@@ -124,7 +124,7 @@ example (x : a) : snoc x ∘ fromSL = fromSL ∘ snocSL x := by
124124 unfold snoc snocSL fromSL
125125 match h: lhs with
126126 | [] =>
127- simp [h]
127+ simp
128128 simp at ok
129129 apply ok.elim <;> intro h2; simp [h2]
130130 have a :: [] := rhs
@@ -270,7 +270,7 @@ example : ∀ (as : SymList a), fromSL (tailSL as) = tail (fromSL as) := by
270270 | nil => simp [tailSL, fromSL, nil]
271271 | cons b bs ih =>
272272 simp [fromSL, tailSL, nil]
273- simp [ok] at *
273+ simp at *
274274 rw [ok]
275275 rw [List.reverse_nil, List.nil_append, List.tail]
276276 | cons a as =>
@@ -302,7 +302,7 @@ theorem length_tail_lt_length (sl : SymList a) (h : sl ≠ nil)
302302 cases ok with
303303 | intro h1 h2 =>
304304 simp [k] at h1
305- cases h1 with
305+ cases h1 with
306306 | inl l => simp_all; contradiction
307307 | inr m => simp [m]
308308 · simp [k]
@@ -315,7 +315,7 @@ theorem length_tail_lt_length (sl : SymList a) (h : sl ≠ nil)
315315 omega
316316 simp [l]
317317 apply Nat.sub_lt_self
318- simp [k]
318+ simp
319319 have h : 0 < lsl.length := by
320320 cases lsl with
321321 | nil => contradiction
@@ -328,7 +328,7 @@ theorem headSL_none_iff_nilSL {sl : SymList a} : headSL sl = none ↔ sl = nil :
328328 split at h
329329 unfold nil
330330 exact rfl
331- repeat simp [eq_comm, <-Option.isNone_iff_eq_none ] at h
331+ repeat simp [eq_comm] at h
332332 rw [h]
333333 unfold headSL nil
334334 simp
@@ -455,7 +455,7 @@ theorem tails_append_singleton (xs : List α) (x : α) :
455455 induction xs with
456456 | nil => simp
457457 | cons y ys ih =>
458- simp [List.tails, ih, List.map_append ]
458+ simp [List.tails, ih]
459459
460460theorem map_reverse_tails_snoc (x : α) (xs : List α) :
461461 List.map reverse (snoc x xs).tails =
@@ -510,11 +510,9 @@ theorem inits_eq {a : Type} : ∀ xs : List a, inits₁ xs = inits₂ xs
510510 simp
511511 | x :: xs => by
512512 have ih := inits_eq xs
513- simp [ inits₁, inits₂,
514- List.reverse_cons,
515- map_reverse_tails_snoc,
516- scanl_cons, fromSL_snoc, ih,
517- Function.comp, flip, map_reverse] at *
513+ simp [inits₁, inits₂,
514+ List.reverse_cons,
515+ Function.comp, flip] at *
518516 sorry
519517
520518
0 commit comments