|
| 1 | +--- |
| 2 | +title: Structured Outputs |
| 3 | +id: structured-outputs |
| 4 | +order: 6 |
| 5 | +--- |
| 6 | + |
| 7 | +Structured outputs allow you to constrain AI model responses to match a specific JSON schema, ensuring consistent and type-safe data extraction. TanStack AI uses the [Standard JSON Schema](https://standardschema.dev/) specification, allowing you to use any compatible schema library. |
| 8 | + |
| 9 | +## Overview |
| 10 | + |
| 11 | +When you provide an `outputSchema` to the `chat()` function, TanStack AI: |
| 12 | + |
| 13 | +1. Converts your schema to JSON Schema format |
| 14 | +2. Sends it to the provider's native structured output API |
| 15 | +3. Validates the response against your schema |
| 16 | +4. Returns a fully typed result |
| 17 | + |
| 18 | +This is useful for: |
| 19 | + |
| 20 | +- **Extracting structured data** from unstructured text |
| 21 | +- **Building forms or wizards** with AI-generated content |
| 22 | +- **Creating APIs** that return predictable JSON shapes |
| 23 | +- **Ensuring type safety** between AI responses and your application |
| 24 | + |
| 25 | +## Schema Libraries |
| 26 | + |
| 27 | +TanStack AI uses **Standard JSON Schema**, which means you can use any schema library that implements the specification: |
| 28 | + |
| 29 | +- [Zod](https://zod.dev/) (v4.2+) |
| 30 | +- [ArkType](https://arktype.io/) |
| 31 | +- [Valibot](https://valibot.dev/) (via `@valibot/to-json-schema`) |
| 32 | +- Plain JSON Schema objects |
| 33 | + |
| 34 | +> **Note:** Refer to your schema library's documentation for details on defining schemas and using features like `.describe()` for field descriptions. TanStack AI will convert your schema to JSON Schema format automatically. |
| 35 | +
|
| 36 | +## Basic Usage |
| 37 | + |
| 38 | +Here's how to use structured outputs with a Zod schema: |
| 39 | + |
| 40 | +```typescript |
| 41 | +import { chat } from "@tanstack/ai"; |
| 42 | +import { openaiText } from "@tanstack/ai-openai"; |
| 43 | +import { z } from "zod"; |
| 44 | + |
| 45 | +// Define your schema |
| 46 | +const PersonSchema = z.object({ |
| 47 | + name: z.string().describe("The person's full name"), |
| 48 | + age: z.number().describe("The person's age in years"), |
| 49 | + email: z.string().email().describe("The person's email address"), |
| 50 | +}); |
| 51 | + |
| 52 | +// Use it with chat() |
| 53 | +const person = await chat({ |
| 54 | + adapter: openaiText("gpt-4o"), |
| 55 | + messages: [ |
| 56 | + { |
| 57 | + role: "user", |
| 58 | + content: "Extract the person info: John Doe is 30 years old, email john@example.com", |
| 59 | + }, |
| 60 | + ], |
| 61 | + outputSchema: PersonSchema, |
| 62 | +}); |
| 63 | + |
| 64 | +// person is fully typed as { name: string, age: number, email: string } |
| 65 | +console.log(person.name); // "John Doe" |
| 66 | +console.log(person.age); // 30 |
| 67 | +console.log(person.email); // "john@example.com" |
| 68 | +``` |
| 69 | + |
| 70 | +## Type Inference |
| 71 | + |
| 72 | +The return type of `chat()` changes based on the `outputSchema` prop: |
| 73 | + |
| 74 | +| Configuration | Return Type | |
| 75 | +|--------------|-------------| |
| 76 | +| No `outputSchema` | `AsyncIterable<StreamChunk>` | |
| 77 | +| With `outputSchema` | `Promise<InferSchemaType<TSchema>>` | |
| 78 | + |
| 79 | +When you provide an `outputSchema`, TanStack AI automatically infers the TypeScript type from your schema: |
| 80 | + |
| 81 | +```typescript |
| 82 | +import { z } from "zod"; |
| 83 | + |
| 84 | +// Define a complex schema |
| 85 | +const RecipeSchema = z.object({ |
| 86 | + name: z.string(), |
| 87 | + prepTime: z.string(), |
| 88 | + servings: z.number(), |
| 89 | + ingredients: z.array( |
| 90 | + z.object({ |
| 91 | + item: z.string(), |
| 92 | + amount: z.string(), |
| 93 | + }) |
| 94 | + ), |
| 95 | + instructions: z.array(z.string()), |
| 96 | +}); |
| 97 | + |
| 98 | +// TypeScript knows the exact return type |
| 99 | +const recipe = await chat({ |
| 100 | + adapter: openaiText("gpt-4o"), |
| 101 | + messages: [{ role: "user", content: "Give me a recipe for scrambled eggs" }], |
| 102 | + outputSchema: RecipeSchema, |
| 103 | +}); |
| 104 | + |
| 105 | +// Full type safety - TypeScript knows all these properties exist |
| 106 | +recipe.name; // string |
| 107 | +recipe.prepTime; // string |
| 108 | +recipe.servings; // number |
| 109 | +recipe.ingredients[0].item; // string |
| 110 | +recipe.instructions.map((step) => step.toUpperCase()); // string[] |
| 111 | +``` |
| 112 | + |
| 113 | +## Using Field Descriptions |
| 114 | + |
| 115 | +Schema field descriptions help the AI understand what data to extract. Most schema libraries support a `.describe()` method: |
| 116 | + |
| 117 | +```typescript |
| 118 | +const ProductSchema = z.object({ |
| 119 | + name: z.string().describe("The product name"), |
| 120 | + price: z.number().describe("Price in USD"), |
| 121 | + inStock: z.boolean().describe("Whether the product is currently available"), |
| 122 | + categories: z |
| 123 | + .array(z.string()) |
| 124 | + .describe("Product categories like 'electronics', 'clothing', etc."), |
| 125 | +}); |
| 126 | +``` |
| 127 | + |
| 128 | +These descriptions are included in the JSON Schema sent to the provider, giving the AI context about each field. |
| 129 | + |
| 130 | +## Complex Nested Schemas |
| 131 | + |
| 132 | +You can define deeply nested structures: |
| 133 | + |
| 134 | +```typescript |
| 135 | +const CompanySchema = z.object({ |
| 136 | + name: z.string(), |
| 137 | + founded: z.number().describe("Year the company was founded"), |
| 138 | + headquarters: z.object({ |
| 139 | + city: z.string(), |
| 140 | + country: z.string(), |
| 141 | + address: z.string().optional(), |
| 142 | + }), |
| 143 | + employees: z.array( |
| 144 | + z.object({ |
| 145 | + name: z.string(), |
| 146 | + role: z.string(), |
| 147 | + department: z.string(), |
| 148 | + }) |
| 149 | + ), |
| 150 | + financials: z |
| 151 | + .object({ |
| 152 | + revenue: z.number().describe("Annual revenue in millions USD"), |
| 153 | + profitable: z.boolean(), |
| 154 | + }) |
| 155 | + .optional(), |
| 156 | +}); |
| 157 | + |
| 158 | +const company = await chat({ |
| 159 | + adapter: anthropicText("claude-sonnet-4-5"), |
| 160 | + messages: [ |
| 161 | + { |
| 162 | + role: "user", |
| 163 | + content: "Extract company info from this article: ...", |
| 164 | + }, |
| 165 | + ], |
| 166 | + outputSchema: CompanySchema, |
| 167 | +}); |
| 168 | + |
| 169 | +// Access nested properties with full type safety |
| 170 | +console.log(company.headquarters.city); |
| 171 | +console.log(company.employees[0].role); |
| 172 | +``` |
| 173 | + |
| 174 | +## Combining with Tools |
| 175 | + |
| 176 | +Structured outputs work seamlessly with the agentic tool loop. When both `outputSchema` and `tools` are provided, TanStack AI will: |
| 177 | + |
| 178 | +1. Execute the full agentic loop (running tools as needed) |
| 179 | +2. Once complete, generate the final structured output |
| 180 | +3. Return the validated, typed result |
| 181 | + |
| 182 | +```typescript |
| 183 | +import { chat, toolDefinition } from "@tanstack/ai"; |
| 184 | +import { z } from "zod"; |
| 185 | + |
| 186 | +const getProductPrice = toolDefinition({ |
| 187 | + name: "get_product_price", |
| 188 | + description: "Get the current price of a product", |
| 189 | + inputSchema: z.object({ |
| 190 | + productId: z.string(), |
| 191 | + }), |
| 192 | +}).server(async ({ input }) => { |
| 193 | + // Fetch price from database |
| 194 | + return { price: 29.99, currency: "USD" }; |
| 195 | +}); |
| 196 | + |
| 197 | +const RecommendationSchema = z.object({ |
| 198 | + productName: z.string(), |
| 199 | + currentPrice: z.number(), |
| 200 | + reason: z.string(), |
| 201 | +}); |
| 202 | + |
| 203 | +const recommendation = await chat({ |
| 204 | + adapter: openaiText("gpt-4o"), |
| 205 | + messages: [ |
| 206 | + { |
| 207 | + role: "user", |
| 208 | + content: "Recommend a product for a developer", |
| 209 | + }, |
| 210 | + ], |
| 211 | + tools: [getProductPrice], |
| 212 | + outputSchema: RecommendationSchema, |
| 213 | +}); |
| 214 | + |
| 215 | +// The AI will call the tool to get prices, then return structured output |
| 216 | +console.log(recommendation.productName); |
| 217 | +console.log(recommendation.currentPrice); |
| 218 | +console.log(recommendation.reason); |
| 219 | +``` |
| 220 | + |
| 221 | +## Using Plain JSON Schema |
| 222 | + |
| 223 | +If you prefer not to use a schema library, you can pass a plain JSON Schema object: |
| 224 | + |
| 225 | +```typescript |
| 226 | +import type { JSONSchema } from "@tanstack/ai"; |
| 227 | + |
| 228 | +const schema: JSONSchema = { |
| 229 | + type: "object", |
| 230 | + properties: { |
| 231 | + name: { type: "string", description: "The person's name" }, |
| 232 | + age: { type: "number", description: "The person's age" }, |
| 233 | + }, |
| 234 | + required: ["name", "age"], |
| 235 | +}; |
| 236 | + |
| 237 | +const result = await chat({ |
| 238 | + adapter: openaiText("gpt-4o"), |
| 239 | + messages: [{ role: "user", content: "Extract: John is 25 years old" }], |
| 240 | + outputSchema: schema, |
| 241 | +}); |
| 242 | + |
| 243 | +// Note: With plain JSON Schema, TypeScript infers `unknown` type |
| 244 | +// You'll need to cast or validate the result yourself |
| 245 | +const person = result as { name: string; age: number }; |
| 246 | +``` |
| 247 | + |
| 248 | +> **Note:** When using plain JSON Schema, TypeScript cannot infer the return type. The result will be typed as `unknown`. For full type safety, use a schema library like Zod. |
| 249 | +
|
| 250 | +## Provider Support |
| 251 | + |
| 252 | +Structured outputs are supported by all major providers through their native APIs: |
| 253 | + |
| 254 | +| Provider | Implementation | |
| 255 | +|----------|---------------| |
| 256 | +| OpenAI | Uses `response_format` with `json_schema` | |
| 257 | +| Anthropic | Uses tool-based extraction | |
| 258 | +| Google Gemini | Uses `responseSchema` | |
| 259 | +| Ollama | Uses JSON mode with schema | |
| 260 | + |
| 261 | +TanStack AI handles the provider-specific implementation details automatically, so you can use the same code across different providers. |
| 262 | + |
| 263 | +## Best Practices |
| 264 | + |
| 265 | +1. **Use descriptive field names and descriptions** - This helps the AI understand what data to extract |
| 266 | + |
| 267 | +2. **Keep schemas focused** - Extract only the data you need; simpler schemas produce more reliable results |
| 268 | + |
| 269 | +3. **Use optional fields appropriately** - Mark fields as optional when the data might not be present in the source |
| 270 | + |
| 271 | +4. **Validate edge cases** - Test with various inputs to ensure the schema handles edge cases correctly |
| 272 | + |
| 273 | +5. **Use enums for constrained values** - When a field has a limited set of valid values, use enums: |
| 274 | + |
| 275 | + ```typescript |
| 276 | + const schema = z.object({ |
| 277 | + status: z.enum(["pending", "approved", "rejected"]), |
| 278 | + priority: z.enum(["low", "medium", "high"]), |
| 279 | + }); |
| 280 | + ``` |
| 281 | + |
| 282 | +## Error Handling |
| 283 | + |
| 284 | +If the AI response doesn't match your schema, TanStack AI will throw a validation error: |
| 285 | + |
| 286 | +```typescript |
| 287 | +try { |
| 288 | + const result = await chat({ |
| 289 | + adapter: openaiText("gpt-4o"), |
| 290 | + messages: [{ role: "user", content: "..." }], |
| 291 | + outputSchema: MySchema, |
| 292 | + }); |
| 293 | +} catch (error) { |
| 294 | + if (error instanceof Error) { |
| 295 | + console.error("Structured output failed:", error.message); |
| 296 | + } |
| 297 | +} |
| 298 | +``` |
| 299 | + |
| 300 | +The error will include details about which fields failed validation, helping you debug schema mismatches. |
0 commit comments