGpiIMtXk3URxwzRcy3y7fpbUIoGplKpjFIewWQp22LRDxE0iCBBNPSWW27Byy+/rL9e/IOL3obeY1hidbH29nY5nVMMd4hAQtSRGDOGv67Ier4URWnrtw8dwK7szEEDiDOV2t6HKO9geDi5jmAricxrOONKx/Lp8thoRlkaq6gDIaZzihkZTKgkS1TV1ITV778t9/9z548QOMD7+LXUDciuKcLKhHlIidUOFRIRXQlDjqEs8UhkZgLc3ZEcGjZoTYjWznbkXCiR+1x9k4iUwACCyEyTKQUxjNFfJ+GZyvNQa9QIcfdFgJu3Ai0kImvHAILIDF01JhYqOzsU19fhXFXl964/UXZOniaHjFWgdUREDCCIzJKrylFf2npHdub3hi+yqrUVVycHM4AgImUwgCAy8xU69+ScQ3ev0taieJQcvvDwQ6C7j4ItJCJrxgCCyExNDY+Upa0b2ttwpFdp6xNl2rVh2PtAREpiAEFk5qWtew9jtHS2I7tGO3zB/AciUhIDCCIzJopKCYcKzqOpvb3v8AVnXxCRghhAEJmxMX7+iPLxlct778vLwUkOXxCRmWAAQWQBpa2F7Zln9cMXkzl8QUQKYwBBZOZSxsXLBbMyKyvQ3tUjhy9YPIqIlMYAgsjM+bm5YXJYhNxvaAGmhWoTK4mIlMQAgsgCzIqOlKeNLcCUkHFKN4eIiAEEkSVwcOiCjQ3Q2Q1UiCiCiEhhDCCIzJxYTOtURQ7cnbXnd15S2pqISAkMIIjMXEljNSqba+HjbqsvbS2mdRIRKYkBBJGZO1qSJU9nRo6Br6srmjracbgwX+lmEZGVYwBBZMZE1cljpdqlu2eGJ8gpnf2t0ElENNIYQBCZsayqIjR2tMDVwQkJAZH6olJpBflobG9XunlEZMUYQBCZsYNF6fJ0elg87G3tEO3rhxhfP3Sr1diTk61084jIijGAIDJTje0tSK/U5jrMihivv/zahER5ui3zrGJtIyJiAEFkpg6XZMociCjvIFm+WidlXALsbW2RU12F3OoqRdtIRNaLAQSRmdZ+SC3S9jDM7tX7IHg6O2NuzBi5/xV7IYhIIQwgiMxQXm0Zqlvq4Wjn0G/p6mWJE+Tp7nNZ6OjuVqCFRGTtGEAQmaGDhdrkyamhcXC0V33verG4VqC7O5o7OrA/L1eBFhKRtWMAQWRmmjpacaI8p9/hCx1bGxtcm6C97qtMbbBBRDSSGEAQmWHvQ4+6B5FegYj0DhrwdtfGJ8IGwKnSEpTW149oG4mIGEAQmREROOwvPC3350cnD3rbAHcPTIvQLvPNKZ1ENNIYQBCZkVPleWhob4G7owuSg2OHvP3SBG0y5ddZGehRq0eghUREWgwgiMzI3vyT8nRu5EQ42NkPefvZ0THwcnZGbWsLDhWcH4EWEhGZOICora3F6tWr4eHhAS8vL9x3331obm4e9D4VFRW48847ERQUBFdXV0yZMgX//e9/TdVEIrNSVF+J/Lpy2NrYygBiOBzs7PTJlJvOaIc+iIhGgskCCBE8nD17Fjt27MCWLVuwb98+rFmzZtD73HXXXcjOzsamTZtw5swZ3Hzzzbj11ltx4sQJUzWTyGzsyjsmT6eEjIWnk+uw77di/EQ5K+N4SREKa2tN2EIiIhMHEJmZmdi2bRveeustzJw5E/PmzcMrr7yCjz/+GGVlZQPe7+DBg3j44YcxY8YMxMTE4Omnn5a9F8eOab9YiUarquY6nCzT1nNIiZ1q0H2DPDwxKypa7m9OP2WS9hERjUgAkZqaKg/806ZN01+2aNEi2NraIi0tbcD7zZkzB5988okc/lCr1TLgaG9vx8KFCwe8T0dHBxobG/tsRJZmd95xaKDB+IAohHr4G3z/GyYm6ZMpWzo7TNBCIqIRCCBELkNAQECfy+zt7eHj4yOvG8inn36Krq4u+Pr6wtHRET/5yU+wYcMGxMYOnI2+bt06eHp66rfw8HCj/i1EptbQ3oy0kky5v3js9Mt6DFGZMtzLG21dXdiZnWXkFhIRXWEAsXbtWtjY2Ay6ZWVd/pfXM888g/r6euzcuRNHjx7F448/LnMgRD7EQJ566ik0NDTot+Li4st+fiIlfJN3QtZ/iPEJkdvlEDkQul6ITWdOycW4iIhMaeh5Yr088cQTuOeeewa9jchdELMoqqr6LjPc3d0thybEdf3Jy8vDq6++ivT0dIwfr80qT0pKwrfffovXXnsNb7zxRr/3Ez0VYiOyRKLmw7cF2tkTi2O/G/K7HIvjE/DOoQMoqqvFiZJiTAmPMFIriYiuMIDw9/eX21Bmz54texJE8uPUqdqEsN27d8u8BpFU2Z/W1lZ5KvIkerOzs5P3IxqNduQcQZe6G1HeQUgMiLqix3JVOWJxfKLsgVh/8hgDCCKyvByIhIQELF26FPfffz8OHz6MAwcO4KGHHsKqVasQEqLtoi0tLUV8fLy8XhD7ItdB5D2Iy0SPxF/+8hc5DfTGG280RTOJFFXb2ogDhdrhuRXxc+QQ4JX6QdIUOZxxtKgQeTXVRmglEdEI14H44IMPZFCQkpKC5cuXy6mc//znP/XXi2RJUfNB1/Pg4OCAL7/8UvZwXH/99Zg0aRLef/99vPfee/L+RKPNtnNp6NGoMc4vDOP8jJP8G+zpifljxsr99Sc4/ZmITMdGM8qyrcQ0TjEbQyRUiiqYROaovOkCXtz7AdQaDR6bdyuivYON9tjnqirx4PqPZE/E+3fci0B+DojIBMdQroVBNMJEzL7h7D4ZPEwMjDFq8CCMCwhEcmi4fPzPT7OKKxGZBgMIohF2tiofWdVFsLO1w43jrzLJc9w6RZu8/OXZdNS3aYcJiYiMiQEE0QjqVvdgw9lv5f7C6GT4u3qZ5HmmhUdirH8A2ru7mAtBRCbBAIJoBO05fwLVLfVwd3TBksusOjkcYkbH3TNmy/2NZ06hrrXFZM9FRNaJAQTRCBGBw1fZ2rVgbkiYC2cH0xZAmxEZhfjAIHR0d+OT40dN+lxEZH0YQBCNUOLkJ6d3y6JRYtrmjLAEkz9n716IzemnUdPSbPLnJCLrwQCCaAQcLsnEuZpiONja4bZJKUYpGjUcU8MjMCE4BJ09PfjPkYFXwiUiMhQDCCITq2trwudn98n9ZXGzTJY42R8RqPxo1ly5/1VGOvIv1IzYcxPR6MYAgsiE1Bo1/n1iO9q6OhDhFYirY6aMeBsmhoTK6pSiLsTr+/dypU4iMgoGEEQmtCv3GHIvlEJl54C7pyyF3SWLxY2UH8+ZBwc7O7lK56GCfEXaQESjCwMIIhPJryvH1uxDcv8HExaM6NDFpYI9PHFLkrb3Q/RCtHd1KdYWIhodGEAQmUBjewveObpVDmFMDhmLmeGJSjcJt0+dDn83N5Q3NuDfR7SBDRHR5WIAQWSCapPvHPsSDe0tCHLzwe1Ji0Zs1sVgXFQqPLLgGrn/2cnjyKmuUrpJRGTBGEAQGZFIUPzszB6cry2Dk70KP56+Qp6ai1lRMVgYO04mVP5519fo7OlWuklEZKEYQBAZ0dc5R3CwKB2iv+HOydciwM0b5uZnVy2Ah5MTzl+owdupB5RuDhFZKAYQREZyqOgstmanyv1bJizExKAYmCNvF1f8MmWJ3P/81AmkcVYGEV0GBhBERnCyLAcfn94l9xfFTsP86CSYMzGUcdOkZLn/0q7tKG9oULpJRGRhGEAQXaETZTl49/hXMq9ArHFxffwcWAJRG2JcQCAa29vxzNaNaOnoULpJRGRBGEAQXYFjpdl472LwMD0sHj9MNo8ZF8OhsrPH88uuh6+rKwrravG/27eiq6dH6WYRkYVgAEF0mbMtRJXJ945v0/c8rE5eDFsby/pI+bm54XfLb4CjvT2OFRfhD9u/RDeDCCIaBsv6tiMyAz1qNdan78HGzP3y/PyoJNnzYGnBg44Yxnhu2fVypdAD+Xn4445tnN5JREOyzG88IoU0tDfj1dT/Yn/BaTlV86bEq3DLhAUWGzzoTIuIxLPLVsDe1hbf5uVg7aYNMjeCiGgglv2tRzSCMqsK8eLeD5FXWwZHexV+NO06XD1misXkPAxlZlQ0/rDiRlmx8kxZKR757GNWqySiAdloRtnavo2NjfD09ERDQwM8PDyUbg6NAq1dHfgi41tZ50EI9fDDvVOXm2WRKGPIv1CD32zZiOrmJjmsce+sObg5abJiK4kSkXkeQxlAEA1AJEceLcnCpswDaOxo0ec73JA4T85gGM0a29vwl907cDD/vDwf7euHB69agKTQcKWbRkQmxACCAQRdAfGRyKwuxObMgyhtrJaXBbh6yUWxxviGwppeh68yz+Ktg/vR1KHNh5gUEorbp87AlPAI2I6SoRsi+g4DCAYQdBm6erplUajdecdQ1nRBXiYWwlo8djoWRifDYZT3OgzWG/FuWiq+ykhHt1otLwv28MTi+AS5MFeYl/eoyQMhsnaNDCAYQNDwqDVq5NeW40hJFk6U56CtS1uNUWXngLmRE7A4djrcHJ2VbqZZEDkR608cw/bMDLR2deovF8HEjMgoTAwJRWJQMPzd3BVtJxFdPgYQDCBoAOLtXt/ejNwLpcioKkBWVSFaur6brujl5IaroiZhbuREuKicFG2ruWrv6sL+87nYmZ2J06Wl6FL3LTzl7+Yma0tE+/ghytdX5k+EenoxCZPIAjCAYABBvYKFiqZalDRWo7CuAgV1FfqESB0xTDEpaIwsRT3WL8ziazqMpLbOTpwoKcbR4kJkVpTLJcJF8umlHOzsEOHtg3Bvb0R4aU/F0IfYnBwcFGk7EZlpAPGHP/wBW7duxcmTJ6FSqVBfXz/kfURTnn32WfzrX/+St587dy5ef/11jB07dtjPywDC+nR0d+FCawMutDaiuqUeFU0XUN5Ui4rmWnR0f9fVriOS/0I9/BHvH4GEgChEewfBztZOkbaPxoDiXHUl8mqqkX/hgpwSWlh7Ae3dA1e2DHR3l4FEuLcPImRgoQ0wfF1cmVtBZI0BhAgEvLy8UFJSgrfffntYAcSLL76IdevW4b333kN0dDSeeeYZnDlzBhkZGXByGl53MgMIyybejiIvQZRS7lb3yMTGtu4ONLa3oqmjFU2d2lNREbKmpRG1rQ1o6mwb8PFEb4K/qxeC3X0R6R2IKK8ghHsGQGXPX70jRfRIVDQ2oODCBRTX16G4rlZ/2jTICqAuDiqEeXsj3MsboV5eMrciwM1dDpGIffZcEI3SAELn3XffxaOPPjpkACGaERISgieeeAK/+MUv5GXiDwgMDJSPsWrVKsUCiKrmOtS1NUGD716qS1+13tfpdvtcdsnt+nvV9bcf7P697njptcNuw8XH6O8f/tK3w0D3FweFHk2PXBdC7qt70KMR+2p5Wc/F066LgYA2IOiWqz12qbvR3dMtx867Lp5qz2uv7+85h+Ls4AhfF0/4uXgiyN1HbiJoEMGDPXsXzJJ4HzW0t6Gkrg5FFwOKkvo6FNXVyYCjv6GQ3twdHeHp7AI3R0e57+boJPed7B1gb2cri2DJUzt72NnYyPeVeEjNxeeW72NxTqMNcmSbvmvdxTb2/9mUbMT/bWQviegnkdNabUR534uX2djAVnagiFNtT4o47Xt7m4u3F7uXXNfn9rrH1D6+vBHRReODQuDpbJxkb0OOoWYzLy0/Px8VFRVYtGiR/jLxR8ycOROpqakDBhAdHR1y6/3HG5tY92BP/kmjPy4NTRz8RY6Cu6MLPBxd5Kncd3KFr7MHfF09ZeDg4uCodFPJQOKA6OXsIrcJIX3ra4iAs7yhQQYTJfW1KGtokLNAapqbUd3cLGeBiN6LwXowiKzFn1beguSwkS/yZjYBhAgeBNHj0Js4r7uuP2LI4/nnnzdp2zyd3BDi4Sf3+wb+Nn0v6zVeq9sb7Dr9/W0Gfsy+V13yfP0+Rj9tGOS6YbWhn+vE0IDIqrezse27f/FUty9+/als7WFvZwcHW3t5XgQFDr3OO1xyvfaXo/Z2LFZknUSlz0gfX7n1p6WjQwYSjR1taG4XgUQ7mi8GFJ3dul4t0cPVI2tXiN6wS3sHxDurz+kln69LP7vffR60e7peDNEpoevBEKf6no5+ejl6936I/6nl3bQ9en0eS98rortO2wvS+3n4yRjcqJodMASxfo0SDAog1q5dK/MUBpOZmYn4+HiMlKeeegqPP/54nx6I8HDjRmIpsVPlRkTmwdXRUW5EpByDAgiRn3DPPfcMepuYmJjLakhQUJA8raysRHBwsP5ycT45OXnA+zk6OsqNiIiIzDSA8Pf3l5spiFkXIojYtWuXPmAQvQlpaWl44IEHTPKcREREdHlMVjGnqKhI1oAQpz09PXJfbM3NzfrbiKGODRs26McVxWyN3//+99i0aZOcvnnXXXfJmRk33nijqZpJRERE5pRE+dvf/lbWc9CZPHmyPP3mm2+wcOFCuZ+dnS2niuj86le/QktLC9asWSOnfc6bNw/btm0bdg0IIiIiGhksZU1EREQGH0NZ9J+IiIgMxgCCiIiILLeQlLHoRmRMUZGSiIhoNGu8eOwcTnbDqAsgmpqa5Kmxi0kRERFZi6amJpkLYVVJlGq1GmVlZXB3dzfaUsC66pbFxcVMzLwEX5v+8XUZGF+b/vF1GRhfm5F7XURIIIIHUUJBLEdgVT0Q4g8OCwszyWOLfyC+efvH16Z/fF0Gxtemf3xdBsbXZmRel6F6HnSYRElEREQGYwBBREREBmMAMQxisa5nn32Wi3b1g69N//i6DIyvTf/4ugyMr415vi6jLomSiIiITI89EERERGQwBhBERERkMAYQREREZDAGEERERGQwBhBERERkMAYQw/Daa68hKioKTk5OmDlzJg4fPgxr99xzz8lS4b23+Ph4WJt9+/bh+uuvl2VfxWvwxRdf9LleTHL67W9/i+DgYDg7O2PRokXIycmBNRjqtbnnnnu+9x5aunQpRrt169Zh+vTpstx+QEAAbrzxRmRnZ/e5TXt7Ox588EH4+vrCzc0Nt9xyCyorK2Htr8vChQu/95756U9/itHu9ddfx6RJk/QVJ2fPno2vvvpK8fcLA4ghfPLJJ3j88cflXNvjx48jKSkJ1157LaqqqmDtxo8fj/Lycv22f/9+WJuWlhb5nhBBZn9eeuklvPzyy3jjjTeQlpYGV1dX+f4RH3hrf20EETD0fg999NFHGO327t0rv+wPHTqEHTt2oKurC0uWLJGvl85jjz2GzZs3Y/369fL2Yn2fm2++Gdb+ugj3339/n/eM+IyNdmFhYXjhhRdw7NgxHD16FNdccw1WrlyJs2fPKvt+EXUgaGAzZszQPPjgg/rzPT09mpCQEM26des01uzZZ5/VJCUlKd0MsyI+Ths2bNCfV6vVmqCgIM2f/vQn/WX19fUaR0dHzUcffaSx5tdGuPvuuzUrV67UWLuqqir5+uzdu1f/HnFwcNCsX79ef5vMzEx5m9TUVI21vi7CggULND//+c8VbZe58Pb21rz11luKvl/YAzGIzs5OGfGJbufei3WJ86mpqbB2oitedE/HxMRg9erVKCoqUrpJZiU/Px8VFRV93j9ikRoxDMb3j9aePXtkd3VcXBweeOABXLhwAdamoaFBnvr4+MhT8Z0jfn33ft+I4cGIiAiret9c+rrofPDBB/Dz88OECRPw1FNPobW1Fdakp6cHH3/8seyZEUMZSr5fRt1qnMZUU1Mj/7ECAwP7XC7OZ2VlwZqJg+C7774rv/hFN+Lzzz+Pq666Cunp6XIMkyCDB6G/94/uOmsmhi9EN2t0dDTy8vLw61//GsuWLZNfenZ2drAGarUajz76KObOnSsPiIJ4b6hUKnh5eVnt+6a/10X44Q9/iMjISPnD5fTp03jyySdlnsTnn3+O0e7MmTMyYBDDnyLPYcOGDUhMTMTJkycVe78wgKDLIr7odURyjwgoxAf7008/xX333ado28gyrFq1Sr8/ceJE+T4aM2aM7JVISUmBNRBj/iLotsb8oct5XdasWdPnPSOSk8V7RQSg4r0zmsXFxclgQfTMfPbZZ7j77rtlvoOSOIQxCNFNJn4JXZrNKs4HBQUp1i5zJKLfcePGITc3V+mmmA3de4Tvn+ERQ2HiM2ct76GHHnoIW7ZswTfffCOT5HTEe0MMn9bX11vl+2ag16U/4oeLYA3vGZVKhdjYWEydOlXOWBEJyn//+98Vfb8wgBjiH0z8Y+3atatP15o4L7qS6DvNzc3yV4D4RUBaomtefIB7v38aGxvlbAy+f76vpKRE5kCM9veQyCkVB0nRBb179275PulNfOc4ODj0ed+IbnqRYzSa3zdDvS79Eb/IhdH+numPOBZ1dHQo+34xaYrmKPDxxx/LrPl3331Xk5GRoVmzZo3Gy8tLU1FRobFmTzzxhGbPnj2a/Px8zYEDBzSLFi3S+Pn5ycxpa9LU1KQ5ceKE3MTH6f/9v/8n9wsLC+X1L7zwgny/bNy4UXP69Gk56yA6OlrT1tamsebXRlz3i1/8QmaJi/fQzp07NVOmTNGMHTtW097erhnNHnjgAY2np6f8/JSXl+u31tZW/W1++tOfaiIiIjS7d+/WHD16VDN79my5WfPrkpubq/nd734nXw/xnhGfqZiYGM38+fM1o93atWvlbBTxd4vvEXHexsZG8/XXXyv6fmEAMQyvvPKK/MdRqVRyWuehQ4c01u62227TBAcHy9ckNDRUnhcfcGvzzTffyIPjpZuYoqibyvnMM89oAgMDZSCakpKiyc7O1lj7ayMOCkuWLNH4+/vLKWiRkZGa+++/3yoC8/5eE7H93//9n/42IsD82c9+Jqfqubi4aG666SZ5MLXm16WoqEgGCz4+PvKzFBsbq/nlL3+paWho0Ix2P/rRj+RnRHzfis+M+B7RBQ9Kvl9sxH9M28dBREREow1zIIiIiMhgDCCIiIjIYAwgiIiIyGAMIIiIiMhgDCCIiIjIYAwgiIiIyGAMIIiIiMhgDCCIiIjIYAwgiIiIyGAMIIiIiMhgDCCIiIgIhvr/Wpv1bjSFfMUAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] }, "metadata": {}, "output_type": "display_data" @@ -180,10 +201,23 @@ } }, "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Using categorical units to plot a list of strings that are all parsable as floats or dates. If these strings should be plotted as numbers, cast to the appropriate data type before plotting.\n", + "Using categorical units to plot a list of strings that are all parsable as floats or dates. If these strings should be plotted as numbers, cast to the appropriate data type before plotting.\n", + "Using categorical units to plot a list of strings that are all parsable as floats or dates. If these strings should be plotted as numbers, cast to the appropriate data type before plotting.\n", + "Using categorical units to plot a list of strings that are all parsable as floats or dates. If these strings should be plotted as numbers, cast to the appropriate data type before plotting.\n", + "Using categorical units to plot a list of strings that are all parsable as floats or dates. If these strings should be plotted as numbers, cast to the appropriate data type before plotting.\n" + ] + }, { "data": { - "text/plain": "
", - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAcgAAAL0CAYAAACI8aehAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAABSe0lEQVR4nO3deXQUZd728avTIYtAIAsEAooMIJAQIBIFxuDCJpsSougoCo46yEhgZhwFExDCIhBQeGVAGXUyw6Y4yOLCIgr4+CCKEAWCkUxYBIQRggRZEhLS3e8fnvRDTAHd6U530/l+zuEcurrqrl/dFHX1XV1VbbLZbDYBAIAKArxdAAAAvoiABADAAAEJAIABAhIAAAMEJAAABghIAAAMEJAAABggIAEAMBDo7QI8xWq1qqysTAEBATKZTN4uBwDgBTabTVarVYGBgQoIuPIYscYEZFlZmXJycrxdBgDAB8THxysoKOiK89SYgCz/pBAfHy+z2ezlatzHYrEoJyfH77bLl9Hnnkefe5Y/93f5tl1t9CjVoIAsP61qNpv97h9c8t/t8mX0uefR557lz/3tyFdtXKQDAIABAhIAAAMEJAAABghIAEAloaGh3i7B6whIAPAyq83q7RIqMJvNio2N9ckLdDzZVzXmKlZ/xic94NoWYArQoq/X68dzp7xdik9rVCdCQ2/u47H1EZBOstqsCjD5zsC7/JOer/G1fgJ83Y/nTumHnwu8XQYuQUA6iU96V+fpT3kAUB0IyCrgkx4A+D/OgQEAYICABADAAAEJAIABAhIAAAMEJAAABghIAAAMEJAAABggIAEAMEBAAgBggIAEAMAAAQkAgAECEgAAAwQkAAAGCEgAAAwQkAAAGCAgAQAwQEACAGCAgAQAwAABCQCAAa8GZElJidLT05WYmKikpCRlZWVddZkffvhBCQkJ2rZtmwcqBADUVIHeXPnMmTO1Z88eLVy4UMeOHdPYsWMVExOjPn36XHaZjIwMFRUVebBKAEBN5LWALCoq0vLly/XGG28oLi5OcXFxys/P19KlSy8bkO+//77Onz/v4UoBADWR106x7t27V2VlZUpISLBP69Spk3bt2iWr1Vpp/sLCQs2aNUuTJ0/2ZJkAgBrKayPIgoIChYeHKygoyD4tKipKJSUlOn36tCIiIirMP2PGDA0aNEitWrVyab0Wi8Wl5c1ms0vL1ySu9rWvKt8uf90+X+Tvfc5xxTmu7AfOLOu1gCwuLq4QjpLsr0tLSytM37p1q7Kzs/Xhhx+6vN6cnJwqLxsaGqrY2FiXa6gp8vLyVFxc7O0yqo0r+xKqxh/7nOOK8zx1bPFaQAYHB1cKwvLXISEh9mkXLlzQhAkTNHHixArTqyo+Pp5Pax7SunVrb5dQLSwWi3JyctiXPIg+x6VcObaU70uO8FpARkdHq7CwUGVlZQoM/KWMgoIChYSEKCwszD7f7t27deTIEY0ePbrC8n/4wx+UnJzs9HeSZrOZ/2Ae4u/9zL7kefQ5JM8dW7wWkG3btlVgYKB27typxMRESVJ2drbi4+MVEPB/1w61b99eGzZsqLBs7969NXXqVN12220erRkAUHN4LSBDQ0OVnJysjIwMTZs2TSdOnFBWVpamT58u6ZfRZN26dRUSEqJmzZpVWj46OlqRkZGeLhsAUEN49Uk6aWlpiouL07BhwzRp0iSNGjVKvXv3liQlJSVp7dq13iwPAFCDefVJOqGhocrMzFRmZmal9/Ly8i673JXeAwDAHXhYOQAABghIAAAMEJAAABioUkDeddddeumll5Sbm+vuegAA8AlVCsjnn39eR48e1ZAhQ9SnTx/NnTtX+/fvd3dtAAB4TZWuYr377rt1991368KFC9q8ebM2bNighx9+WNHR0RowYID69eunpk2burtWAAA8xqXvIENCQnT33XfrgQce0IABA3To0CH961//0oABA/T444/r4MGD7qoTAACPqlJAWq1Wbd26VRMmTFBSUpL+/Oc/q6SkRAsWLNCWLVu0ZcsWhYeH649//KO76wUAwCOqdIq1a9euKi0t1Z133qnJkyfr9ttvr/DTVXXq1FGvXr20a9cutxUKAIAnVSkgx48frx49eui6666r9N6pU6cUERGhPn36qE+fPi4XCACAN1TpFOuYMWN04cKFStOPHj2qHj16uFwUAADe5vAIcvXq1Vq5cqUkyWazaeTIkapVq1aFeU6cOKEGDRq4t0IAALzA4YDs1auXfvjhB0nSV199pY4dO6p27doV5rnuuuvUq1cv91YIAIAXOByQtWvXVmpqqiSpSZMm6t+/f4ULcwAA8CdOnWLt16+fgoKCZDKZrvhbjcnJye6oDQAAr3E4IOfOnas77rhDQUFBmjt37mXnM5lMBCQA4JrncEBu2rTJ8O8AAPgjhwNy+/btDs1nMpmUmJhY5YIAAPAFDgfko48+6tB8JpNJ3333XZULAgDAFzgckHv37q3OOgAA8CkOB+SxY8fUuHFjmUwmHTt27IrzxsTEuFwYAADe5HBAdu/eXZ9//rkiIyPVvXt3mUwm2Ww2+/vlrznFCgDwBw4H5MaNGxUREWH/OwAA/szhgGzSpEmlvx88eFD79+9XrVq19Jvf/EbXX3+9+ysEAMALqvRzV//97381ZswYbd++XfXq1ZPNZtPZs2fVvXt3vfjii6pfv76bywQAwLOq9HNX48ePl9ls1saNG7Vt2zZ99dVXWrdunQoLCzVhwgR31wgAgMdVaQS5fft2rVy5ssJp1xtvvFETJkzQ7373O7cVBwCAt1RpBNmiRQv95z//qTT9yJEjFUITAIBrlVO/5lGuS5cuGjdunHJzcxUfHy+z2ay8vDz961//0u9///vqqBMAAI9y6tc8LhUeHq61a9dW+NmrunXrasWKFXr66afdVyEAAF5QpV/zAADA31XpIh1JOnXqlA4ePCir1SpJstlsKi0tVW5uroYPH+62AgEA8IYqBeS///1vTZ48WWVlZRUeOWcymdS+fXsCEgBwzavSVawLFizQiBEjtHv3bkVGRmrz5s368MMP1bZtW/Xq1cvdNQIA4HFVCsgTJ04oOTlZQUFBiouL086dO9WyZUulp6dr+fLl7q4RAACPq1JARkRE6NSpU5Kk3/zmN/Zf74iOjtbx48fdVx0AAF5SpYDs27evxo4dq6+//lrdunXTypUr9dFHH2n+/Plq1qyZu2sEAMDjqnSRzrPPPqu6deuqsLBQPXr00H333aeJEyeqfv36mj59urtrBADA46oUkLVq1VJqaqr99V/+8hf95S9/cVtRAAB4W5Xvg9y+fbuWLVtm/z3IFi1aaNiwYWrbtq076wMAwCuq9B3kkiVL9PjjjysoKEj333+/7rnnHpWVlemBBx7QmjVr3F0jAAAeV6UR5BtvvKEpU6YoOTm5wvTExETNnj1b/fv3d0dtAAB4TZVGkOfOnVN8fHyl6YmJifbbPwAAuJZVKSAfeeQRzZo1S2fOnLFPKykp0bx58/TAAw+4rTgAALzF4VOs3bt3l8lkkvTLg8mPHTum22+/Xddff70CAgJ0+PBhlZSUcJEOAMAvOByQo0aNcvvKS0pKNGnSJG3YsEEhISF6/PHH9fjjjxvO++mnn2rOnDk6fPiwmjZtqj//+c/q0aOH22sCAEByIiAHDRpUaVpxcbEOHTokq9WqG264QXXq1HFq5TNnztSePXu0cOFCHTt2TGPHjlVMTIz69OlTYb69e/cqNTVVY8aM0R133KEtW7boT3/6k9599121adPGqXUCAOCIKl3FevHiRc2aNUtvvfWWLBaLbDabAgMDdc8992jSpEkKCgq6ahtFRUVavny53njjDcXFxSkuLk75+flaunRppYD88MMP1aVLFw0dOlSS1KxZM23atEnr1q0jIAEA1aJKF+lkZmZq8+bNeu2117R9+3Z99dVXmj9/vnbs2KE5c+Y41MbevXtVVlamhIQE+7ROnTpp165d9h9hLjdo0CA9++yzldo4e/ZsVcoHAOCqqjSC/PDDD/XKK6+oc+fO9ml33HGHgoOD9eyzz2rs2LFXbaOgoEDh4eEVRptRUVEqKSnR6dOnFRERYZ/eokWLCsvm5+friy++0O9+9zuna7dYLE4vcymz2ezS8jWJq33tq8q3y1+3zxf5e59zXHGOK/uBM8tWKSBtNpsiIyMrTY+IiND58+cdaqO4uLjSqdjy16WlpZdd7tSpUxo1apRuvvnmKl2kk5OT4/Qy5UJDQxUbG1vl5WuavLw8FRcXe7uMauPKvoSq8cc+57jiPE8dW6oUkF26dNFLL72kl156yX5hzpkzZzR79uwKo8orCQ4OrhSE5a9DQkIMlzl58qR+//vfy2azae7cuQoIcP4McXx8PJ/WPKR169beLqFaWCwW5eTksC95EH2OS7lybCnflxxRpYBMT0/X0KFD1a1bNzVv3lySdPDgQV1//fV67bXXHGojOjpahYWFKisrU2DgL2UUFBQoJCREYWFhleY/fvy4/SKdRYsWVTgF6wyz2cx/MA/x935mX/I8+hyS544tVQrIunXr6sMPP9Rnn32mAwcOKDg4WM2bN9dtt93m8Kiubdu2CgwM1M6dO5WYmChJys7OVnx8fKU2ioqK9OSTTyogIECLFi1SgwYNqlI2AAAOq1JADhgwQPPmzVOPHj2qfLN+aGiokpOTlZGRoWnTpunEiRPKysqy/+ByQUGB6tatq5CQEP3973/X4cOHtXjxYvt70i+nYuvWrVul9QMAcCVVCsiAgABdvHjR5ZWnpaUpIyNDw4YNU506dTRq1Cj17t1bkpSUlKTp06crJSVFH330kS5cuKDBgwdXWH7QoEGaMWOGy3UAAPBrVQrIO++8U7///e911113qUmTJpWuRk1NTXWondDQUGVmZiozM7PSe3l5efa/r1+/viplAgBQZVUKyLy8PMXFxenEiRM6ceJEhffKH2gOAMC1zKmAfO+99/Txxx8rKipKPXr00IABA6qrLgAAvMrhGwkXLlyo9PR0XbhwQcXFxUpLS9Ps2bOrszYAALzG4RHksmXL9OKLLyo5OVmStGHDBqWlpekvf/kLp1UBAH7H4RHkkSNH1LVrV/vr7t27q7i4uNJ3kAAA+AOHA/LSJ95IUmBgoOHj4gAA8AdV+rkrAAD8nVNXsa5bt87+cHJJslqt+vjjjys9F7X8e0oAAK5VDgdkTEyMsrKyKkyLjIzUkiVLKkwzmUwEJADgmudwQG7atKk66wAAwKfwHSQAAAYISAAADBCQAAAYICABADBAQAIAYICABADAAAEJAIABAhIAAAMEJAAABghIAAAMEJAAABggIAEAMEBAAgBggIAEAMAAAQkAgAECEgAAAwQkAAAGCEgAAAwQkAAAGCAgAQAwQEACAGCAgAQAwAABCQCAAQISAAADBCQAAAYISAAADBCQAAAYICABADBAQAIAYICABADAAAEJAIABAhIAAAMEJAAABghIAAAMEJAAABjwakCWlJQoPT1diYmJSkpKUlZW1mXnzc3N1eDBg9WhQwfdd9992rNnjwcrBQDUNF4NyJkzZ2rPnj1auHChJk6cqHnz5mn9+vWV5isqKtLw4cOVmJiolStXKiEhQU899ZSKioq8UDUAoCbwWkAWFRVp+fLlGjdunOLi4tSrVy89+eSTWrp0aaV5165dq+DgYI0ZM0YtWrTQuHHjVLt2bcMwBQDAHbwWkHv37lVZWZkSEhLs0zp16qRdu3bJarVWmHfXrl3q1KmTTCaTJMlkMunmm2/Wzp07PVkyAKAGCfTWigsKChQeHq6goCD7tKioKJWUlOj06dOKiIioMG/Lli0rLB8ZGan8/HyH12ez2SRJpaWlMpvNVa7bbDYrpnakzFzfdFnRtcNlsVhksVi8XUq1sFqtCgkJ0cWLF/12G32Nv/c5xxXHuOPYUr5seSZcidcCsri4uEI4SrK/Li0tdWjeX893JeWj0tzc3KqUW0FbRalt7SiX2/FnNWF0/+2333q7hBrHn/uc44pj3HVs+fWZSiNeC8jg4OBKAVf+OiQkxKF5fz3flQQGBio+Pl4BAQH2U7UAgJrFZrPJarUqMPDq8ee1gIyOjlZhYaHKysrshRYUFCgkJERhYWGV5j158mSFaSdPnlTDhg0dXl9AQEClUSgAAJfjtRPebdu2VWBgYIXhcnZ2tn2Ud6kOHTrom2++sZ8zttls+vrrr9WhQwdPlgwAqEG8FpChoaFKTk5WRkaGdu/erU8++URZWVkaOnSopF9GkxcuXJAk9enTR2fOnNGLL76offv26cUXX1RxcbH69u3rrfIBAH7OZHPkUp5qUlxcrIyMDG3YsEF16tTRE088occee0yS1Lp1a02fPl0pKSmSpN27d2vixInav3+/WrdurUmTJik2NtZbpQMA/JxXAxIAAF/FTTcAABggIAEAMEBAAgBggIAEAMAAAQkAgAECEgAAAwQkAAAGCEgAAAwQkAAAGCAgAQAwQEACAGCAgAQAwAABCQCAAQISAAADBCQAAAYISAAADBCQAAAYICABADBAQAIAYICABADAAAEJAIABAhIAAAMEJAAABgK9XYCnWK1WlZWVKSAgQCaTydvlAAC8wGazyWq1KjAwUAEBVx4j1piALCsrU05OjrfLAAD4gPj4eAUFBV1xnhoTkOWfFOLj42U2m71cjftYLBbl5OT43Xb5Mvrc8+hzz/Ln/i7ftquNHqUaFJDlp1XNZrPf/YNL/rtdvow+9zz63LP8ub8d+aqNi3QAADBAQAIAYICABADAAAHpB0JDQ71dAgA/w3GFgHSaxWr1dgkVmM1mxcbG+twX6b7WT4Av87X/L756XJE821c15ipWdzEHBGj6x+t0+NQpb5fis26IiFBar77eLgO4ZnBccYynjy0EZBUcPnVK+04WeLsMAH6E44rv4RQrAAAGCEgAAAwQkAAAGCAgAQAwQEACAGCAgAQAwAABCQCAAQISAAADBCQAAAYISAAADBCQAAAYICABADBAQAIAYICABADAAAEJAIABAhIAAAMEJAAABghIAAAMEJAAABggIAEAMOCzATl8+HA9//zz9te5ubkaPHiwOnTooPvuu0979uzxYnUAAH/nkwG5Zs0a/c///I/9dVFRkYYPH67ExEStXLlSCQkJeuqpp1RUVOTFKgEA/sznAvL06dOaOXOm4uPj7dPWrl2r4OBgjRkzRi1atNC4ceNUu3ZtrV+/3ouVAgD8mc8FZGZmpgYOHKiWLVvap+3atUudOnWSyWSSJJlMJt18883auXOnl6oEAPi7QG8XcKkvvvhCO3bs0AcffKCMjAz79IKCggqBKUmRkZHKz893eh0Wi8WlGs1ms0vL1ySu9rWvKt8uf90+X+Tvfc5xxTmu7AfOLOszAVlSUqKJEydqwoQJCgkJqfBecXGxgoKCKkwLCgpSaWmp0+vJycmpco2hoaGKjY2t8vI1TV5enoqLi71dRrVxZV9C1fhjn3NccZ6nji0+E5Dz5s1Tu3bt1K1bt0rvBQcHVwrD0tLSSkHqiPj4eD6teUjr1q29XUK1sFgsysnJYV/yIPocl3Ll2FK+LznCZwJyzZo1OnnypBISEiTJHogfffSRBgwYoJMnT1aY/+TJk2rYsKHT6zGbzfwH8xB/72f2Jc+jzyF57tjiMwG5ePFilZWV2V+/9NJLkqRnn31W27dv1xtvvCGbzSaTySSbzaavv/5aI0aM8Fa5AAA/5zMB2aRJkwqva9euLUlq1qyZIiMj9fLLL+vFF1/U7373Oy1btkzFxcXq27evN0oFANQAPnebh5E6dero73//u7Kzs5WSkqJdu3bp9ddf13XXXeft0gAAfspnRpC/NmPGjAqv27dvr1WrVnmpGgBATXNNjCABAPA0AhIAAAMEJAAABghIAAAMEJAAABggIAEAMEBAAgBggIAEAMAAAQkAgAECEgAAAwQkAAAGCEgAAAwQkAAAGCAgAQAwQEACAGCAgAQAwEC1B+SpU6eqexUAALidWwKybdu2hkF49OhR9ejRwx2rAADAowKruuDq1au1cuVKSZLNZtPIkSNVq1atCvOcOHFCDRo0cK1CAAC8oMoB2atXL/3www+SpK+++kodO3ZU7dq1K8xz3XXXqVevXq5VCACAF1Q5IGvXrq3U1FRJUpMmTdSvXz8FBwe7rTAAALypygF5qUGDBunQoUPas2ePLl68WOn95ORkd6wGAACPcUtAvvnmm3rppZdUr169SqdZTSYTAQkAuOa4JSCzsrL03HPP6YknnnBHcwAAeJ1bbvMoKSlR79693dEUAAA+wS0Bec899+itt96SzWZzR3MAAHidW06xnjt3Tu+++64+/PBDNW3atNL9kIsWLXLHagAA8Bi3BOSNN96oESNGuKMpAAB8glsCsvx+SAAA/IVbAjItLe2K70+fPt0dqwEAwGOq5dc8ysrKdPDgQa1du1YRERHVsQoAAKqVW0aQlxshvvnmm/rPf/7jjlUAAOBR1fp7kH369NHHH39cnasAAKBaVFtAFhUV6d///rfCw8OraxUAAFQbt5xibdOmjUwmU6XpwcHBmjp1qjtWAQCAR7klIH/9IACTyaRatWqpZcuWqlOnjjtWAQCAR7klIG+99VZJ0vfff6/9+/fLarWqefPmhCMA4JrlloA8c+aM0tLStHHjRtWrV08Wi0Xnz5/XLbfcovnz56tu3bruWA0AAB7jlot0pk6dqh9//FFr167Vtm3btGPHDn3wwQcqKiriIQEAgGuSWwJy06ZNysjI0G9+8xv7tJYtW2rChAnauHGjO1YBAIBHuSUgg4ODFRBQuSmTySSLxeKOVQAA4FFuCcju3btr0qRJOnz4sH3a999/r6lTp+qOO+5wxyoAAPAot1yk89xzz2nkyJG6++67FRYWJkn6+eefdfvtt+uFF15wxyoAAPAolwPy0KFDiomJ0eLFi5WXl6f9+/crODhYN954o1q0aOGOGgEA8Lgqn2K12WyaOnWq+vbtq2+++UaS1Lp1a/Xr108rVqzQgAEDNGPGDNlsNrcVCwCAp1Q5IBctWqS1a9dq/vz59gcFlHv11Vc1f/58rVq1Sm+//bbLRQIA4GlVDsh///vfeuGFF3TXXXcZvt+9e3c9++yzTgXk8ePHNXr0aN16663q1q2bpk+frpKSEknSkSNH9Nhjj6ljx47q16+ftmzZUtXSAQC4qioH5NGjR9W+ffsrztOlSxcdOXLEofZsNptGjx6t4uJiLV26VHPmzNHmzZv1//7f/5PNZtPIkSMVFRWlFStWaODAgUpNTdWxY8eqWj4AAFdU5Yt0IiMjdfToUTVp0uSy8/z444+qX7++Q+0dOHBAO3fu1Oeff66oqChJ0ujRo5WZmanbb79dR44c0bJly3TdddepRYsW+uKLL7RixQqNGjWqqpsAAMBlVXkE2atXL/3tb3/TxYsXDd8vKyvTvHnzlJSU5FB7DRo00JtvvmkPx3Lnzp3Trl27FBsbq+uuu84+vVOnTtq5c2dVywcA4IqqPIJ8+umndf/99yslJUWPPvqo2rVrp7p16+rnn3/Wt99+qyVLluj8+fOaOXOmQ+2FhYWpW7du9tdWq1VLlixRly5dVFBQoIYNG1aYPzIyUj/++KPTdbv6ZB+z2ezS8jWJvz5FqXy7/HX7fJG/9znHFee4sh84s2yVAzIsLEz//ve/9dJLL2nGjBkqLi6W9Mt3iXXr1lW/fv00atSoSiNCR82aNUu5ubl699139a9//UtBQUEV3g8KClJpaanT7ebk5FSpHkkKDQ1VbGxslZevafLy8uz7hT9yZV9C1fhjn3NccZ6nji0uPSigfv36mjp1qiZMmKAjR47ozJkzql+/vm644QaXPhHNmjVLCxcu1Jw5c3TTTTcpODhYp0+frjBPaWmpQkJCnG47Pj6eT2se0rp1a2+XUC0sFotycnLYlzyIPselXDm2lO9LjnDLo+aCgoLc9tScKVOm6O2339asWbN09913S5Kio6O1b9++CvOdPHmy0mlXR5jNZv6DeYi/9zP7kufR55A8d2xxy8PK3WXevHlatmyZZs+erf79+9und+jQQd9++60uXLhgn5adna0OHTp4o0wAQA3gMwG5f/9+vfrqq/rDH/6gTp06qaCgwP7n1ltvVePGjZWWlqb8/Hy9/vrr2r17t+6//35vlw0A8FNuOcXqDhs3bpTFYtFrr72m1157rcJ7eXl5evXVVzVu3DilpKSoWbNmmj9/vmJiYrxULQDA3/lMQA4fPlzDhw+/7PvNmjXTkiVLPFgRAKAm85lTrAAA+BICEgAAAwQkAAAGCEgAAAwQkAAAGCAgAQAwQEACAGCAgAQAwAABCQCAAQISAAADBCQAAAYISAAADBCQAAAYICABADBAQAIAYICABADAAAEJAIABAhIAAAMEJAAABghIAAAMEJAAABggIAEAMEBAAgBggIAEAMAAAQkAgAECEgAAAwQkAAAGCEgAAAwQkAAAGCAgAQAwQEACAGCAgAQAwAABCQCAAQISAAADBCQAAAYISAAADBCQAAAYICABADBAQAIAYICABADAAAEJAIABAhIAAAMEJAAABghIAAAMEJAAABi4pgKypKRE6enpSkxMVFJSkrKysrxdEgDATwV6uwBnzJw5U3v27NHChQt17NgxjR07VjExMerTp4+3SwMA+JlrJiCLioq0fPlyvfHGG4qLi1NcXJzy8/O1dOlSAhIA4HbXzCnWvXv3qqysTAkJCfZpnTp10q5du2S1Wr1YGQDAH10zI8iCggKFh4crKCjIPi0qKkolJSU6ffq0IiIirri8zWaTJJWWlspsNle5DrPZrOYRkaplumY+W3hc0/BwWSwWWSwWb5dSLaxWq0JCQnTx4kW/3UZf4+99znHFMe44tpQvW54JV3LNBGRxcXGFcJRkf11aWnrV5ctHmbm5uS7X0iOigRTRwOV2/NnOnTu9XUK1+/bbb71dQo3jz33OccUx7jq2OHLm8ZoJyODg4EpBWP46JCTkqssHBgYqPj5eAQEBMplM1VIjAMC32Ww2Wa1WBQZePf6umYCMjo5WYWGhysrK7BtWUFCgkJAQhYWFXXX5gICASiNQAAAu55o54d22bVsFBgZWGF5nZ2fbR4UAALjTNZMsoaGhSk5OVkZGhnbv3q1PPvlEWVlZGjp0qLdLAwD4IZPNkUt5fERxcbEyMjK0YcMG1alTR0888YQee+wxb5cFAPBD11RAAgDgKdfMKVYAADyJgAQAwAABCQCAAQISAAADBCQAAAYISAAADBCQAAAYICABADBAQAIAYICABADAAAEJAIABAhIAAAMEJAAABghIAAAMEJAAABggIAEAMEBAAgBggIAEAMAAAQkAgAECEgAAAwQkAAAGCEgAAAwEersAT7FarSorK1NAQIBMJpO3ywEAeIHNZpPValVgYKACAq48RqwxAVlWVqacnBxvlwEA8AHx8fEKCgq64jw1JiDLPynEx8fLbDZ7uRr3sVgsysnJ8bvt8mX0uefR557lz/1dvm1XGz1KNSggy0+rms1mv/sHl/x3u3wZfe559Lln+XN/O/JVGxfpAABggIAEAMAAAQkAgAEC0g+EhoZ6uwQA8DsEpJMsVqu3S6jAbDYrNjbW575I97V+AgBn1ZirWN3FHBCgv769RvtO/OTtUnxWy4aRevmh/t4uA4ALODNFQFbJvhM/KffYCW+XAcBPWKxWmR24L89Tys9M+SJP9hUBCQBexpkpx3j67BQBCQA+gDNTvsd3xvQAAPgQAhIAAAMEJAAABghIAAAMEJAAABggIAEAMEBAAgBggIAEAMAAAQkAgAECEgAAAwQkAAAGCEgAAAwQkAAAGCAgAQAwQEACAGCAgAQAwIDTP5h87tw5bd++Xd9++61OnTqlgIAARUVFKTY2Vp07d1ZwcHB11AkAgEc5HJCHDh3S66+/rjVr1qhevXpq2bKl6tevL6vVqn379mnRokUqKirSPffco8cff1zNmzevzroBAKhWDgXknDlz9PHHH2vQoEFasWKFWrRoYTjfgQMHtHbtWj311FPq06ePnnnmGbcWCwCApzgUkE2bNtUHH3wgs9l8xfl+85vfKDU1VSNGjNCKFSvcUiAAAN7gUEAOHjzYuUYDA/Xggw9WqSAAAHyBQwE5b948hxtMTU2tcjEAAPgKhwJy27ZtDjVmMplcKgYAAF/hUEAuXry4uusAAMCnOH0fpCR99913ys/Pl9VqlSTZbDaVlpYqNzdXkyZNcmuBAAB4g9MBOW/ePM2bN09RUVH66aefFB0drZMnT8pisahXr17VUSMAAB7n9KPm3nnnHU2aNElbtmxR48aNtXjxYm3dulW//e1vdcMNN1RHjQAAeJzTAVlYWKhu3bpJktq2batvvvlGYWFh+stf/qK1a9e6vUAAALzB6YCMjo7WkSNHJEktWrRQbm6uJKlOnTo6deqUU22VlJQoPT1diYmJSkpKUlZW1lWX+eGHH5SQkODwlbUAAFSF099BDh48WM8884ymTZumnj176rHHHlPDhg21detWtWnTxqm2Zs6cqT179mjhwoU6duyYxo4dq5iYGPXp0+eyy2RkZKioqMjZsgEAcIrTATlixAg1atRIoaGhat++vdLS0rRs2TLVr19f06ZNc7idoqIiLV++XG+88Ybi4uIUFxen/Px8LV269LIB+f777+v8+fPOlgwAgNOqdJtHcnKy/e+DBw92+lF0krR3716VlZUpISHBPq1Tp05asGCBrFarAgIqnv0tLCzUrFmzlJWVpQEDBlSlbAAAHFalgHz//ff1r3/9S4cPH9aqVau0ePFiRUVFafjw4Q63UVBQoPDwcAUFBdmnRUVFqaSkRKdPn1ZERESF+WfMmKFBgwapVatWVSnZzmKxuLT81R7Yjv/jal/7qvLt8tft80X+3uccV5zjyn7gzLJOB+Rbb72lV199VSNGjNCsWbMkSXFxcZo2bZpKS0sdfhZrcXFxhXCUZH9dWlpaYfrWrVuVnZ2tDz/80NlyK8nJyanysqGhoYqNjXW5hpoiLy9PxcXF3i6j2riyL6Fq/LHPOa44z1PHFqcDcvHixZo6daruvPNOvfzyy5KkgQMHqn79+powYYLDARkcHFwpCMtfh4SE2KdduHBBEyZM0MSJEytMr6r4+Hg+rXlI69atvV1CtbBYLMrJyWFf8iD6HJdy5dhSvi85wumAPHbsmOEPJl9//fU6ffq0w+1ER0ersLBQZWVlCgz8pYyCggKFhIQoLCzMPt/u3bt15MgRjR49usLyf/jDH5ScnKzJkyc7Vb/ZbOY/mIf4ez+zL3kefQ7Jc8cWpwOyQ4cOWr16tUaNGmWfZrPZlJWVpfbt2zvcTtu2bRUYGKidO3cqMTFRkpSdna34+PgKF+i0b99eGzZsqLBs7969NXXqVN12223Olg8AgEOcDsjx48dr+PDh+vTTT1VaWqpJkybp+++/14ULF/TGG2843E5oaKiSk5OVkZGhadOm6cSJE8rKytL06dMl/TKarFu3rkJCQtSsWbNKy0dHRysyMtLZ8gEAcIjTAXnTTTfpo48+0gcffKD9+/fLYrGoR48euvfee1W7dm2n2kpLS1NGRoaGDRumOnXqaNSoUerdu7ckKSkpSdOnT1dKSoqzJQIA4DKnAzIlJUXTp0/X/fff7/LKQ0NDlZmZqczMzErv5eXlXXa5K70HAIA7OP0s1hMnTvAlOQDA7zk9gkxOTtaTTz6pe++9V02aNFFwcHCl9wEAuNY5HZBr165VQECA4U37JpOJgAQA+AWnA3LTpk3VUQcAAD7Foe8gX3nlFZ07d87hRs+cOaM5c+ZUuSgAALzNoYBs3LixBg4cqIyMDG3ZskUXL16sNE9xcbG2bt2q9PR03XvvvWrcuLHbiwUAwFMcOsX6wAMPqHfv3lq6dKnS09N16tQpNW3aVOHh4bJarTp9+rR++OEHNWjQQPfff79WrVql8PDw6q4dAIBq4/B3kPXr19fIkSP19NNPKy8vT7m5uTp16pRMJpMiIyMVGxurm266qTprBQDAY5y+SMdkMqlNmzZq06ZNddQDAIBPcPpBAQAA1AQEJAAABghIAAAMuBSQP//8s6xWq2w2m7vqAQDAJzgdkDabTa+99po6d+6srl276ujRo3ruuec0YcIElZaWVkeNAAB4nNMBOX/+fL3//vuaMWOGgoKCJEmDBg3S559/rpkzZ7q9QAAAvMHpgFy1apUmT56su+66SyaTSZJ02223KTMzU+vWrXN7gQAAeIPTAfnTTz+pYcOGlaaHhYWpqKjILUUBAOBtTgdkly5d9I9//KPCtHPnzmn27Nnq3Lmz2woDAMCbnA7IjIwM5ebm6rbbblNJSYmefvpp3XHHHTp69KjGjx9fHTUCAOBxTj9qrlGjRnr33Xf1xRdf6MCBAyorK1Pz5s2VlJSkgABuqwQA+AenA7Jc165d1bVrV3fWAgCAz3AoINu0aWO/YvVqvvvuO5cKAgDAFzgUkIsWLbL/PScnR//85z/19NNPKz4+XrVq1VJubq7mzZunoUOHVluhAAB4kkMBeeutt9r/PmHCBGVmZuq2226zT2vTpo2aNGmitLQ0PfbYY24vEgAAT3P6qpoTJ04oMjKy0vTQ0FCdOXPGLUUBAOBtTgfknXfeqfT0dH399dcqKirS+fPn9eWXXyo9PV19+/atjhoBAPA4p69inTx5siZOnKhHH31UVqtVkmQ2m5WcnMx9kAAAv+F0QNapU0cvv/yyJk2apIMHD0qSmjdvrjp16ri9OAAAvMXpgNy+fXulaZfe2nHLLbe4VhEAAD7A6YB89NFHDacHBQWpQYMG2rhxo8tFAQDgbU4H5N69eyu8tlgsOnz4sKZMmaJ77rnHbYUBAOBNLj881Ww2q3nz5nr++ef1yiuvuKMmAAC8zm1PF//pp5+4DxIA4DecPsWalpZWadr58+e1detW9enTxy1FAQDgbVX+NY9L1a9fX2PHjtXAgQPd0RwAAF7ndECmpKSoY8eOqlWrVoXppaWl+uyzz9SzZ0+3FQcAgLc4/R3k0KFDdfbs2UrT8/Pz9cwzz7ilKAAAvM2hEeRbb72lyZMny2QyyWazVfglj0v99re/dWtxAAB4i0MB+fDDD6tVq1ayWq0aNmyY5s6dq3r16tnfN5lMCg0N1U033VRthQIA4EkOfwdZ/gi5jRs3KiYmRiaTqdqKAgDA2xwKyLS0NI0bN0516tTRvHnzrjjv9OnT3VIYAADe5LYHBVRFSUmJ0tPTlZiYqKSkJGVlZV123k8//VQDBw5UQkKC7rnnHp75CgCoVg6NIC8dFbpzhDhz5kzt2bNHCxcu1LFjxzR27FjFxMRUeuDA3r17lZqaqjFjxuiOO+7Qli1b9Kc//Unvvvuu2rRp47Z6AAAo51BAXu206qVSU1Mdmq+oqEjLly/XG2+8obi4OMXFxSk/P19Lly6tFJAffvihunTpoqFDh0qSmjVrpk2bNmndunUEJACgWjgUkNu2bXOoMWcu3Nm7d6/KysqUkJBgn9apUyctWLBAVqtVAQH/d/Z30KBBunjxYqU2jO7HBADAHRwKyMWLF7t9xQUFBQoPD1dQUJB9WlRUlEpKSnT69GlFRETYp7do0aLCsvn5+friiy/0u9/9zun1WiyWqhetX369BI5xta99Vfl2+ev2+SJ/73OOK85xZT9wZtkqPYt169ateuedd3TgwAGZTCa1bt1aQ4YMUceOHR1uo7i4uEI4SrK/Li0tvexyp06d0qhRo3TzzTerR48eTteek5Pj9DLlQkNDFRsbW+Xla5q8vDwVFxd7u4xq48q+hKrxxz7nuOI8Tx1bnA7I5cuXa9KkSRowYIAefPBBWSwW7dmzR0OHDtVLL72k3r17O9ROcHBwpSAsfx0SEmK4zMmTJ/X73/9eNptNc+fOrXAa1lHx8fF8WvOQ1q1be7uEamGxWJSTk8O+5EH0OS7lyrGlfF9yhNMB+dprr2nSpEm67777Kky/5ZZb9PLLLzsckNHR0SosLFRZWZkCA38po6CgQCEhIQoLC6s0//Hjx+0X6SxatKjCKVhnmM1m/oN5iL/3M/uS59HnkDx3bHF6CHb69Gl16NCh0vTExESdOHHC4Xbatm2rwMBA7dy50z4tOztb8fHxlUaGRUVFevLJJxUQEKAlS5YoOjra2bIBAHCK0wE5ZMgQZWZmqrCw0D6tuLhYCxYs0MMPP+xwO6GhoUpOTlZGRoZ2796tTz75RFlZWfZRYkFBgS5cuCBJ+vvf/67Dhw8rMzPT/l5BQQFXsQIAqo3Tp1izs7O1e/du3XnnnbrhhhtUq1YtHTp0SOfPn1dMTIzWr19vn/dqT7tJS0tTRkaGhg0bpjp16mjUqFH2U7RJSUmaPn26UlJS9NFHH+nChQsaPHhwheUHDRqkGTNmOLsJAABcldMBOXjw4EpBVVWhoaHKzMy0jwwvlZeXZ//7paELAIAnOB2QgwYNqo46AADwKU4H5P79+zV79mwdOHDA8H5FHiIOAPAHTgfkX//6V4WEhGjo0KGXvV8RAIBrndMB+f3332vFihWVHv8GAIA/cfo2j9tvv13Z2dnVUQsAAD7D6RHk888/r0GDBumDDz5QkyZNKv2Chzt/LxIAAG9xegT5wgsvKCAgQFFRUU79vBUAANcSp0eQO3bs0Ntvv83T5wEAfs3pEWSrVq105syZ6qgFAACf4fQI8qGHHtKYMWOUkpKipk2b2n+Jo1xycrK7agMAwGucDsj58+crMDBQ77//fqX3Tpw4QUACAPyC0wG5adOmCq9LSkr08ccfa9WqVTp+/LjbCgMAwJucDshy2dnZWr16tdavX69z586pRYsWSk9Pd2dtAAB4jVMBefToUa1evVrvvfeejhw5orCwMJ07d04vv/yy+vXrV101AgDgcQ4F5IoVK7R69Wrt2LFDDRs2VPfu3dW7d2/dcsst6tChg2666abqrhMAAI9yKCDHjRunZs2aKTMzU/fee2911wQAgNc5dB/ktGnT1LRpU6Wlpalr165KS0vTxo0bVVJSUt31AQDgFQ6NIFNSUpSSkqJTp05p3bp1Wrt2rVJTUxUSEiKr1apt27apWbNmqlWrVnXXCwCARzj1JJ2IiAgNGTJES5cu1ebNmzVy5Ei1bdtWU6ZMUbdu3XhQOQDAbzj9qLlyjRo10pNPPqmVK1dq/fr1euSRR/S///u/7qwNAACvqXJAXurGG29Uamqq1q5d647mAADwOrcEJAAA/oaABADAAAEJAIABAhIAAAMEJAAABghIAAAMEJAAABggIAEAMEBAAgBggIAEAMAAAQkAgAECEgAAAwQkAAAGCEgAAAwQkAAAGCAgAQAwQEACAGCAgAQAwAABCQCAAQISAAADXg3IkpISpaenKzExUUlJScrKyrrsvLm5uRo8eLA6dOig++67T3v27PFgpQCAmsarATlz5kzt2bNHCxcu1MSJEzVv3jytX7++0nxFRUUaPny4EhMTtXLlSiUkJOipp55SUVGRF6oGANQEXgvIoqIiLV++XOPGjVNcXJx69eqlJ598UkuXLq0079q1axUcHKwxY8aoRYsWGjdunGrXrm0YpgAAuIPXAnLv3r0qKytTQkKCfVqnTp20a9cuWa3WCvPu2rVLnTp1kslkkiSZTCbdfPPN2rlzpydLBgDUIIHeWnFBQYHCw8MVFBRknxYVFaWSkhKdPn1aERERFeZt2bJlheUjIyOVn5/v8PpsNpskqbS0VGazucp1m81mtWkUpSAz1zddzm8aRMhischisXi7lGphtVoVEhKiixcv+u02+hp/73OOK45xx7GlfNnyTLgSrwVkcXFxhXCUZH9dWlrq0Ly/nu9Kykelubm5VSm3ggdaRksto11ux5/VhNH9t99+6+0Sahx/7nOOK45x17Hl12cqjXgtIIODgysFXPnrkJAQh+b99XxXEhgYqPj4eAUEBNhP1QIAahabzSar1arAwKvHn9cCMjo6WoWFhSorK7MXWlBQoJCQEIWFhVWa9+TJkxWmnTx5Ug0bNnR4fQEBAZVGoQAAXI7XTni3bdtWgYGBFYbL2dnZ9lHepTp06KBvvvnGfs7YZrPp66+/VocOHTxZMgCgBvFaQIaGhio5OVkZGRnavXu3PvnkE2VlZWno0KGSfhlNXrhwQZLUp08fnTlzRi+++KL27dunF198UcXFxerbt6+3ygcA+DmTzZFLeapJcXGxMjIytGHDBtWpU0dPPPGEHnvsMUlS69atNX36dKWkpEiSdu/erYkTJ2r//v1q3bq1Jk2apNjYWG+VDgDwc14NSAAAfBU33QAAYICABADAAAEJAIABAhIAAAMEJAAABghIAAAMEJAAABggIAEAMEBAAgBggIAEAMAAAQkAgAECEgAAAwQkAAAGCEgAAAwQkAAAGCAgAQAwQEACAGCAgAQAwAABCQCAAQISAAADBCQAAAYISAAADAR6uwBPsVqtKisrU0BAgEwmk7fLAQB4gc1mk9VqVWBgoAICrjxGrDEBWVZWppycHG+XAQDwAfHx8QoKCrriPDUmIMs/KcTHx8tsNnu5GvexWCzKycnxu+3yZfS559HnnuXP/V2+bVcbPUo1KCDLT6uazWa/+weX/He7fBl97nn0uWf5c3878lUbF+kAAGCAgAQAwAABCQCAAQISAAADBCQAAAYISAAADBCQAAAYICABADBAQAIAYICABADAAAEJAIABAhIAAAMEJAAABghIAAAMEJAAABggIAEAMEBAAgBggIAEAMAAAQkAgIFrKiCPHz+u0aNH69Zbb1W3bt00ffp0lZSUeLssAIAfCvR2AY6y2WwaPXq0wsLCtHTpUv38889KT09XQECAxo4d6+3yAAB+xuWA/M9//qPc3Fz99NNPCggIUFRUlGJjY9WiRQt31Gd34MAB7dy5U59//rmioqIkSaNHj1ZmZiYBCQBwuyoF5M8//6ylS5fqnXfe0cmTJ9W0aVOFh4fLarWqsLBQR48eVaNGjfTAAw/ooYceUr169VwutEGDBnrzzTft4Vju3LlzLrcNAMCvOR2Qy5cv19///nd169ZNU6ZMUZcuXRQUFFRhnvPnz+ubb77RmjVrNHDgQP3xj3/Ugw8+6FKhYWFh6tatm/211WrVkiVL1KVLF6fasVgsLtXha8q3x9+2y5fR555Hn3uWP/e3M9vkdED+8MMPWrVqlerWrXvZeWrXrq2kpCQlJSWpsLBQ//znP51dzVXNmjVLubm5evfdd51aLicnx+21+AJ/3S5fRp97Hn3uWTW9v002m83m7SKcNWvWLP3zn//UnDlzdPfddzu0jMVi0c6dOxUfHy+z2VzNFXqOxWJRTk6O322XL6PPPY8+9yx/7u/ybevYseNVt82li3TmzZtnON1kMqlWrVpq2LChunXrpsjISFdWU8GUKVP09ttva9asWQ6H46XMZrPf/YNL/rtdvow+9zz63LNqen+7FJAHDx7U2rVr1ahRI7Vr1042m03fffedjh07po4dO+rs2bOaOnWq3nzzTXXs2NHlYufNm6dly5Zp9uzZ6tOnj8vtAQBwOS7f5nH//fcrIyPD/inDarXqxRdfVFFRkaZPn64FCxZoxowZWrZsmUvr2b9/v1599VUNHz5cnTp1UkFBgf29Bg0auNQ2AAC/5tKTdDZt2qTHH3+8whA8ICBAjzzyiNavXy9J6t+/v/bu3etalZI2btwoi8Wi1157zX4BUPkfAADczaURZFRUlHbs2KHmzZtXmJ6dna369etLkk6ePKk6deq4shpJ0vDhwzV8+HCX2wEAwBEuBeSoUaM0btw4ZWdnKz4+XjabTd9++63WrFmjCRMm6ODBgxo7dqz69+/vrnoBAPAIlwLy3nvvVUxMjN5++20tW7ZMZrNZLVu21KJFi9SxY0ft3r1bjzzyiIYMGeKuegEA8AiXL9JJTExUYmKi4Xvt27dX+/btXV0FAAAe51JAFhcX65133tG+ffsqPL6ntLRUubm5WrduncsFAgDgDS5dxTp+/Hi9/vrrKi4u1vvvv6+LFy9q3759WrNmDd87AgCuaS6NID/77DO98sor+u1vf6v8/Hw99thjateunWbMmKH8/Hx31QgAgMe5NIIsKSnRjTfeKElq1aqV9uzZI0l68MEHtWPHDpeLAwDAW1wKyBYtWmjr1q2SfgnI7OxsSdLZs2dVUlLienUAAHiJS6dYU1NT9ac//UlWq1UDBw5U//79NWLECOXl5VX47UYAAK41LgVkjx49tG7dOlmtVjVu3FhvvfWW3nvvPd1888169NFH3VUjAAAe5/J9kNdff739723atFGbNm1cbRIAAK9zKSB37NihqVOn6sCBA7p48WKl97/77jtXmgcAwGtcCshx48apVatWeuaZZxQSEuKumgAA8DqXAvLEiRNasGBBpV/zAADgWufSbR733HOP1qxZ465aAADwGS6NIJ988kndf//9WrlypZo0aSKTyVTh/UWLFrlUHAAA3uJSQD777LOKiIhQz549+Q4SAOBXXArIvLw8rVy5Ui1atHBXPQAA+ASXvoPs1KmT9u/f765aAADwGS6NIJOSkpSenq4NGzbo+uuvl9lsrvB+amqqS8UBAOAtLgXk5s2b1bZtWx0/flzHjx+v8N6vL9gBAOBa4lJALl682F11AADgU5wOyNWrV6tfv34KCgrS6tWrrzhvcnJyFcsCAMC7nA7IuXPn6o477lBQUJDmzp172flMJhMBCQC4ZjkdkJs2bTL8OwAA/sTp2zxeeeUVnTt3zuH5z5w5ozlz5ji7GgAAvMrpgGzUqJEGDhyojIwMbdmyxfBnroqLi7V161alp6fr3nvvVePGjd1SLAAAnuL0KdYHH3xQd999t5YuXar09HSdOnVKTZs2VXh4uKxWq06fPq0ffvhBDRo00P33369Vq1YpPDy8OmoHAKDaVOk2j/r162vkyJF6+umnlZeXp9zcXJ06dUomk0mRkZGKjY3VTTfd5O5aAQDwGJfugzSZTGrTpo3atGnjrnoAAPAJLj2LFQAAf0VAAgBggIAEAMCA2wLy559/ltVqlc1mc1eTAAB4jUsBabPZ9Nprr6lz587q2rWrjh49queee04TJkxQaWmpu2oEAMDjXArI+fPn6/3339eMGTMUFBQkSRo0aJA+//xzzZw50y0FAgDgDS4F5KpVqzR58mTddddd9t9/vO2225SZmal169a5pcBLlZSUKD09XYmJiUpKSlJWVpbb1wEAgOTifZA//fSTGjZsWGl6WFiYioqKXGna0MyZM7Vnzx4tXLhQx44d09ixYxUTE6M+ffq4fV0AgJrNpRFkly5d9I9//KPCtHPnzmn27Nnq3LmzS4X9WlFRkZYvX65x48YpLi5OvXr10pNPPqmlS5e6dT0AAEguBmRGRoZyc3N12223qaSkRE8//bTuuOMOHT16VOPHj3dXjZKkvXv3qqysTAkJCfZpnTp10q5du2S1Wt26LgAAXDrF2qhRI7377rv64osvdODAAZWVlal58+ZKSkpSQIB7b7EsKChQeHi4/WIgSYqKilJJSYlOnz6tiIgIh9qxWCxurcvbrFarQkND+ZDgQfS559HnnuXP/e1MBrgUkOW6du2qrl27uqOpyyouLq4QjpLsr525pSQnJ6fKNdSqVUttY+NUK9Bc5TbczWw2KzY21ttlVHKxzKLvcr81/Dk0ZzVu3FgxMTFuqMo9fLXPjx07pv/+979uaYs+d4w7+pzjinPceWy5GqcDsk2bNvYrVq/mu+++c7qgywkODq4UhOWvQ0JCHG4nPj5eZnPVd0Sz2ay/zF2tfUd/qnIb/q5lk0jNGZ2suLg4t7XpSyN/q9Wq/Px8tWrVyu1nSlwRHR2t6Ohot7VHn1+du/qc44pj3HFssVgsDg+UnA7IRYsW2f+ek5Ojf/7zn3r66acVHx+vWrVqKTc3V/PmzdPQoUOdbfqKoqOjVVhYqLKyMgUG/lJ2QUGBQkJCFBYW5nA7ZrPZpYCUpH1Hf9K3B390qY2awNV+9mXFxcUKCAjw6230Nf7e5xxXHOepfcDpgLz11lvtf58wYYIyMzN122232ae1adNGTZo0UVpamh577DG3FClJbdu2VWBgoHbu3KnExERJUnZ2tuLj433qEyUAwD+4lCwnTpxQZGRkpemhoaE6c+aMK00btpmcnKyMjAzt3r1bn3zyibKystw+UgUAQHIxIO+8806lp6fr66+/VlFRkc6fP68vv/xS6enp6tu3r7tqtEtLS1NcXJyGDRumSZMmadSoUerdu7fb1wMAgEtXsU6ePFkTJ07Uo48+ar8c2Gw2Kzk52e33QUq/jCIzMzOVmZnp9rYBALiUSwFZp04dvfzyy5o0aZIOHjwoSWrevLnq1KnjluIAAPAWlwJy+/btlaZdemvHLbfc4krzAAB4jUsB+eijjxpODwoKUoMGDbRx40ZXmgcAwGtcCsi9e/dWeG2xWHT48GFNmTJF99xzj0uF+bKWTSpfuYv/Q/8A8AduedRcObPZrObNm+v555/X8OHDNWjQIHc27xMsVqvmjE72dhk+z2K1ysz9qYDD+GB5dZ7uI7cGZLmffvrJ7fdB+gpfO+hbLBbl5eWpdevWPvWEEV/rJ8CX8cHbcZ788O1SQKalpVWadv78eW3dupUfMfag4uJib5cAwAW+9oHSVz94S57tK7ePIOvXr6+xY8dq4MCB7m4aAOAhfPB2MSBTUlLUsWNH1apVq8L00tJSffbZZ+rZs6dLxQEA4C0ujVWHDh2qs2fPVpqen5+vZ555xpWmAQDwKqdHkG+99ZYmT54sk8kkm81W4Zc8LvXb3/7W5eIAAPAWpwPy4YcfVqtWrWS1WjVs2DDNnTtX9erVs79vMpkUGhqqm266ya2FAgDgSVX6DrL8EXIbN25UTEyMTCaTW4sCAMDbnA7ItLQ0jRs3TnXq1NG8efOuOO/06dOrXBgAAN7kWzffAADgI5weQV46KmSECADwV04H5NVOq14qNTXV2eYBAPAJTgfktm3bHJqPC3cAANcypwNy8eLF1VEHAAA+xeVnsW7dulXvvPOODhw4IJPJpNatW2vIkCHq2LGjG8oDAMA7XLqKdfny5Ro+fLhCQ0P14IMP6r777pP0yyPoNmzY4JYCAQDwBpdGkK+99pomTZpkD8Zyt9xyi15++WX17t3bpeIAAPAWl0aQp0+fVocOHSpNT0xM1IkTJ1xpGgAAr3IpIIcMGaLMzEwVFhbapxUXF2vBggV6+OGHXS4OAABvcekUa3Z2tnbv3q0777xTN9xwg2rVqqVDhw7p/PnziomJ0fr16+3zbty40eViAQDwFJcCcvDgwRo8eLC7agEAwGe4FJCDBg1yVx0AAPgUlwJy//79mj17tg4cOKDS0tJK73NaFQBwrXIpIP/6178qJCREQ4cOVUhIiLtqAgDA61wKyO+//14rVqxQixYt3FUPAAA+waXbPG6//XZlZ2e7qxYAAHyGSyPI559/XoMGDdIHH3ygJk2aVPoFD34vEgBwrXJpBPnCCy8oICBAUVFR/LwVAMCvuDSC3LFjh95++23Fxsa6qx4AAHyCSyPIVq1a6cyZM+6qBQAAn+HSCPKhhx7SmDFjlJKSoqZNmyowsGJzycnJrjQPAIDXuBSQ8+fPV2BgoN5///1K7504ccKtAXnmzBllZmZq8+bNslqtuvPOO5Wenq6wsDC3rQMAgHIuBeSmTZsqvC4pKdHHH3+sVatW6fjx4y4V9msTJ07U4cOH9frrr8tkMikjI0Pjx4/X3Llz3boeAAAkFwOyXHZ2tlavXq3169fr3LlzatGihdLT093RtCSpqKhIH330kd5++221a9dOkpSenq4hQ4aopKREwcHBblsXAACSCwF59OhRrV69Wu+9956OHDmisLAwnTt3Ti+//LL69evnzhoVEBCgBQsWqG3bthWmWywWnT9/noAEALid0wG5YsUKrV69Wjt27FDDhg3VvXt39e7dW7fccos6dOigm266ye1FhoSE6Pbbb68wbdGiRWrdurUiIiKcastisbizNK8r3x5/2y5fRp97Hn3uWf7c385sk9MBOW7cODVr1kyZmZm69957nV38si5cuHDZ7y0bNGig6667zv56yZIlWrdund58802n15OTk1PlGn2Zv26XL6PPPY8+96ya3t9OB+S0adO0Zs0apaWlafr06brzzjvVs2dPJSUluVTIrl27NHToUMP35s+fr549e0qSli5dqqlTpyotLa1K64yPj5fZbHapVl9isViUk5Pjd9vly+hzz6PPPcuf+7t82xzhdECmpKQoJSVFp06d0rp167R27VqlpqYqJCREVqtV27ZtU7NmzVSrVi2n2u3cubPy8vKuOM8//vEPzZw5U2PGjNGwYcOcLV2SZDab/e4fXPLf7fJl9Lnn0eeeVdP7u8pP0omIiNCQIUO0dOlSbd68WSNHjlTbtm01ZcoUdevWze0PKl+1apVmzpyptLQ0PfHEE25tGwCAX3PpUXPlGjVqpCeffFIrV67U+vXr9cgjj+h///d/3dG0JOn06dOaPHmyBg0apP79+6ugoMD+xx+/RAYAeJ9b7oO81I033qjU1FSlpqa6rc3PP/9cRUVFWrVqlVatWlXhvY0bN6pp06ZuWxcAAFI1BGR16N+/v/r37+/tMgAANYhbTrECAOBvCEgAAAwQkAAAGCAgAQAwQEACAGCAgAQAwAABCQCAAQISAAADBCQAAAYISAAADBCQAAAYICABADBAQAIAYICABADAAAEJAIABAhIAAAMEJAAABghIAAAMEJAAABggIAEAMBDo7QI8xWazSZIsFouXK3Gv8u3xt+3yZfS559HnnuXP/V2+TeWZcCUmmyNz+YHS0lLl5OR4uwwAgA+Ij49XUFDQFeepMQFptVpVVlamgIAAmUwmb5cDAPACm80mq9WqwMBABQRc+VvGGhOQAAA4g4t0AAAwQEACAGCAgAQAwAABCQCAAQISAAADBCQAAAYISAAADBCQ15CSkhKlp6crMTFRSUlJysrKsr935MgRPfbYY+rYsaP69eunLVu2eLFS/3GlPi936NAhtW/f3gvV+bfS0lINGDBA27Zts09jP69eRn0u1dx9nIC8hsycOVN79uzRwoULNXHiRM2bN0/r16+XzWbTyJEjFRUVpRUrVmjgwIFKTU3VsWPHvF3yNe9yfV7uv//9r5566imVlJR4sUr/U1JSomeeeUb5+fn2aezn1cuoz6WavY/XmIeVX+uKioq0fPlyvfHGG4qLi1NcXJzy8/O1dOlS1atXT0eOHNGyZct03XXXqUWLFvriiy+0YsUKjRo1ytulX7Ou1Od9+vTRJ598ohdeeEENGjTwdql+Zd++ffrrX/9a6WHSX375Jft5Nblcn9f0fZwR5DVi7969KisrU0JCgn1ap06dtGvXLu3atUuxsbG67rrrKry3c+dOL1TqP67U51arVZ9++qn+9Kc/ady4cV6s0v989dVX6ty5s955550K09nPq8/l+rym7+OMIK8RBQUFCg8Pr/D0+aioKJWUlOi///2vGjZsWGH+yMhI/fjjj54u069cqc9Pnz6tqVOnSlKl72vgmocffthwekFBAft5Nblcn9f0fZwR5DWiuLi40k+zlL++ePGi4XulpaUeq88fXanP6VvPu9y/B/8WqC4E5DUiODi40oGg/HWtWrUM3wsJCfFYff7oSn1O33re5f49+LdAdSEgrxHR0dEqLCxUWVmZfVpBQYFCQkLUuHFjnTx5ssL8J0+erHQ6Cs65Up+HhYV5sbKaKTo6mv0cHkVAXiPatm2rwMDAChckZGdnKz4+Xh06dNC3336rCxcuVHivQ4cOXqjUf1ypz6/2Q6twP/ZzeBr/y68RoaGhSk5OVkZGhnbv3q1PPvlEWVlZGjp0qG699VY1btxYaWlpys/P1+uvv67du3fr/vvv93bZ17Qr9Tk8j/0cnkZAXkPS0tIUFxenYcOGadKkSRo1apR69+4ts9msV199VQUFBUpJSdH777+v+fPnKyYmxtslX/Mu1+fwPPZzeJrJ9us7QwEAACNIAACMEJAAABggIAEAMEBAAgBggIAEAMAAAQkAgAECEgAAAwQk4CGtW7eu8KdLly4aP368zp8/73Lb27ZtU+vWrd1Q5f+x2WxaunSpw/P/9NNPWrdunVtrALyJgAQ86G9/+5u2bNmizz77TAsWLNDu3bs1c+ZMl9tNSEjQli1b3FDh/9m+fbsmT57s8PwvvfSS/ud//setNQDeREACHlSvXj01aNBA0dHR6tixo5566im3jLqCgoLUoEEDN1T4f5x9yBYP5YK/ISABLwoNDa3w+vjx4xo9erRuueUWtWvXToMGDVJ2drb9/UWLFumuu+5SfHy8UlJStGPHDkmVT7Febr5fu3jxosaPH6/OnTsrISFBI0aM0PHjx/XDDz/YH8reunVrbdu2TaWlpZo+fbq6deumuLg4de/eXe+8846kX0bGq1at0qpVq9S9e3dJ0pkzZ/Tcc8/p5ptvVlJSkqZMmVLhlzgAX0dAAl5y6tQpLV68WPfee6992rPPPiuLxaJly5Zp9erVio6OVkZGhiQpNzdXM2fO1MSJE7Vu3TolJibqz3/+s6xWa4V2HZ1PkpYuXart27crKytL7777rs6fP69p06apcePG+tvf/iZJ2rJlixISEvT666/r008/1d/+9jetX79eycnJmjJlik6ePKnHH39cffv2Vd++ffXuu+9KksaNG6ezZ8/q7bff1quvvqqcnBynTtkC3hbo7QKAmuQPf/iDzGazbDabiouLVb9+fXsA2mw29ezZU3fffbcaNWokSRoyZIiGDx8uSTp69KhMJpNiYmLUtGlT/fnPf9Zdd91VKfiuNN+vf8fyhx9+UHBwsJo0aaL69etrxowZOn36tMxms+rVqydJ9lO3bdq0UZcuXdSxY0dJ0ogRIzR//nx9//33SkxMVEhIiCQpIiJChw8f1ieffKKvvvpKdevWlSRNmTJFycnJSktLs08DfBkBCXjQ1KlT1aFDB9lsNhUWFmrJkiV66KGH9MEHHygyMlIPPfSQ1q5dq6+//loHDx7Unj177AGYlJSkm266Sffcc49iY2PVo0cPDR48WIGBFf8bOzqfJD344INas2aNkpKSdOutt6pnz55KSUkxrL1nz576/PPPNWPGDB04cEC5ubmSJIvFUmne/fv3y2q16vbbb68w3Wq16tChQ2rXrl2V+g/wJAIS8KDo6Gg1a9ZMknTjjTcqLi5OnTt31rp16/Twww/r8ccf15kzZ9SvXz91795dFy9eVGpqqqRfvq9cvny5vvrqK23evFkrV67U22+/rZUrV1ZYx5Xmi46OrjBvq1attGnTJn366af69NNPNXv2bH344YeGt3fMmTNHy5cvV0pKipKTkzVx4kT7942/ZrFYVLduXa1YscKwD4BrAQEJeFFAQIBsNpssFov27dun7du364svvlBERIQk2YPKZrNp586d+vLLL/XHP/5RXbp00V//+lf99re/VXZ2tiIjI+1tfvPNN5edr1+/fhXWv3r1agUFBalfv37q27evdu7cqQcffFA//fSTTCZThXmXLVumjIwM9e3bV5K0b98+e22SZDKZ7H9v3ry5zp49K5PJpBtuuEGSlJeXp7lz52r69On207GALyMgAQ/6+eefVVBQIEk6f/68srKyZLFY1L17d9WqVUsBAQFas2aNunfvrpycHPuFMqWlpQoJCdH8+fMVFRWlrl27avv27SoqKlLr1q118uRJ+zquNN+vnT17VgsWLFB4eLiaNm2qDz74QI0aNVJ4eLj9Cts9e/aoVatWql+/vjZv3qx27drp+PHjmjZtmr026ZeRa35+vo4fP64WLVqoW7duevbZZzV+/HiZzWa98MILqlevnsLCwqq1jwF3Mdm4eQnwiF8HVGhoqNq1a6fU1FR16dJFkvTOO+9o/vz5Onv2rJo3b67HH39cY8eO1ZIlS5SQkKD33ntPr776qo4dO6aYmBiNHj1a/fv317Zt2zR06FDl5eVJ0mXn+zWr1aqXX35Z7733nn7++We1a9dOL7zwgmJjY1VaWqoRI0boq6++0uzZsxUZGamMjAwdOnRI0dHRGjx4sD7++GP17NlTTz31lHbt2qWRI0fq4sWL+vLLL1VYWKipU6fq008/VWBgoLp166bx48crPDy8+jsbcAMCEgAAA9wHCQCAAQISAAADBCQAAAYISAAADBCQAAAYICABADBAQAIAYICABADAAAEJAIABAhIAAAMEJAAABghIAAAM/H/pbhESSDxNGAAAAABJRU5ErkJggg==" + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAcoAAAL0CAYAAACMBHecAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAPYQAAD2EBqD+naQAARrJJREFUeJzt3Ql8jWfe//FfgiRoQm2JkFJKw2gpauuiJUUZRldjlFDj8aittDOqYymmpRSp0qr96TxjGR2MtkaraqkRpaFFLW2VyiDWEmtCcv6v3/X8z5kcSW5Zzn4+79frnpxzn/ucc7lrfHPtITabzSYAACBPoXmfBgAAiqAEAMACQQkAgAWCEgAACwQlAAAWCEoAACwQlAAAWCAoAQCwUFKCTHZ2thw/flwiIyMlJCTE28UBAHiJrrdz8eJFiY2NldDQ/OuNQReUGpJxcXHeLgYAwEekpqZK9erV83096IJSa5L2GxMVFeXt4gAAvCQ9Pd1UnOy5kJ+gC0p7c6uGJEEJAAi5RTccg3kAALBAUAIAYIGgBADAAkEJAICFoBvMAwC+bMhHb3u7CH5hRuehHvsuapQAAFigRlkM/Obne7/5AYCrUaMEAMACQQkAgAWCEgAACwQlAAAWCEoAACwQlAAAWCAoAQCwQFACAGCBoAQAwAJBCQCABYISAAALBCUAABYISgAALBCUAABYICgBALBAUAIAYIGgBADAAkEJAIAFghIAAAsEJQAAFghKAAAsEJQAAPhyUM6aNUtq1qwpERER0rx5c9m+fXuB3rd06VIJCQmRrl27ur2MAIDg5dWgXLZsmQwfPlzGjh0rO3fulIYNG0r79u3l1KlTlu87cuSIvPzyy/LQQw95rKwAgODk1aCcNm2a9OvXT/r06SP169eX2bNnS5kyZWTBggX5vicrK0t69Ogh48aNk1q1anm0vACA4OO1oMzMzJSUlBRJSEj4T2FCQ83z5OTkfN83fvx4qVKlivTt27dA35ORkSHp6elOBwAAPh+UZ86cMbXD6Ohop/P6PC0tLc/3bNmyRebPny9z584t8PdMnDhRypUr5zji4uKKXXYAQPDw+mCegrp48aL07NnThGSlSpUK/L6RI0fKhQsXHEdqaqpbywkACCwlvfXFGnYlSpSQkydPOp3X5zExMbmuP3TokBnE07lzZ8e57Oxs87NkyZJy8OBBqV27dq73hYeHmwMAAL+qUYaFhUmTJk1k/fr1TsGnz1u2bJnr+vj4eNmzZ4988803jqNLly7y6KOPmsc0qQIAAqpGqXRqSGJiojRt2lSaNWsmSUlJcvnyZTMKVvXq1UuqVatm+hl1nmWDBg2c3l++fHnz8+bzAAB4NSg3bNhganLF1a1bNzl9+rSMGTPGDOBp1KiRrF271jHA5+jRo2YkLAAAfhWUHTp0kOrVq5uan9YIi9PsOWjQIHPkZePGjZbvXbRoUZG/FwCAgihSde3YsWMm3D788EMz6V9X0/nb3/5m5kYCACDBHpQ6YnXYsGFmEM1XX30ldevWlRdeeEFiY2NlyJAh8u2337q+pAAAeEGxOwAbN25s5ipqDfPSpUtm+TkdzarrsH733XeuKSUAAP4WlNevXzdNrx07dpQaNWrIp59+KjNnzjTzIH/88Udz7plnnnFtaQEA8IfBPIMHD5YlS5aIzWYzq+VMnjzZaYpG2bJl5a233jJNsQAABF1Q7tu3T9555x158skn8131RvsxdRoJAABB1/Sq+0dqs+rNIXnjxg3ZvHmzY1m51q1bu6aUAAD4U1DqYgPnzp3LdV4XHXfFQgQAAPh1UGrfZEhISK7zZ8+eNf2TAAAEZR+l9kkqDcnevXs7Nb3q3pK7d++WVq1aub6UAAD4Q1Dqxsf2GmVkZKSULl3aaTeQFi1aSL9+/VxfSgAA/CEoFy5caH7WrFlTXn75ZZpZAQABr2RRR70CABAMShZmqTrdVPn222+X++67L8/BPHY7d+50VfkAAPCPoPzNb37jGLzTtWtXd5YJAAD/C8qcza00vQIAgkWxdw8BACCQFbhGqX2TVv2SOeW1ag8AAAEdlElJSe4tCQAA/hyUiYmJ7i0JAAD+HJTp6ekSFRXleGzFfh0AAEHVR3nixAmpUqWKlC9fPs/+Svti6bruKwAAQRWUX3zxhVSoUME8ZkNmAECwKHBQ5tyEmQ2ZAQDBokhrvapffvlF5s+fL/v37zfP69evL3369HHUOgEACNoFBzZv3mx2EJkxY4YJTD308Z133mleAwAgqGuUAwcOlG7dusl7770nJUqUMOd0AM8LL7xgXtuzZ4+rywkAgP/UKH/88Ud56aWXHCGp9PHw4cPNawAABHVQ6pZb9r7JnPRcw4YNXVEuAAD8q+l19+7djsdDhgyRoUOHmtpjixYtzLlt27bJrFmzZNKkSe4pKQAAvhyUjRo1MosJ6KICdn/84x9zXfe73/3O9F8CABBUQXn48GH3lgQAAH8Oyho1ari3JAAABNKCA2rfvn1y9OhRyczMdDrfpUuX4pYLAAD/DcqffvpJnnjiCTNfMme/pX2hdBZFBwAE9fQQHfGqq/CcOnVKypQpI999951Zkadp06ayceNG15cSAAB/qlEmJyeb3UQqVaokoaGh5njwwQdl4sSJZurIrl27XF9SAAD8pUapTauRkZHmsYbl8ePHHQN+Dh486NoSAgDgbzXKBg0ayLfffmuaX5s3by6TJ0+WsLAwmTNnjtSqVcv1pQQAwJ+CctSoUXL58mXzePz48fLrX/9aHnroIalYsaIsW7bM1WUEAMC/grJ9+/aOx3fddZccOHBAzp07J7fffrtj5CsAABLs8yhVamqq+RkXF+eK8gAA4P+DeW7cuCGjR4+WcuXKmQ2c9dDH2iR7/fp115cSAAB/qlEOHjxYVqxYYQbxtGzZ0jFl5LXXXpOzZ8+aDZ0BAAjaoFy8eLEsXbpUHn/8cce5e++91zS/du/enaAEAAR302t4eLhpbr2ZThfRaSIAAAR1UA4aNEgmTJggGRkZjnP6+PXXXzevFYZu9qyhGxERYeZkbt++Pd9r586da6ah6OhaPRISEiyvBwDAY02vTz75pNPzzz//XKpXry4NGzY0z3UBAt1FpG3btgX+cp1zOXz4cJk9e7YJyaSkJDP1RFf3qVKlSq7rdR1Zbdpt1aqVCdY333xT2rVrZ9aarVatWoG/FwAAlweljmrN6amnnnJ6XpTpIdOmTZN+/fpJnz59zHMNzE8++UQWLFggr7zySq7r//rXvzo9nzdvnvz973+X9evXS69evQr9/QAAuCwoFy5cKK6ktc+UlBQZOXKk45wurq7NqTqCtiCuXLlipqNUqFAh32u0SThnE3F6enoxSw4ACCZF6qO0O336tGzZssUc+rgwzpw5YxZXj46Odjqvz9PS0gr0GSNGjJDY2FgTrvnRHU20Nmw/WBgBAOD2oNR1Xp9//nmpWrWqPPzww+bQwOrbt6+p5XnCpEmTzBSVlStXmv7K/GiN9cKFC47DvpIQAABuC0odgLNp0yb56KOP5Pz58+b4xz/+Yc699NJLBfoM3Z6rRIkScvLkSafz+jwmJsbyvW+99ZYJys8++8zM37zVVJaoqCinAwAAtwalDqCZP3++WXDAHj4dO3Y00zc+/PDDAn2Gzrds0qSJGYhjl52dbZ7bV/vJi64GpFNT1q5dK02bNi1K8QEAcO/KPNq8enPfotIpHYVpetWaaWJiogm8Zs2amekh2qxrHwWrI1l12of2MyqdDjJmzBizMpDOvbT3Zd52223mAADAJ2qUWuMbO3asXLt2zXHu6tWrMm7cOMva4M26detmmlE1/Bo1aiTffPONqSnaQ/jo0aNy4sQJx/W6NJ6Oln366adN/6j90M8AAMBnapRa8+vQoUOuBQd0UM2nn35aqM/SlXzyW81HFxjI6ciRI0UpLgAAng3Ke+65R3744QezAIBu2qx0xZwePXpI6dKli14aAAD8PSh1gn98fLx8/PHHZlUdAAACWaH7KEuVKuXUNwkAQCAr0mCegQMHmhGoN27ccH2JAADw9z7KHTt2mPmOOuFf+yvLli3r9PqKFStcVT4AAPwvKMuXL59r9xAAACTYg1JXzpkyZYp8//33Zj5jmzZt5LXXXmOkKwAgYBWqj/L111+XV1991ayCoyvmzJgxw/RXAgAQqAoVlB988IG8++67ZlGBVatWmUXRdS6l1jQBAJBgD0pdUk4XP7fTfSBDQkLk+PHj7igbAAD+FZQ6HeTmvR91XqUuQgAAgAT7YB6bzSa9e/c2ezza6eID//3f/+00RYTpIQCAoAxK3RLrZs8995wrywMAgP8G5cKFC91XEgAAAmUJOwAAggVBCQCABYISAAALBCUAABYISgAALBCUAABYICgBALBAUAIAYIGgBADAAkEJAIAFghIAAAsEJQAAFghKAAAsEJQAAFggKAEAsEBQAgBggaAEAMACQQkAgAWCEgAACwQlAAAWCEoAACwQlAAAWCAoAQCwQFACAGCBoAQAwAJBCQCABYISAAALBCUAABYISgAALBCUAABYICgBALBAUAIA4MtBOWvWLKlZs6ZERERI8+bNZfv27ZbXL1++XOLj483199xzj6xZs8ZjZQUABB+vBuWyZctk+PDhMnbsWNm5c6c0bNhQ2rdvL6dOncrz+q1bt0r37t2lb9++smvXLunatas59u7d6/GyAwCCg1eDctq0adKvXz/p06eP1K9fX2bPni1lypSRBQsW5Hn922+/LR06dJA//OEPUq9ePZkwYYI0btxYZs6c6fGyAwCCQ0lvfXFmZqakpKTIyJEjHedCQ0MlISFBkpOT83yPntcaaE5aA121alW+35ORkWEOuwsXLpif6enpxf8zXLlW7M8IBq6410Cw4N8Vz/27Yv8Mm83mm0F55swZycrKkujoaKfz+vzAgQN5victLS3P6/V8fiZOnCjjxo3LdT4uLq7IZUfhvC+veLsIAALM+y78d+XixYtSrlw53wtKT9Eaa85aaHZ2tpw7d04qVqwoISEhEkj0tyP9BSA1NVWioqK8XZygwD33LO6356UH8D3XmqSGZGxsrOV1XgvKSpUqSYkSJeTkyZNO5/V5TExMnu/R84W5XoWHh5sjp/Lly0sg07/MgfYX2tdxzz2L++15UQF6z61qkl4fzBMWFiZNmjSR9evXO9X29HnLli3zfI+ez3m9WrduXb7XAwBQXF5tetUm0cTERGnatKk0a9ZMkpKS5PLly2YUrOrVq5dUq1bN9DOqoUOHSuvWrWXq1KnSqVMnWbp0qXz99dcyZ84cb/4xAAABzKtB2a1bNzl9+rSMGTPGDMhp1KiRrF271jFg5+jRo2YkrF2rVq1k8eLFMmrUKHn11VelTp06ZsRrgwYNvPin8B3axKxzUm9uaob7cM89i/vteeHccwmx3WpcLAAAQczrS9gBAODLCEoAACwQlAAAWCAoAQCwQFACAGCBoAQAwAJBCQCABYISAAALBCUAABYISgAALBCUAABYICgBALBAUAIAYIGgBADAAkEJAIAFghIAAAsEJQAAFghKAAAsEJQAAFggKAEAsEBQAgBggaAEAMACQQkAgIWSEmSys7Pl+PHjEhkZKSEhId4uDgDAS2w2m1y8eFFiY2MlNDT/emPQBaWGZFxcnLeLAQDwEampqVK9evV8Xw+6oNSapP3GREVFebs4AAAvSU9PNxUney7kJ+iC0t7cqiFJUAIAQm7RDcdgHgAALBCUAABYICgBALBAUAIAYCHoBvO40mOzkrxdBL+wbuCL3i4CABQZNUoAACwQlAAAWCAoAQCwQFACAGCBoAQAwAJBCQCABYISAAALBCUAABYISgAALBCUAABYICgBALBAUAIAYIGgBADAAkEJAIAFghIAAAvsRwkAPoR9bn1vn1tqlAAAWCAoAQCwQFACAGCBoAQAwAJBCQCABYISAAALBCUAABYISgAALBCUAABYICgBALBAUAIAYIGgBADAAkEJAIAFghIAAH8NykmTJklISIi8+OJ/tlO5du2aDBw4UCpWrCi33XabPPXUU3Ly5EmvlhMAELh8Nih37Ngh77//vtx7771O54cNGyYfffSRLF++XDZt2iTHjx+XJ5980mvlBAAENp8MykuXLkmPHj1k7ty5cvvttzvOX7hwQebPny/Tpk2TNm3aSJMmTWThwoWydetW2bZtm1fLDAAITD4ZlNq02qlTJ0lISHA6n5KSItevX3c6Hx8fL3fccYckJyfn+VkZGRmSnp7udAAAUFAlxccsXbpUdu7caZpeb5aWliZhYWFSvnx5p/PR0dHmtbxMnDhRxo0b57byAgACm0/VKFNTU2Xo0KHy17/+VSIiIlzymSNHjjRNtvZDvwMAAL8MSm1aPXXqlDRu3FhKlixpDh2wM2PGDPNYa46ZmZly/vx5p/fpqNeYmJg8PzM8PFyioqKcDgAA/LLptW3btrJnzx6nc3369DH9kCNGjJC4uDgpVaqUrF+/3kwLUQcPHpSjR49Ky5YtvVRqAEAg86mgjIyMlAYNGjidK1u2rJkzaT/ft29fGT58uFSoUMHUDgcPHmxCskWLFl4qNQAgkPlUUBbE9OnTJTQ01NQodURr+/bt5d133/V2sQAAAcrng3Ljxo1Oz3WQz6xZs8wBAEBQDeYBAMDXEJQAAFggKAEAsEBQAgBggaAEAMACQQkAgAWCEgAACwQlAADuDspatWrJ2bNnc53Xxcv1NQAAgjoojxw5IllZWbnO6xJzx44dc8VXAADgf0vYrV692vH4008/lXLlyjmea3DqLh81a9YsXgkBAPDXoOzatav5GRISIomJiU6v6XZYGpJTp04tXgkBAPDXoMzOzjY/77zzTtmxY4dUqlTJVeUCACBwdg85fPiwKz4GAIDA3WZL+yP1OHXqlKOmabdgwQJXfQ0AAP4XlOPGjZPx48dL06ZNpWrVqqbPEgCAQOCSoJw9e7YsWrRIevbs6YqPAwAgsOZRZmZmSqtWrVzxUQAABF5Q/v73v5fFixe74qMAAAi8ptdr167JnDlz5PPPP5d7773XzKHMadq0aa74GgAA/DMod+/eLY0aNTKP9+7d6/QaA3sAABLsQblhwwZXfAwAAD6HbbYAAHB3jfLRRx+1bGL94osvXPE1AAD4Z1Da+yftrl+/Lt98843pr7x5sXQAAIIuKKdPn57n+ddee00uXbrkiq8AACDw+iife+451nkFAPg1twZlcnKyREREuPMrAADw/abXJ5980um5zWaTEydOyNdffy2jR492xVcAAOC/QVmuXDmn56GhoXL33XebHUXatWvniq8AAMB/g3LhwoWu+BgAAAJ342aVkpIi+/fvN49/9atfyX333efKjwcAwD+D8tSpU/Lb3/5WNm7cKOXLlzfnzp8/bxYiWLp0qVSuXNkVXwMAgH+Oeh08eLBcvHhRvvvuOzl37pw5dLGB9PR0GTJkiCu+AgAA/61Rrl271myxVa9ePce5+vXry6xZsxjMAwDway6pUWZnZ+fag1LpOX0NAICgDso2bdrI0KFD5fjx445zx44dk2HDhknbtm1d8RUAAPhvUM6cOdP0R9asWVNq165tjjvvvNOce+edd1zxFQAA+G8fZVxcnOzcudP0Ux44cMCc0/7KhIQEV3w8AAD+WaPUfSZ10I7WHHU/yscee8yMgNXj/vvvN3Mpv/zyS9eVFgAAfwrKpKQk6devn0RFReW5rF3//v1l2rRpxfkKAAD8Nyi//fZb6dChQ76v69QQXa0HAICgDMqTJ0/mOS3ErmTJknL69OnifAUAAP4blNWqVTMr8ORn9+7dUrVq1QJ/3sSJE03fZmRkpFSpUkW6du0qBw8edLrm2rVrMnDgQKlYsaLcdttt8tRTT5nABgDA54KyY8eOZr9JDa+bXb16VcaOHSu//vWvC/x5mzZtMiG4bds2WbdunVy/ft00316+fNlxjc7N/Oijj2T58uXmep27efN+mAAA+MT0kFGjRsmKFSukbt26MmjQILMHpdIpIrp8XVZWlvzpT38q1FJ4OS1atMjULLWf8+GHH5YLFy7I/PnzZfHixWaRA/sWXzoVRcO1RYsWxfnjAADg2qCMjo6WrVu3yoABA2TkyJFis9nMeZ0q0r59exOWek1RaTCqChUqmJ8amFrLzDk/Mz4+Xu644w5JTk7OMygzMjLMYadTWQAA8NiCAzVq1JA1a9bIL7/8Ij/++KMJyzp16sjtt99erM/VNWJffPFFeeCBB6RBgwbmXFpamoSFhTm28rLTMNbX8uv3HDduXLHKAgAIXi7buFmDUQfiuIr2VepAoS1bthTrc7SmO3z4cKcapa4kBACAR4PSlbS/8+OPP5bNmzdL9erVHedjYmIkMzPTbAqds1apo171tbyEh4ebAwAAry2K7irabKshuXLlSrM8ni6snlOTJk3MvM3169c7zun0kaNHj0rLli29UGIAQKDzqRqlNrfqiNZ//OMfZi6lvd9Rl8MrXbq0+dm3b1/TlKoDfHTpPF1XVkOSEa8AgIAPyvfee8/8fOSRR5zO6xSQ3r17m8fTp0+X0NBQs9CAjmbV0bXvvvuuV8oLAAh8PhWU9uklViIiIsy0Ez0AAAiqPkoAAHwNQQkAgAWCEgAACwQlAAAWCEoAACwQlAAAWCAoAQCwQFACAGCBoAQAwAJBCQCABYISAAALBCUAABYISgAALBCUAABYICgBALBAUAIAYIGgBADAAkEJAIAFghIAAAsEJQAAFghKAAAsEJQAAFggKAEAsEBQAgBggaAEAMACQQkAgAWCEgAACwQlAAAWCEoAACwQlAAAWCAoAQCwQFACAGCBoAQAwAJBCQCABYISAAALBCUAABYISgAALBCUAABYICgBALBAUAIAYIGgBADAAkEJAIAFghIAgEAMylmzZknNmjUlIiJCmjdvLtu3b/d2kQAAAcgvg3LZsmUyfPhwGTt2rOzcuVMaNmwo7du3l1OnTnm7aACAAOOXQTlt2jTp16+f9OnTR+rXry+zZ8+WMmXKyIIFC7xdNABAgCkpfiYzM1NSUlJk5MiRjnOhoaGSkJAgycnJua7PyMgwh92FCxfMz/T09GKX5cbVa8X+jGDginsNBAv+XfHcvyv2z7DZbIEVlGfOnJGsrCyJjo52Oq/PDxw4kOv6iRMnyrhx43Kdj4uLc2s58R/l/vCfX2oAwNf+Xbl48aKUK1cucIKysLTmqf2ZdtnZ2XLu3DmpWLGihISESCDR3470F4DU1FSJiorydnGCAvfcs7jfnpcewPdca5IakrGxsZbX+V1QVqpUSUqUKCEnT550Oq/PY2Jicl0fHh5ujpzKly8vgUz/MgfaX2hfxz33LO6350UF6D23qkn67WCesLAwadKkiaxfv96plqjPW7Zs6dWyAQACj9/VKJU2pSYmJkrTpk2lWbNmkpSUJJcvXzajYAEAkGAPym7dusnp06dlzJgxkpaWJo0aNZK1a9fmGuATbLSJWeeW3tzUDPfhnnsW99vzwrnnEmK71bhYAACCmN/1UQIA4EkEJQAAFghKAAAsEJQAAFggKAEAsEBQAgBggaAEAMACQQkAgAWCEgAACwQlAAAWCEoAACwQlAAAWCAoAQCwQFACAGCBoAQAwAJBCQCABYISAAALBCUAABYISgAALBCUAABYICgBALBAUAIAYKGkBJns7Gw5fvy4REZGSkhIiLeLAwDwEpvNJhcvXpTY2FgJDc2/3hh0QakhGRcX5+1iAAB8RGpqqlSvXj3f14MuKLUmab8xUVFR3i4OAMBL0tPTTcXJngv5CbqgtDe3akgSlACAkFt0wzGYBwAACwQlAAAWCEoAACwQlAAAWAi6wTyuVGfEW94ugl/44c2XvV0EACgyapQAAFigRgkAPoSWKt9rqaJGCQCABYISAAALBCUAABYISgAALBCUAABYICgBALBAUAIAYIGgBADAAkEJAIAFghIAAAsEJQAArlrr9fz587Jy5Ur58ssv5eeff5YrV65I5cqV5b777pP27dtLq1atCvNxAAAERo3y+PHj8vvf/16qVq0qf/7zn+Xq1avSqFEjadu2rVSvXl02bNggjz32mNSvX1+WLVvm/lIDAOBLNUqtMSYmJkpKSooJw7xoeK5atUqSkpIkNTVVXn6ZPQgBAEESlPv27ZOKFStaXlO6dGnp3r27Oc6ePeuq8gEA4PtNr7cKyeJeDwCAX9coV69eXeAP7NKlS3HKAwCA/wVl165dC/RhISEhkpWVVdwyAQDgX0GZnZ3t/pIAAOCDWHAAAABXLThgd/nyZdm0aZMcPXpUMjMznV4bMmRIUT4SAIDACMpdu3ZJx44dzao8GpgVKlSQM2fOSJkyZaRKlSoEJQAguJtehw0bJp07d5ZffvnFzJ3ctm2bWc6uSZMm8tZbb7mnlAAA+EtQfvPNN/LSSy9JaGiolChRQjIyMiQuLk4mT54sr776qntKCQCAvwRlqVKlTEgqbWrVfkpVrlw5s3QdAABB3Uep677u2LFD6tSpI61bt5YxY8aYPsq//OUv0qBBA/eUEgAAf6lRvvHGG2YXEfX666/L7bffLgMGDJDTp0/LnDlz3FFGAAD8p0bZtGlTx2Ntel27dq2rywQAgH8vOHDjxg35/PPP5f3335eLFy869qy8dOmSq8sHAIB/1Sh1KkiHDh3MIB4d8aobNkdGRsqbb75pns+ePds9JQUAwB9qlEOHDjXNr/Z5lHZPPPGErF+/3tXlAwDAv4Lyyy+/lFGjRklYWJjT+Zo1a8qxY8cKXYBZs2aZ90ZEREjz5s1l+/btBXrf0qVLzW4lBd3ZBAAAjwSl7iSS11Za//73v00TbGEsW7ZMhg8fLmPHjpWdO3dKw4YNpX379nLq1CnL9x05ckRefvlleeihhwpbfAAA3BuU7dq1k6SkJMdzrdXpIB4NO10DtjCmTZsm/fr1kz59+kj9+vVN/6auGbtgwYJ836Mh3aNHDxk3bpzUqlWrsMUHAMC9Qanruf7rX/8ywXbt2jX53e9+52h21QE9BaW7jqSkpEhCQsJ/ChMaap4nJyfn+77x48ebaSl9+/Yt0PfoAKP09HSnAwAAt4161XVdv/32W9Nsqj+1NqmhpbW8nIN7bkVX89HaYXR0tNN5fX7gwIE837NlyxaZP3++WW+2oCZOnGhqnwAAuD0or1+/LvHx8fLxxx+bYNTDU3S+Zs+ePWXu3LlSqVKlAr9v5MiRph/UTmuUGvYAALg8KHVBdG1udQUNO9195OTJk07n9XlMTEyu6w8dOmQG8egWXzkHFqmSJUvKwYMHpXbt2rneFx4ebg4AADzSRzlw4EDTF6mr8xSHTi/RPSxzzr3U4NPnLVu2zHW91mT37Nljml3tR5cuXeTRRx81j6klAgB8oo9Sdw7RMPvss8/knnvukbJlyzq9vmLFigJ/ljaJJiYmmgUMmjVrZkbTXr582YyCVb169ZJq1aqZfkadZ3nz7iTly5c3P9m1BADgM0Gp4fTUU0+55Mu7detmdh3RrbrS0tKkUaNGZpF1+wAfXSbPvvclAAB+EZQLFy50aQEGDRpkjrxs3LjR8r2LFi1yaVkAALgZ1TUAAIoblLpbyLZt2wo0hUMH+uj6rQAABE3T6zPPPGP6JcuVK2emZ+jgm9jYWDPARncR2bdvn1kMYM2aNdKpUyeZMmWK+0sOAICvBKWuvPPcc8/J8uXLzYo8c+bMkQsXLjjWetXl7HQxcx0RW69ePXeXGQAA3xvMo5P2NSz1UBqUV69elYoVK5qFCAAACESFHvVqp82wegAAEMgY9QoAgAWCEgAACwQlAAAWCEoAAFwdlOfPn5d58+aZvR7PnTtnzu3cuVOOHTtWlI8DACBwRr3u3r1bEhISzIhX3R+yX79+UqFCBbNriC5i/sEHH7inpAAA+EONUrfG6t27t/zwww9mZR67jh07yubNm11dPgAA/CsodfWd/v375zqv+0bqVlkAAAR1UOoKPenp6bnOf//991K5cmVXlQsAAP8Myi5dusj48ePl+vXrjrVetW9yxIgRLtvQGQAAvw3KqVOnyqVLl6RKlSpmrdfWrVvLXXfdJZGRkfL666+7p5QAAPjLqFcd7bpu3TqzrZaOgNXQbNy4sRkJCwBAoCnyougPPvigOQAAkGAPyhkzZhT4A4cMGVKc8gAA4H9BOX36dKfnp0+flitXrkj58uUdK/WUKVPG9FsSlACAoBvMc/jwYcehA3YaNWok+/fvN8vX6aGPtZ9ywoQJ7i8xAAC+POp19OjR8s4778jdd9/tOKePtdY5atQoV5cPAAD/CsoTJ07IjRs3cp3PysqSkydPuqpcAAD4Z1C2bdvWLGGnu4XYpaSkyIABA5giAgAIOIUOygULFkhMTIw0bdrULGenR7NmzSQ6OtpsvQUAQFDPo9T1XNesWWPWdj1w4IA5Fx8fL3Xr1nVH+QAA8M8FBzQYCUcAQKArdFA+//zzt2yaBQAgaIPyl19+cXquu4js3bvXLDrQpk0bV5YNAAD/C8qVK1fmOpednW1GvdauXdtV5QIAwD9Hveb5IaGhMnz48FxL3QEA4O9cEpTq0KFDeS5EAABAUDW9as0xJ5vNZlbr+eSTTyQxMdGVZQMAwP+CcteuXbmaXXVu5dSpU285IhYAgIAPyg0bNrinJAAABEIfpU4B0akgN0tPT2d6CAAg4BQ6KDdu3CiZmZm5zl+7dk2+/PJLV5ULAAD/anrdvXu34/G+ffskLS3NaYuttWvXSrVq1VxfQgAA/CEoGzVqJCEhIebIq4m1dOnSZkNnAACCMigPHz5spoLUqlVLtm/fbka62oWFhUmVKlWkRIkS7ionAAC+HZQ1atRwLFcHAECwKFBQrl69Wh5//HEpVaqUeWylS5cuhSrArFmzZMqUKabPs2HDhqb5VjeCzsvcuXPlgw8+MIuwqyZNmsgbb7yR7/UAAHgkKLt27WqCTJtX9XF+tP9SB/YU1LJly8xKP7Nnz5bmzZtLUlKStG/fXg4ePGi+K68Rt927d5dWrVpJRESEvPnmm9KuXTv57rvvGEgEAPDe9BBtbrUHlz7O7yhMSKpp06ZJv379pE+fPlK/fn0TmGXKlMl3T8u//vWv8sILL5iBRfHx8TJv3jzzvevXry/U9wIA4PFF0QtL52KmpKRIQkLCfwoTGmqeJycnF+gzrly5YvbDrFChQr7XZGRkmMUQch4AALi06XXGjBkF/sAhQ4YU6LozZ86YGmh0dLTTeX1+4MCBAn3GiBEjJDY21ilsbzZx4kQZN25cgT4PAIAiBWVB95nUPsqCBmVxTZo0SZYuXWr6LbW/Mj8jR4502vFEa5RxcXEeKSMAIEiCUudQulqlSpXMvMuTJ086ndfnMTExlu996623TFB+/vnncu+991peGx4ebg4AADzeR6kLEOhRFLpIgU7vyDkQxz4wp2XLlvm+b/LkyTJhwgSzZF7Tpk2L9N0AALg1KOfPny8NGjQwTZ566GMdgVpY2iSqcyP/53/+R/bv3y8DBgyQy5cvm1GwqlevXqbp1E6ng4wePdqMiq1Zs6aZsqLHpUuXivLHAADA9ftRjhkzxkzrGDx4sKPmp6NUhw0bJkePHpXx48cX+LO6desmp0+fNp+pgafTPrSmaB/go5+nI2Ht3nvvPTNa9umnn3b6nLFjx8prr71W2D8KAAC3FGIrZNuprvGqo2B14n9OS5YsMeGpo1l9mQ7mKVeunFy4cEGioqKK9Vl1RrzlsnIFsh/efNnbRQD8Bv+ueO7flYLmQaGbXnXeYl59g9rfeOPGjcKXFAAAH1booOzZs6dpAr3ZnDlzpEePHq4qFwAA/tlHaR/M89lnn0mLFi3M86+++sr0J+rgm5xzFrUvEwCAoApK3bmjcePG5vGhQ4cccyL1sO/qYV98AACAoAvKDRs2uKckAAD4IK8tig4AQEDWKK9du2Y2V9aa5alTp8xqOjnt3LnTleUDAMC/grJv375mII9O+m/WrBl9kQCAgFbooPz4449lzZo18sADD7inRAAA+HMfZbVq1SQyMtI9pQEAwN+DcurUqWbD5J9//tk9JQIAwJ+bXnX5Oh3QU6tWLSlTpoyUKlXK6fVz5865snwAAPhXUOpi6MeOHZM33njD7PLBYB4AQCArdFBu3brVbKvVsGFD95QIAAB/7qOMj4+Xq1evuqc0AAD4e1BOmjRJXnrpJdm4caOcPXvW7OeV8wAAIKibXjt06GB+tm3b1um87v+s/ZVZWVmuKx0AAF7GougAALgyKFu3bp3vazm32QIAIBAUe/eQixcvypw5c8y6r4yEBQAEmiIH5ebNmyUxMVGqVq0qb731lrRp00a2bdvm2tIBAOBPTa9paWmyaNEimT9/vhnh+uyzz0pGRoasWrVK6tev775SAgDg6zXKzp07y9133y27d++WpKQkOX78uNmXEgCAQFbgGuU///lPGTJkiAwYMEDq1Knj3lIBAOBvNcotW7aYgTtNmjSR5s2by8yZM+XMmTPuLR0AAP4SlC1atJC5c+fKiRMnpH///rJ06VKJjY2V7OxsWbdunQlRAAAk2Ee9li1bVp5//nlTw9yzZ49Zzk6XtatSpYp06dLFPaUEAMAf51Hq4J7JkyfLv//9b1myZInrSgUAQKAsOKBKlCghXbt2ldWrV7vi4wAACKygBAAgUBGUAABYICgBALBAUAIAYIGgBADAAkEJAIAFghIAAAsEJQAAFghKAAAsEJQAAFggKAEAsEBQAgBggaAEAMCXg3LWrFlSs2ZNiYiIkObNm8v27dstr1++fLnEx8eb6++55x5Zs2aNx8oKAAg+Xg3KZcuWyfDhw2Xs2LGyc+dOadiwobRv315OnTqV5/Vbt26V7t27S9++fWXXrl1may899u7d6/GyAwCCg1eDctq0adKvXz/p06eP1K9fX2bPni1lypSRBQsW5Hn922+/LR06dJA//OEPUq9ePZkwYYI0btxYZs6c6fGyAwCCQ0lvfXFmZqakpKTIyJEjHedCQ0MlISFBkpOT83yPntcaaE5aA121alW+35ORkWEOuwsXLpif6enpxf4zZGdcK/ZnBANX3GsgWPDviuf+XbF/hs1m882gPHPmjGRlZUl0dLTTeX1+4MCBPN+TlpaW5/V6Pj8TJ06UcePG5TofFxdX5LKjcMq9PdrbRQAQYMq58N+VixcvSrly5XwvKD1Fa6w5a6HZ2dly7tw5qVixooSEhEgg0d+O9BeA1NRUiYqK8nZxggL33LO4356XHsD3XGuSGpKxsbGW13ktKCtVqiQlSpSQkydPOp3X5zExMXm+R88X5noVHh5ujpzKly8vgUz/MgfaX2hfxz33LO6350UF6D23qkl6fTBPWFiYNGnSRNavX+9U29PnLVu2zPM9ej7n9WrdunX5Xg8AQHF5telVm0QTExOladOm0qxZM0lKSpLLly+bUbCqV69eUq1aNdPPqIYOHSqtW7eWqVOnSqdOnWTp0qXy9ddfy5w5c7z5xwAABDCvBmW3bt3k9OnTMmbMGDMgp1GjRrJ27VrHgJ2jR4+akbB2rVq1ksWLF8uoUaPk1VdflTp16pgRrw0aNPDin8J3aBOzzkm9uakZ7sM99yzut+eFc88lxHarcbEAAAQxry9hBwCALyMoAQCwQFACAGCBoAQAwAJBCQCABYISAAALBCUAABYISgAALBCUAABYICgBALBAUAIAYIGgBADAAkEJAIAFghIAAAsEJQAAFghKAAAsEJQAAFggKAEAsEBQAgBggaAEAMACQQkAgAWCEgAACyUlyGRnZ8vx48clMjJSQkJCvF0cAICX2Gw2uXjxosTGxkpoaP71xqALSg3JuLg4bxcDAOAjUlNTpXr16vm+HnRBqTVJ+42JiorydnEAAF6Snp5uKk72XMhP0AWlvblVQ5KgBACE3KIbjsE8AABYICgBALBAUAIAYIGgBADAAkEJAIAFghIAAAsEJQAAFghKAAAsEJQAAFggKAEAsEBQAgBggaAEAMACQQkAgLt2D7l+/bqkpaXJlStXpHLlylKhQoXifBwAAP5fo9TdoN977z1p3bq12aaqZs2aUq9ePROUNWrUkH79+smOHTvcU1oAAHw5KKdNm2aCceHChZKQkCCrVq2Sb775Rr7//ntJTk6WsWPHyo0bN6Rdu3bSoUMH+eGHH9xXcgAAPCDEZrPZCnpx9+7dZdSoUfKrX/3K8rqMjAwTpmFhYfL888+Lr+1oXa5cOblw4QIbNwNAECtoHhQqKAMBQQkAKEweMOoVAAB3jHp94oknJCQkJNd5PRcRESF33XWX/O53v5O77767qF8BAIDXFblGqdXVL774Qnbu3GnCUY9du3aZczqgZ9myZdKwYUP517/+5dICT5w4Ue6//36JjIyUKlWqSNeuXeXgwYMu/Q4AAIodlDExMabG+NNPP8nf//53cxw6dEiee+45qV27tuzfv18SExNlxIgR4kqbNm2SgQMHyrZt22TdunVmLqeOsr18+bJLvwcAgGIN5tF5k1pbrFu3rtN5nSrSqlUrOXPmjOzZs0ceeughOX/+vNvu9unTp03NUgP04YcfvuX1DOYBAHhkMI82rx44cCDXeT2XlZVlHmtfZV79mK6kf0CV36pAOlVFb0bOAwAAtw/m6dmzp/Tt21deffVV02eodEWeN954Q3r16mWeay3vVnMuiyM7O1tefPFFeeCBB6RBgwb59mmOGzfObWUAAAS2Ije9aq1x0qRJMnPmTDl58qQ5Fx0dLYMHDzb9kiVKlJCjR49KaGioVK9eXdxhwIAB8s9//lO2bNmS73dojVIPO61RxsXF0fQKAEEu3ZMLDtibMz0ZPIMGDZJ//OMfsnnzZrnzzjsL/D76KAEAhcmDYu0eYufJwNFc11rrypUrZePGjYUKSQAACqtYQfnhhx/K3/72N9PEmpmZ6fSazq90B50asnjxYlOb1LmUus2X0t8KSpcu7ZbvBAAEryKPep0xY4b06dPH9EvqQgPNmjWTihUrmnmVjz/+uLiLbvGl1eRHHnlEqlat6jh0gQMAAHymRvnuu+/KnDlzzI4iixYtkj/+8Y9Sq1YtGTNmjJw7d07cJcjWcAcA+GuNUptbdWEBpU2euqGzfdrIkiVLXFdCAAD8dQk7e83xjjvuMEvKqcOHD1PrAwAEjCIHZZs2bWT16tXmsfZVDhs2TB577DHp1q2b2VkEAIBAUOR5lLoqjh4lS/5fN+fSpUtl69atUqdOHenfv7+EhYWJL2IeJQDA4wsO+BOCEgDgsQUHrl27Jrt375ZTp06Z2mVOXbp0Kc5HAwDgE4oclGvXrjWLn+t2WjfTHUPsO4gAABCUg3l0GblnnnlGTpw44eivtB+EJABAgj0odceQ4cOHm5V5AAAIVEUOyqefftosSg4AQCAr8qjXK1eumKbXypUryz333COlSpVyen3IkCHiixj1CgDwyKhXXabus88+k4iICFOz1AE8dvrYV4MSAIDCKHJQ/ulPf5Jx48bJK6+8IqGhRW7BBQDApxU54XT/SV2ujpAEAASyIqdcYmIie0ACAAJekZteda7k5MmT5dNPP5V7770312CeadOmuaJ8AAD4Z1Du2bNH7rvvPvN47969Tq/lHNgDAEBQBuWGDRtcWxIAAHwQI3EAAHBVjfLJJ5+URYsWmYmZ+tjKihUrCvPRAAD4f1DqCgb2/kd9DABAoGPjZgBAUEovYB7QRwkAgIVCBWWHDh1k27Ztt7zu4sWL8uabb8qsWbMK8/EAAPh3H6XuFvLUU0+Zqmrnzp2ladOmEhsbaxZG/+WXX2Tfvn2yZcsWWbNmjXTq1EmmTJnivpIDAOCLfZQZGRmyfPlys3ydhqK27ZoPCgmR+vXrS/v27aVv375Sr1498UX0UQIACpMHxR7Mo19w9epVqVixYq5l7HwRQQkA8Mh+lHb6JUwVAQAEKka9AgBggaAEAMACQQkAgAWCEgAAdwXl+fPnZd68eTJy5Eg5d+6cObdz5045duxYcT4WAACfUeRRr7t375aEhAQz4vXIkSPSr18/qVChgtk15OjRo/LBBx+4tqQAAPhTjXL48OHSu3dv+eGHH8zKPHYdO3aUzZs3u6p8AAD4Z1Du2LFD+vfvn+t8tWrVJC0trbjlAgDAv4MyPDzcrGpws++//14qV65c3HIBAODfQdmlSxcZP368XL9+3bHWq/ZNjhgxwiyc7m66M0nNmjVNs2/z5s1l+/btbv9OAEDwKXJQTp06VS5duiRVqlQxa722bt1a7rrrLomMjJTXX39d3EkXZNc+0rFjx5pRtg0bNjSLsZ86dcqt3wsACD7FXhRddxDREbAamo0bNzYjYd1Na5D333+/zJw50zzPzs6WuLg4GTx4sLzyyiuW72VRdACARxdFf/DBB83hKZmZmZKSkmLmbtqFhoaagE5OTs5zWzA97PLqVwUAwCVBOWPGjAJfO2TIEHGHM2fOSFZWlkRHRzud1+cHDhzIdf3EiRNl3LhxbilLrWfd28QcKH7625+8XQTAb/Dviu/9u1KooJw+fbrT89OnT8uVK1ekfPnyjpV6ypQpY/ot3RWUhaU1T+3PzFmj1GZaAABcHpSHDx92PF68eLG8++67Mn/+fLn77rvNuYMHD5oVevKaX+kqlSpVkhIlSsjJkyedzuvzmJiYPKex6AEAgEdHvY4ePVreeecdR0gqfay1zlGjRom7hIWFSZMmTWT9+vWOczqYR5+3bNnSbd8LAAhORR7Mc+LECblx40au89p/eHNtz9W0KTUxMVGaNm0qzZo1k6SkJLl8+bL06dPHrd8LAAg+RQ7Ktm3bmiZW3T1Ep4UoHY06YMAAt08R6datm+kfHTNmjFkur1GjRrJ27dpcA3wAAPBa0+uCBQtMn6DW6uz9gFq707DS8HS3QYMGyc8//2ymfnz11VdmbiUAAD5To9T1XNesWWPWdrVPy4iPj5e6deu6snwAAHhVsRcc0GAkHAEAgarIQfn888/fsmkWAICgDcpffvnF6bnuIrJ3716z6ECbNm1cUTYAAPw3KFeuXJnrnM5n1FGvtWvXlmDA0mwAEPiKvXvIzXR1nkceecTMs/RF7B4CAChMHhR5ekh+Dh06lOdCBAAABFXTa86FxpVWTLUW+cknn5hVcwAACOqg3LVrl9Nz3RNS51ZOnTr1liNiAQAI+KDcsGGDa0sCAIAPKnIfpU4B0akgeXWOMj0EACDBHpQbN26UzMzMXOevXbsmX375ZXHLBQCAfza97t692/F43759ZveOnFts6S4e1apVc10JAQDwp6DULa1CQkLMkVcTa+nSpc2GzgAABGVQHj582EwFqVWrlmzfvt2MdLULCwuTKlWqSIkSJVxdTgAA/CMoa9So4ViuDgCAQFeooFy9erU8/vjjUqpUKfPYSpcuXYpbNgAA/GutV11UQAfvaPOqPs73Q0NCzMAeX8RarwCAwuRBoWqUOZtbaXoFAAQDly+KDgBAIClUjXLGjBkFvnbIkCFFKQ8AAP7bR3nnnXcW7ENDQuSnn34SX0QfJQDAbX2UOocSAIBg4pI+Sq2UFqJiCgBAcATl/PnzpUGDBhIREWEOfTxv3jzXlQ4AAH/dj3LMmDEybdo0GTx4sLRs2dKcS05OlmHDhsnRo0dl/PjxriwnAAC+P5gnJ13jVUfBdu/e3en8kiVLTHieOXNGfBGDeQAAhcmDIje9Xr9+XZo2bZrrfJMmTeTGjRtF/VgAAHxKkYOyZ8+e8t577+U6P2fOHOnRo0dxywUAgH/3UdoH83z22WfSokUL8/yrr74y/ZO9evWS4cOHO67TvkwAAIIqKPfu3SuNGzc2jw8dOmR+VqpUyRz6Ws7FBwAACLqg3LBhg2tLAgCAD2JRdAAA3FGjvHbtmrzzzjumZnnq1Klc227t3LmzqB8NAID/B2Xfvn3NQJ6nn35amjVrRl8kACAgFTkoP/74Y1mzZo088MADri0RAACB0EdZrVo1iYyMdG1pAAAIlKCcOnWqjBgxQn7++WfxlCNHjpgmX90Xs3Tp0lK7dm0ZO3asZGZmeqwMAIDgUuSmV12+Tgf01KpVS8qUKSOlSpVyev3cuXPiagcOHDCDht5//3256667zHzNfv36yeXLl+Wtt95y+fcBAFDkRdETEhLMKjxaw4uOjs41mCcxMVE8YcqUKWYpvZ9++qlA17MoOgCgMHlQ5Brl1q1bzbZaDRs2FG/SP2CFChXyfT0jI8McOW8MAABu76OMj4+Xq1evijf9+OOPZi5n//79871m4sSJ5jcG+xEXF+fRMgIAgjQoJ02aJC+99JJs3LhRzp49a2pqOY/CeOWVV0zTrdWh/ZM5HTt2TDp06CDPPPOM6afMz8iRI02t036kpqYW9Y8MAAhCRe6jDA39v4y9uW9SP07PZWVlFfizTp8+bcLWig4aCgsLM4+PHz8ujzzyiNm1ZNGiRY6yFAR9lAAAj/RRunJR9MqVK5ujILQm+eijj5oNohcuXFiokAQAoLCKHJStW7fO97Wc22y5koak1iRr1KhhpoNoTdQuJibGLd8JAAhuxdq4OaeLFy/KkiVLZN68eZKSklKopteCWrdunRnAo0f16tWdXitiCzIAAJaK3W65efNmM2eyatWqppbXpk0b2bZtm7hD7969TSDmdQAA4DM1yrS0NDOIZv78+aYz9NlnnzVzFVetWiX169d3fSkBAPCXGmXnzp3l7rvvlt27d0tSUpIZgapzGQEACESFrlH+85//lCFDhsiAAQOkTp067ikVAAD+WqPcsmWLGbij0zOaN28uM2fOlDNnzrindAAA+FtQ6iT/uXPnyokTJ8zScUuXLpXY2Fizq4eOStUQBQBAgn1lnpwOHjxoBvb85S9/kfPnz8tjjz0mq1evFl/EyjwAgMLkgUuWtdHBPZMnT5Z///vfZi4lAACBwiU1Sn9CjRIA4PEaJQAAgYqgBADAAkEJAIAFghIAAAsEJQAAFghKAAAsEJQAAFggKAEAsEBQAgBggaAEAMACQQkAgAWCEgAACyUlyNjXgNfFcAEAwSv9/+fArfYGCbqgtG8sHRcX5+2iAAB8JBd0F5H8BN02W9nZ2XL8+HGJjIyUkJAQCbTfjvQXgNTUVLYQ8xDuuWdxvz0vPYDvucafhmRsbKyEhubfExl0NUq9GdWrV5dApn+ZA+0vtK/jnnsW99vzogL0nlvVJO0YzAMAgAWCEgAACwRlAAkPD5exY8ean/AM7rlncb89L5x7HnyDeQAAKAxqlAAAWCAoAQCwQFACAGCBoAQAwAJB6admzZolNWvWlIiICGnevLls377d8dq1a9dk4MCBUrFiRbntttvkqaeekpMnT3q1vIF+z+fMmSOPPPKImZCtKz6dP3/eq2X1d5s3b5bOnTubFVP0fq5atcrpdR2DOGbMGKlataqULl1aEhIS5IcffvBaeYPhnq9YsULatWtn/l3R17/55huvldXTCEo/tGzZMhk+fLgZsr1z505p2LChtG/fXk6dOmVeHzZsmHz00UeyfPly2bRpk1my78knn/R2sQP6nl+5ckU6dOggr776qreLGhAuX75s7rH+cpKXyZMny4wZM2T27Nny1VdfSdmyZc1/D/0lEe6555cvX5YHH3xQ3nzzTQk6Oj0E/qVZs2a2gQMHOp5nZWXZYmNjbRMnTrSdP3/eVqpUKdvy5csdr+/fv1+nANmSk5O9VOLAvuc5bdiwwdzrX375xQulDEx6P1euXOl4np2dbYuJibFNmTLFcU7/3oeHh9uWLFnipVIG9j3P6fDhw+b1Xbt22YIFNUo/k5mZKSkpKaapKef6tfo8OTnZvHb9+nWn1+Pj4+WOO+4wr8P19xyedfjwYUlLS3P676HrdWpzOP894A4EpZ85c+aMZGVlSXR0tNN5fa7/eOgRFhYm5cuXz/N1uP6ew7Ps95z/HvAUghIAAAsEpZ+pVKmSlChRItcoVn0eExNjDm0qvHnUpf11uP6ew7Ps95z/HvAUgtLPaLNqkyZNZP369U6bUevzli1bmtdKlSrl9PrBgwfl6NGj5nW4/p7Ds+68804TiDn/e+jmwjr6lf8ecIeg27g5EOg0hcTERGnatKk0a9ZMkpKSzNDtPn36mEENffv2NddUqFDBzOsbPHiw+QekRYsW3i56QN5zZe8f/vHHH83zPXv2SGRkpBlEpf8dUDiXLl1y3Ev7AB6dt6f3Uu/piy++KH/+85+lTp06JjhHjx5t5v917drVq+UO5Ht+7tw58wu3Tjez/wKu7C1ZAc3bw25RNO+8847tjjvusIWFhZmpC9u2bXO8dvXqVdsLL7xgu/32221lypSxPfHEE7YTJ054tbyBfs/Hjh1rhszffCxcuNCrZfZX9mk2Nx+JiYmOKSKjR4+2RUdHm2khbdu2tR08eNDbxQ7oe75w4cI8X9e/+4GObbYAALBAHyUAABYISgAALBCUAABYICgBALBAUAIAYIGgBADAAkEJAIAFghIIEIsWLcq1awyA4iMoAQ/o3bu3hISEOI6KFStKhw4dZPfu3S77jm7dusn3338v7lCzZk2zbF9hPfLII2a5OcCfEZSAh2gwnjhxwhy6oHfJkiXl17/+tcs+v3Tp0lKlShWXfR6A/0NQAh4SHh7uWEC6UaNG8sorr0hqaqqcPn3acc2IESOkbt26UqZMGalVq5ZZ7Pv69euO17/99lt59NFHzYLruuC97mry9ddf59n0anXtzXQly9dee80sfq3l1AXGhwwZ4qgV/vzzzzJs2DBHjVidPXtWunfvLtWqVTPlveeee2TJkiVOtehNmzbJ22+/7XjfkSNHzGt79+6Vxx9/XG677Taz4XLPnj3NBtmALyIoAS/t1PC///u/ctddd5lmWDsNNQ28ffv2mYCZO3euTJ8+3fF6jx49pHr16rJjxw5JSUkxYavbquWlMNf+/e9/N9/z/vvvyw8//CCrVq0ywadWrFhhPmf8+PGOGrG6du2aCd9PPvnEBN9//dd/mcDbvn27eV3Lr7vW9OvXz/G+uLg4s1dqmzZt5L777jPBvXbtWrOX5LPPPuvSewy4jLdXZQeCge7AUKJECVvZsmXNof/Xq1q1qi0lJcXyfVOmTLE1adLE8TwyMtK2aNGiPK/V3R3KlStXoGtvNnXqVFvdunVtmZmZeb5eo0YN2/Tp02/5OZ06dbK99NJLjuetW7e2DR061OmaCRMm2Nq1a+d0LjU11dwTdgCBL6JGCXiINoPq/n56aK2rffv2pvlRmzXtli1bJg888IBpntVmyVGjRpk9AHPui/n73/9eEhISZNKkSXLo0KF8v68w1z7zzDNy9epV09yrNcCVK1fKjRs3LP88WVlZMmHCBFPz1D0LtbyffvqpU3nzok3CGzZsMNfbj/j4ePOaVRkBbyEoAQ8pW7asaWrV4/7775d58+aZzZ+1eVUlJyeb5tKOHTvKxx9/LLt27ZI//elPkpmZ6fgM7Uf87rvvpFOnTvLFF19I/fr1TajlpTDXapOobsT77rvvmkFBL7zwgjz88MNO/aM3mzJlimle1X5VDT79BUDDP2d582t27ty5s+OXBvuhTb76nYCvKentAgDBSge3hIaGmpqc2rp1q9SoUcOEo13O2qadDvbRQwfX6GCahQsXyhNPPJHndxTmWg1IDTA9Bg4caGp5e/bskcaNG0tYWJipQeb0r3/9S37zm9/Ic889Z55nZ2eb6SkayHZ5vU8/T/tEdcqJjvwFfB01SsBDMjIyJC0tzRz79++XwYMHO2pXqk6dOqbZcunSpaYJcsaMGU41QA3UQYMGycaNG02AalDpQJ169erl+q7CXKt0ANH8+fPNoJyffvrJDDTS4NTgVhpqmzdvlmPHjjlGp2p5161bZwJe/zz9+/c3g3Jy0vd99dVXZrSrvk/DVEP43LlzJri1TPpn1SbbPn365ApVwCd4u5MUCJbBPPp/N/uhA23uv/9+24cffuh03R/+8AdbxYoVbbfddputW7duZgCNfYBORkaG7be//a0tLi7OFhYWZouNjbUNGjTIdvXq1VyDeW517c1Wrlxpa968uS0qKsoMNmrRooXt888/d7yenJxsu/fee23h4eGm/Ors2bO23/zmN6asVapUsY0aNcrWq1cvc85OB+foZ5UuXdq87/Dhw+b8999/b3viiSds5cuXN6/Fx8fbXnzxRVt2drbL7z1QXCH6P94OawAAfBVNrwAAWCAoAQCwQFACAGCBoAQAwAJBCQCABYISAAALBCUAABYISgAALBCUAABYICgBALBAUAIAYIGgBABA8vf/AKG2nlXElQrlAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] }, "metadata": {}, "output_type": "display_data" @@ -216,7 +250,7 @@ ], "metadata": { "kernelspec": { - "display_name": "frostenv", + "display_name": ".venv", "language": "python", "name": "python3" }, @@ -230,7 +264,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.10.14" + "version": "3.12.9" } }, "nbformat": 4, diff --git a/examples/bell_state.ipynb b/examples/bell_state.ipynb index be080ba..7de790d 100644 --- a/examples/bell_state.ipynb +++ b/examples/bell_state.ipynb @@ -9,10 +9,12 @@ "# Analog circuit for preparing a Bell state\n", "\n", "Bell states are maximally entangled, two-qubit states that are ubiquitous in quantum information tasks. Here, we will create the analog quantum program to prepare the two-qubit Bell state,\n", + "\n", "$$\n", "| \\psi \\rangle = \\frac{1}{\\sqrt{2}} \\left( |00\\rangle + |11\\rangle \\right)\n", "$$\n", - "First, we import the relevant libraries and OQD modules." + "\n", + "First, we import the relevant libraries and OQD modules.\n" ] }, { @@ -26,46 +28,43 @@ }, "outputs": [], "source": [ - "import numpy as np\n", - "import matplotlib.pyplot as plt\n", - "import seaborn as sns\n", "import itertools\n", "import warnings\n", - "warnings.filterwarnings(\"ignore\")\n", "\n", - "from oqd_core.interface.analog.operator import *\n", - "from oqd_core.interface.analog.operation import *\n", - "from oqd_core.backend.metric import *\n", + "import matplotlib.pyplot as plt\n", + "import numpy as np\n", + "import seaborn as sns\n", + "from oqd_analog_emulator.qutip_backend import QutipBackend\n", + "from oqd_core.backend.metric import Expectation\n", "from oqd_core.backend.task import Task, TaskArgsAnalog\n", + "from oqd_core.interface.analog.operation import AnalogCircuit, AnalogGate\n", + "from oqd_core.interface.analog.operator import PauliI, PauliX, PauliY, PauliZ\n", "\n", - "from oqd_analog_emulator.qutip_backend import QutipBackend" + "warnings.filterwarnings(\"ignore\")" ] }, { "cell_type": "markdown", - "source": [ - "Next, we define the one- and two qubit Rabi frequencies and the control Hamiltonians." - ], "metadata": { "collapsed": false - } + }, + "source": [ + "Next, we define the one- and two qubit Rabi frequencies and the control Hamiltonians.\n" + ] }, { "cell_type": "code", "execution_count": 2, "metadata": { - "collapsed": false, "ExecuteTime": { "end_time": "2024-10-23T02:59:40.744692Z", "start_time": "2024-10-23T02:59:40.738142Z" - } + }, + "collapsed": false }, "outputs": [], "source": [ - "X = PauliX()\n", - "Y = PauliY()\n", - "Z = PauliZ()\n", - "I = PauliI()\n", + "X, Y, Z, I = PauliX(), PauliY(), PauliZ(), PauliI() # noqa: E741\n", "\n", "n = 2 # number of qubits\n", "\n", @@ -78,11 +77,11 @@ "cell_type": "code", "execution_count": 3, "metadata": { - "collapsed": false, "ExecuteTime": { "end_time": "2024-10-23T02:59:40.814711Z", "start_time": "2024-10-23T02:59:40.749219Z" - } + }, + "collapsed": false }, "outputs": [], "source": [ @@ -97,22 +96,22 @@ }, { "cell_type": "markdown", - "source": [ - "Now, we apply these Hamiltonians sequentially on the two qubits to prepare the entangled state and measure the whole system." - ], "metadata": { "collapsed": false - } + }, + "source": [ + "Now, we apply these Hamiltonians sequentially on the two qubits to prepare the entangled state and measure the whole system.\n" + ] }, { "cell_type": "code", "execution_count": 4, "metadata": { - "collapsed": false, "ExecuteTime": { "end_time": "2024-10-23T02:59:40.815181Z", "start_time": "2024-10-23T02:59:40.799419Z" - } + }, + "collapsed": false }, "outputs": [], "source": [ @@ -136,22 +135,22 @@ }, { "cell_type": "markdown", - "source": [ - "Finally, we can emulate the circuit evolution using a classical emulation and track the $Z_1$ and $Z_2$ expectation values." - ], "metadata": { "collapsed": false - } + }, + "source": [ + "Finally, we can emulate the circuit evolution using a classical emulation and track the $Z_1$ and $Z_2$ expectation values.\n" + ] }, { "cell_type": "code", "execution_count": 5, "metadata": { - "collapsed": false, "ExecuteTime": { "end_time": "2024-10-23T02:59:40.815692Z", "start_time": "2024-10-23T02:59:40.808873Z" - } + }, + "collapsed": false }, "outputs": [], "source": [ @@ -171,13 +170,26 @@ "cell_type": "code", "execution_count": 6, "metadata": { - "collapsed": false, "ExecuteTime": { "end_time": "2024-10-23T02:59:41.156391Z", "start_time": "2024-10-23T02:59:40.966618Z" - } + }, + "collapsed": false }, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1/1] Cythonizing qtcoeff_9935efd7b07a5b0c7f90e15bb1eec4.pyx\n", + "running build_ext\n", + "building 'qtcoeff_9935efd7b07a5b0c7f90e15bb1eec4' extension\n", + "\"C:\\Program Files\\Microsoft Visual Studio\\2022\\Community\\VC\\Tools\\MSVC\\14.42.34433\\bin\\HostX86\\x64\\cl.exe\" /c /nologo /O2 /W3 /GL /DNDEBUG /MD -Id:\\work\\Projects\\equilux\\.venv\\Lib\\site-packages\\qutip\\core\\data -Id:\\work\\Projects\\equilux\\.venv\\Lib\\site-packages\\numpy\\core\\include -Id:\\work\\Projects\\equilux\\.venv\\include -IC:\\Users\\Salieri\\AppData\\Roaming\\uv\\python\\cpython-3.12.9-windows-x86_64-none\\include -IC:\\Users\\Salieri\\AppData\\Roaming\\uv\\python\\cpython-3.12.9-windows-x86_64-none\\Include \"-IC:\\Program Files\\Microsoft Visual Studio\\2022\\Community\\VC\\Tools\\MSVC\\14.42.34433\\include\" \"-IC:\\Program Files\\Microsoft Visual Studio\\2022\\Community\\VC\\Tools\\MSVC\\14.42.34433\\ATLMFC\\include\" \"-IC:\\Program Files\\Microsoft Visual Studio\\2022\\Community\\VC\\Auxiliary\\VS\\include\" \"-IC:\\Program Files (x86)\\Windows Kits\\10\\include\\10.0.22621.0\\ucrt\" \"-IC:\\Program Files (x86)\\Windows Kits\\10\\\\include\\10.0.22621.0\\\\um\" \"-IC:\\Program Files (x86)\\Windows Kits\\10\\\\include\\10.0.22621.0\\\\shared\" \"-IC:\\Program Files (x86)\\Windows Kits\\10\\\\include\\10.0.22621.0\\\\winrt\" \"-IC:\\Program Files (x86)\\Windows Kits\\10\\\\include\\10.0.22621.0\\\\cppwinrt\" /EHsc /Tpqtcoeff_9935efd7b07a5b0c7f90e15bb1eec4.cpp /Fobuild\\temp.win-amd64-cpython-312\\Release\\qtcoeff_9935efd7b07a5b0c7f90e15bb1eec4.obj\n", + "\"C:\\Program Files\\Microsoft Visual Studio\\2022\\Community\\VC\\Tools\\MSVC\\14.42.34433\\bin\\HostX86\\x64\\link.exe\" /nologo /INCREMENTAL:NO /LTCG /DLL /MANIFEST:EMBED,ID=2 /MANIFESTUAC:NO /LIBPATH:d:\\work\\Projects\\equilux\\.venv\\libs /LIBPATH:C:\\Users\\Salieri\\AppData\\Roaming\\uv\\python\\cpython-3.12.9-windows-x86_64-none\\libs /LIBPATH:C:\\Users\\Salieri\\AppData\\Roaming\\uv\\python\\cpython-3.12.9-windows-x86_64-none /LIBPATH:d:\\work\\Projects\\equilux\\.venv\\PCbuild\\amd64 \"/LIBPATH:C:\\Program Files\\Microsoft Visual Studio\\2022\\Community\\VC\\Tools\\MSVC\\14.42.34433\\ATLMFC\\lib\\x64\" \"/LIBPATH:C:\\Program Files\\Microsoft Visual Studio\\2022\\Community\\VC\\Tools\\MSVC\\14.42.34433\\lib\\x64\" \"/LIBPATH:C:\\Program Files (x86)\\Windows Kits\\10\\lib\\10.0.22621.0\\ucrt\\x64\" \"/LIBPATH:C:\\Program Files (x86)\\Windows Kits\\10\\\\lib\\10.0.22621.0\\\\um\\x64\" /EXPORT:PyInit_qtcoeff_9935efd7b07a5b0c7f90e15bb1eec4 build\\temp.win-amd64-cpython-312\\Release\\qtcoeff_9935efd7b07a5b0c7f90e15bb1eec4.obj /OUT:build\\lib.win-amd64-cpython-312\\qtcoeff_9935efd7b07a5b0c7f90e15bb1eec4.cp312-win_amd64.pyd /IMPLIB:build\\temp.win-amd64-cpython-312\\Release\\qtcoeff_9935efd7b07a5b0c7f90e15bb1eec4.cp312-win_amd64.lib\n", + "copying build\\lib.win-amd64-cpython-312\\qtcoeff_9935efd7b07a5b0c7f90e15bb1eec4.cp312-win_amd64.pyd -> \n" + ] + } + ], "source": [ "backend = QutipBackend()\n", "results = backend.run(task=task)" @@ -185,27 +197,29 @@ }, { "cell_type": "markdown", - "source": [ - "Finally, we visualize and plot the results for the circuit evolution and the resultant state." - ], "metadata": { "collapsed": false - } + }, + "source": [ + "Finally, we visualize and plot the results for the circuit evolution and the resultant state.\n" + ] }, { "cell_type": "code", "execution_count": 7, "metadata": { - "collapsed": false, "ExecuteTime": { "end_time": "2024-10-23T02:59:41.618214Z", "start_time": "2024-10-23T02:59:41.161014Z" - } + }, + "collapsed": false }, "outputs": [ { "data": { - "text/plain": "" + "text/plain": [ + "" + ] }, "execution_count": 7, "metadata": {}, @@ -213,8 +227,10 @@ }, { "data": { - "text/plain": "
", - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAgoAAAESCAYAAACcrP0+AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAAA+F0lEQVR4nO3deXhU9b0/8PeZfSb7vkICBGQLiyCIICqotb32arnyu21vi5ZWrFWsrUqL3la96KMgdLmPrZS2KKJ1X9qq11ZJBUEFiWQBDGSB7Mtk32bJzJzfH5MzEJIMmcmZOTOT9+t58jxkMnPOZ74Zct7ne77n+xVEURRBRERENAKV0gUQERFR6GJQICIiolExKBAREdGoGBSIiIhoVAwKRERENCoGBSIiIhoVgwIRERGNSqN0Af5yuVxwOBxQqVQQBEHpcoiIiMKGKIpwuVzQaDRQqbz3GYRtUHA4HCgtLVW6DCIiorCVn58PnU7n9TlhGxSkBJSfnw+1Wi3LNp1OJ0pLS2XdZiRh+3jH9vGO7TM6to13bB/v/Gkf6TUX600AwjgoSJcb1Gq17B+cQGwzkrB9vGP7eMf2GR3bxju2j3f+tM9YLt1zMCMRERGNikGBiIiIRsWgQERERKMK2BgFu92ONWvW4Be/+AWWLl064nNOnjyJhx9+GKdPn0ZeXh4effRRzJ07N1AlERFRmHO5XLDb7UqXEVKcTicAwGq1DhmjoNPpxjRY8WICEhRsNhvuu+8+lJeXj/qc/v5+bNiwAV//+tfx5JNP4qWXXsIdd9yBDz74ACaTKRBlERFRGLPb7aipqYHL5VK6lJAiiiI0Gg2qq6uHDE5UqVSYMmXKRW9/vBjZg0JFRQXuu+8+iKLo9Xnvvfce9Ho9Nm3aBEEQ8NBDD+HAgQN4//33sWbNGrnLIiKiMNfc3Ay1Wo1JkybJcqYcKURRhMVigdFo9AQFl8uFhoYGNDY2YvLkyeOamFD2oHDkyBEsXboUP/nJT7BgwYJRn1dcXIxFixZ5ihcEAZdeeimKiooUCwo2hx1H2+pRc8Lp84fQ8yvw4Zcx0jOFER8d4/ZG2Lc/WxtxOwLgdIqob21AU5kKavWFz/G+J6/v1YciR2ofry+/yLZH3J6f9bhEF2ram9FZeRIqQXXR/av8GCIk1WbU6BGtN47xNb59Cvz6BI5hHy6nE3W9PTC1NEOlVsv22bzoa/zYjz98rS09JhZRen2AqolM/f39yMrKYq/zBaRZFg0Gw5DPYUpKChoaGuBwOKDVav3evuxB4dvf/vaYnmc2m5GXlzfksaSkJK+XK0YiXZuRwy/+702U1JuB8irZthmRKiqVriC0nT6tdAWh7XiR0hWEBK1Kha/Onov1S6+AdvDERM6/Z5Hk/HbRarUX7bGeaKT2uLBdpLay2+3DTn59+awpNuGSxWIZdt1Ep9P5PEhFzmmcc/UmVOlVcPn4IQzVz2yIluW34Lfz2HaoRDtLbSEIgEGlg3qUs9lgtJl/u/D9VX7tx48XBeP9OEUR/Q4H/na8BF+cqcL3Zs5FlFbLaekvYmBgAFarlUFhFBaLZcj3NpsNAwMDKCsrG9d2FQsKer1+WCiw2+0wGAw+bUfOKT3znfm4gtOEjorTqHoXzPZp7e/C3mP/QE1XC6K0avxk+f9Dkik2oPscL35+zhFFEcfqavHkvn+grq8Xb9XX4JuTp2Dh/PkTvm1GIn12tFotjEajz8eJSDfSGAXAPZhRq9UiLy9vWJtJbToWigWFtLQ0tLa2DnmstbUVqampPm2HUzgHH9vHu2C0T1pMIjZecQv+95PXUdvVguePvY+frPhPqMNggBc/P26X5U7BjpvX4sdvvoLjTQ34QFBh8aWXsm0uQhAErhg8igvbRvp+vP/nFPurMn/+fBw7dmzItZUvvvgC8+fPV6okorCi12jxg8tuhFGrR01XC/afKVK6JPJRblISNq2+HgDwcWMdKlrNCldENFxQg4LZbIbVagUA3HDDDeju7sbjjz+OiooKPP7447BYLPjqV78azJKIwlqCMQY3zVoBAPi/U5+h12a5yCso1CyfmoeV0/LgArDz0AFef49ge/fuRXNzsyzbev3111FZGZyB5UENCitWrMB7770HAIiOjsYf/vAHFBYWYs2aNSguLsauXbt42wuRjy6fPAfZcamwOQfwQcXnSpdDfrh92ZXQCAKONzbgaG210uVQAFRXV2P79u2Ii4sDAOzfvx+XXHLJqF/33nuv1+2VlJTglVdeCULlAR6jcOrUKa/fz5s3D2+99VYgSyCKeCpBwI0zl2Hn4b/i47MluDZvMWL0DNzhJCU6GpenZ+JgYz1e+PwwLpucq3RJJLN9+/bhiiuu8AwqXLp0KQ4ePDjkOS6XC5s3b8aJEyfwwx/+0Ov2Vq9ejS1btuDBBx8MWM2S0B/5REQXNSslB5PiUuFwOfFJ9XGlyyE/XJWRDY1KhZNNjShrblK6HJLZvn37sGrVKs/3BoMBKSkpnq/ExEQ8+eSTOHHiBPbs2YOZM2d63d6yZcvQ1taG00GYt4VBgSgCCIKAq6cuBAB8fLYEDhcn7gk3MTodrs6bAQB4q/iYwtWEB1EUYXMMBPXLnzEk7e3tKC4uxjXXXDPiz51OJx544AF88sknYwoJgHveoeXLl6OgoMDnenyl2O2RRCSvhZnT8deTH6Pb1ofixgosyrpE6ZLIRzflz8eHp8uwv7IcG/pWIikqSumSQpYoivjNoddwpqMxqPudmpCBHy9f69Mtmh999BHmzp2L5OTkYT+TQsKhQ4fw3HPPDQkJ//rXv/Dkk09CFEXcfvvtWLt27ZDXrl692rOgYiCxR4EoQmhUalyR416m/XDtSYWrIX9MT0nF7PQMOF0uFJwe32x6E0G4zKawf/9+rFy5ctjjTqcTmzZt8oSEWbNmeX7mcDjw5JNP4vnnn8dbb72FP/3pT+jo6Bjy+quuugolJSXDHpcbexSIIshl2bPw/ukjOGWuRaelF/HGaKVLIh9dd8ksnGxqxIenvsTahYuULidkCYKAHy9fC7vTEdT96tQanyd8ysrKQl1d3ZDHpJBw8OBBPPvss0NCAuC+qyEvLw9paWkAgJUrV+LQoUO48cYbPc+pq6tDbGwsYmJifF7+wBfsUSCKIClR8ZiakAERIgrrT138BRRyrsqbAa1Kjaq2VlRyAiavBEGAXqMN6pc/s0KuXr0a+/fvh8vlAjA8JMyePXvYa1paWjwhAXDPZnzhHAz79u3DypUrodEE9pyfQYEowiyZ5P6j83ndlwpXQv6IMRhw+ZSpAIAPT/F3GAkWLlwIURRRXFwMl8uFTZs2Yd++fdi2bRtSUlJgNpuHfI11ZceCggKsXr06wNXz0gNRxFmQkYdXS/+Fhp42tPR2IDU6QemSyEerZlyCjyvLcbCyAhuuuJJrG4Q5lUqFq6++Gvv27YNKpcI777wDANiwYcOw5wqCgKNHjyI1NXVID0JzczPmzZvn+b62thZnzpzBlVdeGfD6GRSIIoxJZ8CM5GyUmWtQ3FSJ6/IWK10S+WjxpBzoNRo09XSjstWMvBTfFsuj0LN69Wrs2LED999//7DJB0cyb948lJeXo7m5GdHR0Thw4AB+9KMfeX5eUFCApUuXIjo6OuDTfvPSA1EEmp+eBwAoaQzOXPAkL4NW65md8WBVhbLFkCyWL1+OhoYGVFePbYpujUaDn/3sZ1i3bh1uvvlmrF+/HgkJ53oHCwoKhkzgFEjsUSCKQPnpU/FqaQGqO5vQYelBgjFG6ZLIRyum5uFgVQUOVlbgtqVXKF0OjZPBYEBRUZFPr1m9evWoYxD27NkjQ1Vjwx4FoggUa4hCbkIGAOB48xmFqyF/LM3NhVqlQnVHO+o7O5UuhyYwBgWiCDUnLRcAUNbC1QjDUbTegDnp7rDHFSVJSQwKRBFqVkouAOB0ay3XfghT0jiFozUMCqQcBgWiCJUVl4IYnRE25wDOtAd3PnySx+LJOQCAorraoM9ASCRhUCCKUCpBwMxU94HmSzPPSMPRtOQUJJpMsDoGcKKRYY+UwaBAFMFmpQwGBY5TCEuCIGDRYK/C0ZqzyhZDExaDAlEEuyRlMgQA9d1mdFv7lC6H/MBxCqQ0BgWiCBajNyErNgUAUNFWr3A15I+F2ZMAAFVtrei2WhSuhiYiBgWiCJeXnA0AKG+ru8gzKRTFG03ITUwCAJQ0MOxR8DEoEEW46UnuoFDBoBC25mW5f4fF9fwdUvAxKBBFuGmJmRAANPd2cJxCmJqf6Q4KJQwKYW3v3r1DVoQcj9dffx2VlcFZy4VBgSjCmXQGZHKcQljLz8wCwHEK4ay6uhrbt29HXFwcAGD//v245JJLRv269957vW6vpKQEr7zyShAqZ1AgmhCmJ7kPNBynEJ4STBynEO727duHK664AgaDAQCwdOlSHDx4cMjXgQMHsHz5csTHx+OHP/yh1+2tXr0aBQUFwSidQYFoIpAGNHKcQvjyjFOo4+8wHO3bt2/IstAGgwEpKSmer8TERDz55JM4ceIE9uzZg5kzZ3rd3rJly9DW1obTp08HunQuM000EUxLzATgHqfQa7MgWm9UuCLy1byMLPyttBgnmhqULiVkiKIIqyO4U1sbNBoIguDTa9rb21FcXIzf/va3I/7c6XTigQcewCeffDKmkAAAOp0Oy5cvR0FBAaZPn+5TPb5iUCCaAKJ0RqRGJaClrwNnOxsxN22q0iWRj2YNriRZ2WqGZWAARq1W4YqUJYoi7n3zVZxsCu7U1nMyMvHrb6z1KSx89NFHmDt3LpKTk4f9TAoJhw4dwnPPPTckJNx11104cuQIli1bhv/93/8d9trVq1fjpZdewh133OHfmxkjXnogmiCmJLoPNGfbmxSuhPyRGhODlOhouEQRp1v4OwTg85m9Uvbv34+VK1cOe9zpdGLTpk2ekDBr1qwhP1+3bh22bt066navuuoqlJSUoKOjQ/aaz8ceBaIJYkpCBg7XnkRVBxcXClez0jJg7i3HyaZGzM+apHQ5ihIEAb/+xtqwuPSQlZWFugvGlkgh4eDBg3j22WeHhQTAPeDx8OHDo263rq4OsbGxiImJgd1u96kmXzAoEE0QUo9CTWcTnC4X1Cp2KIab2ekZOFBZHvTu9lAlCEJYXIJZvXo17rnnHrhcLqhUqmEhYfbs2X5td9++fVi5ciU0Gk1AgwL/UhBNEGnRiTBqdLA7HWjoblW6HPLD7MFxCiebGiGKosLV0FgtXLgQoiiiuLgYLpcLmzZtwr59+7Bt2zakpKTAbDYP+XI6nWPabkFBAVavXh3g6tmjQDRhqAQBOQkZKDNX40xHIybFpypdEvkoLyUVWrUa3VYr6rs6kR2foHRJNAYqlQpXX3019u3bB5VKhXfeeQcAsGHDhmHPFQQBR48eRXR0tNdt1tbW4syZM7jyyisDUvP5GBSIJpApCemeoLByynylyyEfadVqTE9JxcmmRpxsamRQCCOrV6/Gjh07cP/99+PUqVPj3l5BQQGWLl2K6OjogPcu8dID0QTiufOBAxrD1px095wYHKcQXpYvX46GhgZUV1eP+TW33XYbfvzjH3vumjh27JjnZwUFBUMmcAok9igQTSA58ekQALT1d6Pb2odYQ5TSJZGPZp03ToHCh8FgQFFRkU+vee6550b92Z49e8ZXkA/Yo0A0gRi1eqRFJwIAarrkWcWOgmtWWjoAoLq9DdaBAYWroYmAQYFogpkcnwYAqOlsUbgS8kdSVBQSTSa4RBGVrWaly6EJgEGBaIKR7nao7WSPQjgSBAEzUt1h73QLf4cUeAwKRBPM5LjBHoWuFt6LH6ZmpAwGBTN7hSjwGBSIJpis2GSoBAE9tn50WnuVLof8MJF7FBhux06utmJQIJpgdBotMmKSAAC1HKcQlmakDl4+6mhHfwCn7g1FgZyqONJIbaVWq8e1Hdlvj7TZbHj00Ufxz3/+EwaDAevXr8f69etHfO6dd96JgoKCIY/t3LkT11xzjdxlEdF5JsWnob67FTVdzZiXMU3pcshHCaYopETHwNzbg4rWFszLzFa6pKAwmUwwm83QarVQca0SD1EUYbPZoFKpPAtWuVwumM1mmEwmaDTjO9TLHhS2bduG48ePY8+ePWhoaMDPfvYzZGZm4oYbbhj23MrKSjz11FNYtmyZ57G4uDi5SyKiC0yOS8VnOME7H8LYjNRUmHt7cLpl4gSFtLQ01NTU+DRp0UQgiiIGBgag1WqHrGypUqkwefLkcS/HLWtQ6O/vx2uvvYY//vGPmDNnDubMmYPy8nK8+OKLw4KC3W5HXV0d8vPzkZKSImcZRHQR0i2StZ3NEEVx3H9IKPhmpKThUFXlhBqnoNPpMH36dF5+uIDT6URZWRny8vKGXGbQ6XSy9LzIGhTKysrgcDiwcOFCz2OLFi3Czp07PctrSqqqqiAIAiZNGt+a6mNdZcuXbcm5zUjC9vEunNonzZQAtaBC34AV5t5OJJliA77PcGqfYPOnbfKS3SdYp5qbIr5Nz28ftVoNbRgsLR1M0rFVq9UOCQqiKI762fDlMyNrUDCbzUhISIBOp/M8lpycDJvNhs7OTiQmJnoer6qqQnR0NDZt2oQjR44gPT0dGzduxFVXXeXTPktLS2WrP5DbjCRsH+/CpX3iNSa0DfTi4+IjyDUmB22/4dI+SvClbaRZGRu6u/DJ0c9h0kT+wZOfHe8C1T6yBgWLxTIkJADwfH9hV1FVVRWsVitWrFiBDRs24IMPPsCdd96JV155Bfn5+WPeZ35+/rhHdEqcTidKS0tl3WYkYft4F27tU368E5/UHIcqwYgFMxcEfH/h1j7B5G/bZJSfRGN3NwzpaViQPTmAFSqLnx3v/Gkf6TVjIWtQ0Ov1wwKB9L3BYBjy+I9+9CN897vf9QxenDlzJk6cOIFXX33Vp6CgVqtl/+AEYpuRhO3jXbi0z+T4NHxScxwN3W1BrTdc2kcJvrbN9JQ0NHZ342x7Oy7LmRLAykIDPzveBap9ZL2/JC0tDR0dHXA4HJ7HzGYzDAYDYmOHXgNVqVTD7nCYOnUqmpsnzsAcIiVlx7mvcdd1mzmJTZiaNjhOoYIzNFIAyRoUZs2aBY1GM2QpzcLCQuTn5w8befnzn/8cmzdvHvJYWVkZpk6dKmdJRDSK9JgkqAQBfXYLuqx9SpdDfpCCAheHokCSNSgYjUbcfPPNeOSRR1BSUoIPP/wQu3fvxrp16wC4exesVisAYNWqVfj73/+Ot99+G9XV1Xj66adRWFiI73znO3KWRESj0Kk1niWn67t5oAlH0wZvLa/t7IDtvJ5cIjnJPrXV5s2bMWfOHNx666149NFHsXHjRlx//fUAgBUrVuC9994DAFx//fV4+OGH8cwzz+DGG29EQUEB/vSnPyE7e2JMHEIUCrJi3Xc71HUxKISjJFMU4o1GuEQRZ9talS6HIpTsMzMajUZs3boVW7duHfazU6dODfl+7dq1WLt2rdwlENEYZcWl4Gj9KfYohClBEDA1OQVf1NagstWMS9LSlS6JIhAnyyaawLJj3V3XDArhS5p4qYLjFChAGBSIJrDMwUsP5r4uWB2cFjcccUAjBRqDAtEEFqM3Ic4QDQBo6OY17nAkBYWq1la4eJsrBQCDAtEEl80BjWEtOz4BOrUaVscAGro6lS6HIhCDAtEElxXHcQrhTK1SYUqSO+zx8gMFAoMC0QSXJQ1oZI9C2OI4BQokBgWiCU6ayrmhpw1Ol0vhasgfDAoUSAwKRBNckikOerUWDpcTLX0dSpdDfmBQoEBiUCCa4FSCwBkaw9yUpGQIANr6+tDR3690ORRhGBSIiAMaw5xJp0NmXDwAoKqNv0OSF4MCESEzxt2j0NDdpnAl5C/pzoczbfwdkrwYFIgIGbFJAIDGHk66FK6mJLl/h2e4OBTJjEGBiJAR4z7IdFn70Ge3KlwN+eNcjwKDAsmLQYGIYNTqkWiMAcCpnMOVFBSq23mbK8mLQYGIAAAZg3c+NPbwGnc4yoiNg16jgd3pRGN3l9LlUARhUCAiAECWZ0AjexTCkVqlQk4ixymQ/BgUiAjAuQGNDexRCFtTGBQoABgUiAgAkHnepQeRyxWHJd4iSYHAoEBEAIDUqHioBRVsDjvaLT1Kl0N+4J0PFAgMCkQEAFCr1EiLSQTAcQrhSppLoaGrE5aBAYWroUjBoEBEHpkxnHgpnCWYohBvNEIEUNPOyw8kDwYFIvKQbpHkVM7hKzeR4xRIXgwKRORxrkeBB5lw5ZnKuZ29QiQPBgUi8pDufGju7YDD5VS4GvIHBzSS3BgUiMgj3hANo0YHl+hCc2+70uWQH3iLJMmNQYGIPARB4DiFMJeTmAQBQKelHx39/UqXQxGAQYGIhuCdD+HNqNUiIzYOAC8/kDwYFIhoCPYohD/p8sNZDmgkGTAoENEQnh4FTroUtnI5ToFkxKBARENIPQod1l70D9gUrob84blFkpceSAYMCkQ0hEmrR4IhGgB7FcKVdOmhur0NLi7wRePEoEBEw3jGKXDipbCUFRcPrVoNq8OBxq4upcuhMMegQETDZMZynEI4U6tUyElwL/DFAY00XgwKRDRMRoy7R4FTOYevXM+dD/wd0vgwKBDRMNKdDw09bRB5jTss5Sa6f4dneecDjRODAhENkxqdAJUgwDJgQ5e1T+lyyA+eoMAeBRonBgUiGkar1iAlKgEA0MAZGsOSdItkbWcHBpxc4Iv8x6BARCPyDGjkOIWwlBIdA5NWB6fLhfrOTqXLoTDGoEBEI8rwzNDIoBCOBEFATiLvfKDxY1AgohFlxnAuhXDHOx9IDrIHBZvNhgcffBCLFy/GihUrsHv37lGfe/LkSaxduxbz58/Hf/zHf+D48eNyl0NEfsoYvPTQ3NMGl+hSuBryB+98IDnIHhS2bduG48ePY8+ePXj44Yfx9NNP4/333x/2vP7+fmzYsAGLFy/Gm2++iYULF+KOO+5AP9dPJwoJSaY4aFUaDLicaO3j7H7hSAoKZ9ijQOMga1Do7+/Ha6+9hoceeghz5szBddddhx/84Ad48cUXhz33vffeg16vx6ZNmzBt2jQ89NBDiIqKGjFUEFHwqQQBGTHua9wNnKExLEl3PjR2dcLmcChcDYUrjZwbKysrg8PhwMKFCz2PLVq0CDt37oTL5YJKdS6XFBcXY9GiRRAEAYB74M2ll16KoqIirFmzRs6yiMhPGbHJqOlqQWNPGxZgutLlBESPzd2LGaM3KVyJ/OKNJsQaDOi2WvHi0UNIio5SuiS/uFwuNJgbUXPCOeQ4MpHMSc9GXnK6IvuWNSiYzWYkJCRAp9N5HktOTobNZkNnZycSB0fgSs/Ny8sb8vqkpCSUl5f7tE+njPcHS9uSc5uRhO3jXSS2T/rgXAr13a3jfl+h2D4OpxNPHXgJAgQ8ePV3oFGpFakjkG0TpVej2wq8VHhM9m0HXeUZpStQjEoAXrnt+yMGWn8+P748V9agYLFYhoQEAJ7v7Xb7mJ574fMuprS01I9Kg7/NSML28S6S2qfP2gkAONvagKKiIlm2GUrt0z7Qi05rLwDg48LPkKBV9ow7EG0TZ3SgwwIIooDBDlwKQ0kGPcpPlHntUQnU/y1Zg4Jerx92oJe+NxgMY3ruhc+7mPz8fKjV8pwFOJ1OlJaWyrrNSML28S4S22eKtQ8fFpxAj8OK2flzoVP7/ycjFNvnaP0pwOz+d1xWChZkzlCkjkC1jcPlhLrxE0xJF/CLa9Yh0Rgr27aDKRQ/O6HEn/aRXjMWsgaFtLQ0dHR0wOFwQKNxb9psNsNgMCA2NnbYc1tbhw6Qam1tRWpqqk/7VKvVsn9wArHNSML28S6S2ifBFAOT1oD+AStaLV2YFOfb/8+RhFL7NPe1e/7d1NuueF1yt01Lfydcogt6tRbJUfGeMWHhKpQ+O6EoUO0j66iQWbNmQaPRDOmiLCwsRH5+/rDukvnz5+PYsWOelelEUcQXX3yB+fPny1kSEY2DIAjnpnKOwBkaz39PkThVtfT+MmKTwj4kkHJkDQpGoxE333wzHnnkEZSUlODDDz/E7t27sW7dOgDu3gWr1QoAuOGGG9Dd3Y3HH38cFRUVePzxx2GxWPDVr35VzpKIaJw8UzlH4oG051yPQkMkBqHB35n0OyTyh+z3mWzevBlz5szBrbfeikcffRQbN27E9ddfDwBYsWIF3nvvPQBAdHQ0/vCHP6CwsBBr1qxBcXExdu3aBZMp8m5RIgpnnqmcI2wuBavDjnZLt+f7dks3rA7fBlOHOgYFkoOsYxQAd6/C1q1bsXXr1mE/O3Xq1JDv582bh7feekvuEohIRhkRuopk02BvQqw+CoIAdFn70NjThikJGQpXJh8GBZLDxJy5gojGTDrIdFp70W+3KlyNfBp73D0kGTFJEblSpt3pQGtfJwAGBRofBgUi8sqo1SPBEA0gsnoVzh/oJ11eiaT319zTDhFAlNYQkbNOUvAwKBDRRWXERt6S0+d3y0uXVyJpHIbn/fGOBxonBgUiuqhIvPNBuuMh8/xLDxH1/jg+geQh+2BGIoo8mYM9Co0RcsbdZ7eg29YHAEiPSYQAAQKA3sHHY/XhuXjS+RgUSC7sUSCiizr/jFuaJC2cSXMmJBpjodfooNO4Zy4EImdAoxTqGBRovBgUiOii0qIToBIE9A/Y0GXtU7qccZPOtqVZJ4FzB9RIGIfRP2BDx+BiVwwKNF4MCkR0UVq1BinSGXcEHEilQYvS3Q7AudAQCe9P6k2IN0TDpPNtoT2iCzEoENGYZEgzNPaE/ziFhvPuCJBI7y8SxmE0jNBjQuQvBgUiGpOMCFkcShTF8y49nNej4BmH0Q5XmI/DODc+IfkizyS6OAYFIhqTzAi5ht9u6YHNYYdaUCF18HIKACRHxUOjUsPuHEB7f/foGwgDDSMEISJ/MSgQ0ZhIg+Kae9rgEl0KV+M/aXxCWkwi1Cq153G1SoW06EQA4T1OQRRFT49CJgcykgwYFIhoTJKj4qBVaTDgcqK1r0vpcvwmrfEw0kHUc+dDGI9T6LT2wuKwQyUISI1OULocigAMCkQ0JipBhfSY8D/jbvCs8TC8Wz4S7nyQQk5qVAK0as6pR+PHoEBEY5YZAWsieAYyeulRCOugwPEJJDMGBSIas4wwX2XR4XKiubcDwMgHUumx5t4OOFzOoNYmF87ISHJjUCCiMTt3DT88g0JzbztcogtGjQ7xg0tnny/eEA2jRgeX6ELLYKAIN+xRILkxKBDRmEmXHsx9nRhwOhSuxnfnj08YaellQRDC+vKD0+VEs7QqJidbIpkwKBDRmMXqo2DSGiBCRFNvu9Ll+MzbHQ+SjDAeh9HS1wmn6IJerUWCMVbpcihCMCgQ0ZgNOeMOw8sP3u54kITzOAwp3GTEJkE1Qo8JkT8YFIjIJ+F8C+FYJiIK53EYUnjL5NTNJCMGBSLyyblr+OHVNT9k6WUvPQpSEGq3dMPqsAelNrlIC3ZxICPJiUGBiHwiHYTC7Yxb6k1IMETDpNWP+rwonRGx+ij3a8Ks18RzaYW3RpKMGBSIyCfpgwehTmsv+gdsClczdtLZtrfeBElmGK6UaRmwod3iXsyKPQokJwYFIvKJSatHwuAcBI1hdGeAdLY9ltsGw/EWSanWOEMUonQGhauhSMKgQEQ+ywjDAY3nZiwcS4+CdHklfIJQo+eyA3sTSF4MCkTkM+lg1BAmQUEUxXNrPPjQo9DQ3QpRFANam1zODWTk+ASSF4MCEfks3OZS6LD0DC69rEJadOJFn58R456HoG/Ais7BOyVCXQNvjaQAYVAgIp9JXfONPeFxxi2dbadFJ0CjUl/0+Vq1xhMo6rvNAa1NDqIonjdYkz0KJC8GBSLyWVp0AlSCgP4BG7qsfUqXc1H1Xe6DaFZsyphfIz1Xem0o67D0wDJgg1pQ8dZIkh2DAhH5TKvWICUqAUB4DPirG+wVyI7zISjEuXtNwqFHQXp/6TGJY+oxIfIFgwIR+SV78EBa192icCUXV9/lPpBm+TC/QLbUoxAGQeHc+xt7ECIaKwYFIvJLdmwqAKAuxLvmLQM2tPZ3AfDtQCqNwzD3dYX8VM71g706WT70mBCNFYMCEfnlXNd8aPcoSJdG4g3RiNYbx/y6GL0JcYMTS4X65ZW6wR6FbPYoUAAwKBCRX6Sz81A/4x7P2Xb2YK+CdCAORf3nTd3sy6UVorFiUCAiv5x/xl0fwgdSz0BGP862pTAUyj0KUtsnGmNh4tTNFAAMCkTkN+kugvowOJD6cseDROqFqAvhAY31ftzRQeQLBgUi8pt0ll7XFZrjFJwup2fqZn/uCJC68hu7W+F0uWStTS5SUOBlBwoUBgUi8lu254w7NHsUmns74HA5YdDokGiK9fn1yVHx0Km1GHA50dLXEYAKx0+664R3PFCgMCgQkd+ks/TGnjY4XU6FqxnOM5AxNhkqQfD59SpB8Jyph+I4DIfLiabBHhPe8UCBwqBARH5LMsXCoNHB6XKiqbdd6XKG8UxENI6zbU9QCMFek+aedjhFF4xaPRKMMUqXQxFK1qAgiiK2b9+Oyy+/HEuWLMG2bdvg8nJd77HHHsMll1wy5OuFF16QsyQiCiBBEDy9CqF4C2Fd9/hnLMyKC90ZGs9/f4IfPSZEY6GRc2PPPvss3nnnHTz99NNwOBx44IEHkJSUhO9///sjPr+yshL33XcfvvGNb3gei46OlrMkIgqw7LgUVLbXu8/eJyldzTmiKJ6742EcQSH7vCAkimJIHZDPvT8OZKTAkbVH4fnnn8c999yDxYsX4/LLL8f999+PF198cdTnV1ZWYvbs2UhJSfF8GY1jnzmNiJQXqgMaOyw96BuwQiWokB6T6Pd2MmKSIEBAr90Scitl1spwaYXoYmTrUWhubkZjYyMuu+wyz2OLFi1CfX09WlpakJqaOuT5vb29aG5uRm5u7rj263TKN4BK2pac24wkbB/vJmr7ZES7lzWu7zLD4XCMesYd7Pap7mhy1xeTCBUEv/erFlRIj05AY287qjuaEKObImeZAPxrG5fo8tyWmhWTHNGfu4n6f2us/GkfX54rW1Awm93J9vxAkJzs7g5ramoaFhQqKyshCAJ27tyJAwcOID4+Ht/73veGXIYYi9LS0nFWHpxtRhK2j3cTrX2cogsqCLA4bPi48DPEarz3Cgarfb7oPgsAMDnUKCoqGte2opzuP5WfnyqBo7FrnJWNzpe26Rzoh805AI2gQmNFDZqF2oDVFSom2v8tXwWqfXwKClarFc3NzSP+rL+/HwCg0+k8j0n/ttuHzwNfVVUFQRAwdepUfOc738Hnn3+OX/ziF4iOjsZ111035pry8/OhVsuz/rrT6URpaams24wkbB/vJnL7HOivQE1XC2Iyk7Egc/qIzwl2+3x6pBroBRZMnYUFk+eOa1u91WpUnGjBgFGFBQsWyFPgefxpm8/rywAzMCk+DZcuXCh7TaFkIv/fGgt/2kd6zVj4FBSKi4uxbt26EX/2wAMPAHCHAr1e7/k3gBHHHdx888245pprEB8fDwCYOXMmzp49i5deesmnoKBWq2X/4ARim5GE7ePdRGyfyQnpqOlqQV23GYsnzfT63GC0jyiKnm753ISMce8vNyEdAFDT1QKVShWwAY2+tI10u2ZOfNqE+bxNxP9bvghU+/gUFJYuXYpTp06N+LPm5mY89dRTMJvNyM7OBnDuckRKyvCBNoIgeEKCZOrUqfjss898KYmIQkBOfBoOAqjuHLnHMdja+rvRP2CDWqVGRmzSuLeXGZsMlaBCn92CDkuPX7M8yq1msK0nxacpXAlFOtnuekhLS0NmZiYKCws9jxUWFiIzM3PY+AQA+O1vf4vbbrttyGNlZWWYOnWqXCURUZBMinP/H6/taoFLVH5NhJou90E0KzYZGtX4z7C0ag0yY9yBoyYEwpDT5fLMWzGZQYECTNbbI7/1rW9h+/btOHz4MA4fPowdO3YMuVTR3t6Ovj737UXXXHMNPv/8c/z5z39GTU0N/vKXv+Dtt9/G+vXr5SyJiIIgPSYROrUWducAmnuVXxNBOphPjht+kuIv6YBcEwILYDX1tmHA5YBeo0NKVLzS5VCEkzUofP/738fXvvY13H333fjxj3+Mm266aUivwS233ILdu3cDAObNm4ff/va3+Otf/4obb7wRe/fuxY4dO7AwwgflEEUilaDCpMF7+UPhjLum030wl7NbXgoKtaH0/uJS/VrDgsgXss7MqFarsXnzZmzevHnEnxcUFAz5/tprr8W1114rZwlEpJDJ8WmobG9AdWczlk6arVgdLlFE7eBZ/+R4+XoUJg1uq6arRfEZGqWwIuf7IxoNF4UiIlmEyhm3ua8TNocdWpUa6dHjH8goyYhJgkalhmXAhtb+wM2lMBbS5Y/JcRyfQIHHoEBEspCCQl13KxwKLjktXfrIikuFWiXfnziNSu1ZSbK2U7lxCg6X03Nr5CT2KFAQMCgQkSySTXEwafVwupxoUHDdByko5ATgbgBpzIOS4zAaulvhdDlh0uqRbIpTrA6aOBgUiEgWgiBgUpzyB9Kzg2s8BOK2wdz49MF9NMq+7bE6//2F0kqWFLkYFIhINtJZfHVnkyL7H3A6PDMyTknIkH3758/QqNTllTODISUQ749oJAwKRCSb3ET3gfRMuzJBobarBU7RhRi9CUkBmD0xJSoeUTojHC6nZ8KjYJN6M6YkMihQcDAoEJFspLPclr4O9NosQd//mfZzZ9uB6JYXBAFTEqQw1CD79i+m29qHtv5uCAByBi+DEAUagwIRySZKZ0RadAKAc13kwRSMbvncwW2f6Qh+r4n0/tJjkmDU6oO+f5qYGBSISFZTEjMBBD8oiKLo2ac0liAQpniCQvCDkDSQkeMTKJgYFIhIVp4DaZC75tst3eix9UMtqAK6ouLk+DSoBAFd1l50WHoCtp+RSG3K8QkUTAwKRCSrqYM9CjWdzUG9M6BqcHxCdlwqdGpZZ6cfQq/RIivWva6FNCYiGBwup2dGRvYoUDAxKBCRrFKj4hGlNWDA5UR9EO8M8NwNEMDLDhIlLj/Ud5nhcDkRpTVwxUgKKgYFIpKVIAiervGqIF5+kPaVG4RueSXeX6X0/hLSOdESBRWDAhHJTjrjrgrSGXef3eqZNjovMSvg+5s2uI+6LjMsA7aA7w8AKtrqAQB5SdlB2R+RhEGBiGQ3Lcl9IK1sq4coigHfX2V7PUQAadEJiDVEBXx/8cZopETFQ4ToOYAHkkt0obJ9MCgkBz4IEZ2PQYGIZDc5Pg06tQa9dgsae9oCvj8lzranD+6roq0u4Puq726FZcAGvUaH7FiuGEnBxaBARLLTqNSeux/Kg3AgrWh172N6MINCsntf5a1BeH+DQWhaYqasS2cTjQU/cUQUENJBO9AH0n67FfXd7rsr8pKC1y0v9V7Ud5vRb7cGdF9KBCEiCYMCEQXE9ORJANxd864AjlOobG+ACCA1KjjjEyRxhiikRiVABFDRHrhxCi5R5PgEUhSDAhEFxKS4VOg1OvQP2Dxn/IEgXdqYrsBBVLr8UBHAXpP6bjP6OT6BFMSgQEQBoVapkCeNUwjggbSspRoAMCN5csD2MRrP5ZUAjsOQ3t/0pCyOTyBF8FNHRAEzY/DyQ5m5OiDbb+/vRlNvO1SCgEtSFAgKydI4hVZ0W/sCso8vB9tuVmpOQLZPdDEMCkQUMLNTcwEA5W31sDkGZN9+mbkGAJATnw6TAssux+hNmBznvhzwZQDCkGXA5lnDYlZKruzbJxoLBgUiCpjU6AQkmWLhdDkD0j3/ZctZAMqebc9OywUAnGg+K/u2y1vr4BJdSImKR3JUnOzbJxoLBgUiChhBEDBrsFdB7jNup8uJU621AJQNCtL7O2WuhlPm1TK/NJ917yOFlx1IOQwKRBRQc84LCnJO53y2owlWhx1ROiMmxaXJtl1f5cSnIUprgMVhx5mOJtm2K4oivmxxX1rh+ARSEoMCEQXU9KRsaFRqdFh60OWwyLbd481nAACzUiZDpeBqiipB5TmQn2w5I9t2G3va0G7phkal5kJQpCgGBSIKKJ1G67mNsMYqz7oPoiiiuLECADAvfZos2xwPadBmSWOVbL0m0vubmZIDvUYryzaJ/MGgQEQBtyAzDwBQbWmVZXsNPa1o7e+CVqX2jBFQ0py0KdCo1Gjp65BtEazipkoAwPwM5YMQTWwMCkQUcPPSp0ElqNDu6ENLb8e4t1fc6D6IzkrNDYmzbaNW7xlweKyhfNzbM/d1oqG7FSpBwNy0qePeHtF4MCgQUcBF6YyYMTg5UVFTxbi2JYoiigYPxqFw2UGyMHM6AOBYw+lxX36Q3t/0pGxE6Qzjro1oPBgUiCgoFqS7Lz8UNY4vKNR1mdHU2w6NSo256aFztj03ferg5Qd3b4C/RFHE53VlAICFmTPkKo/IbwwKRBQU+elToYKAxp62cR1Ij9R9CcDdm6DEbIyjMWh0nkGNR+tP+b2d2q4WNPW2Q6tSe3opiJTEoEBEQWHSGpBlSAAAfFpzwq9tOF1Oz0H4suyZstUmF6mmI7Un4fBz8iWpNyE/fRqMIRSEaOJiUCCioJlhSgcAfF73JexOh8+vP958Bn12C2J0RswMwdkK56ZNQYzehB67Bcebqnx+vd3pwNHBoLAke5bc5RH5hUGBiIImU5+ABEMM+gdsngF7vvioqggAsHTynJBcclmtUuPySbMBAIeqj/v8+i8aTqNvwIpEY4wiq2ESjST0/qcRUcRSCYLnQPpR1TGf7g6o7WpBZXs9VIIKV+bOC1SJ47Zs8lwIAE611vg0FkMURRw4UwQAWDllQUgGIZqY+EkkoqC6ImcudGoN6rrN+LJl7AtF/avyGABgQUYeEowxgSpv3JKj4jA/w32HxwcVn4/5dY22TjT2tkOn1uLyyXMCVR6RzxgUiCioonVGLM/JBwD8s/zImHoVGnvaUDg4iPGaaQsDWp8crpt+GQDgi/ryMU0wJYoijvW4F4BaNnlOSN3NQcSgQERBt2raImhUalR1NKJkcKpib94t+xQiRMxLn4ac+PQgVDg+k+JSMSc1FyJE/O3LQxd9fmlzFVoHeqBTa3Bd3uIgVEg0dgEJCqIoYv369XjzzTe9Pq+2tha33XYbFixYgK997Ws4ePBgIMohohATZ4jC6mmLAABvnTgAq8M+6nNLmipR0lQJlSDg32YuC1aJ4/bvs1dAJQgoaarEiebRV5W0DNjw5skDAICrpixArCEqWCUSjYnsQcHlcuGxxx7DoUPeU7QoirjrrruQnJyMN954AzfddBPuvvtuNDQ0yF0SEYWg6/IWI9EYg3ZLD14tKRjxEkSHpQevlBQAcPdCZMQkBbtMv2XEJOGqKQsAAH8p+gBd1r5hzxFFEa+WFqDL2ocYtQHXTmNvAoUeWYNCc3Mzbr31VhQUFCA2Ntbrcz/77DPU1tbif/7nfzBt2jTccccdWLBgAd544w05SyKiEKXTaPHdhV+BShBwtP6U+/LCeWGh29aHXUf+hh5bPzJjknDDjKUKVuuff5t5BTJjktBjt2Dn4b+i12bx/EwU3ZclCutPQyWosDx+OnRqjYLVEo1M1qBw4sQJZGRk4I033kBMjPdRycXFxZg9ezZMJpPnsUWLFqGoqEjOkogohE1LysKaOVcBAP5Z8TmeOfw2jjWU48CZYmw/8DLqu1sRrTPi9iVfD8uDqE6twfrF/4YYvQn13WY8uf9FfHy2GMcayrHz8F+xr7IQALBm9kqk6eMUrpZoZLL+z1u1ahVWrVo1pueazWakpqYOeSwpKQlNTU0+7dPp9G+aVG/bknObkYTt4x3bx7vR2mf55LmACLz95ccoM9egzFzj+VmyKQ4bLvs64vXRYduuScZY3LX0G/jz0Xdg7u/Ca6UfeX6mFlS4Ze7VuCzzEpR2lIbteww0/t/yzp/28eW5PgUFq9WK5ubmEX+WkpIypHfgYiwWC3Q63ZDHdDod7PbRBzWNpLS01KfnK7XNSML28Y7t491I7RMF4MbkBfiytx5tA73QCGpkGxJxiSkd9eVnUR/8MmV3fdxsnNI0os7aAYfoRJI2BrOiM2Bos6O0zd0m/Ox4x/bxLlDt41NQKC4uxrp160b82e9+9ztce+21Y96WXq9HZ2fnkMfsdjsMBt/WXs/Pz4darfbpNaNxOp0oLS2VdZuRhO3jHdvHu7G0z1VBrinYRhuqyM+Od2wf7/xpH+k1Y+FTUFi6dClOnfJ/+dTzpaWloaJi6Lr0ra2twy5HXIxarZb9gxOIbUYSto93bB/v2D6jY9t4x/bxLlDto9iES/Pnz8eJEydgtVo9jxUWFmL+/PlKlUREREQXCGpQaG9vR1+f+17iJUuWICMjA5s3b0Z5eTl27dqFkpIS3HLLLcEsiYiIiLwIalC45ZZbsHv3bgDuLpLf//73MJvNWLNmDf72t7/hd7/7HTIzM4NZEhEREXkRsBuTCwoKLvpYTk4OXnjhhUCVQEREROPERaGIiIhoVAwKRERENKrwmxN1kDQnPGdmDB62j3dsH+/YPqNj23jH9vFuPDMzjrQY24UEcSzPCkF2u52zdBEREY1Dfn7+sFmSLxS2QcHlcsHhcEClUkEQBKXLISIiChuiKMLlckGj0UCl8j4KIWyDAhEREQUeBzMSERHRqBgUiIiIaFQMCkRERDQqBgUiIiIaFYMCERERjYpBgYiIiEbFoEBERESjYlAgIiKiUTEoDLLZbHjwwQexePFirFixArt371a6pJDS3NyMe+65B0uWLMGVV16JJ554AjabTemyQs6GDRvw85//XOkyQordbsejjz6Kyy67DFdccQV+9atfjWl++YmisbERd9xxBy699FKsWrUKzz33nNIlhQS73Y4bb7wRhw8f9jxWW1uL2267DQsWLMDXvvY1HDx4UMEKlTVS+xQVFeGb3/wmFi5ciK985St47bXXZNkXg8Kgbdu24fjx49izZw8efvhhPP3003j//feVLiskiKKIe+65BxaLBS+++CJ+/etf41//+hd+85vfKF1aSHn33Xexf/9+pcsIOY899hg++eQT/PnPf8aOHTvw6quv4pVXXlG6rJBx7733wmQy4c0338SDDz6I3/zmN/jggw+ULktRNpsNP/3pT1FeXu55TBRF3HXXXUhOTsYbb7yBm266CXfffTcaGhoUrFQZI7WP2WzG7bffjiVLluCtt97CPffcgy1btuCjjz4a9/7CdvVIOfX39+O1117DH//4R8yZMwdz5sxBeXk5XnzxRdxwww1Kl6e4qqoqFBUV4dChQ0hOTgYA3HPPPdi6dSt+9rOfKVxdaOjs7MS2bduQn5+vdCkhpbOzE2+88QaeffZZzJs3DwCwfv16FBcX45vf/KbC1Smvq6sLRUVF2LJlC3Jzc5Gbm4srr7wSn376Ka677jqly1NERUUF7rvvvmG9Tp999hlqa2vx8ssvw2QyYdq0afj000/xxhtvYOPGjQpVG3yjtc+HH36I5ORk/PSnPwUA5Obm4vDhw/j73/+Oq6++elz7ZI8CgLKyMjgcDixcuNDz2KJFi1BcXAyXy6VgZaEhJSUFf/rTnzwhQdLb26tQRaFn69atuOmmm5CXl6d0KSGlsLAQ0dHRWLJkieexDRs24IknnlCwqtBhMBhgNBrx5ptvYmBgAFVVVfjiiy8wa9YspUtTzJEjR7B06dJhvU7FxcWYPXs2TCaT57FFixahqKgoyBUqa7T2kS4JX0iOv9PsUYC7yyYhIWHIUpvJycmw2Wzo7OxEYmKigtUpLzY2FldeeaXne5fLhRdeeAGXX365glWFjk8//RRHjx7F3//+dzzyyCNKlxNSamtrkZWVhbfffhs7d+7EwMAA1qxZgzvvvPOiK9ZNBHq9Hr/85S+xZcsWPP/883A6nVizZg3Wrl2rdGmK+fa3vz3i42azGampqUMeS0pKQlNTUzDKChmjtU92djays7M937e1teHdd9+VpbeFQQGAxWIZth639L3dbleipJD21FNP4eTJk3j99deVLkVxNpsNDz/8MH75y1/CYDAoXU7I6e/vR3V1NV5++WU88cQTMJvN+OUvfwmj0Yj169crXV5IqKysxDXXXIPvfe97KC8vx5YtW7Bs2TL8+7//u9KlhZTR/k7zb/RwVqsVGzduRHJyMv7zP/9z3NtjUIA71V/4YZO+5x//oZ566ins2bMHv/71rzFjxgyly1Hc008/jblz5w7pcaFzNBoNent7sWPHDmRlZQEAGhoa8NJLLzEowN0b9frrr2P//v0wGAzIz89Hc3MznnnmGQaFC+j1enR2dg55zG6382/0Bfr6+vCjH/0IZ8+exV/+8hcYjcZxb5NBAUBaWho6OjrgcDig0bibxGw2w2AwIDY2VuHqQseWLVvw0ksv4amnnsJXvvIVpcsJCe+++y5aW1s941ukgPmPf/wDx44dU7K0kJCSkgK9Xu8JCQAwZcoUNDY2KlhV6Dh+/DhycnKGHOxmz56NnTt3KlhVaEpLS0NFRcWQx1pbW4ddjpjIent78YMf/AA1NTXYs2cPcnNzZdkugwKAWbNmQaPRoKioCIsXLwbgHoSVn5/P66iDnn76abz88sv41a9+xTtBzrN37144HA7P99u3bwcA3H///UqVFFLmz58Pm82GM2fOYMqUKQDcd9GcHxwmstTUVFRXV8Nut3u61auqqoZcaya3+fPnY9euXbBarZ5gVVhYiEWLFilcWWhwuVy4++67UVdXh71792LatGmybZtHQQBGoxE333wzHnnkEZSUlODDDz/E7t27sW7dOqVLCwmVlZX4/e9/j9tvvx2LFi2C2Wz2fE10WVlZyMnJ8XxFRUUhKioKOTk5SpcWEqZOnYqrr74amzdvRllZGT7++GPs2rUL3/rWt5QuLSSsWrUKWq0W//3f/40zZ86goKAAO3fuxHe/+12lSws5S5YsQUZGBjZv3ozy8nLs2rULJSUluOWWW5QuLSS8/vrrOHz4MB577DHExsZ6/kZfeLnGH+xRGLR582Y88sgjuPXWWxEdHY2NGzfi+uuvV7qskLBv3z44nU4888wzeOaZZ4b87NSpUwpVReFi+/bt2LJlC771rW/BaDTiv/7rv3ggHBQTE4PnnnsOjz/+OG655RYkJibizjvvlGUAWqRRq9X4/e9/j4ceeghr1qxBTk4Ofve73yEzM1Pp0kLCP/7xD7hcLtxxxx1DHl+yZAn27t07rm0LIudSJSIiolHw0gMRERGNikGBiIiIRsWgQERERKNiUCAiIqJRMSgQERHRqBgUiIiIaFQMCkRERDQqBgUiIiIaFYMCERERjYpBgYiIiEbFoEBERESj+v+A0VrkTh00OwAAAABJRU5ErkJggg==" + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAhAAAAESCAYAAACsIOwfAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAPYQAAD2EBqD+naQAANgRJREFUeJzt3Ql0W9W5L/BPsi15lucptmNnIvNAJhIohJuQAGFIoTRwCWFo4ZUHFBraktASFpf2psCl5TalBNpFSwspQ19JQgiBJCShQOaJzGTwFM+OB9nyLOmtb0tHscF2NJyjc470/60lLMmytCUHn//Z+9t7G5xOp5MAAAAAfGD05cEAAAAADAECAAAAfIYAAQAAAD5DgAAAAACfIUAAAACAzxAgAAAAwGcIEAAAAOCzSAoxDoeDKioqKCEhgQwGg9rNAQAA0A1eGqq5uZlycnLIaDSGV4Dg8JCXl6d2MwAAAHSrrKyMcnNzwytAcM+D9OYTExPVbg4AAIBuWK1WcRIuHUvDKkBIwxYcHhAgAAAAfOdNCQCKKAEAAMBnCBAAAADgMwQIAAAA8FnI1UAAAEB4stvt1NXVpXYzNM9kMl10iqbqAeKzzz6jF154gfbt20eVlZX0/vvv04IFCwb8mW3bttGSJUvo6NGjohL0l7/8Jd1zzz1KNhMAAHS+dkFVVRU1Njaq3RRd4PBQWFgogoRmA4TNZqMJEybQfffdR7fccstFH19UVETz58+nH/3oR/TWW2/Rli1b6Ic//CFlZ2fTvHnzlGwqAADolBQeMjIyKDY2FosIerHYIp/U5+fnB/RZKRogrrvuOnHx1qpVq0QqevHFF8XtUaNG0eeff06/+93vVA0Qh8qLqbihzuef8/xafPgF9fVIQ5/3+tCOPl7f12fs7x/ZwG/NENh79bKR/X0+ATStz+f05f+zAX9nF3keox+lSVLbTJFRZDHHefF43/9N+fWvMEivE7T3E4S2pcXFkyUmRrH2hOKwhRQeUlNT1W6OLqSnp4sQ0d3dTVFRUaFRA7Fjxw6aM2dOr/s4ODz22GP9/kxHR4e49FwEQ25/2/MFfVVeK/vzAgB8k9FgoFnDRtCD37mKkmJi1W6O5kk1D9zzAN6Rhi44fIVMgOBuqMzMzF738W0OBW1tbRTTRypfsWIFPfPMM4q2KyUujuLN9f1+36ngazsVeQLfnlXJ9+cvp6KNGvjJVXzpi/4ojwULBqIEUyyZIr79v7jTjxfx5/P2760Eq23BeR1f34/D6aTGtjb69NRJOlFdRb+56RbKtlj8eeGwg2GL4H9WmgoQ/li2bJkouvzmMpxy+sU1Axd+AmiFtcNGqw9upmM1xRRp7KRHL7+JBidlqd0s8MHXNdX07MYPqcLaRL9Yv4ZWfu92ijOb1W4WgLbXgcjKyqLq6upe9/FtXpK6r94HZjabPctWY/lqCHeJ5ji6f+qNNCazkLoddnp9z4fU3t2pdrPAByMyMumlWxdSenw8lTU20O+2bVa7SQDaDxAzZswQMy962rRpk7gfALwTYTTS4knzKDXWQg3tLbT+xJdqNwl8lBoXR09fd6Ooh9h++hTtKDqrdpMAghsgWlpa6ODBg+IiTdPk66WlpZ7hh8WLF3sez9M3z549Sz//+c/pxIkT9Mc//pHeffdd+slPfqJkMwFCTkyUmRaOv1pc/3fRV1TZfF7tJoGPLsnIpO9NvFRcf+Xz7dRtt6vdJFDIypUrxawIObz++uvi+Kn7ALF3716aNGmSuDCuVeDry5cvF7d5HqoUJhhP4fzwww9FrwOvH8HTOf/85z9jDQgAP4xMH0zjs4aKgsENJ3ao3Rzww6Kpl1FyTCxVWpto4/GjajcHFHD69Gl64oknKDk5WdzesGGDKHLs77Jw4cIBn2/Xrl306quvBqXtBqenbDs0cBGlxWKhpqYm1ENA2OOeh99se1PMBVh61Z2Uk5imdpPAR2u+Okgv/3sbpccn0N/vulcMUcEF7e3tonebT0Cjo6NJb1588UWxavPatWvFbZ5xyMevnni65b333kv79+8Xw/x8gt0fDiCPPPIInTlzxq/PzJdjKP4lAoSw7IRUGp89TFzfXuQaSgR9uX70WEqKiaHalmb6/OxptZsDMlu7di3ddNNNnts8YYAnFEgXXvTp8ccf9yo8sNmzZ4vJB0eOHFG87QgQACFuVuFE8XXPuRPU3NGqdnPAR6bISLphzHhx/V+HDqjdHM3jTvWO7i5VLk4fO/Tr6upo586ddMMNN/T5fe55WLRoEW3evNmr8CDNTJw7dy6tW7eOlKb7dSAAYGBDUnIoz5JBZU01tKP0KM0dPlXtJoGPbhw7nt7ev4eOVVWKdSJ4qif0rdPeTT/76I+qvPYL1/1fMkd6v7Lj+vXracqUKd9aQLFnePjkk0++FR7457hXgve14PoJ3jOqp5tvvpleeeUVevLJJ0lJ6IEACHFcePWdAtcZ7O6yYz6fJYH6eDXc7wwdLq5/cuKY2s0BmXC9wvXXX99neLjrrrs84WHiRFcvIuP9K3hCwqeffkoHDhwQO16fP997lhU/5+7du0UPh5LQAwEQBibmDKf3Dm+jGlsjlTRWU0EyVqfUm2tGjqKtp06Ky/+5/EqKiohQu0maxMu3c0+AWq/ti4KCAlHM2Fd4+Pjjj8XQRc/wwDgYjBkzhgYNGiRu84aVHDTuuOMOz2P4OZOSksRFSQgQAGEgOtJEE7KH0t7yk7T73HEECB26NDefUmLjqL7VRntKimnmkKFqN0mzPW6+DCOo6eabb6Zbb71VDEUYjUYRHnhtJCk8SEsg9MTrRUjhgfH18vLyXo/h+gfuhYiMVPYQjyEMgDAxLW+U+Lq//GuyO7Aokd7w9M3ZI0aK65u/Pq52c0AGvMoyDyny2g0cIjg8rFmzht58803Kzs4WG0z2vHDA8AYHCA4nSkMPBECYGJGWRwmmGGrubKNT58+JhaZAX/5jxCX03sF9tLukmNq7uig6gK2YQX1Go1HMwOCpnHx99erV4v6+6iK4Z6WxsZFycnJ69Tjw9WnTpvUavjh58iRde+21yrdf8VcAAE0wGow0LsvV7X2osv9FZkC7hqalU1ZCInV0d9PeshK1mwMy4J4C7jGYPn266I3o78I9FLywE4cFXuOBgwNvF/HRRx/1Wq2Zn2vWrFmUkJBASkOAAAgjE9yLSh2uOkMOzMbQHT4LvXyI63f4+RksKhUKrrnmGiopKRFLWnuD6xp49cqrr75aFFjydM7U1NReAaLnwlRKwhAGQBgZnpZLMZEmsna0UnFDpVgjAvTliqHD6P8d2k87i89Sl92O2Rg6FxMTQzabzaef4YDQX0j45o7WSkIPBEAYiTRG0OjMQnH9cBW2iNaj0VnZYoMtW2cnHa7oXX0PEEwIEABhZkxGgfh6ohZj6HpkNBhoymBXAezeUvwOQT0IEABh5pL0fDJw9ba1jpraW9RuDvhhar4rBKKQEtSEAAEQZhLMsZSX5Fp7/0RtqdrNAT9MznOFwKLzdVTXghAI6kCAAAhDo9xrQByvwRmsHiVGx9Alma7VRDGMAWpBgAAIQ6MyBnt6IBxOh9rNAT9MzXf9DveUFqvdFAhTCBAAYWhwUhbFRJmptaudShtr1G4O+GGKuw5i/7lSsjsQAiH4ECAAwnRfheGpueI6L2sN+nNJRibFmkzU0tEhaiEAgg0BAiBMSQHidB0ChF5D4Lhs166Mh8rxO4TgQ4AACFPD0lwHn7P1FdidU6cmDHKFQAQIUAMCBECYyk5Io9ioaOqwd1FZU63azQE/jHcHiMOV5aiD0LGVK1dSRUWFLM/1+uuv04kTJygYECAAwnhFw2Gprl4I1EHo07C0dNRB6Nzp06fpiSeeoOTkZHF7w4YNYtO0/i4LFy4c8Pl27dpFr776alDajgABEMakAIE6CH1CHYT+rV27VuzIyZtqMd5ls7Kystfl3Llz4jG86+aTTz7p1fbgwYAAARDGpEJKVx0EusD1XAdxEAFCtwHiph47a3KQyMrK8lzS09PFlt379+8XO21OmDBhwOebPXs2VVdX05EjRxRvO7bzBghj2YlpYnvvtu5OqrDWUV5ShtpNAh+Ny3H1QByrqiCn0ym6ucMZfwbt3d2qvHZ0ZKRPn39dXR3t3LmT3nvvvT6/b7fbadGiRbR582avwgMzm800d+5c0QsxduxYUhICBECY10EMTs4WO3MWNVQiQOjQ0LR0MkVEkLW9ncqbGik3yTWWHq44PNz02suqvPa6Bx6imKgorx+/fv16mjJlCmVmuvam6Ss8fPLJJ98KD9/97ndp27Ztorfhn//8Z5/DGK+88spFhzsChSEMgDBXmJItvnKAAP2JioigERmuA9DRSnkq+SE4NmzYQNdff32f4eGuu+7yhIeJEyf2+v6jjz5Kf/vb3/p9Xn7O3bt3ix4OJaEHAiDMFSa7NmUqqkeA0KvRWdl0pLKCjldV0rxRYyic8TAC9wSo9dq+KCgooKKioj7Dw8cffyyGLr4ZHtisWbNED0R/+DmTkpLERUkIEABhjvfF4FHb+jYrNbXbyBIdp3aTwEejsly9SEerEAK5BsGXYQQ13XzzzXTrrbeSw+Ego9EowsPixYs94WHSpEl+PS/XP3AvRKSPgcZXGMIACHO8qVZ2Qqq4XoxhDF0anekKECX158nW0aF2c8BLM2bMEEWfvHYDhwgOD2vWrKE333yTsrOzqaqqqteFA4a3AYLDidLQAwEAog6iovm8qIOYkD1M7eaAj1Li4igrMZGqrFY6Xl1FU9xbfYO2GY1GuuGGG8RUTr6+evVqcX9fdRHcs9LY2EiJiYkDPicPX5w8eZKuvfZaUhp6IACACpLdhZSog9B9LwTXQYB+3Oxe+Gn69OmiN6K/C/dQXCw8MH4urpFISEhQvO0IEABAhe4AUdZUQ112debQQ2BGZ+eIr8eqESD05JprrqGSkhKxpLW35syZQ7fddpuYxZGbm0s7duzoFSB6LkylJAxhAAClxyVRnCmGbJ1tdM5a6wkUoK+ZGFIPhMPpFGt8gPbxypM2m82nn+ECy/7wtM9gQQ8EAIjx1cFJrrUEyhpr1G4O+KEwJVUsKGXr7KSKpka1mwNhAAECAIR89yqUpY3VajcF/BAZESFWpWRf1+B3CMpDgAAAIc/i7oFoQg+EXkkrUiJAQDAgQABArx6IquZ66ujuVLs5EFCAQAgE5SFAAIBgiY4Xq1A6yUnnmmrVbg74YUS6K0Ccqq0Ju+3ZeaojBPezQoAAAI989zBGKYYxdCkvOZmiI6OovbuLzjU2UDiIci9b3draqnZTdKOz09XDGBEREdDzYBonAHjkJ2XS4eqzVIZCSl2KMBppeHoGHa4sF3UQg1NcS5SHMj4I8qZRNe5hm9jYWDGrCPrGC1LV1taKzynQvTKCEiBefvlleuGFF8Ra3ryn+cqVK2natGl9Pvavf/0r3Xvvvb3uM5vN1N7eHoymAoS1PM9MDPRA6NWIDClA1NA1I0dTOMjKcu0oK4UIGBgvm52fnx9w0FI8QLzzzju0ZMkSWrVqlViq86WXXqJ58+aJtbozMlx/rL6Jl+vk70uQJgGCI8/i+n+yxtZAbV0dYqMt0GkhZW349CLxMYI3n+JjSldXl9rN0TyTySRCRKAUDxC//e1v6f777/f0KnCQ+PDDD+n111+npUuX9vuPQUqUF9PR0SEuEqvVKlPLAcJPgjmWUmISqL6tWUznHJGWp3aTwM8Acbq2hrrtdrE+RLjg4YxAx/VBI0WUXKixb98+sW635wWNRnG759rd39TS0kKDBw+mvLw8sdHI0aNH+33sihUryGKxeC78MwDgvzysSKlrOZYkijWZqNNup5KGerWbAyFM0QBRV1cn9i/PzHT9QZLwba6H6Msll1wieid4e1PeE50LPmbOnEnnzp3r8/HLli2jpqYmz6WsrEyR9wIQToWUrASFlLrEe2BI0zlPYkEpUJDmZmHMmDFDXCQcHkaNGkWvvvoqPfvss996PBdY8gUA5JHvroMot2ItCD0XUh4sL6Mzdfgdgk57INLS0sR4VHV17xTMt72tceA5vpMmTfJpq1MA8F9OYpr4WmtrpHasSKlL0p4YXAcBoMsAwZWekydP7rW9KA9J8O2evQwD4SGQw4cPiwpbAAhOISWvSskqrHVqNwcCCBBn6+rE1t4ASlB8JUqewvmnP/2J3njjDTp+/Dg9+OCDYu9zaVbG4sWLRR2D5L/+67/ok08+obNnz9L+/ftp0aJFVFJSQj/84Q+VbioAuOW6eyGwpLU+5SYli629eUVKbO0Nuq2BWLhwoVj1avny5aJwcuLEibRx40ZPYWVpaWmv+agNDQ1i2ic/Njk5WfRgfPnllzR6dHgsiAKgBYMs6XS0phh1EDpekbIwNU0UUXIdBAcKALkZnCG2AwmvA8HTOXlGBi9IBQC+O1Bxiv6yb4MoqPzplXeo3Rzww++2bqYNx47QHZOn0n2XXa52cyAEj6HYTAsAviXX4hpDr2g+H3a7OoZaHQRmYoBSECAA4FtSYy1kjoiiboddLGsN+oMAAUpDgACAPhcjGoRCSl3jGgjeRei8zUYN2OoaFIAAAQD9FlIyFFLqEy9nzctas7Pn8TsE+SFAAECfBiW6AwR6IPQ/jFGL3yHIDwECAAYspDxnraMQm6wVNlAHAUpCgACAPmUlpIpaCFtnGzW129RuDvgBAQKUhAABAH0yRURSZnyKuI46CH0amu4KEGWNDdTR3a12cyDEIEAAQL8wE0PfUmPjKCkmRuyHUXwe+5qAvBAgAKBfmImhbwaDgYZgGAMUggABAP3KSXD1QFRYz6vdFPBTYYrrd1h0Hr9DkBcCBAD0KycxVXyttTVSpx1j6HpUmOr6HRbVYwgD5IUAAQD9SjTHUWxUNDnJSdXN9Wo3B/xckZIVncd0XJAXAgQADDiGLvVCVDTjDFaPBqe4puNa29upHktag4wQIADAqzqIStRB6JI5MtKzpDX3QgDIBQECAAaU457KiR6I0BjGAJALAgQADChbGsJAD4RuoZASlIAAAQADyk5wHXysHTaxrDXotweiGFM5QUYIEAAwoOhIE6XGJorr6IXQ91oQJfXnye5wqN0cCBEIEABwUdnSglKog9ClbIuFoiMjqdNup/KmRrWbAyECAQIALkqayomZGPrE0zh5OidDISXIBQECALxf0ho9ECEwEwMhEOSBAAEAXs/E4B4I3tkR9DsTA7tyglwQIADgojLikijCGEEd9i5qaLOq3RzwQ4FnUy0ECJAHAgQAXBSHh6z4ZHEdMzH0PYRRaW2itq4utZsDIQABAgB8m4lhxRmsHiXHxlJSTCw53dM5AQKFAAEAvs3EaMbBR/crUmIYA2SAAAEAvs3EQA+EbmFPDJATAgQA+DQTo8bWQF32brWbAwGsSImpnCAHBAgA8EpSdDzFRJnFNM6alga1mwOBTOXEplogAwQIAPCKwWCgHPfGWhWog9AlXo3SQESNbW3U0GpTuzmgcwgQAOC17ETUQehZdFQUZVuSxHUMY0CgECAAwGtSD0QllrTWLQxjgFwQIADAaznuHghsqhUKK1LidwiBQYAAAK9luXsgGtpbqLWrQ+3mgB8K3btyFmMxKQgQAgQAeC02ykzJ0fHiehUKKXWpwD2EwatROrExGgQAAQIA/FoPAoWU+jTIkkSRRqPYD6OmuVnt5oCOIUAAgF97YmBJa32KjIig3CTXxmgYxoBAIEAAgE+ypbUgUEip+2GMIszEgAAgQACAfzMxmjGGrveZGMWYiQEBQIAAAJ9kxieT0WCg1q52snZgNUM9wkwM0E2AePnll6mgoICio6Np+vTptHv37gEf/95779HIkSPF48eNG0cbNmwIRjMBwAtREZGUHudazRDDGPoewihtqCe7w6F2c0CnFA8Q77zzDi1ZsoSefvpp2r9/P02YMIHmzZtHNTU1fT7+yy+/pDvuuIN+8IMf0IEDB2jBggXicuTIEaWbCgA+1kGgkFKfshItZI6MpC67nSqtTWo3B3TK4FR4EJN7HKZOnUp/+MMfxG2Hw0F5eXn0yCOP0NKlS7/1+IULF5LNZqP169d77rvsssto4sSJtGrVqou+ntVqJYvFQk1NTZSYmCjzuwEA9tHXu+ijkztpet4ounPiXApFvFBWl72LLO51L0LNQ++upq9ra2j+mFFUmOYKhKBP0/OHUVaiq1cwUL4cQyNJQZ2dnbRv3z5atmyZ5z6j0Uhz5syhHTt29PkzfD/3WPTEPRZr1qzp8/EdHR3i0vPNA4CyPLtyhvAQxh93vi+2LX/qP+6mBHMshRpzFO/LSfTh0eNqNwUCFDHLQDeMmUzBpmiAqKurI7vdTpmZmb3u59snTpzo82eqqqr6fDzf35cVK1bQM888I2OrAcDbIYyq5npyOB1kNIRWPXZrZzuVNlaL68UNVTQuawiFmnRLBMXUERnIKIpiQb/iTNGqvK6iASIYuHejZ48F90DwEAkAKCctzkJRxgjqcnRTna2JMuJdCxOFip61HXw9FANEh8NGBVkGemTGLTQ8LVft5oAOKRog0tLSKCIigqqrXUlewrezsrL6/Bm+35fHm81mcQGA4OEeh8yEVDrXVCMOsKEdIEJvsaX27k6qb7P26k0C8JWi/Y4mk4kmT55MW7Zs8dzHRZR8e8aMGX3+DN/f8/Fs06ZN/T4eAFSugwjBmRi9AkQI1nnw0BNLNMdSvDlG7eaATik+hMHDC3fffTdNmTKFpk2bRi+99JKYZXHvvfeK7y9evJgGDRokahnYo48+SldddRW9+OKLNH/+fHr77bdp79699NprryndVADwY1OtUDzAVroPsKy6pYHsDjtFGCMo1AISeh9A0wGCp2XW1tbS8uXLRSEkT8fcuHGjp1CytLRUzMyQzJw5k1avXk2//OUv6cknn6Thw4eLGRhjx45VuqkA4IMcz6ZaodXFzzPbK3vsNGp3OkSIkJbwDgUIEKCbIsqHH35YXPqybdu2b9132223iQsAaJd08Km1NVKXvVusUBkKmjtbydbVTjwvYVBiOp2z1ooDbkgFCHevURYCBAQgtOZeAUDQWKLjKDbKTA6nU5yhh9rBNS0uifKTMkNymMbTA+EehgLwBwIEAPjFYDCE5JLWPbv3pV6HUCoUtXW2eTZBy4pPUbs5oGMIEADgt2zpANujZiCUAsSFgFQXcgWiKTEJFBOFKfDgPwQIAPBbaPZA1Hu696X3d77VSh3dnRQKUEAJckGAAICA14LoOWtB9zMwehxgeY0EXivhm1M79Qz1DyAXBAgA8Jt0FtvQ3kJtXRc2tdOrhrZm0dMQYTBSRpxrd8PsEJuuKoW9rHgECAgMAgQA+C3WFE1J7u2uQ2EYo8IdEjLjkz0LR0ln6qGw8yj3sEgFoaE0LRXUgQABAPLUQYTAAVYKCVJxaK9hmhAISI3uniLefZNDEkAgECAAICAXpjrqv4tfGqaQQkPvJbtD4P25A1J6XHLILPwF6kGAAICAhNJMDKkHomf3PtcK8KqUzZ1t1NzRSnomhbwcFFCCDBAgACAgPWsEeIxdr7odds+Kmj2nOJojoyg11hISIckTkNyFoQCBQIAAgIBkxqeQgQzU2tVOVh2fode0NJDD6aCYSBMlxyT0+p7UI6H3Og9piAZTOEEOCBAAEBBTRCSlu6c86nlFSqnt3PvAy3T3JPVI6LnOg7ckr3L3sKAHAuSAAAEAAfMUGuq4i1+a3thzBkYovb8aW6MIEaaIKEqJTVS7ORACECAAIGAXpjrq9wxdmmXRV4Fhz6mqvPuoHknDL/xeeBonQKAQIAAgYKGwFoRngaU+uvd5VUpeWKrD3iVWq9QjzMAAuSFAAEDAPEWGzfWiEFFveHElKRj0tckUhwdp4SW91nlgBgbIDQECAAKWFmehKGMEdTm6xc6VeiPVNvCy3Lw8d1/0viIlZmCA3BAgACBgRoORMqWZCjo8Q5faPFD3/oUFs/T3/tq7Oz3BDj0QIBcECACQhZ7P0D0zMAY4uOp5LQjpd8Jbk/MW5QByQIAAAFnoedfKCzMw0i7aA8GrVfJ0SD2RQg924AQ5IUAAQFjvidFri+s+CiglvDqlOdJEdqdDrKmgyxkYGL4AGSFAAIAspINTra2BuuzdpMctrjMG2OKaV6fM1mmdx4VtylFACfJBgAAAWVii4ygmyiwWWuJ9JfRCCgMZXmxxrcc6D9HDIg3RoAcCZIQAAQCy4DN06QArDQnogWf4wov6AD3WeVg7bGKjM97wLDMhRe3mQAhBgAAA2ehxqqNUQNnXAlLfJJ3B6+n9SWGHNzzjjc8A5IIAAQCykTai0tMZui89ENI6EbymAtdN6AGWsAalIEAAgGz0ViPA0zF5Wqa3B9g4U4xYrVJPhZSeTbQwhRNkhgABALKRhgF4Xwk9nKFLazrw9MzkGO+2uB5kSRdfy3USIKR2DjRFFcAfCBAAIBveR8LiPkPXQy+EdHAdlJjm9RbXuYlSgKglret22KnK/XvItWSo3RwIMQgQACCrQe6hAD2coZc31fYKBd6QaiWkn9Wy6uZ6sfBVTKSJUmIS1G4OhBgECACQ1SDpDF0HB9hz7l6EQRbv6wNy3UMYXHxpdzh08v7SxTRbADkhQACArKSucungpeUFlqSQI4Ueb6TGWsgcESWGB2ps2l4wy5/3B+AtBAgAkBXXE0jrK2j5DJ2XsLZ1tYvaB2/WgJDw46X3eE7jvSzn3MNIUq8JgJwQIABAVmlxSeIMvUvjZ+hSEWRmfMpFl7DufyZGrbZ7WKQhDPRAgAIQIABAVno5Qy9v8v/s/EKdh3YLRaWptBEGI2VhCWtQAAIEAChWB6HlQspzAZydS0WXfIbPZ/pafn9ZCakUaYxQuzkQghAgAEB20gH2nLWGND+F048eiOyENLE5VUtnm9isStvvDytQgjIQIABAdrmJ7pkYTXWaPEPnrv261iZxXRpu8QVvSpUZn6zpYZoLi2Sh/gGUgQABALLjMXejwSi2keaxeK2R9rFIjo4X+1v4Q+uFlFKwQYAApSBAAIDseFaDVLinxRUpPWfnAUxvvFAoqr3319rVQfVt1oDfI8BAECAAQBHS8tDnmmpCqoBSIv1shQZ7IKT6h5SYRIqNMqvdHAhRigaI+vp6uvPOOykxMZGSkpLoBz/4AbW0tAz4M7NmzRJLrva8/OhHP1KymQCgAC3vWhlIAeU3C0VrbY3U0d1JWiINq2ABKdBtgODwcPToUdq0aROtX7+ePvvsM3rggQcu+nP3338/VVZWei7PP/+8ks0EAEV7ILR1hs5LUEs7hUobY/kj0RwnLk4NhiTpMw/k/QFcjG/Lr/ng+PHjtHHjRtqzZw9NmTJF3Ldy5Uq6/vrr6X/+538oJyen35+NjY2lrKwsr16no6NDXCRWq2vcDwC00QPBY/Gtne1iq28tqLSeFyGCu/bTYi0BPVdeUgYdrS6issYaGpLS/9+0YCttrBZf85OwhTfosAdix44dYthCCg9szpw5ZDQaadeuXQP+7FtvvUVpaWk0duxYWrZsGbW2tvb72BUrVpDFYvFc8vLyZH0fAOAfPkCnxiaK62UaqoMobXIdXPMsmQHvUJmflNnrObWAh1OqW+rF9XyLq30AugoQVVVVlJHRO/1GRkZSSkqK+F5//vM//5PefPNN2rp1qwgPf//732nRokX9Pp4f09TU5LmUlZXJ+j4AwH98kGalGgoQ3Fsg19l5vnvFzVL3c2pl+IKHVZKi4ykxOk7t5kAI83kIY+nSpfTcc89ddPjCXz1rJMaNG0fZ2dk0e/ZsOnPmDA0dOvRbjzebzeICANozOCmTDlae8nSpa6t7P/Czcx7CYDUt9dTe3UnRkSYKpfcHIGuAePzxx+mee+4Z8DFDhgwRNQw1Nb1TeXd3t5iZ4W19A5s+fbr4evr06T4DBABol6eLXyMBosveTRXuAso8d+9BILiIkhejamhvET0bw9NySW1Sb48c7w9A1gCRnp4uLhczY8YMamxspH379tHkyZPFfZ9++ik5HA5PKPDGwYMHxVfuiQAAfeFphFxlwKtRNne0UoI5VvUVKB1OB8WbYig5JkGW58xLyqSGqhZR56GFAFGGHgjQew3EqFGj6NprrxVTMnfv3k1ffPEFPfzww3T77bd7ZmCUl5fTyJEjxfcZD1M8++yzInQUFxfTunXraPHixXTllVfS+PHjlWoqACgkJspMGe49I7TQC1HSY3ZCoAWUWuxl4RUoa2yN4jp6IEDX60DwbAoOCFzDwNM3r7jiCnrttdc83+/q6qKTJ096ZlmYTCbavHkzzZ07V/wcD5fceuut9MEHHyjZTABQkHSAlQ7eairrMQNDLlIxpvTcapJW/eQVKOPN/u3xAaD6OhCMZ1ysXr263+8XFBT02qmPp2Bu375dySYBgAoBYs+5E5o4Q5dmS8jZvS+FkVpbk+rrXWD9Bwgm7IUBAIqSDtY8Nq/m1t4d3V1U1Vwv+wE2zhRNqe4FqdRe70IKSFyXAaA0BAgAUBRvOsVbezd3tqm6tTfvD+Ekp5g5YYmOl/W5pUCi9noX0jCKtD4FgJIQIABAUaaISMpOSBXX1RzGuFBAKf/ZubTio5rvz9bZRudbXUv5owcCggEBAgCCsqCU2ks+lzRU9WqLnAYnu9a2KW6oVG2Yptj9/jLikrCFNwQFAgQAKE466y9uUC9AFNVXiK+FKfKvKcNDBjxM09RuU22Ypqi+UrH3B9AXBAgAUFyB+wy9tLGK7A5H0F+fD+q8WqSBDIr0QJgioyjXvXW21BMQbEUN7gCRrJ1dQSG0IUAAgOKyElIpJtJEnbyUtLUu6K8vHdRzEtPIrNB+FQXuM3/pQB5MHMpKGqt6hTUApSFAAIDijAYDFSS7DrBnG1xDCaqcnSvYvV+YrF6AqGiuE+GMN/PisAYQDAgQABAUQ1Jyeo3Vq1If4D7IK0F6bt5Omw/mwcTFm1LvA4c1gGBAgACAoJDO/qVixmDuwCkt8axkgODNuXiNCd6sS9rQKtgBSerlAQgGBAgACAouXuSzYy5mDOZMBV4d0u50iJ1AU2MTFXsd3pxLCklngzyMUeSu8VAyIAF8EwIEAAQFFy/mJKYHvU7gwuyEbNl24OyPdAAvDuIwjbXDRudbm8S26SighGBCgACAoBniGcYI3gH27HnXkEkwDq5SgDgbxAWlpM9SzHTBAlIQRAgQABA0ngNskOogHE4nnakvF9eHpeYq/np5SRli6W5eVrqy+TwFw+nzrvc3NHVQUF4PQIIAAQBBn4nBMxXaujoUf71Kax21dnWQOSKK8iyu4RMlRRojPAs5nTp/TvHX6/k6w4MQkAB6QoAAgKDhmQrpcRaxK6bUMxCMs3MOLhHGCAqG4WmunoDTdcoHCO7pkBbmGoYeCAgyBAgACKrhqXni66kgHGCls/NhabnBf3/ny8UQipLOuOs7suJTxCwTgGBCgACAoBruPph/rXCA4IO31AMRzLPzfFEHEUWtXe1U2VwXcgEJQIIAAQBBJY3VV1hrydbZrtjrVDWfFwdxPpjzbpnBwkMlUq2H0r0sp1H/ACpCgACAoEqMjqPM+BRy9jgAKkE6eAez/uGbvSxSD4gSUP8AakOAAICgG+E+wCp5hn68tkR8vSTNVZMQTFKPAAckXtpaCSdqS0UIy0lIRf0DqAIBAgCCboT7oH7CfZBXYv8LKZyMyhhMwZZnyRA7Y/IU0rJG1z4ccjte4/rsRmUUKPL8ABeDAAEAqgQIo8FINbZGqrU1yv78PEW0y9FNluh4ylZhe+sIo5FGpueL60drihUpEJV6WNQISAAMAQIAgo6XXB7qLjQ8psAB1nN2np6v+P4X/Rnt7hlQ4v1x7UNzR6soEMUGWqAWBAgAUPcAW10ckt370muXNlaLDa/kdNwdSrhYMyoiUtbnBvAWAgQAqGJ0ZoGn0LCzu0u25+Wtwqta6slABlUKKCWW6DjKde8+eqKmVNbnPl7rer5R6Ri+APUgQACAKnj1RF7austhl3XfiCPVZ8XXwuQsijVFkxZCkpzDGLx2xln3MuCofwA1IUAAgCq4NkEaxjhc5Troy+FQ5RnxdXz2MFJbzzoInhkiV0DiIsqcxDRKj0uS5TkB/IEAAQCqmeg+yB+qPE12h0OWxZWkxanGZw0ltRUkZ4uhjPbuTrFug5wBaYIG3h+ENwQIAFDNsNRcijfFkK2rnb6uKwv4+Y5UF4mz80GJ6ZQWZyG1GQ0Gmpg9XFw/UHEq4OfrEEHEVSA6QQM9LBDeECAAQDW8XoJ0IDxQGfgBVjpIj8/Wztn5pBxXgDhcfTbgYQwOSN0Ou9gSXY31LQB6QoAAAE0cYL8Swxh2v5+Hp0pKZ+eX5owgreBhjKToeNF7IC3+5K89506Ir5NyRqi2vgWABAECAFTFG0ElmGLEss+BHGD3nTsphi8GJ2VRZnwyaYUYxnCHpH3lJ/1+Hmv7hYA0LXeUbO0D8BcCBACoipe0njzoEnF9R8lRv59nt/vsfFreSNKaqYNcbfqq6qxYQdIfHD44IBUkZ1GGhgIShC8ECABQ3YzBY8XXozVF1NjW4vPP84ZV5dZaijAYNTV8IclLyhAbbPEQjTQM4Qun00k7y46J61PR+wAagQABAKrjgsAhKTniDHtnme+9ENuLDoqvXJAZZ4ohLZrpDklflhwWgcAXPEOlsvm82PtC6q0BUBsCBABowsx81wH28+KvfJqtwLUBUm3B1UMmkVbxgd8cESV2IPV1Zcpt7oB0Wd5oio0yK9RCAN8gQACAJlw6aAQlR8eTtaPV013vjX8Xf0V2p0PUBgxOziKtio400eUF48T1j0/t9roXorqlgY5VF4nrVxZOULSNAL5AgAAATYg0RtB/DJssrm85vderKZ0tHW207ewBcf3qIZeS1nEb+X0WN1R5vf/HRyd3EkeNsZlDUDwJmoIAAQCaMSN/LCWYY6m+rZk+Kzp00cd/cmo3ddi7xK6XeliZkZe1npE/Rlxfe+xzcjgHXr6btwLfX/G1uD5/5GVBaSOAtxAgAEAzTBGRdMPIGeL6hq93DTgjgw+u290h48ZRl4v1FvRg3ohpFBNporKmGvqi5HC/j+O9Qd4+tEVcnzJopFieGyAsAsSvf/1rmjlzJsXGxlJSknc7xvGY4PLlyyk7O5tiYmJozpw5dOpU4MvbAoB+TM8bQ4OTMsXKjW/s39jnJlttXR309wOfkJOcYtqmnra1TjTH0fXukLTm6OdidkVfNpzcQeestaJocsGYK4LcSgAVA0RnZyfddttt9OCDD3r9M88//zz9/ve/p1WrVtGuXbsoLi6O5s2bR+3t7Uo1EwA0hnsS7po0T8xYOFNfTqsPbeoVIjhYvL53A1W31JMlOp5uHXsV6c13CibQyPR86nJ006pda6nO1tTr+/8uPkSbTu8V128bd7UIHQBaY3D6OiHZR3/961/pscceo8bGxgEfx83Iycmhxx9/nH7605+K+5qamigzM1M8x+233+7V61mtVrJYLOJnExMTZXkPABB8X1Weodf3fSjWhshPyqRZhRPFRlJbzuwX4SHKGEk/vvxWsXS1HvGKlP/7xT+pxtYghjSuGT6VMuKSxaZi0rTUOcOm0E2jLle7qRBGrD4cQyNJI4qKiqiqqkoMW0j4TUyfPp127NjRb4Do6OgQl55vHgD0j3fUvG/yfHrr4Cei3uFvBz72fI/3zrh/2k26DQ+Mi0UfmXkr/XnPB1TSWE3rjn/R6/vXXXIZXTt8mmrtA7gYzQQIDg+Mexx64tvS9/qyYsUKeuaZZxRvHwCoEyIGJ99FW88eoLP1lRRhMNCItDy6snAixZmiSe94VsZjl3+fdpUdo4OVp6m1s42yE1PpioLxug5HEB58ChBLly6l5557bsDHHD9+nEaODN5mNsuWLaMlS5b06oHIy8sL2usDgLK4zmHB6O9QqIowGsUy19JS1wAhGSC4PuGee+4Z8DFDhgzxqyFZWa60XV1dLWZhSPj2xIkT+/05s9ksLgAAAKDRAJGeni4uSigsLBQhYsuWLZ7AwL0JPBvDl5kcAAAAoONpnKWlpXTw4EHx1W63i+t8aWm5sDAMD3W8//774rrBYBCzNX71q1/RunXr6PDhw7R48WIxM2PBggVKNRMAAAC0VETJC0K98cYbntuTJrl2ydu6dSvNmjVLXD958qSYKiL5+c9/TjabjR544AEx7fOKK66gjRs3UnS0/oulAAAAQoni60AEG9aBAAAAUP4Yir0wAAAAwGcIEAAAAKDfhaTkIo3IYEVKAAAA30jHTm+qG0IuQDQ3N4uvWEwKAADA/2Mp10KEVRGlw+GgiooKSkhIEFND5SCtbllWVobCzD7g8xkYPp+B4fMZGD6f/uGzkf/z4UjA4YGXUDAajeHVA8FvODc3V5Hn5l8A/pH2D5/PwPD5DAyfz8Dw+fQPn428n8/Feh4kKKIEAAAAnyFAAAAAgM8QILzAm3U9/fTT2LSrH/h8BobPZ2D4fAaGz6d/+GzU/XxCrogSAAAAlIceCAAAAPAZAgQAAAD4DAECAAAAfIYAAQAAAD5DgAAAAACfIUB44eWXX6aCggKKjo6m6dOn0+7du9VukiasWLGCpk6dKpYNz8jIoAULFtDJkyfVbpYm/eY3vxFLqz/22GNqN0UzysvLadGiRZSamkoxMTE0btw42rt3r9rN0gS73U5PPfUUFRYWis9m6NCh9Oyzz3q1wVEo+uyzz+jGG28Uyyvz/0dr1qzp9X3+XJYvX07Z2dni85ozZw6dOnWKwsVnA3w+XV1d9MQTT4j/v+Li4sRjFi9eLLZ8CBQCxEW88847tGTJEjGXdv/+/TRhwgSaN28e1dTUULjbvn07PfTQQ7Rz507atGmT+Ic6d+5cstlsajdNU/bs2UOvvvoqjR8/Xu2maEZDQwNdfvnlFBUVRR999BEdO3aMXnzxRUpOTla7aZrw3HPP0SuvvEJ/+MMf6Pjx4+L2888/TytXrqRwxH9T+G8vn8z1hT+b3//+97Rq1SratWuXOFDy3+n29nYK98+ntbVVHLs4kPLXf/3rX+JE76abbgr8hXkdCOjftGnTnA899JDntt1ud+bk5DhXrFiharu0qKamhk+PnNu3b1e7KZrR3NzsHD58uHPTpk3Oq666yvnoo4+q3SRNeOKJJ5xXXHGF2s3QrPnz5zvvu+++XvfdcsstzjvvvNMZ7vhvzPvvv++57XA4nFlZWc4XXnjBc19jY6PTbDY7//GPfzjD/fPpy+7du8XjSkpKnIFAD8QAOjs7ad++faI7rOdmXXx7x44dqrZNi5qamsTXlJQUtZuiGdxDM3/+/F7/hoBo3bp1NGXKFLrtttvE8NekSZPoT3/6k9rN0oyZM2fSli1b6Ouvvxa3Dx06RJ9//jldd911ajdNc4qKiqiqqqrX/2O8GRQPN+PvdP9/q3moIykpiQIRcrtxyqmurk6MRWZmZva6n2+fOHFCtXZpdRt1Ht/nbumxY8eq3RxNePvtt0WXIQ9hQG9nz54VXfQ8PPjkk0+Kz+jHP/4xmUwmuvvuuyncLV26VGzFPHLkSIqIiBB/h37961/TnXfeqXbTNIfDA+vr77T0PbiAh3W4JuKOO+4IeAdTBAiQ7Uz7yJEj4iwJiMrKyujRRx8VtSFcfAvfDpzcA/Hf//3f4jb3QPC/Hx7DRoAgevfdd+mtt96i1atX05gxY+jgwYMioHMBHD4f8BfXqX3/+98XRacc4AOFIYwBpKWlifRfXV3d636+nZWVpVq7tObhhx+m9evX09atWyk3N1ft5mgCD31xoe2ll15KkZGR4sJFp1zoxdf5jDKccbX86NGje903atQoKi0tVa1NWvKzn/1M9ELcfvvtonr+rrvuop/85Cdi5hP0Jv0txt9p78JDSUmJOLEJtPeBIUAMgLtTJ0+eLMYie5458e0ZM2ZQuOMUy+Hh/fffp08//VRMOQOX2bNn0+HDh8WZo3ThM27ugubrHEzDGQ91fXPKL4/3Dx48WLU2aQlXznO9VU/8b4b//kBv/HeHg0LPv9M8/MOzMfB3und44KmtmzdvFlOn5YAhjIvgMVruMuQ//tOmTaOXXnpJTJm59957KdzxsAV3sa5du1asBSGNN3IBE8/FDmf8eXyzFoSnlvH/uKgRIXE2zYWCPITBf9h4bZXXXntNXIDEnH6uecjPzxdDGAcOHKDf/va3dN9991E4amlpodOnT/cqnOQgzgXb/Bnx8M6vfvUrGj58uAgUPGWRh3t4bZpw/3yys7Ppe9/7nqjH4p5i7v2U/lbz9/lE2W8BzeEIEytXrnTm5+c7TSaTmNa5c+dOtZukCfzPp6/LX/7yF7WbpkmYxtnbBx984Bw7dqyYbjdy5Ejna6+9pnaTNMNqtYp/K/x3Jzo62jlkyBDnL37xC2dHR4czHG3durXPvzV33323ZyrnU0895czMzBT/nmbPnu08efKkM1xsHeDzKSoq6vdvNf9cIAz8HzkSEAAAAIQP1EAAAACAzxAgAAAAwGcIEAAAAOAzBAgAAADwGQIEAAAA+AwBAgAAAHyGAAEAAAA+Q4AAAAAAnyFAAAAAgM8QIAAAAMBnCBAAAABAvvr/6TT5LH5JDfwAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] }, "metadata": {}, "output_type": "display_data" @@ -233,16 +249,31 @@ "cell_type": "code", "execution_count": 8, "metadata": { - "collapsed": false, "ExecuteTime": { "end_time": "2024-10-23T02:59:42.106032Z", "start_time": "2024-10-23T02:59:41.624024Z" - } + }, + "collapsed": false }, "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Using categorical units to plot a list of strings that are all parsable as floats or dates. If these strings should be plotted as numbers, cast to the appropriate data type before plotting.\n", + "Using categorical units to plot a list of strings that are all parsable as floats or dates. If these strings should be plotted as numbers, cast to the appropriate data type before plotting.\n", + "Using categorical units to plot a list of strings that are all parsable as floats or dates. If these strings should be plotted as numbers, cast to the appropriate data type before plotting.\n", + "Using categorical units to plot a list of strings that are all parsable as floats or dates. If these strings should be plotted as numbers, cast to the appropriate data type before plotting.\n", + "Using categorical units to plot a list of strings that are all parsable as floats or dates. If these strings should be plotted as numbers, cast to the appropriate data type before plotting.\n" + ] + }, { "data": { - "text/plain": "[Text(0.5, 0, 'Basis state'),\n Text(0, 0.5, 'Amplitude (imag)'),\n (-3.141592653589793, 3.141592653589793)]" + "text/plain": [ + "[Text(0.5, 0, 'Basis state'),\n", + " Text(0, 0.5, 'Amplitude (imag)'),\n", + " (-3.141592653589793, 3.141592653589793)]" + ] }, "execution_count": 8, "metadata": {}, @@ -250,8 +281,10 @@ }, { "data": { - "text/plain": "
", - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAcwAAAL0CAYAAACBGgfbAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAABWLUlEQVR4nO3de1iUdf7/8dcwCEMqykFRtMzMVAiVpLTCDp5SO4iUndPWXGsT3batDDTFQyJW9su0XGvZ1bQs81B5ytLavmaZUipGsqSVpqWYmAcQZGZ+f3QxG+HhZuZmZhyej+vyupj79HnfH2/uF5977rnH4nQ6nQIAAGcU5OsCAAA4FxCYAAAYQGACAGAAgQkAgAEEJgAABhCYAAAYQGACAGAAgQkAgAHBvi7AVxwOhyoqKhQUFCSLxeLrcgAAPuB0OuVwOBQcHKygoDOPIetsYFZUVCgvL8/XZQAA/EBCQoJCQkLOuEydDczKvyQSEhJktVp9XI157Ha78vLyAm6//Bl97n30uXcFcn9X7tvZRpdSHQ7MysuwVqs14A4AKXD3y5/R595Hn3tXIPe3kbfmuOkHAAADCEwAAAwgMAEAMIDADEBhYWG+LgFAgOG8QmB6zOF0+LqEKqxWq+Li4vzujXl/6yfAn/nb7wvnld/U2btkzRJkCdK8L1fr52OHfF2K32rWIFKDL+vr6zKAcwbnlbPzxXmFwDTBz8cO6cdfi3xdBoAAwnnF/3BJFgAAAwhMAAAMIDABADCAwAQAwAACEwAAAwhMAAAMIDABADCAwAQAwAACEwAAAwhMAAAMIDABADCAwAQAwAACEwAAAwhMAAAMIDABADCAwAQAwAACEwAAAwhMAAAMIDABADCAwAQAwAC/CsyysjJlZGQoKSlJycnJysnJOes6P/74oxITE7Vx40YvVAgAqKuCfV3A702bNk3bt2/X3LlztW/fPo0ePVqxsbHq27fvadfJzMxUSUmJF6sEANRFfhOYJSUlWrRokV555RXFx8crPj5ehYWFWrBgwWkD891339Xx48e9XCkAoC7ym0uyO3bsUEVFhRITE13TunTpoq1bt8rhcFRbvri4WM8884wmTpzozTIBAHWU3wRmUVGRIiIiFBIS4poWHR2tsrIyHT58uNryU6dO1cCBA9W2bVsvVgkAqKv85pJsaWlplbCU5HpdXl5eZfqGDRuUm5ur5cuXe9yu3W73aH2r1epxDXWFp33tryr3K1D3zx8Fep9zXjHO02OgJuv7TWCGhoZWC8bK1zabzTXtxIkTGjdunMaPH19lurvy8vLcXjcsLExxcXEe11BXFBQUqLS01Ndl1BpPjiW4JxD7nPNKzXjzvOI3gRkTE6Pi4mJVVFQoOPi3soqKimSz2RQeHu5abtu2bdqzZ49GjRpVZf0///nPSklJqfF7mgkJCfw15yXt2rXzdQm1wm63Ky8vj2PJi+hzVPL0vFJ5LBnhN4HZoUMHBQcHa8uWLUpKSpIk5ebmKiEhQUFB/3urtWPHjlqzZk2Vdfv06aPJkyfr6quvrnG7VquVXzgvCfR+5ljyPvoc3vz/95vADAsLU0pKijIzMzVlyhQdOHBAOTk5ysrKkvTbaLNhw4ay2Wxq1apVtfVjYmIUFRXl7bIBAHWE39wlK0np6emKj4/XkCFDNGHCBI0cOVJ9+vSRJCUnJ2vlypU+rhAAUFf5zQhT+m2UmZ2drezs7GrzCgoKTrvemeYBAGAGvxphAgDgrwhMAAAMIDABADCAwAQAwABTAvP666/Xs88+q/z8fDM2BwCA3zElMJ988knt3btX99xzj/r27asZM2Zo586dZmwaAAC/YMrHSm644QbdcMMNOnHihD766COtWbNGd999t2JiYnTTTTepf//+atmypRlNAQDgE6a+h2mz2XTDDTfo9ttv10033aQffvhB//73v3XTTTdp6NCh+u6778xsDgAArzElMB0OhzZs2KBx48YpOTlZjzzyiMrKyjR79mytX79e69evV0REhP7yl7+Y0RwAAF5nyiXZK6+8UuXl5bruuus0ceJEXXPNNVW+27JBgwbq3bu3tm7dakZzAAB4nSmBOXbsWPXs2VPnnXdetXmHDh1SZGSk+vbtq759+5rRHAAAXmfKJdknnnhCJ06cqDZ979696tmzpxlNAADgU26PMJctW6YlS5ZIkpxOp0aMGKF69epVWebAgQNq0qSJZxUCAOAH3A7M3r1768cff5QkffHFF+rcubPq169fZZnzzjtPvXv39qxCAAD8gNuBWb9+faWlpUmSWrRooRtvvLHKjT4AAAQSjy7J9u/fXyEhIbJYLGf8cueUlBR3mwEAwC+4HZgzZszQtddeq5CQEM2YMeO0y1ksFgITAHDOczsw161bd8qfAQAIRG4H5qZNmwwtZ7FYlJSU5G4zAAD4BbcD87777jO0nMVi0TfffONuMwAA+AW3A3PHjh1m1gEAgF9zOzD37dun5s2by2KxaN++fWdcNjY21t1mAADwC24HZo8ePfTpp58qKipKPXr0kMVikdPpdM2vfM0lWQBAIHA7MNeuXavIyEjXzwAABDK3A7NFixbVfv7uu++0c+dO1atXTxdddJHOP/98zysEAMAPmPL1Xj/99JOeeOIJbdq0SY0aNZLT6dTRo0fVo0cPPf3002rcuLEZzQAA4DOmfL3X2LFjZbVatXbtWm3cuFFffPGFVq1apeLiYo0bN86MJgAA8ClTRpibNm3SkiVLqlymvfDCCzVu3DjdeeedZjQBAIBPmTLCbNOmjf773/9Wm75nz54qIQoAwLnKo28rqdStWzeNGTNG+fn5SkhIkNVqVUFBgf7973/rT3/6kxl1AgDgUx59W8nvRUREaOXKlVW+5qthw4ZavHixHn74YfcrBADAD5jybSUAAAQ6U276kaRDhw7pu+++k8PhkCQ5nU6Vl5crPz9fw4cPN6sZAAB8wpTAfOuttzRx4kRVVFRUeUSexWJRx44dCUwAwDnPlLtkZ8+erYceekjbtm1TVFSUPvroIy1fvlwdOnRQ7969zWgCAACfMiUwDxw4oJSUFIWEhCg+Pl5btmzRxRdfrIyMDC1atMiMJgAA8ClTAjMyMlKHDh2SJF100UWubyeJiYnR/v37zWgCAACfMiUw+/Xrp9GjR+vLL79U9+7dtWTJEr3//vuaNWuWWrVqZUYTAAD4lCk3/Tz22GNq2LChiouL1bNnT916660aP368GjdurKysLDOaAADAp0wJzHr16iktLc31+m9/+5v+9re/mbFpAAD8gmmfw9y0aZMWLlzo+j7MNm3aaMiQIerQoYNZTQAA4DOmvIc5f/58DR06VCEhIbrtttt08803q6KiQrfffrtWrFhhRhMAAPiUKSPMV155RZMmTVJKSkqV6UlJSZo+fbpuvPFGM5oBAMBnTBlhHjt2TAkJCdWmJyUluT5uAgDAucyUwLz33nv1zDPP6MiRI65pZWVlmjlzpm6//XYzmgAAwKfcviTbo0cPWSwWSb89aH3fvn265pprdP755ysoKEi7d+9WWVkZN/0AAAKC24E5cuRIM+uQ9NuodMKECVqzZo1sNpuGDh2qoUOHnnLZjz/+WM8//7x2796tli1b6pFHHlHPnj1NrwkAAMmDwBw4cGC1aaWlpfrhhx/kcDh0wQUXqEGDBjXa5rRp07R9+3bNnTtX+/bt0+jRoxUbG6u+fftWWW7Hjh1KS0vTE088oWuvvVbr16/XX//6V7399ttq3769u7sEAMBpmXKX7MmTJ/XMM8/o9ddfl91ul9PpVHBwsG6++WZNmDBBISEhZ91GSUmJFi1apFdeeUXx8fGKj49XYWGhFixYUC0wly9frm7dumnw4MGSpFatWmndunVatWoVgQkAqBWm3PSTnZ2tjz76SC+//LI2bdqkL774QrNmzdLmzZv1/PPPG9rGjh07VFFRocTERNe0Ll26aOvWra4vpa40cOBAPfbYY9W2cfToUc92BACA0zBlhLl8+XK98MIL6tq1q2vatddeq9DQUD322GMaPXr0WbdRVFSkiIiIKqPR6OholZWV6fDhw4qMjHRNb9OmTZV1CwsL9dlnn+nOO++sce12u73G6/ye1Wr1aP26xNO+9leV+xWo++ePAr3POa8Y5+kxUJP1TQlMp9OpqKioatMjIyN1/PhxQ9soLS2tdum28nV5eflp1zt06JBGjhypyy67zK2bfvLy8mq8TqWwsDDFxcW5vX5dU1BQoNLSUl+XUWs8OZbgnkDsc84rNePN84opgdmtWzc9++yzevbZZ103+hw5ckTTp0+vMuo8k9DQ0GrBWPnaZrOdcp2DBw/qT3/6k5xOp2bMmKGgoJpfYU5ISOCvOS9p166dr0uoFXa7XXl5eRxLXkSfo5Kn55XKY8kIUwIzIyNDgwcPVvfu3dW6dWtJ0nfffafzzz9fL7/8sqFtxMTEqLi4WBUVFQoO/q2soqIi2Ww2hYeHV1t+//79rpt+5s2bV+WSbU1YrVZ+4bwk0PuZY8n76HN48//flMBs2LChli9frk8++US7du1SaGioWrdurauvvtrwqK9Dhw4KDg7Wli1blJSUJEnKzc1VQkJCtW2UlJRo2LBhCgoK0rx589SkSRMzdgMAgNMyJTBvuukmzZw5Uz179nT74QFhYWFKSUlRZmampkyZogMHDignJ8f1BdRFRUVq2LChbDab/vGPf2j37t167bXXXPOk3y7dNmzY0IxdAgCgClMCMygoSCdPnvR4O+np6crMzNSQIUPUoEEDjRw5Un369JEkJScnKysrS6mpqXr//fd14sQJDRo0qMr6AwcO1NSpUz2uAwCAPzIlMK+77jr96U9/0vXXX68WLVpUu9s1LS3N0HbCwsKUnZ2t7OzsavMKCgpcP69evdqzggEAqCFTArOgoEDx8fE6cOCADhw4UGVe5QPaAQA4l3kUmO+8844++OADRUdHq2fPnrrpppvMqgsAAL/i9qPx5s6dq4yMDJ04cUKlpaVKT0/X9OnTzawNAAC/4fYIc+HChXr66aeVkpIiSVqzZo3S09P1t7/9jcuwAICA4/YIc8+ePbryyitdr3v06KHS0tJq72ECABAI3A7M3z+RR5KCg4NP+Xg7AAACgSlf7wUAQKDz6C7ZVatWuR62LkkOh0MffPBBtee6Vr7PCQDAucrtwIyNjVVOTk6VaVFRUZo/f36VaRaLhcAEAJzz3A7MdevWmVkHAAB+jfcwAQAwgMAEAMAAAhMAAAMITAAADCAwAQAwgMAEAMAAAhMAAAMITAAADCAwAQAwgMAEAMAAAhMAAAMITAAADCAwAQAwgMAEAMAAAhMAAAMITAAADCAwAQAwgMAEAMAAAhMAAAMITAAADCAwAQAwgMAEAMAAAhMAAAMITAAADCAwAQAwgMAEAMAAAhMAAAMITAAADCAwAQAwgMAEAMAAAhMAAAMITAAADCAwAQAwgMAEAMAAAhMAAAP8KjDLysqUkZGhpKQkJScnKycn57TL5ufna9CgQerUqZNuvfVWbd++3YuVAgDqGr8KzGnTpmn79u2aO3euxo8fr5kzZ2r16tXVlispKdHw4cOVlJSkJUuWKDExUQ8++KBKSkp8UDUAoC7wm8AsKSnRokWLNGbMGMXHx6t3794aNmyYFixYUG3ZlStXKjQ0VE888YTatGmjMWPGqH79+qcMVwAAzOA3gbljxw5VVFQoMTHRNa1Lly7aunWrHA5HlWW3bt2qLl26yGKxSJIsFosuu+wybdmyxZslAwDqkGBfF1CpqKhIERERCgkJcU2Ljo5WWVmZDh8+rMjIyCrLXnzxxVXWj4qKUmFhoeH2nE6nJKm8vFxWq9Xtuq1Wq2LrR8nqP397+J2Y+hGy2+2y2+2+LqVWOBwO2Ww2nTx5MmD30d8Eep9zXjk7s84rletXZsKZ+E1glpaWVglLSa7X5eXlhpb943JnUjlqzc/Pd6fcKjooWh3qR3u8nUBWF0b/X3/9ta9LqHMCuc85r5ydmeeVP17JPBW/CczQ0NBqgVf52mazGVr2j8udSXBwsBISEhQUFOS6tAsAqFucTqccDoeCg88eh34TmDExMSouLlZFRYWr8KKiItlsNoWHh1db9uDBg1WmHTx4UE2bNjXcXlBQULVRKgAAp+M3F8g7dOig4ODgKkPs3Nxc1yjw9zp16qSvvvrKdc3Z6XTqyy+/VKdOnbxZMgCgDvGbwAwLC1NKSooyMzO1bds2ffjhh8rJydHgwYMl/TbaPHHihCSpb9++OnLkiJ5++ml9++23evrpp1VaWqp+/fr5chcAAAHM4jRya5CXlJaWKjMzU2vWrFGDBg30wAMP6P7775cktWvXTllZWUpNTZUkbdu2TePHj9fOnTvVrl07TZgwQXFxcT6sHgAQyPwqMAEA8Fd+c0kWAAB/RmACAGAAgQkAgAEEJgAABhCYAAAYQGACAGAAgQkAgAEEJgAABhCYAAAYQGACAGAAgQkAgAEEJgAABhCYAAAYQGACAGAAgQkAgAEEJgAABhCYAAAYQGACAGAAgQkAgAEEJgAABhCYAAAYQGACAGAAgQkAgAHBvi7AVxwOhyoqKhQUFCSLxeLrcgAAPuB0OuVwOBQcHKygoDOPIetsYFZUVCgvL8/XZQAA/EBCQoJCQkLOuEydDczKvyQSEhJktVp9XI157Ha78vLyAm6//Bl97n30uXcFcn9X7tvZRpdSHQ7MysuwVqs14A4AKXD3y5/R595Hn3tXIPe3kbfmuOkHAAADCEwAAAwgMAEAMIDABACcVVhYmK9L8DkCEwD8jN3h8HUJVVitVsXFxfndDT/e7qc6e5csAPgra1CQsj5Ypd2HDvm6FL91QWSk0nv382qbBCYA+KHdhw7p24NFvi4Dv8MlWQAADCAwAQAwgMAEAMAAAhMAAAMITAAADCAwAxAfMAYA8xGYHuIDxsb4Wz8BQE3xOUwP8QHjs/PFB4wBwGwEpgn4gDEABD4uyQIAYACBCQCAAQQmAAAGEJgAABhAYAIAYACBCQCAAQQmAAAGEJgAABhAYAIAYACBCQCAAQQmAAAGEJgAABhAYAIAYACBCQCAAQQmAAAG+E1gDh8+XE8++aTrdX5+vgYNGqROnTrp1ltv1fbt26ssv3z5cvXq1UudOnXSiBEjdIgvcAYA1CK/CMwVK1boP//5j+t1SUmJhg8frqSkJC1ZskSJiYl68MEHVVJSIknatm2bxowZo7S0NL355ps6cuSI0tPTfVU+AKAO8HlgHj58WNOmTVNCQoJr2sqVKxUaGqonnnhCbdq00ZgxY1S/fn2tXr1akjR//nz169dPKSkpat++vaZNm6b//Oc/2rNnj692AwAQ4HwemNnZ2RowYIAuvvhi17StW7eqS5cuslgskiSLxaLLLrtMW7Zscc1PSkpyLd+8eXPFxsZq69atXq0dAFB3BPuy8c8++0ybN2/We++9p8zMTNf0oqKiKgEqSVFRUSosLJQkHThwQE2bNq02/+eff65xDXa7veaF/47VavVo/brE0772V5X7Faj7548Cvc85rxjn6TFQk/V9FphlZWUaP368xo0bJ5vNVmVeaWmpQkJCqkwLCQlReXm5JOnEiRNnnF8TeXl5NV6nUlhYmOLi4txev64pKChQaWmpr8uoNZ4cS3BPIPY555Wa8eZ5xWeBOXPmTF166aXq3r17tXmhoaHVwq+8vNwVrKebHxYWVuM6EhIS+GvOS9q1a+frEmqF3W5XXl4ex5IX0eeo5Ol5pfJYMsJngblixQodPHhQiYmJkuQKwPfff1833XSTDh48WGX5gwcPui7DxsTEnHJ+kyZNalyH1WrlF85LAr2fOZa8jz6HN///fRaYr732mioqKlyvn332WUnSY489pk2bNumVV16R0+mUxWKR0+nUl19+qYceekiS1KlTJ+Xm5io1NVWS9NNPP+mnn35Sp06dvL8jAIA6wWeB2aJFiyqv69evL0lq1aqVoqKi9Nxzz+npp5/WnXfeqYULF6q0tFT9+vWTJN11112677771LlzZyUkJOjpp5/Wddddp/PPP9/r+wEAqBt8/rGSU2nQoIH+8Y9/uEaRW7du1Zw5c3TeeedJkhITEzVx4kTNmjVLd911lxo1aqSsrCwfVw0ACGQ+/VjJ702dOrXK644dO2rp0qWnXT41NdV1SRYAgNrmlyNMAAD8DYEJAIABBCYAAAYQmAAAGEBgAgBgAIEJAIABBCYAAAYQmAAAGEBgAgBgAIEJAIABBCYAAAYQmAAAGGB6YB46dMjsTQIA4HNuBWaHDh1OGYx79+5Vz549PS4KAAB/Y/jrvZYtW6YlS5ZIkpxOp0aMGKF69epVWebAgQNq0qSJuRUCAOAHDAdm79699eOPP0qSvvjiC3Xu3Fn169evssx5552n3r17m1shAAB+wHBg1q9fX2lpaZKkFi1aqH///goNDa21wgAA8CeGA/P3Bg4cqB9++EHbt2/XyZMnq81PSUnxtC4AAPyKW4H56quv6tlnn1WjRo2qXZa1WCwEJgAg4LgVmDk5OXr88cf1wAMPmF0PAAB+ya2PlZSVlalPnz5m1wIAgN9yKzBvvvlmvf7663I6nWbXAwCAX3LrkuyxY8f09ttva/ny5WrZsmW1z2POmzfPlOIAAPAXbgXmhRdeqIceesjsWgAA8FtuBWbl5zEBAKgr3ArM9PT0M87PyspyqxgAAPyVKd9WUlFRoe+++04rV65UZGSkGZsEAMCvuDXCPN0I8tVXX9V///tfjwoCAMAfmfp9mH379tUHH3xg5iYBAPALpgVmSUmJ3nrrLUVERJi1SQAA/IZbl2Tbt28vi8VSbXpoaKgmT57scVEAAPgbtwLzjw8msFgsqlevni6++GI1aNDAlMIAAPAnbgXmFVdcIUn6/vvvtXPnTjkcDrVu3ZqwBAAELLcC88iRI0pPT9fatWvVqFEj2e12HT9+XJdffrlmzZqlhg0bml0nAAA+5dZNP5MnT9bPP/+slStXauPGjdq8ebPee+89lZSU8NACAEBAcisw161bp8zMTF100UWuaRdffLHGjRuntWvXmlYcAAD+wq3ADA0NVVBQ9VUtFovsdrvHRQEA4G/cCswePXpowoQJ2r17t2va999/r8mTJ+vaa681rTgAAPyFWzf9PP744xoxYoRuuOEGhYeHS5J+/fVXXXPNNXrqqadMLRAAAH9Q48D84YcfFBsbq9dee00FBQXauXOnQkNDdeGFF6pNmza1USMAAD5n+JKs0+nU5MmT1a9fP3311VeSpHbt2ql///5avHixbrrpJk2dOlVOp7PWigUAwFcMB+a8efO0cuVKzZo1y/XggkovvfSSZs2apaVLl+qNN94wvUgAAHzNcGC+9dZbeuqpp3T99defcn6PHj302GOPEZgAgIBkODD37t2rjh07nnGZbt26ac+ePYYb379/v0aNGqUrrrhC3bt3V1ZWlsrKyiRJe/bs0f3336/OnTurf//+Wr9+fZV1N2zYoJtuukmdOnXS4MGDa9QuAAA1ZTgwo6KitHfv3jMu8/PPP6tx48aGtud0OjVq1CiVlpZqwYIFev755/XRRx/p//2//yen06kRI0YoOjpaixcv1oABA5SWlqZ9+/ZJkvbt26cRI0YoNTVVb7/9tiIjI/Xwww/z/ikAoNYYDszevXvrxRdf1MmTJ085v6KiQjNnzlRycrKh7e3atUtbtmxRVlaW2rZtq6SkJI0aNUrLly/X559/rj179mjixIlq06aNHnzwQXXu3FmLFy+WJC1atEiXXnqphg4dqrZt2yorK0t79+7VF198YXR3AACoEcOB+fDDD2v//v1KTU3VW2+9pfz8fO3Zs0fbt2/Xm2++qYEDB2rPnj0aOXKkoe01adJEr776qqKjo6tMP3bsmLZu3aq4uDidd955ruldunTRli1bJElbt25VUlKSa15YWJji4+Nd8wEAMJvhz2GGh4frrbfe0rPPPqupU6eqtLRU0m+XVhs2bKj+/ftr5MiR1QLwTNvr3r2767XD4dD8+fPVrVs3FRUVqWnTplWWj4qK0s8//yxJZ50PAIDZavTggsaNG2vy5MkaN26c9uzZoyNHjqhx48a64IILZLVaPSrkmWeeUX5+vt5++239+9//VkhISJX5ISEhKi8vlySVlpaecX5NePrsW0/3uy4J1OcMV+5XoO6fPwr0Pue8Ypynx0BN1nfr0XghISGmPtXnmWee0dy5c/X888/rkksuUWhoqA4fPlxlmfLyctlsNkm/Pfz9j+FYXl7uekxfTeTl5bldd1hYmOLi4txev64pKChwXZkIRJ4cS3BPIPY555Wa8eZ5xa3ANNOkSZP0xhtv6JlnntENN9wgSYqJidG3335bZbmDBw+6LsPGxMTo4MGD1eZ36NChxu0nJCTw15yXtGvXztcl1Aq73a68vDyOJS+iz1HJ0/NK5bFkhE8Dc+bMmVq4cKGmT5+uvn37uqZ36tRJc+bM0YkTJ1yjytzcXHXp0sU1Pzc317V8aWmp8vPzlZaWVuMarFYrv3BeEuj9zLHkffQ5vPn/79bXe5lh586deumll/TnP/9ZXbp0UVFRkevfFVdcoebNmys9PV2FhYWaM2eOtm3bpttuu02SdOutt+rLL7/UnDlzVFhYqPT0dLVs2VJdu3b11e4AAAKczwJz7dq1stvtevnll5WcnFzln9Vq1UsvvaSioiKlpqbq3Xff1axZsxQbGytJatmypV588UUtXrxYt912mw4fPqxZs2bJYrH4ancAAAHOZ5dkhw8fruHDh592fqtWrTR//vzTzr/22mv5smoAgNf4bIQJAMC5hMAEAMAAAhMAAAMITAAADCAwAQAwgMAEAMAAAhMAAAMITAAADCAwAQAwgMAEAMAAAhMAAAMITAAADCAwAQAwgMAEAMAAAhMAAAMITAAADCAwAQAwgMAEAMAAAhMAAAMITAAADCAwAQAwgMAEAMAAAhMAAAMITAAADCAwAQAwgMAEAMAAAhMAAAMITAAADCAwAQAwgMAEAMAAAhMAAAMITAAADCAwAQAwgMAEAMAAAhMAAAMITAAADCAwAQAwgMAEAMAAAhMAAAMITAAADCAwAQAwgMAEAMAAAhMAAAMITAAADDinA7OsrEwZGRlKSkpScnKycnJyfF0SACBABfu6AE9MmzZN27dv19y5c7Vv3z6NHj1asbGx6tu3r69LAwAEmHM2MEtKSrRo0SK98sorio+PV3x8vAoLC7VgwQICEwBgunP2kuyOHTtUUVGhxMRE17QuXbpo69atcjgcPqwMABCIztkRZlFRkSIiIhQSEuKaFh0drbKyMh0+fFiRkZFnXN/pdEqSysvLZbVa3a7DarWqdWSU6lnO2b89al3LiAjZ7XbZ7XZfl1IrHA6HbDabTp48GbD76G8Cvc85r5ydWeeVyvUrM+FMztnALC0trRKWklyvy8vLz7p+5Sg0Pz/f41p6RjaRIpt4vJ1AtmXLFl+XUOu+/vprX5dQ5wRyn3NeOTszzytGrkyes4EZGhpaLRgrX9tstrOuHxwcrISEBAUFBclisdRKjQAA/+Z0OuVwOBQcfPY4PGcDMyYmRsXFxaqoqHDtaFFRkWw2m8LDw8+6flBQULURKgAAp3POXiDv0KGDgoODqwzJc3NzXaNGAADMdM4mS1hYmFJSUpSZmalt27bpww8/VE5OjgYPHuzr0gAAAcjiNHJrkJ8qLS1VZmam1qxZowYNGuiBBx7Q/fff7+uyAAAB6JwOTAAAvOWcvSQLAIA3EZgAABhAYAIAYACBCQCAAQQmAAAGEJgAABhAYAIAYACBCQCAAQQmAAAGEJgAABhAYAIAYACBCQCAAQQmAAAGEJgAABhAYAIAYACBCQCAAQQmAAAGEJgAABhAYAIAYACBCQCAAQQmAAAGEJgAABgQ7OsCfMXhcKiiokJBQUGyWCy+LgcA4ANOp1MOh0PBwcEKCjrzGLLOBmZFRYXy8vJ8XQYAwA8kJCQoJCTkjMvU2cCs/EsiISFBVqvVx9WYx263Ky8vL+D2y5/R595Hn3tXIPd35b6dbXQp1eHArLwMa7VaA+4AkAJ3v/wZfe599Ll3BXJ/G3lrjpt+AAAwgMAEAMAAAhMAAAMIzAAUFhbm6xIABBjOKwSmx+wOh69LqMJqtSouLs7v3pj3t34C/Jm//b5wXvlNnb1L1izWoCD9/Y0V+vbAL74uxW9d3DRKz911o6/LAM4ZnFfOzhfnFQLTBN8e+EX5+w74ugwAAYTziv/hkiwAAAYQmAAAGEBgAgBgAIEJAIABBCYAAAYQmAAAGEBgAgBgAIEJAIABBCYAAAYQmAAAGEBgAgBgAIEJAIABBCYAAAYQmAAAGOBXgVlWVqaMjAwlJSUpOTlZOTk5p122oKBAd911lzp27Kibb75Zn3/+uRcrBQDUNX4VmNOmTdP27ds1d+5cjR8/XjNnztTq1aurLXf06FENHTpUF198sd577z317t1baWlp+uUXvmwVAFA7/CYwS0pKtGjRIo0ZM0bx8fHq3bu3hg0bpgULFlRbdunSpTrvvPOUmZmpVq1aadSoUWrVqpW2b9/ug8oBAHVBsK8LqLRjxw5VVFQoMTHRNa1Lly6aPXu2HA6HgoL+l+1ffPGFevbsKavV6pq2ePFir9YLAKhbPA7MY8eOadOmTfr666916NAhBQUFKTo6WnFxceratatCQ0MNbaeoqEgREREKCQlxTYuOjlZZWZkOHz6syMhI1/Q9e/aoY8eOeuqpp7Ru3Tq1aNFCo0ePVpcuXWpcv91ur/E6v/f70MaZedrX/qpyvwJ1//xRoPc55xXjPD0GarK+24H5ww8/aM6cOVqxYoUaNWqkiy++WI0bN5bD4dC3336refPmqaSkRDfffLOGDh2q1q1bn3F7paWlVcJSkut1eXl5leklJSWaM2eOBg8erFdeeUUrVqzQAw88oFWrVql58+Y12o+8vLwaLf97YWFhiouLc3v9uqagoEClpaW+LqPWeHIswT2B2OecV2rGm+cVtwLz+eef1wcffKCBAwdq8eLFatOmzSmX27Vrl1auXKkHH3xQffv21aOPPnrabYaGhlYLxsrXNputynSr1aoOHTpo1KhRkqS4uDh9+umneuedd/TQQw/VaF8SEhL4a85L2rVr5+sSaoXdbldeXh7HkhfR56jk6Xml8lgywq3AbNmypd57772zHqgXXXSR0tLS9NBDD531PcaYmBgVFxeroqJCwcG/lVVUVCSbzabw8PAqyzZp0kQXXXRRlWkXXnihfvrppxrvi9Vq5RfOSwK9nzmWvI8+hzf//926S3bQoEE1KjI4OFh33HHHGZfp0KGDgoODtWXLFte03NxcJSQkVLnhR5I6d+6sgoKCKtN27dqlFi1aGK4JAICacGuEOXPmTMPLpqWlGVouLCxMKSkpyszM1JQpU3TgwAHl5OQoKytL0m+jzYYNG8pms+nOO+/U/Pnz9eKLL+qWW27RsmXLtGfPHg0YMMCd3QEA4KzcCsyNGzcaWs5isdRou+np6crMzNSQIUPUoEEDjRw5Un369JEkJScnKysrS6mpqWrRooVeffVVPf3005ozZ47atGmjOXPmKCYmpsb7AgCAEW4F5muvvWZ2HZJ+G2VmZ2crOzu72rw/XoLt0qWLlixZUit1AADwR6Y8uOCbb75RYWGhHA6HJMnpdKq8vFz5+fmaMGGCGU0AAOBTHgfmzJkzNXPmTEVHR+uXX35RTEyMDh48KLvdrt69e5tRIwAAPufxs2TffPNNTZgwQevXr1fz5s312muvacOGDbrqqqt0wQUXmFEjAAA+53FgFhcXq3v37pJ++2jIV199pfDwcP3tb3/TypUrPS4QAAB/4HFgxsTEaM+ePZKkNm3aKD8/X5LUoEEDHTp0yNPNAwDgFzx+D3PQoEF69NFHNWXKFPXq1Uv333+/mjZtqg0bNqh9+/Zm1AgAgM95HJgPPfSQmjVrprCwMHXs2FHp6elauHChGjdurClTpphRIwAAPmfKx0pSUlJcPw8aNEiDBg0yY7MAAPgNj9/DlKR3331XqampSkpK0p49ezRlyhTNmTPHjE0DAOAXPA7M119/XdOmTVNqaqpOnjwpSYqPj9c///nPGj1zFgAAf+ZxYL722muaPHmy7r33Xte3igwYMEDTpk3TokWLPC4QAAB/4HFg7tu375RfIH3++efr8OHDnm4eAAC/4HFgdurUScuWLasyzel0KicnRx07dvR08wAA+AWP75IdO3ashg8fro8//ljl5eWaMGGCvv/+e504cUKvvPKKGTUCAOBzHgfmJZdcovfff1/vvfeedu7cKbvdrp49e+qWW25R/fr1zagRAACf8zgwU1NTlZWVpdtuu82MegAA8Esev4d54MABWa1WM2oBAMBveTzCTElJ0bBhw3TLLbeoRYsWCg0NrTYfAIBznceBuXLlSgUFBWn58uXV5lksFgITABAQPA7MdevWmVEHAAB+za33MF944QUdO3bM8PJHjhzR888/705TAAD4BbcCs3nz5howYIAyMzO1fv161zNkf6+0tFQbNmxQRkaGbrnlFjVv3tzjYgEA8BW3Lsnefvvt6tOnjxYsWKCMjAwdOnRILVu2VEREhBwOhw4fPqwff/xRTZo00W233aalS5cqIiLC7NoBAPAat9/DbNy4sUaMGKGHH35YBQUFys/P16FDh2SxWBQVFaW4uDhdcsklZtYKAIDPeHzTj8ViUfv27dW+fXsz6gEAwC+Z8gXSAAAEOgITAAADCEwAAAwwNTB//fVXORwOOZ1OMzcLAIDPeRyYTqdTL7/8srp27aorr7xSe/fu1eOPP65x48apvLy8RtsqKytTRkaGkpKSlJycrJycnLOu8+OPPyoxMVEbN250dxcAADgrjwNz1qxZevfddzV16lSFhIRIkgYOHKhPP/1U06ZNq9G2pk2bpu3bt2vu3LkaP368Zs6cqdWrV59xnczMTJWUlLhdPwAARngcmEuXLtXEiRN1/fXXy2KxSJKuvvpqZWdna9WqVYa3U1JSokWLFmnMmDGKj49X7969NWzYMC1YsOC067z77rs6fvy4p7sAAMBZeRyYv/zyi5o2bVptenh4eI1Gfjt27FBFRYUSExNd07p06aKtW7fK4XBUW764uFjPPPOMJk6c6F7hAADUgMcPLujWrZv++c9/VgmuY8eOafr06eratavh7RQVFSkiIsJ1WVeSoqOjVVZWpsOHDysyMrLK8lOnTtXAgQPVtm1bj+q32+0erc+XZxvnaV/7q8r9CtT980eB3uecV4zz9BioyfoeB2ZmZqbS0tJ09dVXq6ysTA8//LD27dun2NhYvfzyy4a3U1paWiUsJble//HmoQ0bNig3N/eU38FZU3l5eW6vGxYWpri4OI9rqCsKCgpUWlrq6zJqjSfHEtwTiH3OeaVmvHle8TgwmzVrprffflufffaZdu3apYqKCrVu3VrJyckKCjJ+xTc0NLRaMFa+ttlsrmknTpzQuHHjNH78+CrT3ZWQkMBfc17Srl07X5dQK+x2u/Ly8jiWvIg+RyVPzyuVx5IRHgdmpSuvvFJXXnml2+vHxMSouLhYFRUVCg7+rayioiLZbDaFh4e7ltu2bZv27NmjUaNGVVn/z3/+s1JSUmr8nqbVauUXzksCvZ85lryPPoc3///dCsz27du77og9m2+++cbQch06dFBwcLC2bNmipKQkSVJubq4SEhKqjFQ7duyoNWvWVFm3T58+mjx5sq6++mqDewAAQM24FZjz5s1z/ZyXl6d//etfevjhh5WQkKB69eopPz9fM2fO1ODBgw1vMywsTCkpKcrMzNSUKVN04MAB5eTkKCsrS9Jvo82GDRvKZrOpVatW1daPiYlRVFSUO7sDAMBZuRWYV1xxhevncePGKTs7u8rorn379mrRooXS09N1//33G95uenq6MjMzNWTIEDVo0EAjR45Unz59JEnJycnKyspSamqqOyUDAOARj9/DPHDgwClHdmFhYTpy5EiNthUWFqbs7GxlZ2dXm1dQUHDa9c40DwAAM3j84ILrrrtOGRkZ+vLLL1VSUqLjx4/r888/V0ZGhvr162dGjQAA+JzHI8yJEydq/Pjxuu+++1xP5LFarUpJSdHYsWM9LhAAAH/gcWA2aNBAzz33nCZMmKDvvvtOktS6dWs1aNDA4+IAAPAXHgfmpk2bqk37/UdJLr/8ck+bAADA5zwOzPvuu++U00NCQtSkSROtXbvW0yYAAPA5jwNzx44dVV7b7Xbt3r1bkyZN0s033+zp5gEA8Ase3yX7R1arVa1bt9aTTz6pF154wezNAwDgE6YHZqVffvmlxp/DBADAX3l8STY9Pb3atOPHj2vDhg3q27evp5sHAMAvmPZtJb/XuHFjjR49WgMGDKiNzQMA4HUeB2Zqaqo6d+6sevXqVZleXl6uTz75RL169fK0CQAAfM7j9zAHDx6so0ePVpteWFioRx991NPNAwDgF9waYb7++uuaOHGiLBaLnE7nab+H8qqrrvKoOAAA/IVbgXn33Xerbdu2cjgcGjJkiGbMmKFGjRq55lssFoWFhemSSy4xrVAAAHzJ7fcwKx95t3btWsXGxspisZhWFAAA/satwExPT9eYMWPUoEEDzZw584zLZmVluVUYAAD+pNYeXAAAQCBxa4T5+1EjI0gAQF3gVmCe7TLs76WlpbnTBAAAfsWtwNy4caOh5bgRCAAQKNwKzNdee83sOgAA8GumPEt2w4YNevPNN7Vr1y5ZLBa1a9dO99xzjzp37mzG5gEA8DmP75JdtGiRhg8frrCwMN1xxx269dZbJf32yLw1a9Z4XCAAAP7A4xHmyy+/rAkTJriCstLll1+u5557Tn369PG0CQAAfM7jEebhw4fVqVOnatOTkpJ04MABTzcPAIBf8Dgw77nnHmVnZ6u4uNg1rbS0VLNnz9bdd9/t6eYBAPALHl+Szc3N1bZt23TdddfpggsuUL169fTDDz/o+PHjio2N1erVq13Lrl271tPmAADwCY8Dc9CgQRo0aJAZtQAA4Lc8DsyBAweaUYckqaysTBMmTNCaNWtks9k0dOhQDR069JTLfvzxx3r++ee1e/dutWzZUo888oh69uxpWi0AAPyex4G5c+dOTZ8+Xbt27VJ5eXm1+TW5DDtt2jRt375dc+fO1b59+zR69GjFxsaqb9++VZbbsWOH0tLS9MQTT+jaa6/V+vXr9de//lVvv/222rdv7+kuAQBQjceB+fe//102m02DBw+WzWZzezslJSVatGiRXnnlFcXHxys+Pl6FhYVasGBBtcBcvny5unXrpsGDB0uSWrVqpXXr1mnVqlUEJgCgVngcmN9//70WL16sNm3aeLSdHTt2qKKiQomJia5pXbp00ezZs+VwOBQU9L8begcOHKiTJ09W28bRo0c9qgEAgNPxODCvueYa5ebmehyYRUVFioiIUEhIiGtadHS0ysrKdPjwYUVGRrqm/7GtwsJCffbZZ7rzzjtr3K7dbne/aElWq9Wj9esST/vaX1XuV6Dunz8K9D7nvGKcp8dATdb3ODCffPJJDRw4UO+9955atGhR7RtKjH5fZmlpaZWwlOR6far3RisdOnRII0eO1GWXXebWTT95eXk1XqdSWFiY4uLi3F6/rikoKFBpaamvy6g1nhxLcE8g9jnnlZrx5nnF48B86qmnFBQUpOjoaI++zis0NLRaMFa+Pt17owcPHtSf/vQnOZ1OzZgxo8plW6MSEhL4a85L2rVr5+sSaoXdbldeXh7HkhfR56jk6Xml8lgywuPA3Lx5s9544w2P/yKKiYlRcXGxKioqFBz8W1lFRUWy2WwKDw+vtvz+/ftdN/3MmzevyiXbmrBarfzCeUmg9zPHkvfR5/Dm/7/Hj8Zr27atjhw54nEhHTp0UHBwsLZs2eKalpubq4SEhGojx5KSEg0bNkxBQUGaP3++YmJiPG4fAIAz8XiEedddd+mJJ55QamqqWrZs6RodVkpJSTG0nbCwMKWkpCgzM1NTpkzRgQMHlJOT43oPtKioSA0bNpTNZtM//vEP7d692/VF1kVFRZJ+u3TbsGFDT3cJAIBqPA7MWbNmKTg4WO+++261eQcOHDAcmJKUnp6uzMxMDRkyRA0aNNDIkSNdXw+WnJysrKwspaam6v3339eJEyeqPZJv4MCBmjp1qkf7AwDAqXgcmOvWravyuqysTB988IGWLl2q/fv312hbYWFhys7OVnZ2drV5BQUFrp9//0B3AAC8wePArJSbm6tly5Zp9erVOnbsmNq0aaOMjAyzNg8AgE95FJh79+7VsmXL9M4772jPnj0KDw/XsWPH9Nxzz6l///5m1QgAgM+5FZiLFy/WsmXLtHnzZjVt2lQ9evRQnz59dPnll6tTp0665JJLzK4TAACfciswx4wZo1atWik7O1u33HKL2TUBAOB33Poc5pQpU9SyZUulp6fryiuvVHp6utauXauysjKz6wMAwC+4NcJMTU1VamqqDh06pFWrVmnlypVKS0uTzWaTw+HQxo0b1apVK9WrV8/segEA8AmPnvQTGRmpe+65RwsWLNBHH32kESNGqEOHDpo0aZK6d+9u+MHrAAD4O48fjVepWbNmGjZsmJYsWaLVq1fr3nvv1f/93/+ZtXkAAHzKtMD8vQsvvFBpaWlauXJlbWweAACvq5XABAAg0BCYAAAYQGACAGAAgQkAgAEEJgAABhCYAAAYQGACAGAAgQkAgAEEJgAABhCYAAAYQGACAGAAgQkAgAEEJgAABhCYAAAYQGACAGAAgQkAgAEEJgAABhCYAAAYQGACAGAAgQkAgAF+FZhlZWXKyMhQUlKSkpOTlZOTc9pl8/PzNWjQIHXq1Em33nqrtm/f7sVKAQB1jV8F5rRp07R9+3bNnTtX48eP18yZM7V69epqy5WUlGj48OFKSkrSkiVLlJiYqAcffFAlJSU+qBoAUBf4TWCWlJRo0aJFGjNmjOLj49W7d28NGzZMCxYsqLbsypUrFRoaqieeeEJt2rTRmDFjVL9+/VOGKwAAZvCbwNyxY4cqKiqUmJjomtalSxdt3bpVDoejyrJbt25Vly5dZLFYJEkWi0WXXXaZtmzZ4s2SAQB1SLCvC6hUVFSkiIgIhYSEuKZFR0errKxMhw8fVmRkZJVlL7744irrR0VFqbCw0HB7TqdTklReXi6r1ep23VarVe2bRSvE6jd/e/idi5pEym63y263+7qUWuFwOGSz2XTy5MmA3Ud/E+h9znnl7Mw6r1SuX5kJZ+I3gVlaWlolLCW5XpeXlxta9o/LnUnlqDU/P9+dcqu4/eIY6eIYj7cTyOrC6P/rr7/2dQl1TiD3OeeVszPzvPLHK5mn4jeBGRoaWi3wKl/bbDZDy/5xuTMJDg5WQkKCgoKCXJd2AQB1i9PplMPhUHDw2ePQbwIzJiZGxcXFqqiocBVeVFQkm82m8PDwassePHiwyrSDBw+qadOmhtsLCgqqNkoFAOB0/OYCeYcOHRQcHFxliJ2bm+saBf5ep06d9NVXX7muOTudTn355Zfq1KmTN0sGANQhfhOYYWFhSklJUWZmprZt26YPP/xQOTk5Gjx4sKTfRpsnTpyQJPXt21dHjhzR008/rW+//VZPP/20SktL1a9fP1/uAgAggFmcRm4N8pLS0lJlZmZqzZo1atCggR544AHdf//9kqR27dopKytLqampkqRt27Zp/Pjx2rlzp9q1a6cJEyYoLi7Oh9UDAAKZXwUmAAD+ym8uyQIA4M8ITAAADCAwAQAwgMAEAMAAAhMAAAMITAAADCAwAQAwgMAEAMAAAhMAAAMITAAADCAwAQAwgMAEAMAAAhMAAAMITAAADCAwAQAwgMAEAMAAAhMAAAMITAAADCAwAQAwgMAEAMAAAhMAAAMITAAADAj2dQG+4nA4VFFRoaCgIFksFl+XAwDwAafTKYfDoeDgYAUFnXkMWWcDs6KiQnl5eb4uAwDgBxISEhQSEnLGZepsYFb+JZGQkCCr1erjasxjt9uVl5cXcPvlz+hz76PPvSuQ+7ty3842upTqcGBWXoa1Wq0BdwBIgbtf/ow+9z763LsCub+NvDXHTT8AABhAYAIAYACBCQCAAQQmAAAGEJgAABhAYAIAYACBCQCAAQQmAAAGEJgAABhAYAIAYACBCQCAAQQmAAAGEJgAABhAYAIAYACBCQCAAQQmAAAGEJgAABhAYAIAYACBCQCAAedsYO7fv1+jRo3SFVdcoe7duysrK0tlZWW+LgsAEKCCfV2AO5xOp0aNGqXw8HAtWLBAv/76qzIyMhQUFKTRo0f7ujwAQAAyPTD/+9//Kj8/X7/88ouCgoIUHR2tuLg4tWnTxrQ2du3apS1btujTTz9VdHS0JGnUqFHKzs4mMAEAtcKUwPz111+1YMECvfnmmzp48KBatmypiIgIORwOFRcXa+/evWrWrJluv/123XXXXWrUqJFH7TVp0kSvvvqqKywrHTt2zKPtAgBwOh4H5qJFi/SPf/xD3bt316RJk9StWzeFhIRUWeb48eP66quvtGLFCg0YMEB/+ctfdMcdd7jdZnh4uLp37+567XA4NH/+fHXr1q3G27Lb7W7X4Y8q9yfQ9suf0efeR597VyD3d032yePA/PHHH7V06VI1bNjwtMvUr19fycnJSk5OVnFxsf71r3952mwVzzzzjPLz8/X222/XeN28vDxTa/EXgbpf/ow+9z763Lvqen9bnE6n09dFeOKZZ57Rv/71Lz3//PO64YYbDK9nt9u1ZcsWJSQkyGq11mKF3mW325WXlxdw++XP6HPvo8+9K5D7u3LfOnfufNZ9M/Wmn5kzZ55yusViUb169dS0aVN1795dUVFRprQ3adIkvfHGG3rmmWdqFJa/Z7VaA+4AkAJ3v/wZfe599Ll31fX+NjUwv/vuO61cuVLNmjXTpZdeKqfTqW+++Ub79u1T586ddfToUU2ePFmvvvqqOnfu7FFbM2fO1MKFCzV9+nT17dvXnB0AAOA0TP9YyW233abMzEzXXyEOh0NPP/20SkpKlJWVpdmzZ2vq1KlauHCh223s3LlTL730koYPH64uXbqoqKjINa9JkyYe7wMAAH9k6pN+1q1bp6FDh1YZsgcFBenee+/V6tWrJUk33nijduzY4VE7a9euld1u18svv+y6majyHwAAtcHUEWZ0dLQ2b96s1q1bV5mem5urxo0bS5IOHjyoBg0aeNTO8OHDNXz4cI+2AQBATZgamCNHjtSYMWOUm5urhIQEOZ1Off3111qxYoXGjRun7777TqNHj9aNN95oZrMAANQ6UwPzlltuUWxsrN544w0tXLhQVqtVF198sebNm6fOnTtr27Ztuvfee3XPPfeY2SwAALXO9Jt+kpKSlJSUdMp5HTt2VMeOHc1uEgCAWmdqYJaWlurNN9/Ut99+W+VxQ+Xl5crPz9eqVavMbA4AAK8x9S7ZsWPHas6cOSotLdW7776rkydP6ttvv9WKFSt43xIAcE4zdYT5ySef6IUXXtBVV12lwsJC3X///br00ks1depUFRYWmtkUAABeZeoIs6ysTBdeeKEkqW3bttq+fbsk6Y477tDmzZvNbAoAAK8yNTDbtGmjDRs2SPotMHNzcyVJR48eVVlZmZlNAQDgVaZekk1LS9Nf//pXORwODRgwQDfeeKMeeughFRQUVPn+SgAAzjWmBmbPnj21atUqORwONW/eXK+//rreeecdXXbZZbrvvvvMbAoAAK8y/XOY559/vuvn9u3bq3379mY3AQCA15kamJs3b9bkyZO1a9cunTx5str8b775xszmAADwGlMDc8yYMWrbtq0effRR2Ww2MzcNAIBPmRqYBw4c0OzZs6t9WwkAAOc6Uz9WcvPNN2vFihVmbhIAAL9g6ghz2LBhuu2227RkyRK1aNFCFoulyvx58+aZ2RwAAF5jamA+9thjioyMVK9evXgPEwAQUEwNzIKCAi1ZskRt2rQxc7MAAPicqe9hdunSRTt37jRzkwAA+AVTR5jJycnKyMjQmjVrdP7558tqtVaZn5aWZmZzAAB4jamB+dFHH6lDhw7av3+/9u/fX2XeH28AAgDgXGJqYL722mtmbg4AAL/hcWAuW7ZM/fv3V0hIiJYtW3bGZVNSUjxtDgAAn/A4MGfMmKFrr71WISEhmjFjxmmXs1gsBCYA4JzlcWCuW7fulD8DABBIPP5YyQsvvKBjx44ZXv7IkSN6/vnnPW0WAACv8jgwmzVrpgEDBigzM1Pr168/5dd6lZaWasOGDcrIyNAtt9yi5s2be9osAABe5fEl2TvuuEM33HCDFixYoIyMDB06dEgtW7ZURESEHA6HDh8+rB9//FFNmjTRbbfdpqVLlyoiIsKM2gEA8BpTPlbSuHFjjRgxQg8//LAKCgqUn5+vQ4cOyWKxKCoqSnFxcbrkkkvMaAoAAJ8w9XOYFotF7du3V/v27c3cLAAAPmfqs2QBAAhUBCYAAAYQmAAAGFBrgfnrr7/K4XDI6XTWVhMAAHiNqYHpdDr18ssvq2vXrrryyiu1d+9ePf744xo3bpzKy8vNbAoAAK8yNTBnzZqld999V1OnTlVISIgkaeDAgfr00081bdo0M5sCAMCrTA3MpUuXauLEibr++utd33959dVXKzs7W6tWrTKzKUlSWVmZMjIylJSUpOTkZOXk5JjeBgAAksmfw/zll1/UtGnTatPDw8NVUlJiZlOSpGnTpmn79u2aO3eu9u3bp9GjRys2NlZ9+/Y1vS0AQN1m6gizW7du+uc//1ll2rFjxzR9+nR17drVzKZUUlKiRYsWacyYMYqPj1fv3r01bNgwLViwwNR2AACQTA7MzMxM5efn6+qrr1ZZWZkefvhhXXvttdq7d6/Gjh1rZlPasWOHKioqlJiY6JrWpUsXbd26VQ6Hw9S2AAAw9ZJss2bN9Pbbb+uzzz7Trl27VFFRodatWys5OVlBQeZ+gqWoqEgRERGum4skKTo6WmVlZTp8+LAiIyMNbcdut5tal685HA6FhYXxR4MX0efeR597VyD3d00ywNTArHTllVfqyiuvrI1Nu5SWllYJS0mu1zX5CEteXp5HdTRv3lyxsbEebcNMVqtVcXFxvi6jmn379umnn34yZVv0uTH0ufeZ1ef0tzFmHuNGeByY7du3d90RezbffPONp825hIaGVgvGytc2m83wdhISEmS1Wj2qxZ9GqQ6HQ4WFhWrbtq3po3pPxMTEKCYmxrTt0ednR597n5l9Tn+fnRn9bbfbDQ+cPA7MefPmuX7Oy8vTv/71Lz388MNKSEhQvXr1lJ+fr5kzZ2rw4MGeNlVFTEyMiouLVVFRoeDg33ajqKhINptN4eHhhrdjtVo9Dkx/U1paqqCgoIDbL39Gn3sffe5d9LcJgXnFFVe4fh43bpyys7N19dVXu6a1b99eLVq0UHp6uu6//35Pm3Pp0KGDgoODtWXLFiUlJUmScnNzlZCQ4Fd/AQEAAoOpyXLgwAFFRUVVmx4WFqYjR46Y2ZTCwsKUkpKizMxMbdu2TR9++KFycnJMH8kCACCZHJjXXXedMjIy9OWXX6qkpETHjx/X559/royMDPXr18/MpiRJ6enpio+P15AhQzRhwgSNHDlSffr0Mb0dAABMvUt24sSJGj9+vO677z7X7cdWq1UpKSmmfw5T+m2UmZ2drezsbNO3DQDA75kamA0aNNBzzz2nCRMm6LvvvpMktW7dWg0aNDCzGQAAvM7UwNy0aVO1ab//KMnll19uZnMAAHiNqYF53333nXJ6SEiImjRporVr15rZHAAAXmNqYO7YsaPKa7vdrt27d2vSpEm6+eabzWwKAACvqtUPLFqtVrVu3VpPPvmkXnjhhdpsCgCAWuWVT/j/8ssvpn8OEwAAbzL1kmx6enq1acePH9eGDRv4UmcAwDmtVr6t5PcaN26s0aNHa8CAAbXdFAAAtcbUwExNTVXnzp1Vr169KtPLy8v1ySefqFevXmY2BwCA15j6HubgwYN19OjRatMLCwv16KOPmtkUAABe5fEI8/XXX9fEiRNlsVjkdDqrfFPJ71111VWeNgUAgM94HJh333232rZtK4fDoSFDhmjGjBlq1KiRa77FYlFYWJguueQST5sCAMBnTHkPs/KRd2vXrlVsbKwsFosZmwUAwG94HJjp6ekaM2aMGjRooJkzZ55x2aysLE+bAwDAJ7zy4AIAAM51Ho8wfz9qZAQJAAhUHgfm2S7D/l5aWpqnzQEA4BMeB+bGjRsNLceNQACAc5nHgfnaa6+ZUQcAAH7N9GfJbtiwQW+++aZ27doli8Widu3a6Z577lHnzp3NbgoAAK8x9S7ZRYsWafjw4QoLC9Mdd9yhW2+9VdJvj8xbs2aNmU0BAOBVpo4wX375ZU2YMMEVlJUuv/xyPffcc+rTp4+ZzQEA4DWmjjAPHz6sTp06VZuelJSkAwcOmNkUAABeZWpg3nPPPcrOzlZxcbFrWmlpqWbPnq27777bzKYAAPAqUy/J5ubmatu2bbruuut0wQUXqF69evrhhx90/PhxxcbGavXq1a5l165da2bTAADUKlMDc9CgQRo0aJCZmwQAwC+YGpgDBw40c3MAAPgNUwNz586dmj59unbt2qXy8vJq87kMCwA4V5kamH//+99ls9k0ePBg2Ww2MzcNAIBPmRqY33//vRYvXqw2bdqYuVkAAHzO1I+VXHPNNcrNzTVzkwAA+AVTR5hPPvmkBg4cqPfee08tWrSo9g0lfF8mAOBcZeoI86mnnlJQUJCio6P5Oi8AQEAxdYS5efNmvfHGG4qLizNzswAA+JypI8y2bdvqyJEjZm4SAAC/YOoI86677tITTzyh1NRUtWzZUsHBVTefkpJiZnMAAHiNqYE5a9YsBQcH6913360278CBA6YG5pEjR5Sdna2PPvpIDodD1113nTIyMhQeHm5aGwAAVDI1MNetW1fldVlZmT744AMtXbpU+/fvN7MpjR8/Xrt379acOXNksViUmZmpsWPHasaMGaa2AwCAZHJgVsrNzdWyZcu0evVqHTt2TG3atFFGRoZp2y8pKdH777+vN954Q5deeqkkKSMjQ/fcc4/KysoUGhpqWlsAAEgmBubevXu1bNkyvfPOO9qzZ4/Cw8N17NgxPffcc+rfv79ZzUiSgoKCNHv2bHXo0KHKdLvdruPHjxOYAADTeRyYixcv1rJly7R582Y1bdpUPXr0UJ8+fXT55ZerU6dOuuSSS8yoswqbzaZrrrmmyrR58+apXbt2ioyMrNG27Ha7maX5XOX+BNp++TP63Pvoc+8K5P6uyT55HJhjxoxRq1atlJ2drVtuucXTzbmcOHHitO97NmnSROedd57r9fz587Vq1Sq9+uqrNW4nLy/P7Rr9WaDulz+jz72PPveuut7fHgfmlClTtGLFCqWnpysrK0vXXXedevXqpeTkZI+2u3XrVg0ePPiU82bNmqVevXpJkhYsWKDJkycrPT3drTYTEhJktVo9qtWf2O125eXlBdx++TP63Pvoc+8K5P6u3DcjPA7M1NRUpaam6tChQ1q1apVWrlyptLQ02Ww2ORwObdy4Ua1atVK9evVqtN2uXbuqoKDgjMv885//1LRp0/TEE09oyJAhbtVvtVoD7gCQAne//Bl97n30uXfV9f427Uk/kZGRuueee7RgwQJ99NFHGjFihDp06KBJkyape/fupj94fenSpZo2bZrS09P1wAMPmLptAAD+yNRH41Vq1qyZhg0bpiVLlmj16tW699579X//93+mbf/w4cOaOHGiBg4cqBtvvFFFRUWuf4H4pjQAwPdq5XOYv3fhhRcqLS1NaWlppm3z008/VUlJiZYuXaqlS5dWmbd27Vq1bNnStLYAAJC8EJi14cYbb9SNN97o6zIAAHVIrVySBQAg0BCYAAAYQGACAGAAgQkAgAEEJgAABhCYAAAYQGACAGAAgQkAgAEEJgAABhCYAAAYQGACAGAAgQkAgAEEJgAABhCYAAAYQGACAGAAgQkAgAEEJgAABhCYAAAYQGACAGAAgQkAgAHBvi7AV5xOpyTJbrf7uBJzVe5PoO2XP6PPvY8+965A7u/KfarMhDOxOI0sFYDKy8uVl5fn6zIAAH4gISFBISEhZ1ymzgamw+FQRUWFgoKCZLFYfF0OAMAHnE6nHA6HgoODFRR05ncp62xgAgBQE9z0AwCAAQQmAAAGEJgAABhAYAIAYACBCQCAAQQmAAAGEJgAABhAYJ7DysrKlJGRoaSkJCUnJysnJ8c1b8+ePbr//vvVuXNn9e/fX+vXr/dhpYHjTH1e6YcfflDHjh19UF3gKi8v10033aSNGze6pnGM175T9btUd49xAvMcNm3aNG3fvl1z587V+PHjNXPmTK1evVpOp1MjRoxQdHS0Fi9erAEDBigtLU379u3zdcnnvNP1eaWffvpJDz74oMrKynxYZWApKyvTo48+qsLCQtc0jvHad6p+l+r2MV5nH75+rispKdGiRYv0yiuvKD4+XvHx8SosLNSCBQvUqFEj7dmzRwsXLtR5552nNm3a6LPPPtPixYs1cuRIX5d+zjpTn/ft21cffvihnnrqKTVp0sTXpQaMb7/9Vn//+9+rPRj7888/5xivRafr97p+jDPCPEft2LFDFRUVSkxMdE3r0qWLtm7dqq1btyouLk7nnXdelXlbtmzxQaWB40x97nA49PHHH+uvf/2rxowZ48MqA8sXX3yhrl276s0336wynWO8dp2u3+v6Mc4I8xxVVFSkiIiIKk/Xj46OVllZmX766Sc1bdq0yvJRUVH6+eefvV1mQDlTnx8+fFiTJ0+WpGrv98B9d9999ymnFxUVcYzXotP1e10/xhlhnqNKS0urfRVN5euTJ0+ecl55ebnX6gtEZ+pz+ta7Tvd/wf8DahOBeY4KDQ2tdnKofF2vXr1TzrPZbF6rLxCdqc/pW+863f8F/w+oTQTmOSomJkbFxcWqqKhwTSsqKpLNZlPz5s118ODBKssfPHiw2iUs1MyZ+jw8PNyHldU9MTExHOPwOgLzHNWhQwcFBwdXuckhNzdXCQkJ6tSpk77++mudOHGiyrxOnTr5oNLAcaY+P9sXz8JcHOPwBX7Lz1FhYWFKSUlRZmamtm3bpg8//FA5OTkaPHiwrrjiCjVv3lzp6ekqLCzUnDlztG3bNt12222+LvucdqY+h3dxjMMXCMxzWHp6uuLj4zVkyBBNmDBBI0eOVJ8+fWS1WvXSSy+pqKhIqampevfddzVr1izFxsb6uuRz3un6HN7FMQ5fsDj/+MlUAABQDSNMAAAMIDABADCAwAQAwAACEwAAAwhMAAAMIDABADCAwAQAwAACE/CRdu3aVfnXrVs3jR07VsePH/d42xs3blS7du1MqPJ/nE6nFixYYHj5X375RatWrTK1BsCXCEzAh1588UWtX79en3zyiWbPnq1t27Zp2rRpHm83MTFR69evN6HC/9m0aZMmTpxoePlnn31W//nPf0ytAfAlAhPwoUaNGqlJkyaKiYlR586d9eCDD5oyKgsJCVGTJk1MqPB/avpQMB4ihkBDYAJ+JCwsrMrr/fv3a9SoUbr88st16aWXauDAgcrNzXXNnzdvnq6//nolJCQoNTVVmzdvllT9kuzplvujkydPauzYseratasSExP10EMPaf/+/frxxx9dD5lv166dNm7cqPLycmVlZal79+6Kj49Xjx499Oabb0r6beS8dOlSLV26VD169JAkHTlyRI8//rguu+wyJScna9KkSVW+bQTwdwQm4CcOHTqk1157Tbfccotr2mOPPSa73a6FCxdq2bJliomJUWZmpiQpPz9f06ZN0/jx47Vq1SolJSXpkUcekcPhqLJdo8tJ0oIFC7Rp0ybl5OTo7bff1vHjxzVlyhQ1b95cL774oiRp/fr1SkxM1Jw5c/Txxx/rxRdf1OrVq5WSkqJJkybp4MGDGjp0qPr166d+/frp7bffliSNGTNGR48e1RtvvKGXXnpJeXl5NbrEC/hasK8LAOqyP//5z7JarXI6nSotLVXjxo1dgeh0OtWrVy/dcMMNatasmSTpnnvu0fDhwyVJe/fulcViUWxsrFq2bKlHHnlE119/fbUgPNNyf/wezx9//FGhoaFq0aKFGjdurKlTp+rw4cOyWq1q1KiRJLku9bZv317dunVT586dJUkPPfSQZs2ape+//15JSUmy2WySpMjISO3evVsffvihvvjiCzVs2FCSNGnSJKWkpCg9Pd01DfBnBCbgQ5MnT1anTp3kdDpVXFys+fPn66677tJ7772nqKgo3XXXXVq5cqW+/PJLfffdd9q+fbsrEJOTk3XJJZfo5ptvVlxcnHr27KlBgwYpOLjqr7XR5STpjjvu0IoVK5ScnKwrrrhCvXr1Umpq6ilr79Wrlz799FNNnTpVu3btUn5+viTJbrdXW3bnzp1yOBy65pprqkx3OBz64YcfdOmll7rVf4A3EZiAD8XExKhVq1aSpAsvvFDx8fHq2rWrVq1apbvvvltDhw7VkSNH1L9/f/Xo0UMnT55UWlqapN/e71y0aJG++OILffTRR1qyZIneeOMNLVmypEobZ1ouJiamyrJt27bVunXr9PHHH+vjjz/W9OnTtXz58lN+nOT555/XokWLlJqaqpSUFI0fP971fuUf2e12NWzYUIsXLz5lHwDnAgIT8CNBQUFyOp2y2+369ttvtWnTJn322WeKjIyUJFdwOZ1ObdmyRZ9//rn+8pe/qFu3bvr73/+uq666Srm5uYqKinJt86uvvjrtcv3796/S/rJlyxQSEqL+/furX79+2rJli+644w798ssvslgsVZZduHChMjMz1a9fP0nSt99+66pNkiwWi+vn1q1b6+jRo7JYLLrgggskSQUFBZoxY4aysrJcl28Bf0ZgAj7066+/qqioSJJ0/Phx5eTkyG63q0ePHqpXr56CgoK0YsUK9ejRQ3l5ea4bb8rLy2Wz2TRr1ixFR0fryiuv1KZNm1RSUqJ27drp4MGDrjbOtNwfHT16VLNnz1ZERIRatmyp9957T82aNVNERITrDt7t27erbdu2aty4sT766CNdeuml2r9/v6ZMmeKqTfptZFtYWKj9+/erTZs26t69ux577DGNHTtWVqtVTz31lBo1aqTw8PBa7WPALBYnH5YCfOKPgRUWFqZLL71UaWlp6tatmyTpzTff1KxZs3T06FG1bt1aQ4cO1ejRozV//nwlJibqnXfe0UsvvaR9+/YpNjZWo0aN0o033qiNGzdq8ODBKigokKTTLvdHDodDzz33nN555x39+uuvuvTSS/XUU08pLi5O5eXleuihh/TFF19o+vTpioqKUmZmpn744QfFxMRo0KBB+uCDD9SrVy89+OCD2rp1q0aMGKGTJ0/q888/V3FxsSZPnqyPP/5YwcHB6t69u8aOHauIiIja72zABAQmAAAG8DlMAAAMIDABADCAwAQAwAACEwAAAwhMAAAMIDABADCAwAQAwAACEwAAAwhMAAAMIDABADCAwAQAwAACEwAAA/4/fN2TNiveNgQAAAAASUVORK5CYII=" + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAc8AAAL0CAYAAABqLbzYAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAPYQAAD2EBqD+naQAASh1JREFUeJzt3Ql8jWf+//9PEpKgCUUlQkq1FEMpqa2LlhStYXQbY5RUjW9/aqu0/aJjKaajpVSVVqllNsvolOlitKpUjag2KKpUWypjX0rUkpCc/+Nzzf+cbyIRuZw7Ocl9Xs/H456cc5/7nPvKqfF27SEej8cjAACg0EILfykAAFCEJwAAlghPAAAsEZ4AAFgiPAEAsER4AgBgifAEAMAS4QkAgKUytm9wo+zsbDlw4IBERUVJSEhIoIsDAAgAXTPo9OnTEhcXJ6GhBdctCU8RE5zx8fGBLgYAoARIS0uTmjVrFngN4SliapzeLyw6OjrQxQEABEB6erqpSHkzoSCEp4ivqVaDk/AEgOAWUojuOwYMAQBgifAEAMAS4QkAgCXCEwAASwwYctDg914NdBFKhWldhgS6CECpwd8rJfPvFWqeAABYIjwBALBEeAIAYInwBADAEuEJAIAlwhMAAEuEJwAAlghPAAAsEZ4AAFgiPAEAsER4AgBgifAEAMAS4QkAgCXCEwAAS4QnAACWCE8AACwRngAAWCI8AQCwRHgCAGCJ8AQAwBLhCQCAJcITAABLhCcAAG4IzxkzZkjt2rUlMjJSWrZsKRs3bizU+xYtWiQhISHSrVu3Ii8jACB4lbjwXLx4sSQnJ8uYMWNk06ZN0qRJE+nYsaMcOXKkwPft3btXnnnmGbnzzjuLrawAgOBU4sJzypQp0q9fP+nTp480bNhQZs6cKeXLl5e5c+de9j1ZWVnSs2dPGTt2rNSpU6dYywsACD4lKjwzMzMlNTVVEhMTfedCQ0PN85SUlMu+b9y4cVKtWjXp27dvMZUUABDMykgJcuzYMVOLjImJyXVen+/cuTPf96xbt07mzJkjW7ZsKfR9MjIyzOGVnp7uR6kBAMGmRNU8bZ0+fVp69eols2fPlqpVqxb6fRMmTJCKFSv6jvj4+CItJwDAXUpUzVMDMCwsTA4fPpzrvD6PjY3Nc/33339vBgp16dLFdy47O9v8LFOmjOzatUtuvPHGPO8bMWKEGZSUs+ZJgAIASmV4hoeHS/PmzWXVqlW+6SYahvp84MCBea6vX7++bNu2Lde5kSNHmhrpq6++etlAjIiIMAcAAKU+PJXWCJOSkiQhIUFatGghU6dOlTNnzpjRt6p3795So0YN0/Sq80AbNWqU6/2VKlUyPy89DwCAa8Oze/fucvToURk9erQcOnRImjZtKitWrPANItq3b58ZgQsAQKkPz9WrV8s999zjyGdpE21+zbRqzZo1Bb53/vz5jpQBAIDLcawK16lTJzM45w9/+IOkpaU59bEAALg3PPfv329qi2+//bZZ5UeX1Pv73/9uFj4AAMBNQp2cZjJ06FCzWMHnn38u9erVkyeffFLi4uJk8ODB8tVXXzl1KwAAAqpIRt40a9bMzKXUmujPP/9s1qXVKSi6aPvXX39dFLcEAKB0hueFCxdMs+39998vtWrVkg8//FCmT59uFjn47rvvzLlHHnnEyVsCAFB6R9sOGjRIFi5cKB6PxyyZN3HixFxzLStUqCAvv/yyacYFAKA0cyw8d+zYIa+99po8+OCDl129R/tFdUoLAAClmWPNtrp5tTbJXhqcFy9elLVr1/rWm23btq1TtwQAoHSHpy6QcOLEiTznT5065djiCQAAuCo8ta8zJCQkz/njx4+b/k4AANzC7z5P7eNUGpyPPfZYrmZb3dh669at0qZNG39vAwCAe8JTN5P21jyjoqKkXLlyubYYa9WqlfTr18/f2wAA4J7wnDdvnvlZu3ZteeaZZ2iiBQC4XhknR9sCABAMyvi7DN+qVavk2muvlVtvvTXfAUNemzZt8udWAAC4Izx/9atf+QYIdevWzakyAQDg3vDM2VRLsy0AIFgUya4qAAC4mV81T+3rLKifM6f8Vh8CACDownPq1KnOlQQAgGAIz6SkJOdKAgBAMIRnenq6REdH+x4XxHsdAAAS7H2eBw8elGrVqkmlSpXy7f/0Lhiv69wCACDBHp6ffPKJVK5c2Txmk2sAQLDwKzxzbmzNJtcAgGDh2Nq26qeffpI5c+bIN998Y543bNhQ+vTp46udAgDgBo4tkrB27Vqzs8q0adNMiOqhj2+44QbzGgAAbuFYzXPAgAHSvXt3eeONNyQsLMyc00FCTz75pHlt27ZtTt0KAAB31Dy/++47efrpp33BqfRxcnKyeQ0AALdwLDx1ezJvX2dOeq5JkyZO3QYAgNLdbLt161bf48GDB8uQIUNMLbNVq1bm3IYNG2TGjBny4osv+l9SAADcEJ5NmzY1CyDoQghe//u//5vnut/+9remPxQAAAn28NyzZ49zJQEAIBjCs1atWs6VBACAYFwkQe3YsUP27dsnmZmZuc537drV6VsBAFC6w/OHH36QBx54wMznzNkP6l0snoXhAQBu4dhUFR1pq6sJHTlyRMqXLy9ff/21WVkoISFB1qxZ49RtAABwT80zJSXF7LJStWpVCQ0NNccdd9whEyZMMNNYNm/e7NStAABwR81Tm2WjoqLMYw3QAwcO+AYV7dq1y6nbAADgnppno0aN5KuvvjJNty1btpSJEydKeHi4zJo1S+rUqePUbQAAcE94jhw5Us6cOWMejxs3Tn75y1/KnXfeKVWqVJHFixc7dRsAANwTnh07dvQ9vummm2Tnzp1y4sQJufbaa30jbgEAcAPH53mqtLQ08zM+Pr4oPh4AAHcMGLp48aKMGjVKKlasaDbF1kMfa3PuhQsXnLoNAADuqXkOGjRI3nnnHTNQqHXr1r7pK88//7wcP37cbJINAIAbOBaeCxYskEWLFsl9993nO3fLLbeYptsePXoQngAA13Cs2TYiIsI01V5Kp67olBUAANzCsfAcOHCgjB8/XjIyMnzn9PELL7xgXrOhG2hrEEdGRpo5oxs3brzstbNnzzZTYnRUrx6JiYkFXg8AQECbbR988MFczz/++GOpWbOmNGnSxDzXRRN0d5X27dsX+jN1TmhycrLMnDnTBOfUqVPNNBhdpahatWp5rtd1c7VZuE2bNiZsX3rpJenQoYNZW7dGjRr+/HoAADgfnjqaNqeHHnoo1/OrmaoyZcoU6devn/Tp08c81xD94IMPZO7cuTJ8+PA81//tb3/L9fytt96Sf/zjH7Jq1Srp3bu39f0BACjS8Jw3b544SWupqampMmLECN85XWBem2J15G5hnD171kyNqVy58mWv0ebknM3L6enpfpYcABBMHOvz9Dp69KisW7fOHPrYxrFjx8wC8zExMbnO6/NDhw4V6jOGDRsmcXFxJnAvR3d60Vqz92AxBwBAQMJT17V9/PHHpXr16nLXXXeZQ0Osb9++pjZYHF588UUzXWbp0qWm//NytGZ76tQp3+FdEQkAgGINTx3k8+mnn8p7770nJ0+eNMc///lPc+7pp58u1GfoVmZhYWFy+PDhXOf1eWxsbIHvffnll014fvTRR2Z+6ZWm1URHR+c6AAAo9vDUQTpz5swxiyR4A+n+++83U0nefvvtQn2Gzgdt3ry5GezjlZ2dbZ57Vy3Kj65qpNNkVqxYIQkJCY78PgAAFPkKQ9o0e2lfpdLpJTbNtlqDTUpKMiHYokULM1VFm4S9o291BK1OQdF+S6VTU0aPHm1WONK5od6+0WuuucYcAACU2Jqn1gzHjBkj58+f9507d+6cjB07tsBa46W6d+9ummA1EJs2bSpbtmwxNUpvMO/bt08OHjzou16X/dNRug8//LDpb/Ue+hkAAJTomqfWEDt16pRnkQQduPPhhx9afZauSHS5VYl0UYSc9u7d60epAQAIYHg2btxYdu/ebRYt0I2wla7807NnTylXrpxTtwEAwB3hqYsS1K9fX95//32zOhAAAG7mSJ9n2bJlc/V1AgDgZo4NGBowYIAZ+Xrx4kWnPhIAAHf3eX7xxRdmPqYuUqD9nxUqVMj1+jvvvOPUrQAAcEd4VqpUKc+uKgAAuJHf4akrAE2aNEm+/fZbM9+yXbt28vzzzzPCFgDgWn73eb7wwgvy3HPPmdV8dOWfadOmmf5PAADcyu/w/POf/yyvv/66WQhh2bJlZmF4neupNVIAANzI7/DU5fJ0AXgv3UczJCREDhw44O9HAwDgzvDUqSmX7p2p8z514QQAANzI7wFDHo9HHnvsMbNHppcumPD//t//yzVdhakqAAC38Ds8dfuwSz366KP+fiwAAO4Nz3nz5jlTEgAAgm15PgAAggXhCQCAJcITAABLhCcAAJYITwAALBGeAABYIjwBALBEeAIAYInwBADAEuEJAIAlwhMAAEuEJwAAlghPAAAsEZ4AAFgiPAEAsER4AgBgifAEAMAS4QkAgCXCEwAAS4QnAACWCE8AACwRngAAWCI8AQCwRHgCAGCJ8AQAwBLhCQCAJcITAABLhCcAAJYITwAALBGeAABYIjwBALBEeAIA4IbwnDFjhtSuXVsiIyOlZcuWsnHjxgKvX7JkidSvX99c37hxY1m+fHmxlRUAEHxKXHguXrxYkpOTZcyYMbJp0yZp0qSJdOzYUY4cOZLv9evXr5cePXpI3759ZfPmzdKtWzdzbN++vdjLDgAIDiUuPKdMmSL9+vWTPn36SMOGDWXmzJlSvnx5mTt3br7Xv/rqq9KpUyd59tlnpUGDBjJ+/Hhp1qyZTJ8+vdjLDgAIDmUCXYCcMjMzJTU1VUaMGOE7FxoaKomJiZKSkpLve/S81lRz0prqsmXLLnufjIwMc3idOnXK/ExPT/ev/GfP+/X+YOHv9wwEE/5eKb6/V7yf4fF4Sld4Hjt2TLKysiQmJibXeX2+c+fOfN9z6NChfK/X85czYcIEGTt2bJ7z8fHxV112FN6bMjzQRQDgMm86+PfK6dOnpWLFiqUnPIuL1mxz1lazs7PlxIkTUqVKFQkJCRG30H9F6T8I0tLSJDo6OtDFCQp858WP77x4ufn79ng8Jjjj4uKueG2JCs+qVatKWFiYHD58ONd5fR4bG5vve/S8zfUqIiLCHDlVqlRJ3Er/gLvtD3lJx3de/PjOi1e0S7/vK9U4S+SAofDwcGnevLmsWrUqV61Qn7du3Trf9+j5nNerlStXXvZ6AAD8VaJqnkqbU5OSkiQhIUFatGghU6dOlTNnzpjRt6p3795So0YN02+phgwZIm3btpXJkydL586dZdGiRfLll1/KrFmzAvybAADcqsSFZ/fu3eXo0aMyevRoM+inadOmsmLFCt+goH379pkRuF5t2rSRBQsWyMiRI+W5556TunXrmpG2jRo1kmCnTdM6X/bSJmoUHb7z4sd3Xrz4vv8rxFOYMbkAAKBk9nkCAFAaEJ4AAFgiPAEAsER4AgBgifAEAMAS4QkAgCXCEwAAS4QnAACWCE8AACwRngAAWCI8AQCwRHgCAGCJ8AQAwBLhCQCAJcITAABLhCcAAJYITwAALBGeAABYIjwBALBEeAIAYInwBADAEuEJAIAlwhMAAEtlbN/gRtnZ2XLgwAGJioqSkJCQQBcHABAAHo9HTp8+LXFxcRIaWnDdkvAUMcEZHx8f6GIAAEqAtLQ0qVmzZoHXEJ4ipsbp/cKio6MDXRwAQACkp6ebipQ3EwpCeIr4mmo1OAlPAAhuIYXovmPAEAAAlghPAAAsEZ4AAFgiPAEAsMSAIQAowe6dMTXQRSgVVg54qljvR80TAABLhCcAAJYITwAALBGeAABYYsCQg+jYL5kd+wDgNGqeAABYIjwBALBEeAIAYInwBADAEuEJAIAlwhMAAEuEJwAAlghPAAAsEZ4AAFgiPAEAsER4AgBgifAEAMAS4QkAgCXCEwAAS4QnAACWCE8AACwRngAAWCI8AQCwRHgCAGCJ8AQAoLSG54svvighISHy1FNP+c6dP39eBgwYIFWqVJFrrrlGHnroITl8+HCu9+3bt086d+4s5cuXl2rVqsmzzz4rFy9eDMBvAAAIFiUiPL/44gt588035ZZbbsl1fujQofLee+/JkiVL5NNPP5UDBw7Igw8+6Hs9KyvLBGdmZqasX79e/vSnP8n8+fNl9OjRAfgtAADBIuDh+fPPP0vPnj1l9uzZcu211/rOnzp1SubMmSNTpkyRdu3aSfPmzWXevHkmJDds2GCu+eijj2THjh3y17/+VZo2bSr33XefjB8/XmbMmGECFQAAV4anNstq7TExMTHX+dTUVLlw4UKu8/Xr15frr79eUlJSzHP92bhxY4mJifFd07FjR0lPT5evv/66GH8LAEAwKRPImy9atEg2bdpkmm0vdejQIQkPD5dKlSrlOq9Bqa95r8kZnN7Xva9dTkZGhjm8NGwBACjxNc+0tDQZMmSI/O1vf5PIyMhivfeECROkYsWKviM+Pr5Y7w8AKN0CFp7aLHvkyBFp1qyZlClTxhw6KGjatGnmsdYgtd/y5MmTud6no21jY2PNY/156ehb73PvNfkZMWKE6VP1HhrkAACU+PBs3769bNu2TbZs2eI7EhISzOAh7+OyZcvKqlWrfO/ZtWuXmZrSunVr81x/6mdoCHutXLlSoqOjpWHDhpe9d0REhLkm5wEAQInv84yKipJGjRrlOlehQgUzp9N7vm/fvpKcnCyVK1c2ATdo0CATmK1atTKvd+jQwYRkr169ZOLEiaafc+TIkWYQkgYkAACuGzB0Ja+88oqEhoaaxRF0gI+OpH399dd9r4eFhcn7778v/fv3N6Gq4ZuUlCTjxo0LaLkBAO5WosJzzZo1uZ7rQCKds6nH5dSqVUuWL19eDKUDAKCEzPMEAKC0ITwBALBEeAIAYInwBADAEuEJAIAlwhMAAEuEJwAAlghPAAAsEZ4AAFgiPAEAsER4AgBgifAEAMAS4QkAQHGEZ506deT48eN5zp88edK8BgCAm11VeO7du1eysrLynNc9N/fv3+9EuQAAcMd+nu+++67v8YcffigVK1b0PdcwXbVqldSuXdvZEgIAUJrDs1u3buZnSEiIJCUl5XqtbNmyJjgnT57sbAkBACjN4ZmdnW1+3nDDDfLFF19I1apVi6pcAAC4Izy99uzZ43xJAABwc3gq7d/U48iRI74aqdfcuXOdKBsAAO4Jz7Fjx8q4ceMkISFBqlevbvpAAQAIFlcVnjNnzpT58+dLr169nC8RAABunOeZmZkpbdq0cb40AAC4NTx/97vfyYIFC5wvDQAAbm22PX/+vMyaNUs+/vhjueWWW8wcz5ymTJniVPkAAHBHeG7dulWaNm1qHm/fvj3XawweAgC43VWF5+rVq50vCQAApQRbkgEAUBw1z3vuuafA5tlPPvnkaj4WAAD3hqe3v9PrwoULsmXLFtP/eemC8QAAuM1Vhecrr7yS7/nnn39efv75Z3/LBABA8PR5Pvroo6xrCwBwPUfDMyUlRSIjI538SAAA3NFs++CDD+Z67vF45ODBg/Lll1/KqFGjnCobAADuCc+KFSvmeh4aGio333yz2WmlQ4cOTpUNAAD3hOe8efOcLwkAAG7fDFulpqbKN998Yx7/4he/kFtvvdWpcgEA4K7wPHLkiPzmN7+RNWvWSKVKlcy5kydPmsUTFi1aJNddd53T5QQAoHSPth00aJCcPn1avv76azlx4oQ5dIGE9PR0GTx4sPOlBACgtNc8V6xYYbYja9Cgge9cw4YNZcaMGQwYAgC43lXVPLOzs/Ps4an0nL4GAICbXVV4tmvXToYMGSIHDhzwndu/f78MHTpU2rdv72T5AABwR3hOnz7d9G/Wrl1bbrzxRnPccMMN5txrr73mfCkBACjtfZ7x8fGyadMm0++5c+dOc077PxMTE50uHwAApbvmqft06sAgrWHqfp733nuvGXmrx2233Wbmen722WdFV1oAAEpbeE6dOlX69esn0dHR+S7Z98QTT8iUKVOcLB8AAKU7PL/66ivp1KnTZV/XaSq66lBhTZgwwdRYo6KipFq1atKtWzfZtWtXrmvOnz8vAwYMkCpVqsg111wjDz30kBw+fDjXNfv27ZPOnTtL+fLlzec8++yzcvHiRZtfDQCAoglPDa38pqh4lSlTRo4ePVroz/v0009NMG7YsEFWrlwpFy5cMAF85swZ3zU6gve9996TJUuWmOt1hG/OXV2ysrJMcGZmZsr69evlT3/6k8yfP19Gjx5t86sBAFA0A4Zq1KhhVhK66aab8n1969atUr16davFFnLS0NOao9Ze77rrLjl16pTMmTNHFixYYKbHeBel18FJGritWrWSjz76SHbs2GEGL8XExEjTpk1l/PjxMmzYMHn++eclPDzc5lcEAMDZmuf9999v9uvUptRLnTt3TsaMGSO//OUv5WppWKrKlSubnxqiWhvNOYq3fv36cv3115uNt5X+bNy4sQlOr44dO5pBTbp8YH4yMjLM6zkPAACKpOY5cuRIeeedd6RevXoycOBAs4en0ukqujSfNqH+/ve/l6uhKxM99dRTcvvtt0ujRo3MuUOHDpmao3fxeS8NSn3Ne03O4PS+7n3tcn2tY8eOvapyAgBgFZ4aStqv2L9/fxkxYoR4PB5zXqetaG1PA/TSICss7fvUJuF169ZJUdOyJycn+55rzVPnrgIAUCSLJNSqVUuWL18uP/30k3z33XcmQOvWrSvXXnutXC2txb7//vuydu1aqVmzpu98bGysGQik253lrH3qwCV9zXvNxo0bc32edzSu95pLRUREmAMAgGJbnk9pWOo0kxYtWlx1cGrwanAuXbrULMCgS/zl1Lx5czO6d9WqVb5zOpVFp6a0bt3aPNef27ZtM3uMeunIXZ2Lqgs6AABQIpbnc4o21epI2n/+859mrqe3j1IXXChXrpz52bdvX9PEqoOINBB1NSMNTB1pq3Rqi4Zkr169ZOLEieYztG9WP5vaJQDAdeH5xhtvmJ933313rvM6HeWxxx4zj1955RUJDQ01iyPoKFntW3399dd914aFhZkmX+2H1VCtUKGCJCUlybhx44r5twEABIuAhqd3wFFBIiMjzUAkPa7UDwsAQInu8wQAIFgRngAAWCI8AQCwRHgCAGCJ8AQAwBLhCQCAJcITAABLhCcAAJYITwAALBGeAABYIjwBALBEeAIAYInwBADAEuEJAIAlwhMAAEuEJwAAlghPAAAsEZ4AAFgiPAEAsER4AgBgifAEAMAS4QkAgCXCEwAAS4QnAACWCE8AACwRngAAWCI8AQCwRHgCAGCJ8AQAwBLhCQCAJcITAABLhCcAAJYITwAALBGeAABYIjwBALBEeAIAYInwBADAEuEJAIAlwhMAAEuEJwAAlghPAAAsEZ4AAFgiPAEAsER4AgBgifAEACBYw3PGjBlSu3ZtiYyMlJYtW8rGjRsDXSQAgEu5IjwXL14sycnJMmbMGNm0aZM0adJEOnbsKEeOHAl00QAALuSK8JwyZYr069dP+vTpIw0bNpSZM2dK+fLlZe7cuYEuGgDAhcpIKZeZmSmpqakyYsQI37nQ0FBJTEyUlJSUfN+TkZFhDq9Tp06Zn+np6X6V5eK58369P1j4+z0DwYS/V4rv7xXvZ3g8HveH57FjxyQrK0tiYmJyndfnO3fuzPc9EyZMkLFjx+Y5Hx8fX2TlxP+p+Oz//UMHAEra3yunT5+WihUrujs8r4bWUrWP1Cs7O1tOnDghVapUkZCQEHEL/VeU/oMgLS1NoqOjA12coMB3Xvz4zouXm79vj8djgjMuLu6K15b68KxataqEhYXJ4cOHc53X57Gxsfm+JyIiwhw5VapUSdxK/4C77Q95Scd3Xvz4zotXtEu/7yvVOF0zYCg8PFyaN28uq1atylWT1OetW7cOaNkAAO5U6mueSptgk5KSJCEhQVq0aCFTp06VM2fOmNG3AAA4zRXh2b17dzl69KiMHj1aDh06JE2bNpUVK1bkGUQUbLRpWue+XtpEjaLDd178+M6LF9/3f4V4CjMmFwAAuKfPEwCA4kZ4AgBgifAEAMAS4QkAgCXCEwAAS4QnAACWCE8AACwRngAAWCI8AQCwRHgCAGCJ8AQAwBLhCQCAJcITAABLhCcAAJYITwAALBGeAABYIjwBALBEeAIAYInwBADAEuEJAIAlwhMAAEuEJwAAlsrYvsGNsrOz5cCBAxIVFSUhISGBLg4AIAA8Ho+cPn1a4uLiJDS04Lol4SligjM+Pj7QxQAAlABpaWlSs2bNAq8hPEVMjdP7hUVHRwe6OACAAEhPTzcVKW8mFITwFPE11WpwEp4AENxCCtF9x4AhAAAsEZ4AAFgiPAEAsER4AgBgiQFDDqo77OVAF6FU2P3SM4EuAlBq8PdKyfx7hZonAACWCE8AACwRngAAWCI8AQCwRHgCAGCJ8AQAwBLhCQCAJcITAABLhCcAAJYITwAALBGeAABYIjwBALBEeAIAUJy7qpw8eVKWLl0qn332mfz4449y9uxZue666+TWW2+Vjh07Sps2bfz5eAAA3FPzPHDggPzud7+T6tWryx/+8Ac5d+6cNG3aVNq3by81a9aU1atXy7333isNGzaUxYsXO19qAABKW81Ta5ZJSUmSmppqAjI/GqjLli2TqVOnSlpamjzzDHs4AgCCODx37NghVapUKfCacuXKSY8ePcxx/Pjxqy0fAADuaLa9UnD6e/2MGTOkdu3aEhkZKS1btpSNGzdese91wIABphk5IiJC6tWrJ8uXL7e6JwAARVrzfPfddwt9bdeuXa0+W/tIk5OTZebMmSY4tdlXBx/t2rVLqlWrluf6zMxM07+qr7399ttSo0YNM3ipUqVKVvcFAKBIw7Nbt26Fui4kJESysrKsPnvKlCnSr18/6dOnj3muIfrBBx/I3LlzZfjw4Xmu1/MnTpyQ9evXS9myZc05rbUCAFCimm2zs7MLddgGp9YidRBSYmLi/xUwNNQ8T0lJuWwtuHXr1qbZNiYmRho1aiR//OMfC7x3RkaGpKen5zoAACiViyQcO3bMhJ6GYE76/NChQ/m+54cffjDNtfo+7eccNWqUTJ482UyhuZwJEyZIxYoVfUd8fLzjvwsAwL38WiTB68yZM/Lpp5/Kvn37TO0xp8GDB0tR0hqu9nfOmjVLwsLCpHnz5rJ//36ZNGmSjBkzJt/3jBgxwvSremnNkwAFABRbeG7evFnuv/9+s7qQhmjlypVNDbJ8+fIm1GzCs2rVqiYADx8+nOu8Po+Njc33PTrCVvs69X1eDRo0MDVVDfLw8PA879ERuXoAABCQZtuhQ4dKly5d5KeffjJzOzds2GBGu2oN8OWXX7b6LA06fd+qVaty1Sz1ufZr5uf222+X7777zlzn9e2335pQzS84AQAIeHhu2bJFnn76aTOwR2t/OhhHm0AnTpwozz33nPXnaXPq7Nmz5U9/+pN888030r9/f1Oj9Y6+7d27t2l29dLXdbTtkCFDTGjqyFwdMKQDiAAAKJHNttpkqsGptJlW+z212VQH4uiyfLa6d+8uR48eldGjR5umV10zd8WKFb5BRPr53vspDeoPP/zQ1IBvueUWM89Tg3TYsGH+/moAABRNeOo6t1988YXUrVtX2rZta0JP+zz/8pe/mGkjV2PgwIHmyM+aNWvynNMmXW0uBgCgVDTbahOp9i+qF154Qa699lrTlKq1Rx0BCwCA2/hd80xISPA91mZbbWIFAMDNHFkk4eLFi/Lxxx/Lm2++KadPn/bt+fnzzz878fEAALir5qnTUjp16mQG8uhIW12kPSoqSl566SXzXNemBQDATfyueerIVm269c7z9HrggQdyzdcEAMAt/K55fvbZZ2ZHk0sXJNCdTXSZPAAA3Mbvmufldk/5z3/+Y5pvAQBwG7/Ds0OHDmbD6px7eOpAIV2UXde8BQDAbfxuttX1a3XAUMOGDeX8+fPy29/+Vnbv3m0WeV+4cKEzpQQAwE3hqcvjffXVV7J48WLzU2udffv2lZ49e+YaQAQAgFv4FZ4XLlyQ+vXry/vvv2/CUg8AANwu1N9F4bWpFgCAYOL3gCHd+ksXRNBVhgAACAZ+93nqjiq6GMJHH30kjRs3lgoVKuR6/Z133vH3FgAAuCs8K1WqJA899JAzpQEAIBjCc968ec6UBACAYNpVBQCAYHJV4amLImzYsOGK1+n2ZDqYaMaMGVdzGwAA3NNs+8gjj5h+zooVK0qXLl3MripxcXESGRlpdlfZsWOHrFu3TpYvXy6dO3eWSZMmOV9yAABKU3jqCkKPPvqoLFmyxKwsNGvWLDl16pRvbVtdqq9jx45mJG6DBg2cLjMAAKVzwFBERIQJUD2Uhue5c+ekSpUqZvEEAADcyu/Rtl7ahKsHAABux2hbAAAsEZ4AAFgiPAEAsER4AgAQiPA8efKkvPXWWzJixAg5ceKEObdp0ybZv3+/Ex8PAIC7Rttu3bpVEhMTzUjbvXv3Sr9+/aRy5cpmN5V9+/bJn//8Z2dKCgCAW2qeycnJ8thjj8nu3bvNCkNe999/v6xdu9bfjwcAwH3hqasIPfHEE3nO16hRQw4dOuTvxwMA4L7w1JWG0tPT85z/9ttv5brrrruqz9SF5GvXrm1qsi1btpSNGzcW6n2LFi0yywN269btqu4LAECxhGfXrl1l3LhxcuHCBfNcw0v7OocNG3ZVm2TrWrnaFDxmzBgz6KhJkyZmndwjR44U+D7tb33mmWfkzjvvvOrfBQCAYgnPyZMny88//yzVqlUza9u2bdtWbrrpJomKipIXXnjB+vOmTJliBh316dPHLDA/c+ZMKV++vMydO/ey78nKypKePXvK2LFjpU6dOn7+RgAAFPFoWx1lu3LlSrMFmY681SBt1qyZGYFrKzMzU1JTU82UF6/Q0FDzWSkpKZd9n9Z8Nbx1t5fPPvvsivfJyMgwh1d+zc4AABT5wvB33HGHOfxx7NgxU4uMiYnJdV6f79y5M9/3aGjPmTNHtmzZUuj7TJgwwdRSAQAotvCcNm1aoa8dPHiwFJXTp09Lr169ZPbs2VK1atVCv09rttqvmrPmGR8fX0SlBAC4zVWF5yuvvJLr+dGjR+Xs2bNSqVIl34pD2k+pTak24akBGBYWJocPH851Xp/Hxsbmuf777783A4W6dOniO5ednW1+lilTRnbt2iU33nhjviOE9QAAoNgGDO3Zs8d36KCgpk2byjfffGOW5tNDH2u/5/jx460+Nzw8XJo3by6rVq3KFYb6vHXr1nmur1+/vmzbts002XoPHf17zz33mMfUJgEAJbLPc9SoUfL222/LzTff7Dunj7V2+vDDD5tRsDa0OTUpKUkSEhKkRYsWMnXqVDlz5owZfat69+5tFmDQfkudB9qoUaNc7/fWfi89DwBAiQnPgwcPysWLF/Oc14E/lza/Fkb37t1NM/Do0aPNCkVaq12xYoVvEJHOIdURuAAAlNrwbN++vVmeT3dV0aZapdNN+vfvf1XTVdTAgQPNkZ81a9YU+N758+df1T0BACgsv6twuniBDubRZlbvQBxtbtWaogYqAABu43fNU9evXb58uVnL1jsXUwfy1KtXz4nyAQDg3kUSNCwJTABAMPA7PB9//PECXy9oTVoAAIIyPH/66adcz3V3le3bt5uFEtq1a+fvxwMA4L7wXLp0aZ5zurCBjrbNb3UfAABKuyKZMKnzMHWxg0uX8QMAwA2KbLUBXXc2v8UTAACQYG+2zbk7ifJ4PGbVoQ8++MAsswcAgNv4HZ6bN2/O02Srcz8nT558xZG4AAAEZXiuXr3amZIAABAsfZ46HUWnpVxKN5hmqgoAwI38Dk9dqD0zMzPP+fPnz8tnn33m78cDAOCeZtutW7f6Hu/YscNsH5ZzOzLdRkz33QQAwG2uOjx1n82QkBBz5Nc8W65cOXnttdf8LR8AAO4Jzz179phpKXXq1JGNGzeaEbZe4eHhUq1aNQkLC3OqnAAAlP7wrFWrlm8pPgAAgslVhee7774r9913n5QtW9Y8LkjXrl2vtmwAALgnPLt162YGCGnTrD6+HO0P1cFDAABIsIdnzqZamm0BAMGmyBaGBwDAra6q5jlt2rRCXzt48OCruQUAAO4Kz8Lu06l9noQnAMBtylztHE8AAIKVo32eumiCHgAAuJkj4Tlnzhxp1KiRREZGmkMfv/XWW058NAAA7tvPc/To0TJlyhQZNGiQtG7d2pxLSUmRoUOHyr59+2TcuHFOlBMAAPeE5xtvvCGzZ8+WHj165FpV6JZbbjGBSngCANzG72bbCxcuSEJCQp7zzZs3l4sXL/r78QAAuC88e/XqZWqfl5o1a5b07Nnzqj5zxowZUrt2bdN/2rJlS7Nry+VorffOO++Ua6+91hyJiYkFXg8AQMCbbb0Dhj766CNp1aqVef7555+b/s7evXtLcnKy7zrtG72SxYsXm/fMnDnTBOfUqVOlY8eOsmvXLrOW7qXWrFljmozbtGljwvall16SDh06yNdff81m3ACAIhHi8XNuyT333FO4G4WEyCeffHLF6zQwb7vtNpk+fbpv7dz4+HjTfzp8+PArvl8XotcaqL5fw7sw0tPTpWLFinLq1CmJjo6Wq1V32MtX/d5gsvulZwJdBKDU4O+V4vt7xSYL/K55rl69WpySmZkpqampMmLECN+50NBQ0xSrI3gL4+zZs6YftnLlype9JiMjwxw5vzAAAErlwvDHjh0zNceYmJhc5/W5boFWGMOGDZO4uDgTuJczYcIE868L76E1WwAACsvvmuf58+fltddeMzXQI0eO5NmibNOmTVJcXnzxRVm0aJHpB9X+z8vRmm3OvliteRKgAIBiC8++ffuawUIPP/ywtGjRwvRtXq2qVatKWFiYHD58ONd5fR4bG1vge19++WUTnh9//LGZY1qQiIgIcwAAEJDwfP/992X58uVy++23+/tREh4ebuaHrlq1Srp162bOaU1Wnw8cOPCy75s4caK88MIL8uGHH+Y75xQAgBIVnjodJCoqypnSiJjm1KSkJBOCWpPVqSpnzpyRPn36mNd1BK3eU/stlU5N0SUCFyxYYOaGevtGr7nmGnMAAFDiBgxNnjzZDNL58ccfHSlQ9+7dTROsBmLTpk1ly5YtsmLFCt8gIp0/evDgQd/1ukCDjtLVZuPq1av7Dv0MAABKZM1Ta4g6aKhOnTpSvnx5KVu2bK7XT5w4Yf2Z2kR7uWZaHQyU0969e60/HwCAgIanru6zf/9++eMf/2hqh/4MGAIAICjCc/369WYBgyZNmjhTIgAA3N7nWb9+fTl37pwzpQEAIBjCU+dWPv3006Yv8vjx42bBgZwHAABu43ezbadOnczP9u3b5zqv681r/6cutwcAgJuUqIXhAQAIivBs27btZV/bvn27vx8PAID7d1U5ffq0zJo1y6wOxAhcAIAbORaea9euNcvqeVf3adeunWzYsMGpjwcAwB3NtrqO7Pz582XOnDlmZO2vf/1rs8n0smXLpGHDhs6VEgAAN9Q8u3TpIjfffLNs3brVLN5+4MABs68nAABud9U1z3/9618yePBg6d+/v9StW9fZUgEA4Maa57p168zgIN1/s2XLljJ9+nQ5duyYs6UDAMBN4dmqVSuZPXu22R7siSeekEWLFklcXJzZvHrlypUmWAEAcCO/R9tWqFBBHn/8cVMT3bZtm1mqT5fsq1atmnTt2tWZUgIA4NZ5njqAaOLEifKf//xHFi5c6ORHAwDg3kUSVFhYmHTr1k3efffdovh4AADcF54AALgZ4QkAgCXCEwAAS4QnAACWCE8AACwRngAAWCI8AQCwRHgCAGCJ8AQAwBLhCQCAJcITAABLhCcAAJYITwAA3BCeM2bMkNq1a0tkZKS0bNlSNm7cWOD1S5Yskfr165vrGzduLMuXLy+2sgIAgk+JC8/FixdLcnKyjBkzRjZt2iRNmjSRjh07ypEjR/K9fv369dKjRw/p27evbN682WyFpsf27duLvewAgOBQ4sJzypQp0q9fP+nTp480bNhQZs6cKeXLl5e5c+fme/2rr74qnTp1kmeffVYaNGgg48ePl2bNmsn06dOLvewAgOBQRkqQzMxMSU1NlREjRvjOhYaGSmJioqSkpOT7Hj2vNdWctKa6bNmyy94nIyPDHF6nTp0yP9PT0/0qf3bGeb/eHyz8/Z6BYMLfK8X394r3MzweT+kKz2PHjklWVpbExMTkOq/Pd+7cme97Dh06lO/1ev5yJkyYIGPHjs1zPj4+/qrLjsKr+OqoQBcBgMtUdPDvldOnT0vFihVLT3gWF63Z5qytZmdny4kTJ6RKlSoSEhIibqH/itJ/EKSlpUl0dHSgixMU+M6LH9958XLz9+3xeExwxsXFXfHaEhWeVatWlbCwMDl8+HCu8/o8NjY23/foeZvrVUREhDlyqlSpkriV/gF32x/yko7vvPjxnRevaJd+31eqcZbIAUPh4eHSvHlzWbVqVa5aoT5v3bp1vu/R8zmvVytXrrzs9QAA+KtE1TyVNqcmJSVJQkKCtGjRQqZOnSpnzpwxo29V7969pUaNGqbfUg0ZMkTatm0rkydPls6dO8uiRYvkyy+/lFmzZgX4NwEAuFWJC8/u3bvL0aNHZfTo0WbQT9OmTWXFihW+QUH79u0zI3C92rRpIwsWLJCRI0fKc889J3Xr1jUjbRs1aiTBTpumdb7spU3UKDp858WP77x48X3/V4inMGNyAQBAyezzBACgNCA8AQCwRHgCAGCJ8AQAwBLhCQCAJcITAABLhCcAAJYITwAALBGeAABYIjwBALBEeAIAYInwBADAEuEJAIAlwhMAAEuEJwAAlghPAAAsEZ4AAFgiPAEAsER4AgBgifAEAMAS4QkAgCXCEwAAS2Vs3+BG2dnZcuDAAYmKipKQkJBAFwcAEAAej0dOnz4tcXFxEhpacN2S8BQxwRkfHx/oYgAASoC0tDSpWbNmgdcQniKmxun9wqKjowNdHABAAKSnp5uKlDcTCkJ4iviaajU4CU8ACG4hhei+Y8AQAACWCE8AACwRngAAWCI8AQCwRHgCAGCJ8AQAwBLhCQCAJcITAABLhCcAAJYITwAALBGeAABYIjwBALBEeAIAYMnRXVUuXLgghw4dkrNnz8p1110nlStXdvLjAQBwR81Td91+4403pG3btmY7r9q1a0uDBg1MeNaqVUv69esnX3zxhTOlBQCgtIfnlClTTFjOmzdPEhMTZdmyZbJlyxb59ttvJSUlRcaMGSMXL16UDh06SKdOnWT37t3OlRwAgAAJ8Xg8nqt9c48ePWTkyJHyi1/8osDrMjIyTMCGh4fL448/LiVx9/CKFSvKqVOn2AwbAIJUukUW+BWebkF4AgDSLbKA0bYAAARqtO0DDzwgISEhec7rucjISLnpppvkt7/9rdx8881O3RIAgIBwrOapVd1PPvlENm3aZAJTj82bN5tzOmho8eLF0qRJE/n3v/8tTpowYYLcdtttEhUVJdWqVZNu3brJrl27HL0HAABFEp6xsbGmZvnDDz/IP/7xD3N8//338uijj8qNN94o33zzjSQlJcmwYcPESZ9++qkMGDBANmzYICtXrjRzTXV075kzZxy9DwAAjg8Y0nmdWqusV69ervM6baVNmzZy7Ngx2bZtm9x5551y8uRJKSpHjx41NVAN1bvuuqtQ72HAEAAgPRADhrRpdufOnXnO67msrCzzWPs+8+sXdZL+0qqg1Y106ox+STkPAACKfcBQr169pG/fvvLcc8+ZPkilKwv98Y9/lN69e5vnWhu80pxQf2RnZ8tTTz0lt99+uzRq1KjAftKxY8cWWTkAAO7mWLOt1i5ffPFFmT59uhw+fNici4mJkUGDBpl+zrCwMNm3b5+EhoZKzZo1pSj0799f/vWvf8m6desKvIfWPPXw0ppnfHw8zbYAEMTSA71IgrcZtDiDaODAgfLPf/5T1q5dKzfccIPVe+nzBACkW2SBo7uqeBVnAGn2a+126dKlsmbNGuvgBADAlqPh+fbbb8vf//530zybmZmZ6zWd/1kUdJrKggULTK1T53rqlmhK//VQrly5IrknACC4OTbadtq0adKnTx/Tz6mLI7Ro0UKqVKli5n3ed999UlR0OzStYt99991SvXp136GLMgAAUKJrnq+//rrMmjXL7LQyf/58+d///V+pU6eOjB49Wk6cOCFFhXXtAQCltuapTbW6GILS5lLdJNs7hWXhwoVO3QYAAHctz+etYV5//fVmuTy1Z88eaocAAFdxLDzbtWsn7777rnmsfZ9Dhw6Ve++9V7p37252XAEAwC0cm+epq/voUabMf7tRFy1aJOvXr5e6devKE088IeHh4VJSMc8TAJAe6EUSShvCEwCQHqhFEs6fPy9bt26VI0eOmFpoTl27dnXyVgAABIxj4blixQqzALxuPXYp3UnFu7MKAAClnWMDhnSJvEceeUQOHjzo6//0HgQnAMBNHAtP3UklOTnZrDAEAICbORaeDz/8sFmYHQAAt3NstO3Zs2dNs+11110njRs3lrJly+Z6ffDgwVJSMdoWAJAeiNG2ugTfRx99JJGRkaYGqoOEvPRxSQ5PAABsOBaev//972Xs2LEyfPhwCQ11rDUYAIASx7GU0/07dSk+ghMA4HaOJV1SUhJ7aAIAgoJjzbY6l3PixIny4Ycfyi233JJnwNCUKVOcuhUAAO4Iz23btsmtt95qHm/fvj3XazkHDwEAUNo5Fp6rV6926qMAACjRGN0DAEBx1jwffPBBmT9/vplMqo8L8s477/hzKwAA3BGeuhKDtz9THwMAEAzYDJvl+QAAYpcF9HkCAGDJr/Ds1KmTbNiw4YrXnT59Wl566SWZMWOGP7cDAKD093nqLioPPfSQqeZ26dJFEhISJC4uziwO/9NPP8mOHTtk3bp1snz5cuncubNMmjTJuZIDAFBa+zwzMjJkyZIlZmk+DUptKzYfHBIiDRs2lI4dO0rfvn2lQYMGUlLR5wkASLfIAscHDOlNz507J1WqVMmzRF9JRXgCANIDsZ+nl96YaSsAADdjtC0AAJYITwAALBGeAABYIjwBAAhkeJ48eVLeeustGTFihJw4ccKc27Rpk+zfv9/J2wAAEFCOjbbdunWrJCYmmpG2e/fulX79+knlypXNbir79u2TP//5z07dCgAAd9Q8k5OT5bHHHpPdu3ebFYa87r//flm7dq1TtwEAwD3h+cUXX8gTTzyR53yNGjXk0KFDTt0GAAD3hGdERIRZneFS3377rVx33XVO3QYAAPeEZ9euXWXcuHFy4cIF39q22tc5bNgws3h8UdMdW2rXrm2ajFu2bCkbN24s8nsCAIKTY+E5efJk+fnnn6VatWpmbdu2bdvKTTfdJFFRUfLCCy9IUdJF6bXPdcyYMWZ0b5MmTcyC9EeOHCnS+wIAgpPjC8Przio68laDtFmzZmYEblHTmuZtt90m06dPN8+zs7MlPj5eBg0aJMOHD7/i+1kYHgCQHsiF4e+44w5zFJfMzExJTU01c0u9QkNDTWinpKRcdhs1Pbzy66sFAKBIwnPatGmFvnbw4MFSFI4dOyZZWVkSExOT67w+37lzZ77vmTBhgowdO7ZIygMAcD+/wvOVV17J9fzo0aNy9uxZqVSpkm/FofLly5t+0KIKz6uhtVTtI81Z89RmXgAAijw89+zZ43u8YMECef3112XOnDly8803m3O7du0yKw3lN//TKVWrVpWwsDA5fPhwrvP6PDY29rLTavQAACCgo21HjRolr732mi84lT7W2unIkSOlqISHh0vz5s1l1apVvnM6YEift27dusjuCwAIXo4NGDp48KBcvHgxz3ntj7y0Vug0bYJNSkqShIQEadGihUydOlXOnDkjffr0KdL7AgCCk2Ph2b59e9M8q7uq6BQVpaNg+/fvX+TTVbp37276W0ePHm2WAmzatKmsWLEizyAiAABK1DxPDS+t/WlolS1b1pzTmqguVjB//nwzaKikYp4nACA9EPM8df3a5cuXm7VsvVNE6tevL/Xq1XPqFgAAlAiOL5KgYUlgAgDczLHwfPzxxwt8fe7cuU7dCgAAd4TnTz/9lOu57q6yfft2s1BCu3btnLoNAADuCc+lS5fmOafzLXW07Y033ujUbQAAcM8iCfl+eGiomYN56TJ+AACUZkUanur777/Pd/EEAAAk2Jttcy60rnT6qK469MEHH5j5nwAAuIVj4bl58+Y8TbY693Py5MlXHIkLAEBQhufq1aud+igAAIKjz1Ono+i0lPyWO2KqCgDATRwLzzVr1khmZmae8+fPn5fPPvvMqdsAAFD6m223bt3qe7xjxw6zq0nO7ch0ofgaNWr4exsAANwTnrr9V0hIiDnya54tV66c2SQbAAC38Ds89+zZY6al1KlTRzZu3GhG2HqFh4ebrcjCwsL8vQ0AAO4Jz1q1avmW4gMAIBj4FZ7vvvuu3HfffWbza31ckK5du/pzKwAASowQj7a5XiVdCEEHCGnTrD6+7E1CQszgITfsHg4AcCebLPCr5pmzqZZmWwBAsCjyheEBAHAbv2qe06ZNK/S1gwcP9udWAAC4o8/zhhtuKNxNQkLkhx9+kJKKPk8AQHpx9XnqHE8AAIJNkfR5amXWjwotAADBE55z5syRRo0aSWRkpDn08VtvveXkLQAAcM9+nqNHj5YpU6bIoEGDpHXr1uZcSkqKDB06VPbt2yfjxo1z6lYAAJTeAUM56Zq2Ovq2R48euc4vXLjQBOqxY8ekpGLAEAAg3SILHGu2vXDhgiQkJOQ537x5c7l48aJTtwEAIOAcC89evXrJG2+8kef8rFmzpGfPnk7dBgAA9/R5egcMffTRR9KqVSvz/PPPPzf9nb1795bk5GTfddo3CgCABHt4bt++XZo1a2Yef//99+Zn1apVzaGv5VwwAQCA0syx8Fy9erVTHwUAQInGwvAAAASq5nn+/Hl57bXXTA30yJEjebYo27Rpk1O3AgDAHeHZt29fM1jo4YcflhYtWtC3CQBwLcfC8/3335fly5fL7bff7tRHAgDg7j7PGjVqSFRUlFMfBwCA+8Nz8uTJMmzYMPnxxx+luOzdu9c0F+u+ouXKlZMbb7xRxowZI5mZmcVWBgBA8HGs2VaX5tNBQ3Xq1JHy5ctL2bJlc71+4sQJcdrOnTvNwKQ333xTbrrpJjOftF+/fnLmzBl5+eWXHb8fAACOLgyfmJhoVhPSmmBMTEyeAUNJSUnF8o1PmjTJLBP4ww8/FPo9LAwPAEi3yALHap7r1683W5A1adJEAkl/6cqVKxd4TUZGhjlyfmEAABR7n2f9+vXl3LlzEkjfffedmWv6xBNPFHjdhAkTzL8uvEd8fHyxlREAUPo5Fp4vvviiPP3007JmzRo5fvy4qc3lPGwMHz7cNPsWdGh/Z0779++XTp06ySOPPGL6PQsyYsQIU0P1HmlpaVf1OwMAgpNjfZ6hof/N4Uv7OvXj9VxWVlahP+vo0aMmgAuiA5PCw8PN4wMHDsjdd99tdnOZP3++ryyFRZ8nACA9EH2eTi4Mf91115mjMLTGec8995hNt+fNm2cdnAAA2HIsPNu2bXvZ13JuSeYkDU6tcdaqVctMTdEaq1dsbGyR3BMAAEc3w87p9OnTsnDhQnnrrbckNTXVqtm2sFauXGkGCelRs2bNXK851BoNAEAejrdxrl271szprF69uqkNtmvXTjZs2CBF4bHHHjMhmd8BAECJrnkeOnTIDNSZM2eO6XD99a9/beZRLlu2TBo2bOjELQAAcE/Ns0uXLnLzzTfL1q1bZerUqWbkq861BADArfyuef7rX/+SwYMHS//+/aVu3brOlAoAADfXPNetW2cGB+lUkZYtW8r06dPl2LFjzpQOAAA3hqcuTDB79mw5ePCgWRZv0aJFEhcXZ3Y70dGwGqwAALiJYysM5bRr1y4zeOgvf/mLnDx5Uu6991559913paRihSEAQLpFFhTJcjw6gGjixInyn//8x8z1BADATYqk5lnaUPMEAKQHuuYJAICbEZ4AAFgiPAEAsER4AgBgifAEAMAS4QkAgCXCEwAAS4QnAACWCE8AACwRngAAWCI8AQCwRHgCAGCpjO0b3Mi7Nr4uCgwACE7p/38GFGa/FMJTxLdhd3x8fKCLAgAoAZmgu6sUhC3JRCQ7O1sOHDggUVFREhISIm76V5T+gyAtLY2t1ooJ33nx4zsvXm7+vj0ejwnOuLg4CQ0tuFeTmqd2/IaGSs2aNcWt9A+42/6Ql3R858WP77x4Rbv0+75SjdOLAUMAAFgiPAEAsER4ulhERISMGTPG/ETx4DsvfnznxYvv+78YMAQAgCVqngAAWCI8AQCwRHgCAGCJ8AQAwBLh6RIzZsyQ2rVrS2RkpLRs2VI2btzoe+38+fMyYMAAqVKlilxzzTXy0EMPyeHDhwNaXrd/57NmzZK7777bTCLXVatOnjwZ0LKWdmvXrpUuXbqYlV/0+1y2bFmu13Xc4+jRo6V69epSrlw5SUxMlN27dwesvMHwnb/zzjvSoUMH8/eKvr5lyxYJJoSnCyxevFiSk5PN8PFNmzZJkyZNpGPHjnLkyBHz+tChQ+W9996TJUuWyKeffmqWInzwwQcDXWxXf+dnz56VTp06yXPPPRfoorrCmTNnzHes/2DJz8SJE2XatGkyc+ZM+fzzz6VChQrmv4f+wxFF852fOXNG7rjjDnnppZckKOlUFZRuLVq08AwYMMD3PCsryxMXF+eZMGGC5+TJk56yZct6lixZ4nv9m2++0elJnpSUlACV2N3feU6rV6823/VPP/0UgFK6k36fS5cu9T3Pzs72xMbGeiZNmuQ7p3/uIyIiPAsXLgxQKd39nee0Z88e8/rmzZs9wYSaZymXmZkpqampppkq51q9+jwlJcW8duHChVyv169fX66//nrzOpz/zlG89uzZI4cOHcr130PXJ9WmdP57oKgQnqXcsWPHJCsrS2JiYnKd1+f6F4oe4eHhUqlSpXxfh/PfOYqX9zvnvweKE+EJAIAlwrOUq1q1qoSFheUZPavPY2NjzaHNjJeO9vS+Due/cxQv73fOfw8UJ8KzlNMm2ebNm8uqVatybe6tz1u3bm1eK1u2bK7Xd+3aJfv27TOvw/nvHMXrhhtuMCGZ87+Hbtiso27574GiwmbYLqBTJpKSkiQhIUFatGghU6dONcPI+/TpYwZO9O3b11xTuXJlM+9w0KBB5i+VVq1aBbrorvzOlbe/+bvvvjPPt23bJlFRUWaglv53gJ2ff/7Z9116BwnpvEL9LvU7feqpp+QPf/iD1K1b14TpqFGjzPzEbt26BbTcbv7OT5w4Yf4RrlPfvP8oV94WL9cL9HBfOOO1117zXH/99Z7w8HAzjWLDhg2+186dO+d58sknPddee62nfPnyngceeMBz8ODBgJbX7d/5mDFjzPD9S4958+YFtMyllXfKz6VHUlKSb7rKqFGjPDExMWaKSvv27T27du0KdLFd/Z3Pmzcv39f1z34wYEsyAAAs0ecJAIAlwhMAAEuEJwAAlghPAAAsEZ4AAFgiPAEAsER4AgBgifAEXGr+/Pl5dtMB4AzCEwiAxx57TEJCQnxHlSpVpFOnTrJ161bH7tG9e3f59ttvpSjUrl3bLElo6+677zZL6QGlHeEJBIiG5cGDB82hi5qXKVNGfvnLXzr2+eXKlZNq1ao59nkA/g/hCQRIRESEbxHtpk2byvDhwyUtLU2OHj3qu2bYsGFSr149KV++vNSpU8cseH7hwgXf61999ZXcc889ZtF5XfRfd3v58ssv8222LejaS+mqnc8//7xZAFzLqYusDx482Fd7/PHHH2Xo0KG+mrM6fvy49OjRQ2rUqGHK27hxY1m4cGGu2vann34qr776qu99e/fuNa9t375d7rvvPrnmmmvMJta9evUym44DJRXhCZSQHSz++te/yk033WSacL006DQEd+zYYUJn9uzZ8sorr/he79mzp9SsWVO++OILSU1NNQGsW9Dlx+baf/zjH+Y+b775puzevVuWLVtmwlC988475nPGjRvnqzmr8+fPm0D+4IMPTBj+z//8jwnBjRs3mte1/LqbT79+/Xzvi4+PN3vNtmvXTm699VYT5itWrDB7cf7617929DsGHBXolemBYKQ7U4SFhXkqVKhgDv2/YvXq1T2pqakFvm/SpEme5s2b+55HRUV55s+fn++1uutFxYoVC3XtpSZPnuypV6+eJzMzM9/Xa9Wq5XnllVeu+DmdO3f2PP30077nbdu29QwZMiTXNePHj/d06NAh17m0tDTznbAzCkoqap5AgGgTqu6PqIfWzjp27GiaLrVJ1Gvx4sVy++23m6ZdbdIcOXKk2UMx576iv/vd7yQxMVFefPFF+f777y97P5trH3nkETl37pxpKtaa4tKlS+XixYsF/j5ZWVkyfvx4U0PVPR+1vB9++GGu8uZHm5NXr15trvce9evXN68VVEYgkAhPIEAqVKhgmmn1uO222+Stt94yG2pr06xKSUkxTa3333+/vP/++7J582b5/e9/L5mZmb7P0H7Jr7/+Wjp37iyffPKJNGzY0ARdfmyu1eZU3dz49ddfNwOPnnzySbnrrrty9bdeatKkSaZpVvtpNQz1HwX6D4Kc5b1ck3WXLl18/5DwHtpcrPcESqIygS4AgP/SATShoaGmxqfWr18vtWrVMoHplbNW6qUDivTQATw6YGfevHnywAMP5HsPm2s1NDXU9BgwYICpDW7btk2aNWsm4eHhpqaZ07///W/51a9+JY8++qh5np2dbabKaEh75fc+/TztY9XpLzriGCgNqHkCAZKRkSGHDh0yxzfffCODBg3y1cJU3bp1TZPnokWLTPPltGnTctUUNWQHDhwoa9asMaGq4aWDgRo0aJDnXjbXKh2kNGfOHDPw54cffjCDmTRMNcyVBt3atWtl//79vlGxWt6VK1ea0Nff54knnjADf3LS933++edmlK2+TwNWg/nEiRMmzLVM+rtqc2+fPn3yBC1QYgS60xUI1gFD+n8/76GDeW677TbP22+/neu6Z5991lOlShXPNddc4+nevbsZpOMdBJSRkeH5zW9+44mPj/eEh4d74uLiPAMHDvScO3cuz4ChK117qaVLl3patmzpiY6ONgOaWrVq5fn44499r6ekpHhuueUWT0REhCm/On78uOdXv/qVKWu1atU8I0eO9PTu3duc89IBQPpZ5cqVM+/bs2ePOf/tt996HnjgAU+lSpXMa/Xr1/c89dRTnuzsbMe/e8AJIfo/gQ5wAABKE5ptAQCwRHgCAGCJ8AQAwBLhCQCAJcITAABLhCcAAJYITwAALBGeAABYIjwBALBEeAIAYInwBADAEuEJAIDY+f8AJ71LTHIJSk0AAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] }, "metadata": {}, "output_type": "display_data" @@ -285,7 +318,7 @@ ], "metadata": { "kernelspec": { - "display_name": "Python 3", + "display_name": ".venv", "language": "python", "name": "python3" }, @@ -299,7 +332,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.10.14" + "version": "3.12.9" } }, "nbformat": 4, diff --git a/examples/ghz_state.ipynb b/examples/ghz_state.ipynb index 213ee7b..cb19b4f 100644 --- a/examples/ghz_state.ipynb +++ b/examples/ghz_state.ipynb @@ -2,19 +2,20 @@ "cells": [ { "cell_type": "markdown", + "metadata": { + "collapsed": false + }, "source": [ "# Analog circuit for preparing a GHZ state\n", "\n", "GHZ states, much like Bell states, are highly entangled, multi-qubit states. They have broad application in quantum error correction, quantum communication protocols, quantum sensing, and tests of fundamental physics. Here, we will construct and emulate the analog quantum program to prepare a `n`-qubit GHZ state,\n", + "\n", "$$\n", "|\\psi\\rangle = \\frac{1}{\\sqrt{2}} \\left( |0\\rangle^{\\otimes n} + |1\\rangle^{\\otimes n} \\right)\n", "$$\n", "\n", - "First, we import the relevant libraries and OQD modules." - ], - "metadata": { - "collapsed": false - } + "First, we import the relevant libraries and OQD modules.\n" + ] }, { "cell_type": "code", @@ -27,40 +28,37 @@ }, "outputs": [], "source": [ - "import numpy as np\n", - "import matplotlib.pyplot as plt\n", - "import seaborn as sns\n", "import functools\n", "import itertools\n", "import operator\n", - "\n", "import warnings\n", - "warnings.filterwarnings(\"ignore\")\n", "\n", - "from oqd_core.interface.analog.operator import *\n", - "from oqd_core.interface.analog.operation import *\n", - "from oqd_core.backend.metric import *\n", + "import matplotlib.pyplot as plt\n", + "import numpy as np\n", + "import seaborn as sns\n", + "from oqd_analog_emulator.qutip_backend import QutipBackend\n", + "from oqd_core.backend.metric import Expectation\n", "from oqd_core.backend.task import Task, TaskArgsAnalog\n", + "from oqd_core.interface.analog.operation import AnalogCircuit, AnalogGate\n", + "from oqd_core.interface.analog.operator import PauliI, PauliX, PauliY, PauliZ\n", "\n", - "from oqd_analog_emulator.qutip_backend import QutipBackend" + "warnings.filterwarnings(\"ignore\")" ] }, { "cell_type": "code", "execution_count": 2, "metadata": { - "collapsed": false, "ExecuteTime": { "end_time": "2024-10-23T02:59:45.857119Z", "start_time": "2024-10-23T02:59:45.854598Z" - } + }, + "collapsed": false }, "outputs": [], "source": [ - "X = PauliX()\n", - "Y = PauliY()\n", - "Z = PauliZ()\n", - "I = PauliI()\n", + "X, Y, Z, I = PauliX(), PauliY(), PauliZ(), PauliI() # noqa: E741\n", + "\n", "\n", "n = 3" ] @@ -69,11 +67,11 @@ "cell_type": "code", "execution_count": 3, "metadata": { - "collapsed": false, "ExecuteTime": { "end_time": "2024-10-23T02:59:45.866820Z", "start_time": "2024-10-23T02:59:45.860093Z" - } + }, + "collapsed": false }, "outputs": [], "source": [ @@ -123,7 +121,7 @@ " circuit.evolve(duration=np.pi / 4, gate=AnalogGate(hamiltonian=-xi))\n", " circuit.evolve(duration=np.pi / 4, gate=AnalogGate(hamiltonian=-yi))\n", " circuit.evolve(duration=np.pi / 4, gate=AnalogGate(hamiltonian=ii))\n", - " \n", + "\n", "circuit.measure()" ] }, @@ -131,11 +129,11 @@ "cell_type": "code", "execution_count": 5, "metadata": { - "collapsed": false, "ExecuteTime": { "end_time": "2024-10-23T02:59:45.908954Z", "start_time": "2024-10-23T02:59:45.902329Z" - } + }, + "collapsed": false }, "outputs": [], "source": [ @@ -156,11 +154,11 @@ "cell_type": "code", "execution_count": 6, "metadata": { - "collapsed": false, "ExecuteTime": { "end_time": "2024-10-23T02:59:46.705998Z", "start_time": "2024-10-23T02:59:46.081825Z" - } + }, + "collapsed": false }, "outputs": [], "source": [ @@ -172,17 +170,19 @@ "cell_type": "code", "execution_count": 7, "metadata": { - "collapsed": false, "ExecuteTime": { "end_time": "2024-10-23T02:59:47.230939Z", "start_time": "2024-10-23T02:59:46.712315Z" - } + }, + "collapsed": false }, "outputs": [ { "data": { - "text/plain": "
", - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAh0AAAEmCAYAAADGNSIUAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAABUo0lEQVR4nO3deXhTZfo38O9J0ixd0nTf2LeylbaAoBYoUnDAEUWQmXEZZBxF1MEZf0oV0BEVRkQZR8UZXEBxQ8UFl8EFW4QBXwGBlrIUSimlpVvadM+enPeP9ARCuiTpOdl6f66rl/bk5Mn95KQ5N8/KsCzLghBCCCFEYCJfB0AIIYSQvoGSDkIIIYR4BSUdhBBCCPEKSjoIIYQQ4hWUdBBCCCHEKyjpIIQQQohXUNJBCCGEEK+gpIMQQgghXiHxdQD+wmq1wmw2QyQSgWEYX4dDCCGEBAyWZWG1WiGRSCASdd2eQUlHB7PZjKKiIl+HQQghhASstLQ0SKXSLh+npKMDl5mlpaVBLBbzUqbFYkFRURGvZQYSqj/Vn+pP9af69436c/XtrpUDoKTDjutSEYvFvH9AhCgzkFD9qf5Uf6p/X9XX6t/T8AQaSEoIIYQQr6CkgxBCCCFeERBJh9FoxI033ogDBw50ec7JkyexcOFCpKenY8GCBTh+/LgXIySEEEJIT/x+TIfBYMAjjzyCkpKSLs/RarVYsmQJ5s6di3Xr1mHbtm247777sGvXLoSGhnoxWkIIIYGCZVmYzWZYLBbey+bK1Ov1QTGmQywWQyKR9HpJCb9OOs6ePYtHHnkELMt2e97OnTshk8mQm5sLhmGwatUq7N27F9999x3mz5/vpWgJIYQECqPRiOrqami1WkHKZ1kWEokE5eXlQbP2U2hoKJKSkrqdEtsTv046Dh48iMmTJ+Phhx9GRkZGl+cVFhZiwoQJ9gvLMAzGjx+PgoICSjoIIYQ4sFqtKCsrg1gsRnJyMqRSKe+JAcuy0Ol0UCgUAZ90sCwLo9EItVqNsrIyDB8+vMepsV3x66Tj9ttvd+k8tVqNYcOGORyLiYnptkumK3w1s1ksFsz81+vQtBqAHT95VEavPqb+9Bn/8icAAoXEQ6EMD4VIROJOvlhYWC1WiP67Dz0FKvTl8vw7r3eRWa0WiHf+3GMx4VIZosPC7Kd5+iXdm2j5vzGwaG9vR9jB0+gqst68pi/q6s6zWLBoa2tD+K8lkIeEYF7mKMwZl+rR6/LNYDDAYrGgX79+gnXBcyt0ymSygE86AEAul9tbbvR6PWQymcPjrt47/TrpcJVOp3Nq7pFKpTAajW6XxdeqpI06HWo0Bth6hrrvHiK+xsf1sXbzGP/9xYHF3OMZGhhwoaHFC7H4gLrZ1xH4Vl0TAGDP6TIcOFGMeaMG+jaeDhKJBAaDQfDX0el0gr+GtxgMBphMJpw6dcrjMoIi6ZDJZE4JhtFohFwud7ssPleP2xwfh29+PYKomCiIHP6N4HiT6+qWd2koS+dndHqU7eqxK16zx/ss63SO67dm25lWlkVTUxNUKpVjpt9FQaztVV17hS4q4HS0m+LYrk7qMr5O3lUWuNiiRqO+FTKJFFf3H40Qke3PymploVbXIS4uHiIRc0VZV5bjeeLj6lNdem95LMtqZVFfr0ZMbJxT/YFLcbfq9dh99jTMVityRqQia/Awp3Odn9u7RLE3z3b1ta1WKy5cuIABAwZ43BTt6Wt3+txev7Z751utVlRUXED//gNQdLEW7/58FB8fP4fZk8bj6qH9exlN7+j1epSXl0OhUHh0n3BFMHWvcEQiEUJCQjBs2DCn941bkbQnQZF0JCQkoL6+3uFYfX094uPj3S6Lz9Xjrh06DKGtbcjIyAiK0cvuslgsKCgoCPr6G8xGrN+7Der2JgxNkeLm0VMA9J36d8Wd+l9zagA25O/C0Zoy/G3mdMSEhXkpSuFYLBYUsHpkpI/su9efMSAjYxTmTRwLg9mCjw8ewz/++xO++usiiHlKxDwhFtu6Q7kfIXnjNbyFq0tv7pMBsU5HT9LT03H06FH7vwJYlsWRI0eQnp7u48hIXyCTSDF/zDQAwN6yArQahBkNH8x+M3I0RicmwWA24+Mjh3wdDhFA7g3TEKmQ40xNPb49dsbX4RAfCdikQ61WQ6/XAwBmz56NlpYWrF27FmfPnsXatWuh0+kwZ84cH0dJ+orR8YMwIDIeJqsFBypO+jqcgMMwDO68ajIA4Pvik9CZTD6OiPBNqZBjUVYmAOCD/3fUx9EEh/feew+1tbW8lPXpp5+itLSUl7K6E7BJx5QpU7Bz504AQHh4OF5//XUcPnwY8+fPR2FhId544w1aGIx4DcMwyBo0DgCwv7wI1l6OOeiLJvQfiGRlJLRGI3aXnPZ1OEQAv5s0DmIRg1/PX8TparWvwwlo5eXlePHFFxEZGQkA2LNnD1JTU7v8+dvf/tZteceOHcPHH38seNwBk3ScPn0akydPdvj98jU4xo0bhy+++ALHjh3D9u3bMXr0aF+ESfqwCckjoJBI0aBtQZmmytfhBBwRw+C3Y9IAAD+e9nx0PPFfiZERyBltGyj85VFqEeyNvLw8XHvttfYBnZMnT8a+ffscfvbu3YusrCyoVCosXbq02/JycnKQn58veNwBk3QQ4u+kkhCMTRwCACioPuvjaALT9OEjAADHqy5C097u42iIEG5MHwkA+K7oTK9nIfVleXl5mDFjhv13uVyOuLg4+090dDTWrVuHEydOYOvWrRg5cmS35V1zzTVoaGjAmTPCjrehpIMQHmUkDQcAFFafpS4WD8RHKDEyPgEsgP1llLgFo2mpgyEPkaBC04xTftbFwrIsDGYTbz9GS/ePe5p0aTQaFBYW4rrrruv0cYvFguXLl+Pnn392KeEAbGtbZWVlCd7aERRTZgnxFyPjBkAmDkGTvg0XW/zrCzVQTBk6HMV1tfi57BzmjqUZaMEmTCbF1BGDsetECfJOnMXoZPeXNhACy7L41/7tKGus9tprDolKwl+zFro9pfann37C2LFjERsb6/QYl3Ds378f77zzjkPCsXv3bqxbtw4sy+Lee+/FwoULHZ6bk5ODbdu29dgV0xvU0kEIj0LEEgyP7QcAOFNf4eNoAtOkgYMAAEVVF2G09LyaKQk82amDAQD7z5b7OBJHgbKaxp49ezBt2jSn4xaLBbm5ufaEY9SoUfbHzGYz1q1bh3fffRdffPEF3nrrLTQ2Njo8Pzs7G8eOHYNGoxEsdmrpIIRnqXEDcLy2DKfrK3CtbJCvwwk4g6JjEKUIRaNOi5PV1cjo59vVKwn/sobblkIvuFCFVr0BEXJZD88QHsMw+GvWQt4SXduKpFooFKFdtmRIxZ5tFZ+SkoLKykqHY1zCsW/fPrz99tsOCQdgm50ybNgwJCQkAACmTZuG/fv348Ybb7SfU1lZCaVSCaVS6XZMrqKWDkJ4lho7AABQ1lgNM9vX911xH8MwGN/f9h4eqbzg42iIEPpFR2JAjAoWK4uD5yp7foKXMAwDmSSEtx+puPvHPV2pNCcnB3v27IHVatvz6cqEo7PZm3V1dfaEA7Ct5H3lGh95eXmYNm0aJBLh2iMo6SCEZwnhUYiUh8NstaDOEKSbmAnMnnRUUNIRrLjWjv0l530bSADKzMwEy7IoLCyE1WpFbm4u8vLysH79esTFxUGtVjv8uLoDbH5+PnJycgSNnbpXCOEZwzBIje2Pg5WnUGPs4zuMeiizo0ulRF0HrdGI0Ct2kSaB79phA7Htl0IcPEdjn9wlEokwffp05OXlQSQS4ZtvvgEALFmyxOlchmHw66+/Ij4+3qFlo7a2FuPGjbP/XlFRgbKyMkydOlXQ2CnpIEQAQ6KTcbDyFNTGVl+HEpDiwiOQEBGB2tZWFNfW2Fs+SPAYPzAZAHCmtt5vxnUEkpycHGzYsAGPPvooTp/ueQXfcePGoaSkBLW1tQgPD8fevXvxwAMP2B/Pz8/H5MmTER4eLmTY1L1CiBAGRSUCAOpNrbB09LsS94xKTAIAnKzx3hRG4j3xynD0i1KCZYFjFTW+DifgZGVloaqqCuXlrs0AkkgkeOyxx7Bo0SLMmzcPd999N6KiouyP5+fnOyw2JhRq6SBEAIkRMZBLpNCbjahubcDA6ERfhxRwxiQm46eSM5R0BLHMgSmobGzBkfKL9jEexDVyuRwFBQVuPScnJ6fLMRtbt27lIaqeUUsHIQIQMQwGqWyJxnkvLjYUTEZ3tHScqq2m1V2DVOZA2zUuKKe9ivoKSjoIEQjXxVLWRE3HnhgSEwu5RII2gwEVjcItVkR8Z/zAFADA0QvVsFopsewLKOkgRCADVbY58RXNdT6OJDBJxGIMj7O9h2fqans4mwSi1MQ4yCQStOoNuKBp8nU4xAso6SBEICnKOABAfXsTDGajj6MJTEPjbO/h2XraxyYYScQipCba9g85eZESy76Akg5CBBIhC0WoSAoWwMWWel+HE5CGx9k2AzurptaiYDU6xdaadaKKrnFfQEkHIQKKDgkDQF0snhoWe6mlgwaTBidul9mTF+lvpC+gpIMQAcWE2BbaqWym7gFPDIiKRohYDK3RiJoWWt01GI1J6Ug6qmrBUmIZ9CjpIERA0ZR09IpELMbgGFuf/1k1vYfBKDUxDmIRA027DjXNbb4OhwiMkg5CBMR1r1S3NsDE05bZfc3wji6WEhrXEZRkIRIMi48BAJykcR1Bj5IOQgQUJpYhNEQGK2tFTSutNeGJoR2DSUvr6YYUrC6N66AZLMGOkg5CBMQwjH3qbFUrzWDxxNCOlo6yhgYfR0KEMqoj6ThdQ11o7njvvfccdo7tjU8//RSlpaW8lNUdSjoIEVhieDQAUEuHhwZG296/+vY2tBn0Po6GCGFYgm3cTkktJZauKi8vx4svvojIyEgAwJ49e5Camtrlz9/+9rduyzt27Bg+/vhjweOmpIMQgSV0JB3VrfSF6okwqQxxHdttl2socQtGwxNsYzrKGxphMNPYJ1fk5eXh2muvhVwuBwBMnjwZ+/btc/jZu3cvsrKyoFKpsHTp0m7Ly8nJQX5+vuBxU9JBiMASI7iWDko6PDUwuuOmpKH3MBglKMMRIZfBYmVxXt3o63ACQl5ensNW9HK5HHFxcfaf6OhorFu3DidOnMDWrVsxcuTIbsu75ppr0NDQgDNnzggaNyUdhAiM617R6FppOXQPDYyyJR3nKekISgzD2Fs7qIulZxqNBoWFhbjuuus6fdxisWD58uX4+eefXUo4AEAqlSIrK0vw1g5KOggRWJhUDqUsFACN6/DUIHtLB71/wWq4fVyH7wZcsywLncnE24++h8c9XQztp59+wtixYxEbG+v0GJdw7N+/H++8845DwvHggw/iqquuwkMPPdRpud7oYpEIWjohBACQGBGDFoMW1a0NGNix5T1xHTeYlFo6gtcwH7d0sCyLv33+CU7WVHvtNcckJeOlWxaCYRi3nrdnzx5MmzbN6bjFYkFubq494Rg1apTD44sWLcKCBQuwY8eOTsvNzs7GihUroNFoEN3xN8c3aukgxAuSImxfqNTS4RluTIdG245WPc1gCUZcS8dZH7Z0uHvz95WUlBRUVlY6HOMSjn379uHtt992SjgA22DTsLCwLsutrKyEUqmEUqnkPWYOtXQQ4gXcYFKaweKZUKkU8eERqGtrRbmmAWOTU3wdEuHZpRksTTCYzJCFePf2xDAMXrplIfQ8zZ5hWRY6rRaK0NAukxm5ROJRopOTk4OHHnoIVqsVIpHIKeEYPXq0RzHn5eVh2rRpkEiEe+8p6SDECy61dFDS4amB0TGoa2vFeUo6glJcRBgiFXI06/Q4p9bYFwzzJoZhoAgJ4aUslmXBhoRAERLCewtKZmYmWJZFYWEh0tPTkZubi7y8PLz88suIi4uD+op9iqKjoyEWi3ssNz8/Hw888ACvsV6Jkg5CvCCxI+lo1LdBZzJAESLzcUSBZ1B0DA5dOE+DSYMUN4Pl1/MXUVLb4JOkI1CIRCJMnz4deXl5EIlE+OabbwAAS5YscTqXYRj8+uuvCO9Y66YrFRUVKCsrw9SpUwWJmUNJByFeEBoiQ4QsFK0GLdTtTRigSvB1SAGnf1QUAKCiiZKOYDUkLhq/nr+I8/V0jXuSk5ODDRs24NFHH8Xp06d7XV5+fj4mT57cY3LSWzSQlBAviQ9TAQDq2mjxI0/0U9mSjotNTb4NhAhmUJztGpfV099IT7KyslBVVYXy8nKXn7N48WL89a9/tc9+OXr0qP2x/Px8h8XGhEItHYR4SVx4FEo1Vahrb/J1KAGpn0oFAKhtbYHRbIZUwMFuxDcGx3ZMjaZVSXskl8tRUFDg1nPeeeedLh/bunVr7wJyEbV0EOIlXEuHup2+UD2hUoQiVCoFC6CqudnX4RABDIq91NLh6cJZxL9R0kGIl8SH2b5Q69qafBtIgGIYxt7FUtlMiVsw6h8TCRHDoN1gRH2b1tfhEAFQ0kGIl8SFqwAAde1N9K84D/WLVAEAKpso6QhGMokEKVG2hanK1DSYNBhR0kGIl8SGRoIBYDAb0Wqgf8V5ggaTBr/BHV0s52kwaVCipIMQLwkRSxAdavtXHA0m9UxKx2BSaukIXoPibINJaQZLcKKkgxAvirOP66AvVE/Yx3RQS0fQsrd00AyWoOTXSYfBYMDKlSsxceJETJkyBVu2bOny3Pvvvx+pqakOP7t37/ZitIT0LL5jXIeaWjo8wrV0NOm0aDPQxm/B6NIMFhrTEYz8eqL7+vXrcfz4cWzduhVVVVV47LHHkJycjNmzZzudW1paihdeeAHXXHON/VhkZKQ3wyWkR/HU0tErYVIZokPDoNG242JTE1ITEn0dEuHZ4I4Fwi40NMFitUIs8ut/GxM3+W3SodVqsX37drz55psYM2YMxowZg5KSEnzwwQdOSYfRaERlZSXS0tIQFxfno4gJ6Vn8ZTNYiGf6qVTQaNtRSUlHUEqKVEIqEcNotuBiYwsGxKh8HRLhkccpZFtbG06ePAmj0Yi2tjY+YwIAFBcXw2w2IzMz035swoQJKCwshNVqdTj33LlzYBgG/fv35z0OQvjEtXTUtzfBylp7OJt05tK4DmotCkYiEWPvYqEZLMHH7ZYOg8GAZ599Fp9//jkA4Pvvv8fzzz8PnU6Hf/7zn7x1aajVakRFRUEqldqPxcbGwmAwoKmpCdHR0fbj586dQ3h4OHJzc3Hw4EEkJiZi2bJlyM7Odvt1LRYLL/FfXhafZQYSqr9z/SOkoZCIxDBbLVC3NSE2NHi7AIW6/klK23tW0aTx688Wff49r//AaBXO1NSjtLYeWcMG8B0aLBaLbev5jh8hcOUG05o83PtlsVicrqur19ntpOOFF17A2bNn8cUXX+APf/gDAGDZsmVYsWIF1qxZgxdeeMHdIjul0+kcEg4A9t+NRqPD8XPnzkGv12PKlClYsmQJdu3ahfvvvx8ff/wx0tLS3HrdoqKi3gXupTIDCdXfsf5hIimarTocPHYEyfIoH0XlPXxff0PH1val1dVu7z3hC/T5d7/+cosBAHDk9FmMCxNmTIdEIoFOp3NqOeebTqcTrOyPPvoIOTk5vAwr2LFjB9LT0zF48OAuzzEYDDCZTCguLvb4ddxOOn744Qe89tprSE1NtR9LTU3Fs88+i7vvvtvjQK4kk8mckgvud7lc7nD8gQcewB//+Ed7K8vIkSNx4sQJfPLJJ24nHWlpaRCLxb2I/BKLxYKioiJeywwkVP/O63/o10o0152HKjkOGQPG+jBCYQl1/ZUN9Xj/zCm0WMzIyMjgrVy+0eff8/oXG0T4+nQFdGKpINdYr9ejvLwcCoXC6X7CF5ZlodPpoFAowDAM7+WXl5fjlVdewe233w65XI49e/bgvvvu6/L8OXPm4KWXXury8eLiYpSXl2PFihVdniMSiRASEoJhw4Y5vW/c9e6J20lHe3s7FAqF03Gr1cprM2JCQgIaGxthNpsh6dhNUq1WQy6XQ6lUOpwrEomcunWGDBmCs2fPuv26YrGY9y8IIcoMJFR/x/rHdWz8ptG19on3he/rn9IxpqNFr4febEaYTMZb2UKgz7/79R/YMaajsrFZkPdOLBaDYRj7j5CEeo38/Hxce+219vvx1VdfjX379jmcY7VasWLFCpw4cQJLly7tNo6ZM2fi2WefxcqVK7s8h6tLbz7TbrdbzZgxAy+99JLD4NGKigqsWbPGozEUXRk1ahQkEolD8+nhw4eRlpYG0RVTqB5//HGn7Ky4uBhDhgzhLR5C+BLTsSppvZZ2SvVEqFQKVccXbXULvYfBiJuxUqFphtUaPGMi+JSXl4cZM2bYf5fL5YiLi7P/REdHY926dThx4gS2bt2KkSNHdlveNddcg4aGBpw5c0bQuN1OOv7+979DJBJh0qRJ0Ol0WLBgAa6//noolUo8+eSTvAWmUCgwb948rF69GseOHcOPP/6ILVu2YNGiRQBsrR56vW1xoBkzZuDrr7/Gjh07UF5ejo0bN+Lw4cO48847eYuHEL7Ehtla5Rra6YbpKW4wKSUdwSlJFQGxiIHRbEFdK/+zI7vCsiy0RiNPPybojCZojaYuz/F0kKlGo0FhYSGuu+66Th+3WCxYvnw5fv75Z5cSDsA2ZjIrKwv5+fkexeQqt7tXIiIi8Oqrr6KiogKlpaUwm80YPHgwhg4dyntwK1aswOrVq3HXXXchPDwcy5Ytw/XXXw8AmDJlCp577jnMnz8f119/PZ566in85z//QVVVFYYPH4633noL/fr14z0mQnorpmPGSr22GSzLCt68G4ySlJE4VVuDqmZKOoJRiFiMZJUSFZpmXGhoQmJkhOCvybIs/vCfbThSXiX4a3EmDErBtqV/cPs74KeffsLYsWMRGxvr9BiXcOzfvx/vvPOOPeGorq5Gbm4uGhoaIBaL8cADD2DOnDkOz83JycG2bduwdOlSzyvVA7eTjqoq2wURi8UYMWKE0/Hk5GSeQrO1djz//PN4/vnnnR47ffq0w+8LFy7EwoULeXttQoTCJR16sxFakx5hUucxUqR7SR1b3FNLR/DqH61ChaYZFZpmTBrinTWYAuUfAHv27MG0adOcjlssFuTm5toTjlGjRtkfE4vFWLlyJUaNGgW1Wo358+cjOzsboaGh9nOys7OxYsUKaDQah2Up+OR20jFjxoxuL8ypU6d6FRAhwU4qliBSHoZmfTvq25sp6fBAUsdg8mpq6QhaA2JU+PlsOS40NHnl9RiGwbalf4DOZOKlPJYFdFotFKGh6OqWqQgJ8SjRSUlJQWVlpcMxLuHYt28f3n77bYeEAwDi4+MRHx8PAIiLi0NUVBSam5sdko7KykoolUqnyRp8cjvpyMvLc/jdYrHgwoULePXVV/HAAw/wFhghwSw2NNKWdGibMTCKlvJ2VzK1dAS9/tEdi8BpvHeNGYZB6BXrQ3mKZVnAHIJQqWeJRXdycnLw0EMPwWq1QiQSOSUco0eP7vb5x48fh9VqRVJSksPxvLw8TJs2zT5jVAhul5ySkuJ0bMCAAVAqlVi+fDmvM1gICVYxoZEo1VShngaTeoQbSFrb2gKzxQJJH56SGqy4GSzeaukIJJmZmWBZFoWFhUhPT0dubi7y8vLw8ssvIy4uDmq12uH86Oho+xTXpqYmPPbYY3j22Wedys3Pzxe88YC3dIZhGNTW1vJVHCFBzT6DhabNeiQ6LAxSsRhGiwXqtjYk0Y7SQedSS0eTbwPxQyKRCNOnT0deXh5EIhG++eYbAMCSJUuczmUYBr/++ivCw8NhNBrx4IMP4t5778X48eMdzquoqEBZWRmmTp0qaOxuJx0bN250Otbe3o7vvvsOWVlZvARFSLC7fAYLcZ+IYZCojMSFRg2qWpoo6QhCA6JVAABNuw5tBiPCZfx0ewSLnJwcbNiwAY8++qjTxIrOsCyLxx9/HFdffTXmzZvn9Hh+fj4mT56M8PBwAaK9xO2k48CBAw6/MwyDkJAQ3HzzzfjTn/7EW2CEBDNuozdaq8NzSR1JR3VzM0AbTAedCIUMUaEKNGp1qGhowqjkeF+H5FeysrLwyCOPoLy8HAMHDuzx/MOHD2Pnzp1ITU3Fjz/+CABYv369fUuT/Px8+5IUQnI76XjvvfeEiIOQPoXrXmnSt8FkMSNELNzArWDFtW7QYNLg1T8mEo1aHS5oKOm4klwud2vDw4kTJ3a7UdvWrVt5iKpnLn3T7dixw+UCO2u2IYQ4CpcqIBWHwGgxQaNrRUJ48O82yzdalTT49Y9W4VhFDSoa6BoHC5eSjldeecWlwhiGoaSDEBcwDIPYsEhUtdSjvr2Jkg4PJHe0dNCqpMHLPoOFBpMGDZeSDqHXYiekL4oN7Ug6aDCpR+wtHc20nHyw4maw0LTZ4OFRR7JGo0FZWRmsVisA26hYo9GIkydPdjplhxDijNttVqNt8XEkgSmxI+nQmoxoNRiglMt9HBHh24COpONiI/2NBAu3k45PPvkEzzzzDMxmMxiGse+SxzAMxo0bR0kHIS6KpqSjV2QSCaIUoWjUaVHb2kJJRxBKibqUdFitLEQifluzPN3lta/i4/1ye2v7TZs2YenSpTh27BhiYmKwe/dufPPNNxg1ahRmzZrV64AI6SuiFbako0HX6uNIAldCxx4RNS2UuAWjxEjbFvcmiwXqtnbeyg0JCQEAaLVa3srsC7j3i3v/POF2S0ddXR3mzZsHqVSKMWPGoKCgAHPmzMHKlSuxatUq3HPPPR4HQ0hfQt0rvZcYoURxbQ1qW+k9DEYSsQiJkRG42NiCi5pmJCj5WbhKLBZDpVKhrq4OABAaGsr7mCCWZWEwGCASiQJ+vBHLstBqtairq4NKpbIvqe4Jt5OO6OhoaDQa9OvXD0OGDMGpU6cwZ84cJCQk0DLohLghShEBANCa9NCZDFCEyHwcUeDhWjpqqaUjaKVEKXGxsQWVjS0YP8h57y9PJSbaNlrkEg++sSwLk8mEEA93kvVHKpXK/r55yu2kY86cOXjsscewdu1aTJ06Fbm5uRgzZgx2797t0qpohBAbRYgMoSFyaE16NOpaKenwQEJER/cKtXQELdu4jkpcbOR3lhfDMEhKSkJ8fDxMPG1nfzmLxYLi4mIMGzasVy0D/iIkJISXeriddDz66KOIiIhAY2MjcnJysGDBAjz11FNQqVR47rnneh0QIX1JdKgS2mY9GrQtSFbG+jqcgJPYkXRQ90rw6hdlu8ZCzWARi8WCJAUWiwWAbeXQYEg6+OJ20qHRaPCXv/zF/vvDDz+Mhx9+mNegCOkrYhQRqGyug0ZHN01PXN69Qmt1BCduBkslzy0dxDfcnr0yffp03HHHHfjggw/Q0NAgREyE9Bk0bbZ3uO4Vbq0OEnyEbukg3uV20vHtt98iOzsbn332GbKzs7F48WJs374dzbQUMSFu47a4p6TDMzKJBNGhoQCoiyVYXblWBwlsbicdgwYNwpIlS/D555/ju+++Q3Z2Nnbs2IHs7Gzcd999QsRISNCKDrXNYKG1OjxnH0xKM1iCklBrdRDfcDvpuJxMJoNMJkNYWBgYhoFOp+MrLkL6BG6BMGrp8Jx9XAe1dAQlbq0OALiooRb1QOf2QNKLFy9i165d+P7773Hs2DGkpaVhzpw5WLNmDeLj44WIkZCgxY3poLU6PGefwUItHUFLqLU6iPe5nXTk5ORg1KhRmDNnDl588UWkpNAHgBBPySVShIXI0U5rdXiM1uoIfkKt1UG8z+2kY+fOnRgyZIgQsRDSJ0WHKtFOa3V4jLpXgh/NYAkebo/poISDEH7Zp83SWh0eubx7hXYNDU60Vkfw6NVAUkJI78XQYNJeiae1OoIetXQED0o6CPExWiCsd2itjuBHa3UED0o6CPEx+1odlHR47NJaHdT8HowuX6ujrrXN1+GQXnB7IKnJZMKOHTtQVFQEs9ns1IdKm74R4h77Wh00psNjCUolTtXW0AJhQYpbq+NiYwsuNrbY1+0ggcftlo5Vq1Zh7dq1aGxspEFbhPDg0lodBuhMNCbBE7TbbPBL6RjXQYNJA5vbLR27du3Ca6+9hqysLCHiIaTPuXytDo2uBSkhcb4OKeAkUNIR9C6t1UHXOJC53dIRERGBhIQEIWIhpM+6NJiU9mDxBLdWB3WvBK/+3GBSWgo9oLmddNx///1Yu3YtSktLYTabhYiJkD6HZrD0zuXdK9TtG5xSornuFfobCWRud6+8+eabqKurw4033tjp46dOnep1UIT0NdxaHQ00mNQjXPeKzmRCq0EPpVzh44gI3y5Nm6WWjkDmdtKxbt06IeIgpE+jlo7ekUokiA4Ng0bbjpqWFko6ghC3QFhVk22tDpGI8XFExBNuJx2TJk0CAJw/fx6lpaWwWq0YPHgwhg0bxntwhPQVMR1JB63V4blEpdKedIyIp3FnwSZBya3VYUVtSxuSVDRtNhC5nXS0tLRgxYoVyMvLQ2RkJCwWC9rb23HVVVfhtddeQ0QEfRAIcRfX0tFI3Ssei4+IwMmaaprBEqQuX6ujqqmFko4A5fZA0jVr1qCmpgY7d+7EgQMH8Ouvv+Lrr7+GVqulhcEI8VC0wvYFSmt1eI4b11HXSjOAglWyivZgCXRuJx35+flYvXq1w26zw4YNw9///nfk5eXxGhwhfYWsY60OgFYm9VRCRysrtXQEr8vHdZDA5HbSIZPJIBI5P41hGFgsFl6C4hgMBqxcuRITJ07ElClTsGXLli7PPXnyJBYuXIj09HQsWLAAx48f5zUWQoRGa3X0Di0QFvySabfZgOd20jFjxgw8/fTTuHDhgv3Y+fPnsWbNGmRnZ/Ma3Pr163H8+HFs3boVTz31FDZu3IjvvvvO6TytVoslS5Zg4sSJ+Pzzz5GZmYn77rsPWq2W13gIEZI96aCWDo9Q0hH8UlS2abNVNG02YLmddCxfvhwymQy/+c1vMHnyZEyePBlz5sxBZGQknnzySd4C02q12L59O1atWoUxY8Zg1qxZuOeee/DBBx84nbtz507IZDLk5uZi6NChWLVqFcLCwjpNUAjxV9xaHTRt1jPxHUlHu9GINoPex9EQIdACYYHP7dkrSqUS7733HoqLi3Hu3DnIZDIMHjzYYYwHH4qLi2E2m5GZmWk/NmHCBGzatAlWq9Whi6ewsBATJkwAw9jmbTMMg/Hjx6OgoADz58/nNS5ChEJrdfSOIiQESrkcLXo9altbES6T+zokwrMU1aUxHSzL2r/zSeBwKemoqqpCUlISGIZBVVUVAFvykZGR4XAOACQnJ/MSmFqtRlRUFKRSqf1YbGwsDAYDmpqaEB0d7XDuleuExMTEoKSkxO3X5XNcClcW32NdAgXV3736q2RhAGxrdfjre/ZdyUE0alvw+3E5EPXwhe+L66+Uy9Ci1+Nvn2+D2A8Wj2JZK5ijP/s6DJ/hu/5Wq22Je73JjLS//5O3coXDAjt+8nUQTkQM8PurR+Px31zPW5mu/p27lHTMmDED+/fvR0xMDGbMmNFpdsllnXwtg67T6RwSDgD2341Go0vnXnmeK4qKitx+ji/KDCRUf9fq32hqBwCoWxtRUFAgYESesbIsfqg+CBZAolGBqJAwl57nzetvteoAAHqT1Wuv2TP/TCC9h9/6S0MAowkwGANljx3/jHP3ybOYnRDv9dd1KenIy8tDVFSU/f+9QSaTOSUN3O9yudylc688zxVpaWkQi8VuP68zFosFRUVFvJYZSKj+7tVfbzbiqx+OwsCaMXLMaMhDpD0+x5s02haw1fsBAAkDUzA6flC35/vi+g9sKIREbkTWgDREKXy7eJSVZVFTXYPEpMQeW4WCkVD11xpMuKhp4608oVjBorGhEVExURDBv66/QhqCxZOvQaiMv+8Y7u+9Jy4lHSkpKfb/X7FiBTZu3Ahlx1bSHI1Gg3vuuQeff/65m6F2LiEhAY2NjTCbzZBIbGGq1WrI5XKn105ISEB9fb3Dsfr6esTHu5/FicVi3r8ghSgzkFD9Xat/mFiB0BA5tCY9mo3tCPOz/UOaDO2X/X+by9fUW9ffylrRYmxHmJzBLeMm+TzpsFgsKDAXIGNsRp/8/FP9LSgoKEBGRt+sf1dcSjr27t2LY8eOAQAOHTqETZs2ITQ01OGc8vJyXLx4kbfARo0aBYlEgoKCAkycOBEAcPjwYaSlpTmtE5Keno4333zT3sXDsiyOHDmCpUuX8hYPId4QHaqEtlmPBm0LkpWxvg7HweVTef1xLZFmfTusrBUiRoRIuWtdP4QQ73Ip6Rg8eDDeeustsCxrv6GHhITYH2cYBqGhoVi7di1vgSkUCsybNw+rV6/GP/7xD9TV1WHLli32pdbVajUiIiIgl8sxe/ZsbNiwAWvXrsUf/vAHfPTRR9DpdJgzZw5v8RDiDTGKCFQ216FR53839ctn1fjjxnTce6aSh0PEuL0aACHEC1xKOvr37493330XgK17ZdWqVQgPDxc0MO61Vq9ejbvuugvh4eFYtmwZrr/eNtp2ypQpeO655zB//nyEh4fj9ddfx1NPPYVPPvkEqampeOONN5xaYwjxd/48bVZzWSLkjwuYcYkQ9x4SQvyP2+t0PPfcczCbzaitrbVPkWFZFkajEadOncINN9zAW3AKhQLPP/88nn/+eafHTp8+7fD7uHHj8MUXX/D22oT4AnfDbPDDm/rliZA/JkXcDr3RPh7LQQjpmttJR15eHp544gk0NTU5PRYXF8dr0kFIXxPtx6uSXt7S0WbUwWA2QSYJ6eYZ3sWNM4kOpaSDEH/ldsfniy++iFmzZuG///0vlEolPvroI2zatAkpKSn429/+JkCIhPQdMX7avWJlrfYxE9zkP3/rYuHiiVJQ9woh/srtpKOiogL33HMPhgwZgrFjx0KtViM7OxtPPfUU3n77bSFiJKTP4KZ5tpv00JvdX9xOKJfPDEmMiAHgf4kR19IRQ2M6CPFbbicdSqUSOp1t1b/BgwejuLgYADBkyBBUVlbyGx0hfYwiRIbQENuidv50U+diiVKEIzbUttOnP7V0sCxrH9NBSQch/svtpCM7OxtPP/00zp49i8mTJ+PLL7/EiRMn8PHHHyMuLk6IGAnpU7iBkP50U+fGc0QrlJfNsPGfab2tBi1MVgsYMFDJhZ9ZRwjxjNtJx6pVqzBw4EAcP34cM2fORHp6Om699VZ88MEHePzxx4WIkZA+xR9v6hr7dNSISzNs/Kglhpvto1KEQyyi1R8J8Vduz15paWnB2rVr7auCvvjii1i9ejVkMhnOnDnDe4CE9DX2pMOPWjoaL2vpiFH4X3z2pIgGkRLi19xu6cjJyXGaLhseHo7q6mrcfvvtfMVFSJ8V44fTZi9feMsfFzDj4qPxHIT4N5daOrZv345NmzYBsA3YWrBggdP+Jy0tLRg6dCj/ERLSx/jjTf3SwluXkg5/Wqvj8u4fQoj/cinpmDdvHkJCQmC1WrFy5Ur86U9/QkTEpT9uhmGgUChw9dVXCxYoIX0Fd+Ns8JP9V6wse2kgaWgEQkNkUEik0JmN0OhakNQxhdaXNDrqXiEkELiUdISEhGDevHkAgH79+mH8+PFobm5GTIzty+bo0aMYM2YMpFKpYIES0ldwN852ow4GsxEyiW//rtoMWpivmBkSHarExZZ6NGpb/SPpoH1XCAkIbo/piIiIQE5ODjZv3mw/9uijj2L27NkoKSnhNThC+iLbWh0yAI5Lj/uKfWaIPMw+M4RLjPxhj5jLW2JoTAch/s3tpOOZZ57BrFmz8PDDD9uP7dq1CzNmzMAzzzzDa3CE9FX+tAdLo31Pk0s3dH8ad9LaSUsMIcQ/uZ10nDp1CnfddRdCQi4NHhOJRFi0aBGOHz/Oa3CE9FX+tBZGQyd7mvjTtF4u8aE1Ogjxf24nHUlJSfh//+//OR0/cuQIYmNjeQmKkL6OW5W00Q+6Vxo7mY7qT9N6aRApIYHD7cXBli5dilWrVuHo0aMYO3YsAKC4uBhfffUVnnrqKd4DJKQv8qeWjku7t16aseZP3Su0RgchgcPtpOPmm29GdHQ0PvnkE2zbtg0SiQQDBw7E5s2bMXHiRCFiJKTP8afui4ZOdm/lWmJajToYzSZIfbhWB81cISRwuJ10AMDUqVMxdepUvmMhhHTwl+4LlmU7vakrQmSQS6TQm43Q6FqRGBHtqxDtiRm1dBDi/9we0wEAX331FebPn4+JEyeioqIC//jHP/DGG2/wHRshfVbUFat++opt91YzGDD21g3AtiCgv3Sx0L4rhAQOt5OODz/8EOvXr8f8+fNhMtm+DMeMGYPNmzdj48aNvAdISF8UGiKDwr5Wh+9u6vXaZgCdzwzxh7U6HFdLpaSDEH/ndtLx3nvvYc2aNbjzzjvt+6/cfPPNWL9+PbZv3857gIT0Vf6wVkd3gzRj/KClg1ujQ8TQGh2EBAK3k46qqqpON3br37+/0+6zhBDPxfjBYFJNN0kH193iD/Gp5OEQizzqLSaEeJHbf6Xp6enYsWOHwzGWZbFlyxaMGzeOr7gI6fPsN3Wt79bqaOjoXokOjXR6zB/GdNjX6KCuFUICgtuzV5544gksWbIEP/30E4xGI55++mmcP38eer0eb775phAxEtInRflBS4e9e6WTQZr+kHQ00CBSQgKK20nHiBEj8P333+Prr79GaWkpLBYLcnJycNNNNyEsLEyIGAnpk/xh2ix3U48Nc27p4OLz5VodtEYHIYHFo3U6ZDIZMjIyEBERAZFIhNTUVEo4COGZr1sSLFaLfRn2zsZ0+MNaHbQaKSGBxe2ko76+HsuWLUNBQQGUSiWsViva2tqQlZWFl156CRERET0XQgjpEZd0+KoloVHXBhYsJCIxImTO/6jg1uqoaqmHRtvik6SD9l0hJLC4PZB01apVCAkJwa5du3DgwAEcOnQI3333HfR6PVavXi1AiIT0TaEhMigkUgCwr0XhTfZBpAolRAzT6Tn2ab0+GHdCa3QQEnjcTjoOHjyIJ598Ev369bMfGzhwIJ544gns3r2b1+AI6et82cXiSteFL6f1thraYbGv0UHdu4QEAreTjv79++P06dNOx6uqqpCcnMxLUIQQG1+u+tndGh0cX07rrW+3tcREKSKcVkslhPgnt8d0LFiwAE8//TROnDiBzMxMSCQSnDp1Cu+++y7mz5/vsIbHvHnzeAyVkL7Hpy0dOttNPaaTNTo4XHzccunexL1mbDfxEUL8i9tJx9atWxEREYHvv/8e33//vf14WFiYwzGGYSjpIKSXuJt6o0/GdPQ8HZW74Te0+yDpaO85KSKE+Be3k478/Hwh4iCEdIJbC8MXLQlcItFdS0JMx/od7SY9dCaDfZM6b+AGuna2hgghxD+5PaZj3bp1MBqNTsdLS0txxx138BIUIcQmJqwj6fByS4LBbEKrUWeLoZuWDrlEigipAoD3Y+QSMWrpICRwuJ107N69G3PnzsWvv/4KADCZTHj11Vcxb948WqODEJ7FhqoAAFqTHlqTwWuvy81GUUikCJXKuz03JkwFwPutMa60xBBC/Ivb3Stff/01XnvtNdx999246aabcPToUZhMJrzyyiu47rrrhIiRkD5LJgmBUhaKFoMW9e1NGKBK8MrrdrfR25ViQyNxvrEa9e1NAkd1id5stLfEUPcKIYHD7aRDKpViyZIlKC8vx6effgqJRIJ169ZRwkGIQGJDIzuSjmYvJh2uLy/O3fS92dLBJUWhIXKvjiMhhPSO290rX375JebMmYOSkhK89957yM3NxVNPPYV7770XFy5cECJGQvq0WHv3RZPXXtOtpKOjNcSbYzoa2rveiI4Q4r/cTjqeeOIJLFy4EF988QWuuuoqLFq0CP/9738hkUhw4403ChEjIX0ad2NVe/Wm7vogTV+0dNAaHYQEJre7V3bs2IGhQ4c6HEtMTMR//vMf/PDDD7wFRgix8UVLAndTj+toZekOl3Q06VphspgRIvZo82q3UNJBSGByqaXj0KFDMJvNAOCUcHB0Oh3OnTvHX2SEEACXbvzeakmwsqx9UKgr3RcR0lBIxSFg4b2N6ewLg4XRRm+EBBKXko5FixahudnxC2/u3Lmorq62/97e3o6XX36Zt8BYlsWLL76Iq6++GpMmTcL69ethtVq7PH/NmjVITU11+Hn//fd5i4cQX+Fu/M36NhgtZsFfr1nfBpPVAhEjcmnLeIZhLnWxeGkGi31hsI4pxYSQwOBSOyjLsk7HKisr7a0fQnj77bfxzTffYOPGjTCbzVi+fDliYmLw5z//udPzS0tL8cgjj+CWW26xHwsPDxcsPkK8JTREDoVECp3ZiAZtM5IiYgR9PXVH4hATGgGxyLVhX7GhkahqqfdKa4yVtbq0GR0hxP+4PZDUW95991089NBDmDhxIq6++mo8+uij+OCDD7o8v7S0FKNHj0ZcXJz9R6FQeDFiQoRha0lQAbiUEAiJ67pwZTwHx5vjTpp0bbCwVohFYqgU9A8LQgKJXyYdtbW1qK6uxlVXXWU/NmHCBFy8eBF1dXVO57e1taG2thaDBg3yYpSEeM+l7gvhb+pq+3gOlcvPifHiDBb78ueKCIgYv/wKI4R0Qfhh5h5Qq9UAgPj4ePux2NhYAEBNTY3DccDWysEwDDZt2oS9e/dCpVLhT3/6k0NXi6ssFksvIu+8LD7LDCRUf/7qz238pm5rEvz9VLc12l/T1deKltu2QKhvb3KqN9/x1rXa4osOdT0+X6DPP9X/8v8GO1fr6XLS8e233zqMkbBardi1axeio6MBAK2t7o1a1+v1qK2t7fQxrVYLwLb6KYf7/842mzt37hwYhsGQIUNw55134tChQ3jyyScRHh6OWbNmuRVXUVGRW+f7qsxAQvXvff21Hf+6L6utQIG5oNfldaeioQYA0FLTgIIm116rxWxbklzd1oSjR4+CYRj7Y3xf/xPNZQAARmtCQYFr8fkSff6p/uQSl5KO5ORkbNmyxeFYTEyM0+yQpKQkl1+4sLAQixYt6vSx5cuXA7AlGDKZzP7/ADodpzFv3jxcd911UKlUAICRI0fi/Pnz2LZtm9tJR1paGsRisVvP6YrFYkFRURGvZQYSqj9/9Q9vuIifD5yFUcwiIyODnwA7wbIstv3wCwBg0thMxIdHufQ8i9WCL78/AivLYvDI4VApwgW7/ocPXwTagdEDhyNj0DjeyuUbff6p/n2p/lx9e+JS0pGfn9/rgK40efJknD59utPHamtr8cILL0CtVqNfv34ALnW5xMXFOZ3PMIw94eAMGTIEv/zyi9txicVi3j8gQpQZSKj+va9/fITt5q/RtQAMIBYJ834269thtJjBgEFcRJTLryMWixGlUKJB2wyNvhUx4ZEOj/F5/bmVWROU0QHxuaLPP9W/L9f/Sn45CishIQHJyck4fPiw/djhw4eRnJzsNJ4DAF5++WUsXrzY4VhxcTGGDBkidKiEeEWkPBwhIjGsLCvoAlzcOhvRoRGQuJnYxNkHkzbxHNUlVtZqjzEuzLVWGEKI//DLpAMAbrvtNrz44os4cOAADhw4gA0bNjh0x2g0GrS3twMArrvuOhw6dAibN2/GhQsX8OGHH2LHjh24++67fRU+IbwSMYx9HxQhZ7DUcTNXPFh0K74jCahra+IvoCtotK2wsFZIRGJE0XRZQgKOX85eAYA///nPaGhowF/+8heIxWLceuutDq0Zt956K2655RYsW7YM48aNw8svv4xXXnkFL7/8MlJSUrBhwwZkZmb6rgKE8CwuTIWaNg3U7U0YhYGCvMalVgT39zThxn/Udsx+EUJdu63suDAVTZclJAD5bdIhFouxYsUKrFixotPHrxxnMnPmTMycOdMboRHiE/HhUUAtUNumEew11B4sDMZJCOdaOoRLOtQdrSiexEcI8T36pwIhAcIbN3V7S0K4yu3nci0d9dpmWKzCrE3AxRfvQXyEEN+jpIOQAJEQblsTR6juCytrtS8Mxr2WOyLl4ZCKJbbBnh17o/Ctzt7SQYNICQlElHQQEiC4loQmfRsMZudF8nqrUdcKk9UCsUjs0UZqIoaxJwNCtcaouZYO6l4hJCBR0kFIgAiTyhEutS2OJ8QMkdrWSzd0TwdpCtkFZLSY0dgxXdjVRcsIIf6Fkg5CAkiCfYYI/4NJuTITenFD58Za1Lbzn3TUtzeBBaCQSO3JFyEksFDSQUgAEXJcR20vxnNw4gXsXuF2v40Lj3LY24UQEjgo6SAkgHDdCnUCtCRwSUdvui7iBexescdH4zkICViUdBASQBIEXICrjofuFe65bUYd2o16XuLi1LRy8XneEkMI8S1KOggJIFxLgrqtEVaW5a3cdqMerUbb9vS9STpkEiki5bblydU8t8bUtDYAAJIiYngtlxDiPZR0EBJAYkKVEIvEMFkt9pkcfOC6Q1TycMgk0l6VldAxmJTbx4UPVtZqH+iaGEEtHYQEKko6CAkgIkZkH9PA5wwWPmaucBLDbS0RXHcIHxq0LTBZLQgRiRHrwb4whBD/QEkHIQGG62Lh86Ze08bfeAmu+6O6ozuED1xZ8eHRtNEbIQGM/noJCTDJ9pt6PW9lVrXwN14iScl/0nFpPAd1rRASyCjpICTAJCtjAQAXW/hsSbAlMFzC0Btc4tJsaIfBaup1eQBQ3cqN56BBpIQEMko6CAkwXNJR29oAi9Xa6/LajXo069sB8NPSoQiRIVoRAQBoNGl7XR5AM1cICRaUdBASYGJCIyEVS2CyWlDPwwyRqhZbK0e0QglFiKzX5QGXkoMmc3uvy7LNXLHNrqGZK4QENko6CAkwIoax39Qv8jCugxt7kcxD1wonqaM1ho+Wjvr2ZpitFoSIJIgJpZkrhAQySjoICUBcF0s1D+M6uJaO5IjYXpfFSba3dPQ+6eCSosSIaIhozxVCAholHYQEoEuDSXvf0lHF4yBSDldWo6kdbC9XTq1sVgMAUiLjeh0XIcS3KOkgJABxrRJVvUw6rCxrby3hEhk+JHSsp2FiLWjSt/WqrIrmOgBAf0o6CAl4lHQQEoC48RcaXQt0JoPH5TRom2GwmCARiXndvVUiEiOho7zetsZwLR39lPG9DYsQ4mOUdBASgMKkCvvGar1p7bjQVAsASFHGQSwS8xIbp3+kLUngWio80aJvR4uhHQz4bYkhhPgGJR2EBCjups4lDp6oaLIlBANU/Lci8JF0cK0c8eHRkElCeImLEOI7lHQQEqAGqhIAABeaPU86uOcO6CiLT/1Vl5IOTweTcglLPxrPQUhQoKSDkADFJQrljZ4lHVaWtbd0cK0SfEqKiAUDBm1GnceDSStbOsZzUNJBSFCgpIOQAMUlHfXaZrQb9W4/X93WCIPFBKlYwsvusleSiiWIkoQC8LwLqKLjeUIkRYQQ76Okg5AAFSaVIy7MtkKnJzf1C1zXhTIOYpEwXwUxUttgV0/ia9a3QaNrBQNGkO4fQoj3UdJBSADjbsYeJR1cK4KAN/SYEM+TjjJNNQDb9GC5RMprXIQQ36Ckg5AANkCVCAAob6px+7nnNFUAgEFRibzGdLk4qW232fONNW7viFvWaEs6Bkcl8R4XIcQ3KOkgJIBxCcM5TTWsbswQ0ZkM9umoQ6NTBIkNAFSSMCgkMhgsJlzsGBTqKnvSEZ0sRGiEEB+gpIOQADYgMh5ScQi0Jj2q3dhx9nxjDViwiAmNhEoRLlh8IobB4I7EqLThosvPM1nMqOhIioRsiSGEeBclHYQEMLFIjCEdLQFn612/qXMJwFAvtCIM6WhJKe3oznGFrTvGgghZKGJpO3tCggYlHYQEuGExtpt6SUOly88p1XQkHTHCJx1Do21jMkobLrrcBXRafQEAkBrbHwxtZ09I0KCkg5AANzymHwDXb+p6sxHnG20DT4d1PFdI/Tq6gNpNepfHdRTXdyQdcQOEDI0Q4mWUdBAS4Aao4iHruKlXuDA19Yy6AhbWitjQSMTxuLNsVyQiMVJj+wMATtae7/F8rfFSPVJjKekgJJhQ0kFIgBOLxBgVPxAAcLy2rMfzT6nPAwBGxw8SMCpHoxNsr3Wi7nyP556prwALICE8WtBBroQQ76Okg5AgMDZhCACgqPZct+exLGtvbeASFW/gEpzyxmq0GXTdnnusphSAd+MjhHgHJR2EBIExCYPAgEFVSz0atC1dnne+sQaN+jbIxCEY3tHl4Q1RiggkK2PBAjhR13VrjMlitrfWZCQN81J0hBBvoaSDkCAQJlXYp84eqTrT5XmHq04DANISh0IqlnglNk5m0nAAwKHK4i7POV1/AXqzEZHyMAyilUgJCTqUdBASJK7qNxIAcODCCbCdzGIxWy04WlUCAJiQMsKrsQHAxI74Suor0Khr7fScXy6cBABkJA2HiKbKEhJ0/D7pYFkWd999Nz7//PNuz6uoqMDixYuRkZGBG264Afv27fNShIT4h/EpIyAVh6CuvanThbiOVpWg1aCFUhbmk6moMaFKDI1OBgvg5/LjTo836lpRVGMbk3LtwLFejo4Q4g1+nXRYrVasWbMG+/fv7/Y8lmXx4IMPIjY2Fp999hluvvlm/OUvf0FVlesrIBIS6OQSKSampAIAvj9z0OExlmXx07mjAICpg8ZBIhJ7PT4AmDY4AwCw93wh9Gajw2N7ygrAgsXQ6BQkRcT4IDpCiND8Numora3FXXfdhfz8fCiVym7P/eWXX1BRUYFnnnkGQ4cOxX333YeMjAx89tlnXoqWEP8wa/hEiBgRTtdfwJn6CvvxI1VnUNFcB6lY4tNWhPSkoYgPU0FnMuDHs7/ajzdoW/C/skIAwMxhE3wVHiFEYH6bdJw4cQJJSUn47LPPEBER0e25hYWFGD16NEJDQ+3HJkyYgIKCAoGjJMS/xIRG2pOKD47+AI22BTWtGmwv2g0AmDXsKkTIQrsrQlAiRoQbR14LAPjx7GGcqiuHzmTA1iPfwmS1YFhMilfXDyGEeJd3h6+7YcaMGZgxY4ZL56rVasTHxzsci4mJQU1Njduva7FY3H5OT2XxWWYgofr7pv6/HXE1iuvKUa9txtrd78IKFharFQNVCZg+KMNr8XRV/7HxgzE+aTiOVJdg04EdkEmk0JuNkEuk+H3aDFitVq/EJzT6/FP9L/9vsHO1nj5LOvR6PWprO1+yOS4uzqHVoic6nQ5SqdThmFQqhdFo7OIZXSsqKnL7Ob4oM5BQ/b1f/+kRI7DbdAoNpjYAQKI0EpNlA3HcB7F0Vv/RiEOzohmlujrozUaEiWWYrhqJyjNlcH3busBAn3+qP7nEZ0lHYWEhFi1a1Oljr732GmbOnOlyWTKZDE1NTQ7HjEYj5HK523GlpaVBLOZnkJ3FYkFRURGvZQYSqr9v638tOwlVrfVgwCApIsbru7X2VP8JGI/69ma0GXXop4yDJMg+I76+/r5G9e9b9efq2xOfJR2TJ0/G6dOneSkrISEBZ8+edThWX1/v1OXiCrFYzPsHRIgyAwnV33f1HxCV6JPXvVx39U9QRiPBy/F4G33+qf59uf5X8tuBpO5IT0/HiRMnoNfr7ccOHz6M9PR0H0ZFCCGEkMsFbNKh0WjQ3t4OAJg0aRKSkpKwYsUKlJSU4I033sCxY8dw6623+jhKQgghhHACNum49dZbsWXLFgC25qt///vfUKvVmD9/Pr766iu89tprSE5O9nGUhBBCCOH47ZTZy+Xn5/d4bODAgXj//fe9FRIhhBBC3BSwLR2EEEIICSyUdBBCCCHEKyjpIIQQQohXBMSYDm9gWRYALYPOJ6o/1f/y//Y1VH+q/+X/DXZcPbl7aVcYtqcz+gij0UjL1RJCCCG9kJaW5rQtyeUo6ehgtVphNpshEom8vlw0IYQQEshYloXVaoVEIoFI1PXIDUo6CCGEEOIVNJCUEEIIIV5BSQchhBBCvIKSDkIIIYR4BSUdhBBCCPEKSjoIIYQQ4hWUdBBCCCHEKyjpIIQQQohXUNLRSwaDAStXrsTEiRMxZcoUbNmypctzT548iYULFyI9PR0LFizA8ePHvRipMGpra/HQQw9h0qRJmDp1Kp577jkYDIZOz73//vuRmprq8LN7924vR8yvXbt2OdXpoYce6vTcn3/+GTfeeCPS09OxaNEiVFRUeDlafn3++edOdU9NTcXIkSM7Pf+mm25yOvfMmTNejpofRqMRN954Iw4cOGA/VlFRgcWLFyMjIwM33HAD9u3b120Z33zzDWbOnIn09HQ8+OCD0Gg0QofNm87qX1BQgD/84Q/IzMzEb37zG2zfvr3bMiZOnOj0eWhvbxc6dF50Vv81a9Y41ef999/vsox33nkHU6dORWZmJlauXAmdTueN0H2PJb3yzDPPsHPnzmWPHz/O/vDDD2xmZib77bffOp3X3t7OZmVlsevWrWPPnj3LPvvss+y1117Ltre3+yBqflitVvZ3v/sde88997BnzpxhDx06xM6aNYtdt25dp+fPmjWL/fLLL9m6ujr7j8Fg8HLU/Pr3v//N3nfffQ51am5udjrv4sWLbEZGBrt582b2zJkz7F//+lf2xhtvZK1Wqw+i5odOp3Ood1VVFTtr1ix27dq1TueazWY2LS2NPXjwoMNzTCaTDyLvHb1ezz744IPsiBEj2F9++YVlWdvfwty5c9lHHnmEPXv2LLtp0yY2PT2dvXjxYqdlFBYWsuPGjWO/+OIL9tSpU+ydd97JLlmyxJvV8Fhn9a+rq2MnTpzIbtiwgS0rK2O/+eYbNi0tjd29e3enZdTU1LAjRoxgL1y44PB5CIS/h87qz7Isu3jxYvb11193qI9Wq+20jO+++46dMGECm5+fzxYWFrI33HAD+/TTT3urCj5FSUcvtLe3s2lpaQ4fvNdee4298847nc7dvn07O2PGDPsfldVqZWfNmsV+9tlnXouXb2fPnmVHjBjBqtVq+7Gvv/6anTJlitO5BoOBHTVqFHvu3Dlvhii4Rx55hN2wYUOP5/3rX/9y+FxotVo2MzPT4bMT6DZt2sTOnDmz00Ty/Pnz7MiRI1m9Xu+DyPhTUlLC3nTTTezcuXMdbjo///wzm5GR4fCPiLvuuot95ZVXOi1n+fLl7GOPPWb/vaqqik1NTWUvXLggbAV6qav6f/jhh+zs2bMdzn3yySfZ//u//+u0nP3797NZWVmCx8u3rurPsiw7depU9n//+59L5dx+++0On41Dhw6x48aN6zJJCSbUvdILxcXFMJvNyMzMtB+bMGECCgsLYbVaHc4tLCzEhAkT7Pu6MAyD8ePHo6CgwJsh8youLg5vvfUWYmNjHY63tbU5nXvu3DkwDIP+/ft7KzyvKC0txaBBg3o8r7CwEBMnTrT/rlAoMGbMmIC+/pdramrCm2++iUceeaTTzZ7Onj2LpKQkyGQyH0THn4MHD2Ly5Mn4+OOPHY4XFhZi9OjRCA0NtR+bMGFCl9f3ys9DUlISkpOTUVhYKEjcfOmq/lzX6pU6+y4AbJ+HwYMHCxKjkLqqf1tbG2pra136LrBYLCgqKnK4/hkZGTCZTCguLuY7ZL9DW9v3glqtRlRUlMOXbGxsLAwGA5qamhAdHe1w7rBhwxyeHxMTg5KSEq/FyzelUompU6faf7darXj//fdx9dVXO5177tw5hIeHIzc3FwcPHkRiYiKWLVuG7Oxsb4bMK5ZlUVZWhn379uH111+HxWLB7Nmz8dBDDzndeNVqNeLj4x2OxcTEoKamxpshC2bbtm2Ij4/H7NmzO328tLQUISEhuO+++3D8+HEMHjwYubm5GDdunJcj7Z3bb7+90+PuXt+6urqA/Dx0Vf9+/fqhX79+9t8bGhrw3//+F8uWLev0/NLSUuh0Ovzxj39EWVkZRo0ahZUrV/p9ItJV/UtLS8EwDDZt2oS9e/dCpVLhT3/6E2655Ranc1taWmAwGByuv0QigUql8vvrzwdq6egFnU7ndHPhfjcajS6de+V5geyFF17AyZMn8fDDDzs9du7cOej1ekyZMgVvvfUWsrOzcf/996OoqMgHkfKjqqrKfl3/9a9/4bHHHsPXX3+N9evXO50bzNefZVls374dd955Z5fnlJWVobm5GQsXLsQbb7yBoUOH4q677kJ1dbUXIxWOu9dXr9cH7edBr9dj2bJliI2Nxe9///tOzzl37hyam5tx//3349///jfkcjkWL17cZcuIv+NacocMGYI33ngDCxcuxJNPPoldu3Y5navX6wEgaK9/T6iloxdkMpnTh4T7XS6Xu3TulecFqhdeeAFbt27FSy+9hBEjRjg9/sADD+CPf/wjIiMjAQAjR47EiRMn8MknnyAtLc3b4fIiJSUFBw4cQGRkJBiGwahRo2C1WrF8+XKsWLECYrHYfm5X11+pVHo7bN4VFRWhtrYWv/3tb7s859lnn4Ver0d4eDgAYPXq1Thy5Ai+/PJLLF261FuhCkYmk6GpqcnhWHd/3119HhQKhVAhekV7ezseeOABnD9/Hh9++GGX9dm8eTNMJhPCwsIAAC+++CKys7Oxe/duzJ0715sh82LevHm47rrroFKpANi+386fP49t27Zh1qxZDudyXYzBeP1dQS0dvZCQkIDGxkaYzWb7MbVaDblc7nQzSUhIQH19vcOx+vp6pybWQPTss8/i7bffxgsvvIDf/OY3nZ4jEonsCQdnyJAhqK2t9UaIglGpVPZxOgAwdOhQGAwGNDc3O5zX1fWPi4vzSpxC+t///oeJEyc6Xd/LSSQSe8IBwP6vwkC//hx3/76D8fPQ1taGP//5zygpKcHWrVu7Hd8glUrtCQdguxH369cvYD8PDMPYEw5OV59vlUoFmUzmcP3NZjOampoC+vq7ipKOXhg1ahQkEonDYLHDhw8jLS0NIpHjW5ueno6jR4+CZVkAtibpI0eOID093Zsh827jxo346KOP8M9//rPbf+k+/vjjWLFihcOx4uJiDBkyROgQBfO///0PkydPdphff+rUKahUKofxPIDt+h8+fNj+u06nw8mTJwP++gPAsWPHMH78+G7P+eMf/4iNGzfaf7darTh9+nRAX//Lpaen48SJE/amc8D2XdDV9b3y81BdXY3q6uqA/TxYrVb85S9/QWVlJd577z0MHz68y3NZlsXMmTPx+eef249ptVqUl5cH7Ofh5ZdfxuLFix2OdfX9JhKJkJaW5nD9CwoKIJFIulzjJphQ0tELCoUC8+bNw+rVq3Hs2DH8+OOP2LJlCxYtWgTA1urBfQnNnj0bLS0tWLt2Lc6ePYu1a9dCp9Nhzpw5vqxCr5SWluLf//437r33XkyYMAFqtdr+AzjWf8aMGfj666+xY8cOlJeXY+PGjTh8+HC34wD8XWZmJmQyGZ544gmcO3cOe/bswfr163HPPffAYrFArVbbm1AXLFiAI0eO4I033kBJSQlWrFiBfv36YfLkyT6uRe+VlJQ4DZK+sv4zZszAO++8g7y8PJw7dw7PPPMMWltbOx1oF4gmTZqEpKQkrFixAiUlJXjjjTdw7Ngx3HrrrQBsTedqtRoWiwUAcNttt+HLL7/E9u3bUVxcjNzcXEyfPj1gZ3d9+umnOHDgANasWQOlUmn/HuC6nC6vP8MwmD59Ol599VUcOHAAJSUlyM3NRWJiYsAOLL/uuutw6NAhbN68GRcuXMCHH36IHTt24O677wZgG8fBfS8CtgGpmzdvxo8//ohjx45h9erV+N3vftcnuldonY5e0mq1bG5uLpuRkcFOmTKFffvtt+2PjRgxwmEdjsLCQnbevHlsWloae+utt7InTpzwQcT8ef3119kRI0Z0+sOyzvX/5JNP2Ouvv54dO3Yse8stt7AHDx70Vei8OXPmDLt48WI2IyODzcrKYl999VXWarWyFRUVTvP4f/rpJ/b6669nx40bx951111+vyaDq9LS0ti9e/c6HLuy/larlf3Pf/7DTp8+nR07dix7xx13sKdPn/ZFuLy58vqeP3+eveOOO9ixY8eyv/3tb9n9+/fbH/vll1/YESNGsBUVFfZjn332GZudnc1mZGSwDz74IKvRaLwaf29dXv+777670+8Bbm2aK+uv1+vZ5557js3KymLT09PZ++67j62qqvJZXTxx5fXftWsXO3fuXDYtLY2dPXs2+/3339sf++yzz+zfi5zXX3+dveaaa9gJEyawK1asCPg1bFzFsGxHez8hhBBCiICoe4UQQgghXkFJByGEEEK8gpIOQgghhHgFJR2EEEII8QpKOgghhBDiFZR0EEIIIcQrKOkghBBCiFfQhm+EEK95/PHH8cUXX3R7Tl5ensM26YSQ4EGLgxFCvKa1tdW+NP7OnTuxZcsWfPrppwBs+3dYLBYkJCQ47NBLCAke1NJBCPGaiIgIRERE2P9fLBb3iZ01CSE2NKaDEOIXKisrkZqaisrKSgBAamoqvv32W8yZMwfp6en4v//7P1RUVGDRokVIT0/H7bff7rB1+K5du3DDDTcgPT0dt956Kw4ePOirqhBCukBJByHEb73yyitYt24dXn/9dfzwww+47bbbcNttt+Gjjz6CWq3Gm2++CcC2jfhjjz2G+++/H1999RVuuukm3HvvvSgvL/dxDQghl6PuFUKI31q8eDHS09MBAKNGjcLgwYMxZ84cAMD111+P4uJiAMDmzZvxu9/9DnPnzgUALFq0CIcOHcK2bdvw+OOP+yZ4QogTSjoIIX6rf//+9v+Xy+VISUlx+N1oNAIASktL8e233+Ljjz+2P24ymTBlyhTvBUsI6RElHYQQv3XlLBaRqPMeYYvFgnvvvRfz5s1zOC6Xy4UKjRDiARrTQQgJeIMHD0ZlZSUGDhxo//n444+xd+9eX4dGCLkMJR2EkIC3ePFi7Ny5E++++y4uXLiAd955B++88w4GDRrk69AIIZehpIMQEvAyMjKwfv16fPjhh7jhhhvwySefYMOGDbjqqqt8HRoh5DK0IikhhBBCvIJaOgghhBDiFZR0EEIIIcQrKOkghBBCiFdQ0kEIIYQQr6CkgxBCCCFeQUkHIYQQQryCkg5CCCGEeAUlHYQQQgjxCko6CCGEEOIVlHQQQgghxCso6SCEEEKIV1DSQQghhBCv+P8H2LBQ5yKcwQAAAABJRU5ErkJggg==" + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAiMAAAEmCAYAAACwD5CfAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAPYQAAD2EBqD+naQAARaNJREFUeJzt3QeYk1X2P/AzyZRM730GhirSmyDYEBBQlKKLgAJi3bWtAv4FXMqiq6ioPxVdFRXLuthXQFQQEBvSpEgRRsChDNN7r8n/OTd5Q2aYkvbmTd58P88TkskkmZsJk/fk3HPP9TEYDAYCAAAAUIhGqR8MAAAAwBCMAAAAgKIQjAAAAICiEIwAAACAohCMAAAAgKIQjAAAAICiEIwAAACAohCMAAAAgKJ8lf3x7k+v11NWVhaFhoaSj4+P0sMBAADwGNxXtby8nJKSkkijaT3/gWCkHRyIpKamKj0MAAAAj3X27FlKSUlp9fsIRtrBGRHpFxkWFqb0cAAAADxGWVmZ+EAvHUtbg2CkHdLUDAciCEYAAABs116ZAwpYAQAAQFEIRgAAAEBRCEYAAABAUR5VM/Ljjz/SihUraO/evZSdnU1ffPEFTZo0qc37fP/99zR37lw6cuSIKKJZtGgRzZ4922VjBgAAz1uO2tDQQI2NjUoPxe1ptVry9fV1uPWFRwUjlZWV1K9fP7rjjjvoxhtvbPf2GRkZNH78ePrb3/5G//3vf2nr1q101113UWJiIo0dO9YlYwYAAM9RV1cnPuxWVVUpPRSPERQUJI6r/v7+dj+Gj4FDQA/EUVh7mZH58+fTV199RYcPHzZfN23aNCopKaGNGzdavSwpPDycSktLsZoGAEDlTS6PHz8uPu3HxsaKgyuaXbaOwwcO3vLz80UWqVu3bhc0NrP2GOpRmRFb7dixg0aPHt3kOs6IPPzww63ep7a2Vpwsf5HOxC9Yv3++aPf9HfqzcKO/KR/FfoCPS8el1WhI46Nxy9+H/T/Tx7Fb2PCDA/38KTYkhDQ+Pg4dFBz7u3H9z3Xk+OfjyCvr49qfyX8fo3t1pVsu7ecWB30+sHJAwlP6/Gkf2hcYGEh+fn50+vRp8fvT6XRkD1UHIzk5ORQfH9/kOv6aA4zq6mrxS2xu+fLltGzZMlnHVVvnkckolXD1717v4p+nNrV0rqhc6UGAjH4+foqOZefT45NHu0VAwtpqWw7y/L5UHYzYY+HChaLgtXn3OGf66+h+Vt/WYHHwNNhxPJVm4S64S5MrWrnNBTdt/wdbM+t3/iat37b5w1j+HuwdQ1uPYM2jt/bUmozN4mJORRHlVRSRVqOl4R16U6BfgE0/27oJVFt+363fz+rfrsG21+LCsbT9f81STX09bf0jnarr62hwake6vndf+36mQ+O1+65W/S04myM/0957OvI0M/KL6JWtO+ijXb/RgI6JdOOg3vY/GHg0VQcjCQkJlJub2+Q6/prnrVrKirCAgABxkgvPRT5yzTWyPT64D71BTy//8jn9WZRF0dG1dPugUUoPyeOM63MRzV//PzpaeJb+Hn8FdY2NU3pI4GS+Wg29sOlneuarH2hM7+4UEmB/ESR4LlXnooYNGyZW0FjavHmzuB5AblwrMqXPCDGbvj/rOGWVFSg9JI8zMLUDXd3tInH5P3t2Kj0ckMFdV11CaTGRVFRZTf/9Zb/SwwGFeFQwUlFRQQcOHBAnaekuXz5z5ox5imXWrFnm2/OS3j///JMeffRROnbsGP373/+mTz75hObMmaPYcwDvkhwWS30Tu4rLP586qPRwPNKMS4aK852nMiiv3LkF5aA8P62W/na18TVes/MANepRZ+WolStXih3nnWH16tXi+Ck3jwpGfv31VxowYIA4Ma7t4MtLliwRX/PacCkwYZ06dRJLezkbwv1Jnn/+eXrrrbfQYwRc6oo0Y63DnsxjVNNQp/RwPE6HyCjqn5xKeoOBvjpyfpk+qMf4fhdReKCOskrK6Yf0DKWH49FOnDgh2lpERkaKr7/++mtRGNzaaerUqW0+3q5du+iNN96QfdweFYyMGDFCFGg1P7377rvi+3zOHVeb32f//v1iue7JkyfRfRVcrlt0CsUFR1BtYz0dyvlT6eF4pOt79xHnW9KPKlIYCvLS+fnRTYN7icvr9v2u9HA82rp16+iaa64x10VeffXV4oO65SkzM1PcJjo6mh577LE2H2/ixIm0fv162cftUcEIgCfiTx8DkrqLyweyjis9HI90aVpn0vn6UV5FOf2R17QoHdRhfL8e4vz7Y3+KlVRgfzAyYcIE89cclPBiDunEzdzmzZtH+/btEzWVPGvQllGjRomFH5bNQ+WAYATABfonGetGjuafxlSNHQJ8fWloWpq4/ONJBHRq1CclgZIiQqmqrp5++uMUuQvOxNU21CtyMtiYBSwoKKCdO3fS9ddf32rTzRkzZtCWLVusCkQYry4dM2aM7NkRVS/tBXAXSaExFBscTvmVpXQs7zT1T+qm9JA8zhWdu9EPJ47Tjow/6e7hVyg9HJAhgzi2d3d65+e9tOXICbqml3v8jdQ1NtD/++bfivzsFdfeRwG+flbffsOGDTR48OALmn1aBiLffvvtBYEI34+zJdx9lutNeA+35lM1r732WrtTOo5AZgTARW+0F8cZP9mnF5xVejgeaVCHDqIt/NmSYsorR1dWNbryok7ifPvx06gNsgMXq1533XUtBiIzZ840ByL9+/c3f493J+bFIN99952or1yxYgUVFhY2uT8/5u7du0XmRS7IjAC4yEUxHejHjN8oPf/8ii+wXkiAjrrHxdOx3Bzal3mGxl1sLHgE9RjcKZn8fbWUW1ZBf+YXUZe4aKWHRP5aX5GhUOpn2yItLU20vGgpENm0aZOYnrEMRBgHGb169aLk5GTx9bXXXiuClunTp5tvw48ZEREhTnJBZgTARbpGJ4tP9gVVpVRYVar0cDzSwJQO4nz/WQR0al1VMzgt2ZwdcZesJk+VKHHysXGvHp5O4XYWPN0iBSLce0sKRKS2GJa4H4kUiDC+fO7cuSa34XoRzo74+sqXv0AwAuAivDdNWkSCuJyej6kaezuysn2ZZ0XfEVCf4d06ulUw4kmGDRsmpre4NwgHJByIrF27lj744ANKTEwUm8danjhYsQYHIxzoyAnBCIALdY81HkyPF2YqPRSP1DMhUaysKamuorPFRUoPB2RwWVdjMLInI5P0egSctu6eyytpeHnvnj17aM2aNVRVVSWyGhyMWJ6SkpKosrJSnFtmQvgyX2c5RZOenk7jxo0jOSEYAXChzlGJ4vxUcbbSQ/HY1uEXxRlXCvyeg9+hGvVIjKNAP18qr6mlk3lNCymhfVKTsqFDh7bYJFQ6ceaEN40dMmSI6CHCQQhvufLNN9806VLOj8XNQ0NDQ0lOCEYAXKhjRILYOK+wqozKaiqVHo7HZkcYghH17uLbN9X4Gu8/45z9VbzJNddcQ6dPnxZt4a3BdSC8VQp3auXiVl7iy51ZLYMRyyZqcsFqGgAX140khkZTVnkhZRRnUz/TJnpgvZ4JxhQyghH1GtgxiXb9eZb2nc6im4cY93YC63DHVZ5+sQUHG60FHLwU2BWQGQFwsU6mqRoORsD+zMiZ4iIqq6lRejggg/4djQHn/tPIjHgLBCMALtYp0vhGm1GEYMQe4YGBlBJh3JH0KLIjqtS/gzHg5F4jJVXVSg8HXADBCICLdYw0Lu/NLM0nvcHYDwBs0yPe+Dv8Ix+b5qlRVHAQdYw2Ntg6nInX2BsgGAFwsdjgCPLX+lG9voFyK4qVHo5H6hoTK85P5ucrPRSQSc+kOHH+e1ae0kMBF0AwAuBi3IU1JSzGnB0B23WNNR6oThTgQKVWvZJNS7jPITPiDRCMACggJdx4MM0sxcHUkcxIbnk5ldWgpkCNkBnxLghGABSQEm48mCIzYp/ggABKCgsXl09gqkaVeiYbg5FThcVUUVun9HBAZghGAJTMjJTlY6t0O3UxTdWcLEAwokbRIcEUHxZC/OdxDNkR1UMwAqCAhNAo0mq0VF1fS0XVZUoPxyN1izVml47n40Cl+roRBCOqh2AEQAG+Gq3oxMowVWOfrjEoYvWWupEjKGJVPQQjAAqRVtRklRUoPRSP1MVUxHqupITqGhqUHg7I4GJTMPJHDv5GbLFy5UrKynJO99rVq1fTsWPHSG4IRgAUkmDKjGSXFyk9FI8UGRREoQE60hsMdLYE/VrUqFu88W+Ed+/V61FbZQ3eIG/+/PkUGWnsUvz111+Tj49Pq6epU6e2+Xi7du2iN954g+SGYARAwboRllOObdLtwW+kHaOMv8PTRfgdqlGH6Ajy9+XaqgbKLC5VejgeYd26dWLnXt4wj/FuvNnZ2U1OmZmZ4ja8O+9jjz3W5uNNnDhR7NwrNwQjAAqRakbyKkuoQd+o9HA8Usco4+/wFIIRVdJqNNQ51hhwHs/Fa2xtMGK5Ay8HJQkJCeZTbGwszZs3j/bt2yd25O3Xr1+bjzdq1CjKzc2lw4cPk5wQjAAoJEIXQjpff7E/TX5lidLD8UhppmAEmRH16hZvrK06kYu6kfYUFBTQzp076frrr2/x+42NjTRjxgzasmWLVYEICwgIoDFjxsieHUEwAqDgNIM0VZONqRoHMyOou1F73YhSmRHuA1RdX6/IyWBjD6INGzbQ4MGDKT7euCS6pUDk22+/FcGIZSAyefJkUWPyl7/8RbGpGl9ZHx0A2i1iPVWcg7oRO6WZakayS0uotqGBAnzxlqbWzMhxhTIjNQ0NNGHVq4r87PX33E+Bfn5W356LVa+77roWA5GZM2eKQIQzIv3792/y/YceeojuuOMOeu+991p8XH7M22+/XWReYmKMr4ezITMCoKDEECkzgk/29ogIDKIwnY748+PZYvwO1b2ipoga9Xqlh+PW0tLSKCMjo8VAZNOmTSIj0jwQYSNGjKDQ0NBWH5cfMyIiQpzkgo8RAG6wvBeZEUdW1ETToaxzoohV2s0X1CMlKlxkvDjzlVlUSh1jjEtWXUXn6ysyFErQ2Zjp4+mUm266ifR6PWk0GhGIzJo1yxyIDBgwwK5x8BQNZ0d8Zcw8IhgBcIMVNVzAWt/YQH5a/EnaU8TKwQiKWNW7oqZLXJRoCc91I64ORjjgtWWqREnDhg0TdSbcG2To0KEiEFm7di199tlnlJiYSDk5OU1uzytrtFqtVcHI4sWLZRw5ghEARYXrginQ15+qG+pEQJJk6soK1kMRq3fUjRiDkQIa3aur0sNxWxqNRqyk4eW9fHnNmjXi+pbqSDjIKikpobCwsDYfk6do0tPTady4cSQn1IwAKIjfEOJMdSO5Fegiao/UCOMn5Ux0YVWtznHGv5GMArzG7ZFWvnBmhLMkrZ14Kqe9QITxY7VXU+IMCEYAFBYXYiwKy6/EG609UkzBSHZZKTU0onmcGnUyTc2cysffSHu4s+rp06dFW3hrjR49mqZMmSJW46SkpNCOHTuaBCOWTdTkgmkaAIXFBRvfaPMq0PjMHjEhIeYCx5zyMnNwAuqRJgUjyIy0izuuVlZWki24uLU1vBTYFZAZAVBYrCkzwm3hwXYaHx9KDo8w7+AL6tMxxvj6FldVU3FltdLDARkgGAFwk8xIPmpG7JaMuhFVC/L3p4RwY80CsiPqZFcw0tDQINI6vK1weXm5uC4rK4sqKiqcPT4A1YsNDhfnlfU1VFmHT332SDE1Y0Iw4gV1IwhGVMnmYIQLY/r06SMqdu+//37Kz88X1z/zzDP0yCOPyDFGAFUL8PWncF2IuIypGvtIdSKZmKZRrbRY42uMFTXqZHMwwj3seSOe4uJiUShjudGOqwpdANQmLti0ogZFrA5lRs6V4kCl/hU16CejRjavpvnpp5/ol19+IX9//wt64p87d86ZYwPwquW9xwszKQ/Lex3KjORXVIjdTj2lYybYvqIGmRF1sjkzwo1SuN99c5mZmbI3RQFQq1gs73VImC6QQgN04nJWKX6HatQp1tj47HRBMen1vDUieHUwMmbMGHrxxRebdJDkwtWlS5e22HLW2V599VWRhdHpdKLD3O7du1u97bvvvivGZ3ni+wG4m/gQ0yd7ZEbslhqJFTVqlhwZRr4aDVXXN1BuGRZLkLcHI88//zxt376devbsSTU1NXTLLbeYp2i4iFVOH3/8Mc2dO1cEPvv27aN+/frR2LFjKS8vr9X7cLvb7Oxs84kLcAHcTaxUM1JZQnoDPvXZI9m8ogaZETXy02opNcq48gwratTH5mCEW8X+9ttv9Nhjj9GcOXPElsRPP/007d+/n+Li5N2++4UXXqC7776bbr/9dhEMvf766xQUFESrV69u9T6cDUlISDCf4uPjZR0jgD2ig8JI46OhusYGKq3Bpz57pIQbMyPnkBnxghU1KGJVG7vawfv6+tKMGTPIlerq6mjv3r20cOFC83W8KyH31Lfso98cTyF17NhR1LoMHDiQnnrqKerVq1ert6+trRUnSVlZmROfBUDLtBqtCEg4M8KnyEDUX9mfGUEwolZp0aZgBHvUqI7Nwcj777/f5vdnzZpFcigoKBCFs80zG/z1sWPHWrzPRRddJLImffv2pdLSUnruuedo+PDhdOTIEZHhacny5ctp2bJlsjwHgPaan3EgUlBZSt1jUpUejseRWsLzhnmg7rbwZwoxFdeWlStX0k033URJSUnkKD6G8nGzR48e5FbBCPcZsVRfX09VVVViqS9PmcgVjNhj2LBh4iThX+jFF18sOsc+8cQTLd6HMy9cl2KZGUlNxYEB5BcTxG+0p6mgCgdTeySGGesJSqqrqaquTrQQB3XpEGUMRs4WIRhpDe/WO3/+fLrrrrvE17wT7/jx41u9/c033yzqMVuza9cuOnToEP3f//0fuVXNCDc7szzxNEh6ejpdfvnl9OGHH8r3Rh0TQ1qtlnJzc5tcz19zLYg1/Pz8RI1LW1srBwQEiKJXyxOAK/A0DStEMGKXYP7bNa2Wy0F2RJVSo6VgpJQMKPRu0bp16+iaa64xNyW9+uqrmyzi4BO34uDbREdHi/rPtnC39fXr15NHbJTXrVs3UcTaPGviTJx5GTRoUJMur1wHwl9bZj/awtM8HOElJibKNk4Ae0Wb9qjhaRpwLDuShWBElZIiuNDbh2rqGyi/vFLp4bhtMDJhwgTz1xyUWC7iiI2NpXnz5okVqXz85FWpbRk1apT40H/48GH3K2Bt8YF8fcVmeXLi6ZPbbrtNtKMfMmSI6HdSWVkpVtcwniJKTk4WdR/s8ccfp0svvZS6du1KJSUltGLFCrG0V0pfAbiTmCDjgRSZEfslhodTel4uZZfid6hG/r5aSowIpXPFZSI7Ehdm3NNJTpyB4a6+Sgj08xMrQm2prdy5cyd9+umnrX4g58UnvNGtNYGINFvA/cU4O9K7d29ym2CkebqGXyhO+7zyyit02WWXkZymTp0qNuZbsmQJ5eTkUP/+/Wnjxo3motYzZ86IFTYSnkbipcB828jISJFZ4Vb2vCwYwN1Em4KRqvpaqqqroSB/NOizNzOCIlZ1141wMMJFrIPSkmX/eRyI9Fv8Minhtyf+blPt04YNG8SH9ZZaWEiByLffftskEDl79izNnDlT9OvipMLixYtpypQpF0zVvPbaa+1O6bg0GJk0aVKTrzlq47TPyJEjRUM0uT3wwAPi1JLvv/++yddccCN30Q2AswT4+lFYQBCV1VaJItYOCEZslhSGFTVqx43PdpxEEWtLuFi1pU7oHIhwwCEFIvxBXsIBCM8y8HX8wZ0/tPNjBAcHm2/DX/MMBGdeuH7TLYIRrtMAAPmyI+ZgJAIN+myVGG4sAs7CNI1qdTAVsZ4pLHXZVAlnKJQQaOOGj9wNPSMjo8VAZNOmTWJ6xjIQYVxDKdVRck0JBxtFRUVNghF+zIiICHFy+5oRAHBcTHA4ZRRnUyGKWO2SaMqM5JaXUaNeT1qLaVtQB6klvKsyI5z995Rl4hMnThT9RThpwCULHIhwLaUUiPBq0rZwY1G+T/N2FlyewdkRzqLIxapHtuy7YU3LdgBwrG4EvUbsEx0cTH4aLdXrGym/opwSTDUkoMbMCKZpmuOVpVzHyb1BeCNZDkTWrl1Ln332mch+8DSMJS6x4JYZjLMhfPs333zzgsflYIRrSeRkVTDC+85Yw5aqXwC4EFbUOIYzIQlhYXS2pJiyy8oQjKhQqqnxWUFFFZrbNcPZkOuvv14s7+XLa9asEde3VEfCx2teZcq9tHgLFK4HXbBggWgOaomnaLiX2Lhx40jxYGTbtm2yDgIAzk/TMPQasR8HICIYKS2hASnonqw24UE6Cg/UUWl1DZ0tLKWLEmOVHpLbTdUsWLBA9P6ypjEc32b27NliEQrXlrSUFRkxYgSFhsq7XxYmVAHccJqmuLqCGvSNSg/HY3uNMKyo8Ya6EbzGzXFnVe6n1VancUvbt28X7eB5OoeLW/nEzUEtgxHLJmpysasa5ddff6VPPvlE9PXg3XQt/e9//3PW2AC8Di/t9dP4Ur2+gYqqyiguxLhLKVgvSerCihU1qq4bOXwuF3UjLeCOq9wM1Fq8lUtbq2Qtu567VWbko48+EnNKR48epS+++EJslMe74H733XcUbvpEAgD24XlcaaqmsKpM6eF4JDQ+Uz9Xr6gBNwxGnnrqKdFI7MsvvxT7xbz00kt07NgxsfNfhw4d5BklgFeuqMEbrT0wTaN+WFGjPjYHIydPnjRvR8zBCKeD+NPcnDlzaNWqVXKMEcCrxJh270URq32kFTQVtbVUVlOj9HBAxhU1Z1Az4r3BCO/xUl5eLi7zpnTSTn68RKiqqsr5IwTw0t17uWYE7OtaGRkYZG5+BuqdpuE9avT69leMgAqDkSuvvJI2b94sLvNmOg899JDYjG769Oliq2EAcExUoDEzUlhtDPrBdvFhxt9hThmCETVKCA8lrcaH6hu5uZ31xZrWsmZJLDj392XzahrenbfGlPr8xz/+QX5+fmInXG5Bu2jRIocHBODtok3TNMiM2C8hNIyO5eYgM6JSvlqNCEg4M3KuqJTiw0Kc8rh8PGOc5edVKWAdaVZE+v25JBiJiooyX+YOb9xcBQCcJzLQ2Fyoqr6GqutrKdAvQOkheWxmJBeZEdVKjgwTwUhmcRkNTEt2ymNya3TeDC4vL098HRQUhM7i7WREOBDh3xf/3qTW8i4JRkaPHk0zZsygG2+8UbSRBQDn4uAjyE8ngpHi6nIEI3aIDzVN0yAzolrJkVw3kknnip1bxMo71zIpIIH2cSAi/d5cFoz06tWLFi5cSPfdd59YVcOBCfe9dyQ9AwBNRQWFUVVpjeg1khQWo/RwPHKahmGaRr1SIo2vMWdHnIkzIbypXFxcnOijBW3jY78jGRG7gxHuK8J9Rng7Yt6Eh3f544H85S9/oVtvvZWuuuoqhwcF4O2iA0MpszSPiqpxMHV0moZTyUi1qzUzQpTp5MyIhI9rzjjIgox703CtyJgxY+jdd9+l3NxceuONN2j37t1iox0AcE5mhKGI1bFpmqr6OiqvrVV6OOBBmRFQhl1700hycnJEe/gPPviADh48SEOGDHHeyAC8GIIRxwT4+opeI8XVVWKqJkynU3pIIFNmROo1otEg++VVmZGysjJ65513xM6Aqamp9Nprr4kd/Y4fP047d+6UZ5QAXrq8F71G7JeAXiOqJnevEXDzzEh8fLzowjp16lRavnw5DR48WJ6RAXgxqfEZMiOO1Y0cRa8R1ZKr1wh4SDCyfv160WmV60YAQN5pGvQaccKKGmRGVEuOXiOgDJsjCp6eQSACIC+drz8F+xnrHLjXCNgOvUa8qW4EG+Z5OkQVAG6eHeFeI+DA8l4EI6qFFTXqgWAEwN1X1KDXiMPTNNj4TJ3k7jUCroNgBMBNRaOI1SFx6DWiesiMqAeCEQA3hV4jjvcaiQoKEpcxVeMdvUbAy5qebd26VZx4IyG9Xt/ke6tXr3bW2AC8WlSQcfde9BpxrIi1qKpK9BrpFhun9HBA5l4jWN7rRZmRZcuWiVbwHIwUFBRQcXFxkxMAOLvXCObDHS1izSnD71DNvUZYZhFeY6/KjLz++utiT5qZM2fKMyIAaNZrpBa9RuyE3Xu9qddIKQ1CrxHvyYzU1dXR8OHD5RkNALTYawQrahzrNYJgxDvqRsCLgpG77rqL1qxZI89oAKCVIlbUjTg2TYMDlepX1GCaxrumaWpqamjVqlW0ZcsW6tu3L/n5+TX5/gsvvODM8QGQtwcjZ0vzsKLGCdM03GvExwc7u6pNSpTUawR/I14VjBw8eJD69+8vLh8+fLjJ9/CHDiBPr5FCTNM41Gukur6eymtrKEwXqPSQwMnQEt5Lg5Ft27bJMxIAuAB6jTin14i0vBfBiHqnabJKjL1GNBp8KPa6pmeZmZniBADyiEYw4rCEMOMnZxSxqlN8mNRrRE955RVKDwdcFYxwk7PHH3+cwsPDqWPHjuIUERFBTzzxxAUN0ADASZvlYZrG8d17UcSq2l4jieg14n3TNP/4xz/o7bffpqeffpouu+wycd3PP/9M//znP0Vx65NPPinHOAG8UlSg8U2W+4yg14h94kONv0NkRtQrKTJMFLCeKymjwUoPBlwTjLz33nv01ltv0YQJE8zX8aqa5ORkuu+++xCMADhRgKnXSGV9jeg1kuwXq/SQPLaINbccy6PVKjnCVDeCFTXeM01TVFREPXr0uOB6vo6/BwDOhV4jzsmM5CEzolpofOaFwUi/fv3olVdeueB6vo6/BwAyBSOoG7FLfKjxQJWDYETV0zTSihrwkmDk2WefFTvz9uzZk+68805x4su8X82KFStIbq+++iqlpaWRTqejoUOH0u7du9u8/aeffiqyNnz7Pn360Ndffy37GAHk6DWCFTX2iTNlRqrq6qiitkbp4YBM+9MwZEa8KBi56qqr6I8//qDJkydTSUmJON14442Unp5OV1xxBcnp448/prlz59LSpUtp3759IhMzduxYysvLa/H2v/zyC02fPl0ETPv376dJkyaJU/NmbQDuDL1GHBPo50fhpv4iqBtR9zQNZ0a40y54Hh+DB71ynAm55JJLzNNEvJQ4NTWVHnzwQVqwYMEFt586dSpVVlbShg0bzNddeumlooMs7z5sjbKyMrGMubS0lMJM+1wAuNLh3D9p1e4vKSU8jh69crrSw/FI932yho7n59Gya2+g4Z27KD0ccLK6hkbqvej/iI9mOxffS9EhwUoPCWw8hvpa2wK+d+/epNFoxOW28MoaOfBuwXv37qWFCxear+PxjB49mnbs2NHiffh6zqRY4kzK2rVrW/05tbW14mT5iwRQUpQHTNNsP32Ifs89RbcNupb8tTYv0pNdqM5fnD+1+Svy06JDpxpptUQNDURXPv06YWcS+4UG+dKOhQ+Rq1n1rsGZhJycHIqLixOXeQ+alhIqfH1jY6Mc46SCggLx2PHx8U2u56+PHTvW4n14zC3dnq9vzfLly2nZsmVOGjWA86Zpqupr3LbXyObje6ioupyOF5ylXvGdyN34aOrEeW2DnmoblB4NyMHfz4caGgxUV+8xyX635OOjzB+IVcFIRkYGxcbGmi+rGWdeLLMpnBnhqSAApegseo0UV5e7XTDSqNdTSU2FW6/4SYr0p4IaooGJF1FyOHq1qFFtfSOdKSgjAyEYcURUULD7BiPc8l1y+vRpGj58OPn6Nr1rQ0ODKBi1vK0zxcTEkFarpdzc3CbX89cJCQkt3oevt+X2LCAgQJwA3ElkUBhVltZQYVUZJYXFkDvhQERvypS6ay+U4poKCgrwobE9+lKX6GSlhwMAjq6mufrqq1tsbsbFKfw9ufj7+9OgQYNo69at5uu4gJW/HjZsWIv34estb882b97c6u0B3FW0qS28O2YeLGtZOFhyNxwolVQbg6RI0+8RANyLzZVmXCvCtSHNFRYWUnCwvOkdnj657bbbaPDgwTRkyBB68cUXxWqZ22+/XXx/1qxZoi09132whx56SCxFfv7552n8+PH00Ucf0a+//kqrVq2SdZwActWNFLth5sEyQHLHYKmsppIaDXrS+PhQuC5E6eEAgCPBCPcSYRyIzJ49u8lUBheW8iobnr6REy/Vzc/PpyVLlogiVC6m3bhxo7lI9cyZM2KFjYTHs2bNGlq0aBE99thj1K1bN7GShlcGAXgSd969lwtXzZfdMDMiBUgROt5q3uZkMAC4UzDC64SlzEhoaCgFBhqbCElTKNy/4+677ya5PfDAA+LUku+///6C66ZMmSJOAJ7MnZf3Wo6poq6aahvqKcDXj9xtfFFBmKIB8Phg5J133hHn3Ir9kUcekX1KBgDOi3bjLqzFzbI1nIlIDI0md8vcSAEdALgfm3OW3IodgQiAa0mFl7y8t6bB2DPDXRSa6likSjJ3C5ik8aB4FcB92dUq8bPPPqNPPvlE1GhwZ1RLvGcMADgX9xYJ8tOJxmdFbrS8V2/Qm1eqJIfHUWZpntsVsUqZESm7BAAqyIy8/PLLYvUKF43y5nO8qiU6Opr+/PNPuvbaa+UZJQCc3zDPjQ72peaVKhrqHJnolr1GzteMIBgBUE0w8u9//1ssjV25cqUoXH300UdF746///3votcIAMgjSuo14kYHe+4IyyIDQyg6ONzteo1wwb1U04LMCICKghGempGW8PKKmnLTltwzZ86kDz/80PkjBAC3zYxIgUdkYBhFB7rf+Mprq6he30g+5EMR6DECoJ5ghFupSx1YO3ToQDt37jTvWdPS5nkA4Bzmg70bZR7OZx1CzwdLbjQ+qS9LRGAIaTVapYcDAM4KRkaOHEnr168Xl7l2ZM6cOXTNNdeIhmSTJ0+29eEAwErueLCXpow4MyKNT+o14lb1IljWC6Cu1TRcL8J7wrD7779fFK/yBnkTJkygv/71r3KMEQAsmnYVWnQ8VVqRRT1GkF8ABfr6U3VDndv0GpGmkVAvAqCyYCQzM5NSU1PNX0+bNk2ceIrm7NmzYuoGAJxP+nRfKTIPdRTg6+92PTw4O3KurEBc7w7BCLqvAqh0mqZTp05if5jmuI6EvwcAcvYaCbhgPxhlV6o07eFhblvvBuOzzNxgmgZAZcFIa7v2VlRUkE6nc9a4AMDN96hpaaWKu9W1oMcIgMqmaebOnSvOORBZvHgxBQUFNdm1d9euXWIXXQCQDx9UM8vy3aKXh5T9iNAFm1equNPyY73BgO6rAGoLRrjbqpQZOXTokGh4JuHL/fr1ExvoAYALGp+5wcHeXC9icaCPdrPMTQN6jACoKxjZtm2beTnvSy+9RGFh+KQB4Grnp0HK3bIew52maaQxoMcIgAprRl588UVqaGhosYC1rEz5NyAANXOnaZCWVqpI4yuvq6Y6hXuNoHgVQMXBCC/j/eijjy64nnfx5e8BgHzcaRqkpYM9r/bRmZYcK72iBj1GAFQcjHCh6tVXX33B9SNGjBDfAwD5RLpRl9PWDvbuMlWDlTQAKg5GamtrW5ymqa+vp+rqameNCwBaILqcmnuNlCm7UsUcjBh365VImRJpXxh36A4LACoLRoYMGSJawjf3+uuv06BBg5w1LgBw414j5bWV5h4jkYFNV6pEu1tmBDUjAOprB/+vf/2LRo8eTb/99huNGjVKXLd161bas2cPffvtt3KMEQCaHezPleUrmhmRpmgiW1ip4g7Ljy17jGCaBkCFmZHLLruMduzYQSkpKaJo9csvv6SuXbvSwYMH6YorrpBnlABw4cFeweW9UjAS1WyKxnid8pkRqceIxgc9RgBUmRlh3Gl1zZo1zh8NAHjE8t7CqtJW6zHcIRgx9xjRcebG5s9cAOBidv2Vnjx5khYtWkS33HIL5eXlieu++eYbOnLkiLPHBwBuWDPS1rJZafmxkr1GzMuOMUUDoM5g5IcffqA+ffqIZbyff/652CCPcQ3J0qVL5RgjALhZ5uF8MHLhNE2gG/QakTI3KF4FUGkwsmDBAlHEunnz5ib704wcOZJ27tzp7PEBQDPu0OW0rWka3kxT6YBJqqdBZgRApcEIb5I3efLkC66Pi4ujgoICZ40LANrqNaJg5qFR30gl1RWtZkbcodcIuq8CqDwYiYiIoOzs7BZ39U1OTnbWuACgDUpmHjgAMpCB/DRaCgsIavE2UhBQrFAwgn1pALxgb5r58+dTTk6OSMfq9Xravn07PfLIIzRr1ix5RgkAbpN5sGyzzu8B7rb8GD1GALwgGHnqqaeoR48elJqaKopXe/bsSVdeeSUNHz5crLABAHVnRqyZApHGJ93WlUprKsRUksZHgx4jAGrtM8JFq2+++SYtXryYDh8+LAKSAQMGULdu3eQZIQC4Va8R80qVVupFmgYjxtu6UkGlVFwbih4jAGpuesY6dOggsiOstVQtAMhD6uWhxDSINZmRGFOgwrsL1zTUmZf6ukKBeaVP68ESALgXuz42vP3229S7d2/S6XTixJffeust548OANwu8yD9TCngaAn3Ggn20xlvb8pUuIo14wMAD8+MLFmyhF544QV68MEHadiwYeI63qtmzpw5dObMGXr88cflGCcAWJCyEkpkHs7vS9N2cWhMcDhVltSITEVyeKzrp2mCEYwAqDYYee2110TNyPTp083XTZgwgfr27SsCFAQjAPLjzEOIf6AIRvjgm+Kig31tQ534mdZMg3Awcrok1xwcuAoyIwBeME1TX19PgwcPvuD6QYMGUUNDg7PGBQDt4IM9K6gscXlWhIMhbr7WlpigCHFeUOW68YmfZwp+EIwAqDgYmTlzpsiONLdq1Sq69dZbnTUuAGiHdLDNd2HdiLl41YpmYueDJdeNr7q+lirra8RlTNMAqHw1DRewfvvtt3TppZeKr3nTPK4X4aZnc+fONd+Oa0sAQB4xwREuLxAtsqHNuhQsSatbXBks8RSWK+toAMDFwQj3Fhk4cKC4fPLkSXEeExMjTvw9CZb7ArgoM+LCaRpbls1KmZHi6nLRhEyr0co/PtPvAst6AVQejGzbtk2ekQCATczTIC7MPEgH+1hTVqYtYQHB5KfxpXp9g2jPbs19nJUZkX43AKDSmpH8/Pw2d/QFANeQDu4l1eVU3+ia4vF8qTjUioM9Z0ddXTciFcuieBVA5cFInz596Kuvvrrg+ueee46GDBnirHEBQDu4LiJA60cGF+1R06jXm5fNWpvlkKZLXLWipqASmREArwhGuED1pptuonvvvZeqq6vp3LlzNGrUKHr22WdpzZo18oyS32yLisRqnbCwMIqIiKA777xT7IvTlhEjRohPZ5anv/3tb7KNEcCVmmQeXDBVU1JTTo0Gvaj9iAi0bgM612dG0AoewCuCkUcffVR0XP3pp59EozM+BQQE0MGDB2ny5MnyjJJIBCJHjhyhzZs304YNG+jHH3+ke+65p9373X333ZSdnW0+cdAEoLYVNa4oYpV+Bk+B8I641jCvqHFBMMKZm2LTxoGYpgHwgqW9Xbt2FfvRfP755+LrqVOnUkJCAsnl6NGjtHHjRtqzZ4+54drKlSvpuuuuE9NDSUlJrd43KChI1rEBKMmVy2elepFYG6ZAXDk+XrWjNxjIV6OlMF2w7D8PABTMjGzfvl1kQ44fPy6yIdwAjdvAc0BSXFxMcuBMDE/NWHZ+HT16NGk0GtHjpC3//e9/xbJjDp4WLlxIVVVVbd6+traWysrKmpwA3JUrp0GklTRSNsaW8XGticHA1S3ykepSuAeKBq0FANQdjIwcOVIEHjt37qSLL76Y7rrrLtq/f79oesbFrXLIycmhuLi4Jtf5+vpSVFSU+F5rbrnlFvrggw/EcmQORP7zn//QjBkz2vxZy5cvp/DwcPMpNTXVac8DwNmkQlJXtIS3JzPCm+n5kA/VNTZQWW3bHwScNY0UGxwp688BADeYpuHOq1dddVWT67p06SIyJk8++aRNj7VgwQJ65pln2p2isZdlTQkHSomJiaLYlpu18ZhbwkGLZRdZzowgIAF3JU2DcH8NvUFvdS2HQ5kR054z1uApk8jAENFnhO8fLuP0SV6FcXxxIfL3MwEAhYOR5oGIhKdMFi9ebNNjzZs3j2bPnt3mbTp37ixqPvLy8ppcz5vy8QobW+pBhg4dKs5PnDjRajDCxbh8AvAEvKpF66MRq1yKqyusatNuD67FkOo+bG1exlM1IhipKqUu0ckkl/xK4zRxHDIjAB7H6o9RXCxaWnp+Xvrpp5+mkpLzqeHCwkLq2bOnTT88NjaWevTo0ebJ39+fhg0bJn7W3r17zff97rvvSK/XmwMMaxw4cECcc4YEQA04E2Lu5SHjVE1pTQU16BvFz4sMDLXpvubde2Wua5EyI67o9AoACgUjmzZtEsWdkqeeekpkJiwzFenp6SQHrk0ZN26cWKa7e/duMSX0wAMP0LRp08wrabjfCQcv/H3GUzFPPPGECGBOnTpF69evFxv5XXnllaIAF0AtXFHEKtVjcOZFq7FtKiguxJipyK2Qp8CdcaAktYLHNA2A57H6XaV5JbzclfEtrYrhYINrPjhLc/nll9OqVavM36+vrxfBkLRahjMqW7ZsoTFjxoj78ZQQN2v78ssvXTpuALnFuqDXyPniUNv7d8SbgpE80zSKHHjnYgMZyF/rJ/bEAQAv6DOiBF4501aH17S0tCYBEhed/vDDDy4aHYByzmcezmcqnU3KutizUkUaX35Fsag9kWPZbZ4pWIoLjsCO4QBqzoxI7dSbXwcAynJF5kGaYrGnHiMqMEwU2dbrG0VjMjlIz10KfABApZkRzjrwyhdppUlNTY3Y5yU42JgStawnAQDXiQ+JMm8Sx7v3+mmdn/DMM2VdpMDHFlxjwo3SOHOTV1Esy4qffBSvAng0q9+1brvttiZft9Q8jAtEAcC1wgKCKMDXn2ob6sTy2cTQaKcXh0rLeqXAx1YcxEjByMVxHcnZkBkB8JJg5J133pF3JABgF54u5YP9mZJccbB3djDC9SJc6xGg9bO7aZm0wiVXpqkkc8MzZEYAPJJ87RoBwGXiZSxilR6Tf4a9dWJSIzIOlpytpqGOymorxWVM0wB4JgQjAKoKRpx/sJceM87OKRrjfeULRqR6kRD/QAry1zn98QFAfghGAFRAzsyD9Jj2FK9KpPuW1FRQbUM9yVIvgqwIgMdCMAKgAvGhUeYshrMbElpO09gr2D9QnORYgpxTXtTkdwAAngfBCIBKdu/1IR9T/YSxC7EzcGAjTdM4erCPN2UunJ29yS4vFOcJTi7cBQDXQTACoALcW0Tq3+HMgz0HNhzgcKDDAY8j5NqjJscUjCQiMwLgsRCMAKiEHCtqpMeKCQ5zuJmalLmQggdn4CZv+aZW9c5e0gwAroNgBEAlpIZkOU4MRqR6DEdW0kikYCGrzHnBCGeBeIO8QL8AbJAH4MEQjACoRGKY8w/22eUFTss6JJnGxzsA1zU2kDPrRRJDorBXFoAHQzACoBJJYTHiPKuswGkraqTAJskJwQhnLoL8dCKT4aypJClzg+JVAM+GYARAJRJCokjj40NV9TXmjqSO4IBGyjxIgY4jOHMhZUeynZS9MWdGEIwAeDQEIwAqwQWmsabmZ+fKjNMrjiiuLhcrabQ+God6jLRYN2Ka/nFUToW0rBcraQA8GYIRABWRMg88VeMoKWDgQESr0ZIzJIXGOC0zwnUnBZVl4jIyIwCeDcEIgIpIB3tnFLFKAU2iE6ZoLiiydcLy3tzyIlF/Euyno9CAICeMDgCUgmAEQI1FrE6YBnFm8apEymCU1lRQVV2NQ4+VWZYnzpPDY7GSBsDDIRgBUGEwwlmDRn2jQ4/lzOJVCfcDiQwMbfL49jpbmi/OU8PjnDI2AFAOghEAFYkKDKUAX39qNOgdarvO9RjS8ltnBiOWj5dpCibsJd0/JTzWKeMCAOUgGAFQEZ6uSDZNhTiyouZcWT7pDQZRixGhC3HiCIk6mDIZZ0uN0yz20Bv0lFVmCkbCEIwAeDoEIwAqkxoRL87PlOTa/RhnS/LMgYOz6zE6OGF8eRXGLq7+Wj+KDTHuBgwAngvBCIDKSAf70w4c7KVAQQpsnEmq8eBpoNqGOrseQ8qqJIfFkMYHb2MAng5/xQAq09EUQJwrzbO7iFU62HeIcH5xaJguWEz9GByoGzmHehEAVUEwAqAyMcERFOjrT/X6Rrv6eXC2QtrzJTXc+ZkRZ2RvzpQa75eClTQAqoBgBEBleH8aR+oyOFvBzcTCdSEUrguWYYTnp2rOmoIKW3C2R3penSITnT42AHA9BCMAKuRI5kE60EurXuTgSLDEq4S4eJV7lsQ5ac8cAFAWghEAFeoYkSDOzxTn2HzfP4uzxXlapPEx5Kpr4TU6+ZWlNu8wnGEaX6fIBJEFAgDPh2AEQIWkQIK7nNrSdt1gMNDJwnPicpfoZNnGF+SvM+95c7Iwy6b7ZhRJwUiSLGMDANdDMAKgQrxiJS44UqxYOVlk/cE+r7KEKuqqyU+jlb3NepcoYzDxpw3jY6dckLkBANdCMAKgUt1ijJmN44WZVt9Hyop0jEwgP60vyUnKvJww/UxrFFaVUlF1uZie4TECgDogGAFQqa7RKeL8RIENwUiRaYomSr4pGon0M7ite1V9rVX3Sc8/K87TIhJI5+sv6/gAwHUQjACoVFdT5oH3mbGmboTrRaSDvXRfOfGy4bjgCDGVdLzA+HPbcyz/jDi/KLaDzKMDAFdCMAKgUtwnRKobOVZgPIi3t2SWV7b4a32ps6meQ24Xx6WJ8yN5p9q9LW/c94cpaEEwAqAuCEYAVKx3Qidxfjgno93bHjUFBN1iUmWvF5H0NAUjv+eeEpmZtmSW5lFVfQ0F+PqbW94DgDogGAFQsT7xncX573kZ1KjXt3lbKTvRM64juQpPB3EmhjMymWVt71NzMOekOL8oJpW0Gq2LRggAroBgBEDF0iITKdhPJwpE21pCW1xdThmm7/c2BTCuwBmY7jHGKZdDOX+2ejvOmhzIOiEu90/s6rLxAYBrIBgBUDGtRkO94o1TNfuy/mj1dvuzjovaEq4ViQwMdeEIiQYkdRPnv2Yea3Wqhpu35VUWi4yI9HwAQD0QjACo3CUpPcT5vnPpYk+X5jgA4ECADUzq7vLx9U3oQv5aPyqoKqVTrbSv33nmiDjvGdtR7EkDAOqCYARA5bggNSowjKob6uhA1vEW93rheg1fjdacpXClAF8/6pfYRVz+6dTBC75f11BPuzKPisvDO/Z2+fgAQH4eE4w8+eSTNHz4cAoKCqKIiAir7sOf+JYsWUKJiYkUGBhIo0ePpuPHL3wzBlAz7lY6vGMvcXnziT2kNzQtZN12cp85gxIaEKTIGK/q1F+c78tKp8Kqsibf23n2d6qurxUB1cUuLK4FANfxmGCkrq6OpkyZQvfee6/V93n22Wfp5Zdfptdff5127dpFwcHBNHbsWKqpsX7jMAA1uCKtHwX56Si3oph2nTVmGRgXtf6Wc1LsoDui8wDFxtchIl6skuFeIl8d+8V8PRfebjq+W1we2WUgaXw85i0LAGzgMX/Zy5Ytozlz5lCfPn2szoq8+OKLtGjRIpo4cSL17duX3n//fcrKyqK1a9fKPl4Ad8J1Ftd0HSwuf3HkRzpXmk+lNZX0n/2bxHWXduhFiaHRio7x+h7DRVD067l02nHmCDXoG2nNgc1UXltFscHhmKIBUDHXdDZSQEZGBuXk5IipGUl4eDgNHTqUduzYQdOmTWvxfrW1teIkKStrmjIG8FSc+TiUc5L+LM6mFT99RL4ajShojQ4KpwkXX6708MTGd6O7DqbNJ36lD3/bQut+/0lkRjgbMmPAWFHTAgDq5DGZEVtxIMLi45t2auSvpe+1ZPny5SJokU6pqamyjxXAVct87xkygXrEdhB1IxyIJIfF0H2XTqJgfx25g/E9htOoLoNEnQsHIjy1dM8lN1CnyESlhwYAas2MLFiwgJ555pk2b3P06FHq0cO4NNEVFi5cSHPnzm2SGUFAAmoR5K+j+y6dTDnlRVTXWE8p4bFuVYfBQcjEnpeLgtai6jIRLHH7dwBQN0WDkXnz5tHs2bPbvE3nzvZ1g0xISBDnubm5YjWNhL/u399Yud+SgIAAcQJQs4TQKHJnEYEh4gQA3kHRYCQ2Nlac5NCpUycRkGzdutUcfHCWg1fV2LIiBwAAAOTlPvnZdpw5c4YOHDggzhsbG8VlPlVUVJhvw9M5X3zxhbjs4+NDDz/8MP3rX/+i9evX06FDh2jWrFmUlJREkyZNUvCZAAAAgEeupuHmZe+995756wEDjD0Rtm3bRiNGjBCX09PTqbS01HybRx99lCorK+mee+6hkpISuvzyy2njxo2k07lHsR4AAAAQ+Rha25kKzFM7vKqGg5ywsDClhwMAAKC6Y6jHTNMAAACAOiEYAQAAAEUhGAEAAABFeUwBq1Kkkhq0hQcAALCNdOxsrzwVwUg7ysvLxTm6sAIAANh/LOVC1tZgNU079Hq92Ok3NDRU9C5xBqnF/NmzZ71yhQ6eP54/nj+eP56/dzx/g8EgAhHu8aXRtF4ZgsxIO/iXl5KSIstj839Eb/jP2Bo8fzx/PH88f2/lTc8/vI2MiAQFrAAAAKAoBCMAAACgKAQjCuBdgZcuXeq1uwPj+eP54/nj+eP5e+fzbw0KWAEAAEBRyIwAAACAohCMAAAAgKIQjAAAAICiEIwAAACAohCMyOTVV1+ltLQ00ul0NHToUNq9e3ebt//000+pR48e4vZ9+vShr7/+mjzR8uXL6ZJLLhEda+Pi4mjSpEmUnp7e5n3effdd0d3W8sS/B0/0z3/+84Lnwq+rN7z2jP/PN3/+fLr//vtV+9r/+OOPdMMNN4gOkzz+tWvXNvk+rxFYsmQJJSYmUmBgII0ePZqOHz/u9PcQd3z+9fX1NH/+fPH/Ojg4WNxm1qxZoqu1s/+O3PX1nz179gXPZdy4cap5/Z0FwYgMPv74Y5o7d65YvrVv3z7q168fjR07lvLy8lq8/S+//ELTp0+nO++8k/bv3y8O4Hw6fPgweZoffvhBHHh27txJmzdvFm9GY8aMocrKyjbvx50Is7OzzafTp0+Tp+rVq1eT5/Lzzz+3els1vfZsz549TZ47/x9gU6ZMUe1rz/+3+W+cDx4tefbZZ+nll1+m119/nXbt2iUOyvx+UFNT47T3EHd9/lVVVWL8ixcvFuf/+9//xIeTCRMmOPXvyJ1ff8bBh+Vz+fDDD9t8zI896PV3Gl7aC841ZMgQw/3332/+urGx0ZCUlGRYvnx5i7e/+eabDePHj29y3dChQw1//etfDZ4uLy+Pl44bfvjhh1Zv88477xjCw8MNarB06VJDv379rL69ml979tBDDxm6dOli0Ov1qn/tGf9f/+KLL8xf8/NOSEgwrFixwnxdSUmJISAgwPDhhx867T3EXZ9/S3bv3i1ud/r0aaf9Hbnz87/tttsMEydOtOlxhnjo6+8IZEacrK6ujvbu3StSsZb72/DXO3bsaPE+fL3l7RlHwa3d3pOUlpaK86ioqDZvV1FRQR07dhQbSE2cOJGOHDlCnopT8Jyy7dy5M91666105syZVm+r5tee/xY++OADuuOOO9rcZFJNr31zGRkZlJOT0+Q15n06OO3e2mtsz3uIp70n8P+HiIgIp/0dubvvv/9eTFtfdNFFdO+991JhYWGrt61T+evfGgQjTlZQUECNjY0UHx/f5Hr+mt+UWsLX23J7T9rx+OGHH6bLLruMevfu3ert+A909erVtG7dOnHw4vsNHz6cMjMzydPwQYbrIDZu3EivvfaaOBhdccUVYtdKb3rtGc+dl5SUiDlzb3jtWyK9jra8xva8h3gKnpriGhKemmxrkzhb/47cGU/RvP/++7R161Z65plnxFT2tddeK15jb3v924Jde0E2XDvCtQ/tzfUOGzZMnCR8MLr44ovpjTfeoCeeeII8Cb/JSPr27SveVPlT/yeffCLqQrzJ22+/LX4f/OnWG157aBvXj918882ioJcDDG/5O5o2bZr5Mhfy8vPp0qWLyJaMGjVK0bG5E2RGnCwmJoa0Wi3l5uY2uZ6/TkhIaPE+fL0tt/cEDzzwAG3YsIG2bdtGKSkpNt3Xz8+PBgwYQCdOnCBPx6no7t27t/pc1PjaMy5C3bJlC911111e+9oz6XW05TW25z3EUwIR/n/BRc1tZUXs+TvyJDztxK9xa88lRoWvvzUQjDiZv78/DRo0SKTkJJx65q8tPwFa4ustb8/4D7a127sz/tTDgcgXX3xB3333HXXq1Mnmx+AU5aFDh8RSSE/H9RAnT55s9bmo6bW39M4774g58vHjx3vta8/4/z8fQCxf47KyMrGqprXX2J73EE8IRLgGhAPU6Ohop/8deRKeguSakdaei7/KXn+rKV1Bq0YfffSRqJZ/9913Db///rvhnnvuMURERBhycnLE92fOnGlYsGCB+fbbt283+Pr6Gp577jnD0aNHRSW5n5+f4dChQwZPc++994rVEd9//70hOzvbfKqqqjLfpvnzX7ZsmWHTpk2GkydPGvbu3WuYNm2aQafTGY4cOWLwNPPmzRPPPSMjQ7yuo0ePNsTExIhVRWp/7S0r/zt06GCYP3/+Bd9T42tfXl5u2L9/vzjxW+oLL7wgLkurRZ5++mnx979u3TrDwYMHxcqKTp06Gaqrq82PMXLkSMPKlSutfg/xlOdfV1dnmDBhgiElJcVw4MCBJu8JtbW1rT7/9v6OPOX58/ceeeQRw44dO8Rz2bJli2HgwIGGbt26GWpqalTx+jsLghGZ8H8sfkP29/cXy7R27txp/t5VV10llntZ+uSTTwzdu3cXt+/Vq5fhq6++Mngi/mNs6cRLOFt7/g8//LD5dxUfH2+47rrrDPv27TN4oqlTpxoSExPFc0lOThZfnzhxwiteewkHF/yap6enX/A9Nb7227Zta/H/vPQ8eXnv4sWLxfPjA8yoUaMu+N107NhRBKLWvod4yvPnA3Br7wl8v9aef3t/R57y/PlD2JgxYwyxsbHiQwY/z7vvvvuCoKKjB7/+zuLD/yidnQEAAADvhZoRAAAAUBSCEQAAAFAUghEAAABQFIIRAAAAUBSCEQAAAFAUghEAAABQFIIRAAAAUBSCEQBwa7zr76RJk5QeBgDICLv2AoBifHx82vz+0qVL6aWXXhJ7HgGAeiEYAQDFZGdnmy9//PHHtGTJEkpPTzdfFxISIk4AoG6YpgEAxfCOttIpPDxcZEosr+NApPk0zYgRI+jBBx+khx9+mCIjIyk+Pp7efPNNqqyspNtvv51CQ0Opa9eu9M033zT5WYcPH6Zrr71WPCbfZ+bMmVRQUKDAswaA5hCMAIDHee+99ygmJoZ2794tApN7772XpkyZQsOHD6d9+/bRmDFjRLBRVVUlbl9SUkIjR46kAQMG0K+//kobN26k3NxcsbU9ACgPwQgAeJx+/frRokWLqFu3brRw4ULS6XQiOLn77rvFdTzdU1hYSAcPHhS3f+WVV0Qg8tRTT1GPHj3E5dWrV9O2bdvojz/+UPrpAHg91IwAgMfp27ev+bJWq6Xo6Gjq06eP+TqehmF5eXni/LfffhOBR0v1JydPnqTu3bu7ZNwA0DIEIwDgcfz8/Jp8zbUmltdJq3T0er04r6iooBtuuIGeeeaZCx4rMTFR9vECQNsQjACA6g0cOJA+//xzSktLI19fvO0BuBvUjACA6t1///1UVFRE06dPpz179oipmU2bNonVN42NjUoPD8DrIRgBANVLSkqi7du3i8CDV9pwfQkvDY6IiCCNBm+DAErzMaC1IQAAACgIHwkAAABAUQhGAAAAQFEIRgAAAEBRCEYAAABAUQhGAAAAQFEIRgAAAEBRCEYAAABAUQhGAAAAQFEIRgAAAEBRCEYAAABAUQhGAAAAQFEIRgAAAICU9P8BUhJeBkKu8WwAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] }, "metadata": {}, "output_type": "display_data" @@ -202,17 +202,19 @@ "cell_type": "code", "execution_count": 8, "metadata": { - "collapsed": false, "ExecuteTime": { "end_time": "2024-10-23T02:59:47.754306Z", "start_time": "2024-10-23T02:59:47.235737Z" - } + }, + "collapsed": false }, "outputs": [ { "data": { - "text/plain": "
", - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAcwAAAL0CAYAAACBGgfbAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAABUp0lEQVR4nO3de1xU1f7/8fcwyMULykVRtMzMVBCRpLQTdvGWmiVSdk875jGPoqfTqQw0xSuiZd9My6w4x1taXjNvWVqnr1leKBUPyUGtNC3FxLyAIDPz+6Mf841Q28xsmBFfz8ejx4NZe+21PlOP9nvWnj17WxwOh0MAAOCSfDxdAAAAlwMCEwAAAwhMAAAMIDABADCAwAQAwAACEwAAAwhMAAAMIDABADDA19MFeIrdbldJSYl8fHxksVg8XQ4AwAMcDofsdrt8fX3l43PpNeQVG5glJSXKysrydBkAAC8QHR0tPz+/S/a5YgOz9JNEdHS0rFarR2ux2WzKysryiloAoDJ52/GutJ4/Wl1KV3Bglp6GtVqtXvEfTfKuWgCgMnnb8c7IV3Nc9AMAgAEEJgAABhCYAAAYQGB6icDAQE+XAABV4nI93hGYbrI77G6PYbVaFRkZacoX4GbUAwAXcqUf767Yq2TN4mPx0byv1uunMyc8XYoa1g5R/xt6eLoMANXUlX68IzBN8NOZE/rhlzxPlwEAle5KPt5xShYAAAMITAAADCAwAQAwgMAEAMAAAhMAAAMITAAADCAwAQAwgMAEAMAAAhMAAAMITAAADCAwAQAwgMAEAMAAAhMAAAMITAAADCAwAQAwgMAEAMAAAhMAAAMITAAADCAwAQAwgMAEAMAArwrMoqIipaSkKC4uTvHx8crIyPjDfX744QfFxsZq69atVVAhAOBK5evpAn5r6tSp2rNnj+bOnasjR45o5MiRioiIUI8ePS66T2pqqgoKCqqwSgDAlchrArOgoEBLlizRm2++qaioKEVFRSk3N1cLFy68aGCuWrVKZ8+ereJKAQBXIq85Jbt3716VlJQoNjbW2da+fXvt2rVLdru9XP/8/HxNmzZN48ePr8oyAQBXKK8JzLy8PAUHB8vPz8/ZFhYWpqKiIp08ebJc/ylTpqhv375q0aJFFVYJALhSec0p2cLCwjJhKcn5uri4uEz7li1blJmZqdWrV7s9r81mc2t/q9Xqdg1mc/c9AcCFVMfjXUX295rA9Pf3LxeMpa8DAgKcbefOndOYMWM0duzYMu2uysrKcnnfwMBARUZGul2D2XJyclRYWOjpMgBUIxzvvCgww8PDlZ+fr5KSEvn6/lpWXl6eAgICFBQU5Oy3e/duHTp0SCNGjCiz/1/+8hclJCRU+DvN6Ohor/zU5I6WLVt6ugQAqBLuHu9sNpvhhZPXBGbr1q3l6+urnTt3Ki4uTpKUmZmp6Oho+fj831etbdu21YYNG8rs2717d02cOFG33HJLhee1Wq3VLjCr2/sBgIupyuOd1wRmYGCgEhISlJqaqsmTJ+vYsWPKyMhQWlqapF9Xm3Xq1FFAQICaNm1abv/w8HCFhoZWddkAgCuE11wlK0nJycmKiorSgAEDNG7cOA0fPlzdu3eXJMXHx2vt2rUerhAAcKXymhWm9OsqMz09Xenp6eW25eTkXHS/S20DAMAMXrXCBADAWxGYAAAYQGACAGAAgQkAgAGmBOYdd9yhF198UdnZ2WYMBwCA1zElMJ9//nkdPnxYjzzyiHr06KEZM2Zo//79ZgwNAIBXMOVnJXfeeafuvPNOnTt3Tp988ok2bNighx9+WOHh4erdu7d69eqlJk2amDEVAAAeYep3mAEBAbrzzjt1//33q3fv3vr+++/1r3/9S71799bAgQP17bffmjkdAABVxpTAtNvt2rJli8aMGaP4+Hg99dRTKioq0uzZs7V582Zt3rxZwcHB+utf/2rGdAAAVDlTTsnefPPNKi4u1u23367x48fr1ltvLfNsy9q1a6tbt27atWuXGdMBAFDlTAnM0aNHq0uXLqpZs2a5bSdOnFBISIh69OihHj16mDEdAABVzpRTss8995zOnTtXrv3w4cPq0qWLGVMAAOBRLq8wV65cqeXLl0uSHA6Hhg0bpho1apTpc+zYMdWvX9+9CgEA8AIuB2a3bt30ww8/SJK2bdumdu3aqVatWmX61KxZU926dXOvQgAAvIDLgVmrVi0lJSVJkho3bqy77rqrzIU+AABUJ26dku3Vq5f8/PxksVgu+XDnhIQEV6cBAMAruByYM2bM0G233SY/Pz/NmDHjov0sFguBCQC47LkcmJs2bbrg3wAAVEcuB+b27dsN9bNYLIqLi3N1GgAAvILLgfnYY48Z6mexWPTNN9+4Og0AAF7B5cDcu3evmXUAAODVXA7MI0eOqFGjRrJYLDpy5Mgl+0ZERLg6DQAAXsHlwOzcubM+//xzhYaGqnPnzrJYLHI4HM7tpa85JQsAqA5cDsyNGzcqJCTE+TcAANWZy4HZuHHjcn9/++232r9/v2rUqKFrr71WV111lfsVAgDgBUx5vNePP/6o5557Ttu3b1fdunXlcDh0+vRpde7cWZMmTVK9evXMmAYAAI8x5fFeo0ePltVq1caNG7V161Zt27ZN69atU35+vsaMGWPGFAAAeJQpK8zt27dr+fLlZU7TXnPNNRozZowefPBBM6YAAMCjTFlhNm/eXP/973/LtR86dKhMiAIAcLly62klpTp27KhRo0YpOztb0dHRslqtysnJ0b/+9S/9+c9/NqNOAAA8yq2nlfxWcHCw1q5dW+YxX3Xq1NGyZcs0dOhQ1ysEAMALmPK0EgAAqjtTLvqRpBMnTujbb7+V3W6XJDkcDhUXFys7O1uDBw82axoAADzClMB87733NH78eJWUlJS5RZ7FYlHbtm0JTADAZc+Uq2Rnz56tIUOGaPfu3QoNDdUnn3yi1atXq3Xr1urWrZsZUwAA4FGmBOaxY8eUkJAgPz8/RUVFaefOnbruuuuUkpKiJUuWmDEFAAAeZUpghoSE6MSJE5Kka6+91vl0kvDwcB09etSMKQAA8ChTArNnz54aOXKkvvrqK3Xq1EnLly/Xhx9+qFmzZqlp06ZmTAEAgEeZctHPM888ozp16ig/P19dunTRvffeq7Fjx6pevXpKS0szYwoAADzKlMCsUaOGkpKSnK///ve/6+9//7sZQwMA4BVM+x3m9u3btXjxYufzMJs3b64BAwaodevWZk0BAIDHmPId5oIFCzRw4ED5+fnpvvvu0913362SkhLdf//9WrNmjRlTAADgUaasMN98801NmDBBCQkJZdrj4uI0ffp03XXXXWZMAwCAx5iywjxz5oyio6PLtcfFxTl/bgIAwOXMlMB89NFHNW3aNJ06dcrZVlRUpJkzZ+r+++83YwoAADzK5VOynTt3lsVikfTrjdaPHDmiW2+9VVdddZV8fHx08OBBFRUVcdEPAKBacDkwhw8fbmYdkn5dlY4bN04bNmxQQECABg4cqIEDB16w76effqqXX35ZBw8eVJMmTfTUU0+pS5cuptcEAIDkRmD27du3XFthYaG+//572e12XX311apdu3aFxpw6dar27NmjuXPn6siRIxo5cqQiIiLUo0ePMv327t2rpKQkPffcc7rtttu0efNm/e1vf9PSpUvVqlUrV98SAAAXZcpVsufPn9e0adP0zjvvyGazyeFwyNfXV3fffbfGjRsnPz+/PxyjoKBAS5Ys0ZtvvqmoqChFRUUpNzdXCxcuLBeYq1evVseOHdW/f39JUtOmTbVp0yatW7eOwAQAVApTLvpJT0/XJ598otdff13bt2/Xtm3bNGvWLO3YsUMvv/yyoTH27t2rkpISxcbGOtvat2+vXbt2OR9KXapv37565plnyo1x+vRp994IAAAXYcoKc/Xq1XrllVfUoUMHZ9ttt90mf39/PfPMMxo5cuQfjpGXl6fg4OAyq9GwsDAVFRXp5MmTCgkJcbY3b968zL65ubn64osv9OCDD1a4dpvNVuF9fstqtbq1f2Vw9z0BwIVUx+NdRfY3JTAdDodCQ0PLtYeEhOjs2bOGxigsLCx36rb0dXFx8UX3O3HihIYPH64bbrjBpYt+srKyKrxPqcDAQEVGRrq8f2XJyclRYWGhp8sAUI1wvDMpMDt27KgXX3xRL774ovNCn1OnTmn69OllVp2X4u/vXy4YS18HBARccJ/jx4/rz3/+sxwOh2bMmCEfn4qfYY6OjvbKT03uaNmypadLAIAq4e7xzmazGV44mRKYKSkp6t+/vzp16qRmzZpJkr799ltdddVVev311w2NER4ervz8fJWUlMjX99ey8vLyFBAQoKCgoHL9jx496rzoZ968eWVO2VaE1WqtdoFZ3d4PAFxMVR7vTAnMOnXqaPXq1frss8904MAB+fv7q1mzZrrlllsMr/pat24tX19f7dy5U3FxcZKkzMxMRUdHlxujoKBAgwYNko+Pj+bNm6f69eub8TYAALgoUwKzd+/emjlzprp06eLyzQMCAwOVkJCg1NRUTZ48WceOHVNGRobzAdR5eXmqU6eOAgIC9MYbb+jgwYOaP3++c5v066nbOnXqmPGWAAAow5TA9PHx0fnz590eJzk5WampqRowYIBq166t4cOHq3v37pKk+Ph4paWlKTExUR9++KHOnTunfv36ldm/b9++mjJlitt1AADwe6YE5u23364///nPuuOOO9S4ceNyV7smJSUZGicwMFDp6elKT08vty0nJ8f59/r1690rGACACjIlMHNychQVFaVjx47p2LFjZbaV3qAdAIDLmVuB+f777+ujjz5SWFiYunTpot69e5tVFwAAXsXlW+PNnTtXKSkpOnfunAoLC5WcnKzp06ebWRsAAF7D5RXm4sWLNWnSJCUkJEiSNmzYoOTkZP3973/nNCwAoNpxeYV56NAh3Xzzzc7XnTt3VmFhYbnvMAEAqA5cDszf3pFHknx9fS94ezsAAKoDUx7vBQBAdefWVbLr1q1z3mxdkux2uz766KNy93Ut/Z4TAIDLlcuBGRERoYyMjDJtoaGhWrBgQZk2i8VCYAIALnsuB+amTZvMrAMAAK/Gd5gAABhAYAIAYACBCQCAAQQmAAAGEJgAABhAYAIAYACBCQCAAQQmAAAGEJgAABhAYAIAYACBCQCAAQQmAAAGEJgAABhAYAIAYACBCQCAAQQmAAAGEJgAABhAYAIAYACBCQCAAQQmAAAGEJgAABhAYAIAYACBCQCAAQQmAAAGEJgAABhAYAIAYACBCQCAAQQmAAAGEJgAABhAYAIAYACBCQCAAQQmAAAGEJgAABhAYAIAYACBCQCAAV4VmEVFRUpJSVFcXJzi4+OVkZFx0b7Z2dnq16+fYmJidO+992rPnj1VWCkA4ErjVYE5depU7dmzR3PnztXYsWM1c+ZMrV+/vly/goICDR48WHFxcVq+fLliY2P15JNPqqCgwANVAwCuBF4TmAUFBVqyZIlGjRqlqKgodevWTYMGDdLChQvL9V27dq38/f313HPPqXnz5ho1apRq1ap1wXAFAMAMXhOYe/fuVUlJiWJjY51t7du3165du2S328v03bVrl9q3by+LxSJJslgsuuGGG7Rz586qLBkAcAXx9XQBpfLy8hQcHCw/Pz9nW1hYmIqKinTy5EmFhISU6XvdddeV2T80NFS5ubmG53M4HJKk4uJiWa1Wl+u2Wq2KqBUqqxd89givFSybzSabzebpUgBUQ9XxeFe6f2kmXIrXBGZhYWGZsJTkfF1cXGyo7+/7XUrpqjU7O9uVcstorTC1rhXm9jhmYJUNoDJV1+Pd789kXojXBKa/v3+5wCt9HRAQYKjv7/tdiq+vr6Kjo+Xj4+M8tQsAuLI4HA7Z7Xb5+v5xHHpNYIaHhys/P18lJSXOwvPy8hQQEKCgoKByfY8fP16m7fjx42rQoIHh+Xx8fMqtUgEAuBjPn4j+/1q3bi1fX98yS+zMzEznKvC3YmJi9PXXXzvPOTscDn311VeKiYmpypIBAFcQrwnMwMBAJSQkKDU1Vbt379bHH3+sjIwM9e/fX9Kvq81z585Jknr06KFTp05p0qRJ2rdvnyZNmqTCwkL17NnTk28BAFCNWRxGLg2qIoWFhUpNTdWGDRtUu3ZtPfHEE3r88cclSS1btlRaWpoSExMlSbt379bYsWO1f/9+tWzZUuPGjVNkZKQHqwcAVGdeFZgAAHgrrzklCwCANyMwAQAwgMAEAMAAAhMAAAMITAAADCAwAQAwgMAEAMAAAhMAAAMITAAADCAwAQAwgMAEAMAAAhMAAAMITAAADCAwAQAwgMAEAMAAAhMAAAMITAAADCAwAQAwgMAEAMAAAhMAAAMITAAADCAwAQAwgMAEAMAAX08X4Cl2u10lJSXy8fGRxWLxdDkAAA9wOByy2+3y9fWVj8+l15BXbGCWlJQoKyvL02UAALxAdHS0/Pz8Ltnnig3M0k8S0dHRslqtHq3FZrMpKyvLK2oBgMrkbce70nr+aHUpXcGBWXoa1mq1esV/NMm7agGAyuRtxzsjX81x0Q8AAAYQmAAAGEBgAgBgAIEJAKhSgYGBni7BJQQmAMAQm93u9hhWq1WRkZGmXPBjRj0VccVeJQsAqBirj4/SPlqngydOeLoUXR0SouRuPat0TgITAGDYwRMntO94nqfL8AhOyQIAYACBCQCAAQQmAAAGEJgAABhAYAIAYACBCQCAAQQmAAAGEJgAABhAYAIAYACBCQCAAQQmAAAGEJgAABhAYAIAYACBCQCAAQQmAAAGEJheIjAw0NMlAAAugcB0k81ud3sMq9WqyMhIWa1Wr6gHAFCer6cLuNxZfXyU9tE6HTxxwtOl6OqQECV36+npMgCgWiIwTXDwxAntO57n6TIAAJWIU7IAABhAYAIAYACBCQCAAQQmAAAGEJgAABhAYAIAYACBCQCAAQQmAAAGEJgAABjgNYE5ePBgPf/8887X2dnZ6tevn2JiYnTvvfdqz549ZfqvXr1aXbt2VUxMjIYNG6YTXnBrOgBA9eUVgblmzRr9+9//dr4uKCjQ4MGDFRcXp+XLlys2NlZPPvmkCgoKJEm7d+/WqFGjlJSUpHfffVenTp1ScnKyp8oHAFwBPB6YJ0+e1NSpUxUdHe1sW7t2rfz9/fXcc8+pefPmGjVqlGrVqqX169dLkhYsWKCePXsqISFBrVq10tSpU/Xvf/9bhw4d8tTbAABUcx4PzPT0dPXp00fXXXeds23Xrl1q3769LBaLJMliseiGG27Qzp07ndvj4uKc/Rs1aqSIiAjt2rWrSmsHAFw5PPq0ki+++EI7duzQBx98oNTUVGd7Xl5emQCVpNDQUOXm5kqSjh07pgYNGpTb/tNPP1W4BpvNVvHCf8OMZ1iazd33BAAXUh2PdxXZ32OBWVRUpLFjx2rMmDEKCAgos62wsFB+fn5l2vz8/FRcXCxJOnfu3CW3V0RWVlaF9ykVGBioyMhIl/evLDk5OSosLPR0GQCqEY53HgzMmTNnqk2bNurUqVO5bf7+/uXCr7i42BmsF9seGBhY4Tqio6O98lOTO1q2bOnpEgCgSrh7vLPZbIYXTh4LzDVr1uj48eOKjY2VJGcAfvjhh+rdu7eOHz9epv/x48edp2HDw8MvuL1+/foVrsNqtVa7wKxu7wcALqYqj3ceC8z58+erpKTE+frFF1+UJD3zzDPavn273nzzTTkcDlksFjkcDn311VcaMmSIJCkmJkaZmZlKTEyUJP3444/68ccfFRMTU/VvBABwRfBYYDZu3LjM61q1akmSmjZtqtDQUL300kuaNGmSHnzwQS1evFiFhYXq2bOnJOmhhx7SY489pnbt2ik6OlqTJk3S7bffrquuuqrK3wcA4Mrg8Z+VXEjt2rX1xhtvOFeRu3bt0pw5c1SzZk1JUmxsrMaPH69Zs2bpoYceUt26dZWWlubhqgEA1ZlHf1byW1OmTCnzum3btlqxYsVF+ycmJjpPyQIAUNm8coUJAIC3ITABADCAwAQAwAACEwAAAwhMAAAMIDABADCAwAQAwAACEwAAA0wPzBMnTpg9JAAAHudSYLZu3fqCwXj48GF16dLF7aIAAPA2hm+Nt3LlSi1fvlyS5HA4NGzYMNWoUaNMn2PHjrn0iC0AALyd4cDs1q2bfvjhB0nStm3b1K5dO+cTRkrVrFlT3bp1M7dCAAC8gOHArFWrlpKSkiT9+miuXr16yd/fv9IKAwDAm7j0tJK+ffvq+++/1549e3T+/Ply2xMSEtytCwAAr+JSYL711lt68cUXVbdu3XKnZS0WC4EJAKh2XArMjIwMPfvss3riiSfMrgcAAK/k0s9KioqK1L17d7NrAQDAa7kUmHfffbfeeecdORwOs+sBAMAruXRK9syZM1q6dKlWr16tJk2alPs95rx580wpDgAAb+FSYF5zzTUaMmSI2bUAAOC1XArM0t9jAgBwpXApMJOTky+5PS0tzaViAADwVqY8raSkpETffvut1q5dq5CQEDOGBADAq7i0wrzYCvKtt97Sf//7X7cKAgDAG5n6PMwePXroo48+MnNIAAC8gmmBWVBQoPfee0/BwcFmDQkAgNdw6ZRsq1atZLFYyrX7+/tr4sSJbhcFAIC3cSkwf39jAovFoho1aui6665T7dq1TSkMAABv4lJg3nTTTZKk7777Tvv375fdblezZs0ISwBAteVSYJ46dUrJycnauHGj6tatK5vNprNnz+rGG2/UrFmzVKdOHbPrBADAo1y66GfixIn66aeftHbtWm3dulU7duzQBx98oIKCAm5aAACollwKzE2bNik1NVXXXnuts+26667TmDFjtHHjRtOKAwDAW7gUmP7+/vLxKb+rxWKRzWZzuygAALyNS4HZuXNnjRs3TgcPHnS2fffdd5o4caJuu+0204oDAMBbuHTRz7PPPqthw4bpzjvvVFBQkCTpl19+0a233qoXXnjB1AIBAPAGFQ7M77//XhEREZo/f75ycnK0f/9++fv765prrlHz5s0ro0YAADzO8ClZh8OhiRMnqmfPnvr6668lSS1btlSvXr20bNky9e7dW1OmTJHD4ai0YgEA8BTDgTlv3jytXbtWs2bNct64oNRrr72mWbNmacWKFVq0aJHpRQIA4GmGA/O9997TCy+8oDvuuOOC2zt37qxnnnmGwAQAVEuGA/Pw4cNq27btJft07NhRhw4dcrsoAAC8jeHADA0N1eHDhy/Z56efflK9evXcrQkAAK9jODC7deumV199VefPn7/g9pKSEs2cOVPx8fGGJz969KhGjBihm266SZ06dVJaWpqKiookSYcOHdLjjz+udu3aqVevXtq8eXOZfbds2aLevXsrJiZG/fv3Z2ULAKhUhgNz6NChOnr0qBITE/Xee+8pOztbhw4d0p49e/Tuu++qb9++OnTokIYPH25oPIfDoREjRqiwsFALFy7Uyy+/rE8++UT/8z//I4fDoWHDhiksLEzLli1Tnz59lJSUpCNHjkiSjhw5omHDhikxMVFLly5VSEiIhg4dyhW6AIBKY/h3mEFBQXrvvff04osvasqUKSosLJT0a/DVqVNHvXr10vDhwxUWFmZovAMHDmjnzp36/PPPnfuMGDFC6enpuvXWW3Xo0CEtXrxYNWvWVPPmzfXFF19o2bJlGj58uJYsWaI2bdpo4MCBkqS0tDTdcsst2rZtmzp06FDRfwcAAPyhCt24oF69epo4caLGjBmjQ4cO6dSpU6pXr56uvvpqWa3WCk1cv359vfXWW+UC9syZM9q1a5ciIyNVs2ZNZ3v79u21c+dOSdKuXbsUFxfn3BYYGKioqCjt3LmTwAQAVAqXbo3n5+fn9l19goKC1KlTJ+dru92uBQsWqGPHjsrLy1ODBg3K9A8NDdVPP/0kSX+4HQAAs7kUmJVh2rRpys7O1tKlS/Wvf/1Lfn5+Zbb7+fmpuLhYklRYWHjJ7RXh7tNVKrqyrgo8MQZAZaiOx7uK7O8VgTlt2jTNnTtXL7/8sq6//nr5+/vr5MmTZfoUFxcrICBA0q+PF/t9OBYXFztvBF8RWVlZLtcdGBioyMhIl/evLDk5Oc7vmAHADBzvvCAwJ0yYoEWLFmnatGm68847JUnh4eHat29fmX7Hjx93noYNDw/X8ePHy21v3bp1heePjo72yk9N7mjZsqWnSwCAKuHu8c5msxleOHk0MGfOnKnFixdr+vTp6tGjh7M9JiZGc+bM0blz55yryszMTLVv3965PTMz09m/sLBQ2dnZSkpKqnANVqu12gVmdXs/AHAxVXm8c+kB0mbYv3+/XnvtNf3lL39R+/btlZeX5/znpptuUqNGjZScnKzc3FzNmTNHu3fv1n333SdJuvfee/XVV19pzpw5ys3NVXJyspo0acIVsgCASuOxwNy4caNsNptef/11xcfHl/nHarXqtddeU15enhITE7Vq1SrNmjVLERERkqQmTZro1Vdf1bJly3Tffffp5MmTmjVrliwWi6feDgCgmvPYKdnBgwdr8ODBF93etGlTLViw4KLbb7vtNt12222VURoAAOV4bIUJAMDlhMAEAMAAAhMAAAMITAAADCAwAQAwgMAEAMAAAhMAAAMITAAADCAwAQAwgMAEAMAAAhMAAAMITAAADCAwAQAwgMAEAMAAAhMAAAMITAAADCAwAQAwgMAEAMAAAhMAAAMITAAADCAwAQAwgMAEAMAAAhMAAAMITAAADCAwAQAwgMAEAMAAAhMAAAMITAAADCAwAQAwgMAEAMAAAhMAAAMITAAADCAwAQAwgMAEAMAAAhMAAAMITAAADCAwAQAwgMAEAMAAAhMAAAMITAAADCAwAQAwgMAEAMCAyzowi4qKlJKSori4OMXHxysjI8PTJQEAqilfTxfgjqlTp2rPnj2aO3eujhw5opEjRyoiIkI9evTwdGkAgGrmsg3MgoICLVmyRG+++aaioqIUFRWl3NxcLVy4kMAEAJjusj0lu3fvXpWUlCg2NtbZ1r59e+3atUt2u92DlQEAqqPLdoWZl5en4OBg+fn5OdvCwsJUVFSkkydPKiQk5JL7OxwOSVJxcbGsVqvLdVitVjULCVUNi+c/ezQJDpbNZpPNZvN0KQCqoep4vCvdvzQTLuWyDczCwsIyYSnJ+bq4uPgP9y9dhWZnZ7tdS5eQ+lJIfbfHMcPOnTs9XQKAaqy6Hu+MnJm8bAPT39+/XDCWvg4ICPjD/X19fRUdHS0fHx9ZLJZKqREA4N0cDofsdrt8ff84Di/bwAwPD1d+fr5KSkqcbzQvL08BAQEKCgr6w/19fHzKrVABALgYz5+IdlHr1q3l6+tbZkmemZnpXDUCAGCmyzZZAgMDlZCQoNTUVO3evVsff/yxMjIy1L9/f0+XBgCohiwOI5cGeanCwkKlpqZqw4YNql27tp544gk9/vjjni4LAFANXdaBCQBAVblsT8kCAFCVCEwAAAwgMAEAMIDABADAAAITAAADCEwAAAwgMAEAMIDABADAAAITAAADCEwAAAwgMAEAMIDABADAAAITAAADCEwAAAwgMAEAMIDABADAAAITAAADCEwAAAwgMAEAMIDABADAAAITAAADCEwAAAzw9XQBnmK321VSUiIfHx9ZLBZPlwMA8ACHwyG73S5fX1/5+Fx6DXnFBmZJSYmysrI8XQYAwAtER0fLz8/vkn2u2MAs/SQRHR0tq9Xq0VpsNpuysrK8ohYAqEzedrwrreePVpfSFRyYpadhrVarV/xHk7yrFgCoTN52vDPy1RwX/QAAYACBCQCAAQQmAAAGEJheIjAw0NMlAECVuFyPdwSmm2x2u9tjWK1WRUZGmvIFuBn1AMCFXOnHuyv2KlmzWH189I9Fa7Tv2M+eLkXXNQjVSw/d5ekyAFRTV/rxjsA0wb5jPyv7yDFPlwEAle5KPt5xShYAAAMITAAADCAwAQAwgMAEAMAAAhMAAAMITAAADCAwAQAwgMAEAMAAAhMAAAMITAAADCAwAQAwgMAEAMAAAhMAAAMITAAADPCqwCwqKlJKSori4uIUHx+vjIyMi/bNycnRQw89pLZt2+ruu+/Wl19+WYWVAgCuNF4VmFOnTtWePXs0d+5cjR07VjNnztT69evL9Tt9+rQGDhyo6667Th988IG6deumpKQk/fyz5x9qCgConrwmMAsKCrRkyRKNGjVKUVFR6tatmwYNGqSFCxeW67tixQrVrFlTqampatq0qUaMGKGmTZtqz549HqgcAHAl8PV0AaX27t2rkpISxcbGOtvat2+v2bNny263y8fn/7J927Zt6tKli6xWq7Nt2bJlVVovAODK4nZgnjlzRtu3b9d//vMfnThxQj4+PgoLC1NkZKQ6dOggf39/Q+Pk5eUpODhYfn5+zrawsDAVFRXp5MmTCgkJcbYfOnRIbdu21QsvvKBNmzapcePGGjlypNq3b1/h+m02W4X3+a3fhra3cPc9AcCFVMfjXUX2dzkwv//+e82ZM0dr1qxR3bp1dd1116levXqy2+3at2+f5s2bp4KCAt19990aOHCgmjVrdsnxCgsLy4SlJOfr4uLiMu0FBQWaM2eO+vfvrzfffFNr1qzRE088oXXr1qlRo0YVeh9ZWVkV6v9bgYGBioyMdHn/ypKTk6PCwkJPlwGgGuF452Jgvvzyy/roo4/Ut29fLVu2TM2bN79gvwMHDmjt2rV68skn1aNHDz399NMXHdPf379cMJa+DggIKNNutVrVunVrjRgxQpIUGRmpzz//XO+//76GDBlSofcSHR3tlZ+a3NGyZUtPlwAAVcLd453NZjO8cHIpMJs0aaIPPvjgD4Pm2muvVVJSkoYMGfKH3zGGh4crPz9fJSUl8vX9tay8vDwFBAQoKCioTN/69evr2muvLdN2zTXX6Mcff6zwe7FardUuMKvb+wGAi6nK451LV8n269evQkX6+vrqgQceuGSf1q1by9fXVzt37nS2ZWZmKjo6uswFP5LUrl075eTklGk7cOCAGjdubLgmAAAqwqUV5syZMw33TUpKMtQvMDBQCQkJSk1N1eTJk3Xs2DFlZGQoLS1N0q+rzTp16iggIEAPPvigFixYoFdffVX33HOPVq5cqUOHDqlPnz6uvB0AAP6QS4G5detWQ/0sFkuFxk1OTlZqaqoGDBig2rVra/jw4erevbskKT4+XmlpaUpMTFTjxo311ltvadKkSZozZ46aN2+uOXPmKDw8vMLvBQAAI1wKzPnz55tdh6RfV5np6elKT08vt+33p2Dbt2+v5cuXV0odAAD8nik3Lvjmm2+Um5sru90uSXI4HCouLlZ2drbGjRtnxhQAAHiU24E5c+ZMzZw5U2FhYfr5558VHh6u48ePy2azqVu3bmbUCACAx7l9L9l3331X48aN0+bNm9WoUSPNnz9fW7Zs0Z/+9CddffXVZtQIAIDHuR2Y+fn56tSpk6Rffxry9ddfKygoSH//+9+1du1atwsEAMAbuB2Y4eHhOnTokCSpefPmys7OliTVrl1bJ06ccHd4AAC8gtvfYfbr109PP/20Jk+erK5du+rxxx9XgwYNtGXLFrVq1cqMGgEA8Di3A3PIkCFq2LChAgMD1bZtWyUnJ2vx4sWqV6+eJk+ebEaNAAB4nCk/K0lISHD+3a9fP/Xr18+MYQEA8Bpuf4cpSatWrVJiYqLi4uJ06NAhTZ48WXPmzDFjaAAAvILbgfnOO+9o6tSpSkxM1Pnz5yVJUVFRevvttyt0z1kAALyZ24E5f/58TZw4UY8++qjzqSJ9+vTR1KlTtWTJErcLBADAG7gdmEeOHLngA6SvuuoqnTx50t3hAQDwCm4HZkxMjFauXFmmzeFwKCMjQ23btnV3eAAAvILbV8mOHj1agwcP1qeffqri4mKNGzdO3333nc6dO6c333zTjBoBAPA4twPz+uuv14cffqgPPvhA+/fvl81mU5cuXXTPPfeoVq1aZtQIAIDHuR2YiYmJSktL03333WdGPQAAeCW3v8M8duyYrFarGbUAAOC13F5hJiQkaNCgQbrnnnvUuHFj+fv7l9sOAMDlzu3AXLt2rXx8fLR69epy2ywWC4EJAKgW3A7MTZs2mVEHAABezaXvMF955RWdOXPGcP9Tp07p5ZdfdmUqAAC8gkuB2ahRI/Xp00epqanavHmz8x6yv1VYWKgtW7YoJSVF99xzjxo1auR2sQAAeIpLp2Tvv/9+de/eXQsXLlRKSopOnDihJk2aKDg4WHa7XSdPntQPP/yg+vXr67777tOKFSsUHBxsdu0AAFQZl7/DrFevnoYNG6ahQ4cqJydH2dnZOnHihCwWi0JDQxUZGanrr7/ezFoBAPAYty/6sVgsatWqlVq1amVGPQAAeCVTHiANAEB1R2ACAGAAgQkAgAGmBuYvv/wiu90uh8Nh5rAAAHic24HpcDj0+uuvq0OHDrr55pt1+PBhPfvssxozZoyKi4srNFZRUZFSUlIUFxen+Ph4ZWRk/OE+P/zwg2JjY7V161ZX3wIAAH/I7cCcNWuWVq1apSlTpsjPz0+S1LdvX33++eeaOnVqhcaaOnWq9uzZo7lz52rs2LGaOXOm1q9ff8l9UlNTVVBQ4HL9AAAY4XZgrlixQuPHj9cdd9whi8UiSbrllluUnp6udevWGR6noKBAS5Ys0ahRoxQVFaVu3bpp0KBBWrhw4UX3WbVqlc6ePevuWwAA4A+5HZg///yzGjRoUK49KCioQiu/vXv3qqSkRLGxsc629u3ba9euXbLb7eX65+fna9q0aRo/frxrhQMAUAFu37igY8eOevvtt8sE15kzZzR9+nR16NDB8Dh5eXkKDg52ntaVpLCwMBUVFenkyZMKCQkp03/KlCnq27evWrRo4Vb9NpvNrf298eHZ7r4nALiQ6ni8q8j+bgdmamqqkpKSdMstt6ioqEhDhw7VkSNHFBERoddff93wOIWFhWXCUpLz9e8vHtqyZYsyMzMv+AzOisrKynJ538DAQEVGRrpdg9lycnJUWFjo6TIAVCMc70wIzIYNG2rp0qX64osvdODAAZWUlKhZs2aKj4+Xj4/xM77+/v7lgrH0dUBAgLPt3LlzGjNmjMaOHVum3VXR0dFe+anJHS1btvR0CQBQJdw93tlsNsMLJ7cDs9TNN9+sm2++2eX9w8PDlZ+fr5KSEvn6/lpWXl6eAgICFBQU5Oy3e/duHTp0SCNGjCiz/1/+8hclJCRU+DtNq9Va7QKzur0fALiYqjzeuRSYrVq1cl4R+0e++eYbQ/1at24tX19f7dy5U3FxcZKkzMxMRUdHl1mptm3bVhs2bCizb/fu3TVx4kTdcsstBt8BAAAV41Jgzps3z/l3VlaW/vnPf2ro0KGKjo5WjRo1lJ2drZkzZ6p///6GxwwMDFRCQoJSU1M1efJkHTt2TBkZGUpLS5P062qzTp06CggIUNOmTcvtHx4ertDQUFfeDgAAf8ilwLzpppucf48ZM0bp6ellVnetWrVS48aNlZycrMcff9zwuMnJyUpNTdWAAQNUu3ZtDR8+XN27d5ckxcfHKy0tTYmJia6UDACAW9z+DvPYsWMXXNkFBgbq1KlTFRorMDBQ6enpSk9PL7ctJyfnovtdahsAAGZw+8YFt99+u1JSUvTVV1+poKBAZ8+e1ZdffqmUlBT17NnTjBoBAPA4t1eY48eP19ixY/XYY48578hjtVqVkJCg0aNHu10gAADewO3ArF27tl566SWNGzdO3377rSSpWbNmql27ttvFAQDgLdwOzO3bt5dr++1PSW688UZ3pwAAwOPcDszHHnvsgu1+fn6qX7++Nm7c6O4UAAB4nNuBuXfv3jKvbTabDh48qAkTJujuu+92d3gAALyC21fJ/p7ValWzZs30/PPP65VXXjF7eAAAPML0wCz1888/V/h3mAAAeCu3T8kmJyeXazt79qy2bNmiHj16uDs8AABewbSnlfxWvXr1NHLkSPXp06cyhgcAoMq5HZiJiYlq166datSoUaa9uLhYn332mbp27eruFAAAeJzb32H2799fp0+fLteem5urp59+2t3hAQDwCi6tMN955x2NHz9eFotFDofjos+h/NOf/uRWcQAAeAuXAvPhhx9WixYtZLfbNWDAAM2YMUN169Z1brdYLAoMDNT1119vWqEAAHiSy99hlt7ybuPGjYqIiJDFYjGtKAAAvI1LgZmcnKxRo0apdu3amjlz5iX7pqWluVQYAADepNJuXAAAQHXi0grzt6tGVpAAgCuBS4H5R6dhfyspKcmVKQAA8CouBebWrVsN9eNCIABAdeFSYM6fP9/sOgAA8Gqm3Et2y5Ytevfdd3XgwAFZLBa1bNlSjzzyiNq1a2fG8AAAeJzbV8kuWbJEgwcPVmBgoB544AHde++9kn69Zd6GDRvcLhAAAG/g9grz9ddf17hx45xBWerGG2/USy+9pO7du7s7BQAAHuf2CvPkyZOKiYkp1x4XF6djx465OzwAAF7B7cB85JFHlJ6ervz8fGdbYWGhZs+erYcfftjd4QEA8Apun5LNzMzU7t27dfvtt+vqq69WjRo19P333+vs2bOKiIjQ+vXrnX03btzo7nQAAHiE24HZr18/9evXz4xaAADwWm4HZt++fc2oQ5JUVFSkcePGacOGDQoICNDAgQM1cODAC/b99NNP9fLLL+vgwYNq0qSJnnrqKXXp0sW0WgAA+C23A3P//v2aPn26Dhw4oOLi4nLbK3IadurUqdqzZ4/mzp2rI0eOaOTIkYqIiFCPHj3K9Nu7d6+SkpL03HPP6bbbbtPmzZv1t7/9TUuXLlWrVq3cfUsAAJTjdmD+4x//UEBAgPr376+AgACXxykoKNCSJUv05ptvKioqSlFRUcrNzdXChQvLBebq1avVsWNH9e/fX5LUtGlTbdq0SevWrSMwAQCVwu3A/O6777Rs2TI1b97crXH27t2rkpISxcbGOtvat2+v2bNny263y8fn/y7o7du3r86fP19ujNOnT7tVAwAAF+N2YN56663KzMx0OzDz8vIUHBwsPz8/Z1tYWJiKiop08uRJhYSEONt/P1dubq6++OILPfjggxWe12azuV60JKvV6tb+lcHd9wQAF1Idj3cV2d/twHz++efVt29fffDBB2rcuHG5J5QYfV5mYWFhmbCU5Hx9oe9GS504cULDhw/XDTfc4NJFP1lZWRXep1RgYKAiIyNd3r+y5OTkqLCw0NNlAKhGON6ZEJgvvPCCfHx8FBYW5tbjvPz9/csFY+nri303evz4cf35z3+Ww+HQjBkzypy2NSo6OtorPzW5o2XLlp4uAQCqhLvHO5vNZnjh5HZg7tixQ4sWLXL7k0d4eLjy8/NVUlIiX99fy8rLy1NAQICCgoLK9T969Kjzop958+aVOWVbEVartdoFZnV7PwBwMVV5vHP71ngtWrTQqVOn3C6kdevW8vX11c6dO51tmZmZio6OLrdyLCgo0KBBg+Tj46MFCxYoPDzc7fkBALgUt1eYDz30kJ577jklJiaqSZMmztVhqYSEBEPjBAYGKiEhQampqZo8ebKOHTumjIwM53egeXl5qlOnjgICAvTGG2/o4MGDzgdZ5+XlSfr11G2dOnXcfUsAAJTjdmDOmjVLvr6+WrVqVbltx44dMxyYkpScnKzU1FQNGDBAtWvX1vDhw52PB4uPj1daWpoSExP14Ycf6ty5c+Vuyde3b19NmTLFrfcDAMCFuB2YmzZtKvO6qKhIH330kVasWKGjR49WaKzAwEClp6crPT293LacnBzn37+9oTsAAFXB7cAslZmZqZUrV2r9+vU6c+aMmjdvrpSUFLOGBwDAo9wKzMOHD2vlypV6//33dejQIQUFBenMmTN66aWX1KtXL7NqBADA41wKzGXLlmnlypXasWOHGjRooM6dO6t79+668cYbFRMTo+uvv97sOgEA8CiXAnPUqFFq2rSp0tPTdc8995hdEwAAXsel32FOnjxZTZo0UXJysm6++WYlJydr48aNKioqMrs+AAC8gksrzMTERCUmJurEiRNat26d1q5dq6SkJAUEBMhut2vr1q1q2rSpatSoYXa9AAB4hFt3+gkJCdEjjzyihQsX6pNPPtGwYcPUunVrTZgwQZ06dTJ843UAALyd27fGK9WwYUMNGjRIy5cv1/r16/Xoo4/qf//3f80aHgAAjzItMH/rmmuuUVJSktauXVsZwwMAUOUqJTABAKhuCEwAAAwgMAEAMIDABADAAAITAAADCEwAAAwgMAEAMIDABADAAAITAAADCEwAAAwgMAEAMIDABADAAAITAAADCEwAAAwgMAEAMIDABADAAAITAAADCEwAAAwgMAEAMIDABADAAK8KzKKiIqWkpCguLk7x8fHKyMi4aN/s7Gz169dPMTExuvfee7Vnz54qrBQAcKXxqsCcOnWq9uzZo7lz52rs2LGaOXOm1q9fX65fQUGBBg8erLi4OC1fvlyxsbF68sknVVBQ4IGqAQBXAq8JzIKCAi1ZskSjRo1SVFSUunXrpkGDBmnhwoXl+q5du1b+/v567rnn1Lx5c40aNUq1atW6YLgCAGAGrwnMvXv3qqSkRLGxsc629u3ba9euXbLb7WX67tq1S+3bt5fFYpEkWSwW3XDDDdq5c2dVlgwAuIL4erqAUnl5eQoODpafn5+zLSwsTEVFRTp58qRCQkLK9L3uuuvK7B8aGqrc3FzD8zkcDklScXGxrFary3VbrVa1ahgmP6vnP3tcWz9ENptNNpvN06UAqIaq4/GudP/STLgUrwnMwsLCMmEpyfm6uLjYUN/f97uU0lVrdna2K+WWcf914dJ14W6PYwZW2QAqU3U93v3+TOaFeE1g+vv7lwu80tcBAQGG+v6+36X4+voqOjpaPj4+zlO7AIAri8PhkN1ul6/vH8eh1wRmeHi48vPzVVJS4iw8Ly9PAQEBCgoKKtf3+PHjZdqOHz+uBg0aGJ7Px8en3CoVAICL8fyJ6P+vdevW8vX1LbPEzszMdK4CfysmJkZff/2185yzw+HQV199pZiYmKosGQBwBfGawAwMDFRCQoJSU1O1e/duffzxx8rIyFD//v0l/braPHfunCSpR48eOnXqlCZNmqR9+/Zp0qRJKiwsVM+ePT35FgAA1ZjFYeTSoCpSWFio1NRUbdiwQbVr19YTTzyhxx9/XJLUsmVLpaWlKTExUZK0e/dujR07Vvv371fLli01btw4RUZGerB6AEB15lWBCQCAt/KaU7IAAHgzAhMAAAMITAAADCAwAQAwgMAEAMAAAhMAAAMITAAADCAwAQAwgMAEAMAAAhMAAAMITAAADCAwAQAwgMAEAMAAAhMAAAMITAAADCAwAQAwgMAEAMAAAhMAAAMITAAADCAwAQAwgMAEAMAAAhMAAAN8PV2Ap9jtdpWUlMjHx0cWi8XT5QAAPMDhcMhut8vX11c+PpdeQ16xgVlSUqKsrCxPlwEA8ALR0dHy8/O7ZJ8rNjBLP0lER0fLarV6tBabzaasrCyvqAUAKpO3He9K6/mj1aV0BQdm6WlYq9XqFf/RJO+qBQAqk7cd74x8NcdFPwAAGEBgAgBgAIEJAIABBCYAAAYQmAAAGEBgAgBgAIEJAIABBCYAAAYQmAAAGEBgAgBgAIEJAIABBCYAAAYQmAAAGEBgAgBgAIEJAIABBCYAAAYQmAAAGEBgAgBgAIEJAIABl21gHj16VCNGjNBNN92kTp06KS0tTUVFRZ4uCwBQTfl6ugBXOBwOjRgxQkFBQVq4cKF++eUXpaSkyMfHRyNHjvR0eQCAasj0wPzvf/+r7Oxs/fzzz/Lx8VFYWJgiIyPVvHlz0+Y4cOCAdu7cqc8//1xhYWGSpBEjRig9PZ3ABABUClMC85dfftHChQv17rvv6vjx42rSpImCg4Nlt9uVn5+vw4cPq2HDhrr//vv10EMPqW7dum7NV79+fb311lvOsCx15swZt8YFAOBi3A7MJUuW6I033lCnTp00YcIEdezYUX5+fmX6nD17Vl9//bXWrFmjPn366K9//aseeOABl+cMCgpSp06dnK/tdrsWLFigjh07Vngsm83mch1mKa3BG2oBgMrkbce7itThdmD+8MMPWrFiherUqXPRPrVq1VJ8fLzi4+OVn5+vf/7zn+5OW8a0adOUnZ2tpUuXVnjfrKwsU2txhzfVAgCV6XI83lkcDofD00W4Y9q0afrnP/+pl19+WXfeeafh/Ww2m3bu3Kno6GhZrdZKrNBYLVlZWV5RCwBUJm873pXW065duz+sx9SLfmbOnHnBdovFoho1aqhBgwbq1KmTQkNDTZlvwoQJWrRokaZNm1ahsPwtq9XqFf/RJO+qBQAq0+V4vDM1ML/99lutXbtWDRs2VJs2beRwOPTNN9/oyJEjateunU6fPq2JEyfqrbfeUrt27dyaa+bMmVq8eLGmT5+uHj16mPMGAAC4CNN/VnLfffcpNTXV+cnBbrdr0qRJKigoUFpammbPnq0pU6Zo8eLFLs+xf/9+vfbaaxo8eLDat2+vvLw857b69eu7/R4AAPg9U+/0s2nTJg0cOLDMMtvHx0ePPvqo1q9fL0m66667tHfvXrfm2bhxo2w2m15//XXnxUSl/wAAUBlMXWGGhYVpx44datasWZn2zMxM1atXT5J0/Phx1a5d2615Bg8erMGDB7s1BgAAFWFqYA4fPlyjRo1SZmamoqOj5XA49J///Edr1qzRmDFj9O2332rkyJG66667zJwWAIBKZ2pg3nPPPYqIiNCiRYu0ePFiWa1WXXfddZo3b57atWun3bt369FHH9Ujjzxi5rQAAFQ60y/6iYuLU1xc3AW3tW3bVm3btjV7SgAAKp2pgVlYWKh3331X+/btK3O7oeLiYmVnZ2vdunVmTgcAQJUx9SrZ0aNHa86cOSosLNSqVat0/vx57du3T2vWrOF7SwDAZc3UFeZnn32mV155RX/605+Um5urxx9/XG3atNGUKVOUm5tr5lQAAFQpU1eYRUVFuuaaayRJLVq00J49eyRJDzzwgHbs2GHmVAAAVClTA7N58+basmWLpF8DMzMzU5J0+vRpFRUVmTkVAABVytRTsklJSfrb3/4mu92uPn366K677tKQIUOUk5NT5vmVAABcbkwNzC5dumjdunWy2+1q1KiR3nnnHb3//vu64YYb9Nhjj5k5FQAAVcr032FeddVVzr9btWqlVq1amT0FAABVztTA3LFjhyZOnKgDBw7o/Pnz5bZ/8803Zk4HAECVMTUwR40apRYtWujpp59WQECAmUMDAOBRpgbmsWPHNHv27HJPKwEA4HJn6s9K7r77bq1Zs8bMIQEA8AqmrjAHDRqk++67T8uXL1fjxo1lsVjKbJ83b56Z0wEAUGVMDcxnnnlGISEh6tq1K99hAgCqFVMDMycnR8uXL1fz5s3NHBYAAI8z9TvM9u3ba//+/WYOCQCAVzB1hRkfH6+UlBRt2LBBV111laxWa5ntSUlJZk4HAECVMTUwP/nkE7Vu3VpHjx7V0aNHy2z7/QVAAABcTkwNzPnz55s5HAAAXsPtwFy5cqV69eolPz8/rVy58pJ9ExIS3J0OAACPcDswZ8yYodtuu01+fn6aMWPGRftZLBYCEwBw2XI7MDdt2nTBvwEAqE7c/lnJK6+8ojNnzhjuf+rUKb388svuTgsAQJVyOzAbNmyoPn36KDU1VZs3b77gY70KCwu1ZcsWpaSk6J577lGjRo3cnRYAgCrl9inZBx54QHfeeacWLlyolJQUnThxQk2aNFFwcLDsdrtOnjypH374QfXr19d9992nFStWKDg42IzaAQCoMqb8rKRevXoaNmyYhg4dqpycHGVnZ+vEiROyWCwKDQ1VZGSkrr/+ejOmAgDAI0z9HabFYlGrVq3UqlUrM4cFAMDjTL2XLAAA1RWBCQCAAQQmAAAGVFpg/vLLL7Lb7XI4HJU1BQAAVcbUwHQ4HHr99dfVoUMH3XzzzTp8+LCeffZZjRkzRsXFxWZOBQBAlTI1MGfNmqVVq1ZpypQp8vPzkyT17dtXn3/+uaZOnWrmVAAAVClTA3PFihUaP3687rjjDufzL2+55Ralp6dr3bp1Zk4lSSoqKlJKSori4uIUHx+vjIwM0+cAAEAy+XeYP//8sxo0aFCuPSgoSAUFBWZOJUmaOnWq9uzZo7lz5+rIkSMaOXKkIiIi1KNHD9PnAgBc2UxdYXbs2FFvv/12mbYzZ85o+vTp6tChg5lTqaCgQEuWLNGoUaMUFRWlbt26adCgQVq4cKGp8wAAIJkcmKmpqcrOztYtt9yioqIiDR06VLfddpsOHz6s0aNHmzmV9u7dq5KSEsXGxjrb2rdvr127dslut5s6FwAApp6SbdiwoZYuXaovvvhCBw4cUElJiZo1a6b4+Hj5+Jj7C5a8vDwFBwc7Ly6SpLCwMBUVFenkyZMKCQkxNI7NZjO1LlfY7XYFBgYS9ACqPW873lUkA0wNzFI333yzbr755soY2qmwsLBMWEpyvq7IT1iysrLcqqNRo0aKiIhwawyr1arIyEi3xih15MgR/fjjj5fsY0bNZroca5Yuz7qpuWpQ88VV9fHOTG4HZqtWrZxXxP6Rb775xt3pnPz9/csFY+nrgIAAw+NER0fLarW6VYu7q1S73a7c3Fy1aNHC7ZV4eHi4wsPD/7CfN6ysS12ONUuXZ93UXDWo+eI8cby7FJvNZnjh5HZgzps3z/l3VlaW/vnPf2ro0KGKjo5WjRo1lJ2drZkzZ6p///7uTlVGeHi48vPzVVJSIl/fX99GXl6eAgICFBQUZHgcq9XqdmCaobCwUD4+Pl5RCwBUpsv1eOd2YN50003Ov8eMGaP09HTdcsstzrZWrVqpcePGSk5O1uOPP+7udE6tW7eWr6+vdu7cqbi4OElSZmamoqOjTf++FAAAU5Pl2LFjCg0NLdceGBioU6dOmTmVAgMDlZCQoNTUVO3evVsff/yxMjIyTF/JAgAgmRyYt99+u1JSUvTVV1+poKBAZ8+e1ZdffqmUlBT17NnTzKkkScnJyYqKitKAAQM0btw4DR8+XN27dzd9HgAATL1Kdvz48Ro7dqwee+wx5yXDVqtVCQkJpv8OU/p1lZmenq709HTTxwYA4LdMDczatWvrpZde0rhx4/Ttt99Kkpo1a6batWubOQ0AAFXO1MDcvn17ubbf/pTkxhtvNHM6AACqjKmB+dhjj12w3c/PT/Xr19fGjRvNnA4AgCpjamDu3bu3zGubzaaDBw9qwoQJuvvuu82cCgCAKlWpP1i0Wq1q1qyZnn/+eb3yyiuVORUAAJWqSn7h//PPP5v+O0wAAKqSqadkk5OTy7WdPXtWW7Zs4aHOAIDLWqU8reS36tWrp5EjR6pPnz6VPRUAAJXG1MBMTExUu3btVKNGjTLtxcXF+uyzz9S1a1czpwMAoMqY+h1m//79dfr06XLtubm5evrpp82cCgCAKuX2CvOdd97R+PHjZbFY5HA4yjyp5Lf+9Kc/uTsVAAAe43ZgPvzww2rRooXsdrsGDBigGTNmqG7dus7tFotFgYGBuv76692dCgAAjzHlO8zSW95t3LhRERERslgsZgwLAIDXcDswk5OTNWrUKNWuXVszZ868ZN+0tDR3pwMAwCOq5MYFAABc7txeYf521cgKEgBQXbkdmH90Gva3kpKS3J0OAACPcDswt27daqgfFwIBAC5nbgfm/PnzzagDAACvZvq9ZLds2aJ3331XBw4ckMViUcuWLfXII4+oXbt2Zk8FAECVMfUq2SVLlmjw4MEKDAzUAw88oHvvvVfSr7fM27Bhg5lTAQBQpUxdYb7++usaN26cMyhL3XjjjXrppZfUvXt3M6cDAKDKmLrCPHnypGJiYsq1x8XF6dixY2ZOBQBAlTI1MB955BGlp6crPz/f2VZYWKjZs2fr4YcfNnMqAACqlKmnZDMzM7V7927dfvvtuvrqq1WjRg19//33Onv2rCIiIrR+/Xpn340bN5o5NQAAlcrUwOzXr5/69etn5pAAAHgFUwOzb9++Zg4HAIDXMDUw9+/fr+nTp+vAgQMqLi4ut53TsACAy5WpgfmPf/xDAQEB6t+/vwICAswcGgAAjzI1ML/77jstW7ZMzZs3N3NYAAA8ztSfldx6663KzMw0c0gAALyCqSvM559/Xn379tUHH3ygxo0bl3tCCc/LBABcrkxdYb7wwgvy8fFRWFgYj/MCAFQrpq4wd+zYoUWLFikyMtLMYQEA8DhTV5gtWrTQqVOnzBwSAACvYOoK86GHHtJzzz2nxMRENWnSRL6+ZYdPSEgwczoAAKqMqYE5a9Ys+fr6atWqVeW2HTt2zNTAPHXqlNLT0/XJJ5/Ibrfr9ttvV0pKioKCgkybAwCAUqYG5qZNm8q8Lioq0kcffaQVK1bo6NGjZk6lsWPH6uDBg5ozZ44sFotSU1M1evRozZgxw9R5AACQTA7MUpmZmVq5cqXWr1+vM2fOqHnz5kpJSTFt/IKCAn344YdatGiR2rRpI0lKSUnRI488oqKiIvn7+5s2FwAAkomBefjwYa1cuVLvv/++Dh06pKCgIJ05c0YvvfSSevXqZdY0kiQfHx/Nnj1brVu3LtNus9l09uxZAhMAYDq3A3PZsmVauXKlduzYoQYNGqhz587q3r27brzxRsXExOj66683o84yAgICdOutt5Zpmzdvnlq2bKmQkJAKjWWz2cwszSWlNXhDLQBQmbzteFeROtwOzFGjRqlp06ZKT0/XPffc4+5wTufOnbvo957169dXzZo1na8XLFigdevW6a233qrwPFlZWS7XaDZvqgUAKtPleLxzOzAnT56sNWvWKDk5WWlpabr99tvVtWtXxcfHuzXurl271L9//wtumzVrlrp27SpJWrhwoSZOnKjk5GSX5oyOjpbVanWrVnfZbDZlZWV5RS0AUJm87XhXWo8RbgdmYmKiEhMTdeLECa1bt05r165VUlKSAgICZLfbtXXrVjVt2lQ1atSo0LgdOnRQTk7OJfu8/fbbmjp1qp577jkNGDDApfqtVqtX/EeTvKsWAKhMl+PxzrQ7/YSEhOiRRx7RwoUL9cknn2jYsGFq3bq1JkyYoE6dOpl+4/UVK1Zo6tSpSk5O1hNPPGHq2AAA/J6pt8Yr1bBhQw0aNEjLly/X+vXr9eijj+p///d/TRv/5MmTGj9+vPr27au77rpLeXl5zn+85YtkAED1Uim/w/yta665RklJSUpKSjJtzM8//1wFBQVasWKFVqxYUWbbxo0b1aRJE9PmAgBAqoLArAx33XWX7rrrLk+XAQC4glTKKVkAAKobAhMAAAMITAAADCAwAQAwgMAEAMAAAhMAAAMITAAADCAwAQAwgMAEAMAAAhMAAAMITAAADCAwAQAwgMAEAMAAAhMAAAMITAAADCAwAQAwgMAEAMAAAhMAAAMITAAADCAwAQAwwNfTBXiKw+GQJNlsNg9X8n81eEMtAFCZvO14V1pHaSZcisVhpFc1VFxcrKysLE+XAQDwAtHR0fLz87tknys2MO12u0pKSuTj4yOLxeLpcgAAHuBwOGS32+Xr6ysfn0t/S3nFBiYAABXBRT8AABhAYAIAYACBCQCAAQQmAAAGEJgAABhAYAIAYACBCQCAAQRmJSsqKlJKSori4uIUHx+vjIwM57ZDhw7p8ccfV7t27dSrVy9t3ry5zL5btmxR7969FRMTo/79++vQoUNVXT4AuKS4uFi9e/fW1q1by7R///33atu27QX3WbVqlR577LGqKM8lBGYlmzp1qvbs2aO5c+dq7NixmjlzptavXy+Hw6Fhw4YpLCxMy5YtU58+fZSUlKQjR45Iko4cOaJhw4YpMTFRS5cuVUhIiIYOHWrofocA4ElFRUV6+umnlZubW6b9xx9/1JNPPqmioqJy+3z55ZcaM2ZMVZXokiv25utVoaCgQEuWLNGbb76pqKgoRUVFKTc3VwsXLlTdunV16NAhLV68WDVr1lTz5s31xRdfaNmyZRo+fLiWLFmiNm3aaODAgZKktLQ03XLLLdq2bZs6dOjg4XcGABe2b98+/eMf/yj34f7jjz/WCy+8oPr165fbZ+bMmXrjjTd0zTXXVFGVrmGFWYn27t2rkpISxcbGOtvat2+vXbt2adeuXYqMjFTNmjXLbNu5c6ckadeuXYqLi3NuCwwMVFRUlHM7AHij0g/17777bpn2Tz/9VH/72980atSocvt8/vnnevvtt9W9e/eqKtMlrDArUV5enoKDg8vcAT8sLExFRUX68ccf1aBBgzL9Q0ND9dNPPzn3vdR2APBGDz/88AXbJ06cKEnlvtOUpEWLFl10mzdhhVmJCgsLyz0upvT1+fPnL7ituLj4kvuWbgcAVC0CsxL5+/uXC7jS1zVq1LjgtoCAgEvuGxgYWIkVAwAuhsCsROHh4crPz1dJSYmzLS8vTwEBAWrUqJGOHz9epv/x48edp2HDw8MvuP1CX5gDACofgVmJWrduLV9f3zIX6mRmZio6OloxMTH6z3/+o3PnzpXZFhMTI0mKiYlRZmamc1thYaGys7Od2wEAVYvArESBgYFKSEhQamqqdu/erY8//lgZGRnq37+/brrpJjVq1EjJycnKzc3VnDlztHv3bt13332SpHvvvVdfffWV5syZo9zcXCUnJ6tJkyb8pAQAPITArGTJycmKiorSgAEDNG7cOA0fPlzdu3eX1WrVa6+9pry8PCUmJmrVqlWaNWuWIiIiJElNmjTRq6++qmXLlum+++7TyZMnNWvWLFksFg+/IwC4Mlkc3DoGAIA/xAoTAAADCEwAAAwgMAEAMIDABADAAAITAAADCEwAAAwgMAEAMIDABDykZcuWZf7p2LGjRo8erbNnz7o99tatW9WyZUsTqvw/DodDCxcuNNz/559/1rp160ytAfAkAhPwoFdffVWbN2/WZ599ptmzZ2v37t2aOnWq2+PGxsZq8+bNJlT4f7Zv367x48cb7v/iiy/q3//+t6k1AJ5EYAIeVLduXdWvX1/h4eFq166dnnzySVNWZX5+fqY/2aaiNwXjJmKobghMwIv8/nmnR48e1YgRI3TjjTeqTZs26tu3b5mn2MybN0933HGHoqOjlZiYqB07dkgqf0r2Yv1+7/z58xo9erQ6dOig2NhYDRkyREePHtUPP/yg/v37S/r1VPLWrVtVXFystLQ0derUSVFRUercubPeffddSb+unFesWKEVK1aoc+fOkqRTp07p2Wef1Q033KD4+HhNmDChzNN6AG9HYAJe4sSJE5o/f77uueceZ9szzzwjm82mxYsXa+XKlQoPD1dqaqokKTs7W1OnTtXYsWO1bt06xcXF6amnnpLdbi8zrtF+krRw4UJt375dGRkZWrp0qc6ePavJkyerUaNGevXVVyVJmzdvVmxsrObMmaNPP/1Ur776qtavX6+EhARNmDBBx48f18CBA9WzZ0/17NlTS5culSSNGjVKp0+f1qJFi/Taa68pKyurQqd4AU/z9XQBwJXsL3/5i6xWqxwOhwoLC1WvXj1nIDocDnXt2lV33nmnGjZsKEl65JFHNHjwYEnS4cOHZbFYFBERoSZNmuipp57SHXfcUS4IL9XPx6fsZ+YffvhB/v7+aty4serVq6cpU6bo5MmTslqtqlu3riQ5T/W2atVKHTt2VLt27SRJQ4YM0axZs/Tdd98pLi5OAQEBkqSQkBAdPHhQH3/8sbZt26Y6depIkiZMmKCEhAQlJyc72wBvRmACHjRx4kTFxMTI4XAoPz9fCxYs0EMPPaQPPvhAoaGheuihh7R27Vp99dVX+vbbb7Vnzx5nIMbHx+v666/X3XffrcjISHXp0kX9+vWTr2/Z/62N9pOkBx54QGvWrFF8fLxuuukmde3aVYmJiResvWvXrvr88881ZcoUHThwQNnZ2ZIkm81Wru/+/ftlt9t16623lmm32+36/vvv1aZNG5f+/QFVicAEPCg8PFxNmzaVJF1zzTWKiopShw4dtG7dOj388MMaOHCgTp06pV69eqlz5846f/68kpKSJP36feeSJUu0bds2ffLJJ1q+fLkWLVqk5cuXl5njUv3Cw8PL9G3RooU2bdqkTz/9VJ9++qmmT5+u1atXX/DnJC+//LKWLFmixMREJSQkaOzYsc7vK3/PZrOpTp06WrZs2QX/HQCXAwIT8CI+Pj5yOByy2Wzat2+ftm/fri+++EIhISGS5Awuh8OhnTt36ssvv9Rf//pXdezYUf/4xz/0pz/9SZmZmQoNDXWO+fXXX1+0X69evcrMv3LlSvn5+alXr17q2bOndu7cqQceeEA///xzuYeXL168WKmpqerZs6ckad++fc7aJMlisTj/btasmU6fPi2LxaKrr75akpSTk6MZM2YoLS3NefoW8GYEJuBBv/zyi/Ly8iRJZ8+eVUZGhmw2mzp37qwaNWrIx8dHa9asUefOnZWVleW88Ka4uFgBAQGaNWuWwsLCdPPNN2v79u0qKChQy5Ytdfz4ceccl+r3e6dPn9bs2bMVHBysJk2a6IMPPlDDhg0VHBzsvIJ3z549atGiherVq6dPPvlEbdq00dGjRzV58mRnbdKvK9vc3FwdPXpUzZs3V6dOnfTMM89o9OjRslqteuGFF1S3bl0FBQVV6r9jwCwWBz+WAjzi94EVGBioNm3aKCkpSR07dpQkvfvuu5o1a5ZOnz6tZs2aaeDAgRo5cqQWLFig2NhYvf/++3rttdd05MgRRUREaMSIEbrrrru0detW9e/fXzk5OZJ00X6/Z7fb9dJLL+n999/XL7/8ojZt2uiFF15QZGSkiouLNWTIEG3btk3Tp09XaGioUlNT9f333ys8PFz9+vXTRx99pK5du+rJJ5/Url27NGzYMJ0/f15ffvml8vPzNXHiRH366afy9fVVp06dNHr0aAUHB1f+v2zABAQmAAAG8DtMAAAMIDABADCAwAQAwAACEwAAAwhMAAAMIDABADCAwAQAwAACEwAAAwhMAAAMIDABADCAwAQAwAACEwAAA/4fEH6RyMTq8oAAAAAASUVORK5CYII=" + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAc8AAAL0CAYAAABqLbzYAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAPYQAAD2EBqD+naQAASW5JREFUeJzt3QuczXX+x/HPzDAzRmOEXIaJFGGJmNy6KE0oy+q21opJ1r+/3DLVohVhW6VIokQu7UWsNraLVRLJGqlBSHQjsxgMMXKZYeb8H5/v/3/Of8ZczNf8Zs6Z33k9H4/fzjm/+/Ro5933HuLxeDwCAACKLbT4pwIAAEV4AgBgifAEAMAS4QkAgCXCEwAAS4QnAACWCE8AACwRngAAWKpge4Eb5eTkyIEDByQ6OlpCQkL8/ToAAD/QOYNOnjwpsbGxEhpadNmS8BQxwRkXF+fv1wAABIDU1FSpV69ekecQniKmxOn9B1alShV/vw4AwA8yMjJMQcqbCUUhPEV8VbUanIQnAAS3kGI039FhCAAAS4QnAACWCE8AACwRngAAWKLDkIOGv/uSBJIZPUb4+xUAuNTwIP97R8kTAABLhCcAAJYITwAALBGeAABYIjwBALBEeAIAYInwBADAEuEJAIAlwhMAAEuEJwAAlghPAAAsEZ4AAFgiPAEAsER4AgBgifAEAMAS4QkAgCXCEwAAS4QnAACWCE8AACwRngAAWCI8AQCwRHgCAGCJ8AQAwA3hOWvWLGnQoIFERkZKu3btZNOmTcW6bvHixRISEiK9evUq9XcEAASvgAvPJUuWSFJSkowfP142b94sLVu2lK5du8rhw4eLvG7v3r3y+OOPy80331xm7woACE4BF57Tpk2TQYMGyYABA6RZs2Yye/ZsiYqKkvnz5xd6TXZ2tvTt21cmTJggDRs2LNP3BQAEn4AKz6ysLElJSZGEhATfvtDQUPM9OTm50OsmTpwoNWvWlIEDB5bRmwIAglkFCSDp6emmFFmrVq08+/X7rl27Crxm/fr1Mm/ePNm6dWuxn5OZmWk2r4yMjBK8NQAg2ARUydPWyZMnpV+/fjJ37lypUaNGsa+bPHmyxMTE+La4uLhSfU8AgLsEVMlTAzAsLEwOHTqUZ79+r127dr7zv//+e9NRqEePHr59OTk55meFChVk9+7dcvXVV+e7bsyYMaZTUu6SJwEKACiX4RkeHi5t2rSR1atX+4abaBjq96FDh+Y7v0mTJrJ9+/Y8+8aOHWtKpC+99FKhgRgREWE2AADKfXgqLREmJiZKfHy8tG3bVqZPny6nTp0yvW9V//79pW7duqbqVceBNm/ePM/1VatWNT8v3A8AgGvDs3fv3nLkyBEZN26cpKWlSatWrWTlypW+TkT79u0zPXABACj34blmzRq57bbbHLmXVtEWVE2r1q5dW+S1CxcudOQdAAAojGNFuG7dupnOOX/84x8lNTXVqdsCAODe8Ny/f78pLb711ltmlh+dUu/vf/+7mfgAAAA3CXVymMnIkSPNZAWfffaZNG7cWB555BGJjY2V4cOHy5dffunUowAA8KtS6XnTunVrM5ZSS6I///yzmZdWh6DopO1fffVVaTwSAIDyGZ7nzp0z1bZ33XWX1K9fXz744AOZOXOmmeTgu+++M/vuv/9+Jx8JAED57W07bNgwefPNN8Xj8Zgp86ZMmZJnrGXlypXlhRdeMNW4AACUZ46F586dO+Xll1+We+65p9DZe7RdVIe0AABQnjlWbauLV2uV7IXBef78eVm3bp1vvtlOnTo59UgAAMp3eOoECceOHcu3/8SJE45NngAAgKvCU9s6Q0JC8u0/evSoae8EAMAtStzmqW2cSoPzwQcfzFNtqwtbb9u2TTp27FjSxwAA4J7w1MWkvSXP6OhoqVSpUp4lxtq3by+DBg0q6WMAAHBPeC5YsMD8bNCggTz++ONU0QIAXK+Ck71tAQAIBhVKOg3f6tWr5fLLL5frr7++wA5DXps3by7JowAAcEd4/upXv/J1EOrVq5dT7wQAgHvDM3dVLdW2AIBgUSqrqgAA4GYlKnlqW2dR7Zy5FTT7EAAAQRee06dPd+5NAAAIhvBMTEx07k0AAAiG8MzIyJAqVar4PhfFex4AABLsbZ4HDx6UmjVrStWqVQts//ROGK/z3AIAIMEenh9//LFUq1bNfGaRawBAsChReOZe2JpFrgEAwcKxuW3VTz/9JPPmzZOvv/7afG/WrJkMGDDAVzoFAMANHJskYd26dWZllRkzZpgQ1U0/X3XVVeYYAABu4VjJc8iQIdK7d2959dVXJSwszOzTTkKPPPKIObZ9+3anHgUAgDtKnt9995089thjvuBU+jkpKckcAwDALRwLT12ezNvWmZvua9mypVOPAQCgfFfbbtu2zfd5+PDhMmLECFPKbN++vdm3ceNGmTVrljz77LMlf1MAANwQnq1atTITIOhECF6///3v853329/+1rSHAgAgwR6ee/bsce5NAAAIhvCsX7++c28CAEAwTpKgdu7cKfv27ZOsrKw8+3v27On0owAAKN/h+cMPP8jdd99txnPmbgf1ThbPxPAAALdwbKiK9rTV2YQOHz4sUVFR8tVXX5mZheLj42Xt2rVOPQYAAPeUPJOTk80qKzVq1JDQ0FCz3XTTTTJ58mQzjGXLli1OPQoAAHeUPLVaNjo62nzWAD1w4ICvU9Hu3budegwAAO4peTZv3ly+/PJLU3Xbrl07mTJlioSHh8ucOXOkYcOGTj0GAAD3hOfYsWPl1KlT5vPEiRPll7/8pdx8881SvXp1WbJkiVOPAQDAPeHZtWtX3+drrrlGdu3aJceOHZPLL7/c1+MWAAA3cHycp0pNTTU/4+LiSuP2AAC4o8PQ+fPn5amnnpKYmBizKLZu+lmrc8+dO+fUYwAAcE/Jc9iwYfL222+bjkIdOnTwDV95+umn5ejRo2aRbAAA3MCx8Fy0aJEsXrxY7rzzTt++6667zlTd9unTh/AEALiGY9W2ERERpqr2Qjp0RYesAADgFo6F59ChQ2XSpEmSmZnp26efn3nmGXPMhi6grUEcGRlpxoxu2rSp0HPnzp1rhsRor17dEhISijwfAAC/Vtvec889eb5/9NFHUq9ePWnZsqX5rpMm6Ooqt99+e7HvqWNCk5KSZPbs2SY4p0+fbobB6CxFNWvWzHe+zpur1cIdO3Y0Yfvcc89Jly5dzNy6devWLcmvBwCA8+GpvWlzu/fee/N8v5ShKtOmTZNBgwbJgAEDzHcN0ffff1/mz58vo0ePznf+3/72tzzfX3/9dfnHP/4hq1evlv79+1s/HwCAUg3PBQsWiJO0lJqSkiJjxozx7dMJ5rUqVnvuFsfp06fN0Jhq1aoVeo5WJ+euXs7IyCjhmwMAgoljbZ5eR44ckfXr15tNP9tIT083E8zXqlUrz379npaWVqx7jBo1SmJjY03gFkZXetFSs3djMgcAgF/CU+e1feihh6ROnTpyyy23mE1DbODAgaY0WBaeffZZM1xm2bJlpv2zMFqyPXHihG/zzogEAECZhqd28vnkk0/k3XfflePHj5vtn//8p9n32GOPFeseupRZWFiYHDp0KM9+/V67du0ir33hhRdMeH744YdmfOnFhtVUqVIlzwYAQJmHp3bSmTdvnpkkwRtId911lxlK8tZbbxXrHjoetE2bNqazj1dOTo757p21qCA6q5EOk1m5cqXEx8c78vsAAFDqMwxp1eyFbZVKh5fYVNtqCTYxMdGEYNu2bc1QFa0S9va+1R60OgRF2y2VDk0ZN26cmeFIx4Z620Yvu+wyswEAELAlTy0Zjh8/Xs6ePevbd+bMGZkwYUKRpcYL9e7d21TBaiC2atVKtm7dakqU3mDet2+fHDx40He+TvunvXTvu+8+097q3fQeAAAEdMlTS4jdunXLN0mCdtz54IMPrO6lMxIVNiuRToqQ2969e0vw1gAA+DE8W7RoId9++62ZtEAXwlY680/fvn2lUqVKTj0GAAB3hKdOStCkSRN57733zOxAAAC4mSNtnhUrVszT1gkAgJs51mFoyJAhpufr+fPnnbolAADubvP8/PPPzXhMnaRA2z8rV66c5/jbb7/t1KMAAHBHeFatWjXfqioAALhRicNTZwB6/vnn5ZtvvjHjLTt37ixPP/00PWwBAK5V4jbPZ555Rp588kkzm4/O/DNjxgzT/gkAgFuVODz//Oc/yyuvvGImQli+fLmZGF7HemqJFAAANypxeOp0eToBvJeuoxkSEiIHDhwo6a0BAHBneOrQlAvXztRxnzpxAgAAblTiDkMej0cefPBBs0aml06Y8N///d95hqswVAUA4BYlDk9dPuxCDzzwQElvCwCAe8NzwYIFzrwJAADBNj0fAADBgvAEAMAS4QkAgCXCEwAAS4QnAACWCE8AACwRngAAWCI8AQCwRHgCAGCJ8AQAwBLhCQCAJcITAABLhCcAAJYITwAALBGeAABYIjwBALBEeAIAYInwBADAEuEJAIAlwhMAAEuEJwAAlghPAAAsEZ4AAFgiPAEAsER4AgBgifAEAMAS4QkAgCXCEwAAS4QnAACWCE8AACwRngAAWCI8AQBwQ3jOmjVLGjRoIJGRkdKuXTvZtGlTkecvXbpUmjRpYs5v0aKFrFixoszeFQAQfAIuPJcsWSJJSUkyfvx42bx5s7Rs2VK6du0qhw8fLvD8DRs2SJ8+fWTgwIGyZcsW6dWrl9l27NhR5u8OAAgOARee06ZNk0GDBsmAAQOkWbNmMnv2bImKipL58+cXeP5LL70k3bp1kyeeeEKaNm0qkyZNktatW8vMmTPL/N0BAMGhgr9fILesrCxJSUmRMWPG+PaFhoZKQkKCJCcnF3iN7teSam5aUl2+fHmhz8nMzDSb14kTJ8zPjIyMkr3/6bMSSEr6+wBAMP29y/i/e3g8nvIVnunp6ZKdnS21atXKs1+/79q1q8Br0tLSCjxf9xdm8uTJMmHChHz74+LixE1ek9H+fgUAKHd/706ePCkxMTHlJzzLipZsc5dWc3Jy5NixY1K9enUJCQnx67vpf/loiKempkqVKlX8+i4AEEx/7zwejwnO2NjYi54bUOFZo0YNCQsLk0OHDuXZr99r165d4DW63+Z8FRERYbbcqlatKoFE/0UKhH+ZACCY/t7FXKTEGZAdhsLDw6VNmzayevXqPKVC/d6hQ4cCr9H9uc9Xq1atKvR8AABKKqBKnkqrUxMTEyU+Pl7atm0r06dPl1OnTpnet6p///5St25d026pRowYIZ06dZKpU6dK9+7dZfHixfLFF1/InDlz/PybAADcKuDCs3fv3nLkyBEZN26c6fTTqlUrWblypa9T0L59+0wPXK+OHTvKokWLZOzYsfLkk09Ko0aNTE/b5s2bS3mk1ck6xvXCamUAcJuIcvz3LsRTnD65AAAgMNs8AQAoDwhPAAAsEZ4AAFgiPAEAsER4AgBgifAEAMAS4QkAgCXCEwAAS4QnAACWCE8AACwRngAAWCI8AQCwRHgCAGCJ8AQAwBLhCQCAJcITAABLhCcAAJYITwAALBGeAABYIjwBALBEeAIAYInwBADAEuEJAIClCrYXuFFOTo4cOHBAoqOjJSQkxN+vAwDwA4/HIydPnpTY2FgJDS26bEl4ipjgjIuL8/drAAACQGpqqtSrV6/IcwhPEVPi9P4Dq1Klir9fBwDgBxkZGaYg5c2EohCeIr6qWg1OwhMAgltIMZrv6DAEAIAlwhMAAEuEJwAAlghPAAAs0WHIQXfMmi6BZNWQR/39CgDgSpQ8AQCwRHgCAGCJalsAgLU7gryZipInAACWCE8AACwRngAAWCI8AQCwRHgCAGCJ8AQAwBLhCQCAJcITAABLhCcAAJYITwAALBGeAABYIjwBALBEeAIAYInwBADAEuEJAIAlwhMAAEuEJwAAlghPAAAsEZ4AAFgiPAEAsER4AgBgifAEAKC8huezzz4rISEh8uijj/r2nT17VoYMGSLVq1eXyy67TO699145dOhQnuv27dsn3bt3l6ioKKlZs6Y88cQTcv78eT/8BgCAYBEQ4fn555/La6+9Jtddd12e/SNHjpR3331Xli5dKp988okcOHBA7rnnHt/x7OxsE5xZWVmyYcMGeeONN2ThwoUybtw4P/wWAIBg4ffw/Pnnn6Vv374yd+5cufzyy337T5w4IfPmzZNp06ZJ586dpU2bNrJgwQITkhs3bjTnfPjhh7Jz507561//Kq1atZI777xTJk2aJLNmzTKBCgCAK8NTq2W19JiQkJBnf0pKipw7dy7P/iZNmsiVV14pycnJ5rv+bNGihdSqVct3TteuXSUjI0O++uqrQp+ZmZlpzsm9AQBQXBXEjxYvXiybN2821bYXSktLk/DwcKlatWqe/RqUesx7Tu7g9B73HivM5MmTZcKECQ79FgCAYOO3kmdqaqqMGDFC/va3v0lkZGSZPnvMmDGmWti76bsAABDw4anVsocPH5bWrVtLhQoVzKadgmbMmGE+awlS2y2PHz+e5zrtbVu7dm3zWX9e2PvW+917TkEiIiKkSpUqeTYAAAI+PG+//XbZvn27bN261bfFx8ebzkPezxUrVpTVq1f7rtm9e7cZmtKhQwfzXX/qPTSEvVatWmXCsFmzZn75vQAA7ue3Ns/o6Ghp3rx5nn2VK1c2Yzq9+wcOHChJSUlSrVo1E4jDhg0zgdm+fXtzvEuXLiYk+/XrJ1OmTDHtnGPHjjWdkLR0CQCA6zoMXcyLL74ooaGhZnIE7SGrPWlfeeUV3/GwsDB57733ZPDgwSZUNXwTExNl4sSJfn1vAIC7BVR4rl27Ns937UikYzZ1K0z9+vVlxYoVZfB2AAAEyDhPAADKG8ITAABLhCcAAJYITwAALBGeAABYIjwBALBEeAIAYInwBADAEuEJAIAlwhMAAEuEJwAAlghPAAAsEZ4AAJRFeDZs2FCOHj2ab//x48fNMQAA3OySwnPv3r2SnZ2db7+uubl//34n3gsAAHes5/nOO+/4Pn/wwQcSExPj+65hunr1amnQoIGzbwgAQHkOz169epmfISEhkpiYmOdYxYoVTXBOnTrV2TcEAKA8h2dOTo75edVVV8nnn38uNWrUKK33AgDAHeHptWfPHuffBAAAN4en0vZN3Q4fPuwrkXrNnz/fiXcDAMA94TlhwgSZOHGixMfHS506dUwbKAAAweKSwnP27NmycOFC6devn/NvBACAG8d5ZmVlSceOHZ1/GwAA3Bqev/vd72TRokXOvw0AAG6ttj179qzMmTNHPvroI7nuuuvMGM/cpk2b5tT7AQDgjvDctm2btGrVynzesWNHnmN0HgIAuN0lheeaNWucfxMAAMoJliQDAKAsSp633XZbkdWzH3/88aXcFgAA94ant73T69y5c7J161bT/nnhhPEAALjNJYXniy++WOD+p59+Wn7++eeSvhMAAMHT5vnAAw8wry0AwPUcDc/k5GSJjIx08pYAALij2vaee+7J893j8cjBgwfliy++kKeeesqpdwMAwD3hGRMTk+d7aGioXHvttWallS5dujj1bgAAuCc8FyxY4PybAADg9sWwVUpKinz99dfm8y9+8Qu5/vrrnXovAADcFZ6HDx+W3/zmN7J27VqpWrWq2Xf8+HEzecLixYvliiuucPo9AQAo371thw0bJidPnpSvvvpKjh07ZjadICEjI0OGDx/u/FsCAFDeS54rV640y5E1bdrUt69Zs2Yya9YsOgwBAFzvkkqeOTk5+dbwVLpPjwEA4GaXFJ6dO3eWESNGyIEDB3z79u/fLyNHjpTbb7/dyfcDAMAd4Tlz5kzTvtmgQQO5+uqrzXbVVVeZfS+//LLzbwkAQHlv84yLi5PNmzebds9du3aZfdr+mZCQ4PT7AQBQvkueuk6ndgzSEqau53nHHXeYnre63XDDDWas56efflp6bwsAQHkLz+nTp8ugQYOkSpUqBU7Z9/DDD8u0adOKfb/Jkyeb0I2OjpaaNWtKr169ZPfu3XnOOXv2rAwZMkSqV68ul112mdx7771y6NChPOfs27dPunfvLlFRUeY+TzzxhJw/f97mVwMAoHTC88svv5Ru3boVelyHqeisQ8X1ySefmGDcuHGjrFq1yiyqrfc4deqU7xzthPTuu+/K0qVLzfnaSSn3xPTZ2dkmOLOysmTDhg3yxhtvyMKFC2XcuHE2vxoAAKXT5qklvoKGqPhuVqGCHDlyxGq8aG4aelpy1AC+5ZZb5MSJEzJv3jxZtGiR6eHrnVdX21c1cNu3by8ffvih7Ny507S/1qpVS1q1aiWTJk2SUaNGmcW5w8PDbX5FAACcLXnWrVvXzCRUmG3btkmdOnXkUmlYqmrVqpmfGqJaGs3dEalJkyZy5ZVXmrVDlf5s0aKFCU6vrl27mnZZnQGpIJmZmeZ47g0AgFIJz7vuusus16ntkBc6c+aMjB8/Xn75y1/KpdDJFR599FG58cYbpXnz5mZfWlqaKTl658/10qDUY95zcgen97j3WGFtrdpG69209zAAAKVSbTt27Fh5++23pXHjxjJ06FCzhqfS4So6NZ+2P/7hD3+QS6Ftn1qqXb9+vZS2MWPGSFJSku+7ljwJUABAqYSnlui0U87gwYNNAHk8HrNfh61oVakG6IWlwOLQIH7vvfdk3bp1Uq9ePd/+2rVrm45AumJL7tKntr3qMe85mzZtynM/b29c7zkXioiIMBsAAGUyw1D9+vVlxYoVkp6eLp999pnpuKOfdZ/OMmRDw1eDc9myZWYM6YXXt2nTxnRQWr16tW+fDmXRoSkdOnQw3/Xn9u3bzTJpXtpzV4fT6JhUAAACZjHsyy+/3IzRLAmtqtWetP/85z/NWE9vG6W2Q1aqVMn8HDhwoKli1U5EGog6IYMGpva0VTq0RUOyX79+MmXKFHMPrV7We1O6BAAEVHg64dVXXzU/b7311jz7dTjKgw8+aD6/+OKLEhoaaiZH0F6yWj38yiuv+M4NCwszVb5alayhWrlyZUlMTJSJEyeW8W8DAAgWfg1Pb5tpUSIjI01bqm4Xq0oGACBgV1UBACCYEZ4AAFgiPAEAsER4AgBgifAEAMAS4QkAgCXCEwAAS4QnAACWCE8AACwRngAAWCI8AQCwRHgCAGCJ8AQAwBLhCQCAJcITAABLhCcAAJYITwAALBGeAABYIjwBALBEeAIAYInwBADAEuEJAIAlwhMAAEuEJwAAlghPAAAsEZ4AAFgiPAEAsER4AgBgifAEAMAS4QkAgCXCEwAAS4QnAACWCE8AACwRngAAWCI8AQCwRHgCAGCJ8AQAwBLhCQCAJcITAABLhCcAAJYITwAALBGeAABYIjwBALBEeAIAYInwBADAEuEJAECwhuesWbOkQYMGEhkZKe3atZNNmzb5+5UAAC7livBcsmSJJCUlyfjx42Xz5s3SsmVL6dq1qxw+fNjfrwYAcCFXhOe0adNk0KBBMmDAAGnWrJnMnj1boqKiZP78+f5+NQCAC1WQci4rK0tSUlJkzJgxvn2hoaGSkJAgycnJBV6TmZlpNq8TJ06YnxkZGSV6l/NnzkogKenvAwDB9Pcu4//u4fF43B+e6enpkp2dLbVq1cqzX7/v2rWrwGsmT54sEyZMyLc/Li5O3CTmif//DwoAcLMYB//enTx5UmJiYtwdnpdCS6naRuqVk5Mjx44dk+rVq0tISIhf303/y0dDPDU1VapUqeLXdwGAYPp75/F4THDGxsZe9NxyH541atSQsLAwOXToUJ79+r127doFXhMREWG23KpWrSqBRP9FCoR/mQAgmP7exVykxOmaDkPh4eHSpk0bWb16dZ6SpH7v0KGDX98NAOBO5b7kqbQKNjExUeLj46Vt27Yyffp0OXXqlOl9CwCA01wRnr1795YjR47IuHHjJC0tTVq1aiUrV67M14moPNDqZB2vemG1MgC4TUQ5/nsX4ilOn1wAAOCeNk8AAMoa4QkAgCXCEwAAS4QnAACWCE8AACwRngAAWCI8AQCwRHgCAGCJ8AQAwBLhCQCAJcITAABLhCcAAJYITwAALBGeAABYIjwBALBEeAIAYInwBADAEuEJAIAlwhMAAEuEJwAAlghPAAAsEZ4AAFiqYHuBG+Xk5MiBAwckOjpaQkJC/P06AAA/8Hg8cvLkSYmNjZXQ0KLLloSniAnOuLg4f78GACAApKamSr169Yo8h/AUMSVO7z+wKlWq+Pt1AAB+kJGRYQpS3kwoCuEp4quq1eAkPAEguIUUo/mODkMAAFgiPAEAsER4AgBgifAEAMASHYYc1GjUCxJIvn3ucX+/AgCXahTkf+8oeQIAYInwBADAEuEJAIAlwhMAAEuEJwAAlghPAAAsEZ4AAFgiPAEAsER4AgBgifAEAMAS4QkAgCXCEwAAS4QnAABluarK8ePHZdmyZfLpp5/Kjz/+KKdPn5YrrrhCrr/+eunatat07NixJLcHAMA9Jc8DBw7I7373O6lTp4788Y9/lDNnzkirVq3k9ttvl3r16smaNWvkjjvukGbNmsmSJUucf2sAAMpbyVNLlomJiZKSkmICsiAaqMuXL5fp06dLamqqPP44a0sCAII4PHfu3CnVq1cv8pxKlSpJnz59zHb06NFLfT8AANxRbXux4Czp+bNmzZIGDRpIZGSktGvXTjZt2nTRttchQ4aYauSIiAhp3LixrFixwuqZAACUasnznXfeKfa5PXv2tLq3tpEmJSXJ7NmzTXBqta92Ptq9e7fUrFkz3/lZWVmmfVWPvfXWW1K3bl3Tealq1apWzwUAoFTDs1evXsU6LyQkRLKzs63uPW3aNBk0aJAMGDDAfNcQff/992X+/PkyevTofOfr/mPHjsmGDRukYsWKZp+WWgEACKhq25ycnGJttsGppUjthJSQkPD/Lxgaar4nJycXWgru0KGDqbatVauWNG/eXP70pz8V+ezMzEzJyMjIswEAUC4nSUhPTzehpyGYm35PS0sr8JoffvjBVNfqddrO+dRTT8nUqVPNEJrCTJ48WWJiYnxbXFyc478LAMC9SjRJgtepU6fkk08+kX379pnSY27Dhw+X0qQlXG3vnDNnjoSFhUmbNm1k//798vzzz8v48eMLvGbMmDGmXdVLS54EKACgzMJzy5Ytctddd5nZhTREq1WrZkqQUVFRJtRswrNGjRomAA8dOpRnv36vXbt2gddoD1tt69TrvJo2bWpKqhrk4eHh+a7RHrm6AQDgl2rbkSNHSo8ePeSnn34yYzs3btxoertqCfCFF16wupcGnV63evXqPCVL/a7tmgW58cYb5bvvvjPneX3zzTcmVAsKTgAA/B6eW7dulccee8x07NHSn3bG0SrQKVOmyJNPPml9P61OnTt3rrzxxhvy9ddfy+DBg02J1tv7tn///qba1UuPa2/bESNGmNDUnrnaYUg7EAEAEJDVtlplqsGptJpW2z212lQ74ui0fLZ69+4tR44ckXHjxpmqV50zd+XKlb5ORHp/7/OUBvUHH3xgSsDXXXedGeepQTpq1KiS/moAAJROeOo8t59//rk0atRIOnXqZEJP2zz/8pe/mGEjl2Lo0KFmK8jatWvz7dMqXa0uBgCgXFTbahWpti+qZ555Ri6//HJTlaqlR+0BCwCA25S45BkfH+/7rNW2WsUKAICbOTJJwvnz5+Wjjz6S1157TU6ePOlb8/Pnn3924vYAALir5KnDUrp162Y68mhPW52kPTo6Wp577jnzXeemBQDATUpc8tSerVp16x3n6XX33XfnGa8JAIBblLjk+emnn5oVTS6ckEBXNtFp8gAAcJsSlzwLWz3lP//5j6m+BQDAbUocnl26dDELVudew1M7Cumk7DrnLQAAblPialudv1Y7DDVr1kzOnj0rv/3tb+Xbb781k7y/+eabzrwlAABuCk+dHu/LL7+UJUuWmJ9a6hw4cKD07ds3TwciAADcokThee7cOWnSpIm89957Jix1AwDA7UJLOim8VtUCABBMStxhSJf+0gkRdJYhAACCQYnbPHVFFZ0M4cMPP5QWLVpI5cqV8xx/++23S/oIAADcFZ5Vq1aVe++915m3AQAgGMJzwYIFzrwJAADBtKoKAADB5JLCUydF2Lhx40XP0+XJtDPRrFmzLuUxAAC4p9r2/vvvN+2cMTEx0qNHD7OqSmxsrERGRprVVXbu3Cnr16+XFStWSPfu3eX55593/s0BAChP4akzCD3wwAOydOlSM7PQnDlz5MSJE765bXWqvq5du5qeuE2bNnX6nQEAKJ8dhiIiIkyA6qY0PM+cOSPVq1c3kycAAOBWJe5t66VVuLoBAOB29LYFAMAS4QkAgCXCEwAAS4QnAAD+CM/jx4/L66+/LmPGjJFjx46ZfZs3b5b9+/c7cXsAANzV23bbtm2SkJBgetru3btXBg0aJNWqVTOrqezbt0/+/Oc/O/OmAAC4peSZlJQkDz74oHz77bdmhiGvu+66S9atW1fS2wMA4L7w1FmEHn744Xz769atK2lpaSW9PQAA7gtPnWkoIyMj3/5vvvlGrrjiiku6p04k36BBA1OSbdeunWzatKlY1y1evNhMD9irV69Lei4AAGUSnj179pSJEyfKuXPnzHcNL23rHDVq1CUtkq1z5WpV8Pjx402no5YtW5p5cg8fPlzkddre+vjjj8vNN998yb8LAABlEp5Tp06Vn3/+WWrWrGnmtu3UqZNcc801Eh0dLc8884z1/aZNm2Y6HQ0YMMBMMD979myJioqS+fPnF3pNdna29O3bVyZMmCANGzYs4W8EAEAp97bVXrarVq0yS5Bpz1sN0tatW5seuLaysrIkJSXFDHnxCg0NNfdKTk4u9Dot+Wp462ovn3766UWfk5mZaTavgqqdAQAo9Ynhb7rpJrOVRHp6uilF1qpVK89+/b5r164Cr9HQnjdvnmzdurXYz5k8ebIppQIAUGbhOWPGjGKfO3z4cCktJ0+elH79+sncuXOlRo0axb5OS7barpq75BkXF1dKbwkAcJtLCs8XX3wxz/cjR47I6dOnpWrVqr4Zh7SdUqtSbcJTAzAsLEwOHTqUZ79+r127dr7zv//+e9NRqEePHr59OTk55meFChVk9+7dcvXVVxfYQ1g3AADKrMPQnj17fJt2CmrVqpV8/fXXZmo+3fSztntOmjTJ6r7h4eHSpk0bWb16dZ4w1O8dOnTId36TJk1k+/btpsrWu2nv39tuu818pjQJAAjINs+nnnpK3nrrLbn22mt9+/Szlk7vu+8+0wvWhlanJiYmSnx8vLRt21amT58up06dMr1vVf/+/c0EDNpuqeNAmzdvnud6b+n3wv0AAARMeB48eFDOnz+fb792/Lmw+rU4evfubaqBx40bZ2Yo0lLtypUrfZ2IdAyp9sAFAKDchuftt99upufTVVW0qlbpcJPBgwdf0nAVNXToULMVZO3atUVeu3Dhwkt6JgAAxVXiIpxOXqCdebSa1dsRR6tbtaSogQoAgNuUuOSp89euWLHCzGXrHYupHXkaN27sxPsBAODeSRI0LAlMAEAwKHF4PvTQQ0UeL2pOWgAAgjI8f/rppzzfdXWVHTt2mIkSOnfuXNLbAwDgvvBctmxZvn06sYH2ti1odh8AAMq7UhkwqeMwdbKDC6fxAwDADUpttgGdd7agyRMAAJBgr7bNvTqJ8ng8Ztah999/30yzBwCA25Q4PLds2ZKvylbHfk6dOvWiPXEBAAjK8FyzZo0zbwIAQLC0eepwFB2WciFdYJqhKgAANypxeOpE7VlZWfn2nz17Vj799NOS3h4AAPdU227bts33eefOnWb5sNzLkekyYrruJgAAbnPJ4anrbIaEhJitoOrZSpUqycsvv1zS9wMAwD3huWfPHjMspWHDhrJp0ybTw9YrPDxcatasKWFhYU69JwAA5T8869ev75uKDwCAYHJJ4fnOO+/InXfeKRUrVjSfi9KzZ89LfTcAANwTnr169TIdhLRqVj8XRttDtfMQAAAS7OGZu6qWalsAQLAptYnhAQBwq0sqec6YMaPY5w4fPvxSHgEAgLvCs7jrdGqbJ+EJAHCbCpc6xhMAgGDlaJunTpqgGwAAbuZIeM6bN0+aN28ukZGRZtPPr7/+uhO3BgDAfet5jhs3TqZNmybDhg2TDh06mH3JyckycuRI2bdvn0ycONGJ9wQAwD3h+eqrr8rcuXOlT58+eWYVuu6660ygEp4AALcpcbXtuXPnJD4+Pt/+Nm3ayPnz50t6ewAA3Bee/fr1M6XPC82ZM0f69u17SfecNWuWNGjQwLSftmvXzqzaUhgt9d58881y+eWXmy0hIaHI8wEA8Hu1rbfD0Icffijt27c33z/77DPT3tm/f39JSkrynadtoxezZMkSc83s2bNNcE6fPl26du0qu3fvNnPpXmjt2rWmyrhjx44mbJ977jnp0qWLfPXVVyzGDQAoFSGeEo4tue2224r3oJAQ+fjjjy96ngbmDTfcIDNnzvTNnRsXF2faT0ePHn3R63Uiei2B6vUa3sWRkZEhMTExcuLECalSpYpcqkajXpBA8u1zj/v7FQC4VCMX/r2zyYISlzzXrFkjTsnKypKUlBQZM2aMb19oaKipitUevMVx+vRp0w5brVq1Qs/JzMw0W+5/YAAAlMuJ4dPT003JsVatWnn263ddAq04Ro0aJbGxsSZwCzN58mTzXxfeTUu2AAAUV4lLnmfPnpWXX37ZlEAPHz6cb4myzZs3S1l59tlnZfHixaYdVNs/C6Ml29xtsVryJEABAGUWngMHDjSdhe677z5p27atadu8VDVq1JCwsDA5dOhQnv36vXbt2kVe+8ILL5jw/Oijj8wY06JERESYDQAAv4Tne++9JytWrJAbb7yxpLeS8PBwMz509erV0qtXL7NPS7L6fejQoYVeN2XKFHnmmWfkgw8+KHDMKQAAARWeOhwkOjrambcRMdWpiYmJJgS1JKtDVU6dOiUDBgwwx7UHrT5T2y2VDk3RKQIXLVpkxoZ620Yvu+wyswEAEHAdhqZOnWo66fz444+OvFDv3r1NFawGYqtWrWTr1q2ycuVKXyciHT968OBB3/k6QYP20tVq4zp16vg2vQcAAAFZ8tQSonYaatiwoURFRUnFihXzHD927Jj1PbWKtrBqWu0MlNvevXut7w8AgF/DU2f32b9/v/zpT38ypcOSdBgCACAownPDhg1mAoOWLVs680YAALi9zbNJkyZy5swZZ94GAIBgCE8dW/nYY4+ZtsijR4+aCQdybwAAuE2Jq227detmft5+++159ut889r+qdPtAQDgJgE1MTwAAEERnp06dSr02I4dO0p6ewAA3L+qysmTJ2XOnDlmdiB64AIA3Mix8Fy3bp2ZVs87u0/nzp1l48aNTt0eAAB3VNvqPLILFy6UefPmmZ61v/71r80i08uXL5dmzZo595YAALih5NmjRw+59tprZdu2bWby9gMHDph1PQEAcLtLLnn+61//kuHDh8vgwYOlUaNGzr4VAABuLHmuX7/edA7S9TfbtWsnM2fOlPT0dGffDgAAN4Vn+/btZe7cuWZ5sIcfflgWL14ssbGxZvHqVatWmWAFAMCNStzbtnLlyvLQQw+Zkuj27dvNVH06ZV/NmjWlZ8+ezrwlAABuHeepHYimTJki//nPf+TNN9908tYAALh3kgQVFhYmvXr1knfeeac0bg8AgPvCEwAANyM8AQCwRHgCAGCJ8AQAwBLhCQCAJcITAABLhCcAAJYITwAALBGeAABYIjwBALBEeAIAYInwBADAEuEJAIAbwnPWrFnSoEEDiYyMlHbt2smmTZuKPH/p0qXSpEkTc36LFi1kxYoVZfauAIDgE3DhuWTJEklKSpLx48fL5s2bpWXLltK1a1c5fPhwgedv2LBB+vTpIwMHDpQtW7aYpdB027FjR5m/OwAgOARceE6bNk0GDRokAwYMkGbNmsns2bMlKipK5s+fX+D5L730knTr1k2eeOIJadq0qUyaNElat24tM2fOLPN3BwAEhwoSQLKysiQlJUXGjBnj2xcaGioJCQmSnJxc4DW6X0uquWlJdfny5YU+JzMz02xeJ06cMD8zMjJK9P45mWclkJT09wGAYPp7l/F/9/B4POUrPNPT0yU7O1tq1aqVZ79+37VrV4HXpKWlFXi+7i/M5MmTZcKECfn2x8XFiZvEvPSUv18BAMrd37uTJ09KTExM+QnPsqIl29yl1ZycHDl27JhUr15dQkJC/Ppu+l8+GuKpqalSpUoVv74LAATT3zuPx2OCMzY29qLnBlR41qhRQ8LCwuTQoUN59uv32rVrF3iN7rc5X0VERJgtt6pVq0og0X+RAuFfJgAIpr93MRcpcQZkh6Hw8HBp06aNrF69Ok+pUL936NChwGt0f+7z1apVqwo9HwCAkgqokqfS6tTExESJj4+Xtm3byvTp0+XUqVOm963q37+/1K1b17RbqhEjRkinTp1k6tSp0r17d1m8eLF88cUXMmfOHD//JgAAtwq48Ozdu7ccOXJExo0bZzr9tGrVSlauXOnrFLRv3z7TA9erY8eOsmjRIhk7dqw8+eST0qhRI9PTtnnz5lIeaXWyjnG9sFoZANwmohz/vQvxFKdPLgAACMw2TwAAygPCEwAAS4QnAACWCE8AACwRngAAWCI8AQCwRHgCAGCJ8AQAwBLhCQCAJcITAABLhCcAAJYITwAALBGeAABYIjwBALBEeAIAYInwBADAEuEJAIAlwhMAAEuEJwAAlghPAAAsEZ4AAFgiPAEAsFTB9gI3ysnJkQMHDkh0dLSEhIT4+3UAAH7g8Xjk5MmTEhsbK6GhRZctCU8RE5xxcXH+fg0AQABITU2VevXqFXkO4SliSpzef2BVqlTx9+sAAPwgIyPDFKS8mVAUwlPEV1WrwUl4AkBwCylG8x0dhgAAsER4AgBgifAEAMAS4QkAgCXCEwAAS4QnAACWCE8AACwRngAAWCI8AQCwRHgCAGCJ8AQAwBLhCQCAJcITAABLjq6qcu7cOUlLS5PTp0/LFVdcIdWqVXPy9gAAuKPkqatuv/rqq9KpUyeznFeDBg2kadOmJjzr168vgwYNks8//9yZtwUAoLyH57Rp00xYLliwQBISEmT58uWydetW+eabbyQ5OVnGjx8v58+fly5duki3bt3k22+/de7NAQDwkxCPx+O51Iv79OkjY8eOlV/84hdFnpeZmWkCNjw8XB566CEJxNXDY2Ji5MSJEyyGDQBBKsMiC0oUnm5BeAIAMiyygN62AAD4q7ft3XffLSEhIfn2677IyEi55ppr5Le//a1ce+21Tj0SAAC/cKzkqUXdjz/+WDZv3mwCU7ctW7aYfdppaMmSJdKyZUv597//LU6aPHmy3HDDDRIdHS01a9aUXr16ye7dux19BgAApRKetWvXNiXLH374Qf7xj3+Y7fvvv5cHHnhArr76avn6668lMTFRRo0aJU765JNPZMiQIbJx40ZZtWqVGWuqvXtPnTrl6HMAAHC8w5CO69RSZePGjfPs12ErHTt2lPT0dNm+fbvcfPPNcvz4cSktR44cMSVQDdVbbrmlWNfQYQgAkOGPDkNaNbtr1658+3Vfdna2+axtnwW1izpJf2lV1OxGOnRG/yHl3gAAKPMOQ/369ZOBAwfKk08+adoglc4s9Kc//Un69+9vvmtp8GJjQksiJydHHn30UbnxxhulefPmRbaTTpgwodTeAwDgbo5V22rp8tlnn5WZM2fKoUOHzL5atWrJsGHDTDtnWFiY7Nu3T0JDQ6VevXpSGgYPHiz/+te/ZP369UU+Q0ueunlpyTMuLo5qWwAIYhn+niTBWw1alkE0dOhQ+ec//ynr1q2Tq666yupa2jwBABkWWeDoqipeZRlAmv1aul22bJmsXbvWOjgBALDlaHi+9dZb8ve//91Uz2ZlZeU5puM/S4MOU1m0aJEpdepYT10STel/PVSqVKlUngkACG6O9badMWOGDBgwwLRz6uQIbdu2lerVq5txn3feeaeUFl0OTYvYt956q9SpU8e36aQMAAAEdMnzlVdekTlz5piVVhYuXCi///3vpWHDhjJu3Dg5duyYlBbmtQcAlNuSp1bV6mQISqtLdZFs7xCWN99806nHAADgrun5vCXMK6+80kyXp/bs2UPpEADgKo6FZ+fOneWdd94xn7Xtc+TIkXLHHXdI7969zYorAAC4hWPjPHV2H90qVPjfZtTFixfLhg0bpFGjRvLwww9LeHi4BCrGeQIAMvw9SUJ5Q3gCADL8NUnC2bNnZdu2bXL48GFTCs2tZ8+eTj4KAAC/cSw8V65caSaA16XHLqQrqXhXVgEAoLxzrMOQTpF3//33y8GDB33tn96N4AQAuIlj4akrqSQlJZkZhgAAcDPHwvO+++4zE7MDAOB2jvW2PX36tKm2veKKK6RFixZSsWLFPMeHDx8ugYretgCADH/0ttUp+D788EOJjIw0JVDtJOSlnwM5PAEAsOFYeP7hD3+QCRMmyOjRoyU01LHaYAAAAo5jKafrd+pUfAQnAMDtHEu6xMRE1tAEAAQFx6ptdSznlClT5IMPPpDrrrsuX4ehadOmOfUoAADcEZ7bt2+X66+/3nzesWNHnmO5Ow8BAFDeORaea9ascepWAAAENHr3AABQliXPe+65RxYuXGgGk+rnorz99tsleRQAAO4IT52JwdueqZ8BAAgGLIbN9HwAALHLAto8AQCwVKLw7Natm2zcuPGi5508eVKee+45mTVrVkkeBwBA+W/z1FVU7r33XlPM7dGjh8THx0tsbKyZHP6nn36SnTt3yvr162XFihXSvXt3ef755517cwAAymubZ2ZmpixdutRMzadBqXXF5sYhIdKsWTPp2rWrDBw4UJo2bSqBijZPAECGRRY43mFIH3rmzBmpXr16vin6AhXhCQDI8Md6nl76YIatAADcjN62AABYIjwBALBEeAIAYInwBADAn+F5/Phxef3112XMmDFy7Ngxs2/z5s2yf/9+Jx8DAIBfOdbbdtu2bZKQkGB62u7du1cGDRok1apVM6up7Nu3T/785z879SgAANxR8kxKSpIHH3xQvv32WzPDkNddd90l69atc+oxAAC4Jzw///xzefjhh/Ptr1u3rqSlpTn1GAAA3BOeERERZnaGC33zzTdyxRVXOPUYAADcE549e/aUiRMnyrlz53xz22pb56hRo8zk8aVNV2xp0KCBqTJu166dbNq0qdSfCQAITo6F59SpU+Xnn3+WmjVrmrltO3XqJNdcc41ER0fLM888I6VJJ6XXNtfx48eb3r0tW7Y0E9IfPny4VJ8LAAhOjk8MryuraM9bDdLWrVubHrilTUuaN9xwg8ycOdN8z8nJkbi4OBk2bJiMHj36otczMTwAIMOfE8PfdNNNZisrWVlZkpKSYsaWeoWGhprQTk5OLnQZNd28CmqrBQCgVMJzxowZxT53+PDhUhrS09MlOztbatWqlWe/ft+1a1eB10yePFkmTJhQKu8DAHC/EoXniy++mOf7kSNH5PTp01K1alXfjENRUVGmHbS0wvNSaClV20hzlzy1mhcAgFIPzz179vg+L1q0SF555RWZN2+eXHvttWbf7t27zUxDBY3/dEqNGjUkLCxMDh06lGe/fq9du3ahw2p0AwDAr71tn3rqKXn55Zd9wan0s5ZOx44dK6UlPDxc2rRpI6tXr/bt0w5D+r1Dhw6l9lwAQPByrMPQwYMH5fz58/n2a3vkhaVCp2kVbGJiosTHx0vbtm1l+vTpcurUKRkwYECpPhcAEJwcC8/bb7/dVM/qqio6REVpL9jBgweX+nCV3r17m/bWcePGmakAW7VqJStXrszXiQgAgIAa56nhpaU/Da2KFSuafVoS1ckKFi5caDoNBSrGeQIAMvwxzlPnr12xYoWZy9Y7RKRJkybSuHFjpx4BAEBAcHySBA1LAhMA4GaOhedDDz1U5PH58+c79SgAANwRnj/99FOe77q6yo4dO8xECZ07d3bqMQAAuCc8ly1blm+fjrfU3rZXX321U48BAMA9kyQUePPQUDMG88Jp/AAAKM9KNTzV999/X+DkCQAASLBX2+aeaF3p8FGddej999834z8BAHALx8Jzy5Yt+apsdezn1KlTL9oTFwCAoAzPNWvWOHUrAACCo81Th6PosJSCpjtiqAoAwE0cC8+1a9dKVlZWvv1nz56VTz/91KnHAABQ/qttt23b5vu8c+dOs6pJ7uXIdKL4unXrlvQxAAC4Jzx1+a+QkBCzFVQ9W6lSJbNINgAAblHi8NyzZ48ZltKwYUPZtGmT6WHrFR4ebpYiCwsLK+ljAABwT3jWr1/fNxUfAADBoETh+c4778idd95pFr/Wz0Xp2bNnSR4FAEDACPFonesl0okQtIOQVs3q50IfEhJiOg+5YfVwAIA72WRBiUqeuatqqbYFAASLUp8YHgAAtylRyXPGjBnFPnf48OEleRQAAO5o87zqqquK95CQEPnhhx8kUNHmCQDIKKs2Tx3jCQBAsCmVNk8tzJagQAsAQPCE57x586R58+YSGRlpNv38+uuvO/kIAADcs57nuHHjZNq0aTJs2DDp0KGD2ZecnCwjR46Uffv2ycSJE516FAAA5bfDUG46p632vu3Tp0+e/W+++aYJ1PT0dAlUdBgCAGRYZIFj1bbnzp2T+Pj4fPvbtGkj58+fd+oxAAD4nWPh2a9fP3n11Vfz7Z8zZ4707dvXqccAAOCeNk9vh6EPP/xQ2rdvb75/9tlnpr2zf//+kpSU5DtP20YBAJBgD88dO3ZI69atzefvv//e/KxRo4bZ9FjuCRMAACjPHAvPNWvWOHUrAAACGhPDAwDgr5Ln2bNn5eWXXzYl0MOHD+dbomzz5s1OPQoAAHeE58CBA01nofvuu0/atm1L2yYAwLUcC8/33ntPVqxYITfeeKNTtwQAwN1tnnXr1pXo6GinbgcAgPvDc+rUqTJq1Cj58ccfpazs3bvXVBfruqKVKlWSq6++WsaPHy9ZWVll9g4AgODjWLWtTs2nnYYaNmwoUVFRUrFixTzHjx07Jk7btWuX6Zj02muvyTXXXGPGkw4aNEhOnTolL7zwguPPAwDA0YnhExISzGxCWhKsVatWvg5DiYmJZfJP/PnnnzfTBP7www/FvoaJ4QEAGRZZ4FjJc8OGDWYJspYtW4o/6S9drVq1Is/JzMw0W+5/YAAAlHmbZ5MmTeTMmTPiT999950Za/rwww8Xed7kyZPNf114t7i4uDJ7RwBA+edYeD777LPy2GOPydq1a+Xo0aOmNJd7szF69GhT7VvUpu2due3fv1+6desm999/v2n3LMqYMWNMCdW7paamXtLvDAAITo61eYaG/m8OX9jWqbfXfdnZ2cW+15EjR0wAF0U7JoWHh5vPBw4ckFtvvdWs5rJw4ULfuxQXbZ4AgAx/tHk6OTH8FVdcYbbi0BLnbbfdZhbdXrBggXVwAgBgy7Hw7NSpU6HHci9J5iQNTi1x1q9f3wxN0RKrV+3atUvlmQAAOLoYdm4nT56UN998U15//XVJSUmxqrYtrlWrVplOQrrVq1cvzzGHaqMBAMjH8TrOdevWmTGdderUMaXBzp07y8aNG6U0PPjggyYkC9oAAAjokmdaWprpqDNv3jzT4PrrX//ajKNcvny5NGvWzIlHAADgnpJnjx495Nprr5Vt27bJ9OnTTc9XHWsJAIBblbjk+a9//UuGDx8ugwcPlkaNGjnzVgAAuLnkuX79etM5SIeKtGvXTmbOnCnp6enOvB0AAG4MT52YYO7cuXLw4EEzLd7ixYslNjbWrHaivWE1WAEAcBPHZhjKbffu3abz0F/+8hc5fvy43HHHHfLOO+9IoGKGIQBAhkUWlMp0PNqBaMqUKfKf//zHjPUEAMBNSqXkWd5Q8gQAZPi75AkAgJsRngAAWCI8AQCwRHgCAGCJ8AQAwBLhCQCAJcITAABLhCcAAJYITwAALBGeAABYIjwBALBEeAIAYKmC7QVu5J0bXycFBgAEp4z/y4DirJdCeIr4FuyOi4vz96sAAAIgE3R1laKwJJmI5OTkyIEDByQ6OlpCQkL8/l8+GuKpqaksjwbA1TIC7O+dxqEGZ2xsrISGFt2qSclTG35DQ6VevXoSSPRfpED4lwkAgunvXcxFSpxedBgCAMAS4QkAgCXCM8BERETI+PHjzU8AcLOIcvz3jg5DAABYouQJAIAlwhMAAEuEJwAAlghPAAAsEZ5laNasWdKgQQOJjIyUdu3ayaZNm3zHzp49K0OGDJHq1avLZZddJvfee68cOnQoz/X79u2T7t27S1RUlNSsWVOeeOIJOX/+vB9+EwAo3Lp166RHjx5mph6dtW358uV5jr/99tvSpUsX8/dOj2/dujXfPebMmSO33nqrmTxBzzl+/LgEEsKzjCxZskSSkpJMt+zNmzdLy5YtpWvXrnL48GFzfOTIkfLuu+/K0qVL5ZNPPjHTBd5zzz2+67Ozs01wZmVlyYYNG+SNN96QhQsXyrhx4/z4WwFAfqdOnTJ/47TAUNjxm266SZ577jkpzOnTp6Vbt27y5JNPSkDSoSoofW3btvUMGTLE9z07O9sTGxvrmTx5suf48eOeihUrepYuXeo7/vXXX+sQIk9ycrL5vmLFCk9oaKgnLS3Nd86rr77qqVKliiczM7OMfxsAKB79O7Zs2bICj+3Zs8cc37JlS6HXr1mzxpzz008/eQIJJc8yoKXFlJQUSUhIyDOfrn5PTk42x86dO5fneJMmTeTKK680x5X+bNGihdSqVct3jpZcdWLlr776qox/IwAIboRnGUhPTzfVrrmDT+n3tLQ0s4WHh0vVqlULPK70Z0HXe48BAMoO4QkAgCXCswzUqFFDwsLC8vWe1e+1a9c2m1btXtibzHtc6c+CrvceAwCUHcKzDGiVbJs2bWT16tV5FuDW7x06dDDHKlasmOf47t27zdAUPa705/bt2329c9WqVatMN+5mzZqV8W8EAMGNxbDLiA5TSUxMlPj4eGnbtq1Mnz7ddNceMGCAWXx14MCB5pxq1aqZQBw2bJgJzPbt25vrdUyUhmS/fv1kypQppp1z7NixZmxoeVyRAIB7/fzzz/Ldd9/5vu/Zs8eM5dS/b9oR8tixY6ZwoEPyvIUF5a2JU97+IN77aOEhOjraXK/38Tt/d/cNJi+//LLnyiuv9ISHh5uhKxs3bvQdO3PmjOeRRx7xXH755Z6oqCjP3Xff7Tl48GCe6/fu3eu58847PZUqVfLUqFHD89hjj3nOnTvnh98EADwXHV5y4ZaYmGiOL1iwoMDj48eP991DPxd0jl4bCFiSDAAAS7R5AgBgifAEAMAS4QkAgCXCEwAAS4QnAACWCE8AACwRngAAWCI8AZfSxdIvXKkHgDMIT8APHnzwQQkJCfFt1atXl27dusm2bdsce0bv3r3lm2++kdLQoEEDM8WkrVtvvVUeffTRUnknoCwRnoCfaFgePHjQbLooQIUKFeSXv/ylY/evVKmS1KxZ07H7Afh/hCfgJzqhv3ci7FatWsno0aMlNTVVjhw54jtn1KhR0rhxY4mKipKGDRvKU089JefOnfMd//LLL+W2224zE2brggK6Qs8XX3xRYLVtUedeSGftfPrpp80k3PqesbGxMnz4cF/p8ccff5SRI0f6Ss7q6NGj0qdPH6lbt6553xYtWsibb76Zp7T9ySefyEsvveS7bu/evebYjh075M4775TLLrvMLPKuCyDoIvJAoCI8gQBZheKvf/2rXHPNNaYK10uDTkNw586dJnTmzp0rL774ou943759pV69evL5559LSkqKCWBd3q4gNuf+4x//MM957bXX5Ntvv5Xly5ebMFRvv/22uc/EiRN9JWd19uxZE8jvv/++CcP/+q//MiG4adMmc1zfX1cKGjRokO+6uLg4s45t586d5frrrzdhvnLlSrNW7a9//WtH/xkDjvL3zPRAMNLVJcLCwjyVK1c2m/5fsU6dOp6UlJQir3v++ec9bdq08X2Pjo72LFy4sMBzdfWJmJiYYp17oalTp3oaN27sycrKKvB4/fr1PS+++OJF79O9e3ez+o9Xp06dPCNGjMhzzqRJkzxdunTJsy81NdX8M9m9e3ex3hcoa5Q8AT/RKlRd41A3LZ117drVVF1qlajXkiVL5MYbbzRVu1qlqWu46jqIXroG7O9+9ztJSEiQZ599Vr7//vtCn2dz7v333y9nzpwxVcVaUly2bJmcP3++yN8nOztbJk2aZEqout6ivu8HH3yQ530LotXJa9asMed7tyZNmphjRb0j4E+EJ+AnlStXNtW0ut1www3y+uuvmwXStWpWJScnm6rWu+66S9577z3ZsmWL/OEPf5CsrCzfPbRd8quvvpLu3bvLxx9/bBZM16AriM25Wp2qCxS/8sorpuPRI488Irfcckue9tYLPf/886ZqVttpNQz1Pwr0Pwhyv29hVdY9evTw/YeEd9PqYn0mEIgq+PsFAPwv7UATGhpqSnxqw4YNUr9+fROYXrlLpV7aoUg37cCjHXYWLFggd999d4HPsDlXQ1NDTbchQ4aY0uD27duldevWEh4ebkqauf373/+WX/3qV/LAAw+Y7zk5OWaojIa0V0HX6f20jVWHv2iPY6A8oOQJ+ElmZqakpaWZ7euvv5Zhw4b5SmGqUaNGpspz8eLFpvpyxowZeUqKGrJDhw6VtWvXmlDV8NLOQE2bNs33LJtzlXZSmjdvnun488MPP5jOTBqmGuZKg27dunWyf/9+X69Yfd9Vq1aZ0Nff5+GHHzYdf3LT6z777DPTy1av04DVYD527JgJc30n/V21unfAgAH5ghYIGGXeygrAdBjS//t5N+3Mc8MNN3jeeuutPOc98cQTnurVq3suu+wyT+/evU0nHW8noMzMTM9vfvMbT1xcnCc8PNwTGxvrGTp0qOfMmTP5Ogxd7NwLLVu2zNOuXTtPlSpVTIem9u3bez766CPf8eTkZM91113niYiIMO+vjh496vnVr35l3rVmzZqesWPHevr372/2eWkHIL1XpUqVzHV79uwx+7/55hvP3Xff7alatao51qRJE8+jjz7qycnJcfyfPeCEEP0ffwc4AADlCdW2AABYIjwBALBEeAIAYInwBADAEuEJAIAlwhMAAEuEJwAAlghPAAAsEZ4AAFgiPAEAsER4AgBgifAEAEDs/A+vRPBa7zyKMAAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] }, "metadata": {}, "output_type": "display_data" @@ -248,7 +250,7 @@ ], "metadata": { "kernelspec": { - "display_name": "Python 3", + "display_name": ".venv", "language": "python", "name": "python3" }, @@ -262,7 +264,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.10.14" + "version": "3.12.9" } }, "nbformat": 4, diff --git a/examples/ising_model.ipynb b/examples/ising_model.ipynb index 92a2ab9..40ace24 100644 --- a/examples/ising_model.ipynb +++ b/examples/ising_model.ipynb @@ -2,6 +2,9 @@ "cells": [ { "cell_type": "markdown", + "metadata": { + "collapsed": false + }, "source": [ "### Transverse Field Ising Model (TFIM)\n", "\n", @@ -31,11 +34,8 @@ "H = H_{\\text{field}} + H_{\\text{interaction}}\n", "$$\n", "\n", - "This is implemented as an `AnalogGate` object, which the circuit evolves under for a duration of 1 unit. By measuring the qubits after this evolution, we obtain information about the system’s ground state, which encodes properties of the transverse field and interaction effects in the Ising model." - ], - "metadata": { - "collapsed": false - } + "This is implemented as an `AnalogGate` object, which the circuit evolves under for a duration of 1 unit. By measuring the qubits after this evolution, we obtain information about the system’s ground state, which encodes properties of the transverse field and interaction effects in the Ising model.\n" + ] }, { "cell_type": "code", @@ -48,42 +48,43 @@ }, "outputs": [], "source": [ - "import numpy as np\n", - "import matplotlib.pyplot as plt\n", - "import seaborn as sns\n", "import functools\n", "import itertools\n", "import operator\n", - "\n", "import warnings\n", - "warnings.filterwarnings(\"ignore\")\n", "\n", - "from oqd_core.interface.analog.operator import *\n", - "from oqd_core.interface.analog.operation import *\n", - "from oqd_core.backend.metric import *\n", + "import matplotlib.pyplot as plt\n", + "import numpy as np\n", + "import seaborn as sns\n", + "from oqd_analog_emulator.qutip_backend import QutipBackend\n", + "from oqd_core.backend.metric import Expectation\n", "from oqd_core.backend.task import Task, TaskArgsAnalog\n", + "from oqd_core.interface.analog.operation import AnalogCircuit, AnalogGate\n", + "from oqd_core.interface.analog.operator import PauliI, PauliX, PauliY, PauliZ\n", "\n", - "from oqd_analog_emulator.qutip_backend import QutipBackend" + "warnings.filterwarnings(\"ignore\")" ] }, { "cell_type": "code", "execution_count": 2, "metadata": { - "collapsed": false, "ExecuteTime": { "end_time": "2024-10-23T02:59:55.555512Z", "start_time": "2024-10-23T02:59:55.547247Z" - } + }, + "collapsed": false }, "outputs": [], "source": [ "def sum(args):\n", " return functools.reduce(operator.add, args)\n", "\n", + "\n", "def prod(args):\n", " return functools.reduce(operator.mul, args)\n", "\n", + "\n", "def tensor(args):\n", " return functools.reduce(operator.matmul, args)" ] @@ -92,18 +93,16 @@ "cell_type": "code", "execution_count": 3, "metadata": { - "collapsed": false, "ExecuteTime": { "end_time": "2024-10-23T02:59:55.569726Z", "start_time": "2024-10-23T02:59:55.556435Z" - } + }, + "collapsed": false }, "outputs": [], "source": [ - "X = PauliX()\n", - "Y = PauliY()\n", - "Z = PauliZ()\n", - "I = PauliI()\n", + "X, Y, Z, I = PauliX(), PauliY(), PauliZ(), PauliI() # noqa: E741\n", + "\n", "\n", "n = 6" ] @@ -112,11 +111,11 @@ "cell_type": "code", "execution_count": 4, "metadata": { - "collapsed": false, "ExecuteTime": { "end_time": "2024-10-23T02:59:55.625210Z", "start_time": "2024-10-23T02:59:55.582192Z" - } + }, + "collapsed": false }, "outputs": [], "source": [ @@ -136,11 +135,11 @@ "cell_type": "code", "execution_count": 5, "metadata": { - "collapsed": false, "ExecuteTime": { "end_time": "2024-10-23T02:59:55.640736Z", "start_time": "2024-10-23T02:59:55.635127Z" - } + }, + "collapsed": false }, "outputs": [], "source": [ @@ -161,11 +160,11 @@ "cell_type": "code", "execution_count": 6, "metadata": { - "collapsed": false, "ExecuteTime": { "end_time": "2024-10-23T02:59:56.395290Z", "start_time": "2024-10-23T02:59:55.653715Z" - } + }, + "collapsed": false }, "outputs": [], "source": [ @@ -177,17 +176,19 @@ "cell_type": "code", "execution_count": 7, "metadata": { - "collapsed": false, "ExecuteTime": { "end_time": "2024-10-23T02:59:57.071775Z", "start_time": "2024-10-23T02:59:56.400291Z" - } + }, + "collapsed": false }, "outputs": [ { "data": { - "text/plain": "
", - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAhUAAAEmCAYAAADV4mLgAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAABckElEQVR4nO3deVxU1fvA8c8MuyKuuC9lCiKiohYluKLmHmpWai65pRZaqSiguSuiVm7fNEvFJXO33DVwN9cSccFdlHBBwZVlmJn7+4OYXxMujA4MyPN+veZVc++dc595ZnQezz33HJWiKApCCCGEEC9JbekAhBBCCPFqkKJCCCGEEGYhRYUQQgghzEKKCiGEEEKYhRQVQgghhDALKSqEEEIIYRZSVAghhBDCLKSoEEIIIYRZWFs6gJyi1+vRarWo1WpUKpWlwxFCCCHyDEVR0Ov1WFtbo1Y/vT8i3xQVWq2WqKgoS4chhBBC5FkeHh7Y2to+dX++KSoyKisPDw+srKzM0qZOpyMqKsqsbeZnkk/zk5yal+TT/CSn5pcdOc1o81m9FJCPioqMSx5WVlZm/+JmR5v5meTT/CSn5iX5ND/JqfllR06fN3xABmoKIYQQwiykqBBCCCGEWeSKokKj0dC2bVsOHz781GPOnDlD586dqVWrFp06deLUqVM5GKEQQgghnsfiYypSU1MZOnQoFy5ceOoxSUlJ9O/fn3bt2hESEsKKFSv49NNP2blzJwUKFMjBaIUQQuQViqKg1WrR6XSWDiVHZbzflJSULI+psLKywtra+qWnXLBoUXHx4kWGDh2KoijPPG7Lli3Y2dkREBCASqUiODiYvXv3sm3bNjp27JhD0QohhMgrNBoNN27cICkpydKh5DhFUbC2tiYmJsakIqFAgQKUKVPmmbeMPo9Fi4ojR47g5eXFl19+Se3atZ96XGRkJHXr1jUkR6VSUadOHU6cOCFFhRBCCCN6vZ4rV65gZWVF2bJlsbW1zVeTHiqKQnJyMg4ODll634qioNFoiI+P58qVK1StWvW5t44+jUWLiq5du2bpuPj4eKpUqWK0rXjx4s+8ZPI05uoGi467id/QhShpelBtSt+oUoEKVGoVKjVgpUJtpcLGTo2dgzVOBe0oUawg7pVK0a6eO7UqVTRLLK+KjM8mv3VVZifJqXlJPs0vO3KampqKTqejfPny+fISecbsl3Z2dlkupuzt7Q29GykpKdjZ2Rntz+rnY/ExFVmRnJycqTvG1tYWjUZjclvmmlVzTeQ5VEk6jD+uzJdx9EAqkEoqD3hMLAmc4DrLlxxDUYFirUJlrUJtb4V9QSuKF7WnRqWivFejCkUc7M0Sa14jM5+an+TUvCSf5mfunFpbW5OammrWNvOa5ORkk45PTU0lLS2Ns2fPvvA580RRYWdnl6mA0Gg02Nub/qNrrhnGateujYPjNg6cuoiV2gatXo9Oq5CapiVVoyMtVYdWq0eXpkeXpqBoFRSdAjoFlU5BpZD+SFMgTUFJ1pOcmEZsbAqxUffYuukKio0KtZ0aW0drKpR3oktjT7o18Hrp2HMrmVnP/CSn5iX5NL/syGlKSgoxMTE4ODi80O9EXmfq5Y8MarUaGxsbqlSpkilvGZ/T8+SJoqJUqVLcuXPHaNudO3coWbKkyW2Zc4ax4E4tOfHGCWrXrm1SmxqNhsOXr7Lt+BlOXb1F3K2HPHqgQZusQ9HoUWmVfxUcOjSPdFy6Gc/EYzuY8M0OsFdjV8iGqlWKM6xjE7xdq5rl/eQWMrOe+UlOzUvyaX7mzKmVlRUqlcrwyK9Mff8Zx7/MZ5EniopatWqxYMECFEVBpVKhKAp//vknAwYMsHRoL8TW1pYG1VxoUM3lifsfJWv44fe9/H78PLFxD0h5mIY++Z9iQw8k6dEkpXL6Vhy9DixHsVFhVdCKMhWcGOLnQwevOjn7hoQQQghycVERHx9PoUKFsLe3p2XLlsyYMYNJkybx0Ucf8csvv5CcnEyrVq0sHWa2cHSw5at2zfiqXTOj7ZEx1/jm111ERd/iUWIq+iQ9ap2CKk1Buacl7l4CI6J+Y7jNRqwdralcpRihn7SjRsXyFnonQgghXsTSpUtp0aIFpUqVeum21qxZg6enJ2+88YYZInu2XFtU+Pj4MGXKFDp27IijoyPz589nzJgxrFq1CldXV3744Yd8N6q3VqWKhA3uabRt2d5DLNx2hLjrD9E+0qJOU1CnKegT07h49BYdjv6I4qDGsbgdH75bk8AOr2YhJoQQr4qYmBimT59O586dAdizZw/9+/d/6vGtWrXiu+++e+r+kydPcv78eYKCgswdaia5pqg4d+7cM5/XrFmT9evX52RIecLHDd/m44ZvG56vP/wnszbsJ+7aA/SPdOmDQpP1JMUms+inw/wUdgTbIja8U68CM/t8iKPDi09yIoQQwvzCw8OpX7++YbCkl5cX+/fvNzpGr9cTGBjI6dOnnzsUwNfXlwkTJuSvokKYRwevOoYxFRqNhvFrtrFp71ke3UlFlaJHrVXQ3tGwb9slPHdOwaqwNe+8WYH5n370UrOoCSGEMI/w8HD8/PwMz+3t7Y3uxtDpdAwbNozTp08TFhZGtWrVntneO++8w927dzl//jwuLk8ey2cuUlS8wmxtbZnYtT0Tu7YHYFfUOb5eupWb1x7C4/ReDH1CGge2X8b99ylYF7GmZSMXvu3d2cKRCyGE+SmKQppem2Pns1GbvpZGQkICkZGRzJw584n7dTodw4cP5+DBg1kqKCD9t8Db25uIiAgpKoT5NPFwZV+oKwAXbtzks+/XcPVCIso/l0l0d9PYvO40GzeeoYCzHUM+8qFPUx8LRy2EEC9PURR+PLqG6/dv5Ng5KxYpQ59675tUWOzevZsaNWpQokSJTPsyCooDBw6wePFio4Ji165dhISEoCgKffv2pU2bNkav9fX1ZcWKFdl+12SuWPpc5LyqZUqzY/znnF8xmo3zBlChZnGUglYogDpNISUuhZBvfqdq5/E0DZpF7N0ES4cshBAvJS9MWbFnzx4aNmyYabtOpyMgIMBQULi5uRn2abVaQkJCWLJkCevXr+enn37i3r17Rq9v1KgRJ0+eJCEhe/8ul54KQbVypQmf7A/AzqgzBP+4hYTYJNSpekjWE3sygSafzMK6iA0ftq3F2A/aWjhiIYQwjUqlok+993P95Y9y5coRGxtrtC2joNi/fz+LFi0yKigg/e6OKlWqGG4/bdiwIYcOHTJacDM2NhYnJyecnJxe8N1kjRQVwkhzj+o0n1kdgCnrt7L0179IS9Cg0oMuIY2flxxj2ao/qehShJ+Hf0zposUsHLEQQmSNSqXC1srG0mE8k6+vL4MHD0av16NWqzMVFNWrV8/0mtu3bxvNZ1GqVClu375tdEx4eDgNGzbE2jp7f/bl8od4qsAOrTizOIiDy4bxRl1nlAL/XB5JSe+9aNBzFjX6TGH1oWOWDlUIIV4Jnp6eKIpCZGQker2egIAAwsPDCQ0NxdnZmfj4eKNHVlcPjYiIwNfXN5ujl54KkQXOTo5sHfcZALO37uL7VX+Qdje990JzK5WgiZsIdtpGm2aucueIEEK8BLVaTePGjQkPD0etVrNp0yaAJ05+pVKpOHbsGCVLluTWrVuG7bdu3cLV1dXw/Pr161y5coUGDRpke/xSVAiT+Ldqgn+rJsTeTaDL1CXcuHgftUaBB9r0O0e2nMW1pjPrR/aReS+EEOIF+Pr6MmPGDIYNG5ZpIsgnqVmzJhcuXODWrVs4Ojqyd+9eevXqZdgfERGBl5cXjo6O2Rh1Orn8IV5I+eLF2Bf6BRfXjcH73coojv9/aeTCkVtU/3AK9Yd+I3eNCCGEiby9vYmLiyMmJiZLx1tbWzNixAh69OiBn58fn3zyCUWKFDHsj4iIoGnTptkU7X9iyZGziFfaIv8e4A9zt+1mzs8H0CamoU5TuHPuAU16z8axnANLR3aVhc2EECIL7O3tOXHihEmv8fX1NYyZUBSFpKQkw76wsDBzhvdM0lMhzOazlo05uySYHyZ3wa6MPYoaVDqFx9eS6PD5j9TsH8KBcxcsHaYQQohsIkWFMLsmHq5ELRjJlvkDcKpcEL2VCpUeUuJS6DVsOTX6TGFf9HlLhymEEMLMpKgQ2aZqmdIcmzWc/Yv9KeHqhN5ahUpJv2Ok9/CfqdF3ivRcCCHEK0SKCpHtShctxsEZX3Fs2VDK1Cj6/8XFzVR6DVuOR78pHLuUtQFJQgghci8pKkSOKeLoyJ6QIRxbNpTS1YsYiovUG6l0+XIR9fxnEHf/kaXDFEII8YKkqBA5roijI3tDv+DYsqE4VyuM8s+Yi8fXkvhq5m7qD/uOe4+kuBBCiLxGigphMUUcHTkw/Uv2LfbHqXJBw90iiRceUu/jGbQaMxeNRmPpMIUQQmSRFBXC4koXLcaxWcPZMLcf9mXtUFSg1ipcOh5P9S4h9Jmz1NIhCiGEyAIpKkSuUa1saRZ92oK5E97HqoRt+gydqXr2bbtE1Y8mMHNzhKVDFEII8QwWLSpSU1MJCgqiXr16+Pj4sHDhwqceu3//ftq3b4+npye9evXi8uXLORipyEm+Hm6cXRzEsCFNwMkaBVA90jHn+7249Zosc1wIIUQuZdGiIjQ0lFOnThEWFsaYMWOYM2cO27Zty3TchQsX+PTTT/H19WXt2rVUr16dnj178vjxYwtELXLKp80bcf7nUbTuWB29vRoVoLujoXfAz9TznyaDOYUQr6ylS5carTz6MtasWcOlS5fM0tbzWKyoSEpKYvXq1QQHB+Pu7k7z5s3p27cvy5cvz3TsihUr8PT0ZMiQIVSuXJnhw4dTqFAhNm7caIHIRU6b2fsDzvw8ktfrlEi/DVUPD648pl73GXw4/SdLhyeEEGYVExPD9OnTKVy4MAB79uzB1dX1qY8vvvjime2dPHmSlStX5kDkFiwqoqOj0Wq1eHp6GrbVrVuXyMhI9Hq90bHXr1+nZs2ahucqlQoXFxeTF1wReZetrS3bx3/O/kX+FKxYIH0wZ5rCX7uvU/WjCczeusvSIQohhFmEh4dTv3597O3tAfDy8mL//v1Gj7179+Lt7U2RIkUYMGDAM9vz9fUlIiJnxqRZbJXS+Ph4ihYtiq2trWFbiRIlSE1N5d69exQrVsxo+3+7gW7evGmo4kyh0+lePOintGXONvOzrOTT2akwx2YPZf3REwTP2Yr+nhbVIx2z5u5h/tpDrBvXgzdKl86pkHM9+Y6al+TT/LIjpzqdDkVRDI+8Jjw8HD8/P0PsdnZ22NnZGfbrdDqGDx/O6dOnWbx4Ma6urkbvM+P/M/779ttvc/fuXc6dO4eLi8tTz5uRL51Ol+nzyOrnY7GiIjk52aigAAzP/zs3QatWrRg0aBBt27alQYMGbNy4kaioKLy8vEw+b1RU1IsHnYNt5mdZyefrNvDzl62Ys+cv9h2IQ52qR3MzlTaDfqRC9cJMe79BDkSad8h31Lwkn+Zn7pxaW1uTnJycqec7t0tMTOTEiRNMmTLFaPnyDDqdjlGjRnH48GHmzZtHxYoVn3gcpP/OZvDy8mL79u2UL1/+qedOTU0lLS2N6OjoF47fYkWFnZ1dpuIh43lGl0+Ghg0b8tlnn+Hv749Op8PLy4v33nuPRy8wUM/DwwMrK6sXD/xfdDodUVFRZm0zP3uRfP5YuzaagRpajJnPzeh7qHQKsVH3+OjSZvp1fZuh7XyzOercTb6j5iX5NL/syGlKSgoxMTE4ODgY/Z4oikKqTmuWc2SFnZU1KpXKpNds27aNGjVqUKFChUz7MnooDh06xOLFi3FzczPs+/zzzzly5Ahvv/02M2fOJDk5GQcHB8P5W7RowS+//IK/v/9Tz61Wq7GxsaFKlSqZfoczPqfnsVhRUapUKRITE9FqtVhbp4cRHx+Pvb09Tk5OmY4fOHAgffr04eHDhxQvXpwhQ4ZQrlw5k89rZWVl9r8MsqPN/MzUfDo4OLAv9AuOXLhMz0m/oL2jQZWkZ8GPB1my6TibpvTjNecS2Rhx7iffUfOSfJqfOXNqZWWFSqUyPCC9oBj/+xrO37lhlnNkhYtzGcY062xSYbF3714aNWqU6TU6nY4RI0Zw8OBBwsLCjAoKgB49etCpUyc2bNhgeO2/33/jxo0JCgoiMTHRaHjBv2Uc/zKfhcUGarq5uWFtbW002PL48eN4eHigVhuHtWnTJiZNmoStrS3FixcnJSWFw4cPv9DlD/HqeqtqZc4uDuKj7nUNt6BqbqbSrN9cOk5ZYOnwhBCWZlqngUWUK1eO2NhYo206nY6AgAD279/PokWLMhUUkH55o2DBgk9tNzY2Ficnpyf+o92cLNZT4eDggJ+fH2PHjmXy5Mncvn2bhQsXMmXKFCC916JQoULY29vz2muvERgYyJtvvomLiwvTpk2jTJkyNGzY0FLhi1xswoftGN3hXXxH/Y+b0fdQaxVOHfgbly4TmDSkFZ3frmfpEIUQOUylUjGmWedcf/nD19eXwYMHo9frUavVmQqK6tWrv1As4eHhNGzY0HBlILtYdPKrwMBA3N3d6dmzJ+PGjcPf358WLVoA4OPjw5YtWwCoUaMGY8eOJSQkhI4dOwIwf/78TD0aQmSwtbVlX+gX/DCpC+qiNigAD3UETdqE15DpPEqWhcqEyG9UKhX21jY59jC1oADw9PREURTD9AoBAQGEh4cTGhqKs7Mz8fHxRo+s3pURERGBr2/2jzGzWE8FpPdWTJ06lalTp2bad+7cOaPnnTp1olOnTjkVmnhFNPFwJXppMP2/X07Ejouo0xQSLz2i9schfNSpNhO7trd0iEIIYaBWq2ncuDHh4eGo1Wo2bdoEQP/+/TMdq1KpOHbsGI6Ojs9s8/r161y5coUGDbL/rjiLFhVC5JQfBnYjvtsjmgXMJenvZNSpelb+/Ccbwk+zKUQGcgohcg9fX19mzJjBsGHDMv0D+0VERETg5eX13OLDHOT6gcg3nJ0ciZw3gsGDGqE4/DOQ81b6QM4eM8MsHZ4QQgDg7e1NXFwcMTExWX5Nr169GDJkCHv27KFRo0ZERkYa9kVERNC0adPsCDUT6akQ+Y5/qyZ86utNs9Hfc+NsImqtwh87r+B6dBJLx3ThraqVLR2iECIfs7e3N3kZisWLFxv+X1EUowmxwsJy7h9N0lMh8iVbW1v2Th3Cd2M6gpM1KkC5l0a3YUtpN3GepcMTQog8SYoKka+1qVuT8z+Povo7ZdBbqVDpFM4duolL14lsO3HK0uEJIUSeIkWFEMCG4E/55ZteqIv9c/vpAy3+X6+h2ajZlg5NCCHyDCkqhPhHvTcqEb0kmHeav47eWoVKD9dO3MXlown8djzy+Q0IIUQ+J0WFEP+xZEhPtn7/KVYlbNN7LR7pGDpuPb5B0mshhBDPIkWFEE9QtUxpzi4OokmbqoZei+sn71L1owlsPn7S0uEJIUSuJEWFEM/ww8Bu/L7gM6yd03stVI90fDFuHc1Hz7F0aEIIketIUSHEc7zmXIIzi4x7LWL+uoNLlwnsjDpj6fCEECLXkKJCiCz6YWA347EWD3UMCl5Fm/HfWzo0IYTIFV64qHj06BFnzpxBo9Hw6NEjc8YkRK6VMdbC593Khl6LC0du4dptIkcuXLZ0eEIIYVEmFxWpqamMGjWKt956i/fff59bt24xcuRI+vTpw/3797MjRiFynUX+Pdgwqw/qYjYAKPe1dB22lC4zFlo4MiGEsByTi4pp06Zx8eJF1q9fj52dHQD+/v4kJiYyceJEswcoRG5Vo2J5opcEU7NBeRQrFWqdwrFd13DrOYkLN25aOjwhRB62dOlSbt26ZZa21qxZw6VLl8zS1vOYXFTs2LGD4OBgXF1dDdtcXV2ZMGECe/fuNWtwQuQFa0b0ZXFoVyicvoaI7m4arQbNZ8jCVZYOTQiRB8XExDB9+nQKFy4MwJ49e3B1dX3q44svvnhmeydPnmTlypU5EPkLFBWPHz/GwcEh03a9Xo9OpzNLUELkNd6uVTm/fBSv1ymBogZ1msKWdWfw6DeFezLmSAhhgvDwcOrXr4+9vT0AXl5e7N+/3+ixd+9evL29KVKkCAMGDHhme76+vkRERORE6KYXFU2bNuXbb781Gpx5/fp1Jk6cSKNGjcwanBB5zfbxnxMa3B6loBUqIPVGKvV6fsP033ZYOjQhRB4RHh5O06ZNDc/t7e1xdnY2PIoVK0ZISAinT58mLCyMatWqPbO9d955h7t373L+/PnsDt30ouLrr79GrVbz1ltvkZycTKdOnWjRogVOTk6MHj06O2IUIk/p4FWH00tHUNylEIoK1Kl65i84iNcX09FoNJYOT4h8S1EUktPScuyhKIrJMSYkJBAZGUmTJk2euF+n0zF8+HAOHjyYpYICwNbWFm9v7xzprbA29QWFChVi9uzZXL9+nUuXLqHVann99dd54403siM+IfIkW1tb/vhmKDM3RzB74X7UqXoSLz7CvftUQr9qQwevOpYOUYh8RVEU/Fev5PSNGzl2zhplyjKr8weoVKosv2b37t3UqFGDEiVKZNqXUVAcOHCAxYsXGwqKGzduEBAQwN27d7GysmLQoEE0bNjQ6LW+vr6sWLHiuZdKXpbJPRVxcXHExcVhZWWFi4sL1atXx8HBwbDdFKmpqQQFBVGvXj18fHxYuPDpt+Pt3LmTVq1a4enpSZcuXTh9+rSpoQuR44a0acqxsK+wL2ufPs33Yx0Bk36TCbOEsAAVWf9xt5Q9e/ZkKgggvaAICAgwFBRubm6GfVZWVgQFBbFlyxYWLlzI5MmTSU5ONnp9o0aNOHnyJAkJCdkav8k9FU2bNn1m1XX27NkstxUaGsqpU6cICwsjLi6OESNGULZsWVq2bGl03IULFxg6dCjjx4+nTp06LF68mE8//ZSdO3c+cdCoELlJEUdHTv4wkiELV7H5t7OotUr6hFkfT2Lt5J7UqFje0iEK8cpTqVTM6vwBKVptjp3T3trapF4KgHLlyhEbG2u0LaOg2L9/P4sWLTIqKABKlixJyZIlAXB2dqZo0aLcv3+f4sWLG46JjY3FyckJJyenF3w3WWNyUREeHm70XKfTce3aNWbPns2gQYOy3E5SUhKrV69mwYIFuLu74+7uzoULF1i+fHmmouLAgQNUqVIFPz8/AL766iuWL1/OxYsX8fDwMPUtCGERM3t/wMB3b+IX+BP6hDSUe2n4Df6Jd1u7Mrf/R5YOT4hXnkqlwsHGxtJhPJOvry+DBw9Gr9ejVqszFRTVq1d/5utPnTqFXq+ndOnSRtvDw8Np2LAh1tYm/+ybxOTLH+XKlTN6VKxYER8fH4KDg5k8eXKW24mOjkar1eLp6WnYVrduXSIjI9Hr9UbHFilShIsXL3L8+HH0ej3r1q3D0dGRihUrmhq+EBZVrVxpopcE4/ZOmfRbT7UKO36Lpmb/ELn1VAiBp6cniqIYfgsDAgIIDw8nNDQUZ2dn4uPjjR7/nsrh3r17jBgxgnHjxmVqNyIiAl9f32yP32wli0qlMmn2r/j4eIoWLYqtra1hW4kSJUhNTeXevXsUK1bMsL1169ZERETQtWtXrKysUKvVzJ8/3zAxiCnMOZdGRlsyP4d55Kd8rhvZl81/RjF0+kZUj3WkxKVQr9c3DO3XkP7NGpjtPPkppzlB8ml+2ZFTnU6HoiiGR16iUqlo3Lgx4eHhqFQqNm3aBED//v2feOzRo0dxdHREo9Hw2Wef0a9fPzw9PUlOTja899jYWK5cuYKPj88z85GRL51Ol+nzyOrnY3JRMWfOnEzbHj9+zLZt2/D29s5yO8nJyUYFBWB4/t/b7hITE4mPj+frr7+mVq1arFixgsDAQNavX290zSgroqKiTDreUm3mZ/kln+XUsOSLZvj/vJf7V5NRp+j5Zs5ulu04zqyujc16rvyS05wi+TQ/c+fU2tqa5OTkTD3feYGPjw+zZs1i4MCB/Pnnn889/vHjxwQFBVGnTh2aN29uGKSZ8d9t27ZRt25d1Go1SUlJT20nNTWVtLQ0oqOjXzh2k4uKw4cPGz1XqVTY2Njw3nvv8cknn2S5HTs7u0zFQ8bzjFnEMkyfPh0XFxe6desGwIQJE2jVqhVr1659YvX2LB4eHlhZWZn0mqfR6XRERUWZtc38LL/m8/BbbzFl/TYW/3wMtUYh/txDuszYypIxXXizymsv1XZ+zWl2kXyaX3bkNCUlhZiYGBwcHDL9nuQFTZo0ISgoiPj4eCpVqvTc448fP86OHTtwdXU1LJcxbtw4atasiUqlYv/+/TRv3pwCBQo8sx21Wo2NjQ1VqlTJlLeMz+l5TC4qli5daupLnqhUqVIkJiai1WoNA0fi4+Oxt7fPNDr19OnTdO/e3fBcrVZTrVo1k29hhfRbb8z9l0F2tJmf5cd8jnq/DX1936HpV/NIi9egeqCle8AyGjavzE+fd39+A8+RH3OanSSf5mfOnFpZWaFSqQyPvMbBwYETJ05k+fh69eoZ9S4oikJSUpLh/YeFhWWpnYzjX+azyFJRsWHDhiw3mHGHxvO4ublhbW3NiRMnqFevHpBebXl4eKBWG48fLVmyZKYV1q5cuSJ3fohXSumixTizKIgu3yzk2J7rqHQKe7ddosaJKez/zp8ijo6WDlEIIZ4pS0XFrFmzstSYSqXKclHh4OCAn58fY8eOZfLkydy+fZuFCxcyZcoUIL3XolChQtjb2/PBBx8wcuRIatSogaenJ6tXryYuLo4OHTpk6VxC5CUrvurNrubn+HTSKlSPdGhupq8f8mW/hnzWsrGlwxNCiKfKUlGRXfOFBwYGMnbsWHr27ImjoyP+/v60aNECSB+oMmXKFDp27Ejr1q15/Pgx8+fP5+bNm7i5uREWFmbyIE0h8oomHq6cWjKCxkFziD/3AHWqnu/m7mbV7kj2hAyxdHhCCPFEL3RLaUJCAleuXDGMqlUUBY1Gw5kzZ0waOOng4MDUqVOZOnVqpn3nzp0zet65c2c6d+78IuEKkSfZ2tpycPpXTP9tB/MW/4Fao3DjVCIuXSeybFxX3qpa2dIhCiGEEZOLilWrVjF+/Hi0Wi0qlcpwz6tKpaJmzZom340hhHi2Ye1b8HGDekaDOLsOX0rTd6vww8Bulg5PCCEMTJ5Rc968eQwYMICTJ09SvHhxdu3axaZNm3Bzc6N58+bZEaMQ+V7GIM56TSuiWKlQaxV2bb6ARz+ZiVMIkXuYXFTcvn0bPz8/bG1tcXd358SJE1SpUoWgoCBWr16dHTEKIf6x4qve/G9iZxRHK1RA6o30mTh/ithv6dCEEML0oqJYsWKGpVMrV65sWJW0VKlSJk3TLYR4Mc09qnN6yQiKVS2EogJ1ip6Qb3+n2ajZlg5NCJHPmVxUtGrVihEjRvDnn3/SoEED1q1bx/bt25k7d26WZv4SQrw8W1tbDn07lJ4930Jvq0KlwLUTd3HtNpFT12Kf34AQQmQDk4uKYcOG0aZNGxITE6lfvz6dOnVizJgxnDhxgrFjx2ZDiEKIpxn1fmt2L/DHqkT6ujnKfS1+g3/iy4VyKVIIkfNMLioSEhL4/PPPDUuofvnllxw6dIht27YZLWMuhMgZ5YsX4+ziINy9yxqWU9+07jSeA0Mzra8jhMgbli5darYhBWvWrMk0K3V2MbmoaNy4Md26dWP58uXcvXs3O2ISQryA9YH9CQ1uj1IgfRDn4+tJ1Owxjb2XYiwdmhDCBDExMUyfPp3ChQsDsGfPHlxdXZ/6+OKLL57Z3smTJ1m5cmUORP4CRcXWrVtp1KgRa9eupVGjRvTq1YvVq1dz//797IhPCGGCDl51OL1sBI6VCqAAqmQ9/1t2Er/JCywdmhAii8LDw6lfv75hpVAvLy/2799v9Ni7dy/e3t4UKVKEAQMGPLM9X1/fbJsZ+79MLipee+01+vfvz7p169i2bRuNGjViw4YNNGrUiE8//TQ7YhRCmMDW1pY/5wbQ4cOa6G1UqPRw7vBN3HpM4mr8HUuHJ4R4jvDwcJo2bWp4bm9vj7Ozs+FRrFgxQkJCOH36NGFhYVSrVu2Z7b3zzjvcvXuX8+fPZ3fophcV/2ZnZ4ednR0FCxZEpVKRnJxsrriEEC8ptHtHfp3VF1WR9IlzdQlpNOs/l9ErN1o4MiEsQ1EUkjRpOfbImHHaFAkJCURGRtKkSZMn7tfpdAwfPpyDBw9mqaCA9H9oeHt750hvhcnTdP/999/s3LmT7du3c/LkSTw8PGjVqhUTJ06kZMmS2RGjEOIFVStbmp+/bEXQr39w+cQd1GkKvyw7zo6D59g3bTC2traWDlGIHKEoCt1++IW/rsXl2DnrVCrLsn4foVKpsvya3bt3U6NGDUqUKJFpX0ZBceDAARYvXmwoKB48eECvXr3Q6XTodDq6d+9O27ZtjV7r6+vLihUrnnup5GWZXFT4+vri5uZGq1atmD59OuXKlcuOuIQQZrRlzECW7jvMxDm/o07Rk3jpEe7dpzI7sAMta9ewdHhC5AgTftstZs+ePTRs2DDTdp1OR0BAgKGgcHNzM+wrWLAgy5cvx8HBgaSkJNq2bYuPjw8FChQwHNOoUSMCAwNJSEigWLFi2Ra/yUXFli1bqFxZVkcUIq/p1bg+73vVw/uLb0j6OwXVYx3+Y9ZSp8FhVg7rY+nwhMhWKpWKZf0+IjlNm2PndLCxNqmXAqBcuXLExhpPYJdRUOzfv59FixYZFRQAVlZWODg4AKDRaFAUJdOll9jYWJycnHBycnqBd5J1Jo+pkIJCiLzL0cGWyPkj8W3jgt5ahUqn8Ofu61T/ZDI3ExMsHZ4Q2UqlUlHA1ibHHqYWFJB+NWDPnj3o9Xogc0FRvXr1J77uwYMHtG/fnkaNGtGnTx+KFi1qtD88PJyGDRtibW1yX4JJXmqgphAib5o3sCu/zOgFTtaoAG28Bp8+s5n+2w5LhyZEvubp6YmiKERGRqLX6wkICCA8PJzQ0FCcnZ2Jj483euh0OgCcnJz47bffCA8PZ9OmTZnmkYqIiDBMWpmdsrdkEULkWvXeqMT5n0fRaORM4k4notYozF9wkPV7T3Ng+peWDk+IfEmtVtO4cWPCw8NRq9Vs2rQJgP79+2c6VqVScezYMRwdHQ3bSpQoQbVq1fjrr7+oUKECANevX+fKlSs0aNAg++PP9jMIIXK1PSFDGDyoEXo7NSoF4qPv49JlAvuis/+ediFEZhmTVdWqVYtz58499REdHY2joyN37tzh0aNHADx8+JBjx44ZLfAZERGBl5eXUfGRXUzuqUhLS2PDhg1ERUWh1WozDQaZMmWK2YITQuQM/1ZN6N7gTXy+mE3qzVRUD3V8MmIFbzepxLIvelk6PCHyFW9vb4YOHUpMTEyWVv+Oi4tj9OjRhgGa3bp1o2rVqob9ERERtGjRIjtDNjC5qAgODmbHjh00aNAgR6oeIUTOKOLoyKkfA/lk9hL2/X4FtU7h8O9XcT85md3fDcbZSf68C5ET7O3tOXHiRJaPr1mzJr/++qvhuaIoJCUlGZ6HhYWZM7xnMrmo2LlzJ3PnzsXb2/ulT56amsq4cePYsWMH9vb29O7dm969e2c6rnv37hw5ciTT9o4dO0rPiBBmtsi/BwdaXOCTsStRPdSSdlvDO598w6Be9fmqXTNLhyeEyMVMLioKFSpEqVKlzHLy0NBQTp06RVhYGHFxcYwYMYKyZcvSsmVLo+Nmz55NWlqa4XlkZCRffPEFXbt2NUscQghj3q5VOb9iFA0DvuPG2XuoU/V8/8N+1u6JYtfkz2QmTiHEE5k8UHPgwIFMmjSJS5cuodW++CQiSUlJrF69muDgYNzd3WnevDl9+/Zl+fLlmY4tUqSI0UIq3377LX379sXDw+OFzy+EeL69oV/w+YCGRoM4a/SYyq6oc5YOTQiRC5ncU7FgwQJu376daV7xDGfPns1SO9HR0Wi1Wjw9PQ3b6taty7x589Dr9ajVT6531q1bx/379+nXr5+poQshXsCQNk3p2uAtmnz1zyDORzr6j/qFeo0qsOKrzJcrhRD5l8lFRUhIiFlOHB8fT9GiRY26UUuUKEFqair37t174tzkiqLw448/0qNHDwoWLPhC582YKMQcMtoyZ5v5meTT/MyV02IFHYicH0C/739m387LqHQKxyKuUT1qMjun9aN00exbSyA3ke+o+WVHTnU6neFOiBdZKTSvy3jPpr73jHxlLEz2b1n9fEwuKt566y0Arl69yqVLl9Dr9bz++utUqVLFpHaSk5MzXZfNeK7RaJ74msOHD3Pz5k0++OADU8M2iIqKeuHX5mSb+Znk0/zMldPP3qlO0yolGb/kCKoHOrTxGhr1/x+tW7xGzzfzz8Jk8h01P3Pn1NramuTkZMN01/lRcnKyScenpqaSlpZGdHT0C5/T5KLiwYMHBAYGEh4eTuHChdHpdDx+/Jg333yTuXPnUqhQoSy1Y2dnl6l4yHhub2//xNds376dhg0bUqRIEVPDNvDw8MDKyuqFX/9vOp2OqKgos7aZn0k+zS87clob6NK8Gc2C5xJ7OgG1RmHr5iscPHObfVM/f6UHccp31PyyI6cpKSnExMTg4ODw1N+TV5miKCQnJ+Pg4GDS+iNqtRobGxuqVKmSKW8Zn9PzmFxUTJw4kZs3bxqtVnrx4kVGjhzJlClTmDx5cpbaKVWqFImJiWi1WsMCJ/Hx8djb2z91FbV9+/bx+eefmxqyESsrK7P/ZZAdbeZnkk/zy46c7goZzA+/7yN03i7UKXoeXH5MzZ7TmfxVKzq/Xc+s58pt5DtqfubMqZWVFSqVyvDIr0x9/xnHv8xnYfLdHxEREYwdO9ZotdIqVarw9ddfEx4enuV23NzcsLa2Nprg4/jx43h4eDxxkGZCQgLXr1+nbt26poYshMgm/Zs14MTSkTiUd0ABVEk6giZvovXY/1k6NCGEBZhcVNjZ2T3xR1+lUpk00MbBwQE/Pz/Gjh3LyZMn+f3331m4cCE9evQA0nstUlJSDMdfuHABOzs7ypcvb2rIQohs5OhgS+S8EbTt6J6+nLoeLh67jevHEzl1LdbS4QkhcpDJRUXTpk0ZN24c165dM2y7evUqEydOpFGjRia1FRgYiLu7Oz179mTcuHH4+/sb5if38fFhy5YthmPv3r2Lk5NTvu7KEiI3+7Z3Z7Z+/ynqYjYAKPe0+A3+iQHf/2zhyITIe5YuXcqtW7fM0taaNWu4dOmSWdp6HpOLiuHDh2NnZ8e7776Ll5cXXl5etGrVisKFCzN69GiT2nJwcGDq1Kn89ddf7Nu3j169ehn2nTt3jo4dOxqet27dmv3795sarhAiB1UtU5roJcG4e5dFUYNaqxC++Tw1+k4h/sEjS4cnRJ4QExPD9OnTKVy4MAB79uzB1dX1qY8vvvjime2dPHmSlStX5kDkLzBQ08nJiaVLlxIdHc3ly5exs7Pj9ddfNxpjIYTI39YH9mfbiVP4h6xH9UiH5mYq7/SaQa+ubzLq/daWDk+IXC08PJz69esb7sDw8vLK9I9qvV5PYGAgp0+fZsCAAc9sz9fXlwkTJhAUFJRtMWfIUk9FXFycYRKNuLg44uLicHJyonbt2ri5uWFvb2/YLoQQAC1r1+D0khGUql4ERQVqjUJY2BHqDZ721LlohBDpRUXTpk0Nz+3t7Q1LVWQsVxESEsLp06cJCwujWrVqz2zvnXfe4e7du5w/fz67Q89aT0XTpk05cOAAxYsXp2nTpk8c16AoCiqVKsvTdAshXn22trbsC/2C+Tv3MG3+HsOtp+7dQhjj34KPG75t6RCFyFUSEhKIjIxk5syZT9yv0+kYPnw4Bw8ezFJBAel/Dr29vYmIiMDFxcXcIRvJUlERHh5O0aJFDf8vhBCm+LR5I7r5vIPPV9/y+HoyqmQ946Zt48etR9g9ZbClwxP5hKIoJGvSnn+gmTjY2ph8c8Hu3bupUaMGJUqUyLQvo6A4cOAAixcvzlRQJCcn07p1a9599138/f2N9vn6+rJixYrnXip5WVkqKsqVK2f4/8DAQObMmZNpgqqEhAT69u3LunXrzBuhEOKV4Ohgy4nvRxC8fAMr10SiTlOIi0rApcsE5gZ1orlHdUuHKF5hiqLQcepyjl36O8fO+WaVcqwN6GZSYbFnzx4aNmyYabtOpyMgIMBQULi5uWU6Zt68edSqVeuJ7TZq1IjAwEASEhKeuLaWuWSpqNi7dy8nT54E4OjRo8ybN48CBQoYHRMTE8Pff+fchyWEyJsmdfNjYMuGtBg2j7R4DaqHOgYFr6LaW6XZOCp7/xUl8re8MCNBuXLliI01nt8lo6DYv38/ixYtemJBcfXqVS5fvkyTJk2eOHYiNjYWJyenp85YbS5ZKipef/11fvzxR8MKZn/++Sc2NjaG/SqVigIFCjBp0qRsC1QI8eooX7wYZxYF0WfOUvb8fhm1VuHcoZu4fjyR5eO6U++NSpYOUbxiVCoVawO65frLH76+vgwePBi9Xo9arc5UUFSv/uQevalTpxIQEMBff/31xP3h4eE0bNjQsCxGdslS6xUqVGDJkiVA+uWP4OBgHB0dszUwIcSr76fPu3OqfSzvB4ehT0xDuaely1eLqdeoAiu+6m3p8MQrRqVSUcAudy945+npiaIoREZGUqtWLQICAggPD2fmzJk4OzsTHx9vdHyxYsXYtWsXr732Gq+//vpTi4qIiAgGDRqU7fGbXLJMmTIFrVbLrVu3DNNyK4qCRqPh7NmztG4t96ALIbKuRsXyRC8NpuOUBUQdikOlUzgWcQ23E5NYP6UP1cqVtnSIQuQYtVpN48aNCQ8PR61Ws2nTJgD69++f6ViVSsWxY8eIjIxky5YtbN++ncePH6PVarGzszNMinX9+nWuXLlCgwYNsj1+k4uK8PBwRo0axb179zLtc3Z2lqJCCPFC1gX2Y1/0efqMX4XqgRZdQhptP5tP4xZv8OOgjy0dnhA5xtfXlxkzZjBs2DDOnTv33OOHDh3K0KFDAVi3bh3nz583KkIiIiLw8vLKkSsMJk/TPX36dJo3b87mzZtxcnLil19+Yd68eZQrV+65U4UKIcSzNKjmwvmfR1GlXknDNN97tlykeq/JXI2/Y+nwhMgR3t7exMXFERMTY5b2IiIijCbTyk4m91Rcv36d+fPnU7FiRWrUqEF8fDzNmjVDrVYTGhpqtF6HEEK8iC1jB7HtxCkGT12P6qEO7R0NzfrNpdm7VZk3sKulwxMiW9nb23PixIkXem3Hjh1RFIWkpCTDtrCwMDNF9nwm91Q4OTmRnJwMpN8VEh0dDUDlypUz3QYjhBAvqmXtGpxfMZqKtYobLU5W/RPptRAitzK5qGjUqBHjxo3j4sWLeHl58euvv3L69GlWrlyJs7NzdsQohMjHfp/kz4wxHVAcrVAB2ngNzfrPlSXVhciFTC4qgoODqVSpEqdOnaJZs2bUqlWL999/n+XLlzNy5MjsiFEIkc+1r1uLC7+MppxHsfRei7R/ei16TebCjZuWDk8I8Q+Ti4oHDx4wadIk/Pz8UKlUTJ8+naNHj3Lo0CFKlSqVHTEKIQQAu6YMJjS4/f/3WtzR0GrgfPrMWWrp0IQQvEBR4evrm+l2UkdHR27cuEHXrjKASgiRvTp41eHCL6OpUPP/x1rs3XYJt56TOHVNxnUJYUlZuvtj9erVzJs3D0if6KpTp06o1cb1yIMHD3jjjTfMH6EQQjxB+GR/Nh8/yZfTf0X1UIfubhp+g3/izQYVWDFUZuMUwhKyVFT4+flhY2ODXq8nKCiITz75hEKFChn2q1QqHBwcePvtt7MtUCGE+K82dWvSZkVNWo2Zy8W/4lFrFY7vuobrX5NYOqYLb1WtbOkQhchXslRU2NjY4OfnB0D58uWpU6cO9+/fp3jx4gD89ddfuLu7Y2ubu+dUF0K8mraO+yx9Ns4Jq+C+FuVeGt2GLaVqnZJsGTPQ0uEJkW+YPKaiUKFC+Pr68tNPPxm2DRs2jJYtW3LhwgWT2kpNTSUoKIh69erh4+PDwoULn3rsuXPn6NKlCzVr1qRdu3YcOnTI1NCFEK+wBtVcOL98FB4+5VCsVKh0CheP3sKlywTWH/7T0uEJkS+YXFSMHz+e5s2b8+WXXxq27dy5k6ZNmzJ+/HiT2goNDeXUqVOEhYUxZswY5syZw7Zt2zId9/DhQ3r37k2VKlXYuHEjzZs35/PPP+fu3bumhi+EeMWtHdmP9bP7YFXcBgXgoY6ASb/hPexbNBqNpcMT4pVmclFx9uxZevbsiY2Nzf83olbTo0cPTp06leV2kpKSWL16NcHBwbi7u9O8eXP69u3L8uXLMx27fv16ChQowNixY6lUqRKDBw82zJUhhBD/VaNiec6GBdOkTVX0NipUeoiPvo97txC+2fi7pcMT4pVlclFRpkwZ/vjjj0zb//zzT0qUKJHldqKjo9FqtXh6ehq21a1bl8jISPR6vdGxR44cwdfXFysrK8O2tWvX0qhRI1PDF0LkIz8M7Mb+hf7YlbFDAVTJer6fv59an04l/sEjS4cnxFMtXbqUW7dumaWtNWvWcOnSJbO09TwmLyg2YMAAgoOD+euvv6hRowaQXiD89ttvjBkzJsvtxMfHU7RoUaPBnSVKlCA1NZV79+5RrFgxw/br169Ts2ZNRo8eTUREBOXKlWPEiBHUrVvX1PDR6XQmv+Z5bZmzzfxM8ml+klNwdirMiXkBTFy7laWr/kSdoif572Te6TmDZi1dmNv3gyy3Jfk0v+zIqU6nQ1EUwyOviYmJYfr06bz//vsoisKePXv49NNPn3p8q1at+Pbbbw3PM95zxn8jIyM5f/48gYGBzzxvRr50Ol2mzyOrn49KeYGM79u3j1WrVnHlyhWsra2pVKkS3bt3p169elluY8OGDcycOZNdu3YZtl2/fp1mzZqxZ88eSpcubdjevHlzEhMT6dGjB82aNWPz5s0sX76crVu3UqZMmSydT6fTvfCqb0KIV4NGo8H/533cv5qESgEFsCpmw6iu9XBzznpPq8j9rK2tqVChAnZ2dpYOxWRLly7lzz//NBQKKSkpPHpk3LOm1+sZO3Ys0dHRzJs3DxcXl6e2t3//fkJDQ/ntt9+eed7U1FSuX7+OVqt96jG1a9c2umrwXyb3VAA0aNCABg0avMhLDezs7DINmsp4bm9vb7TdysoKNzc3Bg8eDED16tU5cOAAv/76KwMGDDDpvB4eHs9MiCl0Oh1RUVFmbTM/k3yan+Q0s8NvvcWqQ8cYM2cHqoc69AlpjPv+EK/XKs7W59x+Kvk0v+zIaUpKCjExMTg4OGT6PckL9u3bh5+fHwUKFACgQIECRr33Op2O4cOHEx0dzeLFi6lWrZrR6xVFITk5GQcHB1QqFY0bN2bkyJHExsY+s/hQq9XY2NhQpUqVTHnL+Jye54WKit9++43Fixdz7do11q9fz9KlSylRogT9+/fPchulSpUiMTERrVaLtXV6GPHx8djb2+Pk5GR0rLOzM5UrG09i89prr3Hjxg2TY7eysjL7XwbZ0WZ+Jvk0P8mpsS7eXnTx9qLdxHmcPXoLtU7h6p93qNZ1Ml980oDPWjZ+5usln+ZnzpxaWVmhUqkMjwyKopCcmmaWc2SFg52N0fmzIiEhgcjISGbOnPnE1+p0OgICAjh48CBhYWGZCop/y3j/dnZ2eHt7s2vXLlxdXZ97/Mt8FiYXFT///DP/+9//GDBgANOmTQPA3d2dyZMno9Fo+Pzzz7PUjpubG9bW1pw4ccJw2eT48eN4eHhkmgK8du3aHD161Gjb5cuXadu2ranhCyGEwcZRAzh1LZbOXy9Be0eD6rGO7+bu5ocNh9k+pR+lixZ7fiMiT1AUhS4BC/nz7PUcO2ed6hVYMbW3SYXF7t27qVGjxhNvfMjooThw4ECmHoqmTZtSsGBB1Go1Tk5OhqU1Mvj6+rJixQqTe/dNZfLdH0uXLmXixIl8/PHHhh//9957j9DQUFavXp3ldhwcHPDz82Ps2LGcPHmS33//nYULF9KjRw8gvdciJSUFgI8++ohz584xe/ZsYmJimDlzJtevX+e9994zNXwhhDBSo2J5zi4OosOHNdHbqVEpkBybjE/v2fSYGWbp8IQ5mdZpYBF79uyhYcOGmbZn9FBkFBRubm6Zjvnll1/49ddfWbJkSaZ9jRo14uTJkyQkJGRL3BlM7qmIi4t74sJhFSpUyLR66fMEBgYyduxYevbsiaOjI/7+/rRo0QIAHx8fpkyZQseOHSlXrhw//vgjkyZN4ocffuCNN97ghx9+kKXWhRBmE9q9I1+/3xbfwFkkXHqEOk3h0M4ruByZyPSv2tG+bi1LhyhegkqlYsXU3rn+8ke5cuWIjTVebTejoNi/fz+LFi16YkHxPLGxsTg5OWUaXmBuJhcVtWrVYsOGDfj7+xu2KYrCwoULqVmzpkltOTg4MHXqVKZOnZpp37lz54ye161bl3Xr1pkarhBCZJmjgy2HvxvGb8cjGTZjIzzQwn0tQ8euZ1Llneyc/JmlQxQvQaVSUcA+d69R5evry+DBg9Hr9ajV6kwFRfXq1Z/62u7du6NSqejZsye+vr5G+8LDw2nYsKFhDGN2Mbn1UaNG0b9/f3bv3o1Go2HcuHFcvXqVlJQUFixYkB0xCiFEjmpftxbtf67Fx98t5tCeGNRpComXHlGneyhv1y9DWO3alg5RvKI8PT1RFIXIyEhq1apFQEAA4eHhzJw5E2dnZ+Lj442OL1asGFZWVqxYsYJSpUpx+/ZtPvnkEypUqEDtf31PIyIiGDRoULbHb3JR4eLiwvbt29m4cSOXLl1Cp9Ph6+tL+/btKViwYHbEKIQQFrHsi17E935E8xFzeRybjFqjcHh3HNVPTGHmMD9a1q5h6RDFK0atVtO4cWPCw8NRq9Vs2rQJ4Il3V6pUKo4dO4ajo6NhOEDJkiVp2LAh0dHRhqLi+vXrXLly5aWngsiKF+oHsbOzo3bt2hQqVAi1Wo2rq6sUFEKIV5KzkyMnvh/B4t0HmTw/HNVDHco9Lf5fr6Ho69vYMWkARRwdLR2meIX4+voyY8YMhg0blmkowJMkJSWh1+txdHTk8ePHHDp0iCZNmhj2R0RE4OXlhWMOfE9NLiru3LmDv78/J06cwMnJCb1ez6NHj/D29ubbb7+lUKFC2RGnEEJYVK/G9enewIsOk77nzF93Uacp3Lv0iHo9ZtCgyess8u9h6RDFK8Lb25uhQ4cSExNDpUqVnnv83bt3+eyz9PE+er2ezp074+7ubtgfERFhuAkiu5lcVAQHB2NjY8POnTspX748kD5PeXBwMGPHjmXGjBlmD1IIIXKLMW3eofSgirQZtZDHf6dfEjmw/TIuf0xkwufv8mH9Ny0dosjj7O3tTVpWokKFCkZTcCuKQlJSkuF5WFjO3Rpt8jwVR44cYfTo0YaCAqBSpUqMGjXKaB0PIYR4VZUuWowT80YwMbANOP3zb7MHWkZN2UytAVOJvZu9cwEIkVuZXFRUqFDhidd44uLiKFu2rFmCEkKIvODD+m9y/udRNGj5BnpblWHirMZ9ZtN63PeWDk+IHGfy5Y9OnToxbtw4Tp8+jaenJ9bW1pw9e5YlS5bQsWNHNmzYYDjWz8/PjKEKIUTu9NPn3XnUR0OzoNncvfQQtVbh4tFbVO08no/e92TCh+0sHaIQOcLkoiIsLIxChQqxfft2tm/fbthesGBBo20qlUqKCiFEvuHoYMuhb4dy4NwF+k5Znb6WSLKeX5YeZ/Wmk3w39D25BVW88kwuKiIiIrIjDiGEeCV4u1bl7OIgJq7ZQtiq46iSdOgT0/AfvYZCFbawZVJfWagshyiKYukQ8hRz5MvkMRUhISFoNJpM2y9dukS3bt1eOiAhhHgVjHq/NRdWjaaGdzn0NunjLR5dS8Lnk9m8+/WcJ/49KszDxsYGwOgOCPF8GfnKyN+LMLmnYteuXezatYtJkyZRr1490tLSmDdvHj/88APe3t4vHIgQQryK1gX2496jRzQPmse9q49QaxWu/HmH6l1DaNXSldl9P7R0iK8cKysrihQpwu3btwEoUKCAyQt75WWKopCamoparc7S+864BfX27dsUKVIEKyurFz63yUXFxo0bmTt3Lr1796Z9+/b89ddfpKWlMWvWLKMZvIQQQqQr4ujI0VnD2Bd9nv4ha9De0aBO0bNtw1lcIiYyrHcj+jfL/imU85PSpUsDGAqL/ERRFNLS0rCxMW2V1CJFihjy9qJMLipsbW3p378/MTExrFmzBmtra0JCQqSgEEKI52hQzYWzi4OYuTmCuUsPoHqkgwdapn0XznfL9rEgsDPerlUtHeYrQaVSUaZMGUqWLElaWs4td54b6HQ6oqOjqVKlSpZ7HWxsbF6qhyKDyUXFr7/+yowZMyhUqBBLly7l7NmzjBkzhl9//ZXRo0dTsWLFlw5KCCFeZUPaNGVIm6b0/d8ydodfRp2qR3tHQ6/hyylUoQC/je9L+eIymNMcrKyszPJjmZfodDogfWbOnH7vJg/UHDVqFJ07d2b9+vW8+eab9OjRg82bN2NtbU3btm2zI0YhhHgl/TjoY86sGEklzxLorVWo9PAoJokmvWfTaORMHiXLYE6Rt5jcU7FhwwbeeOMNo22lS5fm+++/Z8eOHWYLTAgh8gNbW1t2Tvicm4kJtB39E/evPUalU7hxKpHa3aZQ662yrB3Zz9JhCpElWeqpOHr0KFqtFiBTQZEhOTmZy5cvmy8yIYTIR0oXLcaxOcNZ8e0n2JayQ1GBWqMQtf9vqnQez6D5v1g6RCGeK0tFRY8ePbh//77Rtnbt2nHjxg3D88ePHzNz5kzzRieEEPlMvTcqceqnQCYHt0Vd1AYFUCfr+X1jNFU/msD41ZstHaIQT5WlouJJs2zFxsYaei+EEEKYV+e36xG9NJhP+9eHQlYogOqRjqVhR3HpNpH5O/dYOkQhMjF5oKY5paamEhQURL169fDx8WHhwoVPPXbgwIG4uroaPWSpdSHEq25Y+xacXzGadp1qoBRQowK4r2X6zF1U6zGJ1YeOWTpEIQxMHqhpTqGhoZw6dYqwsDDi4uIYMWIEZcuWpWXLlpmOvXTpEtOmTeOdd94xbCtcuHBOhiuEEBbzzSfv880n8PF3izm07xrqVD36hDSCJm1iTIkdzPzKj+Ye1S0dpsjnLFZUJCUlsXr1ahYsWIC7uzvu7u5cuHCB5cuXZyoqNBoNsbGxeHh44OzsbKGIhRDC8pZ90QvNIA0fTFvEqeM3UWsUtPEaBgWtwq6kHd8P70SDai6WDlPkU1kuKrZu3Yqjo6PhuV6vZ+fOnRQrlj5By8OHD006cXR0NFqtFk9PT8O2unXrMm/ePPR6PWr1/1+ZuXz5MiqVigoVKph0DiGEeBXZ2tqyIfhTNBoNrcfP5+rpBNRpCppbqfQe/jP2pe34KeBD3qpa2dKhinwmS0VF2bJlM413KF68OMuWLTPaVqZMmSyfOD4+nqJFi2Jra2vYVqJECVJTU7l3756hWIH0osLR0ZGAgACOHDlC6dKl8ff3p1GjRlk+X4aMmcbMIaMtc7aZn0k+zU9yal65LZ9WVlZsHzeIxyka2o3/gb/P3UOtVUi9kUq3oUtwKG3Pj8M/oG7lSpYO9alyW05fBdmR06y2laWiIiIi4qWCeZLk5GSjggIwPP/vksCXL18mJSUFHx8f+vfvz86dOxk4cCArV67Ew8PDpPNGRUW9XOA51GZ+Jvk0P8mpeeXGfH7zgQ+PUzQMX7Ofu1eSUGsVUuJS6DZ0Cfal7AjsVA9X59w79XduzGleZ4mcWmxMhZ2dXabiIeO5vb290fZBgwbRvXt3w8DMatWqcfr0aVatWmVyUeHh4WG2udB1Oh1RUVFmbTM/k3yan+TUvPJCPg++/RZ3Hjyiw6SfuH3xoaHnYsz/DmBfyo7/fdmR+q5VLB2mQV7IaV6THTnNaPN5LFZUlCpVisTERLRaLdbW6WHEx8djb2+Pk5OT0bFqtTrTnR6VK1fm4sWLJp83OxaXyY8L1mQnyaf5SU7NK7fns1TRwhyc/hXxDx7x3rgfuH3p/4uL3iNWYFfKjtlDOtLEw9XSoRrk9pzmRZbIqcXmqXBzc8Pa2poTJ04Yth0/fhwPDw+jQZoAI0eOJDAw0GhbdHQ0lSvLICQhhHgaZydHDs74ij+WDMW5WuH0RcsU0NxMpX/QCqp/MpnfjkdaOkzxCrFYUeHg4ICfnx9jx47l5MmT/P777yxcuJAePXoA6b0WKSkpADRt2pSNGzeyYcMGYmJimDNnDsePH+fjjz+2VPhCCJFnODs5cmD6lxxbNpTS7kUNxYU2XsPQsetx6zmJ5fuOWDpM8Qqw6IyagYGBuLu707NnT8aNG4e/vz8tWrQAwMfHhy1btgDQokULxowZw/fff0/btm2JiIjgxx9/pHz58pYMXwgh8pQijo7snTqEEysCKV+zGHqb9OJCdzeNsVO34PrxRL7Z+LulwxR5mEVn1HRwcGDq1KlMnTo1075z584ZPe/cuTOdO3fOqdCEEOKV5ehgS8TkwWg0Gvym/MT5k/GoU/Uo97R8P38/837+g45tahDycQdLhyryGIv2VAghhLAcW1tbtowZyJkVI6nVsDx6h3/WFnmoY90vkVT9YAIff7fYwlGKvESKCiGEyOdsbW1ZHdCXi6u/plm7aigF/1kVNUnHkd+vUqXTeFqNmcujZM1z2xL5mxQVQgghDP736UdcWDmabj3qQWFrFECdqufS8Xhqd5nC21/O4Gr8HUuHKXIpKSqEEEJkMvaDtpxfPorgYS2wKm6DogK1ViHhwkOa95lDzf4h7Io69/yGRL4iRYUQQoin6tW4PmfDglk4rSv2Ze1R1KDSQ0pcCv2DVlCtxyRmbjb/Ug4ib5KiQgghxHM1qObCyR9GsmvRYIq7FDLcjqpPSGPO93up+tEE+sxZaukwhYVJUSGEECLLyhcvxh/fDOXMykBc3y6N3j79jhHVIx37tl2iSqfxNA6cRfyDR5YOVViAFBVCCCFMZmtry8ZRA7i45mvadqoBTv8/qDMuKoH63WdQa8BUGXeRz0hRIYQQ4qV888n7nP95FGMCWmJd0jZ93IVOITk2mf5BK3D9eBJjV22ydJgiB0hRIYQQwiw+bvg2ZxYGsfH7ARSt4mhYY0S5l8bPS45RtfN4Wo/7Xua7eIVJUSGEEMKsqpUrzeHvhnFmVSAePuVQCvwzmVaynotHb1G7yxRqD5zKvujzlg5VmJlF1/4QQgjx6rK1tWXtyH4ATP9tBz+uOYouMQ21ViHpejK9h/+MurA1Dd8qw7zatS0brDAL6akQQgiR7Ya1b0H0kmBWfPcJTpUL/uvSiJY9O67j+sEkGo2cyc3EBEuHKl6CFBVCCCFyTL03KnFs1nDOrAqkZoPyhnVG1Kl6bpxKpEHPWVTvPZn5O/dYOlTxAqSoEEIIkeNsbW1ZM6Iv0T8H0aNLdWwy7hrRg/a2hukzd1H1gwm0nSADO/MSKSqEEEJYVOtqb3BywQh2LRpMmRpF/39CrSQd5w/fwvOjKXj0C2HlwaOWDlU8hxQVQgghcoXyxYuxJ2QIF9d8zQdd66Aumr6QmUqnkHojhVGTN1P1owl0nLJAei9yKSkqhBBC5DoTu7Ynemkw6+f2pVjVQuhtVYbpwE8d+NvQe7F83xFLhyr+RYoKIYQQuVaNiuU59O1QLq4bQ5uO7qiKWBv1XoyduoWqH06g9bjvufdI1huxNCkqhBBC5Anf9u7MuWWjWDOnd3rvhd0/Yy8e67h49BZvdptB9d6T+Wbj75YONd+yaFGRmppKUFAQ9erVw8fHh4ULFz73NbGxsXh6enL48OEciFAIIURuU6tSxfTei7Vf4/dhTdTF/n/shfa2hnnz91Pl/fE0CPiO6L9vWjrcfMWiM2qGhoZy6tQpwsLCiIuLY8SIEZQtW5aWLVs+9TVjx44lKSkpB6MUQgiRW4V270hod7gaf4eeM5bz98X7qFP0qFP03Dpzj3YD5qEubEMT79eZ1ed9bG1tLR3yK81iRUVSUhKrV69mwYIFuLu74+7uzoULF1i+fPlTi4rffvuNx48f53CkQgghcrvXnEuwJ2QIADM3R/DD2kNo7qah0iko99KI2Hye6jumULCUPUE9mvJh/TctHPGryWKXP6Kjo9FqtXh6ehq21a1bl8jISPR6fabjExMTmTZtGuPHj8/JMIUQQuQxQ9o05fTCIP76JRB377Lg+M+snWnpy7GPmryZqh+Mp2nQLK7G37F0uK8Ui/VUxMfHU7RoUaOuqBIlSpCamsq9e/coVqyY0fEhISF06NCBqlWrvtR5dTrdS73+SW2Zs838TPJpfpJT85J8ml925tTB1oo1AX0A2H36HCN+3My92CTUGgWS9MSeTKB57zmoC9vQ4J1KzO7d6ZW4PJIdOc1qWxYrKpKTkzN9eBnPNRrjSU0OHjzI8ePH2bRp00ufNyoq6qXbyIk28zPJp/lJTs1L8ml+2Z3TIsD8nk0B+OnQSXYdjUObkIZKD8q9NPZuvYjHzlDsS9jg5/06HWq6ZGs8OcES31OLFRV2dnaZioeM5/b29oZtKSkpfP3114wZM8Zo+4vy8PDAysrqpduB9MotKirKrG3mZ5JP85Ocmpfk0/wskdPZtWvDALj3+BF9Zv/CmVO3UR7qUGsVNDc1rFp7jl82X6B4+QKE9m+Lj+vL9ZDntOzIaUabz2OxoqJUqVIkJiai1Wqxtk4PIz4+Hnt7e5ycnAzHnTx5kuvXrzN48GCj1/fr1w8/Pz+Tx1hYWVmZ/YubHW3mZ5JP85Ocmpfk0/wskdPiToXZEPwpAEcuXGbI9+uJv/YY1T93jyRefETfgF/A0YrKLkX5aUhXyhcv9pxWcw9L5NRiRYWbmxvW1tacOHGCevXqAXD8+HE8PDxQq/9//GjNmjXZsWOH0WtbtGjBxIkT8fb2ztGYhRBCvJreqlqZP74ZCsDcbbuZt/YPkuM1qLUKPNJx5c87NPlkFmona+rVLc/8AV1xdMj74y/MzWJFhYODA35+fowdO5bJkydz+/ZtFi5cyJQpU4D0XotChQphb29PpUqVMr2+VKlSFC9ePKfDFkII8Yr7rGVjPmvZGI1Gw9Al69m59yK6exnjL7QcDb+K5+4pWBe1oU0TV6b37GTpkHMNi86oGRgYiLu7Oz179mTcuHH4+/vTokULAHx8fNiyZYslwxNCCJGP2draMrvvh0QvCebgsmFUf6cMOP3/2iO6Oxp+Wx1FlQ7j8Og3RaYHx8Izajo4ODB16lSmTp2aad+5c+ee+rpn7RNCCCHMzdnJ0TD+IvrvmwyYs4q/L9+HxzrUaQqpN1KZN38//1t0gEKlHRj6UUM+bvi2haPOeRYtKoQQQoi8plq50uyekn7zwK6oc4z8aSN3Y5PSB3hqFB5fS2Jc6DbGztpB0bIFGN2zOe3r1rJw1DlDigohhBDiBTXxcOXwd64ALN93hBkrdvPgVgrqVD2qFD33Lz9i6Jj1DHX4leLlCzKld1uaeLhaOOrsI0WFEEIIYQbdGrxFtwZvAenrj/z06xGS4lNRpymQrCfhwkP6B66AAmqcKzoytW9bGlTL+5Ns/ZsUFUIIIYSZDWnTlCFt0mfwHL96M6u2nyTlzj+3qCbpuRP9gN7DfoYCVpSs6EhI3zavRIEhRYUQQgiRjb7u3IavO7cBYOSy9WyMOEtqQto/BYaO+Oj7hgLDuWLBPN2DIUWFEEIIkUNCPu5AyMcd0Gg0jFq5ic27oo0KDEMPhoOa4uULMrbnu7SsXcPSYWeZFBVCCCFEDrO1tSW0e0dCu/PkAuOfMRj+o9ag2K+jSFkHhn/UmA/rv2np0J9JigohhBDCgv5dYAAEL9/Ar7vOknJXgzpNQZWi58Hlx4yavJlgu604lbLn0w5efNq8kWUDfwKLzqgphBBCCGOTuvlx6sdALq4fQ49eb2FXxh69rQoVoE7V8+haEjNm7qJKx3F49Ath/OrNlg7ZQHoqhBBCiFxq1PutGfV+awBmb93FT78e4VF8KqrU9Im2Um+ksCzsKEuWH8O2qA1N3qnM9O7vWSxeKSqEEEKIPMC/VRP8WzUB0ifa+nb1Hu7FJafP5KlV0MZr2PlbNB6bz/F2gzKE1a6d4zFKUSGEEELkMf+eaGtn1BnGhm3n9vVHkKRDrVM4cyXRInFJUSGEEELkYc09qtN8enUATl2LZcHOg3SqVsEischATSGEEOIVUaNieb7p1YmC9rYWOb8UFUIIIYQwCykqhBBCCGEWUlQIIYQQwiykqBBCCCGEWUhRIYQQQgizkKJCCCGEEGYhRYUQQgghzCLfTH6lKAoAOp3ObG1mtGXONvMzyaf5SU7NS/JpfpJT88uOnGa0lfFb+jQq5XlHvCI0Gg1RUVGWDkMIIYTIszw8PLC1ffrEWvmmqNDr9Wi1WtRqNSqVytLhCCGEEHmGoijo9Xqsra1Rq58+ciLfFBVCCCGEyF4yUFMIIYQQZiFFhRBCCCHMQooKIYQQQpiFFBVCCCGEMAspKoQQQghhFlJUCCGEEMIspKgQQgghhFlIUfEcqampBAUFUa9ePXx8fFi4cOFTjz1z5gydO3emVq1adOrUiVOnTuVgpHmDKfncvXs37733Hp6enrRr147w8PAcjDTvMCWnGWJjY/H09OTw4cM5EGHeYko+z507R5cuXahZsybt2rXj0KFDORhp3mFKTnfu3EmrVq3w9PSkS5cunD59OgcjzVs0Gg1t27Z95p/jHP9dUsQzjR8/XmnXrp1y6tQpZceOHYqnp6eydevWTMc9fvxY8fb2VkJCQpSLFy8qEyZMUOrXr688fvzYAlHnXlnN59mzZxV3d3clLCxMuXr1qrJs2TLF3d1dOXv2rAWizt2ymtN/69Onj+Li4qIcOnQoh6LMO7KazwcPHij169dXRo0apVy9elWZOXOmUrduXeXOnTsWiDp3y2pOz58/r3h4eCjr169XYmJilHHjxine3t5KUlKSBaLO3VJSUpTPPvvsmX+OLfG7JEXFMzx+/Fjx8PAw+sDmzp2rfPzxx5mOXb16tdK0aVNFr9criqIoer1ead68ubJ27docize3MyWf06ZNU/r06WO0rXfv3so333yT7XHmJabkNMOvv/6qfPTRR1JUPIEp+QwLC1OaNWumaLVaw7aOHTsqu3fvzpFY8wpTcrpo0SKlQ4cOhucPHz5UXFxclJMnT+ZIrHnFhQsXlPbt2yvt2rV75p9jS/wuyeWPZ4iOjkar1eLp6WnYVrduXSIjI9Hr9UbHRkZGUrduXcO6IiqVijp16nDixImcDDlXMyWfHTp0YNiwYZnaePjwYbbHmZeYklOAxMREpk2bxvjx43MyzDzDlHweOXIEX19frKysDNvWrl1Lo0aNcizevMCUnBYpUoSLFy9y/Phx9Ho969atw9HRkYoVK+Z02LnakSNH8PLyYuXKlc88zhK/S/lm6fMXER8fT9GiRY1WZCtRogSpqancu3ePYsWKGR1bpUoVo9cXL16cCxcu5Fi8uZ0p+XzjjTeMXnvhwgX++OMPPvrooxyLNy8wJacAISEhdOjQgapVq+Z0qHmCKfm8fv06NWvWZPTo0URERFCuXDlGjBhB3bp1LRF6rmVKTlu3bk1ERARdu3bFysoKtVrN/PnzKVy4sCVCz7W6du2apeMs8bskPRXPkJycnGmJ14znGo0mS8f+97j8zJR8/ltCQgL+/v7UqVMHX1/fbI0xrzElpwcPHuT48eMMGjQox+LLa0zJZ1JSEj/88APOzs4sWLCAN998kz59+nDjxo0cizcvMCWniYmJxMfH8/XXX7Nq1Sree+89AgMDuXv3bo7F+yqxxO+SFBXPYGdnlyn5Gc/t7e2zdOx/j8vPTMlnhjt37tCzZ08URWHWrFnPXHI3P8pqTlNSUvj6668ZM2aMfCefwZTvqJWVFW5ubgwePJjq1aszfPhwXnvtNX799dccizcvMCWn06dPx8XFhW7dulGjRg0mTJiAg4MDa9euzbF4XyWW+F2Sv6GfoVSpUiQmJqLVag3b4uPjsbe3x8nJKdOxd+7cMdp2584dSpYsmSOx5gWm5BPg1q1bdOvWDY1Gw5IlSzJ15Yus5/TkyZNcv36dwYMH4+npabi+3a9fP77++uscjzu3MuU76uzsTOXKlY22vfbaa9JT8R+m5PT06dNUq1bN8FytVlOtWjXi4uJyLN5XiSV+l6SoeAY3Nzesra2NBrUcP34cDw+PTP9irlWrFn/99ReKogCgKAp//vkntWrVysmQczVT8pmUlETfvn1Rq9UsW7aMUqVK5XC0eUNWc1qzZk127NjBhg0bDA+AiRMnMmTIkByOOvcy5Ttau3Ztzp07Z7Tt8uXLlCtXLidCzTNMyWnJkiW5dOmS0bYrV65Qvnz5nAj1lWOR36Vsu6/kFTF69GilTZs2SmRkpLJz506lTp06yvbt2xVFUZTbt28rycnJiqKk3/r09ttvKxMmTFAuXLigTJgwQfH29pZ5Kv4jq/n85ptvlJo1ayqRkZHK7du3DY8HDx5YMvxcKas5/S+5pfTJsprP2NhYpXbt2sqsWbOUq1evKt99951Su3Zt5ebNm5YMP1fKak43b95smKfi6tWryrRp02Tuj+f4759jS/8uSVHxHElJSUpAQIBSu3ZtxcfHR1m0aJFhn4uLi9H9vpGRkYqfn5/i4eGhvP/++8rp06ctEHHultV8vvvuu4qLi0umx4gRIywUee5lynf036SoeDJT8nns2DGlQ4cOSo0aNZT33ntPOXLkiAUizv1MyemqVauUli1bKrVr11a6dOminDp1ygIR5x3//XNs6d8llaL80y8ihBBCCPESZEyFEEIIIcxCigohhBBCmIUUFUIIIYQwCykqhBBCCGEWUlQIIYQQwiykqBBCCCGEWUhRIYQQQgizkKXPhRBmM3LkSNavX//MY8LDw2XaZSFeUTL5lRDCbB4+fEhKSgoAW7ZsYeHChaxZswYAvV6PTqejVKlSWFlZWTJMIUQ2kZ4KIYTZFCpUiEKFChn+38rKCmdnZwtHJYTIKTKmQgiRI2JjY3F1dSU2NhYAV1dXtm7dSqtWrahVqxZfffUV169fp0ePHtSqVYuuXbty69Ytw+t37txJ69atqVWrFu+//z5Hjhyx1FsRQjyFFBVCCIuZNWsWISEhzJ8/nx07dtClSxe6dOnCL7/8Qnx8PAsWLAAgOjqaESNGMHDgQH777Tfat29Pv379iImJsfA7EEL8m1z+EEJYTK9evahVqxYAbm5uvP7667Rq1QqAFi1aEB0dDcBPP/3EBx98QLt27QDo0aMHR48eZcWKFYwcOdIywQshMpGiQghhMRUqVDD8v729PeXKlTN6rtFoALh06RJbt25l5cqVhv1paWn4+PjkXLBCiOeSokIIYTH/vQtErX7yFVmdTke/fv3w8/Mz2m5vb59doQkhXoCMqRBC5Hqvv/46sbGxVKpUyfBYuXIle/futXRoQoh/kaJCCJHr9erViy1btrBkyRKuXbvG4sWLWbx4Ma+99pqlQxNC/IsUFUKIXK927dqEhoby888/07p1a1atWsWMGTN48803LR2aEOJfZEZNIYQQQpiF9FQIIYQQwiykqBBCCCGEWUhRIYQQQgizkKJCCCGEEGYhRYUQQgghzEKKCiGEEEKYhRQVQgghhDALKSqEEEIIYRZSVAghhBDCLKSoEEIIIYRZSFEhhBBCCLOQokIIIYQQZvF/o8inHxBJ9AMAAAAASUVORK5CYII=" + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAhgAAAEmCAYAAAAgHOlQAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAPYQAAD2EBqD+naQAATQFJREFUeJzt3Qd4jWcbB/B/ThJBqT1i5qsatVVQtGpTexQ1Ys8aNVpilyJ2EWqV0lpBUUVtatMatQlqrxApIbLO+a77SU+axEnkxDl5zzn5/67rrZz95C157zzP/dy3k8FgMICIiIjIgnSWfDMiIiIiwQCDiIiILI4BBhEREVkcAwwiIiKyOAYYREREZHEMMIiIiMjiGGAQERGRxTHAICIiIotzQQqj1+tx9+5dpE+fHk5OTloPh4iIyG5Ibc5nz54hV65c0OkSnqNIcQGGBBd58+bVehhERER269atW8iTJ0+Cz0lxAYbMXBhPzttvv631cIiIiOzG06dP1S/pxmtpQlJcgGFcFpHgggEGERGR+RKTYsAkTyIiIrI4BhhERERkcQwwiIiIyOI0zcHYt28fpkyZguPHj+PevXtYv349mjRpkuBr9u7di4EDB+LcuXMq0WTEiBHo2LFjso2ZiIjsT2RkJMLDw7Uehl1wdXWFs7OzfQcYz58/R6lSpdC5c2c0a9bstc//+++/Ub9+ffTs2RPLly/Hrl270LVrV7i7u6NOnTrJMmYiIrIvwcHBuH37tqrhQIlL4JQtqOnSpYPdBhiffPKJOhJr3rx5+N///odp06ap2++99x4OHDiAb7/9lgEGERGZnLmQ4CJt2rTIli0bCyy+hgRhAQEB6pwVLFjwjWYy7Gqb6uHDh1GzZs1Y90lg0b9//3hfExoaqo6Ye3gtrWinCQgL+nfqTf7uGv8C6wAnnVPU4Qw4u+jgmtoZadO6IGP61MiV7W1UKvo/NPIsjWxvv1mkSEREr5JlEbloSnCRJk0arYdjF+RcXb9+XZ27FBNg3L9/Hzly5Ih1n9yWoCEkJMTkXx4fHx+MGTPGquOKeBkJXXjMqbdXp+Hknoh/jxAAj/EMVxGA/VuvYiJ2qmDE4OIEXSodXNI4I32GVPDIkwnNKpVEU89SSJUqlVW/ByIiR8aZi+Q/V3YVYCTF0KFDVVJo3CpkltSiQQlcuBmA8MhIREboER6pR0SEHqFhEQgLlcQiOfTQhxugj9BDH2EAIg1wipT5O4Oa9IAecAozAGGRiAiOxJOAMDy5EoyTe29hhG4zDK46OKfRIV1GN5QsnAODGldH8XwJl2klIiLSil0FGDlz5sSDBw9i3Se3pSJnfFNfbm5u6rCm8W0T3vmSkKDgYGw6cRYHzl2D/63HeBT4Ai+DwxEZqo8KOCQAkeAjVA9DqB7PgiJw8Po1HNh2LWrGI40z3s7qho/KeGB0y0+Q8Q2TcoiIiFJcgFGxYkVs2bIl1n07duxQ99srCQjaVflAHaZcvHMfc377HScv3UVgQAjCn0cAEnxI0CEzIc8i8PRZBDb/fQ6b1p+DwU2H1BlcUaJYDkzp0AR5smRO9u+JiIjIReutQ1euXIm1DfXUqVPInDkz8uXLp5Y37ty5gx9//FE9LttTZ8+ejcGDB6utrbt378bq1auxefNmOKoiuXPCt2urWPeFhYVhxaE/4bfnJG7c+gdhTyPUDIeTAXB6qUfYy1Acf3AT1XbPgiG1Dmkzp0KNDwpgUrvGzOUgIrIzvr6+aN68uWqR/qYWL16MSpUqoUiRIrA2J4OGG4OlaFa1atVeub9Dhw5YsmSJKqAlmazyvJivGTBgAM6fP6/26Y4cOdKsQluSg5EhQwb8888/DtXsTJZaxq7Zit+P/42nj14CLyLVLEdMBtnVks4FufK/jfEdP0HlwgW1Gi4RUbJ4+fKl+uVVShykTp0a9ubKlSsoWbIkHj9+rFIBZBZf6kHFp2XLlvDz84v38R49eqgtu1LeISnnzJxrqKYBhhYcNcCIS2Y5Rq3ejO2H/PFMAo6QqBkOI/VlGh0y5EyDPs0ro2PVShqOlojIOuw9wJg2bZqqev3LL7+o27JjUq5fcWt9dOrUCSdOnFAFKKWAZXwkQOnbty+uXr0a73MYYCRRSgkw4vK/dx+Dl2zExYsBCP8nAjrJ34hB76ZD+hyp8UXLDxlsEJHDsPcAo0qVKmpWv0uXLiYfl+Cibdu22Llz52uDCyF1obJkyYIjR46gePHiJp/DACOJUmqAEddIv1/xy65zePE4DLrQ/9ZS5C+DJIpmdE+DMZ3qoH7ZkpqOk4joTcS9WMolL1wvFYmSn6vOxawaE48ePVJ5F7du3XqlBpQxuGjXrp3a7JCY4MJIWnN4enpi2LBhJh9ngJFEDDBetWj3AcxecwjPHr58JdjAW87IWyADFg9oA49sWbUcJhGR2eJeLMMiwzFu91xNxjKiei+kcnZN9PMlF3HBggU4dOhQvMHF9u3bVXBRunTp6Mc2bdqEQYMGQa/XY8iQIapnV0xLly7F3Llz1SyGNQMMu9qmStbRpfqH6hDzd/yO734+gucPXkZVJ30eidunA1Gr82w4Z3RFveqFMb3Tp1oPmYjI4W3ZsgX16tUzGVx4eXmZDC4iIiJUcck9e/aoQKBs2bJo2rSpWhYxkveUnA2ZIcma1Xq/ODLAoFh61PpYHWLwT+vw666LiHgSDqdIA/RPwrHp57PY+Os5ZMyTFt/1bY7yBd/ReshERGYtU8hMglafbQ4PDw81k2AquNi2bZvKu4gZXIhjx46hWLFiyJ07t7otDUUlEGndunX0c+Q9M2bMqA5rYoBB8Zrs1QyTvaK2wLb79idcOvtIzWjowgx4eu052g78EboMrmhc5z31XCIiWyc5EOYsU2ipcePGqv6FLHXodDoVXLRv3z46uChTpswrr7l79250cCHka6knFdPGjRvVLIaLi3VDAJ1V350cglQb3TSyF/z9RmLyyEZIkycN9C5OaturISgcG/xO493mY1Ft6CwEPA3WerhERA6hYsWKKin16NGjKsiQ4GLDhg1YtmwZ3N3dVQPQmIcEIIkhAYYEL9bGGQwyS9MK76tD6mx8Nm0pzpy6HzWrEarHnTOBqOQ1DWlzpsaMPk1QrURhrYdLRGS3dDodGjRooGpgyNcrVqxQ95vKy5CZmaCgILXrJOaMhXxdvnz5WMsjly5dQt26da0/fqt/AjkkKTm+bmg3NavhPbAmXLKliqoUGmlAyJ0QdB+2EkW8xmP6rzu1HioRkd1q3LixmnGoUKGCms2I75AZDtnVIcHE2bNnVWAh7Th+++031KlTJ/r95L2qVq2K9OnTW33sDDDojckOlPM/DMOvc3si07vpoHeNWj6RpNC58w+g0GffoPeCVVoPk4jI7tSqVQs3btyI1bcrIZJXIdU/pQ2HJIDKdtWYO0gkwGjUqBGSA+tgkMXJ8kmraUtw5sR96EL+q6uhT61DmfK5sLx/ezZdI6JkYe+VPLVgqToYnMEgi5PgYf3Q7riyZhQ+aVYUSO+sinbpXurx177bKNp6IuqPnasCESIickwMMMiqZnZuicsrR6JPrypwyugaFWiE6uF/7AGKtvJB7VGzGWgQETkgBhiULL6oXx2Xlg3H6MF14ZzFFQYnqEqh1088QtHPfPDJ6DkMNIiIHAgDDEpW7ap8gAtLh2Pa103hnDVVVKARZsDV4wEq0GjwDZdOiIgcAQMM0kSjsqVwYckwTB7RKFagcfnoA5Wj0fbbJVoPkYiI3gADDNKUFO2SQGPC8AbQZf4vR+OPXddRsMVYfLF4tdZDJCKiJGCAQTahxQeeuPjjcHzVvwacMrioQMMpRI/f1p1HodbfYObm3VoPkYiIzMAAg2xK95of4dLyEejQsTyQzjnqzmeRmD13H95rPx5bT53VeohERJQIDDDIJo34tB4urxqJ6vULqQJdTtKmODAcfUeuRamek3A94JHWQyQiogQwwCCbNq9XG5xf4Y1CFXJElyAPuR2CWl3noPqwWdxxQkRkozQPMObMmQMPDw9VjlSauRw7dize54aHh2Ps2LEoUKCAen6pUqWwdevWZB0vaVMZVNrF//nTINXrxNhU7fbpQLXjhH1OiMiR+fr64u7duxZ5r8WLF+PixYtw+ADDz88PAwcOxOjRo3HixAkVMEjXt4cPH5p8/ogRIzB//nx1ss+fP4+ePXuiadOmOHnyZLKPnZJfxnTpcHTGl1g+rX1U99Z/d5xs33gRhdqOw5ojf2o9RCIii7py5QqGDBmCTJkyqdtbtmxRrdnjO1q1apXg+x09elRdRx2+2ZnMWJQrVw6zZ89Wt6XdbN68edG3b194e3u/8nzpcz98+HD07t07+r7mzZsjTZo0WLZsWaI+k83OHMf8Hb9j2qJ9QHCkui21NNLmToPN47shT5bMWg+PiGyAvTc7mzZtGvbt24dffvlF3Q4JCVHXr5giIyPRqVMn9Yv6rl271C/r8ZEARa6xV69eddxmZ7J2fvz4cdSsWfO/weh06vbhw4dNviY0NPSVb1aCiwMHDsT7OfIaOSExD3IMPWp9rBJBy9XwiJWfUbWLL5r6LNB6eEREb0wCi5jt1eWalzNnzugjW7ZsqiV7YoILUaNGDTx48ABnz1p/R55mAcajR49U1JUjR45Y98vt+/fvm3yNLJ9Mnz4d/v7+arZjx44dWLduHe7duxfv5/j4+Khoy3jIDAk5luUDOsbKz9BFGHDu4F0UbPUN5mzdq/XwiIiSfJ08cuQIGjRoYPJxuYa2a9cOO3fuTFRwIdzc3FC7dm1s3LgRDp/kaY6ZM2eiYMGCKFKkiEr869Onj5oWkpmP+AwdOlRN5RiPW7duJeuYKXnzMxaMbw1dpqiKoE7PIzFjzl6U6OaD248DtR4iEdkAyQp4GRGuyWEwMyNh06ZN8PT0fOUX8ZjBxfbt21WAETO4kNxEydn49NNPTb5v48aNkyXAcIFGsmbNCmdnZzVVE5PclmkfU2QqaMOGDWp96PHjxyonQ3I13nnnnQSjNTkoZahWojAu/jQcA39Yi42bzqsk0NB7oWrZpNQHufCzdzeth0hEGgqNjEDn1d9p8tmLW36O1C6uiX6+5EvUq1fPZHDh5eWlgguZuShdunSsx7/44gt07twZS5cuNfm+8p7yy7nMkMi12OFmMGQGomzZsurkGMmyh9yuWLFigq+VPIzcuXMjIiICP//8s4rGiGKa3ulTnF/pjWxFMkQvm5w5cEeVHV++P/6t0EREtsLDw0MlW5oKLrZt26ZmLuIGF6Jq1apInz59vO8r75kxY0Z1OOQMhpAtqh06dFBTQOXLl8eMGTPw/PlzFVmJ9u3bq0BC8iiM22vu3LmjTqj8+fXXX6ugZPDgwVp+G2SjJIg9OHUA9py5hJ6T1kIfFA6nZ5H4evIWfLv6d+yd/AXSpUml9TCJKBm5ObuomQStPtsc8suz7JSU65ykAkhwIddFY3BRpkwZJIUsj8gshouLi+MGGLJfNyAgAKNGjVKJnRI4SOEs43rTzZs3Y+VXyNKI1MK4du0a0qVLp07QTz/9ZPUojOx/2eTSsuHoOXcFdu7wV23hn/79HKXbTUSTRsUwtUNzrYdIRMlEakWYs0yhpYoVK6q8DfnlWso6SHAhaQJr166Fu7v7KxsiJI1AUg8SE2CMHDkSDl0HQwusg5GyBQUHo9rg7xB864Xa1ip/+V2ypsKase1RPF8erYdHRBZm73UwunTpogIHSdz84IMPEgycgoKCoq9re/fuVTWmJBiJSc6FbJSQ/Iv4llHsvg4GkVa7TU5+NxhffVEDhreco5qoPQpD076L0MxnodbDIyIyueNDZjBkPiC+Q5ZREvNLs7zX63I0LIUBBqXYtvD+fiORv0zW6N4mZw/eQaE249gSnohsRq1atXDjxg1VMjyxpGBlixYt1C6UPHnyxCpeKQFGzMJd1sQlEkrxDl7yR+dvVsMQFK5uS8CRq2gm7BjbSyWKEpH9svclEi1wiYTIQioXLqiSQMvX9IDexQlOeuDe2Sco5jUJy/Yd0Xp4RER2iQEG0b+W9e+InQt7wyV7quhKoGOmbMUHA6ap3jlERGTlAEMKXMkeXGn5+uzZM3Wf9KoPDg5OytsR2QyPbFlxfvEwNGxeHPpUUQ3UAv2foWjbiexrQkRkzQBDkk1KlCihMlulbbrUsRCTJk3Cl19+ae7bEdlsJdDDSwYhda7UajZDF6JXfU3K9ZvK2QwiImsEGFLjXCpvPnnyRLWNNZI9ujHLfhPZu2xvp8PpBd7w6lAOejedms3451owiraZiJmbd2s9PCIixwow9u/fr6ppxs2ul5rpUr6byNGMalEffy4diLR500TNZrzUY/a8ffDsN4WzGURElgowpJiH1EOP6/bt28lSuINIqwJdp+YOQYeO5aNnM55ee65mM5ibQURkgQCjdu3aqilZzPKkktw5evRok21liRzJiE/r4dQy71izGZKbUaE/czOIiN4owJg2bRoOHjyIokWLqmIcbdq0iV4ekURPIkcnHVhlNqNte8/o2YwnV4JRrO1E1s0gInqTSp6yTXXVqlU4ffq0mr14//330bZt21hJn7aKlTzJ0s3TPh40Gy/uvFR9TQxOgHvRTNg36Quth0ZErOSpaSVPlgonsgDvZeux9ufT0IVH/XMypHPGjK8ao37ZkloPjShFY4BhRwHGjz/+mODj0q/eljHAIGu5/yQQNQbNQ9jDsKjZDB1QyDMHNo/qpfXQiFIsRwgwfH190bx5c+TKleuN32vx4sWoVKmSatlucwFGpkyZYt0ODw/Hixcv1LbVtGnTIjAwELaMAQZZW8+5K7Bzmz90EVH/tJwyuGD5WC94Fsiv9dCIUhx7DzCuXLmCkiVL4vHjxyoNQTqk1q9fP97nt2zZEn5+fvE+3qNHD3Wt/vbbb22v2ZkU2Ip5SA7GpUuX8OGHH2LlypXmvh2Rw5nXqw02zekBXWZXddvwTwRaD1yC9jOXaj00IrIzv/zyi2rZbsxxrFatGu7duxfrkDIR8pwsWbJg2LBhCb6fVOGWlu120+ysYMGCmDhxoqrySURAkdw5cfHH4SjxYW4YnJ3gFGnA4R1/o2inCbj92LZn+YjItgKMRo0aRd+WQCNnzpzRR7Zs2TBo0CCcOHFCVdMuVapUgu9Xo0YNPHjwAGfPnrX62F0s9kYuLqrhGRH952fvbth/8TK6jFkNp2cRiAgIQ9WuvvisRRmMa/PfDw0iSh6SFfAyIkKTz07t4qJqRyXWo0ePcOTIEaxZs8bk41L0sl27dqr5aGKCC+Hm5qbqWcksRvHixWFTAUbcqRX5nyVTNLNnz0blypUtOTYih/BRkUK4vHIEqg2dhdtnA9VOE78VJ7DlwEUcmdH/lbL7RGQ9ElzU+262Jp+95fM+SOMatXSaGJs2bVK9v3LkyBFvcLF9+/ZYwcWtW7fg5eWFhw8fql/8R44ciRYtWryyTDJ37tzXLqcke4DRpEmTWLclGpMpmurVq6siXERk2h6ffliy9xDGz9kJpxA9gm++UMW5RvetjXZVPtB6eERkY7Zs2WKyQrYEFxJEGIOL0qVLRz8mQYVU25b77t+/j7Jly6r3eOutt6KfI7c7deqkZkiyZs1qOwGG9CKxpDlz5mDKlCnqREgEJttxypcvH+/z5cRJ5HXz5k11Yj799FP4+PjYZXYwpTwdq1ZCm0qe+GDADDy78UIFGmOmbsWSbX9g5/i+Wg+PyOHJMoXMJGj12eaQKtmym8NUcLFt2za1NBIzuBDu7u7qEJKjIddJ2d0ZM8CQ98yYMaM6bD7JM6lkK83AgQNVHxNJUJEAo06dOmpqx5QVK1bA29tbPf/ChQtYtGiReg9rT/MQWZIsiZyYMxgtW5eG3tUJTnrg5l+PUajNOBzzv6b18Igcmsy6yzKFFoeTGfkXxqWMzZs3R/9iL8GF1JoyBhdlypRJ8PXHjx9Xr8mbN+8rqQ4yiyGzHdaUqDoYEgQk1vTp0xP93AoVKqBcuXIqf0PISZQT0bdvXxVIxNWnTx8VWMiUkJFkzx49ehQHDhxI1GeyDgbZEtlRUmvQPEQ8+rc4l7MTqtR6B4v6eGk9NCKHYM91MPR6vZqN2LBhg7peysyFfL127VqTwYWkKzg7O6uvZdbio48+wsKFC1VhrZikroap3AxL18FIVPhy8uTJxDzNrOhMOk9KdDV06NDo+3Q6HWrWrInDhw+bfI2cpGXLluHYsWNqGeXatWtqjUpOenxCQ0PVEfPkENmKPFky48KSYWg1dRFO7L+ttrPu23oVxU/54MCMvqpNPBGlTDqdDg0aNFBbVeVrmcUXpvIy5PobFBSkLvpyzZN8SflFPW5wIYGD1K6qW7eu1cefqABjz549Fv9gSS6RqZu42bFy++LFiyZfI51b5XVS1EsmXqTpWs+ePRNcIpH8jDFjxlh8/ESW5PdlF+yocx69x/8Mp+BIhN0PhWeH6ejb+UN8Ub+61sMjIo00btxYBQpSayoxhbflOR07dlQbL0z98i3LI1WrVkX69OlhbZrmYJhr7969mDBhAr777juVs7Fu3Tq1PvXNN9/E+xqZIZGpHOMhW3iIbFGtEkVx9schyFYkg+rKqgvVY/a8ffjwq/hL+hKRY6tVqxZu3LihSoYnxsGDB1VuoiylSAKoHGfOnIkVYMQs3GVNScrw+PPPP7F69Wq1k0OWOmKSi35iSGarrBVJRbGY5LZkvpoia0YSkXXt2lXdLlGiBJ4/f47u3btj+PDhagrJVFEROYjsJQH04NQBmP7rTny35JAKMh5e+AeFWn+DRaNbqZoaRJRypEmTRl3nEktm+BPa7Rkzh9HmZjBWrVql1nQk2XL9+vWq2dm5c+ewe/dulfhhzg9S2Z8b85uVkyK3K1asaPI10lQtbhBhTGhJYV3nycENbFgTh38YiFQ53KD+Zj+LROchK9H22yVaD42IyDoBhixRSBe2X3/9VQUJM2fOVDkT0sEtX758Zr2X7E6RDNelS5eqgKVXr14qUpMCIEK248RMAm3YsKGqgSFBjiSq7NixQ81qyP3GQIPIUWR7Ox3OLhqKSrX/B/2//UyO7bqOYp0nIOBpsNbDIyKy7BLJ1atXo1vFSoAhAYFkrw4YMEAllZiTUNmqVSsEBARg1KhRqtCWrBVt3bo1OvFTlmBizliMGDFCfZb8eefOHbUlR4KL8ePHm/ttENmNpf064GAdf3T62k/1Mwl/GIaKnabj846V1EwHEZEtSlQdjJjy5MmD3377TeU/yF5amWFo3bq12loq214kkdKWsQ4G2bMqg2fg3oUgOBmgEkFzvpcR+yf313pYRDbLnutgaMVSdTDMXiKpUqWKWpoQUqRDWrR369ZNBRnSBpaIrGff5P7o07MK9G46FWQ8OB+kEkAPXvLXemhERG82gyHVwSS6yZUrl0rKnDx5Mg4dOoSCBQuqpYtMmTLBlnEGgxyB5GBUG+CL0AehrABKlADOYGg3g2F2gGHvGGCQI2k3YwmO7rmhEkDlH3LqnG7YzwqgRNEYYNjREomU8l6yZAlLbhPZgGX9O2LBuM+AdM5qJiP03wqg83f8rvXQiCiFMzvAKFasmErslGJYkoMhNdKlFgYRaaNaicKqAmjWwm9HVwCdOmsPagzz1XpoRJSCmR1gSN0L2SIqZUilv7zUqpBtpVJN8/ff+VsTkRZky/ihaQPRuXMF6FM5qQTQW6cfo1Dbcfjrxk2th0dEKVCSepFIbYratWurpRIp7T1//nzV4VTqYBCRdoY2/QQHFvWFc9ZUURVA/4lA8y9+wBeLV2s9NCJKIl9fX9y9exeWsHjx4ngbitpUszMpjjVv3jxMmjQJp0+fRrly5Sw3MiJKkpyZolrAl/wwNww6QBdhwJZ151G65yQEh8TuHUREtu3KlSsYMmRI9A7NLVu2qIKT8R1SwDIhR48eVZMCNhlgSHLnDz/8oDq85c2bV5Xuls5s/v7+OHLkiHVGSURm+9m7G2aMbgZD2qgE0Be3Q1Cm/UQs339M66ERUSJJnqNcb6XpmahWrRru3bsX67h9+7Z6TpYsWTBs2LDXtn+Xjqo2WSpc8i0kkpIoycfHB56entYZGRG9sfplS6LWsiKoNGgm/vn7OZxC9Ph6yhas2HMcm0f10np4RJSIAKNDhw7RtyXQMAYbIjIyEm3btsWJEydUs9BSpUol+H5SEFNSG86ePYvixYvDpgIMiXxkgKZaoxORbSaA/un7FYYv3wC/tX9BF26A/7EHKNJ+PH6d1AUF3XNqPUSiZCOln0LCIzT57DSuLmoZI7EePXqkVgbWrFlj8nEJLtq1a4edO3cmKrgQbm5uKodSruU2F2DINAwR2Z/xbZugY/UP0HDwIuifhEMfGI5PPp+Pz1qUwbg2jbQeHlGykOCi7JhZmnz28dH9kDaVa6Kfv2nTJrVKYGwAaiq42L59e6zgIigoSNWrioiIUIexnUfcZRJJb3jdcsqb4jQEUQoisxUXfxqOdz2zRyWAhhvgt+IEPPtNQVgYE0CJbMmWLVtQr149k8GFl5dXdHAhnciN0qdPj3379uHUqVMqoXPChAl4/PhxrNfLe8rOT5khsakZDCKyf1u+/hzL9h3B177boQvR4+m15yjmNQkzBjdWeRtEjkqWKWQmQavPNoeHh4cq2W0quNi2bZtaGokZXAhnZ2ekTZtWfR0aGqqWhOJ2BJH3zJgxozqsiQEGUQrVrsoHaFLufVQe8K3aYeL0PBL9x6zDD5WPYe2QrloPj8gqJAfCnGUKLTVu3BjNmzdXjUUl71GCCyluaQwuypQpY/J1skzy8ccfq92dU6ZMQdasWWM9LvkXMovh4mLdEIBLJEQpWLo0qfDXvCGo2+Q96F2c4KQH/tp/G+91nID7TwK1Hh5RilaxYkU1+yBLHRJkSHAhVbSXLVsGd3d3VYsq5iEBiJCZib/++kvNVKxYsULtGokbYEjwYm1JCl9kzUeOhw8fqm86bpUwIrIvvl1b4a9aN9Fi2I9w+icCkY/C8GEXX3TxKq+qgxJR8tPpdGjQoIHaqipfS7AgTOVlyMyMzFzE7HAqyaGS/Ll//358+umn6j4JOi5duoS6detaf/zmvmDMmDFqi4sEGJIg8uTJk1gHEdmnUvnz4fLyEchTMnNU07QwAxYvPooPBkxjAiiRRhr/WxirQoUK0fkUpg75ZV+CC5mtePbsmXqttFSXhM/ChQtHv5+8V9WqVVUyqM3NYEhpcOlBIkkmROR4dk/op9q9T5n/O3Qv9Qj0f4Zi7Sfhu+HNUatEUa2HR5Si1KpVC61bt1Ylw999993XPv/GjRuq+agx8Ojbty9KlCgRK8Bo1qwZkoOTIW566WtIKVLZ3lKgQAHYIyl1niFDBhXZxZxKIqLYgoKD8dGA2Xh576UqNW5wdoJnlbxYOaiz1kMjSrSXL1+qZYH//e9/SJ06tdbDsftzZs411Owlkq5du0avAxGR48qYLh3OLPRGtfoFoxJAIw34c89NFO3EBFAiej1dUiKb6dOnqy0wMvUycODAWEdSzJkzR+33lUhJ1plkhiQ+snZkqoNc/fr1k/TZRJSwBb3aYtW0jsDbLmomIyIgKgF03NotWg+NiGyY2TkY0pbdWNhDmqXEZE6NdSM/Pz8VmEhuhwQXM2bMQJ06dVSWa/bs2V95/rp162IlnEmFMsmSbdGihdmfTUSJ41kgPy6vGIGqQ2fhztlAlQC6dOkx/HrgPPZP7qf6nRARvVEOhqVJUFGuXDnMnj1b3ZZMWGkDL7Mj3t7er329BCSjRo1SLWvfeuut1z6fORhEbyZmAqgwvOUM36FNUbe0dRsnESUFczDsKAcjJulBL0dSyUzE8ePHVWOW6AHpdOr24cOHE/UeixYtwmeffRZvcCGlUuWExDyIKOl61PoYfy4ZiNS5UkN+O5EKoH1HrUUzn4VaD42IbIjZAYbMMIwdO1ZFMPnz51eHVA375ptvXim69TpSR0Mqj8XtFCe3pSrZ60iuhizTSOJpfHx8fNRYjYfMjhDRmyeAnl7gjVoNi0RXAD178A7e6zAe1wOs20CJiBw0wBg+fLhazpg4cSJOnjypDunW5uvri5EjRyI5yeyF7O8tX758vM8ZOnSomsoxHrdu3UrWMRI5su96fIafZ3aCU4aodK7Ix+Go2X0OBv+0TuuhEZG9BRhLly7F999/j169eqFkyZLq+Pzzz7Fw4UJVgMsc0oBFOr/FrZMut3PmzJnga58/f45Vq1ahS5cuCT7Pzc1NrRPFPIjIshVALy0fAY/3s0a3gF/vdxplek1GcAgrgBKlVGYHGIGBgShSpMgr98t98pg5JPO8bNmyquy4kSyzyG1p8pKQNWvWqPyKdu3amfWZRGQd28f2wddf1YMhjU5tZ31+6wVKe03Ekr2HtB4aEdlDgCFbQo07PmKS++Qxc8kWVZn9kJmRCxcuqJkRmZ3o1KmTely6x8kyh6nlkSZNmqjKokRkG9p+VB7nlnsjXf60KgFUdpqMn7Yd1YfN0npoRGTrdTAmT56silpJL3rjLIPs+JDchi1bzC+806pVKwQEBKitppLYKTU2tm7dGp34efPmTbWzJCapkXHgwAFs377d7M8jIuuSmckTcwZjxIqNWLXmpFoyuX06EIXajMMPo1uhcuGCWg+RyK74+vqiefPmyJUr1xu/l3Q8r1SpksmVCJuog3H37l1VffPixYvq9nvvvafyMCzxzVsb62AQJZ/bjwNR+8t5CA8IU8smemcnlPs4L1YOZD8TSh72XgfjypUrKtdRikqmSZNG/SKfUOXqli1bqgKW8enRowfSpk2Lb7/91up1MDQvtJXcGGAQJb+23y7B0b03oIs0qKUTl6yp8NuU7vDIllXroZGDs/cAY9q0aarl+i+//KJuh4SEqOtXTFLuQdIKTpw4oXIYE0pXkABFCllevXrV6gGGS2LLgxcvXlwtVcjXCZFIi4gopuUDOuJgPX90GuMHp6cRiHwUprazNmtWApO9kqd1NJE9+uWXX9ChQ4fo2zKLIUfM4KJt27aJCi5EjRo11E5NqSEl13VrStQMhgQWkh8hvUHka+k5Yuplcr98s7aMMxhE2qo5whc3Tj9Wxbnkp0ja3Gnw+7TeqngXkaXZ8wzGo0ePVOqB5DjGLUgp5HorOyl37NiRqODCqFmzZvD09MSwYcO0n8GQD8qWLVv010RESbVzXF/4HfoDI2ZshdOLSITcCYFnh+n4vGMlDGz4X9sAImuQX45DwsI1+ew0qVzNagq6adMmFQgkFFzIZgdTwcWLFy9UfqQ0Ap06dWqsxxo3boy5c+fGG2BYSqICDCkHbnTjxg2VgeriEvulEREROHToUKznEhGZ0qpSOTT1LIWPBs9C4NVg6EL1mLvgAPx2nWJ3VrIqCS4K94k/wdGaLs0egLRuif+7LfkS9erVMxlceHl5RQcXxg7nMY0fPx4ffPCByfeV95ScDZkhkYKXNlMHo1q1aiYLasl0iTxGRJQYEkQcnfElenSrBL2bDk4G4MmVYBRrNxHL9h3RenhEmvPw8Hhl1cAYXGzbtk2VizAVXPj7+6tdnp988onJ95X3lB5icthUHQyZXjI1xSNbaBLTLp2IKKYvG9VG1+qV8PGg2Xhx5yWcXugxZspWLNxyFL9P/ELr4ZGDkWUKmUnQ6rPNIUsZUv9CKlxL/qMEF1J80hhclClTxuTrvvzyS0yZMkWtKpiyceNGNYsRdyXC0hL97pIUIiS46Nixo+rxYSTftOwukaUTIiJzSYLnX/O9VZO0devOqOJc984+QaHPvsG3XzVG/bLcnUaWIdcwc5YptFSxYkX1S/3Ro0dRoUIFFVxs2LABa9euhbu7+ytdxyVXUvI2ChUqpI6EAozkaE6a6ABDskaFfLPp06ePtU1Gpjplradbt27WGSURpQiyZbVfvaqo/dU8hD8Mg1NwJPqPWYfZZfbjtzG9tR4eUbLS6XRo0KCB2qoqX69YsULdbyovQwKnoKAgHDlyRDUClX5dwcHBCA8PV7s9pFq2cXlEqmHXrVvX6uM3u9DWmDFj1PSLvS6HcJsqkX3oPnc5dm+7Al3Evz+i3nbBolEt8VGRQloPjeyIPW9TNc42eHt74/z58zCXdDiXehcxd5HMnDlTJY/KMkt8LLVN1ewkz9GjR9ttcEFE9mNBr7b4bW4POGdxVfUy8DQCnYesROPx87UeGlGyqVWrltq9KSXDLRWwNGrUCMkhSaXCZf1n9erVqhFZWFhYrMekmpgt4wwGkX2WGj+29wacIv/9cZXBBT+MYuM0cvwZDC1oNoMxa9YstX9WCn+cPHkS5cuXVy3Tr127Fu+WGCKiNy01vnZWJ+gy/ZuF/08EOg5egSaczSCyWWYHGN999x0WLFig2sdKcufgwYNVmdJ+/fq90oCFiMhSSuXPh4s/DUeZqnlhcHZSsxnnD99D4bbjcPCSv9bDI6I3DTBkWcS4HVV2kjx79kx9LYU/Vq5cae7bERGZxe/LLlg5vSOcMkbNZhj+nc1oOG6e1kMjojcJMHLmzBldyTNfvnxqS4yQ9ZoU1vmdiDTiWSA/Li0bjlJV8kTPZlw6ch+F2ozDnjOXtB4eESUlwKhevbrKQhWSizFgwACV5dqqVSs0bdrUGmMkIjJpzeCu0bkZxp0m3YevRJ1Rs7UeGlGKZ/YuEilZKoexxKgU9JBqYQULFkSPHj1svkkRd5EQOe5Ok6O/3/ivbkZ6Z0z9shEalU1cC2tyTNxFot0uErMDDMnByJs37yv9SORtpGe9LJvYMgYYRI7r4p37aDpsESIeh0N+Qhl0QK6imbBjbC+b/+WHrIMBhh1tU5UPDAgIeOV+ycuQx4iItFIkd05cWDoc1eoXhN7VCU56qJ4mxdpNwqLdB7QeHlGKorNUN1Wpec7okIhspQro3u/7wjV7KpWb4fQiEhO/3QnPflMQHBK7OCARadzsbODAgepPCS6kC1vatGljdVOVbm+m+tK/zpw5c1RbWekKV6pUKVVfQ4p3xUeauQwfPhzr1q1Tsyb58+fHjBkzTDZ/IaKUK0+WzDi3eBi8l63H2nWnoQsz4Om15yjdbiLatXofX7dsoPUQiRxaogMMqdppnME4c+ZMrPVM+VqCA2mCZg4/Pz8VuMybN0+1opVAoU6dOqrTW/bs2V95vpQllx0r8piUK8+dO7eq0Z4xY0azPpeIUo6J7ZrCu0ktVPvqOwTffgFdqB7Lf/wTa7efwdZJPVQgQkSWZ3aSp2xNlW5slkiQlKCiXLlymD07akuZ7E6RBNK+ffuq7nFxSSAisx0XL16Eq+u/JYPNxCRPopRr5ubdmL3kAJxC9Oq23sUJlat7YGm/DloPjazEEZI8fX190bx5c+TKleuN32vx4sWqWGaRIkVsL8lTZhkiIiJeuV+WK+SDE0tmI44fP46aNWv+NxidTt0+fPiwyddI/Y2KFSuid+/eqhdK8eLFMWHCBLVEE5/Q0FA1rpgHEaVMX9SvjnPLvZGjaEa1w0S2tB7a/jcKtxuP/Rcvaz08oldIF9UhQ4YgU6ZM6ra0WpdUhfgOqUmVEElnmD8/eXr4mB1gfPbZZ6r2RVzSXVUeS6xHjx6pwEAChZjktuRjmCIN1WRpRF4nJ1lyQaZNm4Zx48bF+zk+Pj4q2jIeMkNCRCmXLOnun9wfM0Y3A952idrOGhSOzoNXoPqwWa90iCbS0i+//KJSA6Q1h6hWrRru3bsX67h9+7Z6jjQeHTZsWILv17hx4+himTYXYEj0I99gXFWrVlWPWZMsoUj+hTRbK1u2rIrUJOFTlk7iM3ToUDWVYzykVgcRUf2yJXF5xQiU+DC3WiqRLa23TweqLa1ztu7VenhE0QFGo0aNom782wNMWnYYj2zZsmHQoEE4ceIEdu3apfIhE1KjRg08ePAAZ8+ehc0kecZccjC1RBIeHo6QkJBEv0/WrFnh7OysvtGY5LacNFPc3d1V7oW8zui9995TMx7yW4epQjpubm7qICIy5WfvbvC/dx+Nhy9G+MMwtaV1xpy9WLD+KLZN7IacmZgE6kgk7TAkNFyTz07j5mqyzENCM/3S72vNmjUmH5fZ/Hbt2mHnzp2JCi6EXA9r166tZjEkzcCmAgzZQmps1x6TzCLIrEJiSTAgz5eT0qRJk+gZCrndp08fk6+pXLkyVqxYoZ4n+Rri8uXLKvBglT4iSqqC7jlxfvEwDF++AX6ypTVUj5A7Ifiwsy8qVfXAj18wCdRRSHBR+tMJmnz2qbXDkDZ14q9VmzZtgqen5yupBDGDi+3bt78SXHh4eKgETLlOSu7Gnj17XlkmmTt37muXU5I9wJB8B0nE/Ouvv9RUi5Bv7o8//lDfqDlki2qHDh3UCZTARRJInz9/rnaqiPbt26utqJJHIXr16qV2nHzxxRdqp4m/v79K8uzXr5+53wYR0SvGt22Coc3qoeYwXzy++gy6cAOO7PgbhY6Nw7cDG6llFaLksmXLFpM1niS48PLyig4uTNWgkh5h6dKlM/m+8p5ynZUZEllNsJkAQ2YRZJfH5MmTVWKnrAeVLFkSixYtUg3PzCE5FFJ2fNSoUWqZQ07S1q1bo6M16XtinKkQkqC5bds21cFVPlOCDwk2JMOWiMgS0qVJhSPfDsLG43/hy2m/qg6t+CcC/cesw9h3tmOXTz/1HLJPskwhMwlafbY5ZCZCtouaCi7kWihLI0kpcCnvKfWjrF1Dyuw6GPaOdTCIyBytpy/GH/tvqdkMoXfToVGDopje6VOth0YOXgfj4MGDqv7F3bt31S/bElzIzL78Ii7BRZkyZUy+Tr7XzJkzq9f0798fbdu2jfX4iBEjcP36dSxbtsy26mCIq1evqgG2adMGDx8+VPf99ttvOHfuXFLejojIZq0c2BkHFvdFmjxpYHCCys/49eezKNKetTPIuipWrKiSUmWHpuQeSnCxYcMGFRhI7qHM/Mc8jDWhDhw4oOpMSSKnpBGcPn061vvK/ZKHYW1mBxi///47SpQoob7hn3/+WTU5E5KTMXr0aGuMkYhIU7KT5K95Q/DVFzVgeMtZ1c7QB0bVzqg0aDprZ5BV6HQ6NGjQQG1VlTxH2eTw4sULlUMhAUbMQ6p8Sg6jkPQBIffLc2ULq5HMTEg7jrp161p//Oa+QEp4S6Lnjh07Yu3cqF69utpOQ0TkqLrX/Aj+fiNRtKJ7dO2MR5eeomjriRiw2PRWQqI3YSyMJa01ZDYjvkNmOGTJQoKMZ8+eqdfKBMDu3btRrFix6PeT95K6VenTp4fNBRjS6Kxp06av3C8FsCQjlYjI0W0Y3gM7F/aGm3vq6GWTTevOqZLjW09Zv4ARpRy1atVSTT2lZHhiSC2pDz/8UG1b/eCDD9SyivT8ihlgxCzcZU1m7yKRrFMpTSrJH3G7rRqnZYiIHJ1Htqw4s9Ab83f8jqmL9sEpOFKVHO87ai0yePyGnRN6IWM82wSJEkt2ahqXPhLjnXfeUSkL8ZFtrcklSb1IZFuoJJRIRTKZlpFMV2nVLpESEVFK0qPWx/BfNRIlP8oDvWvUssnTa8/h6TUNbb9dovXwiDRjdoAhGanS5lVqUsj6TtGiRVGlShXV/lV2lhARpURrh3TF4aWD8Fa+tFHLJuEG/LHrOgp99g17m1CKlOQ6GFIES5qlSJAhe3HNLbKlFdbBICJrW3/0BLxnbYH+n4iobq3SAyKHG1aN9kLxfHm0Hl6KYs91MLRiqToYb1Roy/hSc5q3aI0BBhElly8Wr8bmzRdVEqgwODshR6G3sXVsb1YDTSYMMMynaaEtKQsuXdjkg+WQr7///vukvBURkcOa2bklzq/0Rq4SmVVw4RRpwMML/6B0Wx908v1R6+GlKCmsaLVNnCuzAwzpGyL9Pxo2bKhayMohX0t/EHmMiIj+I/WC9vr0w6/f9YCbu1tUfkaYAQe3XVP5GTM379Z6iA7N2dlZ/cliaIlnPFfGc5dUZi+RZMuWDbNmzULr1q1j3b9y5UrV4dTWa2FwiYSItLRs3xGMnbcThqf/5We4ZE2FBd6f4qMihbQensORS5zkDIaHh6tqlzEbaNKrZGeo9D5xdXVFvnz5XkmBsGoOhtTBkJKlcZM6L1++rFquBwUFwZYxwCAim8nP2HIRupf/5mfogPR502LLuK6qNDlZ9jdyySmQiye9ngRhkn8Rs1p3sgQYMkshkc306dNj3S91MEJCQjBnzhzYMgYYRGRLF76G4xbg6unH0EX8263VxQkexTJjy+geJn/AU9JIcMFlksSRv3fxzfRYPcD48ccfVR0MKUMqpPGZTEFJoS0JPoziBiG2gAEGEdma+08CUX/kIjy9+VwV6jK2hf+oqgd+6MsChmQ7rBpgVKtWLVHPk3UbabJiaxhgEJGtOnjJH90mrkF4QJjKzxDSvbVt8zL4umUDjUdHhOSrg2GPGGAQka1btPsAJn2/N1YiqC6DC0b2qIl2VaJmjom0YNU6GAEBAQl2WiUiojfTpfqHuLxiBJp/VgqGtM5RQcY/ERgzeSuKdpyAPWcuaT1EotcyO8AoUaIENm/e/Mr9U6dOVbtIiIjIMia2awr/1SNRtno+lZMhgUbEozB0H7YSJbtPxNmbt7UeIpHlAoyBAweiefPm6NWrl9o1cufOHdSoUQOTJ0/GihUrzH07IiJ6jZUDO6uKoPnLZFW7TJwMwMu7L9G0z/fw7DsFtx8Haj1EIsvkYJw8eRJeXl4IDQ1FYGAgKlSogMWLFyNnzpywdczBICJ7FhQcjHqjFyDgyjNVelzonZ2QvWB6bPm6OzKmS6f1EMmBPbV2L5J3331X9R+5fv26+rBWrVq9UXAhtTM8PDxUXxMJVo4dOxbvc5csWaJ2qMQ82MCGiFIKCSAOTRuIHd/3RjppDa8DdJEGPLr4FJ7tpqH6sFkIDmG9B9Ke2QHGwYMHUbJkSfj7++P06dOYO3euqo0hQcaTJ0/MHoCfn59adhk9ejROnDiBUqVKoU6dOnj48GG8r5Go6d69e9HHjRs3zP5cIiJ75pEtK058NxhrfTsjda7UUT1OIgy4fToQpdv4oPao2SwsRfa1ROLm5qYam33zzTfRRbWuXr2Kdu3a4datW7h927ykI5mxKFeuHGbPnh1dbU2KeEnQ4u3tbXIGo3///kkuSc4lEiJyRPsvXkbPyWsRJjU0/v2prk/lhMKls2O9dxdWBSXbXyLZvn07Jk6cGKtiZ4ECBdTMRo8ePcx6L4mujx8/jpo1a/43IJ1O3T58+HC8rwsODkb+/PlVINK4cWOcO3cu3udKnoickJgHEZGjkUZp5xYPw4yvm8E5a6rorq3+xx6g6Gc+aDhuHmc0KFmZHWB8/PHHpt9Ip8PIkSPNei/pvBoZGYkcOXLEul9u379/3+RrChcurBJKf/nlFyxbtkzNeFSqVCnemRMfHx8VbRkPCUqIiBxV/bIlcWHJMEwY3gDOmV2jinSFGXDpyH0UbT0RjcfPZ6BBthVg1KtXT02JGMksRsxlisePH6No0aKwtooVK6qeJ6VLl1bBzrp161QL+fnz55t8/tChQ9W4jYcs4xAROboWH3jiwo/D8fWQev8FGqF6XDh8T81o1B87l4EG2UaAsW3bNrXcYDRhwgS1RdUoIiICly6ZV10ua9ascHZ2xoMHD2LdL7cTuytFlmrKlCmDK1euxJszIutEMQ8iopSi7UflowMNXYwZDePSSR0mg5LWAUbcXFBLtDCRpKOyZcti165d0ffJkofclpmKxJAlFilR7u7u/sbjISJy5EDjonFGI4trdI7G3yceoWgrH1Qbyu2tZFlJqoNhSbJFdeHChVi6dCkuXLigKoQ+f/4cnTp1Uo/LcogscxiNHTtWJZpeu3ZNbWuV3SuyTbVr164afhdERHY0o7F0OCaPaPRfMmi4AXfOBKJ0ax9U+nI6Ap4Gaz1McgAuiX2isahV3PvelNTPkAZqo0aNUomdkluxdevW6MTPmzdvqgRSI6m10a1bN/XcTJkyqRmQQ4cOJUv+BxGRo2ha4X11bD5+GoPnbFLbW6WOhhTsqug1DRnzpcXKYV4o6G77FZrJzutgyEX+k08+UTkN4tdff0X16tXx1ltvqduSnyGBgSxZ2DLWwSAietXBS/7oOfVnvHzwEk76qPukSmianKkxd1BzVC5cUOshkp1dQxMdYBiXLF7nhx9+gC1jgEFEFD/p0Np+4go8uxMS3etEllFcs6TC6O610KpSOa2HSI4WYDgKBhhERK8nHVpbjP8BAdeC1dKJUDtQMrqgy6eeGNykrtZDJA0wwEgAAwwiosSTnSVNxs3H9QuBateJUP9N54xqH7+DBb3aaj1ESkYMMBLAAIOIyHxSK8Nr1k84cfQOnEL0/5UWcNOhUImsWD2kK9KlYb8TR/eUAUb8GGAQEb2ZgT+sxabtF2F4FgHjXkK9ixOy5H8Ly7zbceeJA3vKACN+DDCIiCxjwc79+PanfYgIDI/u4Co7T9yyueGb7nXUNlhyLAwwEsAAg4jI8q3i+8xYjxf3Xv6380QuMBlc0KRuUUz2aqb1EMlCGGAkgAEGEZF13H8SiJYTf8Jd/6DohFChT61D4ZLZ4PdVF+Zp2DkGGAlggEFEZP2E0E5zVuDYkVvA88hYeRpv506DBQNbwbNAfo1HSUnBACMBDDCIiJLP9F93YsGao4h8EiNPwwlwzuSKzs3Ksp6GnWGAkQAGGEREye+Y/zX0nLEWT++ExCrchbQ6FCmZHSsHdebyiR1ggJEABhhERNoW7mo1ZREunwmIXU/DxQnp3dNg+ueNUa1EYU3HSPFjgJEABhhERLZh7JrNWPHrqVeWT3Rvu6B+zSKY3ulTrYdIcTDASAADDCIi21s++Xzmzwi6/SJ6+cRYJTTnO+mxbLAXPLJl1XSMFIUBRgIYYBAR2e7ukw6+y/DnH3eA4P92n0jxLpfMqdClmSe+bFRb41GmbE8ZYMSPAQYRke1btu8IJv64B6EBYdHFu4Q+jQ4ehTJh2ZdtkTNTZk3HmBI9ZYARPwYYRET2I+BpMNpMWYLrFwNjJYXKrIZrllTo1bIi+n5STdMxpiRPGWDEjwEGEZF9mrpxOxat+xMRgWFw+jfWUBewNDrkK5gJy7/irIa1McBIAAMMIiL7dvtxINpO+Ql3rvwD3cvYsxqSq9G2QWmM+LSepmN0VAwwEsAAg4jIcUzesBU/bDgRa1bDuAMl+//SYUG/liieL4+WQ3QoDDASwACDiMgxG621m7ocN/yfAC/0/+1AkboaGVzwceX/YXaXFkiVitVCk+saqoMNmDNnDjw8PJA6dWpUqFABx44dS9TrVq1aBScnJzRp0sTqYyQiItsluRc7x/eF/+pR+Kp/DaTK6Qa9s5Mq4GUIisDezf4o2soHpXtNwvqjJ7Qeboqg+QyGn58f2rdvj3nz5qngYsaMGVizZg0uXbqE7Nmzx/u669ev48MPP8Q777yDzJkzY8OGDYn6PM5gEBGlnLLkHWYuxZm/7sPwLEZdDfnPW85qu+tPA9swMdRRl0gkqChXrhxmz56tbuv1euTNmxd9+/aFt7e3yddERkaiSpUq6Ny5M/bv34+goCAGGEREFK89Zy7hq/kbEXT3BXRhhliJoc4ZXVGnakHM7NxS0zHaA7tZIpGqbcePH0fNmjX/G5BOp24fPnw43teNHTtWzW506dLltZ8RGhqqTkjMg4iIUhZpoPbn7K9wZd1oNGlVEs5ZXFVwIYmh+sBw/LbuPN5tOgale06C36E/tB6uQ9A0wHj06JGajciRI0es++X2/fv3Tb7mwIEDWLRoERYuXJioz/Dx8VHRlvGQ2REiIkq5Jns1w4Wlw7F/aT8UKJsNhrec1bKJLtyAF7dDMGLCZhRsMRYfe8/ExTumr0X0ejaR5JlYz549g5eXlwousmZNXOOboUOHqqkc43Hr1i2rj5OIiGyf5F78NqY3/P1Gwnfcp3jb4y3oUzmpXA2pGnrv7BM07DkPhdqMQ4vJ36ucDko8F2hIggRnZ2c8ePAg1v1yO2fOnK88/+rVqyq5s2HDhtH3Sc6GcHFxUYmhBQoUiPUaNzc3dRAREcWnbuniqDu7eHQb+VVb/kJ4YHhUH5SnEfhr322UOegDl0yuaFzzPUxs11TrIds8m0jyLF++PHx9faMDhnz58qFPnz6vJHm+fPkSV65ciXXfiBEj1MzGzJkzUahQodfucWaSJxERJYbMWHSZ8xNOnrwHw9MIteXVSO/qhLeyu6F3i8roXvMjpBRP7WkXiWxT7dChA+bPn68CDdmmunr1aly8eFHlYsgW1ty5c6tcClM6duzIXSRERGRV/vfuo/us1bh99R/gRewtr4bUOmTOnRZjO9VVMyGO7KkZ11BNl0hEq1atEBAQgFGjRqnEztKlS2Pr1q3RiZ83b95UO0uIiIi0UtA9J/b49FNfbz5+GqOXbkPQnRDoQvVweqlH0NVg9B2xFki7Hu7/exu+nzdFqfz5kJJpPoOR3DiDQUREljJn617MX3cELwJC1S4UxChR7vSWM/5XKBPm9/0MHtkStzHB1tnVEklyY4BBRETW4L1sPTbuuvBfcmjMYCO9C4oWy4aFfdsi29vpYK8YYCSAAQYREVm7iOTn36/GgSM3EBkUHqvLqxT30r3tgpIlc2Lh558hYzr7CjYYYCSAAQYRESWXoOBgdPtuFU6fvg+97ESJE2w4Z3BFmTLuWNirHdKlsf1OrwwwEsAAg4iItBDwNBhdfZfjwrkAGJ7F3vZqDDbKvp8b83u2sdlggwFGAhhgEBGR1m4/DkT32X64culxvMGGzGzM7d7SppZRGGAkgAEGERHZkusBj9Brth+uXn4CQ/CrwYbubVeUKJEDc3t9pnmCKAOMBDDAICIiew02nNK7oPB7WTG3V0vkyZI52cfHACMBDDCIiMhellF6zPGDvyyjxClVrra+pnOBR8GMmNXjUxTJ/Wr/LmtggJEABhhERGRv7j8JRK95a3H+3MNXd6NI3fK0znDPnx4+XeqjcuGCVhsHA4wEMMAgIiJ73/raa8FqnDx1D5H/RMQu6iX/SaNDplxpMajVx2hVqZxFP5sBRgIYYBARkSMV9eq3aC32Hb2OsKBw6CJiBxsGNx2q1yyABb3aprxmZ0RERJQ0qVKlwrxebYBeUcHGmDVbsHHPBYQEhkEXZoBTqB75smWCFjiDQURE5KCN2JZtP47D0wdZ7D25RJIABhhERETWv4bqkvgZRERERPFigEFEREQWxwCDiIiILI4BBhEREVkcAwwiIiKyOAYYREREZHEMMIiIiMjiUlwlT2PZD9nLS0RERIlnvHYmpoRWigswnj17pv7Mmzev1kMhIiKy22upFNxKSIqr5KnX63H37l2kT58eTk7S49YyEZ0ELLdu3WJ1UAvhObU8nlPL4vm0PJ5T2z+fEjJIcJErVy7odAlnWaS4GQw5IXny5LHKe8v/QP6jsCyeU8vjObUsnk/L4zm17fP5upkLIyZ5EhERkcUxwCAiIiKLY4BhAW5ubhg9erT6kyyD59TyeE4ti+fT8nhOHet8prgkTyIiIrI+zmAQERGRxTHAICIiIotjgEFEREQWxwCDiIiILI4BRiLNmTMHHh4eSJ06NSpUqIBjx44l+Pw1a9agSJEi6vklSpTAli1bkm2sjnhOFy5ciI8++giZMmVSR82aNV/7/yClMffvqNGqVatUVdsmTZpYfYyOfk6DgoLQu3dvuLu7q8z9QoUK8d/+G5zPGTNmoHDhwkiTJo2qSDlgwAC8fPky2cZr6/bt24eGDRuqqpryb3jDhg2vfc3evXvx/vvvq7+f7777LpYsWWK9AcouEkrYqlWrDKlSpTIsXrzYcO7cOUO3bt0MGTNmNDx48MDk8w8ePGhwdnY2TJ482XD+/HnDiBEjDK6uroYzZ84k+9gd5Zy2adPGMGfOHMPJkycNFy5cMHTs2NGQIUMGw+3bt5N97I5wPo3+/vtvQ+7cuQ0fffSRoXHjxsk2Xkc8p6GhoQZPT09DvXr1DAcOHFDndu/evYZTp04l+9gd4XwuX77c4Obmpv6Uc7lt2zaDu7u7YcCAAck+dlu1ZcsWw/Dhww3r1q2T3aCG9evXJ/j8a9euGdKmTWsYOHCgujb5+vqqa9XWrVutMj4GGIlQvnx5Q+/evaNvR0ZGGnLlymXw8fEx+fyWLVsa6tevH+u+ChUqGHr06GH1sTrqOY0rIiLCkD59esPSpUutOErHPp9yDitVqmT4/vvvDR06dGCA8YbndO7cuYZ33nnHEBYWloyjdNzzKc+tXr16rPvkwli5cmWrj9UeIREBxuDBgw3FihWLdV+rVq0MderUscqYuETyGmFhYTh+/Liako/Zz0RuHz582ORr5P6Yzxd16tSJ9/kpTVLOaVwvXrxAeHg4MmfOjJQuqedz7NixyJ49O7p06ZJMI3Xsc7px40ZUrFhRLZHkyJEDxYsXx4QJExAZGYmULinns1KlSuo1xmWUa9euqeWmevXqJdu4Hc3hZL42pbhmZ+Z69OiR+gEhPzBiktsXL140+Zr79++bfL7cT0k7p3ENGTJErTvG/ceSEiXlfB44cACLFi3CqVOnkmmUjn9O5QK4e/dutG3bVl0Ir1y5gs8//1wFwlJNMSVLyvls06aNet2HH36oOnhGRESgZ8+eGDZsWDKN2vHcj+faJF1XQ0JCVK6LJXEGg+zOxIkTVWLi+vXrVbIYmUdaLXt5eanE2axZs2o9HIeh1+vVjNCCBQtQtmxZtGrVCsOHD8e8efO0HppdkmREmQH67rvvcOLECaxbtw6bN2/GN998o/XQKJE4g/Ea8gPY2dkZDx48iHW/3M6ZM6fJ18j95jw/pUnKOTWaOnWqCjB27tyJkiVLWnmkjnk+r169iuvXr6vs85gXR+Hi4oJLly6hQIECSMmS8ndUdo64urqq1xm999576rdGWSJIlSoVUqqknM+RI0eqQLhr167qtuzGe/78Obp3764CN1liIfPEd22SVu6Wnr0Q/D/0GvJDQX4b2bVrV6wfxnJb1ltNkftjPl/s2LEj3uenNEk5p2Ly5Mnqt5etW7fC09MzmUbreOdTtk+fOXNGLY8Yj0aNGqFatWrqa9kOmNIl5e9o5cqV1bKIMVgTly9fVoFHSg4ukno+Jc8qbhBhDN7YQitpkv3aZJXUUQfcXiXbpZYsWaK29nTv3l1tr7p//7563MvLy+Dt7R1rm6qLi4th6tSpakvl6NGjuU31Dc/pxIkT1Ra3tWvXGu7duxd9PHv2TMPvwn7PZ1zcRfLm5/TmzZtqZ1OfPn0Mly5dMmzatMmQPXt2w7hx4zT8Luz3fMrPTTmfK1euVNsrt2/fbihQoIDapUdR5OefbN2XQy7n06dPV1/fuHFDPS7nU85r3G2qX331lbo2ydZ/blO1AbJfOF++fOoiJ9utjhw5Ev3Yxx9/rH5Ax7R69WpDoUKF1PNlW9DmzZs1GLXjnNP8+fOrf0BxD/khREn7OxoTAwzLnNNDhw6pLelyIZUtq+PHj1fbgcn88xkeHm74+uuvVVCROnVqQ968eQ2ff/654cmTJxqN3vbs2bPH5M9F43mUP+W8xn1N6dKl1f8D+Tv6ww8/WG18bNdOREREFsccDCIiIrI4BhhERERkcQwwiIiIyOIYYBAREZHFMcAgIiIii2OAQURERBbHAIOIiIgsjgEGESW7jh07okmTJloPg4isiM3OiMiinJycEnxcWpfPnDmT/SSIHBwDDCKyqHv37kV/7efnh1GjRqkOrUbp0qVTBxE5Ni6REJHFW0IbjwwZMqgZjZj3SXARd4mkatWq6Nu3L/r3749MmTIhR44cWLhwoWrP3alTJ6RPnx7vvvsufvvtt1ifdfbsWXzyySfqPeU10t770aNHGnzXRBQXAwwisglLly5F1qxZcezYMRVs9OrVCy1atEClSpVw4sQJ1K5dWwUQ0sZbBAUFoXr16ihTpgz+/PNPbN26FQ8ePEDLli21/laIiAEGEdmKUqVKYcSIEShYsCCGDh2K1KlTq4CjW7du6j5Zann8+DFOnz6tnj979mwVXEyYMAFFihRRXy9evBh79uzB5cuXtf52iFI85mAQkU0oWbJk9NfOzs7IkiULSpQoEX2fLIGIhw8fqj//+usvFUyYyue4evUqChUqlCzjJiLTGGAQkU1wdXWNdVtyN2LeZ9ydotfr1Z/BwcFo2LAhJk2a9Mp7ubu7W328RJQwBhhEZJfef/99/Pzzz/Dw8ICLC3+UEdka5mAQkV3q3bs3AgMD0bp1a/zxxx9qWWTbtm1q10lkZKTWwyNK8RhgEJFdypUrFw4ePKiCCdlhIvkass01Y8aM0On4o41Ia04GltMjIiIiC2OYT0RERBbHAIOIiIgsjgEGERERWRwDDCIiIrI4BhhERERkcQwwiIiIyOIYYBAREZHFMcAgIiIii2OAQURERBbHAIOIiIgsjgEGERERWRwDDCIiIoKl/R+UFYoomdq29gAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] }, "metadata": {}, "output_type": "display_data" @@ -207,17 +208,19 @@ "cell_type": "code", "execution_count": 8, "metadata": { - "collapsed": false, "ExecuteTime": { "end_time": "2024-10-23T02:59:58.165061Z", "start_time": "2024-10-23T02:59:57.214455Z" - } + }, + "collapsed": false }, "outputs": [ { "data": { - "text/plain": "
", - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAdEAAAL0CAYAAABTSg2DAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAABk7klEQVR4nO3dfVwU9d7/8ffuIjempIiiZJnHTAVJTUo7YaapmWkq2f1JPdbPOop1nU7lAS3RTMLurkzKrCwty4633andmNVllimFYiSRlpmUYmregCC7+/uj2OPKjbvDDCz4ej4ePXJnvvv9fmZ2mffO7Mysze12uwUAAPxmr+0CAACoqwhRAAAMIkQBADCIEAUAwCBCFAAAgwhRAAAMIkQBADCIEAUAwKCg2i4gULhcLpWWlsput8tms9V2OQCAWuB2u+VyuRQUFCS7/dT7mYTon0pLS5WdnV3bZQAAAkBcXJyCg4NP2Y4Q/VPZJ464uDg5HI5q9+d0OpWdnW1afwCA8sze1pb158teqESIepQdwnU4HKaGntn9AQDKM3tb6+vXegF9YlFxcbFSUlIUHx+vhIQEzZs3r9K2b731lq688kpdcMEFuvHGG7Vly5YarBQAcDoK6BCdOXOmtm7dqvnz52vKlCmaPXu2Vq9eXa7dpk2bNGnSJI0bN07vvvuuunXrpv/3//6fjh49WgtVAwBOFwEbooWFhVq8eLEmTZqk2NhY9e/fX7fffrsWLlxYrm1BQYHGjRunoUOH6uyzz9b48eN18OBBbd++vRYqBwCcLgL2O9Ft27aptLRU3bp180zr3r275syZI5fL5fWl71VXXeX597Fjx/Tyyy+rWbNmateuXY3WfLKwsLBaHR8AYK2ADdGCggI1bdrU6xTjyMhIFRcX6+DBg4qIiCj3nM8//1xjxoyR2+3WY489pjPOOMPvcZ1OZ7XqttltstvscjgciomJkSS53C65Xfz2OQCYrWybXd1t98n9+SpgQ7SoqKjcNTplj0tKSip8Tvv27bVs2TKtXbtW//73v9W6dWt17drVr3Grc61oWFiYYmJitCT7PRUc3S9Jan5GhEbEXamc3BwVFRUZ7hsAULnaus4/YEM0JCSkXFiWPQ4NDa3wOZGRkYqMjFSnTp20efNmLVq0yO8QNeNao4Kj+/XL4QKvaR06dKhWnwCA8qy6TtRXARuiUVFROnDggEpLSxUU9EeZBQUFCg0NVXh4uFfbLVu2yOFwKDY21jOtXbt2hk4ssuq6Tq4VBQDr1NY1+QF7dm6nTp0UFBSkrKwsz7TMzEzFxcWVu5PEkiVL9MQTT3hN++abb/SXv/ylJkoFAJymAjZEw8LCNGzYMKWmpmrLli368MMPNW/ePI0cOVLSH3ulx44dkyTdcMMN+uKLLzR//nz9+OOPmjVrlrZs2aLRo0fX4hIAAOq7gA1RSUpOTlZsbKxGjRqlqVOnasKECRowYIAkKSEhQStXrpQkxcbGavbs2VqyZImuueYaffLJJ3rxxRcVFRVVm+UDAOq5gP1OVPpjbzQ9PV3p6enl5uXm5no97tOnj/r06VNTpQEAENh7ogAABDJCFAAAgwhRAAAMIkQBADCIEAUAwCBCFAAAgwhRAAAMIkQBADCIEAUAwCBCFAAAgwhRAAAMIkQBADCIEAUAwCBCFAAAgwhRAAAMIkQBADCIEAUAwCBCFAAAgwhRAAAMIkQBADCIEAUAwCBCFAAAgwhRAAAMIkQBADCIEAUAwCBCFAAAgwhRAAAMIkQBADCIEAUAwCBCFAAAgwhRAAAMsiRE+/Tpo8cee0w5OTlWdA8AQECwJET//e9/a/fu3brllls0cOBAzZo1S9u3b7diKAAAak2QFZ1eeeWVuvLKK3Xs2DGtXbtW77//vm6++WZFRUVp8ODBGjRokFq3bm3F0AAA1BhLvxMNDQ3VlVdeqeuvv16DBw/Wzp079fLLL2vw4MEaM2aMfvjhByuHBwDAUpaEqMvl0vr16/Xggw8qISFB//M//6Pi4mLNmTNH69at07p169S0aVP94x//qLKf4uJipaSkKD4+XgkJCZo3b16lbT/++GMNHTpU3bp105AhQ7RmzRqzFwsAAC+WHM695JJLVFJSossvv1zTpk3TZZddpuDgYM/8Ro0aqX///tq8eXOV/cycOVNbt27V/PnzlZ+fr4kTJyo6OloDBw70ardt2zYlJSXp/vvvV+/evbVu3TrdfffdWrJkiTp27GjFIgIAYE2ITp48WVdccYUaNmxYbt7+/fsVERGhgQMHlgvDExUWFmrx4sV6/vnnFRsbq9jYWOXl5WnhwoXlnvfOO++oZ8+eGjlypCSpTZs2+uijj7Rq1SpCFABgGUsO595///06duxYuem7d+/WFVdc4VMf27ZtU2lpqbp16+aZ1r17d23evFkul8ur7fDhw3XvvfeW6+Pw4cN+Vg4AgO9M2xNdsWKFli1bJklyu90aP368GjRo4NVm7969at68uU/9FRQUqGnTpl6HgSMjI1VcXKyDBw8qIiLCM71du3Zez83Ly9Pnn3+uG2+80e/lcDqdfj/nRA6Hw5J+AQDllW1bzdrG+tuPaSHav39//fzzz5KkL7/8Ul27dtUZZ5zh1aZhw4bq37+/T/0VFRV5Bagkz+OSkpJKn7d//35NmDBBF154oc97vSfKzs72+zllwsLCFBMTU+G83NxcFRUVGe4bAFC56my7q8O0ED3jjDOUlJQkSTrrrLN09dVXlwtBf4SEhJQLy7LHoaGhFT5n3759+vvf/y63261Zs2bJbvf/aHVcXFyle5PV0aFDB9P7BIDTndPpVHZ2tmnb7rL+fGXq4dxBgwYpODhYNptNK1eurLTtsGHDTtlfVFSUDhw4oNLSUgUF/VFmQUGBQkNDFR4eXq79nj17PCcWLViwwOtwrz8cDoclIWpFnwCAP1i17T4V00J01qxZ6t27t4KDgzVr1qxK29lsNp9CtFOnTgoKClJWVpbi4+MlSZmZmYqLiyu3h1lYWKjbb79ddrtdCxYs8Pl7VwAAqsO0EP3oo48q/LdRYWFhGjZsmFJTUzVjxgzt3btX8+bNU1pamqQ/9kobN26s0NBQPffcc/rpp5/0yiuveOZJfxz2bdy4cbVrAQCgIqaF6MaNG31qZ7PZPHuWp5KcnKzU1FSNGjVKjRo10oQJEzRgwABJUkJCgtLS0pSYmKj33ntPx44d03XXXef1/OHDh+uRRx7xb0EAAPCRaSF66623+tTOZrPp22+/9altWFiY0tPTlZ6eXm5ebm6u59+rV6/2rUgAAExkWohu27bNrK4AAKgTTAvR/Px8tWrVSjabTfn5+VW2jY6ONmtYAABqjWkh2rdvX3322Wdq1qyZ+vbtK5vNJrfb7Zlf9tifw7kAAAQy00J0zZo1nmsz+RkyAMDpwLQQPeuss8r9+4cfftD27dvVoEED/eUvf9HZZ59t1nAAANQ6S34K7ZdfftH999+vjRs36swzz5Tb7dbhw4fVt29fPfzww2rSpIkVwwIAUKMs+Sm0yZMny+FwaM2aNdqwYYO+/PJLrVq1SgcOHNCDDz5oxZAAANQ4S/ZEN27cqGXLlnkd4j333HP14IMPGvp5MgAAApEle6Lt2rXTd999V276rl27vIIVAIC6zNRfcSnTs2dPTZo0STk5OZ6fp8nNzdXLL7+sv//972YNCQBArTL1V1xO1LRpU61cudLrJ9EaN26spUuXaty4cWYNCwBArbHkV1wAADgdWHJikSTt379fP/zwg1wulyTJ7XarpKREOTk5Gjt2rFXDAgBQYywJ0f/85z+aNm2aSktLvW7/Z7PZdMEFFxCiAIB6wZKzc+fMmaM777xTW7ZsUbNmzbR27Vq988476tSpk/r372/FkAAA1DhLQnTv3r0aNmyYgoODFRsbq6ysLJ133nlKSUnR4sWLrRgSAIAaZ0mIRkREaP/+/ZKkv/zlL55fbYmKitKePXusGBIAgBpnSYheddVVmjhxor766iv16tVLy5Yt03vvvaeMjAy1adPGiiEBAKhxlpxYdO+996px48Y6cOCArrjiCl177bWaMmWKmjRporS0NCuGBACgxlkSog0aNFBSUpLn8T//+U/985//tGIoAABqjWXXiW7cuFGLFi3y/J5ou3btNGrUKHXq1MmqIQEAqFGWfCf66quvasyYMQoODtaIESM0ZMgQlZaW6vrrr9e7775rxZAAANQ4S/ZEn3/+eT300EMaNmyY1/T4+Hg98cQTuvrqq60YFgCAGmXJnuiRI0cUFxdXbnp8fLzn0hcAAOo6S0L0b3/7mx599FEdOnTIM624uFizZ8/W9ddfb8WQAADUONMO5/bt21c2m03SHzebz8/P12WXXaazzz5bdrtdP/30k4qLizmxCABQb5gWohMmTDCrKwAA6gTTQnT48OHlphUVFWnnzp1yuVw655xz1KhRI7OGAwCg1llydu7x48f16KOP6rXXXpPT6ZTb7VZQUJCGDBmiqVOnKjg42IphAQCoUZacWJSenq61a9fq2Wef1caNG/Xll18qIyNDmzZt0pNPPmnFkAAA1DhL9kTfeecdPfXUU+rRo4dnWu/evRUSEqJ7771XEydOtGJYAABqlCV7om63W82aNSs3PSIiQkePHrViSAAAapwlIdqzZ0899thjOnLkiGfaoUOH9MQTT3jtnQIAUJdZcjg3JSVFI0eOVK9evdS2bVtJ0g8//KCzzz5bzz77rBVDAgBQ4ywJ0caNG+udd97Rp59+qh07digkJERt27bVpZdeKrvdkp1fAABqnCUhOnjwYM2ePVtXXHGFrrjiCiuGAACg1lmyW2i323X8+PFq91NcXKyUlBTFx8crISFB8+bNO+VzNm3aRHADAGqEJXuil19+uf7+97+rT58+Ouuss8rdXCEpKcmnfmbOnKmtW7dq/vz5ys/P18SJExUdHa2BAwdW2D43N1d33323QkJCqr0MAACciiUhmpubq9jYWO3du1d79+71mld2k/pTKSws1OLFi/X8888rNjZWsbGxysvL08KFCysM0UWLFik9PV1nn32211nBAABYxdQQffPNN/XBBx8oMjJSV1xxhQYPHmy4r23btqm0tFTdunXzTOvevbvmzJkjl8tV7gSlTz/9VOnp6Tpy5Ihmz55teFwAAHxlWojOnz9fM2fO1CWXXKLS0lIlJyfru+++0z333GOov4KCAjVt2tTrUHBkZKSKi4t18OBBRUREeLV/5plnJEnLli0zvhCSnE5ntZ7vcDgs6RcAUF7ZttWsbay//ZgWoosWLdLDDz+sYcOGSZLef/99JScn65///KfPh3BPVFRUVO671LLHJSUl1a63MtnZ2YafGxYWppiYmArn5ebmqqioyHDfAIDKVWfbXR2mheiuXbt0ySWXeB737dtXRUVF2rt3r6KiovzuLyQkpFxYlj0ODQ2tXrFViIuLq3Rvsjo6dOhgep8AcLpzOp3Kzs42bdtd1p+vTAvR0tJSBQX9t7ugoKAKg9BXUVFROnDggFe/BQUFCg0NVXh4uCk1V8ThcFgSolb0CQD4g1Xb7lMJ2NsHderUSUFBQcrKyvJMy8zMVFxcHHc9AgAEBFPPzl21apUaNWrkeexyufTBBx+UOwmo7HvTqoSFhWnYsGFKTU3VjBkztHfvXs2bN09paWmS/tgrbdy4saWHdgEAqIppIRodHV3ujkLNmjXTq6++6jXNZrP5FKKSlJycrNTUVI0aNUqNGjXShAkTNGDAAElSQkKC0tLSlJiYaEr9AAD4y+Z2u921XUQgcDqdysrKUteuXat9XP3ZL17XL4cLJEmtGjfXP3reZEaJAICTmLntNtIfXy4CAGAQIQoAgEGEKAAABhGiAAAYRIgCAGAQIQoAgEGEKAAABhGiAAAYRIgCAGAQIQoAgEGEKAAABhGiAAAYRIgCAGAQIQoAgEGEKAAABhGiAAAYRIgCAGAQIQoAgEGEKAAABhGiAAAYRIgCAGAQIQoAgEGEKAAABhGiAAAYRIgCAGAQIQoAgEGEKAAABhGiAIA6LSwsrNbGJkQDkMvtqvKx0T7M6Le6NZjRtq6xatl4PeumitZFbfx9+iNQa3O5XXI4HIqJiZHD4fBMq0lBNToafGK32bUk+z0VHN2v5mdEaETclab1Ud1+zaihum3rGquWrabXGa+nOU5cN5Jq7e/TH4H6ela1LmsKIVpDXG6X7Da712NJXtNObFdwdL9+OVxQ6fMrm3aik/uobFpFtVXVrz8qGs/XtpUtsyTL6rWKP+vBin79eY2ralud19MMVr5Xa1Jl68aK19MsZmyTTmbGclj1t+UrQrSGnGrPUKr6U5SVn7jq4qfMQKw3kNWXvchArq0mBcJ6MGObFAjLUV2EaA3ydc/Qn+ebpbY/zVWmup/Y8V+B8l6rrkCurSYFwnowo4ZAWI7qqHvHQQAACBCEKAAABgV0iBYXFyslJUXx8fFKSEjQvHnzKm2bk5Oj6667Tl26dNG1116rrVu31mClAIDTUUCH6MyZM7V161bNnz9fU6ZM0ezZs7V69epy7QoLCzV27FjFx8dr2bJl6tatm+644w4VFhbWQtUAgNNFwIZoYWGhFi9erEmTJik2Nlb9+/fX7bffroULF5Zru3LlSoWEhOj+++9Xu3btNGnSJJ1xxhkVBi6A/wrUi+jri7q2fmvqxiBV9V3XbkYRsGfnbtu2TaWlperWrZtnWvfu3TVnzhy5XC7Z7f/N/82bN6t79+6y2WySJJvNpgsvvFBZWVlKTEys8dqBuqI+XGIQyOra+q2JG4NIxi/nC8R1GbAhWlBQoKZNmyo4ONgzLTIyUsXFxTp48KAiIiK82p533nlez2/WrJny8vJ8Hs/tdkuSSkpKPLePMsLhcKhFw2ay/7mTH9mwqZxOpyR5plc0zWjbsnlV1VFVv06ns8K2lV1I7Xa5Da2L6tZ7qvVTWb82u63cxdz+LIMZ/FkPFTl5GaT/XpRenfVb9trb3DbZZZfNbfP7feLPeDX9nrKKP++pU61fydj72oz1UNFy2G32cvVW9tpXthwV1XHiepBU5XutbH5FbX1dl9V5T5Q9tywTTsXm9rVlDVuxYoWeeuoprV271jNt165d6tevnz755BO1bNnSM33UqFHq3r277rrrLs+0p556Sl9//bVefvlln8YrKSlRdna2afUDAOquuLg4r524ygTsnmhISIhKSkq8ppU9Dg0N9antye2qEhQUpLi4ONntds9hYQDA6cXtdsvlcikoyLd4DNgQjYqK0oEDB1RaWupZmIKCAoWGhio8PLxc23379nlN27dvn1q0aOHzeHa73adPHQAAlAnYs3M7deqkoKAgZWVleaZlZmZ69hZP1KVLF3399deeY9hut1tfffWVunTpUpMlAwBOMwEbomFhYRo2bJhSU1O1ZcsWffjhh5o3b55Gjhwp6Y+90mPHjkmSBg4cqEOHDunhhx/W999/r4cfflhFRUW66qqranMRAAD1XMCeWCRJRUVFSk1N1fvvv69GjRrptttu0+jRoyVJHTp0UFpamucSli1btmjKlCnavn27OnTooKlTpyomJqYWqwcA1HcBHaIAAASygD2cCwBAoCNEAQAwiBAFAMAgQhQAAIMIUQAADCJEAQAwiBAFAMAgQhQAAIMIUQAADCJEAQAwiBAFAMAgQhQAAIMIUQAADCJEAQAwiBAFAMAgQhQAAIMIUQAADCJEAQAwiBAFAMAgQhQAAIMIUQAADCJEAQAwiBAFAMCgoNouIFC4XC6VlpbKbrfLZrPVdjkAgFrgdrvlcrkUFBQku/3U+5mE6J9KS0uVnZ1d22UAAAJAXFycgoODT9mOEP1T2SeOuLg4ORyOavfndDqVnZ1tWn8AgPLM3taW9efLXqhEiHqUHcJ1OBymhp7Z/QEAyjN7W+vr13qcWAQAgEGEKAAABgVUiO7cuVO33XabunXrpssvv1wvvPCCZ96uXbs0evRode3aVYMGDdK6deu8nrt+/XoNHjxYXbp00ciRI7Vr166aLh8AcJoJmBB1uVwaO3asmjZtquXLl2vq1Kl69tln9fbbb8vtdmv8+PGKjIzU0qVLNXToUCUlJSk/P1+SlJ+fr/HjxysxMVFLlixRRESExo0bJ7fbXavLFBYWVqvjAwCsFTAnFu3bt0+dOnVSamqqGjVqpHPPPVeXXHKJMjMzFRkZqV27dmnRokVq2LCh2rVrp88//1xLly7VhAkTtHjxYnXu3FljxoyRJKWlpenSSy/Vl19+qR49etTocrjcLtltdjkcDsXExHhNAwDULwEToi1atND//u//SvrjYtevvvpKGzdu1JQpU7R582bFxMSoYcOGnvbdu3dXVlaWJGnz5s2Kj4/3zAsLC1NsbKyysrJqPETtNrsy1q/W7t/3S5LOOjNC4/86sEZrAADUjIAJ0RP17dtX+fn56tOnj6688krNmDFDLVq08GrTrFkz/frrr5KkgoKCKuf7w+l0Gi9cf5xmvfv3/frxQIGp/QIAyivbtpq1jfW3n4AM0VmzZmnfvn1KTU1VWlqaioqKyt05Ijg4WCUlJZJ0yvn+qM5di8LCwjyHcE+Wm5uroqIiw30DACpXW3ecC8gQjYuLkyQVFxfr3nvv1bXXXlsugEpKShQaGipJCgkJKReYJSUlCg8PNzS2FTdH6NChg+l9AsDpzqo7FvkqYEJ03759ysrKUr9+/TzTzjvvPB0/flzNmzfXjh07yrUvO4QbFRWlffv2lZvfqVMnv+uw6g5D3LUIAKxTW3eHC5hTRn/++WclJSVpz549nmlbt25VRESEunfvrm+++UbHjh3zzMvMzFSXLl0kSV26dFFmZqZnXlFRkXJycjzzAQCwQsCEaFxcnGJjY5WSkqLvv/9en3zyiR599FHdeeeduvjii9WqVSslJycrLy9Pc+fO1ZYtWzRixAhJ0rXXXquvvvpKc+fOVV5enpKTk9W6desaPzMXAHB6CZgQdTgceuaZZxQWFqYbbrhBkyZN0q233qqRI0d65hUUFCgxMVFvvfWWMjIyFB0dLUlq3bq1nn76aS1dulQjRozQwYMHlZGRwe+CAgAsFTDfiUp/fLc5e/bsCue1adNGr776aqXP7d27t3r37m1VaQAAlBMwe6IAANQ1hCgAAAYRogAAGESIAgBgECEKAIBBhCgAAAYRogAAGESIAgBgECEKAIBBhCgAAAYRogAAGESIAgBgECEKAIBBhCgAAAYRogAAGESIAgBgECEKAIBBhCgAAAYRogAAGESIAgBgECEKAIBBhCgAAAYRogAAGESIAgBgECEKAIBBhCgAAAYRogAAGESIAgBgECEKAIBBhCgAAAYRogAAGESIAgBgECEKAIBBhCgAAAYFVIju2bNHd911ly6++GL16tVLaWlpKi4uliTt2rVLo0ePVteuXTVo0CCtW7fO67nr16/X4MGD1aVLF40cOVK7du2qjUUAAJxGAiZE3W637rrrLhUVFWnhwoV68skntXbtWv3v//6v3G63xo8fr8jISC1dulRDhw5VUlKS8vPzJUn5+fkaP368EhMTtWTJEkVERGjcuHFyu921vFQAgPosqLYLKLNjxw5lZWXps88+U2RkpCTprrvuUnp6ui677DLt2rVLixYtUsOGDdWuXTt9/vnnWrp0qSZMmKDFixerc+fOGjNmjCQpLS1Nl156qb788kv16NGjNhcLAFCPBcyeaPPmzfXCCy94ArTMkSNHtHnzZsXExKhhw4ae6d27d1dWVpYkafPmzYqPj/fMCwsLU2xsrGc+AABWCJgQDQ8PV69evTyPXS6XXn31VfXs2VMFBQVq0aKFV/tmzZrp119/laRTzgcAwAoBczj3ZI8++qhycnK0ZMkSvfzyywoODvaaHxwcrJKSEklSUVFRlfP94XQ6jRctyeFwWNIvAKC8sm2rWdtYf/sJyBB99NFHNX/+fD355JM6//zzFRISooMHD3q1KSkpUWhoqCQpJCSkXGCWlJQoPDzc77Gzs7MN1x0WFqaYmJgK5+Xm5qqoqMhw3wCAylVn210dlofo/v37FRER4XP7hx56SK+//roeffRRXXnllZKkqKgoff/9917t9u3b5zmEGxUVpX379pWb36lTJ7/rjYuLq3Rvsjo6dOhgep8AcLpzOp3Kzs42bdtd1p+vTAnRTp066bPPPisXlrt379bgwYP19ddf+9TP7NmztWjRIj3xxBMaOHCgZ3qXLl00d+5cHTt2zLP3mZmZqe7du3vmZ2ZmetoXFRUpJydHSUlJfi+Lw+GwJESt6BMA8Aertt2nYjhEV6xYoWXLlkmS5zrOBg0aeLXZu3evmjdv7lN/27dv1zPPPKOxY8eqe/fuKigo8My7+OKL1apVKyUnJ2vcuHFau3attmzZorS0NEnStddeqxdffFFz585Vnz59lJGRodatW3N5CwDAUoZDtH///vr5558lSV9++aW6du2qM844w6tNw4YN1b9/f5/6W7NmjZxOp5599lk9++yzXvNyc3P1zDPPaNKkSUpMTFSbNm2UkZGh6OhoSVLr1q319NNPa8aMGcrIyFC3bt2UkZEhm81mdPEAADglwyF6xhlneA6XnnXWWRo0aJBCQkIMFzJ27FiNHTu20vlt2rTRq6++Wun83r17q3fv3obHBwDAX6Z8Jzp8+HDt3LlTW7du1fHjx8vNHzZsmBnDAAAQUEwJ0RdeeEGPPfaYzjzzzHKHdG02GyEKAKiXTAnRefPm6b777tNtt91mRncAANQJptz2r7i4WAMGDDCjKwAA6gxTQnTIkCF67bXX+OkxAMBpxZTDuUeOHNGSJUv0zjvvqHXr1uWuF12wYIEZwwAAEFBMCdFzzz1Xd955pxldAQBQZ5gSokZurwcAQF1nSogmJydXOb/s9nwAANQnlvwod2lpqX744QetXLnSr19wAQCgLjFlT7SyPc0XXnhB3333nRlDAAAQcCzZEy0zcOBAffDBB1YOAQBArbEsRAsLC/Wf//xHTZs2tWoIAABqlSmHczt27Fjhz46FhIRo+vTpZgwBAEDAMSVET76Zgs1mU4MGDXTeeeepUaNGZgwBAEDAMSVEL774YknSjz/+qO3bt8vlcqlt27YEKACgXjMlRA8dOqTk5GStWbNGZ555ppxOp44ePaqLLrpIGRkZaty4sRnDAAAQUEw5sWj69On69ddftXLlSm3YsEGbNm3S22+/rcLCQm60AACot0wJ0Y8++kipqan6y1/+4pl23nnn6cEHH9SaNWvMGAIAgIBjSoiGhITIbi/flc1mk9PpNGMIAAACjikh2rdvX02dOlU//fSTZ9qPP/6o6dOnq3fv3mYMAQBAwDHlxKL77rtP48eP15VXXqnw8HBJ0u+//67LLrtMDzzwgBlDAAAQcKodojt37lR0dLReeeUV5ebmavv27QoJCdG5556rdu3amVEjAAAByfDhXLfbrenTp+uqq67S119/LUnq0KGDBg0apKVLl2rw4MF65JFH5Ha7TSsWAIBAYjhEFyxYoJUrVyojI8Nzs4UyzzzzjDIyMrR8+XK9/vrr1S4SAIBAZDhE//Of/+iBBx5Qnz59Kpzft29f3XvvvYQoAKDeMhyiu3fv1gUXXFBlm549e2rXrl1GhwAAIKAZDtFmzZpp9+7dVbb59ddf1aRJE6NDAAAQ0AyHaP/+/fX000/r+PHjFc4vLS3V7NmzlZCQYLg4AAACmeFLXMaNG6cRI0YoMTFRt956qzp37qzGjRvr999/1zfffKNXX31VR48e1cyZM82sFwCAgGE4RMPDw/Wf//xHjz32mB555BEVFRVJ+uPSl8aNG2vQoEGaMGGCIiMjTSsWAIBAUq2bLTRp0kTTp0/Xgw8+qF27dunQoUNq0qSJzjnnHDkcDrNqBAAgIJly27/g4GDuTgQAOO2YcgN6AABOR4QoAAAGBWSIlpSUaPDgwdqwYYNn2q5duzR69Gh17dpVgwYN0rp167yes379eg0ePFhdunTRyJEjuckDAMByAReixcXFuueee5SXl+eZ5na7NX78eEVGRmrp0qUaOnSokpKSlJ+fL0nKz8/X+PHjlZiYqCVLligiIkLjxo3j5vcAAEsFVIh+//33uv76671+3FuSvvjiC+3atUvTpk1Tu3btdMcdd6hr165aunSpJGnx4sXq3LmzxowZo/bt2ystLU27d+/Wl19+WRuLAQA4TQRUiH755Zfq0aOH3njjDa/pmzdvVkxMjBo2bOiZ1r17d2VlZXnmx8fHe+aFhYUpNjbWMx8AACuYcomLWW6++eYKpxcUFKhFixZe05o1a6Zff/3Vp/n+cDqdfj/nRJVdH1vdfgEA5ZVtW83axvrbT0CFaGWKiooUHBzsNS04OFglJSU+zfdHdna24TrDwsIUExNT4bzc3FzPXZ0AAOaqzra7OupEiIaEhOjgwYNe00pKShQaGuqZf3JglpSUKDw83O+x4uLiLLnbUocOHUzvEwBOd06nU9nZ2aZtu8v681WdCNGoqCh9//33XtP27dvnOYQbFRWlffv2lZvfqVMnv8dyOByWhCi3QQQA61i17T6VgDqxqDJdunTRN998o2PHjnmmZWZmqkuXLp75mZmZnnlFRUXKycnxzAcAwAp1IkQvvvhitWrVSsnJycrLy9PcuXO1ZcsWjRgxQpJ07bXX6quvvtLcuXOVl5en5ORktW7dWj169KjlygEA9VmdCFGHw6FnnnlGBQUFSkxM1FtvvaWMjAxFR0dLklq3bq2nn35aS5cu1YgRI3Tw4EFlZGTIZrPVcuUAgPosYL8Tzc3N9Xrcpk0bvfrqq5W27927t3r37m11WQAAeNSJPVEAAAIRIQoAgEGEKAAABhGiAAAYRIgCAGAQIQoAgEGEKAAABhGiAAAYRIgCAGAQIQoAgEGEKAAABhGiAAAYRIgCAGAQIQoAgEGEKAAABhGiAAAYRIgCAGAQIQoAgEGEKAAABhGiAAAYRIgCAGAQIQoAgEGEKAAABhGiAAAYRIgCAGAQIYqA4HK7qnwM4L/4e/EWFhZWa2MH1drIwAnsNrsy1q/W7t/366wzIzT+rwNruyTTuNwu2W32Sh8D/qrPfy/+cLldcjgciomJ8ZpWk39fhGg9VRc33Lt/368fDxTUdhmms2qDVxdfY5inJv9eAvW9duLflqRa+UBBiNYRFb1pq3oj80k1sFixwfPnNfZnIxioG0zUnorea/5uk6xS2x++CdEAVNlGzN9PXCe/uSrrt65tNOtavVbydQPiT+DyAax2BPr7+uT3mhl7gYG+zL4gRGuIP2+WyjZi1f3EVVm/gbrRrOqTbiDWG+j8ef/U9qf7+qw+va+t2ibVJYRoDfH3cIhVG7HK+rVivOp+yqzqky4b+ZpXH/YaAgHva291fZkJ0RpkxeGQQGbGp8y6/gdWn1j1Haw/6kuQ876uPwjRWlbf/5jq+/Kdbqz4DtYf9eHwH+oXQhQ4jVm5Z1fTX0kAtaHuHQepQnFxsVJSUhQfH6+EhATNmzevtksCAlrZnl3KqteUsX51nTw0Gsi4s1D9V6/2RGfOnKmtW7dq/vz5ys/P18SJExUdHa2BAznk469AuQYM1mPPzjocfv5Dfd6e1JsQLSws1OLFi/X8888rNjZWsbGxysvL08KFCwlRA+r7SU91SX3eAJ0O+JDi3/akrr3f602Ibtu2TaWlperWrZtnWvfu3TVnzhy5XC7Z7YH5AgQy/vgDAx9oAkt9OUO4ouWQVOvfkVf2fg/U9V5vQrSgoEBNmzZVcHCwZ1pkZKSKi4t18OBBRUREVPl8t9stSSopKZHD4TBch8Ph0DlnNlPQny9udHhTOZ1OSfJMr2ia0bZl86qqo6p+nU7nKdv6Mp6vNRit91Trp7J+bTab1wcol8vlea1rij/robLnO2TzrAeHbH6vh8pqqO77xN/xqquifiv6kGzl6+xwOLQiZ4P2FR5WZMPGGhITrxJnic/1StV/X5uxfitaDkkVLlt1txH+bhcre7+fXJtTzmpvp05W9lxf3z82d01vUSyyYsUKPfXUU1q7dq1n2q5du9SvXz998sknatmyZZXPLykpUXZ2ttVlAgDqgLi4OK+dssrUmz3RkJAQlZR4fxosexwaGnrK5wcFBSkuLk52u102m82SGgEAgc3tdsvlcikoyLd4rDchGhUVpQMHDqi0tNSz8AUFBQoNDVV4ePgpn2+323361AEAQJna/1bWJJ06dVJQUJCysrI80zIzMz17lwAAmK3epEtYWJiGDRum1NRUbdmyRR9++KHmzZunkSNH1nZpAIB6qt6cWCRJRUVFSk1N1fvvv69GjRrptttu0+jRo2u7LABAPVWvQhQAgJpUbw7nAgBQ0whRAAAMIkQBADCIEAUAwCBCFAAAgwhRAAAMIkQBADCIEAUAwCBCFAAAgwhRAAAMIkQBADCIEAUAwCBCFAAAgwhRAAAMIkQBADCIEAUAwCBCFAAAgwhRAAAMIkQBADCIEAUAwCBCFAAAgwhRAAAMCqrtAgKFy+VSaWmp7Ha7bDZbbZcDAKgFbrdbLpdLQUFBsttPvZ9JiP6ptLRU2dnZtV0GACAAxMXFKTg4+JTtCNE/lX3iiIuLk8PhqHZ/TqdT2dnZpvUHACjP7G1tWX++7IVKhKhH2SFch8NhauiZ3R8AoDyzt7W+fq3HiUUAABgU0CFaXFyslJQUxcfHKyEhQfPmzau07ccff6yhQ4eqW7duGjJkiNasWVODlQIATkcBHaIzZ87U1q1bNX/+fE2ZMkWzZ8/W6tWry7Xbtm2bkpKSdO2112rFihW68cYbdffdd2vbtm21UDUA4HQRsN+JFhYWavHixXr++ecVGxur2NhY5eXlaeHChRo4cKBX23feeUc9e/bUyJEjJUlt2rTRRx99pFWrVqljx461Ub4kKSwsrNbGBgBYL2BDdNu2bSotLVW3bt0807p37645c+bI5XJ5nTk1fPhwHT9+vFwfhw8frpFaT+R0ueSw2+VwOBQTE+M1DQBQvwRsiBYUFKhp06Ze1+lERkaquLhYBw8eVEREhGd6u3btvJ6bl5enzz//XDfeeKPf4zqdTuNF648zxB5evUo79++XJLWJiNCkgVdVu18AQHll21aztrH+9hOwIVpUVFTuQteyxyUlJZU+b//+/ZowYYIuvPBCXXHFFX6PW50bLoSFhSkmJkY79+9XXsFer3m5ubkqKioy3DcAoHK1dbOcgA3RkJCQcmFZ9jg0NLTC5+zbt09///vf5Xa7NWvWLJ8vlj2RVTdH6NChg+l9AsDpzqqbLfgqYEM0KipKBw4cUGlpqYKC/iizoKBAoaGhCg8PL9d+z549nhOLFixY4HW41x9W3RyBGy4AgHVq68Y2AXu2S6dOnRQUFKSsrCzPtMzMTMXFxZXbwywsLNTtt98uu92uV199VVFRUTVcLQDgdBSwIRoWFqZhw4YpNTVVW7Zs0Ycffqh58+Z59jYLCgp07NgxSdJzzz2nn376Senp6Z55BQUFtXJ2LgDg9BGwh3MlKTk5WampqRo1apQaNWqkCRMmaMCAAZKkhIQEpaWlKTExUe+9956OHTum6667zuv5w4cP1yOPPFIbpQMATgMBHaJhYWFKT0/37GGeKDc31/Pviu5iBACA1QL2cC4AAIGOEAUAwCBCFAAAgwhRAAAMIkQBADCIEAUAwCBCFAAAgwhRAAAMIkQBADCIEAUAwCBCFAAAgwhRAAAM8vsG9EeOHNHGjRv1zTffaP/+/bLb7YqMjFRMTIx69OihkJAQK+oEACDg+ByiO3fu1Ny5c/Xuu+/qzDPP1HnnnacmTZrI5XLp+++/14IFC1RYWKghQ4ZozJgxatu2rZV1AwBQ63wK0SeffFIffPCBhg8frqVLl6pdu3YVttuxY4dWrlypO+64QwMHDtQ999xjarEAAAQSn0K0devWevvtt+VwOKps95e//EVJSUm68847tXTpUlMKBAAgUPkUotddd51/nQYF6YYbbjBUEAAAdYVPITp79myfO0xKSjJcDAAAdYlPIbphwwafOrPZbNUqBgAAf4WFhdXa2D6F6CuvvGJ1HQAA+MXpcsnhcCgmJsZ7mr3mboHg93WikvTtt98qLy9PLpdLkuR2u1VSUqKcnBxNnTrV1AIBAKiIw27Xw6tXaef+/ZKkNhERmjTwqhqtwe8QnT17tmbPnq3IyEj99ttvioqK0r59++R0OtW/f38ragQAoEI79+9XXsHeWhvf733eN954Q1OnTtW6devUqlUrvfLKK1q/fr3++te/6pxzzrGiRgAAApLfIXrgwAH16tVLktSpUyd9/fXXCg8P1z//+U+tXLnS9AIBAAhUfodoVFSUdu3aJUlq166dcnJyJEmNGjXS/j+PSwMAcDrw+zvR6667Tvfcc49mzJihfv36afTo0WrRooXWr1+vjh07WlEjAAABye890TvvvFP33XefwsLCdMEFFyg5OVnvvvuu3G63ZsyYYWpxxcXFSklJUXx8vBISEjRv3rxTPmfTpk264oorTK0DAICKGLrEZdiwYZ5/X3fddX7fFtBXM2fO1NatWzV//nzl5+dr4sSJio6O1sCBAytsn5ubq7vvvpufYwMA1AhDV6S+9dZbSkxMVHx8vHbt2qUZM2Zo7ty5phZWWFioxYsXa9KkSYqNjVX//v11++23a+HChRW2X7RokW688UY1a9bM1DoAAKiM3yH62muvaebMmUpMTNTx48clSbGxsXrxxRf9usfuqWzbtk2lpaXq1q2bZ1r37t21efNmz00eTvTpp58qPT1do0ePNq0GAACq4neIvvLKK5o+fbr+9re/yf7nrZWGDh2qmTNnavHixaYVVlBQoKZNmyo4ONgzLTIyUsXFxTp48GC59s8884wGDBhg2vgAAJyK39+J5ufnV/ij3GeffXaF4WZUUVGRV4BK8jwuKSkxbZyTOZ3Oaj2/st9crW6/AABvVmxv/X2u3yHapUsXrVixQhMmTPBMc7vdmjdvni644AJ/u6tUSEhIubAsexwaGmraOCfLzs42/NywsDCvGyGfKDc3V0VFRYb7BgD8V6Bsb/0O0cmTJ2vs2LH6+OOPVVJSoqlTp+rHH3/UsWPH9Pzzz5tWWFRUlA4cOKDS0lIFBf1RZkFBgUJDQxUeHm7aOCeLi4ur9NNNdXTo0MH0PgEA5VVne+t0Ov3amfI7RM8//3y99957evvtt7V9+3Y5nU5dccUVuuaaa3TGGWf4212lOnXqpKCgIGVlZSk+Pl6SlJmZqbi4OM93sVZwOByWhKgVfQIAyqvJ7a3fIZqYmKi0tDSNGDHCino8wsLCNGzYMKWmpmrGjBnau3ev5s2bp7S0NEl/7JU2btzY0kO7AABUxe9dur1799ZYyicnJys2NlajRo3S1KlTNWHCBM8ZuAkJCdzwHgBQq/zeEx02bJhuv/12XXPNNTrrrLPK3R3oxLsZVVdYWJjS09OVnp5ebl5ubm6Fz0lMTFRiYqJpNQAAUBm/Q3TlypWy2+165513ys2z2WymhigAAIHM7xD96KOPrKgDAIA6x6fvRJ966ikdOXLE504PHTqkJ5980nBRAADUBT6FaKtWrTR06FClpqZq3bp1nnvmnqioqEjr169XSkqKrrnmGrVq1cr0YgEACCQ+Hc69/vrrNWDAAC1cuFApKSnav3+/WrduraZNm8rlcungwYP6+eef1bx5c40YMULLly9X06ZNra4dAIBa5fN3ok2aNNH48eM1btw45ebmKicnR/v375fNZlOzZs0UExOj888/38paAQAIKH6fWGSz2dSxY0d17NjRinoAAKgzrLt/HgAA9RwhCgCAQYQoAAAGVStEf//9d7lcLrndbrPqqbecLle5xydPq6hdVdMra2tGbYGsrtVbXVa+9r6MV9/Xr7/qy/qpL8tR2/w+scjtdmvOnDl6+eWXdfjwYb333nt66qmn1LBhQ02ePFnBwcFW1FnnOex2Pbx6lXbu3682ERGaNPAqSfJMk+Q1varnn6qtWbUFqrpWb3VZ+dqfarzTYf36q76sn/qyHLXN7z3RjIwMvfXWW3rkkUc8gTl8+HB99tlnmjlzpukF1ic79+9XXsFez8bwxGknT6/q+b60NaO2QFbX6q0uK1/7qsY7Xdavv+rL+qkvy1Gb/A7R5cuXa9q0aerTp49sNpsk6dJLL1V6erpWrVpleoEAAAQqv0P0t99+U4sWLcpNDw8PV2FhoSlFne7M+K4iEL7vCIQaAkF9WQ/1ZTlqW01/xw1r+f2daM+ePfXiiy9q2rRpnmlHjhzRE088oR49epha3OnKjO8qAuH7jkCoIRDUl/VQX5ajttX0d9ywlt8hmpqaqqSkJF166aUqLi7WuHHjlJ+fr+joaD377LNW1HhaKvuuorb7qK5AqCEQ1Jf1UF+Wo7axHusPv0O0ZcuWWrJkiT7//HPt2LFDpaWlatu2rRISEmS3c9lpfeF0ueQ46fWsaFqgO7nmurgM9UV9eU8BJ/I7RMtccskluuSSS8ysBQGkvhxy4hBk4Kgv7yngRD6FaMeOHT1n4p7Kt99+W62CEDjqyyGn+rIc9QGvBeobn0J0wYIFnn9nZ2frpZde0rhx4xQXF6cGDRooJydHs2fP1siRIy0rFACAQONTiF588cWefz/44INKT0/XpZde6pnWsWNHnXXWWUpOTtbo0aNNLxIAgEDk9zf6e/fuVbNmzcpNDwsL06FDh0wpCgCAusDvEL388suVkpKir776SoWFhTp69Ki++OILpaSk6KqrOEkAAHD68Pvs3GnTpmnKlCm69dZb5frzLhsOh0PDhg3T5MmTTS8QAIBA5XeINmrUSI8//rimTp2qH374QZLUtm1bNWrUyPTiAAAIZH6H6MaNG8tNO/Gylosuuqh6FaHO8eci+kC44N6MGqp7E4fKapB02t0coqJ1KSlgX6NAfq9yc5Ga53eI3nrrrRVODw4OVvPmzbVmzZpqF1WmuLhYU6dO1fvvv6/Q0FCNGTNGY8aMqbBtTk6OpkyZou+++07nnXeepk6dqs6dO5tWCyrnz0X0gXDBvRk1VPcmDlXVcLrdHKK6v7Xrb79Gnm+0hurytwZuLlLz/A7Rbdu2eT12Op366aef9NBDD2nIkCGmFSZJM2fO1NatWzV//nzl5+dr4sSJio6O1sCBA73aFRYWauzYsRoyZIgeeeQRvf7667rjjjv0wQcfqGHDhqbWhIr5cxF9IFxwHwj3Jq7s+YGwfmpaRcscyK9RTfK3hkCo+XRS7f18h8Ohtm3b6t///reeeuopM2qS9EcwLl68WJMmTVJsbKz69++v22+/XQsXLizXduXKlQoJCdH999+vdu3aadKkSTrjjDO0evVq0+oBAOBkph0s/+2330y9TnTbtm0qLS1Vt27dPNO6d++uzZs3e84KLrN582Z1797dc2tCm82mCy+8UFlZWabVAwDAyfw+nJucnFxu2tGjR7V+/fpyh1mro6CgQE2bNlVwcLBnWmRkpIqLi3Xw4EFFRER4tT3vvPO8nt+sWTPl5eX5Pa7T6TRetP7YM29zQm0V/ftU8/1pW1m9J9ZhpK0/45mxzP6s95pctpqu4cR/m1mvPypbNn+W+VT9ntjHif+urdeouvWa0a8/f1tW/d1b9Z6yir/rxxf+Ptfmdrvd/jyhohBt0KCB4uLiNHToUK/Qq44VK1boqaee0tq1az3Tdu3apX79+umTTz5Ry5YtPdNHjRql7t2766677vJMe+qpp/T111/r5Zdf9mk8p9NZ7T3XBg0aKCY2VkEOh9f00j9flBOnVzTNrLZ5332n9ueff8o+/GlbG8sRCG1/27dPUVFRXm337NmjZpGRAVmvFa99fXqf1LXX05+2vPb/nZ7zzTc6fvy4qqNr165ynNR3RfzeE01MTFTXrl3VoEEDr+klJSX69NNP1a9fP3+7rFBISIhKSkrKjSFJoaGhPrU9uZ0v4uLifFpxVXE6nXK5XMrLy1P79u09v7N64icc2wltT1TR9KraOhyOcmfjnX/++RX24U9bf8ZzOp2WLIdU8RmaJ4938vNP1dafGiIjI8u1jYyMrHjZKvilI5vNJrndNfvan1SHzWar8KzN888/36fX0yb59J6Sqj7LOBDeJ5W+nhWss5NftyrrreS1r2i9V7Ye/Pnb8utvuYJl83cb4dd6P+nrtpPXw4ltT+zDlzOzK1o/x48f99rW2iTFxsaWez185XQ6lZ2d7XN7v0N05MiR+uyzz7wOp0pSXl6e7rnnHm3ZssXfLisUFRWlAwcOqLS0VEFBf5RZUFCg0NBQhYeHl2u7b98+r2n79u1TixYt/B7X4XBUO0TLFBUVyW63m9ZfZU4+G6+q8fxpa2UfvvRb2bTKxvOnra81VHfZrL5Gz5d6y2qorG11l9nXs4wD5X3iCzNet1Ot94rUxN/yqZbN1/dJZdNO7r+y9VBVH/6+p2pqW1sRn0L0tdde07Rp02Sz2eR2u71+weVEf/3rX00rrFOnTgoKClJWVpbi4+MlSZmZmYqLi/Ps2ZXp0qWLnn/+ebndbk+NX331le68807T6gEA4GQ+hejNN9+s9u3by+VyadSoUZo1a5bOPPNMz3ybzaawsDDPIQIzhIWFadiwYUpNTdWMGTO0d+9ezZs3T2lpaZL+2Ctt3LixQkNDNXDgQD3++ON6+OGHdeONN2rRokUqKirihvgAAEv5fDi37HZ+a9asUXR0tOdyEislJycrNTVVo0aNUqNGjTRhwgQNGDBAkpSQkKC0tDQlJiaqUaNGeu655zRlyhT95z//UYcOHTR37lxutAAAsJRPIZqcnKxJkyapUaNGmj17dpVty/YUzRAWFqb09HSlp6eXm5ebm+v1+IILLtDy5ctNG7suqejygPo0nq8quxzBSB+BtmyBzIz1Xh9qwOnJ7xOLEFicLpfX/TGtvuF0TY/nq5PrKpvm7w3HA3HZApkZ670+1IDTl08heuLepZl7mqi+ys6Eqy/j+aqiOvytLVCXLZCZsd7rQw04ffkUoqc6hHuipKQkw8UAAFCX+BSiGzZs8KmzmjjZCACAQOFTiL7yyitW1wEAQJ1j6MSi9evX64033tCOHTtks9nUoUMH3XLLLeratavJ5QEAELj8/vZ98eLFGjt2rMLCwnTDDTfo2muvlfTH7QDff/990wsEACBQ+b0n+uyzz2rq1Kme8Cxz0UUX6fHHH/fcDAEAgPrO7z3RgwcPqkuXLuWmx8fHa+/e8jcMBgCgvvI7RG+55Ralp6frwIEDnmlFRUWaM2eObr75ZlOLAwAgkPl9ODczM1NbtmzR5ZdfrnPOOUcNGjTQzp07dfToUUVHR2v16tWetmvWrDG1WAAAAonfIXrdddfpuuuus6IWAADqFL9DdPjw4VbUAQBAneN3iG7fvl1PPPGEduzYoZKSknLzOYQLADhd+B2i//rXvxQaGqqRI0cqNDTUipoAAKgT/A7RH3/8UUuXLlW7du2sqAcAgDrD70tcLrvsMmVmZlpRCwAAdYrfe6L//ve/NXz4cL399ts666yzyv1yC783CgA4Xfi9J/rAAw/IbrcrMjKSnz4DAJzW/N4T3bRpk15//XXFxMRYUQ8AAHWG33ui7du316FDh6yoBQCAOsXvPdGbbrpJ999/vxITE9W6dWsFBXl3MWzYMLNqAwAgoPkdohkZGQoKCtJbb71Vbt7evXsJUQDAacPvEP3oo4+8HhcXF+uDDz7Q8uXLtWfPHtMKAwAg0PkdomUyMzO1YsUKrV69WkeOHFG7du2UkpJiZm2wQJuICK//B5JAri1QBfI6C+TaAlUgr7NArq02+RWiu3fv1ooVK/Tmm29q165dCg8P15EjR/T4449r0KBBVtUIkzhdLk0aeJXXY4fd73PLLBHItQWqQF5ngVxboArkdRbItdU2n0J06dKlWrFihTZt2qQWLVqob9++GjBggC666CJ16dJF559/vtV1wgQnv+kD6Y8gkGsLVGatMyv2MHg9/8vX9Rso66yies2o7cT+TrUuKmsbiHvDPoXopEmT1KZNG6Wnp+uaa66xuiZJktvt1uOPP64lS5bI5XJpxIgRuvfee2U/xYu3c+dODRkyRFu2bKmROoG6jD0Ma9W19WtVvSf3W1XflbWVFJDr0qcKZsyYodatWys5OVmXXHKJkpOTtWbNGhUXF1tW2EsvvaR33nlHs2fP1qxZs/T222/rpZdeqvI5v/zyi+644w5L6wLqk0DZ+6mv6tr6tareivqprO/K2gbquvSpisTERL344ov6v//7PyUlJemnn35SUlKSevbsKZfLpQ0bNuj48eOmFrZgwQLdddddio+PV8+ePXXvvfdq4cKFlbb/8MMPlZiYqODgYFPrAACgMn5FeUREhG655RYtXLhQa9eu1fjx49WpUyc99NBD6tWrl2k3n9+zZ49++eUXXXTRRZ5p3bt31+7du7V3794Kn/Pxxx/r7rvv1qRJk0ypAQCAUzF8iUvLli11++236/bbb9ePP/6od955RytXrlRycnK1iyooKJAktWjRwjMtMjJSkvTrr796TS8zffp0SdKGDRuqNbbT6azW80/ux6z+TkcOh6PC6axT/1W0Luvieqwvy1FdgbAezPj7NGM5zN7W+tuP4RA90bnnnqukpCQlJSX5/Jxjx45VenOGwsJCSfI6NFv275KSkmpUemrZ2dkB3d/pIiwsrNIfOcjNzVVRUVENV1R3VbYu69p6rC/LUV2BsB7M+Ps0ezlqa1trSogasXnzZo0cObLCeffdd5+kPwIzJCTE82/pjxVvpbi4uEo/YfnD6XQqOzvbtP7wXx06dKjtEuqF+rIe68tyVFegrIfq1uHv883e1pb156taC9EePXooNze3wnl79uzRo48+qoKCArVu3VrSfw/xNm/e3NK6HA6HqaFndn+o/DAS/FNf1mN9WY7qCpT1UN06jD6/tra1gXGO8EmioqIUHR2tzMxMz7TMzExFR0dX+H0oAAC1odb2RE/lpptu0mOPPaaWLVtKkh5//HGNGTPGM3///v0KCQnRGWecUVslAgBOcwEborfddpt+++03JSUlyeFwaMSIERo9erRn/ogRIzR8+HBNmDCh9ooEAJzWAjZEHQ6HkpOTK71k5uSfZCtT1XetAACYKSC/EwUAoC4gRAEAMIgQBQDAIEIUAACDCFEAAAwiRAEAMIgQBQDAIEIUAACDCFEAAAwiRAEAMIgQBQDAoIC9dy4gSW0iIir8N/xXtv7q+nqsL8tRXYGwHsz4+wyE5agOm9vtdtd2EYHA6XQqKytLXbt2Ne3X0c3s73TkdLnksNtPOQ2ndvJ6q6vrsb4sR3UFwnow4+/TjOWo7W336ffuQ51R0R/T6bjBNMPJ662ursf6shzVFQjrwYy/z0BYjuqqexUDABAgCFEAAAwiRAEAMIgQBQDAIC5x+VPZScpOp9OU/sr6Mas/AEB5Zm9ry/rx9cIVLnH5U0lJibKzs2u7DABAAIiLi1NwcPAp2xGif3K5XCotLZXdbpfNZqvtcgAAtcDtdsvlcikoKEh2Hy65IUQBADCIE4sAADCIEAUAwCBCFAAAgwhRAAAMIkQBADCIEAUAwCBCFAAAgwhRAAAMIkQBADCIEAUAwCBCFAAAgwhRAAAMIkQBADCIEAUAwCBCFAAAgwhRAAAMIkQBADCIEAUAwCBCFAAAgwhRAAAMIkQBADCIEAUAwCBCFAAAgwhRAAAMIkQBADCIEAUAwKCg2i4gULhcLpWWlsput8tms9V2OQCAWuB2u+VyuRQUFCS7/dT7mYTon0pLS5WdnV3bZQAAAkBcXJyCg4NP2Y4Q/VPZJ464uDg5HI5q9+d0OpWdnW1afwCA8sze1pb158teqESIepQdwnU4HKaGntn9AQDKM3tb6+vXepxYBACAQYQoAAAGEaIAABhEiAIAYBAhCgCAQYQoAAAGEaIAABhEiAIAYBAhCgCAQYQoAAAGEaIAABhEiAIAYBAhCgCAQYQoAAAGEaIAABhEiAIAYBAhCgCAQYQoAAAGEaIAABhUr0J0z549uuuuu3TxxRerV69eSktLU3FxcW2XBQCop4JquwCzuN1u3XXXXQoPD9fChQv1+++/KyUlRXa7XRMnTqzt8gAA9VCNhOh3332nnJwc/fbbb7Lb7YqMjFRMTIzatWtn2hg7duxQVlaWPvvsM0VGRkqS7rrrLqWnpxOiAABLWBaiv//+uxYuXKg33nhD+/btU+vWrdW0aVO5XC4dOHBAu3fvVsuWLXX99dfrpptu0plnnlmt8Zo3b64XXnjBE6Bljhw5Uq1+AQCojCUhunjxYj333HPq1auXHnroIfXs2VPBwcFebY4ePaqvv/5a7777roYOHap//OMfuuGGGwyPGR4erl69enkeu1wuvfrqq+rZs6df/TidTsM1VNSPWf0BAMoze1vrbz+WhOjPP/+s5cuXq3HjxpW2OeOMM5SQkKCEhAQdOHBAL730kqk1PProo8rJydGSJUv8el52drapdZjdHwCgvNra1trcbre7Vka20KOPPqqXXnpJTz75pK688kqfnuN0OpWVlaW4uDg5HI5q1+B0OpWdnW1afwCA8sze1pb117VrV5/6s/zEotmzZ1c43WazqUGDBmrRooV69eqlZs2amTLeQw89pNdff12PPvqozwF6IofDYWromd0fAKC82trWWh6iP/zwg1auXKmWLVuqc+fOcrvd+vbbb5Wfn6+uXbvq8OHDmj59ul544QV17dq1WmPNnj1bixYt0hNPPKGBAweaswAAAFSiRi5xGTFihFJTUz2fElwulx5++GEVFhYqLS1Nc+bM0SOPPKJFixYZHmP79u165plnNHbsWHXv3l0FBQWeec2bN6/2MgAAcDLL71j00UcfacyYMV672Xa7XX/729+0evVqSdLVV1+tbdu2VWucNWvWyOl06tlnn/WcsFT2HwAAVrB8TzQyMlKbNm1S27ZtvaZnZmaqSZMmkqR9+/apUaNG1Rpn7NixGjt2bLX6AADAH5aH6IQJEzRp0iRlZmYqLi5Obrdb33zzjd599109+OCD+uGHHzRx4kRdffXVVpcCAICpLA/Ra665RtHR0Xr99de1aNEiORwOnXfeeVqwYIG6du2qLVu26G9/+5tuueUWq0sBAMBUNXJiUXx8vOLj4yucd8EFF+iCCy6oiTIAADCV5SFaVFSkN954Q99//73X7ZRKSkqUk5OjVatWWV0CAACWsPzs3MmTJ2vu3LkqKirSW2+9pePHj+v777/Xu+++y/egAIA6zfI90U8//VRPPfWU/vrXvyovL0+jR49W586d9cgjjygvL8/q4QEAsIzle6LFxcU699xzJUnt27fX1q1bJUk33HCDNm3aZPXwAABYxvIQbdeundavXy/pjxDNzMyUJB0+fFjFxcVWDw8AgGUsP5yblJSku+++Wy6XS0OHDtXVV1+tO++8U7m5uV6//wkAQF1jeYheccUVWrVqlVwul1q1aqXXXntNb775pi688ELdeuutVg8PAIBlauQ60bPPPtvz744dO6pjx441MSwAAJayPEQ3bdqk6dOna8eOHTp+/Hi5+d9++63VJQAAYAnLQ3TSpElq37697rnnHoWGhlo9HAAANcbyEN27d6/mzJlT7ldcAACo6yy/xGXIkCF69913rR4GAIAaZ/me6O23364RI0Zo2bJlOuuss2Sz2bzmL1iwwOoSAACwhOUheu+99yoiIkL9+vXjO1EAQL1ieYjm5uZq2bJlateundVDAQBQoyz/TrR79+7avn271cMAAFDjLN8TTUhIUEpKit5//32dffbZcjgcXvOTkpKsLgEAAEtYHqJr165Vp06dtGfPHu3Zs8dr3sknGQEAUJdYHqKvvPKK1UMAAFArLAnRFStWaNCgQQoODtaKFSuqbDts2DArSgAAwHKWhOisWbPUu3dvBQcHa9asWZW2s9lshCgAoM6yJEQ/+uijCv8NAEB9YsklLk899ZSOHDnic/tDhw7pySeftKIUAAAsY0mItmzZUkOHDlVqaqrWrVtX4U+gFRUVaf369UpJSdE111yjVq1aWVEKAACWseRw7g033KArr7xSCxcuVEpKivbv36/WrVuradOmcrlcOnjwoH7++Wc1b95cI0aM0PLly9W0aVMrSgEAwDKWXeLSpEkTjR8/XuPGjVNubq5ycnK0f/9+2Ww2NWvWTDExMTr//POtGh4AAMtZfp2ozWZTx44d1bFjR6uHAgCgRll+71wAAOorQhQAAIMIUQAADKrREP3999/lcrnkdrtrclgAACxheYi63W49++yz6tGjhy655BLt3r1b9913nx588EGVlJRYPTwAAJaxPEQzMjL01ltv6ZFHHlFwcLAkafjw4frss880c+ZMq4cHAMAylofo8uXLNW3aNPXp08fz+6GXXnqp0tPTtWrVKlPHKi4uVkpKiuLj45WQkKB58+aZ2j8AACey/DrR3377TS1atCg3PTw8XIWFhaaONXPmTG3dulXz589Xfn6+Jk6cqOjoaA0cONDUcQAAkGpgT7Rnz5568cUXvaYdOXJETzzxhHr06GHaOIWFhVq8eLEmTZqk2NhY9e/fX7fffrsWLlxo2hgAgMATFhZWa2NbHqKpqanKycnRpZdequLiYo0bN069e/fW7t27NXnyZNPG2bZtm0pLS9WtWzfPtO7du2vz5s1yuVymjQMACAxOl0sOh0MxMTFyOByeaTXJ8sO5LVu21JIlS/T5559rx44dKi0tVdu2bZWQkCC73bwMLygoUNOmTT0nL0lSZGSkiouLdfDgQUVERPjUj9PpNKUel8ulsLAwAhwALOJwOPTs2s+Vf/CwJCm6SWP9o88l1dqO+/tcy0O0zCWXXKJLLrnEsv6Lioq8AlSS57E/l9JkZ2cbrqFBgwaKiYlVUJDD8+lIkkpLnZJNCvrzk1Jl08xqm5f3ndq3P19BQVX34U/b2liOutb2t9/2KSoqyqvtnj171KxZZLXWrz/95uR8o8jISEVHR5vatr6/T05exxWth8ra5ufnS5LXeqxselX9WvV3X1G9v/zyi1q1auVVW0X15ufna9++fZ7tmi+1+bp+KnuvVfR+r2pd/qOPd66Uvbcr+glOK9jcFtz5oGPHjp4zcU/l22+/NWXMVatWafr06frss88807Zv365BgwZpw4YNatKkSZXPdzqdysrKUlxcnOewgBEOh0P3/edd7SjYL0n6S/MIPXr91ZLkmV7RNKNtnS6XHCfs0TtdLsnt9qqjqn6dTmeFbU/u19O3VH68k6aVTXfY7T73a1Vbf+qtdttK/pSqvX796beyT9E2W7X79Wc5AvY1qqxtRevipHVWZVs/+LON8Pt94sfrbLTmU9bmz3gm1OtyuZSXl6f27dubcnTT6XQqOztbXbt29SkLLNkTXbBggeff2dnZeumllzRu3DjFxcWpQYMGysnJ0ezZszVy5EjTxoyKitKBAwdUWlqqoKA/FqugoEChoaEKDw/3uR+Hw1GtEJWkHQX7lZO/16fp1W178pv4xMe+9FG2rOWmV/Bm9HXaidP96deqtv7Ua3bbMmbXW2m/Pr53jfZbH1+jU60Lo22r4uvfvRXrzCijtfnD6POLiopkt9urve02wpIQvfjiiz3/fvDBB5Wenq5LL73UM61jx44666yzlJycrNGjR5syZqdOnRQUFKSsrCzFx8dLkjIzMxUXF2fqd6/V8ZfmEV7/9+XfvrQ1Mt7Jz69senX5069VbQNBIKxfM/qtz69RTfLn7z5QBHJttcmSw7knuvDCC/Xaa6+V+z3RLVu2aMyYMdq0aZNpYz344IP66quvNGPGDO3du1cTJ05UWlqaBgwYcMrnlh3O9XUXvirXZrzi+cQWE91CS8ffWvFhV1X/MFRln9x8Ga+sTUVtzfgE60+/VrUNBIGwfs3otz6/RjXJn0O0gbLOAvn1NHPbbaQ/y9fC5ZdfrpSUFH311VcqLCzU0aNH9cUXXyglJUVXXXWVqWMlJycrNjZWo0aN0tSpUzVhwgSfArQmVHTYtbLDIf60rc54ZY+rOiRcHf70a1XbQBAI69eMfuvza1ST/Pm7DxSBXFtts/zs3GnTpmnKlCm69dZbPZd7OBwODRs2zNTrRKU/LrhNT09Xenq6qf0CAFARy0O0UaNGevzxxzV16lT98MMPkqS2bduqUaNGVg8NAIClLA/RjRs3lpt24mUtF110kdUlAABgCctD9NZbb61wenBwsJo3b641a9ZYXQIAAJawPES3bdvm9djpdOqnn37SQw89pCFDhlg9PAAAlqnxU6wcDofatm2rf//733rqqadqengAAExTY/fOPdlvv/2mQ4cO1dbwlvL3pggAgLrJ8hBNTk4uN+3o0aNav359vfyxbKfL5bkP5onTuK4KAOqfWtkTbdKkiSZOnKihQ4fWxvCWKgtLp9Op3NxcdejQoVbu5wgAsJ7lIZqYmKiuXbuqQYMGXtNLSkr06aefql+/flaXUGuKiopquwQAgIUsP8Y4cuRIHT58uNz0vLw83XPPPVYPDwCAZSzZE33ttdc0bdo02Ww2ud1ur19wOdFf//pXK4YHAKBGWBKiN998s9q3by+Xy6VRo0Zp1qxZOvPMMz3zbTabwsLCdP7551sxPAAANcKy70TLbue3Zs0aRUdHy2azWTUUAAC1wpIQTU5O1qRJk9SoUSPNnj27yrZpaWlWlAAAgOW4eBEAAIMs2RM9ce+SPU0AQH1lSYie6hDuiZKSkqwoAQAAy1kSohs2bPCpHScbAQDqMktC9JVXXrGiWwAAAkqN3Dt3/fr1euONN7Rjxw7ZbDZ16NBBt9xyi7p27VoTwwMAYAnLz85dvHixxo4dq7CwMN1www269tprJf1xO8D333/f6uEBALCM5Xuizz77rKZOneoJzzIXXXSRHn/8cQ0YMMDqEgAAsITle6IHDx5Uly5dyk2Pj4/X3r17rR4eAADLWB6it9xyi9LT03XgwAHPtKKiIs2ZM0c333yz1cMDAGAZyw/nZmZmasuWLbr88st1zjnnqEGDBtq5c6eOHj2q6OhorV692tN2zZo1VpcDAIBpLA/R6667Ttddd53VwwAAUOMsD9Hhw4dbPQQAALXC8hDdvn27nnjiCe3YsUMlJSXl5nMIFwBQV1keov/6178UGhqqkSNHKjQ01OrhAACoMZaH6I8//qilS5eqXbt2Vg8FAECNsvwSl8suu0yZmZlWDwMAQI2zfE/03//+t4YPH663335bZ511VrlfbuH3RgEAdZXle6IPPPCA7Ha7IiMj+ekzAEC9Yvme6KZNm/T6668rJibG6qEAAKhRlu+Jtm/fXocOHbJ6GAAAapzle6I33XST7r//fiUmJqp169YKCvIectiwYVaXAACAJSwP0YyMDAUFBemtt94qN2/v3r2mheihQ4eUnp6utWvXyuVy6fLLL1dKSorCw8NN6R8AgJNZHqIfffSR1+Pi4mJ98MEHWr58ufbs2WPaOFOmTNFPP/2kuXPnymazKTU1VZMnT9asWbNMGwMAgBNZHqJlMjMztWLFCq1evVpHjhxRu3btlJKSYkrfhYWFeu+99/T666+rc+fOkqSUlBTdcsstKi4uVkhIiCnjAABwIktDdPfu3VqxYoXefPNN7dq1S+Hh4Tpy5Igef/xxDRo0yLRx7Ha75syZo06dOnlNdzqdOnr0KCEKALCEJSG6dOlSrVixQps2bVKLFi3Ut29fDRgwQBdddJG6dOmi888/39TxQkNDddlll3lNW7BggTp06KCIiAi/+nI6nabUVNaPWf0BAMoze1vrbz+WhOikSZPUpk0bpaen65prrjGlz2PHjlX6HWrz5s3VsGFDz+NXX31Vq1at0gsvvOD3ONnZ2YZrrIn+AADl1da21pIQnTFjht59910lJycrLS1Nl19+ufr166eEhATDfW7evFkjR46scF5GRob69esnSVq4cKGmT5+u5ORkQ+PFxcXJ4XAYrrOM0+lUdna2af0BAMoze1tb1p+vLAnRxMREJSYmav/+/Vq1apVWrlyppKQkhYaGyuVyacOGDWrTpo0aNGjgc589evRQbm5ulW1efPFFzZw5U/fff79GjRplqHaHw2Fq6JndHwCgvNra1lp6x6KIiAjdcsstWrhwodauXavx48erU6dOeuihh9SrVy9Tbz6/fPlyzZw5U8nJybrttttM6xcAgMpYftu/Mi1bttTtt9+uZcuWafXq1frb3/6m//u//zOl74MHD2ratGkaPny4rr76ahUUFHj+48QeAIBVauw60ROde+65SkpKUlJSkin9ffbZZyosLNTy5cu1fPlyr3lr1qxR69atTRkHAIAT1UqImu3qq6/W1VdfXdtlAABOMzV2OBcAgPqGEAUAwCBCFAAAgwhRAAAMIkQBADCIEAUAwCBCFAAAgwhRAAAMIkQBADCIEAUAwCBCFAAAgwhRAAAMIkQBADCIEAUAwCBCFAAAgwhRAAAMIkQBADCIEAUAwCBCFAAAgwhRAAAMCqrtAgKF2+2WJDmdTlP6K+vHrP4AAOWZva0t66csE07F5va1ZT1XUlKi7Ozs2i4DABAA4uLiFBwcfMp2hOifXC6XSktLZbfbZbPZarscAEAtcLvdcrlcCgoKkt1+6m88CVEAAAzixCIAAAwiRAEAMIgQBQDAIEIUAACDCFEAAAwiRAEAMIgQBQDAIEJUUnFxsVJSUhQfH6+EhATNmzfPM2/Xrl0aPXq0unbtqkGDBmndunVez12/fr0GDx6sLl26aOTIkdq1a5fX/Jdfflm9evVSt27dlJKSoqKiIp/G9WVsAKjrSkpKNHjwYG3YsMFr+s6dO3XBBRdU+Jy33npLt956a4XzJk+erKefftrncU411qkQopJmzpyprVu3av78+ZoyZYpmz56t1atXy+12a/z48YqMjNTSpUs1dOhQJSUlKT8/X5KUn5+v8ePHKzExUUuWLFFERITGjRvnuefie++9p9mzZ2vatGmaP3++Nm/erEcfffSU40o65dgAUNcVFxfrnnvuUV5entf0X375RXfccYeKi4vLPeeLL77Qgw8+WGF/zz//vBYvXuzzOKcayxen/Q3oCwsLtXjxYj3//POKjY1VbGys8vLytHDhQp155pnatWuXFi1apIYNG6pdu3b6/PPPtXTpUk2YMEGLFy9W586dNWbMGElSWlqaLr30Un355Zfq0aOHFixYoFGjRqlPnz6SpKlTp+q2227TfffdJ7fbXem4AwcO1BdffFHl2ABQl33//ff617/+Ve5G7x9++KEeeOABNW/evNxzZs+ereeee07nnnuu1/QjR44oJSVFX3zxhVq1auXTOKcay1en/Z7otm3bVFpaqm7dunmmde/eXZs3b9bmzZsVExOjhg0bes3LysqSJG3evFnx8fGeeWFhYYqNjVVWVpacTqeys7O95nft2lXHjx/Xtm3bqhzX5XKdcmwAqMvKdjbeeOMNr+kff/yx7r77bk2aNKnccz777DO9+OKLGjBggNf0n3/+WcXFxVq2bJnOPvtsn8Y51Vi+Ou33RAsKCtS0aVOvu/VHRkaquLhYv/zyi1q0aOHVvlmzZvr11189z61s/qFDh1RcXOw1PygoSE2aNNGvv/4qu91e6bgHDx6ssm8AqOtuvvnmCqdPnz5dkir87vL111+vcF7Hjh313HPP+TXOqcby1WkfokVFReV+7qbs8fHjxyucV1JSUuVzS0pKdOzYMa++Tp7vdrsrHbekpKTKvgEAgeG0P5wbEhJSLpjKHjdo0KDCeaGhoVU+NywsTCEhIV59VTS/snFDQ0MrnV82NgCg9p32IRoVFaUDBw6otLTUM62goEChoaFq1aqV9u3b59V+3759nsOsUVFRFc5v3ry5mjRpopCQEK/5paWlOnjwoJo3b17luOHh4ZX2ffIhXgBA7TntQ7RTp04KCgryOmEnMzNTcXFx6tKli7755hvPodmyeV26dJEkdenSRZmZmZ55RUVFysnJUZcuXWS32xUXF+c1PysrS0FBQerYsWOV49rt9lOODQCofad9iIaFhWnYsGFKTU3Vli1b9OGHH2revHkaOXKkLr74YrVq1UrJycnKy8vT3LlztWXLFo0YMUKSdO211+qrr77S3LlzlZeXp+TkZLVu3Vo9evSQ9McX2i+++KI+/PBDbdmyRampqbr++usVFhZW5biSTjk2AKD2nfYnFklScnKyUlNTNWrUKDVq1EgTJkzwnEL9zDPPaNKkSUpMTFSbNm2UkZGh6OhoSVLr1q319NNPa8aMGcrIyFC3bt2UkZEhm80mSbr66qu1e/duPfjggyopKdGAAQN03333+TSuw+GocmwAQO2zuSu6AhUAAJzSaX84FwAAowhRAAAMIkQBADCIEAUAwCBCFAAAgwhRAAAMIkQBADCIEAUCSIcOHbz+69mzpyZPnqyjR49Wu+8NGzaoQ4cOJlT5X263WwsXLvS5/W+//aZVq1aZWgNQmwhRIMA8/fTTWrdunT799FPNmTNHW7Zs0cyZM6vdb7du3bRu3ToTKvyvjRs3atq0aT63f+yxx/TJJ5+YWgNQmwhRIMCceeaZnl/66dq1q+644w5T9t6Cg4PVvHlzEyr8L39veMYN0lDfEKJAgAsLC/N6vGfPHt1111266KKL1LlzZw0fPtzr14IWLFigPn36KC4uTomJidq0aZOk8odzK2t3suPHj2vy5Mnq0aOHunXrpjvvvFN79uzRzz//7PnBhA4dOmjDhg0qKSlRWlqaevXqpdjYWPXt21dvvPGGpD/2sJcvX67ly5erb9++kqRDhw7pvvvu04UXXqiEhAQ99NBDXr9cBAQ6QhQIYPv379crr7yia665xjPt3nvvldPp1KJFi7RixQpFRUUpNTVVkpSTk6OZM2dqypQpWrVqleLj4/U///M/crlcXv362k6SFi5cqI0bN2revHlasmSJjh49qhkzZqhVq1Z6+umnJUnr1q1Tt27dNHfuXH388cd6+umntXr1ag0bNkwPPfSQ9u3bpzFjxuiqq67SVVddpSVLlkiSJk2apMOHD+v111/XM888o+zsbL8ODwO1jV9xAQLM//t//08Oh0Nut1tFRUVq0qSJJyTdbrf69eunK6+8Ui1btpQk3XLLLRo7dqwkaffu3bLZbIqOjlbr1q31P//zP+rTp0+5cKyqnd3u/dn6559/VkhIiM466yw1adJEjzzyiA4ePCiHw6EzzzxTkjyHiTt27KiePXuqa9eukqQ777xTGRkZ+vHHHxUfH6/Q0FBJUkREhH766Sd9+OGH+vLLL9W4cWNJ0kMPPaRhw4YpOTnZMw0IZIQoEGCmT5+uLl26yO1268CBA3r11Vd100036e2331azZs100003aeXKlfrqq6/0ww8/aOvWrZ6QTEhI0Pnnn68hQ4YoJiZGV1xxha677joFBXn/qfvaTpJuuOEGvfvuu0pISNDFF1+sfv36KTExscLa+/Xrp88++0yPPPKIduzYoZycHEmS0+ks13b79u1yuVy67LLLvKa7XC7t3LlTnTt3NrT+gJpEiAIBJioqSm3atJEknXvuuYqNjVWPHj20atUq3XzzzRozZowOHTqkQYMGqW/fvjp+/LiSkpIk/fH96eLFi/Xll19q7dq1WrZsmV5//XUtW7bMa4yq2kVFRXm1bd++vT766CN9/PHH+vjjj/XEE0/onXfeqfDSlieffFKLFy9WYmKihg0bpilTpni+/zyZ0+lU48aNtXTp0grXAVAXEKJAgLPb7XK73XI6nfr++++1ceNGff7554qIiJAkT5i53W5lZWXpiy++0D/+8Q/17NlT//rXv/TXv/5VmZmZatasmafPr7/+utJ2gwYN8hp/xYoVCg4O1qBBg3TVVVcpKytLN9xwg3777TfPD9CXWbRokVJTU3XVVVdJkr7//ntPbZJks9k8/27btq0OHz4sm82mc845R5KUm5urWbNmKS0tzXPoFwhkhCgQYH7//XcVFBRIko4ePap58+bJ6XSqb9++atCggex2u95991317dtX2dnZnpN7SkpKFBoaqoyMDEVGRuqSSy7Rxo0bVVhYqA4dOmjfvn2eMapqd7LDhw9rzpw5atq0qVq3bq23335bLVu2VNOmTT1nDm/dulXt27dXkyZNtHbtWnXu3Fl79uzRjBkzPLVJf+wB5+Xlac+ePWrXrp169eqle++9V5MnT5bD4dADDzygM888U+Hh4ZauY8AsNjcXbgEB4+QQCwsLU+fOnZWUlKSePXtKkt544w1lZGTo8OHDatu2rcaMGaOJEyfq1VdfVbdu3fTmm2/qmWeeUX5+vqKjo3XXXXfp6quv1oYNGzRy5Ejl5uZKUqXtTuZyufT444/rzTff1O+//67OnTvrgQceUExMjEpKSnTnnXfqyy+/1BNPPKFmzZopNTVVO3fuVFRUlK677jp98MEH6tevn+644w5t3rxZ48eP1/Hjx/XFF1/owIEDmj59uj7++GMFBQWpV69emjx5spo2bWr9ygZMQIgCAGAQ14kCAGAQIQoAgEGEKAAABhGiAAAYRIgCAGAQIQoAgEGEKAAABhGiAAAYRIgCAGAQIQoAgEGEKAAABhGiAAAY9P8B4QgQz4B+lssAAAAASUVORK5CYII=" + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAd0AAAL0CAYAAABJdu0NAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAPYQAAD2EBqD+naQAAT59JREFUeJzt3Qd8VFX+//9PAoSaBCkJBCKIooAgJVQbRQQEQSwsi4WAiCzSBFcBxQRxWRAFkSKICLgFQV1gXUQUqSqhGESk2lAiEIoIoYZA5v/4nO9v5p8hCSRk5mTK6/l4XDNz5869J2PIO+fcU0IcDodDAACA14V6/xIAAEARugAAWELoAgBgCaELAIAlhC4AAJYQugAAWELoAgBgCaELAIAlRW1dyF9lZmbKgQMHJDw8XEJCQgq7OACAQqDzSJ08eVJiYmIkNPTq66uE7hVo4MbGxhZ2MQAAPiAlJUWqVq161e8ndK9Aa7jODzoiIqKwiwMAKARpaWmmAubMhKtF6F6Bs0lZA5fQBYDgFlLA24x0pAIAwBK/C93p06dL9erVpUSJEtKsWTPZtGlTrscuWrRIGjduLGXLlpXSpUtLgwYN5J///KfV8gIA4Jehu3DhQhk2bJgkJibKli1bpH79+tK+fXs5fPhwjseXK1dOXnjhBUlKSpJt27ZJ7969zfbpp59aLzsAACH+tJ6u1mybNGki06ZNcw3n0RvbgwYNkhEjRuTpHI0aNZJOnTrJyy+/nOeb55GRkXLixAnu6QJAkErzUBb4TUeq8+fPS3JysowcOdK1T8dKtW3b1tRkr0T/tli1apXs2bNHXnnllVyPS09PN1vWD9pTElZMcXs+5u7BHjs3AMD3+U3z8tGjR+XixYsSHR3ttl+fp6am5vo+/aukTJkyEhYWZmq4U6dOlbvvvjvX48eNG2f+mnFujNEFAARd6F4tHVO1detW2bx5s4wdO9bcE16zZk2ux2tNWoPauen4XAAAPMFvmpcrVKggRYoUkUOHDrnt1+eVKlXK9X3aBH3DDTeYx9p7edeuXaY226pVqxyPL168uNkAAAjamq42D8fFxcnKlStd+7QjlT5v0aJFns+j78l6zxYAAFv8pqartGk4Pj7ejL1t2rSpTJ48WU6fPm2GAamePXtKlSpVTE1W6Vc99vrrrzdBu2zZMjNOd8aMGYX8nQAAgpFfhW737t3lyJEjkpCQYDpPaXPx8uXLXZ2r9u3b57b6gwbyU089Jb/99puULFlSatWqJf/617/MeQAAsM2vxukWBk+O02XIEAAEdxb4zT1dAAD8HaELAIAlhC4AAJYQugAAWELoAgBgCaELAIAlhC4AAJYQugAAWELoAgBgCaELAIAlhC4AAJYQugAAWELoAgBgCaELAIAlhC4AAJYQugAAWELoAgBgCaELAIAlhC4AAJYQugAAWELoAgBgCaELAIAlhC4AAJYQugAAWELoAgBgCaELAEAghe7q1attXAYAAJ9mJXQ7dOgg119/vfztb3+TlJQUG5cEACA4Q3f//v0ycOBA+fDDD6VGjRrSvn17ef/99+X8+fM2Lg8AQPCEboUKFWTo0KGydetW2bhxo9x4443y1FNPSUxMjAwePFi+/fZbG8UAACC4OlI1atRIRo4caWq+p06dkjlz5khcXJzccccdsmPHDtvFAQAg8EI3IyPDNC937NhRqlWrJp9++qlMmzZNDh06JD/++KPZ161bN1vFAQDAuqI2LjJo0CB57733xOFwyGOPPSYTJkyQunXrul4vXbq0vPbaa6a5GQCAQGUldHfu3ClTp06VBx54QIoXL57rfV+GFgEAApmV5uXExETTdHxp4F64cEHWrVtnHhctWlRatmxpozgAAARu6LZu3VqOHTuWbf+JEyfMawAABAMroav3ckNCQrLt//3338393PyYPn26VK9eXUqUKCHNmjWTTZs25Xrs22+/bXpFX3PNNWZr27btZY8HAMBv7+nqPVylgdurVy+35uWLFy/Ktm3b5NZbb83z+RYuXCjDhg2TmTNnmsCdPHmymWhjz549EhUVle34NWvWSI8ePcw1NKRfeeUVadeunRmaVKVKFQ99lwAA+EBNNzIy0mxa0w0PD3c9161SpUry5JNPyr/+9a88n2/SpEnSt29f6d27t9SpU8eEb6lSpcxY35z8+9//NpNwNGjQQGrVqiWzZ8+WzMxMWblypQe/SwAAfKCmO3fuXPNVm4P/+te/5rspOSudMjI5OdlMrOEUGhpqmoyTkpLydI4zZ86Y8cLlypXL9Zj09HSzOaWlpV11mQEAKJTeywUJXHX06FHTJB0dHe22X5+npqbm6RzDhw83Y4E1qHMzbtw4txp5bGxsgcoNAIDXa7o63aM242oHpoYNG+bYkcppy5Yt4m3jx4+XBQsWmPu8en83N1qT1vvGWWu6BC8AwKdD97777nN1nOratWuBz6eTZxQpUsRMG5mVPtf7w5ejs11p6H7++edyyy23XPZYLXNuE3gAAOCToatNyjk9vlphYWFmYQStPTtD3NkpShdPyI1OOTl27Fgz13Pjxo0LXA4AAHx6GkhP0Wbf+Ph4E55NmzY1Q4ZOnz5tejOrnj17mqFAel9W6RChhIQEmT9/vunM5bz3W6ZMGbMBABAQoav3ci93HzernGarykn37t3lyJEjJkg1QHUo0PLly12dq/bt22d6NDvNmDHD9Hp+6KGH3M6jNe/Ro0fn6/sBAMBnQ1drod6gTcm5NSdrJ6msfvnlF6+UAQAAnwpdbQYGAAAWQleH2kRERLgeX47zOAAAAplX7+kePHjQzIlctmzZHO/vOhdC0EkvAAAIdF4L3VWrVrmmW2RxegAAvBi6WRekZ3F6AAAsjtP9448/5J133pFdu3aZ57pKkI6vvdziAwAABBIrCx6sW7fOTE4xZcoUE7666ePrrrvOvAYAQDCwUtMdMGCAmdhCJ6vQ+ZOVdp7StW71te+++85GMQAACPya7o8//ijPPPOMK3CVPtZpHfU1AACCgZXQ1WX+nPdys9J99evXt1EEAAACt3l527ZtrseDBw+WIUOGmFpt8+bNzb4NGzbI9OnTzZJ7AAAEgxCHzlDhBbrwgE58caXT+/rkGDqbVmRkpJw4caLAM2clrJji9nzM3YMLWDoAgD9lgddqunv37vXWqQEA8EteC91q1ap569QAAPglq4vY79y506x5q2vcZtWlSxebxQAAIHBD9+eff5b777/fjMfNep/XuQiCL9/TBQDAr4YMac9lnX3q8OHDUqpUKdmxY4eZiapx48bZFp4HACBQWanpJiUlmVWHKlSoYHo163b77bfLuHHjzHCib775xkYxAAAI/JquNh+Hh4ebxxq8Bw4ccHW22rNnj40iAAAQHDXdunXryrfffmuamJs1ayYTJkyQsLAwmTVrltSoUcNGEQAACI7QHTVqlJw+fdo8HjNmjNx7771yxx13SPny5WXhwoU2igAAQHCEbvv27V2Pb7jhBtm9e7ccO3ZMrrnmGlcPZgAAAp3VcboqJSXFfI2NjbV9aQAAAr8j1YULF+TFF18081bqYva66WNtds7IyLBRBAAAgqOmO2jQIFm0aJHpQNWiRQvXMKLRo0fL77//bha3BwAg0FkJ3fnz58uCBQvknnvuce275ZZbTBNzjx49CF0AQFCw0rxcvHhx06R8KR1CpEOHAAAIBlZCd+DAgfLyyy9Lenq6a58+Hjt2rHkNAIBg4LXm5QceeMDt+eeffy5Vq1aV+vXrm+c6WYauNnTXXXd5qwgAAARH6Grv5KwefPBBt+cMGQIABBuvhe7cuXO9dWoAAPyS1ckxjhw54lrg4KabbpKKFSvavDwAAIHfkUrnXX788celcuXKcuedd5otJiZG+vTpI2fOnLFRBAAAgiN0hw0bJmvXrpX//e9/cvz4cbP997//NfueeeYZG0UAACA4mpf/85//yIcffiitWrVy7evYsaOULFlS/vSnPzE5BgAgKFip6WoTcnR0dLb9UVFRNC8DAIKGldDV+ZYTExPl3Llzrn1nz56Vl156yTUXMwAAgc5K6E6ePFm++uorMzmGToahm47TXb9+vbzxxhv5Otf06dPNlJIlSpSQZs2ayaZNm3I9dseOHWZ8sB6v6/ZqOQAACOjQrVevnvzwww8ybtw4adCggdnGjx9v9t188815Ps/ChQtNpyytNW/ZssXMbtW+fXs5fPhwjsdr03WNGjXMtSpVquTB7wgAAB/sSKXr5daqVUuWLl0qffv2LdC5Jk2aZM7Ru3dv83zmzJny8ccfy5w5c2TEiBHZjm/SpInZVE6vAwAQUDXdYsWKud3LvVo6T3NycrK0bdvWtS80NNQ817V5PUUXYkhLS3PbAADwm+blAQMGyCuvvCIXLly46nMcPXpULl68mK0XtD5PTU0VT9EmcJ032rkxRzQAwK/G6W7evFlWrlwpn332mbm/W7p0abfXFy1aJL5i5MiR5r6xk9Z0CV4AgN+EbtmyZbOtMpRfFSpUkCJFisihQ4fc9utzT3aSKl68uNkAAPCr0M3MzJRXX31Vvv/+e3NPtk2bNjJ69GgzE1V+hYWFSVxcnKkxd+3a1XV+fT5w4EAvlB4AAD+6pzt27Fh5/vnnpUyZMlKlShWZMmWKub97tbTZ9+2335Z3331Xdu3aJf379zeLKTh7M/fs2dM0Dztp0G/dutVs+nj//v3m8Y8//uiR7w8AAJ+p6f7jH/+QN998U/r162eef/7559KpUyeZPXu26XmcX927dzfLAyYkJJjOUzred/ny5a7OVfv27XM774EDB6Rhw4au56+99prZWrZsKWvWrPHI9wgAQF6FOBwOh3iJ3hvVWmXWjkg6k5Tu09mp/IF2pNJezCdOnJCIiIgCnSthxRS352PuHlzA0gEA/CkLvNq8rEOENGQvHberE2YAABBsvNq8rJXoXr16ufUG1oky/vKXv7gNG/KlIUMAAPhl6MbHx2fb9+ijj3rzkgAABGfozp0715unBwDAr1iZBhIAABC6AABYQ+gCAGAJoQsAgCWELgAAlhC6AABYQugCAGAJoQsAgCWELgAAlhC6AABYQugCAGAJoQsAgCWELgAAlhC6AABYQugCAGAJoQsAgCWELgAAlhC6AABYQugCAGAJoQsAgCWELgAAlhC6AABYQugCAGAJoQsAgCVFbV0IBZewYorb8zF3D/bIOS7dd7XnLkgZPHGsv/HW98b/T/+Vl3+fvvSZ+WrZEiz/G8gParoAAFhCTddH/1L0hdqDv/0V66vl9WX5qRH4cu2B//e+8//IE2VICOD/n9R0AQCwhNAFAMASQhcAAEsIXQAALCF0AQCwxO9Cd/r06VK9enUpUaKENGvWTDZt2nTZ4z/44AOpVauWOb5evXqybNkya2UFAMBvhwwtXLhQhg0bJjNnzjSBO3nyZGnfvr3s2bNHoqKish2/fv166dGjh4wbN07uvfdemT9/vnTt2lW2bNkidevWLZTvAfAHgTxkwxf42+frraFICR4YsuZvn6Vf1XQnTZokffv2ld69e0udOnVM+JYqVUrmzJmT4/FvvPGGdOjQQZ599lmpXbu2vPzyy9KoUSOZNm2a9bIDAOA3Nd3z589LcnKyjBw50rUvNDRU2rZtK0lJSTm+R/drzTgrrRkvWbIk1+ukp6ebzenEiRPma1paWoG/h/TT59ye6zlz2ueJYwtShstdb+yqmdmOfaHNX3K9Xl7L4K3y5ubS7yO/34Mn5Ke8+fk+cvt88lIG57He+tx94WfKW/LzM+WJf/d5Oe+Vji/oz1R+fk5s/vyle+BzyO39DoejQOfRE/iF/fv363fqWL9+vdv+Z5991tG0adMc31OsWDHH/Pnz3fZNnz7dERUVlet1EhMTzXXY2NjY2Njkki0lJaVAWeY3NV1btCadtXacmZkpx44dk/Lly0tISEiBz69/LcXGxkpKSopEREQU+HwAAO//vtUa7smTJyUmJqZA5/Gb0K1QoYIUKVJEDh065LZfn1eqVCnH9+j+/ByvihcvbrasypYtK56mPwCELgB4n6d+30ZGRgZPR6qwsDCJi4uTlStXutVC9XmLFi1yfI/uz3q8WrFiRa7HAwDgTX5T01Xa7BsfHy+NGzeWpk2bmiFDp0+fNr2ZVc+ePaVKlSpmiJAaMmSItGzZUiZOnCidOnWSBQsWyNdffy2zZs0q5O8EABCM/Cp0u3fvLkeOHJGEhARJTU2VBg0ayPLlyyU6Otq8vm/fPtOj2enWW281Y3NHjRolzz//vNSsWdP0XC7MMbradJ2YmJitCRsAEPi/b0O0N1VhFwIAgGDgN/d0AQDwd4QuAACWELoAAFhC6AIAYAmhCwCAJYQuAACWELoAAFhC6AIAYAmhCwCAJYQuAACWELoAAFhC6AIAYAmhCwCAJYQuAACWELoAAFhC6AIAYAmhCwCAJYQuAACWELoAAFhC6AIAYAmhCwCAJYQuAACWELoAAFhS1NaF/FVmZqYcOHBAwsPDJSQkpLCLAwAoBA6HQ06ePCkxMTESGnr19VVC9wo0cGNjYwu7GAAAH5CSkiJVq1a96vcTulegNVznBx0REVHYxQEAFIK0tDRTAXNmwtUidK/A2aSsgUvoAkBwCyngbUY6UgEAYAmhCwCAJYQuAACWELoAAFhCRyqLHp7/htvz+Q8PKbSyAADso6YLAIAlhC4AAJYQugAAWELoAgBgCaELAIAlhC4AAJYQugAAWELoAgBgCaELAIAlhC4AAJYQugAAWELoAgBgCaELAIAlhC4AAJYQugAAWELoAgBgCaELAIAlhC4AAJYQugAAWELoAgBgCaELAIAlhC4AAJYQugAAWELoAgBgCaELAIAlhC4AAJYQugAAWELoAgBgCaELAIAlhC4AAJYQugAAWELoAgBgCaELAIAlhC4AAJYQugAABHvojhs3Tpo0aSLh4eESFRUlXbt2lT179rgdc+7cORkwYICUL19eypQpIw8++KAcOnTI7Zh9+/ZJp06dpFSpUuY8zz77rFy4cMHydwMAgA+H7tq1a02gbtiwQVasWCEZGRnSrl07OX36tOuYoUOHyv/+9z/54IMPzPEHDhyQBx54wPX6xYsXTeCeP39e1q9fL++++67MmzdPEhISCum7AgAEsxCHw+EQP3DkyBFTU9VwvfPOO+XEiRNSsWJFmT9/vjz00EPmmN27d0vt2rUlKSlJmjdvLp988once++9Joyjo6PNMTNnzpThw4eb84WFhV3xumlpaRIZGWmuFxERUaDv4eH5b7g9n//wkAKdDwBgh6eywGdrupfSb1SVK1fOfE1OTja137Zt27qOqVWrllx77bUmdJV+rVevnitwVfv27c2Ht2PHDuvfAwAguBUVP5CZmSlPP/203HbbbVK3bl2zLzU11dRUy5Yt63asBqy+5jwma+A6X3e+lpP09HSzOWlAAwDgCX5R09V7u9u3b5cFCxZY6cClTQjOLTY21uvXBAAEB58P3YEDB8rSpUtl9erVUrVqVdf+SpUqmQ5Sx48fdzteey/ra85jLu3N7HzuPOZSI0eONE3Zzi0lJcUL3xUAIBj5bOhq/y4N3MWLF8uqVavkuuuuc3s9Li5OihUrJitXrnTt0yFFOkSoRYsW5rl+/e677+Tw4cOuY7QntN4Er1OnTo7XLV68uHk96wYAQEDf09UmZe2Z/N///teM1XXeg9Um35IlS5qvffr0kWHDhpnOVRqOgwYNMkGrPZeVDjHScH3sscdkwoQJ5hyjRo0y59ZwBQDAJp8N3RkzZpivrVq1cts/d+5c6dWrl3n8+uuvS2hoqJkUQzs/ac/kN99803VskSJFTNN0//79TRiXLl1a4uPjZcyYMZa/GwAA/GicbmFhnC4AIC3YxukCAODvCF0AACwhdAEA8NfQrVGjhvz+++/Z9ut4Wn0NAIBg5fHQ/eWXX8zqPpfS3sX79+/39OUAAAi+IUMfffSR6/Gnn35qenk5aQjrJBbVq1f31OUAAAje0NVF5lVISIgZC5uVzhylgTtx4kRPXQ4AgOANXV0JSOl0jZs3b5YKFSp46tQAAAQEj89ItXfvXk+fEgCAgOCVaSD1/q1uutCAswbsNGfOHG9cEgCA4Avdl156ycxt3LhxY6lcubK5xwsAALwQujNnzpR58+aZlX0AAIAXx+nqwvK33nqrp08LAIDf83joPvHEE2YdXAAA4OXm5XPnzsmsWbPk888/l1tuucWM0c1q0qRJnr4kAADBGbrbtm2TBg0amMfbt293e41OVQCAYObx0F29erWnTwkAQEBgaT8AAPy1ptu6devLNiOvWrXK05cEACA4Q9d5P9cpIyNDtm7dau7vXroQAgAAwcTjofv666/nuH/06NFy6tQpT18OAAC/Ye2e7qOPPsq8ywCAoGYtdJOSkqREiRK2LgcAQOA3Lz/wwANuzx0Ohxw8eFC+/vprefHFFz19OQAAgjd0IyMj3Z6HhobKTTfdZFYeateunacvBwBA8Ibu3LlzPX1KAAACglcWsVfJycmya9cu8/jmm2+Whg0beutSAAAEZ+gePnxY/vznP8uaNWukbNmyZt/x48fNpBkLFiyQihUrevqSAAAEZ+/lQYMGycmTJ2XHjh1y7Ngxs+nEGGlpaTJ48GBPXw4AgOCt6S5fvtws61e7dm3Xvjp16sj06dPpSAUACGoer+lmZmZmW0NX6T59DQCAYOXx0G3Tpo0MGTJEDhw44Nq3f/9+GTp0qNx1112evhwAAMEbutOmTTP3b6tXry7XX3+92a677jqzb+rUqZ6+HAAAwXtPNzY2VrZs2WLu6+7evdvs0/u7bdu29fSlAAAIzpqurpOrHaa0Rqvr6d59992mJ7NuTZo0MWN1v/jiC09dDgCA4A3dyZMnS9++fSUiIiLHqSH79esnkyZN8tTlAAAI3tD99ttvpUOHDrm+rsOFdJYqAACClcdC99ChQzkOFXIqWrSoHDlyxFOXAwAgeEO3SpUqZuap3Gzbtk0qV67sqcsBABC8oduxY0ezXu65c+eyvXb27FlJTEyUe++911OXAwAgeIcMjRo1ShYtWiQ33nijDBw40Kyhq3TYkE4BefHiRXnhhRc8dTkAAIK3phsdHS3r16+XunXrysiRI+X+++832/PPP2/2ffnll+aYvFq3bp107txZYmJizBCkJUuWuL3ucDgkISHBNFmXLFnSjAP+4Ycf3I7RxRYeeeQR06NaVzzq06ePnDp1ylPfMgAAhTcjVbVq1WTZsmVy9OhR2bhxo2zYsME81n06K1V+nD59WurXr29qyTmZMGGCTJkyRWbOnGmuVbp0aWnfvr1b87YGrq52tGLFClm6dKkJ8ieffLLA3ycAAFcjxKFVRh+nNd3FixdL165dzXMtstaAn3nmGfnrX/9q9p04ccLUpOfNm2fW8921a5eZrGPz5s3SuHFj1wpIeu/5t99+M+/PC53sQ8cZ6/lzGoOcHw/Pf8Pt+fyHhxTofAAAOzyVBR6fe9mGvXv3SmpqqtvUkvphNGvWTJKSksxz/apNys7AVXp8aGioqRnnJj093Xy4WTcAADzBL0NXA1ddeo9Ynztf069RUVHZxgqXK1fOdUxOxo0bZwLcuelc0gAABG3oepN2AtPmA+eWkpJS2EUCAAQIvwzdSpUquWbBykqfO1/Tr4cPH3Z7/cKFC6ZHs/OYnBQvXty012fdAAAI2tDVntAanCtXrnTt03uveq+2RYsW5rl+PX78uNt8z7oSUmZmprn3CwCA36+n6yk6nvbHH3906zy1detWc0/22muvlaefflr+9re/Sc2aNU0I62xY2iPZ2cNZ1/DVBRh05SMdVpSRkWEm7dCezXntuQwAQFCE7tdffy2tW7d2PR82bJj5Gh8fb4YFPffcc2Ysr4671Rrt7bffboYElShRwvWef//73yZo77rrLtNr+cEHHzRjewEAKAx+MU63MDFOFwCQFszjdAEA8EeELgAAlhC6AABYQugCAGAJoQsAgCWELgAAlhC6AABYQugCAGAJoQsAgCWELgAAlhC6AABYQugCAGAJoQsAgCWELgAAlhC6AABYQugCAGAJoQsAgCWELgAAlhC6AABYQugCAGAJoQsAgCWELgAAlhC6AABYQugCAGBJUVsXAuDfHp7/RrZ98x8eUihlAfwVNV0AACwhdAEAsITQBQDAEu7pwqfv1V1aNl8pFwDf/ff5sA//TiN0YZ2v/kMFfFEw/nt5OIC/Z0IXgDWB/MvUE/h8Ah+h60f/+PgHGVi89f/TdtMaP5dA3hG6hcz2Lyx+QQII1vupvoDQhd8FNP+o4S8/q8ClCN0AwC+c/8PngGDHH6S+j9AFghi/pAG7mBwDAABLCF0AACwhdAEAsITQBQDAkqAI3enTp0v16tWlRIkS0qxZM9m0aVNhFwkAEIQCvvfywoULZdiwYTJz5kwTuJMnT5b27dvLnj17JCoqqrCLB0iwD78Kxh7U/ja8zVv/jx7Ox3kD5eck4EN30qRJ0rdvX+ndu7d5ruH78ccfy5w5c2TEiBGFXTwgqH55B7JA+X8RKN+Hrwro0D1//rwkJyfLyJEjXftCQ0Olbdu2kpSUlON70tPTzeZ04sQJ8zUtLa3A5ck4c87tuZ4zp32eOLbP+zOyXf+dP/XP03kvd73cznvpft2Xm9y+j7wem5/y5iY/5fWW/JTXE59PXt6f2zk89XNS0PLmJj9l8JaC/lzntr8g573S8Xktmyd+TvJT3gwvnbcgnO93OBwFOo+eIGDt379fPx3H+vXr3fY/++yzjqZNm+b4nsTERPMeNjY2NjY2uWRLSUkpUC4FdE33amitWO8BO2VmZsqxY8ekfPnyEhISUuDz619LsbGxkpKSIhEREQU+HwDA+79vtYZ78uRJiYmJKdB5Ajp0K1SoIEWKFJFDhw657dfnlSpVyvE9xYsXN1tWZcuW9XjZ9AeA0AUA7/PU79vIyMgCnyOghwyFhYVJXFycrFy50q3mqs9btGhRqGUDAASfgK7pKm0qjo+Pl8aNG0vTpk3NkKHTp0+7ejMDAGBLwIdu9+7d5ciRI5KQkCCpqanSoEEDWb58uURHRxdKebTpOjExMVsTNgAg8H/fhmhvqsIuBAAAwSCg7+kCAOBLCF0AACwhdAEAsITQBQDAEkIXAABLCF0AACwhdAEAsITQBQDAEkIXAABLCF0AACwhdAEAsITQBQDAEkIXAABLCF0AACwhdAEAsITQBQDAEkIXAABLCF0AACwhdAEAsITQBQDAEkIXAABLCF0AACwpautC/iozM1MOHDgg4eHhEhISUtjFAQAUAofDISdPnpSYmBgJDb36+iqhewUauLGxsYVdDACAD0hJSZGqVate9fsJ3SvQGq7zg46IiCjs4gAACkFaWpqpgDkz4WoRulfgbFLWwCV0ASC4hRTwNiMdqQAAsITQBQDAEr8L3enTp0v16tWlRIkS0qxZM9m0aVOux7799ttyxx13yDXXXGO2tm3bXvZ4AAC8ya9Cd+HChTJs2DBJTEyULVu2SP369aV9+/Zy+PDhHI9fs2aN9OjRQ1avXi1JSUnmJni7du1k//791ssOAECIQwcf+Qmt2TZp0kSmTZvmGkOrQTpo0CAZMWLEFd9/8eJFU+PV9/fs2TPPPdYiIyPlxIkTBe5I1fqN192erx4ytEDnAwDY4aks8Jua7vnz5yU5Odk0ETvpAGV9rrXYvDhz5oxkZGRIuXLlcj0mPT3dfLhZNwAAPMFvQvfo0aOmphodHe22X5+npqbm6RzDhw83s4lkDe5LjRs3zvw149yYGAMAEHShW1Djx4+XBQsWyOLFi00nrNyMHDnSNB84N50UAwAAT/CbyTEqVKggRYoUkUOHDrnt1+eVKlW67Htfe+01E7qff/653HLLLZc9tnjx4mYDACBoa7phYWESFxcnK1eudO3TjlT6vEWLFrm+b8KECfLyyy/L8uXLpXHjxpZKCwCAH9d0lQ4Xio+PN+HZtGlTmTx5spw+fVp69+5tXtceyVWqVDH3ZdUrr7wiCQkJMn/+fDO213nvt0yZMmYDAMAmvwrd7t27y5EjR0yQaoA2aNDA1GCdnav27dvntuTSjBkzTK/nhx56yO08Os539OjR1ssPAAhufjVOtzAwThcAkBZs43QBAPB3hC4AAJYQugAAWELoAgBgCaELAIAvDhk6fvy4mUbxiy++kF9//dUsIFCxYkVp2LChWWLv1ltv9V5JAQAIhprugQMH5IknnpDKlSvL3/72Nzl79qwZI3vXXXdJ1apVzXq1d999t9SpU8eseQsAAK6ypqs1WZ0JSpfW02DNiQbxkiVLzCxRukjAX//617ycGgCAoJGn0N25c6eUL1/+sseULFlSevToYbbff//dU+UDACC4mpevFLgFPR4AgGCQp5ruRx99lOcTdunSpSDlAQAguEO3a9eueTpZSEiIXLx4saBlAgAgeENX160FAAAFw+QYAAD48nq6unD82rVrzfq1ul5tVoMHD/ZU2QAACO7Q/eabb6Rjx45mNioN33LlysnRo0elVKlSEhUVRegCAOCp5uWhQ4dK586d5Y8//jBjczds2GCmhIyLi5PXXnstv6cDACBo5Dt0t27dKs8884yEhoZKkSJFJD09XWJjY2XChAny/PPPe6eUAAAEY+gWK1bMBK7S5mS9r6siIyPN9I8AAMBD93R1HubNmzdLzZo1pWXLlpKQkGDu6f7zn/+UunXr5vd0AAB4VOs3Xs+2b/WQoeKXNd2///3vZrUhNXbsWLnmmmukf//+cuTIEZk1a5Y3yggAQHDWdBs3bux6rM3Ly5cv93SZAAAISFc1OcaFCxfk888/l7feektOnjzpWnP31KlTni4fAADBW9PV4UEdOnQwHai057IuXh8eHi6vvPKKeT5z5kzvlBQAgGCr6Q4ZMsQ0MTvH6Trdf//9snLlSk+XDwCA4K3pfvHFF7J+/XoJCwtz21+9enXZv3+/J8sGAEBw13R1xaGclu/77bffTDMzAADwUOi2a9dOJk+e7LaGrnagSkxMNHMye9v06dNNrbpEiRLSrFkz2bRpU67H7tixQx588EFzvJYza7kBAPD50NX5lb/66iupU6eOnDt3Th5++GFX07J2pvKmhQsXyrBhw0zAb9myRerXry/t27eXw4cP53i8LspQo0YNGT9+vFSqVMmrZQMAwOP3dHWe5W+//dYEoH7VWm6fPn3kkUcecetY5Q2TJk2Svn37Su/evc1z7Sn98ccfy5w5c2TEiBHZjm/SpInZVE6vAwDgs6GbkZEhtWrVkqVLl5qQ1c0WXbc3OTlZRo4c6dqnc0C3bdtWkpKSrJUDAAAroauLHWiTcmHQ+Z21A1d0dLTbfn2+e/duj11Hxxrr5pSWluaxcwMAglu+7+kOGDDA3LvVWakC0bhx48yKSc5Nm9MBACiUe7q6wpBOgvHZZ59JvXr1pHTp0m6vL1q0SLyhQoUKZv3eQ4cOue3X557sJKXN19pZK2tNl+AFABRK6JYtW9YMw7FNJ+OIi4szgd+1a1fXmGF9PnDgQI9dp3jx4mYDAKDQQ3fu3LlSWLQGGh8fb6ahbNq0qRl3e/r0aVdv5p49e0qVKlVME7Gz89XOnTtdj3VY09atW6VMmTJyww03FNr3AQAITvkO3cLUvXt3s25vQkKCpKamSoMGDczSgs7OVboIg/ZodtKVjxo2bOg2xli3li1bypo1awrlewAABK88ha6uKjR69Ghp3rz5ZY/TZf7efPNNU5PUDlfeoE3JuTUnXxqkOmmHw+HwSjkAAPBK6Hbr1s3cx9XevJ07dzbNuzExMWYqRl1tSJtwv/zyS1m2bJl06tRJXn311XwXBACAQJen0NUZpx599FH54IMPzExUs2bNkhMnTpjXdE5jnRJSp2PUns21a9f2dpkBAAjse7rao1eDVzeloXv27FkpX768mTQDAAB4qSOVc/IIAACQN/mekQoAAFwdQhcAAEsIXQAALCF0AQDw5dA9fvy4zJ492ywOcOzYMbNvy5YtZppFAADgod7L27ZtMwvHa8/lX375Rfr27SvlypUzqwvpNIz/+Mc/8ntKAACCQtGrWXSgV69eMmHCBAkPD3ft79ixozz88MOeLl/Aa/3G627PVw8Zetn9+TmHt8rmq/ytvP72PV96LW9fz98Eys9foHwfAdO8rLNO9evXL9t+Xd1HFyEAAAAeCl2dmUoXdr/U999/LxUrVszv6QAACBr5Dt0uXbrImDFjJCMjwzX3st7LHT58eKEsbg8AQMDe0504caI89NBDEhUVZeZe1rVptVm5RYsWMnbsWO+UEh671+IL92t8oQy+IFA+h0D5PnwBn2Xgy3foaq/lFStWmKX8tCfzqVOnpFGjRqZHMwAA8MKCB7fffrvZAACAB0N3ypQpeTydyODBg/N8LPxPoAwboRnPdwTKzxTgsdB9/XX3fxRHjhyRM2fOSNmyZV0zVJUqVcrc5yV0AQAoQO/lvXv3ujbtLNWgQQPZtWuXmQJSN32s93VffvnlvJwOAICglO8hQy+++KJMnTpVbrrpJtc+fay14VGjRnm6fAAABG/oHjx4UC5cuJBt/8WLF+XQoUOeKhcAAAEn36F71113mWkgdVUhp+TkZOnfvz/DhgAA8GTozpkzRypVqiSNGzc2U0Lq1rRpU4mOjjbL/QEAAA+N09X5lZctW2bmWt69e7fZV6tWLbnxxhvzeyoAAILKVU+OoSFL0AIA4MXQffzxx6/Y/Azkd9IDX5ggwRNl8Nb82ME4mUdePgfn/oKetyDvv5pzeIIvrLkNC6H7xx9/uD3X1Ya2b99uJsho06bNVRQBAIDgkO+OVIsXL3bbli5dKj///LN0795dmjdvLt42ffp0qV69upQoUUKaNWsmmzZtuuzxH3zwgbnnrMfXq1fP3I8GAMAvQjfHk4SGyrBhw7JNF+lpCxcuNNdJTEw0Q5bq168v7du3l8OHD+d4/Pr166VHjx7Sp08f+eabb6Rr165m05o5AAB+Gbrqp59+ynHSDE+aNGmS9O3bV3r37i116tSRmTNnmjmfc7uP/MYbb0iHDh3k2Wefldq1a5tpKnW6ymnTpnm1nAAAeOSertY0s3I4HGaWqo8//lji4+PFW86fP28m4Rg5cqRbDVsn5EhKSsrxPbr/0vJqzXjJkiW5Xic9Pd1sTmlpaR4pPwAAIQ5NzXxo3bq123MNPh27q52otGdz0aJXPQrpsg4cOCBVqlQxTcYtWrRw7X/uuedk7dq1snHjxmzvCQsLk3fffdc0MTu9+eab8tJLL+U6ZeXo0aPN65c6ceKEREREiL+w3XPYW70jC9qD1Ve+N5u9R3P7nvPzWXqrh6+v/pzk57zeKJuneh5769+Gt36mWvvAz2peaQUsMjKywFmQ74RcvXq1BDKtSWetHesHHRsbW6hlgv/zhSEavlAGf+OJz8xXP3fb5fLVz8Hn7+lqjVaHB11Kw8mbQ4YqVKggRYoUyVZD1ec6LWVOdH9+jlc6raX+FZN1AwCgUEJ3zZo15v7qpc6dOydffPGFeIs2FcfFxcnKlStd+zIzM83zrM3NWen+rMerFStW5Ho8AADelOfm5W3btrke79y5U1JTU92W9Vu+fLm55+pN2uyrnbV0sQVdZGHy5Mly+vRp05tZ9ezZ05Rh3Lhx5vmQIUOkZcuWMnHiROnUqZMsWLBAvv76a5k1a5ZXywkAQIFCt0GDBhISEmK2nJqRS5YsaRa39yadgOPIkSOSkJBgQl/LpGGvKxypffv2mY5dTrfeeqvMnz9fRo0aJc8//7zUrFnT9FyuW7euV8sJAECBQnfv3r1meFCNGjXMLFDaYzlr029UVJS55+ptAwcONFtuTd+X6tatm9kAAPCb0K1WrZrrPip8Hz0TA7/3qS/zhc/MF8oAXFXofvTRR3LPPfdIsWLFzOPL6dKlS15OCQBA0MlT6Op8xXoPVZuQ9XFu9H6vdqoCAABXGbpZm5RpXgYAoJAXPAAAAB6o6U6ZMkXyavDgwXk+FgCAYJKn0M3rOrl6T5fQBQCgAKGrY3QBAEAh3tPVyTLyuTIgAABB66pC95133jFTKZYoUcJs+nj27NmeLx0AAAEk3+vp6rzHkyZNkkGDBrlW60lKSpKhQ4eauY/HjBnjjXICABB8oTtjxgx5++23pUePHm6zUN1yyy0miAldAAA81LyckZFhlta7lK51e+HChfyeDgCAoJHv0H3sscdMbfdSukbtI4884qlyAQAQcPLdvOzsSPXZZ59J8+bNzfONGzea+7m6iLwuNO+k934BAMBVhu727dulUaNG5vFPP/1kvlaoUMFs+lrWiTIAAEABQnf16tX5fQsAAGDBAwAAfLime+7cOZk6daqp8R4+fDjbUn9btmzxZPkAAAje0O3Tp4/pRPXQQw9J06ZNuXcLAIC3Qnfp0qWybNkyue222/L7VgAAglq+7+lWqVJFwsPDvVMaAAACWL5Dd+LEiTJ8+HD59ddfvVMiAAACVL6bl3UKSO1MVaNGDSlVqpQUK1bM7fVjx455snwAAARv6OpCB/v375e///3vEh0dTUcqAAC8Fbrr1683S/nVr18/v2+Fj1o9ZKj4Kl8um6/y5c/Ml8vmq3z5M/PlsgXMPd1atWrJ2bNnvVMaAAACWL5ruuPHj5dnnnlGxo4dK/Xq1ct2TzciIsKT5QNQCKjBeJe/fb7eKu/qfJw3t2P97bPMd023Q4cOpnn5rrvukqioKLnmmmvMVrZsWfPVW7SDli4dqKGu19JJOk6dOnXZ9+hyg61atTLv0XvPx48f91r5AAAImAUPNHAPHjwoK1askIyMDOndu7c8+eSTMn/+/Fzfc+bMGfNHgm4jR460Wl4AAAocui1btsz1taxL+3nSrl27ZPny5bJ582YzZEnp/M8dO3aU1157TWJiYnJ839NPP22+rlmzxivlAgDA6ipDJ0+eNM24Og+zt3o0a3O2Nik7A1e1bdtWQkNDZePGjR69Vnp6uqSlpbltAAAUauiuW7dO4uPjpXLlyqa22aZNG9mwYYN4Q2pqqrl/nFXRokWlXLly5jVPGjdunERGRrq22NhYj54fABC88hW6GnDae7lmzZrSrVs300FJa4ZLliwx+5s0aZKvi48YMcJ0cLrctnv3brFJ7/2eOHHCtaWkpFi9PgAgcOX5nm7nzp1N7bZTp04yefJk0zmpSJEiMnPmzKu+uA496tWr12WP0ekmK1WqZNbuzerChQumR7O+5knFixc3GwAAhRa6n3zyiQwePFj69+9varqeULFiRbNdSYsWLcxwn+TkZImLizP7Vq1aJZmZmdKsWTOPlAUAAJ9pXv7yyy9NpykNPQ26adOmydGjR8WG2rVrm5p13759ZdOmTfLVV1/JwIED5c9//rOr57LOB62zZenrWZvDt27dKj/++KN5/t1335nnLMoAAPDp0G3evLm8/fbbZqxsv379ZMGCBSbwtLapY2c1kL3p3//+twlVnZRDhwrdfvvtpte0k47d3bNnjxmb66RN3w0bNjRhre68807z/KOPPvJqWQEA8Ejv5dKlS8vjjz9uar5ac9T7stqJSnsXd+nSRbxFeyrrRBga7trBac6cOVKmTBnX69WrVxeHw2FmoHIaPXq02XfpdqX7yAAA+Nw43ZtuukkmTJggv/32m7z33nueKxUAAAGowJNjKO3F3LVrV5ptAQDwdugCAIArI3QBALCE0AUAwBJCFwAASwhdAAAsIXQBALCE0AUAwBJCFwAASwhdAAAsIXQBALAkxKErACBXaWlpEhkZaRZZiIiIKOziAAD8OAuo6QIAYAmhCwCAJYQuAACWELoAAFhC6AIAYElRWxfyV87O3dpzDQAQnNL+XwYUdMAPoXsFJ0+eNF9jY2MLuygAAB/IBB06dLUYp3sFmZmZcuDAAQkPD5eQkBCP/LWkAZ6SksK4XwDwIk/+vtWo1MCNiYmR0NCrvzNLTfcK9MOtWrWqx8+rPwCELgB4n6d+3xakhutERyoAACwhdAEAsITQtax48eKSmJhovgIAguv3LR2pAACwhJouAACWELoAAFhC6AIAYAmhCwCAJYQuAACWELoAAFhC6AIAYAmhCwCAJYQuAACWELoAAFhC6AIAYAmhCwCAJYQuAACWELoAAFhC6AIAYAmhCwCAJYQuAACWELoAAFhC6AIAYAmhCwCAJYQuAACWELoAAFhS1NaF/FVmZqYcOHBAwsPDJSQkpLCLAwAoBA6HQ06ePCkxMTESGnr19VVC9wo0cGNjYwu7GAAAH5CSkiJVq1a96vcTulegNVznBx0REVHYxQEAFIK0tDRTAXNmwtUidK/A2aSsgUvoAkBwCyngbUY6UgEAYAmhCwCAJYQuAACWELoAAFhC6AIAYAmhCwCAJYQuAACWELoAAFhC6AIAYAmhCwCAJYQuAACWELoAAFhC6AIAYIm1VYYyMjIkNTVVzpw5IxUrVpRy5crZujQAAIFf0z158qTMmDFDWrZsaZbFq169utSuXduEbrVq1aRv376yefNmbxYBAIDAD91JkyaZkJ07d660bdtWlixZIlu3bpXvv/9ekpKSJDExUS5cuCDt2rWTDh06yA8//OCtogAA4BNCHA6Hwxsn7tGjh4waNUpuvvnmyx6Xnp5ugjksLEwef/xx8TVpaWkSGRkpJ06cYBF7AAhSaR7KAq+FbqAgdAEAaR7KAnovAwAQSL2X77//fgkJCcm2X/eVKFFCbrjhBnn44YflpptuslEcAAAKhZWarlbJV61aJVu2bDFBq9s333xj9mlnqoULF0r9+vXlq6++8uh1x40bJ02aNJHw8HCJioqSrl27yp49ezx6DQAAfCp0K1WqZGqyP//8s/znP/8x208//SSPPvqoXH/99bJr1y6Jj4+X4cOHe/S6a9eulQEDBsiGDRtkxYoVZqyw9pY+ffq0R68DAIDPdKTScblai73xxhvd9uvwoVtvvVWOHj0q3333ndxxxx1y/Phxr5XjyJEjpsarYXznnXfm6T10pAIApPlTRyptQt69e3e2/brv4sWL5rHe283pvq8n6YelLjcblg5h0g836wYAgN90pHrsscekT58+8vzzz5t7rEpnovr73/8uPXv2NM+19nmlMb0FkZmZKU8//bTcdtttUrdu3cveB37ppZe8Vg4AQPCy0rystdnx48fLtGnT5NChQ2ZfdHS0DBo0yNzHLVKkiOzbt09CQ0OlatWqXilD//795ZNPPpEvv/zystfQmq5uTlrTjY2NpXkZAIJYmr9OjuFsrrUZYAMHDpT//ve/sm7dOrnuuuvy9V7u6QIA0jyUBdZWGXKyGVz694TWphcvXixr1qzJd+ACAOBJ1kL3ww8/lPfff980I58/f97tNR2/6w06XGj+/PmmlqtjdXVpQaV/rZQsWdIr1wQAoFB7L0+ZMkV69+5t7uPqpBhNmzaV8uXLm3G799xzj9euq8sKalNAq1atpHLlyq5NJ+MAACAga7pvvvmmzJo1y6w8NG/ePHnuueekRo0akpCQIMeOHfPadVnLAQAQdDVdbVLWSTCUNuvq4vbOoUTvvfeejSIAABA800A6a7TXXnutmZZR7d27l9ooACBoWAndNm3ayEcffWQe673doUOHyt133y3du3c3KxABABAMrIzT1dmgdCta9P9uIS9YsEDWr18vNWvWlH79+klYWJj4KsbpAgDS/HVyDH9D6AIA0vxtcoxz587Jtm3b5PDhw6bWm1WXLl1sFQMAgEJjJXSXL19uFjbQJfwupSsLOVcaAgAgkFnpSKVTMXbr1k0OHjzour/r3AhcAECwsBK6urLQsGHDzIxUAAAEKyuh+9BDD5kFBwAACGZWei+fOXPGNC9XrFhR6tWrJ8WKFXN7ffDgweKr6L0MAEjzp97LOtXjZ599JiVKlDA1Xu085aSPfTl0AQDwFCuh+8ILL8hLL70kI0aMkNBQKy3aAAD4HCsJqOvn6pSPBC4AIJhZScH4+HjWsAUABD0rzcs6FnfChAny6aefyi233JKtI9WkSZNsFAMAgMAP3e+++04aNmxoHm/fvt3ttaydqgAACGRWQnf16tU2LgMAgE+jZxMAAP5e033ggQdk3rx5ZhCxPr6cRYsWeasYAAAEfujqzB3O+7X6GACAYMci9lfANJAAgDQPZQH3dAEAsMRroduhQwfZsGHDFY87efKkvPLKKzJ9+nRvFQUAgMC+p6urCj344IOmOt65c2dp3LixxMTEmEUP/vjjD9m5c6d8+eWXsmzZMunUqZO8+uqr3ioKAACBf083PT1dPvjgAzMFpAastoWbi4aESJ06daR9+/bSp08fqV27tvgq7ukCANI8lAVWO1JpYc+ePSvly5fPNhWkryJ0AQBp/rSerpMWmOFDAIBgRe9lAAAsIXQBALCE0AUAwBJCFwCAQAvd48ePy+zZs2XkyJFy7Ngxs2/Lli2yf/9+W0UAAKBQWem9vG3bNmnbtq3pufzLL79I3759pVy5cmZ1oX379sk//vEPG8UAACDwa7rDhg2TXr16yQ8//GBmpHLq2LGjrFu3zkYRAAAIjtDdvHmz9OvXL9v+KlWqSGpqqo0iAAAQHKFbvHhxM5vHpb7//nupWLGijSIAABAcodulSxcZM2aMZGRkuOZe1nu5w4cPN4sieJuuYFS9enXTtN2sWTPZtGmT168JAEChhO7EiRPl1KlTEhUVZeZebtmypdxwww0SHh4uY8eO9eq1dbEFvaecmJhoekvXr1/fLLRw+PBhr14XAIBCXfBAVxrSnswawI0aNTI9mr1Na7ZNmjSRadOmmeeZmZkSGxsrgwYNkhEjRlzx/Sx4AAD+pfYLE7Pt2zX2meBb8OD22283my3nz5+X5ORkMzbYKTQ01IR9UlJSrssR6uaU071oAAB8KnSnTJmS52MHDx7slTIcPXpULl68KNHR0W779fnu3btzfM+4cePkpZdesvLXl/7lldM+bxx7uXNwrHePzY0n/t/n5byXO94Tx/rq5+6JY23VonI7tzf/3dsq79Vcr3YBy+up78+vQvf11193e37kyBE5c+aMlC1b1jVDValSpcx9Xm+F7tXQWrHeA85a09XmaH/jrR+63M6b0/78lMH2sfkpb0GPza+CfpYFvZbt8/rC/yNv/fx5k+2fy7zy1r+BQOG10N27d6/r8fz58+XNN9+Ud955R2666Sazb8+ePWZmqpzG73pKhQoVpEiRInLo0CG3/fq8UqVKuQ5v0g0AAL/svfziiy/K1KlTXYGr9LHWhkeNGuW164aFhUlcXJysXLnStU87UunzFi1aeO26AAAUWu9lbUZeu3at6UWclY6XbdWqlWl29uaQofj4eHnrrbekadOmMnnyZHn//ffNPd1L7/V6u/eyt+6rAAC8y696L991112mGVlXGdKhQkp7Fffv39/rw4a6d+9u7icnJCSYKScbNGggy5cvz1PgAgDgd83Lc+bMMfdQGzdu7LpnqrVODT4NYm8bOHCg/Prrr2Yo0MaNG83YXQAAbLNS09X5lZctW2bmWnYO1alVq5bceOONNi4PAIBPsDo5hoYsQQsACFZWQvfxxx+/YvMzAACBzkro/vHHH27PdbWh7du3mwky2rRpY6MIAAAER+guXrw42z4dL6u9l6+//nobRQAAIDh6L+d44dBQM93ipdNFAgAQqKx2pLrUTz/9JBcuXJBgwWQYABDcrIRu1gUElE6CdfDgQfn444/NbFEAAAQDK6H7zTffZGta1rG7EydOvGLPZgAAAoWV0F29erWNywAA4NOsdKTSYUE6PCinCaQZMgQACBZWQnfNmjVy/vz5bPvPnTsnX3zxhY0iAAAQ2M3L27Ztcz3euXOnWeXH6eLFi2a1nypVqnizCAAABEfo6jJ6ISEhZsupGblkyZJmcXsAAIKBV0N37969ZnhQjRo1zIL12mPZKSwsTKKioqRIkSLeLAIAAMERutWqVXNN+QgAQLDzWuh+9NFHcs8990ixYsXM48vp0qWLt4oBAIDPCHFo+68X6AQY2nFKm5D1ca4FCAkxnap8lQ5rioyMlBMnTkhERERhFwcA4MdZ4LWabtYmZZqXAQAoxFWGAAAINl6r6U6ZMiXPxw4ePNhbxQAAIPDv6V533XV5K0BIiPz888/iq7inCwBI8/V7ujpGFwAAFOI9Xa1Ye6lyDQCAT7MWuu+8847UrVtXSpQoYTZ9PHv2bFuXBwAgONbTTUhIkEmTJsmgQYOkRYsWZl9SUpIMHTpU9u3bJ2PGjLFRDAAAArMjVVY657L2Zu7Ro4fb/vfee88E8dGjR8VX0ZEKAJDmoSyw0ryckZEhjRs3zrY/Li5OLly4YKMIAAAUOiuh+9hjj8mMGTOy7Z81a5Y88sgjNooAAEBw3NN1dqT67LPPpHnz5ub5xo0bzf3cnj17yrBhw1zH6b1fAAACkZXQ3b59uzRq1Mg8/umnn8zXChUqmE1fyzpRBgAAgcpK6K5evdrGZQAA8GkseAAAQCDVdM+dOydTp041Nd7Dhw9nW+pvy5YtNooBAEDgh26fPn1MJ6qHHnpImjZtyr1bAEBQshK6S5culWXLlsltt91m43IAAATvPd0qVapIeHi4jUsBABDcoTtx4kQZPny4/Prrr2LLL7/8Ypq1dV3fkiVLyvXXXy+JiYly/vx5a2UAAMB687JOAamdqWrUqCGlSpWSYsWKub1+7Ngxj19z9+7dpsPWW2+9JTfccIMZD9y3b185ffq0vPbaax6/HgAAPrHgQdu2bc3sU1rzjI6OztaRKj4+Xmx49dVXzXSUP//8c57fw4IHAIA0D2WBlZru+vXrzVJ+9evXl8KkH1a5cuUue0x6errZsn7QAAD4zT3dWrVqydmzZ6Uw/fjjj2ascL9+/S573Lhx48xfM84tNjbWWhkBAIHNSuiOHz9ennnmGVmzZo38/vvvpvaYdcuPESNGmObpy216Pzer/fv3S4cOHaRbt27mvu7ljBw50tSInVtKSspVfc8AABTKPd3Q0P/L9kvv5eqldd/FixfzfK4jR46Y4L4c7bAVFhZmHh84cEBatWplVjeaN2+eqyx5xT1dAECaP93T9eSCBxUrVjRbXmgNt3Xr1hIXFydz587Nd+ACAOBJVkK3ZcuWub6WdWk/T9LA1RputWrVzBAhrSE7VapUySvXBADAJxaxz+rkyZPy3nvvyezZsyU5OTlfzct5tWLFCtN5SreqVau6vWahRR0AgGystreuW7fOjMmtXLmyqX22adNGNmzY4JVr9erVy4RrThsAAAFZ001NTTUdmN555x1zI/pPf/qTGQe7ZMkSqVOnjrcvDwBAcNR0O3fuLDfddJNs27ZNJk+ebHoS61hZAACCkVdrup988okMHjxY+vfvLzVr1vTmpQAACO6a7pdffmk6TemQnWbNmsm0adPk6NGj3rwkAADBGbo6IcXbb78tBw8eNNMvLliwQGJiYszqP9q7WAMZAIBgYWVGqqz27NljOlX985//lOPHj8vdd98tH330kfgqZqQCAKR5KAusT9GkHasmTJggv/32mxmrCwBAsLBe0/U31HQBAGn+WtMFACBYEboAAFhC6AIAYAmhCwCAJYQuAACWELoAAFhC6AIAYAmhCwCAJYQuAACWELoAAFhC6AIAYAmhCwCAJUVtXchfOdeD0MmuAQDBKe3/ZUBB1wgidK/g5MmT5mtsbGxhFwUA4AOZoKsNXS2W9ruCzMxMOXDggISHh0tISIhH/lrSAE9JSWGpQADwIk/+vtWo1MCNiYmR0NCrvzNLTfcK9MOtWrWqx8+rPwCELgB4n6d+3xakhutERyoAACwhdAEAsITQtax48eKSmJhovgIAguv3LR2pAACwhJouAACWELoAAFhC6AIAYAmhCwCAJYRuDqZPny7Vq1eXEiVKSLNmzWTTpk2u186dOycDBgyQ8uXLS5kyZeTBBx+UQ4cOub1/37590qlTJylVqpRERUXJs88+KxcuXHA7Zs2aNdKoUSPTq+6GG26QefPm5asceS0LAPiqdevWSefOnc0sTzrj35IlS9xeX7RokbRr1878jtPXt27dmu0cs2bNklatWpnJL/SY48ePZztm7Nixcuutt5rfyWXLls2xLIMHD5a4uDjzO7lBgwbZXtfft7169ZJ69epJ0aJFpWvXrlf1PRO6l1i4cKEMGzbMdDPfsmWL1K9fX9q3by+HDx82rw8dOlT+97//yQcffCBr1641U0Q+8MADrvdfvHjRBO758+dl/fr18u6775pATUhIcB2zd+9ec0zr1q3ND9HTTz8tTzzxhHz66ad5LkdeygIAvuz06dPmd5tWMHJ7/fbbb5dXXnkl13OcOXNGOnToIM8//3yux+jv427dukn//v0vW57HH39cunfvnuNr+ru9ZMmSJpzbtm0rV02HDOH/17RpU8eAAQNczy9evOiIiYlxjBs3znH8+HFHsWLFHB988IHr9V27dumQK0dSUpJ5vmzZMkdoaKgjNTXVdcyMGTMcERERjvT0dPP8ueeec9x8881u1+3evbujffv2eSqHyktZAMBfiIhj8eLFOb62d+9e8/o333yT6/tXr15tjvnjjz9yPWbu3LmOyMjIy5YjMTHRUb9+/cseEx8f77jvvvscV4Oa7iV/DSUnJ7v9FaNzL+vzpKQk81pGRobb67Vq1ZJrr73WvK70qzY/REdHu47RGqpOvL1jxw7XMZf+paTHOM9xpXKovJQFAOBbCN0sjh49apoQsgam0uepqalmCwsLy3ZPwPm60q85vd/52uWO0WA+e/bsFcvhPMeVygIA8C2ELgAAlhC6WVSoUEGKFCmSrQewPq9UqZLZtOn30t5xzteVfs3p/c7XLneM9r7TG/VXKofzHFcqCwDAtxC6WWhzrXYZX7lypdsi9vq8RYsW5rVixYq5vb5nzx4zREhfV/r1u+++c+tlvGLFChOoderUcR2T9RzOY5znuFI5VF7KAgDwLSxifwkdphMfHy+NGzeWpk2byuTJk0239d69e5sFjPv06WOOKVeunAnSQYMGmZBr3ry5eb+OKdNwfeyxx2TChAnm/uqoUaPMeFrnShd/+ctfZNq0afLcc8+ZLuqrVq2S999/Xz7++OM8lUPlpSwA4MtOnTolP/74o9twSh1Gqb/TtFPosWPHTEVCh0M6KxbK2fKonP1tnOfRSk94eLh5v55H6Tmc59L+Ms7xvjpHgs5xoPT9Wh49l/atcR6jv8+1IqR27txpWhj1XCdPnnQdk9O43lxdVZ/nADd16lTHtdde6wgLCzNDdzZs2OB67ezZs46nnnrKcc011zhKlSrluP/++x0HDx50e/8vv/ziuOeeexwlS5Z0VKhQwfHMM884MjIysnVvb9CggblGjRo1TFf2/JQjr2UBAF+1+v8N87l00yE5Sn8v5vS6Dutx0sc5HZP1d6qeL6dj9PpOLVu2zPEYHa7kVK1atRyPyQ+W9gMAwBLu6QIAYAmhCwCAJYQuAACWELoAAFhC6AIAYAmhCwCAJYQuAACWELpAkJo3b162VaoAeBehC/igXr16SUhIiGsrX768dOjQQbZt2+axa3Tv3l2+//578Ybq1aubqUvzq1WrVvL00097pUyALyB0AR+lIXvw4EGz6cIWRYsWlXvvvddj59cVraKiojx2PgBXRugCPkoXyHBO7K4Tqo8YMUJSUlLkyJEjrmOGDx8uN954o5QqVUpq1KghL774omRkZLhe//bbb6V169ZmAnhdFENXp/r6669zbF6+3LGX0tljR48ebSaV13LGxMTI4MGDXbXVX3/9VYYOHeqqqavff/9devToIVWqVDHlrVevnrz33ntutfu1a9fKG2+84XrfL7/8Yl7bvn273HPPPWZy+ujoaLOgyNGjRz3+mQPeRugCfkBXP/nXv/5lVkXRpmYnDUgNT139RMPq7bffltdff931+iOPPCJVq1aVzZs3S3JysgluXRIyJ/k59j//+Y+5zltvvSU//PCDLFmyxISoWrRokTnPmDFjXDV1de7cORPkupqWhuiTTz5pwnPTpk3mdS2/rpLVt29f1/tiY2PNmtFt2rSRhg0bmj8Cli9fbtaN/tOf/uTRzxiwomBrRADwBl0VpUiRIo7SpUubTf+pVq5c2ZGcnHzZ97366quOuLg41/Pw8HDHvHnzcjxWV2GJjIzM07GXmjhxouPGG290nD9/PsfXdTWW119//Yrn6dSpk1mFK+tKL0OGDHE75uWXX3a0a9fObV9KSor5TPbs2ZOn8gK+gpou4KO0qVfX69RNa4Pt27c3TazadOu0cOFCue2220wTtDa96trNumaok663/MQTT0jbtm1l/Pjx8tNPP+V6vfwc261bN7PmqDZpa8108eLFcuHChct+P7qO6csvv2xqxLrOqZb3008/dStvTrTZe/Xq1eZ451arVi3z2uXKCPgiQhfwUaVLlzbNybo1adJEZs+eLadPnzZNyCopKck0CXfs2FGWLl0q33zzjbzwwgtmkW0nve+6Y8cO6dSpk6xatcosyK0BmZP8HKvNvrqg+Jtvvmk6ZD311FNy5513ut1PvtSrr75qmpD1PrSGqP4xoX9IZC1vbk3rnTt3dv0B4ty0WVuvCfiTooVdAAB5ox2LQkNDTQ1TrV+/XqpVq2aC1ilrLdhJO1rpph2btCPT3Llz5f7778/xGvk5VsNWw1C3AQMGmNrnd999J40aNZKwsDBTs83qq6++kvvuu08effRR8zwzM9MMWdJwd8rpfXo+vYesw5C0Bzfgz6jpAj4qPT1dUlNTzbZr1y4ZNGiQq9anatasaZpmFyxYYJpZp0yZ4lYz1XAeOHCgrFmzxoSxhp52kqpdu3a2a+XnWKWdt9555x3TIernn382nbw0hPWPAKUBuW7dOtm/f7+rl7GWd8WKFeaPBf1++vXrZzpEZaXv27hxo+m1rO/TYNZAP3bsmPkjQMuk36s2S/fu3TtbQAM+r7BvKgPIuSOV/vN0btrJqUmTJo4PP/zQ7bhnn33WUb58eUeZMmUc3bt3N52XnJ2j0tPTHX/+858dsbGxjrCwMEdMTIxj4MCBjrNnz2brSHWlYy+1ePFiR7NmzRwRERGmo1fz5s0dn3/+uev1pKQkxy233OIoXry4Kb/6/fffHffdd58pa1RUlGPUqFGOnj17mn1O2jFKz1WyZEnzvr1795r933//veP+++93lC1b1rxWq1Ytx9NPP+3IzMz0+GcPeFOI/qewgx8AgGBA8zIAAJYQugAAWELoAgBgCaELAIAlhC4AAJYQugAAWELoAgBgCaELAIAlhC4AAJYQugAAWELoAgBgCaELAIDY8f8B17GycWUJ8hUAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] }, "metadata": {}, "output_type": "display_data" @@ -253,7 +256,7 @@ ], "metadata": { "kernelspec": { - "display_name": "Python 3", + "display_name": ".venv", "language": "python", "name": "python3" }, @@ -267,7 +270,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.10.14" + "version": "3.12.9" } }, "nbformat": 4, diff --git a/examples/one_qubit_rabi_flopping.ipynb b/examples/one_qubit_rabi_flopping.ipynb index 9fd1da8..3b3e00f 100644 --- a/examples/one_qubit_rabi_flopping.ipynb +++ b/examples/one_qubit_rabi_flopping.ipynb @@ -7,16 +7,18 @@ }, "source": [ "# One qubit Rabi flopping\n", + "\n", "Rabi flopping is the oscillation of a qubit in the presence of a driving field. The qubit, initialized in the $|0\\rangle$ state, will precess around the XY-plane of the Bloch sphere.\n", "\n", "The driving Hamiltonian here is simply the Pauli $X$ operator,\n", + "\n", "$$\n", "X = \\begin{bmatrix}\n", "0 & 1 \\\\ 1 & 0\n", "\\end{bmatrix}\n", - "$$ \n", + "$$\n", "\n", - "In this example, we implement a single-qubit Rabi flopping and emulate the qubit oscillation using the classical backend." + "In this example, we implement a single-qubit Rabi flopping and emulate the qubit oscillation using the classical backend.\n" ] }, { @@ -30,30 +32,29 @@ }, "outputs": [], "source": [ - "import numpy as np\n", - "import matplotlib.pyplot as plt\n", - "import seaborn as sns\n", - "\n", "import warnings\n", - "warnings.filterwarnings(\"ignore\")\n", "\n", - "from oqd_core.interface.analog.operator import *\n", - "from oqd_core.interface.analog.operation import *\n", - "from oqd_core.backend.metric import *\n", + "import matplotlib.pyplot as plt\n", + "import numpy as np\n", + "import seaborn as sns\n", + "from oqd_analog_emulator.qutip_backend import QutipBackend\n", + "from oqd_core.backend.metric import Expectation\n", "from oqd_core.backend.task import Task, TaskArgsAnalog\n", + "from oqd_core.interface.analog.operation import AnalogCircuit, AnalogGate\n", + "from oqd_core.interface.analog.operator import PauliX, PauliZ\n", "\n", - "from oqd_analog_emulator.qutip_backend import QutipBackend" + "warnings.filterwarnings(\"ignore\")" ] }, { "cell_type": "code", "execution_count": 2, "metadata": { - "collapsed": false, "ExecuteTime": { "end_time": "2024-10-23T03:00:05.202109Z", "start_time": "2024-10-23T03:00:05.191604Z" - } + }, + "collapsed": false }, "outputs": [], "source": [ @@ -71,11 +72,11 @@ "cell_type": "code", "execution_count": 3, "metadata": { - "collapsed": false, "ExecuteTime": { "end_time": "2024-10-23T03:00:05.218483Z", "start_time": "2024-10-23T03:00:05.206088Z" - } + }, + "collapsed": false }, "outputs": [], "source": [ @@ -96,11 +97,11 @@ "cell_type": "code", "execution_count": 4, "metadata": { - "collapsed": false, "ExecuteTime": { "end_time": "2024-10-23T03:00:06.102039Z", "start_time": "2024-10-23T03:00:05.313103Z" - } + }, + "collapsed": false }, "outputs": [], "source": [ @@ -112,17 +113,19 @@ "cell_type": "code", "execution_count": 5, "metadata": { - "collapsed": false, "ExecuteTime": { "end_time": "2024-10-23T03:00:06.639933Z", "start_time": "2024-10-23T03:00:06.104786Z" - } + }, + "collapsed": false }, "outputs": [ { "data": { - "text/plain": "
", - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAgoAAAESCAYAAACcrP0+AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAABWlklEQVR4nO3deXQc9Zkv/G9V74u6JbVa+2It3i1LXrANGLMzhiEJEMg7IRMgJAOTjdkSMoZ7s0zC5UKW++a8ZEI4CYEkTMIlkGSGeEgAg1kC3iXLi2Rr36WW1JvUe3e9f3RXSbItWy1Vdy39fM7xOVa7Vf249FP9nt/OcBzHgRBCCCHkAlipAyCEEEKIfFGiQAghhJAFUaJACCGEkAVRokAIIYSQBVGiQAghhJAFUaJACCGEkAVRokAIIYSQBWmlDmCpEokEYrEYWJYFwzBSh0MIIYQoBsdxSCQS0Gq1YNmL9xkoNlGIxWJoa2uTOgxCCCFEsRobG6HX6y/6HsUmCnwG1NjYCI1GI8o14/E42traRL1mrqN7Ki66n+Kjeyo+uqfiysT95K95qd4EQMGJAj/coNFoRC+ImbhmrqN7Ki66n+Kjeyo+uqfiysT9XMzQPU1mJIQQQsiCKFEghBBCyIIoUSCEEELIgjKWKEQiEdx66604cODAgu85deoU7rrrLjQ1NeHjH/84Tpw4kalwCCGEELIEGUkUwuEw/vmf/xlnz55d8D2BQAAPPPAAtm7dildeeQWbNm3Cgw8+iEAgkImQCCGEELIEoicKnZ2d+MQnPoH+/v6Lvm/v3r0wGAx4+OGHUV9fj0cffRQWiwWvvfaa2CERQgghZIlETxQOHjyI7du348UXX7zo+1pbW7FlyxZhaQbDMNi8eTNaWlrEDmnRYvE4XBE/poI+yWIg8hGNx9DvGUPX5BD8YerpIkAwGkaPewS97lGEYhGpwyEy4AvNoHtqGINeF6LxmNThZITo+yjcfffdi3qfy+VCQ0PDvNccDsdFhysuJB6Pp/X+i3m14y/YP9GKvW+1osLmxM2rtmN98QrRrp+L+J+PmD+nTJuJhPDnzkM4MHAK4XgUAMAAWF1UjVvXXI4Km1Oy2JR4P+VuMfd0YsaLP575AG2j3YhzCQCAltWguawBf736cuQbrVmJVSlyoZz2ukfwascH6JoaFl4zaQ24ono9bmzYCoP24rsdpiMT9zOda0m24VIwGDxv20i9Xo9IJL0sXcxtnHWhGOxaM3yxIIZ8Lvz08KtYYynDZbY6sHSexLIoZbvtyeg03po6jZl4GABgYLXQMRpMx8Non+hHx3v92GavxxpLmaRxKuV+KslC97Q/OIl3PR2IpRIEM6sHByCYiODwUAeOD3fimsK1KDPkZy9YhVBjOeU4DiemB3HU3ye8ZtUYEUnEEIyF8Wb3URzsO4XrHeth15pE/Wyp7qdkiYLBYDgvKYhEIjAajWldR8wtLRvjcVS0FaBu9Uq81XsMb/e0oH1mBBZ7Hu5uupGShSVQ0lauQ74JvPjhKwjFIygy2/Hx9buwqqgaLMNgIuDFf51+H8fHunHA24WSshJcW7c56zEq6X4qxcXuactIJ94+9h44APWF5bh93VWosDnBcRz6vWN45eQ76PeO442pU/i7rX+NNc4aaf4TMqPmcrr3zIc4OpJMErZWrMZfr7oc+SYrElwCJ8d68cqpd+AJTeN1z0k8tOPjKLYWLPszM7mF82JIliiUlJRgYmJi3msTExMoLi5O6zqZ2NLSZrLgjg1Xo66wHM8dfQ1Hhs+g0GzDR9ZeKern5BK5b+XqDc3gJ4f+E6FYBHWF5Xhg20dh1hmEfy/JK8RnL7sVr505gP8+cwD/2f4XFFrs2Fy+SpJ45X4/lejce9o9NYxftfwZHIAdVevw/2y8Hpo5++LXOSrwD1fehV8e+xNaRjrx86Ov4Z923iXp0JTcqK2cvt/Xhtc7DwMA7li/C9fUbRL+TQMNmitWoq6oHE9/+AcM+lx45vB/4StXfRIWfXoN4IVIdT8l23CpqakJx44dA8dxAJLdOUePHkVTU5NUIZ2nuXwl7m66AQDweudhnBrvlTYgkhEJjsMvj/0J/nAAZXkOPHhOksBjGAY3r96Ba2qbAQC/aX0TkwFvlqMl2RCIhPD80dcQ5xJoKq3H3zTNTxJ4Oo0W92zejVVFVYjEo3juyGuIxKISREwybdg3gVdO7AcA3LJ6x7wkYS6bwYK/3/ExOMx2TAZ8+E3rG0I9p1RZTRRcLhdCoRAAYPfu3fD5fHjsscfQ2dmJxx57DMFgEDfffHM2Q7qkbVVrsXPFRgDAf7S8gWA0LHFERGzv9LTgzMQA9Bot7t/61zBdIEmY62PrrkJdQRlCsQh+dezPin8IkPO9fHI/3EE/isx23N18I1hm4UelltXg3s27YTOYMTY9hf9q/0sWIyXZEE8k8Itjf0I0Ece64hrctHLbRd9vM1jwmS03Q8OwaB3twqHB9ixFmhlZTRR27tyJvXv3AgCsVit+8pOf4MiRI7jjjjvQ2tqKZ555BmazOZshLcrt666C02KHLzyD/+74UOpwiIh8oRnsTf1Mb1+3CyWLGE/UsCw+vXk39BoduqaGcXioI9NhkizqmhzCocF2MADu2bz7kokjAOQZzPhU800AgHd6WjHkc2U4SpJN7/Uex7BvAmadMZU4Xnq+WnV+CW5evQMA8IdT7yq6kZnRRKGjowPbt2+f9/Udd9whfL1x40b87ne/w/Hjx/HSSy9h3bp1mQxnyXQaLe7ccC0AYH9PK0b8kxJHRMTyn6ffRygWQXV+CS6v2bDo73OYbfirlZcBSD4EaE29OiS4BH574m0AwOXVG7CioHTR37u2uAbNZQ3gwOG3bfupp0kl/OEA9nZ8AAD4yJorYDNYFv2919VvRrGlAP5IUNGNTDoUapHWFtdgY2k9OHD4746Fz68gyjHin8ShwdMAgDs3XJP2qpZr6jalepoCeKenNRMhkiw7OnQGQ74JmHQG3LrmirS//7Z1V0HHatA1NYR218V3pyXK8GbnEQRjEVTanLi8Zn1a36tlNfj4hqsBAO/2tcEd9GcixIyjRCENt6zeAQZAy8hZDHqpa1Hp/nz2IDgAG0vr02o58nQaLXavSnYt7us6Sr0KCpfgEvjT2YMAgOvqNsNqSH8NfKHZhitTc5r++8yH1KugcP5wAO/1HQcA3LrmiovOVVnI2uIaNDgqEE/EhRUTSkOJQhrKbUXYlFoO9+fUA4Uo05h/CkeHzgAAdq/afol3L2xLxSoUW/IRiIaoV0HhWkY6MTbthklnwK7apa++uqF+C3SsFr3uUepVULh9XUcRicdQbS/G2uKl75Fxc6pB8UH/SUX2KlCikKabUuPSrSNdmAzQmRBKta/7KDgAjSV1qLQvfd07y7D4q1Si8U5PC2IJ9W5Zq2Ycx+Gt7mMAkkNKi5nAuBCb0YIrU/Nd3uo+Kkp8JPuC0TDe60tuSLR79XbhXKKlWFlUifrCcsQTcbzbe1ysELOGEoU0lduKsLqoChw4vNPTInU4ZAlmIiEcHkyuVLiufvm7K24uXwmbwQJfOICW4fTOKiHy4Ir6MehzQcdqsCs1dLAcV9dtAgMG7a5+jPqnRIiQZNuhwXaEYxGUWAuwvrh22dfjd3L9S98JRBR2eBQlCkvAb7TxQf9JGpdWoA8HTiKaiKHCVoS6wvJlX0/DarBzRSOA5KoYojztMyMAgM0Vq2HRL39/fofZhsbSOgDAO71UJpSG4zhhKPGqFU3L6k3gbSitRaHJhkA0hMMK21eBEoUlWFu8AsWWfIRiEWGcmyhDgkvgvVTX365acR4AAHBFzQZoWA36PKPo84yKck2SHd7QDHqDye3kd60Qb2dYfp7DwYFTil5Dn4vOTAxgfMYNg1aPbVVrRbkmy7BCmXint1VRE10pUVgClmFweXVyDPLDgZMSR0PS0eEawGTAB7POgC3lq0W7rs1gwaay5LHpB/pPiXZdknmHBk+DA4cV+aWoyk/vrJmLWemoRIm1EJF4DMdoSEpR+LkJ2yrXwCjicdE7qtZBy2ow7JtQ1Mo5ShSW6LKqNWAZBr3uUdqASUEOpvZN2FqxBnqtTtRrb69Kbhh2ZPgMogobg8xVHMfhUGpnzR1V4m74xjAMtqdaowcHKHlUiplICCfGegAkewrFZNYbsbG0HgBwYFA5ZYIShSWyGSzCBBdqQSpDMBrG8ZEuAMlET2wri6pQYLQiGA2jbaxb9OsT8fV7xzA+44aGYdFU2iD69S+rXAsGDLrdIxifdot+fSK+Y8NnEE/EUWEryshJoPxQxuHBDsU0KChRWIYd1cldug4NtSPBJSSOhlxK60gnookYSqwFqLaXiH59lmGwLdUqpRakMhwcSPYwVRsdMOrE62Lm2Y0WYf09/1lE3g6mJhpeVinO3IRzrXFWw260IBAN4WSq50LuKFFYhnXFNTDrjPCHA+icHJI6HHIJcx8AYk1iPBffWjg93g9feCYjn0HEEUvEcSQ1GbneJN7chHPxQ1KHhtoVNYEtF41Pu9HrHgEDBlsqxJvDNBfLsEISopRTJSlRWAYNq0FTWXK8iVY/yJs76Efn5CAYAFsz9AAAAKclH9X5JeDAoTU1zEHk6fR4HwLREPIMZpQZ8jP2OetLamHQ6OAO+tHnGcvY55DlO5Kar8K3+jNlS0Vyh9/Trj5FrIihRGGZNqe2dG4d6UScduWTreOjyUq7tqAMhWZbRj9rU9lKAKDNl2SudaQTANBc2pD2gWDp0Gu0WF+SnM9EZULe+DKxOVWRZ0p5XhGKLfmIJeKKGH6gRGGZGhyVsOpNmImG0DExIHU4ZAH8A6CpTPwJa+dqLk9+RufkEPzhQMY/j6QvnojjRGrCKT8LPZM2laeSx5GzNPwgU+PTbgz7J8EyLBpL6jL6WQzDoFkoE50Z/SwxUKKwTBqWRXOq8jk2TMMPcuQPB9A1OQwA2JiFRMFhtqPaXpwafpD/QyAXnZ0cRCAaRp7ehLrCsox/3triFdBrdJgK+tFPww+y1JrqdVxVVAmz3pjxz+N7Hk+N98p+h19KFETAZ4Ynxnpp9YMMHR/tAgcOVfZiODI87MBrntOCJPLDJ3CNpfVLOjo4XcnhhxUAgGNUJmRJ6HXMwDLZCym3FcGpkOEHShREUF9YDrPOgJlIEL1u2r5XbvhJhdkYduA1p1oLnZNDCERCWftccmkJLiHspyFFmWgbpT025GYq4EO/ZwwMgMayzA478BiGEXqj5V4mKFEQgYbVYG3xCgDy/4HnmkA0jDOpuSPZrBSKLHaU5TmQ4DicdvVl7XPJpfVMjcAfCcKkM2BlUWXWPndtcQ00DAvXjIc2X5IZ/rldV1gOmyFzqx3OtSE1F+L0eK+sJ8NToiASfvLLCdqRT1baXX1IcAmUWAtQYi3I6mfzXc1y71bMNSfHkz+P9cUroGU1Wftco1aPBkcyMTlBZUJW+J9HYxYmts5VU1ACi96EYCyC7qmRrH52OihREMna4hqwDIuxaTe1FmTk1FgvAIhynny6+M88Nd6HeILmrsgFXybWpXoBs4mSR/kJxyLonEpumMcvY80WlmGxPlUO5VwmKFEQiUlnQIOjAgC1FuQiwXE4Pd4LAFiXekBn04qCMph1BgSiIfS65dtayCXuoB/D/kkwgLC1cjbxFVHX1DACCthoJxecmRhEPBGHw2xHsSU/65/Plwk51xuUKIhodvhBvj/wXDLoHYc/EoRBo0NdYXnWP1/DssLcFb67m0jr9HhyvkhNQRkselPWP99pyUeJtQAJLoF2mrsiC6f4xkRxTca2dr+YNc5qsAyL8Rn59kZToiAivtXaMzWMsMzXxeYC/gGw2lmd1bHouTakWgsnU93dRFpzKwWprBfKBCWPUuM4bk6ZWCFJDMne6GRDRq5lghIFERWZ7XCYbYhzCTokSgZOpVqPUj0AAGCtswYMGIz4JzEV8EkWBwGi8Rg6XP0ApC0T/NyV9vE+JGiXRkmNTk/BHfRDx2qw0pG9FTDnWseXiVT5lBtKFETEMAzWOKsByPcHnitmIkH0peYFSDEWzTPrjajOTx5pTVt8S6t7ahjheBR5BjMq7Zk7LfJSagvLoNfo4I8EMeKbkCwOMtvDtLKoEnqtTrI4+Hqjc3II0XhMsjgWQomCyNY4k5USjT9Kq93VDw5AeZ4DBaY8SWPhHwJnJih5lBK/n8VaZ01GD4G6FC2rESY+t1OZkBQ/2XmthD1MAFCW54DNYEY0EUOPDCc+U6IgspVFVWDAYGzaTV3NEuJb73ziJqVVRVUAgA7XAHU1S+iMiy8T1RJHAqyeUyaINCLxmLB3gdTPCYZhsKooWS47ZNgbTYmCyMw6A2oKSgEAHdRakMzZVKLAV9JS4ruapyNBDFNXsyRmIkEM+VwA5FEmVqeSlS6ZdjXngp6pYcQScdiNVkmWRZ6LT2DlOERJiUIG0DwFaU0GvJgM+MAyLOod2V8Wea65Xc2UPErj7MQgOACl1kLYjNnbonchya5mi2y7mnPBGaExUSnJsshz8QnsgGcMMzI7H4YShQwQMkPXAJ0mKQH+AbAivwQGrV7iaJJmu5opUZCCUCk4pe9NAJJdzatTsVCDQhpnJgYByKOHCQDyTVaUWgvBYba8ygUlChlQk18Kg0aHQDSEYd+k1OHkHOEBIJNKAZjb1TxMXc0SEMqEQ0ZlIjUmfYYShawLRsPo94wBgKTLIs+12inPeQqUKGSAhp3t8j47OShxNLmF4zhhfsJKGVUKcp/VrGae4DTGZ9xgwKAhi6dFXgrfozDgHZddV7PadU4OgQMHp8WOQrNN6nAEcp2nQIlChvCnxHVOUKKQTaPTU/CFA9CxWqxITSqVA4ZhsDLVxdlJyWNW8d24VXYnzDqDxNHMshutKLEWgAPQNUUbtGWTnCY7z1VXWA4GDCYDXriDfqnDEVCikCF8d1bX1BAticsivlKoKyyHTqOVOJr5+AmNtGtndsltfsJcVCakwZeJlTJLFEw6A6rsTgDJFTFyQYlChlTai1PzFMK0+1oWnRUmKMmni5nXUJisFHrdozRPIUvkOhTFq0+VCTlVCmrnDwcw7E/OHZPT/ASe0BstozJBiUKGaFhWOLGQ5ilkR4LjhHstty5FACi2FiDPYEYsERcmUpHMmgh44Q5NQ8OwqJfgBNFL4SuFQa8LQTp2Oiv4Crg8z4E8g1niaM5XL8NeJkoUMoifOCWnH7iajfonEYyGYdDoJN3LfyEMwwgtSCoT2dE9NQwAqM4vkXQv/4Xkm6woMtvBgRNiJZnFzwdpkGFvAgDUF5aDATA+44YvNCN1OAAoUciolUIX0iDNU8gC/gGwoqAMGlaeRXt2TJp6mbKB79KXw8ZbC6F5CtnVNZlMyOpkWibMeiPKbUUAgE6ZTHKV59NUJarsTpqnkEX8A0AJlUKPewTxRFziaNSPb6XXyXDYgSfHrma1CkbDwjbqchyK4sltngIlChmkYTU0TyFLOI5DlwIqhdI8B8w6IyLxGPq941KHo2q+8AzGZzxgANQVyLdM8JXCgHcc4VhE4mjUrcc9Ag4cHGY77Ear1OEsiG9QyGWSq+iJQjgcxiOPPIKtW7di586dePbZZxd87+c//3msXr163p+33npL7JAkxbduafwxs6aCfnhD02AZFivy5bN/wrlYhqGu5izpTvUwleU5YNYbJY5mYQ6zDQWmPCS4BG3GlWF8mZBzbwIwuxpmxD+J6XBQ4mgA0ReaP/nkkzhx4gSef/55DA8P42tf+xrKy8uxe/fu897b1dWF7373u7j88suF1+x2u9ghSaq2gE8URsBxnCwOH1EjPvOushfLctLaXPWOChwf7ULX5CBubNgqdTiqpYRhB16DowKHBtvROTkk+ZHHaqaEXkcAsBpMKMtzYMQ/ia6pIWworpU0HlF7FAKBAF566SU8+uijWL9+PW688UZ87nOfwwsvvHDeeyORCAYHB9HY2Ain0yn80evlcYiPWGryS8AyLHzhGUwFfVKHo1p8pSDn+Qk8fj+FnqkRmuSaQV1CmaiQOJJL41uQ3VPUo5Ap0XgMfZ5RAEopE/LpjRa1R6G9vR2xWAybNm0SXtuyZQuefvppJBIJsHNmond3d4NhGFRVLW+9ezwu3oQw/lpiXlPDsKi0OdHvHUPnxBDyK+Q7LpYJmbinFyKseMgvzfhnLVeJpQB6jRbBWATDXhfK8hyL/t5s3U+lC8UiGPS6AAAr7BcvE3K4pzX2EgBAv2cUkWgEGlYjWSxikMM9PVfv1ChiiTisehMcxjxZxXYhNfmleK+vDd1Twxm5n+lcS9REweVyoaCgYF6vQFFREcLhMDweDwoLC4XXu7u7YbVa8fDDD+PgwYMoLS3Fl7/8ZVx99dVpfWZbW5to8WfqmtZY8pf+0Nk2aF3SjzdJIRM/J14oHsXYtBsAMDM0iZYR+ffcFGosGI178e7xQ1hlSX9ORSbvpxoMh9zgwMGiMaC3o3NR3yPlPeU4DnpGg0g8hrcO/wVF+jzJYhGTnMppmz85obyQNaO1tVXiaC4tGEseFDbgGUfL8VZoGFay+ylqohAMBs8bOuC/jkTmz+bt7u5GKBTCzp078cADD+D111/H5z//ebz44otobGxc9Gc2NjZCoxEn+47H42hraxP1mgDAjFhx6tgw/JoompubRbuuEmTqns7VNtYNjAEl1kLs2HxZRj5DbMNnQhjtPIyYVYvmpuZFf1827qcajJw5AEwBa0pWXPJ3Ti739NChQZx29UFfbEPziibJ4hCDXO7pXIcODQB+YFPtWjTXNksdziVxHIfX3zwFfyQAe1UxpgcnMlLfLYaoiYLBYDgvIeC/Nhrnzzr+whe+gE9/+tPC5MU1a9bg5MmT+L//9/+mlShoNBrRC6LY1+R3aBz1TyKciMnqBLtsycTPidfrTo07FpbL5qF0KfWFFXgdh9HrGV1SzJm8n2rQnVo90FBUsej7JPU9rSssx2lXH/o8Y6r52Up9T3kJjkNPan7CyqJKWcS0GHWFZWgd7UKfdxwOsJLdT1EnM5aUlMDtdiMWmz3wxuVywWg0wmabf+Y3y7LnrXCoq6vD2Jj69sC3GS1wmO3gAPSlKjUiHqXMZJ6LPwLbNeOBPxyQOBp1iSfiwu8ZP0lQCWoLywAAPTKYvKY2/Pbueo0OFTan1OEsWm3qmdbrkXaSq6iJwtq1a6HVatHS0iK8duTIETQ2Ns6byAgA//qv/4o9e/bMe629vR11dXVihiQbdamHgBxmsKpJNB7DoC85aU1JiYJZb0SpNTlnp5eSR1EN+SYQTfXcFVsLpA5n0ZIrpBi4Q9NwB/1Sh6Mq/O9YTX6JbLd3v5DagmS90eseBSfhCilR75jJZMJtt92Gb37zmzh+/DjeeOMNPPvss7jnnnsAJHsXQqHkBI3rrrsO//Vf/4Xf//736Ovrw1NPPYUjR47gb//2b8UMSTb4neF63JQoiGnQ60Kcn8lstl36G2REaEFSmRDVbKVQClZB+5YYtHqUp1q7tPGSuHpT95OveJWi0u6EltVgOhKEPx6SLA7RU6s9e/Zg/fr1uPfee/Gtb30LX/7yl3HTTTcBAHbu3Im9e/cCAG666SZ84xvfwI9//GPceuut2LdvH37605+islKeJ3otF18p9LrHEE8kJI5GPfgHwIqCUsVtZsU/tHpo7byo+ESBH95RkjoqExkhlIlCZZUJnUaL6tRJuOMR6VZzib4zo8lkwhNPPIEnnnjivH/r6OiY9/Vdd92Fu+66S+wQZKk0zwGTzoBgNIwhnwvV+SVSh6QKvR6+UlBWSwGYHX/s94whlohDq/C183LR5+GTRyWWiTK809tKPQoiCkTDGJ2eApDsZVKa2sJydLtH4IpINxylnMEahWMZRjiDgMakxaPk1mOxJR9mnRHRRBxDqc2ByPL4wwG4ZrwAkuPRSsP3Mg16XYjEohJHow78xNYisx15BrPE0aSP742WskeBEoUsqimgREFM3tSkLwaMIntoGIYRHgI0yVUc/Ba9JdYCWR8EtZACUx7sRisSXAJ9HvWtAJPCbK+j8hoTwGzy6IkFJDtdlBKFLOJ7FPiHGVkePuEqszlg1CrzjBBhngJ1NYtitodJecMOQCp5LKBJrmLqcyt3KAoA8gxmbK1YDacuDzqNNAfeUaKQRTUFyVava8aDmYh0M1jVQqgUFDjuyOMrBdpfQxxKHori8bH3ualHYbk4jlNFmfhU0424xdkk2SoeShSyyKI3wWlJbjJFvQrLp4YHQHV+MRgk1857QzNSh6Noc7vrlVwmhETBI+3aeTVwzXgQiIahYzUotxVJHY5iUaKQZTX51IIUQzwRR79QKSizSxFIrp0vzUtuvETJ4/KM+qcQjkWg1+jSOpFTbiptTrAMA184AE9oWupwFI1vTFTZi2lV0TJQopBlc1sLZOmGfZOIJmIwKWz3vQupEbqaqUwsx9zd91hGuY82vVaH8rxk65fKxPL0Knx+glwo97dJofh5Cr3uMepWXAZ+73Ol7b53IfwyPprlvjxKn90+F/+coDKxPELyqIIyISVKFLKswpbckjMQDcE145E6HMVSw/wEHr8JTL9nDAlKHpesT+ErHuaqphVSyxaORTHsnwCgjueElChRyDItq0GlPbmfO7UWlk5NiUJZngM6VotQLILxabfU4ShSMBrGqH8SwGxrXMn4ct3vGUeCoy3fl2LAO44Ex8FutKLAlCd1OIpGiYIE+BYkjT8uzUwkKPTGKHFL1nNpWBZV+cn93KkFuTT9njFwABxmG2wGi9ThLFuJtQAGjQ6ReBSj/impw1GkuefAkOWhREECfMHtpUphSfjehGJLPiwK3H3vQlZQ8rgsauphAgCWYYXdRil5XBq1lQkpUaIgAb4VPOR1IRqPSRyN8vDLItU0QamaJq8tC1+ZVqugh4knTGikjZeWRHhOqKhMSIUSBQk4zDZY9CbEuQQGfXQYULr4B0C1Xflj0Ty+R2HIN4EIJY9p6/eMA1DmQVALqaEJjUvmC83AE5oGA6AqNSeMLB0lChJgGAYr+G5F6mpOC8dx6PcmKwUlHgS1kAJTHvL0JiS4BJ0kmSZvaBq+8AwYMKi0qadS4BOFYd8kwnSSZFr6vcnGRIm1EAaFngMjJ5QoSKSGNl5aEk9oGv5wACzDoEJFLQWGYVBNc1eWhB+uKcsrhF4rzaE5mZBvssJutIADh8FUckwWR+h1VFFjQkqUKEhk7tp5snj9QqXggF6jlTgaca0QygQlCukYSA07VKmwUpgdfqDnRDr4oShKFMRBiYJEqlPL4VwzXgToJMlFU3NLgf8/9dLktbT0qbhM1AhlgpLHxeI4TtXPCSlQoiARi94Ehzl5kuQAdSsumtBSUNFERh5fKUwGvJgOByWORhk4jsOAUCkUSxyN+GoKqJcpXe6gH9ORIFiGpRMjRUKJgoT4BxsNPywOx3EY8Kq3pWDWG1FsyQdAc1cWayrow0w0BA3DCgcpqUmVvRgMgKmgH74wHUO+GGoenpQKJQoS4iu7fupRWJSJgBeBaBgaVoMym3KPEb4Yfh8AKhOLw/cwlduKoFNhpWDSGVBiTR5Dzs/FIBfH/+6oaams1ChRkBDffU49CovD36dKW5Fqz5bne5kGqEwsSi6MRQsNCioTi8LfpyoVDkVJhRIFCVXanWCQHFPzhwNShyN7ap7dzputFKj1uBj9Kp6fwOMrPOplurT5c1bU+5zINkoUJGTSGVBsLQBA3YqL0SdsyareB0CFzQkGDHzhGXhD01KHI2sJjhMmAqu5UuB7Hgc8Y+DoGPKLcs14EIxFoGU1KM9T5/CkFChRkFhV6iHQ56VuxYtJcAmhUqiyq7f1aNDqUJqXHJOmXoWLc814EIpFoGO1KLWqt1KosBWBZRj4wgF4QzSh8WL4Z0SFzQmNSocnpUCJgsRoTHpxxqbdiMSj0Gu0QkWqVkKZoOTxooQ5K3YnNKx6H2V6rQ6lqdZxP5WJi8qFoSgpqPe3SyFoTHpxZiuFYrCMuottlZ3KxGLkwkRGXrWdb1BQmbiYXCoT2aTuJ64CVM4Zk/YEaUx6IQM5tCUr/3+kMemL43vh1DwUxauilQ+XlByeTB6olgvPiWyiREFieq0OZfyYNHUrLkjYpjcHKoVyWxFYhoU/EoSHJjReUDwxWymoeXIrr3rOygdKHi9sdnhSh5LUJHEiDkoUZGC2BUndihcST8Qx5MudloJeo0UZPyZNLcgLGpueQjQRg0GrhzMHKoXyvCJoGBYzkSDcQb/U4ciSsH+C3an64clso7spA3y3Ip0Qd2HD/knEEnGYtHoUpbY4VrvZSa6UPF5I/5xhB5ZhJI4m83QaLcpS5xZQ8nhhND8hcyhRkIEaGpO+qLkbLeVCpQDM2bWThqMuKBdnt/PDbrTx0oXR0dKZQ4mCDJTlOZLditEQpqhb8Ty5WCkIu/F5aEz6QvpzYKOlc82d5Ermi+XY8GS2UaIgAzqNVjgOlboVzyckCio8WnohZXkOaFgNAtEQpoI+qcORlWSlMAEgt8pEFU1oXNAIPzypM6DIbJc6HNWhREEm6OCXC4vGYxj2TwLIrZaCTqNFhTChkbqa5xr2TSCeiMOsM8JhtkkdTtaU5TmgZTUIRsOYCHilDkdW+uesimJyZHgymyhRkAnaje/ChnwTSHAJWPUmFJjypA4nq2jt/IXNHYrKpUpBy2pQkep5pEmu8+XCgXFSokRBJqrn7MaXoG5FQa5WCgAljwvJxfkJPCF5pDIxTy7tsyIFShRkojTPAR2rQSgWwcSMR+pwZCOXlzzNnhpIyeNcuThnhSesfKAeBUEkHsNIDg5PZhMlCjKhYVlUCA8Bai3wcjlRKM0rhI7VIEjJoyASi2I0hysFYeWDl5JH3pDPlbPDk9lCiYKMCNu0UqIAAAjHIhibngKQm61HDatBhd0JYPb43FyXnLPCwWYww260SB1O1pVYC6FjtQjHInBR8ghg/jkwuTY8mS2iJwrhcBiPPPIItm7dip07d+LZZ59d8L2nTp3CXXfdhaamJnz84x/HiRMnxA5HUWY32aFKAQAGvC5wAPKNVthysFIA5s5doeQRmLMjY45WChqWRWUqeaQykZSL+6xkm+iJwpNPPokTJ07g+eefxze+8Q089dRTeO211857XyAQwAMPPICtW7filVdewaZNm/Dggw8iEAiIHZJi8N2Kg95xJLiExNFIrz+HTgdcyNyNl8jsJL5cHHbgzR1+ILk9PJktoiYKgUAAL730Eh599FGsX78eN954Iz73uc/hhRdeOO+9e/fuhcFgwMMPP4z6+no8+uijsFgsF0wqckWxNR8GjQ6ReAyj/impw5HcAFUKlDyeo59mtwuJM+3QCIRyfHgyW0RNFNrb2xGLxbBp0ybhtS1btqC1tRWJxPyHXGtrK7Zs2SJ0HzIMg82bN6OlpUXMkBSFZVihBUmtBdq7HQBKrAXQa7QIx6MYn/ZIHY6kgtEwxqfdAHK7TMz2KLhyPnkcTA1P2nN4eDIbtGJezOVyoaCgAHq9XnitqKgI4XAYHo8HhYWF897b0NAw7/sdDgfOnj2b1mfG4/HlBX2Ba4l5zXRV2pzonBxCn3sUW8tXSxaHWJZ6T4PRsDBZqzzPIenPRGoVNid63CPodY+g0GAFIG0ZlUq/ewwcgAJjHsxag2j3QA6/9+lwmPJg0OgQjkcx4p1EaV7hpb8py7J1T/umRgAke5iU8vNbikzcz3SuJWqiEAwG5yUJAISvI5HIot577vsupa2tbQmRZv+ai5UIBgEA7cM9aImqZ8/ydO/pSNgDALBqDOg81ZGBiJTDGEn2uh3rPAWdKwRA2jIqlZPTgwCAPOgz0vOopHuarzFhLB7F+22HUG+Wb+9Kpu/pcfcZAIA2EM+J3mipyqioiYLBYDivoue/NhqNi3rvue+7lMbGRmg0miVEe754PI62tjZRr5muyhkv3tnfAU88iA0bG6FlpYlDLEu9p5NdR4FJoN5Ziebm5swFqADxIRNOtw4jpOfQ2NgoeRmVyvFjY4APaKxeieaGZtGuK4ff+3T1nZ7GWE8LGLsJzeubpQ7nPNm6p3vfTlac29ZsxBpnTcY+R2qZuJ/8NRdD1EShpKQEbrcbsVgMWm3y0i6XC0ajETab7bz3TkxMzHttYmICxcXpTVLSaDSiF8RMXHOxivMKYNIZkuOxAY9qZvyne08H+SNjC0oV8/DOlJrCMgDJ8Vik5vRIWUalMuhLzlmpKcxMmVDSPa0pKAV6gAHfuKxjzuQ9DUTDcKUOx6opKJP1fRCLVGVU1MmMa9euhVarndcFdOTIETQ2NoJl539UU1MTjh07JhyXynEcjh49iqamJjFDUhyGYeZs05q7s5qFFQ8qSZSWw2nJh1GrRzQRE2Z455pAJATXTLJSqKLZ7UIDYsjrQjyh3rH5ixlMTfguNNlgNZgkjkbdRE0UTCYTbrvtNnzzm9/E8ePH8cYbb+DZZ5/FPffcAyDZuxAKJcdYd+/eDZ/Ph8ceewydnZ147LHHEAwGcfPNN4sZkiIJs5pzdO38TCSIyYAPQG7vocBjGWZ2SVyOrobh/98Osx0WfXrDk2rktOTDpNUjmohjJEeXUtNGS9kj+oZLe/bswfr163HvvffiW9/6Fr785S/jpptuAgDs3LkTe/fuBQBYrVb85Cc/wZEjR3DHHXegtbUVzzzzDMxms9ghKU51jh8vzC+LdFrsMFOlAIA22Zk9MZIqBSDZ85jrx5D309HSWSPqHAUg2avwxBNP4Iknnjjv3zo65s9e37hxI373u9+JHYLi8a3HYf8kovEYdBrRf0yyxg87UBfzLGGHRu84Giz50gYjgYEcPjFyIdX5JTgzMYB+zxiuqNkgdThZR8OT2UOHQslQgSkPeXoTElwCQ76JS3+DytBGS+erSd2LYd8E4jm4yc5s65EqBZ4wlykHe5loeDK7KFGQoVzvVuS71+kBMKvQZINFZ0ScS8AdnZE6nKyaDgcxFaRK4VzVc5LHaDwmcTTZRcOT2UWJgkzl6pHT/nAA7qAfDCCckkfmJ4+T0WmJo8kuPnEstuTDpDNIHI18FJjyYE31PA7nWM8jDU9mFyUKMpWrk9f4lR7F1gKqFM7BJ48TOZYozD1amsxiGEZ4TvTlWIOChiezixIFmeIz5VH/FMKx9La1VrJ+Lx0tvRD+oTgZ8UscSXbxyTJNWjtfrvY8DtAR9FlFiYJM2Y0W2I1WcOCSO/LlCFrytDB+xr8nFkAkHpU4muyZXS9PZeJcudjz6AvPwB2apuHJLKJEQcZqcnBCIy15Wli+yQqbwQwOyJnVML7QDDxUKSyoOgd7Hml4MvsoUZCxqhxb/uQNTcMbmgEDhiqFBQhlIkd27eRbyiXWQhi0+ku8O/fYjBbk51jPY7+wKop6mLKFEgUZy7UdGvnKrzSPKoWF8C3IXOlqpmGHS8u1CY0DtHVz1lGiIGP8L4JrxoNANCxxNJk3QBMZL2n2zIfcqBSE1iNVCgvKuTJBKx6yjhIFGbPoTXCYk8dzD+RAa4EeAJfGVwrjMx4EVZ48chxHWzcvQi71PHpD0/CFk8OTFTYanswWShRkjh+HU/s8hbmVArUeF2Y1mGDRJCdwqX34wRuagS8cAMswqLAVSR2ObM32PHoRiIQkjiaz5g9P6iSOJndQoiBzNcKR0+puLXhC0/BHgqlKgVoKF1OkswJQ/zHk/J4apXkO6KlSWFCy59EOQP3JIx0tLQ1KFGSuKkc2VOH/f2V5Duhz7LTMdDl0eQDUP3mNT4Roqeyl5crGS7R1szQoUZA5fkx6KuiHPxyQOJrMGaCNlhatSJ/qUVD55DXaunnxcmGeAsdxNI9JIpQoyJxJZ0CxpQCAursV+2mjpUVzpIYeJgM+TIeDEkeTGRzHCfNyqJv50qpzYC6TJzSN6UgQLMOinOasZBUlCgqg9m5FaimkR89q4bTkA1Bv8ugO+jETCULDsCjPo0rhUirtTjBI3je19jzS8KR0KFFQgCqhW1GdlcJkwIdANAQNw6IszyF1OIowu0OjOpNHoVKwFUFHlcIlmXQGFFuTPY9qLRPCnBXqYco6ShQUQFj5oNIx6T7PKACgwu6kSmGRqlWeKPR5aCgqXWqfp8A/J2hPjeyjREEBKmxOMGDgDc3AG5qWOhzR9bmTD4AaGnZYtNlzQNRaKST/XzUFpRJHohxqnqeQ4DghAaIykX2UKCiAQatDaV4hAHUOPwiVQj49ABZLzcljgksI+4ZQ8rh4c3sUOI6TOBpxuabdCMYi0LFaGp6UACUKCqHWbsV4Io7BVAuIWgqLp+bkcdQ/hXA8CoNm9v9ILq3CVgSWYeAPB+BRWfLYmxp2qMovhoalaivb6I4rhFpXPgz7JhFNxGHS6oWZ/GRx1Jo89gmVQglYhh5Ri6XX6oTWtvrKBPUwSYl+CxVi7vijmroVhQlK+aVgGUbiaJRFrcljnzv5/1lRQJVCuqqELd/V1cskzGOiXkdJUKKgEOW2ImgYFjORINxBv9ThiGZ20hpVCulSe/JIc1bSV5MqE2ra3jsaj2HINwGAyoRUKFFQCJ1Gi7LUbmRqegjMrnigB0C65iaPU0Gf1OGIIhyLYtg3CYDKxFLwZ8MMeNUzoXHQ60KCSyBPb0KhKU/qcHISJQoKora188FoGGPTUwBo7HEpdBotKuzJkzZ7UwmX0g16x8GBg91oRb7JKnU4ilNuK4KO1SAQDcM145E6HFEIw5MFpWBoeFISlCgoyIrU+Fyve0TiSMQx4B0HB6DAlAeb0SJ1OIo0WybUkSj0emhPjeXQshphjw21lAk+UVhBPUySoURBQWoLygAkl8PFE3GJo1k+GnZYPv7hqZpKwU2b6izXitRzQi0NCr5M0Dkw0qFEQUGc1gKYdAZEEzFhHFfJaCLj8vGVwqDPhWg8JnE0y9dHPQrLVqOiXqbpcBATAS8ASh6lRImCgrAMI7S+ez3Kby3wiQJ1KS6dw2yDVW9Kblzlc0kdzrL4QjNwB/1gQK3H5eCHo4b9EwjHohJHszz8fKxiSwHMOoPE0eQuShQURi1j0p7gNLyhaTBgUEkH/ywZwzCqKRN84lia54BRq5c4GuUqMOXBbrQiwXGKP4ZcmLNCvY6SokRBYdQyoZHvYi6zOWDQ6iSORtn4MtGn9ESBDgcTjWqeEzSPSRYoUVAYvpveNePFdDgocTRLR8MO4lHL5DXaaEk8auhl4jiO5jHJBCUKCmPWG1FiLQAw+2BVIv4BRmPRy1edXwIGwFTQD29oRupwloSOERbX7GqYEcVuvDQR8CIQDUHDalBhc0odTk6jREGBlN5aiCfi6E8lOXWF5RJHo3xGrV44DEipww9j01MIxiLQa+gYYTFU2YvBMix84YBit3zvmUr2kFXZndCyGomjyW2UKCjQinxldzUP+SYQicdg1hlQnOodIcsjDD8odDUMXynU5JfSMcIi0Gt1qEht+a7UBkVP6vlWV0CNCanRb6QCCT0KnjEkuITE0aSPrxRWFJTRiZEiUfra+e6pYQBAbWGZxJGoR63C567wiQKVCelRoqBAZTYH9BodwrEIRv1TUoeTNuEBUEAPALHwyWO/ZwzxhAKTRyoTohOSRwXOZQpGwxhJnRhJZUJ6lCgoEMuwwhIyJbYge6j1KLoSayGMWj0i8RhG/MratdMfDggHGFGlIB4+eRzwKm/Xzl73KDgADrOdzoGRAUoUFGqFQlsL7qAf7tB0apdJWvEglnm7diqsq5lPdkuthTDrjRJHox5FZjssqV07h1Ktc6WgHiZ5ETVR4DgO3/ve97Bjxw5s27YNTz75JBIX6Qb9zne+g9WrV8/786tf/UrMkFSLn7ymtFnu/AOg3OaEgXbfExWfPPYoLFHocVMPUybM3bVTcWViiuYnyIlWzIv9/Oc/x6uvvoqnnnoKsVgMX/3qV+FwOPDZz372gu/v6urCv/zLv+D2228XXrNa6Qz6xeAfAKP+SQQiIcW0xPgHQB21FETHLzXtnlJopUBlQnS1BWU4OdaDnqlhXFu3SepwFiXBJYSeUnpOyIOoPQq/+MUv8NBDD2Hr1q3YsWMHvvKVr+CFF15Y8P1dXV1Yt24dnE6n8MdkMokZkmrlGcwotuSDA9CdapEpAc1kzpwVBaVgwGAy4IU3NC11OIsSS8SFjZZoTw3x1afuadfUsGI2XhrxTSIci8Cg1aPMRntqyIFoPQpjY2MYGRnBZZddJry2ZcsWDA0NYXx8HMXF8w/+mZ6extjYGFasWLGsz43H48v6/gtdS8xrZlJtQRnGZzzonBjC2qIaqcO5oLn3NBKPYtCbPOGw2l6smPssJxcro3pWi3JbEYZ8Lpx1DWJT+cpsh5e2fs8oook4LDojCo15kpQJpf3ep6MirwgaloU/HMCYfwpOS35WPnc597RrcghA8swPLsEhDvX9XNKViTKazrVESxRcrmQFMDchKCpKbvgxOjp6XqLQ1dUFhmHw9NNP45133kF+fj4+85nPzBuGWIy2trZlRp6da2aCNpCcydw2cBZVIbPE0VxcW1sbRsNeJLgETKwefe1d6Kc9FJZsoTJqi2sxBODg2eNgxuW/nfPJ6WSlUMCa0draKmksSvm9T5dDa8V4xIe3Ww9gpTm7E4iXck+PujsAAKYQ0NLSInJEyiZVGU0rUQiFQhgbG7vgvwUCAQCAXj87QY3/eyQSOe/93d3dYBgGdXV1+Nu//VscOnQI//N//k9YrVbceOONi46psbERGo0423vG43G0tbWJes1Mqpzx4v39ZzEVm8G6xg3Qa0SdciKKufd0orcFmARWFVdh0yZljJfKzSXL6IgVp4+NwMdG0dzcnPX40tVydATwAU0rVqO5vlmSGJT2e5+uwfYA3uw+iphVi+aNzVn5zOXc01ffPg4A2LF2E9Y4qzMRnuJkoozy11yMtGqW1tZW3HPPPRf8t69+9asAkkmBwWAQ/g7ggvMObrvtNlx77bXIz88HAKxZswa9vb349a9/nVaioNFoRP/lzsQ1M6E4rwA2gwW+8AwGfS6sLKqUOqQFaTSa2S1ZC8sVcX/lbKEyypeBEf8EwonkNtlyxXEcelKrduodFZKXCaX83qeroagSb3YfRY97OOv/v3TvqTc0g8mADwyAOgc9J84lVRlNazLj9u3b0dHRccE/H/nIRwDMDkHM/bvTef7JXwzDCEkCr66ubsEeC3I+hmFQ7+Bnust7QmOCSwgx1jsqJI5GvWxGC5wWOzgAvTJf/eCa8cAXnoGG1dApohlUW1gOBsmj6X0yP12Un59QbnPCJOMkN9eItuqhpKQE5eXlOHLkiPDakSNHUF5eft78BAD44Q9/iPvuu2/ea+3t7airqxMrpJxQX5isdLumhiSO5OKGfBMIxSIwavWotNORsZlUJ8x0l3eZ6ExVCivyS2Q5bKYWZp0BZakDorpk3qDonBwEADRQY0JWRF0e+clPfhLf+973cODAARw4cADf//735w1VTE1NYWYmmdFee+21OHToEH72s5+hv78f//Ef/4Hf//73uP/++8UMSfX4SqFnakTWe/zzD6i6wnKwDG0Imkl1QvIo90ohmSg0OOQ7ZKYW9YXK6HmcLROUKMiJqE/sz372s7jlllvwpS99Cf/wD/+Aj33sY/N6De688048++yzAICNGzfihz/8If7whz/g1ltvxS9/+Ut8//vfp0luaSq3OWDU6hGORzHkc136GyRCww7Zw1cKfZ4x2e7xz3Ecuqj1mDV1c/ZTkCt/OIDR6eQhd3xPKZEHUfv7NBoN9uzZgz179lzw3/ft2zfv6xtuuAE33HCDmCHkHJZhUVdYhlPjfeieGpblWC/HcUI3OFUKmee05CNPb4I/EkS/Z0yWydlU0Jc684MVtiMnmcNXvENeF4LRsCzH//n5CWV5DlgNtPGenFAfsArIvavZEwsgEA1Dr9Gi2n7+fBUiLoZhUOeQd5ngu5ir84th0Ookjkb98k1WOMw2cOBke+JsZ6oxIcfENtdRoqACwjatk0NIyHCb1tGIF0ByJ0kNS8udsqEhlTyenRiUOJILo7Ho7ON7Fc5ODkgcyYVRmZAvShRUoKagFHqNFtORIEb88jtOdizsA0CT1rKJ30+he2pYlvMUhEqhkMpEtqwqqgIAnJFh8jgTCWEkdRR2A81PkB1KFFRAy2qE4Qe5PQQ4jsNYqkeBWgrZU5bnQJ7ehGgiJruuZnfQj8mAFwwYOhwsi/jkccAzjkA0LHE083VPDYMDUGwpgM1okToccg5KFFRitdBakFe34viMG6FEFFraVCerGIbBylSZkFtXM9+bUGWnTXWyqcCUlzpxlhP2K5AL2j9B3ihRUAm+W7FzckhW+yl0pBKX2oIy6GhTnaySa1czn8w2yHjLcbXiy4Tc5q7wZULO29DnMkoUVKLCXgSzzoBwLIJ+r3y2weYfSPwDimQPf8973aMIx84/mE0KHMehw9UPAFhdRAf+ZNtKGfY8+sIzGErNT6DnhDxRoqASLMNiZWqy4BmXPB4C8UQcZ6eSicJqegBkXZHFjkKTDQkuIZtlkuPTbnhC09CyGloGJ4FVwqFhk/CF5XHuA/+8qrA5kWcwSxwNuRBKFFRklVNerYU+zxjCsSgMjBYVqb3mSXbxFYNcykT7RLI3oa6wjM53kIBFb0KFLXnWilyGHzpSZYKOlJYvShRUZFWqK7fHPYKIDJbE8V3MpYZ8Ot9BInKbp9CRaj3SsIN05DTxmeM4tPNlwkm9jnJFT28VKbbkw260IJaIo0cGXc18olBuyJc2kBzGj0kPeccxEwlKGks8EcfZ1Oz21dR6lAw/YbDDNQBO4g3axqbd8KaGoupo/wTZokRBRRiGEVpqp119ksYSjIbR60mu3y+jREEydqMF5XkOcADaU4mbVJJDURFYdEZU0lbekmlwVEDDajAV9GF8xiNpLHxjor6wnIaiZIwSBZVZV7ICAHBqrFfSODpT20kXme3I0xoljSXXrS1eAQA4KXGZ4BOVVc4qsAwjaSy5zKDVC7sfnhrrkTQWfs4K9TDJGyUKKrOmqBosw2B0egpTAZ9kcZwe7wVAy53kYF0qUTjt6pP0LJB2WhYpG+uKawAAp1K/p1KIxmPonKChKCWgREFlzHqjcGyvVA8BjuNwMtVS4SspIp26wjIYtXrMRIIY8Eizx4Y/HECfewQAlQk5WFdSCwDonBqWbI+NrqkhhONR2AwWYSUGkSdKFFSIfxBLlSiM+CfhDk1Dx2qwktbKS07DaoQW20mJysSp8V5wACptTuSbrJLEQGYVW/LhMNsQT8QlWxFzItWYWF+ygoaiZI4SBRVan0oUzkwMSHJyIP8AWFVUBb1Gl/XPJ+eTOnk8KVQKtZJ8PpmPYRhJy8TcXkcqE/JHiYIKlduKYDdaEInHhAN4sokeAPLDj0kPeMbgDwey+tmxRBynU/MTNpRSmZCLuYlCtpdJjk5PYTLgg5bV0K6tCkCJggrNbS2cHM/urObpcBC9qbFoShTkw260otLmBIfstyC7JocQjkWQZzCjyk4niMrFSkcldKwG7qAfw/6JrH4235hY6aiEQavP6meT9NHCVZXaUFKHD/pP4vhIFz6+/mowWRoD5MeiK2xFKDDlIR6PZ+VzyaU1ltZh0OdC60gntlety9rnCmPRxTQWLSd6rQ6rnTU4MdaN1pGurE4o5BMFsXuY4vE4otGoqNeUA/45GgqFoNFoFv19er0eLLv8/gBKFFRqjbMaBo0OntA0+j1jqCkozcrnHh/tApBMVIi8NJU14L/PHEC7qx+hWATGLLTkOI5D22g3AOphkqOmsnqcGOvG8ZFO3LJ6R1Y+0x8OoHsq1etYLE6Z4DgOo6Oj8Hg8olxPbjiOg1arRV9fX1qNPpZlUVtbC71+eb/rlCiolE6jxfqSWhwdPoOWkc6sJArhWETYP6G5rCHjn0fSU5bngNOSD9eMB6fGerG5YlXGP7PfO4apoA96jRZrnTUZ/zySng0ldWAZFsP+SYxPu1FsLcj4Zx4f6QIHDlX2YhSabaJck08SiouLYTabs9aDmi0cxyEYDMJkMi36/5ZIJDA8PIyRkRFUV1cv655QoqBiTWUNODp8Bq0jnfjo2isz/stzYqwH0UQcTosd5XRapOwwDIOmsga80XkYLSOdWUkUWoY7ASR7E/RaWgEjNxa9ESsdleiY6EfrSCduXHlZxj/z2MhZAEBz+UpRrhePx4UkweFwiHJNueE4DolEAkajMa3nuNPpxPDwMGKxGHS6pf/+0WRGFVtXXAMdq8FEwIthX+YnK7UMpx4AZStVl9GrRVNZPYDkXJJMnzDKcRyOzSkTRJ743r/W1LBhJvnDAeF4600ilQl+ToLZbBblemrCDzksd64YJQoqZtDqhX3+W0Y6M/pZ4VhEmE0vVkuBiK/aXoICUx4i8SjaxzN7cNiAd1wYdlhPuzHKVmNpHRgA/Z4xTGZ42/fjo8lhh0p7MYosdlGvTY2T84l1TyhRUDm+tXB4qD2ja6VPjvUimoijyGxHJW3HKlsMwwgtuUND7Rn9LL43YV0xDTvImc1oQb0jefT0kQyXCb7XcRPNYVIUShRUbmNpPQwaHSYDPnRPDWfscw4OngYAbC5fRZm9zF1WtQZAck7JTCSUkc9IcAkcTlU6m6mHSfa2VSbLxMGBzDUo3EE/zkwMAAA2lWd+fgwRDyUKKqfX6oShgEODmWkteEMzOJ3qxt5WtTYjn0HEU2FzosJWhHgijmPDZzLyGR2uAXhDMzDrjLQsUgGayhqgY7UYn3GjP0MHhx0abAcHoL6wQvRhB5JZlCjkgG2Vycr72PCZjExgOzzYDg4cagvKsrK8iizfZakykank8cDAKQDA1orV0GlocZXcmXQGbCxL7n2SiTLBcZxQJrZTY0JxKFHIAfWOChSY8hCMRdAm8szmuQ8A6k1Qji0Vq8GAQY97BOPTblGvHYiGhY23srkDJFkePnk8MtQh+mFyPe4RuGY80Gu0NNl5Ab/85S8xNrb43pzf/va36OrK/EoVgBKFnMAyjNCr8H5fm6jX7nGPYHR6CjpWQ+OOCmI3WoSDot4TuUwcHmxHLBFHeZ4DlXaa2KoUq4uqYTdaMRMNib5K6oP+kwCSy2SzsSOo0vT19eF73/se7PbkkMz+/fuxevVq4c+aNWuwefNmrFmzBqtXr8Y//uM/4vjx43jxxRezEh8lCjniipoNYBkGnZNDGPK5RLvuOz2tAIDNFath1hlEuy7JvKtqmwAAB/pPIhwTZ3/8BMfh3d5kmbi8ZgNNbFUQDctiZ00jgNnfazFMh4M4MtQBIPkcIud78803ccUVV8BoNAIAtm/fjvfee0/48+677+K1117DFVdcgfz8fPz93/89rr/+euzbty8r8VGikCMKTHnYWJrcbOfdnuOiXNMbmhZaHrtSlQ5RjjXOGjgtdgRjEWGFwnJ1uPoxNu2GUaunYQcFuqJmAzSsBn2eUfR5RkW55l/6TyCWiKPKXozagjJRrrkYHMchHItm9c9SV4y8+eabuO6664SvjUYjnE6n8KewsBA/+MEPcOrUKTz//PNYs2YNLr/8ckxOTuLMmcxMSJ6LZhnlkF21zWgZ6cShwXZ8ZO2VsOiNy7ree71tSHAJ1BeWo8peLFKUJFtYhsHOFU343cl38E5PKy6v3rDs0x3397QAAHZUraMuZgXKM5ixqWwlDg+1Y393K+7ZvLwzYuKJON7rTTZMrq5tzloPE8dx+H/ffwk9qSPvs6WuoAz/cOVdaf0/p6am0Nraih/+8IcX/Pd4PI6vfvWrOHjwIJ577jmsWZNcyqrX63HllVdi3759WLUqs8O+1KOQQ+oLy1FhK0I0EcP+nmPLulYwGha6mHfVNosQHZHC9qp1MGh0GPFP4sRY97KuNeR14dR4LxjMDmsQ5bmmrhkAcHS4A64Zz7KudWT4DDyhaeTpTdiU5UmMShn0evvtt7FhwwYUFZ1/Pg6fJLz//vv48Y9/LCQJvGwNP1CPQg5hGAY3rdyGnx/Zi7e7W3BN7SaYl9ir8E5PKwLRMEqsBcL5AUR5zDoDdtU24fXOw3it4wAaS+qW3Op77cwBAMnNdJyWfBGjJNlUnV+Ctc4anHb14fXOw7i76YYlXSfBcXi98zAA4Lr6LVldJsswDP7hyrsyfp7JufQabdq/P/v378euXbvOez0ej+Phhx/G+++/j+eeew41Neefvnr11Vdjz549mJqaQmFh4ZLjvhTqUcgxTWUNKMtzIBSL4O0l9ioEo2G81X0UALB71XawDBUjJbu2bjP0Gh0GfS6cGOtZ0jWGvC60jnaBAfBXq7aJGyDJut2rtgMADg6cxsSMd0nX6AqOYyLghVVvws4VG8UMb1EYhoFBq8vqn6Uk2RUVFRgcHJz3Gp8kvPfee/j5z3+OtWsvvPR8cHAQNpsNNps4x3UvhJ7wOYZlGOEhsK/rKNxBf9rX+NOZg0JvQra7E4n4rAaTMBn1D6feRSyR3klzHMfhd6feAZDsTSjLU+dRv7mktrAMa5zVSHAJ/OHUu2l/fzgWwTFfcrfW6+u3wEBnfSzo+uuvx/79+5FIJACcnySsW7fwpOA333wTu3btglab2d4aShRyUHNZA+oKyxGJx/D7NB8CY/4pvJ2asHb7+l3Um6ASNzZsRZ7BjPEZD97uTq+nqWWkE2cmBqFjNfjI2isyFCHJttvWXQWWYdA62oUOV39a3/vnzsMIJiJwmG20IuoSNm3aBI7j0NraikQigYcffhhvvvkmnnzySTidTrhcLrhcLkxMTMDlcs07Mnrfvn24/vrrMx4jPeVzEMMwuGvDNWDA4NjwWWEXvUuJJxJ4ofUNJLgENpTUYh0dHawaJp0BH117JYDkXIOxRe7W6A8H8PKJtwEANzRshcNMe/irRbmtSBgy+M3xfQhGw4v6vn7PmLD65ba1V9EW3pfAsiyuueYavPnmm2hra8Orr76KYDCIBx54ADt37sTOnTtx1VVX4aabbsKuXbsQDAYBAAMDA+jp6cFVV12V+RgzcVGO43D//ffjlVdeuej7BgYGcN9996G5uRm33HIL3nvvvUyEQy6gwu7EtfWbAAD/0fLGooYgXjtzAL3uERi1ety54ZoMR0iy7bLKtVhVVIVIPIbnjvz3JbfxTXAc/qP1DfjCAZRaC3F9w9YsRUqy5a9XX45CUx4mA1681Pb2JfcJCMUieP7oa4hzCdQYHVhPjYlF4VcvNDU1oaOj47w/7e3tOHr0KE6fPg2r1Qog2Zuwfft24etMEj1RSCQS+M53voP333//ou/jOA5f/OIXUVRUhJdffhkf+9jH8KUvfQnDw5k7CpnMd+uaK1BlL0YgGsJPDv4nAhdpMRwcOI0/nT0IAPhE47UoNGd28gzJPpZh8OlNN8GiM2LI58Ivjr6GBJe44Hs5jsPvT72Lk2M90LIa3LtlN/TUclQdk86AezbvBgMGh4fa8eezhxZ8bywRx88OvQrXjAf5Risuz2+gnTkX6corr8Tw8DD6+voW/T379u2bt0lTJomaKIyNjeHee+/Fvn37LjkL88MPP8TAwAD+7d/+DfX19XjwwQfR3NyMl19+WcyQyEVoWQ0+s+UW2AxmDPsm8P/95WVMBXzz3sNxHN7pacULLa8DAK6r24ytlWsudDmiAnajFZ/Zegs0rAato1149vBehGKRee+JJeJ4qe0tYS7DJ5tuQIWNznRQq7rCctyxIbl8748dH+A/T79/XgI5Ewnh6QN/QMfEAPQaHT6z+WYYWJrAuFhGoxEtLS0XXAK5kOeffx6f+tSnMhjVLFGbACdPnkRZWRl++MMf4s4777zoe1tbW7Fu3TqYzWbhtS1btqClpUXMkMglFFns+PyO2/CjD36HIZ8L/+vtX2FnTSPqHOWYiQRxYOA0uqeSvTyXV6/HR9ftlDhikmmriqpw3+bdeO7oazg+2oXv7PsFdtU2oSzPgYmAF+/3tmF8xg0GwB0brsZllDiq3tW1zQhGw9jb8SHe6DyMU2M9uKKmEQWmPAx6x/FO73HMRILQa3T43GV/jer8Ekwhu7sikswRNVG47rrrFt0V4nK5UFw8f9tfh8OB0dH09hefOwN0ufhriXlNJSi1FOKfr/wEftHyJ/S6R7Gv+yj2pfZJAAAdq8HNq3bgmtpmcIkE0rk7uXpPMyVb93NDcS2+tP02/LLldUwFfXi1/S/z/t2qN+ETjdeisaRO8T9bKqOLc2P9VhQa8/DyyXcw7J/Eb1OTWHkl1kJ8uvlGVNicWb2n8XgcHMcJf9SI/3+l+//j70k8Hj/vZ5HOzyatRCEUCi14XrbT6ZzXO3ApwWAQev38veD1ej0ikcgC33FhbW3iHpGbqWsqwS5jPWoLCtAbmoA/FoSW0aBYb8NKcwmsPgatrUs/US5X72mmZOt+3pK/AV36cQyGpxCIR2BkdSg35KPBXIL4iA8tIy1ZiSMbqIxemgbAR4ua0TkzhuGIB5FEDBaNAdVGB2pNRXB1D8GFIeH92bqnWq0WwWBQ2ItArfgVD4sVDocRjUbR3r68Q9/SShRaW1txzz33XPDffvSjH+GGGxa/1afBYIDH45n3WiQSEY7ZXKzGxkZoNJq0vmch8XgcbW1tol5TaTaJfD26p+KS4n5uycqnSIfKaPp2XOLfs3lPw+Ewent7YTAY0mqsKgnHcQgGgzCZTGlNEGUYBjqdDg0NDefVrfzPaDHSShS2b9+Ojo6OdL5lQSUlJejs7Jz32sTExHnDEZei0WhEL4iZuGauo3sqLrqf4qN7Kr5s3FOj0QiNRoORkRE4nU7o9XrVrbbgOA7hcBgsyy76/8ZxHCYmJsCyrHCPlkqy9UxNTU145plnEAqFhEznyJEj2LJF7e0XQgghYmFZFrW1tRgZGVHt8nqO4xCNRqHTpXeeBMMwqKysXHayltVEYWpqCgaDARaLBdu2bUNZWRn27NmDL3zhC3jrrbdw/PhxPP7449kMiRBCiMLp9XpUV1cjFoupclJqPB5He3s7Ghoa0qr0dTqdKD06WU0U7rzzTtx+++348pe/DI1Gg3//93/Ho48+ijvuuAM1NTX40Y9+hPLy8myGRAghRAX48XidTn37N/DJz3KHEJYqY4nCvn37LvlaTU0NfvWrX2UqBEIIIYQsEx0KRQghhJAFUaJACCGEkAUp9hQXfocq2plR3uieiovup/jonoqP7qm4MnE/+WstZrdHhlPonpeRSIR2UiOEEEKWobGx8bxdks+l2EQhkUggFoultQEFIYQQQpI9CYlEAlqtFix78VkIik0UCCGEEJJ5NJmREEIIIQuiRIEQQgghC6JEgRBCCCELokSBEEIIIQuiRIEQQgghC6JEgRBCCCELokSBEEIIIQuiRIEQQgghC6JEISUcDuORRx7B1q1bsXPnTjz77LNSh6RoY2NjeOihh7Bt2zZcddVVePzxxxEOh6UOSzUeeOAB/Ou//qvUYSheJBLBt771LVx22WW44oor8IMf/GBRe9+TCxsZGcGDDz6IzZs347rrrsNzzz0ndUiKFYlEcOutt+LAgQPCawMDA7jvvvvQ3NyMW265Be+9915WYlHsoVBie/LJJ3HixAk8//zzGB4exte+9jWUl5dj9+7dUoemOBzH4aGHHoLNZsMLL7wAr9eLRx55BCzL4mtf+5rU4SneH//4R+zfvx+333671KEo3ne+8x0cOHAAP/vZzzAzM4N/+qd/Qnl5Of7mb/5G6tAU6R//8R9RXl6OV155BZ2dnfjKV76CiooK3HjjjVKHpijhcBj/8i//grNnzwqvcRyHL37xi1i1ahVefvllvPHGG/jSl76EvXv3ory8PKPxUI8CgEAggJdeegmPPvoo1q9fjxtvvBGf+9zn8MILL0gdmiJ1d3ejpaUFjz/+OFauXImtW7fioYcewquvvip1aIrn8Xjw5JNPorGxUepQFM/j8eDll1/Gt7/9bWzcuBGXX3457r//frS2tkodmiJ5vV60tLTg85//PFasWIEbbrgBV111FT744AOpQ1OUzs5OfOITn0B/f/+81z/88EMMDAzg3/7t31BfX48HH3wQzc3NePnllzMeEyUKANrb2xGLxbBp0ybhtS1btqC1tRWJRELCyJTJ6XTipz/9KYqKiua9Pj09LVFE6vHEE0/gYx/7GBoaGqQORfGOHDkCq9WKbdu2Ca898MADePzxxyWMSrmMRiNMJhNeeeUVRKNRdHd34+jRo1i7dq3UoSnKwYMHsX37drz44ovzXm9tbcW6detgNpuF17Zs2YKWlpaMx0SJAgCXy4WCgoJ5R20WFRUhHA7D4/FIF5hC2Ww2XHXVVcLXiUQCv/rVr7Bjxw4Jo1K+Dz74AIcPH8YXvvAFqUNRhYGBAVRUVOD3v/89du/ejeuvvx4/+tGPqHGwRAaDAV//+tfx4osvoqmpCTfffDN27dqFu+66S+rQFOXuu+/GI488ApPJNO91l8uF4uLiea85HA6Mjo5mPCaaowAgGAyedx43/3UkEpEiJFX57ne/i1OnTuG3v/2t1KEoVjgcxje+8Q18/etfh9FolDocVQgEAujr68NvfvMbPP7443C5XPj6178Ok8mE+++/X+rwFKmrqwvXXnstPvOZz+Ds2bP49re/jcsvvxwf/ehHpQ5N8Raqp7JRR1GigGQmfO7N5r+mh/LyfPe738Xzzz+P//N//g9WrVoldTiK9dRTT2HDhg3zemrI8mi1WkxPT+P73/8+KioqAADDw8P49a9/TYnCEnzwwQf47W9/i/3798NoNKKxsRFjY2P48Y9/TImCCAwGw3k93JFIJCt1FCUKAEpKSuB2uxGLxaDVJm+Jy+WC0WiEzWaTODrl+va3v41f//rX+O53v4u/+qu/kjocRfvjH/+IiYkJYR4Nn8j+6U9/wrFjx6QMTbGcTicMBoOQJABAbW0tRkZGJIxKuU6cOIGampp5Fde6devw9NNPSxiVepSUlKCzs3PeaxMTE+cNR2QCJQoA1q5dC61Wi5aWFmzduhVAcqJTY2MjWJamcSzFU089hd/85jf4wQ9+QEtMRfDLX/4SsVhM+Pp73/seAOArX/mKVCEpXlNTE8LhMHp6elBbWwsguWJnbuJAFq+4uBh9fX2IRCJCF3l3dzcqKysljkwdmpqa8MwzzyAUCgnJ2JEjR7Bly5aMfzbVggBMJhNuu+02fPOb38Tx48fxxhtv4Nlnn8U999wjdWiK1NXVhX//93/H3/3d32HLli1wuVzCH7I0FRUVqKmpEf5YLBZYLBbU1NRIHZpi1dXV4ZprrsGePXvQ3t6Od999F8888ww++clPSh2aIl133XXQ6XT4H//jf6Cnpwf79u3D008/jU9/+tNSh6YK27ZtQ1lZGfbs2YOzZ8/imWeewfHjx3HnnXdm/LMZjrYhA5CcKPLNb34Tf/7zn2G1WvHZz34W9913n9RhKdIzzzyD73//+xf8t46OjixHo078roz/+3//b4kjUTa/349vf/vbeP3112EymXD33Xfji1/8IhiGkTo0Rers7MRjjz2G48ePo7CwEJ/61Kdw77330v1cotWrV+MXv/gFtm/fDgDo6+vDo48+itbWVtTU1OCRRx7BFVdckfE4KFEghBBCyIJo6IEQQgghC6JEgRBCCCELokSBEEIIIQuiRIEQQgghC6JEgRBCCCELokSBEEIIIQuiRIEQQgghC6JEgRBCCCELokSBEEIIIQuiRIEQQgghC6JEgRBCCCEL+v8B5zP189OQN30AAAAASUVORK5CYII=" + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAhAAAAESCAYAAACsIOwfAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAPYQAAD2EBqD+naQAASipJREFUeJztnQd0nNWZ9x+1GfXemyVXuVfs2DEtGGwgBJIsgQRiIAk5YeEsxNkkkP2A3SVZB7KQ3RCylBwCG0KAZEMPxRhjihvuTS6ybPXeRnVG0ug7z533jiRbkjXSvP3/O2esGXmkeTW6uvf/9JCBgYEBAgAAAAAIgNBAngwAAAAAwEBAAAAAACBgICAAAAAAEDAQEAAAAAAIGAgIAAAAAAQMBAQAAAAAAgYCAgAAAAABE04Ww+v1UnV1NcXFxVFISIjelwMAAACYBm4N1d7eTtnZ2RQaGmovAcHiIS8vT+/LAAAAAExLRUUF5ebm2ktAsOdB/vDx8fF6Xw4AAABgGlwulzDC5VlqKwEhwxYsHiAgAAAAgMAZTwoAkigBAAAAEDAQEAAAAAAIGAgIAAAAAAQMBAQAAAAAjCUgPv74Y7rmmmtEPSknZLz22mvn/ZqPPvqIlixZQk6nk6ZPn07PPfecmpcIAAAAAKMJiM7OTlq4cCE98cQT43r+6dOn6eqrr6ZLL72U9u/fT/fccw9973vfo/fee0/NywQAAABAgKhaxnnllVeK23h58sknqbCwkB599FHxePbs2fTpp5/Sr3/9a1q7di3pRU17E7X1dFByVDylxSSiw6XN6fd6qba9iXr6PJQSnUCJUbF6XxLQGU9fL9V0NIm1kRGbTDGOSL0vCehMp6eH6jtaKCw0VKwJZ3gEWQ1D9YHYvn07rVmzZtjnWDiwJ2I03G63uA1tghFsdlUU0+ZTe8R9FhBrZyynZblFFAohYbtDYnPpXvq4dD919vb4P1+QlEVfLlpJM1PRAdVuuHo66e/Hd9Dnlceo19snPsf7wtz0QvrKnNWUEZuk9yUCHQzON4u30dH60+QdGBCfc4SF0wW5RXTVrJUU54wmq2CoJMra2lrKyMgY9jl+zKKgu7t7xK/ZuHEjJSQk+G9qtLGOdkRSVlwKhYeGUUNnK72w/336w56/k7uvN+ivBYxJU5eLHvvsFXrn+A4hHqLCHcL7EEIhdKalhn67/W/01rFt/g0DWJ/S5mp6eOufaFv5YSEe4hxRlBQVJ9bAobpS8X+7K4/pfZlAQ3ZVFNOvPv4zHa4rFeuA1wOvC09/H31Wdph++dELdLqlhqyCoTwQE+G+++6jDRs2nNOGM5hcPn2ZuLn7PPTx6QPC4jhQU0Jdnh76wYprKSLM9G8jGIPmLhf95rO/UEtPh7Aevj73YlqYNV24JtkCfefETvqs7BC9f/Jz6u510z/MuwRhLotzqqmKfrfjVer19lN2XAr9w/xLaVqyL1m8tr2Z/nbkYzrWUEb/u+898ZyV+XP1vmSgMtvKDtNLBzeL+3PSp9BX51xEGXHJYjhVSVMV/fXwR8I78dttf6M7V36VpiZnk9kxlAciMzOT6urqhn2OH3NL6qioqBG/hqs1ZNtqtdtXO8MddPmMC+iulV8T9082VdKLBzaJBQKsCXuZntz5uhAP7I7+5wtvpCU5M4V4YOIjY+iGBV+iby5cQywZPjlzkD4s3av3ZQMVYS/k07veEMKAD4ofrr6Bpqfk+EVjZlyyMCwuLlwkHr98cDMV15fpfNVATY7WnaGXD34o7l86dTF9f/m1QjwwvC5mpObShtXfoKK0fOGtenrXm2IdmR1DCYiVK1fS5s0+BSfZtGmT+LyRmJaSQ7df8GUKDQmlPVUnhAsTWBO2Gmo7mikhMob+8QtfFS7JkWAL86tzLxL33yz+jMpaajW+UqAFfd5+em7PO9Td5xG5L99ZevWIyXGcB/G1uRfR8tzZwpX9wr73yOXu1OWagbq09XTSH/e/TwM0QF/Im0PXzblwxPw4Njq/u+zLNCUxg7p6e+h/975H/d5+MjOqCoiOjg5Rjsk3WabJ98vLy/3hh/Xr1/uf/4Mf/IBKS0vpJz/5CR07dox+97vf0SuvvEI//OEPyWhwwtw1RavE/VePfCzc3MBaHKw9RTsrjoo8h/WL140qHiRscS7JnikOjP/d9y719vuS6oB1eO/ELqpoq6foiEi6bemV5Bgjs54tT/ZOcf5Uu6ebXjrgs1CBdRgYGKA/H/iAOj3dlBOfStfPv3TM8CWLzduWXkVREU4qa62l90t2k5lRVUDs3r2bFi9eLG4M5yrw/QceeEA8rqmp8YsJhks43377beF14P4RXM75+9//XtcSzrG4dNoSmpacIxJkOOYJrIP4nR7eKu5fNn2pcEGeD944vrHgS8Jb0dDZRh+eQijDSrDL+QOlGouFwfkEJcP5UbcsWSe8lZxYd6TutAZXCrTicN1pOlp/hsJCQmn9knXjyodLjo6nb8y/VNz/4OTn1NTVRmZFVQFxySWXCIV29k12l+SP3Hny7K/Zt2+fKM08deoU3XrrrWRU2E11/fxLxObA1irinNbhg5Ld1NzdTkmRsbRuxvJxf110hFO4MBlOqmzpblfxKoGWsKeRXc4cx16UNX3cX5cdn0qXTPXlQ/ztyFYRBgHmp3eI4cjGJHuaxgt7Kmem5oo8mlePfEJmxVA5EGaEN4eLChaI+28f346ESgvQ4e72ew+unXvhmG7q0TYH9kxxshS7vIE1SjbZ2mRjgatwAq2y4d4xXMHDnqmd5UdVu06gHdvLjwjvAXsc1864IKCv5fXz9XlsfIYI49OsOVMQEEGAKzO4UUh5a53YZIC52VK6lzz9vZQbn0aLs2YE/PW8OXBjKWZHxVHkx1iAd0/sFB9X5M32Z9cHAse8r5juO2TeP7kLXggLeB82KfkLV8xYLhIkA4U9FstyisR9LgU3IxAQQYAti4uUkq33TuyEF8LEcDIU9/pg1s1aMeF+DlypMys1j7wDXhHKAOaFG/8caygX1uLligiYCCunzKN4Z4woCYYXwtywYdDW00EJkbGi8mKirJ25XKwrzqPgpEqzAQERJLj2NyI0jMrb6oW7E5iTT88cInd/L+XEp9H8jKmT+l7rZq4QH3dVFlO7uytIVwi05sMSX+LkBbmzKTUmYcLfh72Ua6YvFfe3lO5D11KTwkaBDHFePn3ZpBoJ8miEpTmzxP0tp/aR2YCACKIXgudjMB+Vmm8hAN+QrE/LDon7X5q2ZNLdJLnTXH5CunBXb0evEFPC4aeDtaX+NTFZvpA/lyLDHVTf2ULHGwYr0IB5YG8B5z5ERzgn5X2QXDLVV6W4v6aEWrs7yExAQAQRuRB4wzFzaY5d4WQmdkty7/pAsuxHgwWIDG19cuaQ6ZvG2BFuUc4Ngmak5AaUZT8aLB7kobP1tK8/DjAXH58+6BeDjiBM2MxLSBdt0Nmz8WmZ73ubBQiIIMIbzKzUfLHhcIYuMBefnPHlPqyaMj9o800WZ88QgoSFibRkgXkS5bYpf8cXFS4M2ve9sHChaHvOlqwV2hnbCR7PzTNO+Pe3eoqv+i4YyLbnPHDLTA3oICCCzKop88THnRXFQlECc1DX3iwG3nBCk/wdBgMWIpw8x+ysgKg0m0eKk2q5F8i8SebDnB33LkqbIu5zp1NgroFZzJz0gknlw5zN/MxpohyU1xsLS7MAARFk5mUUUkxEpLA40VjKPHyujF2enV4wrg6DgbBCcVkX15eLdQHMM5qZWZE/xz88LVjw95SvAUPDPDlSu6uO+b2UwYTX1wVKDp2ZRCUERJBhi1MmU3KpDzA+nA3/eaXvsODhR8GGLU5OqOTQlhQqwPgDkrh0U1ZfBBuu8OEkvNaeDjrRWBH07w+Cz/HGcnK5uyjGEUWz030epGCyItcnKtkD4eoxx+A1CAgV4MmMzOHaUury9Oh9OeA8lDRVitr8qHCH8CCpATcgkqEt9AkxPmxpsuArTMoSAlANQ2OJUr7HawIYH2lkLM2ZSeGhYUH//tygrCApUxg0u6uOkxmAgFCpvXV2XAr1D3jpQO0pvS8HjHNjWJw9M2jJk2ezKGsGRYSGU11Hs5jmCIwLCzwZvlDDI3W2qDxYU0LuPo9qrwMmT3evmw7W+PZyGWpQA+mFkHuS0YGAUAk+jJh91Sf0vhQwBpzxvF+DjYFbGc9VvBv7qk+q9jpg8tS0N4lbWGiYqKJRi/yEDEqNThADlY7UmSdxzq4Jtfx7yohNEr83tViUPV0kcle5GkXFh9GBgFCJJTk+AcHxTXQhNC4c52brLzEylgqTs1V9LXkY7a85iTCGgeGGPszstHyKdkSq9jrcJ2SRsib21UBUGpkDyprgQXmTbTA3FpxfMTM1z79PGB0ICJXguGluQrqIZ8nFB4yH/N0szPIpfzXh0i8OYzR1uRDGMMmaUBs5rO1o3Rly9/Wq/nogcHr6PP6EWi3WxCJlTeyrNv65AQGhIksU62IvXNaGhDtDHq7zNXdakDlN9ddzhkfQ3IwC01gXdoTdxhy+4LHdk52FMh5yE9IoRYQx+uhIPSb5GhEWd9yOPj0mMSjdSM8H70W+MEaD4RuNQUBo4LIuba6iTlRjGI4TjZXU1esWnSKnpagbvpD4XdbVJQhjGNj7MDM1V9XwxbAwhmLV7oehYeiQ1oKs6aqGLySxziiakZJninwpCAgVYcuCqzE4jGGm7mJ24WBtib8LHFucWjBXhDHCxKwUtnSBfcMXZxsaR+vLTNXG2A54+vv8e3cw5uMEkkzJHDJ4+3sICJWRLXClqxwYAxZ1cjaFloeFM9zhT5I6UgeXtdEmb5a31Ys5B/Mz1Q9fDB2mxG2MPf29op06MA48MZV/L9ydln9PWjE33VexVd5aSy63cZtKQUCozDxlI2LrguNowBhUtNaJ6hg+0Gek5mr62rKcEwLCWEhLk5tHxTtjNHtddovLAwN5EMZC/o2yoNQifCFJjIoVSfgc5DTySAQICJXJT8ygOGe0KBXkjofAGBxRDouitHxVusqNR0CcbqmlDne3pq8Nzi8g5iiJrloiX5MPLOTGGAP+Pch9Qgo8LZmnrInDBjY0ICBUhrNp5YFh5IVg28MiXfvDgt2h3K2UWyUXNxjXurATnHsgZ1LM0eGwmJWaJ4Qsl/jWdjRr/vrgXDhHiYffcen19JQczV9/rnJuHDOw9xoCQgNkOdjhWlgXRoBDFxzCYOaoMBRnPMyTLmuISkNwqrlKJMxx6CInPlXz1xehtBRfKA1rwhhI7wNX5KjV4n4s8hIU73V/L50yaG4MBIQGcNJcWEgoNXe7DF/Xawc4psgyLic+jRIiY3W5BmldFNefEf0ogP61/lJQahnrHgpyYwy6JnQIafm914qH1KjeawgIDeAGQjzOmZEdzYB+FDfIuKY+GwMzJSlDtK3t7vPQmZZa3a4D6B/SOjc3pkYMbwL6wf1hTrdUG2ZNHDNoqBMCQiM4WY+BgNAX74CXiut9v4PZOoUvGO47wXFvBmtCX9grWN/Z6vudKH+nepASHS9a4HOJ8UkkXOtevsm/h4zYZNHPRy9mpOZRCIVQXUcLtXS3k9GAgNCIojTfYXWysQIuax0pa62jrt4eMR2zIClL12uZleYTEMeV5D2gD7JMbmpyllgXeiIFDB9gQD84tKhnjpQkOsIpKvmMuiYgIDQiJyFNuKw5IQYua/040VAxmJcSqu/yn5Wa728WA5e1fsjqC+kl1BPplTqurFOgPZzoLkW9NPz0pEiKykYICNvCCTFFisUJl7X+h4XsBqknyUNd1o1wWesV0pLhgpmKoNMT6bKu7zSmy9oONHa1ifeeE99l7poxvFIVYq8wEhAQGiLVrFETYqwOl+lxgtpQS88wm4MBrQs7UNnWILw/keEOTVsVj+Wy5gRbBoaGvkZGQVKmSIDXm4KkTHKERVCHp5tqXI1kJCAgdHFZ12E6pw6cbq4WDVm4dJMtfyMw6LLGYaHnYcGNgvQOaZ29T2BN6IP0BhrBS8lwgzHZyOqYwQwNY/zF2ATub85ZveyEMmpjEDtsDHxo61XrP7rLulUMcwLaj3SXvwejIL1SLG6M5rK2Q/6DkcKcRk+uhYDQmBmKkkSZlvbIxCith2eN12WNagxtYW9UaXOVoUJaZ7usqw3msrZD+2p+3x1h4TQlKZOMQpEiINjwNNLIdwgIjZmuHF4YrKUtHOfm0JHRLAtmZorveuCV0payllqRFxPriKLMuBQyCuyynqYk72Gf0BbpfZianKP5kL2xyIxNpjhHFPV6+6mirZ6MAgSExshYFlsWyIPQjpKmKjG8inMfeJiVkZimrAkcFtoiPT4sKLlKyoj7BK9boB2D4QvjeCkZDrkacZ+AgNAYHtaTEZvky4NQ3KdAfbiBlxE3BqYwOUscYM3d7ciD0GFNGCmkJZGHBXulMIBPG/q9Xr9gM5qXkpmuDFszkqiEgNBzIaD2XzNkzomRkuUkQ0sIjbQ5WBkOXciGbkY8LLj7II+R7uztwXhvjah01VNPn0d0I81NSCOjMV0RlaXNNYbpZgwBoQNybO9JHBaaDcaRyWjyj9CwohJeKc3yH/oHvJQQGUOpOs46GA2Ov7Nnymguaytzqsk3PIubR/FcFKORGZdC0RGR5OnvpYq2BjICxnuXbJUH0YA8CI36P7ATmPMfOIRk5DVxCoeFJsjw4bTkHMOU9J4N8iC0pbTZJyBkAqvRCOU8CIMl10JA6EB8JPIgtOSUwTcGpjA5m/gYa+hso7aeDr0vxzaHhRFaFY8Gixt/AjDyIFSF399TJlgT0w0mKiEgdAJ5ENphhsOC+0HkxKcZanOwcrLc6eYaw4tK7gfBoYx2d5cYOQ7Uo76jhTo93RQRGuaffmnkc6O0uVrMcdEbCAidkBuXPNyAOnDTFR7hPTSz3agYzbqwKlWuBjEVNyrcQVnxxun/cDYR3Mwo0dfMCGtCXaT3gZtHGan/w9nkJKSKdcvJnjzHxRYC4oknnqCCggKKjIykFStW0K5du0Z97nPPPSdikkNv/HVWQ1rDlbyZ9fXqfTmWhZtHccZynDPakMlyRi/TsiJStPvKZ0NNIirhqbS7l5Lh9Sqv0Qj7hOp/PS+//DJt2LCBHnzwQdq7dy8tXLiQ1q5dS/X1o3fTio+Pp5qaGv+trMx60yu5mREPdeJe92WtvnIyoG7+g1GT5SRyY6jraBbuVKAOg7FuY3ukzi7dA9ok1Rqdacqa4ORwywuIxx57jG6//Xa67bbbaM6cOfTkk09SdHQ0Pfvss6N+DW/0mZmZ/ltGxugxKbfbTS6Xa9jNDPDPOFUp05LxWBB85KwDo1sWTKwzitJjksR92aMABD9ZrlSx3Iyc/yDheDwPW2vudiG5ViVauzuoqcsl3mfOOzE6hUnKudFSo3tyraoCwuPx0J49e2jNmjWDLxgaKh5v37591K/r6OigKVOmUF5eHl177bV05MiRUZ+7ceNGSkhI8N/4a8zC1CTkQagJJxlJy80MlgUja/+xJtSBkxHbPd0UZvBkOQk3NcpW8jTghVAH+beWE58q3m+jk5eYQWEhoeRydwlhaVkB0djYSP39/ed4EPhxbe3IFtasWbOEd+L111+nF154gbxeL61atYoqK0eOAd53333U1tbmv1VUmGeioTwszrTUYGyvCtS4mkSykTPcQdnxqWQG/F6pFhwWqibLcafHsHAyA1ziy2BNqBy+MHiStYQnheYqnWv1FpWGyyBauXIlrV+/nhYtWkQXX3wx/e1vf6O0tDR66qmnRny+0+kUORNDb2aBy/Z4bG93n4dq25v0vhzLHhaFSZkUFmq4pT4ihYpXqqzFl/wJ1AlpmSF8cY7LGh4IWydQDmUw/K2vp1LVXTU1NZXCwsKors5XRifhx5zbMB4iIiJo8eLFVFJSQlaDD7WCJJ93BptD8DHjxpAemyR6QvR6+6hKab8N1Og2aA5rc+hhUdlWL2Z4gODRPaTNvSlFZYuFPRAOh4OWLl1Kmzdv9n+OQxL8mD0N44FDIIcOHaKsLN8bZjWkxVnagph3sOHQkNkEBLerLYDFqQod7m7R6ZMxQ7KcJDkqnuKd0WJ2R4XS0wQEB66A4+BxSnS86BBsFgqVPa3a1SREkF6o7tflEs5nnnmGnn/+eSouLqY77riDOjs7RVUGw+EKzmOQ/Pu//zu9//77VFpaKso+b775ZlHG+b3vfY+siDzc9I5lWY22nk4xHpsLN82QLGdE68JqyHJpbiMf7TBPbxmu2MKaUAdZ7SRFu1lIiIwRomeA9G0DoHoW0Q033EANDQ30wAMPiMRJzm149913/YmV5eXlojJD0tLSIso++blJSUnCg7Ft2zZRAmpF2BLiQ66pq41cPZ2mUsFm8D5kxaWIcdlmotAg8U3rHhbm8T4MtTgP1J6CV0qlNSEFmpkoTMoS5ae8JorSpuhyDZqkId91113iNhIfffTRsMe//vWvxc0ucNlQVnyqiMNxfHZR9gy9L8kSmNWykBUCHMpo6emglu520XQMBE9UFiSab02cXftv9KZoZoDfR3OLyizaXXVcV6+UOVLTLY7cHNA8KHiYeWPwlZ36BmvBZR28niBnlPwBM66J3IQ0MaOhw8N5HBisFQz4fezq7REDtMxS5j1S/tzpllrdBmtBQBgAuaGdQUvroE1b5BkYZvVAMFORSBlUatubyd3nEWXTmXHGHaA1GtyzIl+p/YeoDK6RkZeQbugBWqPBDcacYRFiXdfo1AYAAsIAyIl7Fa31qP0PAtXtjaIMkqfWcVmkGUEehDqHBYeHzNITZNSGUhCVwQ1pmdTICA3hNgCZouyb23HrgTlasVkcPuT4sOOGUtXtTUIRgyAcFkmZIpfAjMhNrdLVKEaSm6VrolGR3j0zhi8k8toxfC/4+4RZuXXpVSKPTq99zpxS3GLwL1+WGpYhD2LSyPfQzIdFclQcxTmiRGyzsq1B78ux0Jowp7U51FPJtf/uvl69L8fU8PvHnkqz7xMxjkhdjSQICIMgNzZYF5PntImz7SWcZZ8PizMocKMd2Sp+itL51YwkRsWK+n+u/eeulGDiVLTVi/lDCZGxqHKaBBAQBkFubGda0GluMnQOyVI3s2uSKVAsTgiIycEJtf5ug05z91mRXogydKQMUv6DufcIvYGAMNjGUNfRTF06tia1SlwzPSZJuPfMzGBYC4eFXUt6z4aTQBmUfE8OK60JPYGAMAhxzmhhITHlsDgnjBUPi8auNjHHAdivgdTZSK8a9ojJNpCSa8L8+4SeQEAY0T0Ji3PCWElA8LyG9JhEcV/2tQD26jZ4NlyhxSlzPOfF5e7U+3JMCXd3dbm7RBkkKt4mBwSEAa0LNJSaGJwUJfMFzJxtP5R85EFMCvbedPb2iEZBOQm+7p5mhkv2MmKTxX0YGhND7q858ankCI/Q+3JMDQSEEZPmWmqF5QQCg/NHekS3wXAxRMsKoPZ/ckjvQ65Juw2OHcaAgJgIVvJI6Q0EhMH63YeFhIp+983dLr0vx3TIDZXdkmbtNjhaHgRbmxCVgSOFl3wfrQASKYOzT8iQMZg41thlLQJ3G2S3GoPNYRICwkKHBQ/5CQsNE254dseDwChvrR9W0WIpD0RbnQjbgcDm5MgeGlZaE3oBAWHQzQEdKSd+WFjJ2mRRmauISrisAz8sqtqstyay41LEBElukIXJnIGHOT39fWIIVXqsL0EZTBwICIMh3Wpy9DAYH33efqpyNVjSsvCvCYjKgODuk73efooMd1CqUs1iBdgjxTkdDAyNiXop00UVBpgceAcNhkzsYcsJkznHD4+zZRHBWeqp0QlkSa8URGVAsItf5sSYdajaaCCRcmKUy/BFgrWMDL2AgDAYbCmxxcSWU217s96XYxrkRprPdfJWOywUjwrHblkkgQDXhMU8UsMSKVGdExBWXhN6AAFhyMmcinsS1sW4qVDyH6yUQClJi0kUnhUWD9Uu3wRBYM8EynM9lQ1i3DsYb5iz0R/CAJMHAsKA5CnutQrFBQvOjxRbVkqWk7BHxV/OCYtzXPChKsWWFQVEclQ8xTiiqH/A6z8UwdjweuCwcLQFw5x6AQFhQOSGJy0oMDacVc05EIxVW9PKREqsifFR3d4oDteYiEhKtuC45qGiEnkQAXopEzIsF+bUCwgIAwsIVsxwT54frr7wDngpzhFFSRY8LIa6XCtwWAQc67bqYSFDnfBUjo8y5X2S7xuYPBAQBoQtJrac2IJiSwqMP//BsoeFEtaqaW8mT1+v3pdjeKyc/3B2qBNeqfEhxbeV14TWQEAYED4EEcYYP3bIrE6IjKF4ZzQN0ABVKv0ugL0PC2lJc7WWG6JyTFh0yzCnldeE1kBAGJRBAQH35HgTKK3smmRRKStMpMcFjAwfpuypsfqaSIiMFcKSRaVsogZGhhNNue13nDOaEiNj9b4cywABYVAQ8x4fPH2zvqPZFs1huMcFU6E0wwEjw4cpH6p8uPIha2UGwxjYJ8bTVMyKfWL0BALCoMgMa8S8x4atcR4nxFZFfGQMWRl4pQLzSMnD1cpIDwtCnWNjhzCnHkBAGBS2nOKdPvckYt6jI61xO2wMskSVBwK5+zx6X44J8h+sG76QSK8bKjHGxg5JtXoAAWEK6wKbw/ktC+sfFuxhYU8Le1wq2yAqR8NO1qYMddZ3tIjpnGDsMCc6UAYXCAgDg0qM82Onw4JBGGNs+BCtV0ZcWz0nhuGkQO59AlF5/jBnkuLVBcEDAsLAyA0Qh8XIdHp6qLGrzTbx7qFhDDlVEIwc0uJWz7HOKLIDSK4dZwKlTYwMLYGAMIN7shPuyZGQcV/uax/jiCQ7IDdBVOeMjJ1CWhJZ3gtDw36D9vQGAsLg7knZxx/uyXOxW/hiqAeC3fQQledix2Q5tLS276A9vYGAMDiwLkbHjocFu+XZPc/AZX0u9hSVvp+1obONujw9el+O4cKcTf4wp328UloBAWGWpDlYF6MeFnbbGPwWJ5Jrh9Hh7qbmbpft1gSH71KU8dQQlSPvEWkxCRRtkzCnlkBAmCRBCpUYw3H1dFJrTweF2LA0y++Vgqgchnw/0mMSKSrCSbYs+YaAGIYM69glyVprICBMcliwG67T06335RjvsIhNpshwB9kJiMqRkR4ZO4UvzmkohVAn2T3MqSUQEAYnOsJJaTGJ4j4OjEHke2HHxCjpnveJSsS8z2lhbcc1gZbWI2LHnBgtgYAwAciyPhc7bwwcy+WYLoM1MYh8L+wsKjkHhHNBwPAwZ25Cmt6XY0kgIEw1cQ/WBTMwMOB31dot/0GCNTGctp4OauvppBAKoZx4+x0WnPPBuR8MEimHhzkzbBjm1AoICBMgLSqUcvpo6W6ndk83hYaE2vKwYNBQajhSSGXGJZMzPILsCEq+h2NnL6WlBMQTTzxBBQUFFBkZSStWrKBdu3aN+fy//OUvVFRUJJ4/f/58+vvf/052ht1v7IZjdxy75eyOtLCy4pLJERZOdgQtrYeDwwItrc8GCZQWEBAvv/wybdiwgR588EHau3cvLVy4kNauXUv19SMv8m3bttE3v/lN+u53v0v79u2j6667TtwOHz5MdsUZ7hBuOAalezgshopK4Y1xd5HdsWML67OBV2p4mNPfJ8bGa8L0AuKxxx6j22+/nW677TaaM2cOPfnkkxQdHU3PPvvsiM//7//+b1q3bh39+Mc/ptmzZ9NDDz1ES5Ysod/+9rdkZzCZcwTLwsa13SLmHZsk7tu9oZQ4LBSr285rwi8q2VPptrenkoV1hwhz2jMnxhICwuPx0J49e2jNmjWDLxgaKh5v3759xK/hzw99PsMei9Ge73a7yeVyDbtZEVgXQxIoZXMYm1sW/kRKm3ul+LDgHilhIaGUHZ9KdmWop9LuonIwzJlq2zCn6QVEY2Mj9ff3U0bGcKuAH9fW1o74Nfz5QJ6/ceNGSkhI8N/y8vLI2nXedeIQtStNXS7q6nVTWGgYZcWlkJ1BS2sf0lWdFZ9KETY/LAZb32NN2D2kpQWmr8K47777qK2tzX+rqKggK8JuOK464OoDTqa0K9LazolLwWGBw0IwGL7AYSENDbt7KhHm1AZVd+DU1FQKCwujurrhi5kfZ2Zmjvg1/PlAnu90OsXN6rAbji3uKleDUNdJyphvuyGtbTt2GxxJVHLfA9kDISEyhuyIPCztnFQrkQem9FSGhHBWhL1AmNMiHgiHw0FLly6lzZs3+z/n9XrF45UrV474Nfz5oc9nNm3aNOrzbTkwx8bWBVyTg3C/A+57YOc1MTSBEocFi8pUkTjocncJUWlHEOa0UAiDSzifeeYZev7556m4uJjuuOMO6uzsFFUZzPr160UYQnL33XfTu+++S48++igdO3aM/vVf/5V2795Nd911F9kdu1dieIVlAdfkyGvCngKisauNunvdFI7DQuAIj/C/D3ZdEwhzWkhA3HDDDfSf//mf9MADD9CiRYto//79QiDIRMny8nKqqanxP3/VqlX04osv0tNPPy16Rvz1r3+l1157jebNm0d2xz9xr82eiZSNna3U0+ehiNAwv+Vtd+w+J0WGtNjyZhEBMO4dYU7t0ESesfdgNA/CRx99dM7nrr/+enEDw8mKTxFuOXbPseUlp3TaBWlR5SSkifcBDIrKstZ6W8a85SGJw2KQKQkZtIOO2NcDgTCnZpi+CsNOsIWVq9S527F0D82CzoX7HnD/A+6DwP0Q7Jttj8NipNHedvNUIsypLRAQJsPO7slB1yQOCwnHeLn/AVNmM4tz2GEBD8RwUSk8lT0iodBOIMypLRAQJkNaWnZzT3oHvFSJw2JEptg0D6Khs5Xc4rAI93dgBD5PJeeE2NHQQJhTWyAgTNvSul5YYHahvqOV3P29oh9GhjIDApzV0tpmolL+vDwDIiwUW9lQ7FqdgzCntuCvzmSwpcWHKB+mDR0tZLvDQunICQaZYlNRiQZSo2NXT6VcEwhzagN2YpPBlhYfonaLectYN7Ltz4VjvRzz7e7ziBiwXfA3kEIC5TnY0VPJYc6KtgZxH6JSGyAgzLw52GgGwmBpFjaGs+FYb47NLE7kxIzfU1lvE09lXUcLeRDm1BQICDNXYtjksOj38mGhWBawNkfEbm3OfYdFHznDIig91l79UMbtqbSZqJRVWvxzI8ypDXiXTYi0uPhQ5cPV6tR1NFOv13dYpMGyGHuIkk28UoMJlDgszpsHYZNKDPlzwsjQDvzlmRDuQBkZ7hCHam1HE9nlsODEKB4UBMYSlfW2EJXS2kS3wfF4Ku0iKpEnpTUQECaED9E8G7knUZp1ftJjk4SHht367LGxjbWJw+K81TlVQlT2k5Vh0cw/J4M1oR0QECbFTpM5UZo1TlFpkzwIPgyrlJwYVGCMTqrfU9lPte3WFpXsieWf0xnusN2MID2BgDB9mZa1D4s+PixcjeI+LItxikqL50HwYciHRVS4QxySYHRRKUM8Vi/59ocvRE4MwpxaAQFhUuTGwIdrb38fWZWa9iYhIsRhEZ2g9+WYI5HS6oeFfwInDovxdim1epvzwaZi8EhpCQSESUmOiqeYiEjqH/CKQ9b6A7QybDeqeqIeCBaVLLqsb23CIzXeNcHj3q0M8qT0AQLCpPBhaod+EIMNpGBZnI+U6HiKZlHp7adqJexjRdDCevzI96jGwp7KviHrHXlS2gIBYWLs0DxosF0xDovxiEq5JqTnxmrwITiYE4PD4nwkR8VRjCNKeCqtKir9Yc4IJ8KcGgMBYWKs3jyIDwu2nBgcFoGtiTKLxrz5sODDkD0tHMYD4xCVFm8o5e8JkpCOMKfGQEBYwD1Z295Enr5eshqVrgZxWMQ6onBYjBOrV+fIagIWlDgsxofVR3uXtdaKj2ggpT0QECYmITKG4p3RYtoeH7ZWo6yl1t8QB4fF+JAx4BqLispy5bCYkpip96WYBqv3jJGisgBrQnMgICySSGnFmLfcGKYkYWMYL4mRsX5RKXMFrMSZFrkmYG2OFxn+4/4ZbouJSnefh2pcvio0rAntgYCwTPMg67knYW0GjpWrc7p73VSvtOnGmhg/CZGxwls5QAP+EehWgb0q/HOxcOafE2gLBITJ8SdIWeyw6PR0U0Nnm7iPcr3AsKqo5DU+oPRAiXNG6305psKqTcbkzyPnfgBtgYCwyGFR39EiLDSrhS+4r32MI1LvyzEVVhWVMlmuACGtgLFqm/Mz0kuJNaELEBAmhy2xpKg4YZlVKgOGLJX/AMsiYCwrKpX8B3ikAseqlRjl/kRrCAg9gICwAFas8/ZXYMCymJSorLCIxTkwMAAPxCSQU0sbOlupy9NDVqCtp5NaejoohAYbqAFtgYCwADJpTlpo1jgspAcCh8VEkO+bFGJmp7Wng1zuLjE8KxcjvAMm1hnl79JolcmcUlBmxiWLMd5AeyAgLIC0yMpaasgKNHe7RBJlWEgo5cSn6n05pl4TZywiIOTPkR2XSo6wcL0vx9xrQjl4zQ68lPoDAWEBRKMlChHuvNbuDrLKYZGTkEYROCwmfViwR8cy2fY4LCZMQVKWpQwN5EnpDwSEBWD3XXZ8yjC3npnBxjB52M3PHpx2dxc1d7eTVUQl1kRwvFJmF5XcKE2KSnSg1A8ICItgJZc1MqsnD7v52YPDnDG5xdnv9VKFkiAMD8TEyY5PpYjQMOrqdYtkSjPDFUY9fR6xzjPjfMYT0B4ICIu5J81/WPT7KwdwWEwOq4jK2o4m8vT3CU9bRmyS3pdjWsJDw/zVGGZfE/4BWuxpC8Uxphd45y2CdONxa1c+hM1KdXsT9Xr7KSrcIZpIgcmvCdMfFnL+RWI6hYZgy5oMVjE0/CEtGBm6gr9Gi5AWm0TREU7q9faZeohSub9ZUKYo2QOTPyx4Umtvfx+Z3drkNQEmhzxwTS8qUeZtCCAgLAIftvKPycybw5lWn2WEyXqTJyU6nmIdUcIjZeZx77JcD8lywQtrVbc3mnYyJ4ezqhUjCUm1+gIBYSGsEPM+3ewTEFOTsvW+FEtM5jT7muBW3DXtclwzBMRk4Q6lPLVyaBWD2ahorSPvgFeMreefB+gHBIQV67wVK95scMlhvZIdjnbFwW4yVmva8MWA4k3hkdRg8pi9oVSpkr9RmJwtRDLQDwgICyHdeTwGu8PdTWZDWsmZsckUjQmcQcHsSXOlikeqUPk5wOSR76VZRaX0UmJN6A8EhIXgQzcjNnlYLoGZON1SLT4WJmNjCBY8hZFtNG4mxcOHTHtYYE0EjcGwVo3pGkrx9Z72eyCwJvQGAsJimDnmDcsi+ESGOyhLabRjNouT49zSzY6cmOB2KeVyWB5O1mKyLqXcAIvn5AztaQH0AwLCYphVQPR5+/1JXRzbBCqEMUzmleLkSXefh5xhEZSltGoHk4e7N+YqQ+rMtk9I7wN71lhEAH2BgLBq0pySqWwWqtoaRAOp6IhISkcDqaAiqxekh8csyOvlNY0GUuqISnkgmwV4KY2Fqn+Vzc3NdNNNN1F8fDwlJibSd7/7XeroGHta5CWXXCIya4fefvCDH6h5mZaC3dVssbHlVuPylb+ZK7M6C5nVQWaq4tFhD4+ZGkoh1q0e8j093ezLOzILpcr1Yk3YQECweDhy5Aht2rSJ3nrrLfr444/p+9///nm/7vbbb6eamhr/7ZFHHlHzMi0FW2ryj+uUiTYHWBbqwR4dbijVO2TOiLkqMBDSUktUcoMxNjbMQJenh2o7msV97BMWFxDFxcX07rvv0u9//3tasWIFrV69mh5//HF66aWXqLp67IMtOjqaMjMz/Tf2YIyG2+0ml8s17GZ35OYg1bo5MqsVywIbQ9Bhj45cE2YRla6eTmrqahMVJOgJEny4AVNyVJxoKGWWMIbM1+AZOXHOaL0vB6gpILZv3y7CFsuWLfN/bs2aNRQaGko7d+4c82v/9Kc/UWpqKs2bN4/uu+8+6urqGvW5GzdupISEBP8tLy+P7M605Bzx8VRzlSnKtFqUEkNfO260plWDaSYTlfJQ45BcVIRT78uxJGYzNPwhLRgZ1hcQtbW1lJ4+vMwmPDyckpOTxf+Nxre+9S164YUXaMuWLUI8/PGPf6Sbb7551Ofzc9ra2vy3iooKsjucNBcWEioO5aYul2k2htz4NHKER+h9OZZkakq2P+bNVqfRQf6DhoZGk1kEBPIfjEZ4oF9w77330sMPP3ze8MVEGZojMX/+fMrKyqLLLruMTp06RdOmTTvn+U6nU9zA8DKtvMQM0SiGvRCpMQlkZKRbHeWb6pEbn06OsAjq6nVTbXsTZStlfEYF+Q/aiUoODXAZtZHLInkg3BllUi88ECYWED/60Y/o1ltvHfM5U6dOFbkL9fXDE7b6+vpEZQb/33jh/AmmpKRkRAEBRndZ+wRENa3Im0NG5lRT1TA3Owg+YaGhVJiUSccbK8SaMLKA4CmRsifINOWQA8GHu9Zy2XRXbw9VtjUYOtekoq2BPP294nozlcZowIQCIi0tTdzOx8qVK6m1tZX27NlDS5cuFZ/78MMPyev1+kXBeNi/f7/4yJ4IMH544918ag+VKoezUeGZHXLa4rQUn0sVqBfzZgFR2lxFFxYsIKPCwpd7mCRFxlJy1OgJ1GBycM4Rr4nDdaXCU2lkAVHSVOk3Mvi6gcVzIGbPnk3r1q0TJZm7du2izz77jO666y668cYbKTvbZ1VUVVVRUVGR+H+GwxQPPfSQEB1nzpyhN954g9avX08XXXQRLVhg3A3PiEjXL0+3dLmNOwOBNy45QAuZ1eoiBRrHvI2cXFsiPVIpuegJojLSw2P0PAi5JqbDyLBPHwiupmCBwDkMV111lSjlfPrpp/3/39vbS8ePH/dXWTgcDvrggw/oiiuuEF/H4ZKvf/3r9Oabb6p5mZYkxhHpn4FQauDNwR++wMagOlMSfR0dW3s6DD0DQVqbOCy0q8QwcnIte6NkpQj2CZOHMAKBKy5efPHFUf+/oKBgmCXEJZhbt25V85JsBbv7ODzAf3yLsmeQEYFloR3O8AjKS0gTbc45DyI52njhAU9/H51R8h+wJtSHB1JFhIZTZ28P1XU0+40OI8H5GT19HjEYLjfh/OFzoB1oMG8Hl7VB67y5IqDK1SDu47DQunTPmLkxPDGUM+7jndGiYRBQF668kLkPRvVUSiODvSWYiWIs8NuwQ7vatgbq7nWT0eBkPvY/pcUkUEJkrN6XYytReVIJExiNEiUnZjryHzTD8GsCXkrDAgFh8Xa1fDgP0ID/j9BIyMQtTpYD2h0WIRRCDZ2thsyDOCWz7XFYaMbMVF/33hONFYZLruW8DDY0pKgExgICwkabg2GT5RS3OlCf6Agn5SemG3JNcDOj082+LrWwNrWDQxicB9HhGSypNgo17Y0i1MlN0Dh/BxgLCAiLMzM135CHBSdFycmQOCy0ZYYiKk82GstlLcaNe/vE5FAu6wXa5UHIck6j7ROD+Q9ZFGbgTpl2BQLC4sxQ3H5sWRipHwQfXuyeTI1OMGQ1gJWZZVCXNTe5koIS+Q96eSqNJSpPNMg1gfCFEYGAsDixzijKUdoWG8nilJbOrDRMT9UaniXA1hz3g+BcCKNwvKFcfJyV5vOaAe0FBIcV+71eMgJ8HTKxswhrwpBAQNgAI+ZBHJOHhRJiAdrBE0/lQCKjrAkOafFQJwaHhfZwfwUem86/h0oltKg3Za214np4/gX6PxgTCAgbYDQBwdn/3LQmZEg8HmjLzNRcQ60JX0jLSynRCeIGtIX7K8hwpwwlGcUjxfsX+j8YE/xWbACXxPEfYFOXi5q62vS+HP+hxSPHueU20E9UylwUo6yJIoS0DLAmjCUg4JEyLhAQNoBbwE5JzBD3jytJSYaIdcP7oBu8HpxhEaKFsewGqicIaenPDMUrxa3vuaW4nnDjuzOtvpAWcmKMCwSETZB/hMcaynS9Ds76ly5SbAz6wUmU8sAori8zSEgrxG8FA+3h0lnuCNvr7de91TmXb7JnjBvhpaBKy7BAQNiEuekFfkuPZw3oBZeTtru7ROMamcgH9GG2siaO1p8xRPiCG1xFI6SlG1w6O9cga2LQSwkjw8hAQNgEzjfgBj2c1VzaXKPbdciNiWv9I8JUHQYLzsMc5bA43VxDXZ4e3a5DesXgkdKf2elTxMej9ad1vY5irAlTAAFhE0JDQqgozbc5FDfoZ10cqfNtTHMzCnW7BuCDXcPstuZZKccafRaf1rA37KgSQpGCBugHh5DCQkKpobON6jtadLkGfl3uT8LXgZCWsYGAsBFzMxT3ZJ0+AqLT00OnW3zeDwgIYyAPbb3WBHvDOGEuJiLSP1Ya6Af3gpBTfPXKjTmsGBnspeTrAcYFAsJGcDkUJ6pVtzfpMomRXdWcGJUVl4LEKIMwRxGVxfVndCnnPKK4yvk6UOtvrDWhVx4EvJTmAX+xNiLGEeW38vTYHKRlIT0hQH/Y2uRyznZPty4dCA/X+tbEvIypmr82GNsrxW2kPX29mr42T9481Vwt7kNAGB8ICJtuDlLla9nXnq1cZm46NgYjTWKUiWpS4GkZ667vbBGeBzQLMg6cF5McFSfGq2vdldLnpfRSRmwSpcUkavraIHCQBm8z5mUW0tvHt4tyTnefh5zhDk1e90xLjbAuuK99Aco3DcX8zKl0sPYUHawpoatmfUGz1z3ir8jJRqzbYOWc8zOn0dbT++lATYlYH1ohDZtge6T6+/upt1dbb4qRcTgcFBo6ef8BBITNyI5LFc1ZOMuaN/Al2TM1ed0Dtaf8HpCwICxcEDx4s2YvAOfGsFcgPTZJk9c9pKwJeKSMxwJFQByuKxWVMtx4TG34dY4oybzBqsjhxnW1tbXU2mqcqbNGgMVDYWGhEBKTAQLChtbFwqzp9EHJHmFdaCEgODnvQPVJcX9R9nTVXw8EBs8j4UFKxxvLhdC7fPoy1V/T1dPp73bI6xEYi2kp2aJvTIenW+RCyBJwNTnRWEldvT0U54jyV4JMFike0tPTKTo6Wux/dsfr9VJ1dTXV1NRQfn7+pN4TCAgbIgUEq33uee9QuaETj+Vt6ekQyXpabEQgcBZlTfcJiJoSTQTEgdoSGlBmciSjIsdwsEeKvRDbyg+LNaHF3+2+Gp+RsSBrelC8lBy2kOIhJSUlCFdoHdLS0oSI6Ovro4iIiAl/H/iSbUh+QgYlRcWRp79Xk9kY+xXvA+dfqC1WwMTgODfbIeWtddTc5VL99fZVl4iPi7JnqP5aYGJIz9DB2lKR2Kh2+OJgjS+ktThIa0LmPLDnAQxHhi5YZE0GCAi7hjEyp4n7+5WNXC04Brm/RjkssnBYGJX4yBi/21jmq6iFyz0YvsCaMC48bC0q3CFm16jd/l6GLzhsMi05J6jfG2EL9d4TCAibIi0/zr53q1jrXdZaJ5pWOcIi/MObgDFZrOTD7K48purrsEuc22fnJ2agoZjBS3wXZE3TZE3sV8IXC7OmIcnaROA3ZVN4EmZqdIIIY7CIUItdlcV+FznCF8aGE2o59l3RVi+mpqrF58phpFUFEJg4F+TOFh/3VZ8Q+VJqwN9XhjmliAXmAALCxi6sC/J8m8OuCt8hH2x6+/tob9VxcX+F8lrAuMQ6o/zjnD9XhF+wqWtvpjMttWK427KcWaq8Bgge01NyKSkylrr7PKKkU61yXv7+3LyKXw+YBwgIG3NBTpH4eKKxnFq7O4L+/bmzITePSoyMxVQ9k7BcEXq7K4+rkji3UxEmHM7ivAtgbITQyy0a5jkKNjvKj/rXHr8eMA8QEDYmNSaBpiVni3I6NSzOnRW+jeGC3CIMSjIJ3MAnOsJJrT0ddCLIbYxZkMh19oW8OUH93kD9MAa3ouf+HcGE86PYgGGW52JNjMTjjz8uSi7Hy7PPPkvHjqmbsyLBrm5zlisbOdd7B9Pi5FJAOQ5YvgYwPhFh4bRUCS18euZQUL83r4e2nk4xuhuDksxDZlyyGMLHDeG2lx8J6vfeUXFUGDA8upsNGjCckpIS+ulPf0pJSb7usH//+99F+Hm02w033EA7d+6kp556irQAAsLmLM2eKSzOpi6Xv41sMPi07JDItOcOhzwYB5iHCwsWio+HakuD2hNi6+kDflc1Z/gD860J/rvmng3BgId1faaI1JX584LyPa3G66+/TpdffjlFRUWJx5deeqnoIDn0VllZKZ7DzbJ+9rOf0bXXXktvvPGGJtcHAWFzHOER9IX8ueL+J2d8G3wwsqq3lR0W9y8uXBSU7wm0tTg5Z4UF4Gdlh4KWPMlNy0IohC4q9B1GwFydSrnFdFtPh2gsFaxyXu4JEu+MCVrzqPH0peGydT1uAwPsawlcQHzlK1/xP2YhkZmZ6b9xR8kf/ehHtHfvXtq8eTMtXLiQLrvsMqqrq6PDh317sJqgrg7QhQULaMupvWJCJ2/0GXHJk/p+e6qOi6YwnFXN3SeB+bioYKHIgdhWfoTWzlguhOZk2KqIUy7nTYmGq9qMoa1VU+bTeyd3iSFbwTjw+fswqwvma+aRYuPmx+/8jvTgV1f+IzkD+DtqbGykHTt20F/+8pcR/5+7SN588830wQcf+MUD43Q66YorrhBeiHnz1PXswAMBxIYux+duKtk9qe/FeRSble9xYeFCJE+aFM5RSI6Kp05Pt8iPmQyceLdTybSH98G8fHHKfDGVs7S5mkqUTqIT5WRjpSjn5e+3agrCFyPx1ltv0bJlyygjI2NU8fD+++8LASHFg0SrMAY8EEBwxcwL6FBdqSjVumLGBRMe6byn6gTVd7ZSdESk2HCAOeFugJfPWEYvH/xQDF7j3yVboRNh86k91OvtE4l4nBMDzEliVKyonuGw1rsndtJdK7824e/1zokd4uPK/LkihKEV3MyOPQF64Ajw74cTJq+66qoRxcO3v/1tIR7Y87Bo0blhYv662267TXgxUlNTSS1gHgLBlMRM0USI497vn/x8Qt+j3+ul907sEve/NG0JRYZPbtY80JcVeXPE0DWOU8uclol4H2Q1x5Uzv4C5BCaHJ7WGhYSK8JacZxIo/LXswWDvgxaTX4fC64/DCHrcQgJc+wUFBXT69OkRxcN7770nPA8jiQeGvy4xMVHc1AQCAvhZN2uF+Mi1+jyVMVDYMqnvbBFlenBVmx+OS18x/QJx/50TO0U4I1DeOrZN8T5kUVFavgpXCbSER6+zsGRePfKxKO0MNMT52pFP/N4HFqhgZDgM8fbbb5PX6/WLh/Xr1/vFw+LFi0f5ShLhC/ZChIerG2SAgADDvBDcXpi3hL8c+iigzaHD3U1vH98u7l9dtBLeB4vAFTrZcSkiKfbtY77f73jhGDfX+TNfnXMhvA8W4aqiL4i/7/K2etoRYF8I9mRVuhrElM8rZ/oMFjAyK1euFJUb3NeBRQSLh9dee41eeOEFysrKotra2mG3oaO5WUCwAFEbCAgwjGvnrCZnWASVtdbSJ0rd/vngRf7KoS3U3eumnPhUJEVZLBfi6/Mu8XuYOPltvNnufz7wgX8OSmFylqrXCbSDcxbWKYf/G8Wfim6S44F7irx5bJu4f1XRSopzRqt6nWYnNDSUvvzlL4tSzs8//5xefPFF6urqEp4FFhBDb9nZ2dTZ2ekPXxw/fpzWrVun/jWq/grAVCRExtI1s78o7r9W/KmYzHg+2MrkcbxccXHjwstQeWExZqTmiuQ59kf9cd974wplvH70EzHRkw+Jr8xercl1Au24uHAh5Seki1k3vCY4/2ksuPkUP4+NDPZ0rp6yQLNrNTPXKtUUK1asEIbaaDf2UMTHx4uv4edfcsklFBenfnhItZ3+F7/4Ba1atYqio6PHncjBb8QDDzwgFBU3zFizZg2dPOkb8wq07QsxL6NQ/NE/s+vNMbsRckLUKwc/FPevmrVCbA7Aenx93sWUHpMoZmQ8vetN8vT1jvrcraX76ZMzB8X9mxZdDkvTgnAC5C1LrxTeSk6IfPnQh6M2SuLPv3RwM51qriZnuINuWbJOeLbA+eEOk2VlZaKl9XhhATG0+ZSaqPZb9Hg8dP3119Mdd9wx7q955JFH6De/+Q09+eSTIu4TExNDa9eupZ6eHrUuE4wAx6p54+cW1Hxg/Gbb/1FVW8M5z9tffZKe2vkG9Q94RWOZNUrCHbAevPF/Z9nVFBXhpNMtNfTEjlfPGazEOTNchfN/R7aKx1fPWimGcwFrkhaTSN9evFZ0F+VciD/t3yRCV0Nhocmeh50VxWLS5i1L1mLmRQCwIc2hienTp4/7a7i088477yQtCBmYSH/NAHjuuefonnvuodbW1jGfx5fBcRxuy/nP//zP4nNtbW2iiQZ/jxtvvHFcr+dyuSghIUF8rXTpgInBsc3Ht/0fNXa1idItzr7mTPpebz/trT5BR+p8JUZ8SHx32dUT7hMAzAM3EXpq5+vU3ecRiXA8I2FKUqYQE9vLD4vEOuayaUvpK7O/iMRJG8DigT0MLCC5+diFhQsoPSaJ6jtahCequdslwprfWrjGPy5eC9jw5HyAwsJCioyM1Ox1zcBY700gZ6hhdnz+YTiTlMMWEv4hOPazffv2UQWE2+0Wt6E/PAgOXGL1owtvFJbF4bpS0ZFwaFdCtigunbqEvly0Ci5JmzA1OZs2XHgjPbfnHapyNdD7JZ+f46ngigsk0tqrUof3ihf2vy/EwutHPx32/0mRsfStRZfTLJTxWg7DCAgWD8zZbTv5sfy/kdi4cSP927/9m+rXZ1diHJH0/eXXiFyH3ZXHqLajWXgj8hMzxAQ9HrwE7AWHtn580Y20v7qE9teUiEODvRHTU3J9nQUjtessCIwBi4P/d+kttKvyKB2tO0Mud5dYB+ydXJ47O6AZEMCiAuLee++lhx9+eMznFBcXU1FREWnFfffdRxs2bBjmgcjLy9Ps9e0CT2fkGwAMu6SX5MwUNwAYFgkc0pKjv42CbMQEBglW5kJAAoLzE2699dYxnzN1qm8oU6DwaFKGx5ByFYaEH4/WrlNOHuMbAAAAIHE4HKKXQnV1tRh7zY+Rk0NCPDQ0NIj3IiIiQjsBwb8EvqkBJ3OwiBg6HIS9CVyNEUglBwAAAMDigc+VmpoaISLAICwecnNzKSwszJg5EOXl5dTc3Cw+covN/ft9s9+5HCU2Nlbc51AH5zB89atfFT8QV2v8/Oc/pxkzZohf/P333y8qM6677jq1LhMAAIBFYa9Dfn4+9fX1DWv1bHciIiImLR5UFRDcEOr555/3P5aDP7Zs2SK6ZDHcbpNLRSQ/+clPRM3r97//fVH2uXr1anr33XdRggMAAGBCSFf9ZN31QIc+EFqDPhAAAACA+mcoivcBAAAAEDAQEAAAAAAwbyOpYCEjMuhICQAAAASGPDvHk91gOQHR3u6bTY9mUgAAAMDEz1LOhbBVEiV3HeOaX56FHqymIbK7ZUVFBRIzgwTe0+CD9zS44P0MPnhPjf9+siRg8cAtFLiXhq08EPwDc4MMNeBfEBZ9cMF7GnzwngYXvJ/BB++psd/P83keJEiiBAAAAEDAQEAAAAAAIGAgIMYBD+t68MEHMbQriOA9DT54T4ML3s/gg/fUWu+n5ZIoAQAAAKA+8EAAAAAAIGAgIAAAAAAQMBAQAAAAAAgYCAgAAAAABAwEBAAAAAACBgJiHDzxxBNUUFBAkZGRtGLFCtq1a5fel2RaNm7cSBdccIFoNZ6enk7XXXcdHT9+XO/Lsgy//OUvRQv3e+65R+9LMTVVVVV08803U0pKCkVFRdH8+fNp9+7del+WKenv76f777+fCgsLxXs5bdo0euihh8Y1rAn4+Pjjj+maa64R7aX57/u1116jofB7+cADD1BWVpZ4j9esWUMnT54ktYGAOA8vv/wybdiwQdTa7t27lxYuXEhr166l+vp6vS/NlGzdupXuvPNO2rFjB23atIl6e3vpiiuuoM7OTr0vzfR8/vnn9NRTT9GCBQv0vhRT09LSQl/84hcpIiKC3nnnHTp69Cg9+uijlJSUpPelmZKHH36Y/ud//od++9vfUnFxsXj8yCOP0OOPP673pZmGzs5OcfawMTsS/H7+5je/oSeffJJ27txJMTEx4pzq6elR98K4DwQYneXLlw/ceeed/sf9/f0D2dnZAxs3btT1uqxCfX09myEDW7du1ftSTE17e/vAjBkzBjZt2jRw8cUXD9x99916X5Jp+elPfzqwevVqvS/DMlx99dUD3/nOd4Z97mtf+9rATTfdpNs1mRkiGnj11Vf9j71e70BmZubAr371K//nWltbB5xO58Cf//xnVa8FHogx8Hg8tGfPHuEOGjqsix9v375d12uzCm1tbeJjcnKy3pdiatirc/XVVw9bq2BivPHGG7Rs2TK6/vrrRZht8eLF9Mwzz+h9WaZl1apVtHnzZjpx4oR4fODAAfr000/pyiuv1PvSLMHp06eptrZ22N8+D8PicLva55TlpnEGk8bGRhG/y8jIGPZ5fnzs2DHdrstKo9c5Vs/u4nnz5ul9OablpZdeEuE1DmGAyVNaWipc7hy6/NnPfibe13/6p38ih8NBt9xyi96XZzruvfdeMXa6qKiIwsLCxJ76i1/8gm666Sa9L80S1NbWio8jnVPy/9QCAgLoajUfPnxYWCNgYlRUVNDdd98t8kk4yRcER9iyB+I//uM/xGP2QPA65fgyBETgvPLKK/SnP/2JXnzxRZo7dy7t379fGA6cEIj309wghDEGqampQjHX1dUN+zw/zszM1O26rMBdd91Fb731Fm3ZsoVyc3P1vhzTwiE2TuhdsmQJhYeHixsnqnJCFd9naw8EBmeyz5kzZ9jnZs+eTeXl5bpdk5n58Y9/LLwQN954o6hm+fa3v00//OEPRUUWmDzyLNLjnIKAGAN2WS5dulTE74ZaJ/x45cqVul6bWeEcIBYPr776Kn344YeitAtMnMsuu4wOHTokrDp5Y+uZ3cN8nwUwCAwOqZ1dWszx+ylTpuh2TWamq6tL5I4Nhdcl76Vg8vAeykJh6DnFISOuxlD7nEII4zxwHJTdbLwpL1++nP7rv/5LlNTcdtttel+aacMW7Mp8/fXXRS8IGaPjpB+uXwaBwe/h2fkjXMLF/QuQVzIx2DrmxD8OYXzjG98QfV+efvppcQOBw/0LOOchPz9fhDD27dtHjz32GH3nO9/R+9JMQ0dHB5WUlAxLnGQDgZPP+X3lkNDPf/5zmjFjhhAU3HeDQ0TcZ0dVVK3xsAiPP/74QH5+/oDD4RBlnTt27ND7kkwLL7mRbn/4wx/0vjTLgDLOyfPmm28OzJs3T5TCFRUVDTz99NN6X5JpcblcYj3yHhoZGTkwderUgX/5l38ZcLvdel+aadiyZcuI++Ytt9ziL+W8//77BzIyMsSaveyyywaOHz+u+nWF8D/qShQAAAAAWA3kQAAAAAAgYCAgAAAAABAwEBAAAAAACBgICAAAAAAEDAQEAAAAAAIGAgIAAAAAAQMBAQAAAICAgYAAAAAAQMBAQAAAAAAgYCAgAAAAABAwEBAAAAAAoED5/566upNlSJVgAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] }, "metadata": {}, "output_type": "display_data" @@ -141,17 +144,19 @@ "cell_type": "code", "execution_count": 6, "metadata": { - "collapsed": false, "ExecuteTime": { "end_time": "2024-10-23T03:00:07.201051Z", "start_time": "2024-10-23T03:00:06.649105Z" - } + }, + "collapsed": false }, "outputs": [ { "data": { - "text/plain": "
", - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAdAAAAL0CAYAAAC8iGa9AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAABc/UlEQVR4nO3de1iUdf7/8dcwyCHxCIqhZaalQogGqW1Y5ik1TSTd1kxr1axNdL/tpgaa4qEUPPTLtFwrXU3LMg/lMUtt27JMKREjWQ8dzAOiaB5AkJn5/eEyG4EGN3MzIzwf18V1Mff9ue/Pe25m5sXnnvtgcTgcDgEAgDLxcncBAABciwhQAAAMIEABADCAAAUAwAACFAAAAwhQAAAMIEABADCAAAUAwABvdxfgKex2uwoKCuTl5SWLxeLucgAAbuBwOGS32+Xt7S0vr6uPMQnQ/yooKFBaWpq7ywAAeIDw8HD5+PhctQ0B+l+F/2mEh4fLarW6uZqqx2azKS0tje2PKo/3gnsVbv/fG31KBKhT4W5bq9XKi9aN2P7AZbwX3Ks0X+VxEBEAAAYQoAAAGECAAgBgAAEKj+Hv7+/uEgCg1AhQF7M77O4u4ZpktVoVGhrKQRMG8JoD3IOjcF3My+KlJV9v0vHz2e4uBVVAg4C6Gnx7d3eXAVRJBKgJjp/P1s+/ZLm7DACAidiFCwCAAQQoAAAGEKAAABhAgAIAYAABCgCAAQQoAAAGEKAAABhAgAIAYAABCgCAAQQoAAAGEKAAABhAgAIAYAABCgCAAR4doHl5eUpISFBUVJSio6O1cOHCK7bNyMjQgAED1KpVK/Xu3VtffvllBVYKAKhqPDpAk5OTtXfvXi1evFgTJ07U3LlztWnTpmLtzp07pyFDhqhZs2Zau3atunbtqri4OJ06dcoNVQMAqgKPDdCcnBytWLFC48aNU1hYmLp27aphw4Zp2bJlxdquXr1a1113nRITE9W4cWONGjVKjRs31t69e91QOQCgKvDYG2rv27dPBQUFatOmjXNaZGSk5s+fL7vdLi+v/2X/V199pc6dO8tqtTqnrVy5skLrBQBULR4boFlZWapTp458fHyc04KCgpSXl6czZ86obt26zumHDx9Wq1at9Nxzz2nr1q1q2LChxo4dq8jIyDL3a7PZylX3r0McqCjlfd3CcxT+LfmbukdZtrvHBmhubm6R8JTkfJyfn19kek5OjhYsWKDBgwfrtdde0/r16zV06FBt3LhR119/fZn6TUtLM1yzv7+/QkNDDS8PGJWRkaHc3Fx3lwEXKs9nESqGxwaor69vsaAsfOzn51dkutVqVcuWLTVq1ChJUmhoqD7//HO9//77evLJJ8vUb3h4OKNIXHOaN2/u7hLgIjabTWlpaXwWuUnh9i8Njw3Q4OBgnT59WgUFBfL2vlxmVlaW/Pz8VLNmzSJt69Wrp5tvvrnItJtuuknHjh0rc79Wq5UXLa45vGYrHz6LPJ/HHoXbsmVLeXt7a/fu3c5pKSkpCg8PL3IAkSS1bt1aGRkZRaYdOnRIDRs2rIhSAQBVkMcGqL+/v2JiYpSYmKg9e/bo448/1sKFCzV48GBJl0ejFy9elCT96U9/UkZGhl5++WX9+OOPeumll3T48GH16dPHnU8BAFCJeWyASlJ8fLzCwsL06KOPatKkSRo5cqS6desmSYqOjtaGDRskSQ0bNtTrr7+ubdu2qVevXtq2bZsWLFig4OBgd5YPAKjEPPY7UOnyKDQpKUlJSUnF5v12l21kZKRWrVpVUaUBAKo4jx6BAgDgqQhQAAAMIEABADCAAAUAwAACFAAAAwhQAAAMIEABADCAAAUAwAACFAAAAwhQAAAMIEABADDAlAC99957NXPmTKWnp5uxegAA3M6UAH322Wd15MgRDRw4UN27d9ecOXN08OBBM7oCAMAtTLkby3333af77rtPFy9e1LZt27R582Y9/PDDCg4OVq9evdSzZ081atTIjK4BAKgQpn4H6ufnp/vuu09//OMf1atXL/3444/65z//qV69emnIkCH6/vvvzeweAADTmBKgdrtd27dv14QJExQdHa3/+7//U15enubPn6/PPvtMn332merUqaO//OUvZnQPAIDpTNmFe+eddyo/P18dO3bU5MmTdffdd8vHx8c5PyAgQF27dlVqaqoZ3QMAYDpTAnT8+PHq3LmzrrvuumLzsrOzVbduXXXv3l3du3c3o3sAAExnyi7cMWPG6OLFi8WmHzlyRJ07dzajSwAAKpTLRqBr1qzRqlWrJEkOh0MjRoxQtWrVirQ5ceKE6tWr56ouAQBwG5cFaNeuXfXzzz9Lkr766iu1bt1a1atXL9LmuuuuU9euXV3VJQAAbuOyAK1evbri4uIkSQ0bNtT9999f5MAhAAAqE5fuwu3Zs6d8fHxksVi0YcOGK7aNiYlxVbcAALiFywJ0zpw5uueee+Tj46M5c+ZcsZ3FYiFAAQDXPJcF6NatW0v8HQCAyshlAbpz585StbNYLIqKinJVtwAAuIXLAnTQoEGlamexWPTdd9+5qlsAANzCZQG6b98+V60KAACP57IAPXr0qK6//npZLBYdPXr0qm1DQkJc1S0AAG7hsgDt1KmTPv/8cwUGBqpTp06yWCxyOBzO+YWPy7ILNy8vT5MmTdLmzZvl5+enIUOGaMiQIVdd5ueff1bv3r01f/58tWvXrlzPCQCAK3FZgG7ZskV169Z1/u4KycnJ2rt3rxYvXqyjR49q7NixCgkJuepF6BMTE5WTk+OS/gEAuBKXBWjDhg2L/f7999/r4MGDqlatmm6++WbdcMMNpV5fTk6OVqxYoddee01hYWEKCwvT/v37tWzZsisG6AcffKALFy6U74kAAFAKptzO7NixYxozZox27typWrVqyeFw6Ny5c+rUqZOef/551a5d+3fXsW/fPhUUFKhNmzbOaZGRkZo/f77sdru8vIreSOb06dOaMWOGFi5cqF69ern6KQEAUIRp9wO1Wq3asmWLczT6ww8/KCEhQRMmTLjqlYoKZWVlqU6dOkWupxsUFKS8vDydOXPGubu40PTp09W3b1/dcsst5ardZrOVa3mr1Vqu5QEjyvu6heco/FvyN3WPsmx3UwJ0586dWrVqVZHdujfddJMmTJigP/3pT6VaR25ubrGL0Rc+zs/PLzJ9+/btSklJ0bp168pZuZSWlmZ4WX9/f4WGhpa7BqCsMjIylJub6+4y4ELl+SxCxTAlQJs2bar//Oc/atasWZHphw8fLhKqV+Pr61ssKAsf+/n5OaddvHhREyZM0MSJE4tMNyo8PJxRJK45zZs3d3cJcBGbzaa0tDQ+i9ykcPuXhkvvxlKoffv2GjdunNLT050vgoyMDP3zn//Un//851KtLzg4WKdPn1ZBQYG8vS+XmZWVJT8/P9WsWdPZbs+ePTp8+LBGjRpVZPnHH39cMTExmjx5cpmeh9Vq5UWLaw6v2cqHzyLP59K7sfxanTp1tGHDhiK3NatRo4ZWrlypp5566nfX17JlS3l7e2v37t3Oa+empKQoPDy8yAFErVq10ubNm4ss261bN02dOlV33XVXeZ4SAABXZMrdWFzB399fMTExSkxM1AsvvKATJ05o4cKFmjZtmqTLo9EaNWrIz89PjRs3LrZ8cHCwAgMDXVoTAACFTPkOVJKys7P1/fffy263S5IcDofy8/OVnp6u4cOHl2od8fHxSkxM1KOPPqqAgACNHDlS3bp1kyRFR0dr2rRpio2NNespAABwRaYE6LvvvqvJkyeroKCgyCX9LBaLWrVqVeoA9ff3V1JSkpKSkorNy8jIuOJyV5sHAIAreP1+k7KbP3++nnzySe3Zs0eBgYHatm2b1q1bp5YtW6pr165mdAkAQIUyJUBPnDihmJgY+fj4KCwsTLt371azZs2UkJCgFStWmNElAAAVypQArVu3rrKzsyVJN998s/PuK8HBwcrMzDSjSwAAKpQpAdqjRw+NHTtWX3/9tTp06KBVq1bpww8/1Lx580o8YhYAgGuNKQcRPfPMM6pRo4ZOnz6tzp0768EHH9TEiRNVu3Zt52koAABcy0wJ0GrVqikuLs75+Omnn9bTTz9tRlcAALiFaeeB7ty5U8uXL3feD7Rp06Z69NFH1bJlS7O6BACgwpjyHejSpUs1ZMgQ+fj4qF+/furdu7cKCgr0xz/+UevXrzejSwAAKpQpI9DXXntNU6ZMUUxMTJHpUVFRmj17tu6//34zugUAoMKYMgI9f/68wsPDi02Piopynt4CAMC1zJQAfeSRRzRjxgydPXvWOS0vL09z587VH//4RzO6BACgQrlsF26nTp1ksVgkXb5w/NGjR3X33XfrhhtukJeXl3766Sfl5eVxEBEAoFJwWYCOHDnSVasCAMDjuSxA+/btW2xabm6ufvzxR9ntdt14440KCAhwVXcAUGn5+/u7uwSUgilH4V66dEkzZszQW2+9JZvNJofDIW9vb/Xu3VuTJk2Sj4+PGd0C8DB2h11eFlMOtai0rFarQkND3V3GNasiX3OmBGhSUpL+9a9/6dVXX1WbNm1kt9v1zTffaOrUqXrxxRc1duxYM7oF4GG8LF5a8vUmHT/P0fcwX4OAuhp8e/cK68+UAF23bp1eeukltWvXzjntnnvuka+vr5555hkCFKhCjp/P1s+/ZLm7DMDlTBnnOhwOBQYGFptet25dXbhwwYwuAQCoUKYEaPv27TVz5kydP3/eOe3s2bOaPXt2kVEpAADXKlN24SYkJGjw4MHq0KGDmjRpIkn6/vvvdcMNN+jVV181o0sAACqUKQFao0YNrVu3Tp9++qkOHTokX19fNWnSRHfddZe8vDgiDwBw7TMlQHv16qW5c+eqc+fO6ty5sxldAADgVqYMB728vHTp0iUzVg0AgEcwZQTasWNH/fnPf9a9996rhg0bFrtwQlxcnBndAgBQYUwJ0IyMDIWFhenEiRM6ceJEkXmFF5wHAOBa5tIAff/99/XRRx8pKChInTt3Vq9evVy5egAAPIbLvgNdvHixEhISdPHiReXm5io+Pl6zZ8921eoBAPAoLhuBLl++XM8//7xiYmIkSZs3b1Z8fLyefvppdtsCACodl41ADx8+rDvvvNP5uFOnTsrNzS32HWhZ5OXlKSEhQVFRUYqOjtbChQuv2PaTTz5Rnz591KZNG/Xu3Vtbtmwx3C8AAL/HZQFaUFAgb+//DWi9vb3l6+ur/Px8w+tMTk7W3r17tXjxYk2cOFFz587Vpk2birXbt2+f4uLi9OCDD2rNmjX605/+pL/+9a/at2+f4b4BALgaU47CdYWcnBytWLFCr732msLCwhQWFqb9+/dr2bJl6t696O1q1q1bp/bt22vw4MGSpMaNG2vr1q3auHGjWrRo4Y7yAQCVnEsDdOPGjQoICHA+ttvt+uijj1S3bt0i7Qq/J72affv2qaCgQG3atHFOi4yM1Pz582W324tcErBv374lXrjh3LlzBp4FAAC/z2UBGhISUuw7ysDAQC1durTINIvFUqoAzcrKUp06dYpchCEoKEh5eXk6c+ZMkVBu2rRpkWX379+vL774Qn/6058MPBMAAH6fywJ069atrlqVJCk3N7fYFYwKH1/te9Xs7GyNHDlSt99+u6Hr8NpstjIv82tWq7VcywNGlPd1axbeD3CH8rwfyrKsx34HWtIBSIWP/fz8Slzm5MmT+vOf/yyHw6E5c+YYuvNLWlpa2Yv9L39/f4WGhhpeHjAqIyNDubm57i6jCN4PcJeKej94bIAGBwfr9OnTRY7uzcrKkp+fn2rWrFmsfWZmpvMgoiVLlhT73rW0wsPD+a8Z15zmzZu7uwTAY5Tn/WCz2Uo9kPLYAG3ZsqW8vb21e/duRUVFSZJSUlIUHh5ebGSZk5OjYcOGycvLS0uWLFG9evUM92u1WglQXHN4zQL/U1HvB4+9u7W/v79iYmKUmJioPXv26OOPP9bChQudo8ysrCxdvHhRkvSPf/xDP/30k5KSkpzzsrKyOAoXAGAajx2BSlJ8fLwSExP16KOPKiAgQCNHjlS3bt0kSdHR0Zo2bZpiY2P14Ycf6uLFi+rfv3+R5fv27avp06e7o3QAQCXn0QHq7++vpKQk58jy1zIyMpy/l3R1IgAAzOSxu3ABAPBkBCgAAAYQoAAAGECAAgBgAAEKAIABBCgAAAYQoAAAGECAAgBgAAEKAIABBCgAAAYQoAAAGECAAgBgAAEKAIABBCgAAAYQoAAAGECAAgBgAAEKAIABBCgAAAYQoAAAGECAAgBgAAEKAIABBCgAAAYQoAAAGECAAgBgAAEKAIABBCgAAAYQoAAAGECAAgBgAAEKAIABHh2geXl5SkhIUFRUlKKjo7Vw4cIrtk1PT1f//v0VERGhBx98UHv37q3ASgEAVY1HB2hycrL27t2rxYsXa+LEiZo7d642bdpUrF1OTo6GDx+uqKgorVq1Sm3atNETTzyhnJwcN1QNAKgKPDZAc3JytGLFCo0bN05hYWHq2rWrhg0bpmXLlhVru2HDBvn6+mrMmDFq2rSpxo0bp+rVq5cYtgAAuILHBui+fftUUFCgNm3aOKdFRkYqNTVVdru9SNvU1FRFRkbKYrFIkiwWi26//Xbt3r27IksGAFQh3u4u4EqysrJUp04d+fj4OKcFBQUpLy9PZ86cUd26dYu0bdasWZHlAwMDtX///lL353A4JEn5+fmyWq2G67ZarQqpHiir5/5vgkokuHod2Ww22Ww2d5dSIt4PqEiueD8ULluYCVfjsQGam5tbJDwlOR/n5+eXqu1v211N4ag2PT3dSLlFtFSQWlYPKvd6gNLw9D0tvB9QkVz1fvjtns6SeGyA+vr6FgvAwsd+fn6lavvbdlfj7e2t8PBweXl5OXcFAwCqFofDIbvdLm/v349Hjw3Q4OBgnT59WgUFBc4nkpWVJT8/P9WsWbNY25MnTxaZdvLkSdWvX7/U/Xl5eRUbxQIAcCUe+8VEy5Yt5e3tXWQ4npKS4hwl/lpERIS++eYb5z5rh8Ohr7/+WhERERVZMgCgCvHYAPX391dMTIwSExO1Z88effzxx1q4cKEGDx4s6fJo9OLFi5Kk7t276+zZs3r++ed14MABPf/888rNzVWPHj3c+RQAAJWYxVGaQ43cJDc3V4mJidq8ebMCAgI0dOhQPfbYY5Kk5s2ba9q0aYqNjZUk7dmzRxMnTtTBgwfVvHlzTZo0SaGhoW6sHgBQmXl0gAIA4Kk8dhcuAACejAAFAMAAAhQAAAMIUAAADCBAAQAwgAAFAMAAAhQAAAMIUAAADCBAAQAwgAAFAMAAAhQAAAMIUAAADCBAAQAwgAAFAMAAAhQAAAMIUAAADCBAAQAwgAAFAMAAAhQAAAMIUAAADCBAAQAwgAAFAMAAAhQAAAO83V2Ap7Db7SooKJCXl5csFou7ywEAuIHD4ZDdbpe3t7e8vK4+xiRA/6ugoEBpaWnuLgMA4AHCw8Pl4+Nz1TYE6H8V/qcRHh4uq9Xq5mqqHpvNprS0NLY/qjzeC+5VuP1/b/QpEaBOhbttrVYrL1o3YvsDl/FecK/SfJXHQUQAABhAgAIAYAABCgCAAQQoPIa/v7+7SwCAUiNAXcxmt7u7hGuS1WpVaGgoB00YwGsOcA+OwnUxq5eXpn20UT9lZ7u7FFQBN9atq/iuPdxdBlAlEaAm+Ck7WwdOZrm7DACAidiFCwCAAQQoAAAGEKAAABhAgAIAYAABCgCAAQQoAAAGEKAAABhAgAIAYAABCgCAAQQoAAAGEKAAABhAgAIAYAABCgCAAQQoAAAGEKAAABhAgAIAYIBHBWh+fr4mTZqkO+64Q3/4wx80e/ZsORwOSVJ6err69++viIgIPfjgg9q7d2+RZdetW6cuXbooIiJCI0aMUHZ2tjueAgCgivCoAJ06daq2b9+uN954Q7NmzdK7776rd955Rzk5ORo+fLiioqK0atUqtWnTRk888YRycnIkSXv27NG4ceMUFxend955R2fPnlV8fLybnw0AoDLzdncBhc6cOaOVK1dq0aJFatWqlSRpyJAhSk1Nlbe3t3x9fTVmzBhZLBaNGzdOn376qTZt2qTY2FgtXbpUPXr0UExMjCQpOTlZ9957rw4fPqwbbrjBjc8KAFBZecwINCUlRQEBAWrbtq1z2vDhwzVt2jSlpqYqMjJSFotFkmSxWHT77bdr9+7dkqTU1FRFRUU5l7v++usVEhKi1NTUCn0OAICqw2NGoIcPH1bDhg21Zs0azZ8/X5cuXVJsbKz+8pe/KCsrS82aNSvSPjAwUPv375cknThxQvXr1y82//jx42Wuw2azGX8SkqxWa7mWB4wo7+sWnqPwb8nf1D3Kst09JkBzcnL0448/avny5Zo2bZqysrI0YcIE+fv7Kzc3Vz4+PkXa+/j4KD8/X5J08eLFq84vi7S0NMPPwd/fX6GhoYaXB4zKyMhQbm6uu8uAC5XnswgVw2MC1NvbW+fPn9esWbPUsGFDSdLRo0f19ttvq3HjxsXCMD8/X35+fpIkX1/fEuf7+/uXuY7w8HBGkbjmNG/e3N0lwEVsNpvS0tL4LHKTwu1fGh4ToPXq1ZOvr68zPCWpSZMmOnbsmNq2bauTJ08WaX/y5Ennbtvg4OAS59erV6/MdVitVl60uObwmq18+CzyfB5zEFFERITy8vL0/fffO6cdOnRIDRs2VEREhL755hvnOaEOh0Nff/21IiIinMumpKQ4lzt27JiOHTvmnA8AgKt5TIDefPPN6tixo+Lj47Vv3z79+9//1oIFCzRgwAB1795dZ8+e1fPPP68DBw7o+eefV25urnr06CFJGjBggN5//32tWLFC+/bt05gxY9SxY0dOYQEAmMZjAlSSZs6cqRtvvFEDBgzQ2LFjNXDgQA0aNEgBAQH6xz/+oZSUFMXGxio1NVULFizQddddJ0lq06aNJk+erHnz5mnAgAGqVauWpk2b5uZnAwCozDzmO1BJqlGjhpKTk0uc16pVK61evfqKy8bGxio2Ntas0gAAKMKjRqAAAFwrCFAAAAwgQAEAMIAABQDAAAIUAAADCFAAAAwgQAEAMIAABQDAAAIUAAADCFAAAAwgQAEAMIAABQDAAAIUAAADCFAAAAwgQAEAMIAABQDAAAIUAAADCFAAAAwgQAEAMIAABQDAANMDNDs72+wuAACocC4J0JYtW5YYlEeOHFHnzp1d0QUAAB7F2+iCa9as0apVqyRJDodDI0aMULVq1Yq0OXHihOrVq1e+CgEA8ECGA7Rr1676+eefJUlfffWVWrdurerVqxdpc91116lr167lqxAAAA9kOECrV6+uuLg4SVLDhg3Vs2dP+fr6uqwwAAA8meEA/bW+ffvqxx9/1N69e3Xp0qVi82NiYlzRDQAAHsMlAfr6669r5syZqlWrVrHduBaLhQAFAFQ6LgnQhQsXavTo0Ro6dKgrVgcAgMdzyWkseXl56tatmytW5TR8+HA9++yzzsfp6enq37+/IiIi9OCDD2rv3r1F2q9bt05dunRRRESERowYwfmnAABTuSRAe/furbfeeksOh8MVq9P69ev1r3/9y/k4JydHw4cPV1RUlFatWqU2bdroiSeeUE5OjiRpz549GjdunOLi4vTOO+/o7Nmzio+Pd0ktAACUxCW7cM+fP6/33ntP69atU6NGjYqdD7pkyZJSr+vMmTNKTk5WeHi4c9qGDRvk6+urMWPGyGKxaNy4cfr000+1adMmxcbGaunSperRo4fzu9bk5GTde++9Onz4sG644QZXPEUAAIpwSYDedNNNevLJJ12xKiUlJalPnz46ceKEc1pqaqoiIyNlsVgkXT4w6fbbb9fu3bsVGxur1NRUPf744872119/vUJCQpSamkqAAgBM4ZIALTwftLy++OIL7dq1S2vXrlViYqJzelZWlpo1a1akbWBgoPbv3y/p8hWP6tevX2z+8ePHy1yDzWYre+G/YrVay7U8YER5X7fwHIV/S/6m7lGW7e6SAP297xunTZv2u+vIy8vTxIkTNWHCBPn5+RWZl5ubKx8fnyLTfHx8lJ+fL0m6ePHiVeeXRVpaWpmXKeTv76/Q0FDDywNGZWRkKDc3191lwIXK81mEiuGSAP2tgoICHT58WN99950eeeSRUi0zd+5c3XbbberQoUOxeb6+vsXCMD8/3xm0V5rv7+9f5trDw8MZReKa07x5c3eXABex2WxKS0vjs8hNCrd/abgkQK80wnz99df1n//8p1TrWL9+vU6ePKk2bdpIkjMQP/zwQ/Xq1UsnT54s0v7kyZPO3bbBwcElzjdyIXur1cqLFtccXrOVD59Fns/U+4F2795dH330Uanavvnmm1q7dq3WrFmjNWvWqFOnTurUqZPWrFmjiIgIffPNN87TZBwOh77++mtFRERIkiIiIpSSkuJc17Fjx3Ts2DHnfAAAXM2UXbjS5XM33333XdWpU6dU7Rs2bFjkceElARs3bqzAwEDNmjVLzz//vP70pz9p+fLlys3NVY8ePSRJAwYM0KBBg9S6dWuFh4fr+eefV8eOHTkCFwBgGpcEaIsWLZynmPyar6+vpk6dWu71BwQE6B//+IcmTpyod999V82bN9eCBQt03XXXSZLatGmjyZMna86cOfrll1901113acqUKeXuFwCAK3FJgP72QgkWi0XVqlVTs2bNFBAQYGid06dPL/K4VatWWr169RXbx8bGKjY21lBfAACUlUsCtG3btpKkH374QQcPHpTdbleTJk0MhycAAJ7OJQFaeO3ZLVu2qFatWrLZbLpw4YLuuOMOzZs3TzVq1HBFNwAAeAyXHIU7depUHT9+XBs2bNCOHTucVxPKyckp1UUUAAC41rgkQLdu3arExETdfPPNzmnNmjXThAkTtGXLFld0AQCAR3FJgPr6+srLq/iqLBYL13MEAFRKLgnQTp06adKkSfrpp5+c03744QdNnTpV99xzjyu6AADAo7jkIKLRo0drxIgRuu+++1SzZk1J0i+//KK7775bzz33nCu6AADAo5Q7QH/88UeFhITozTffVEZGhg4ePChfX1/ddNNNatq0qStqBADA4xjehetwODR16lT16NFD33zzjaTLd4To2bOnVq5cqV69emn69OnO69cCAFCZGA7QJUuWaMOGDZo3b57zQgqFXnnlFc2bN0+rV6/W22+/Xe4iAQDwNIYD9N1339Vzzz2ne++9t8T5nTp10jPPPEOAAgAqJcMBeuTIEbVq1eqqbdq3b6/Dhw8b7QIAAI9lOEADAwN15MiRq7Y5fvy4ateubbQLAAA8luEA7dq1q15++WVdunSpxPkFBQWaO3euoqOjDRcHAICnMnway1NPPaV+/fopNjZWgwYN0m233aYaNWrol19+0bfffqulS5fqwoULSk5OdmW9AAB4BMMBWrNmTb377ruaOXOmpk+frtzcXEmXT2+pUaOGevbsqZEjRyooKMhlxQIA4CnKdSGF2rVra+rUqZowYYIOHz6ss2fPqnbt2rrxxhtltVpdVSMAVCn+/v7uLgGl4JJL+fn4+HDVIQDF2Ox2WUu40QSuzGq1KjQ01N1lXLMq8jXnkgAFgJJYvbw07aON+ik7292loAq4sW5dxXftUWH9EaAATPVTdrYOnMxydxmAy7FvBQAAAwhQAAAMIEABADCAAAUAwAACFAAAAwhQAAAMIEABADDAowI0MzNTo0aNUtu2bdWhQwdNmzZNeXl5kqTDhw/rscceU+vWrdWzZ0999tlnRZbdvn27evXqpYiICA0ePJj7kAIATOUxAepwODRq1Cjl5uZq2bJlevHFF7Vt2zb9v//3/+RwODRixAgFBQVp5cqV6tOnj+Li4nT06FFJ0tGjRzVixAjFxsbqvffeU926dfXUU0/J4XC4+VkBACorj7kS0aFDh7R79259/vnnzju4jBo1SklJSbr77rt1+PBhLV++XNddd52aNm2qL774QitXrtTIkSO1YsUK3XbbbRoyZIgkadq0abrrrrv01VdfqV27du58WgCASspjRqD16tXT66+/Xuz2Z+fPn1dqaqpCQ0N13XXXOadHRkZq9+7dkqTU1FRFRUU55/n7+yssLMw5HwAAV/OYAK1Zs6Y6dOjgfGy327V06VK1b99eWVlZql+/fpH2gYGBOn78uCT97nwAAFzNY3bh/taMGTOUnp6u9957T//85z/l4+NTZL6Pj4/y8/MlSbm5uVedXxY2m8140RL3QYVblPd1axbeD3CH8rwfyrKsRwbojBkztHjxYr344ou69dZb5evrqzNnzhRpk5+fLz8/P0mSr69vsbDMz89XzZo1y9x3Wlqa4br9/f25jx/cIiMjQ7m5ue4uowjeD3CXino/eFyATpkyRW+//bZmzJih++67T5IUHBysAwcOFGl38uRJ527b4OBgnTx5stj8li1blrn/8PBw/mvGNad58+buLgHwGOV5P9hstlIPpDwqQOfOnavly5dr9uzZ6t69u3N6RESEFixYoIsXLzpHnSkpKYqMjHTOT0lJcbbPzc1Venq64uLiylyD1WolQHHN4TUL/E9FvR885iCigwcP6pVXXtHjjz+uyMhIZWVlOX/atm2r66+/XvHx8dq/f78WLFigPXv2qF+/fpKkBx98UF9//bUWLFig/fv3Kz4+Xo0aNeIUFgCAaTwmQLds2SKbzaZXX31V0dHRRX6sVqteeeUVZWVlKTY2Vh988IHmzZunkJAQSVKjRo308ssva+XKlerXr5/OnDmjefPmyWKxuPlZAQAqK4/ZhTt8+HANHz78ivMbN26spUuXXnH+Pffco3vuuceM0gAAKMZjRqAAAFxLCFAAAAwgQAEAMIAABQDAAAIUAAADCFAAAAwgQAEAMIAABQDAAAIUAAADCFAAAAwgQAEAMIAABQDAAAIUAAADCFAAAAwgQAEAMIAABQDAAAIUAAADCFAAAAwgQAEAMIAABQDAAAIUAAADCFAAAAwgQAEAMIAABQDAAAIUAAADCFAAAAwgQAEAMIAABQDAgEoVoHl5eUpISFBUVJSio6O1cOFCd5cEAKikvN1dgCslJydr7969Wrx4sY4ePaqxY8cqJCRE3bt3d3dpAIBKptIEaE5OjlasWKHXXntNYWFhCgsL0/79+7Vs2TICFADgcpVmF+6+fftUUFCgNm3aOKdFRkYqNTVVdrvdjZUBACqjSjMCzcrKUp06deTj4+OcFhQUpLy8PJ05c0Z169a96vIOh0OSlJ+fL6vVargOq9WqJnUDVc1Saf43gQdrVKeObDabbDabu0spEe8HVCRXvB8Kly3MhKupNAGam5tbJDwlOR/n5+f/7vKFo9T09PRy19K5bj2pbr1yrwcojd27d7u7hKvi/YCK5Kr3Q2n2XFaaAPX19S0WlIWP/fz8fnd5b29vhYeHy8vLSxaLxZQaAQCezeFwyG63y9v79+Ox0gRocHCwTp8+rYKCAucTz8rKkp+fn2rWrPm7y3t5eRUbwQIAcCWV5ouJli1bytvbu8jwPSUlxTmqBADAlSpNsvj7+ysmJkaJiYnas2ePPv74Yy1cuFCDBw92d2kAgErI4ijNoUbXiNzcXCUmJmrz5s0KCAjQ0KFD9dhjj7m7LABAJVSpAhQAgIpSaXbhAgBQkQhQAAAMIEABADCAAAUAwAACFAAAAwhQAAAMIEABADCAAAUAwAACFAAAAwhQAAAMIEABADCAAAUAwAACFAAAAwhQAAAMIEABADCAAAUAwAACFAAAAwhQAAAM8OgAzcvLU0JCgqKiohQdHa2FCxdesW16err69++viIgIPfjgg9q7d28FVgoAqGo8OkCTk5O1d+9eLV68WBMnTtTcuXO1adOmYu1ycnI0fPhwRUVFadWqVWrTpo2eeOIJ5eTkuKFqAEBV4LEBmpOToxUrVmjcuHEKCwtT165dNWzYMC1btqxY2w0bNsjX11djxoxR06ZNNW7cOFWvXr3EsAUAwBU8NkD37dungoICtWnTxjktMjJSqampstvtRdqmpqYqMjJSFotFkmSxWHT77bdr9+7dFVkyAKAK8XZ3AVeSlZWlOnXqyMfHxzktKChIeXl5OnPmjOrWrVukbbNmzYosHxgYqP3795e6P7vdroKCAnl5eTmDGABQtTgcDtntdnl7e8vL6+pjTI8N0Nzc3CLhKcn5OD8/v1Rtf9vuagoKCpSWlmawWgBAZRIeHl4sV37LYwPU19e3WAAWPvbz8ytV29+2u5rC/zRCQ0NltVqNlCxJslqtSnjvQx3Kyja8DqC0bq5XVy/0u082m83dpcBF7Ha7Dh48qKZNm/7uCAiuZ7PZlJ6eXqpt77EBGhwcrNOnT6ugoEDe3pfLzMrKkp+fn2rWrFms7cmTJ4tMO3nypOrXr1/q/gp32/r4+JQrQCVp3/GTSj96olzrAEoj32aX1Wot92sWnsNms+nixYuqVq0af1c3KPxntDRf5XnsvzctW7aUt7d3kQOBUlJSFB4eXuw/g4iICH3zzTdyOBySLu/D/vrrrxUREVGRJQMAqhCPDVB/f3/FxMQoMTFRe/bs0ccff6yFCxdq8ODBki6PRi9evChJ6t69u86ePavnn39eBw4c0PPPP6/c3Fz16NHDnU8BAFCJeWyASlJ8fLzCwsL06KOPatKkSRo5cqS6desmSYqOjtaGDRskSQEBAfrHP/6hlJQUxcbGKjU1VQsWLNB1113nzvIBAJWYx34HKl0ehSYlJSkpKanYvIyMjCKPW7VqpdWrV1dUaQCAKs6jR6AAAHgqAhQAAAMIUAAADCBAAQAwgAAFAMAAAhQAAAMIUAAADCBAAQAwgAAFAMAAAhQAAAMIUAAADCBAAQAwgAAFAMAAAhQAAAMIUAAADCBAAQAwgAAFAMAAAhQAAAMIUAAADCBAAQAwgAAFAMAA77IucP78ee3cuVPffvutsrOz5eXlpaCgIIWGhqpdu3by9fU1o04AADxKqQP0xx9/1IIFC7R+/XrVqlVLzZo1U+3atWW323XgwAEtWbJEOTk56t27t4YMGaImTZqUqzCHw6FZs2bpvffek91uV79+/fTMM8/Iy6vkQfPu3bs1ffp0ZWRkqH79+ho2bJj69+9frhoAALiSUgXoiy++qI8++kh9+/bVypUr1bRp0xLbHTp0SBs2bNATTzyh7t27629/+5vhwhYtWqR169Zp7ty5Kigo0OjRoxUYGKihQ4cWa5uVlaXHH39cAwYM0PTp0/Xtt98qPj5e9erVU8eOHQ3XAADAlZQqQBs1aqS1a9fKarVetd3NN9+suLg4Pfnkk1q5cmW5CluyZIlGjRqlqKgoSdIzzzyjl156qcQA/fjjjxUUFOQM7Jtuukk7duzQ2rVrCVAAgClKFaBl3RXq7e2thx56yFBBkpSZmaljx47pjjvucE6LjIzUkSNHdOLECdWvX79I+w4dOqhly5bF1nP+/HnDNQAAcDWlCtC5c+eWeoVxcXGGiymUlZUlSUWCMigoSJJ0/PjxYgHaqFEjNWrUyPn41KlTWr9+vUaOHFnmvm02m5GSnX5vlA6YobyvW3iOwr8lf1P3KMt2L1WA7tixo1Qrs1gspe744sWLyszMLHFeTk6OJMnHx8c5rfD3/Pz8313vyJEjFRQUZGgUnJaWVuZlCvn7+ys0NNTw8oBRGRkZys3NdXcZcKHyfBahYpQqQN98802Xd5yamqrBgweXOG/06NGSLodl4WkxhcHp7+9/xXVeuHBBTz31lH744Qe99dZbV217JeHh4Ywicc1p3ry5u0uAi9hsNqWlpfFZ5CaF2780ynweqCR999132r9/v+x2u6TLp5zk5+crPT1dkyZNKtU62rVrp4yMjBLnZWZmasaMGcrKynLumi3crVuvXr0Slzl//ryGDRumn376SYsXL9ZNN91Uxmd1mdVq5UWLaw6v2cqHzyLPV+YAnTt3rubOnaugoCCdOnVKwcHBOnnypGw2m7p27eqSooKDgxUSEqKUlBRngKakpCgkJKTY95+SZLfbFRcXp59//llvvvnmFU+zAQDAVcocoO+8844mTZqkhx56SJ06ddLixYtVq1YtPf3007rxxhtdVtiAAQM0c+ZMNWjQQJI0a9YsDRkyxDk/Oztbvr6+ql69ut577z3t2LFDr776qmrWrOkcrVarVk21a9d2WU0AABQq87VwT58+rQ4dOkiSWrZsqW+++UY1a9bU008/rQ0bNrissKFDh6pnz56Ki4vTX//6V/Xp00ePPfaYc36/fv20cOFCSdKHH34ou92uJ554QtHR0c4fI0fhAgBQGmUegQYHB+vw4cMKCQlR06ZNlZ6ergceeEABAQHKzs52WWFWq1Xx8fGKj48vcf7WrVudv7/xxhsu6xcAgNIoc4D2799ff/vb3/TCCy+oS5cueuyxx1S/fn1t375dLVq0MKNGAAA8TpkD9Mknn1SDBg3k7++vVq1aKT4+XsuXL1ft2rX1wgsvmFEjAAAex9BpLDExMc7f+/fvz11PAABVjqEban/wwQeKjY1VVFSUDh8+rBdeeEELFixwdW0AAHisMgfoW2+9peTkZMXGxurSpUuSpLCwML3xxhtlumYuAADXsjIH6JtvvqmpU6fqkUcecd7cuk+fPkpOTtaKFStcXiAAAJ6ozAF69OjREq/0c8MNN+jMmTOuqAkAAI9X5gCNiIjQmjVrikxzOBxauHChWrVq5aq6AADwaGU+Cnf8+PEaPny4PvnkE+Xn52vSpEn64YcfdPHiRb322mtm1AgAgMcpc4Deeuut+vDDD7V27VodPHhQNptNnTt31gMPPKDq1aubUSMAAB6nzAEaGxuradOmqV+/fmbUAwDANaHM34GeOHGCe9QBAKq8Mo9AY2JiNGzYMD3wwANq2LChfH19i80HAKCyK3OAbtiwQV5eXlq3bl2xeRaLhQAFAFQJZQ7QX99GDACAqqpU34G+9NJLOn/+fKlXevbsWb344ouGiwIAwNOVKkCvv/569enTR4mJifrss8+c18D9tdzcXG3fvl0JCQl64IEHdP3117u8WAAAPEWpduH+8Y9/VLdu3bRs2TIlJCQoOztbjRo1Up06dWS323XmzBn9/PPPqlevnvr166fVq1erTp06ZtcOAIDblPo70Nq1a2vEiBF66qmnlJGRofT0dGVnZ8tisSgwMFChoaG69dZbzawVAACPUeaDiCwWi1q0aKEWLVqYUQ8AANcEQzfUBgCgqiNAAQAwwGMD1OFwaObMmWrfvr3atm2r5ORk2e32313u3Llz6tChg1atWlUBVQIAqqoyfwf6a7/88otq1Kghi8Uii8XiqpokSYsWLdK6des0d+5cFRQUaPTo0QoMDNTQoUOvutyMGTN04sQJl9YCAMBvlXkE6nA49Oqrr6pdu3a68847deTIEY0ePVoTJkxQfn6+ywpbsmSJRo0apaioKLVv317PPPOMli1bdtVldu3apS+//FL16tVzWR0AAJSkzAE6b948ffDBB5o+fbp8fHwkSX379tXnn3+u5ORklxSVmZmpY8eO6Y477nBOi4yM1JEjR644uszPz9dzzz2nCRMmOOsCAMAsZQ7Q1atXa/Lkybr33nudu23vuusuJSUlaePGjS4pKisrS5JUv35957SgoCBJ0vHjx0tcZv78+QoNDVV0dLRLagAA4GrK/B3oqVOnigRboZo1ayonJ6fU67l48aIyMzNLnFe4nl+PJAt/L2k38YEDB7R8+XJ98MEHpe7/Smw2W7mW516pcIfyvm7hOQr/lvxN3aMs273MAdq+fXu98cYbmjx5snPa+fPnNXv2bLVr167U60lNTdXgwYNLnDd69GhJl8Oy8H6jhcHp7+9fpK3D4dD48eM1atQo5yi1PNLS0gwv6+/vr9DQ0HLXAJRVRkaGcnNz3V0GXKg8n0WoGBaHw+EoywLHjx9XXFycjh07ptOnT6tp06Y6evSoQkJC9Oqrr6pRo0blLiozM1N33323tmzZ4lzf4cOH1aVLF/373/8uMgI+cuSIOnXqpOuuu845LTc3V9WqVVO7du30+uuvl6pPm82m3bt3Kzw8vFyjSKvVqj4vLVH6UY4EhvlCQ+rr/b8OZrRSidhsNqWlpZX7swjGFG7/1q1b/+72L/MItEGDBnrvvff0xRdf6NChQyooKFCTJk0UHR0tLy/XnFYaHByskJAQpaSkOAM0JSVFISEhxXYfBwcHa/PmzUWmDRo0SIMGDdIDDzxQ5r6tVisvWlxzeM1WPnwWeT7D54HeeeeduvPOO11ZSxEDBgzQzJkz1aBBA0nSrFmzNGTIEOf87Oxs+fr6qnr16mrcuHGRZb29vRUYGKjg4GDT6gMAVG2lCtAWLVqU+kIJ3333XbkKKjR06FCdOnVKcXFxslqt6tevnx577DHn/H79+qlv374aOXKkS/oDAKAsShWgS5Yscf6elpamRYsW6amnnlJ4eLiqVaum9PR0zZ0794oHBRlhtVoVHx+v+Pj4Eudv3br1istebR4AAK5QqgBt27at8/cJEyYoKSlJd911l3NaixYt1LBhQ8XHxxcZJQIAUFmV+aifEydOKDAwsNh0f39/nT171iVFAQDg6cocoB07dlRCQoK+/vpr5eTk6MKFC/ryyy+VkJCgHj16mFEjAAAep8xH4U6ePFkTJ07UoEGDnLcXs1qtiomJ0fjx411eIAAAnqjMARoQEKBZs2Zp0qRJ+v777yVJTZo0UUBAgMuLAwDAU5U5QHfu3Fls2q9PXfn1HVQAAKisyhyggwYNKnG6j4+P6tWrpy1btpS7KAAAPF2ZA3Tfvn1FHttsNv3000+aMmWKevfu7bLCAADwZOW+eK3ValWTJk307LPP6qWXXnJFTQAAeDzXXP1dl+8TynmgAICqosy7cEu6tN6FCxe0fft2de/e3SVFAQDg6QzfjeXXateurbFjx6pPnz6uWB0AAB6vzAEaGxur1q1bq1q1akWm5+fn69NPP1WXLl1cVhwAAJ6qzN+BDh48WOfOnSs2ff/+/frb3/7mkqIAAPB0pRqBvvXWW5o8ebIsFoscDkeRO7H82h/+8AeXFgcAgKcqVYA+/PDDuuWWW2S32/Xoo49qzpw5qlWrlnO+xWKRv7+/br31VtMKBQDAk5T6O9DCS/Rt2bJFISEhslgsphUFAICnK1WAxsfHa9y4cQoICNDcuXOv2nbatGkuKQwAAE/msgspAABQlZRqBPrrUSUjTAAAShmgv7fb9tfi4uIMFwMAwLWiVAG6Y8eOUq2MA4sAAFVFqQL0zTffNLsOAACuKYYOItq+fbv++te/qnfv3nrggQc0evRo7d6926WFORwOzZw5U+3bt1fbtm2VnJwsu91+xfZHjx7V448/roiICHXt2lUbNmxwaT0AAPxamQN0xYoVGj58uPz9/fXQQw/pwQcflHT5En+bN292WWGLFi3SunXrNHfuXM2ZM0dr167VokWLSmxbUFCgJ554Qt7e3lq9erWGDh2qMWPG6D//+Y/L6gEA4NfKfDH5V199VZMmTXIGZ6E77rhDs2bNUrdu3VxS2JIlSzRq1ChFRUVJkp555hm99NJLGjp0aLG2//rXv3Ts2DG9/fbbCggI0M0336xPP/1U33zzDVdHAgCYoswj0DNnzigiIqLY9KioKJ04ccIlRWVmZurYsWPOqx9JUmRkpI4cOVJiH1999ZXuvPNOBQQEOKe98soreuihh1xSDwAAv1XmEejAgQOVlJSk5ORk1alTR5KUm5ur+fPn6+GHH3ZJUVlZWZKk+vXrO6cFBQVJko4fP15kuiQdPnxYDRs21MyZM/X++++rTp06GjVqlKFbq9lstnJULlmt1nItDxhR3tctPEfh35K/qXuUZbuXOUBTUlK0Z88edezYUTfeeKOqVaumH3/8URcuXFBISIg2bdrkbLtly5YrrufixYvKzMwscV5OTo4kycfHxzmt8Pf8/PwS269evVo9e/bU/PnztWPHDo0aNUrvvPOOwsPDy/T80tLSytT+1/z9/RUaGmp4ecCojIwM5ebmursMuFB5PotQMcocoP3791f//v3L3XFqaqoGDx5c4rzRo0dLuhyWvr6+zt+lyyH1W1arVbVr11ZiYqK8vLwUFhamXbt26d133y1zgIaHhzOKxDWnefPm7i4BLmKz2ZSWlsZnkZsUbv/SKHOA9u3bt8wFlaRdu3bKyMgocV5mZqZmzJihrKwsNWrUSNL/duvWq1evWPv69evLYrHIy+t/X+k2adLkiuu/GqvVyosW1xxes5UPn0Wer8wBevDgQc2ePVuHDh0qcXfq1XbbllZwcLBCQkKUkpLiDNCUlBSFhIQU+/5TkiIiIvTqq6/KZrM5X3AHDx5Uw4YNy10LAAAlKXOA/v3vf5efn58GDx4sPz8/M2qSJA0YMEAzZ85UgwYNJEmzZs3SkCFDnPOzs7Pl6+ur6tWrq1evXpo3b54mTZqkoUOH6rPPPtO///1vvfvuu6bVBwCo2socoD/88INWrlyppk2bmlGP09ChQ3Xq1CnFxcXJarWqX79+euyxx5zz+/Xrp759+2rkyJEKCAjQokWLlJiYqF69eikkJEQvvviiwsLCTK0RAFB1lTlA7777bqWkpJgeoFarVfHx8YqPjy9x/tatW4s8btasmZYuXWpqTQAAFCpzgD777LPq27ev1q5dq4YNGxa7Awv3CwUAVAVlvhLRc889Jy8vLwUFBXH7MgBAlVXmEeiuXbv09ttvc8EAAECVVuYR6C233KKzZ8+aUQsAANeMMo9ABwwYoDFjxig2NlaNGjWSt3fRVcTExLiqNgAAPFaZA3TevHny9vbWBx98UGzeiRMnCFAAQJVQ5gD97ekjeXl5+uijj7R69eorXhweAIDKpswBWiglJUVr1qzRpk2bdP78eTVt2lQJCQmurA0AAI9VpgA9cuSI1qxZo/fff1+HDx9WzZo1df78ec2aNUs9e/Y0q0YAADxOqQJ05cqVWrNmjXbt2qX69eurU6dO6tatm+644w5FRETo1ltvNbtOAAA8SqkCdNy4cWrcuLGSkpL0wAMPmF0TAAAer1Tngb7wwgtq1KiR4uPjdeeddyo+Pl5btmxRXl6e2fUBAOCRSjUCjY2NVWxsrLKzs7Vx40Zt2LBBcXFx8vPzk91u144dO9S4cWNVq1bN7HoBAPAIZboSUd26dTVw4EAtW7ZM27Zt04gRI9SyZUtNmTJFHTp04ELyAIAqo8yX8ivUoEEDDRs2TKtWrdKmTZv0yCOP6N///rcrawMAwGMZDtBfu+mmmxQXF6cNGza4YnUAAHg8lwQoAABVDQEKAIABBCgAAAYQoAAAGECAAgBgAAEKAIABHhugDodDM2fOVPv27dW2bVslJyfLbrdfsf2uXbsUGxur1q1bq0+fPtq+fXsFVgsAqGo8NkAXLVqkdevWae7cuZozZ47Wrl2rRYsWldj21KlTevLJJ9WzZ0+tXbtWPXr00FNPPaXjx49XcNUAgKrCYwN0yZIlGjVqlKKiotS+fXs988wzWrZsWYltv/76a1mtVg0bNkw33HCDnnzySfn6+mr37t0VWzQAoMrwyADNzMzUsWPHdMcddzinRUZG6siRIzpx4kSx9rVr19aZM2e0efNmORwOffzxx7pw4QL3KQUAmKZUd2OpaFlZWZKk+vXrO6cFBQVJko4fP15kuiRFRUVp4MCBGjVqlLy8vGSz2TRt2jTdfPPNZe7bZrOVo3LJarWWa3nAiPK+buE5Cv+W/E3doyzb3W0BevHiRWVmZpY4LycnR5Lk4+PjnFb4e35+frH2Fy5c0OHDhxUXF6d7771Xmzdv1tSpUxUREaGmTZuWqa60tLQytf81f39/hYaGGl4eMCojI0O5ubnuLgMuVJ7PIlQMtwVoamqqBg8eXOK80aNHS7oclr6+vs7fpcsh9Vuvv/66HA6H4uLiJElhYWHas2ePlixZokmTJpWprvDwcEaRuOY0b97c3SXARWw2m9LS0vgscpPC7V8abgvQdu3aKSMjo8R5mZmZmjFjhrKystSoUSNJ/9utW69evWLtv/32W7Vo0aLItJYtW2r//v1lrstqtfKixTWH12zlw2eR5/PIg4iCg4MVEhKilJQU57SUlBSFhIQU+/5Tuvxd6YEDB4pMO3TokDN8AQBwNY88iEiSBgwYoJkzZ6pBgwaSpFmzZmnIkCHO+dnZ2fL19VX16tXVv39/Pfzww/rnP/+pzp07a8uWLfrss8+0evVqd5UPAKjkPDZAhw4dqlOnTikuLk5Wq1X9+vXTY4895pzfr18/9e3bVyNHjlTr1q318ssva86cOXrppZfUpEkTLViwQLfccov7ngAAoFLz2AC1Wq2Kj49XfHx8ifO3bt1a5HHnzp3VuXPniijtdzWrH+juElBF8FoD3MdjA/RaZbPbNWvA/e4uA1WIzW6X1csjD2cAKjXedS7GB5kxNptN6enpnDxuAK85wD1458FjcCEAANcSAhQAAAMIUAAADCBAAQAwgKNw/8vhcEjiDgjuwh0ogMt4L7hX4XYvzISrsThK06oKyM/P5+4HAABJl28s8us7gpWEAP0vu92ugoICeXl5yWKxuLscAIAbOBwO2e12eXt7y+t3ThEjQAEAMICDiAAAMIAABQDAAAIUAAADCFAAAAwgQAEAMIAABQDAAAIUAAADCFAAAAwgQAEAMIAABQDAAAIUAAADCFAAAAwgQAEAMIAABQDAAAIUAAADCFAAAAwgQAEAMIAABQDAAAIUAAADCFAAAAwgQAEAMIAABQDAAAIUAAADCFAAAAwgQAEAMIAABQDAAG93F+Ap7Ha7CgoK5OXlJYvF4u5yAABu4HA4ZLfb5e3tLS+vq48xCdD/KigoUFpamrvLAAB4gPDwcPn4+Fy1DQH6X4X/aYSHh8tqtbq5mqrHZrMpLS2N7Y8qj/eCexVu/98bfUoEqFPhblur1cqL1o3Y/sBlvBfcqzRf5XEQEQAABhCgAAAYQIACAGAAAQoAgAEEKAAABhCgAAAYQIACAGAAAQoAgAEEKAAABhCgAAAYQIACAGAAAQoAgAEEKAAABhCgAAAYQIACAGAAAQoAgAEEKAAABhCgAAAYQIACAGBApQrQzMxMjRo1Sm3btlWHDh00bdo05eXlubssAEAl5O3uAlzF4XBo1KhRqlmzppYtW6ZffvlFCQkJ8vLy0tixY91dHgCgkqmQAP3Pf/6j9PR0nTp1Sl5eXgoKClJoaKiaNm3qsj4OHTqk3bt36/PPP1dQUJAkadSoUUpKSiJAAQAuZ1qA/vLLL1q2bJneeecdnTx5Uo0aNVKdOnVkt9t1+vRpHTlyRA0aNNAf//hHDRgwQLVq1SpXf/Xq1dPrr7/uDM9C58+fL9d6AQAoiSkBumLFCv3jH/9Qhw4dNGXKFLVv314+Pj5F2ly4cEHffPON1q9frz59+ugvf/mLHnroIcN91qxZUx06dHA+ttvtWrp0qdq3b1+m9dhsNsM1wLjC7c72R1XHe8G9yrLdTQnQn3/+WatXr1aNGjWu2KZ69eqKjo5WdHS0Tp8+rUWLFrm0hhkzZig9PV3vvfdemZZLS0tzaR0oG7Y/cBnvBc9ncTgcDncX4WozZszQokWL9OKLL+q+++4r1TI2m027d+9WeHi4rFaryRXit2w2m9LS0tj+qPJ4L7hX4fZv3br1725/0w8imjt3bonTLRaLqlWrpvr166tDhw4KDAx0SX9TpkzR22+/rRkzZpQ6PH/NarXyonUjtj9wGe8Fz2d6gH7//ffasGGDGjRooNtuu00Oh0Pfffedjh49qtatW+vcuXOaOnWqXn/9dbVu3bpcfc2dO1fLly/X7Nmz1b17d9c8AQAASlAhp7H069dPiYmJzv+m7Ha7nn/+eeXk5GjatGmaP3++pk+fruXLlxvu4+DBg3rllVc0fPhwRUZGKisryzmvXr165X4OAAD8mulXItq6dauGDBlSZFeEl5eXHnnkEW3atEmSdP/992vfvn3l6mfLli2y2Wx69dVXnQcnFf4AAOBqpo9Ag4KCtGvXLjVp0qTI9JSUFNWuXVuSdPLkSQUEBJSrn+HDh2v48OHlWgcAAKVleoCOHDlS48aNU0pKisLDw+VwOPTtt99q/fr1mjBhgr7//nuNHTtW999/v9mlAADgMqYH6AMPPKCQkBC9/fbbWr58uaxWq5o1a6YlS5aodevW2rNnjx555BENHDjQ7FIAAHCZCjmIKCoqSlFRUSXOa9WqlVq1alURZQAA4DKmB2hubq7eeecdHThwoMglkvLz85Wenq6NGzeaXQIAAC5n+lG448eP14IFC5Sbm6sPPvhAly5d0oEDB7R+/Xq+9wQAXLNMH4F++umneumll/SHP/xB+/fv12OPPabbbrtN06dP1/79+83uHgAAU5g+As3Ly9NNN90kSbrlllu0d+9eSdJDDz2kXbt2md09AACmMD1AmzZtqu3bt0u6HKApKSmSpHPnzikvL8/s7gEAMIXpu3Dj4uL017/+VXa7XX369NH999+vJ598UhkZGUXu3wkAwLXE9ADt3LmzNm7cKLvdruuvv15vvfWW3n//fd1+++0aNGiQ2d0DAGCKCjkP9IYbbnD+3qJFC7Vo0aIiugUAwDSmB+iuXbs0depUHTp0SJcuXSo2/7vvvjO7BAAAXM70AB03bpxuueUW/e1vf5Ofn5/Z3QEAUCFMD9ATJ05o/vz5xe7GAgDAtcz001h69+6t9evXm90NAAAVyvQR6LBhw9SvXz+tWrVKDRs2lMViKTJ/yZIlZpcAAIDLmR6gzzzzjOrWrasuXbrwHSgAoNIwPUAzMjK0atUqNW3a1OyuAACoMKZ/BxoZGamDBw+a3Q0AABXK9BFodHS0EhIStHnzZt1www2yWq1F5sfFxZldAgAALmd6gG7btk0tW7ZUZmamMjMzi8z77QFFAABcK0wP0DfffNPsLgAAqHCmBOiaNWvUs2dP+fj4aM2aNVdtGxMTY0YJAACYypQAnTNnju655x75+Phozpw5V2xnsVgIUADANcmUAN26dWuJvwMAUFmYchrLSy+9pPPnz5e6/dmzZ/Xiiy+aUQoAAKYwJUAbNGigPn36KDExUZ999lmJtzHLzc3V9u3blZCQoAceeEDXX3+9GaUAAGAKU3bhPvTQQ7rvvvu0bNkyJSQkKDs7W40aNVKdOnVkt9t15swZ/fzzz6pXr5769eun1atXq06dOmaUAgDXHH9/f3eXgFIw7TSW2rVra8SIEXrqqaeUkZGh9PR0ZWdny2KxKDAwUKGhobr11lvN6h6AB7DZ7bJ6mX7Bs0rFarUqNDTU3WVcsyryNWf6eaAWi0UtWrRQixYtzO4KgIexennp6TlrdODIKXeXgiqgWcNAvTgqpsL6Mz1AAVRtB46c0rffH3d3GYDLsW8FAAADCFAAAAyo0AD95ZdfZLfb5XA4KrJbAABczvQAdTgcevXVV9WuXTvdeeedOnLkiEaPHq0JEyYoPz/f7O4BADCF6QE6b948ffDBB5o+fbp8fHwkSX379tXnn3+u5ORks7sHAMAUpgfo6tWrNXnyZN17773O+3/eddddSkpK0saNG13aV15enhISEhQVFaXo6GgtXLjQpesHAKCQ6aexnDp1SvXr1y82vWbNmsrJyXFpX8nJydq7d68WL16so0ePauzYsQoJCVH37t1d2g8AAKaPQNu3b6833nijyLTz589r9uzZateuncv6ycnJ0YoVKzRu3DiFhYWpa9euGjZsmJYtW+ayPgAAKGR6gCYmJio9PV133XWX8vLy9NRTT+mee+7RkSNHNH78eJf1s2/fPhUUFKhNmzbOaZGRkUpNTZXdbndZPwAASBWwC7dBgwZ677339MUXX+jQoUMqKChQkyZNFB0dLS8XXq8wKytLderUcR6oJElBQUHKy8vTmTNnVLdu3VKtx2azuawmlJ7dbpe/vz//7FQyVqtVzRoGursMVBGFr7XyfI6XZdkKu5TfnXfeqTvvvNO09efm5hYJT0nOx2U5XSYtLa1cdVx//fUKCQkp1zqqIi6gbdzRo0d17Ngxd5dRTLVq1dQyNKxCr00KXCqw6bv0b0u8jaarmRKgLVq0cB5x+3u+++47l/Tp6+tbLCgLH/v5+ZV6PeHh4bJareWqhVFs2dntdu3fv1+33HKLS/dMVAXBwcEKDg52dxlXxPuhbHgvlI+XRQoLCzO8vM1mK/VAypQAXbJkifP3tLQ0LVq0SE899ZTCw8NVrVo1paena+7cuRo8eLDL+gwODtbp06dVUFAgb+/LTysrK0t+fn6qWbNmqddjtVrLHaAwJjc3V15eXmx/VHm8F64NpgRo27Ztnb9PmDBBSUlJuuuuu5zTWrRooYYNGyo+Pl6PPfaYS/ps2bKlvL29tXv3bkVFRUmSUlJSFB4ezn9xAACXMz1ZTpw4ocDA4gcR+Pv76+zZsy7rx9/fXzExMUpMTNSePXv08ccfa+HChS4d5QIAUMj0AO3YsaMSEhL09ddfKycnRxcuXNCXX36phIQE9ejRw6V9xcfHKywsTI8++qgmTZqkkSNHqlu3bi7tAwAAqQKOwp08ebImTpyoQYMGOU9RsFqtiomJcel5oNLlUWhSUpKSkpJcul4AAH7L9AANCAjQrFmzNGnSJH3//feSpCZNmiggIMDsrgEAMI3pAbpz585i03596sodd9xhdgkAALic6QE6aNCgEqf7+PioXr162rJli9klAADgcqYH6L59+4o8ttls+umnnzRlyhT17t3b7O4BADBFhZ8gabVa1aRJEz377LN66aWXKrp7AABcwm1XGDh16pRLzwMFAKAimb4LNz4+vti0CxcuaPv27dzoGgBwzaqwu7H8Wu3atTV27Fj16dPHHd0DAFBupgdobGysWrdurWrVqhWZnp+fr08//VRdunQxuwQAAFzO9O9ABw8erHPnzhWbvn//fv3tb38zu3sAAExhygj0rbfe0uTJk2WxWORwOIrcieXX/vCHP5jRPQAApjMlQB9++GHdcsststvtevTRRzVnzhzVqlXLOd9iscjf31+33nqrGd0DAGA6074DLbxE35YtWxQSEiKLxWJWVwAAVDhTAjQ+Pl7jxo1TQECA5s6de9W206ZNM6MEAABM5bYLKQAAcC0zZQT661ElI0wAQGVkSoD+3m7bX4uLizOjBAAATGVKgO7YsaNU7TiwCABwrTIlQN98800zVgsAgMeokGvhbt++Xe+8844OHToki8Wi5s2ba+DAgWrdunVFdA8AgMuZfhTuihUrNHz4cPn7++uhhx7Sgw8+KOnyJf42b95sdvcAAJjC9BHoq6++qkmTJjmDs9Add9yhWbNmqVu3bmaXAACAy5k+Aj1z5owiIiKKTY+KitKJEyfM7h4AAFOYHqADBw5UUlKSTp8+7ZyWm5ur+fPn6+GHHza7ewAATGH6LtyUlBTt2bNHHTt21I033qhq1arpxx9/1IULFxQSEqJNmzY5227ZssXscgAAcAnTA7R///7q37+/2d0AAFChTA/Qvn37mt0FAAAVzvQAPXjwoGbPnq1Dhw4pPz+/2Hx22wIArkWmB+jf//53+fn5afDgwfLz8zO7OwAAKoTpAfrDDz9o5cqVatq0qdldAQBQYUw/jeXuu+9WSkqK2d0AAFChTB+BPvvss+rbt6/Wrl2rhg0bFrsDC/cLBQBci0wfgT733HPy8vJSUFAQty8DAFQapo9Ad+3apbfffluhoaFmdwUAQIUxfQR6yy236OzZs2Z3AwBAhTJ9BDpgwACNGTNGsbGxatSokby9i3YZExNjdgkAALic6QE6b948eXt764MPPig278SJEy4L0LNnzyopKUnbtm2T3W5Xx44dlZCQoJo1a7pk/QAA/JrpAbp169Yij/Py8vTRRx9p9erVyszMdFk/EydO1E8//aQFCxbIYrEoMTFR48eP15w5c1zWBwAAhUwP0EIpKSlas2aNNm3apPPnz6tp06ZKSEhwybpzcnL04Ycf6u2339Ztt90mSUpISNDAgQOVl5cnX19fl/QDAEAhUwP0yJEjWrNmjd5//30dPnxYNWvW1Pnz5zVr1iz17NnTZf14eXlp/vz5atmyZZHpNptNFy5cIEABAC5nSoCuXLlSa9as0a5du1S/fn116tRJ3bp10x133KGIiAjdeuutLu3Pz89Pd999d5FpS5YsUfPmzVW3bt0yrctms7myNJRS4XZn+6Oq473gXmXZ7qYE6Lhx49S4cWMlJSXpgQcecMk6L168eMXvTOvVq6frrrvO+Xjp0qXauHGjXn/99TL3k5aWZrhGlB/bH7iM94LnMyVAX3jhBa1fv17x8fGaNm2aOnbsqC5duig6OtrwOlNTUzV48OAS582bN09dunSRJC1btkxTp05VfHy8of7Cw8NltVoN1wljbDab0tLS2P6o8ngvuFfh9i8NUwI0NjZWsbGxys7O1saNG7VhwwbFxcXJz89PdrtdO3bsUOPGjVWtWrVSr7Ndu3bKyMi4aps33nhDycnJGjNmjB599FFDtVutVl60bsT2By7jveD5TL0SUd26dTVw4EAtW7ZM27Zt04gRI9SyZUtNmTJFHTp0cOmF5FevXq3k5GTFx8dr6NChLlsvAAAlMf1SfoUaNGigYcOGadWqVdq0aZMeeeQR/fvf/3bJus+cOaPJkyerb9++uv/++5WVleX84Yt4AIAZKuw80F+76aabFBcXp7i4OJes7/PPP1dOTo5Wr16t1atXF5m3ZcsWNWrUyCX9AABQyC0B6mr333+/7r//fneXAQCoQipsFy4AAJUJAQoAgAEEKAAABhCgAAAYQIACAGAAAQoAgAEEKAAABhCgAAAYQIACAGAAAQoAgAEEKAAABhCgAAAYQIACAGAAAQoAgAEEKAAABhCgAAAYQIACAGAAAQoAgAEEKAAABhCgAAAY4O3uAjyFw+GQJNlsNjdXUjUVbne2P6o63gvuVbjdCzPhaiyO0rSqAvLz85WWlubuMgAAHiA8PFw+Pj5XbUOA/pfdbldBQYG8vLxksVjcXQ4AwA0cDofsdru8vb3l5XX1bzkJUAAADOAgIgAADCBAAQAwgAAFAMAAAhQAAAMIUAAADCBAAQAwgAAFAMAAAhRulZeXp4SEBEVFRSk6OloLFy50d0mA2+Xn56tXr17asWOHu0vBVXAtXLhVcnKy9u7dq8WLF+vo0aMaO3asQkJC1L17d3eXBrhFXl6e/v73v2v//v3uLgW/gwCF2+Tk5GjFihV67bXXFBYWprCwMO3fv1/Lli0jQFElHThwQH//+99LdSFzuB+7cOE2+/btU0FBgdq0aeOcFhkZqdTUVNntdjdWBrjHV199pXbt2umdd95xdykoBUagcJusrCzVqVOnyB0PgoKClJeXpzNnzqhu3bpurA6oeA8//LC7S0AZMAKF2+Tm5ha7XVDh4/z8fHeUBAClRoDCbXx9fYsFZeFjPz8/d5QEAKVGgMJtgoODdfr0aRUUFDinZWVlyc/PTzVr1nRjZQDw+whQuE3Lli3l7e2t3bt3O6elpKQoPDz8d29kCwDuxqcU3Mbf318xMTFKTEzUnj179PHHH2vhwoUaPHiwu0sDgN/FUbhwq/j4eCUmJurRRx9VQECARo4cqW7durm7LAD4XRYHZ+wCAFBm7MIFAMAAAhQAAAMIUAAADCBAAQAwgAAFAMAAAhQAAAMIUAAADCBAAQ/SvHnzIj/t27fX+PHjdeHChXKve8eOHWrevLkLqvwfh8OhZcuWlbr9qVOntHHjRpfWALgLAQp4mJdfflmfffaZPv30U82fP1979uxRcnJyudfbpk0bffbZZy6o8H927typyZMnl7r9zJkz9a9//culNQDuQoACHqZWrVqqV6+egoOD1bp1az3xxBMuGbX5+PioXr16Lqjwf8p6ITMufIbKhAAFPJy/v3+Rx5mZmRo1apTuuOMO3Xbbberbt69SUlKc85csWaJ7771X4eHhio2N1a5duyQV34V7pXa/denSJY0fP17t2rVTmzZt9OSTTyozM1M///yz88L/zZs3144dO5Sfn69p06apQ4cOCgsLU6dOnfTOO+9IujyyXr16tVavXq1OnTpJks6ePavRo0fr9ttvV3R0tKZMmaKLFy+6buMBJiJAAQ+WnZ2tN998Uw888IBz2jPPPCObzably5drzZo1Cg4OVmJioiQpPT1dycnJmjhxojZu3KioqCj93//9n+x2e5H1lradJC1btkw7d+7UwoUL9d577+nChQt64YUXdP311+vll1+WJH322Wdq06aNFixYoE8++UQvv/yyNm3apJiYGE2ZMkUnT57UkCFD1KNHD/Xo0UPvvfeeJGncuHE6d+6c3n77bb3yyitKS0sr0y5hwJ24GwvgYR5//HFZrVY5HA7l5uaqdu3azoB0OBzq0qWL7rvvPjVo0ECSNHDgQA0fPlySdOTIEVksFoWEhKhRo0b6v//7P917773FgvFq7X57L9aff/5Zvr6+atiwoWrXrq3p06frzJkzslqtqlWrliQ5dw23aNFC7du3V+vWrSVJTz75pObNm6cffvhBUVFR8vPzkyTVrVtXP/30kz7++GN99dVXqlGjhiRpypQpiomJUXx8vHMa4KkIUMDDTJ06VREREXI4HDp9+rSWLl2qAQMGaO3atQoMDNSAAQO0YcMGff311/r++++1d+9eZ0BGR0fr1ltvVe/evRUaGqrOnTurf//+8vYu+lYvbTtJeuihh7R+/XpFR0erbdu26tKli2JjY0usvUuXLvr88881ffp0HTp0SOnp6ZIkm81WrO3Bgwdlt9t19913F5lut9v1448/6rbbbjO0/YCKQoACHiY4OFiNGzeWJN10000KCwtTu3bttHHjRj388MMaMmSIzp49q549e6pTp066dOmS4uLiJF3+vnTFihX66quvtG3bNq1atUpvv/22Vq1aVaSPq7ULDg4u0vaWW27R1q1b9cknn+iTTz7R7NmztW7duhJPX3nxxRe1YsUKxcbGKiYmRhMnTnR+3/lbNptNNWrU0MqVK0vcBoCnI0ABD+fl5SWHwyGbzaYDBw5o586d+uKLL1S3bl1JcgaZw+HQ7t279eWXX+ovf/mL2rdvr7///e/6wx/+oJSUFAUGBjrX+c0331yxXc+ePYv0v2bNGvn4+Khnz57q0aOHdu/erYceekinTp2SxWIp0nb58uVKTExUjx49JEkHDhxw1iZJFovF+XuTJk107tw5WSwW3XjjjZKkjIwMzZkzR9OmTXPu7gU8FQEKeJhffvlFWVlZkqQLFy5o4cKFstls6tSpk6pVqyYvLy+tX79enTp1UlpamvNAnvz8fPn5+WnevHkKCgrSnXfeqZ07dyonJ0fNmzfXyZMnnX1crd1vnTt3TvPnz1edOnXUqFEjrV27Vg0aNFCdOnWcRwjv3btXt9xyi2rXrq1t27bptttuU2Zmpl544QVnbdLlke/+/fuVmZmppk2bqkOHDnrmmWc0fvx4Wa1WPffcc6pVq5Zq1qxp6jYGXMHi4MQswGP8NsD8/f112223KS4uTu3bt5ckvfPOO5o3b57OnTunJk2aaMiQIRo7dqyWLl2qNm3a6P3339crr7yio0ePKiQkRKNGjdL999+vHTt2aPDgwcrIyJCkK7b7LbvdrlmzZun999/XL7/8ottuu03PPfecQkNDlZ+fryeffFJfffWVZs+ercDAQCUmJurHH39UcHCw+vfvr48++khdunTRE088odTUVI0YMUKXLl3Sl19+qdOnT2vq1Kn65JNP5O3trQ4dOmj8+PGqU6eO+RsbKCcCFAAAAzgPFAAAAwhQAAAMIEABADCAAAUAwAACFAAAAwhQAAAMIEABADCAAAUAwAACFAAAAwhQAAAMIEABADCAAAUAwID/D76gK7ofIjPcAAAAAElFTkSuQmCC" + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAdYAAAL0CAYAAACxlhb6AAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAPYQAAD2EBqD+naQAAUCBJREFUeJzt3QmczXX/9/HPDGYszZB1DJN9vci+tiimiIu0SmJI8pedulAiVFNCEiV7/e/EpeKSJLKkMpaGkl0oE8YaYx3MzP34fK/7nHvG7HzPOTPnvJ6Px+8/5/zO75zf9/hf03u+u19SUlKSAAAAK/ztfAwAAFAEKwAAFhGsAABYRLACAGARwQoAgEUEKwAAFhGsAABYRLACAGBRXpsf5o0SExPl6NGjEhQUJH5+fp4uDgDAA3QtpfPnz0toaKj4+2dcJyVYM6GhGhYW5uliAABygJiYGClbtmyG1xCsmdCaquMfMzg42NPFAQB4QFxcnKlkOTIhIwRrJhzNvxqqBCsA+Da/LHQJMngJAACLCFYAACwiWAEAsIhgBQDAIgYvudGAr97zdBHgQ6a0H+jpIgA+iRorAAAWEawAAFhEsAIAYBHBCgCARQQrAAAWEawAAFhEsAIAYBHBCgCARQQrAAAWEawAAFhEsAIAYBHBCgCARQQrAAAWEawAAFhEsAIAYBHBCgCALwfrtGnTpHz58pI/f35p0qSJbN68OcPrz549K3379pXSpUtLYGCgVK1aVZYvX+628gIAfEteyUUWLlwoQ4YMkenTp5tQnTx5srRu3Vr27t0rJUuWTHX91atX5YEHHjCvff7551KmTBn5888/pUiRIh4pPwDA++WqYJ00aZL06tVLevToYZ5rwH799dcyZ84cGT58eKrr9fyZM2dkw4YNki9fPnNOa7sAAIivNwVr7TM6OlrCw8Od5/z9/c3zqKioNN+zdOlSadasmWkKLlWqlNSqVUvefPNNSUhISPc+8fHxEhcXl+IAAMDrgvXUqVMmEDUgk9PnsbGxab7n4MGDpglY36f9qq+++qpMnDhRXn/99XTvExkZKYULF3YeYWFh1r8LAMB75ZpgvRmJiYmmf3XGjBnSoEED6dSpk7zyyiumCTk9I0aMkHPnzjmPmJgYt5YZAJC75Zo+1uLFi0uePHnk+PHjKc7r85CQkDTfoyOBtW9V3+dQo0YNU8PVpuWAgIBU79GRw3oAAODVNVYNQa11rl69OkWNVJ9rP2pa7rrrLvn999/NdQ779u0zgZtWqAIA4DPBqnSqzcyZM+Xjjz+W3bt3S58+feTixYvOUcLdunUzTbkO+rqOCh44cKAJVB1BrIOXdDATAAA+3RSstI/05MmTMmrUKNOcW7duXVmxYoVzQNPhw4fNSGEHHXj07bffyuDBg+XOO+8081g1ZIcNG+bBbwEA8GZ+SUlJSZ4uRE6m0210dLAOZAoODr6lzxrw1XvWygVkZkr7gZ4uAuCTWZCrmoIBAMjpCFYAACwiWAEAsIhgBQDAIoIVAACLCFYAAHJbsK5du9YdtwEAwDeCtU2bNlKpUiWzqwyL2gMAvJlbgvXIkSPSr18/s4VbxYoVpXXr1vLvf//bLIQPAIA38XfXzjS6rOAvv/wimzZtkqpVq8oLL7wgoaGhMmDAAPn111/dUQwAALxv8FL9+vXNQvlag71w4YLMmTPH7Fpzzz33yM6dO91dHAAAcmewXrt2zTQFt23bVsqVK2cWx586darZT1W3dtNzTzzxhLuKAwBA7t3dpn///vLZZ5+JrvfftWtXGT9+vNSqVcv5eqFChWTChAmmaRgAgNzMLcG6a9cuef/99+XRRx+VwMDAdPthmZYDAMjt3NIUPHr0aNPMe2OoXr9+XdavX28e582bV1q0aOGO4gAAkLuD9f7775czZ86kOq/72ulrAAB4C7cEq/at+vn5pTp/+vRp078KAIC3cGkfq/apKg3V7t27p2gKTkhIkO3bt0vz5s1dWQQAALwnWAsXLuyssQYFBUmBAgWcrwUEBEjTpk2lV69eriwCAADeE6xz5841P8uXLy8vvvgizb4AAK+X112jggEA8AV5Xbl04erVq+X222+XevXqpTl4yWHr1q2uKgYAAN4RrA8//LBzsFLHjh1ddRsAAHwjWJM3/9IUDADwFW7f3QYAAG/mshqr9q1m1K+aXFqrMgEAkBu5LFgnT57sqo8GAMD3gjUiIsJVHw0AgO8Fa1xcnAQHBzsfZ8RxHQAAuZ1L+1iPHTsmJUuWlCJFiqTZ3+pYnF/XDQYAwBu4LFjXrFkjRYsWNY9tbmA+bdo0eeeddyQ2Nlbq1KljNlBv3Lhxpu9bsGCBdO7c2cyvXbJkibXyAADglmBNvmm5rQ3MFy5cKEOGDJHp06dLkyZNzACp1q1by969e03NOD1//PGHWav4nnvusVIOAAA8Po/177//lgkTJkjPnj3NMXHixGxPs5k0aZLZDadHjx5Ss2ZNE7AFCxaUOXPmpPsebWbu0qWLjBkzRipWrGjhmwAA4OFgXb9+vdnhZsqUKSZg9dDHFSpUMK9lxdWrVyU6OlrCw8Od5/z9/c3zqKiodN83duxYU5vVMM+K+Ph4M9gq+QEAQI7a3aZv377SqVMn+fDDDyVPnjzOmuQLL7xgXvvtt98y/YxTp06Z95QqVSrFeX2+Z8+eNN/z448/yuzZs+WXX37JclkjIyNN7RYAgBxbY/39999l6NChzlBV+lj7S/U1Vzh//rx07dpVZs6cKcWLF8/y+0aMGCHnzp1zHjExMS4pHwDAO7mlxqpbyO3evVuqVauW4rye05G9WaHhqGF8/PjxFOf1eUhISKrrDxw4YAYttW/f3nkuMTHR/MybN68Z8FSpUqVU79MdeRy78gAAkGOCdfv27c7HAwYMkIEDB5raadOmTc25jRs3mqkzb731VpY+LyAgQBo0aGD2eHVsQ6dBqc/79euX6vrq1aunamIeOXKkqcm+9957EhYWdovfEAAANwZr3bp1zeIPugiEw7/+9a9U1z399NOm/zUrtOlYl0ps2LChmbuq020uXrxoRgmrbt26SZkyZUw/af78+aVWrVop3q8LVagbzwMAkOOD9dChQ9Y/UwP45MmTMmrUKLNAhIb3ihUrnAOaDh8+bEYKAwDgKX5JyauUSEWn2xQuXNgMZLrVNY0HfPWetXIBmZnSfqCniwD4ZBa4ZfCSw65du0ytUuekJtehQwd3FgMAAJdxS7AePHhQHnnkETOYKHm/q2NhfhbhBwB4C7d0SOqIYF1l6cSJE2YJwp07d5oVl3QQ0rp169xRBAAAvKfGqksO6m43OhdVBxfpcffdd5vRuzoVZ9u2be4oBgAA3lFj1abeoKAg81jD9ejRo+ZxuXLlzEINAAB4C7fUWHXe6K+//mqag3W7t/Hjx5sFH2bMmMGOMwAAr+KWYNUVj3QhB8duM//85z/N3qjFihUze6wCAOAt3BKsuhm5Q+XKlc1uNLoX6+233+4cGQwAgDdw6zxW5dgthrV6AQDeyC2Dl65fvy6vvvqqWbVCNzzXQx9rE/G1a9fcUQQAALynxtq/f3/58ssvzaClZs2aOafgvPbaa3L69GmzAToAAN7ALcE6f/58WbBggTz00EPOc3feeadpDu7cuTPBCgDwGm5pCtaNw7X590Y6/Uan3QAA4C3cEqy6Efm4ceMkPj7eeU4fv/HGG2luUg4AQG7lsqbgRx99NMXz7777TsqWLSt16tQxz3XBCN3lplWrVq4qAoAcii0U4c3bKLosWHXUb3KPPfZYiudMtwEAeCOXBevcuXNd9dEAAORYbl0g4uTJk85F96tVqyYlSpRw5+0BAPCOwUu6TvCzzz4rpUuXlnvvvdccoaGh0rNnT7l06ZI7igAAgPcE65AhQ+T777+Xr776Ss6ePWuO//znP+bc0KFD3VEEAAC8pyn4iy++kM8//1zuu+8+57m2bdtKgQIF5Mknn2SBCACA13BLjVWbe0uVKpXqfMmSJWkKBgB4FbcEq64PPHr0aLly5Yrz3OXLl2XMmDHOtYMBAPAGbmkKnjx5srRp0ybVAhH58+eXb7/91h1FAADAe4K1du3asn//fvn000/NJudKF9/v0qWL6WcFAMBbuDxYdb/V6tWry7Jly6RXr16uvh0AAN7dx5ovX74UfasAAHgztwxe6tu3r7z99tty/fp1d9wOAADv7mPdsmWLrF69WlauXGn6WwsVKpTi9S+//NIdxQAAwDtqrEWKFDG727Ru3dosZag73yQ/smPatGlm03QdUdykSRPZvHlzutfOnDlT7rnnHrn99tvNER4enuH1AADk6BprYmKivPPOO7Jv3z6z92rLli3ltddeu+mRwAsXLjTLI06fPt2Eqk7j0bDWhf11sYkbrVu3zow+bt68uQlibY5+8MEHZefOnVKmTBkL3xAAADfWWN944w15+eWX5bbbbjNBNmXKFNPferMmTZpkRhb36NFDatasaQK2YMGCMmfOnDSv1+k9L7zwgtStW9eMTJ41a5YJe22WBgAg1wXrJ598Ih988IFZBGLJkiVmEX4NOw237NIab3R0tGnOdfD39zfPo6KisvQZunyiTv8pWrRotu8PAIDHg/Xw4cNmsX0HDUE/Pz85evRotj/r1KlTkpCQkGrNYX0eGxubpc8YNmyY6eNNHs43io+Pl7i4uBQHAAA5Ilh1eo32bd44r1Vrje721ltvyYIFC2Tx4sWpypRcZGRkioFVYWFhbi0nACB3c+ngpaSkJOnevbsEBgY6z+liEf/zP/+TYspNVqbbFC9eXPLkySPHjx9PcV6fh4SEZPjeCRMmmGD97rvv5M4778zw2hEjRpgBUg5aYyVcAQA5IlgjIiJSnXvmmWdu6rMCAgKkQYMGZuBRx44dzTnHQKR+/fql+77x48ebQVTaz9uwYcNM76N/BCT/QwAAgBwTrHPnzrX6eVqT1LDWgGzcuLGZbnPx4kUzSlh169bNjD7W5lyl02tGjRol8+fPN3NfHX2xOkpZDwAAcuXKS7Z06tRJTp48acJSQ1Kn0axYscI5oEkHS+lIYYcPP/zQjCZ+/PHHU3yO7g2r82kBAPDpYFXa7Jte068uCJHcH3/84aZSAQDgxiUNAQDwFQQrAAAWEawAAFhEsAIAYBHBCgCARQQrAAAWEawAAFhEsAIAYBHBCgCARQQrAAAWEawAAFhEsAIAYBHBCgCARQQrAAAWEawAAFhEsAIAYBHBCgCARQQrAAAWEawAAFhEsAIAYBHBCgCARQQrAAAWEawAAFhEsAIAYBHBCgCARQQrAAAWEawAAFhEsAIAYBHBCgCARQQrAAC+HKzTpk2T8uXLS/78+aVJkyayefPmDK9ftGiRVK9e3Vxfu3ZtWb58udvKCgDwPbkqWBcuXChDhgyR0aNHy9atW6VOnTrSunVrOXHiRJrXb9iwQTp37iw9e/aUbdu2SceOHc2xY8cOt5cdAOAbclWwTpo0SXr16iU9evSQmjVryvTp06VgwYIyZ86cNK9/7733pE2bNvLSSy9JjRo1ZNy4cVK/fn2ZOnWq28sOAPANeSWXuHr1qkRHR8uIESOc5/z9/SU8PFyioqLSfI+e1xpuclrDXbJkSbr3iY+PN4fDuXPnzM+4uLhb/w6XrtzyZwBZZeN/s67C7wJy2++D4/1JSUneE6ynTp2ShIQEKVWqVIrz+nzPnj1pvic2NjbN6/V8eiIjI2XMmDGpzoeFhd102QFP+EiGe7oIgNf9Ppw/f14KFy7sHcHqLlojTl7LTUxMlDNnzkixYsXEz8/Po2XzRfpXov5RExMTI8HBwZ4uDuBR/D54jtZUNVRDQ0MzvTbXBGvx4sUlT548cvz48RTn9XlISEia79Hz2bleBQYGmiO5IkWK3FLZcev0PyL8hwT4L34fPCOzmmquG7wUEBAgDRo0kNWrV6eoTerzZs2apfkePZ/8erVq1ap0rwcA4Fblmhqr0ibaiIgIadiwoTRu3FgmT54sFy9eNKOEVbdu3aRMmTKmn1QNHDhQWrRoIRMnTpR27drJggUL5Oeff5YZM2Z4+JsAALxVrgrWTp06ycmTJ2XUqFFmAFLdunVlxYoVzgFKhw8fNiOFHZo3by7z58+XkSNHyssvvyxVqlQxI4Jr1arlwW+B7NBmeZ23fGPzPOCL+H3IHfySsjJ2GAAAeFcfKwAAuQHBCgCARQQrAAAWEawAAFhEsAIAYBHBCgCARQQrAAAWEawAAFhEsAIAYBHBCgCARQQrAAAWEawAAFhEsAIAYBHBCgCARQQrAAAWEawAAFhEsAIAYBHBCgCARQQrAAAWEawAAFhEsAIAYBHBCgCARQQrAAAW5bX5Yd4oMTFRjh49KkFBQeLn5+fp4gAAPCApKUnOnz8voaGh4u+fcZ2UYM2EhmpYWJiniwEAyAFiYmKkbNmyGV5DsGZCa6qOf8zg4GBPFwcA4AFxcXGmkuXIhIwQrJlwNP9qqBKsAODb/LLQJcjgJQAALCJYAQCwiGAFAMAighUAAIsYvORGD0yb7OkiwIes6jvI00UAfBI1VgAALCJYAQCwiGAFAMAighUAAIsIVgAALCJYAQCwiGAFAMAighUAAIsIVgAALCJYAQCwiGAFAMAighUAAIsIVgAALCJYAQCwiGAFAMAighUAAIsIVgAALCJYAQCwiGAFAMBXgvXIkSPyzDPPSLFixaRAgQJSu3Zt+fnnn52vJyUlyahRo6R06dLm9fDwcNm/f3+Kzzhz5ox06dJFgoODpUiRItKzZ0+5cOGCB74NAMAX5Nhg/fvvv+Wuu+6SfPnyyTfffCO7du2SiRMnyu233+68Zvz48TJlyhSZPn26bNq0SQoVKiStW7eWK1euOK/RUN25c6esWrVKli1bJuvXr5fnn3/eQ98KAODt/JK02pcDDR8+XH766Sf54Ycf0nxdix0aGipDhw6VF1980Zw7d+6clCpVSubNmydPPfWU7N69W2rWrClbtmyRhg0bmmtWrFghbdu2lb/++su8PzNxcXFSuHBh89la670VD0ybfEvvB7JjVd9Bni4C4DWykwU5tsa6dOlSE4ZPPPGElCxZUurVqyczZ850vn7o0CGJjY01zb8O+qWbNGkiUVFR5rn+1OZfR6gqvd7f39/UcNMSHx9v/gGTHwAAZFWODdaDBw/Khx9+KFWqVJFvv/1W+vTpIwMGDJCPP/7YvK6hqrSGmpw+d7ymPzWUk8ubN68ULVrUec2NIiMjTUA7jrCwMBd9QwCAN8qxwZqYmCj169eXN99809RWtV+0V69epj/VlUaMGGGq+o4jJibGpfcDAHiXHBusOtJX+0eTq1Gjhhw+fNg8DgkJMT+PHz+e4hp97nhNf544cSLF69evXzcjhR3X3CgwMNC0nyc/AADI9cGqI4L37t2b4ty+ffukXLly5nGFChVMOK5evdr5uvaHat9ps2bNzHP9efbsWYmOjnZes2bNGlMb1r5YAABsyys51ODBg6V58+amKfjJJ5+UzZs3y4wZM8yh/Pz8ZNCgQfL666+bflgN2ldffdWM9O3YsaOzhtumTRtnE/K1a9ekX79+ZsRwVkYEAwDgNcHaqFEjWbx4senzHDt2rAnOyZMnm3mpDv/617/k4sWLpv9Va6Z33323mU6TP39+5zWffvqpCdNWrVqZ0cCPPfaYmfsKAIBPzWPNKZjHityKeayAPV4xjxUAgNyIYAUAwCKCFQAAiwhWAAAsIlgBALCIYAUAwCKCFQAAiwhWAAAsIlgBALCIYAUAwCKCFQAAiwhWAAAsIlgBALCIYAUAwCKCFQAAiwhWAAAsIlgBALCIYAUAwCKCFQCAnBysFStWlNOnT6c6f/bsWfMaAADezHqw/vHHH5KQkJDqfHx8vBw5csT27QAAyFHy2vqgpUuXOh9/++23UrhwYedzDdrVq1dL+fLlbd0OAADvDtaOHTuan35+fhIREZHitXz58plQnThxoq3bAQDg3cGamJhoflaoUEG2bNkixYsXt/XRAAD4XrA6HDp0yPZHAgDgu8GqtD9VjxMnTjhrsg5z5sxxxS0BAPDOYB0zZoyMHTtWGjZsKKVLlzZ9rgAA+ArrwTp9+nSZN2+edO3a1fZHAwDge/NYr169Ks2bN7f9sQAA+GawPvfcczJ//nzbHytvvfWWaVYeNGiQ89yVK1ekb9++UqxYMbntttvksccek+PHj6d43+HDh6Vdu3ZSsGBBKVmypLz00kty/fp16+UDAMAlTcEadjNmzJDvvvtO7rzzTjOHNblJkyZl+zN1+s5HH31kPi+5wYMHy9dffy2LFi0yC1L069dPHn30Ufnpp5+cC1NoqIaEhMiGDRvk2LFj0q1bN1OmN9988xa/KQAAbgjW7du3S926dc3jHTt2pHjtZgYyXbhwQbp06SIzZ86U119/3Xn+3LlzMnv2bFM7btmypTk3d+5cqVGjhmzcuFGaNm0qK1eulF27dpmQL1WqlCnXuHHjZNiwYfLaa69JQEDALX9fAABcGqxr1661+nna1Ku1zvDw8BTBGh0dLdeuXTPnHapXry533HGHREVFmWDVn7Vr1zah6tC6dWvp06eP7Ny5U+rVq5fmmsZ6OMTFxVn9PgAA7+aSeay2LFiwQLZu3Wqagm8UGxtrapxFihRJcV5DVF9zXJM8VB2vO15LS2RkpJkyBABAjgjW+++/P8Mm3zVr1mTpc2JiYmTgwIGyatUqyZ8/v7jLiBEjZMiQISlqrGFhYW67PwAgd7MerI7+VQdtrv3ll19Mf+uNi/NnRJt6deWm+vXrO8/pYKT169fL1KlTzQ46OrVH93lNXmvVUcE6WEnpz82bN6f4XMeoYcc1NwoMDDQHAAA5IljffffdNM/rYCEdiJRVrVq1kt9++y3FuR49eph+VB18pLVIHd2rSyfqNBu1d+9eM72mWbNm5rn+fOONN0xA61QbpTXg4OBgqVmz5i18SwAAPNzH+swzz0jjxo1lwoQJWbo+KChIatWqleJcoUKFzJxVx/mePXuaZtuiRYuasOzfv78JUx24pB588EEToLoK1Pjx402/6siRI82AKGqlAIBcHaw6Qtd2X6nWjv39/U2NVUfy6ojfDz74wPl6njx5ZNmyZWYUsAauBrM2R+taxgAA5Ipg1QUakktKSjILM/z888/y6quv3tJnr1u3LsVzDepp06aZIz3lypWT5cuX39J9AQDwWLDqCkjJaY2yWrVqppaoTbMAAHgz68Gqqx8BAOCrXNbHqtNldu/ebR7/4x//SHOVIwAAvI31YNWpLU899ZTpD3XML9W5prpwhK6kVKJECdu3BADAe7eN0ykv58+fN2vxnjlzxhy6OISuYDRgwADbtwMAwLtrrCtWrDC7yeguMw46l1RH7jJ4CQDg7azXWBMTE1Ptwar0nL4GAIA3sx6sujeqLp5/9OhR57kjR46YTcl1mUIAALyZ9WDVBfK1P7V8+fJSqVIlc1SoUMGce//9923fDgAA7+5j1cXxdQ9V7Wfds2ePOaf9rck3JAcAwFtZq7HqPqs6SElrprof6wMPPGBGCOvRqFEjM5f1hx9+sHU7AAC8O1gnT54svXr1MrvMpLXMYe/evWXSpEm2bgcAgHcH66+//ipt2rRJ93WdaqOrMQEA4M2sBevx48fTnGbjkDdvXjl58qSt2wEA4N3BWqZMGbPCUnq2b98upUuXtnU7AAC8O1jbtm1r9lu9cuVKqtcuX74so0ePln/+85+2bgcAgHdPtxk5cqR8+eWXUrVqVenXr5/Zg1XplBtdzjAhIUFeeeUVW7cDAMC7g7VUqVKyYcMG6dOnj4wYMUKSkpLMeZ1607p1axOueg0APDBtsqeLAB+zqu+g3LlARLly5WT58uXy999/y++//27CtUqVKnL77bfbvA0AAL610bkGqS4KAQCAr7G+VjAAAL6MYAUAwCKCFQAAiwhWAAAsIlgBALCIYAUAwCKCFQAAiwhWAAB8IVgjIyPNIhNBQUFSsmRJ6dixo+zduzfFNbrgf9++faVYsWJy2223yWOPPWa2r0vu8OHD0q5dOylYsKD5nJdeekmuX7/u5m8DAPAVOTZYv//+exOaGzdulFWrVsm1a9fMZukXL150XjN48GD56quvZNGiReb6o0ePyqOPPup8XRf+11C9evWqWcf4448/lnnz5smoUaM89K0AAN7OJUsa2rBixYoUzzUQtcYZHR0t9957r5w7d05mz54t8+fPl5YtW5pr5s6dKzVq1DBh3LRpU1m5cqXs2rVLvvvuO7MBQN26dWXcuHEybNgwee211yQgIMBD3w4A4K1ybI31RhqkqmjRouanBqzWYsPDw53XVK9eXe644w6Jiooyz/Vn7dq1U+yqozvtxMXFyc6dO93+HQAA3i/H1liTS0xMlEGDBsldd90ltWrVMudiY2NNjbNIkSIprtUQ1dcc19y4VZ3jueOaG8XHx5vDQUMYAACvqrFqX+uOHTtkwYIFbhk0VbhwYecRFhbm8nsCALxHjg/Wfv36ybJly2Tt2rVStmxZ5/mQkBAzKOns2bMprtdRwfqa45obRwk7njuuuZFu0q7Nzo4jJibGBd8KAOCtcmyw6ibpGqqLFy+WNWvWSIUKFVK83qBBA8mXL5+sXr3aeU6n4+j0mmbNmpnn+vO3336TEydOOK/REcbBwcFSs2bNNO8bGBhoXk9+AACQ6/tYtflXR/z+5z//MXNZHX2i2jxboEAB87Nnz54yZMgQM6BJA7B///4mTHVEsNLpORqgXbt2lfHjx5vPGDlypPlsDVAAAHwmWD/88EPz87777ktxXqfUdO/e3Tx+9913xd/f3ywMoQOOdMTvBx984Lw2T548phm5T58+JnALFSokERERMnbsWDd/GwCAr8ibk5uCM5M/f36ZNm2aOdJTrlw5Wb58ueXSAQCQy/pYAQDIjQhWAAAsIlgBALCIYAUAwCKCFQAAiwhWAAAsIlgBALCIYAUAwCKCFQAAiwhWAAAsIlgBALCIYAUAwCKCFQAAiwhWAAAsIlgBALCIYAUAwCKCFQAAiwhWAAAsIlgBALCIYAUAwCKCFQAAiwhWAAAsIlgBALCIYAUAwCKCFQAAiwhWAAAsIlgBALCIYAUAwCKCFQAAi3wiWKdNmybly5eX/PnzS5MmTWTz5s2eLhIAwEt5fbAuXLhQhgwZIqNHj5atW7dKnTp1pHXr1nLixAlPFw0A4IW8PlgnTZokvXr1kh49ekjNmjVl+vTpUrBgQZkzZ46niwYA8EJ5xYtdvXpVoqOjZcSIEc5z/v7+Eh4eLlFRUWm+Jz4+3hwO586dMz/j4uJuuTzXL1+55c8AssrG/2Zdhd8F5LbfB8f7k5KSfDtYT506JQkJCVKqVKkU5/X5nj170nxPZGSkjBkzJtX5sLAwl5UTcIXCL/3/PygBX1fY0u/D+fPnpXDhwr4brDdDa7faJ+uQmJgoZ86ckWLFiomfn59Hy+aL9K9E/aMmJiZGgoODPV0cwKP4ffAcralqqIaGhmZ6rVcHa/HixSVPnjxy/PjxFOf1eUhISJrvCQwMNEdyRYoUcWk5kTn9jwj/IQH+i98Hz8ispuoTg5cCAgKkQYMGsnr16hQ1UH3erFkzj5YNAOCdvLrGqrRZNyIiQho2bCiNGzeWyZMny8WLF80oYQAAbPP6YO3UqZOcPHlSRo0aJbGxsVK3bl1ZsWJFqgFNyJm0WV7nIN/YPA/4In4fcge/pKyMHQYAAFni1X2sAAC4G8EKAIBFBCsAABYRrAAAWESwAgBgEcEKAIBFBCsAABYRrAAAWESwAgBgEcEKAIBFBCsAABYRrAAAWESwAgBgEcEKAIBFBCsAABYRrAAAWESwAgBgEcEKAIBFBCsAAL4crNOmTZPy5ctL/vz5pUmTJrJ58+YMr1+0aJFUr17dXF+7dm1Zvny528oKAPA9uSpYFy5cKEOGDJHRo0fL1q1bpU6dOtK6dWs5ceJEmtdv2LBBOnfuLD179pRt27ZJx44dzbFjxw63lx0A4Bv8kpKSkiSX0Bpqo0aNZOrUqeZ5YmKihIWFSf/+/WX48OGpru/UqZNcvHhRli1b5jzXtGlTqVu3rkyfPt2tZQcA+Ia8kktcvXpVoqOjZcSIEc5z/v7+Eh4eLlFRUWm+R89rDTc5reEuWbIk3fvEx8ebw0HD+8yZM1KsWDHx8/Oz8l0AALmL1kHPnz8voaGhJnu8IlhPnTolCQkJUqpUqRTn9fmePXvSfE9sbGya1+v59ERGRsqYMWMslRoA4E1iYmKkbNmy3hGs7qI14uS13HPnzskdd9xh/jGDg4Nv6bPrjZpioYRA1mwbO8DTRQC8RlxcnOl6DAoKyvTaXBOsxYsXlzx58sjx48dTnNfnISEhab5Hz2fnehUYGGiOG2mo3mqw+gfmv6X3A9lxq/97BZBaVroEc82o4ICAAGnQoIGsXr06Rf+nPm/WrFma79Hzya9Xq1atSvd6AABuVa6psSptoo2IiJCGDRtK48aNZfLkyWbUb48ePczr3bp1kzJlyph+UjVw4EBp0aKFTJw4Udq1aycLFiyQn3/+WWbMmOHhbwIA8Fa5Klh1+szJkydl1KhRZgCSTptZsWKFc4DS4cOHU4zWat68ucyfP19GjhwpL7/8slSpUsWMCK5Vq5YHvwUAwJvlqnmsnuqwLly4sBnEdKt9VlWGTbBWLiAz+99+0dNFAHwyC3JNHysAALkBwQoAgEUEKwAAFhGsAABYRLACAGARwQoAgEUEKwAAFhGsAABYRLACAGARwQoAgEUEKwAAFhGsAABYRLACAGARwQoAgKf2Yz179qwsXrxYfvjhB/nzzz/l0qVLUqJECalXr560bt3a7H8KAIAvy1KN9ejRo/Lcc89J6dKl5fXXX5fLly+bTcZbtWolZcuWlbVr18oDDzwgNWvWlIULF7q+1AAA5OYaq9ZIIyIiJDo62oRnWjRslyxZIpMnT5aYmBh58UU2WQYA+J4sBeuuXbukWLFiGV5ToEAB6dy5szlOnz5tq3wAAHhfU3BmoXqr1wMA4FM11qVLl2b5Azt06HAr5QEAwPuDtWPHjln6MD8/P0lISLjVMgEA4N3BmpiY6PqSAADgBVggAgAATy0Q4XDx4kX5/vvv5fDhw3L16tUUrw0YMEBc4cyZM9K/f3/56quvxN/fXx577DF577335Lbbbkv3+tGjR8vKlStNOXUhC23SHjdunBQuXNglZQQAINvBum3bNmnbtq1ZdUkDtmjRonLq1CkpWLCglCxZ0mXB2qVLFzl27JisWrVKrl27Jj169JDnn39e5s+fn+6iFnpMmDDBzL3VlaL+53/+x5z7/PPPXVJGAAD8kpKSkrLzhvvuu0+qVq0q06dPNzW/X3/9VfLlyyfPPPOMDBw4UB599FHrhdy9e7cJxy1btkjDhg3NuRUrVpiA/+uvvyQ0NDRLn7No0SJTTv2DIG/erP1NERcXZ77nuXPnJDg4+Ja+R5VhE27p/UB27H+bRVoAW7KTBdnuY/3ll19k6NChpjk2T548Eh8fL2FhYTJ+/Hh5+eWXxRWioqKkSJEizlBV4eHhpgybNm3K8uc4/kEyClX9PvoPmPwAACCrsh2sWjvVQFPa9Kv9l0qTXJcydIXY2Fhzr+Q0HLUZWl/LCm2u1v5VbT7OSGRkpPkujkP/aAAAwGXBqusGa5OsatGihYwaNUo+/fRTGTRokNSqVStbnzV8+HAz9zWjY8+ePXKrtNbZrl0705z82muvZXjtiBEjTM3WcbjqjwUAgHfK9uClN998U86fP28ev/HGG9KtWzfp06ePVKlSRebMmZOtz9Im5e7du2d4TcWKFSUkJEROnDiR4vz169fNyF99LSNa1jZt2khQUJDZ8k5r3BkJDAw0BwAAbgnW5P2c2jyrg4hulk6B0SMzzZo1M3vB6u46DRo0MOfWrFljFq5o0qRJhjVV3SdWg1KXZcyfP/9NlxUAAJctEKG1xe+++04++ugjZ+1Vp7FcuHBBXKFGjRqm1tmrVy/ZvHmz/PTTT9KvXz956qmnnCOCjxw5ItWrVzevO0L1wQcfNCOAZ8+ebZ5rf6weLLsIAMgxNVadD6ohp4OWdAStbnCuzaxvv/22ea7TcFxB+3E1THVzdccCEVOmTHG+rnNb9+7da+bXqq1btzpHDFeuXDnFZx06dEjKly/vknICAHxbtoNV56pqc7DOX02+PdwjjzxiapSuoiOA01sMQmlQJp+Sq/NtszlFFwAA9wfrDz/8IBs2bJCAgIBUwabNsQAA+LJs97HqgKG0+ih1BSRtEgYAwJdlO1h1QNDkyZOdz3WuqQ5a0gXvdYlBAAB8WbabgnVRex28pIstXLlyRZ5++mnZv3+/FC9eXD777DPXlBIAAG8NVl3iTwcuLVy40PzU2mrPnj3N7jMFChRwTSkBAPDGYNUpLTpXdNmyZSZI9QAAADfZx6rLAWrzLwAAsDR4qW/fvmYxCF19CQAA3GIfq+5ss3r1alm5cqXUrl1bChUqlOL1L7/8MrsfCQCA7warbjiuywkCAAALwTp37tzsvgUAAJ9xU7vbAACAWwhWXRBi48aNmV6nW8jpwKZp06Zl5WMBAPDNpuAnnnjC9KsWLlxY2rdvb3a30X1QdePwv//+W3bt2iU//vijLF++XNq1ayfvvPOO60sOAEBuDVZdWemZZ56RRYsWmRWXZsyYIefOnXOuFazLG7Zu3dqMGNZNyQEA8FVZHrwUGBhowlUPpcF6+fJlsyerLhwBAABuYlSwgzYL6wEAAP4/RgUDAGARwQoAgEUEKwAAFhGsAAB4OljPnj0rs2bNkhEjRsiZM2fMua1bt8qRI0dslg0AAO8fFbx9+3YJDw83I4L/+OMP6dWrlxQtWtTsanP48GH55JNPXFNSAAC8scY6ZMgQ6d69u+zfv9+svOTQtm1bWb9+vbiK1oy7dOkiwcHBZocdXbTiwoULWXpvUlKSPPTQQ2YxiyVLlrisjAAAZDtYdXWl3r17pzpfpkwZiY2NFVfRUN25c6esWrVKli1bZkL8+eefz9J7J0+ebEIVAIAc1xSsKzDFxcWlOr9v3z4pUaKEuMLu3btlxYoVJtR1nWL1/vvvm1ryhAkTzLrF6fnll19k4sSJ8vPPP0vp0qVdUj4AAG66xtqhQwcZO3asXLt2zTzXmqD2rQ4bNsxlG6BHRUWZ5l9HqCrt5/X395dNmzal+75Lly7J008/bXbbCQkJcUnZAAC4pWDV2p/2bZYsWdKsFdyiRQupXLmyBAUFyRtvvCGuoE3Mer/k8ubNawZNZdT8PHjwYGnevLk8/PDDWb5XfHy8qZEnPwAAcFlTsI4G1n5O3SZORwhryNavX9/UILNr+PDhZv/WzJqBb8bSpUtlzZo1sm3btmy9LzIyUsaMGXNT9wQA4KYX4b/77rvNcSuGDh1qRhhnpGLFiqYZ98SJEynOX79+3YwUTq+JV0P1wIEDpgk5OW2uvueee2TdunVpvk/n5urIZwetsYaFhWXjWwEAfFmWgnXKlClZ/sABAwZk+Vod7JSVAU/NmjUzi1JER0dLgwYNnMGZmJgoTZo0Sbc2/Nxzz6U4V7t2bXn33XfNZu0ZDc7SAwAAlwWrhlFyJ0+eNAODHLVBDb2CBQuaftDsBGtW6ebpbdq0MYtRTJ8+3Qyc6tevnzz11FPOEcG66lOrVq3MAhWNGzc2Ndm0arN33HGHVKhQwXoZAQDI8uClQ4cOOQ8doFS3bl3T96lNsXroY+1nHTdunMv+VT/99FOpXr26CU+dZqPN0DNmzHC+rmG7d+9eE/gAAHiKX5IuS5QNlSpVks8//1zq1auX4rw20z7++OMmfL2J9rHqgK1z586ZVZ9uRZVhE6yVC8jM/rdf9HQRAJ/MgmxPtzl27JgZOHSjhIQEOX78eHY/DgAAr5LtYNWmWF3SUHezSV5b7dOnz01NuQEAwKeDdc6cOWZQkK6C5BhBq4OFSpUqZbaSAwDAl2V7HqtOj1m+fLlZG3jPnj3mnA4qqlq1qivKBwCAbywQoUFKmAIAcIvB+uyzz2baVAwAgK/KdrD+/fffKZ7r/NEdO3aYRSJatmxps2wAAHh/sC5evDjVOV1aUEcF6xxXAAB8mb+VD/H3NwvX37j0IQAAvsZKsCrdSSathSMAAPAl2W4KTr6lmtIVEXU1pq+//loiIiJslg0AAO8P1hs3DtdmYJ3bOnHixExHDAMA4O2yHaxr1651TUkAAPDFPladUqNTa9Ja+Z/pNgAAX5ftYF23bp1cvXo11fkrV67IDz/8YKtcAAB4d1Pw9u3bnY937dolsbGxKbaMW7FihZQpU8Z+CQEA8MZgrVu3rvj5+ZkjrSbfAgUKyPvvv2+7fAAAeGewHjp0yEytqVixomzevNmMBHYICAiQkiVLSp48eVxVTgAAvCtYy5Ur51y+EAAA3EKwLl26VB566CHJly+feZyRDh06ZOUjAQDw3WDt2LGjGaykzb36OD3a/6oDmQAA8FVZCtbkzb80BQMA4IZF+AEAQBZrrFOmTMnyBw4YMOBWygMAgPcHa1b3WdU+VlcF65kzZ6R///7y1VdfmYX/H3vsMXnvvffktttuy/B9UVFR8sorr8imTZvMdCCdj/vtt9+aebcAAHgkWHUOq6d16dLFbE+3atUquXbtmvTo0UOef/55mT9/foah2qZNGxkxYoRZvCJv3rzy66+/mmAGACBH7G6TnC4Y4aiputLu3bvNkolbtmyRhg0bmnMalG3btpUJEyZIaGhomu8bPHiwqUEPHz7cea5atWouLSsAwLfdVNVt9uzZUqtWLcmfP7859PGsWbPEVbTmWaRIEWeoqvDwcFPz1CbetJw4ccK8plOEmjdvLqVKlZIWLVrIjz/+mOG94uPjzU49yQ8AAFwWrKNGjZKBAwdK+/btZdGiRebQx1o71NdcwTGHNjlt1i1atGiKzQCSO3jwoPn52muvSa9evUyNt379+tKqVSvZv39/uveKjIyUwoULO4+wsDDL3wYA4M2yHawffvihzJw50wSQrrKkhz6eMWOGfPDBB9n6LG2idSzsn96xZ88euRmO+ba9e/c2/bH16tUzg7C0KXjOnDnpvk/7Y8+dO+c8YmJibur+AADflO0+Vh04lLxJ1qFBgwZy/fr1bH3W0KFDpXv37hleo4v+h4SEmKbd5PReOlJYX0tL6dKlzc+aNWumOF+jRg05fPhwuvcLDAw0BwAAbgnWrl27mlrrpEmTUpzXGquO3M0O3SEn+S456WnWrJmcPXtWoqOjTYCrNWvWmFppkyZN0nxP+fLlzaCmvXv3pji/b98+s+4xAAA5ZlSwDl5auXKlNG3a1DzXQUJaC+zWrZsMGTLEed2N4XuztJap02a0r3T69Omm1tyvXz956qmnnCOCjxw5YvpPP/nkE2ncuLFpRn7ppZdk9OjRUqdOHTN/9eOPPzZNy59//rmVcgEAcMvBumPHDjMISB04cMD8LF68uDn0NQfbU3A+/fRTE6Yano4FIpKvCKVhq7XTS5cuOc8NGjRIrly5YgZWabOxBqzOg61UqZLVsgEA4OCX5JiMijTpdBsdHawDmYKDg2/ps6oMm2CtXEBm9r/9oqeLAPhkFrAEEQAAnmwK1qZVXfVo7dq1ZqTujdvIbd261Wb5AADw7mDt2bOnGbj0+OOPOwcJAQCAmwzWZcuWyfLly+Wuu+7K7lsBAPB62e5jLVOmjAQFBbmmNAAA+FqwTpw4UYYNGyZ//vmna0oEAIAvNQXrcoY6gEmXGixYsKDky5cvxes6XxQAAF+V7WDt3LmzWeXozTffNFuxMXgJAIBbCNYNGzaY/VF1FSMAAHCLfazVq1eXy5cvZ/dtAAD4hGwH61tvvWW2e1u3bp2cPn3aLPOU/AAAwJdluylYd5lRuhh+crrksPa3JiQk2CsdAADeHqy6lCEAALAUrC1atEj3teTbxgEA4ItueXeb8+fPy4wZM8y6wYwUBgD4upsO1vXr10tERISULl1aJkyYIC1btpSNGzfaLR0AAN7cFBwbGyvz5s2T2bNnmxHATz75pMTHx8uSJUukZs2arislAADeVmNt3769VKtWTbZv3y6TJ0+Wo0ePmn1ZAQDATdRYv/nmGxkwYID06dNHqlSpktW3AQDgU7JcY/3xxx/NQKUGDRpIkyZNZOrUqXLq1CnXlg4AAG8N1qZNm8rMmTPl2LFj0rt3b1mwYIGEhoZKYmKirFq1yoQuAAC+LtujggsVKiTPPvusqcH+9ttvZnlDXeawZMmS0qFDB9eUEgAAX5jHqoOZxo8fL3/99Zd89tln9koFAICvLhCh8uTJIx07dpSlS5eKq+gG6l26dJHg4GApUqSI9OzZUy5cuJDp9KCuXbtKSEiIqWnXr19fvvjiC5eVEQAAK8HqDhqqO3fuNP25y5YtMwtUPP/88xm+p1u3brJ3714T+Nps/eijj5q5t9u2bXNbuQEAviVXBOvu3btlxYoVMmvWLDMi+e677zZzaHUAlc6nzWhT9v79+5vlFitWrCgjR440td3o6Gi3lh8A4DtyRbBGRUWZQGzYsKHzXHh4uPj7+8umTZvSfV/z5s1l4cKFphlZRy9rEF+5ckXuu+++dN+jK0mxxywAwKuDVftKddRxcnnz5pWiRYua19Lz73//W65duybFihWTwMBAM01o8eLFUrly5XTfExkZKYULF3YeYWFhVr8LAMC7eTRYhw8fbjZHz+jYs2fPTX/+q6++KmfPnpXvvvtOfv75ZxkyZIjpY9X+1vSMGDFCzp075zxiYmJu+v4AAN+T7f1YbdI5sN27d8/wGu0b1VG9J06cSHH++vXrpolXX0vLgQMHzOpQukfsP/7xD3NOt7X74YcfZNq0aTJ9+vQ036c1Wz0AAMh1wVqiRAlzZKZZs2am5qmDjnRJRbVmzRrTb6qDmdJy6dIl81P7YW+cGqTvAwDAZ/tYa9SoIW3atJFevXrJ5s2b5aeffpJ+/frJU089ZZZVVEeOHJHq1aub15U+1r5U7VfVc1qDnThxopmuo3NuAQDw2WBVn376qQnLVq1aSdu2bc2UmxkzZjhf10FKOmfVUVPNly+fLF++3NSIdcu7O++8Uz755BP5+OOPzfsBAPC6puDs0BHA8+fPT/f18uXLS1JSUopzur0dKy0BANwp1wSrN9j/9oueLgIAwMVyTVMwAAC5AcEKAIBFBCsAABYRrAAAWESwAgBgEaOCM+GYwsMuNwDgu+L+XwbcOK0zLQRrJs6fP29+sssNAOD8+fNm57OM+CVlJX59mK4rrJupBwUFmd124P6/EvWPGt1lKDg42NPFATyK3wfP0ajUUNVldG9cg/5G1Fgzof+AZcuW9XQxfJ7+R4T/kAD/xe+DZ2RWU3Vg8BIAABYRrAAAWESwIkfTTedHjx7N5vMAvw+5BoOXAACwiBorAAAWEawAAFhEsAIAYBHBCgCARQQrAAAWEawAAFhEsAIAYBHBCgCARQQrAAAWEawAAFhEsAIAYBHBCgCARQQrAAAWEawAAFhEsAIAYBHBCgCARQQrAAAWEawAAFhEsAIAYBHBCgCARQQrAAAWEawAAFiU1+aHeaPExEQ5evSoBAUFiZ+fn6eLAwDwgKSkJDl//ryEhoaKv3/GdVKCNRMaqmFhYZ4uBgAgB4iJiZGyZctmeA3BmgmtqTr+MYODgz1dHACAB8TFxZlKliMTMkKwZsLR/KuhSrACgG/zy0KXIIOXAACwiGAFAMAighUAAIsIVgAALCJYAQCwiGAFAMAighUAAIsIVgAALCJYAQCwiGAFAMAighUAAIsIVgAALCJYAQCwyG2721y7dk1iY2Pl0qVLUqJECSlatKi7bg0AgHfUWHW39Q8//FBatGhhtlwrX7681KhRwwRruXLlpFevXrJlyxZXFgEAAO8I1kmTJpkgnTt3roSHh8uSJUvkl19+kX379klUVJSMHj1arl+/Lg8++KC0adNG9u/f76qiAADgNn5JSUlJrvjgzp07y8iRI+Uf//hHhtfFx8eb8A0ICJBnn31WcuKu8YULF5Zz586x0TkA+Ki4bGSBy4LVWxCsAIC4bGQBo4IBAMhto4IfeeQR8fPzS3Vez+XPn18qV64sTz/9tFSrVs0dxQEAwGXcUmPV6vOaNWtk69atJkz12LZtmzmnA5gWLlwoderUkZ9++snqfSMjI6VRo0YSFBQkJUuWlI4dO8revXut3gMAALcHa0hIiKmRHjx4UL744gtzHDhwQJ555hmpVKmS7N69WyIiImTYsGFW7/v9999L3759ZePGjbJq1Sozl1ZHIV+8eNHqfQAAcOvgJZ23qrXRqlWrpjivU2+aN28up06dkt9++03uueceOXv2rMvKcfLkSVNz1cC99957s/QeBi8BAOJy2uAlbe7ds2dPqvN6LiEhwTzWvta0+mFt0n8QldGqTzr9R/8Bkx8AAOSowUtdu3aVnj17yssvv2z6PJWuuPTmm29Kt27dzHOtRWY25/VWJCYmyqBBg+Suu+6SWrVqZdgvO2bMGJeVAwDg3dzSFKy10rfeekumTp0qx48fN+dKlSol/fv3N/2qefLkkcOHD4u/v7+ULVvWJWXo06ePfPPNN/Ljjz9meA+tserhoDXWsLAwmoIBwIfF5eQFIhxNq+4MqX79+sl//vMfWb9+vVSoUCFb76WPFQAQl40scNvuNg7uDCf9m0FrxYsXL5Z169ZlO1QBAMgutwXr559/Lv/+979Nk+/Vq1dTvKbzW11Bp9rMnz/f1FZ1LqtuW6f0r44CBQq45J4AAN/mllHBU6ZMkR49eph+VV0YonHjxlKsWDEzr/Whhx5y2X11yzqttt93331SunRp56ELUgAAkGtrrB988IHMmDHD7Hgzb948+de//iUVK1aUUaNGyZkzZ1x2X/YXAAB4ZY1Vm391IQilTbC6AbpjGs5nn33mjiIAAOBdSxo6aqZ33HGHWWJQHTp0iFolAMCruCVYW7ZsKUuXLjWPta918ODB8sADD0inTp3MzjcAAHgLt8xj1VWP9Mib979dugsWLJANGzZIlSpVpHfv3hIQECA5FfNYAQBxOXmBiNyGYAUAxOXEBSKuXLki27dvlxMnTpjaa3IdOnRwVzEAAHAptwTrihUrzGL7uj3cjXRHG8cONwAA5HZuGbykywo+8cQTcuzYMWd/q+MgVAEA3sQtwao72gwZMsSsvAQAgDdzS7A+/vjjZhF8AAC8nVtGBV+6dMk0BZcoUUJq164t+fLlS/H6gAEDJKdiVDAAIC6njQrWZQtXrlwp+fPnNzVXHbDkoI9zcrACAJAdbgnWV155RcaMGSPDhw8Xf3+3tD4DAOARbkk53X9Vly8kVAEA3s4tSRcREcEeqAAAn+CWpmCdqzp+/Hj59ttv5c4770w1eGnSpEnuKAYAAN4RrL/99pvUq1fPPN6xY0eK15IPZAIAILdzS7CuXbvWHbcBAMDjGE0EAEBuqLE++uijMm/ePDORVh9n5Msvv3RVMQAA8I5g1RUqHP2n+hgAAF/ARueZYElDAEBcNrKAPlYAACxyWbC2adNGNm7cmOl158+fl7ffflumTZvmqqIAAJD7+1h1N5vHHnvMVJ3bt28vDRs2lNDQULMQ/99//y27du2SH3/8UZYvXy7t2rWTd955x1VFAQDAO/pY4+PjZdGiRWY5Qw1RbZs2N/Xzk5o1a0rr1q2lZ8+eUqNGDcmp6GMFAMRlIwvcOnhJC3T58mUpVqxYqmUNcyqCFQAQl9P2Y3XQQjH1BgDgzdwarACgKj75hqeLAB9z8N+vuO1eTLcBAMAighUAAIsIVgAAcmOwnj17VmbNmiUjRoyQM2fOmHNbt26VI0eOuKsIAAB4x+Cl7du3S3h4uBkR/Mcff0ivXr2kaNGiZlebw4cPyyeffOKOYgAA4B011iFDhkj37t1l//79ZuUlh7Zt28r69evdUQQAALwnWLds2SK9e/dOdb5MmTISGxvrjiIAAOA9wRoYGGhWrbjRvn37pESJEu4oAgAA3hOsHTp0kLFjx8q1a9ecawVr3+qwYcPMQv2upjvnlC9f3jRDN2nSRDZv3uzyewIAfJNbgnXixIly4cIFKVmypFkruEWLFlK5cmUJCgqSN95w7QosugGA9vGOHj3ajEKuU6eOWfz/xIkTLr0vAMA3uXURft3hRkcIa8jWr1/fjBR2Na2hNmrUSKZOnWqeJyYmSlhYmPTv31+GDx+e6ftZhB+wjyUNkduWNMyxi/Dffffd5nCXq1evSnR0tJk76+Dv728CPSoqKt2t7vRwSKtvGACA9LgsWKdMmZLlawcMGOCSMpw6dUoSEhKkVKlSKc7r8z179qT5nsjISBkzZoxLygPA/QuiA14TrO+++26K5ydPnpRLly5JkSJFnCsxFSxY0PS7uipYb4bWbrVPNnmNVZuOAQDwaLAeOnTI+Xj+/PnywQcfyOzZs6VatWrm3N69e80KTGnNb7WlePHikidPHjl+/HiK8/o8JCQk3alBegAAkGNHBb/66qvy/vvvO0NV6WOt1Y4cOdJl9w0ICJAGDRrI6tWrned08JI+b9asmcvuCwDwXW4ZvHTs2DG5fv16qvPa/3ljbdI2bdaNiIiQhg0bSuPGjWXy5Mly8eJF6dGjh0vvCwDwTW4J1latWpkmX93dRqfZKB2t26dPH5dPuenUqZPp3x01apRZPrFu3bqyYsWKVAOaAADINfNYNdi01qiBli9fPnNOa7C6UMO8efPMAKacinmsAIC4nDaPVdcDXr58uVkb2DHNpXr16lK1alV33B4AALdx6wIRGqSEKQDAm7klWJ999tkMX58zZ447igEAgHcE699//53iue5ys2PHDrNIRMuWLd1RBAAAvCdYFy9enOqczifVUcGVKlVyRxEAAPCeBSLSvLG/v5ljeuPShwAA5GYeC1Z14MCBNBeOAAAgt3JLU3DyRe2VTp3V1Zi+/vprM78VAABv4ZZg3bZtW6pmYJ3bOnHixExHDAMAkJu4JVjXrl3rjtsAAOAbfaw6pUan1qS1RBTTbQAA3sQtwbpu3Tq5evVqqvNXrlyRH374wR1FAAAg9zcFb9++3fl4165dZneZ5FvG6aL8ZcqUcWURAADwnmDVLdr8/PzMkVaTb4ECBcwG6AAAeAuXBuuhQ4fM1JqKFSvK5s2bzUhgh4CAALNdXJ48eVxZBAAAvCdYy5Ur51y+EAAAX+CyYF26dKk89NBDZmNzfZyRDh06uKoYAAC4lV+SttW6gC4CoYOVtLlXH6dbAD8/M5DJG3aNBwB4p+xkgctqrMmbf2kKBgD4Co8uwg8AgLdxWY11ypQpWb52wIABrioGAADe0cdaoUKFrBXAz08OHjwoORV9rACAuJzQx6pzWAEA8DVu72PVCrKLKskAAPhOsM6ePVtq1aol+fPnN4c+njVrlrtuDwCA9+zHOmrUKJk0aZL0799fmjVrZs5FRUXJ4MGD5fDhwzJ27Fh3FAMAgNw7eCk5XSNYRwl37tw5xfnPPvvMhO2pU6ckp2LwEgAgLhtZ4Jam4GvXrknDhg1TnW/QoIFcv37dHUUAAMAt3BKsXbt2lQ8//DDV+RkzZkiXLl3cUQQAALynj9UxeGnlypXStGlT83zTpk2mf7Vbt24yZMgQ53XaFwsAQG7llmDdsWOH1K9f3zw+cOCA+Vm8eHFz6GvJF4sAACA3c0uwrl271h23AQDA41iEHwCA3FZjvXLlirz//vum5nrixIlU28ht3brVHcUAAMA7grVnz55m4NLjjz8ujRs3pi8VAOC13BKsy5Ytk+XLl8tdd93ljtsBAODdfaxlypSRoKAgd9wKAADvD9aJEyfKsGHD5M8//xR3+eOPP0wTtO4LW6BAAalUqZKMHj1arl696rYyAAB8j1uagnU5Qx3AVLFiRSlYsKDky5cvxetnzpyxfs89e/aYQVIfffSRVK5c2cyX7dWrl1y8eFEmTJhg/X4AALhtEf7w8HCzypLWIEuVKpVq8FJERIRb/r/xzjvvmKUVDx48mOX3sAg/ACAuG1nglhrrhg0bzDZxderUEU/Sf5CiRYtmeE18fLw5kv9jAgCQo/pYq1evLpcvXxZP+v33381c2t69e2d4XWRkpPmrxHGEhYW5rYwAgNzPLcH61ltvydChQ2XdunVy+vRpUwtMfmTH8OHDTVNyRof2ryZ35MgRadOmjTzxxBOmnzUjI0aMMDVbxxETE3NT3xkA4Jvc0sfq7//f/L6xb1VvrecSEhKy/FknT5404ZwRHSQVEBBgHh89elTuu+8+s6vOvHnznGXJKvpYAQBxOa2P1eYi/CVKlDBHVmhN9f777zcbqs+dOzfboQoAQHa5JVhbtGiR7mvJt42zSUNVa6rlypUz02u0pusQEhLiknsCAOC2jc6TO3/+vHz22Wcya9YsiY6OzlZTcFatWrXKDFjSo2zZsilec0PrNwDAR7m1bXT9+vVmzmrp0qVNLbJly5ayceNGl9yre/fuJkDTOgAAyLU11tjYWDNoaPbs2abz98knnzTzRJcsWSI1a9Z09e0BAPCeGmv79u2lWrVqsn37dpk8ebIZoatzSQEA8FYurbF+8803MmDAAOnTp49UqVLFlbcCAMD7a6w//vijGaik012aNGkiU6dOlVOnTrnylgAAeG+w6qIMM2fOlGPHjpmlBBcsWCChoaFm1xkdtauhCwCAN3HLykvJ7d271wxk+t///V85e/asPPDAA7J06VLJqVh5CQAQl40scPtSRDqYafz48fLXX3+ZuawAAHgTt9dYcxtqrACAuJxcYwUAwJsRrAAAWESwAgBgEcEKAIBFBCsAABYRrAAAWESwAgBgEcEKAIBFBCsAABYRrAAAWESwAgBgEcEKAIBFeW1+mDdy7FGgCzADAHxT3P/LgKzsW0OwZsKxGXtYWJiniwIAyAGZoLvcZIRt4zKRmJgoR48elaCgIPHz8/N0cXzyr0T9oyYmJoZt++Dz+H3wHI1KDdXQ0FDx98+4F5Uaayb0H7Bs2bKeLobP0/+I8B8S4L/4ffCMzGqqDgxeAgDAIoIVAACLCFbkaIGBgTJ69GjzE/B1/D7kDgxeAgDAImqsAABYRLACAGARwQoAgEUEKwAAFhGsyLGmTZsm5cuXl/z580uTJk1k8+bNni4S4BHr16+X9u3bm1V/dAW4JUuWeLpIyADBihxp4cKFMmTIEDO1YOvWrVKnTh1p3bq1nDhxwtNFA9zu4sWL5ndA/9hEzsd0G+RIWkNt1KiRTJ061blms66R2r9/fxk+fLiniwd4jNZYFy9eLB07dvR0UZAOaqzIca5evSrR0dESHh6eYs1mfR4VFeXRsgFAZghW5DinTp2ShIQEKVWqVIrz+jw2NtZj5QKArCBYAQCwiGBFjlO8eHHJkyePHD9+PMV5fR4SEuKxcgFAVhCsyHECAgKkQYMGsnr1auc5Hbykz5s1a+bRsgFAZtjoHDmSTrWJiIiQhg0bSuPGjWXy5MlmykGPHj08XTTA7S5cuCC///678/mhQ4fkl19+kaJFi8odd9zh0bIhNabbIMfSqTbvvPOOGbBUt25dmTJlipmGA/iadevWyf3335/qvP7xOW/ePI+UCekjWAEAsIg+VgAALCJYAQCwiGAFAMAighUAAIsIVgAALCJYAQCwiGAFAMAighXwUbqwQJEiRTxdDMDrEKxADtS9e3ezobXjKFasmLRp00a2b99u7R6dOnWSffv2iSuUL1/eLEOZXffdd58MGjTIJWUC3IVgBXIoDdJjx46ZQzcgyJs3r/zzn/+09vkFChSQkiVLWvs8AP9FsAI5VGBgoNkmTw9dK3n48OESExMjJ0+edF4zbNgwqVq1qhQsWFAqVqwor776qly7ds35+q+//mrWmA0KCpLg4GCza9DPP/+cZlNwRtfeSFdCfe2118wC8FrO0NBQGTBggLPW+eeff8rgwYOdNW51+vRp6dy5s5QpU8aUt3bt2vLZZ5+lqKV///338t577znf98cff5jXduzYIQ899JDcdtttZsP7rl27yqlTp6z/mwM2EKxALtnd5P/8n/8jlStXNs3CDhqCGpC7du0ygTRz5kx59913na936dJFypYtK1u2bJHo6GgTzvny5UvzHtm59osvvjD3+eijj2T//v2yZMkSE5Tqyy+/NJ8zduxYZ41bXblyxYT1119/bYLy+eefNwG5efNm87qWX7cF7NWrl/N9YWFhcvbsWWnZsqXUq1fPBP2KFSvM3rxPPvmk1X9jwBpdhB9AzhIREZGUJ0+epEKFCplDf1VLly6dFB0dneH73nnnnaQGDRo4nwcFBSXNmzcvzWvnzp2bVLhw4Sxde6OJEycmVa1aNenq1atpvl6uXLmkd999N9PPadeuXdLQoUOdz1u0aJE0cODAFNeMGzcu6cEHH0xxLiYmxvyb7N27N0vlBdyJGiuQQ2mzrO65qYfW6lq3bm2aQ7WZ1WHhwoVy1113meZibSYdOXKkHD58OMW+ts8995yEh4fLW2+9JQcOHEj3ftm59oknnpDLly+b5metYS5evFiuX7+e4fdJSEiQcePGmZqt7iOq5f32229TlDct2kS9du1ac73jqF69unktozICnkKwAjlUoUKFTNOvHo0aNZJZs2aZzd61uVdFRUWZ5tu2bdvKsmXLZNu2bfLKK6/I1atXnZ+h/aA7d+6Udu3ayZo1a6RmzZomBNOSnWu1iXbv3r3ywQcfmEFQL7zwgtx7770p+ndvpHvranOv9gtrUOofDPrHQvLyptcM3r59e+cfGY5Dm6D1nkBOk9fTBQCQNTqYx9/f39QU1YYNG6RcuXImTB2S12YddHCTHjqYSAcPzZ07Vx555JE075GdazVQNfD06Nu3r6lF/vbbb1K/fn0JCAgwNdTkfvrpJ3n44YflmWeeMc8TExPNdB8NcIe03qefp326OoVHR0YDOR01ViCHio+Pl9jYWHPs3r1b+vfv76y9qSpVqphm1AULFpgm0SlTpqSoYWoA9+vXT9atW2cCV4NNBybVqFEj1b2yc63SAVOzZ882g5AOHjxoBlZp0GrQKw3B9evXy5EjR5yjd7W8q1atMn8Q6Pfp3bu3GYSUnL5v06ZNZjSwvk/DV0P7zJkzJui1TPpdtQm5R48eqUIYyBHc2qMLIMuDl/TX03HowKJGjRolff755ymue+mll5KKFSuWdNtttyV16tTJDBhyDEiKj49Peuqpp5LCwsKSAgICkkJDQ5P69euXdPny5VSDlzK79kaLFy9OatKkSVJwcLAZXNW0adOk7777zvl6VFRU0p133pkUGBhoyq9Onz6d9PDDD5uylixZMmnkyJFJ3bp1M+ccdDCSflaBAgXM+w4dOmTO79u3L+mRRx5JKlKkiHmtevXqSYMGDUpKTEy0/m8P3Co//T+eDncAALwFTcEAAFhEsAIAYBHBCgCARQQrAAAWEawAAFhEsAIAYBHBCgCARQQrAAAWEawAAFhEsAIAYBHBCgCARQQrAABiz/8Fg2YroIIQfugAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] }, "metadata": {}, "output_type": "display_data" @@ -184,7 +189,7 @@ ], "metadata": { "kernelspec": { - "display_name": "Python 3", + "display_name": ".venv", "language": "python", "name": "python3" }, @@ -198,7 +203,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.10.14" + "version": "3.12.9" } }, "nbformat": 4, diff --git a/examples/qaoa.ipynb b/examples/qaoa.ipynb index e248bf6..6f06a1a 100644 --- a/examples/qaoa.ipynb +++ b/examples/qaoa.ipynb @@ -11,11 +11,11 @@ "In QAOA, two types of Hamiltonians are alternately applied:\n", "\n", "1. **Problem Hamiltonian, $ H_z $:** Encodes the problem's constraints and objective. Here, $ H_z = I \\otimes Z + Z \\otimes I $, which introduces interactions that depend on the \\(Z\\)-basis states of the qubits.\n", - "2. **Mixer Hamiltonian, $ H_{xx} $:** Creates transitions between basis states to explore the solution space. $ H_{xx} = X \\otimes X $, which flips pairs of qubits, helping the system escape local minima.\n", + "2. **Mixer Hamiltonian, $ H\\_{xx} $:** Creates transitions between basis states to explore the solution space. $ H\\_{xx} = X \\otimes X $, which flips pairs of qubits, helping the system escape local minima.\n", "\n", - "These Hamiltonians are implemented as `AnalogGate` objects, which are applied sequentially to evolve the quantum state. The circuit starts with an initial state and alternates between $ H_z $ and $ H_{xx} $ gates for a series of steps, with random durations to represent the parameters. After a chosen number of steps, the qubits are measured, which ideally yields an approximate solution to the optimization problem.\n", + "These Hamiltonians are implemented as `AnalogGate` objects, which are applied sequentially to evolve the quantum state. The circuit starts with an initial state and alternates between $ H*z $ and $ H*{xx} $ gates for a series of steps, with random durations to represent the parameters. After a chosen number of steps, the qubits are measured, which ideally yields an approximate solution to the optimization problem.\n", "\n", - "In this example, we set up a **two-qubit system** and use the `AnalogCircuit` class to evolve the state under $ H_z $ and $ H_{xx} $ ten times. The `measure()` method at the end captures the resulting state, which corresponds to a candidate solution." + "In this example, we set up a **two-qubit system** and use the `AnalogCircuit` class to evolve the state under $ H*z $ and $ H*{xx} $ ten times. The `measure()` method at the end captures the resulting state, which corresponds to a candidate solution.\n" ] }, { @@ -29,19 +29,19 @@ }, "outputs": [], "source": [ - "import numpy as np\n", - "import matplotlib.pyplot as plt\n", - "import seaborn as sns\n", "import itertools\n", "import warnings\n", - "warnings.filterwarnings(\"ignore\")\n", "\n", - "from oqd_core.interface.analog.operator import *\n", - "from oqd_core.interface.analog.operation import *\n", - "from oqd_core.backend.metric import *\n", + "import matplotlib.pyplot as plt\n", + "import numpy as np\n", + "import seaborn as sns\n", + "from oqd_analog_emulator.qutip_backend import QutipBackend\n", + "from oqd_core.backend.metric import Expectation\n", "from oqd_core.backend.task import Task, TaskArgsAnalog\n", + "from oqd_core.interface.analog.operation import AnalogCircuit, AnalogGate\n", + "from oqd_core.interface.analog.operator import PauliI, PauliX, PauliY, PauliZ\n", "\n", - "from oqd_analog_emulator.qutip_backend import QutipBackend" + "warnings.filterwarnings(\"ignore\")" ] }, { @@ -55,7 +55,7 @@ }, "outputs": [], "source": [ - "X, Y, Z, I = PauliX(), PauliY(), PauliZ(), PauliI()" + "X, Y, Z, I = PauliX(), PauliY(), PauliZ(), PauliI() # noqa: E741" ] }, { @@ -146,8 +146,10 @@ "outputs": [ { "data": { - "text/plain": "
", - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAgoAAAESCAYAAACcrP0+AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAABle0lEQVR4nO2dd3xb9bn/P0dbtmxL3jN27MSZjrPIIgRICISWXejtYlxogZbCbX9QWuC20HIpZbXl3g4KLS0tXEYJpazLiktCEkKmnTiJ471tWbYkL23p/P6QjmzHS+McnSP5eb9efoGlo+95/I109DnPZFiWZUEQBEEQBDEFMrENIAiCIAhCupBQIAiCIAhiWkgoEARBEAQxLSQUCIIgCIKYFhIKBEEQBEFMCwkFgiAIgiCmhYQCQRAEQRDTohDbgEjx+XzweDyQyWRgGEZscwiCIAgibmBZFj6fDwqFAjLZzD6DuBUKHo8HJ06cENsMgiAIgohbKioqoFKpZjwmboUCp4AqKiogl8t5WdPr9eLEiRO8rpmo0F6FDu1V6NBehQ7tVejQXk2G25PZvAlAHAsFLtwgl8t5/4cXYs1EhfYqdGivQof2KnRor0KH9moyoYTuKZmRIAiCIIhpIaFAEARBEMS0kFAgCIIgCGJaBMtRcLlcuOaaa/DjH/8Y69evn/KYU6dO4cEHH0R9fT0WLFiAn/70p1i+fDmvdni9Xrjd7pCPBQCHwzGn41hKpXJO//0EQRDEGIIIBafTibvvvhsNDQ3THmOz2XDrrbfi8ssvxy9+8Qu8/PLLuO222/DRRx8hKSkpahtYlkVvby+sVmtYr1EoFGhra5vzvRn0ej1yc3Pn/D4QBEHMdXgXCo2Njbj77rvBsuyMx7333ntQq9W49957wTAMHnjgAezZswfvv/8+rrnmmqjt4ERCdnY2kpKSQvrCY1kWdrsdWq12zn5BsiwLm82Gvr4+AEBeXp7IFhEEQRBiwrtQOHjwINavX4/vf//7WLly5bTH1dTUYM2aNcEvZIZhsHr1alRXV0ctFLxeb1AkZGRkhPw6rlOVRqOZs0IBALRaLQCgr68P2dnZFIYgiBjAsixMo1YMOW3ISEqFQZsitkkEAUAAofC1r30tpONMJhMWLFgw4bGMjIwZwxVTweUVjMfhcIBlWWi12lk9G+Phjg3nNYkKt3cOhwMajWbS89y+T7X/xERor0Jnru5VQ38n3jz9KbqHB4KPLUgvwDXLtiAvZeqbnbm6V5FAezWZcPZCtIZLdrt9UttIlUoFl8sV1jrTtXFWKBRBwRCJbXMdp9MJt9uNurq6GY+jNtqhQ3sVOnNpr+pGu3FwsBksABkYJMvVGPE60Gjuwi/3vorzDYtRqEmf9vXxvFdOrxfDYV7zp4MFi1MWM7pHR7AsPQMrMrImHRPPeyUmogkFtVo9SRS4XK4p715nYqqWnA6HA21tbdBqtWGtRzkKY8hkMiiVSixYsGBajwK1RA0N2qvQmWt7daTrDD7vbgYArCtYjCuXbkaSUgOLfRgvH9+FhoFO7LaewR3rr0KJYWK+ULzv1ZDDjm++8iKGHA7e164ZMCG/qAgXlS8GEP97JQTcnoSCaEIhJycH/f39Ex7r7+9HdnZ2WOtM1ZJTLpeDYZjgT7hE+rpEgtuD2VqeitUSlWVZNPaboFYoMM8w/d2WlKD2saEzF/aqa8iEV05UAQC2lq7GlUs3B687mTo9vrPhKjx/+D2cMDbj+aP/h/vO/wZ0au2kdeJ1r3Y3NWLI4YBcJoNawc9XUbJKhSJDOo52tOMP+/Zg0/wypIy70YnXvRIb0YRCZWUlnnvuObAsC4ZhwLIsjh49ittvv10sk4g4wceyeOyj91HVcAYA8PW163HT+o0iW0UQoeP1+fC/1R/D4/NiWXYJrhgnEjjkMjluWH0Jnvr0VfSOmLHz5G7cuHqHSBbzz656f1jz1k2bcU3lat7W9fp8uP3Vl9BqHsCHdafwpZX8rT1XiWlnRpPJBEfAzbRjxw4MDQ3hkUceQWNjIx555BHY7XZceumlsTSJiEP+ebw6KBIA4KXDn+NQW6t4BhFxh8U+jN0t1Xjz1Kf4V9NRDNgGY3r+vW3H0THYB61Sja9UXgTZNB5MtUKFr6/aDgYMjnSdwRlTe0ztFAqLzYY6Yy8A4PwFi3hdWy6T4aoVKwEA75w8QcnpPBBTobB582a89957AACdToc//OEPOHLkCK655hrU1NTg2Wef5aXZUqLwt7/9DUajMeTjX3/9dTQ1NQlokfg4PR68fOQQAOCO8y7AVRUrAQB/PfgZXRCIWfH6vHjvzAH8dNdfsLN2N6qajuIfpz7Fz3a9gDdPfQqPT/iseIfHhQ/qDwIALlu8CWma5BmPL9bn4rySFQCAt07vgy8B3ufHOv2CpywzCxnJM//9kbB14SIo5XJ0Wi1ot5h5X3+uIWjo4cyZMzP+vmLFCvzjH/8Q0oS4pa2tDU8++SSuu+46AMDu3btx6623Tnv8pZdeitTUVNTX1+P++++PlZkxZ3djPSx2G7J1KbhsWQWGnU68d+oE6vqMOG3sxdJcahBFTI3X58Wfj/wfjvf6xXRpej7m6XPQPWRCfX8nqpqOomvQhFvXXQGlXLhL4+7maoy47MhK1mPTvGUhveaS8nX4vOMUOgb7cLynESvzFwpmXyw43NEGAFhTNE+Q9bUqFVYWFOFQeys+a2nGdRR+iAoaCiVRdu3ahU2bNgUrDtavX4+9e/dO+NmzZw/OPfdc6PV63H777di2bRuqqqpEtlxYPmmoBwDsWLoMCrkchqQknFfmv2jubqwX0zRCwrAsi5drduF4bxMUMjluWHUJvnfudbhm2RZ8d+OX8M21l0EtV+JMfwf+evR9wbxTbq8He1qqAQCXlq+HXBZaYl2KOgnnl64EAFQ1HxXEtlhysqcHALCyoEiwc2ycPx8AcKi9VbBzzBXmlFBgWRZOj3vGH5d35ufD/Yn0grNr1y5s3bo1+LtGo0FWVlbwJz09Hb/4xS9w8uRJvPDCC1i8eDE2btyIgYEB1Ncn5hfmiNOBowGX5fkLyoOPbwkIhU+bGin8QEzJgY6TONh5GjKGwTfXXoa1hYsnPL8irwy3rrsCCpkcNb1N2NNaI4gdh7vqMOyyw6DRYVWYXoEtJZWQy+RotfSi2dwtiH2xYMjhQPegFQCwKCdXsPNUBkRInbEXLmq0FBWiVT3EGpZl8et9f0eLpSem5y015OE/zr0urHJLs9mMmpoaPP3001M+7/V68YMf/AD79+8PigTA37Dq3HPPRVVVFcrLy6d8bTxzvKsLXp8PhXrDhJLItfOKoZLLYRoZRrvFjOL00Nt2E4mP1T6CN2r3AAC+uGgjluaUTHncwsxCXLX0PLxe+wl21u7Gid4mqOWqKY+NlDZrIIGvdFXI3gSOVE0yzilYhAMdp/CvpqO4aXV8Jn7X9/nzrvLT9EgNs29OOBTpDdBrtbDa7WjoCz3Xi5jMnBEKABAvnRE++eQTLF++HJmZmZOe40TCvn378Je//CUoEji2bduGl19+OSHLTGu6OwEAlQWFEx5XKRRYnleAo53tONbZQUKBmMA/Tu2B0+tGiSEP2xasnfHY80pW4KSxBadNbajv7xTEHq1ChY0h5iaczYVlq3Gg4xROGJsx5Bzl2bLYcKbPL5YWZ+cIeh6GYVCRX4BPmxpxsrcH5Qz1T4iUOSMUGIbBf5x7HVxez7TH+Dsz2qDVhjZtMhRUckXYa+3evRtbtmyZ9LjX68W9994bFAlLliyZdMz555+P++67D2azGenp8dGIKFSOd00tFABgVWFRQCi0B0ujhMTt9aC6pxGn+1ph97iQq0vH2sJFKEid3DaWEI92qxHHuhvAgMGXKy6ctgyRg2EY3LTmUhzvbYLX5xPEphJDLrRKdUSvzUvJQIkhD62WHhzuOoP0OIwe1wUquYQMO3CUZ+fg06ZGNPb3oTyLEp0jZc4IBcB/EVArlNM+z7IsvHIl1AqlqJ0ZCwoK0Nk58W6GEwl79+7Fn//85ylFAgB0dnYiNTUVqampsTA1Zgw7HGjqNwEAVuRPFgoV+QUAgNO9vcEmXkLRYu7Bi9UfwjRqDT520tiCXU1HkJeSARkjg9fnhSfwk5GUimxvEip8PuoKF2P+r/5zAMA5hYtRmBaaiNMq1VhftFRIs6JiQ9FStFp6cLCzDpekTH0dkDJc6GGRwB4FAFiY5e/029TfD5BQiJg5JRTihW3btuGuu+6Cz+eDTCabJBKWLp3+IrZr1y5s2bIFCp5aokqFU709YAEU6g1T1l2XZWZBxjCw2G0wjYwgO0WYEb21xmY8f/g9eHxepKqTsXHeMug1OtSZ2lDT24SecdP/OKyOETQBaNtnxbfWXYaMpDRBbCMm0m414qSxBQwYXLzwHLHN4Y1V+Quxs3Y3jCNm9GtGxDYnLIYcDpht/pDJ/IzJoVW+WZDpFwpdg1Y4PNN7k4mZSaxvkwRh1apVYFkWNTU1qKysxL333otdu3bh6aefRlZWFkwm04Tj09PTg3eqVVVV+M53viOG2YLS2N8HYPq7EI1SiZL0DDQP9KPeZBREKLRbjfhzQCQsz5mP61ddEnQhn1tSgd5hM0yjVihkcshlMv9/GRka+jvwwZmD6B7uxy/3voa7Nn4JOSmJFRaSIh83HgEArC1chGydQWRr+EOrVKMyrwyHu86gxd4ntjlh0Wb2C+lsXQqSVPwmik5FmlaLbF0K+kaG0W2Lz5wOKUBCQYLIZDJccMEF2LVrF2QyGd555x0AmLLhEsMwOHz4MHQ6HTo6OtDS0oLzzjsv1iYLTmNAHJVlTu8+XpSTi+aBfpwxGrG5dAGv57e5HPjjoXfgDvTmv2XtFydlreempCN3CgFQmJoFtcWNfbYWdA/345mDb+Huzf825YCfeMDH+tBq6YXZNgSdWouy9AJBGxRFwqBjJNhYaWtZ4jXbWZVfjsNdZ9BmH4CPZREvAS1OKMQy4XhhVrZfKIzGl/dFSkjr000E2bZtG5566incc889kzpaTkdVVRXWr18PnU4nsHWxp9Hkv3PiYo5TsSg7B/93qjYYA+WTf5zaA6tjBFnJetywekfYpW1JcjW+ve5K/Pqz1zFgG8T/1nyEb51zeVxNKWVZFoc66/B23T4MOsbuzjQKFbaVrcG2BWugCHNfhGJ/Wy18rA+l6fkJmWC6OGse1AolbB4X2q29KMucnLcjRdrM/nbKxTFMtC7LysK+liYSClFAQkGinHvuubj77rvR1taG4uLikF5TVVWFiy++WGDLYs+ww4He4SEAM3sUygNhiQaTkdeExsaBLnzecRoMgK+v3B5xxrpOrcU3z/kintzzCmqNLTjYeVrSSXPj8fq8eLlmFw52ngbgd38XpmbBNGqF1TGCd898hqrmo0jXRhfyYVnAbrfjo0/rEM0/n2nUP+SJm5GQaCjlCizPno8j3fWo6W2KG6HQKoJHodjgP5fJbo/ZORMNEgoSRaPRoLq6OqzXvPDCC8IYIzJctUNuSuqE2fJnU2xIh4xhMOx0wmyz8TJshmVZ/PPUXgDAxnnLUZqeH9V6BalZ+MKiDXi7bj/+eWovVuSWRSw8YoWPZfG3Yx/iaHc9ZAyDLyzaiAtLV0EpV8DHsjjadQav134Cm9uJLreTl3NahqOPJxu0KajM4zcEJSUqcxf4hUJPE65etiUuvFPtloBQMMTOo8A1Z+tz2Khza4SQUCAkT/NAP4CZvQmAv/FSXmoaugataDMP8CIUqnsa0WbthUquxBcWbYh6PcAfM/+84zT6Ri34sOEQrly6mZd1heKDhoM42l0POSPDLed8EctzSoPPyRgGawsXY0l2CToGow/5+Lw+NDU1oaysDDJ5dD0C8lMzJRMKEYJFWfOgYGSwOIbRNdQfcvmnWPgrHmwAYutRyNenQcYwcHq9MNtGkZ1KVUfhQkKBkDwdgTGx80KIa5akZ6Br0IpW8wBWRzmZjmVZvB+ow99atgqps4wDDhW5TI6rl52HPxx8C3taanBh2SqkqvkftcsHbdZevH/GvwdfXrF1gkgYT7JKg8VZoYXIZsLr9cLeZcairHnUc2IWVHIF8tR6dDjMeL/+87C9XckqDVbll0MVo0TULqsFAJCelByTigcOlXzsBqLdYiGhEAEkFAjJ0xG4wBTpZy9xK07PwL6WpmB2dTTUmdrRMzwAtVyJC0r5zZxfml2CYn0O2qxGfNJ8DFcskZ5Xwe314H+rPwYLFmsKyiNuO0wIR5EmHR0OM473NgWrPMJhd0sNvnXOZTBEmVsSCj1D/ryRAr1e8HOdTZHBgK5BKzqsZqwtLon5+eMdEgqE5OmwBIRCCHFNLpu6lQehUNXkr8PfWLwcSTznETAMg4sXrsNzh97Gp60ncFHZWiSphBuQEwl7WmrQMzyAFJUWX1p2gdjmEFNQqs2G2pCCYVf4iXqnTW3oHOzDbz7bibs2XYc0njxm09EVmBhZkKYX9DxTUaQ34ABagtcSIjxIKBCSZtTpDHZyC9WjAADtFnNUlQ/dQ/04098BGcPggvkrI1pjNpblzEd+Sga6hwewr70W22cZWBRLbG4nPmo8BAC4YunmuO35kOjIGRmuWHJuRGEas20I/71/J0yjg3ju0Nv4j03XCtoPo3vQ71HIT4u9679I77+B4LyTRHjE30QRYk7REYxrJiFZPftdfZHeAAbAiNMJSyBxKhI+az8JAKjILUN6kjBzM2QMgwtKVwEA9redgE9CGdkfNx6Gze1EXkoGzilcPPsLiLgjPSkVd2y8GklKNdqtRrx1ep+g5+sOeBTyRfAocOKkd2go5udOBEgoEJImmJ8QYjmVSqEItm/uDsREw8Xt9eBQZx0ACB6XX51fDq1SjQHbEOr62gQ9V6iMuhzY01IDALhs8SbIGLpMJCpZyXpcv+oSAMCelmq0WHoEO9eYR0Ev2DmmIy8wJK9vZBgerzfm54936ApASBqu4iGUsANHXqoewNgdTLic6G2Gze2AXqPD4qzoKidmQ6VQYn2hfwLg3rbjMx57qrcb/7HzVdz80gv454kawWza13YCLq8b+amZWJ4zX7DzENJgWc58rCtcAhbAa8erBBmvPepywmr3e/jyRag6MCQlQ8HI4GNZ9I0Mx/z88Q4JBULShJPIyFEQcDNydzDhwoUd1hctjcnd9LmB7oEnja0Yck7daKjR1Icf/vMNnOrtQYfVgt/s+Rf+UXOMd1vcXk/Qm7C1dHVcNPEhoufKpZuRpFSja6gf+9treV+/J/BZ1Gu1IYUQ+UbGMEjX+M/bE6GncS5DQkHC/O1vf4PRyP/cgtdffx1NTeGXUolBZxilkRycazMSj4LFPoz6/nYAiFl75RydASWGXLBgcaSrftLzPpbFL//1MRweD1YVFuErq/0jk/90YB/6hvmNuR7rbsCQcxRpmmSsLijndW1CuqSok3BpoKHYhw2H4PbyO5KZE+25IvYwSA8k5PZEeAMxlyGhIFHa2trw5JNPIi1wd+zz+bBjxw786le/mnDcJ598guXLl+PDDz8M6RgAOH78OF599dXY/CFR4GPZsZKqMGqv86IQCtU9jWABlBrykJkcu4va2gJ/wuDhQG7EeA60NqPB1IcklQo/umgHbt6wCSvyC+D0ePC/Rw7xagd3N7m5eEVCdzUkJrNp3nIYNDoMOkawr+0Er2tz7v7cFGESg0MhPdD+nTwK4UNCQaLs2rULmzZtgibw5pbJZLjtttvw0ksvYXjY/6E7efIkvv/97+Oee+7BxRdfHNIxgH8yZVVVlTh/WBiYbaNwe72QMQyydaE3hIkm9FDd3QDAP8Y3lqzKXwgZI0PHYB96h80TnvtHTTUA4LJlFUhPTgbDMLhh3UYAwK4zpzHidPBiQ9+IBc3mbjBg4mZYFcEfSrkCl5SvB+CveuHTq2AMeL64RGMxSFdzQoEqH8KFhIJE2bVrF7Zu3TrhscsvvxxpaWl48cUX0d3djdtuuw3XXHMNbrrpprCO2bhxIwYGBlBfP9nNLSW4UqYsnQ6KMOrEOY/CsNOBIUfoX6IW+3Aw6zvWw4RS1ElYku1vgXyka2yseP/oCGq6OgAAVyyvDD6+Ir8AJekZcHg82NPUyIsNBzr8uRlLs4uh1ybeqHJidtYXLUGaRochpw3HAqKZD7gQWY4EPAq95FEImznVcIllWTg806tklmXhcLvBuN28JXFpFIqw1zKbzaipqcHTTz894XGFQoFvfetb+PWvf413330XFRUVeOCBB8I+RqVS4dxzz0VVVRXKy6Ubh+Y+0OHGNbVKJdKTkmC22dAzaEWqJjek11X3+L9wS9PzRfmiXJ1fjpPGFhzrbsC6In8lxIenT4MFsCArCzK5D6ZRa/D49SXFaDUP4OMzp3BOcXRjhlmWxcEO/wjpDdSqec4il8lxXskKvFO3H/9qPoZzChfzci3sC3g4xfQoZKgp9BApc0YosCyL773xGk71ClcnPBXL8vLxq6uvC+vDxuUUZGZmTnru8ssvx89//nMwDINf/vKXkMkmO4VCOWbbtm14+eWXcfvtt4f3B8UQzqMQSVwzP00Ps82G7qFBLMoJUShwYYe8hWGfjw+W58yHQiZH36gFD1f5R4a3Gf1NmIbcpuBjHC63/7kT3d146OO/QC6L/oKuU2mxjEoi5zTnFi/HB/UH0TVkQuNAFxZmRidCAcAYEApiehQMAaEw4nRi2OGYcWQ9MZE5FXqIl1Kv3bt3Y8uWLVM+9/DDDwMALBbLlAIg1GPOP/98HD9+HGazecrnpUCkHgUg/MqHIceoaGEHDq1Sja2lq6FRqKBWqCBnlLA5/c9lpPgfG/+TolVDrfS/p11uxaTnw/1JUqqxo3w9JTHOcZJV2mA3Tj5KJe0uF4YDeTRiehRUcjkMSUkAIm/GNleZMx4FhmHwq6uvmzX0YLfZoE1KEjX0UFBQgM7OzkmP//rXv8Ynn3yC1157DTfddBNef/11fP3rXw/7GADo7OxEamoqUlPFU/iz0RuIa+ZGYGNeQFyEWgp1sq8VADAvLVvU+PxlSzbhsiWbAAD7W5pQ2/Y2CvUG/PcVN055/P/s+RfeOlGDFdnLcOeWC2NpKpHAbCxehv3ttTje0wib2xnVUDSu4iFZpUKyKvY9FMaTk5IKi82GvuEhLMrOEdWWeGLOeRS0SuWMP5pZng/3JxLBsW3bNuzevRu+cR3SXnvtNfz5z3/GM888g8WLF+PGG2/EH//4R7jd7rCO4di1axe2bNkChUK6WjEaj0JO4M4l1C5sp4wtACApt/vxLr9YrCyY3vW7urAIAHCsoz0mNhFzg3lpOchLyYDb58XRccm1kWCUQCIjR7bOfxNgou6MYTGnhEK8sGrVKrAsi5oaf4e83bt342c/+xmefPJJrFy5EgDwjW98A8PDw/jnP/8Z8jHjqaqqwrZt22Ly90SCx+uFaWQEQGQehezARYlLopoJt9eDOpP/i1ZKQqE6BKFQWVAIGcOgw2qhix/BGwzDYEOgRPZAx6mo1hpLZBRfKGQFyqxDuS4QY5BQkCAymQwXXHABdu3ahdraWnzve9/DD37wA2zfvj14TEpKCq6//no899xzIR3jHTcIpaOjAy0tLTjvvPNi+neFg2lkBD6WhVIuR3pSctivzx7nUZhtKmOTuQtOrxup6mQUpmVHZC/fDDscaO43AQAq86cXCjq1BmWZWQCAUz2xTdQlEpu1hYshY2RotxrRPdQf8TpGCVQ8cGQl+z0KfYGbECI0SChIFK4p0vLly3Hs2DHceOPkGPV//Md/4IMPPgjpmPHz6quqqrB+/XrodNKtledKmHJTUiGLIHyTlawDA8Dt9cI6y7jpk8ZWAMDSnJKIziUEdcZesAAK0vRIT55ZKC0OVHWcNvbGwDJirpCiTgoOBTs6RWvxUAn2UAijaZpQZAXECnnfwkO6Aeo5zrnnnou7774bbW1tKC4u5nXtqqqqYJdGqRJNIiMAKORyZCTr0D86gr6R4Rm/bE/1+fMTlmdLJ+xwps8/42NxCKWdS3Lz8HbtcdT1kVAgQmPQbseB1uZZvW0elxbWERbvnT4BmS8lopyrhv4+ANLIUQh6FCj0EBYkFCSKRqNBdXW1IGu/8MILsx8kMiYe4prZKSnoHx2BcXho2i/cAdsgTKODkDEylGcVRXwuvuGEQnkImdlLAn9bQ58RHq83rC6WxNzD6/PhgXfeDL7HQsOOX/Xsiuq8kYp+PuHCH5ZAe3glfVZCgoQCIUk412BWFOGRnJRUnOrtmfHu4YzJ3x65xJALjUIV8bn4hGVZ1Ae8A6GUcBWk6ZGiVmPY6UTzQH9I4oKYu3x85nRQJKydVwzFNL1WONqtfRhyjCIzOQ25KaGPex9Pod6AhRJ4X6ZptFDK5XB7vegfHQmWURMzQ0KBkCRcxUNWFHHNYELjTEIhMFJ6UaZ0vAn9oyMw22yQMUwwUXEmGIZBeXYOjnS0o77PSEKBmBavz4cXD30OALh103m4btWaWV9zrLsBfz7yHjKSGPxk6xVx07huKhiGQVayDt1DgzCNDJNQCBFKZiQkiWmU8yhELhS4XgpcHffZ+FgW9QGPwqKseRGfh28a+vwx3ZL0DGiUypBewwmKFvOAYHaJjY9lsbP6KG7537/i1ldexHunou8aONc42NaK3uEhpKg1uHz5ipBeszS7BCq5AgO2QXQM9glsofCEcgNBTISEAiE5WJaFaZjzKEQeesjW+WOi0wmFriETRt0OqBUqFOulcxfePOAvRQvFm8AxP8M/F6SlP/IyNqnz+7278cy+PWi3mNEy0I9f/etjvHT4c7HNiiveP+0XVzuWLAtZhKoVSizJLgEA1BqbhTItZnA3H1T5EDoJLRTGdzYkwkPMvRt1OeHw+LtJZiZHIRRmKYU6E2iytDCjAHIJzTdoCQgF7ss/FEoDxzYPmMDOkskejxxobcabx6sB+F3mX1+7HgDwwuefobanW0TL4geby4VD7W0AgIsWLQ7rtVyZZG1vC+92xRpquhQ+vOcoOJ1O/PSnP8WHH34IjUaDm2++GTfffPOUx377299GVVXVhMeeeeYZXHhhdD3rVSoVZDIZuru7kZWVBZVKFVJcjWVZOJ1OyGSyuI7DRQPLsnC5XDCZTJDJZFCpYp/gx+UnpKg1Id/1TAVXjjXsdMLmciHprL+FS2RclCmdsAMAtJj9QqEkPSPk1xQZ0iGXyTDqcsE0MiyJLnh84fX58Pu9ewAAX161JhhX7xsZwkd1p/Hsvj14+kv/Nmc/s6FyoLUZbq8XhXpDWCIU8IcfGACdQyZY7MMwaMXviRApYzcQ1HQpVHgXCo8//jhqa2vxwgsvoLu7Gz/84Q+Rn5+PHTt2TDq2qakJTzzxBDZu3Bh8LC0t+uQSmUyG+fPno6enB93dod9tsCwLt9sNZYQzGhKJpKQkzJs3b9rpk0LCR8UDACSpVEhWqQJfniMoTh/L2HZ7PWg2dwGApMoiXR4PuqxWAOF5FJRyOeYZ0tEy0I/mgf6EEgr7W5rRPWhFilqDbwQ8CQDwzQ2bsaexAaeNvTjW2YHVRdISfFLj06ZGAMCWsoVhX99S1EkoNuSh1dKDk8YWbC4JLb9BimTRvIew4VUo2Gw2/P3vf8dzzz2HZcuWYdmyZWhoaMBLL700SSi4XC50dnaioqICWVmhx2JDRaVSYd68efB4PBPaF8+E1+tFXV0dFixYMKGT4VxDLpdDEcHUS77go+KBI0uXglHzAPpHhycIhVZLL9w+L1LVycjVRVbyJQTtFjN8LIsUtRoZs3RkPJvSjEy/UOjvx4aSUoEsjD1v1BwFAFy+fAW047xC6cnJuHjxUrxdexzvnTpBQmEGvD4fjgYGh20qLYtojeU589Fq6UFtnAuFjEA402wbFdmS+IFXoVBXVwePx4NVq1YFH1uzZg2eeeYZ+Hy+CXenzc3NYBgGRUXC3c0xDAOlUglliO5rTlBoNJo5LRTEZkwoRN9iOkunQ6t5YJKbsSngTViQUSAp7xFXtVCSnhm2XcGExoHESWhst5hR29MNuUyGKyoqJz3/xWUVeLv2OPY1N8Fis8GQlCSCldLnTF8vbG4XUtQaLMyKbJ7J8pz5eKduP+r7O+D0uKFWRB4WFBNOgFvtdmq6FCK8CgWTyQSDwTAhrp2ZmQmn0wmr1Yr0cXd0zc3N0Ol0uPfee3Hw4EHk5ubizjvvxPnnnx/WOUP1FoSzFp9rJipC7hXXGz4zOTnq9TMCA6X6hocmrNXY7xcK8w15gv97h7NXLYFBUMXp6WHbVWLwf76aB0xx+x4+e68+qfePOF5TOA96jWbS31ViSEd5VjbqTX2oqq/DVVOIiUQlnPfV4UASY2VBIVifD5G8O7KT9EjXpsBsH0ZdX1swwTEeGL9XOqUKCpkMHp8PpuEhSbSWFoNwrhG8CgW73T4p+Y373eVyTXi8ubkZDocDmzdvxq233oqPPvoI3/72t/Hqq6+ioqIi5HOeOHEiesNjsGaiIsRetfT6pyCODpijbmPtCXgSzrS1oVrufy/6WF8wP8HdN4RqS3TnGE+91YL321vQZ7chWalCmkoFOecZOFkz6+v77HYAgMJmD/tvH3E6AABdViuOHD0KuQj5JXzBva8+OOn/b7FSNe1+LEzSoR59+PBEDUq8iVfxMRuhfAb31tUBALJYRPWZypbpYMYwPj19BJ6ewYjXEQtur3QKJawuJw5UV6N4jgqFcOBVKKjV6kmCgPtdo9FMePw73/kOrr/++mDy4uLFi3Hy5Em89tprYQmFiooK3sIEXq8XJ06c4HXNREXIvXLU+T/Ma5cuQ2XB9COWQ6FXrcTHne0YAgtPhgEA0DdigdXmhVqhhC6nAB6eQg+dFguerxtrAjTocmLQ5YxorYvXnhMseQwVH8viVyeOwenxIKd0Pgr1hojOLSbj31ddQ4PoO/AplDIZ/m3LBdCp1VO+Jqd0Pt5ta0br8BBKFy9CqkYbY6vFIdTPoMvjQefBfQCAyzdsRH6aPuJzqvr0qDv8DvrZUVRWVkoqbDcTZ+9VXksDrMZeZBTkY2XpArHNEwVuT0KBV6GQk5MDi8UCj8cDhcK/tMlkgkajQepZA0FkMtmkCofS0lI0NjaGdU65XM77F5UQayYqfO8Vy7LoH/EnGWWnpka9dk6gRWtdnxH/+e5bZz3rxo973o5q/anYvngJvrr6HAw7nRgYHYXX60VrawtKSuaHVEWSnZISUV98Ofw99Zv6TegeGkJxmEJDSsjlchzp9JevVhYWIW2G3INCQzpKMzLRPNCPwx3t2L54aazMlASzfQZbTEa4fT7otUkoNKRH9eVenjUPckYGs30YFucIspL1Ea8lBtxeZep0gBGw2O10rQ8BXoXCkiVLoFAoUF1djbVr1wIAjhw5goqKikkXyB/96EdgGAaPPvpo8LG6ujqUl5fzaRIRZ4w4x5ot8VH1sCK/AJtLF6B3aMxN2m8bhN3tgl6rQ4qK37vP1UXzcPOGcye4/b1eL1KGR7CyTPhqmiKDXyh0WMzYOD++Kx+OdPjj6muLZh+zvnF+KZoH+nGovW3OCYXZON3rHzC2JCc3ag+AWqHE/PR8NA50os7UFndCgSMjyZ8oPTBKvRRCgVehoNVqcdVVV+Ghhx7Cz3/+c/T19eH5558PigGTyYSUlBRoNBps3boV/+///T+sX78eq1atwttvv40jR47gZz/7GZ8mEXFGf+CDm6bRQq2I/u2pUijw4KWXBX/3sSzu++APsLsZ3HPe5ZgnodbNfFAUCDd0WC0iWxIdTo8Hx7s6AQBrQhAKqwrn4aXDB1Hd2QGWZePGJR4LThv9OT9LcqcetR4ui7Pm+YVCXzvOK4nP5FGu8mFglEokQ4H3bKf77rsPy5Ytw4033oif/vSnuPPOO3HxxRcDADZv3oz33nsPAHDxxRfjwQcfxO9//3tcdtllqKqqwh//+EcUFkYXkybiG66taiYPpZFT0TPcD7vbCbVciYJU/vt3iE1RoPIh3oXCyZ5uuLxeZCbrJvS/mI4lublQyeWw2G1oM5sFscnl9eDTpka8XVuD1oH4Gb51KuhRyONlvcWBAWr1A53w+uKzuiZDx3kUSCiEAu+dGbVaLR577DE89thjk547c+bMhN+vu+46XHfddXybQMQxXBOUaGY8zETTgL9T5/z0vLiuCpiOoEfBIsyXZaw4EZjfsLKwKCTvgEquwPK8AhztbEd1VwdKMkJvfx0KHRYzfvzuW+gatAIAGABfXr0Wt2w4V9Lei/6REZhGhiFjGCziafx4YVo2kpUajLodaLX0oiyjgJd1YwlXNt1PoYeQSLwrJRHXcEJBqMY5XKOlsvT4u7iFQkFAKAw5HBgMlFrGI6cCJbLL8/JDfs2qQn/ztuquDl5tsdhs+ME/d6Jr0AqDNgkr8gvAAnj16GH87dABXs/FN6eNfm9CSXrGhK6W0SBjmOBY9rrAYLV4g+vOSDkKoUFCgZAUZpsNAMJuXxwKLMui2ey/U43Hu6BQ0CqVyA4kgcZr+MHr86Guz/8Ftyw3dKGwLCAqTvf28DpB8+lPdmFgdBRFBgOe/eo38NTV1+F7F2wDALx0+GBQ1EiROi4/IYef/ASOeBcKmYHry6jLBbvbLbI10oeEAiEpzKOcR4F/oWCxD2PQMQoZI8O8tMja2MYDhQa/V6HTEp9Cocc2CqfHA51ajXkh5CdwlGfnQC6TwWyz8TZC+Hh3J/a1NEHGMPjxJV+EXuv3dH1xWQW2lS+Gj2Xx3P5PJTvauynQ6TOSctuZWJTp9950DBrh8LhmOVp6JKlU0ASSpc2UpzArJBQIScGFHtIFCD20Wvx3qQWpmVDFaZ/6UCgINNTpHrKKakektAZaeC/NzYMsjPi/WqFAWaY/QfWUMfq7fJZl8cf9ewEAX1i6fNI0z29u3AyVXI7anm583tYS9fn4hmXZoFDg9oUv0pNSkZGUBh/Lonkg9Am9UoFhGKRz4QcbhR9mg4QCISnGhAL/HoUWi//LY76Bn+xvqZIXaDLVMxh/LXYBoC0gFMIJO3BwLvbTPIQDTht7cdrYC6VcjuvP2TDp+UydDletWAkA2Fl9NOrz8Y3ZZoPVboeMYVCSzm9yJwAsDITvGgY6eV87FmRSiWTIkFAgJAPLsrAEchSEEAqcR6HEwG+8VmrkBzqechn68UbbSEAohJHIyLE01y8C+RAKb53wz+a4cOEipE+TM3NlxUrIGAbVXZ2ClWVGSlN/HwB/t05NiBN0w2FBhr+UPV6FwlhCIwmF2SChQEgGm8sFp8cDgP+qB7fXg85B/4WzJME9Clwv/56h+PMoWGw2DLlcYICIxiFzvQIa+01wBd5LkTDkcGBPYwMA4MoZJlJmp6RgY4m/A+Y7J49HfD4hECrswLEw0y8UOqx9sLsjm2kiJmNNlyj0MBskFAjJwIUdklQq3u+AOgb74GV9SFFpkZGU2NPicgOhhxGnE0MOh8jWhAf35Vag1yMpgnK+3NRU6LVJ8Ph8aAysFQl7mxvh9nlRmpGJ8lkSAb+wbDkA4JOGenh9vojPyTdCCwWDNgWZSWlgMVZNFE9wHgXqpTA7JBQIycAJhQxBww55km6QwwdapTIYuumJs/BDg8nv9VmYGVlVCsMwKM/OnrBWJOxurAcAXLBw9tkzqwvnIVWjgdVuQ02XdNzwTf39AIQTCsCYVyEeww9cwjQX7iSmh/fOjET8YXM50DXUH9ZrfD4vep1WNA50QiabPOhIIZNjnj4b8imemw6uh4IQzZZaA4mMJemJHXbgyE9Lg9k2iu6hQSziuYZeSDgvwIKsyL/cFmbl4GBbKxr6jBG93mq3oTowuXJL2exCQSGX47zSBXj3VC3+1XAGq4vmRXRePrG73egK9NEoyxRuiuiCjEJ81n4Sjf3xKBT8Ypq7QSGmh4TCHIdlWfxy76voG7VG9PoPBmqnfe6iBWtxxZJzQ16Lq2eeLnEsGlo4j4I+fr40oyEvLQ21Pd3ojrPKh6BQiNCjAADlgdyGfS1NML65M+zXDzns8LEsFmZlo0CvD+k15y9chHdP1eKzlmZ4fT7R24O3W8xgAei1SYL0JOFYGEho7Bg0we52QqtUC3YuvuH2hTwKs0NCYY4z5BxF36gVDIAcXejNbVgADocDGo0GZzvy3T4vBmyDONxZh8sXbwrZ1S9UaaS/0dIIZAyTcNMipyM/VQ8gvkIPQw4HjIHSyGjc5Utyc6GUyTHidEbVzvmiRYtDPrYiLx9JKhUGHXbU9xmxJFdcz1Wb2T+0qiSMhlWRoNfqkJWsh2nUiiZzF5bnxM9ocy70MOJ0wuXxQMXDtNpEhXZmjtM16A85ZOvScf+F14f8Oq/Xi+rqaqxcuRJy+cTwgtvrwX0fPAurYwTtg0YUh3gXbxaoNJLLT8hPzYI6gRstjYcrkeyOo8qHxkBOQYZaA5068jtTQ1Iy/ue6r6A9isFYSUoV1s6bfbw1h0Iux5qiYnza1ICDba2SEQrzBOifcDYLMwphGrWisT++hIJOrYZSJofb54XFZkNOamInOUcDCYU5TtewXygUpPIXx1TKFViWU4Jj3Q2o6WkKQygI05VxrNHS3Ag7APHZdIlLPsznYXJoWWaWoEl8U7G+uASfNjXg87YW3Lh+Y0zPfTZcTwehPQqAf27K/vZaNMVZ5QPDMDAkJaFvZBhm2ygJhRmgqoc5TncgiTGfR6EAAJW5CwAANT2NIffBFypHIZjImOD9E8bD9VLoHx0J9qaQOpxHoUCgEeNCc868EgB+wSP2/IA2S8CjYBDeo1Ca7m+M1THYB5cnvgYsUeVDaJBHYY7DCQU+PQoAsCS7GHKZHKZRK/a31UKn1s76GtOIf5CPaXQANT38XHBYlkXHoD9BLtE7Mo4nVaNBkkoFm8uF3qFBFMfABR0tTQP+fyc+PApikJ6cjPLsHNT3GXGkow3bFy8VxQ672w3jkD/XozgGHoV0bQrSNDoMOkbQZjUGSybjAQNVPoQECYU5jNvrgXHE76Lk26OgVaqxOLMIJ/ta8eqJqlmPZ1kWo4EhdG/V7YFCzm+vA51Ki8ykNF7XlDIMwyA/NQ2N/SZ0D0pfKLi93mCFRo6W//LYWLGqsAj1fUZUd3WKJhQ6ghUP2uC0SyFhGAZl6fk42l2PZnN3XAkF8iiEBgmFOUzviBk+lkWSUg29hv+7uEsXbYDH54PbN7vr2+7yog69/ta9mfm8NkViAGyctzzhGy2dTW5AKHCVBFKme9AKr8+HJKUSqRF0ZJQKlQWFePXoYRwXsfFSWyCJc55BeG8CR2lAKMRbngJ5FEKDhMIcZiw/IUuQL9F5+hzcsfHqkI49Y+xF1alXkKnT4fubv8y7LXORnBR/clY8CAUu+a7IkB7Xgm55bj7kMhl6h4fQOzQYbKcdS9oDFQ+x9CKVBfIUWiw98LE+yJj4SH9LTyaPQijEx78mIQhC5SdEwlhXRuGaw8w1clPjSCgEk+9idxcsBFqVCosCsyHEaufcGhBdsRQKeakZ0ChUcHpc6B4aiNl5o4U8CqFBQmEO0xX0KIgfvxaq2dJchvMo9A5JXyi0i+AuF4oV+f4YvVhCIehRiOFeyhgZ5geqiprMXTE7b7RQjkJokFCYo7AsGxQKBamxrTefCqF6KMxl4smj0G7mhIJBZEuiZ2WhXygc7469UHB6PMHx4rGoeBgPVyYZT5Mkx3sUQi3jnouQUJijDDltGHXZwYBBbooEPAqj5FHgm+yUFAD+1sg2l0tka6bH6/OhIzDAKBE8Ckty8iBjGBiHh9E/EtsRxt2DVrDwdx2MRcXDeMYLhXj50jUE9sjl9Ur6MyI2JBTmKFx+QrZOD5Vc/JxWzvXHJRcR0ZOsUiNFrQEgba9Cz9Ag3F4v1AoFsnUpYpsTNUkqFeZn+PN+TvX2xPTcnQHBVZimj3lSaLEhF3JGhkHHKMx26b7fxqNRKpEUqLKhPIXpIaEwRxGqI2OkDFCOgiDEQ/iBy08o0htEn7rIF0sDsx7EEgoF+tiHcFRyBYoCQ9eaBuIn/DA2bpryFKYjMT6VRNh0DQW64KVIQyhYAkKBqh74JR4SGttFyNIXmjGhENsvzE6rFQBQJFKuR1lc5ilwCY3kUZgOEgpzlGBpZJr4QoFlWZhH/Wo+g4QCr8RDLwWuQVBRAuQncCzL9X9hNpj64IrhrI2x0IM4QiEeExqp8mF2SCjMQdxeD3pH/BcUKXgURpxOuH1eAGPqnuCHeAg9tAUbBCWOUMhNTYVBmwSPz4f6wLCrWNAV8CgU6PUxO+d4StP9npTeETNGXQ5RbAgXA4UeZoWEwhykb8QCH+uDVqmGQSt+8hiXRJSiVkOlED+xMpGQeujBx7LosPhFayzr/oWGYRgszQuEH3pic3c95HBg0GEHABQEpofGmmSVFtnJ/nNzU1ulTjqFHmaFhMIcJNhoKSVTEu1yqSujcEjdo2AaHobD44ZCJguOxk4UuPBDrBIaubBDZrIOWhHnZcwPeBVa4kQokEdhdkgozEGk1LoZGN9DgcIOfCP1Xgpc6+bCBKp44FiS4x9rXtfXG5PzdXH5CSKFHTjmG/wCiTwKiUNifTKJkOiSWGkktW8WDqn3UmgzJ07r5rMpy8qGjGEwMDoak8ZLXMVDoQilkeMpMfgFUqvFCK/PJ6otoUDlkbNDQmEO0h0ojZSKR8FCoQdBkXL4geuhkEiJjBxapTJY8nkmBl6FYMWDyEIhN8U/IMrldaN7uF9UW0KBu+5Y7ba4EDZiQEJhjjHkHMWwyw4GkETrZmDMo5CRTEJBCKSc0BgUCgZpvBf5hpskeabPKPi5pCIUZAwzzqsg/fCDXqsFA39i7ZAjPio1Yg0JhTkGl5+QlayHWqEU2Ro/5mCzJcpREAKpCgWWZYOlkfMS0KMAxE4o+FgW3YNWAOKVRo6HmyTZYpa+UJDLZEjTUp7CTJBQmGNILT8BoIFQQiPV0MOAbRSjLhdkDCOJLzchWBRIaKzvMwo6KGlgdAQOjwdymQy5AWEoJmOVD7FJ5IwWLqGR8hSmhoTCHKNbQqOlObgPJwkFYZBqd0audXN+mjQGkwnB/PQMKOVyjDid6Arc8QsB14siPzUNCrlcsPOESrE+FwyAAdsghhzSv0vXB4WCNG31sT5R8ydIKMwxpDYMyuX1YNjpjwumU46CIOQESiR7hwZFtmQiY/kJiRl2AACFXI6yTL8orxcw/NA1KN4wqKnQKtXIC+RAxUM/Be4mRYptnEdddjyx5xU8XPUXuL2xawc+HhIKcwiPz4ve4cBdnESEgjXwwVTK5EhRq0W2JjHhPArDTqekeilw+QmJNONhKhZn+8MPQuYpjJVG6gU7R7iUBPIUWuMg/CDVXgpurwfPHXoHXUMmMAwjWq8REgpziL4RC7ysDxqFCukSaN0MAAOjY4mMUugSmYgkq9VBESal8ENbApdGjqc8R/iERqlUPIwnmKcQBwOiDBL0KPhYFi9Vf4Rmcze0ChVuXXcFZAwJBUJgxicySuVL2RLMT6CKByGRYp5ChyXxxktPBVf50GjqEyzOLEWPAlf50D7YB09g6JtUMWill8z49ul9ONpdDzkjwy3nXBYM5YgB70LB6XTi/vvvx9q1a7F582Y8//zz0x576tQpXHfddaisrMSXvvQl1NbW8m0OMQ6p5ScA/sx3gPIThEZqJZJWuw1Wu7+fR5GE7oKFoFBvQJJKBafHg9ZAuIVP3F5vMP9EKjkKgL8EO1mpgcfnReegSWxzZsQgsdDD/rZa7Go6AgD42srtKM8sEtUe3oXC448/jtraWrzwwgt48MEH8Zvf/Abvv//+pONsNhtuvfVWrF27Fm+88QZWrVqF2267DTYJKbpEo0tiMx6AsQ8mdWUUlpxAiWTf8LDIlvjhEhlzUlKhUUqjn4dQyBgG5VnZAIQJP/QODcLHstAqlciQ0OeIYZi4CT9IqY3zGVM7XjvxLwDApeXrcU7hYpEt4lko2Gw2/P3vf8cDDzyAZcuWYfv27fjmN7+Jl156adKx7733HtRqNe69916UlZXhgQceQHJy8pSiguAHrnWzlDwKXA8FKV3gEpGgR0EioYfgjIcEz0/gCPZTMPKf2NcZKLss1BskE1Lk4BIapV75wHkUhp0OuL3ihUmMw2Y8f/hd+Fgf1hYswo7y9aLZMh5ei5fr6urg8XiwatWq4GNr1qzBM888A5/PB9m4jM2amhqsWbMm+MZmGAarV69GdXU1rrnmGj7NChmnx4M6ixm2lqYJtiYCdrcLXRb/l3Jb/yC6LRNdbEWGdFEG84yNmKYcBSHhSiSlkqOQ6K2bz0bIDo1dgfwEKTatmj9OKEzXTyFFLX4ic4pGA7lMBq/PB6vdhixd7JO9R5x2PHPwLdg9Lsw35OGrlReJvi8cvAoFk8kEg8EA1bhZ6JmZmXA6nbBarUgfd/dgMpmwYMGCCa/PyMhAQ0NDWOf08qj+nj+wD/88cxI4c5K3NaXIIx9O9tqo5HK8dP3NSNFoQlqD2/do939g1D9VT6/V8vpvKSX42qtoyErWAQCMQ0OS2Oe2gUBppF4/wR4p7JUQLMjw91JoMQ/A7nRCpYj+0svtUUeg4qEgNU1y+1aQkgkZw2DQMYr//OiPUx5TmJqF29ddiWRVaNeeSAjlfWXQatE/Oor+4WGka2N74+LxevHcobcxYBtEujYVN6/+AmRgBP33DGdtXoWC3W6fIBIABH93nVW/Pd2xZx83GydOnIjA0qnJ9rIoTU2D1ydcq1WxsPmcGPE4oZYpkKaY+CHoGh2By+vFJ4cPoShMJR3t/hsH/UlY/Z1dqLZK425XKPh8r4aL3eNv1DLosOPgkSNQidy9rylwZ+0w9aPaUT3peTH3SghYlkWyQolRjxsfHPgs7M/ZTNR3dQEAPINDqK6u5m1dvijTZqPRNrUnhQXQOWTCf+95DdszlkHBCPu+nOl9pYb/7v3oyZOwdccuVMKyLPZa69FiN0HJyHGebgEaT5+J2flDgVehoFarJ33Rc79rzrpTne7Ys4+bjYqKCsh5uuhVeL0oO3GC1zWlwv/WfIxDXXXYsXANLlm4bsJzd+18FfWmPmQWFGDl/NKQ1vN6vTgR5V6xLIvRg/sAABtWrhTF3RcL+NgrPkg+fgSjLhdy5s8XtXfBqNOJoQOfAgC2rVuP5HGNtqSyV0KwtLsDhzraAH0aVi5fEfV63F4Net0AgE0rKoMhDimxEiunfa5neAD/89kb6HMN4bjPiJtW7xCkV0Ao76v87nZ0jY5An5uDlUuW8W7DdHzUeBjNPSbIGAa3rP0iFmXNi8l5uT0JBV6FQk5ODiwWCzweDxQB15rJZIJGo0FqauqkY/v7J84q7+/vR3Z2dljnlMvlvF9QhFhTbLqH/a7ewrTsSX9bRrIOMPXB4rCH/XdHs1dDDjs8gbryDF1Kwu352Yj9vspJSUXzQD9MoyMozRJv1kdnoJQvM1mH1GlyU8TeKyEoz8nFoY42NPabePvbnF5PMM+nOD0j7vasUJ+Nb627HL898A+cMDbjH6f34rrlFwgWm5/pfZURCM9ZHY6Y7ePR7nq8V38AAHDt8guwNHd+TM4bLrwKhSVLlkChUKC6uhpr164FABw5cgQVFRWTkgMrKyvx3HPPgWVZMAwDlmVx9OhR3H777XyaRADw+rzoHfEnjxWkTa544HoYxLqGmOvKmKrRQBlnF7h4hBMKfSPihnja51jFA0d54CZof0sT7n/7zegXZFn0B/ITDNqkCZ6ZeGJBRgFuWHUJ/nLkPextPQ69JhkXn+X1jAWx7qXQaunFS8c+BABcMH8lNpdE72USCl6FglarxVVXXYWHHnoIP//5z9HX14fnn38ejz76KAC/dyElJQUajQY7duzAU089hUceeQRf+cpX8Morr8But+PSSy/l0yQCgHHEAq/PC7VCBYN28gharjSRK1WMFRaaGhlTuF4KYjddarP4vVtiVNmIyZKcXChlcgw7nTjU3srr2gvD9MRKjVX5CzHkOB87T+7GO3WfIU2jw/qipTG1gevOGIs2zv2jg3ju4Ftw+7xYljMfVy07T/BzRgPvs13vu+8+PPTQQ7jxxhuh0+lw55134uKLLwYAbN68GY8++iiuueYa6HQ6/OEPf8CDDz6I1157DYsWLcKzzz6LJCqT451gR8aUDMimcOlxHoWBGDcbCXZlJKEQE6TSxpnroZDIUyOnwpCUjF996cvBYVjR4vP50N7ejpLiYpxTLE2XdTicX7oSVscIdjUdwcs1HyNFnYSl2SUxO3+sJkgOO234/edvYthlR0FqJm4UKC+DT3gXClqtFo899hgee+yxSc+dOTMxk3PFihX4xz/+wbcJxFl0D8/ckXGsK1mMPQrjBkIRwjMmFMTtzjhXZjxMxaLsHN4SDr1eL6rtTqwsXxx3uQnTcfmSczHoGMHhrjN4/vB7uHPjNSg25Mbk3IZkbt6DcNdBp8eNZw++BdOoFenaFNy+/kpoFKrZXygy0pYxBC90Dc4844HzKMQ69MB9IDNozkNMyA2EHowihh7sbnewO2SiT40kwkfGMPjayu1YlFkEl9eN333+ZszmRAQ9CnZhPApenw9/Ofp/aLMakaTU4Nvrr0KaRifIufiGhMIcgPMoTCsUuCQeuw0+NnY9JMa6MpJQiAWcR8Fit8EZ6KsQazhvgl6rRapGK4oNhLRRyOS45ZzLUGLIg93txG8/eyMYPhUSLkfB5nLB4XbzuraPZfHq8V04aWyBUibHresuR05K/AhlEgoJzojTjsFA69TphIJBmwQGfsU7aLfHzDZzMEeBQg+xIEWthjYwgKlPpDyFtoBQmGuJjER4aBQqfHv9lZiXlo1RtwO/PfAPGEcsgp4zSaUKNiLj06vAsix21n6CAx2nwIDBjWsuRWl6Pm/rxwISCgkO503ISEqbNhamkMuRpvXf3cUyT8FMyYwxhWEY0YdDcaWRczE/gQgPrVKNb2+4GgWpWRh22vA/+18X1LPAMMy4hEZ+roMsy+LNU5/i09bjYAB8feV2rMgt42XtWEJCIcHpCsT3ZhstnS5CiaR5lEZMxxqx8xTa52hpJBEZySoN7thwNfJTMzHktOG/978u6CRKfRJ/JZIsy+Ltuv34V/MxAMC/rdiGdUVLol5XDEgoJDhdQzPnJ3CMlUjGRig4PR6MBlp4ZyRT6CFWZItcIhkcL01CgQgRnVqLuzZ+CSWGPNgCOQun+9oEORcXBjVHKRR8LIu/136CjxsPA/B3XdxUvDxq+8SChEKCwwkFqXkUuLCDUi5Hsio+O8rFI7kilki6PB70BNo3z7WujER0JAU8C4uziuHyevCHg//EnpYasDwnXxt4CD14fV787dj72BsIN1xXcQG2zK/kyUJxIKGQwExo3Zw6c2//WDUb4eA+iBlJyZKZuT4XELPpUofVAh/LQqdWB7uBEkSoqBVK3LrucqwtWAwfy+L12k/w6vEqeHz8jWJOjzL0MOpy4JnP/4kjXfWQMTLcsHoHziuJb5EACNBwiZAO41s3pydNbt08nowYhx4GRrnSSAo7xJKcFP+ETjHaOHMdCUvSM0gcEhGhkMlx/aqLkZ+agbdP78P+9lp0Dvbh+tU7kKMzRL2+IQqh0DtsxnOH3oJpdBAquRL/vuZSLMuJ/46ZAHkUEppg2GGa1s3jiXV3Rs6jkE7NlmIKN+/BbBuFyxvbXgqtAaFAFQ9ENDAMg4sWrMWt665AklKN9sE+PLHnf/Fpaw18rC+qtQ0RXAdZlsX+tlo8+enLMI0OIl2bgu9vvi5hRAJAHoWEJjjjIW32kcLBJJ4Y5yhQaWRsSdNooVEo4PB40Dc8jEJ99HdhoTLeo0AQ0bIsZz5+dP438FL1hzjT34G/n/gE+9tOIm+KRkYsy8JisaC2um9Gb5Zp2N9Hpt06gL8efT8kO6yOETQOdAEAyjMLcePqS5GiTixPKQmFBKZrKLTSSGBcG2fbaHD0t5CYaXKkKHC9FNosZhiHh2IqFFqphwLBM3qtDt/ecDX2th7HO3X70TVkCl73psQ+cztol8efHGlzuXGosy7k66CckeGyxZtwYdnqWb238QgJhQRmrOIhFI+C/wvb6fHA5nIJPtue81xQV8bYkx0UCrGrfHC43egZtAIASqjigeARGcNgy/xKrMxbgJreRni8k5MbfSyLrq4uFBQUzPhF7vJ48WT3PrAs8MVFm6BWhPAVyTBYnDUPeSmJK4BJKCQoQ85RDDttYICQ3sAapRJJKhVsLhcGbKPCCwXKURANMZoudVgtYAGkajTQa0kcEvyTqkmetsLA6/WiehBYOX/lrJM2f7f7EGxuF5bnLIypx03KUDJjgsJNjMxK1kOtUIb0mowY9lIYGKUcBbEQo0RyfCIjVTwQUsaQJPy46XiDhEKCEkxkDCHswDE+T0FIvD4frIGhK+RRiD1ciWQshQIlMhLxQjQlkokKCYUEJZxERg7u7n5AYI/CoN0OH8uCwdhoVyJ2iOFRaKPSSCJOMMS4+Vw8QEIhQQl1xsN4YtWdkfNY6LVJkMvoLRhruByF/pERuKdI/BKC1qBHgRIZCWmTTqGHSdBVOgFxez3B2e3heRRi8wHhPBYZFHYQBb02CSq5HCwA04jwlQ92tzvYCZI8CoTUodDDZEgoJCDGEQt8rA9apRoGbUrIrwtOkBQ49DBAFQ+iwvVSAGIzHKrd4u+foNdqqeKBkDwUepgMCYUEZHx+QjgZ5rFq42ymigfRyYlhiWTLgD8MRomMRDxAoYfJkFBIQMJptDSejBhVPXDrU+hBPDiPQm8MEhqbTH7hWpaZLfi5CCJayKMwGRIKCUh3wKMQTiIjMHaHP+J0wukRbmAQeRTEhyuR7IuFUOgPCIWs8IQrQYgBV4lltdvgY1mRrZEGJBQSDJZlg82WwklkBACdWg1loGuZkF4FylEQn1h5FHwsGxQKCzJJKBDSR5+kBQB4fD6MOB0iWyMNSCgkGIOOUYy6HZAxTNi9xxmGiUl3RvIoiA9XItkrcI5C79AgbG4XlHI5iqgdLhEHqOQKpKg1AADzKIUfABIKCQeXyJidbIBSHv4oD6G7M7IsG1w7kzwKopGXmgYA6B8ZhssrXJiJ8yaUpGdAMUuPfYKQCsESSTsJBYCEQsIRTGRMCy/swCF0d8YhhwMenw/AWNIQEXv02iRolUqwENarEMxPoLADEUekB3spUOUDQEIh4egc5BIZI7swCz0QhVs3VaMJ5kMQsYdhGOSn6QEA3YHxz0JAQoGIRwzBUnHyKAAkFBKOzsE+AMC8tMhK0biSRaFKg2hqpHSIhVBoDJRGLsii0kgifiCPwkRIKCQQdrcT/bZBAEBhWmR3cEKHHsxU8SAZCtL8eQpdg4OCrG+129A/OgIAKM2ILBRGEGKgpzbOEyChkEBwYYd0bQqSVdqI1hC6OyNX8ZBBHgXREdqj0NDXFzxPkkolyDkIQghi1aU2XiChkEBwYYfCCMMOwFjoQSiPQjD0QB4F0QkKBatVkPXrjL0AgCU5uYKsTxBCQYOhJkJCIYHoCHgUiqISCjoAwKDdJsgIYq7ZEnkUxCc/EHowjgzDI8C/9WljDwBgSW4e72sThJBw3RkpmdEPCYUEYsyjEHmGeZpWC6XMP4JYiKZLlKMgHTKSdVDJ5fD6fOjjedy0j2WDHoXF5FEg4ozxN0xCiOh4g4RCguD0uGEcsQCIzqMgYxhk6Pxf4qZAIhqfUI6CdJCNK5Hs4jlPoctqwbDTCZVcTomMRNyRptVCIZP5b5jIq0BCIVHoHuoHCxap6mSkaqL7Es4MqOmBEX6FwviujORRkAZc+KGb58oHzpuwMDuH+mUQcYeMYYIJjf0C3DDFGyQUEoSOQNihKIqwA0emzi8U+PYojLrGplJSHwVpIFTlw2ku7JBNYQciPhE6sTueIKGQIPBR8cCRlewfQdzPc9zaFPBQpKg10CiVvK5NRIZQQqG2pxsAsJQSGYk4hbthGiCPAgmFRIGPigeOoEeB59BDf2A9bn1CfAoCQqGTxxJJq92GlgH/zJEVBQW8rUsQsSQjiYQCBwmFBMDt9aBneABAdBUPHFyOAt+xOW49bn1CfIoM/tHP3YNW3spha7o6AfgnRuoDZWYEEW9wSd39FHrgVyiwLIsnn3wSGzZswLp16/D444/DF5gUOBX/9V//hUWLFk34efHFF/k0aU7QMzwAH+tDklIDgzYl6vW4O/5+gTwKWeRRkAyZyTokKVXwsSxv4QdOKKwsKOJlPYIQA65EkjwKgILPxf785z/jnXfewW9+8xt4PB784Ac/QEZGBm655ZYpj29qasLdd9+Nq6++OviYjr5EwqYzGHbIAsMwUa/HfZEP2Ebh9fkgl/GjJ7nkSAo9SAeGYVBkMOBMnxHtFjOK0zOiXrO6swMAUFlYGPVaBCEWQnlW4xFePQp//etfcdddd2Ht2rXYsGED7rnnHrz00kvTHt/U1ISlS5ciKysr+KPVRjajYC7TMWgEwE8iI+CvSJAxDLw+H6x2Oy9rAmPJkVyyJCEN5hnSAQDtFnPUa3VaLeiwWiCXybCKPApEHENVD2PwJhSMRiN6enpwzjnnBB9bs2YNurq60BcYDjOekZERGI1GlJSU8GXCnKXN4hcK8/Q5vKwnl8mCvc75VNMmSmaUJEGhYI5eKBxobQEAVOYXIlmtjno9ghALzqNgc7lgd7lEtkZceAs9mAJz57Ozx+5qMzP9Hdl6e3snPA74vQkMw+CZZ57Bnj17oNfr8e///u8TwhCh4OWxvSa3Fp9rCo3L60H3sD/DvCg1izfbM5N1GBgdRd/QIBZM0Vkvkr3ichTStUlxtcfRIvX3VWGg8qHNYo7axv3NTQCA9cUlEa0l9b2SErRXoRPJXqnlcmiVStjdbvQND6FQbxDKPFEIZy/CEgoOhwNGo3HK52yBNpeqceNkuf93TaHGmpubwTAMSktL8Y1vfAOHDh3Cj3/8Y+h0Omzfvj1km06cOBHOnyDamkLR5xqCj2WhlSnRWteINh5yFABAEWiMVH3mDJIGp++nEOpeubxejLicAICe5mZY2tujNzLOkOr7asTu/+y2mwdw9NgxyCJ8Dw25XKjt6QIApIzaUV1dHbFNUt0rKUJ7FTrh7pVOroDd7cbnNTXoDwjquUhYQqGmpgY33HDDlM/94Ac/AOAXBeqAy5ETCFPlHVx11VW48MILodfrAQCLFy9Ga2srXn755bCEQkVFBeQ8tYj1er04ceIEr2sKzSct1UA/UJZZiFWrVvG27mcjQzhpHoBGn4aVK1dOej7cveq0WoBD+6FVKrFh7Vre7IwHpP6+8vp8ePrEMbh9PhQsKENOSmpE67x27AhYAEtz8rB1w4bIbJH4XkkJ2qvQiXSv8ttbYOruhCEvDyvLFwloYezh9iQUwhIK69evx5kzZ6Z8zmg04oknnoDJZEJhINuZC0dkZU2u7WcYJigSOEpLS3HgwIFwTIJcLuf9QyLEmkLBtW4uNuTyanNWij/hcMBmm3HdUPfKHEiKzNTp4mZv+Uaq7yu5XI6CND3aLGZ0DQ4iPwIXK8uy+PDMaQDApUuXR/13SnWvpAjtVeiEu1dcPpXZPvN1MNHhLZkxJycH+fn5OHLkSPCxI0eOID8/f1J+AgA8/fTTuOmmmyY8VldXh9LSUr5MmhO0Wf2hoGIDP4mMHFyJJF/JjFTxIG24ssimfhNcHk/YP5+3taDTaoFGocSWBQtF/msIgh/GKh/mdokkr30UvvrVr+LJJ59Ebq5/EMxTTz2Fm2++Ofi82WyGWq1GcnIyLrzwQjz77LP405/+hO3bt2Pv3r1488038de//pVPkxKaEacdAzb/1L95en6H73BKum+Yn3kPVPEgbeZnZGJPUwP+dGAf/nRgX8TrXLa8Aknj8pQIIp4Z66Uwt0skeRUKt9xyCwYGBvDd734Xcrkc11577QSvwbXXXourr74ad955J1asWIGnn34a//3f/42nn34aBQUFeOqpp3iNsyc67QFvQnayAUlKfkvRcgNxatPIMHwsG3GCGwfnmaCujNJkQ8l8vHr0MBwed8RrZCQn48ur1vBoFUGIC3Vn9MOrUJDL5bjvvvtw3333Tfl8VVXVhN8vuugiXHTRRXyaMKdos/pH+fIddgD8HxAZw8Dj88E8Ohq1JyDoUaA5D5JkQVY23vjm7XB5PRGvoVEoeeviSRBSQKh29vEGr0KBiC1BocBz2AHwN13K0ulgHB5G7/BQ1EIhmKOgoxwFqaKUy6GcwwlbBHE22YGk7v7REV7b2ccbc/OvTgBYlg12ZCzmqSPj2XBlcn3DQ1GvxYUeuOQggiAIqZOelAyFTAYfy87pVs4kFOKUAdsQRt0OyGVy5KdO7pzIB5xQMEYpFBxud3BmRKQ1+gRBELFGxjBjid0j/CR2xyMkFOKUFksPAKAwNRNKuTARpKBQGIpOKBgDlRNJKhV01P+fIIg4IjsQLuXDsxqvkFCIU5rN3QCA0vR8wc4RFApRKmnjsL+EMzcllZcx2ARBELEimwvBkkeBiDdiIRS4RJ7oPQr+11PYgSCIeGPMo0BCgYgjbC4HeocHAADz0/MEO09u6piSZlk24nV6A0IjJ5WEAkEQ8QXX+8VEHgUinmix9IAFkJWsR6pauCqCLF0KGABOjyeYjBgJnEchlzwKBEHEGZxnlTwKRFwRi7AD4K+r5zqTRVP5wCUzkkeBIIh4I1tHOQokFOKQZrO/4qFUwLADB6eme4cGI16Dy3EgjwJBEPFGVor/ZmnE6cSoyymyNeJAQiHOcHs9aA90ZCxNLxD8fPlpegBA92BkQsHp8cBitwGgZEaCIOKPZJU6WNZtGp6brZxJKMQZnYMmuH1eJKu0yE7WC36+goBQ6Bq0RvR6LmRBPRQIgohXuMqHaJvPxSskFOKMYH6CIS8mPQkK9HoAUQiFcWEH6qFAEEQ8ks1Tl9p4hYRCnNEw0AkAKMsQPuwAjHkUuq3WiF7fG/hgZVPYgSCIOCU/LQ1A5CHYeIeEQhzh9XnRNNAFACjPLIrJOTmhYLHbIkrk6Q54IrgPGkEQRLyRl+q/fvUMWcU1RCRIKMQRbVYjnF43kpUawQZBnU2yWg29VgsgMjXdFfBEcIKDIAgi3iCPAhE3NPT7ww4LMwshi2G8Pz+K8AOX28DlOhAEQcQb3DWwd2gwqi618QoJhTiivr8DALAwRmEHDs4b0BlmQqPX50NPQIGTR4EgiHglJyUVMoaBw+OBxWYT25yYQ0IhTnB5PcHR0rHKT+AYq3ywhPU608gw3D4vlDI5sgLlRQRBEPGGUi4PznzojqL5XLxCQiFOaDF3w+PzIk2THJP+CeMpiLDpEhd2yE1LhVxGbzWCIOKXvFQ9AKAnwlLxeIau3nFCnakdALAwoyjm/QgK9QYAQLvZHFJ8zuvzobqzA/uamwAABWkGQe0jCIIQmrmc0KgQ2wAiNE71tQIAluWUxPzcRYZ0yBgGw04HzDYbMpJnnlj5Qd0p/OpfHwd/p/wEgiDinbESybknFMijEAeYbUPoGR4AAwaLs4pjfn61QhH8sm819896fG2Pv9dDbkoq1s4rxheWLRfSPIIgCMHJC3oUrOIaIgLkUYgDOG/CfEMuklUaUWwoychAh9WCloEBrCmaWay0DgwAAG7bvAWbSxfEwjyCIAhBCVZ/Wa1gWXZOtaQnj0IccDIgFJbmzBfNhpL0DABA68DMHgWvz4c288CE1xAEQcQ7RYZ0MACGnQ5Y7XOrRJKEgsRxez2oN/n7JyzLLhHNjpJ0fyfI1oAImI6eoUG4vF6oFYpgTI8gCCLeGX9NazObRbYmtpBQkDgN/Z1w+zzQa3Qxa9s8FfMz/N6BNvMAvD7ftMc1mPoA+L0JVBJJEEQiMS/gJW2zkFAgJER1TwMAYHnOfFFjYvlpemiVSjg8HrTP8CE5YzQCABbl5MbKNIIgiJhQnJ4OAMHw6lyBhIKE8fq8ON7bDABYmb9QVFvkMhnKs3MAAKeNvdMed6bP/9yiwLEEQRCJQrHBLxRmullKREgoSJj6/k7Y3A7oVFqUpReIbQ4WB7wEddMIBa/Ph8ZA6GFRNnkUCIJILIKhB8pRIKQCF3aozCuTRLx/NqHQbjHD4fEgSalCkYG6MRIEkVjMC1Q+WO02DIyOim1OzBD/24eYErfXg5qeRgDAyjxxww4cnFBoMw/A7nZNev5Ur39o1cLs7JiOwSYIgogFWqUS8wLhhwaTUWRrYgcJBYlywtgMm9sJvUaHhZmFYpsDAMhM1iEnJQU+lkVtT/ek5491+udRVOZLw16CIAi+4XK16vtIKBAic6D9FABgXdESyBjp/DOtDnRlPNrZMeFxH8uiurMTALCqMLZjsAmCIGLFmFDoE9mS2CGdbyAiiMU+jDOmNgDA+qKlIlszkTWF8wAARzraJjze0GfEoMMOjUJJpZEEQSQs5dnZAPyhh1Cm6SYCJBQkyP62WrAAytILkJWsF9ucCayZNw8KmQztFgt6bWPJPHua/ImX60tKoJTLxTKPIAhCUEozsiBjGJhtNphGRsQ2JyaQUJAYLo8bn7YeBwCcP79SZGsmo1NrcM68EgBAdb/f9eb1+fBJQz0AYEtZuVimEQRBCI5GqcSCLL9X4Xh3p8jWxAYSChLj885TsLkdyEhKw4q8MrHNmZLti5cAAD439mLU5cKepgb0jQwjTaPF+hLxBlcRBEHEgpUF/oTtmi4SCkSM8fi8qGo6BgC4sHSVpJIYx7NpfhkK9XrYvR48vutDPLN3DwDgyopKqBU0uZwgiMSmMiAUjna0z4k8BWl+E81R9rfVYsA2iBR1kuSSGMcjl8lwx+YLIAPweVsLzLZRzDOk49pVa8Q2jSAIQnAq8guhVijQNzKMxn6T2OYIDgkFiTDqcuD9+s8BADvK10OtUIps0cysKizC18qXYHFOLs4tLcMjl10JrVLaNhMEQfCBVqnEuuISAMCexnpxjYkBgggFlmVx880344033pjxuI6ODtx0001YuXIlvvCFL2Dv3r1CmBMX7KzdjRGXHTm6dGyat0xsc0JieXomfn31dXjo0suRG5jTThAEMRe4YMEiAMD7p0/C6fGIbI2w8B5Q9vl8eOSRR7Bv3z5cdtll0x7HsizuuOMOlJeXY+fOnfj444/x3e9+F++99x7y8/P5NkvSHGg/icNddWDA4GsrL4JcRuWFBEEQUubc0jLkpKTAODyMb738N8En5i7MysaXV68V9BzTwatQMBqNuOeee9DZ2YnU1NQZjz1w4AA6OjrwyiuvICkpCWVlZfjss8+wc+dO3HnnnXyaJWmOdTfg1eNVAIBLys/BfEOeyBYRBEEQsyGXyfCNtRvw1L8+Qs/QIHqGBgU936fNjbi8olKUEC+vQuHkyZPIy8vD008/jWuvvXbGY2tqarB06VIkJSUFH1uzZg2qq6v5NCksvD4vep2DqDO1QyaTgUUgm5VF8P+D/w0+xU543v/c2G9TrhF4vr6/A593+Fs1r84vx47yDYL+fQRBEAR/XLJkKZLVqphMkizNzBQtD4xXobB161Zs3bo1pGNNJhOyA60wOTIyMtDbO/UI4+nwer1hHT8Tb9ftx+6BE8DACd7WDIUtJZW4csm5YH0+8PfXCAu373zuf6JCexU6tFehQ3sVOkLu1aaSUt7XnA4+7Q9nrbCEgsPhgNE49cSsrKysCd6B2bDb7VCpVBMeU6lUcLkmjy+eiRMn+PtSVzo8yFDq4GN9ABgEByUz3H8mjk5mpnwUYMaNWGYmHD/x8SS5GuXJuch2peB4zXE+/oSYw+f+Jzq0V6FDexU6tFehQ3sVGWEJhZqaGtxwww1TPvfb3/4WF110UchrqdVqWK3WCY+5XC5oNJpwTEJFRQXkPM0WqPB6UXDiBK9rJiperxcnaK9CgvYqdGivQof2KnRorybD7UkohCUU1q9fjzNnzkRk1Nnk5OSgsbFxwmP9/f2TwhGzIZfLef+HF2LNRIX2KnRor0KH9ip0aK9Ch/YqMkRruFRZWYmTJ0/C4XAEHzty5AgqK6U3CIkgCIIg5ioxFQpmsxmjgezQdevWIS8vD/fddx8aGhrw7LPP4vjx47NWSxAEQRAEETtiKhSuvfZaPP/88wD8LqDf/e53MJlMuOaaa/DWW2/ht7/97ZxrtkQQBEEQUkawUX9VVVWzPlZcXIwXX3xRKBMIgiAIgogSGgpFEARBEMS0kFAgCIIgCGJaBAs9CA0b6KEsRKcq6nQ2O7RXoUN7FTq0V6FDexU6tFeT4faC+y6dCYYN5SgJ4nK5qMsWQRAEQURBRUXFpC7JZxO3QsHn88Hj8UAmk01omUwQBEEQxMywLAufzweFQgGZbOYshLgVCgRBEARBCA8lMxIEQRAEMS0kFAiCIAiCmBYSCgRBEARBTAsJBYIgCIIgpoWEAkEQBEEQ00JCgSAIgiCIaSGhQBAEQRDEtJBQIAiCIAhiWkgoBHA6nbj//vuxdu1abN68Gc8//7zYJkkWo9GIu+66C+vWrcN5552HRx99FE6nU2yzJM+tt96KH/3oR2KbIVlcLhd++tOf4pxzzsGmTZvwy1/+MqQ+9HORnp4e3HbbbVi9ejW2bt2Kv/zlL2KbJDlcLhcuu+wyfP7558HHOjo6cNNNN2HlypX4whe+gL1794poYfwQt0Oh+Obxxx9HbW0tXnjhBXR3d+OHP/wh8vPzsWPHDrFNkxQsy+Kuu+5CamoqXnrpJQwODuL++++HTCbDD3/4Q7HNkyzvvvsudu/ejauvvlpsUyTLf/3Xf+Hzzz/Hn/70J4yOjuL73/8+8vPz8ZWvfEVs0yTH9773PeTn5+ONN95AY2Mj7rnnHhQUFGD79u1imyYJnE4n7r77bjQ0NAQfY1kWd9xxB8rLy7Fz5058/PHH+O53v4v33nsP+fn5IlorfcijAMBms+Hvf/87HnjgASxbtgzbt2/HN7/5Tbz00ktimyY5mpubUV1djUcffRQLFy7E2rVrcdddd+Gdd94R2zTJYrVa8fjjj6OiokJsUySL1WrFzp078fDDD2PFihXYuHEjbr75ZtTU1IhtmuQYHBxEdXU1vv3tb6OkpAQXXXQRzjvvPHz22WdimyYJGhsb8eUvfxnt7e0THj9w4AA6Ojrws5/9DGVlZbjtttuwcuVK7Ny5UyRL4wcSCgDq6urg8XiwatWq4GNr1qxBTU0NfD6fiJZJj6ysLPzxj39EZmbmhMdHRkZEskj6PPbYY7jyyiuxYMECsU2RLEeOHIFOp8O6deuCj91666149NFHRbRKmmg0Gmi1Wrzxxhtwu91obm7G0aNHsWTJErFNkwQHDx7E+vXr8eqrr054vKamBkuXLkVSUlLwsTVr1qC6ujrGFsYfJBQAmEwmGAyGCaM2MzMz4XQ6YbVaxTNMgqSmpuK8884L/u7z+fDiiy9iw4YNIlolXT777DMcPnwY3/nOd8Q2RdJ0dHSgoKAAb775Jnbs2IFt27bht7/9LQn1KVCr1fjJT36CV199FZWVlbj00kuxZcsWXHfddWKbJgm+9rWv4f7774dWq53wuMlkQnZ29oTHMjIy0NvbG0vz4hLKUQBgt9snzePmfne5XGKYFDc88cQTOHXqFF5//XWxTZEcTqcTDz74IH7yk59Ao9GIbY6ksdlsaGtrwyuvvIJHH30UJpMJP/nJT6DVanHzzTeLbZ7kaGpqwoUXXoh///d/R0NDAx5++GFs3LgRV1xxhdimSZbprvN0jZ8dEgrwK/Sz3yzc73SBn54nnngCL7zwAn71q1+hvLxcbHMkx29+8xssX758ggeGmBqFQoGRkRE89dRTKCgoAAB0d3fj5ZdfJqFwFp999hlef/117N69GxqNBhUVFTAajfj9739PQmEG1Gr1JA+xy+Wia3wIkFAAkJOTA4vFAo/HA4XCvyUmkwkajQapqakiWydNHn74Ybz88st44okncMkll4htjiR599130d/fH8x94cTnBx98gGPHjolpmuTIysqCWq0OigQAmD9/Pnp6ekS0SprU1taiuLh4whfc0qVL8cwzz4holfTJyclBY2PjhMf6+/snhSOIyZBQALBkyRIoFApUV1dj7dq1APzJVRUVFZDJKI3jbH7zm9/glVdewS9/+UsqH52Bv/3tb/B4PMHfn3zySQDAPffcI5ZJkqWyshJOpxMtLS2YP38+AH+FzXjhQPjJzs5GW1sbXC5X0JXe3NyMwsJCkS2TNpWVlXj22WfhcDiCIuvIkSNYs2aNyJZJH/oWBKDVanHVVVfhoYcewvHjx/Hxxx/j+eefxw033CC2aZKjqakJv/vd7/Ctb30La9asgclkCv4QEykoKEBxcXHwJzk5GcnJySguLhbbNMlRWlqKCy64APfddx/q6urw6aef4tlnn8VXv/pVsU2THFu3boVSqcR//ud/oqWlBVVVVXjmmWdw/fXXi22apFm3bh3y8vJw3333oaGhAc8++yyOHz+Oa6+9VmzTJA/DUuszAP5El4ceeggffvghdDodbrnlFtx0001imyU5nn32WTz11FNTPnfmzJkYWxNfcF0Zf/GLX4hsiTQZHh7Gww8/jI8++gharRZf+9rXcMcdd4BhGLFNkxyNjY145JFHcPz4caSnp+PrX/86brzxRtqrs1i0aBH++te/Yv369QCAtrY2PPDAA6ipqUFxcTHuv/9+bNq0SWQrpQ8JBYIgCIIgpoVCDwRBEARBTAsJBYIgCIIgpoWEAkEQBEEQ00JCgSAIgiCIaSGhQBAEQRDEtJBQIAiCIAhiWkgoEARBEAQxLSQUCIIgCIKYFhIKBEEQBEFMCwkFgiAIgiCmhYQCQRAEQRDT8v8BJHTMSpQFon4AAAAASUVORK5CYII=" + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAhAAAAESCAYAAACsIOwfAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAPYQAAD2EBqD+naQAAVhJJREFUeJztnQd4W+XZ9+94SPLee9tJPOLE2QsIgYQkpIwUyoYwCnzwlpfZQSilBdqXQoG2L1ACaXmhjDLKCoEGQiBkOdNxYifee29bnrIt+7vuR+cosuMh2To65zm6f9el6Eg5kh9b4/zPPf73jOHh4WEgCIIgCIKwARdbdiYIgiAIgkBIQBAEQRAEYTMkIAiCIAiCsBkSEARBEARB2AwJCIIgCIIgbIYEBEEQBEEQNkMCgiAIgiAIm3EDlTE0NAS1tbXg4+MDM2bMkHs5BEEQBMENaA3V2dkJkZGR4OLi4lwCAsVDTEyM3MsgCIIgCG6pqqqC6Oho5xIQGHkQf3lfX1+5l0MQBEEQ3KDX69lJuHgsdSoBIaYtUDyQgCAIgiAI27GmBICKKAmCIAiCsBkSEARBEARB2AwJCIIgCIIgbEZ1NRDWYjQaYWBgQO5lcIW7uzu4urrKvQyCIAhC7QJi79698Kc//QmOHz8OdXV18Omnn8KmTZsmfMyePXvg4YcfhtOnT7NK0Mcffxxuu+02u/a41tfXQ3t7u92e05nw9/eH8PBw8tggCIJwciQVEN3d3ZCRkQF33HEHXHXVVZPuX1ZWBj/60Y/gnnvugXfffRd2794Nd955J0RERMD69evtsiZRPISGhoKnpycdCG0QXj09PdDY2Mhu42tCEARBOC+SCohLL72UXaxl69atkJCQAC+88AK7nZqaCvv374c///nPdhEQmLYQxUNQUNC0n8/Z8PDwYNcoIvBvSOkMgiCIsRk0GqGoqRF8dR4Q5e8PakRRNRCZmZmwdu3aEfehcHjwwQfHfYzBYGAXSxOM8RBrHjDyQEwN8W+Hf0sSEARBEOdS2twEv/vPDqjTd7Dba2anwMMXrQWNm6IOuerqwsD0QlhY2Ij78DaKgt7e3jEf88wzz4Cfn5/5Yo2NNaUtpg797QiCIManracbHt3+KRMPnhoNuMyYAbsL82Hrgb2gNhQlIKbCli1boKOjw3xBC2uCIAiCkINtmfuhrbcH4gOD4N3Nd8BTG69g93+RewqOV1WAmlCUgMDq/oaGhhH34W20pBbz76PRarVm22qyryYIgiDkoripEXbl57FtTFl4a3WwLD4Brpybwe5763AmK0hXC4oSECtWrGCdF5bs2rWL3U8QBEEQSuazU9nsevXM2ZAafrZT7cZFS0Hj6gp5DfWQXVMNakFSAdHV1QXZ2dnsIrZp4nZlZaU5/bB582bz/ti+WVpaCr/85S8hPz8f/va3v8GHH34IDz30kJTLJAiCIIhp0dHbC98VFbDtH2fMH/F/gV5esD51Dtv+6kwOqAVJBcSxY8dgwYIF7IKgQRRuP/HEE+w2mkuJYgLBFs4vv/ySRR3QPwLbOf/+97/bzQNCLbz00ktQW1tr9f5vvPEGE2QEQRCENOwtKYIBoxGSgkMgNexcn5wNgoA4WFoC3RadgzwjaU/J6tWrJ8z3vPnmm2M+5sSJE1Iui2uKi4vhV7/6FTPYQr766itmvjUe1157LXOPzMnJYX4aBEEQhP3ZW1zIri+elTxmt9qskFCICwiEirZW2FdabBYUPKOoGghicj7//HO45JJLzEWlF110EYvkWF6qq6vZPmiW9dhjj8GVV14J27dvl3vpBEFYAZ50lTQ3QVZVJfTSvB5uWjdP1daw7VUzZ425D4qKC2fNZtuHykpBDajL1WKKH9Z+46AsP1vj6mazrwIKiFtvvdV8G4WEZYcKum3edNNNkJWVxQpSMRWUkpLCullyc3MhPT3drr8DQRD2wzA4CH/4+ivILDcdYPw9PODx9RshI2pyfxtCPo5VVsDQ8DCLMoT7+o2734r4RPjnkUOsnbN/cJB7Yym+V28HUDz84j9/k+Vn/+nS/wKtm7vV+zc3N8OhQ4fgo48+GvP/UTzcfPPN8O2335rFg9jqum7dOhaFIAFBEMo9mXl655dwuKIM3F1cwUeng9aebnjiyy/gL1dfCwlBwXIvkRiHrGqT/9CimLgJ98P6iGAvb2ju7oLsmipYGpcAPEMpDI7YsWMHLF68+By3Tkvx8M033zABIYoHEUpjEISy+bYgj4kHrZsbPHvlVfD2LbfDvMgo6Bnohxe+28XOcAllCr+sKlMzwMKY2An3xYjz0rh4ti0+hmecPgKBaQSMBMj1s20BCyY3btw4pni45ZZbmHjAyMP8+SNbiBB83O23386iGMHBdCZDEEpLXbx+cD/bvmXJcpgbGcW2f71uI9z27ptQ0NgA3xcWwJrkFJlXSoymsq2VRYrQ52GOhffDeMyPjoGvzuTCSRX4QTi9gEBFaEsaQU7i4+OZl8ZY4uHrr79mkYexxAOCj8NuDLwQBKG86EN7bw+E+/jCVRmmtnfRP+D6hUvg/w4fhPezjsLFs8eu8CfkI0uIJKRHRllV05ARGc2usVBW39cHvjod8AqlMDgC0xDokzE0NGQWD2jEJYoH0W9jLDB9gVEIN86LdghCjSHwj09mmQ2I3EdNub1i7jzQublBeWsLnKrl/6xVbZwQ6h8WRFtX6IqiMCYgADAhlcP560kCgiPQ0hu/bA4fPsxEBIqHzz77DN555x2IiIhg00wtLygwLAUEChCCIJQF2htXtbWBzs3d7FZoCc5TWJOcyrZ3nFaPi6EaGB4ehjP1dWx7nhBZsAZxX/GxvEKnoxzh4uICl112GWvlxO333nuP3T9WXQSGOdvb29lwMUxfFBQUwIYNG2RYNUEQE/Fdockl9rzEJPDSaMfcB02HvjydA4fKyqBvYAB07nykXdVOvV4PHX294ObiAjODQ6x+XGpYOHs9UTzyDEUgOEPspli2bBlTv+NdMEIhTibF/dHh08fHR+7lEwRhgXFoCH4oLmLbWN8wHsmhYaw+om9wAI5UlDtwhcRE5DXUmdszbfF0SAkLZ9dFjQ3sPcArJCA4Ax0mKyoqmKW1taCAuOIK00x6giCUQ35DPSue9NZqYWH0+C2AGFEUHQ73lZgEB6GM189SEFhLTEAgeLproG9wECpaW4BXKIXBGeg62d3dbdNjRo9IJwhCGaDvA7I4Ng7cRhVPjmZFQhJ8eOI4czHEs1ZXFzr/41VAuMyYAbNDw5iZVH5jAyTakP5QEvQOJAiCkInD5SYBscwKR0LMm2OkotNgMB+4CPkYMBqhuLlpSgLC9BiTISDPryUJCIIgCJkGMJW2NAO6OiyJNbkTTgRGHBYJTodHK6kOQm5KW5qZiPDR6iDKz3Z/HVF0FJCAIAiCIGxBnN6IMy78LAbiTYQ4ayFbBS6GvFPS1MiuZ4WGTsncKznUJCDQ3wOdSHmEBARBEISMAsIW/wDR4rqwoYFNcyTko6SlmV0nBU2tfiHIywv8dB5sxgmvhZQkIAiCIGTglBBFmBdlEgXWgKHyQE9PGBgyQn4jv6FvNVAq1D8kTnG2EEYtxAmrpc0mMcIbJCAIgiAcjL6vl4WuLaMK1h500iNM++fU1kq2PmJi0GunVIxATKODIkkQH6UtJjHCGyQgCEKBX06ZZaWwdf8P8N6xI6zYjlAXOUL6Ii4gEPw9PG16rCg4cutMz0E4noZOPfT09zMHymj/gCk/jzkCIYgR3iAfCIJQEP3GQXhh9y74rqjAfN+/s7Pg1+svNRfQEfyTW1drc/RBJD0ikl2fqasjPwiZEFMOsQGB5ww/swUxeoHPhycOvE1apXceQSiIl/fuYeIBDwqXp8+DxKBg6DT0we++2sHG/xLqoKChgV2nhkdM6azVS6OBnoF+KOP0zJV3SoSUQ9I0DaBQgKCpFH7Gm7u7gDdIQHDISy+9BLUS5D/feOMNyM83DfYhHM++kmL4z5lc5gvw5KWXw/0XXgwvX3MDzI+KYTMQnvv2a6598wkT+BoWCS2AOOPCVlBcooshUthoEiKEPBGIxGkKCJyfgSLC8jl5ggQEZ+AMjF/96lcQEGDKu+HQrJSUFPj1r389Yr8vv/wSNBoNfPLJJ1btg+CY8Ndee82Bvw0hgoY02w7uY9vXLVwCy+JNzoQYHsX0hY9Wy/KkX+SeknmlxHTB0d0oCHF891Tz56LwKCABIQtiAWxCUNC0n0usg+AxmkQCgjNwlDcO1MKZGAiO9d6yZQu88sor0NHRwe7LysqC6667Dp599lm46qqrrNrHctIn4Xh25uVCnb6DtejduHjpiP/DIrvblq1k2x9kHWNig+CXAqH9Eg2Iplq/MFswIeLZBplX8PNX29HOtuMCpi8g4gJNz1HR1gq8QUWUHAqIW2+9dcR9N910Ezz55JPw8ssvwy233AKXXXYZ3H777fDQQw/ZtM+aNWugoaEBcnNzIT093aG/lzODRjKfnMxm29cvXAIe7u7n7LMhbQ68e+wIy5PuLsyHDalzZFgpYQ/EqMFU0hej5yjgmfDPP/v3uPthBGvzkuVTqrUgxgbFA35mPd01zAxquogpjEoSEPyBla84UlUOdG5uNlXdNjc3w6FDh+Cjjz4acb+bmxtLazz++OPwr3/9C5YsWQJ//etfbd5Hq9XCunXrWBSCBITjOF5ZAdXtbeCp0cD6cYSBxtUNrs5YANsy98OO3FMkIDim0A4CItjLGyL9/NnB7OQkttZYpPeHyzZN+WcRI6lsa2PXMQEBdumaEAVEVVsrd50YTi8gUDxc8forsvzs7Xf/bMyzzfHYsWMHLF68GMKEsw9LMMLw4IMPQnh4OBMImLaYyj6Yxnj11Vfhsccem8JvREyFnXmn2fW6lDQmIsZjXWoavHH4IDuDxXypmDsl+Ap/i8Vy4iyEqYAHmT9deTWcqR+/mLqluxu2HtgLubW11O5pR8RIQYxw4J8uUX5+7LXpHRiApq4uCPXxAV5wegHBE1999RVs3LhxzP+77777zFGKsYSBtfvg82NqA/cJnqJFK2E93QYDZJaXsu31KWkT7ou1ECviE2F/aTF8nXca7jn/QgetkrAXeJaJNtTYhhnu6zut58IDTahP8rj/j6LhnWOHoctggOKmRkiewshpYuzXEIkVCtmni5urK0T6+bHiWhQnJCA4AtMIGAmQ62fbQnx8PJSVlZ1z/29+8xvWUYHpjbVr18I//vEP+NnPfmbzPgg+v7+/P7sQ0rOvtJidlaIjoTU95WuTU5iAwMv/O28VV+HOpu52yK4tYvljOcF00Mq4dNC6jR/tkQrRcTAxKETy1w7PaudGRDGBitM7SUDYh6r2NrtGIMQ0higgFsfyYxjn9AICP8S2pBHkBNMLV199NWvLFCMI27ZtgxdeeAG+++47yMjIYCmK5557Du6++25wF34va/YRwfoHjEJgzQQhPQdLS9j1hbNmW3VAQTdKrZsbNHR2MmOpmSGhwAv/zNoJFe3KaDus7WyGm+avc/jPFVv1pjqAyVYyoqKZgDhZUwXXLVzskJ+pZrBG4WwEItBuz4vPdQBKuCukpKMER6xYsYK9gdGvAbcxpYFpiffffx+WL1/O9sHbf/rTn+Dtt9+GO+64w6p9RgsIjFYQ0mMYHISs6kq2jakJa9C5u7MzlAOlJbC/tIQbAdHQ2crEAxb0LYtJgxnMLsvxGIeNcLgqj12WxcyBmUG2W0lPB9FNFB1GHSUgROvsQaORhcuJqYNdUFirgNGdSF8/uz0vr50YJCA4AqMO2H6JrZxoAHXttdeySMKPf/xj8z5+fn5w//33wx//+EcWbZhsH2wJdRW+VDB9UVBQABs2bJDl93M2squrmIgI8faxyRL3vMSZTEAcLCuB25atAB44WmNyOE0NiYMbMtbKuhbXGa5wsDIXPjz1HfzywhvBzcXV4REIRxXAolOit1bL6iBKWpqn1flBnD3Ao3hws6MYs+zE4Akqy+UM0exp0aJF0NXVBQ888MA5+zz11FNQWFho1T6ieEDweVevXg0+HBXx8MwhoXhyeXyCTfnw5XEJ7AwID0ZoPqV0sObhWLVJQCyJTpV7OXB56nngrfGA+q5W+KHM5L/hCNp6eqC1p4fFXuIF8yCpwYhPilD7QKZT0wfrFOydvkBiBEfS9t5e0Pf1AS+QgOAMdKGsqKhgltb2BgXEFVdcYffnJc6FpaIqyswCwhZ8dDpIFQ4KJ6pMKRAlU9paC629naBz00B6uHWpGinx0ujgitTz2PY3RUehu7/PodGHCD9/8JigXdfeiO8VEhD2bOG0TweGCL4fRFOqGqFIkwcohcEZaGHd3d0tyXPv3r1bkuclxq7kxp5vdArMiIqx+fELomNYXvtEdRVsnDMXlIwYfZgfMZN1QCiBpTGpsKf0BNR2tsCu4qOwKe0Ch3VgJDm4PTo1zORCmVdf59CfyzNvHs6ED08cY0LfEnGYnb0jEAjORUHvjpqOdm6cQ5XxaSYIJ0N0D0wLj2BdFbayMDoW3j56mAkITBFgqFqJGIeMkF1nipYtjk4BpeAywwWuSD0fth75HPaWnYRV8RkQ6Dk9X4bJKBcEhKPSFyUtNfBW1k7o7u9nt/HA9MiXr4Kbq+PfK5E+Qax4dlFUMrgrREROBPqsjDdzBrv25kWailPtSbSfP/teqG43zdngAeW/kgShQrCtzrJK3lawpx+nOXb09bLQuC1FmI6ksLkaegb6wEfj4fCOh8lIDY2DmUHRUNxSDTsLD8ON8y9xSPjbHgOYJgNF5b9z90B7Xxe7rXED6B8EaOs2gLeH4wVESWstu+wsPAKXp66EhZHWtS3LQU9/P+u2QP5+w2Zm+mUJFqViN5S9iRLqIGo6KIVBEMQ4YFj0ZE0N254/hfQFgqmPuZFRcLSynEUhlCogTtQVset5ETPZWb+SwAMYHsz+vP9DOFKdD+tnL4MgiaIQ+JqLAiI20P7h79Fk1RRAjb6Z1Z3cv/In8I+DmbC/tBSWRGbA1fPngyMZHDLC6YYy2Ft+Elp79SwqcqK2CG7IWANeGtNUYSWBc2kQfw8PiHPAayUSJZj31VAEgiCI8ahobYX23h6WukgeY66JLXUQKCAwmvGT+QtBiemLU3Umo6wFkbNAiSQEREBycAwUNFfBt8XH4Lp5F0vyc7D7AlMJmGoSDxRSMTQ8xCIqyJqkRRDtFwLzo+OYgKhu74BQb/sWAFpDpG8wXJgwH3aXZsE3hUfgVH0JEzh3L70cInwck9KxVUBgTYIjifIz/byipka49NX/temxf7zix1OqpZouyjolcBDo5EhMDfrbTZ9sIX0xJzxyWkWF6RGR7PpMfd05xV5KSl9gy2RSoLLSF5Zg5AE5VHUG2ntNoWt7I0Yfwn39JC8kPV5TCI3d7eDproMLE03RhplChEo0spIDjZs7XDp7GTxywfUs0tPS0wF/2f8hVLQrqzuktsPUGh3l51g7/yg/P7NoGRwasuki18ffqSIQaL6EZky1tbUQEhLCbis1D6c08ADV398PTU1N7G+IfztiauABH8EUxHRAF0qNqyvrG8euDikqw6dDtpC+yIhIUvQkSKzNQIFT0loDu0uOw9Xp9h9SVtHawq6lfo0w+vB14RG2fVHiApbCEJ0v8ZsOq/zRjyLA0xPkAiMij5x/PWw7+gWUtdXBK5mfwr3LN7FokBLAEekIjkt3JG6urrDt+puZF4St+HroQLUC4pVXXmHWyfX19cwd8aWXXoKlS5eOue+bb77JpkFaotVqoc8O5hp44EtISIC6ujomIgjb8fT0hNjY2HGneRKTI7bTYQfGdMA6CBwJnVNXA2fq6hQlICzTF/MjlJm+sGTdrCXw6uEayKw8DZcmLwdPd600BZQS59SxtqCxu42tf1VCxgifASzSw/A8RiHkHtjkrfWA/1q+CbYe3s6E29ZDn8GD51+riHQGdqvIEYEQRUSwtzfwguQC4oMPPoCHH34Ytm7dCsuWLYO//OUvsH79emaZHBo6to+/r68v+38Re0YJ8MwZD4CDg4NgHKdNhxgbdK3EIVsUtZk6rd3dUN+pZ2eD06l/EJkTEcEExOn6WtiQNgeUQlFLNXQP9LEiOex0UDopIbHs4FXX2QKZFbmwZuYiuz6/FAOYxooS7io+xrZXJy4Aj1EiCNMYKCCKmxtlFxAITkO9Z9mV8OqhT6G0rQ5eO7wdHrngOvDRyhcdsUxhRNJEYvkFxIsvvgh33XWXOaqAQgLHSr/xxhvw6KOPjvkYPECFh0s3ehafH6dQjp5ESRBSk9dgij7EBQaBl2b6Z7lp4aY6CBQQSiK71uT9MF/h6QvL74TVifPhXyd3w96ybHYAtue6Kx0gIAqbq6BW38xqLC6IPxt9EMFOnT3FhbLWQYxG6+YOdy65HF7c/wE093TAtqM74P6VVzt0Pokl3f0GVuCMRPrZb1iWWpH0k4058+PHj8PatWeH52DoG29nZmaO+zic3xAXFwcxMTFs9sPp06fH3ddgMIBerx9xIQil1z9MN30hIj4PevTr+2zPnUqVh8cqe17SFyKLo1JYwWdbXxecFMyv7EGXoY91YUhhgWzJdyVZ7Hp57Bxm1z2apBChkLJJOQJCTGf8v2VXsohJeVsdfJF3QPbog7+Hp10EvtqRVEA0NzezNEHYqFAt3sZ6iLFITk5m0QmcOPnOO++wqv+VK1dCdbXJuW80zzzzDJsuKV5QdBCEUskT3vf2sqr18/Aw52oLGhtACVS0NUBXfy94uGkUZx41EeiQeH78PLb9fWmW3TpbxOhDsJe3ZAcljDzkNVWwMemrExaMuY/YiYFpjF7BnVIphHkHwE2Ckdf3pScgp940aM7R1AoeDBR9sA7FxRZXrFgBmzdvhvnz58OFF14In3zyCeuYeO2118bcf8uWLdDR0WG+VFWZWuQIQmmgj35hU8OI+QT2YLYworlQIQIip8H05Z8WFg+uMoWip8r58XPZmivaG6C8zT7thZWt0kxwtAQPusi8iCQI9hr74Bfg6QWBnl6Asqis1WSrrSTmhScxrwjk3exdoO+TZuaPUgsoeURSAREcHMwK7xoaRn6x4W1raxywTmHBggXjTp/EDg0surS8EIQSwTNRw+AgeLpr7BrKTlaYgMgVzh7Tw+SfvGkrvlovWBQ5m20fqMixy3NWtUtb/4AH2mM1pqLzixMnNhQTHUuLFZbGELky7XyI9g1h/iEf5nzvcH8TuVo4eUVSAYEdD4sWLRox5RFTEngbIw3WgCmQnJwciIhQRo8wQUwVdJgTc9H2HH4lRiCUkMJo6m6H+q5WZludGhoPPHJevGm66YnaQruM+jY7G0pU/3CwMpe1zcYHhENC4MTfkzOFOohiBRVSWoLFk5jKwPcP1tFgW6osJlKcdGAMy2wgJ3kKA1s4t23bBm+99Rbk5eXBvffey8ZRi10ZmK7ANITIU089Bd988w2UlpZCVlYW3HzzzVBRUQF33nmn1EslCIcIiFkhY7cvTxXMbaMgQZMgcQiQXIi5a6x9sLeXgqOI9w+HKN9gGBgywpHqvGk/nzjbQIqwOKbFDlbksu2xOi9Gg4ZSlpNBlUiUXwisn7WEbX+U8z109/c6PIXBSwTivZPfwiuZn0Bpa606BcR1110Hzz//PDzxxBOsriE7Oxt27txpLqysrKxkxk4ibW1trO0zNTUVNm7cyLoqDh48CGlpaVIvlSAkRSoBgSZBYni8qNH0M+QiV6h/mBvOX/rCsqVzZZwpCnGwImdaZ3k4FbNWL91Z7enGMjZxE/025kfMnHT/+MBg8zwWuc9eJ+KSWUuYLwd6iXyZP37Hnj3pHRiA1h5T3UWkr/KLKAeMg6xbCOe4yPVaOsSJ8r777mOXsdizZ8+I23/+85/ZhSDUBJ4piu1z9hYQYhqjvLUFtu7/Af6dfRzkwDg8BGWtppOBj/vzYXv2ueFntFB+cPUa8NbKY71rLYujkuHzM/uhoauNjaGeajdJU2cnDBiN4ObiAqHePnZf5/7yU+x6eUwa6yKZDBQx6G/RM9APTV2dEOrjq9hUxk/SV8NLmR+zWpQVsekQ42//z81Y9Q++Oh346JT9/hR9P/oG+1ndTkKgyQ/G0TjVLAyCkIvq9nboGxwAnZubJFP+5kdFwzf5Z9jZrnjGq4R21bFYGB0LG+eYzvCVCnoSoIjA+oIDFaemLCDEkHiEr5/dDbWw3iS/qZK5mp4nREyssT+P9vOHirZWJjiVKiCQWcHRsChqNhsO9lHuHnjwvGvsWjvEewFltjBrBiNPUv5dJoIEBEE4gGIhfZEYHCKJM+PFs1Mg0MsLugwGkIvvS7KgvL0eMsJnwsKo2ef+f1EBHCgtgVIF598tWRmXzgREdl0JJJafBJcpZHyPVpj8azw0rnCg3D5dHSL5TRXsOjU0btzWzbFAF1QUEJjGWBqXAErmytQLIKe+jBlMHavOh6UxqZL9LJ5aOAdx1oxQb5RhRepKKkhAEIQD6x9mh0x//sVYoChZFCPffAPsAviyaDf4es6Aq+YthriAc9u0+wcHmYAo40RAxPqHQZRvCNTom+CjnJGpVmtpaDPlppt7m+GDnO9ACs6LM5lfWUt8UBDsLSlSpBfEaPw9vFlB5Rf5B+HL/IOwIHKWVakansZ4T4Wi5mroHTCwuSFJQfKkLxASEAThAIoEAymxjU5tlLXVs3wsFvPF+I8tkhKEDgAUEFj0xcNQtmvnXQR7Sk+wGpapsE+P1fE9kBAYAjPD/CRxcJwTZlsUIT7QNPESIxA8gHNJ9pWfYhbjeH1x0sReF86QwjghpC8ywpNYy6tckIAgCInBSnyx7170bFAbZxrL2XVqSOy4+djYwED2f50GA2s3DZGgqNDeJAREQMKiqXvQHCx6iwmIazMugIUxsaAEMIWBVLa2sPemXPlza8GIw8bk5axl8ZuiI2zWhxQtwqKAiFC4jbUR0xd1wqyZSHlnzSjOypog1EZDpx56+vtZJX6MBAWUSiBPFBATmEfhlEix3bS0Wfnh8+mCUYv6Dr3iwuK4FncXV+gbHIQGToYPYu1DuHcg9AwYYLcwstyeYKdMc1eXueBVyRS31DCnThz8lhQo76wZEhAEITFizh8Pnm6ufM2GsIaOvi6o0TezboDUkInrMCzTGGqnsauTmVFh50OIj3KiLVgvI1qpYycGD2CY/vLU89j2ntJsu8/JwJZWrFbRurmBv4cHKJmTwqRb9FqRoiDbFkhAEITElLW0jDh4qo0zjRXmokMczTwRCUGm8DkvnRj2cKBEUyKlpQnENEYFJwICSQ9LYHbdA0OD5tHl9qJeiMSE+fgqujZneHjYPGsGh4/JDQkIgpAY0TZYrQLCmvSFSGJQiNNEIMxtgQqcqyAKCF4iEAge2DfMXsa291ecgk5Dj13TjEi4wocxVnU0MudRjas7zA6OkXs5JCAIQmrEs21xDoHa8vwFTZVsO80KASGKqKr2Nug3DoKaqRGGaCmxqj8uMNA8IZYnMEWGkS5873xfmmV3AYERCCWTI0QfsFhZqnZWWyABQRASgl904jRGNUYg0OCnF9s33XUQa4XVcIi3N3hrtUx4VLWZ/i5qRcnGRDH+JgGB700lz8QYKwqxftZStr237BR0GXrtmsIIV7iAyDXPmpE/fYGQgCAICalsbWWtcj5aLQR5eYFa2zdTQuOs6kfHA4AopNReB2GewqnAzptIP1NdBg6QwimuPIG1EGjw1W8cgD1lJ+zynPViBELBKYyWHj0rVsbXbU7Y5NE+R0ACgiAkRMz1xwcFK7o4a7oFlJN1X4xlZIQ+BKpu4RQOSkqMQGBniJha4S2NYaqFEKMQJ1lr53Rp4CACkSukLxIDI5lhmxIgAUEQDujAUGP9Q0dfN7N5FucxWIvoBcGLE+JUaOzsZCICD9TB3t6gRMShbliPwhsYwsdx3+h+ekCYSDqdNGNLd5fiIxA5DUL7ZlgiKAUSEAQhIeK8ATXWP4jdF7F+ocyT3+YWQs7OfG2hTpiIGqHAFk6RWMELoprDWhT8m65JWsS2fyjLhoFpFOQ2dXYxDwiclOunU8aZ/Wh6+vuYgZSS6h8QEhAEISGi46Lof6Am8szTIG3Lx8YLHQB1He1gGFRnJ0a9ICCU3BYoFlJWtvMp5HDiq5/OG/SGHjhWk2+XDgylphlPN5azWiqMutgyeVVqSEAQhETo+3qhtcdUoBYfqK4IxNDw2fZNW9IXiL+HJ/hodeysr0qlUQjLCIRSEd0oee2GcXNxhdWJ89k2GkvhAVatBZQ5Qv0Duk8qCfkbSQlC5QWUeBbqqdGAmkBDGyxe07lpIM7/3NHdE4FneehDkFtXywr4ZoZM3v7JGzwJCLRxxm4MD3d34I2VsenwdeERaOhqg+15+yHAw3bL8COVpoOzcbifpUNE/HXezO1R7qjEgHHQnC4kAUEQzpa+UFn0ASloqmLXs4Kip+THj3UQKCDUWkhZJ1T1K1lA+Oo8WM6/o6+XmV7xKOQ83LVwXtxc2F1yfMr21jXNpshFlb4WPs6tG/F//7V8E6TY0GEkBUUt1WAwDoCfzgti/JQ1zZcEBEFIhFgkGK/C+gcxfZEcMrUR1XHmTgx1tnLyUAMhRiE66nq5jgRdMmsJ68bonWI7Z3Mbvpd7YXZIJMQFmSIYdZ0t7HKyrkR2AZHbUGb2v1BaQS4JCIKQ0EQKiQtQl4DoHxyA0jbTmVrKVAWEijsxug0G0Pf1se1wBUcgkJgAUyqJ1zoIxNNdC9fNu3jKj/865+/s+vqMVZAcZkrHnWkoh61HPmcH72uHh2VLYwwPD7O1IHPCEkBpUBElQUiEaNATK3QdqIXi1howDhlZvjnEa2omSeLfpLajXXUzMcT6BxwLrfTalxizF4T6hNx0PCBmBUezgVU4qr66w+R1Igf1Xa3Q2qtnBaOzg+QfnjUaEhAEIQHtvT0stzzD4ktaLRQK9Q/JwTFTPjML8vRiMzGwcl60fFZb/YPSow+Wpl48RyCmw3geEDioSoyuifMn5LSKnxUUDRo35RW5koAgCAmjD9hbruOwun0i8punV/+AoPAQD148jZS2pf5ByQWUo90ocajWVNsgeWYiDwisOUByhBoEOTit4PQFQgKCICSsf1Bb+kJv6IZavam7ZHbw9EKq5joIlXVi1HFSQCmu0d3FFfqNRvPB1JmYyAMCD9ooKao7GqGtt9Pha+sdMEBpay3bTrPRrM1RkIAgCAkQiwPFs2y1tW9G+4bYZF89kSNlZRtFIOQCW3BxMicijp13JsQhWhiBGA2+v+MCItj2aRmiEPlNlcywLcw7QFHuk5aQgCAICVMYauvAmG77piWxwt9GbSkMHjwgLInmeCbGdBGjLuNN4ZwrpA7kqIM401im6OgDQgKCICRNYaingBJbygqahQLKkOlXhIvRmdqODhg0GkENYB1BA2cC4mwnhvMJiMlsrNMF58fC5mowDPY79H10prFC0fUPCAkIgrAz3f0GaBZaw9SUwkC7YGxrw5ayxMCoaT9fiLc3s0/Gsdc1HaawP+9gS+DAkJGlBpQ6xns0UYKAUFs3jDWIYm+8CES4dyAEefrB4JCRpRQcRXVHI3QaekDrpoHEwEhQKiQgCEKi6EMga1XUyb0cu6cvkgIjQeM6fQ86y04MMeWjlgLKMG+fKVl8y4GzRiDG84AY/R4VuzFER0hHTd9EUoJjmGBXKny8wwmCRwMpFUUfLNs3Z9uh/kFEdQJCiKSEC4WJPDB6qJaz0NjZOaYHxGjEAVZYSIlFjY7gjCBW0sKUW/+AkIAgCKkKKFXUwonOk8XN1Ww7JVgCAaGSQkreCijFoVq+Op3ZGdRZmMgDwhKMuHm4aaCrvxcq2hokX1enoQcq2xsUX0CJkIAgCDujxghEeVs9mwjopfGAKL8Quz2v2iIQvAzRGtdQyok6Mcz1D5OIPVcXV0gVDuQ5DujGyGusYJERbJX20ym7joYEBEFINURLRRGIAtF9MjjGrhMBRaOtKpU4IYo1EDxFICwFhDPVQUzWgWGJWAfhCD+IM0L9g5K7L0RIQBCEHTEMDpoPImqKQOQLBlLTdZ8cDR5o0QkR/26NKnBC5MlEaqxCSmcyk5qsA8MSTCWgcMYR383d0nUMGYeGIK+pgov0BUICgiDsCH4B43m0j1YH/h7Tc2pUCmipW9leP63x3eOBnQpR/v6qSGP0DQxAa08PlwIiygkFhDkCYYWA8NTozK3LUkYhytrq2OfNy10HcQFhoHRIQBCEHakQigExND/VSZVKo6ilmqUXcHR3oKf9c/tipIb3mRj1whktThn1EYoSecGylRMNw5yqiNLKehVHtHOeEdwnU0PjwGWG8g/P02/mJgjCTKVQhBanovSF5fhuKVBLIaV5iJYVZ7RKI9Lfjw2O6unvh7aeHgj08gL1e0B02/R6YU3CZ2f2QXFLNfw7dw/MYH8x+3Kyrtj8s3iABARB2BFxMJSa6h/O2lfbN30xupCSdwFhrn/gyANCBI3B8EwcoyjVHW2qFxDoAYHo3NzNLayTEerlD6FeAdDY3QZ7y05KtjbXGS52TxVKBQkIgpBiBoZKBER7bxc0dLWyc62ZQdGS/Azxb1XV1srC57ymfnjtwLBMYzAB0dYG8yKlea0VN0TLd2IPCEtwv9sXXQrZdcUwzCqdpAGtq7FdmgdIQBCEncCBUDWCEY9aWjgLhehDjF8oeGl0krUQYoV7p8EA7b09EODpxbWJ1GS+AkoFX4ejlRVO0co50RjviUAPFHv6oPCO8qs0CIITavUdMDg0xMKiId4+oCYBMdsO0zfHQ+vmZs5D81xIyauJ1GhL62onGKpliwcEIbOAeOWVVyA+Ph50Oh0sW7YMjhw5MuH+H330EaSkpLD9586dC1999ZUjlkkQ9nGgVEkHhml8t2ggJW1Olvc6CPxb8eoBIRLl5zytnLZ4QBAyCogPPvgAHn74Yfjtb38LWVlZkJGRAevXr4fGxsYx9z948CDccMMN8NOf/hROnDgBmzZtYpfc3Fypl0oQ06JCZfUPjWx8dzebBpgg8Uhh3jsxMPXSNzjIakVsDYsrLQKBtRyYjlMztnhAEDLWQLz44otw1113we23385ub926Fb788kt444034NFHHz1n/7/+9a+wYcMG+MUvfsFuP/3007Br1y54+eWX2WPl4Ex9nbm/X8lgKHhlQhLo3N3lXopTgkWAamrhFLsvEgMj7DK+eyJiOBcQYgElpq7cXZU7fnkigr282WRKFEJ4gBXtrdWIrR4QxNhI+q3Q398Px48fhy1btpjvc3FxgbVr10JmZuaYj8H7MWJhCUYsPvvsszH3NxgM7CKiF0JT9uSH4kL45OQJ4IHrFy6Gn644X+5lOLeJlEoEhLn+QeL0haXo4lZAdOi5beEUwbQbOlKWNDdBVVubagXEVDwgCBkERHNzMxiNRggLG2nJibfz8/PHfEx9ff2Y++P9Y/HMM8/Ak08+CVISFxgEy+NNM+GVSpehD3LramFvcRHcsfw8VeTgeQKdGsXqdTGfzzPoyV/ULK2BlCWi6MIv9m6DAby0WuAJnk2kRrdyooBQcx3EVDwgCJW2cWJ0wzJigRGImBj7fuFtTEtnFyWDDnI/+cdrrBMA3RDV0kbICzgICgdC4WAoXovoLKnuaITewX7wcNNAjH+o5D8PBUOQlxcTEBVtrZAWHgE8wbOJlLNN5ZyKBwQhQxFlcHAwuLq6QkNDw4j78XZ4ePiYj8H7bdlfq9WCr6/viIsz4qnRwPxok/nLoXLpZ9YTYxdQRgcEsAFRvCN2X8xi47sd8/vwXEjJu4nUaAGh5gjEVD0giHOR9JtBo9HAokWLYPfu3eb7hoaG2O0VK1aM+Ri833J/BIsox9ufOIuYZskkASFfC6dQya6e+gfp0xdjOVLyBu8mUiIogBF0o1Qr5AFhPyQ/tcD0wrZt2+Ctt96CvLw8uPfee6G7u9vclbF58+YRRZYPPPAA7Ny5E1544QVWJ/G73/0Ojh07Bvfdd5/US1WNgDhTV8vaygg5BESgKorMSlvrJJ1/oaYIBP69mrtMefUIzg9K0cJo9bbeHlaLokbEqam816s4hYC47rrr4Pnnn4cnnngC5s+fD9nZ2UwgiIWSlZWVUFdn+rJCVq5cCe+99x68/vrrzDPi3//+N+vASE9Xdg2CEgj18YGZwSHMpf1IRbncy3HKDoy4gCDgnbLWWhgcMoKfzpsNEHIUYt0Ob26UWJSHnzlsgfT38ASe8dJoIdDTU9VpDHMLJwkIPoooMXowXgRhz54959x3zTXXsAsxtShEcXMTZJaVwrqUNLmX4xSgC6GlCyXvnHWfjHFokZkYgcCCRCxIRV8THqjrEC2s/VRRlId1EK09PayQMjls7NozNUQgKIUxffiv9iJGsCLBlMY4VlkB/YODci/HKWjp6Ybu/n42ECpKCAHzTEGT4+sfEDx799Fq2dk8T2e/aimgtGzlBM5eA2vB78TWHvKAsBckIFTGrJBQ1g7XNzgA2TWmAwHhmBHekX7+kjs2Sk13fx9r4USSJRygNRZ49s6jI2WdSlo4RaKF10CNAqJRqFUhDwj7QAJCZeCXsFhMeai8TO7lOAWVKrKwRvMojACEeQeyGghHYy6k5KgOQgyJqyUCIRZSohulagsoyQPCLpCAUCErxHbOslKWnyccU0Apnj2roX3T0dEHS9dXBM2keEFtKQzRC6Kmo505rKoJKqC0LyQgVMiC6BhWEd7c3cUKKglpEQ92anD/FAdoST2+ezxEHw1evCBQoJttrFUiIFAIoRkaFrI2d3WBWiMQxPQhAaFCNG5usCgmjm0fKiNTKYdN4RTOnnmltUcPTd3tMANmwMygKFnWEGuRf8d5HEqn09DHbOTVdFBC8RApiCG11UFQBMK+kIBQKcuFboyDZSVyL0XVoGFXe28v2+Z9eqGYvogLCAMPd3mGWYX6+LLo2eDQkPnMnocWTixc5qXt1JlnYljOwSCmDwkIlbI8PoG1FWIKg4cvYt4LKLElzMPdXe7lcGdfPRp8z4oHLx4KKdVW/yASo1JLa7MHBEUg7AIJCJWCPfXzIk3DtfaXFMu9HNUiHuR4N5DCXH6hzPUPo9MYFW2m4lQlo1YBESV6QXS0qdMDgiIQdoEEhIpZNXMmu95bUiT3UlRfQMn7DIz6rlbQG3rA3cUN4gPkdR+MFWpJcCw9L0O01CYgzGZSHLwGtqYv0APCR0seEPaABISKOS9hJmCnc35DPTQKHx5CmggE7zMwCppM9tVJQZHgLrMZFk9Dtcw21ioxkRIR00h40MVuDDVAHhD2hwSEign08oL0SFM1/f5SSmNIgVpmYCglfTF6rLfSfUxwbocaIxD+Hh7gLdiK13a0gxqo71RXu60SUE/ZMDEmq5JmQU5tDezIzYGe/oFpP9/cyCjIiDLVVjg7OO4YvTZ4d6E0DhmhqKVG9gJKkSg/kw9B78AANHV1sSmzSmTQaDRbI6tNQOAZerSfP+Q3NrBWzoSgYOAd8oCwPyQgVM75iTPhb/v2sHast45kTvv5MH/4yZ33gLurKzg7Yv0DtvB5aeVpe7QH5W31YBjsBy+NB0T5hci9HHBzdYVIPz9mpYyFlEoVECge0KlR4+pqHoGtJnAmBgoItVhan7UcJwFhL0hAqJxgb2949JINcKrWdIY5Hb7JP8OGdGFelHfPA7umLziOPiD5Qv1DSkgMa6NUAlhTggcuTGMsiY0HpXdgqDGnHq2yTox6MpGyOyQgnICLZ6ewy3TJq6+D0pZmqGlvJwGhogLKvKYKdp0SYnIvVQI8DNUSCyjVMoVzvKFaaunEEOtVqAbCflARJWE1UcIXCg7ZIc76FPBcQNnd3wtV7Q1sOyVE/gLKczsxlHvwUtsMjHFbOdvbFF/MOhloN67v62PbVANhP0hAEFYT6WcSEGqpyp4uakhh4PAsPDRE+ATJMr57PERRpuRWTrV6QIw2k+o0GMwHX949IND/wUvDb72S0iABQVhNFAkIM9gh0CAcQHgWEGfrH5QTfUDEFFlHXy+bN6JE1NrCKYKzPUK9fVQxE+NstIiiD/aEBARhcwQCayCcnYrWFnbmjpbhAZxW4GNYuqBRefUPCM4VCRO6L5QahVCrjbUl0SqZiUEtnNJAAoKwOQKB1czYA+/MlLU0s+uEIH4LKBu72qCtrwvcXFwhKTASlEasUJyqxELKzr4+6DIYVH9QEusgqtqV9xpMqYDSR71iTw5IQBBWI44sxt53sSXKWTkrIIK5775A8aBxU94kUSVbWovRB/R/0HE+hdWaVBLvUUca4y0NJCAIq8FedyqkNFHWYurASAgMVkH9g7LSFzwUUqq9A2O0gOC9BoJSGNJAAoKYUhqD9zOS6VLeKkQggvkUEAPGQShuqVZkASVPEQg11z9YpjDwhME4NAS81vqIAiKMUhh2hQQEYRNoMYzUCiY6zkhbTze09/aySae8zsAoa6uDfuMg+Gg9IdI3WNECAudhYB+/kqjvcA4BEeLjw6y6B4eGzGkA3ug09EHPgOn9QxEI+0ICgphaBEIl9rbTSV9gOofX/Ldl+6ZSbZh9dTrW5YKgpbWSqBEEhCio1Qpam4t+ELzOxBD9OrBeBWu4CPtBAoKYohul80Yg1FBAma/Q9s3RxCm0DkJ0YxU/D2rGPBOD0zoI0a9F7fUqckACgrAJsYgS26KctZWT9xbOjr5uqNY3se3kEPnHd/NWB2EYHIQmYYx3lJ/6Z8JYWlrz3MJJQ7TsDwkIwiaCvLzNrZwNnaYvUWejrLWF6whEXmM5u471CwVfrRfwICAqFOQFIXYgeWu1LM2idsxDtXgVENTCKRkkIAibc6Ji4ZgztnJiJTq6UPIsIE4LAiItLAGUjhIjEGL6AqNxSq0fsSe8t3LSFE7pIAFBTKOQ0vkEBLbvYQgbozA8VuAbh4zmAso5ofHAi4DAvzt2jSgBsYVZ/Bw4i4Bo6e6GXoV1w9gUgaAUht0hAUHYjDOP9RbrH/DA5urC38entLUODIP94K3xgBj/MODB/dRTo2EpM6V4j5gLKJ1EQPiwbhgPtl3N2WcePSDOFlGSgLA3/H0DErLjzEO1eO/AON1Yxq7TQuNZOkrpYIrAnMZQSB1ErRN1YJyTxlBQKskaWnt6oN9oZO91cbIoYT9IQBA248xjvYubTN0LM4NDgEfONAj1DxykL0TiA03dLqWCeJMbZ0th8DwTQ3QMDfbyBjdXV7mXozpIQBBTb+V0wqmcxc2N7HpWSCjwRkuPHuq7WtnZmFLtq8ciSRBrJc0m8SYnfQMD0NzdxbZFgyVngNdCyjqLglfC/pCAIGwm2NvUyokdCc40lbOtp4fZKmPgP5HDCMQZIX2REBABnhp+2g9nCmJNFG9yIkbdfLQ6p2jhFIkJCFBcN4w1iIZ3USp3DJULEhCEzeAZrHhGwtsXynQQD2D4u2NhH2/wmL5AEoOCmWjDLgAUccoooHSuA5I4dRbrUHgaqiUKPopASAMJCGJaZyS8+uNPheKmxhFnxDyBLZCFzabpm2lhfAkIFGviAUDuNIa5/sGJ0hdImK8veLi7w8CQkStDKTGFEUECQhJIQBBTQqyM560qezoUCQWUPNY/FDdXw8DQIPjrvCHSh78OEqXUQThbC6dl1FEsZhU7kXiAUhjSQgKCmBKx/oKA4OhsxJkjEDkNpex6Tlg8l+6JM0NCFFEH4UxDtMZKJSmpG2YyOvv62ChvhEfTNx6g2aaEVQwND8Ebx76CivZ6drvbYOq+KGisg8e/2WaXg5Knuw7uWLQRwnxM4kRpX0ZiSxhvLZxowpRTbxIQc8OTgEcUE4FwwhZOkXhBQIjj7JVOrfB5xTHeHhzWLIGzRyBaW1vhpptuAl9fX/D394ef/vSn0NVlaoEaj9WrV7ODkeXlnnvukXKZhBVUtDfAqfoSNskRL/3GXna/cQjNWkz3TfdS19kCH5/eC0pEPHChmx068/FEZXsD6A3doHXTwKygaOCRmcGmqE91Wxv0DgzIsga0ccb3urMW5SUGiwJC/nZaa6ACSs4jECge6urqYNeuXTAwMAC333473H333fDee+9N+Li77roLnnrqKfNtT09PKZdJWEF+YwW7TguNg8tSzmPbv/zsc9bWeHXaWkgOm54tcs9AH7x66DPIb6qAvMYKSA2NAyVRJKQveKx/QOEnzr5wd+Uz6Bjo5cXOJNFZEHPwaeERsqUvsH2TNxFpz04MnMLbbTCAl1YLPAiICKp/kAzJvk3y8vJg586dcPToUVi8eDG776WXXoKNGzfC888/D5GRkeM+FgVDeHi4VEsjpsAZQUDMC58J0X6mcHJ8YDATEL39Q+b7psOqhAz4vvQEfH5mHySHxIDLDOWU6OQ31HMrIHIEATE3PBF4BtMYrZUVTMzJISDElmWxgNjZQNEU4u3NPvM40j49YvzvcCVQay6gpAiEVEj2DZ2ZmcnSFqJ4QNauXQsuLi5w+PDhCR/77rvvQnBwMKSnp8OWLVugZ4Leb4PBAHq9fsSFsC9dhl6oFGofLCMD5k4MOxVSrpu1FDzctVDb2QKHq/JASeQJAkKOA9d0aOhshYauNnCd4cKd/8NokkNNJxUFwmvhaJxdQIgnDbykMSiFwbGAqK+vh9DQkWdrbm5uEBgYyP5vPG688UZ455134Pvvv2fi4e2334abb7553P2feeYZ8PPzM19iYmLs+nsQAHlNFTCMH0TfYAjwODuQJtbsBWGfVk4vjQ7Wz1rKtr/MPwi9AwZQAs1dXdDU1cla2WaHKH+CpSWnhO6LWcHRTJzxTEpY+Agx52hIQFjWQbTwIyCoA0M5AuLRRx89p8hx9CU/P3/KC8IaifXr18PcuXNZDcU///lP+PTTT6GkxBSGHQ2KjI6ODvOlqqpqyj+bGJu8xrEdDGPMXhD2a+W8IH4ehHr5g97QAzvyD4ISyGuoY9fYB89bNffZ9AWf3ReWpAppTTQywq4YRyNOA3VmASHWQcjdDTMZWGiL9TIIRSAUVAPxyCOPwG233TbhPomJiayGobFxZM/24OAg68ywpb5h2bJl7Lq4uBiSks79EtRqtexCSNe+iUWNYwsIUwSioVPPhgzp3N2n/fOwyO/aeRfDy5mfwP7yU7A0OhXiAuSth8kTImapnKUvsLOlvM209rlhfNc/IL46D3YwwDPL/MZ6WBLruJQM2jeLRZTOLCBED5TS5ib2N3F1UU6d0lgOlDizxBkLXhUrIEJCQthlMlasWAHt7e1w/PhxWLRoEbvvu+++g6GhIbMosIbs7Gx2HRHB15e3mto3uwf6wMNNAwmjDuR+Og926ejrZeHd2aH2Ce/PDo6BJdEpcLQ6H/51ajf8/ILrwc3FVfYIBG/1D2L0Ic4/DPw9vEENpIaFmwREvWMFBP7MwaEh0Lm5QYjP2TSesxHt788srfEMHyOP8UEmd0qlUW3266D0hZRIJh9TU1Nhw4YNrCXzyJEjcODAAbjvvvvg+uuvN3dg1NTUQEpKCvt/BNMUTz/9NBMd5eXlsH37dti8eTOsWrUK5s2bJ9VSCSvSF8khceA66iCO6aoE4QvE3u50m9IuAC93HdTqm+GrgkMgFwNGIxQ2NpgPXjxxoraIXWdEzAS1IFcdhFj/gGk7rIVxVjDiIEYhChrlqUWxhqp24fUKdN5okSOQNP6E3RQoENasWcPaN88//3x4/fXXzf+P3hAFBQXmLguNRgPffvstrFu3jj0O0yVXX301fPHFF1Iuk7BqguPYvgwJgjtduZ0FhI/WE67PWMO2dxcfg+KWGpADFA/9RiOLtPA0QEnf123+my2InA1qQRRx2FY7PIylvY6BCijPIhYSFwreKEpErMuK4egzyyOSuspgx8VEplHx8fEjvgSwg+KHH36QckmEDaB7YWWH6UsidZwWQFFASFGVjWfOy2PS4FDVGXg7ayf8fNUNTFg4kpM1pgmW86KiuDrzzK4rhmEYZumLIE9fUAuJwSHg7urKZhxgTYI4Vl5qKsUDEgkImC1014mROSUitpbT6yUtyqyAIRRBfmMlu472CwU/ndckAkKaATtXpV8IIV7+0NbXxWZxGIdMMzgcxclaQUBE8mUBfaK2UHXRBwTFg2jmlVdvqk1xBBSBOItY64SdGINGx34erQFPSsXW8hhh6B8hDSQgiHE53Vg2YfoCiQsMAjwvb+vtgbYJDL+mis5NA3ctuZzNcShprYF/5+5xWOga6x/O1NWy7flR/PiLtPd2QWmrad0LImeB2hAdEE/V1jhsGBm1cJ4FO2G8NBr2+ShvVZ4fREt3NyvyxIhhJBVRSgoJCGJMBoyDZvvqOWEJ4+6HFdkRQp+1VFGIcJ9A2LxgPRMqBypy4Yv8gw4RERii7RscZPUPcRwVY2XXFTHjr8SAiBHGX2pBjAaJ6SWpae7qhL7BAVZASFX9wA7MsxRcByGmL3CEN0asCOkgAUGMSVFLNRgG+8FX6wVx/hN3H4idGOWt0ggIcY7DT+auZtvfFh9jnRlSi4hsc/1DtF3GlTuKLKH7Qm3pC5G5kaZ6FByv3tgpvXW9WN8T7ecPbnRAUnwdhDl9QdEiySEBQUw6gGmy4kHRna60WToBgVwQnwE/TruAbX9ddATeO/ktDEpYE3GkwpTCWRjNT/qiqbsdytvqYAbMgPkqTF8gnhqNOQ8vijwpESNrWMBJKGMuiTUdGKLVPiEdJCCIMXO+OfWmGQrzrLBANvvjOyAfelHSQvhJ+mp2gDxcdQZe3PcB84qwNx29veYivWXx46dwlMbRatMQsuSQ2HELX9XA/ChTGiO7RnrretHjJFEoGCbOmqrh36a7Xxkza87xgKACSr7bOAk+qWxvYLMosIARhzBNhtiJUdHa4hB7Wxz7HezpB/888TVU65vgub3vwbKYNFiduAAifILGbEc9VHkailtqJ0x7YHj6R8kr2Gjyo5XlpjqCoGAI8fbhRvgdqTLNoVkWkwpqJiMqBt7POgbZ1VXsNZUyxSRGIMT3OQEQ7O0N4b6+UK/Xw5n6Ooe6globgYimCITkkIAgzuGUkL7A2RfWWEhjsZLWzQ0Mg4OsN98RleppYfGwZfXN8FHO92y9mZWn2SXMOwBi/ELB010HBuMA1He2MEFkbbVEY1cb/GrVjXC43JS+WB7PzwyJkpYaaO3VM+GnhuFZk9VB4HuuqauLHeClSi/0GwfNLZxipI0wMTciigmI3NpaxQgI7L5o7Opk25TCkB4SEMSE9Q/WgBGHpOAQdiaCRVWOanXDEP2dSy5jLYtYWIldIw1dbewyGjRUWhqTCjq38Qevbc/bz2oIPjuzn0UgkGXxyvhitIYjQvoCWzc1rur+aKN4WBAdC4fKSyGzvFQyAYHtmxjZwaFMwV7qmCdiz3baXQV5kFsnj0vsWNQIHRjYOYXD1whpUfe3DGEzDZ2t7ADsOsPlnOmbE4FFbaKAWJvs2PB5YmAk3L30Cuju74Wytjqo07ew6ANGT9CECv/fmnZGL40Oth7+HP6TfxK6+01fQsFeHtDc3QFKBw22soXuC5xg6gysSEg0CYiyUrhpsfUD+qZWQBnMVSeOI0iPjDLbimOkRgmitULw6xAnBRPSIv8rTiiKrDrTQSg5JAY83K0fk54cKn9fuJfGA9LDEtnFVvAsUzPDE2YGJMD3jaYCUhf3Xvj9nn8CTwR5+jHB5AwsjzMVtxY0NjDzoCCvyYtG8WD3zyOHmAmSNdR3msQj1T+cC86Z8PfwgPbeXihsbDQbfMlJmdBKTq+XYyABQZjBYrSsmgK2vTAy2abHim11xU2NDimktDefnDwBrx3YO+K+EB830Lry83vgtNQNs5c6zZlyoJcXpISGQX5jAxwsK4HL0yef2Pv3zP1TMqBKD5f/4Kg08H2Gpl57S4ogq6pCGQLCXPCqzDHjaoMEBGGmtrOZpS8w9G9t/YMIDjXydNdAz0A/Kzrj6QwAhdN/zuSybcxza9zcYF5kFDx80VqnORjzygVJs5iA2F2YP6mAaOzshFOCeMDXVufubtXPwPqHhTGxdlmv2sDiSRQQRyvKYfPSFXIvx2z6JXrTENJCAoIwk1VjGsCEtQ+2pC/M9rahoezsrqChgSsBgX7+KHrQ9vbvN9wCXlrbfndCPi5OToF/HDoAp+tqobajnc1pGI/viwpYNw52D1yalu7QdaqVxXFx5jRSe28P+Hs4dlquJZ19fdAkdGDEUwTCIfATnyWkT18IExwXTtECebbgj1/QqDx3uonAs1dkaVw8iQfOwIjRAsEp9CshijQWmFbbcfoU216bnOKw9TnD3x+9UlCYHa80Te+VC3GwV6i3D3hrdbKuxVkgAUEwKjsaoKVHzyqpJxqeNRGp4SZ729MOHLM8XbB6/Ou802zb0d0jhH24Ij2DXX95Ogd6+/vH3OdwRRnzLPDRauHi2SQg7AkKb0RsfZYLMvxyPCQgiBHpC+xg0LpZlxsejVhEhR9kfV8f8MD+kmJWRY5nUis4Mo0izoJW45i66DIYYMfpnDE7bN49doRtY+rC2toHwjqWCt0wKNKs7W6RAiqgdDwkIAgW3j1eM730BRLg6cVauxDMSSsdPLD86/hRtr1xTjp3nSOECXzdbli4hG2/e+wwy8VbsqeogPmT4Oj5n8xfKNMq1T0XI9DTiwm441UVsq1DnMVDEQjHQd+YBOQ3VbB5EeijgBbR9jCXyalVjjvdeHxXmM/ypl4aDWyaO1/u5RDT4JKUVOaG2t3fD8/v3sXEIVKv74CX937Ptq9dsJiJXML+Au7CmabJr98XmtrA5TgJKmlqYtuJQTQ11VFQFwYBh6rOsOslUclWzb6YbEYBtkTmTMHeFidg4heBVHhoNOwsFGnu6oK/7fvBfGDx0VHRFe8HsZ9ffAk88PEHLJT++I7P2UHtzcOZ0GkwMKOz6xYulnuZquWiWcnw6als2F9aDPq+XofbSOMArb7BAdC5uZMLpQMhAeHkdBl6IVcY3b0sNm3azzdXqIMoampkBW140LaGNw4dMKcTpALbNG9ftpJ5PDy3+xvoNPTBrJBQuGbBIkl/LuEYZoaEwq/WboA/fruTFfSJRX2YVntiw4/Y609IQ0pYOIsAlTQ3wdd5Zxz+mSpsamDX+HmmVKTjIAHh5ByvKQDj8BBE+4VClO/0Q39hPr4Q5uMDDWjaU1vDCtwmA8PNYicEIoV1Ewa0scDr9YP7zPdh4eRj6y6lA4uKWDVzFjsDff/4UWjq7oI54RFw/cIl1J4rMWi4dsXcDPjz99+ySMSVczOYIZujwBoXS0dcwjGQgHBy74fMKtOBe3nM9KMP4hcJVmV/kXuKDTqyRkCUNjdBa08P6Nzc4OM775FkKA/+rlih/+GJY6Dv7YMFMTHwswtWQ4j35EO2CL7AIrot6y6VexlOx5rZKfD2kUPMzAk//1c7sGD1rIAIddjPJEhAODU4BrtW3wzuLm6wKMq22RcTsUwQEJiLxgP3ZHbQxypNldvzo2Mkm+iHa0CrY2vmJRAEMbUR67csXc6iEG8dyWQnD2hxLzWDRiNLnSAUgXAsJCCcmL3lJ9n1kugUNsraXqAQwC+Tpq4uKG1pZrnRiThUUcauF8dOrwOEIAh5WZ+Sxrqb0NJ+yxefwv2rLoaGTj209nRL9jOxSLbfaGTdVBNZmRP2hwSEk9Le2wUn64rZ9gUJ9j0rR/GwIDqWpTAOl5dNKCCwG0L0jFiZQEZOBMEzWMC45ZJL4aFPPoQ6fQc8tuMzh/3s5LBwNpOHcBwkIJyUAxU5rHgxKTDKLsWTo1kRn8AExA/FhXDj4qXj7revpMhsRkP1CATBP0FeXvDyNTfAtoP74HhVJQR4erLuCCkP7m4uLrAxba5kz0+MDQkIJ6R/cIAJCGRVgmmOgL05P2kWvLx3D0thFDc1sha7scBwJyIa0RAEwT++Oh08cvElci+DkBhqmHVCDlbmQld/LwR5+sK88CTJvkBWCCmJr/NNRlVjVU7nNzaws4eLZtGAI4IgCJ4gAeFkDBgHYXfJcba9duZiSU1XNqTNYdc7z5wec7jW5zmmIs5VSbNYmJMgCILgBxIQTsaR6jzo6OsGP503LI2Wdnz14pg4VkCJFrOfnMwa8X+Vba3wbUEe275ynjRpFIIgCEI6SEA4WfRhV9Extr0maSG4S+S5YOm9cJNQQPlh1nGoEKbl4byLV/btYUWcOEI7Ldxkf00QBEHwAwkIJ2J/+Slo7dWDr9YLVsamO+Rnnp84kxlLDQwZ4fEvP2dTOnE6YlZVJWv3vHPl+Q5ZB0EQBGFfSEA4CT39ffB10RG2vTF5OWjcTFMppQajEA9etAYifP2gXq+Hhz/9iFlKIw9ftBZiAwIdsg6CIAjCvpCAcBK+KjgEPQMGiPAJguV2mLppCzi06q9XXwsXJM0Cb60WEoOC4XeXXgYXz6bOC4IgCF4hHwgnoKy1DvYJttVXzVkFLjMcrxsDPL3YSGWCIAhCHZCAUAmn6kvgX9nfslqD0QwOGdk4a+y6SA6JlWV9BEEQhLogAaECugy98K+Tu6F74FyvBRFs29yUdoFD10UQBEGoFxIQKuCT03uhu7+X1TfcueSyMT3nfbReko3KJgiCIJwPOqJwzvGaAjhWkw8oGW7MWAshXjTOliAIgpAe6sLgmLrOFvjXyW/Z9iUzl0BcQLjcSyIIgiCcBBIQnNLW2wmvHd4O/cZBmB0cDRtTlsu9JIIgCMKJkExA/OEPf4CVK1eCp6cn+PtbF1YfHh6GJ554AiIiIsDDwwPWrl0LRUVFUi2RW1p79PBy5sfMVTLEyw9uXXipLK2ZBEEQhPMi2VGnv78frrnmGrj33nutfsxzzz0H//u//wtbt26Fw4cPg5eXF6xfvx76xpjk6KycqiuBP+17H5q6OyDQwwfuW3E1+GhpkiVBEAThWGYM42m/hLz55pvw4IMPQnt7+4T74TIiIyPhkUcegZ///Ofsvo6ODggLC2PPcf3111v18/R6Pfj5+bHH+vr62uV3aOxqY2f7pnUK6wXzhnnbfD3BPuLvavlHZ7cm2aervxdO1BZBeVsdux3tGwJ3Lb0cAjx87PI7EgRBEITehmOoYrowysrKoL6+nqUtRPCXWLZsGWRmZo4rIAwGA7tY/vL2Zl/5KfihLBuUgKuLK1yUuAA2zF5GbZkEQRCEbCjmCITiAcGIgyV4W/y/sXjmmWfgySeflHRtfjoviPQJwslQrF3ShLAteC7gv+LtEfuY7jTfN3If4d/R+4y4bfoXR28nBUbCkugU8NV5Sfr7EgRBEIRdBcSjjz4Kzz777IT75OXlQUqK44YkbdmyBR5++OEREYiYmBi7/oy1MxezC0EQBEEQUxAQWJ9w2223TbhPYmIiTIXwcJOHQUNDA+vCEMHb8+fPH/dxWq2WXQiCIAiCUKiACAkJYRcpSEhIYCJi9+7dZsGA0QTsxrClk4MgCIIgCI7bOCsrKyE7O5tdG41Gto2Xrq4u8z6Y6vj000/Z9owZM1i3xu9//3vYvn075OTkwObNm1lnxqZNm6RaJkEQBEEQSiqiREOot956y3x7wYIF7Pr777+H1atXs+2CggLWKiLyy1/+Erq7u+Huu+9mbZ/nn38+7Ny5E3Q6nVTLJAiCIAhCiT4QjkYKHwiCIAiCcAb0NhxDyf+YIAiCIAibIQFBEARBEAS/RlL2QszISOFISRAEQRBqRi8cO62pblCdgOjs7GTX9jaTIgiCIAhnobOzk9VCOFUR5dDQENTW1oKPjw9rDbUHortlVVUVFWYqAHo9lAW9HsqBXgtloefw9UBJgOIBLRRcXFycKwKBv3B0dLQkz41vAF7eBM4AvR7Kgl4P5UCvhbLw5ez1mCzyIEJFlARBEARB2AwJCIIgCIIgbIYEhBXgsK7f/va3NLRLIdDroSzo9VAO9FooC63KXw/VFVESBEEQBCE9FIEgCIIgCMJmSEAQBEEQBGEzJCAIgiAIgrAZEhAEQRAEQdgMCQiCIAiCIGyGBIQVvPLKKxAfHw86nQ6WLVsGR44ckXtJTskzzzwDS5YsYTbloaGhsGnTJigoKJB7WQQA/PGPf2TW8Q8++KDcS3Faampq4Oabb4agoCDw8PCAuXPnwrFjx+ReltNhNBrhN7/5DSQkJLDXISkpCZ5++mmrhlPxBgmISfjggw/g4YcfZr28WVlZkJGRAevXr4fGxka5l+Z0/PDDD/Czn/0MDh06BLt27YKBgQFYt24ddHd3y700p+bo0aPw2muvwbx58+ReitPS1tYG5513Hri7u8N//vMfOHPmDLzwwgsQEBAg99KcjmeffRZeffVVePnllyEvL4/dfu655+Cll14CtUE+EJOAEQc868U3gzisC4ej/Pd//zc8+uijci/PqWlqamKRCBQWq1atkns5TklXVxcsXLgQ/va3v8Hvf/97mD9/PvzlL3+Re1lOB34XHThwAPbt2yf3Upyeyy67DMLCwuAf//iH+b6rr76aRSPeeecdUBMUgZiA/v5+OH78OKxdu3bEsC68nZmZKevaCICOjg52HRgYKPdSnBaMCP3oRz8a8RkhHM/27dth8eLFcM011zBRvWDBAti2bZvcy3JKVq5cCbt374bCwkJ2++TJk7B//3649NJLQW2obhqnPWlubmb5LFSTluDt/Px82dZFmCJBmG/HsG16errcy3FK3n//fZbWwxQGIS+lpaUsbI7p1scee4y9Jvfffz9oNBq49dZb5V6e00WD9Ho9pKSkgKurKzuG/OEPf4CbbroJ1AYJCILbM9/c3Fym7AnHU1VVBQ888ACrRcHiYkJ+QY0RiP/5n/9htzECgZ+PrVu3koBwMB9++CG8++678N5778GcOXMgOzubnexERkaq7rUgATEBwcHBTEE2NDSMuB9vh4eHy7YuZ+e+++6DHTt2wN69eyE6Olru5TglmNrDQmKsfxDBMy18TbBeyGAwsM8O4RgiIiIgLS1txH2pqanw8ccfy7YmZ+UXv/gFi0Jcf/317DZ2w1RUVLAuMrUJCKqBmAAM/y1atIjlsyyVPt5esWKFrGtzRrDeF8XDp59+Ct999x1rkyLkYc2aNZCTk8POrsQLngFjmBa3STw4FkzljW5pxhx8XFycbGtyVnp6elitnCX4ecBjh9qgCMQkYE4RVSN+OS5dupRVmGPb4O233y730pwybYFhwc8//5x5QdTX17P7/fz8WIUz4Tjw7z+69sTLy4t5EFBNiuN56KGHWPEepjCuvfZa5lXz+uuvswvhWC6//HJW8xAbG8tSGCdOnIAXX3wR7rjjDlAd2MZJTMxLL700HBsbO6zRaIaXLl06fOjQIbmX5JTg23Wsy//93//JvTRieHj4wgsvHH7ggQfkXobT8sUXXwynp6cPa7Xa4ZSUlOHXX39d7iU5JXq9nn0O8Jih0+mGExMTh3/9618PGwyGYbVBPhAEQRAEQdgM1UAQBEEQBGEzJCAIgiAIgrAZEhAEQRAEQdgMCQiCIAiCIGyGBARBEARBEDZDAoIgCIIgCJshAUEQBEEQhM2QgCAIgiAIwmZIQBAEQRAEYTMkIAiCIAiCsBkSEARBEARBgK38f+fhaXKbJ0GEAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] }, "metadata": {}, "output_type": "display_data" @@ -174,8 +176,10 @@ "outputs": [ { "data": { - "text/plain": "
", - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAdgAAAL0CAYAAACvXyZJAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAABX1ElEQVR4nO3dfVgU9f7/8dey3KqhAoqiZWamgogmqZ2wG+/yphJJT8cs81THPIp26nQHmuJNKZr2zaQ6VnYyLc28qbzrxuz0K8uUEjGS411l3kJo3oAgu/v7w4s9Et6wsrPDLs/HdXld7MxnZt7zcdgXn9nZGYvD4XAIAAC4lZ/ZBQAA4IsIWAAADEDAAgBgAAIWAAADELAAABiAgAUAwAAELAAABiBgAQAwgL/ZBXgLu92u0tJS+fn5yWKxmF0OAMAEDodDdrtd/v7+8vO78BiVgK2k0tJSZWdnm10GAKAaiI2NVWBg4AXbELCVVPaXSmxsrKxWq8nVuI/NZlN2drbP7Vd1Rp97Hn3uWb7c32X7drHRq0TAVlrZaWGr1epzB4zku/tVndHnnkefe5Yv93dlPirkIicAAAxAwAIAYAACFgAAAxCwAAC3CwkJMbsE0xGwAODl7A672SWUY7VaFR0dXe0ucPJ0P3EVMQB4OT+Ln+Z/t1YHTxSYXUq11ahOmIZe29uj2yRgAcAHHDxRoF9/zzO7DJyFU8QAABiAgAUAwAAELAAABiBgAQAwAAELAIABCFgAAAxAwAIAYAACFgAAAxCwAAAYgIAFAMAABCwAAAYgYAEAMAABCwCAAQhYAAAMQMACAGAAAhYAAAMQsFBISIjZJQCAzyFgPczusJtdQjlWq1XR0dGyWq1ml1JOdesnAHCVv9kF1DR+Fj/N/26tDp4oMLuUaqtRnTANvba32WUAQJUQsCY4eKJAv/6eZ3YZAAADcYoYAAADELAAABiAgAUAwAAELAAABiBgAQAwAAELAIABCFgAAAxAwAIAYACvDtji4mKlpqYqPj5eCQkJmjdv3kWX+fXXX9WhQwdt3LjRAxUCAGoqr76T0/Tp07Vt2za9+eab2r9/v5588klFRUWpd+/z32YvLS1NhYWFHqwSAFATeW3AFhYWasmSJXr11VcVExOjmJgY7dixQwsXLjxvwH7wwQc6efKkhysFANREXnuKePv27SotLVWHDh2c0zp27KisrCzZ7RWfxHLkyBHNmDFDkyZN8mSZAIAaymsDNi8vT/Xr11dgYKBzWkREhIqLi3X06NEK7adNm6YBAwaoZcuWHqwSAFBTee0p4qKionLhKsn5uqSkpNz0DRs2KDMzUytXrqzydm02W5WWr27PXa3OqtrX1VXZfvnq/lVHvt7nvK9UXlWPAVeW99qADQoKqhCkZa+Dg4Od006dOqXx48drwoQJ5aZfquzs7EteNiQkRNHR0VWuoabIzc1VUVGR2WUYpirHEi6NL/Y57yuu8eT7itcGbGRkpI4cOaLS0lL5+5/Zjby8PAUHBys0NNTZbuvWrdq7d6/GjBlTbvm//e1vSkxMdPkz2djYWP5a9JBWrVqZXYIhbDabsrOzOZY8iD5Hmaq+r5QdS5VhSsDecsst6tevn/r27XvJf3m1adNG/v7+2rJli+Lj4yVJmZmZio2NlZ/f/z5abteunT7++ONyy/bq1UtTpkzRDTfc4PJ2rVYrv6Ae4uv9zLHkefQ5PPn/b8pFTk899ZT27dunIUOGqHfv3po9e7Z27drl0jpCQkKUmJiotLQ0bd26VZ9++qnmzZunoUOHSjozmj116pSCg4PVrFmzcv+kMyPg8PBwt+8bAACSSSPYW2+9VbfeeqtOnTql9evX6+OPP9bdd9+tyMhI3Xbbberbt6+aNm160fWkpKQoLS1N9913n+rUqaPRo0erV69ekqSEhARNnTpVSUlJRu8OAAAVmPoZbHBwsG699VbVq1dPYWFheu+99/Tvf/9bL730kq699lo9/fTTat68+XmXDwkJUXp6utLT0yvMy83NPe9yF5oHAIA7mHKK2G63a8OGDRo/frwSEhL0j3/8Q8XFxXrllVf05Zdf6ssvv1T9+vX197//3YzyAACoMlNGsNdff71KSkp08803a9KkSbrxxhvLfae1Tp066tmzp7KysswoDwCAKjMlYMeNG6fu3burVq1aFeYVFBQoLCxMvXv3vuBN+wEAqM5MOUX8xBNP6NSpUxWm79u3T927dzehIgAA3MtjI9gVK1Zo2bJlkiSHw6FRo0YpICCgXJvDhw+rQYMGnioJAADDeCxge/bsqV9//VWS9O2336p9+/aqXbt2uTa1atVSz549PVUSAACG8VjA1q5dW8nJyZKkJk2aqF+/fhVu1g8AgK/w6Cnivn37KjAwUBaLRatXrz5v28TERE+VBQCAITwWsLNnz9ZNN92kwMBAzZ49+7ztLBYLAQsA8HoeC9jPPvvsnD8DAOCLPBawmzZtqlQ7i8XifDoOAADeymMBe++991aqncVi0Y8//mhwNQAAGMtjAbt9+3ZPbQoAANN5LGD379+vxo0by2KxaP/+/RdsGxUV5aGqAAAwhscCtlu3bvrqq68UHh6ubt26yWKxyOFwOOeXveYUMQDAF3gsYNetW6ewsDDnzwAA+DKPBWyTJk0q/Lxnzx7t2rVLAQEBuuqqq3T55Zd7qhwAAAxlyuPqDhw4oCeeeEKbNm1S3bp15XA4dPz4cXXr1k3PPPOM6tWrZ0ZZAAC4jSmPqxs3bpysVqvWrVunjRs36ttvv9WaNWt05MgRjR8/3oySAABwK1NGsJs2bdKyZcvKnTa+8sorNX78eP3lL38xoyQAANzKlBFsixYt9N///rfC9L1795YLXQAAvJVHn6ZTpkuXLho7dqxycnIUGxsrq9Wq3Nxc/fvf/9Zf//pXT5UEAIBhPPo0nbPVr19fq1evLvfYussuu0xLly7VyJEjPVUWAACGMOVpOgAA+DpTLnKSpIKCAu3Zs0d2u12S5HA4VFJSopycHA0fPtyssgAAcAtTAvbdd9/VpEmTVFpaWu6WiRaLRe3atSNgAQBez5SriF955RWNGDFCW7duVXh4uNavX6+VK1eqTZs26tmzpxklAQDgVqYE7OHDh5WYmKjAwEDFxMRoy5Ytuvrqq5WamqolS5aYURIAAG5lSsCGhYWpoKBAknTVVVc5n54TGRmpQ4cOmVESAABuZUrA9unTR08++aS+++47de3aVcuWLdNHH32kjIwMNWvWzIySAABwK1Mucnrsscd02WWX6ciRI+revbvuvPNOTZgwQfXq1dPUqVPNKAkAALcyJWADAgKUnJzsfP3II4/okUceMaMUAAAMYdr3YDdt2qRFixY5nwfbokUL3XfffWrTpo1ZJQEA4DamfAa7YMEC3X///QoMDNTAgQN1++23q7S0VH/+85+1atUqM0oCAMCtTBnBvvrqq5o8ebISExPLTY+Pj9esWbPUr18/M8oCAMBtTBnBnjhxQrGxsRWmx8fHO7++AwCANzMlYO+55x7NmDFDx44dc04rLi7WnDlz9Oc//9mMkgAAcCuPnSLu1q2bLBaLpDM39t+/f79uvPFGXX755fLz89Mvv/yi4uJiLnICAPgEjwXs6NGjPbUpAABM57GAHTBgQIVpRUVF+vnnn2W323XFFVeoTp06nioHAABDmXIV8enTpzVjxgy9/fbbstlscjgc8vf31+23366JEycqMDDQjLIAAHAbUy5ySk9P1/r16/Xyyy9r06ZN+vbbb5WRkaHNmzfr+eefN6MkAADcypSAXblypaZMmaKuXbuqTp06Cg0N1U033aTJkyfrww8/rPR6iouLlZqaqvj4eCUkJGjevHnnbfv555+rf//+6tChg26//XatW7fOHbsCAMA5mRKwDodD4eHhFaaHhYXp5MmTlV7P9OnTtW3bNr355puaMGGC5syZo7Vr11Zot337diUnJ+vOO+/UihUr9Je//EUPP/ywtm/fXqX9AADgfEwJ2C5duui5557TiRMnnNOOHTumWbNmqXPnzpVaR2FhoZYsWaKxY8cqJiZGPXv21IMPPqiFCxdWaLty5Up16dJFQ4cOVbNmzTRkyBB17txZa9ascds+AQBwNlMuckpNTdXQoUPVtWtXNW/eXJK0Z88eXX755Xr55ZcrtY7t27ertLRUHTp0cE7r2LGjXnnlFdntdvn5/e9vhwEDBuj06dMV1nH8+PEq7gkAAOdmSsBedtllWrlypb744gvt3r1bQUFBat68uW644YZywXgheXl5ql+/frkrjiMiIlRcXKyjR48qLCzMOb1Fixbllt2xY4e+/vpr/eUvf3G5dpvN5vIyZ7NarVVaviapal9XV2X75av7Vx35ep/zvlJ5VT0GXFnelIC97bbbNGfOHHXv3l3du3e/pHUUFRVV+DpP2euSkpLzLldQUKDRo0fr2muvvaRtZ2dnu7xMmZCQEEVHR1/y8jVNbm6uioqKzC7DMFU5lnBpfLHPeV9xjSffV0wJWD8/v3OesnVFUFBQhSAtex0cHHzOZfLz8/XXv/5VDodDs2fPrvRo+WyxsbH8teghrVq1MrsEQ9hsNmVnZ3MseRB9jjJVfV8pO5Yqw5SAvfnmm/XXv/5Vt9xyi5o0aVJhJJqcnHzRdURGRurIkSMqLS2Vv/+Z3cjLy1NwcLBCQ0MrtD906JCGDh0qSZo/f365U8iusFqt/IJ6iK/3M8eS59Hn8OT/vykBm5ubq5iYGB0+fFiHDx8uN6/sgQAX06ZNG/n7+2vLli2Kj4+XJGVmZio2NrbCyLSwsFAPPvig/Pz8NH/+fDVo0MA9OwIAwHl4NGDff/99ffLJJ4qIiFD37t112223XfK6QkJClJiYqLS0ND377LM6fPiw5s2bp6lTp0o6M5q97LLLFBwcrH/961/65Zdf9NZbbznnSWdOJV922WVV3zEAAP7AY9+DffPNN5WamqpTp06pqKhIKSkpmjVrVpXWmZKSopiYGN13332aOHGiRo8erV69ekmSEhIStHr1aknSRx99pFOnTmnQoEFKSEhw/nvmmWeqvF8AAJyLx0awixYt0jPPPKPExERJ0scff6yUlBQ98sgjlT4t/EchISFKT09Xenp6hXm5ubnOn891dycAAIzksRHs3r17df311ztfd+vWTUVFRRU+gwUAwBd4LGDPvtpXkvz9/c/5VRsAAHyBKfciBgDA13n0KuI1a9aoTp06ztd2u12ffPJJhe+kln1OCwCAt/JYwEZFRVV4Xmt4eLgWLFhQbprFYiFgAQBez2MB+9lnn3lqUwAAmI7PYAEAMAABCwCAAQhYAAAMQMACAGAAAhYAAAMQsAAAGICABQDAAAQsAAAGIGABADAAAQsAgAEIWAAADEDAAgBgAAIWAAADELAAABiAgAUAwAAELAAABiBgAQAwAAELAIABCFgAAAxAwAIAYAACFgAAAxCwAAAYgIAFAMAABCwAAAYgYAEAMAABCwCAAQhYAAAMQMACAGAAAhYAAAMQsAAAGICABQDAAAQsAAAGIGABADAAAQsAgAEIWAAADODVAVtcXKzU1FTFx8crISFB8+bNO2/bnJwcDRo0SHFxcbrzzju1bds2D1YKAKhpvDpgp0+frm3btunNN9/UhAkTNGfOHK1du7ZCu8LCQg0fPlzx8fFatmyZOnTooIceekiFhYUmVA0AqAm8NmALCwu1ZMkSjR07VjExMerZs6cefPBBLVy4sELb1atXKygoSE888YRatGihsWPHqnbt2ucMYwAA3MFrA3b79u0qLS1Vhw4dnNM6duyorKws2e32cm2zsrLUsWNHWSwWSZLFYtG1116rLVu2eLJkAEAN4m92AZcqLy9P9evXV2BgoHNaRESEiouLdfToUYWFhZVre/XVV5dbPjw8XDt27Kj09hwOhySppKREVqv1kuu2Wq2Kqh0uq/f+bWO4yNr1ZbPZZLPZzC7FEHa7XcHBwTp9+rTP7mN14+t9zvvKxbnrfaVs+bJMuBCvDdiioqJy4SrJ+bqkpKRSbf/Y7kLKRsU5OTmXUm45bRShNrUjqrweX1YTzi788MMPZpdQ4/hyn/O+cnHufF/545nSc/HagA0KCqoQkGWvg4ODK9X2j+0uxN/fX7GxsfLz83OeagYA1CwOh0N2u13+/hePT68N2MjISB05ckSlpaXOHc3Ly1NwcLBCQ0MrtM3Pzy83LT8/Xw0bNqz09vz8/CqMggEAOB+vPWHfpk0b+fv7lxvyZ2ZmOkeZZ4uLi9P333/vPGfucDj03XffKS4uzpMlAwBqEK8N2JCQECUmJiotLU1bt27Vp59+qnnz5mno0KGSzoxmT506JUnq3bu3jh07pmeeeUY7d+7UM888o6KiIvXp08fMXQAA+DCLozKXQlVTRUVFSktL08cff6w6derogQce0LBhwyRJrVq10tSpU5WUlCRJ2rp1qyZMmKBdu3apVatWmjhxoqKjo02sHgDgy7w6YAEAqK689hQxAADVGQELAIABCFgAAAxAwAIAYAACFgAAAxCwAAAYgIAFAMAABCwAAAYgYAEAMAABCwCAAQhYAAAMQMACAGAAAhYAAAMQsAAAGICABQDAAAQsAAAGIGABADAAAQsAgAEIWAAADEDAAgBgAAIWAAADELAAABiAgAUAwAD+ZhfgLex2u0pLS+Xn5yeLxWJ2OQAAEzgcDtntdvn7+8vP78JjVAK2kkpLS5WdnW12GQCAaiA2NlaBgYEXbEPAVlLZXyqxsbGyWq0mV+M+NptN2dnZPrdf1Rl97nn0uWf5cn+X7dvFRq8SAVtpZaeFrVarzx0wku/uV3VGn3sefe5ZvtzflfmokIucAAAwAAELAIABCFgAAAxAwAIA3C4kJMTsEkxHwAKAl7PZ7WaXUI7ValV0dHS1u8DJ0/3EVcQA4OWsfn6a+ska/VJQYHYp1dYVYWFK6dnHo9skYAHAB/xSUKCd+Xlml4GzcIoYAAADELAAABiAgAUAwAAELAAABiBgAQAwAAELAIABCFgAAAxAwAIAYAACFgAAAxCwAAAYgIAFAMAABCwAAAYgYAEAMAABCwCAAQhYAAAMQMACAGAAAhYKCQkxuwQA8DkErIfZ7HazSyjHarUqOjpaVqvV7FLKqW79BACu8je7gJrG6uenqZ+s0S8FBWaXUm1dERamlJ59zC4DAKqEgDXBLwUF2pmfZ3YZAAADcYoYAAADELAAABiAgAUAwAAELAAABiBgAQAwAAELAIABCFgAAAxAwAIAYACvDdjhw4frqaeecr7OycnRoEGDFBcXpzvvvFPbtm0r137lypXq0aOH4uLiNGrUKBVwJyUAgIG8MmBXrVql//znP87XhYWFGj58uOLj47Vs2TJ16NBBDz30kAoLCyVJW7du1dixY5WcnKzFixfr2LFjSklJMat8AEAN4HUBe/ToUU2fPl2xsbHOaatXr1ZQUJCeeOIJtWjRQmPHjlXt2rW1du1aSdKCBQvUp08fJSYmqnXr1po+fbr+85//aO/evWbtBgDAx3ldwKanp6t///66+uqrndOysrLUsWNHWSwWSZLFYtG1116rLVu2OOfHx8c72zdu3FhRUVHKysryaO0AgJrDq272//XXX2vz5s368MMPlZaW5pyel5dXLnAlKTw8XDt27JAkHT58WA0bNqww/+DBgy7XYLPZXC/8LNXtsXDVWVX7uroq2y9f3b/qyNf7nPeVyqvqMeDK8l4TsMXFxZowYYLGjx+v4ODgcvOKiooUGBhYblpgYKBKSkokSadOnbrgfFdkZ2e7vEyZkJAQRUdHX/LyNU1ubq6KiorMLsMwVTmWcGl8sc95X3GNJ99XvCZg58yZo7Zt26pr164V5gUFBVUIy5KSEmcQn29+SEiIy3XExsby16KHtGrVyuwSDGGz2ZSdnc2x5EH0OcpU9X2l7FiqDK8J2FWrVik/P18dOnSQJGdgfvTRR7rtttuUn59frn1+fr7ztHBkZOQ55zdo0MDlOqxWK7+gHuLr/cyx5Hn0OTz5/+81AfvWW2+ptLTU+fq5556TJD322GPatGmTXn31VTkcDlksFjkcDn333XcaMWKEJCkuLk6ZmZlKSkqSJB04cEAHDhxQXFyc53cEAFAjeE3ANmnSpNzr2rVrS5KaNWum8PBwzZw5U88884z+8pe/aNGiRSoqKlKfPn0kSYMHD9a9996r9u3bKzY2Vs8884xuvvlmXX755R7fDwBAzeB1X9M5lzp16uhf//qXc5SalZWluXPnqlatWpKkDh06aNKkScrIyNDgwYNVt25dTZ061eSqAQC+zGtGsH80bdq0cq/btWun5cuXn7d9UlKS8xQxAABG84kRLAAA1Q0BCwCAAQhYAAAMQMACAGAAAhYAAAMQsAAAGICABQDAAAQsAAAGMD1gCwoKzC4BAAC380jAtmnT5pxBum/fPnXv3t0TJQAA4FGG3SpxxYoVWrZsmSTJ4XBo1KhRCggIKNfm8OHDl/TIOAAAqjvDArZnz5769ddfJUnffvut2rdv73wCTplatWqpZ8+eRpUAAIBpDAvY2rVrKzk5WdKZR8317dtXQUFBRm0OAIBqxSNP0xkwYIB+/vlnbdu2TadPn64wPzEx0RNlAADgMR4J2Ndee03PPfec6tatW+E0scViIWABAD7HIwE7b948Pf7443rggQc8sTkAAEznka/pFBcXq1evXp7YFAAA1YJHAvb222/X22+/LYfD4YnNAQBgOo+cIj5x4oTee+89rVy5Uk2bNq3wfdj58+d7ogwAADzGIwF75ZVXasSIEZ7YFAAA1YJHArbs+7AAANQUHgnYlJSUC86fOnWqJ8oAAMBjTHmaTmlpqfbs2aPVq1crLCzMjBIAADCUR0aw5xuhvvbaa/rvf//riRIAAPAoU58H27t3b33yySdmlgAAgCFMC9jCwkK9++67ql+/vlklAABgGI+cIm7durUsFkuF6UFBQZoyZYonSgAAwKM8ErB/vJGExWJRQECArr76atWpU8cTJQAA4FEeCdhOnTpJkn766Sft2rVLdrtdzZs3J1wBAD7LIwF77NgxpaSkaN26dapbt65sNptOnjyp6667ThkZGbrssss8UQYAAB7jkYucpkyZooMHD2r16tXauHGjNm/erA8//FCFhYXcZAIA4JM8ErCfffaZ0tLSdNVVVzmnXX311Ro/frzWrVvniRIAAPAojwRsUFCQ/Pwqbspischms3miBAAAPMojAdutWzdNnDhRv/zyi3PaTz/9pClTpuimm27yRAkAAHiURy5yevzxxzVq1CjdeuutCg0NlST9/vvvuvHGG/X00097ogQAADzK8ID9+eefFRUVpbfeeku5ubnatWuXgoKCdOWVV6pFixZGbx4AAFMYdorY4XBoypQp6tOnj77//ntJUqtWrdS3b18tXbpUt912m6ZNmyaHw2FUCQAAmMawgJ0/f75Wr16tjIwM540myrz00kvKyMjQ8uXL9c477xhVAgAApjEsYN999109/fTTuuWWW845v1u3bnrssccIWACATzIsYPft26d27dpdsE2XLl20d+9eo0oAAMA0hgVseHi49u3bd8E2Bw8eVL169YwqAQAA0xgWsD179tSLL76o06dPn3N+aWmp5syZo4SEBKNKAADANIYF7MiRI3Xo0CElJSXp3XffVU5Ojvbu3att27Zp8eLFGjBggPbu3avRo0dXep2HDh3SmDFj1KlTJ3Xt2lVTp05VcXGxJGnv3r0aNmyY2rdvr759++rLL78st+yGDRt02223KS4uTkOHDuXUNADAUIYFbGhoqN59913FxcVp2rRpuvPOO9WrVy8NHDhQzz33nK699lq9++67ioyMrNT6HA6HxowZo6KiIi1cuFDPP/+81q9fr//7v/+Tw+HQqFGjFBERoaVLl6p///5KTk7W/v37JUn79+/XqFGjlJSUpPfee09hYWEaOXIkXxECABjG0BtN1KtXT1OmTNH48eO1d+9eHTt2TPXq1dMVV1whq9Xq0rp2796tLVu26KuvvlJERIQkacyYMUpPT9eNN96ovXv3atGiRapVq5ZatGihr7/+WkuXLtXo0aO1ZMkStW3bVvfff78kaerUqbrhhhv07bffqnPnzm7fbwAAPHKrxMDAwCrftalBgwZ67bXXnOFa5sSJE8rKylJ0dLRq1arlnN6xY0dt2bJFkpSVlaX4+HjnvJCQEMXExGjLli0ELADAEB4JWHcIDQ1V165dna/tdrsWLFigLl26KC8vTw0bNizXPjw8XAcPHpSki853RVWf/uPqyL0m89UnLZXtl6/uX3Xk633O+0rlVfUYcGV5rwnYP5oxY4ZycnL03nvv6d///rcCAwPLzQ8MDFRJSYkkqaio6ILzXZGdnX3JNYeEhCg6OvqSl69pcnNzVVRUZHYZhqnKsYRL44t9zvuKazz5vuKVATtjxgy9+eabev7553XNNdcoKChIR48eLdempKREwcHBks48j/aPYVpSUuJ8so8rYmNj+WvRQ1q1amV2CYaw2WzKzs7mWPIg+hxlqvq+UnYsVYbXBezkyZP1zjvvaMaMGbr11lslSZGRkdq5c2e5dvn5+c7TwpGRkcrPz68wv02bNi5v32q18gvqIb7ezxxLnkefw5P//x554Lq7zJkzR4sWLdKsWbPUr18/5/S4uDj98MMPOnXqlHNaZmam4uLinPMzMzOd84qKipSTk+OcDwCAu3lNwO7atUsvvfSS/va3v6ljx47Ky8tz/uvUqZMaN26slJQU7dixQ3PnztXWrVs1cOBASdKdd96p7777TnPnztWOHTuUkpKipk2bcgUxAMAwXhOw69atk81m08svv6yEhIRy/6xWq1566SXl5eUpKSlJH3zwgTIyMhQVFSVJatq0qV588UUtXbpUAwcO1NGjR5WRkSGLxWLyXgEAfJXXfAY7fPhwDR8+/LzzmzVrpgULFpx3/k033aSbbrrJiNIAAKjAa0awAAB4EwIWAAADELAAABiAgAUAwAAELAAABiBgAQAwAAELAIABCFgAAAxAwAIAYAACFgAAAxCwAAAYgIAFAMAABCwAAAYgYAEAMAABCwCAAQhYAAAMQMACAGAAAhYAAAMQsAAAGICABQDAAAQsAAAGIGABADAAAQsAgAEIWAAADEDAAgBgAAIWAAADELAAABiAgAUAwAAELAAABiBgAQAwAAELAIABCFgAAAxAwAIAYAACFgAAAxCwAAAYgIAFAMAABCwAAAYgYAEAMAABCwCAAQhYAAAMQMACAGCAGhWwxcXFSk1NVXx8vBISEjRv3jyzSwIA+Ch/swvwpOnTp2vbtm168803tX//fj355JOKiopS7969zS4NAOBjakzAFhYWasmSJXr11VcVExOjmJgY7dixQwsXLiRgAQBuV2NOEW/fvl2lpaXq0KGDc1rHjh2VlZUlu91uYmUAAF9UY0aweXl5ql+/vgIDA53TIiIiVFxcrKNHjyosLOyCyzscDklSSUmJrFbrJddhtVrVPCxcAZYa87eNy5rWry+bzSabzWZ2KYaw2+0KDg7W6dOnfXYfqxtf73PeVy7OXe8rZcuXZcKF1JiALSoqKheukpyvS0pKLrp82Sg3JyenyrV0D2sghTWo8np82ZYtW8wuwXA//PCD2SXUOL7c57yvXJw731cqc+azxgRsUFBQhSAtex0cHHzR5f39/RUbGys/Pz9ZLBZDagQAVG8Oh0N2u13+/hePzxoTsJGRkTpy5IhKS0udHZOXl6fg4GCFhoZedHk/P78KI2AAAM6nxpywb9Omjfz9/cudIsjMzHSOSgEAcKcakywhISFKTExUWlqatm7dqk8//VTz5s3T0KFDzS4NAOCDLI7KXArlI4qKipSWlqaPP/5YderU0QMPPKBhw4aZXRYAwAfVqIAFAMBTaswpYgAAPImABQDAAAQsAAAGIGABADAAAQsAgAEIWAAADEDAAgBgAAIWAAADELAAABiAgAUAwAAELAAABiBgAQAwAAELAIABCFgAAAxAwAIAYAACFgAAAxCwAAAYgIAFAMAABCwAAAYgYAEAMAABCwCAAQhYAAAM4G92Ad7CbrertLRUfn5+slgsZpcDADCBw+GQ3W6Xv7+//PwuPEYlYCuptLRU2dnZZpcBAKgGYmNjFRgYeME2BGwllf2lEhsbK6vVanI17mOz2ZSdne1z+1Wd0eeeR597li/3d9m+XWz0KhGwlVZ2WthqtfrcASP57n5VZ/S559HnnuXL/V2Zjwq5yAkAAAMQsAAAGICABQDAAAQsAMDtQkJCzC7BdAQsAHg5m91udgnlWK1WRUdHV7sLnDzdT1xFDABezurnp3++s0o7D/9mdinV1tUNwzVzcD+PbpOABQAfsPPwb8rZf9jsMnAWThEDAGAAAhYAAAMQsAAAGKBaB2xxcbFSU1MVHx+vhIQEzZs377xtc3JyNGjQIMXFxenOO+/Utm3bys1fuXKlevToobi4OI0aNUoFBQVGlw8AqMGqdcBOnz5d27Zt05tvvqkJEyZozpw5Wrt2bYV2hYWFGj58uOLj47Vs2TJ16NBBDz30kAoLCyVJW7du1dixY5WcnKzFixfr2LFjSklJ8fTuAABqkGobsIWFhVqyZInGjh2rmJgY9ezZUw8++KAWLlxYoe3q1asVFBSkJ554Qi1atNDYsWNVu3ZtZxgvWLBAffr0UWJiolq3bq3p06frP//5j/bu3evp3QIA1BDVNmC3b9+u0tJSdejQwTmtY8eOysrKkv0PXxbOyspSx44dnU83sFgsuvbaa7Vlyxbn/Pj4eGf7xo0bKyoqSllZWcbvCACgRqq234PNy8tT/fr1yz3QNiIiQsXFxTp69KjCwsLKtb366qvLLR8eHq4dO3ZIkg4fPqyGDRtWmH/w4EGX67LZbC4vU53Z7XaFhIRU+KMFxqHPPc/X+9xqterqhuFml1GtlfVPVd/DXVm+2gZsUVFRhafFl70uKSmpVNuydqdOnbrgfFdkZ2e7vEyZgIAAtYmOUYB/9bl9WNktzaqb06U2/Zjzg06fPl3ldZWdsaguqmuf79+/XwcOHHDLuujzynFHn5e9r3j6LkXeyJ3vK5VRbQM2KCioQgCWvQ4ODq5U27J255t/KTejjo2NrdL9Na1WK7c0u4iyW5rFxMS4bZ3V6cyD3W7Xjh071LJlS/n5VZ9PaSIjIxUZGem29dHnF+fOPqe/L87Poiq/r9hstkoPtKptwEZGRurIkSMqLS2Vv/+ZMvPy8hQcHKzQ0NAKbfPz88tNy8/Pd54WPt/8Bg0auFyX1Wqt8g2suaVZ5VS3G4W7U1FRkfz8/Hx6H6sb+tyz6O9qfJFTmzZt5O/v77xQSZIyMzMVGxtb4S+iuLg4ff/993I4HJIkh8Oh7777TnFxcc75mZmZzvYHDhzQgQMHnPMBAHC3ahuwISEhSkxMVFpamrZu3apPP/1U8+bN09ChQyWdGc2eOnVKktS7d28dO3ZMzzzzjHbu3KlnnnlGRUVF6tOnjyRp8ODBev/997VkyRJt375dTzzxhG6++WZdfvnlpu0fAMC3VduAlaSUlBTFxMTovvvu08SJEzV69Gj16tVLkpSQkKDVq1dLkurUqaN//etfyszMVFJSkrKysjR37lzVqlVLktShQwdNmjRJGRkZGjx4sOrWraupU6eatl8AAN9XbT+Dlc6MYtPT05Wenl5hXm5ubrnX7dq10/Lly8+7rqSkJCUlJbm9RgAAzqVaj2ABAPBWBCwAAAYgYAEAMIDLn8GeOHFCmzZt0g8//KCCggL5+fkpIiJC0dHR6ty5s4KCgoyoEwAAr1LpgP355581d+5crVq1SnXr1tXVV1+tevXqyW63a+fOnZo/f74KCwt1++236/7771fz5s2NrBsAgGqtUgH7/PPP65NPPtGAAQO0dOlStWjR4pztdu/erdWrV+uhhx5S79699eijj7q1WAAAvEWlArZp06b68MMPL3rLq6uuukrJyckaMWKEli5d6pYCAQDwRpUK2EGDBrm2Un9/3XXXXZdUEAAAvqBSATtnzpxKrzA5OfmSiwEAwFdUKmA3btxYqZVZLJYqFQMAgK+oVMC+9dZbRtcBAIBPuaR7Ef/444/asWOH7Ha7pDOPhyspKVFOTo4mTpzo1gIBAPBGLgfsnDlzNGfOHEVEROi3335zPszcZrOpZ8+eRtQIAIDXcflWiYsXL9bEiRP15ZdfqnHjxnrrrbe0YcMG/elPf9IVV1xhRI0AAHgdlwP2yJEj6tq1qySpTZs2+v777xUaGqpHHnnE+XxWAABqOpcDNjIyUnv37pUktWjRQjk5OZLOPPS8oKDAvdUBAOClXP4MdtCgQXr00Uf17LPPqkePHho2bJgaNmyoDRs2qHXr1kbUCACA13E5YEeMGKFGjRopJCRE7dq1U0pKihYtWqR69erp2WefNaJGAAC8ziV9TScxMdH586BBg1y+lSIAAL7ukh64/sEHHygpKUnx8fHau3evnn32Wc2dO9fdtQEA4LVcDti3335b06dPV1JSkk6fPi1JiomJ0euvv+7SPYsBAPBlLgfsW2+9pSlTpuiee+6Rn9+Zxfv376/p06dryZIlbi8QAABv5HLA7t+//5wPXL/88st19OhRd9QEAIDXczlg4+LitGLFinLTHA6H5s2bp3bt2rmrLgAAvJrLVxGPGzdOw4cP1+eff66SkhJNnDhRP/30k06dOqVXX33ViBoBAPA6LgfsNddco48++kgffvihdu3aJZvNpu7du+uOO+5Q7dq1jagRAACv43LAJiUlaerUqRo4cKAR9QAA4BNc/gz28OHDslqtRtQCAIDPcHkEm5iYqAcffFB33HGHmjRpoqCgoArzAQCo6VwO2NWrV8vPz08rV66sMM9isRCwAADoEgL2s88+M6IOAAB8SqU+g33hhRd04sSJSq/02LFjev755y+5KAAAvF2lArZx48bq37+/0tLS9OWXXzrvQXy2oqIibdiwQampqbrjjjvUuHFjtxcLAIC3qNQp4j//+c/q1auXFi5cqNTUVBUUFKhp06aqX7++7Ha7jh49ql9//VUNGjTQwIEDtXz5ctWvX9/o2gEAqLYq/RlsvXr1NGrUKI0cOVK5ubnKyclRQUGBLBaLwsPDFR0drWuuucbIWgEA8BouX+RksVjUunVrtW7d2oh6AADwCZf0wHUAAHBhBCwAAAaotgHrcDj03HPPqUuXLurUqZOmT58uu91+3vZ79+7VsGHD1L59e/Xt21dffvllufl33HGHWrVqVe7ff//7X6N3AwBQQ7n8GezZfv/9d1122WWyWCyyWCzuqkmS9MYbb2jlypWaM2eOSktL9fjjjys8PFwPPPBAhbYOh0OjRo3SNddco6VLl+rTTz9VcnKyVq9eraioKNlsNv30009asGCBrrzySudyXOkMADCKyyNYh8Ohl19+WZ07d9b111+vffv26fHHH9f48eNVUlLitsLmz5+vMWPGKD4+Xl26dNFjjz2mhQsXnrPtN998o71792rSpElq0aKFHnroIbVv315Lly6VJP366686ffq02rVrpwYNGjj/+ftX6e8LAADOy+WAzcjI0AcffKBp06YpMDBQkjRgwAB99dVXmj59uluKOnTokA4cOKDrrrvOOa1jx47at2+fDh8+XKF9VlaWoqOjVatWrXLtt2zZIknauXOnGjduXOHBBAAAGMXlIdzy5cs1bdo0XXfddc7TwjfccIPS09P18MMPa9y4cVUuKi8vT5LUsGFD57SIiAhJ0sGDB8tNL2v/x2nh4eE6ePCgJGnXrl0KCAjQQw89pG3btql58+Z64okn1K5dO5drs9lsLi9zNh71V3lV7evqqmy/fHX/qiP63LN8ub9d2SeXA/a3336rEGaSFBoaqsLCwkqv59SpUzp06NA555Wtp2yEfPbP5zoNXVRUVK5tWfuytnv27NHvv/+uQYMGacyYMXr33Xd13333afXq1S7f0jE7O9ul9mcLCQlRdHT0JS9f0+Tm5qqoqMjsMgxTlWMJl4Y+96ya3t8uB2yXLl30+uuva9KkSc5pJ06c0KxZs9S5c+dKrycrK0tDhw4957zHH39c0pkwLTutWxaWISEhFdoHBQXp6NGj5aaVlJQoODhYkjR58mSdOnVKderUkSSlpaXpu+++0/vvv68RI0ZUumZJio2NZRTqIa1atTK7BEPYbDZlZ2dzLHkQfe5ZvtzfZftWGS4HbFpampKTk3XDDTeouLhYI0eO1P79+xUVFaWXX3650uvp3LmzcnNzzznv0KFDmjFjhvLy8tS0aVNJ/ztt3KBBgwrtIyMjtXPnznLT8vPznSNtf39/Z7hKZ+5GddVVV513BH0hVqvV5w6Y6srX+5ljyfPoc8+q6f3tcsA2atRI7733nr7++mvt3r1bpaWlat68uRISEuTn556v1UZGRioqKkqZmZnOgM3MzFRUVNQ5T0/HxcVp7ty5OnXqlHPUmpmZqY4dO0qS7r33XnXu3FnJycmSJLvdrtzcXA0ZMsQt9QIA8EeX/D2V66+/Xtdff707ayln8ODBeu6559SoUSNJ0syZM3X//fc75xcUFCgoKEi1a9dWp06d1LhxY6WkpGjkyJFav369tm7dqqlTp0qSunXrpoyMDLVp00bNmzfX/Pnzdfz4cQ0YMMCw+gEANVulArZ169aVvpHEjz/+WKWCyjzwwAP67bfflJycLKvVqoEDB2rYsGHO+QMHDtSAAQM0evRoWa1WvfTSSxo7dqySkpLUrFkzZWRkKCoqSpI0bNgwFRcXa8qUKcrPz1dcXJzeeOONcqeNAQBwp0oF7Pz5850/Z2dn64033tDIkSMVGxurgIAA5eTkaM6cOee9aOlSWK1WpaSkKCUl5ZzzP/vss3KvmzVrpgULFpyzrcVi0YgRI1y+oAkAgEtVqYDt1KmT8+fx48crPT1dN9xwg3Na69at1aRJE6WkpJQbZQIAUFO5fFXS4cOHFR4eXmF6SEiIjh075paiAADwdi4H7M0336zU1FR99913Kiws1MmTJ/XNN98oNTVVffr0MaJGAAC8jstXEU+aNEkTJkzQvffe63x8nNVqVWJioltukwgAgC9wOWDr1KmjmTNnauLEidqzZ48kqXnz5lyRCwDAWVwO2E2bNlWYdvZXc85+Ag4AADWVywF77733nnN6YGCgGjRooHXr1lW5KAAAvJ3LAbt9+/Zyr202m3755RdNnjxZt99+u9sKAwDAm1X55sFWq1XNmzfXU089pRdeeMEdNQEA4PXcc3d+nXlOLN+DBQDgDJdPEZ/r1oUnT57Uhg0b1Lt3b7cUBQCAt7vkp+mcrV69enryySfVv39/d6wOAACv53LAJiUlqX379goICCg3vaSkRF988YV69OjhtuIAAPBWLn8GO3ToUB0/frzC9B07dujRRx91S1EAAHi7So1g3377bU2aNEkWi0UOh6Pck3TO9qc//cmtxQEA4K0qFbB33323WrZsKbvdrvvuu0+zZ89W3bp1nfMtFotCQkJ0zTXXGFYoAADepNKfwZbdAnHdunWKioqSxWIxrCgAALxdpQI2JSVFY8eOVZ06dTRnzpwLtp06dapbCgMAwJu57UYTAADgfyo1gj17VMoIFQCAi6tUwF7stPDZkpOTL7kYAAB8RaUCduPGjZVaGRc+AQBwRqUC9q233jK6DgAAfMol3Yt4w4YNWrx4sXbv3i2LxaJWrVppyJAhat++vZvLAwDAO7l8FfGSJUs0fPhwhYSE6K677tKdd94p6cwtFD/++GO3FwgAgDdyeQT78ssva+LEic5gLXPddddp5syZ6tWrl9uKAwDAW7k8gj169Kji4uIqTI+Pj9fhw4fdUhQAAN7O5YAdMmSI0tPTdeTIEee0oqIivfLKK7r77rvdWhwAAN7K5VPEmZmZ2rp1q26++WZdccUVCggI0M8//6yTJ08qKipKa9eudbZdt26dW4sFAMBbuBywgwYN0qBBg4yoBQAAn+FywA4YMMCIOgAA8CkuB+yuXbs0a9Ys7d69WyUlJRXmc1oYAIBLCNh//vOfCg4O1tChQxUcHGxETQAAeD2XA/ann37S0qVL1aJFCyPqAQDAJ7j8NZ0bb7xRmZmZRtQCAIDPcHkE+9RTT2nAgAH68MMP1aRJkwpP0OF5sQAAXMII9umnn5afn58iIiJ4PB0AAOfh8gh28+bNeueddxQdHW1EPQAA+ASXR7AtW7bUsWPHjKilHIfDoeeee05dunRRp06dNH36dNnt9osu9/PPP6tdu3YVpm/YsEG33Xab4uLiNHToUO3du9eIsgEAkHQJI9jBgwfriSeeUFJSkpo2bSp///KrSExMdEthb7zxhlauXKk5c+aotLRUjz/+uMLDw/XAAw+cd5kDBw7ooYceUnFxcbnp+/fv16hRozR69Gh17dpVGRkZGjlypD744ANOcwMADOFywGZkZMjf318ffPBBhXmHDx92W8DOnz9fY8aMUXx8vCTpscce0wsvvHDegP3000/19NNPq0GDBhXmLVmyRG3bttX9998v6cyFWDfccIO+/fZbde7c2S31AgBwNpcD9rPPPiv3uri4WJ988omWL1+uQ4cOuaWoQ4cO6cCBA7ruuuuc0zp27Kh9+/bp8OHDatiwYYVlPv/8cz388MNq3ry5hg4dWm5eVlaWM6glKSQkRDExMdqyZQsBCwAwhMsBWyYzM1MrVqzQ2rVrdeLECbVo0UKpqaluKSovL0+SygVpRESEJOngwYPnDNgpU6ZIkjZu3HjO9f1xmfDwcB08eNDl2mw2m8vLnM1qtVZp+Zqkqn1dXZXtl6/uX3VEn3uWL/e3K/vkUsDu27dPK1as0Pvvv6+9e/cqNDRUJ06c0MyZM9W3b1+Xijx16tR5R7yFhYWSpMDAQOe0sp/Pdf/jiykqKiq3rrL1Xcq6srOzXV6mTEhICFdfuyA3N1dFRUVml2GYqhxLuDT0uWfV9P6uVMAuXbpUK1as0ObNm9WwYUN169ZNvXr10nXXXae4uDhdc801Lm84KyurwqncMo8//rikM2EaFBTk/Fk6E1KuCgoKqhCmJSUlCg0NdXldsbGxjEI9pFWrVmaXYAibzabs7GyOJQ+izz3Ll/u7bN8qo1IBO3bsWDVr1kzp6em64447qlRcmc6dOys3N/ec8w4dOqQZM2YoLy9PTZs2lfS/08bnuojpYiIjI5Wfn19uWn5+vtq0aePyuqxWq88dMNWVr/czx5Ln0eeeVdP7u1Lfg3322WfVtGlTpaSk6Prrr1dKSorWrVtX4esw7hIZGamoqKhy9zzOzMxUVFTUOT9/vZi4uLhy6yoqKlJOTo7i4uLcUi8AAH9UqRFsUlKSkpKSVFBQoDVr1mj16tVKTk5WcHCw7Ha7Nm7cqGbNmikgIMBthQ0ePFjPPfecGjVqJEmaOXOm82s2klRQUKCgoCDVrl37ouu688479frrr2vu3Lm65ZZblJGRoaZNm3IFMQDAMC7dySksLExDhgzRwoULtX79eo0aNUpt2rTR5MmT1bVrV7fe6P+BBx5Q3759lZycrIcfflj9+/fXsGHDnPMHDhyoefPmVWpdTZs21YsvvqilS5dq4MCBOnr0qDIyMrjJBADAMBaHw+Go6kp++uknrVy5UqtXr9bq1avdUVe1Y7PZtGXLFrVv377Knyn0f2G+cvYfdlNlvic6qqHef/jcF8D5AnceS6gc+tyzfLm/Xdk3l+9FfC5XXnmlkpOTfTZcAQBwlVsCFgAAlEfAAgBgAAIWAAADELAAABiAgAUAwAAELAAABiBgAQAwAAELAIABCFgAAAxAwAIAYAACFgAAAxCwAAAYgIAFAMAABCwAAAYgYAEAMAABCwCAAQhYAAAM4G92ATXR1Q3DzS6hWqN/APgCAtbDbHa7Zg7uZ3YZ1Z7NbpfVjxMsALwX72AeVt1Cw2azKScnRzabzexSyqlu/QQAruJdDCoqKjK7BADwOQQsAAAGIGABADAAAQsAgAG4iriSHA6HJFW7i4Gqqmx/fG2/qjP63PPoc8/y5f4u26eyTLgQi6MyraCSkhJlZ2ebXQYAoBqIjY1VYGDgBdsQsJVkt9tVWloqPz8/WSwWs8sBAJjA4XDIbrfL399ffhf5OiEBCwCAAbjICQAAAxCwAAAYgIAFAMAABCwAAAYgYAEAMAABCwCAAQhYAAAMQMACAGAAAhYAAAMQsAAAGICABQDAAAQsAAAGIGABADAAAQsAgAEIWAAADEDAAgBgAAIWAAADELAAABiAgAUAwAAELAAABiBgAQAwAAELAIABCFgAAAxAwAIAYAACFgAAAxCwAAAYwN/sAryF3W5XaWmp/Pz8ZLFYzC4HAGACh8Mhu90uf39/+fldeIxKwFZSaWmpsrOzzS4DAFANxMbGKjAw8IJtCNhKKvtLJTY2Vlar1eRq3Mdmsyk7O9vn9qs6o889jz73LF/u77J9u9joVSJgK63stLDVavW5A0by3f2qzuhzz6PPPcuX+7syHxVykRMAAAYgYAEAMAABCwCAAQhYAAAMQMACAGAAAhYAAAMQsAAAGICABQDAAAQsAAAGIGABADAAAQsAgAEIWAAADEDAAgBgAAIWAAADELAAABiAgAUAwAAELAAABiBgAQAwAAELAIABakzAHjp0SGPGjFGnTp3UtWtXTZ06VcXFxWaXBQDwUf5mF+AJDodDY8aMUWhoqBYuXKjff/9dqamp8vPz05NPPml2eQAAH2R6wP73v/9VTk6OfvvtN/n5+SkiIkLR0dFq0aKF27axe/dubdmyRV999ZUiIiIkSWPGjFF6ejoBCwAwhCkB+/vvv2vhwoVavHix8vPz1bRpU9WvX192u11HjhzRvn371KhRI/35z3/W4MGDVbdu3Sptr0GDBnrttdec4VrmxIkTVVovAADn4/GAXbJkif71r3+pa9eumjx5srp06aLAwMBybU6ePKnvv/9eq1atUv/+/fX3v/9dd9111yVvMzQ0VF27dnW+ttvtWrBggbp06eLyumw22yXXUR2V7Y+v7Vd1Rp97Hn3uWb7c367sk8cD9tdff9Xy5ct12WWXnbdN7dq1lZCQoISEBB05ckRvvPGGW2uYMWOGcnJy9N5777m8bHZ2tltrqS58db+qM/rc8+hzz6rp/W1xOBwOs4vwpBkzZuiNN97Q888/r1tvvbXSy9lsNm3ZskWxsbGyWq0GVuhZNptN2dnZPrdf1Rl97nn0uWf5cn+X7Vv79u0vum+mXuQ0Z86cc063WCwKCAhQw4YN1bVrV4WHh7tle5MnT9Y777yjGTNmuBSuZ7NarT53wEi+u1/VGX3uefS5Z9X0/jY1YPfs2aPVq1erUaNGatu2rRwOh3788Uft379f7du31/HjxzVlyhS99tprat++fZW2NWfOHC1atEizZs1S79693bMDAACch+lf0xk4cKDS0tKcf+XY7XY988wzKiws1NSpU/XKK69o2rRpWrRo0SVvY9euXXrppZc0fPhwdezYUXl5ec55DRo0qPI+AADwR6beyemzzz7T/fffX+4Ugp+fn+655x6tXbtWktSvXz9t3769SttZt26dbDabXn75ZefFU2X/AAAwgqkj2IiICG3evFnNmzcvNz0zM1P16tWTJOXn56tOnTpV2s7w4cM1fPjwKq0DAABXmBqwo0eP1tixY5WZmanY2Fg5HA798MMPWrVqlcaPH689e/boySefVL9+/cwsEwAAl5kasHfccYeioqL0zjvvaNGiRbJarbr66qs1f/58tW/fXlu3btU999yjIUOGmFkmAAAuM/0ip/j4eMXHx59zXrt27dSuXTsPVwQAQNWZGrBFRUVavHixdu7cWe72UyUlJcrJydGaNWtMrA4AgEtn6lXE48aN09y5c1VUVKQPPvhAp0+f1s6dO7Vq1So+dwUAeDVTR7BffPGFXnjhBf3pT3/Sjh07NGzYMLVt21bTpk3Tjh07zCwNAIAqMXUEW1xcrCuvvFKS1LJlS23btk2SdNddd2nz5s0mVgYAQNWYGrAtWrTQhg0bJJ0J2MzMTEnS8ePHVVxcbGZpAABUiamniJOTk/Xwww/Lbrerf//+6tevn0aMGKHc3Nxyz28FAMDbmBqw3bt315o1a2S329W4cWO9/fbbev/993Xttdfq3nvvNbM0AACqxPTvwV5++eXOn1u3bq3WrVubWA0AAO5hasBu3rxZU6ZM0e7du3X69OkK83/88UcTqgIAoOpMDdixY8eqZcuWevTRRxUcHGxmKQAAuJWpAXv48GG98sorFZ6mAwCAtzP1azq33367Vq1aZWYJAAAYwtQR7IMPPqiBAwdq2bJlatKkiSwWS7n58+fPN6kyAACqxtSAfeyxxxQWFqYePXrwGSwAwKeYGrC5ublatmyZWrRoYWYZAAC4namfwXbs2FG7du0yswQAAAxh6gg2ISFBqamp+vjjj3X55ZfLarWWm5+cnGxSZQAAVI2pAbt+/Xq1adNGhw4d0qFDh8rN++MFTwAAeBNTA/att94yc/MAABjG4wG7YsUK9e3bV4GBgVqxYsUF2yYmJnqkJgAA3M3jATt79mzddNNNCgwM1OzZs8/bzmKxELAA4KVCQkLMLsF0Hg/Yzz777Jw/wzz8IgDezWa3y+pn6pdCyrFarYqOjja7jAo83U8eD9gXXnhBDzzwgOrUqVOp9seOHdPrr7+uRx55xODKPINfhMqpbv0EVGdWPz89MnuFdu77zexSqq2rm4Tr+TGJHt2mxwO2UaNG6t+/v7p27aoePXqoc+fOCggIKNemqKhI33//vVauXKkNGzZoxIgRni7TMPwiXJwZvwiAt9u57zf9sOeg2WXgLB4P2Lvuuku33nqrFi5cqNTUVBUUFKhp06aqX7++7Ha7jh49ql9//VUNGjTQwIEDtXz5ctWvX9/TZRqKXwQA8H2mfE2nXr16GjVqlEaOHKnc3Fzl5OSooKBAFotF4eHhio6O1jXXXGNGaQAAuIWp34O1WCxq3bq1WrdubWYZAAC4HVeRAABgAAIWAAADELAAABig2gTs77//LrvdLofDYXYpAABUmakB63A49PLLL6tz5866/vrrtW/fPj3++OMaP368SkpKzCwNAIAqMTVgMzIy9MEHH2jatGkKDAyUJA0YMEBfffWVpk+fbmZpAABUiakBu3z5ck2aNEm33HKL8/mvN9xwg9LT07VmzRq3b6+4uFipqamKj49XQkKC5s2b5/ZtAAAgmfw92N9++00NGzasMD00NFSFhYVu39706dO1bds2vfnmm9q/f7+efPJJRUVFqXfv3m7fFgCgZjN1BNulSxe9/vrr5aadOHFCs2bNUufOnd26rcLCQi1ZskRjx45VTEyMevbsqQcffFALFy5063YAAJBMDti0tDTl5OTohhtuUHFxsUaOHKmbbrpJ+/bt07hx49y6re3bt6u0tFQdOnRwTuvYsaOysrJkt9vdui0AAEw9RdyoUSO99957+vrrr7V7926VlpaqefPmSkhIkJ+bH1WWl5en+vXrOy+mkqSIiAgVFxfr6NGjCgsLq9R6bDZbleqwWq26ukl4ldbh68r6p6p9XV3Z7XaFhITwh50H+Xqf875yce56X3FleVMDtsz111+v66+/3tBtFBUVlQtXSc7XrnwlKDs7+5JrCAgIUJvoGB7FVgmnS236MecHnT59usrraty4saKiotxQlXtU12fw7t+/XwcOHHDLuujzynFHn/O+UnnufF+pDI8HbOvWrZ1XDF/Mjz/+6LbtBgUFVQjSstfBwcGVXk9sbKysVmuVaqlOIzO73a4dO3aoZcuWbj9rUBV+FikmJsZt66PPLy4yMlKRkZFuWx99fnHu7HP6++Lc8b5is9kqPdDyeMDOnz/f+XN2drbeeOMNjRw5UrGxsQoICFBOTo7mzJmjoUOHunW7kZGROnLkiEpLS+Xvf2a38/LyFBwcrNDQ0Eqvx2q1Vjlgq5uioiL5+fn53H5VZ/S559HnnkV/mxCwnTp1cv48fvx4paen64YbbnBOa926tZo0aaKUlBQNGzbMbdtt06aN/P39tWXLFsXHx0uSMjMzFRsbW63+wgIA+AZTk+Xw4cMKD6/4wXxISIiOHTvm1m2FhIQoMTFRaWlp2rp1qz799FPNmzfP7SNlAAAkkwP25ptvVmpqqr777jsVFhbq5MmT+uabb5Samqo+ffq4fXspKSmKiYnRfffdp4kTJ2r06NHq1auX27cDAICpVxFPmjRJEyZM0L333uu8fN5qtSoxMdHt34OVzoxi09PTlZ6e7vZ1AwBwNlMDtk6dOpo5c6YmTpyoPXv2SJKaN2+uOnXqmFkWAABVZmrAbtq0qcK0s7+ac91113myHAAA3MbUgL333nvPOT0wMFANGjTQunXrPFwRAADuYWrAbt++vdxrm82mX375RZMnT9btt99uUlUAAFRdtfoCqNVqVfPmzfXUU0/phRdeMLscAAAuWbUK2DK//fab278HCwCAJ5l6ijglJaXCtJMnT2rDhg08BB0A4NWqxdN0zlavXj09+eST6t+/v9mlAABwyUwN2KSkJLVv314BAQHlppeUlOiLL75Qjx49TKoMAICqMfUz2KFDh+r48eMVpu/YsUOPPvqoCRUBAOAeHh/Bvv3225o0aZIsFoscDke5J+mc7U9/+pOHKwMAwH08HrB33323WrZsKbvdrvvuu0+zZ89W3bp1nfMtFotCQkJ0zTXXeLo0AADcxpTPYMtugbhu3TpFRUXJYrGYUQYAAIbxeMCmpKRo7NixqlOnjubMmXPBtlOnTvVQVQAAuFe1vNEEAADezuMj2LNHpYxQAQC+yuMBe7HTwmdLTk42sBIAAIzj8YDduHFjpdpx4RMAwJt5PGDfeustT28SAACPM/1exBs2bNDixYu1e/duWSwWtWrVSkOGDFH79u3NLg0AgEtm6lXES5Ys0fDhwxUSEqK77rpLd955p6Qzt1D8+OOPzSwNAIAqMXUE+/LLL2vixInOYC1z3XXXaebMmerVq5dJlQEAUDWmjmCPHj2quLi4CtPj4+N1+PBhEyoCAMA9TA3YIUOGKD09XUeOHHFOKyoq0iuvvKK7777bxMoAAKgaU08RZ2ZmauvWrbr55pt1xRVXKCAgQD///LNOnjypqKgorV271tl23bp1JlYKAIBrTA3YQYMGadCgQWaWAACAIUwN2AEDBpi5eQAADGNqwO7atUuzZs3S7t27VVJSUmE+p4UBAN7K1ID95z//qeDgYA0dOlTBwcFmlgIAgFuZGrA//fSTli5dqhYtWphZBgAAbmfq13RuvPFGZWZmmlkCAACGMHUE+9RTT2nAgAH68MMP1aRJkwpP0OF5sQAAb2XqCPbpp5+Wn5+fIiIieDwdAMCnmDqC3bx5s9555x1FR0ebWQYAAG5n6gi2ZcuWOnbsmJklAABgCFNHsIMHD9YTTzyhpKQkNW3aVP7+5ctJTEw0pzAAAKrI1IDNyMiQv7+/PvjggwrzDh8+7NaAPXbsmNLT07V+/XrZ7XbdfPPNSk1NVWhoqNu2AQBAGVMD9rPPPiv3uri4WJ988omWL1+uQ4cOuXVbEyZM0C+//KK5c+fKYrEoLS1N48aN0+zZs926HQAAJJMDtkxmZqZWrFihtWvX6sSJE2rRooVSU1Pdtv7CwkJ99NFHeuedd9S2bVtJUmpqqoYMGaLi4mIFBQW5bVsAAEgmBuy+ffu0YsUKvf/++9q7d69CQ0N14sQJzZw5U3379nXrtvz8/PTKK6+oTZs25abbbDadPHmSgAUAuJ3HA3bp0qVasWKFNm/erIYNG6pbt27q1auXrrvuOsXFxemaa65x+zaDg4N14403lps2f/58tWrVSmFhYS6ty2azubM005Xtj6/tV3VGn3sefe5ZvtzfruyTxwN27NixatasmdLT03XHHXe4bb2nTp067+e2DRo0UK1atZyvFyxYoDVr1ui1115zeTvZ2dmXXGN15qv7VZ3R555Hn3tWTe9vjwfss88+q1WrViklJUVTp07VzTffrB49eighIaFK683KytLQoUPPOS8jI0M9evSQJC1cuFBTpkxRSkrKJW0zNjZWVqu1SrVWJzabTdnZ2T63X9UZfe559Lln+XJ/l+1bZXg8YJOSkpSUlKSCggKtWbNGq1evVnJysoKDg2W327Vx40Y1a9ZMAQEBLq23c+fOys3NvWCb119/XdOnT9cTTzyh++6775Lqt1qtPnfASL67X9UZfe559Lln1fT+Nu1OTmFhYRoyZIgWLlyo9evXa9SoUWrTpo0mT56srl27uv1G/8uXL9f06dOVkpKiBx54wK3rBgDgj0y9VWKZRo0a6cEHH9SyZcu0du1a3XPPPfp//+//uW39R48e1aRJkzRgwAD169dPeXl5zn+++CE8AMB81eJ7sGe78sorlZycrOTkZLet86uvvlJhYaGWL1+u5cuXl5u3bt06NW3a1G3bAgBAqoYBa4R+/fqpX79+ZpcBAKhBqsUpYgAAfA0BCwCAAQhYAAAMQMACAGAAAhYAAAMQsAAAGICABQDAAAQsAAAGIGABADAAAQsAgAEIWAAADEDAAgBgAAIWAAADELAAABiAgAUAwAAELAAABiBgAQAwAAELAIABCFgAAAxAwAIAYAB/swvwFg6HQ5Jks9lMrsS9yvbH1/arOqPPPY8+9yxf7u+yfSrLhAuxOCrTCiopKVF2drbZZQAAqoHY2FgFBgZesA0BW0l2u12lpaXy8/OTxWIxuxwAgAkcDofsdrv8/f3l53fhT1kJWAAADMBFTgAAGICABQDAAAQsAAAGIGABADAAAQsAgAEIWAAADEDAAgBgAAK2BikuLlZqaqri4+OVkJCgefPmOeft3btXw4YNU/v27dW3b199+eWXJlbqOy7U52V+/vlntWvXzoTqfFdJSYluu+02bdy40TmNY9x45+p3qeYe4wRsDTJ9+nRt27ZNb775piZMmKA5c+Zo7dq1cjgcGjVqlCIiIrR06VL1799fycnJ2r9/v9kle73z9XmZAwcO6KGHHlJxcbGJVfqW4uJiPfroo9qxY4dzGse48c7V71LNPsa52X8NUVhYqCVLlujVV19VTEyMYmJitGPHDi1cuFB169bV3r17tWjRItWqVUstWrTQ119/raVLl2r06NFml+61LtTnvXv31qeffqqnn35aDRo0MLtUn7Fz507985//rHAj9m+++YZj3EDn6/eafowzgq0htm/frtLSUnXo0ME5rWPHjsrKylJWVpaio6NVq1atcvO2bNliQqW+40J9brfb9fnnn+vhhx/W2LFjTazSt3z77bfq3LmzFi9eXG46x7ixztfvNf0YZwRbQ+Tl5al+/frlnv4QERGh4uJiHThwQA0bNizXPjw8XAcPHvR0mT7lQn1+9OhRTZkyRZIqfF6FS3f33Xefc3peXh7HuIHO1+81/RhnBFtDFBUVVXi0Utnr06dPn3NeSUmJx+rzRRfqc/rWs873f8H/A4xEwNYQQUFBFd5Myl4HBAScc15wcLDH6vNFF+pz+tazzvd/wf8DjETA1hCRkZE6cuSISktLndPy8vIUHBysxo0bKz8/v1z7/Pz8CqfU4JoL9XloaKiJldU8kZGRHOPwOAK2hmjTpo38/f3LXdSRmZmp2NhYxcXF6YcfftCpU6fKzYuLizOhUt9xoT6/2IOa4V4c4zADv+U1REhIiBITE5WWlqatW7fq008/1bx58zR06FB16tRJjRs3VkpKinbs2KG5c+dq69atGjhwoNlle7UL9Tk8i2McZiBga5CUlBTFxMTovvvu08SJEzV69Gj16tVLVqtVL730kvLy8pSUlKQPPvhAGRkZioqKMrtkr3e+PodncYzDDBbHH78ZDAAAqowRLAAABiBgAQAwAAELAIABCFgAAAxAwAIAYAACFgAAAxCwAAAYgIAFvESrVq3K/evSpYvGjRunkydPVnndGzduVKtWrdxQ5f84HA4tXLiw0u1/++03rVmzxq01AGYiYAEv8uKLL+rLL7/UF198oVdeeUVbt27V9OnTq7zeDh066Msvv3RDhf+zadMmTZo0qdLtn3vuOf3nP/9xaw2AmQhYwIvUrVtXDRo0UGRkpNq3b6+HHnrILaO+wMBANWjQwA0V/o+rN4njpnLwNQQs4MVCQkLKvT506JDGjBmj6667Tm3bttWAAQOUmZnpnD9//nzdcsstio2NVVJSkjZv3iyp4ini87X7o9OnT2vcuHHq3LmzOnTooBEjRujQoUP69ddfnQ81aNWqlTZu3KiSkhJNnTpVXbt2VUxMjLp166bFixdLOjMyX758uZYvX65u3bpJko4dO6bHH39c1157rRISEjR58uRyT8MBqjsCFvBSBQUFeuutt3THHXc4pz322GOy2WxatGiRVqxYocjISKWlpUmScnJyNH36dE2YMEFr1qxRfHy8/vGPf8hut5dbb2XbSdLChQu1adMmzZs3T++9955OnjypZ599Vo0bN9aLL74oSfryyy/VoUMHzZ07V59//rlefPFFrV27VomJiZo8ebLy8/N1//33q0+fPurTp4/ee+89SdLYsWN1/PhxvfPOO3rppZeUnZ3t0ilnwGz+ZhcAoPL+9re/yWq1yuFwqKioSPXq1XMGqMPhUI8ePXTrrbeqUaNGkqQhQ4Zo+PDhkqR9+/bJYrEoKipKTZs21T/+8Q/dcsstFYLzQu3++BzbX3/9VUFBQWrSpInq1aunadOm6ejRo7Jarapbt64kOU89t27dWl26dFH79u0lSSNGjFBGRoZ++uknxcfHKzg4WJIUFhamX375RZ9++qm+/fZbXXbZZZKkyZMnKzExUSkpKc5pQHVGwAJeZMqUKYqLi5PD4dCRI0e0YMECDR48WB9++KHCw8M1ePBgrV69Wt9995327Nmjbdu2OQM0ISFB11xzjW6//XZFR0ere/fuGjRokPz9y78NVLadJN11111atWqVEhIS1KlTJ/Xo0UNJSUnnrL1Hjx766quvNG3aNO3evVs5OTmSJJvNVqHtrl27ZLfbdeONN5abbrfb9fPPP6tt27aX1H+AJxGwgBeJjIxUs2bNJElXXnmlYmJi1LlzZ61Zs0Z333237r//fh07dkx9+/ZVt27ddPr0aSUnJ0s683ntkiVL9O2332r9+vVatmyZ3nnnHS1btqzcNi7ULjIyslzbli1b6rPPPtPnn3+uzz//XLNmzdLKlSvP+fWc559/XkuWLFFSUpISExM1YcIE5+etf2Sz2XTZZZdp6dKl5+wDwBsQsIAX8/Pzk8PhkM1m086dO7Vp0yZ9/fXXCgsLkyRn0DkcDm3ZskXffPON/v73v6tLly765z//qT/96U/KzMxUeHi4c53ff//9edv17du33PZXrFihwMBA9e3bV3369NGWLVt011136bfffpPFYinXdtGiRUpLS1OfPn0kSTt37nTWJkkWi8X5c/PmzXX8+HFZLBZdccUVkqTc3FzNnj1bU6dOdZ5OBqozAhbwIr///rvy8vIkSSdPntS8efNks9nUrVs3BQQEyM/PT6tWrVK3bt2UnZ3tvNCopKREwcHBysjIUEREhK6//npt2rRJhYWFatWqlfLz853buFC7Pzp+/LheeeUV1a9fX02bNtWHH36oRo0aqX79+s4rnLdt26aWLVuqXr16Wr9+vdq2batDhw7p2WefddYmnRk579ixQ4cOHVKLFi3UtWtXPfbYYxo3bpysVquefvpp1a1bV6GhoYb2MeAuFgdfPgO8wh8DLiQkRG3btlVycrK6dOkiSVq8eLEyMjJ0/PhxNW/eXPfff7+efPJJLViwQB06dND777+vl156Sfv371dUVJTGjBmjfv36aePGjRo6dKhyc3Ml6bzt/shut2vmzJl6//339fvvv6tt27Z6+umnFR0drZKSEo0YMULffvutZs2apfDwcKWlpennn39WZGSkBg0apE8++UQ9evTQQw89pKysLI0aNUqnT5/WN998oyNHjmjKlCn6/PPP5e/vr65du2rcuHGqX7++8Z0NuAEBCwCAAfgeLAAABiBgAQAwAAELAIABCFgAAAxAwAIAYAACFgAAAxCwAAAYgIAFAMAABCwAAAYgYAEAMAABCwCAAQhYAAAM8P8BL6Q11d7T6NYAAAAASUVORK5CYII=" + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAc8AAAL0CAYAAABqLbzYAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAPYQAAD2EBqD+naQAAT09JREFUeJzt3Ql8jXfe//9PEmJrEnsipLZSjK2opZuWtJRhdFWjpGrc/amttB20RNE2raKqtEotnbnHMjplVDWqSrUjqg0tai1aKYLYokFCcv6Pz3f+59w5EppLruQk13k9H49rcs51rnOub06Nt+8e4HK5XAIAAPIsMO+XAgAARXgCAGAR4QkAgEWEJwAAFhGeAABYRHgCAGAR4QkAgEWEJwAAFpWw+gYnysrKkiNHjkhISIgEBAT4ujgAAB/QNYPOnTsnkZGREhh47bol4SligjMqKsrXxQAAFAFJSUlSo0aNa15DeIqYGqf7CwsNDfV1cQAAPpCammoqUu5MuBbCU8TTVKvBSXgCgH8LyEP3HQOGAACwiPAEAMAiwhMAAIsITwAALGLAEAAUYUM/fsvXRSg2pncbVmj3ouYJAIBFhCcAABYRngAAWER4AgBgEeEJAIBFhCcAABYRngAAWER4AgBgEeEJAIBFhCcAABYRngAAWER4AgBgEeEJAIBFhCcAABYRngAAWER4AgBgEeEJAIBFhCcAABYRngAAOCE8Z86cKbVq1ZLSpUtLmzZtZPPmzde8/syZMzJo0CCpVq2alCpVSurXry+rVq0qtPICAPxLCSlilixZIiNGjJBZs2aZ4Jw2bZp06tRJ9uzZI1WrVs1xfUZGhtx7773mtQ8//FCqV68uv/zyi5QvX94n5QcAOF+RC8+pU6fKgAEDpF+/fua5hugnn3wi8+bNk1GjRuW4Xs+fOnVKNm7cKCVLljTntNYKAIBfNNtqLTIxMVGio6M95wIDA83zhISEXN+zYsUKadeunWm2DQ8Pl8aNG8urr74qmZmZhVhyAIA/KVI1z5SUFBN6GoLZ6fPdu3fn+p4DBw7IF198Ib179zb9nD/99JM8/fTTcunSJRk3blyu70lPTzeHW2pqqs2/CQDAyYpUzfN6ZGVlmf7O2bNnS8uWLaVnz57y4osvmubeq4mLi5OwsDDPERUVVahlBgAUb0UqPCtXrixBQUFy7Ngxr/P6PCIiItf36AhbHV2r73Nr2LChJCcnm2bg3IwePVrOnj3rOZKSkmz+TQAATlakwjM4ONjUHteuXetVs9Tn2q+Zm9tvv9001ep1bnv37jWhqp+XG53OEhoa6nUAAFAsw1PpNJU5c+bIBx98ILt27ZKBAwdKWlqaZ/Rt3759Tc3RTV/X0bbDhg0zoakjc3XAkA4gAgDA8QOGlPZZnjhxQmJjY03Ta/PmzSU+Pt4ziOjQoUNmBK6b9leuXr1ahg8fLk2bNjXzPDVIR44c6cPfAgDgZAEul8slfk5H2+rAIe3/pAkXQFEy9OO3fF2EYmN6t2GFlgVFrtkWAICijvAEAMAiwhMAAF+F57p16+z6KAAA/CM8O3fuLHXr1pWXX36ZRQcAAI5mW3gePnxYBg8ebLYFq1OnjtlG7J///OdVV/kBAED8PTx1aT2da/n999/LN998Y5bM0wXaIyMjZejQofLDDz/YdSsAAJw3YKhFixZmFSCtif72229mz01ddu/OO++UH3/8sSBuCQBA8QxP3QZMm227dOkiNWvWNCv/zJgxwyzsruvP6rlHHnnEzlsCAFB8l+cbMmSILFq0SHTBoj59+sikSZPMxtRu5cqVk8mTJ5tmXAAAijPbwnPnzp3y9ttvy4MPPmh2LblavyhTWgAAxZ1tzbbjxo0zTbJXBufly5dlw4YN5nGJEiWkffv2dt0SAIDiHZ733HOP2RrsSrrArr4GAIBT2Bae2tcZEBCQ4/zJkydNfycAAE6R7z5P7eNUGpxPPPGEV7NtZmambNu2TW677bb83gYAAOeEp+595q55hoSESJkyZTyvBQcHS9u2bWXAgAH5vQ0AAM4Jz/nz55uftWrVkueee44mWgCA45Wwc7QtAAD+oER+l+Fbu3atVKhQQW655ZZcBwy5bdmyJT+3AgDAGeH5pz/9yTNAqEePHnaVCQAA54Zn9qZamm0BAP6iQHZVAQDAyfJV89S+zmv1c2aX2+pDAAD4XXhOmzbNvpIAAOAP4RkTE2NfSQAA8IfwTE1NldDQUM/ja3FfBwCA+Huf59GjR6Vq1apSvnz5XPs/3QvG6zq3AACIv4fnF198IRUrVjSP2eQaAOAv8hWe2Te2ZpNrAIC/sHWe5+nTp2Xy5MnSv39/c0yZMuW6pqjMnDnTLDRfunRpadOmjWzevDlP71u8eLFpIma1IwBAsQjPDRs2mMCbPn26CVE99HHt2rXNa3m1ZMkSGTFihFmxSNfDbdasmXTq1EmOHz9+zff9/PPPZleXO++804bfBgCAQgjPQYMGSc+ePeXgwYPy0UcfmePAgQPy2GOPmdfyaurUqWb/z379+kmjRo1k1qxZUrZsWZk3b95V36ODkXr37i3jx4+XOnXq2PQbAQBQwOH5008/ybPPPitBQUGec/pYa5H6Wl5kZGRIYmKiREdH/18BAwPN84SEhKu+b8KECWbErzYV50V6erqZWpP9AACg0MNTtyfbtWtXjvN6Tpte8yIlJcXUIsPDw73O6/Pk5ORc3/P111/L3LlzZc6cOXkua1xcnISFhXmOqKioPL8XAIB8jbbdtm2b5/HQoUNl2LBhppbZtm1bc27Tpk1m8M9rr70mBeHcuXPSp08fE5yVK1fO8/tGjx5tasRuWvMkQAEAhRKezZs3N6NbdSEEt7/+9a85rvvzn/9s+kN/jwagNvUeO3bM67w+j4iIyHH9/v37zUChbt26ec5lZWWZnyVKlJA9e/ZI3bp1c7xP9yB170MKAEChhqcODrJTcHCwtGzZUtauXeuZbqJhqM8HDx6c4/oGDRrI9u3bvc6NGTPG1EjfeustapMAgKIXnjVr1hS7aXOqLjjfqlUrad26tdm5JS0tzYy+VX379pXq1aubfkudB9q4cWOv9+sygerK8wAAFInwzM3OnTvl0KFDZuRsdt27d8/T+7V598SJExIbG2sGCWnTcHx8vGcQkX62jsAFAMBXAlzZOyzzQed0PvDAA6YZNXs/qHux+KK8MLwOGNJRt2fPnmX3FwBFytCP3/J1EYqN6d2GFVoW2FaF05G2upqQrgSkixr8+OOPZmUhbX5dv369XbcBAMA5zba6iIHusqIjZrVZVY877rjD9E3qNJatW7fadSsAAHzKtpqnNsuGhISYxxqgR44c8Qwq0ikjAAA4hW01Tx3d+sMPP5imW90JZdKkSWbqyezZs1lvFgDgKLaFp86v1Ckl7rVm//jHP5odTipVqmR2SgEAwClsC0/dNsztpptukt27d5u9PCtUqOAZcQsAgBPYPs9TJSUlmZ+s8AMAcCLbBgxdvnxZxo4da+bI6KbYeuhjbc69dOmSXbcBAMA5Nc8hQ4aYDbB1oFC7du0801deeuklOXnypLz77rt23QoAAGeE58KFC2Xx4sVy//33e841bdrUNN326tWL8AQAOIZtzba6xZc21V5Jp67olBUAAJzCtvDULcMmTpwo6enpnnP6+JVXXsl1OzEAAPyy2fbBBx/0ev75559LjRo1pFmzZua5Lpqgu6t07Ngxf6UEAMAp4amjabN76KGHvJ4zVQUA4ET5Cs/58+fbVxIAAPx1kQTdyNq9EPzNN98sVapUsfsWAAA4Y8CQrmv75JNPSrVq1eSuu+4yR2RkpPTv31/Onz9v120AAHBOeI4YMUK+/PJL+fjjj+XMmTPm+Pe//23OPfvss3bdBgAAn7Ot2fZf//qXfPjhh3L33Xd7znXp0kXKlCkjjz76qF8skjD047d8XYRiYXq3Yb4uAgAUjZqnNs2Gh4fnOF+1alWabQEAjmJbeOp6tuPGjZOLFy96zl24cEHGjx/vWesWAAAnsK3Zdtq0adK5c+cciySULl1aVq9ebddtAABwTng2adJE9u3bJ//4xz/MRthKF4Tv3bu36fcEAMApbAlP3a+zQYMGsnLlShkwYIAdHwkAgLP7PEuWLOnV1wkAgJPZNmBo0KBB8vrrr8vly5ft+kgAAJzd5/ntt9/K2rVr5bPPPjP9n+XKlfN6/aOPPrLrVgAAOCM8y5cvn2NXFQAAnCjf4ZmVlSVvvPGG7N271+zd2aFDB3nppZcYYQsAcKx893m+8sor8sILL8gNN9wg1atXl+nTp5v+z/yYOXOm1KpVy8wRbdOmjWzevPmq186ZM0fuvPNOqVChgjmio6OveT0AAD4Pz7/97W/yzjvvmIUQli9fbhaG17meWiO9HkuWLDGLzOtqRVu2bDELLnTq1EmOHz+e6/Xr168380nXrVsnCQkJZgPu++67Tw4fPpzP3wwAgAIKz0OHDpkF4N205hcQECBHjhy5rs+bOnWqmSvar18/adSokcyaNUvKli0r8+bNy/V6Deqnn35amjdvbuaavv/++ya4dfASAABFMjx1aoo2r14571MXTrBK+0wTExNNAHsKGBhonmutMi90EXq9d8WKFa96TXp6uqSmpnodAAAU2oAhl8slTzzxhJQqVcpzThdM+H//7/95TVfJy1SVlJQUyczMzLE7iz53L/n3e0aOHGk24c4ewFeKi4szC9YDAOCT8IyJiclx7vHHHxdfeO2112Tx4sWmH/TK2nB2o0ePNv2qblrz1L5SAAAKJTznz58vdqlcubIEBQXJsWPHvM7r84iIiGu+d/LkySY8P//8c2natOk1r9VacvaaMgAAPlmezw7BwcHSsmVLr8E+7sE/19oTdNKkSTJx4kSJj4+XVq1aFVJpAQD+yrYVhuyizanaFKwh2Lp1a7NPaFpamhl9q/r27Wvmk2q/pdL1dGNjY2XhwoVmbmhycrI5r/NO9QAAwPHh2bNnTzlx4oQJRA1CnYKiNUr3ICKdGqMjcN3effddM0r34Ycf9vocnSeqKx0BAOD48FSDBw82R250MFB2P//8cyGVCgCAItjnCQBAcUB4AgBgEeEJAIBFhCcAABYRngAAWER4AgBgEeEJAIBFhCcAABYRngAAWER4AgBgEeEJAIBFhCcAABYRngAAWER4AgBgEeEJAIBFhCcAABYRngAAWER4AgBgEeEJAIBFhCcAABYRngAAWER4AgBgEeEJAIBFhCcAABYRngAAWER4AgBgEeEJAIBFhCcAAE4Iz5kzZ0qtWrWkdOnS0qZNG9m8efM1r1+6dKk0aNDAXN+kSRNZtWpVoZUVAOB/ilx4LlmyREaMGCHjxo2TLVu2SLNmzaRTp05y/PjxXK/fuHGj9OrVS/r37y9bt26VHj16mGPHjh2FXnYAgH8ocuE5depUGTBggPTr108aNWoks2bNkrJly8q8efNyvf6tt96Szp07y/PPPy8NGzaUiRMnSosWLWTGjBmFXnYAgH8o4esCZJeRkSGJiYkyevRoz7nAwECJjo6WhISEXN+j57Wmmp3WVJcvX37V+6Snp5vD7ezZs+Znampq/sp//mK+3u8v8vs9A/6Ev1cK7+8W9/tdLlfxCs+UlBTJzMyU8PBwr/P6fPfu3bm+Jzk5Odfr9fzVxMXFyfjx43Ocj4qKuu6yI+/ek1G+LgIAB3rPpr9bzp07J2FhYcUnPAuL1myz11azsrLk1KlTUqlSJQkICBCn0H9F6T8IkpKSJDQ01NfF8Qt854WP77xwOfn7drlcJjgjIyN/99oiFZ6VK1eWoKAgOXbsmNd5fR4REZHre/S8letVqVKlzJFd+fLlxan0D7jT/pAXdXznhY/vvHCFOvT7/r0aZ5EcMBQcHCwtW7aUtWvXetUK9Xm7du1yfY+ez369WrNmzVWvBwAgv4pUzVNpc2pMTIy0atVKWrduLdOmTZO0tDQz+lb17dtXqlevbvot1bBhw6R9+/YyZcoU6dq1qyxevFi+++47mT17to9/EwCAUxW58OzZs6ecOHFCYmNjzaCf5s2bS3x8vGdQ0KFDh8wIXLfbbrtNFi5cKGPGjJEXXnhB6tWrZ0baNm7cWPydNk3rfNkrm6hRcPjOCx/feeHi+/6vAFdexuQCAICi2ecJAEBxQHgCAGAR4QkAgEWEJwAAFhGeAABYRHgCAGAR4QkAgEWEJwAAFhGeAABYRHgCAGAR4QkAgEWEJwAAFhGeAABYRHgCAGAR4QkAgEWEJwAAFhGeAABYRHgCAGAR4QkAgEWEJwAAFhGeAABYRHgCAGAR4QkAgEUlrL7BibKysuTIkSMSEhIiAQEBvi4OAMAHXC6XnDt3TiIjIyUw8Np1S8JTxARnVFSUr4sBACgCkpKSpEaNGte8hvAUMTVO9xcWGhrq6+IAAHwgNTXVVKTcmXAthKeIp6lWg5PwBAD/FpCH7jsGDAEAYBHhCQCARYQnAAAWEZ4AAFjEgCEAKMLunTnN10UoNtYMeqbQ7kXNEwAAiwhPAAAsIjwBALCI8AQAwCLCEwAAiwhPAAAsIjwBALCI8AQAwCLCEwAAiwhPAAAsIjwBALCI8AQAwCLCEwAAiwhPAACKW3gePnxYHn/8calUqZKUKVNGmjRpIt99953ndZfLJbGxsVKtWjXzenR0tOzbt8/rM06dOiW9e/eW0NBQKV++vPTv319+++03H/w2AAB/4NPwPH36tNx+++1SsmRJ+fTTT2Xnzp0yZcoUqVChgueaSZMmyfTp02XWrFnyzTffSLly5aRTp05y8eJFzzUanD/++KOsWbNGVq5cKRs2bJD/+Z//8dFvBQBwugCXVu18ZNSoUfKf//xHvvrqq1xf16JFRkbKs88+K88995w5d/bsWQkPD5cFCxbIY489Jrt27ZJGjRrJt99+K61atTLXxMfHS5cuXeTXX3817/89qampEhYWZj5ba68AUFSwGXbhbYZtJQt8WvNcsWKFCbxHHnlEqlatKrfccovMmTPH8/rBgwclOTnZNNW66S/Wpk0bSUhIMM/1pzbVuoNT6fWBgYGmppqb9PR08yVlPwAAyCufhueBAwfk3XfflXr16snq1atl4MCBMnToUPnggw/M6xqcSmua2elz92v6U4M3uxIlSkjFihU911wpLi7OhLD7iIqKKqDfEADgRD4Nz6ysLGnRooW8+uqrptap/ZQDBgww/ZsFafTo0aZa7j6SkpIK9H4AAGfxaXjqCFrtr8yuYcOGcujQIfM4IiLC/Dx27JjXNfrc/Zr+PH78uNfrly9fNiNw3ddcqVSpUqY9O/sBAECxCE8dabtnzx6vc3v37pWaNWuax7Vr1zYBuHbtWs/r2j+pfZnt2rUzz/XnmTNnJDEx0XPNF198YWq12jcKAIDdSogPDR8+XG677TbTbPvoo4/K5s2bZfbs2eZQAQEB8swzz8jLL79s+kU1TMeOHWtG0Pbo0cNTU+3cubOnuffSpUsyePBgMxI3LyNtAQAoVuF56623yrJly0wf5IQJE0w4Tps2zczbdPvrX/8qaWlppj9Ua5h33HGHmYpSunRpzzX/+Mc/TGB27NjRjLJ96KGHzNxQAAAcN8+zqGCeJ4Ciinmeeec38zwBACiOCE8AACwiPAEAsIjwBADAIsITAACLCE8AACwiPAEAsIjwBADAIsITAACLCE8AACwiPAEAsIjwBADAIsITAACLCE8AACwiPAEAsIjwBADAIsITAACLCE8AACwiPAEAsIjwBADAIsITAACLCE8AACwiPAEAsIjwBACgMMKzTp06cvLkyRznz5w5Y14DAMDJris8f/75Z8nMzMxxPj09XQ4fPmxHuQAAKLJKWLl4xYoVnserV6+WsLAwz3MN07Vr10qtWrXsLSEAAMU5PHv06GF+BgQESExMjNdrJUuWNME5ZcoUe0sIAEBxDs+srCzzs3bt2vLtt99K5cqVC6pcAAA4IzzdDh48aH9JAABw+lQV7d984YUX5C9/+Ys8+eSTXsf1eO2110xz8DPPPOM5d/HiRRk0aJBUqlRJbrjhBnnooYfk2LFjXu87dOiQdO3aVcqWLStVq1aV559/Xi5fvny9vxYAAAUTnuPHj5f77rvPBGhKSoqcPn3a67BKm4Dfe+89adq0qdf54cOHy8cffyxLly6VL7/8Uo4cOSIPPvig1yAlDc6MjAzZuHGjfPDBB7JgwQKJjY29nl8LAICCa7adNWuWCak+ffpIfv3222/Su3dvmTNnjrz88sue82fPnpW5c+fKwoULpUOHDubc/PnzpWHDhrJp0yZp27atfPbZZ7Jz5075/PPPJTw8XJo3by4TJ06UkSNHyksvvSTBwcH5Lh8AALbUPLWmd9ttt4kdtFlWa4/R0dFe5xMTE+XSpUte5xs0aCA33nijJCQkmOf6s0mTJiY43Tp16iSpqany448/2lI+AABsCU/t59QaYX4tXrxYtmzZInFxcTleS05ONjXH8uXLe53XoNTX3NdkD0736+7XrkYXc9CAzX4AAFCgzbY6kGf27NmmuVT7KXWOZ3ZTp0793c9ISkqSYcOGyZo1a6R06dJSmDSstd8WAIBCC89t27aZ/kW1Y8cOr9d0xGxeaLPs8ePHpUWLFl4DgDZs2CAzZswwKxhp87Cul5u99qmjbSMiIsxj/bl582avz3WPxnVfk5vRo0fLiBEjPM+15hkVFZWncgMAcF3huW7dunzfuGPHjrJ9+3avc/369TP9mjrgR8NMa7Q6olenqKg9e/aYqSnt2rUzz/XnK6+8YkJYp6korcmGhoZKo0aNrnrvUqVKmQMAgEILTzuEhIRI48aNvc6VK1fOzOl0n+/fv7+pIVasWNEE4pAhQ0xg6khbpdNlNCR11O+kSZNMP+eYMWPMICTCEQBQpMLznnvuuWbz7BdffCF2ePPNNyUwMNDUPHWQj46kfeeddzyvBwUFycqVK2XgwIEmVDV8dc3dCRMm2HJ/AABsC093f6ebTin5/vvvTf/nlQvGW7F+/Xqv5zqQaObMmea4mpo1a8qqVauu+54AABRKeGqNMDe6MIEuegAAgJNd99q2uXn88cdl3rx5dn4kAADODk9d8aew52wCAFAsmm2zL86uXC6XHD16VL777jsZO3asXWUDAMA54RkWFub1XEfE3nzzzWaUq04fAQDAya4rPHV3EwAA/FW+FknQJfZ27dplHv/hD3+QW265xa5yAQDgrPDU5fAee+wxMy/Tve6srkGriyfoTilVqlSxu5wAABTv0ba6TN65c+fMnpmnTp0yhy6QoAusDx061P5SAgBQ3Gue8fHxZjuyhg0bes7pGrO6EhADhgAATnddNc+srKwce3gqPaevAQDgZNcVnh06dDAbWR85csRz7vDhwzJ8+HCz1RgAAE52XeGpm1Vr/2atWrWkbt265qhdu7Y59/bbb9tfSgAAinufp25UvWXLFtPvuXv3bnNO+z+jo6PFn907c5qvi1AsrBn0jK+LAACFV/PUfTp1YJDWMHU/z3vvvdeMvNXj1ltvNXM9v/rqq/yVCAAAJ4XntGnTZMCAARIaGprrkn1PPfWUTJ061c7yAQBQvMPzhx9+kM6dO1/1dZ2moqsOAQDgZJbC89ixY7lOUXErUaKEnDhxwo5yAQDgjPCsXr26WUnoarZt2ybVqlWzo1wAADgjPLt06WL267x48WKO1y5cuCDjxo2TP/7xj3aWDwCA4j1VZcyYMfLRRx9J/fr1ZfDgwWYPT6XTVXRpvszMTHnxxRcLqqwAABS/8AwPD5eNGzfKwIEDZfTo0eJyucx5nbbSqVMnE6B6DQAATmZ5kYSaNWvKqlWr5PTp0/LTTz+ZAK1Xr55UqFChYEoIAIBTNsPWsNSFEQAA8DfXtbYtAAD+jPAEAMAiwhMAAIsITwAALCI8AQCwiPAEAMAiwhMAgOIUnnFxcWauaEhIiFStWlV69Oghe/bs8bpG19EdNGiQVKpUSW644QZ56KGHzO4u2R06dEi6du0qZcuWNZ/z/PPPy+XLlwv5twEA+AufhueXX35pgnHTpk2yZs0auXTpktkTNC0tzXPN8OHD5eOPP5alS5ea648cOSIPPvig53VdT1eDMyMjwywd+MEHH8iCBQskNjbWR78VAMDprnuFITvEx8d7PdfQ05qjbqh91113ydmzZ2Xu3LmycOFC6dChg7lm/vz50rBhQxO4bdu2lc8++0x27twpn3/+uVlXt3nz5jJx4kQZOXKkvPTSSxIcHOyj3w4A4FRFqs9Tw1JVrFjR/NQQ1dpodHS055oGDRrIjTfeKAkJCea5/mzSpInXgvS6SH1qaqr8+OOPud4nPT3dvJ79AACg2IVnVlaWPPPMM3L77bdL48aNzbnk5GRTcyxfvrzXtRqU+pr7mit3cnE/d1+TW19rWFiY54iKiiqg3woA4ERFJjy173PHjh2yePHiAr+XbqemtVz3kZSUVOD3BAA4h0/7PN10Y+2VK1fKhg0bpEaNGp7zERERZiDQmTNnvGqfOtpWX3Nfs3nzZq/Pc4/GdV9zpVKlSpkDAIBiV/PUvUA1OJctWyZffPGF1K5d2+v1li1bSsmSJWXt2rWeczqVRaemtGvXzjzXn9u3b5fjx497rtGRu6GhodKoUaNC/G0AAP6ihK+banUk7b///W8z19PdR6n9kGXKlDE/+/fvLyNGjDCDiDQQhwwZYgJTR9oqndqiIdmnTx+ZNGmS+YwxY8aYz6Z2CQBwXHi+++675ufdd9/tdV6nozzxxBPm8ZtvvimBgYFmcQQdJasjad955x3PtUFBQabJd+DAgSZUy5UrJzExMTJhwoRC/m0AAP6ihK+bbX9P6dKlZebMmea4mpo1a8qqVatsLh0AAEV8tC0AAMUF4QkAgEWEJwAAFhGeAABYRHgCAGAR4QkAgEWEJwAAFhGeAABYRHgCAGAR4QkAgEWEJwAAFhGeAABYRHgCAGAR4QkAgEWEJwAAFhGeAABYRHgCAGAR4QkAgEWEJwAAFhGeAABYRHgCAGAR4QkAgEWEJwAAFhGeAABYRHgCAGAR4QkAgEWEJwAAFhGeAABYRHgCAGAR4QkAgL+G58yZM6VWrVpSunRpadOmjWzevNnXRQIAOJQjwnPJkiUyYsQIGTdunGzZskWaNWsmnTp1kuPHj/u6aAAAB3JEeE6dOlUGDBgg/fr1k0aNGsmsWbOkbNmyMm/ePF8XDQDgQCWkmMvIyJDExEQZPXq051xgYKBER0dLQkJCru9JT083h9vZs2fNz9TU1HyV5fKFi/l6v7/I7/cM+BP+Xim8v1vc73e5XM4Pz5SUFMnMzJTw8HCv8/p89+7dub4nLi5Oxo8fn+N8VFRUgZUT/yfs+f/7hw4AFLW/W86dOydhYWHODs/robVU7SN1y8rKklOnTkmlSpUkICBAnEL/FaX/IEhKSpLQ0FBfF8cv8J0XPr7zwuXk79vlcpngjIyM/N1ri314Vq5cWYKCguTYsWNe5/V5REREru8pVaqUObIrX768OJX+AXfaH/Kiju+88PGdF65Qh37fv1fjdMyAoeDgYGnZsqWsXbvWqyapz9u1a+fTsgEAnKnY1zyVNsHGxMRIq1atpHXr1jJt2jRJS0szo28BALCbI8KzZ8+ecuLECYmNjZXk5GRp3ry5xMfH5xhE5G+0aVrnvl7ZRI2Cw3de+PjOCxff938FuPIyJhcAADinzxMAgMJGeAIAYBHhCQCARYQnAAAWEZ4AAFhEeAIAYBHhCQCARYQnAAAWEZ4AAFhEeAIAYBHhCQCARYQnAAAWEZ4AAFhEeAIAYBHhCQCARYQnAAAWEZ4AAFhEeAIAYBHhCQCARYQnAAAWEZ4AAFhEeAIAYFEJq29woqysLDly5IiEhIRIQECAr4sDAPABl8sl586dk8jISAkMvHbdkvAUMcEZFRXl62IAAIqApKQkqVGjxjWvITxFTI3T/YWFhob6ujgAAB9ITU01FSl3JlwL4SniaarV4CQ8AcC/BeSh+44BQwAAWER4AgBgEeEJAIATwnPmzJlSq1YtKV26tLRp00Y2b958zevPnDkjgwYNkmrVqkmpUqWkfv36smrVqkIrLwDAvxS5AUNLliyRESNGyKxZs0xwTps2TTp16iR79uyRqlWr5rg+IyND7r33XvPahx9+KNWrV5dffvlFypcv75PyA4Cd6o2c7OsiFBv7Xn/Of8Nz6tSpMmDAAOnXr595riH6ySefyLx582TUqFE5rtfzp06dko0bN0rJkiXNOa21AgDgF822WotMTEyU6Ohozzld5UGfJyQk5PqeFStWSLt27UyzbXh4uDRu3FheffVVyczMvOp90tPTzXye7AcAAMUyPFNSUkzoaQhmp8+Tk5Nzfc+BAwdMc62+T/s5x44dK1OmTJGXX375qveJi4uTsLAwz8HqQgCAYhue17surfZ3zp49W1q2bCk9e/aUF1980TT3Xs3o0aPl7NmznkNXFgIAoFj2eVauXFmCgoLk2LFjXuf1eURERK7v0RG22tep73Nr2LChqalqM3BwcHCO9+iIXD0AACj2NU8NOq09rl271qtmqc+1XzM3t99+u/z000/mOre9e/eaUM0tOAEAcFR4Kp2mMmfOHPnggw9k165dMnDgQElLS/OMvu3bt69pdnXT13W07bBhw0xo6shcHTCkA4gAAHB8s63SPssTJ05IbGysaXpt3ry5xMfHewYRHTp0yGufNR3ss3r1ahk+fLg0bdrUzPPUIB05cqQPfwsAgJMFuHT3Tz+nU1V01K0OHmJXFQBFCYskFN4iCVayoMg12wIAUNQRngAAWER4AgBgEeEJAEBhjrbVrcCWLVsmX331ldnJ5Pz581KlShW55ZZbzE4ot912W34+HgAA59Q8jxw5In/5y1/MQgS6huyFCxfMlJKOHTtKjRo1ZN26dWabsEaNGpktxgAAEH+veWrNMiYmxuyAogGZGw3U5cuXm/04de3Y554rvH3WAAAocuG5c+dOqVSp0jWvKVOmjPTq1cscJ0+evN7yAQDgjGbb3wvO/F4PAIDjap66AXVede/e/XpuAQCAs8KzR48eebouICDAbFINAID4e3hm3/4LAAB/wyIJAAD4Yksy3W/zyy+/NNuFZWRkeL02dOhQO24BAIBzwnPr1q3SpUsXs7qQhmjFihUlJSVFypYtK1WrViU8AQCOk+9mW92Eulu3bnL69Gkzt3PTpk1mqb6WLVvK5MnsQwcAcJ58h+f3338vzz77rAQGBkpQUJCkp6dLVFSUTJo0SV544QV7SgkAgJPCs2TJkiY4lTbTar+n0t24dVk+AACcJt99nrrO7bfffiv16tWT9u3bS2xsrOnz/Pvf/y6NGze2p5QAADip5vnqq6+a3VXUK6+8IhUqVJCBAwfKiRMnZPbs2XaUEQAAZ9U8W7Vq5Xmszbbx8fH5/UgAAJy/SMLly5fl888/l/fee0/OnTvn2fPzt99+s+PjAQBwVs1Tp6V07tzZDBTSkba6CXZISIi8/vrr5vmsWbPsKSkAAE6peQ4bNsw03brnebo98MADsnbt2vx+PAAAzqt5fvXVV7Jx40YJDg72Ol+rVi05fPhwfj8eAADn1Tx1h5Xcth379ddfTfMtAABOk+/wvO+++2TatGlee3jqQKFx48aZNW8BAHCafDfb6vq1OmCoUaNGcvHiRfnzn/8s+/btk8qVK8uiRYvsKSUAAE4KT13H9ocffpAlS5aYn1rr7N+/v/Tu3dtrABEAAE6Rr/C8dOmSNGjQQFauXGnCUg8AAJwuML+LwmtTLQAA/iTfA4YGDRpkFkTQVYYAAPAH+e7z1B1VdDGEzz77TJo0aSLlypXzev2jjz7K7y0AAHBWeJYvX14eeughe0oDAIA/hOf8+fPtKQkAAP60qwoAAP7kusJTF0XYtGnT716n25PpYKKZM2da+ny9XtfGLV26tLRp00Y2b96cp/ctXrzYrHDUo0cPS/cDAKDAm20feeQR088ZFhYm3bp1M7uqREZGmrDT3VV27twpX3/9taxatUq6du0qb7zxRp4/WxdbGDFihNnKTINTl/7r1KmT7Nmzx2y2fTU///yzPPfcc3LnnXdez68EAECeBbhcLpdcB92rc+nSpSbsNCjPnj373w8MCDBL9Wng6UpDDRs2tPS5Gpi33nqrzJgxw7PwvK5iNGTIEBk1alSu79GF6e+66y558sknzS4vZ86ckeXLl+f5nqmpqeYfAvo7hIaGWiovABSkeiMn+7oIxca+15/L1/utZMF1DxgqVaqUPP744+ZQerMLFy5IpUqVzOIJ1yMjI0MSExNl9OjRnnOBgYESHR0tCQkJV33fhAkTTK1Uw1rDMy/Br0f2LwwAgEIfMKRpHRERcd3BqVJSUkwtMjw83Ou8Pk9OTs71PVrrnTt3rsyZMyfP94mLizPldR9aswUAwC9G2+qApD59+pjg1F1c8kprtlpTdh9JSUkFWk4AgLPke56nnTQAg4KC5NixY17n9bnWaq+0f/9+M1BIBy25aR+pKlGihBlkVLdu3VybnPUAAKDY1zyDg4OlZcuWZrm/7GGoz9u1a5fjet3RZfv27fL99997ju7du8s999xjHtMcCwBwfM1T6TSVmJgYM/2ldevWZqpKWlqa9OvXz7zet29fqV69uum31KkxjRs3zrFcoLryPAAARSo8dWrIhx9+aJpRn3/+ealYsaJs2bLFDPTRoLOiZ8+ecuLECYmNjTWDhJo3by7x8fGeQUSHDh0yI3ABACh28zzdtm3bZqaS6KhV7X/UfsY6derImDFjTND97W9/k6KOeZ4AiirmeRbNeZ6BdjSzPvHEE7Jv3z7TjOrWpUsX2bBhQ34/HgCAIifQjv08n3rqqRzntbn2anMzAQDw6/DUKR+5rdCzd+9eqVKlSn4/HgAA54WnTg3R5fEuXbrkWdtW+zpHjhzJJtkAAEfKd3hOmTJFfvvtN7O2rK5t2759e7npppskJCREXnnlFXtKCQCAk6aq6MikNWvWmDVmdeStBmmLFi3MCFwAAJzItkUS7rjjDnMAAOB01xWe06dPz/O1Q4cOvZ5bAADgrPB88803vZ7rikDnz5/3LI2nKw6VLVvW9IMSngAAp7muAUMHDx70HDooSJfQ27Vrl5w6dcoc+lj7PSdOnGh/iQEAKO6jbceOHStvv/223HzzzZ5z+lhrp7pEHwAATpPv8Dx69Khcvnw5x/nMzMwc+3ICAOAE+Q7Pjh07muX5dBcVt8TERBk4cCDTVQAAjpTv8Jw3b55ERESY/Td1qT49dB9O3ULs/ffft6eUAAA4aZ6nrl+7atUqs5bt7t27zbkGDRpI/fr17SgfAADOXSRBw5LABAD4g3yH55NPPvm7zboAADhJvsPz9OnTXs91d5UdO3aYhRI6dOiQ348HAMB54bls2bIc57Kyssxo27p16+b34wEAcN5o21w/NDBQRowYkWMZPwAAnKBAwlPt378/18UTAAAQf2+21Rpmdi6Xy6w69Mknn0hMTEx+Px4AAOeF59atW3M02erczylTpvzuSFwAAPwyPNetW2dPSQAA8Jc+T52OotNSrpSamspUFQCAI+U7PNevXy8ZGRk5zl+8eFG++uqr/H48AADOabbdtm2b5/HOnTslOTnZazuy+Ph4qV69ev5LCACAU8KzefPmEhAQYI7cmmfLlCljNskGAMBprjs8Dx48aKal1KlTRzZv3mxG2LoFBwdL1apVJSgoyK5yAgBQ/MOzZs2anqX4AADwJ9cVnitWrJD7779fSpYsaR5fS/fu3a+3bAAAOCc8e/ToYQYIadOsPr4a7Q/VwUMAAIi/h2f2plqabQEA/qbAFoYHAMCprqvmOX369DxfO3To0Ou5BQAAzgrPvO7TqX2ehCcAwGkCr3eOZ16OAwcOXFehZs6cKbVq1ZLSpUtLmzZtzDzSq5kzZ47ceeedUqFCBXNER0df83oAAIpUn6cumqBHfixZssTsETpu3DjZsmWLNGvWTDp16iTHjx+/6tq6vXr1Mru7JCQkSFRUlNx3331y+PDhfJUDAIACDc+5c+dK48aNTU1RD338/vvvX9dnTZ06VQYMGCD9+vWTRo0ayaxZs6Rs2bIyb968XK//xz/+IU8//bRZLrBBgwbmvjoCeO3atfn8rQAAKKD9PGNjY03gDRkyRNq1a2fOaQ1w+PDhcujQIZkwYUKeP0t3Z0lMTJTRo0d7ba6tTbH6mXlx/vx5uXTpklSsWPGq16Snp5sj+/ZpAAAUWni+++67pt9Rm06zryrUtGlTE6hWwjMlJcUsqhAeHu51Xp/v3r07T58xcuRIiYyMNIF7NXFxcTJ+/Pg8lwsAAFubbbWW16pVqxznW7ZsKZcvX5bC9Nprr8nixYtl2bJlpvn4arRme/bsWc+RlJRUqOUEAPh5ePbp08fUPq80e/Zs6d27t6XPqly5stmJ5dixY17n9XlERMQ13zt58mQTnp999pmp9V5LqVKlJDQ01OsAAKDQmm3dA4Y0tNq2bWuef/PNN6a/s2/fvmbkrJv2jV6LbmWmNVYd7ONeM9c9+Gfw4MFXfd+kSZPklVdekdWrV+daCwYAoEiF544dO6RFixbm8f79+z01SD30tewLJuSFhm1MTIwJwdatW8u0adMkLS3NjL5VGsjVq1c3/Zbq9ddfN4OWFi5caOaG6oL16oYbbjAHAABFLjx1fqWdevbsKSdOnDCBqEGoU1Di4+M9g4i0RqsjcN20yVhH6T788MNen6PzRF966SVbywYAgApw5XdVAwfQqSphYWFm8BD9nwCKknojJ/u6CMXGvtefK7QsyHfN8+LFi/L222+bGqiuAnTlFmW6ShAAAE6S7/Ds37+/GSykzabaR5nXvk0AAPw2PFeuXCmrVq2S22+/3Z4SAQDg9HmeOvI1JCTEntIAAOAP4TllyhSzJN4vv/xiT4kAAHB6s63Ox9RBQ3Xq1DG7n5QsWdLr9VOnTuX3FgAAOCs8dUF43Tvz1VdfNXMxGTAEAHC6fIfnxo0bzXZhumk1AAD+IN99nroB9YULF+wpDQAA/hCeupPJs88+K+vXr5eTJ0+aFRqyHwAAOE2+m207d+5sfnbs2NHrvK76p/2furk1AABOUuQWhgcAwPHh2b59+6u+ln1LMgAAnCLffZ5XOnfunMyePdusc8sIXACAE9kWnhs2bDCbWFerVk0mT54sHTp0kE2bNtn18QAAOKPZVjerXrBggcydO9eMrH300UclPT1dli9fLo0aNbKvlAAAOKHm2a1bN7n55ptl27ZtMm3aNDly5IjZ1xMAAKe77prnp59+KkOHDpWBAwdKvXr17C0VAABOrHl+/fXXZnBQy5YtpU2bNjJjxgxJSUmxt3QAADgpPNu2bStz5syRo0ePylNPPSWLFy+WyMhIycrKkjVr1phgBQDAifI92rZcuXLy5JNPmpro9u3bzVJ9umRf1apVpXv37vaUEgAAp87z1AFEkyZNkl9//VUWLVpk50cDAODcRRJUUFCQ9OjRQ1asWFEQHw8AgPPCEwAAJyM8AQCwiPAEAMAiwhMAAIsITwAACns/T/yfeiMn+7oIxcK+15/zdREAIF+oeQIAYBHhCQCARYQnAAAWEZ4AAFhEeAIAYBHhCQCARYQnAABOCM+ZM2dKrVq1pHTp0tKmTRvZvHnzNa9funSpNGjQwFzfpEkTWbVqVaGVFQDgf4pceC5ZskRGjBgh48aNky1btkizZs2kU6dOcvz48Vyv37hxo/Tq1Uv69+8vW7duNVuh6bFjx45CLzsAwD8UufCcOnWqDBgwQPr16yeNGjWSWbNmSdmyZWXevHm5Xv/WW29J586d5fnnn5eGDRvKxIkTpUWLFjJjxoxCLzsAwD8UqeX5MjIyJDExUUaPHu05FxgYKNHR0ZKQkJDre/S81lSz05rq8uXLr3qf9PR0c7idPXvW/ExNTc1X+bPSL+br/f4iv98z4E/4e6Xw/m5xv9/lchWv8ExJSZHMzEwJDw/3Oq/Pd+/enet7kpOTc71ez19NXFycjB8/Psf5qKio6y478i7srbG+LgIABwqz6e+Wc+fOSVhYWPEJz8KiNdvstdWsrCw5deqUVKpUSQICAsQp9F9R+g+CpKQkCQ0N9XVx/ALfeeHjOy9cTv6+XS6XCc7IyMjfvbZIhWflypUlKChIjh075nVen0dEROT6Hj1v5XpVqlQpc2RXvnx5cSr9A+60P+RFHd954eM7L1yhDv2+f6/GWSQHDAUHB0vLli1l7dq1XrVCfd6uXbtc36Pns1+v1qxZc9XrAQDIryJV81TanBoTEyOtWrWS1q1by7Rp0yQtLc2MvlV9+/aV6tWrm35LNWzYMGnfvr1MmTJFunbtKosXL5bvvvtOZs+e7ePfBADgVEUuPHv27CknTpyQ2NhYM+inefPmEh8f7xkUdOjQITMC1+22226ThQsXypgxY+SFF16QevXqmZG2jRs3Fn+nTdM6X/bKJmoUHL7zwsd3Xrj4vv8rwJWXMbkAAKBo9nkCAFAcEJ4AAFhEeAIAYBHhCQCARYQnAAAWEZ4AAFhEeAIAYBHhCQCARYQnAAAWEZ4AAFhEeAIAYBHhCQCARYQnAAAWEZ4AAFhEeAIAYBHhCQCARYQnAAAWEZ4AAFhEeAIAYBHhCQCARYQnAAAWEZ4AAFhUwuobnCgrK0uOHDkiISEhEhAQ4OviAAB8wOVyyblz5yQyMlICA69dtyQ8RUxwRkVF+boYAIAiICkpSWrUqHHNawhPEVPjdH9hoaGhvi4OAMAHUlNTTUXKnQnXQniKeJpqNTgJTwDwbwF56L5jwBAAABYRngAAWER4AgBgEeEJAIBFhCcAABYRngAAWER4AgBgEeEJAIBFhCcAABYRngAAWER4AgBgEeEJAIBFhCcAABbZuqvKpUuXJDk5Wc6fPy9VqlSRihUr2vnxAAA4o+apu26/++670r59e7OdV61ataRhw4YmPGvWrCkDBgyQb7/91p7SAgBQ3MNz6tSpJiznz58v0dHRsnz5cvn+++9l7969kpCQIOPGjZPLly/LfffdJ507d5Z9+/bZV3IAAHwkwOVyua73zb169ZIxY8bIH/7wh2tel56ebgI2ODhYnnzySSmKu4eHhYXJ2bNn2QwbAPxUqoUsyFd4OgXhCQBItZAFjLYFAMBXo20feOABCQgIyHFez5UuXVpuuukm+fOf/yw333yzXbcEAMAnbKt5alX3iy++kC1btpjA1GPr1q3mnA4aWrJkiTRr1kz+85//iJ3i4uLk1ltvlZCQEKlatar06NFD9uzZY+s9AAAokPCMiIgwNcsDBw7Iv/71L3Ps379fHn/8calbt67s2rVLYmJiZOTIkWKnL7/8UgYNGiSbNm2SNWvWmLmmOro3LS3N1vsAAGD7gCGd16m1yvr163ud12krt912m6SkpMj27dvlzjvvlDNnzkhBOXHihKmBaqjeddddeXoPA4YAAKm+GDCkTbO7d+/OcV7PZWZmmsfa95lbv6id9JdW11rdSKfO6JeU/QAAoNAHDPXp00f69+8vL7zwgumDVLqy0Kuvvip9+/Y1z7U2+HtzQvMjKytLnnnmGbn99tulcePG1+wnHT9+fIGVAwDgbLY122rt8rXXXpMZM2bIsWPHzLnw8HAZMmSI6ecMCgqSQ4cOSWBgoNSoUUMKwsCBA+XTTz+Vr7/++pr30JqnHm5a84yKiqLZFgD8WKqvF0lwN4MWZhANHjxY/v3vf8uGDRukdu3alt5LnycAINVCFti6q4pbYQaQZr/WbpctWybr16+3HJwAAFhla3h++OGH8s9//tM0z2ZkZHi9pvM/C4JOU1m4cKGpdepcT90STem/HsqUKVMg9wQA+DfbRttOnz5d+vXrZ/o5dXGE1q1bS6VKlcy8z/vvv18Kim6HplXsu+++W6pVq+Y5dFEGAACKdM3znXfekdmzZ5udVhYsWCB//etfpU6dOhIbGyunTp2SgsK69gCAYlvz1KZaXQxBaXOpbpLtnsKyaNEiu24DAICzludz1zBvvPFGs1yeOnjwILVDAICj2BaeHTp0kBUrVpjH2vc5fPhwuffee6Vnz55mxxUAAJzCtnmeurqPHiVK/LcbdfHixbJx40apV6+ePPXUUxIcHCxFFfM8AQCpvl4kobghPAEAqb5aJOHixYuybds2OX78uKmFZte9e3c7bwUAgM/YFp7x8fFmAXjdeuxKupOKe2cVAACKO9sGDOkSeY888ogcPXrU0//pPghOAICT2BaeupPKiBEjzApDAAA4mW3h+fDDD5uF2QEAcDrbRtueP3/eNNtWqVJFmjRpIiVLlvR6fejQoVJUMdoWAJDqi9G2ugTfZ599JqVLlzY1UB0k5KaPi3J4AgBghW3h+eKLL8r48eNl1KhREhhoW2swAABFjm0pp/t36lJ8BCcAwOlsS7qYmBj20AQA+AXbmm11LuekSZNk9erV0rRp0xwDhqZOnWrXrQAAcEZ4bt++XW655RbzeMeOHV6vZR88BABAcWdbeK5bt86ujwIAoEhjdA8AAIVZ83zwwQdlwYIFZjKpPr6Wjz76KD+3AgDAGeGpKzG4+zP1MQAA/oDNsFmeDwAg1rKAPk8AACzKV3h27txZNm3a9LvXnTt3Tl5//XWZOXNmfm4HAEDx7/PUXVQeeughU83t1q2btGrVSiIjI83i8KdPn5adO3fK119/LatWrZKuXbvKG2+8YV/JAQAorn2e6enpsnTpUrM0nwalthWbDw4IkEaNGkmnTp2kf//+0rBhQymq6PMEAKRayALbBwzpTS9cuCCVKlXKsURfUUV4AgBSfbGfp5vemGkrAAAnY7QtAAAW2V7z9Gd1Hn3F10UoFg7880VfFwEA8oWaJwAAFhGeAAD4MjzPnDkj77//vowePVpOnTplzm3ZskUOHz5s520AAHBGn+e2bdskOjrajLT9+eefZcCAAVKxYkWzm8qhQ4fkb3/7m123AgDAGTXPESNGyBNPPCH79u0zKwy5denSRTZs2GDXbQAAcE54fvvtt/LUU0/lOF+9enVJTk626zYAADgnPEuVKmVWZ7jS3r17pUqVKnbdBgAA54Rn9+7dZcKECXLp0iXP2rba1zly5EizeHxB0x1batWqZZqM27RpI5s3by7wewIA/JNt4TllyhT57bffpGrVqmZt2/bt28tNN90kISEh8sorBbt4gC5Kr32u48aNM6N7mzVrZhakP378eIHeFwDgn2xfGF53VtGRtxqkLVq0MCNwC5rWNG+99VaZMWOGeZ6VlSVRUVEyZMgQGTVqVKEtDM8KQ3nDCkMAiiKfLgx/xx13mKOwZGRkSGJioplb6hYYGGhCOyEh4arbqOnhlltfLQAABRKe06dPz/O1Q4cOlYKQkpIimZmZEh4e7nVen+/evTvX98TFxcn48eNtLws1KgB2o0WraP4dnK/wfPPNN72enzhxQs6fPy/ly5f3rDhUtmxZ0w9aUOF5PbSWqn2k2Wue2swLAECBh+fBgwc9jxcuXCjvvPOOzJ07V26++WZzbs+ePWalodzmf9qlcuXKEhQUJMeOHfM6r88jIiKuOq1GDwAAfDraduzYsfL22297glPpY62djhkzRgpKcHCwtGzZUtauXes5pwOG9Hm7du0K7L4AAP9l24Cho0ePyuXLl3Oc1/7IK2uFdtMm2JiYGGnVqpW0bt1apk2bJmlpadKvX78CvS8AwD/ZFp4dO3Y0zbO6q4pOUVE6CnbgwIEFPl2lZ8+epr81NjbWLAXYvHlziY+PzzGICACAItVsO2/ePNPHqLU/d5+i1gI1wDRQC9rgwYPll19+MVNQvvnmGzP3EwCAIl3z1PVrV61aZdaydU8RadCggdSvX9+uWwAAUCTYvkiChiWBCQBwMtvC88knn/zdZl0AAJzAtvA8ffq013PdXWXHjh1moYQOHTrYdRsAAJwTnsuWLctxTudb6mjbunXr2nUbAACcM9o21w8PDDRzMK9cxg8AgOKsQMNT7d+/P9fFEwAAEH9vts2+0LrSbUJ11aFPPvnErP4DAIBT2BaeW7duzdFkq3M/p0yZ8rsjcQEAuWOrQ4eH57p16+z6KAAA/KPPU6ej6LSUK+lemUxVAQA4iW3huX79esnIyMhx/uLFi/LVV1/ZdRsAAIp/s+22bds8j3fu3Gl2Ncm+HZnublK9evX83gYAAOeEp27/FRAQYI7cmmfLlCljNskGAMAp8h2eBw8eNNNS6tSpI5s3bzYjbN2Cg4OlatWqEhQUlN/bAADgnPCsWbOmZyk+AAD8Qb7Cc8WKFXL//fdLyZIlzeNr6d69e35uBQBAkRHg0jbX66QLIegAIW2a1cdXvUlAgBk8VFTpdJqwsDA5e/ashIaG+ro4AIAingX5qnlmb6ql2RYA4C8KfGF4AACcJl81z+nTp+f52qFDh+bnVgAAOKPPs3bt2nm7SUCAHDhwQIoq+jwBAKmF1eepczwBAPA3BdLnqZXZfFRoAQDwn/CcO3euNG7cWEqXLm0Offz+++/beQsAAJyzn2dsbKxMnTpVhgwZIu3atTPnEhISZPjw4XLo0CGZMGGCXbcCAKD4DhjKTte01dG3vXr18jq/aNEiE6gpKSlSVDFgCACQaiELbGu2vXTpkrRq1SrH+ZYtW8rly5ftug0AAD5nW3j26dNH3n333RznZ8+eLb1797brNgAAOKfP0z1g6LPPPpO2bdua5998843p7+zbt6+MGDHCc532jQIAIP4enjt27JAWLVqYx/v37zc/K1eubA59LfuCCQAAFGe2hee6devs+igAAIo0FoYHAMBXNc+LFy/K22+/bWqgx48fz7FF2ZYtW+y6FQAAzgjP/v37m8FCDz/8sLRu3Zq+TQCAY9kWnitXrpRVq1bJ7bffbtdHAgDg7D7P6tWrS0hIiF0fBwCA88NzypQpMnLkSPnll1+ksPz888+muVj3FS1TpozUrVtXxo0bJxkZGYVWBgCA/7Gt2VaX5tNBQ3Xq1JGyZctKyZIlvV4/deqU2G337t1mYNJ7770nN910k5lPOmDAAElLS5PJkyfbfj8AAGxdGD46OtqsJqQ1wfDw8BwDhmJiYgrlG3/jjTfMMoEHDhzI83tYGB4AkGohC2yreW7cuNFsQdasWTPxJf2lK1aseM1r0tPTzZH9CwMAoND7PBs0aCAXLlwQX/rpp5/MXNOnnnrqmtfFxcWZf124j6ioqEIrIwCg+LMtPF977TV59tlnZf369XLy5ElTm8t+WDFq1CjT7HutQ/s7szt8+LB07txZHnnkEdPveS2jR482NVT3kZSUdF2/MwDAP9nW5xkY+N8cvrKvUz9ez2VmZub5s06cOGEC+Fp0YFJwcLB5fOTIEbn77rvNbi4LFizwlCWv6PMEAKT6os/TzoXhq1SpYo680BrnPffcYzbdnj9/vuXgBADAKtvCs3379ld9LfuWZHbS4NQaZ82aNc3UFK2xukVERBTIPQEAsHUz7OzOnTsnixYtkvfff18SExMtNdvm1Zo1a8wgIT1q1Kjh9ZpNrdEAAORgexvnhg0bzJzOatWqmdpghw4dZNOmTVIQnnjiCROSuR0AABTpmmdycrIZqDN37lzT4froo4+aeZTLly+XRo0a2XELAACcU/Ps1q2b3HzzzbJt2zaZNm2aGfmqcy0BAHCqfNc8P/30Uxk6dKgMHDhQ6tWrZ0+pAABwcs3z66+/NoODdKpImzZtZMaMGZKSkmJP6QAAcGJ46sIEc+bMkaNHj5pl8RYvXiyRkZFmtxMdDavBCgCAk9i2wlB2e/bsMYOH/v73v8uZM2fk3nvvlRUrVkhRxQpDAIBUC1lQIMvx6ACiSZMmya+//mrmegIA4CQFUvMsbqh5AgBSfV3zBADAyQhPAAAsIjwBALCI8AQAwCLCEwAAiwhPAAAsIjwBALCI8AQAwCLCEwAAiwhPAAAsIjwBALCI8AQAwKISVt/gRO618XVRYACAf0r9/zMgL/ulEJ4ing27o6KifF0UAEARyATdXeVa2JJMRLKysuTIkSMSEhIiAQEB4qR/Rek/CJKSkthqrZDwnRc+vvPC5eTv2+VymeCMjIyUwMBr92pS89SO38BAqVGjhjiV/gF32h/yoo7vvPDxnReuUId+379X43RjwBAAABYRngAAWER4OlipUqVk3Lhx5icKB9954eM7L1x83//FgCEAACyi5gkAgEWEJwAAFhGeAABYRHgCAGAR4ekQM2fOlFq1aknp0qWlTZs2snnzZs9rFy9elEGDBkmlSpXkhhtukIceekiOHTvm0/I6/TufPXu23H333WYSua5adebMGZ+W1Qk2bNgg3bp1M6u/6He6fPlyr9d17GNsbKxUq1ZNypQpI9HR0bJv3z6fldfp3/dHH30k9913n/l7RV///vvvxZ8Qng6wZMkSGTFihBk+vmXLFmnWrJl06tRJjh8/bl4fPny4fPzxx7J06VL58ssvzVKEDz74oK+L7ejv/Pz589K5c2d54YUXfF1Ux0hLSzPfs/6jJTeTJk2S6dOny6xZs+Sbb76RcuXKmf8m+o9H2P99p6WlyR133CGvv/66+CWdqoLirXXr1q5BgwZ5nmdmZroiIyNdcXFxrjNnzrhKlizpWrp0qef1Xbt26fQkV0JCgo9K7OzvPLt169aZ7/r06dM+KKVz6Xe6bNkyz/OsrCxXRESE64033vCc0z/7pUqVci1atMhHpXTu953dwYMHzetbt251+RNqnsVcRkaGJCYmmiaq7Gv16vOEhATz2qVLl7xeb9Cggdx4443mddj/naPwHTx4UJKTk73+m+gapdqczn8TFATCs5hLSUmRzMxMCQ8P9zqvz/UvEz2Cg4OlfPnyub4O+79zFD73985/ExQWwhMAAIsIz2KucuXKEhQUlGP0rD6PiIgwhzYzXjna0/067P/OUfjc3zv/TVBYCM9iTptkW7ZsKWvXrvXa3Fuft2vXzrxWsmRJr9f37Nkjhw4dMq/D/u8cha927domJLP/N9FNm3XULf9NUBDYDNsBdMpETEyMtGrVSlq3bi3Tpk0zw8j79etnBk3079/fXFOxYkUz73DIkCHmL5S2bdv6uuiO/M6Vu7/5p59+Ms+3b98uISEhZqCW/neAdb/99pvn+3QPEtK5hfp96vf6zDPPyMsvvyz16tUzYTp27FgzR7FHjx4+LbdTv+9Tp06Zf4Tr1Df3P8qVu8XL8Xw93Bf2ePvtt1033nijKzg42Eyj2LRpk+e1CxcuuJ5++mlXhQoVXGXLlnU98MADrqNHj/q0vE7/zseNG2eG7195zJ8/36dlLs7c036uPGJiYjzTVcaOHesKDw83U1Q6duzo2rNnj6+L7djve/78+bm+rn/2/QFbkgEAYBF9ngAAWER4AgBgEeEJAIBFhCcAABYRngAAWER4AgBgEeEJAIBFhCfgUAsWLMixmw4AexCegA888cQTEhAQ4DkqVaoknTt3lm3bttl2j549e8revXulINSqVcssSWjV3XffbZbRA4o7whPwEQ3Lo0ePmkMXNC9RooT88Y9/tO3zy5QpI1WrVrXt8wD8H8IT8JFSpUp5FtFu3ry5jBo1SpKSkuTEiROea0aOHCn169eXsmXLSp06dcxi55cuXfK8/sMPP8g999xjFp3XRf91t5fvvvsu12bba117JV2186WXXjILgGs5dYH1oUOHemqPv/zyiwwfPtxTc1YnT56UXr16SfXq1U15mzRpIosWLfKqbX/55Zfy1ltved73888/m9d27Ngh999/v9xwww1mA+s+ffqYTceBoorwBIrIDhb/+7//KzfddJNpwnXToNMQ3LlzpwmdOXPmyJtvvul5vXfv3lKjRg359ttvJTEx0QSwbkGXGyvX/utf/zL3ee+992Tfvn2yfPlyE4bqo48+Mp8zYcIET81ZXbx40QTyJ598YsLwf/7nf0wIbt682byu5dfdfAYMGOB5X1RUlNlrtkOHDnLLLbeYMI+Pjzf7cD766KO2fseArXy9Mj3gj3RniqCgIFe5cuXMof9XrFatmisxMfGa73vjjTdcLVu29DwPCQlxLViwINdrddeLsLCwPF17pSlTprjq16/vysjIyPX1mjVrut58883f/ZyuXbu6nn32Wc/z9u3bu4YNG+Z1zcSJE1333Xef17mkpCTznbArCooqap6Aj2gTqu6PqIfWzjp16mSaLrVJ1G3JkiVy++23m6ZdbdIcM2aM2UMx+76if/nLXyQ6Olpee+012b9//1XvZ+XaRx55RC5cuGCairWmuGzZMrl8+fI1f5/MzEyZOHGiqaHqno9a3tWrV3uVNzfanLxu3Tpzvfto0KCBee1aZQR8ifAEfKRcuXKmmVaPW2+9Vd5//32zobY2zaqEhATT1NqlSxdZuXKlbN26VV588UXJyMjwfIb2S/7444/StWtX+eKLL6RRo0Ym6HJj5VptTtXNjd955x0z8Ojpp5+Wu+66y6u/9UpvvPGGaZrVfloNQ/1Hgf6DIHt5r9Zk3a1bN88/JNyHNhfrPYGiqISvCwDgv3QATWBgoKnxqY0bN0rNmjVNYLplr5W66YAiPXQAjw7YmT9/vjzwwAO53sPKtRqaGmp6DBo0yNQGt2/fLi1atJDg4GBT08zuP//5j/zpT3+Sxx9/3DzPysoyU2U0pN1ye59+nvax6vQXHXEMFAfUPAEfSU9Pl+TkZHPs2rVLhgwZ4qmFqXr16pkmz8WLF5vmy+nTp3vVFDVkBw8eLOvXrzehquGlg4EaNmyY415WrlU6SGnu3Llm4M+BAwfMYCYNUw1zpUG3YcMGOXz4sGdUrJZ3zZo1JvT193nqqafMwJ/s9H3ffPONGWWr79OA1WA+deqUCXMtk/6u2tzbr1+/HEELFBm+7nQF/HXAkP7fz33oYJ5bb73V9eGHH3pd9/zzz7sqVarkuuGGG1w9e/Y0g3Tcg4DS09Ndjz32mCsqKsoVHBzsioyMdA0ePNh14cKFHAOGfu/aKy1btszVpk0bV2hoqBnQ1LZtW9fnn3/ueT0hIcHVtGlTV6lSpUz51cmTJ11/+tOfTFmrVq3qGjNmjKtv377mnJsOANLPKlOmjHnfwYMHzfm9e/e6HnjgAVf58uXNaw0aNHA988wzrqysLNu/e8AOAfo/vg5wAACKE5ptAQCwiPAEAMAiwhMAAIsITwAALCI8AQCwiPAEAMAiwhMAAIsITwAALCI8AQCwiPAEAMAiwhMAAIsITwAAxJr/D5udurbL9ZveAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] }, "metadata": {}, "output_type": "display_data" @@ -208,7 +212,7 @@ ], "metadata": { "kernelspec": { - "display_name": "frostenv", + "display_name": ".venv", "language": "python", "name": "python3" }, @@ -222,7 +226,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.10.14" + "version": "3.12.9" } }, "nbformat": 4, diff --git a/pyproject.toml b/pyproject.toml index 4923ba1..81ddbe6 100644 --- a/pyproject.toml +++ b/pyproject.toml @@ -65,6 +65,8 @@ Repository = "https://github.com/OpenQuantumDesign/equilux.git" Issues = "https://github.com/OpenQuantumDesign/equilux/issues" [dependency-groups] -dev = [ - "pre-commit>=4.1.0", -] +dev = ["pre-commit>=4.1.0"] + +[tool.ruff.lint] +select = ["E4", "E7", "E9", "F", "I"] +fixable = ["ALL"] From f5f4ea1fcb2dbeddf240c5275cdc1badc849729b Mon Sep 17 00:00:00 2001 From: yhteoh Date: Sun, 2 Mar 2025 12:45:13 -0500 Subject: [PATCH 4/5] [action] Add action to test mkdocs build --- .github/workflows/check_mkdocs_build.yml | 37 ++++++++++++++++++++++++ 1 file changed, 37 insertions(+) create mode 100644 .github/workflows/check_mkdocs_build.yml diff --git a/.github/workflows/check_mkdocs_build.yml b/.github/workflows/check_mkdocs_build.yml new file mode 100644 index 0000000..c49dfa5 --- /dev/null +++ b/.github/workflows/check_mkdocs_build.yml @@ -0,0 +1,37 @@ +name: Check Mkdocs Build + +on: + pull_request: + branches: ["main"] + +permissions: + contents: read + +jobs: + check_mkdocs_build: + runs-on: ubuntu-latest + steps: + - name: Checkout repo + uses: actions/checkout@v4 + + - name: Configure Git credentials + run: | + git config user.name github-actions[bot] + git config user.email 41898282+github-actions[bot]@users.noreply.github.com + + - name: Install uv and set the python version + uses: astral-sh/setup-uv@v5 + with: + enable-cache: true + + - name: Retrieve Git submodules + run: git submodule update --init --recursive && git submodule update --recursive --remote + + - name: Copy examples into docs folder + run: cp -r examples/ docs/examples/ + + - name: Install repo + run: uv sync --extra docs + + - name: Build docs + run: uv run mkdocs build From d8cae96193c6ff463a47785913279949d578012a Mon Sep 17 00:00:00 2001 From: yhteoh Date: Sun, 2 Mar 2025 12:48:45 -0500 Subject: [PATCH 5/5] [action] Update deploy docs to use uv --- .github/workflows/deploy_docs.yaml | 44 ++++++++++++++++-------------- 1 file changed, 24 insertions(+), 20 deletions(-) diff --git a/.github/workflows/deploy_docs.yaml b/.github/workflows/deploy_docs.yaml index 240af67..38fd83c 100644 --- a/.github/workflows/deploy_docs.yaml +++ b/.github/workflows/deploy_docs.yaml @@ -1,33 +1,37 @@ -name: ci +name: Deploy Mkdocs Documentation + on: push: - branches: - - master - - main + branches: ["main"] + permissions: contents: write jobs: - deploy: + deploy_docs: runs-on: ubuntu-latest steps: - - uses: actions/checkout@v4 + - name: Checkout repo + uses: actions/checkout@v4 + - name: Configure Git Credentials run: | git config user.name github-actions[bot] git config user.email 41898282+github-actions[bot]@users.noreply.github.com - - uses: actions/setup-python@v5 - with: - python-version: 3.x - - run: echo "cache_id=$(date --utc '+%V')" >> $GITHUB_ENV - - uses: actions/cache@v4 + + - name: Install uv and set the python version + uses: astral-sh/setup-uv@v5 with: - key: mkdocs-material-${{ env.cache_id }} - path: .cache - restore-keys: | - mkdocs-material- - - run: git submodule update --init --recursive - - run: git submodule update --recursive --remote - - run: cp -r examples/ docs/examples/ - - run: pip install .[docs] - - run: mkdocs gh-deploy --force + enable-cache: true + + - name: Retrieve Git submodules + run: git submodule update --init --recursive && git submodule update --recursive --remote + + - name: Copy examples into docs folder + run: cp -r examples/ docs/examples/ + + - name: Install repo + run: uv sync --extra docs + + - name: Build docs + run: uv run mkdocs gh-deploy --force