Skip to content

Commit 286f6ff

Browse files
committed
Adding solution overview to readme
1 parent 3cadb76 commit 286f6ff

File tree

2 files changed

+11
-10
lines changed

2 files changed

+11
-10
lines changed

README.md

Lines changed: 11 additions & 10 deletions
Original file line numberDiff line numberDiff line change
@@ -1,8 +1,9 @@
1-
21
# Amazon SageMaker A/B Testing Pipeline
32

43
This sample demonstrates how to setup an Amazon SageMaker MLOps deployment pipeline for A/B Testing of machine learning models.
54

5+
![Solution Overview](docs/ab-testing-solution-overview.png)
6+
67
The following are the high-level steps to deploy this solution:
78

89
1. Publish the SageMaker [MLOps Project template](https://docs.aws.amazon.com/sagemaker/latest/dg/sagemaker-projects-templates.html) in the [AWS Service Catalog](https://aws.amazon.com/servicecatalog/)
@@ -88,13 +89,13 @@ sh install_layers.sh
8889

8990
This will enabling sample request to visualize the access patterns and drill into any specific errors.
9091

91-
![\[AB Testing Pipeline X-Ray\]](docs/ab-testing-pipeline-xray.png)
92+
![AB Testing Pipeline X-Ray](docs/ab-testing-pipeline-xray.png)
9293

9394
### Add Permissions for CDK
9495

9596
AWS CDK requires permissions create AWS CloudFormation Stacks and the associated resources for your current execution role. If you have cloned this notebook into SageMaker Studio, you will need to add an inline policy to your SageMaker Studio execution role. You can find your user's role by browsing to the Studio dashboard.
9697

97-
![\[AB Testing Pipeline Execution Role\]](docs/ab-testing-pipeline-execution-role.png)
98+
![AB Testing Pipeline Execution Role](docs/ab-testing-pipeline-execution-role.png)
9899

99100
Browse to the [IAM](https://console.aws.amazon.com/iam) section in the console, and find this role.
100101

@@ -219,11 +220,11 @@ In this section you will publish the AWS Service Catalog template and Deploy the
219220

220221
In this step you will create a *Portfolio* and *Product* to provision a custom SageMaker MLOps Project template in the AWS Service Catalog and configure it so you can launch the project from within your SageMaker Studio domain. See more information on [customizing](docs/CUSTOM_TEMPLATE.md) the template, or import the template [manually](docs/SERVICE_CATALOG.md) into the AWS Service Catalog.
221222

222-
![\[AB Testing Pipeline\]](docs/ab-testing-pipeline-deployment.png)
223+
![AB Testing Pipeline](docs/ab-testing-pipeline-deployment.png)
223224

224225
Resources include:
225-
* **AWS CodeCommit** seeded with the source from the [deployment_pipeline](deployment_pipeline)
226-
* **AWS CodeBuild** to query the **Amazon SageMaker Model Registry** and output **AWS CloudFormation**.
226+
* **AWS CodeCommit** seeded with the source from the [deployment_pipeline](deployment_pipeline).
227+
* **AWS CodeBuild** to produce **AWS CloudFormation** for deploying the **Amazon SageMaker Endpoint**.
227228
* **Amazon CloudWatch Event** to trigger the **AWS CodePipeline** for endpoint deployment.
228229

229230
Run the following command to deploy the MLOps project template, passing the required `ExecutionRoleArn` parameter. You can copy this from your SageMaker Studio dashboard as show above.
@@ -245,7 +246,7 @@ This stack will output the `CodeCommitSeedBucket` and `CodeCommitSeedKey` which
245246

246247
In this step you will deploy an Amazon API Gateway and supporting resources to enable dynamic A/B Testing of any Amazon SageMaker endpoint that has multiple production variants.
247248

248-
![\[AB Testing Architecture\]](docs/ab-testing-pipeline-architecture.png)
249+
![AB Testing Architecture](docs/ab-testing-pipeline-architecture.png)
249250

250251
Resources include:
251252

@@ -278,7 +279,7 @@ On the Create project page, SageMaker templates is chosen by default. This optio
278279
7. Choose **A/B Testing Deployment Pipeline**.
279280
8. Choose **Select project template**.
280281

281-
![\[Select Template\]](docs/ab-testing-pipeline-sagemaker-template.png)
282+
![Select Template](docs/ab-testing-pipeline-sagemaker-template.png)
282283

283284
9. In the **Project details** section, for **Name**, enter **ab-testing-pipeline**.
284285
- The project name must have 32 characters or fewer.
@@ -288,7 +289,7 @@ On the Create project page, SageMaker templates is chosen by default. This optio
288289
- For **CodeCommitSeedKey**, enter the `CodeCommitSeedKey` output from the `ab-testing-service-catalog` stack
289290
11. Choose Create project.
290291

291-
![\[Create Project\]](docs/ab-testing-pipeline-sagemaker-project.png)
292+
![Create Project](docs/ab-testing-pipeline-sagemaker-project.png)
292293

293294
`NOTE`: If you have recently updated your AWS Service Catalog Project, you may need to refresh SageMaker Studio to ensure it picks up the latest version of your template.
294295

@@ -305,7 +306,7 @@ Now that your project is ready, it’s time to train, register and approve a mod
305306
3. Choose the Jupyter notebook you downloaded and upload it.
306307
4. Choose the notebook to open a new tab.
307308

308-
![\[Upload File\]](docs/ab-testing-pipeline-upload-file.png)
309+
![Upload File](docs/ab-testing-pipeline-upload-file.png)
309310

310311
This notebook will step you through the process of
311312
1. Download a dataset
177 KB
Loading

0 commit comments

Comments
 (0)