diff --git a/src/pruna/data/__init__.py b/src/pruna/data/__init__.py index 3a811868..1db1f7e2 100644 --- a/src/pruna/data/__init__.py +++ b/src/pruna/data/__init__.py @@ -12,6 +12,7 @@ # See the License for the specific language governing permissions and # limitations under the License. +from dataclasses import dataclass, field from functools import partial from typing import Any, Callable, Tuple @@ -28,6 +29,7 @@ from pruna.data.datasets.prompt import ( setup_drawbench_dataset, setup_genai_bench_dataset, + setup_hps_dataset, setup_parti_prompts_dataset, ) from pruna.data.datasets.question_answering import setup_polyglot_dataset @@ -97,8 +99,176 @@ {"img_size": 224}, ), "DrawBench": (setup_drawbench_dataset, "prompt_collate", {}), - "PartiPrompts": (setup_parti_prompts_dataset, "prompt_collate", {}), + "PartiPrompts": (setup_parti_prompts_dataset, "prompt_with_auxiliaries_collate", {}), "GenAIBench": (setup_genai_bench_dataset, "prompt_collate", {}), + "HPS": (setup_hps_dataset, "prompt_with_auxiliaries_collate", {}), "TinyIMDB": (setup_tiny_imdb_dataset, "text_generation_collate", {}), "VBench": (setup_vbench_dataset, "prompt_with_auxiliaries_collate", {}), } + + +@dataclass +class BenchmarkInfo: + """ + Metadata for a benchmark dataset. + + Parameters + ---------- + name : str + Internal identifier for the benchmark. + display_name : str + Human-readable name for display purposes. + description : str + Description of what the benchmark evaluates. + metrics : list[str] + List of metric names used for evaluation. + task_type : str + Type of task the benchmark evaluates (e.g., 'text_to_image'). + subsets : list[str] + Optional list of benchmark subset names. + """ + + name: str + display_name: str + description: str + metrics: list[str] + task_type: str + subsets: list[str] = field(default_factory=list) + + +benchmark_info: dict[str, BenchmarkInfo] = { + "PartiPrompts": BenchmarkInfo( + name="parti_prompts", + display_name="Parti Prompts", + description=( + "Over 1,600 diverse English prompts across 12 categories with 11 challenge aspects " + "ranging from basic to complex, enabling comprehensive assessment of model capabilities " + "across different domains and difficulty levels." + ), + metrics=["arniqa", "clip_score", "clipiqa", "sharpness"], + task_type="text_to_image", + subsets=[ + "Abstract", + "Animals", + "Artifacts", + "Arts", + "Food & Beverage", + "Illustrations", + "Indoor Scenes", + "Outdoor Scenes", + "People", + "Produce & Plants", + "Vehicles", + "World Knowledge", + "Basic", + "Complex", + "Fine-grained Detail", + "Imagination", + "Linguistic Structures", + "Perspective", + "Properties & Positioning", + "Quantity", + "Simple Detail", + "Style & Format", + "Writing & Symbols", + ], + ), + "DrawBench": BenchmarkInfo( + name="drawbench", + display_name="DrawBench", + description="A comprehensive benchmark for evaluating text-to-image generation models.", + metrics=["clip_score", "clipiqa", "sharpness"], + task_type="text_to_image", + ), + "GenAIBench": BenchmarkInfo( + name="genai_bench", + display_name="GenAI Bench", + description="A benchmark for evaluating generative AI models.", + metrics=["clip_score", "clipiqa", "sharpness"], + task_type="text_to_image", + ), + "VBench": BenchmarkInfo( + name="vbench", + display_name="VBench", + description="A benchmark for evaluating video generation models.", + metrics=["clip_score"], + task_type="text_to_video", + ), + "HPS": BenchmarkInfo( + name="hps", + display_name="HPS", + description=( + "Large-scale human preference annotations with 798k pairwise comparisons across " + "multiple generative model outputs to align evaluation with actual human preferences." + ), + metrics=["clip_score", "clipiqa"], + task_type="text_to_image", + subsets=["anime", "concept-art", "paintings", "photo"], + ), + "COCO": BenchmarkInfo( + name="coco", + display_name="COCO", + description="Microsoft COCO dataset for image generation evaluation with real image-caption pairs.", + metrics=["fid", "clip_score", "clipiqa"], + task_type="text_to_image", + ), + "ImageNet": BenchmarkInfo( + name="imagenet", + display_name="ImageNet", + description="Large-scale image classification benchmark with 1000 classes.", + metrics=["accuracy"], + task_type="image_classification", + ), + "WikiText": BenchmarkInfo( + name="wikitext", + display_name="WikiText", + description="Language modeling benchmark based on Wikipedia articles.", + metrics=["perplexity"], + task_type="text_generation", + ), +} + + +def list_benchmarks(task_type: str | None = None) -> list[str]: + """ + List available benchmark names. + + Parameters + ---------- + task_type : str | None + Filter by task type (e.g., 'text_to_image', 'text_to_video'). + If None, returns all benchmarks. + + Returns + ------- + list[str] + List of benchmark names. + """ + if task_type is None: + return list(benchmark_info.keys()) + return [name for name, info in benchmark_info.items() if info.task_type == task_type] + + +def get_benchmark_info(name: str) -> BenchmarkInfo: + """ + Get benchmark metadata by name. + + Parameters + ---------- + name : str + The benchmark name. + + Returns + ------- + BenchmarkInfo + The benchmark metadata. + + Raises + ------ + KeyError + If benchmark name is not found. + """ + if name not in benchmark_info: + available = ", ".join(benchmark_info.keys()) + raise KeyError(f"Benchmark '{name}' not found. Available: {available}") + return benchmark_info[name] diff --git a/src/pruna/data/datasets/prompt.py b/src/pruna/data/datasets/prompt.py index 1f6fab71..6ad808f1 100644 --- a/src/pruna/data/datasets/prompt.py +++ b/src/pruna/data/datasets/prompt.py @@ -41,7 +41,11 @@ def setup_drawbench_dataset(seed: int) -> Tuple[Dataset, Dataset, Dataset]: return ds.select([0]), ds.select([0]), ds -def setup_parti_prompts_dataset(seed: int) -> Tuple[Dataset, Dataset, Dataset]: +def setup_parti_prompts_dataset( + seed: int, + category: str | None = None, + num_samples: int | None = None, +) -> Tuple[Dataset, Dataset, Dataset]: """ Setup the Parti Prompts dataset. @@ -51,18 +55,86 @@ def setup_parti_prompts_dataset(seed: int) -> Tuple[Dataset, Dataset, Dataset]: ---------- seed : int The seed to use. + category : str | None + Filter by Category or Challenge. Available categories: Abstract, Animals, Artifacts, + Arts, Food & Beverage, Illustrations, Indoor Scenes, Outdoor Scenes, People, + Produce & Plants, Vehicles, World Knowledge. Available challenges: Basic, Complex, + Fine-grained Detail, Imagination, Linguistic Structures, Perspective, + Properties & Positioning, Quantity, Simple Detail, Style & Format, Writing & Symbols. + num_samples : int | None + Maximum number of samples to return. If None, returns all samples. Returns ------- Tuple[Dataset, Dataset, Dataset] - The Parti Prompts dataset. + The Parti Prompts dataset (dummy train, dummy val, test). """ ds = load_dataset("nateraw/parti-prompts")["train"] # type: ignore[index] + + if category is not None: + ds = ds.filter(lambda x: x["Category"] == category or x["Challenge"] == category) + + ds = ds.shuffle(seed=seed) + + if num_samples is not None: + ds = ds.select(range(min(num_samples, len(ds)))) + ds = ds.rename_column("Prompt", "text") pruna_logger.info("PartiPrompts is a test-only dataset. Do not use it for training or validation.") return ds.select([0]), ds.select([0]), ds +def setup_hps_dataset( + seed: int, + category: str | None = None, + num_samples: int | None = None, +) -> Tuple[Dataset, Dataset, Dataset]: + """ + Setup the HPS (Human Preference Score) benchmark dataset. + + License: MIT + + Parameters + ---------- + seed : int + The seed to use. + category : str | None + Filter by category. Available categories: anime, concept-art, paintings, photo. + num_samples : int | None + Maximum number of samples to return. If None, returns all samples. + + Returns + ------- + Tuple[Dataset, Dataset, Dataset] + The HPS dataset (dummy train, dummy val, test). + """ + import json + + from huggingface_hub import hf_hub_download + + hps_categories = ["anime", "concept-art", "paintings", "photo"] + categories_to_load = [category] if category else hps_categories + + all_prompts = [] + for cat in categories_to_load: + if cat not in hps_categories: + raise ValueError(f"Invalid category: {cat}. Must be one of {hps_categories}") + file_path = hf_hub_download("zhwang/HPDv2", f"{cat}.json", subfolder="benchmark", repo_type="dataset") + with open(file_path, "r", encoding="utf-8") as f: + prompts = json.load(f) + for prompt in prompts: + all_prompts.append({"text": prompt, "category": cat}) + + ds = Dataset.from_list(all_prompts) + ds = ds.shuffle(seed=seed) + + if num_samples is not None: + ds = ds.select(range(min(num_samples, len(ds)))) + + pruna_logger.info("HPS is a test-only dataset. Do not use it for training or validation.") + return ds.select([0]), ds.select([0]), ds + + def setup_genai_bench_dataset(seed: int) -> Tuple[Dataset, Dataset, Dataset]: """ Setup the GenAI Bench dataset. diff --git a/tests/data/test_datamodule.py b/tests/data/test_datamodule.py index 04d226f6..3d9b75a2 100644 --- a/tests/data/test_datamodule.py +++ b/tests/data/test_datamodule.py @@ -1,10 +1,10 @@ from typing import Any, Callable import pytest -from transformers import AutoTokenizer -from datasets import Dataset -from torch.utils.data import TensorDataset import torch +from transformers import AutoTokenizer + +from pruna.data import BenchmarkInfo, benchmark_info from pruna.data.datasets.image import setup_imagenet_dataset from pruna.data.pruna_datamodule import PrunaDataModule @@ -45,6 +45,7 @@ def iterate_dataloaders(datamodule: PrunaDataModule) -> None: pytest.param("GenAIBench", dict(), marks=pytest.mark.slow), pytest.param("TinyIMDB", dict(tokenizer=bert_tokenizer), marks=pytest.mark.slow), pytest.param("VBench", dict(), marks=pytest.mark.slow), + pytest.param("HPS", dict(), marks=pytest.mark.slow), ], ) def test_dm_from_string(dataset_name: str, collate_fn_args: dict[str, Any]) -> None: @@ -80,3 +81,34 @@ def test_dm_from_dataset(setup_fn: Callable, collate_fn: Callable, collate_fn_ar assert labels.dtype == torch.int64 # iterate through the dataloaders iterate_dataloaders(datamodule) + + + +@pytest.mark.slow +def test_parti_prompts_with_category_filter(): + """Test PartiPrompts loading with category filter.""" + dm = PrunaDataModule.from_string( + "PartiPrompts", category="Animals", dataloader_args={"batch_size": 4} + ) + dm.limit_datasets(10) + batch = next(iter(dm.test_dataloader())) + prompts, auxiliaries = batch + + assert len(prompts) == 4 + assert all(isinstance(p, str) for p in prompts) + assert all(aux["Category"] == "Animals" for aux in auxiliaries) + + +@pytest.mark.slow +def test_hps_with_category_filter(): + """Test HPS loading with category filter.""" + dm = PrunaDataModule.from_string( + "HPS", category="anime", dataloader_args={"batch_size": 4} + ) + dm.limit_datasets(10) + batch = next(iter(dm.test_dataloader())) + prompts, auxiliaries = batch + + assert len(prompts) == 4 + assert all(isinstance(p, str) for p in prompts) + assert all(aux["category"] == "anime" for aux in auxiliaries)