|
| 1 | +{ |
| 2 | + "cells": [ |
| 3 | + { |
| 4 | + "cell_type": "code", |
| 5 | + "execution_count": null, |
| 6 | + "id": "e53cbaa4-a146-498f-a240-f9800219e4a1", |
| 7 | + "metadata": { |
| 8 | + "tags": [] |
| 9 | + }, |
| 10 | + "outputs": [], |
| 11 | + "source": [ |
| 12 | + "%%capture\n", |
| 13 | + "\n", |
| 14 | + "import warnings\n", |
| 15 | + "warnings.filterwarnings(\"ignore\")\n", |
| 16 | + "\n", |
| 17 | + "import pandas as pd\n", |
| 18 | + "import calitp_data_analysis.magics\n", |
| 19 | + "import prep_vp_detour_stops as prep_vp" |
| 20 | + ] |
| 21 | + }, |
| 22 | + { |
| 23 | + "cell_type": "code", |
| 24 | + "execution_count": null, |
| 25 | + "id": "0ca2eebf-74b9-4bc5-af57-c1e2ed2bc307", |
| 26 | + "metadata": { |
| 27 | + "tags": [ |
| 28 | + "parameters" |
| 29 | + ] |
| 30 | + }, |
| 31 | + "outputs": [], |
| 32 | + "source": [ |
| 33 | + "# Comment out, this is `parameters` tagged cell\n", |
| 34 | + "#name = \"Montebello Vehicle Positions\"" |
| 35 | + ] |
| 36 | + }, |
| 37 | + { |
| 38 | + "cell_type": "markdown", |
| 39 | + "id": "679cd4a0-e0ed-450d-bb2d-04c4299100d1", |
| 40 | + "metadata": {}, |
| 41 | + "source": [ |
| 42 | + "# {name} \n", |
| 43 | + "\n", |
| 44 | + "## Potential detour stops \n", |
| 45 | + "1. Stop has at least 20% of its scheduled trips served by vehicle positions.\n", |
| 46 | + "2. There are zero vehicle positions within 10, 25, and 50 meters.\n", |
| 47 | + "3. There are at least 10 distinct vehicle positions within 100 meters." |
| 48 | + ] |
| 49 | + }, |
| 50 | + { |
| 51 | + "cell_type": "code", |
| 52 | + "execution_count": null, |
| 53 | + "id": "16964774-44ad-4fbd-a889-a9e44ff04e73", |
| 54 | + "metadata": { |
| 55 | + "tags": [] |
| 56 | + }, |
| 57 | + "outputs": [], |
| 58 | + "source": [ |
| 59 | + "stop_gdf = prep_vp.prep_fct_vp_stop_metrics(\n", |
| 60 | + " filters = [[(\"vp_name\", \"==\", name)]]\n", |
| 61 | + ")\n", |
| 62 | + "vp_path = prep_vp.prep_vp_path(\n", |
| 63 | + " filters = [[(\"gtfs_dataset_name\", \"==\", name)]]\n", |
| 64 | + ") \n", |
| 65 | + "\n", |
| 66 | + "intermediate_df = prep_vp.prep_intermediate_vp_stops_trip_crosswalk(\n", |
| 67 | + " filters = [[(\"feed_key\", \"==\", stop_gdf.feed_key.iloc[0])]]\n", |
| 68 | + ")" |
| 69 | + ] |
| 70 | + }, |
| 71 | + { |
| 72 | + "cell_type": "code", |
| 73 | + "execution_count": null, |
| 74 | + "id": "969eb111-e6ab-4257-8610-921bb38a8e43", |
| 75 | + "metadata": { |
| 76 | + "tags": [] |
| 77 | + }, |
| 78 | + "outputs": [], |
| 79 | + "source": [ |
| 80 | + "# 10 vp near 100m, this is capturing a lot of rows now\n", |
| 81 | + "gdf = prep_vp.filter_to_potential_detour_stops(\n", |
| 82 | + " stop_gdf,\n", |
| 83 | + " intermediate_df,\n", |
| 84 | + " vp_path,\n", |
| 85 | + " [10, 0, 0, 0, 0.2]\n", |
| 86 | + ")\n", |
| 87 | + "\n", |
| 88 | + "print(\"trip_instance_keys with potential detour stops\")\n", |
| 89 | + "gdf.trip_instance_key.value_counts()" |
| 90 | + ] |
| 91 | + }, |
| 92 | + { |
| 93 | + "cell_type": "code", |
| 94 | + "execution_count": null, |
| 95 | + "id": "10a590c6-347c-4eef-a338-7d099a7c4963", |
| 96 | + "metadata": { |
| 97 | + "tags": [] |
| 98 | + }, |
| 99 | + "outputs": [], |
| 100 | + "source": [ |
| 101 | + "stop_summary = (\n", |
| 102 | + " gdf\n", |
| 103 | + " .groupby([\"stop_id\", \"n_vp_near_100m\", \"pct_vp_trips\"])\n", |
| 104 | + " .agg({\"trip_instance_key\": lambda x: list(x)})\n", |
| 105 | + " .reset_index()\n", |
| 106 | + ")\n", |
| 107 | + "\n", |
| 108 | + "stop_summary" |
| 109 | + ] |
| 110 | + }, |
| 111 | + { |
| 112 | + "cell_type": "code", |
| 113 | + "execution_count": null, |
| 114 | + "id": "e06047e8-4f7b-4aa8-ac2e-4a4158b9217a", |
| 115 | + "metadata": { |
| 116 | + "tags": [] |
| 117 | + }, |
| 118 | + "outputs": [], |
| 119 | + "source": [ |
| 120 | + "prep_vp.plot_stops_and_exploded_vp(\n", |
| 121 | + " gdf\n", |
| 122 | + ")" |
| 123 | + ] |
| 124 | + }, |
| 125 | + { |
| 126 | + "cell_type": "markdown", |
| 127 | + "id": "aa98ace3-d7f0-4b77-9519-c4beacafcd7b", |
| 128 | + "metadata": {}, |
| 129 | + "source": [ |
| 130 | + "### Robustness and Sensitivity of Cutoffs\n", |
| 131 | + "\n", |
| 132 | + "More sensitive to what n_vp_cutoff is, rather than pct_vp_trips" |
| 133 | + ] |
| 134 | + }, |
| 135 | + { |
| 136 | + "cell_type": "code", |
| 137 | + "execution_count": null, |
| 138 | + "id": "896b8716-36d6-4486-87a1-7b5cec17eca9", |
| 139 | + "metadata": {}, |
| 140 | + "outputs": [], |
| 141 | + "source": [ |
| 142 | + "def adjust_filters(n_vp_cutoff, pct_vp):\n", |
| 143 | + " test = prep_vp.filter_to_potential_detour_stops(\n", |
| 144 | + " stop_gdf,\n", |
| 145 | + " intermediate_df,\n", |
| 146 | + " vp_path,\n", |
| 147 | + " [n_vp_cutoff, 0, 0, 0, pct_vp]\n", |
| 148 | + " )\n", |
| 149 | + "\n", |
| 150 | + " results = len(test)\n", |
| 151 | + " \n", |
| 152 | + " return results" |
| 153 | + ] |
| 154 | + }, |
| 155 | + { |
| 156 | + "cell_type": "code", |
| 157 | + "execution_count": null, |
| 158 | + "id": "5c7af90d-2b21-406a-a9c4-a963cd2c4ee3", |
| 159 | + "metadata": {}, |
| 160 | + "outputs": [], |
| 161 | + "source": [ |
| 162 | + "vp_series = []\n", |
| 163 | + "pct_series = []\n", |
| 164 | + "n_trips_series = []\n", |
| 165 | + "for vp in [50, 25, 10]:\n", |
| 166 | + " for pct in [0.1, 0.15, 0.2, 0.25, 0.3, 0.35]:\n", |
| 167 | + " \n", |
| 168 | + " results = adjust_filters(vp, pct)\n", |
| 169 | + " vp_series.append(vp)\n", |
| 170 | + " pct_series.append(pct)\n", |
| 171 | + " n_trips_series.append(results)\n", |
| 172 | + "\n", |
| 173 | + "\n", |
| 174 | + "results_df = pd.DataFrame()\n", |
| 175 | + "results_df = results_df.assign(\n", |
| 176 | + " at_least_vp = vp_series,\n", |
| 177 | + " pct_vp = pct_series,\n", |
| 178 | + " n_trips = n_trips_series\n", |
| 179 | + ")" |
| 180 | + ] |
| 181 | + }, |
| 182 | + { |
| 183 | + "cell_type": "code", |
| 184 | + "execution_count": null, |
| 185 | + "id": "3b532360-091e-4ab9-a734-b56d99c5b6e8", |
| 186 | + "metadata": {}, |
| 187 | + "outputs": [], |
| 188 | + "source": [ |
| 189 | + "results_df" |
| 190 | + ] |
| 191 | + }, |
| 192 | + { |
| 193 | + "cell_type": "code", |
| 194 | + "execution_count": null, |
| 195 | + "id": "16ed6787-cc15-476e-932d-9a5c1ed12514", |
| 196 | + "metadata": {}, |
| 197 | + "outputs": [], |
| 198 | + "source": [] |
| 199 | + } |
| 200 | + ], |
| 201 | + "metadata": { |
| 202 | + "kernelspec": { |
| 203 | + "display_name": "Python 3 (ipykernel)", |
| 204 | + "language": "python", |
| 205 | + "name": "python3" |
| 206 | + }, |
| 207 | + "language_info": { |
| 208 | + "codemirror_mode": { |
| 209 | + "name": "ipython", |
| 210 | + "version": 3 |
| 211 | + }, |
| 212 | + "file_extension": ".py", |
| 213 | + "mimetype": "text/x-python", |
| 214 | + "name": "python", |
| 215 | + "nbconvert_exporter": "python", |
| 216 | + "pygments_lexer": "ipython3", |
| 217 | + "version": "3.11.10" |
| 218 | + } |
| 219 | + }, |
| 220 | + "nbformat": 4, |
| 221 | + "nbformat_minor": 5 |
| 222 | +} |
0 commit comments