@@ -4890,6 +4890,7 @@ static void llm_load_hparams(
48904890 } break;
48914891 case LLM_ARCH_PHI3:
48924892 {
4893+ ml.get_key(LLM_KV_ATTENTION_SLIDING_WINDOW, hparams.n_swa);
48934894 ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
48944895
48954896 switch (hparams.n_layer) {
@@ -10749,7 +10750,7 @@ struct llm_build_context {
1074910750 struct ggml_tensor * inp_pos = build_inp_pos();
1075010751
1075110752 // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
10752- struct ggml_tensor * KQ_mask = build_inp_KQ_mask ();
10753+ struct ggml_tensor * KQ_mask_swa = build_inp_KQ_mask_swa ();
1075310754
1075410755 for (int il = 0; il < n_layer; ++il) {
1075510756 auto residual = inpL;
@@ -10807,7 +10808,7 @@ struct llm_build_context {
1080710808
1080810809 cur = llm_build_kv(ctx0, lctx, kv_self, gf,
1080910810 model.layers[il].wo, model.layers[il].bo,
10810- Kcur, Vcur, Qcur, KQ_mask , n_tokens, kv_head, n_kv, 1.0f, cb, il);
10811+ Kcur, Vcur, Qcur, KQ_mask_swa , n_tokens, kv_head, n_kv, 1.0f, cb, il);
1081110812 }
1081210813
1081310814 if (il == n_layer - 1) {
@@ -14014,18 +14015,23 @@ static void llama_set_inputs(llama_context & lctx, const llama_batch & batch) {
1401414015 "causal attention is not supported by this model"
1401514016 );
1401614017
14017- if (lctx.inp_KQ_mask) {
14018+ if (lctx.inp_KQ_mask || lctx.inp_KQ_mask_swa ) {
1401814019 // NOTE: hparams.causal_attn indicates the model is capable of generation and uses the kv cache.
1401914020 if (cparams.causal_attn && !lctx.is_encoding) {
1402014021 const int64_t n_kv = kv_self.n;
1402114022 const int64_t n_tokens = batch.n_tokens;
1402214023
14023- GGML_ASSERT(ggml_backend_buffer_is_host(lctx.inp_KQ_mask->buffer));
1402414024
14025- float * data = (float *) lctx.inp_KQ_mask->data ;
14025+ float * data = nullptr ;
1402614026 float * data_swa = nullptr;
1402714027
14028+ if (lctx.inp_KQ_mask) {
14029+ GGML_ASSERT(ggml_backend_buffer_is_host(lctx.inp_KQ_mask->buffer));
14030+ data = (float *) lctx.inp_KQ_mask->data;
14031+ }
14032+
1402814033 if (lctx.inp_KQ_mask_swa) {
14034+ GGML_ASSERT(ggml_backend_buffer_is_host(lctx.inp_KQ_mask_swa->buffer));
1402914035 data_swa = (float *) lctx.inp_KQ_mask_swa->data;
1403014036 }
1403114037
@@ -14048,7 +14054,10 @@ static void llama_set_inputs(llama_context & lctx, const llama_batch & batch) {
1404814054 f = 0.0f;
1404914055 }
1405014056 }
14051- data[h*(n_kv*n_tokens) + j*n_kv + i] = f;
14057+
14058+ if (data) {
14059+ data[h*(n_kv*n_tokens) + j*n_kv + i] = f;
14060+ }
1405214061
1405314062 // may need to cut off old tokens for sliding window
1405414063 if (data_swa) {
@@ -14060,9 +14069,19 @@ static void llama_set_inputs(llama_context & lctx, const llama_batch & batch) {
1406014069 }
1406114070 }
1406214071
14063- for (int i = n_tokens; i < GGML_PAD(n_tokens, GGML_KQ_MASK_PAD); ++i) {
14064- for (int j = 0; j < n_kv; ++j) {
14065- data[h*(n_kv*n_tokens) + i*n_kv + j] = -INFINITY;
14072+ if (data) {
14073+ for (int i = n_tokens; i < GGML_PAD(n_tokens, GGML_KQ_MASK_PAD); ++i) {
14074+ for (int j = 0; j < n_kv; ++j) {
14075+ data[h*(n_kv*n_tokens) + i*n_kv + j] = -INFINITY;
14076+ }
14077+ }
14078+ }
14079+
14080+ if (data_swa) {
14081+ for (int i = n_tokens; i < GGML_PAD(n_tokens, GGML_KQ_MASK_PAD); ++i) {
14082+ for (int j = 0; j < n_kv; ++j) {
14083+ data_swa[h*(n_kv*n_tokens) + i*n_kv + j] = -INFINITY;
14084+ }
1406614085 }
1406714086 }
1406814087 }
0 commit comments