Skip to content

Commit 855195d

Browse files
committed
Added results section
1 parent 215eb31 commit 855195d

File tree

1 file changed

+22
-1
lines changed

1 file changed

+22
-1
lines changed

index.md

Lines changed: 22 additions & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -174,7 +174,28 @@ I compute the reconstruction error on validation and test windows with ```recon_
174174
The model on test performance is evaluated with ```evaluate_on_test``` that returns AUROC, AUPRC, F1, Precision and Recall for each thresholding strategy.
175175

176176
## Results
177+
To evaluate the models we use commonly used performance metrics: F1, Precision, Recall, and complementary AUROC and AUPRC:
178+
- AUROC: measures ability to distinguish anomalies across thresholds
179+
- AUPRC: measures performance under class imbalance
180+
- $F_1 = 2 \cdot \frac{\text{Precision} \times \text{Recall}}{\text{Precision} + \text{Recall}}$
181+
- $\text{Precision} = \frac{TP}{TP + FP}$
182+
- $\text{Recall} = \frac{TP}{TP + FN}$
177183

184+
### Results with F1-max Threshold
185+
186+
| Model | AUROC | AUPRC | F1 | Precision | Recall |
187+
|----------------------------|:-----:|:-----:|:-----:|:----------:|:------:|
188+
| **MSE Loss Model** | 0.976 | 0.980 | 0.902 | 0.958 | 0.852 |
189+
| **Physics-Informed Model** | 0.973 | 0.977 | 0.894 | 0.941 | 0.852 |
190+
191+
---
192+
193+
### Results with Youden’s J. Threshold
194+
195+
| Model | AUROC | F1 | Precision | Recall |
196+
|----------------------------|:-----:|:-----:|:----------:|:------:|
197+
| **MSE Loss Model** | 0.976 | 0.902 | 0.958 | 0.852 |
198+
| **Physics-Informed Model** | 0.973 | 0.913 | 0.924 | 0.902 |
178199

179200
## Future work
180-
...
201+

0 commit comments

Comments
 (0)