|
| 1 | +{ |
| 2 | + "cells": [ |
| 3 | + { |
| 4 | + "cell_type": "code", |
| 5 | + "execution_count": 1, |
| 6 | + "id": "38be2998-be45-482f-895d-8b7b77c233b4", |
| 7 | + "metadata": {}, |
| 8 | + "outputs": [ |
| 9 | + { |
| 10 | + "name": "stdout", |
| 11 | + "output_type": "stream", |
| 12 | + "text": [ |
| 13 | + "Requirement already satisfied: shared_utils in /opt/conda/lib/python3.11/site-packages (4.2)\n", |
| 14 | + "Note: you may need to restart the kernel to use updated packages.\n" |
| 15 | + ] |
| 16 | + } |
| 17 | + ], |
| 18 | + "source": [ |
| 19 | + "pip install shared_utils" |
| 20 | + ] |
| 21 | + }, |
| 22 | + { |
| 23 | + "cell_type": "code", |
| 24 | + "execution_count": 2, |
| 25 | + "id": "85934cb5-af8d-4a54-a7b7-b1800dd2b03e", |
| 26 | + "metadata": {}, |
| 27 | + "outputs": [], |
| 28 | + "source": [ |
| 29 | + "import sys\n", |
| 30 | + "sys.path.append('../ahsc_grant')" |
| 31 | + ] |
| 32 | + }, |
| 33 | + { |
| 34 | + "cell_type": "code", |
| 35 | + "execution_count": 3, |
| 36 | + "id": "a4b318d7-230c-4a36-9406-87d3e541b6bc", |
| 37 | + "metadata": {}, |
| 38 | + "outputs": [ |
| 39 | + { |
| 40 | + "name": "stderr", |
| 41 | + "output_type": "stream", |
| 42 | + "text": [ |
| 43 | + "/opt/conda/lib/python3.11/site-packages/dask/dataframe/__init__.py:31: FutureWarning: \n", |
| 44 | + "Dask dataframe query planning is disabled because dask-expr is not installed.\n", |
| 45 | + "\n", |
| 46 | + "You can install it with `pip install dask[dataframe]` or `conda install dask`.\n", |
| 47 | + "This will raise in a future version.\n", |
| 48 | + "\n", |
| 49 | + " warnings.warn(msg, FutureWarning)\n" |
| 50 | + ] |
| 51 | + } |
| 52 | + ], |
| 53 | + "source": [ |
| 54 | + "import pandas as pd \n", |
| 55 | + "import geopandas as gpd\n", |
| 56 | + "import google.auth\n", |
| 57 | + "import os\n", |
| 58 | + "import gcsfs\n", |
| 59 | + "import requests\n", |
| 60 | + "from calitp_data_analysis.sql import get_engine\n", |
| 61 | + "from shared_utils import schedule_rt_utils \n", |
| 62 | + "from gtfs_key_ntd_crosswalk import filter_to_valid_dates\n", |
| 63 | + "db_engine = get_engine()\n", |
| 64 | + "credentials, project = google.auth.default()\n", |
| 65 | + "fs = gcsfs.GCSFileSystem()\n", |
| 66 | + "\n", |
| 67 | + "pd.set_option('display.max_columns', None)" |
| 68 | + ] |
| 69 | + }, |
| 70 | + { |
| 71 | + "cell_type": "code", |
| 72 | + "execution_count": 4, |
| 73 | + "id": "14f225e9-2636-4fae-b568-4e0d554cebad", |
| 74 | + "metadata": {}, |
| 75 | + "outputs": [], |
| 76 | + "source": [ |
| 77 | + "GCS_FILE_PATH = 'gs://calitp-analytics-data/data-analyses'\n", |
| 78 | + "analysis_date = \"2025-10-16\"" |
| 79 | + ] |
| 80 | + }, |
| 81 | + { |
| 82 | + "cell_type": "code", |
| 83 | + "execution_count": 5, |
| 84 | + "id": "0937c3fe-837b-4ace-90b2-c68a07ccdb53", |
| 85 | + "metadata": {}, |
| 86 | + "outputs": [], |
| 87 | + "source": [ |
| 88 | + "# Querying dim organization\n", |
| 89 | + "with db_engine.connect() as connection:\n", |
| 90 | + " query = \"\"\"\n", |
| 91 | + " SELECT\n", |
| 92 | + " key, name, source_record_id, organization_type, ntd_id, ntd_id_2022, ntd_agency_info_key, \n", |
| 93 | + " public_currently_operating, _is_current, _valid_from, _valid_to\n", |
| 94 | + " FROM \n", |
| 95 | + " cal-itp-data-infra.mart_transit_database.dim_organizations\n", |
| 96 | + " \"\"\"\n", |
| 97 | + " \n", |
| 98 | + " #localize timestamps\n", |
| 99 | + " dim_orgs = (\n", |
| 100 | + " pd.read_sql(query, connection)\n", |
| 101 | + " .pipe(schedule_rt_utils.localize_timestamp_col, [\"_valid_from\", \"_valid_to\"])\n", |
| 102 | + " )\n", |
| 103 | + " \n", |
| 104 | + " \n", |
| 105 | + " dim_orgs = dim_orgs[\n", |
| 106 | + " (dim_orgs['public_currently_operating'] == True) & \n", |
| 107 | + " (dim_orgs['_is_current'] == True)\n", |
| 108 | + " ].reset_index(drop=True)" |
| 109 | + ] |
| 110 | + }, |
| 111 | + { |
| 112 | + "cell_type": "code", |
| 113 | + "execution_count": 6, |
| 114 | + "id": "2f48a88b-fe63-4e66-bce1-19ce467be773", |
| 115 | + "metadata": {}, |
| 116 | + "outputs": [], |
| 117 | + "source": [ |
| 118 | + "# Filtering the provider gtfs data to valid dates \n", |
| 119 | + "valid_organization_full = filter_to_valid_dates(dim_orgs, [analysis_date])" |
| 120 | + ] |
| 121 | + }, |
| 122 | + { |
| 123 | + "cell_type": "code", |
| 124 | + "execution_count": 7, |
| 125 | + "id": "ef62384e-285d-482c-b197-043523472fdf", |
| 126 | + "metadata": {}, |
| 127 | + "outputs": [ |
| 128 | + { |
| 129 | + "name": "stdout", |
| 130 | + "output_type": "stream", |
| 131 | + "text": [ |
| 132 | + "<class 'pandas.core.frame.DataFrame'>\n", |
| 133 | + "RangeIndex: 218 entries, 0 to 217\n", |
| 134 | + "Data columns (total 13 columns):\n", |
| 135 | + " # Column Non-Null Count Dtype \n", |
| 136 | + "--- ------ -------------- ----- \n", |
| 137 | + " 0 key 218 non-null object \n", |
| 138 | + " 1 name 218 non-null object \n", |
| 139 | + " 2 source_record_id 218 non-null object \n", |
| 140 | + " 3 organization_type 218 non-null object \n", |
| 141 | + " 4 ntd_id 179 non-null object \n", |
| 142 | + " 5 ntd_id_2022 181 non-null object \n", |
| 143 | + " 6 ntd_agency_info_key 159 non-null object \n", |
| 144 | + " 7 public_currently_operating 218 non-null object \n", |
| 145 | + " 8 _is_current 218 non-null bool \n", |
| 146 | + " 9 _valid_from 218 non-null datetime64[ns, UTC]\n", |
| 147 | + " 10 _valid_to 218 non-null datetime64[ns, UTC]\n", |
| 148 | + " 11 _valid_from_local 218 non-null datetime64[ns] \n", |
| 149 | + " 12 _valid_to_local 218 non-null datetime64[ns] \n", |
| 150 | + "dtypes: bool(1), datetime64[ns, UTC](2), datetime64[ns](2), object(8)\n", |
| 151 | + "memory usage: 20.8+ KB\n" |
| 152 | + ] |
| 153 | + } |
| 154 | + ], |
| 155 | + "source": [ |
| 156 | + "valid_organization_full.info()" |
| 157 | + ] |
| 158 | + }, |
| 159 | + { |
| 160 | + "cell_type": "code", |
| 161 | + "execution_count": 9, |
| 162 | + "id": "56dc63b7-cd87-4d59-98fb-b5dc601012a6", |
| 163 | + "metadata": {}, |
| 164 | + "outputs": [], |
| 165 | + "source": [ |
| 166 | + "# Querying NTD Ridership data \n", |
| 167 | + "with db_engine.connect() as connection:\n", |
| 168 | + " query = \"\"\"\n", |
| 169 | + " SELECT\n", |
| 170 | + " agency, ntd_id, reporter_type, report_year, primary_uza_name, unlinked_passenger_trips_upt, agency_voms\n", |
| 171 | + " FROM \n", |
| 172 | + " cal-itp-data-infra.mart_ntd.dim_annual_service_agencies\n", |
| 173 | + " WHERE \n", |
| 174 | + " state = 'CA' AND report_year = 2023\n", |
| 175 | + " \"\"\"\n", |
| 176 | + " ridership_data= pd.read_sql(query, connection)" |
| 177 | + ] |
| 178 | + }, |
| 179 | + { |
| 180 | + "cell_type": "code", |
| 181 | + "execution_count": 10, |
| 182 | + "id": "db017035-7b98-48a0-9a63-5fcf144e63d0", |
| 183 | + "metadata": {}, |
| 184 | + "outputs": [], |
| 185 | + "source": [ |
| 186 | + "# Grouping ridership data for each agency/ntd_id\n", |
| 187 | + "ridership_data_grouped = ridership_data.groupby(\n", |
| 188 | + " [\n", |
| 189 | + " \"agency\",\n", |
| 190 | + " \"ntd_id\", \n", |
| 191 | + " ]\n", |
| 192 | + " ).agg({\n", |
| 193 | + " \"unlinked_passenger_trips_upt\":\"sum\",\n", |
| 194 | + " \"agency_voms\":\"sum\"\n", |
| 195 | + " }).sort_values(by=\"ntd_id\").reset_index()" |
| 196 | + ] |
| 197 | + }, |
| 198 | + { |
| 199 | + "cell_type": "code", |
| 200 | + "execution_count": 11, |
| 201 | + "id": "7ca7eb20-8891-4423-93e9-c6eba447d2b4", |
| 202 | + "metadata": {}, |
| 203 | + "outputs": [ |
| 204 | + { |
| 205 | + "name": "stdout", |
| 206 | + "output_type": "stream", |
| 207 | + "text": [ |
| 208 | + "<class 'pandas.core.frame.DataFrame'>\n", |
| 209 | + "RangeIndex: 209 entries, 0 to 208\n", |
| 210 | + "Data columns (total 4 columns):\n", |
| 211 | + " # Column Non-Null Count Dtype \n", |
| 212 | + "--- ------ -------------- ----- \n", |
| 213 | + " 0 agency 209 non-null object \n", |
| 214 | + " 1 ntd_id 209 non-null object \n", |
| 215 | + " 2 unlinked_passenger_trips_upt 209 non-null float64\n", |
| 216 | + " 3 agency_voms 209 non-null float64\n", |
| 217 | + "dtypes: float64(2), object(2)\n", |
| 218 | + "memory usage: 6.7+ KB\n" |
| 219 | + ] |
| 220 | + } |
| 221 | + ], |
| 222 | + "source": [ |
| 223 | + "ridership_data_grouped.info()" |
| 224 | + ] |
| 225 | + }, |
| 226 | + { |
| 227 | + "cell_type": "code", |
| 228 | + "execution_count": 12, |
| 229 | + "id": "05d58a95-5e4a-43e1-861d-5fbaa8abfa33", |
| 230 | + "metadata": {}, |
| 231 | + "outputs": [], |
| 232 | + "source": [ |
| 233 | + "#Store data in warehouse\n", |
| 234 | + "with fs.open(f\"{GCS_FILE_PATH}/transit_provider_dashboard/ridership_data.parquet\", \"wb\") as f:\n", |
| 235 | + " ridership_data_grouped.to_parquet(f, index=False)" |
| 236 | + ] |
| 237 | + }, |
| 238 | + { |
| 239 | + "cell_type": "code", |
| 240 | + "execution_count": 8, |
| 241 | + "id": "38dd8fb5-5d8a-43e1-b21a-0f05ecfe70fd", |
| 242 | + "metadata": {}, |
| 243 | + "outputs": [], |
| 244 | + "source": [ |
| 245 | + "#Store data in warehouse\n", |
| 246 | + "with fs.open(f\"{GCS_FILE_PATH}/transit_provider_dashboard/organization_data_2025_10_16.parquet\", \"wb\") as f:\n", |
| 247 | + " valid_organization_full.to_parquet(f, index=False)" |
| 248 | + ] |
| 249 | + }, |
| 250 | + { |
| 251 | + "cell_type": "code", |
| 252 | + "execution_count": null, |
| 253 | + "id": "00e74d09-a07e-4f42-af18-1a51a9139398", |
| 254 | + "metadata": {}, |
| 255 | + "outputs": [], |
| 256 | + "source": [] |
| 257 | + } |
| 258 | + ], |
| 259 | + "metadata": { |
| 260 | + "kernelspec": { |
| 261 | + "display_name": "Python 3 (ipykernel)", |
| 262 | + "language": "python", |
| 263 | + "name": "python3" |
| 264 | + }, |
| 265 | + "language_info": { |
| 266 | + "codemirror_mode": { |
| 267 | + "name": "ipython", |
| 268 | + "version": 3 |
| 269 | + }, |
| 270 | + "file_extension": ".py", |
| 271 | + "mimetype": "text/x-python", |
| 272 | + "name": "python", |
| 273 | + "nbconvert_exporter": "python", |
| 274 | + "pygments_lexer": "ipython3", |
| 275 | + "version": "3.11.10" |
| 276 | + } |
| 277 | + }, |
| 278 | + "nbformat": 4, |
| 279 | + "nbformat_minor": 5 |
| 280 | +} |
0 commit comments