diff --git a/stud/elistratova/lab1.ipynb b/stud/elistratova/lab1.ipynb
new file mode 100644
index 0000000..151142d
--- /dev/null
+++ b/stud/elistratova/lab1.ipynb
@@ -0,0 +1,538 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "bPLQQB5PbvPX"
+ },
+ "source": [
+ "# Лабораторная работа 1 (Регрессионный анализ)\n",
+ "\n",
+ "ФИО |Вариант |Никнейм\n",
+ "---------------------|---------|----------\n",
+ "Елистратова П. А. | 6 | TIoJIuHa\n",
+ "\n",
+ "**Цель:** научится применять модели линейной регрессии библиотеки scikit-learn к набору эмпирических данных\n",
+ "\n",
+ "**Дано:** сsv-файл\n",
+ "\n",
+ "**Результат:** эмпирическая формула\n",
+ "\n",
+ "**Ход выполнения:** \n",
+ "1. Загрузить данные из файла.\n",
+ "2. Визуализировать загруженные данные (диаграмма рассеяния, график).\n",
+ "3. Разбить данные на обучающую и тестовую выборки.\n",
+ "4. Выбрать модель регрессии.\n",
+ "5. Обучить модель регрессии на обучающих данных.\n",
+ "6. Проверить качество полученной модели на тестовых данных.\n",
+ "7. Визуализировать результат.\n",
+ "\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "b15Hd86NrGgy"
+ },
+ "source": [
+ "## Загрузка датасета"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 8,
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/"
+ },
+ "id": "mu7Um4QBbzqr",
+ "outputId": "1b90e777-cec0-4722-a5de-31ec5a419a73"
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Collecting scikit-learn\n",
+ " Obtaining dependency information for scikit-learn from https://files.pythonhosted.org/packages/01/18/d154dc1638803adf987910cdd07097d9c526663a55666a97c124d09fb96a/scikit_learn-1.8.0-cp311-cp311-macosx_12_0_arm64.whl.metadata\n",
+ " Downloading scikit_learn-1.8.0-cp311-cp311-macosx_12_0_arm64.whl.metadata (11 kB)\n",
+ "Requirement already satisfied: numpy>=1.24.1 in /Users/p.elistratova/dev/studies/ml/venv/lib/python3.11/site-packages (from scikit-learn) (2.3.5)\n",
+ "Collecting scipy>=1.10.0 (from scikit-learn)\n",
+ " Obtaining dependency information for scipy>=1.10.0 from https://files.pythonhosted.org/packages/7c/89/d70e9f628749b7e4db2aa4cd89735502ff3f08f7b9b27d2e799485987cd9/scipy-1.16.3-cp311-cp311-macosx_12_0_arm64.whl.metadata\n",
+ " Downloading scipy-1.16.3-cp311-cp311-macosx_12_0_arm64.whl.metadata (62 kB)\n",
+ "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m62.0/62.0 kB\u001b[0m \u001b[31m730.2 kB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m00:01\u001b[0m0:01\u001b[0m\n",
+ "\u001b[?25hCollecting joblib>=1.3.0 (from scikit-learn)\n",
+ " Obtaining dependency information for joblib>=1.3.0 from https://files.pythonhosted.org/packages/1e/e8/685f47e0d754320684db4425a0967f7d3fa70126bffd76110b7009a0090f/joblib-1.5.2-py3-none-any.whl.metadata\n",
+ " Downloading joblib-1.5.2-py3-none-any.whl.metadata (5.6 kB)\n",
+ "Collecting threadpoolctl>=3.2.0 (from scikit-learn)\n",
+ " Obtaining dependency information for threadpoolctl>=3.2.0 from https://files.pythonhosted.org/packages/32/d5/f9a850d79b0851d1d4ef6456097579a9005b31fea68726a4ae5f2d82ddd9/threadpoolctl-3.6.0-py3-none-any.whl.metadata\n",
+ " Using cached threadpoolctl-3.6.0-py3-none-any.whl.metadata (13 kB)\n",
+ "Downloading scikit_learn-1.8.0-cp311-cp311-macosx_12_0_arm64.whl (8.1 MB)\n",
+ "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m8.1/8.1 MB\u001b[0m \u001b[31m2.1 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m00:01\u001b[0m00:01\u001b[0m\n",
+ "\u001b[?25hDownloading joblib-1.5.2-py3-none-any.whl (308 kB)\n",
+ "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m308.4/308.4 kB\u001b[0m \u001b[31m2.2 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0ma \u001b[36m0:00:01\u001b[0m\n",
+ "\u001b[?25hDownloading scipy-1.16.3-cp311-cp311-macosx_12_0_arm64.whl (28.9 MB)\n",
+ "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m28.9/28.9 MB\u001b[0m \u001b[31m1.3 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m00:01\u001b[0m00:01\u001b[0m\n",
+ "\u001b[?25hUsing cached threadpoolctl-3.6.0-py3-none-any.whl (18 kB)\n",
+ "Installing collected packages: threadpoolctl, scipy, joblib, scikit-learn\n",
+ "Successfully installed joblib-1.5.2 scikit-learn-1.8.0 scipy-1.16.3 threadpoolctl-3.6.0\n",
+ "\n",
+ "\u001b[1m[\u001b[0m\u001b[34;49mnotice\u001b[0m\u001b[1;39;49m]\u001b[0m\u001b[39;49m A new release of pip is available: \u001b[0m\u001b[31;49m23.2.1\u001b[0m\u001b[39;49m -> \u001b[0m\u001b[32;49m25.3\u001b[0m\n",
+ "\u001b[1m[\u001b[0m\u001b[34;49mnotice\u001b[0m\u001b[1;39;49m]\u001b[0m\u001b[39;49m To update, run: \u001b[0m\u001b[32;49mpip install --upgrade pip\u001b[0m\n"
+ ]
+ }
+ ],
+ "source": [
+ "!pip install scikit-learn"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 3,
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 359
+ },
+ "id": "ElWEH1CiJa29",
+ "outputId": "4ee32df8-ebdc-49d6-cfc6-d5a987bb5efa"
+ },
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "
\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " | \n",
+ " X | \n",
+ " Y | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " | 0 | \n",
+ " 2.777778 | \n",
+ " -4.237752 | \n",
+ "
\n",
+ " \n",
+ " | 1 | \n",
+ " 1.000000 | \n",
+ " -13.819515 | \n",
+ "
\n",
+ " \n",
+ " | 2 | \n",
+ " 6.737374 | \n",
+ " 1.477926 | \n",
+ "
\n",
+ " \n",
+ " | 3 | \n",
+ " 8.919192 | \n",
+ " 1.597961 | \n",
+ "
\n",
+ " \n",
+ " | 4 | \n",
+ " 6.212121 | \n",
+ " 0.486355 | \n",
+ "
\n",
+ " \n",
+ " | 5 | \n",
+ " 5.808081 | \n",
+ " 1.128998 | \n",
+ "
\n",
+ " \n",
+ " | 6 | \n",
+ " 7.383838 | \n",
+ " 1.773272 | \n",
+ "
\n",
+ " \n",
+ " | 7 | \n",
+ " 8.757576 | \n",
+ " 2.256161 | \n",
+ "
\n",
+ " \n",
+ " | 8 | \n",
+ " 7.585859 | \n",
+ " 2.664037 | \n",
+ "
\n",
+ " \n",
+ " | 9 | \n",
+ " 1.727273 | \n",
+ " -10.523624 | \n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
"
+ ],
+ "text/plain": [
+ " X Y\n",
+ "0 2.777778 -4.237752\n",
+ "1 1.000000 -13.819515\n",
+ "2 6.737374 1.477926\n",
+ "3 8.919192 1.597961\n",
+ "4 6.212121 0.486355\n",
+ "5 5.808081 1.128998\n",
+ "6 7.383838 1.773272\n",
+ "7 8.757576 2.256161\n",
+ "8 7.585859 2.664037\n",
+ "9 1.727273 -10.523624"
+ ]
+ },
+ "execution_count": 3,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "import pandas as pd\n",
+ "\n",
+ "raw_data = pd.read_csv('../../tasks/lab1/dataset/lab1-06.csv', header=None, names=[\"X\", \"Y\"])\n",
+ "raw_data.head(10)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 4,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ ""
+ ]
+ },
+ "execution_count": 4,
+ "metadata": {},
+ "output_type": "execute_result"
+ },
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjgAAAGhCAYAAABs9M7gAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjcsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvTLEjVAAAAAlwSFlzAAAPYQAAD2EBqD+naQAATThJREFUeJzt3QmYE2W28PHTzdLs+9KArIIIIgqobI4ioKg4My6Po6gXF8QPBxxFZy7gBWX5FLmO4ow4Oo4OeK/iMnNVFEe8bOqngiiIDioIKKJAoyI0AtJs+Z7zYvWk06lKVVJJKpX/73lim6SSVBZSJ+973nMKIpFIRAAAAEKkMNs7AAAA4DcCHAAAEDoEOAAAIHQIcAAAQOgQ4AAAgNAhwAEAAKFDgAMAAEKHAAcAAIQOAQ4AAAgdAhwAABA6WQ9wJk+eLAUFBRVOxx9/vONt/va3v5ltatSoISeeeKL84x//yNj+AgCA4Mt6gKNOOOEE2bZtW/nprbfest32nXfekWHDhsmIESPkgw8+kAsvvNCc1qxZk9F9BgAAwVWQ7WabOoLz4osvyurVq11tf9lll8nevXtl/vz55Zf16dNHTj75ZHnkkUdc3ceRI0dk69atUrduXTNiBAAAgk9Dlh9++EFatmwphYXOYzRVJQDWr19vdlannPr27SvTp0+XNm3axN122bJlcuutt1a4bMiQISZIslNWVmZOli1btkjXrl19fAYAACBTvvrqKznmmGOCHeD07t1b5syZI507dzbTU1OmTJGf/exnZspJR1hilZSUSPPmzStcpuf1cjsaMOn9xnuB6tWr59MzAQAA6bR7925p3bp13PggcAHOeeedV/7/3bt3NwFP27Zt5bnnnjN5Nn6YMGFChVEf6wXS4IYABwCA3OImvSTrAU6sBg0ayHHHHScbNmyIe31xcbFs3769wmV6Xi+3U1RUZE4AACA/BGIVVbQ9e/bIxo0bpUWLFnGv1xydxYsXV7hs4cKF5nIAAIBABDi//e1v5Y033pBNmzaZJeAXXXSRVKlSxSwFV8OHDzdTTJabb75ZFixYIPfdd5+sXbvWrMJ6//33ZcyYMVl8FgAAIEiyPkX19ddfm2Bmx44d0rRpUzn99NNl+fLl5v/V5s2bKywF69evn8ydO1cmTpwot99+u3Tq1MmsoOrWrVsWnwUAAAiSrNfByQZNMq5fv76UlpaSZAwAQAiP31mfogIAAPAbAQ4AAAgdAhwAABA6WU8yBgAAqTl8JCIrvvhevvlhvzSrW0NOa99IqhTmd69FAhwAAHLYgjXbZMrLn8i20v3ll7WoX0Pu/HlXObdb/Jpy+YApKgAAcji4ufHJVRWCG1VSut9crtfnKwIcAABydFpKR27i1XqJ/PRXr9ft8hEBDgAAOUhzbmJHbqJFRMz1ul0+IsABACAHaUKxn9uFDQEOAAA5SFdL+bld2BDgAACQg3QpuK6WslsMXvDTairdLh8R4AAAkIO0zo0uBVexQU7BT3/1+nyth0OAAwAIPF0JtGzjDpm3eov5m68rg2JpnZuHr+opxfUrTkMV169hLs/nOjgU+gMABFqYC9n5UYFYX4OzuxZTyThGQSQSybsw2Eu7dQBA9gvZxR6orBAgl0cpwhy4BeH4zRQVACCQwlzIjgrE6UeAAwAIpLAWsgtz4BYkBDgAgEAKayG7XA3cDudYojdJxgCAQAprIbtcDNwW5GC+ECM4AIBACmshu1wL3BbkaMdyAhwAQCCFtZBdLgVuh3M4X4gABwAQWGEsZJdLgduKHM0XUuTgAAACLYyF7KzALTavpThgeS3f5GC+kIUABwAQeBrM9D22sYRJLgRuzXIsXygaAQ4AIDBtB/JNUAK3wzbvnZUvpAnF8bJsCn4adQpCvlAsAhwAQF4uI4a7907/6mopDWYiAc4XikWSMQAgL5cRQ1y9d7ma6E2zTZptAkBKUxunz1hiu9LGmsJ4a9zAjP/KZ8rM3/cuCK+nl2abTFEBADKyjDherkm6DpqpTJkF4UAexPeuSlS+UC68RgQ4AICsLCNOV96ONe0SmxRrTbs4TavkUy7RN0m+d7nyGpGDAwDI+DLidOXtpFJ5N2i5ROlubtksifcuaK9RoAOc6dOny6mnnip169aVZs2ayYUXXijr1q1zvM2cOXOkoKCgwqlGjeCtwQeAsEum7UA6y/8nW3k3aC0JNFDQ/Jhhf1kuNz+z2vzV834GEKd5fO+C9hoFPsB54403ZPTo0bJ8+XJZuHChHDx4UM455xzZu3ev4+00uWjbtm3lpy+//DJj+wwgs780Ea62A+ks/5/stEuQWhJkapSkisf3LkivUU7k4CxYsKDS6IyO5KxcuVLOOOMM29vpqE1xcXEG9hCAk1yZj0dw2g6ks/y/22mX9dt/MMG4lRwblJYEiUZJNNTQ67UCsh9Jved6eO/cPve3N3wXiKTjrAc4sXTpl2rUyLkq4p49e6Rt27Zy5MgR6dmzp9x9991ywgknxN22rKzMnKKXmQFIXSrJnPAm6KtWvLQdSGf5/0SVdy2zlm40JysYD0pLglRXpSX7eXrjd2fJyi93Or53bp/7rKUb5H9WfZ31HzmBCnA0WLnlllukf//+0q1bN9vtOnfuLH/961+le/fuJiD6/e9/L/369ZOPP/5YjjnmmLh5PlOmTEnz3gP5JdO/NPNZroySuW07kM7y/9a0S7zKu/FYwfhDV/QMREuCTIwkLXD4PP3y5Fa2QVCvtg1dBY9B+ZETqEJ/N954o7z66qvy1ltvxQ1U7GjeTpcuXWTYsGEybdo0VyM4rVu3dlUoCEB8OryviY+JPD2yTyB67YRtlMwKGXN1lMx6XmJT/j/V5xXvIG7HCl4mDe0io+d+kLZ9CsK/qwUuP092QdAvTmohj775hTmfKHhIR5FHL4X+sp5kbBkzZozMnz9fli5d6im4UdWqVZMePXrIhg0b4l5fVFRkXojoE4DUBCVnIcxybdWKFzqyd8vgTlK/ZrW0lP/X2+uBVQOBMWd1dNzWmvZpWLso6y0JklmV5vfnaf7qLTLKJslZg5sbzmhf6TUKYtJx1qeodADppptukhdeeEFef/11ad++vef7OHz4sPzzn/+U888/Py37CKCyoOQshFmm8jEyLd7oQIOa1eTa/u1lzMCOKf/aj51aObZpbVe30+11isZtLlE6OE2xpdrccoXLz9NNz662vV4f9aUPt5mcnT8u/szkMQX1R07WAxxdIj537lyZN2+eqYVTUlJiLtchqJo1a5r/Hz58uLRq1crk0qipU6dKnz59pGPHjrJr1y659957zTLx66+/PqvPBcgn6cyjQHhHyeymSEp/PCgPLPpMOhfX8X1qqlHt6p6Ccbe5REFZlZYo0CvZvV++31Mmm3Y4l1+xOCWuWEGQJiT379jUVYCTrR85WQ9wHn74YfN3wIABFS6fPXu2XHPNNeb/N2/eLIWF/5pN27lzp4wcOdIEQw0bNpRevXrJO++8I127Hl3PDyC3f2kinKNk6U5Mtwuedu494Hi7RMF4NlaweVmVlmoOUjJ0ny7o3jLQP3KyHuC4yXHWqatoM2fONCcA2eXXL03kxyhZOqfc3OSXxJMoGM/mCrZkR5LsAj0/acAV9B85WQ9wAOS2VH9pwl7QDyBBmnJLFDxZGtWuJt/vPegqGM/FOk9OgZ5f9ONmjYoF+UcOAQ6AlGU7ZyHMgnwACdKUm9ugaNipbaRfxyby3Z4yx2A8V+s8uQ30EgV+TnTR3ui5q+ThwqMBXlB/5BDgAMgJQa/km05BPYAEacrNbVD00Osb5fkPtpjg0CkoD9IKNi+ffa+jX8P7tpXzurUwRfzOvHepqyJ+lugAL4g/cghwAARerlTyTadMHkDSFUymc8rNbYsGt1NMQVnB5vWz73X067xuLco/V14qQOdCiYJAVTLOFC+VEIEwy4VRkbBW8g3q52DTd/vk6RWbzdLieAdUPz4z6QpY7aojJ1Nl9w+LPpOZi9YnfMynru8thQUFafk3lMxnX9+f02cscRXotYjz/L2uvpp52clSXK9Gheev0vW94uX4TYBDgIM8lQujItaXtd2XbTpKwecbNwc065XVCrZa5M2Pz0y6gmuvB+h4LQ/0PrSSrxPd0wa1qklR1UIp2V3m+7+hVD77blZRFTj8ONDHnvP2FzLtlU895+7oa6J27TuYlu+VnGzVACBzrC/AeKXY9XK9Pgi85EHAv89BvNdZT39+8wtXnxk9QGpPpXmrt5i/8VpJWFNuWjlY/yYb3MQ+luaE6EF/zFnHJjXFZCUXJ6LPaOe+gxWCGz//DaXy2bcS01vYtFPQy51GPvW9uKZ/e8eWEZbYxGQNbKKDm2x+r5CDA+SZXFod4jUPIhem3MK2nDj2M7Pwk5KMjQw6jUImW2XX7SqkOkVVZU/ZId/+DcV+dktKf3R1u+ipRLvE9JKfKhlrRefi+jVd/btIlC/l5XOTre8VAhwgzwRpdYify4pzYcotSJJdTuz0mZm1ZL08sGh9RurGJKpR89AVPT2v2NIg4+0N37p6/HjBjZd/Q4nynty2l5g2/2OpWa0w7utaxUViutOPArsSBbpvOxJUhw7C9woBDpBngrI6xM2XrNtlxTv3lsnouR/kVEG2bEvH+zv77U0ZGRl0Mwo57ZVPZNLQLuZz4WbFVjpaG9i9xm4eK1F7iegpotjPuNuRzAUufhTEK1Ggo0tjn/tQkpHJ7xUCHCDPBK2/UaIv2UTLiicN7WoOZrkw5RYk6Xh/d/14MCO/4N2OQjasXZSwSKIGA7OWbJCZiz5z9dj6CWrosihevNfYbRsFr1NA4//nn1K3RjUp3XfAJAdvSzCS6aVKc+xIkOY6JSuTfdMIcIA8E6T+Rm6/ZJ0OUvVrVs+JKTenX9XZyB3yUjcmEd3T+rWqVUouTdcveC+jkJrEbFckUT9/k1/6uFKisB3rHbmkZyt5/K1NpqKvePg3lGzeU90aVeWH/fZTYlZweeVj78a9riTm31OqeXjJfHay0TeNAAfIM0Hpb+TlS9apkq+ungna0LiXUSqVjdwhp89BMq7t197VKIgfv+C9jkLGy0VJpiGlHqB/cVILefTNLxLeLt6/oWTzni48uaX89/LNkqxIzL+nVPPwvH52stU3jWXiQB6yRkX0Czuans9UvorXZbB2y4qDNuXmZUm+1loZlcXl+rafg3pFMnZwJ1PETeucONG3QRN6xwzsmHBZsd6vH7/grREEu8fSy/V6u8dKZiRlzFkd5Y3fnWXqAEVcvB7x/g0t+qREktGucW1JVSTq35MfeXh2nx2tg2PVwsnG90o0RnCAPJXt/kbJfsnGTudoD52gTLl5HaWyk8ncIafPwdvrv0uYa6LTNNtKf5T5H22Vy09tbar/2v2q33/oiFlG7vZAZzd1l+ooZDIjKf07NpGVX+5MeDt9PRrGWQGlwerjb2/y9JjWZ/ff+raTx976wpfpxG9+ei3dSLSd3WdHBaFcAwEOkMey2SAvmS9Zu6kea9ogm1Nu8Q7MuuQ42VU5mcwdspvC0cRVN6Ir3uqv9wOHjsi+A4crbVe6r/KKn2STz1Ppsu5lJCU6QNYgLp3FA2MfV+lzqV610LfpxGY/BRx+/Siw+w7JdokJRYADICu8fsk6JSRrcBOvjYCbg51XiRKC/V5unI3coWTyUyxOicZuR6bcJp8nMwqZzEiKFSAnO/KRzIhR7GfXLqBzqyDq31NQ8vDSjQAHQFZ4+ZJ1k5CswY3mSOg0QrqGxhONKqQSGNixO6ima+WVXxWOkx2Z8rrCx8sopNeRlNhkb32NNY/IbtWV3ciH2yD1vG7NzWPZvZ9WQLd84w759dxVUuqwLF8SBC2pjIDlCgIcAFnj9kvWbUKyBjfpGhpPXDm3h5mq8TMwsEvKTWfVZj8rHDuxO+ins9K2l+emSdZjBnaqEGRo/pDmEcXjNPLhduRneN/2CZ+T3vcPZQelwEMsW2zz2ch2Hl66EeAAiCtTtVncfMm6/QX86k+rjpz2NZnn5WZUYeK8Na6Kv1miR628JOV6KdCWzPPO1JSY3UE/nZW23d7muv7t5ObBx1W4LNHonNYBuufiE+O+9n7mvCTaj4a1qsldF55oEp3dfMazmYeXbgQ4ADI6QmB3oI3+krU6RFvbNKld5Oq+/2vZl+Zkt6/JPi83owpegpvoX9Vq/PP/jJu7EpuUm2yBNi/PO93L6RMdzNO57N/tbfT18zptV7NalUq3s3jNebH7N+JmP4qqFsqQblTtVgQ4ACpIdoTADTcH2njbFNerYVbn6AHfzRRQvH318ryS7ezstp6KLjmOPmhNfknzQg6mpUCb1/fT7WhDJBKR7bvLHN+PZBJY3Ty+NnvcunOfPP7/SqVRnSLz+XCzPDnZkRQ3U1uJ8oq04raODL2wekuFYDh2+sjp30iiqt1K84PcNvlsFrIpqVgEOADKpVrC3YmbA62Kt8323f86ILlZJhu7r8rt89IpoXjdk92oU1RV9pYdcjx4jj37uAqvnR5sortI+1mgTZdr3/7CGk/vp9vRBuW0TTKr2qyD73ndiuWvb2+K+17ree1kfdvfP6pwuVVcLnokLDZ4Tnb1UCrTZvECFv08aXVifd2jA4xE/0Y0QEp2P9I9MhtEBDgA0p7g6TZwOnLkiOM2ehDTIXg3vYNiKyG7eV6zlqyXBxatr7QPbjs77yk72i8oXQdPt1MsOqX3h0WfyaP/73PZW1a5Hk2i99Nt8neibf793C6uRwtSXV4fb4ov3ihVMquHkp02swtY9POknddj+5El+jeioz/J7Ee6R2aDigAHQNoTPN0GTk50m537DspT1/eWwoICk1Cs+TZ+7qsedLxWHY5mF4Rp9+mLTm5lphj0QBZ9kPdy8HQzxaLJrqOfXuWq8aXTa5Qo+duadvn3IZ3l+70HKkwVRY8GuQmE7Q6+1vma1QqlsLDAMVgTD6NUXlcPJTO15XU01G2el47+aIDkZYrtcBpHZoOMAAeA7wme0fP8TeoUmYq+fvluT5npR6XcBDheklG1I3MqYoMwne56cfVWEwBocTk9xaut4vbgmWiKRc97CWwSvUZ2AYrTVIfXA6SbxNkfD8Zfmu2G3SiVl9VDXqbtNDlec7ZWbXZu6xC7X24DcZ3a0kDcyyjhijQuvQ8yAhwAvi5n9buSr93B2Ou+uhn5SCY4sAvCdBQn3ohQ7JSA17wQuymW5vWKzLJyL88h9jVyk4Dq91RHtuvuuJVoakudPmOJ5+di7ZeXFV76vniZYvsmjUvvg4wAB0C5VEu4p6OSbzTtbK3NNZPZ10TbXtuvvcxc9Jkv+6k5ML/9+4eupwS85oXEm2I5EonIlY+963lfrdfITQJqOqY6sl13xwu7qS0dqUv2c59MwK6vrZcptmZpXHofZIXZ3gEAwWIdbPXLNJqed/p1nu4S//JTDsKZ9y41B2Ov+5po2zEDO5oDjN1h2Rxg6h3NM3HaRu9D/8ftlED0/r01bqA8PbKP/OHyk81fPW/3eltTLDpdpwe3J5d766/UuHb18tfICkxj99kalbFeby9THW5lou5OCx+7yUe/7tZ0TjKf+9j9sgJ267rYbWMD9tj9cAooT/speCrI0GsUFIzgAKgkmRLuyU416IFWl/265abhoo7yaNuGeau3VNj3RM8r0SjP5F+cYP4mGjXSKapkRi+SqSprun7bFAp0GglbNmGQ6VLtZVQmlakOa/pLl8R/v6fMJMsW169p3is9uKZjmsrNqGOqUplii92vdPWHqpInzTVjEeAAiMvrwTaZqQYtevebQZ3MqIzd0LzXhot6wNf7q1h35OgqpsE/5S/YPS+/lkdromkmRi+SnRK8+6ITTXDjdVQmleXSdnlZGtz84qQWpiN8oqKBmidVo2qVuHWDtEVBbJJ1JhpHJvO51zhi1rAecfcrXf2hzs2D5pqBDHAeeughuffee6WkpEROOukkefDBB+W0006z3f5vf/ubTJo0STZt2iSdOnWSGTNmyPnnn5/RfQaQ+sFaK/rqgdbu16XXVR92B3yd2rJbxZTMASbRNn72HrIdCSn90XNzzwZx+iV5GZW5oHtLz88rURCm76MGN1oY8Nn3v447EmW98rrv1uuuzz92ebrKdJXeZD73RyJaOsC+/Ui6+kOdG/LmmoELcJ599lm59dZb5ZFHHpHevXvLAw88IEOGDJF169ZJs2bNKm3/zjvvyLBhw2T69OlywQUXyNy5c+XCCy+UVatWSbdu3bLyHAAkPqg7HQjtfl0mor/krZ5VmtirLQ8SPbbe/6gnV8mfrugh53dvmfQBxmmbdE0JpLJCTasDz7qiZ6V+R+u3/+Dq9nowTKankpv8FL1eqx6vuH2wPPz6BrP6LHrJfuwog9N7k+llztbnPtnVU5lWJcTNNWMVRLShSBZpUHPqqafKrFmzzHmtZNq6dWu56aabZPz48ZW2v+yyy2Tv3r0yf/788sv69OkjJ598sgmS3Ni9e7fUr19fSktLpV69ej4+GyA1QewT42WfrF/ryu6LxbplvIRl67G0bs6spRsT7ptOPXltcllxmqCnnN+9Rdpef7uVSZef2kbaNK5VIRcl0WOlukJNk5ajp/HcBkpWMKoJz9EtBdyU/Nfgc9hflnvexyD+O3CSzHsT/X7APS/H76yO4Bw4cEBWrlwpEyZMKL+ssLBQBg8eLMuWLYt7G71cR3yi6YjPiy++aPs4ZWVl5hT9AgFBE8Q+MV73yc1IjNOcv/XrUg9o/7NqS8LRoGSDG2ua4NdzV8kjhf9aSZTq6x97YNbpgOgpgU3f7ZWnV2yOuxzd6bFSXaEWvULGy8HYbrTJ7VSH11EKa/tcG2XwMgKZyvQkvMlqgPPdd9/J4cOHpXnz5hUu1/Nr166NexvN04m3vV5uR6ezpkyZ4tNeA/4LYp+YZPcp9uCnlYz1Tr7bWxa33H+8g6Sbir1+OdoDKyKj536Q0uufKEDS6+P1ubJsc3isVIvhWQGK10DJTTDqZ35KLtdhif7cv/bxNpnzTuUq22FesRREWc/ByQQdIYoe9dERHJ0GA4IgiH1iUt0nNwe/RAGB3a/iRh6XlSei9z1xnreO216DwYeu6OEqIThi81jJ5mvEJhW7DZR0dZsmgKc6NeQlLysMdVisz72e+nRonFcrloIoqwFOkyZNpEqVKrJ9+/YKl+v54uLiuLfRy71sr4qKiswJCKIg9olJdp/c5k64HR2KNxWiq2fGPvehr8/XaarLeq7LN+4wDR9jn5ubYFADKLfTaeaxPt9hellZj2VGwTwGNlqZWYsXJhModWpex5fPWvRInJOCEI5q5NuKpSDKaoBTvXp16dWrlyxevNishLKSjPX8mDFj4t6mb9++5vpbbrml/LKFCxeay4FcFMQ+MW4fS0vUOyWuxssr8To6FDsa5LbGjN9Gz11VYWWP9dy0o7abLtCeHuupio+lFZQ1aCndd9B2JEQTriddcEKljt7ZLtmfKD8l23lm6ZRruURhk/UpKp06uvrqq+WUU04xtW90mbiukrr22mvN9cOHD5dWrVqZPBp18803y5lnnin33XefDB06VJ555hl5//335dFHH83yM0FYpXtFRxD7xLh9rL++vckc4Hf/eLRbtrjIYUl1xMrLtEci+i7WLqoqe8oOee40bj23a/u3S3EvEj/W9t1l5c/Vbnm2Fu9LFCSksz6P29GM2ErGjGogtAGOLvv+9ttv5Y477jCJwrrce8GCBeWJxJs3bzYrqyz9+vUztW8mTpwot99+uyn0pyuoqIGDXF3ZlK2DjlMQ56V8vlODyngjMqmOWDklIHth3dZNcOP03Oat3upqez2g79x7IKn9jThU8vWS15HNkv2MZiDv6uBkA3Vw4IZdnohTHZdk2dWPScdjuQ3itHz+n9/8wrfHsep+uK2NkqhOiJtaLtbrp1VytZBc7HP88eBhTz2cxGF6aOfeg44B6qShXc00V6pfuE+N6B03FyjXSxIAfh+/CXAo9AebEY3TZyyxPXjGK36W6tSW3UFn0tAupqy7X1Nk0fuldVlmLlof9/mpgcc3lcVrvxU/aIds7XxsvbaJRqycXtv4z2WfqTETPboRfdCOfT90afiVj7/ry3Mb0b+dma5LFKA6BWWaY+Mm2LJex1TlWjE9IKcK/QFBlWqeSDK/kOOtutApjWmv+PdL220FW2tK5IOvdonfeT1+TpPETnvoqiG7g3bsttpp3C/axPPU9o0SLgt2ykVxG3D5lYvFlBHCjgAHiCOVPJFUivbFdsWON6WRbPE/r+XkrdU/qeSO2OUQpauzsZeDtttAwen5Rz83fWw3y4Lt9lFHVBIlT+td6b4ASIwAB/BxZVOiJdBq/P/8U+rWqGYKgTlNb7lZSj3w+Oay8sudCacZUin1f+HJLU3zw2QSep1GZLJdJ8RtcreVO+NmtCmVURE3NWO0vYTuy8M/tZdIBlNTyBcEOICPK5vcVIrVJcBXPvau41ST2ymyPtMXy/dRv+jt7jOVUv8ahOjzTKaLdaIRmWxOk7idKjOjTYX+jzbFo/elVY/HPP2BCWbsJFvZmuRi5BMCHCCOZPNEvBTjc5pqcns/0cGN030mUyTQbvpFKwm/veE7+fuqyjks1mt1Xf925YFRkBNX3U6VZXK0SRPKnYKbZCtbB7HfGZBOBDiAjWTyRLwkgDr1OUo2kdTuPr3en930S+mPB+Q/X1uXVKfwoE6NuA1eMjXalI7K1kHsdwakGwEO4MDrL3evVXbtfo3r/WjJ/eglz27Fu8+de8tMgqrTyECiQCVRkvLYwcdV6n2UK3VXgrSiKB2VrYPY7wxINwIcwMeDX7JVdmN/jWuPp/2HDqf03lj3eXQ11geO+6L7esvg46Rdk1pxg7hEScq65TPvbTYBTtimRjI98pSOytZB7HcGpBsBDuCzRM0FE/0aTzRSUqeoiuwpO+zqPt2sntJj9axhPeX87i3S0l08l6dGsjHylI52CkHsdwak27+aPAHwjR78tBKvltVvULOa7XYFPx0wrV/jbgKS2tWrSPO6Ra7u083qKZ22ali7evnjaysFLYKnf/V8KiMAXgKjoLECzdj9t0ae9Pp0B8k6UhNNzycz4mWNChW4/BwCYcAIDpAm+gu7f6cmcs8lJzr2mYr+Ne4mINn+wwGpUxT/n27sfXoJTJxGK5IdAcjVqZEgjDz5uXIrm002gWxhBAdIMy+/xt0e6O06YGu36ej7dBuYaB8np9EKTVJOZgQgV6dGgjLyZOV/ae8p/ZtKAOL3qBAQdIzgABng9td4qgf6mtWqmMfxkrDavF6RaVLpNFox7ZVPPVX0TWfCbCbk6shTItmuHg1kEiM4gI/i5bBYl83/aKvZ5oLuLW1/jSfKlUgkdlTBmppQsfdpnR92WhvH5ejWaIXm6XgdAXDz+EGcGsnVkadMjwoBQcYIDuCTeDksDWodTTDete+g4yqc6KXIl5/aWmYuWp9U76d4owr6i12XgM9++wvTJiK21k3ZoSOu71cPil5HANLVWDOdcnXkCcC/EOAAPrBb2h0d2NjVf3EbGDWqXc109/a65LzSfdesJtf2bydjBnYygYmOLrlh3W8yRfFybWqEpFwg9xHgACny2qk7ehXOkSORuEX4Sn8KbMZGFd/r1bahnHnvUtejCnZBV+mPB+WBReulc3FdE3hkarQiSNWC3cjFkScA/0KAA6QomU7dVl7LxHlrHJN7tTqw1tPR4EADqctPbSMzF31WafvYfBavy5xZQhyOkScA/0KAA6QolZU0TlNO0UuRtcmlU2Xk2FEFr5WHGa0Iz8gTgKMIcIAUpXsljfalmv32Jocml53K82lSWebMaEXygtopHchnBDhAirx2EPfqxdVbEzS5/MoEOH4sc2a0wrugd0oH8hV1cJDX7HoveeFU6yVVR1dOHXBdUdd6PlrXRm9rh95Dud+vCoAzRnCQt/z85W2Xw5LKcm910cmt5PG3NyXcTgOaPyxaX6nWTTxBLrCXS4LQrwqAvYJIJJKOUfVA2717t9SvX19KS0ulXr162d4dZIHdEmrrMJRsb554uRgq+jINRsY+uzrhfY3o304Gdy2WYX9ZnnDbOkVVZE/ZYVf7yPSJ/XvlJRDRkTI3783TI/uQpAxk4fjNCA7yTjp/edvlsERf9oc4y7zj0eDGbX6P2+BGaU+pfM8N8WP0Lqz9qoCwIAcHeSebnaL1wKptGJxE58e46eXkxdHGmZ8klWsUFn7lzYS5XxUQBgQ4yDt+/vL2kqRsjRy5EZ0fY+X3xDa5bFS7uniVzuAtDKN3Sq93EwAmaoxKIjeQXUxRIe/49cvb6zSH24rH2hgz9vbxatSUlP4oY5/7UJKRr9MmXgsgOqECNBBsjOAg7/jxyzuZaQ63QYX2nnLK79GO3vq3uH5NSVa+Tpv4nTdjN7qm55NNVAfgD0ZwkHdS/eWdbJKy3zkbyRQY9KtxZq5KR94MFaCBYMraCM6mTZtkxIgR0r59e6lZs6Yce+yxcuedd8qBA/ZFzdSAAQOkoKCgwmnUqFEZ22+EQyq/vJNNUvY7Z8NrgUHq36QvbyZ2dI26N0Aej+CsXbtWjhw5In/+85+lY8eOsmbNGhk5cqTs3btXfv/73zveVrebOnVq+flateIP6QPp+OWd7DRHOnI27AoM1q5exdzp3qjl47ENOfMReTNA/shagHPuueeak6VDhw6ybt06efjhhxMGOBrQFBcXZ2AvEXbJ9F5KZZojHV277QI1RQNIych7ACB4ApWDo5UJGzVKPDT81FNPyZNPPmmCnJ///OcyadIkRnHynNeqtKlUsU2U+5IozyUdORtuCgwive8BgGAJTICzYcMGefDBBxOO3lxxxRXStm1badmypXz00Ucybtw4M/Lz/PPP296mrKzMnKJLPSM8vC7XTrWKrR/THHTtzj7eAyDcfO9FNX78eJkxY4bjNp9++qkcf/zx5ee3bNkiZ555pkkgfuyxxzw93pIlS2TQoEEmQNJE5XgmT54sU6ZMqXQ5vajyr6eUnz2o/GzWCQDwtxeV7wHOt99+Kzt27HDcRvNtqlc/WoV169atJrDp06ePzJkzRwoLvS3s0qTkOnXqyIIFC2TIkCGuR3Bat25NgJPjdJrp9BlLbFc0WVNFb40baH6te93e7T4wzQEAedBss2nTpubkho7cnHXWWdKrVy+ZPXu25+BGrV59tCtzixb2v5iLiorMCfldldbPKrYWpjkAIJiyVgdHgxsduWnTpo3Ju9GRn5KSEnOK3kanslasWGHOb9y4UaZNmyYrV640dXReeuklGT58uJxxxhnSvXv3bD0VZInX5dp0fwaA/JG1JOOFCxeavBk9HXPMMRWus2bNDh48aBKI9+3bZ87rtNaiRYvkgQceMFNTOs10ySWXyMSJE7PyHJBdXpdr0/0ZAPKH7zk4YZvDQ3BZOTWJlmvH5uC43d7rvpCLAwAhzsEBMsXrcu10VbFlNRUABA/dxJFXPaX87v6cTFdxAED6MUXFFFUopKOSsdM2et3yz3fI6KdWya4fD8Z9jFSmvAAAlTFFhbzjdbl2ou2dpp1U7HV+LTsHAPiDHBwghl21Y512GvXkKs+vl9vl6QAA/5CDA0TRqScdnYm3yirZ5YZul6cDAPzDCA4QJVG1Yy8SdRUHAKQPIzhAGqaTUll2DgBIHSM4QBqmk3Tkhq7iAJA9BDhAFJ1O0tVSdtWOE2lQq5o8NKyn9Dm2MSM3AJBFTFEBUaxqx8rrxJJuf8/FJ0r/Tk0IbgAgywhwgBh21Y6dNKpdLalKyACA9GCKCohDA5WzuxbL8o07ZPRc+2rFqnHt6rJswiCpXpXfCwAQFHwjI5S1bJZt3CHzVm8xf/V8Mref/9FWKSwskLsvOtFMP8VOWVmX3XVRN4IbAAgYRnAQKql29ra7/Q1ntJeXPtxW4XJWSgFAcNFsk2aboW+xYI28OOXI6KjNrCUbZOaizypdZ93+oSt6SMPaRa4begIA/EWzTeSdRC0WNAzR6zWvJjYo0cBo8ksfS8nusrj3bd1+2iuf0hkcAHIEOTjIixYL0Z2944362AU3iW4PAAgmAhzkVYuF6O2cRn1SfRwAQHYR4CCvWixs+m5vSo016QwOALmBAAeharGQKOV35qL1ZlrK62iM3q/eP53BASA3EOAgdC0WnFjJxjo95XU0hs7gAJA7CHAQmgJ+ugT8lsHHuU4Wdjvqo9vQhgEAcguF/hCqAn7tmtRydX86PWWN+ugqKg1y4iUbjx3cScYM7ES9GwDIMYzgIPCspdyxCcElpfvN5VZOjXI77WRtZ9dYU4OnR67qKTcPPo7gBgByECM4CFUBP2vaSYOfeLfR7YtjkoWtxpo6bUWVYgAIB0ZwEKoCftHJxvGaY9olC+v5vsc2ll+e3Mr8pQUDAOQ2AhwEmtul3K+u2VaeeGw37aTnSRYGgPzAFBUCzW1OzX8t+9KcohOPmXYCgPxFgINAS5RTE8tKPLZGanS6KXaZOXk2ABB+BDgIHA1EohN+Jw3tKqPn2i/ldtM53O0ycwBAOGQ1B6ddu3ZSUFBQ4XTPPfc43mb//v0yevRoady4sdSpU0cuueQS2b59e8b2GemlgcjpM5bIsL8sl5ufWW3+Tp3/iQzt3kLq16zm6j5iE4//8dE2GeVymTkAIByynmQ8depU2bZtW/nppptuctx+7Nix8vLLL8vf/vY3eeONN2Tr1q1y8cUXZ2x/kYV6N7v3y/yPtsmuHw+a87WqVXF1fzoC9I+PtsqYp1fFvd4aDbJaNwAAwiPrU1R169aV4uJiV9uWlpbK448/LnPnzpWBAweay2bPni1dunSR5cuXS58+fdK8t8hGvZtY+w4ednWfm77bJzMXfeZ6tCc6XwcAkNuyPoKjU1I63dSjRw+599575dChQ7bbrly5Ug4ePCiDBw8uv+z444+XNm3ayLJlyzK0x8hGvRsvTDG/ekXy9IrNrm/jpbM4ACD4sjqC85vf/EZ69uwpjRo1knfeeUcmTJhgpqnuv//+uNuXlJRI9erVpUGDBhUub968ubnOTllZmTlZdu/e7eOzgB/8CjCs8n3DTmsjMxetd307r53FAQB5NoIzfvz4SonDsae1a9eabW+99VYZMGCAdO/eXUaNGiX33XefPPjggxWCET9Mnz5d6tevX35q3bq1r/eP1CUbYDSISTy2ivm1a1Lb9X20iGndAADIfb6P4Nx2221yzTXXOG7ToUOHuJf37t3bTFFt2rRJOnfuXOl6zdU5cOCA7Nq1q8Iojq6icsrj0ZEhDaaiR3AIcoK1JLyk9EdpVLu67Nx7wFUejuWhK3pKYWFBpdo2Wu/GrXitGwAAuc33AKdp06bmlIzVq1dLYWGhNGvWLO71vXr1kmrVqsnixYvN8nC1bt062bx5s/Tt29f2fouKiswJwRKvNo1bVtPMPjZ9o9wUCNSbzRp2tCAgACBcspZkrEnBDzzwgHz44Yfy+eefy1NPPWWWgF911VXSsGFDs82WLVtMEvGKFSvMeZ1eGjFihBmNWbp0qUk6vvbaa01wwwqqcCwJd8Mq+Hf5qa1l/kdby3tQRXNqummZNayHnN+d4AYAwihrScY6ovLMM8/I5MmTTc5N+/btTYATPZWkK6Z0hGbfvn3ll82cOdOM8ugIjt5uyJAh8qc//SlLzwLpXhIeT83qVaR61cIKScTxqhJbTTepYAwA+acgEonkXYUzzcHR0SCtq1OvXr1s707e0REXrVDsJ2uUJl638NjWD1aeDgAgvMfvrBf6Q/5JR80Zux5USv+fIn4AkF+yXugP+SddNWdie1ABAPIXAQ4yzlrhlK5JIqoSAwAIcJBxblY4pYKqxAAAAhxkhbXCSWvZRNORnf9zRnsT+MQGP4mCIb2eqsQAAEWSMbIa5GhCcLwVTj3aNKy0vFuDoV+c1EIeffMLcz4SJ/ihKjEAQBHgIKvsVjglE/zE1sEBAOQv6uBQBycnUdsGAPLPburgIOyobQMAcEKSMQAACB0CHAAAEDoEOAAAIHQIcAAAQOgQ4AAAgNChDg4CgWXfAAA/EeAg6xas2VapcJ+2XKBwHwAgWUxRIevBzY1PrqoQ3KiS0v3mcr0eAACvCHDgavpo2cYdMm/1FvNXz/tB70dHbuLdm3WZXu/X4wEA8gdTVMja9JH2mYoduYmmYY1er9vF61cFAIAdRnCQtekjbaLp53YAAFgIcJD26SO7KS7tEO6G2+0AALAwRYW0Th85TXGd3bXY/L+OCMULkwpEpLh+DTmtfSPeJQCAJ4zgIG3TR4mmuBZ+UmICHSuYiWad1+u1czgAAF4Q4CCuVKeP3E5x6SjOw1f1NCM10fS8Xp5qIjMAID8xRYW4dFoolekjL1NcGsRooKP/ryNCGjTp/TJyAwBIFgEO4tLgQqeHdCpJg5mIx+kjr1Ncej8sBQcA+IUpKtjSkZVkp4/cTnGt3/6Dr8UDAQBQjODAUbLTRzv3lolukihumbV0oznRewoA4KeCSCSSdz+dd+/eLfXr15fS0lKpV69etncndKzVU14+WFa4RGIxAMCP4zdTVPCV0+opJ/SeAgD4iQAHvkq0espJ9MoqAAByMsB5/fXXpaCgIO7pvffes73dgAEDKm0/atSojO477C36pCTll4feUwCAnE0y7tevn2zbVrFZ46RJk2Tx4sVyyimnON525MiRMnXq1PLztWrVStt+wlvuzeNvb0r5JaP3FAAgZwOc6tWrS3Fxcfn5gwcPyrx58+Smm24yozJONKCJvi2Ck3uTCnpPAQBCl4Pz0ksvyY4dO+Taa69NuO1TTz0lTZo0kW7dusmECRNk3759GdlH+Jd7Q+8pAEBe1MF5/PHHZciQIXLMMcc4bnfFFVdI27ZtpWXLlvLRRx/JuHHjZN26dfL888/b3qasrMycopeZIfURm+jaOCWlP7q63XX925k6OrEdxrV4oFZGpvcUACCQAc748eNlxowZjtt8+umncvzxx5ef//rrr+W1116T5557LuH933DDDeX/f+KJJ0qLFi1k0KBBsnHjRjn22GPj3mb69OkyZcoUT88Dzrk2sQFKo9rVXb1kWjRQWzLQewoAkFOF/r799lsz1eSkQ4cOJgfHMm3aNHnwwQdly5YtUq1aNU+Pt3fvXqlTp44sWLDAjAC5HcFp3bo1hf58LOIX26/KLr/mrXEDaaIJAEh7oT/fR3CaNm1qTm5pfDV79mwZPny45+BGrV692vzVkRw7RUVF5oT0FfFLFNwkas4JAECokoyXLFkiX3zxhVx//fWVrtMRHZ3KWrFihTmv01A62rNy5UrZtGmTSUzWwOiMM86Q7t27Z2Hv80uyRfzcNOcEACBUScaaXKw1caJzcqKXjmsCsbVKSqe1Fi1aJA888ICZmtJppksuuUQmTpyYhT3PP8kU4Bs7uJOMGdiJkRsAQEbRbJNmm64t27hDhv1lufsPF3k3AAAf0WwTaaHLu1vUr1Gpho2X3lKax6OB0rzVW8xfPQ8AQOimqJA7NEFYE4V1FVWiVVPxprbiLS/XgIn6NwCA0CUZI7doorAmDGvisFtaCNBaXh6bpFxSut9crtcDAOAXAhwkFeRMGtol4XYFP43Q9GrbMOHycr2e6SoAgF8IcOCZBiLTXvk04XYavOj008ovdzouL4+XqwMAQCoIcJC2eji6RFxHe9wuL09mGToAAPEQ4MAzt4FIuya1y3Nw3HC7HQAAiRDgwDOvAUui5eVWro5uBwCAHwhw4JnXgMVaXm5dF7utok8VAMBPBDjwLJmAxW55OX2qAADpQKuGPG/VoCuiNGlY82p0SklHXZw6fkdvv+m7vfL0is1SsrvMdeE+r48HAEAyrRqoZJzHvFYWjrd9cb0aMnbwcdKuSS1XAYte1/fYxml4NgAA/AtTVHnKa2Vhu+23794vDyz6TIqqFprAhdEYAEAQEODkIZ0mcqosHImpLJxoe0UlYgBAkBDg5CE3hfr0+llL1rvankrEAICgIQcnD7kt1Ddz0XrpXFxXyg4d8fV+AQBIN0Zw8pCXisE69dSkTpHv9wsAQDoR4ORxoT43zNRU5OjqKioRAwByBQFOnhfqc+O7vWVUIgYA5BQCnDyldW60fo3bqScqEQMAcglJxnlszMCO8vSKLytUIo5W8FMrBaunlAY5Z3ctphIxACDwCHDygF17BD1N/sUJpoCfirjoKUUlYgBALiDAyfN2DNbUU6UWDAl6SgEAEGQ02wxxs02rvUJsBWJrPEYDGyuAoQkmACDoaLaJhO0VNMjR6zWnxpquogkmACAsWEUVUrRXAADkMwKckHLbNoH2CgCAMCLACSm3bRNorwAACCNWUYW8HUNJ6f64eTixNW6ikXAMAMh1BDghb8egq6gKXNa4cbOsHACAXMAUVYh5ba9gLSuPDm6Unh/15Cr5x0fbMrLfAACkijo4Ia6D42XKSbc5fcaSSsFNNL3JrGE95PzuLTOw1wAAJF8HJ20jOHfddZf069dPatWqJQ0aNIi7zebNm2Xo0KFmm2bNmsnvfvc7OXTokOP9fv/993LllVeaJ6b3O2LECNmzZ0+ankU4WDVufnlyK/M3Nrhxs6xcHYmI/HruB2akBwCAIEtbgHPgwAG59NJL5cYbb4x7/eHDh01wo9u988478sQTT8icOXPkjjvucLxfDW4+/vhjWbhwocyfP1/efPNNueGGG9L0LPKHl+XimqOjIz4AAOTtFJUGLbfccovs2rWrwuWvvvqqXHDBBbJ161Zp3ry5ueyRRx6RcePGybfffivVq1evdF+ffvqpdO3aVd577z055ZRTzGULFiyQ888/X77++mtp2bKl70NcuSiZVVDLNu6QYX9Z7voxnh7Zh8rHAICMyolWDcuWLZMTTzyxPLhRQ4YMMSM+OkLTo0ePuLfRaSkruFGDBw+WwsJCeffdd+Wiiy6K+1hlZWXmFP0ChZXbVVCxQVCvtg3NdommqSwUCAQABFnWApySkpIKwY2yzut1drfRXJ1oVatWlUaNGtneRk2fPl2mTJkiYWfXXFNr4ejl1sopuyDoFye1kD+/+YWrx6JAIAAgNDk448ePl4KCAsfT2rVrJWgmTJhghrOs01dffSX51lxT6fW61DveUnANgh598wsZ+bP2ZrWUnYKfgqF4BQIBAMjJEZzbbrtNrrnmGsdtOnTo4Oq+iouLZcWKFRUu2759e/l1drf55ptvKlymq650ZZXdbVRRUZE5hZnb5poT561x7DA+/6Nt8sfLTpYxz6yutI1TgUAAAHI2wGnatKk5+aFv375mKbkGLNa0k66M0qQhTSS2u40mK69cuVJ69eplLluyZIkcOXJEevfuLfnMbU7M93sPJAyCGtetIY9c1bPSNJYWCKSiMQAgr3NwtMaNjqzoX10Svnr10RGBjh07Sp06deScc84xgcy//du/yX/+53+aHJqJEyfK6NGjy0dbdIRn+PDhsnjxYmnVqpV06dJFzj33XBk5cqRZcXXw4EEZM2aMXH755a5XUIWVnzkxGixpzZyzuxZ7Xo0FAECoAxytZ6O1bSzWqqilS5fKgAEDpEqVKqaOja6a0pGZ2rVry9VXXy1Tp04tv82+fftk3bp1JpCxPPXUUyaoGTRokFk9dckll8gf//hHyXeJmmsmEyxZBQIBAMg1tGoIUR0cXR2lPaOSZXUYf2vcQEZqAACBE4hWDcg8XQJ+Xf92Kd0HCcQAgDAgwAkZzZtJ1i2Dj6vUYRwAgFxEgBPSXJxkUoHbNamVhj0CACDzCHBCRhODdZpJeQ1yqE4MAAgLApwQ0mkmbcugCcNuUJ0YABA2WetFhfQHOdF1bDZ9t1dmLlpvgpnoZeRUJwYAhBEBTojF1rHpXFyX6sQAgLxAgJPHozpUJwYAhBUBTp6hOjEAIB8Q4OSYw0cijMAAAJAAAU6OtWKI7fDdoGY1ubZ/OxkzsBPtFQAA+AnLxHMouLnxyVUVghu168eDZnVUr/+70GwDAAAIcHJmWkpHbpy6hO/ad9AEQAQ5AAAQ4OQEXfUUO3ITjwZAGghpQAQAQD5jiioH6JJutzQQmrlwnSzbuINABwCQtwhwcoDXHlGzlm6UYX9ZLqfPWMKUFQAgLxHg5FCHcK9KSveTlwMAyEsEODnWIdwLKxOHvBwAQL4hwMmhNguPXNVTGtSq5jnI0bwcTVQGACBfEODkWJCzcuLZMnbwcabAX7oSlQEAyHVUMs7B6aqbB3eSMQM7mlGZtzd8J7OWbvA9URkAgFzGCE6ON80ce/ZxJgG5wGY7vVyv10RlAADyBQFOiBKQY4Mc67xer9sBAJAvCHBCkpvz8FU9pThmKbme18v1egAA8gk5OCGhQczZXYtNXo4mFGvOjU5LMXIDAMhHBDghzMsBACDfMUUFAABChwAHAACEDlNUAXT4SIRcGgAAUkCAEzAL1mwzvaO0vYJF69joUm9WQwEA4A5TVAELbm58clWF4EbRFRwAgIAEOHfddZf069dPatWqJQ0aNKh0/YcffijDhg2T1q1bS82aNaVLly7yhz/8IeH9tmvXTgoKCiqc7rnnHgnDtJSO3FgdwKPRFRwAgIBMUR04cEAuvfRS6du3rzz++OOVrl+5cqU0a9ZMnnzySRPkvPPOO3LDDTdIlSpVZMyYMY73PXXqVBk5cmT5+bp160qu0/o1sSM3dl3BWQoOAECWApwpU6aYv3PmzIl7/XXXXVfhfIcOHWTZsmXy/PPPJwxwNKApLi6WMHHb7Zuu4AAA5FgOTmlpqTRqlLgppE5JNW7cWHr06CH33nuvHDp0yHH7srIy2b17d4VT0Ljt9v3dD2VmOgsAAOTAKiqdonr22WfllVdecdzuN7/5jfTs2dMEQnqbCRMmyLZt2+T++++3vc306dPLR5SCStsq6GopTSh2Cl+mvfKpPPbWF6yqAgDArxGc8ePHV0rwjT2tXbtWvFqzZo388pe/lDvvvFPOOeccx21vvfVWGTBggHTv3l1GjRol9913nzz44INmlMaOBkE6OmSdvvrqK8mlruCxWFUFAICPIzi33XabXHPNNY7baC6NF5988okMGjTIJBhPnDhRvOrdu7eZotq0aZN07tw57jZFRUXmlCtdwWPr4MSK/BQE6XbaYJOGmgAApBDgNG3a1Jz88vHHH8vAgQPl6quvNsvKk7F69WopLCw0K7LC1BV8zttfmOkoO6yqAgAgCzk4mzdvlu+//978PXz4sAlEVMeOHaVOnTpmWkqDmyFDhphpp5KSEnO9LhO3gqgVK1bI8OHDZfHixdKqVSuzyurdd9+Vs846y6yk0vNjx46Vq666Sho2bChhoSMyTeq6G3FiVRUAABkMcO644w554oknys/riie1dOlSk0Pz97//Xb799ltTB0dPlrZt25rpJrVv3z5Zt26dHDx40JzXaaZnnnlGJk+ebHJu2rdvbwIcDZDCxu2qKrfbAQCQTwoikUjerTnWZeL169c3Ccf16tWTINKl4KfPWGK7qkpzcIrr15C3xg0kBwcAkBd2ezh+B6oODtytqrLO6/UkGAMAUBkBTg6sqtKRmmh6Xi+nuzgAAAEv9JcvdOpJ+0lpcrDmz2iBP2sUJt511qoqu9sAAIDKCHAyaMGabZVq3Gj1Ymsqyu46DXJosAkAgHskGWcoyViDmxufXFUpYVjHYeyyvK0xGqajAAAQkoyDRqeedHQmXiDjtITNuk5va9dgUy9ftnGHzFu9xfylEScAAExRZYTmzzi1XnDiVLHYacqLBGQAQD5jFVUG+FFtOPY+rCmv2MCJRpwAABDgZIQf1Yaj78PNlJfTtBYAAGHHCE4G6LJunTpKZmG33kZvq/fhdsoreloLAIB8RIDjI7uEXzdVie2u03s4r9vROjjW/bmd8qIRJwAgX1EHxyeJEn6tqsSx2xQ71MEpKBDRTmF/fXuTOVn3RyNOAACcUQfHhzo4TjVuYuvYxFYr7tW2oaz8cqc536ROkRmyWbJ2uzz+9tGO6vHu76Eresq0Vz6hEScAIK/s9tBskxGcFCVK+NWgRK/Xdgs6VaUna7m3BkZn3ru04ohOvRqy/9DhuI9l3Z8GN5OGdpHRcz+oVCiQRpwAAJCDk7JkE35tl3nv3i+79h1MeH8NaxfRiBMAABuM4KQomYRfp1EfL4/7y5Nb0YgTAIA4CHBSlEzCbyqVjWPvL3rKCwAAHMUy8TTXuIlXxyaV5dvx7g8AAFREgJMiNzVu9HrdLtXKxiQQAwDgDgGOD6waN1rTJpqej14i7mXUp2GtalJcr8jV/QEAgIqog+NDHRxLbI0bDWR05Cbe5Qs/KTGrqMRmmbcGMrq0PN79AQCQj3Z7qINDgONjgOO1wrFyqn4MAAD+hQDHxxco3RWOGaUBAMAdKhkHgE5LTX7pY1cVjlnmDQCAv0gyTpNZSzZIye4yzxWOAQBA6ghw0jQ1NXPRZ662TaUmDgAAiI8Ax2dWGwa3kq2JAwAA7BHg+MxLGwYqEgMAkB4EOD7T+jZuxVY4BgAA/iDA8Tn35q9vb3K17djBnah1AwBAmhDgZCH3Rqemxgzs5NdDAwCATAU4d911l/Tr109q1aolDRo0iLtNQUFBpdMzzzzjeL/ff/+9XHnllaZAn97viBEjZM+ePZJLuTdMTQEAkKMBzoEDB+TSSy+VG2+80XG72bNny7Zt28pPF154oeP2Gtx8/PHHsnDhQpk/f768+eabcsMNN0i2uV3uPaJ/O6amAABIs6rpuuMpU6aYv3PmzHHcTkdhiouLXd3np59+KgsWLJD33ntPTjnlFHPZgw8+KOeff778/ve/l5YtW0q2uF3uPbiru+cKAAByOAdn9OjR0qRJEznttNPkr3/9q0Qi8ZobHLVs2TITEFnBjRo8eLAUFhbKu+++a3u7srIy078i+uQ37fStuTV2a6L0cpaFAwCQBwHO1KlT5bnnnjPTTZdccon8+te/NiMydkpKSqRZs2YVLqtatao0atTIXGdn+vTpprmmdWrdurX4TZd7Wx3CY4Mc6zy5NwAABDDAGT9+fNzE4OjT2rVrXd/fpEmTpH///tKjRw8ZN26c/Pu//7vce++94rcJEyaYzuHW6auvvpJ0OLdbC9MhvLh+xekqPa+X6/UAACBgOTi33XabXHPNNY7bdOjQIemd6d27t0ybNs1MKRUVFVW6XnN1vvnmmwqXHTp0yKyscsrj0fuKd3/poEGMdgjXVVWaeKy5OTp9RUE/AAACGuA0bdrUnNJl9erV0rBhQ9tgpG/fvrJr1y5ZuXKl9OrVy1y2ZMkSOXLkiAmOgkKDmb7HNs72bgAAkLfStopq8+bNZmRF/x4+fNgEL6pjx45Sp04defnll2X79u3Sp08fqVGjhsnDufvuu+W3v/1t+X2sWLFChg8fLosXL5ZWrVpJly5d5Nxzz5WRI0fKI488IgcPHpQxY8bI5ZdfntUVVAAAIE8CnDvuuEOeeOKJ8vOaZ6OWLl0qAwYMkGrVqslDDz0kY8eONSunNPC5//77TfBi2bdvn6xbt84EMpannnrKBDWDBg0yq6c0OfmPf/xjup4GAADIQQURp3XZIaXLxHU1lSYca0VkAAAQruN31uvgAAAA+I0ABwAAhE7acnCQuPs4S8kBAEgPApwsWLBmm0x5+ZMK3ce1jYNWOqYYIAAAqWOKKgvBzY1PrqoQ3KiS0v3mcr0eAACkhgAnw9NSOnITb9madZler9sBAIDkEeBkkObcxI7cRNOwRq/X7QAAQPIIcDJIe1P5uR0AAIiPACeDtPGmn9sBAID4CHAySLuK62qpApvr9XK9XrcDAADJI8DJcJdxXQquYoMc67xer9sBAIDkEeBkmNa5efiqnlJcv+I0lJ7Xy6mDAwBA6ij0lwUaxJzdtZhKxgAApAkBTpboNFTfYxtn6+EBAAg1pqgAAEDoEOAAAIDQIcABAAChQ4ADAABChwAHAACEDgEOAAAIHQIcAAAQOgQ4AAAgdAhwAABA6ORlJeNIJGL+7t69O9u7AgAAXLKO29Zx3EleBjg//PCD+du6dets7woAAEjiOF6/fn3HbQoibsKgkDly5Ihs3bpV6tatKwUFBb5Hlxo4ffXVV1KvXj0JG55f7uM9zG1hf//y4TmG/fml8zlqyKLBTcuWLaWw0DnLJi9HcPRFOeaYY9L6GPqGhvWDq3h+uY/3MLeF/f3Lh+cY9ueXrueYaOTGQpIxAAAIHQIcAAAQOgQ4PisqKpI777zT/A0jnl/u4z3MbWF///LhOYb9+QXlOeZlkjEAAAg3RnAAAEDoEOAAAIDQIcABAAChQ4ADAABChwDHJ2+++ab8/Oc/N9UVtTryiy++KGEyffp0OfXUU03152bNmsmFF14o69atk7B4+OGHpXv37uVFqfr27SuvvvqqhNU999xjPqe33HKLhMXkyZPNc4o+HX/88RImW7ZskauuukoaN24sNWvWlBNPPFHef/99CYt27dpVeg/1NHr0aAmDw4cPy6RJk6R9+/bm/Tv22GNl2rRprvoq5YoffvjBfK+0bdvWPMd+/frJe++9l5V9yctKxumwd+9eOemkk+S6666Tiy++WMLmjTfeMF8yGuQcOnRIbr/9djnnnHPkk08+kdq1a0uu08rWetDv1KmT+bJ54okn5Je//KV88MEHcsIJJ0iY6JfNn//8ZxPQhY2+V4sWLSo/X7VqeL7idu7cKf3795ezzjrLBN9NmzaV9evXS8OGDSVMn00NAixr1qyRs88+Wy699FIJgxkzZpgfU/r9op9VDU6vvfZaU5n3N7/5jYTB9ddfb963//7v/zY/+J988kkZPHiwOVa0atUqszujy8ThL31ZX3jhhVC/rN988415nm+88UYkrBo2bBh57LHHImHyww8/RDp16hRZuHBh5Mwzz4zcfPPNkbC48847IyeddFIkrMaNGxc5/fTTI/lEP5/HHnts5MiRI5EwGDp0aOS6666rcNnFF18cufLKKyNhsG/fvkiVKlUi8+fPr3B5z549I//xH/+R8f1higpJKS0tNX8bNWoUuldQf0E+88wzZlROp6rCREfhhg4dan5RhZGOaOivxg4dOsiVV14pmzdvlrB46aWX5JRTTjGjGTpN3KNHD/nLX/4iYXXgwAHz619Hxf1uipwtOl2zePFi+eyzz8z5Dz/8UN566y0577zzJAwOHTpkvj9r1KhR4XKdqtLnmWnhGb9FRrux6xyrDpd369YtNK/8P//5TxPQ7N+/X+rUqSMvvPCCdO3aVcJCg7ZVq1ZlbT483Xr37i1z5syRzp07y7Zt22TKlCnys5/9zAyXa+5Yrvv888/N9Matt95qpoj1fdRpjerVq8vVV18tYaN5jLt27ZJrrrlGwmL8+PGmy7bmhlWpUsUEA3fddZcJxsOgbt265jtU84q6dOkizZs3l6efflqWLVsmHTt2zPwOZXzMKA+EfYpq1KhRkbZt20a++uqrSJiUlZVF1q9fH3n//fcj48ePjzRp0iTy8ccfR8Jg8+bNkWbNmkU+/PDD8svCNkUVa+fOnZF69eqFZpqxWrVqkb59+1a47Kabbor06dMnEkbnnHNO5IILLoiEydNPPx055phjzN+PPvoo8l//9V+RRo0aRebMmRMJiw0bNkTOOOMMcxzU6apTTz3VTMEdf/zxGd8XApx0vKghDnBGjx5t/oF+/vnnkbAbNGhQ5IYbboiEgX4erS8c66TnCwoKzP8fOnQoEkannHKKCVbDoE2bNpERI0ZUuOxPf/pTpGXLlpGw2bRpU6SwsDDy4osvRsJEvztnzZpV4bJp06ZFOnfuHAmbPXv2RLZu3Wr+/1e/+lXk/PPPz/g+kIMDtyN9MmbMGDNts2TJErPMMR+m4srKyiQMBg0aZKbgVq9eXX7SfA4dGtf/1+HysNmzZ49s3LhRWrRoIWGgU8KxpRk0l0OX44bN7NmzTZ6R5ouFyb59+6SwsOJhV//t6XdN2NSuXdv829PVf6+99ppZlZpp5OD4+GW6YcOG8vNffPGFOXBoEm6bNm0kDMmpc+fOlXnz5pl51pKSEnO5Lm/UBLJcN2HCBJPop++V1nHQ5/r666+bf5hhoO9ZbL6UfgFpPZWw5FH99re/NbWo9IC/detW08lYDx7Dhg2TMBg7dqxJUr377rvlV7/6laxYsUIeffRRcwoTPdhrgKN5RWFa5q/086k5N/o9o8vEtQzF/fffbxKpw+K1114zP4g1F06Pib/73e9MzpEuh8+4jI8ZhdTSpUvNkH/s6eqrr46EQbznpqfZs2dHwkCXbmpeUfXq1SNNmzY101P/+7//GwmzsOXgXHbZZZEWLVqY97BVq1bmvOYDhMnLL78c6datW6SoqMjkNDz66KORsHnttdfMd8u6desiYbN7927zb06nG2vUqBHp0KGDWT6t+X9h8eyzz5rnpf8Oi4uLTVrDrl27srIvBfqfzIdVAAAA6UMODgAACB0CHAAAEDoEOAAAIHQIcAAAQOgQ4AAAgNAhwAEAAKFDgAMAAEKHAAcAAIQOAQ4AAAgdAhwAABA6BDgAACB0CHAAAICEzf8H970sGTR/6fkAAAAASUVORK5CYII=",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "import matplotlib.pyplot as plt\n",
+ "\n",
+ "plt.scatter(raw_data.X, raw_data.Y)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "la1cn_8bsgI-"
+ },
+ "source": [
+ "## Метрики\n",
+ "\n",
+ "В качестве метрик в задаче регрессии использовались MSE и r2-score:\n",
+ "- MSE(среднеквадратичная ошибка) из-за возведения в квадрат сильнее штрафует ошибки. Подходит, если большие отклонения критически важны.\n",
+ "- r2-score(коэффициент детерминации) удобен для оценки общей точности модели."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 5,
+ "metadata": {
+ "id": "n0Spnfa-KHvf"
+ },
+ "outputs": [],
+ "source": [
+ "from sklearn.metrics import mean_squared_error, r2_score\n",
+ "\n",
+ "def print_evaluation(y_test, y_pred):\n",
+ " print(\"MSE error:\", mean_squared_error(y_test, y_pred))\n",
+ " print(\"R^2 score:\", r2_score(y_test, y_pred))"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "CNe19lgasp8C"
+ },
+ "source": [
+ "## Создание бейзлайна и оценка качества"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 6,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "def plot_predictions(test_x, test_y, pred_y):\n",
+ " plt.scatter(test_x, test_y, color=\"green\", label=\"Исходные данные\")\n",
+ " plt.scatter(test_x, pred_y, color=\"red\", label=\"Предсказанные данные\")\n",
+ " plt.xlabel(\"X\")\n",
+ " plt.ylabel('Y')\n",
+ " plt.legend()\n",
+ " plt.show()"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "wyUONwCTr5jU"
+ },
+ "source": [
+ "Разделим исходные данные на обучающую и тестовую выборки"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 7,
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/"
+ },
+ "id": "TmbeQUzpuD9C",
+ "outputId": "14868e50-fe93-4b53-f9f8-8c4d522f2153"
+ },
+ "outputs": [],
+ "source": [
+ "from sklearn.model_selection import train_test_split\n",
+ "\n",
+ "raw_x = raw_data[\"X\"].to_frame()\n",
+ "raw_y = raw_data[\"Y\"].to_frame()\n",
+ "\n",
+ "raw_x_train, raw_x_test, raw_y_train, raw_y_test = train_test_split(raw_x, raw_y, test_size=0.2, random_state=42)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "3qONjSchuNLo"
+ },
+ "source": [
+ "Для обучения возьмем модель линейной регрессии из библиотеки sklearn."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 8,
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "MSE error: 7.2024229647313\n",
+ "R^2 score: 0.6818264979713569\n"
+ ]
+ }
+ ],
+ "source": [
+ "from sklearn.linear_model import LinearRegression\n",
+ "\n",
+ "modelLinearRegression = LinearRegression()\n",
+ "modelLinearRegression.fit(raw_x_train, raw_y_train)\n",
+ "\n",
+ "linear_pred = modelLinearRegression.predict(raw_x_test)\n",
+ "print_evaluation(raw_y_test, linear_pred)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 9,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAj4AAAGwCAYAAACpYG+ZAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjcsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvTLEjVAAAAAlwSFlzAAAPYQAAD2EBqD+naQAAROBJREFUeJzt3Ql4VOX1x/ETgqAIAdkkJsEUV3Crtm4oFdQKbfVJjSwVF9TWLm6JqBVqFbEqVvtHsGpdWtFqi1KMtbUV6wKWCq1bUaqgYqOERUFRgsVCCfN/fm+8cTKZSWaSWe7c+/08zzjOnTvhzpLcM+c973kLIpFIxAAAAEKgU64PAAAAIFsIfAAAQGgQ+AAAgNAg8AEAAKFB4AMAAEKDwAcAAIQGgQ8AAAiNzrk+AL/Zvn27rVmzxnr06GEFBQW5PhwAAJAEtSXctGmT7bbbbtapU+K8DoFPDAU9ZWVlybzGAADAZ+rq6qy0tDTh/QQ+MZTp8V64oqKizL47AAAgLerr613iwjuPJ0LgE8Mb3lLQQ+ADAEB+aatMheJmAAAQGgQ+AAAgNAh8AABAaFDj0w4NDQ32v//9L/3vBoBW7bDDDlZYWMirBKDdCHxS7BHw3nvv2ccff9z+VxxAh/Tq1csGDBhAny0A7ULgkwIv6Onfv79169aNP7xAlr94bN682datW+duFxcX8/oDSBmBTwrDW17Q06dPn9RfaQAdttNOO7lrBT/6XWTYC0CqKG5OklfTo0wPgNzxfgepswNgYQ98rr76ajf8FH3Zd9990/pvsH4XkFv8DgLoiMANde2333721FNPNd3u3DlwTxEAgPzT0GC2cKHZ2rUq0jMbNswsB7M0AxcVKNDRjI9kbdmyxV2i1/oAAABpVFNjVlVltmrV59u0kOjMmWaVlZZNgRrqkrfeesstST9o0CA77bTTbOXKla3uP23aNOvZs2fThZXZAQBIc9AzenTzoEdWr27crvuzqCCiOaIB8fjjj9snn3xi++yzj61du9amTp1qq1evtn/9618JV2uNl/FR8LNx48Zmi5T+97//tdraWvvCF75gO+64Y4eOs2F7gy1cudDWblprxT2KbdjAYVbYKXPpvrPOOsvNSPv973/ftO3dd991r5Oee4A+AgiBdP4uAsjwcNbQoWZ77NEy6PFoQVFlfmprOzzspfO3Ehix5+9AD3V97Wtfa/r/Aw880A4//HDbfffdbc6cOfbtb3877mO6du3qLtlSs6zGquZV2ar6zz8EpUWlNnPUTKscnL1035VXXkmRKAAgs8NZffuaffBB4sfoi3ddXWOwNHy4ZUPghrpiO7zuvffetmLFCvMDBT2j54xuFvTI6vrVbrvuz4alS5fab37zG7vwwgtb3Pfcc8/Z8OHD3ZThXXbZxUaOHGkfffSRrV+/3tVOXX/99U37Llq0yLp06WJPP/1007Zf/OIXtscee7jtyijdf//9Sc2+++Y3v9l0/7333uveu2jvvPOO22/JkiXu9oIFC9zteF20tU33aR+Psn4KjLt372677rqrnXHGGfZBa7+MnykvL29xrNGZs3nz5tnRRx/tjlf9nU488UR7++23Ex539M+dMWNG0+3Ynyt6H6qrqxM+JppeP2X2PMrkXXrppVZSUmI777yz+xIQ/XoAQFaGs5L4O+soQ5QlgQ58NOylk5AfOrxqeEuZnoi1HFbytlXPq3b7ZdqkSZPspJNOsqFKQUbRyfm4446zIUOG2OLFi+1vf/ub20/NG/v162f33HOPC1pefPFF27RpkwseLrjgAvcYeeSRR6yqqsouueQSF2h873vfs7PPPtvmz58fd/adhiN1GTt2bEafrwKhY4891g4++GB37ApW3n///aT/3WuuuabpWGP95z//sYkTJ7qfqwCwU6dOdvLJJ9v27dstl/S+6D188MEH7dVXX7UxY8bYqFGjXA0cAKR9eEuZno6UTWTxPB2ooS59w9WJWsNba9assSlTprjOrqeeemquD83V9MRmemKDn7r6Orff8PLMpfv++te/2hNPPOGyPm+88Uaz+2688Ub78pe/bLfffnuzAMXz9a9/3c4991xXNK79lElQcbjnZz/7mcs6nHfeee62AoK///3vbvuIESOaZSPUgdebfaf/j66zSrdbb73VBT3R2SoFcarlevPNN11WMBEdV+/evRPOFDzllFOa3dbPVZD4+uuv2/7772+5oIL+WbNmuWsV+nu/Gwr4tD36dQCADtMwVaIanrZ4NT6a2p4lgcr4rFq1ygU5GmLRt3kNPejEqxNRrqmQOZ37dSTbM2HCBBs8eHCL+7yMT2sUxGzbts1+97vfueGy6PqoZcuW2VFHHdVsf93W9mgffvhhq4VnouI0DUt5l+gALFppaakrXFehq4IyPS7WK6+84rJO0T/Pa2wZPSwVz4YNG1o9VmVQ9JnTLELtp+EoiZ1NqOxa9L8fb7ahfk70Pgv1xyTG5Zdf7u7Tcg0aCtPQZCwFtcrSKaCL/nnPPvtsm88XAFLW3mEqBT2iIfws9vMJVMZHaX2/0uytdO7XHhqK+uc//+mKvVtbB6k1OnEqm6ahHNWvHHDAASkfx7///W8XqLRGwczLL7/cdFuz83Sij6XgQPvqWL7zne/YFVdcYddee22LIU9lAn/605+2eHxrw6AKpLdu3drqsXoZxrvvvttlV/S6KNOjx0V76KGHmgWb8Z7LzTffbMcff3zTbWXWYl122WUuq6Yhtptuusn9+1o8N/b5KtP50ksvtVjLSgEQAKS18WCyw1RKQqxf//ltZXoU9GS5j0+gAh8/05R1zd5SIXO8Op8CK3D3a79MUAZAQYEKmpUliUcz4VSnojYA8ehkfvrpp9u4ceNcVk2BhrILyj6ITuzKQCij5NFt1QxFT0V+/vnnXX1Qa1Qrs+eee7bZgVtBiQqLta/qWFTXEuuQQw6xhx9+2GVjUunkrQyJgkEN68WjzJWGCxX0DPssTau6qHg0rNbW89FwWvQ+8QLRvn37Nu0zefJkl3WLzR5pWE/vtxby9I4LANoV7Dz6qNkDDzQvUo5tPKi/M9qmvjzx6ny84SxNNFq0KOedmwM11OVn6tOjKetekBPNuz1j1IyM9fPRMh4qztXJMhHd98ILL7gaHRXELl++3M3S8mY/KXDSUNItt9zihlw0lHLOOec0y0ZoRpYeoyGg6dOnW01Njasv8TIRV111lft/zYRSpkKXTz/91NXSxBumaosep2BKx6o+TvHqas4//3w3ZKWhJD0/Za1U56TCawUI8WifG264wSoqKlxxtHesotsKAjXrTcOpd911l5s5+Mwzz7i6pkzSMKOer4Iu1RPFa7qp90XZojPPPNO9/up5o2BT9Vh/+tOfMnp8AAIyQ6u83Ey1mcrIxM7Mim08qOBFgVD08FW84awuXRqnrKvuVtc5CHocNTDE5zZu3Khw1V1H+/TTTyOvv/66u+6Ih19/OFI6vTRiV1vTpWx6mdueKRMmTHDPadq0ac22P/LII257tAULFkSGDh0a6dq1a6RXr16RkSNHRj766KPI/PnzI507d44sXLiwad/a2tpIUVFR5Pbbb2/apv8fNGhQZIcddojsvffekV//+tdN902ZMsX9e4kuOk6ZNWtWpGfPns2OS/+W9vnnP//pbut4oh/bt2/fyPjx4yMbNmxwx6tt2sfz5ptvRk4++WT3nHbaaafIvvvuG6muro5s37497mu2++67t3qs3s9+8sknI4MHD3av14EHHuheP92v1zbecUf//JtvvrnpdvRjPMccc0ykqqoq7jHpORx66KGRZ555xt1XUVHR9PrJ1q1bI1dddVWkvLzcvRfFxcXu+b/66quRfJeu30UAUbZt0x/WSKS6Wn+Q2r4UFEQiZWWNj/M8/HAkUlrafD/to+05PH/HClTn5nRI1Pkxnzs3+4WmwkdfR1MPG12UMfIDDYup741XrBzbM0f9deLV6SDz6NwMZKHxYLLUriT6b2EOFyINZefmfKEgJ5NT1v2qtcJaBZP6wPqFZgLGFgZ7NMSlBo0AEJjGg5FIemZ06e+mz78UkvHJQcYHQPvxuwikSUNDYy1Pe3vwxMv45BAZHwAAEJjGg+nCrC4AAMJobQcb5ma58WC6EPgAABBGxe1smKsWGnPnZr3xYLpQ3AwAQBgNa6PxYGzXZXWTr6jIWePBdCHwAQDkpbC2BomrPdPICz9rPKhZXarZiQ5+vNvV1YEIdqIR+AAA8k7Nshqrmldlq+o/L87Vsj/qkF85OD+HYNLahyd2WYlEKisbh63iPT4H62hlAzU+AIC8C3pGzxndLOgRrYWo7bo/dH14YmdnxS4r0ZrKSrN33mmcmv7b3zZe19YGMugRAp8Q0GreBQUFCS9aewoA8mV4S5meeIs9e9uq51W7/QI5nLVggdns2Y3XW7c2Zmri1ed42zRUlWBNwriNB3O9jlYWEPj44cObzIeyg0aNGuUWKY2+aMVyAMgnqumJzfTEBj919XVuv8AuHDp+fOO1hqNa68Oj4KeurrH2B00IfPzw4dXtZNKRHdC1a1cbMGBAs0vv3r2b7aN1snr16uXWzNprr71ch+qRI0danX5xojz66KN2yCGHuPsHDRpkU6dOdauGR9N6XLGZJa1xFe25555z611169bNLQOhf+ujjz5y92m71sPy/PKXv3TH9vLLL7vbWlX929/+tuukvdNOO9k+++xjM73VgT8zadIk22233dzyEiUlJW5F+e3btyf9eGXKYo/Ze42in+cXv/jFZvtoja/oTFrsY6ItWbLE7fuO0syf+dvf/mbDhg1zx6WV1y+66CL7z3/+Y22Jl83Tz/fcf//99uUvf9l69Ojh3v/x48fbunXrEh539M/VZ0J0nLE/V7Sm2QzVA8R5TCy9XtHrtenf+853vuOWCVG39GOPPdZeeeWVNp8vwkmFzOncL6+Hs9avz06/noAh8Mm3sdgM27x5s1133XX261//2gUmOil961vfarp/4cKFduaZZ1pVVZW9/vrrduedd7oTux4Ta7/99mvKLo0dO7bZfTpxHnfccTZkyBBbvHixO9mfdNJJLiCJNWfOHLv44ovtD3/4gwu4RAFMaWmp/e53v3PHcdVVV9mPfvQjt6/nhBNOsMcee8xWrFjhAqe77rrLHnjggaQfnwtvv/22y86dcsop9uqrr9pDDz3kXpsLLrggqcfPmjXLvd7PP/98i/v+97//2U9+8hMXVCgoURCj4C7XxowZ4wKwxx9/3F566SX3HuuzsWHDhlwfGnxIs7fSuZ/v6W9iouGsTPfrCShmdfnhw6ttmjroTRvM4diqTo633nqrHX744e72fffdZ4MHD3Yn0sMOO8xld5RJmTBhgrtfGR+dTH/4wx/alClTmn7Oli1bXMZCmQXR/2ub58Ybb3TZh9tvv71ZoBRLJ8Ozzz7bBShf+cpXmrbvsMMO7lg8ytwogFLg4gVZyhx4FFDpGLzAKpnH58K0adPstNNOa8p2KfN2yy232DHHHGO/+MUvEq4T5722yproNdd6VrHOOeecpv/X+6afe+ihh9onn3zS6gKymaSgTp8tBT7KSsrPfvYzF5jNnTvXvvvd7+bkuOBfmrKu2VsqZI5X51NgBe5+7RcIIV1WIpMIfPzy4Y0ei83hgm+dO3d2J0PPvvvu64Zpli1b5gIfZQuUCYrO8CiY0IlW2SINW8mHH37YbJHXWMr46Jt+a3RCVJZGJ2UvEIt222232T333GMrV660Tz/91LZu3dpi2On666+3a6+91t2vrImyVak8Xhmj6KBAQ3qxwcfSpUub7RMva6VFb7VPp06dbNddd7WKigoX5MTS66tMz29+85umbZFIxGWotEiugtB49HpLa6+5sikaYtK/oSFFb9hPz1+ZN48yYW0ZOnSoey4evfexTj31VLfCvYbWlMW56aabmv073vNV4NWnT59m2/V+KPsFxFKfHk1Z1+wtBTnRwY9uy4xRM4LTz6e9w1QKevJ4WYlMIvDx24fX52OxOkkpU1IZZ5pjdEDw73//22VRElH2pS3KwCjLoW/+Clpmqxj8Mw8++KBdeuml9n//93925JFHupOrTqz/+Mc/mv2M73//++5YddJXFkX/P2LEiKQfr311DJ6amhoXTEVTfZCG4Tz6GaeffnqzffTzVZ+kIEZDa8qYKTNz/PHHt3h9v/e977m6nlgDBw5M+Frp9ZZEr7lqhFRDpYuCKmWGFPDotgK+aBrO1PF6lHWKpSG46CBMNVmxbr75Zvf8NFyqYURl0v71r3+1eL7FxcWuvihWorooQH165o6dG7ePj4Ie3/fxSaXZYLLDVH37mn3wQSj68HQUgU+2JPvhzfFYrDIaL774osvuyBtvvOFOXN5JTt/ctW3PPfdM+DOU/VG25owzzki4z4EHHmhPP/10s+GmWHq8Apevfe1rtv/++9sjjzxiJ598srtPWSdlHc4777ym/eNlCFTArYsyVwqgNJNNwUyyj995552bPdf+/fu32EfF09H7rIqT2VN2xNtHgcRXv/pVl/WKDXz0+iowau31jefZZ591BcaJsjXLly93WaEbbrjBFUyL3ud4FDy1FXToZ0QfozKFsRTYefuoJkw1XBpKjX2+7733nnu8jh9IloKbin0q8q9zc6rNBttaVsIbzlqxwmzRotQ6N4cUxc3Z4n14vfRjLG3XCSnHY7Gqfbnwwgtd1kJZEhW/HnHEEU2BkIqAVfisgOW1115zQ2DKnvz4xz9u+gavfeToo492JzVdNHShOhQN+cjkyZPthRdecIGHhnZ0YlZm5YOobyzerLPdd9/dZWN+8IMfNA3pKHjQifuJJ56wN99806688kr386KpfkjHqCJeFTU/+eSTdvDBByf9+HRTQKjXQa+ralsUzMXSzLNFixa5DJcCo7feesvNomutuFn7adhOQ4fe673+s9keer009KZskQK0n//85y47pAyVarMySUGOnrOOR6//3nvv7T5f0RT4KeOm2XN/+ctf3Hul53/FFVckDMwAj4Kc4eXD7dQDTnXXeRH0pDrBxVtWQmLPH9HDWV26hKYPT0cR+GRLsh/eHH9YVaOjk6+mOh911FGuLkXDGh4NjajuRScp1QIpKNKQhoITrzBVQcqmTZvct30NY+iiouF58+a5b/6ik6B+hmo8FFTp5KcTfLzMgWj4R4GCgjLvtoatxo0b5+p/dIKPzt7In/70JzcEo2yPAjUNt3gFvsk8Pp0U8Gl4TxmkE0880WWuJk6cGDcTpuyNgjFNaVegpkBS0/IT0T6ayaXX3Xu9vUBVgYXaEWhoS7PvVCSuOhtlfvReZZKGtvSc9V7r+KI/R9HT3v/85z+7wnUVsWtfzSJ89913XS0UgkHNBBe8s8BmL53trgPZXLCjE1xaazboLStRUtJ8u75MZ2GV9IaAvX8FERUdoEl9fb317NnTnaiiC0X1zVXFpRoGSDSzpt1pTmV6fDAWqxOj6mA60snZ688S3afFo5k6uujfQfooeEj0a6xibb3mQRpGStvvIrKCNbU+ozo29W1ri5aLSDTBpT0LkYbo/atPcP6ORY1Ptim40ZT1LH94s6W1adE6SelDifRqLTPSt29fN7MKyOWaWrHTzr01tVSg7LeTp68nuHjLSmRJTUDfPwKfXMjyhzebNFMqETXm0wXppRqaRJ566ilebvhyTS1NPdeaWipQ9n1tTogmuITh/aPGB01UyMyCpQDSIbRrauX5BJeOvn/5UA9ExgcAkHahXFMrmQkumr2lICe6Ls9HE1w68v7lSz0QGZ8UUQsO5Ba/g/khdGtqJSPHs7My+f7VfFYPFJsl8uqBdL9fEPgkyes/Eq81P4Ds8X4HY3sCwZ9rannLSMTS9rKisuCsqZUsBTfvvNM4e+u3v228rq31VdCT6vvXVj2QqB7IL8NeDHUlSTNj1M1Wiyl6/W40jRhA9jI9Cnr0O6jfRWar+Vver6mVyanjeTDBpTCF90+1PMnWA6nRZK4R+KTAW2ncC34AZJ+CHu93Mez0DdrPSzbk7ZpaqS4rEVCVSb5/+VbPRQPDdjRA0hIAsWsOAcg8DW+R6cmvQtJ8CNDiLisR2xTUy/D7rBbHD+/fgncW2Ij72m7OOH/C/IxmfJJtYEjg084XDgByJVFjOW8IIl8by/lieEtdzuMsNNxsQVDV5Phk9pVfAqPymeWukDlenY8+lwrKa6tqMxrwJnv+prgZAPJIvhWS5hXV9CQKekRZoLq6xv3Qoh5IYouh/VjPReADAHmExoA+X1YipCo/qwcqKWo+VV+ZHr9lICluBoA8km+FpHklz5aV8JvKwZVuCQu/13MR+ABAHqExYBaWlVi9umVxc3SNj0+WlfCjwk6Fvpiy3hqGugAgj9AYMAvLSkhsnzYfLiuB9iHwAYA8km+FpHknj5aVQPswnT0G09kB5GsfHy0h4OvGgPkkk52bkRH08cnwCwcAuZZXjQEzgeAE7Th/U9wMAHkq24Wkvgq0WFYC7UTgAwDIryUyEi0rodlY2k4tji81+CRwpsYnBkNdAODjJTJYViIv1WQhcGbJCgBA8JbIYFmJvA2cV0UFPaK1vbRd92cT09kBAPmzRAbLSsSlwFOrpM9eOttd+2Wttga/Bc7U+AAA8mqJDJaVyMowUkOa6nFSCZyzVahPcTMAIH+WyGBZiaTqr7xhpPbUX9WkMZDyXeDMUBcAoCNLZEifnfq4DEFWhiuytKyEX4eOMj2MVJPmehzfBc4EPgCA9i6R4fnw0w/t+PuPt/KZ5dkpVM3wshJ6DnouI+4bYeNrxrvrrD23HNZfNWQgkPLj2nIUNwMAWqXhDQ2ZlBTFBBoxsjpLR8HNO++YzZ9v9tvfNl7X1qYl6PHTDKRsDiMtzEAhux/XliPwAQAkFfy8U/WOPXXGU7bLjrvE3SdhVkC9dxYsMJs9u/Fat9NBw1nDh5udemrjdRqGt/w2Aymbw0hrM1SPkyhwViYoqz2gPkNxMwAgKfpW/lzdc/bRfz9KfpZOHi0t4ccZSMkMIykbFS9YU0ZF9yc7jFScwXocBTcV+1T4onMzgQ8ABKgdfyZpmGfKginJZwXybGkJP85ASmYYSUNwCnKig5/2DCMNS3MgFe94/RAwMtQFAB2UL8Ww6RgGSlZxt/6NmZ7YoEe8bdXV6Rv2SgM/zkDK5jBSoQ/rcTKBtbpisFYXgLxdxyqDNKVbAV0yNEun9qBZVnjc8W3vrKJk1ef4JLhTwNpWxqO2qtZ3J/90Zhxr4vTx0XuqoMfPn+Vkz98MdQFAhophdaJUMaxqG/x2okxVvOGdTtvNhr1rVvyJ2druZgt3N9ve6bOswJJ1Sf5gfwwbZWLoKJvSOYxU6aN6nEwg8AGQc/laH5NvxbAdET28o4DnR381q/6HWZ9PP9+nrshs8aXjGrMC7y9I8gf7Z9goeugoXufiXGc8svl7UuiTepxMIPABELh1hrIl34phO0In2YHdS2zCY6vt0ufMiv7Xcp+SerMxU+aY7TfWrKKicfaWCpnj1fmoy7Lu1xIUPuPHjEemf08a8vTLR3sQ+AAI1DpD2ZSPxbDtVfj7R+3Nazda14+TmC2jomUFPpqyrtlbCnKig580Li2RKX7KeGT696Qmj798tAezugDkRL41i8uXdvwZ8dm09K4ff9L2vgpw6urMFi7M+NISYZDp35OaPOpUnS4EPgByIhPt8bMtFNN/Nd080bT0ZIqWM7S0RFhk8vekIQBfPtqDwAdATgSlPsZv7fjTTpmb6K7LyYouWk7z0hJhksnfk4UB+PLRHtT4AMiJINXH+LEYNm3aM928rMyXRcv5KJO/J2sD8uUjVQQ+AHIi0+3xw1wMm1btmW7u46LlfJPJ35PiAH35SAVDXQByIhT1MTmkugx1W569dLa7bnedhjI3Kkb2ZmK1pk8fs4cfpn4nje9NJn9PhoWlOD8GgQ+A0NTHpC0YCNPaYcrcaFq6JAp+unc3mzrV7P33CXoy8N5k6vekMKRfPlirKwZrdQHZl43mafF6lfTeqbdVHV5lVwy7IjB/3DO2dpimtGt2V3ShszI8F11kdsUVDG1l4b3J1O9JTZ6uzdXe8zeBTztfOAD5f8Lx9Nmpj9110l159Ue+tUU2dQKLt45WpFMHF9nU1HbN8lLBs2p/NAxGLU/K7008uV4AtSEAnZtDvUjpbbfdZjfddJO99957dtBBB9nPf/5zO+yww3J9WABy8Ad8aOnQhL1KPB9++qFvOkV35ATkTU8++XWzmfPMyuqbr6NVNSpijwzpwNph3rR0BG5dt8KgFueHIfB56KGHbOLEiXbHHXfY4YcfbjNmzLCRI0faG2+8Yf3798/14QGh/CaWLfFS9n279bUPNn/Q5mN14sn1SuodXTpAnxEFPXPnxF9HS9tHjw3e9OR8ENap434UuOLm6dOn27nnnmtnn322DRkyxAVA3bp1s3vuuSfXhwbktkg14BK13k8m6PHksllbu5YO0NDTggVms2e76+KufVymJ94fd+/2jHlmxd34EphtYZ067keBCny2bt1qL730kh1//PFN2zp16uRuL168OO5jtmzZ4sYFoy+AH4RxDZ32aq31fqpy8Y27XUsHqNi4vNxsxAiz8ePd9TFHneaGtxL9Ydf2gfWNtT/IrrBOHfejQAU+H3zwgTU0NNiuu+7abLtuq94nnmnTprliKO9Spo6jQI6FdQ2dTNVPpCIX37iTrv+oXdCY4bn4YrNTTmmxlETBB8lltwrfX9fhY0Zqwjp13I8CFfi0x+TJk10FuHep06rCQI6FdQ2dXGZpcvmNO5njV+3OoUeNbczwqDNytrsxo8MCv65bnghUcXPfvn2tsLDQ3lcTrSi6PWDAgLiP6dq1q7sAfkIhZGayNEVdiqx+a8vh7Fx/427r+D8vWN7QsX9IDQjVhZl1tHIm0Ou65YlAZXy6dOliX/rSl+zpp59u2rZ9+3Z3+8gjj8zpsQGpoBAyM/UT6y9bb1OHT3WNC/30jTv6+NV/55has28tbbzuvK1xanqH/2B7XZdZRyvnvKnjpx5wqrsm6MmuwDUw1HT2CRMm2J133ul692g6+5w5c2z58uUtan/ioYEh/NTsrK2FCXPV7MzPxeAS/ZrF64rrxxYBOv7fXH2Km3UV3X9nXTez/pvb8QP79TNbv/7z26pfVNBTyXAKgim0DQzHjRtn69evt6uuusoVNH/xi1+0efPmJRX0AH4rhNSJXCfueCdyCiHj10/E64MT23rfj83aKpeZnfw7s9ivov02t3M4a8UKs0WL6LIMBD3j01FkfOAnQVlDJ5v8mM1pk/rxaGp6zCytdg9nzZ1LZgehU89aXZl94YBsycsTOVKjKeqardVRDGchxOrDOtQFBI0fh2WQZlr0MwnbYwqcdVs5nl9+pbudM+X3VnjMcBYNBcI0qwsA8lKSfXU+6Nb89qqixrW3+txxnxUeexxBD5AEMj4AkGvqq6OC5NWrW1Y3S0GBbd61tx0+savt/toaK/7EbG13s3cOKLXpX09uAVMAjQh8ACDXCgvNZs40Gz26sUA5Ovj5rGC522132Ypv0vgO6CgCHwBI18yshQvbP31c/XU0G6uqqvnsLmWCPuu/o59GvRfQMQQ+QB5hhpdPaaX0eAGLsjipNAzUvhUVHQugALSKPj4xmM6OfOrpo+Z8anRIjUd2Nfxvqy19+Hbb/O7bVvz+J1Z+870tF8ugpw6QVfTxyfALB+RiOYbY5SviLceQbmSZmvv7LT+0gVdNt902NjRt07tS0FoX5dpasjZAhtHHBwgIBR7K9MRbs0vbFPxUz6t2Kz6nu7EhWaaWQc9hVTe1eJ3iL42qNyhiVlfXOHQ1nF5MgB/QxwfwOXVtjh7eihf81NXXuf0ykWWK/be1cKq26/6wDW8p09OuP5xJNigEkHkEPoDPaamKdO6XjiyTKMuk/cJCNT0a3uqUwQaFADKPwAfIAQUMC95ZYLOXznbXrQUQWp8rGcnu5+csk5+pkDllqvHR+lmamQXAF5jODmRZsnUzXlGxhpb6detnH2z+IG4GRjU+erwWL83nLJPfddt9j9Qe4M3qUg8epqMDvkHGB8iiZOtmdF0+s9xG3DfCTn/kdFu/eX3CoEdmjJqR1sLmXGSZ/O6AU86zNT0L3cKg8bR4dzSbSw0JU+njAyDjyPgAPpudpf3GzR0Xd79YyvQo6En3VHZlj/SzFZBlK8vk9y7LhTt0sZXXTLQBVTfFXSVdXr9gnO03tILGg4CPEfgAWZJs3cx5fz6v1aBHw143j7zZSopKbGjpUFu0apGrFVL2RYFIOjI/+hkaelMWSkFO9PFkKsuUtYDnuusaOypv2JByl+UjLrrR/m7Woo/P2l6FVjd1orsfgL/RuTkGDQyRKQpOxteMT8vPmj9hvm34dEPGOznHq0cqKyrLSJYpK8tKfPe7Zh9+2PK+FLssR3duVu2PhsGUEQKQO3RuzvALB6RKs7dUs5MO1UdU28y/z8xKJ+dAdG5W0HPKKa3vQ5dlIK8R+GT4hQPaE0CoYLm1upm+3fq6Qua2aD/N8orHq7+prarNvwAlE/U7Q4ea7bFH8wVEWzN/Pl2WgQCfv5nVBWSJVzcTnZnxeLdv//rtLmiJvT96P29qeyJh7LHTLLNTXm42YoTZ+PGN1yUlyQc9QpdlINAIfIAs0vCThqFUmBxNwY62j95vdJvB0WkHnJbUvxWmHjtNQc/o0S2DnA8SB4lx0WUZCDSKm2Mw1IVsaKtuprWi4t479U6qVkgF0MPLh4dneEuZnlQyO/GoyzIrqQN5idXZAR9TkNNaUKLMkFZbjxccKWgKdI+d9lBNT0eDHhU302UZCDz6+AB5FhwFtsdOR3S0LqdPH7O77qLLMhAC1PgAAawVyrseOx2VbF1Ov37Nb/fubTZ1qtn77xP0ACFBjU8ManyQTwLRYyedNT6rV5tFIol79KxYYbZoUUpLVQDID9T4ACHQVq1QaCh40ZITmtWlICc6+IleJb1LF3r0ACHHUBcAf2RsFiwwmz278Vq3U6WlJrTkhPr2RGOVdABRKG4GkPv+O1VVzWdlJbloaAvav6Ii5ZXXAYQHNT4xqPEBctB0MLYuJ8VFQwGgniUrAPiahrOU6YlXjOxtq65u37AXACRAjQ8AfzYdVPBTV9e4HwCkCYEPAH83HWTRUABpROADwN9NB1k0FEAaEfgAyA3NttLsLa+QOZa2a9FQ7QcAaULgAyC3TQclNviJbjrIVHQAaUTgAyB3aDoIIMtoYAggt2g6CCCLCHwA5J6Gs4az5hiAzCPwAdA6NRBkCQgAAUHgAyA762gBgA9Q3Ayg9XW0Yrsrr17duF33A0CeIfAB0BLraAEIKAIfoAMatjfYgncW2Oyls921bgcC62gBCChqfIB2qllWY1XzqmxV/edDQaVFpTZz1EyrHJzn9S+sowUgoMj4AO0MekbPGd0s6JHV9avddt2f11hHC0BAEfgAKdJwljI9EYu0uM/bVj2vOr+HvVhHC0BAEfgAKVq4cmGLTE9s8FNXX+f2y1usowUgoAh8gBSt3bQ2rfv5FutoAQggipuBFBX3KE7rfr7GOloAAobAB4GnWhsNOykDo2Bk2MBhVtipsN0/T4/X7C0VMser8ymwAne/9gsE1tECECAEPgi0TEw5V9Ckx2v2loKc6OBHt2XGqBkdCq6SxjpaAJASanwQWJmccq6gae7YuVZSVNJsu4Iqbc9KHx8tGVFebjZihNn48Y3Xus1SEgCQUEEkEmmZqw+x+vp669mzp23cuNGKiopyfTjowPBW+czyhLOvvOGo2qraDmVm0j2MlvRK6Y8+ajZjRsv7CxozTjZ3LouIAgiV+iTP3wx1wcI+5Xx4+fB2/zsKcjry+JSDnQceMPvgg8T76nuMgp/qarOKisb6HABAEwIfBFIgppwr4LnuOrOZM802bEj+cQp+6uoag6XhGQ7KACDPEPggkPJ+yrnqdL77XbMPP8z8elsAECIUNyOQvCnn3iyrWNpeVlTmzynnCnpOOaVjQU8q620BQIgQ+CCQvCnnEhv8ZH3KearDW1VVHfsZqvEpK2tcbwsA0AyBDwLLF1POU6W6nFWJi7Lb5M3q0owvCpsBoAVqfBBoCm4q9qnI7pTzjjQe7GhdTmlpY9CjpSYAAC0Q+CDwsjLlPNUaHg1nRWd2FLBo9lZ763K86eteAAUAiIvAB8h20DN6dOOU82irVzdunzOnMQjS7WR6i6qWhwwPACSNGh8g24XL8QIab9vEiWbTpzev14mljqTK8Myfb1Zby7AWAKSAwAfwS+Gy13iwX7/GJSdKmhdlW+/eZlOnNjYzvPnmxuaEDGsBQEoY6gKyJdnCZe136qmNNTvxCqABAO1G4ANkYnZWPMkWLnv76eew5AQApBVDXUBHCpXLy81GjDAbP77xWre1PR4FRSpcTlS7Q+NBAMg4Ah+gI7OzYmt2vNlZ8YIfZXA0ZV1igx8aDwJAVgQq8CkvL7eCgoJmlxtuuCHXh4Uwzs7SrCvtF0uNBeMVLisTpO00HgSAjApcjc8111xj5557btPtHj165PR4EOLZWdovXo2OghsKlwEgJwIX+CjQGTBgQK4PA0GWyuysRChcBoCcCNRQl2hoq0+fPnbwwQfbTTfdZNu2bWt1/y1btlh9fX2zC9CqVGdnAQB8I1AZn4suusgOOeQQ6927ty1atMgmT55sa9euteleJ9w4pk2bZlPVFA5Iljc7K9GyEipU1v3aDwDgKwWRSDILAuXOpEmT7Kc//Wmr+yxbtsz23XffFtvvuece+973vmeffPKJde3aNWHGRxePMj5lZWW2ceNGK9LSAEBrs7ok+lfIm51FoTIAZJXO3z179mzz/O37wGf9+vX24YcftrrPoEGDrEuXLi22v/baa7b//vvb8uXLbZ999knrCwfEXWWdRUMBICeSPX/7fqirX79+7tIeS5YssU6dOln//v3Tflzwl4btDbZw5UJbu2mtFfcotmEDh1lhpwwv78DsLADIO0kHPmvWrLHddtvN/Grx4sX2j3/8w0aMGOFmdun2xRdfbKeffrrtsssuuT48ZFDNshqrmldlq+o/z7yUFpXazFEzrXJwZWrLSqSK2VkAkFeSHupS8HDbbbfZeLXm96GXX37ZzjvvPDespZqdL3zhC3bGGWfYxIkTE9b3xMNQV/4FPaPnjLaINf8YF1hjrc2iXS61I26a3Xw4SoXH6qBMs0AACIy01/jcfvvtdvnll9uoUaPszjvvdDOngojAJ7+Gt8pnljfL9ESrfN3sd3MUBDVemlCADAChPX8n3cdH2ZRXX33VFRoPGTLE/vjHP6brWIF2UU2PF/R02m52TK3Zt5Y2XnfeZjZjXuN+BakuKwEACKyUips1fPTMM8/YrbfeapWVlTZ48GDr3LlziyEnIBtUyCwnv242c55ZWVTvyXXdzPpvtvYvKwEACKSUZ3W9++67VlNT42p+KioqWgQ+QLZo9paCnrlzWt7Xt7Wgpz3LTwAAAiGlqOXuu++2Sy65xI4//njXI6e908yBdBhWMtT2fkKzsxpajNkmPYbLshIAECpJBz4qan7++efdMNeZZ56Z2aMCklD43CLbbWM7a3RYVgIAQinpwKehocEVN5dqKjDgB+0dpvJmdc2Ykb5+PgCAvJD0iMCTTz5J0AN/SXaYKnZIVsE7a2kBQChRmYzgr5K+YoXZokWZ6dwMAMgrBD7IXwpe1IFZq6QryIm3SrqGs7SALVPWAQCpDHUBGaEGggsWmM2e3XidakNBLTuhYauSkubbGc4CAMRBxge5U1NjVlXV8XW0WCUdAJCkpNfqCgvW6spi0KMhqtiPH+toAQD8sFYXkDYazlKmJ17MzTpaAIAMIvBB9ml9rOjhrdbW0QIAII0IfODfxoOsowUASDOKm9EuDdsbbOHKhW6FdC0WOmzgMCvsVJjexoOsowUASDMCH6SsZlmNVc2rslX1nw9XDexeYvf3/a59pctebTcJTLbxoPYDACCNCHyQctAzes5oi9jnAcvJr5vNnLfayuqnJDctPdnGg3RXBgCkGTU+SGl4S5keBT2dtpsdU2v2f/PMHp5jVlIfs7OyOQpsNG09HhoPAgBygD4+Mejjk9iCdxbYiPtGfJbhMSurb+vT9dmQVW1t4uyNprZr9hbraAEAsnD+ZqgLSVMhs4KeuXOSfED0tPREa2UpIGIdLQBAljDUhaQVd+vvMj0pf3CYlg4A8AkyPkjasHfNCtsa3oqHaekAAJ8g8EHSCt9fl9qrxbR0AIDPEPiEXSrFxalkbpiWDgDwIWp8wkxTzcvLzUaMMBs/vvFatxNNQfcaD3pBTWu039y58fv4AACQIwQ+YaXgRn12YhcLba3/jtd4UBIFP9XVZvPnN05hJ+gBAPgMgU9Yh7eqquIvF+FtUwCj/ZJtPFhWZvbww2Y339w4PZ2uywAAH6LGJ4xU0xOb6Uml/46Cn4oKGg8CAPIOgU8YJdtXp7X9aDwIAMhDDHWFUbKzs+i/AwAIGAKfMGprdpa2q2ZH+wEAECAEPmHU2uws+u8AAAKMwCesEs3Oamf/nYbtDW719tlLZ7tr3QYAwG8obg6zNM3OqllWY1XzqmxV/eczxUqLSm3mqJlWOZgGhgAA/yiIROI1cwmv+vp669mzp23cuNGKiopyfTipLyuRZQp6Rs8ZbRFr/jEqsMYhtLlj5xL8AAB8c/5mqCtoy0pkkYazlOmJDXrE21Y9r5phLwCAbxD4BG1ZiSxauHJhs+GteMFPXX2d2w8AAD8g8AnishJZsnbT2rTuBwBAplHc7BexdTy63ZFlJbKguEdxh/fTcJkyQgqOtN+wgcOssJM/6pcAAMFD4OMHGrJSdic60OndO73LT2SAghTN3lpdvzpunY8KnHW/9ouH2WAAgGxjqMuvdTwbNvh+WQllZjRlPXoWl8e7PWPUjLgZHG82WGyNkIIobdf9AACkG4GPX+t42uKTZSXUp0dT1kuKmjdCVKYn0VR2ZoMBAHKFoa5c9uHRttbqeBLx2bISCm4q9qlIulYnldlgw8tzU78EAAgmAp9c1O9oWQitlbVlS3I/Q/U+0UNferyCnhSXlcgkBTnJBinMBgMA5AqBTzbqd2KHsrw+PFdfndzPmTOnMbPjw87NuZoNBgBAe7BkRaaWrNDwljosJxrK0nCVt0CoAqF4dT7aR9md2tq8DnTi1fiUzyxvczZYbVUtU9sBAElhyYpca6t+R4GO7j/33OZ1Oz6t4/HLbDAAADqCWV2Zkmx/nb32Mps79/Psj0eZHm33UR1PrmeDAQDQUdT4ZEqy/XW0nzovV1T4dgV2v8wGAwCgo6jxyXSNT8jqdwAAyAVqfHJNwYymrIesfgcAAD+jxieTVJ8TwvodAAD8ihqfTFNwE8L6HQAA/IjAJxsU5KiAGQAA5BRDXQAAIDQIfAAAQGgQ+AAAgNAg8AEAAKFB4AMAAEKDwAcAAIQGgQ8AAAgNAh8AABAaBD4AACA0CHwAAEBoEPgAAIDQIPABAAChQeADAABCg8AHAACEBoEPAAAIjbwJfK677jobOnSodevWzXr16hV3n5UrV9o3vvENt0///v3tsssus23btmX9WAEAgD91tjyxdetWGzNmjB155JH2q1/9qsX9DQ0NLugZMGCALVq0yNauXWtnnnmm7bDDDnb99dfn5JgBAIC/FEQikYjlkXvvvdeqq6vt448/brb98ccftxNPPNHWrFlju+66q9t2xx132OWXX27r16+3Ll26JPXz6+vrrWfPnrZx40YrKirKyHMAAADplez5O2+GutqyePFiO+CAA5qCHhk5cqR7IV577bWEj9uyZYvbJ/oCAACCKTCBz3vvvdcs6BHvtu5LZNq0aS5C9C5lZWUZP1YAABDCwGfSpElWUFDQ6mX58uUZPYbJkye7tJh3qaury+i/BwAAQlrcfMkll9hZZ53V6j6DBg1K6mepqPn5559vtu39999vui+Rrl27ugsAAAi+nAY+/fr1c5d00GwvTXlft26dm8ouTz75pCtwGjJkSFr+jSBq2N5gC1cutLWb1lpxj2IbNnCYFXYqzPVhAQAQ7uns6tGzYcMGd62p60uWLHHb99xzT+vevbudcMIJLsA544wz7MYbb3R1PT/+8Y/t/PPPJ6OTQM2yGquaV2Wr6lc1bSstKrWZo2Za5eDK7LyxAABkUd5MZ9eQ2H333ddi+/z582348OHu/9999137wQ9+YAsWLLCdd97ZJkyYYDfccIN17px8fBeW6ewKekbPGW0Ra/72F1iBu547di7BDwAgbyR7/s6bwCdbwhD4aHirfGZ5s0xPbPCjzE9tVS3DXgCAvBC6Pj5Inmp6EgU9oixQXX2d2w8AgCAh8AkhFTKncz8AAPIFgU8IafZWOvcDACBfEPiEkKasq4bHK2SOpe1lRWVuPwAAgoTAJ4TUp0dT1iU2+PFuzxg1g8JmAEDgEPiElPr0aMp6SVFJs+3KBDGVHQAQVExnD+F09mh0bgYAhOn8nTedm5G5Ya/h5Y0NIAEACDqGugAAQGgQ+AAAgNAg8AEAAKFB4AMAAEKDwAcAAIQGgQ8AAAgNAh8AABAaBD4AACA0CHwAAEBoEPgAAIDQIPABAAChQeADAABCg8AHAACEBoEPAAAIDQIfAAAQGgQ+AAAgNAh8AABAaBD4AACA0Oic6wNA2xq2N9jClQtt7aa1Vtyj2IYNHGaFnQp56QAASBGBj8/VLKuxqnlVtqp+VdO20qJSmzlqplUOrszpsQEAkG8Y6vJ50DN6zuhmQY+srl/ttut+AACQPAIfHw9vKdMTsUiL+7xt1fOq3X4AACA5BD4+pZqe2ExPbPBTV1/n9gMAAMkh8PEpFTKncz8AAEDg41uavZXO/QAAAIGPb2nKumZvFVhB3Pu1vayozO0HAACSw1CXT6lPj6asS2zw492eMWoG/XwAAEgBgY+PqU/P3LFzraSopNl2ZYK0nT4+AACkpiASibScLx1i9fX11rNnT9u4caMVFRWZH9C5GQCA9Jy/6dycJ8New8uH5/owAADIewx1AQCA0CDwAQAAoUHgAwAAQoPABwAAhAaBDwAACA0CHwAAEBoEPgAAIDQIfAAAQGgQ+AAAgNAg8AEAAKFB4AMAAEKDwAcAAIQGgQ8AAAgNAh8AABAaBD4AACA0CHwAAEBoEPgAAIDQIPABAAChQeADAABCg8AHAACEBoEPAAAIDQIfAAAQGgQ+AAAgNAh8AABAaBD4AACA0CDwAQAAoUHgAwAAQoPABwAAhEbnXB9AGDRsb7CFKxfa2k1rrbhHsQ0bOMwKOxXm+rAAAAgdAp8Mq1lWY1XzqmxV/aqmbaVFpTZz1EyrHFyZ6X8eAABEYagrw0HP6DmjmwU9srp+tduu+wEAQPYQ+GRweEuZnohFWtznbaueV+32AwAA2ZE3gc91111nQ4cOtW7dulmvXr3i7lNQUNDi8uCDD1ouqKYnNtMTG/zU1de5/QAAQHbkTY3P1q1bbcyYMXbkkUfar371q4T7zZo1y0aNGtV0O1GQlGkqZE7nfgAAIESBz9SpU931vffe2+p+CnQGDBhguabZW+ncDwAAhGioK1nnn3++9e3b1w477DC75557LBJpWWMTbcuWLVZfX9/skg6asq7ZWwVWEPd+bS8rKnP7AQCA7AhU4HPNNdfYnDlz7Mknn7RTTjnFzjvvPPv5z3/e6mOmTZtmPXv2bLqUlZWl5VjUp0dT1iU2+PFuzxg1g34+AACEJfCZNGlS3ILk6Mvy5cuT/nlXXnmlHXXUUXbwwQfb5Zdfbj/84Q/tpptuavUxkydPto0bNzZd6urqLF3Up2fu2LlWUlTSbLsyQdpOHx8AAEJU43PJJZfYWWed1eo+gwYNavfPP/zww+0nP/mJG87q2rVr3H20PdF96aDgpmKfCjo3AwAQ9sCnX79+7pIpS5YssV122SWjgU2yw17Dy4fn9BgAAEAezepauXKlbdiwwV03NDS4oEb23HNP6969u/3xj3+0999/34444gjbcccdXZ3P9ddfb5deemmuDx0AAPhE3gQ+V111ld13331Nt1XHI/Pnz7fhw4fbDjvsYLfddptdfPHFbiaXAqLp06fbueeem8OjBgAAflIQaWu+d8hoOrtmd6nQuaioKNeHAwAA0nj+DtR0dgAAgNYQ+AAAgNDImxqfoNMq7VqwVGt3aRkLdXTWbDAAAJA+BD4+ULOsxqrmVTVbzV1NDtX5mSaHAACkD0NdPgh6Rs8Z3SzokdX1q9123Q8AANKDwCfHw1vK9ESs5cQ6b1v1vGq3HwAA6DgCnxxSTU9spic2+Kmrr3P7AQCAjiPwySEVMqdzPwAA0DoCnxzS7K107gcAAFpH4JNDmrKu2VsFVhD3fm0vKypz+wEAgI4j8Mkh9enRlHWJDX682zNGzaCfDwAAaULgk2Pq0zN37FwrKSpptl2ZIG2njw8AAOnDIqU+WaSUzs0AAGT+/E3nZh8New0vH57rwwAAINAY6gIAAKFB4AMAAEKDwAcAAIQGgQ8AAAgNAh8AABAaBD4AACA0CHwAAEBoEPgAAIDQIPABAAChQefmGJFIpKn1NQAAyA/eeds7jydC4BNj06ZN7rqsrCxT7w0AAMjgeVxrdiXCIqUxtm/fbmvWrLEePXpYQUFBWiJQBVF1dXVZXfQ0W4L+/ITnmP94D4Mh6O9j0J9fpp+jMj0KenbbbTfr1ClxJQ8Znxh6sUpLSy3d9AYH9YMchucnPMf8x3sYDEF/H4P+/DL5HFvL9HgobgYAAKFB4AMAAEKDwCfDunbtalOmTHHXQRT05yc8x/zHexgMQX8fg/78/PIcKW4GAAChQcYHAACEBoEPAAAIDQIfAAAQGgQ+AAAgNAh8MuSvf/2rnXTSSa6DpDpA//73v7cgmTZtmh166KGuw3X//v3tm9/8pr3xxhsWJL/4xS/swAMPbGq0deSRR9rjjz9uQXXDDTe4z2p1dbUFxdVXX+2eU/Rl3333taBZvXq1nX766danTx/baaed7IADDrAXX3zRgqC8vLzFe6jL+eefb0HR0NBgV155pX3hC19w798ee+xhP/nJT9pccyqfbNq0yf1t2X333d1zHDp0qL3wwgs5ORY6N2fIf/7zHzvooIPsnHPOscrKSguaZ5991v3hUfCzbds2+9GPfmQnnHCCvf7667bzzjtbEKiDt4KBvfbay/0Buu+++6yiosL++c9/2n777WdBoj9Ad955pwv0gkbv1VNPPdV0u3PnYP3Z++ijj+yoo46yESNGuMC8X79+9tZbb9kuu+xiQflsKjDw/Otf/7KvfvWrNmbMGAuKn/70p+6Llv7G6POqoPXss892XYgvuugiC4LvfOc77r27//77XULggQcesOOPP96dM0pKSrJ7MBFknF7mRx55JNCv9Lp169zzfPbZZyNBtssuu0R++ctfRoJk06ZNkb322ivy5JNPRo455phIVVVVJCimTJkSOeiggyJBdvnll0eOPvroSFjo87nHHntEtm/fHgmKb3zjG5Fzzjmn2bbKysrIaaedFgmCzZs3RwoLCyOPPfZYs+2HHHJI5Iorrsj68TDUhbTYuHGju+7du3cgX1F943zwwQddJk9DXkGizN03vvEN9+0riJT90DfMQYMG2WmnnWYrV660IPnDH/5gX/7yl10GRMPOBx98sN19990WRFu3bnWZAmXS07GItF9o2Ofpp5+2N998091+5ZVX7G9/+5t97WtfsyDYtm2b+xu64447NtuuIS89z2wLVs4XOVvRXmO3Srfvv//+gXoXli5d6gKd//73v9a9e3d75JFHbMiQIRYUCuZefvnlnI21Z9rhhx9u9957r+2zzz62du1amzp1qg0bNsyl3FWfFgT//ve/3TDJxIkT3ZCz3ksNj3Tp0sUmTJhgQaJayY8//tjOOussC5JJkya5VctVf1ZYWOiChOuuu84F6kHQo0cP93dUdUuDBw+2XXfd1WbPnm2LFy+2PffcM/sHlPUcUwgFfajr+9//fmT33XeP1NXVRYJmy5Ytkbfeeivy4osvRiZNmhTp27dv5LXXXosEwcqVKyP9+/ePvPLKK03bgjbUFeujjz6KFBUVBWq4cocddogceeSRzbZdeOGFkSOOOCISNCeccELkxBNPjATN7NmzI6Wlpe761Vdfjfz617+O9O7dO3LvvfdGgmLFihWRr3zlK+58qGGvQw891A3l7bvvvlk/FjI+6JALLrjAHnvsMTeLTcXAQaNvzd43ki996Uvu2/TMmTNdIXC+e+mll2zdunV2yCGHNG3TN029l7feeqtt2bLFffsMkl69etnee+9tK1assKAoLi5ukYXUt+qHH37YguTdd991Reo1NTUWNJdddpnL+nzrW99ytzUrT89Xs2eDkrXbY4893KQYlQsou6XP7bhx49wQdLZR44N2USJLQY+Gfp555hk3DTMsw3oKCILguOOOc0N5S5YsabqoVkTpdf1/0IIe+eSTT+ztt992f3SDQkPMsa0kVCuiacNBMmvWLFfDpHq0oNm8ebN16tT8dKzfP/29CZqdd97Z/f5pNuITTzzhZspmGxmfDP6Bjf5WWVtb604mKv4dOHCgBaEg9re//a09+uijbvz2vffec9s1/VIFa0EwefJkV1yo90s9KPR8FyxY4H5Zg0DvW2xNlv4oqRdMUGq1Lr30UtdPS0HAmjVr3KrQOqGceuqpFhQXX3yxK469/vrrbezYsfb888/bXXfd5S5BoQBAgY+yH0FrRyD6jKqmR39rNJ1dLTOmT5/uiriD4oknnnBfmFVvp3OjslyqadK0/azL+uBaSMyfP9+NZcZeJkyYEAmCeM9Nl1mzZkWCQtNLVbvUpUuXSL9+/SLHHXdc5C9/+UskyIJW4zNu3LhIcXGxew9LSkrcbdUaBM0f//jHyP777x/p2rWrq5m46667IkHyxBNPuL8vb7zxRiSI6uvr3e/dwIEDIzvuuGNk0KBBbpq3agyD4qGHHnLPS7+LAwYMiJx//vmRjz/+OCfHUqD/ZD/cAgAAyD5qfAAAQGgQ+AAAgNAg8AEAAKFB4AMAAEKDwAcAAIQGgQ8AAAgNAh8AABAaBD4AACA0CHwAAEBoEPgACCytNq91rCorK5tt37hxo5WVldkVV1yRs2MDkBssWQEg0LRS+Re/+EW7++673crzcuaZZ9orr7xiL7zwgnXp0iXXhwggiwh8AATeLbfcYldffbW99tprbvXyMWPGuKDnoIMOyvWhAcgyAh8Agae1mI899lgrLCy0pUuX2oUXXmg//vGPc31YAHKAwAdAKCxfvtwGDx5sBxxwgL388svWuXPnXB8SgByguBlAKNxzzz3WrVs3q62ttVWrVuX6cADkCBkfAIG3aNEiO+aYY+wvf/mLXXvttW7bU089ZQUFBbk+NABZRsYHQKBt3rzZzjrrLPvBD35gI0aMsF/96leuwPmOO+7I9aEByAEyPgACraqqyv785z+76esa6pI777zTLr30UlfoXF5enutDBJBFBD4AAuvZZ5+14447zhYsWGBHH310s/tGjhxp27ZtY8gLCBkCHwAAEBrU+AAAgNAg8AEAAKFB4AMAAEKDwAcAAIQGgQ8AAAgNAh8AABAaBD4AACA0CHwAAEBoEPgAAIDQIPABAAChQeADAAAsLP4f+8yFWhdrE3oAAAAASUVORK5CYII=",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "plot_predictions(raw_x_test, raw_y_test, linear_pred)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Модель показала достаточно высокую ошибку. Попытка аппроксимировать данные прямой линией не увенчалась успехом."
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Улучшенный бейзлайн\n",
+ "\n",
+ "Заметим что распределение данных имеет нелинейную зависимость, а для аппроксимации в таком случае хорошо подойдет полиномиальная регрессия. Попробуем подобрать степень полинома с помощью GridSearchCV."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 10,
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Лучшие параметры: {'polynomialfeatures__degree': 6}\n"
+ ]
+ }
+ ],
+ "source": [
+ "from sklearn.preprocessing import PolynomialFeatures\n",
+ "from sklearn.pipeline import make_pipeline\n",
+ "from sklearn.model_selection import GridSearchCV\n",
+ "\n",
+ "param_grid = {\n",
+ " 'polynomialfeatures__degree': [2, 3, 4, 5, 6, 7, 8],\n",
+ "}\n",
+ "\n",
+ "pipeline = make_pipeline(PolynomialFeatures(), LinearRegression())\n",
+ "\n",
+ "grid = GridSearchCV(pipeline, param_grid, cv=5)\n",
+ "grid.fit(raw_x_train, raw_y_train)\n",
+ "\n",
+ "print('Лучшие параметры:', grid.best_params_)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 11,
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "MSE error: 1.0778923950444148\n",
+ "R^2 score: 0.9523831355335964\n"
+ ]
+ }
+ ],
+ "source": [
+ "polinomial_pred = grid.predict(raw_x_test)\n",
+ "print_evaluation(raw_y_test, polinomial_pred)\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 12,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAksAAAGwCAYAAAC5ACFFAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjcsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvTLEjVAAAAAlwSFlzAAAPYQAAD2EBqD+naQAAUKhJREFUeJzt3Ql4U2XWwPGTlkUQCiIgpS0U3AABxxVBq0UY6ejMgyKggAIuuGvrDuOCoIiOW6uOC46ijoBiLW7fWAcVtDMyoiiisrgVaEtRXKAgytLe7zlvuTVNk9u0JGly8/89Twi5uUlv0uWenPe85/VYlmUJAAAA/ErwvxkAAAAESwAAAPUgswQAAOCAYAkAAMABwRIAAIADgiUAAAAHBEsAAAAOmjndieBUVVXJhg0bpG3btuLxeHjbAACIAdpqcuvWrdK1a1dJSAicPyJYCgENlNLS0kLxVAAAIMJKSkokNTU14P0ESyGgGSX7zU5KSgrFUwIAgDCrqKgwyQ77PB4IwVII2ENvGigRLAEAEFvqK6GhwBsAAMABwRIAAIADgiUAAAAH1CxFsL3Azp07I/XlAOzRvHlzSUxM5P0A0GgESxGgQVJxcbEJmABEXvv27aVLly70QQPQKARLEWh4VV5ebj7Z6vREp6ZXAEL/+7d9+3b5/vvvze3k5GTeYgANRrAUZrt37zZ/rLU7aOvWrcP95QD4aNWqlbnWgKlz584MyQFoMNIcYVZZWWmuW7RoEe4vBSAA+4PKrl27eI8ANBjBUoSwZhzQdPj9A7A3GIYDAMSVyqpKKVpfJOVbyyW5bbJkdMuQxARmTCIwgiUAQNwoWFUg2YXZUlpRWrMtNSlV8rLyZETvEU16bIheDMMBAOImUBo5f2StQEmVVZSZ7Xo/4A/BUgyljRevXSzzPptnrvV2OE2cOFFOP/30WtvWrVsn++yzD/UfAGKO/s3UjJIlVp377G05hTlh/9uK2MQwXAyIlrTxLbfcQqAEICZpjZJvRsk3YCqpKDH7ZaZnRvTYEP3ILEW5aEkbf/bZZzJnzhy58sor69z33//+VzIzM8307P3220+GDRsmP//8s2zatMl0Tb7zzjtr9n3//fdNG4W33367Ztujjz4qBx54oNl+6KGHyj//+c86X+O2224zgZr3xTvz9fTTT5suzd7Wrl1r9lu+fLm5vXjxYnN78+bNdZ5ft+l9uo/t888/lz/96U/Spk0bOeCAA+Tcc8+VH374od73Kj09vc6xvvzyyzX3FxYWygknnGCOd//995c///nP8s033wQ8bu/nzc3Nrbnt+7xKvw85OTkBH+NN3z/NINp27Ngh1113naSkpMi+++4rAwYMqPV+ALFMi7lDuR/iC8FSFIumtPHkyZPlL3/5iwwaNKjWdj2hDxkyRPr06SNLliyR//znP2Y/7S/VqVMneeqpp0yg89FHH8nWrVtNwHHFFVeYx6gFCxZIdna2XHvttSY4ufjii+W8886TRYsW1TmGww47zHRD18vo0aPD+no1eDr55JPliCOOMMeuAc53330X9NedPn16zbH6+uWXX+Saa64xz6tBo3Z1P+OMM5p8ORz9vuj38Pnnn5cVK1bIqFGjJCsrS7766qsmPS4gFHTWWyj3Q3xhGC6KRUva+L333pM333zTZJfWrFlT676//e1vcvTRR8sjjzxSK6ixnXrqqTJp0iQZN26c2U8zFjNnzqy5/9577zXZjcsuu8zc1iDif//7n9k+ePDgWlkP7cSsmSql/9dt4fLwww+bQMk7K6aBny5Z8+WXX8ohhxwS8LF6XB06dKg5Vl9nnnlmrdv6vBpYrly5Uvr27StNYf369TJ79mxzrd3mlWaZNEjU7d7vAxCLtD2Ali9oVt7fB1CPeMz9uh/gi8xSFIuWtLFmlSZMmCC9e/euc5+dWXKigY8u+/Liiy+aobyWLVvW3Ldq1So5/vjja+2vt3W7tx9//FGSkpIcv86WLVvMkJl98Q7avKWmpkrbtm2lR48eJpDTx/n69NNPTXbL+/l69epl7vMeMvPnp59+cjxWzdSMGTNGevbsafbToTKlgYo3zeJ5f33f+5U+j/c+RUVFdfa58cYbzX261IcO0+mwqS8NhDUbqEGg9/O9++679b5eIBZoHyWt87QDI2/27dysXPotwS8yS1EsGtLGOkz2ySefyPz58x3X3XKiJ9sNGzaYYSatx+nXr1+Dj+Pbb781wY0TDYA+/vjjmttlZWUmOPClAYXuq8dy4YUXyk033SR33HFHrX22bdtmhhPvvvvuOo93Woy1tLRUdu7c6Xis+rzdu3eXJ554wmRx9H3RjJI+ztsLL7xQK0D191oeeOABGTp0aM1tzeD5uv766032Tof/7rnnHvP1N27cWOf16mLPy5Ytq7N2mgZNgBvohJj80fl+J8xooESfJQRCsBTFmjptrJkGDSS0qFuzMf7079/f1N1MmzbN7/0aAJxzzjly1llnmeJtDU40i6FZDqXBgGY6NHNl09taA2X77bffZOnSpabeyYnW/hx00EE1t5s18//jrYGMFlfrvlqXo3U6vo488kh56aWXTNYn0PP4o5kYDSB1yNEfzZDpUKYGShkZ1d83rfPyR4f86ns9OtTnvY+/4LVjx441+0yZMsVk93yzVDrkqN9vXWzWPi7AjTQgGn7ocDp4o0EIlmIgbayz3jQw8g6YIpE2fuutt0xfJT3BBqL3aaZIa44uueQSM6NNh680CNGTtAZbOsz14IMPmgzFv/71Lzn//PPl9ddfr8l6aNG0nqw1Q/Laa69JQUGB+dp2xkOLpZXOILMzIr/++qupDdLnbteuXYNelz5OAzDNLL3xxhvmeX1dfvnlJqDRYa4bbrjB1CB9/fXXpvj5H//4h9+V6zWDdtddd8nw4cPrzLjT2xo46mxBnQE3a9Ysk6HSoEWHOcNJh0D19WpmSeuj9P3SQMybDr9pVmr8+PFy3333me+HzmbUQFgD4tNOOy2sxwhEkv7NpD0AGsTCXtuyZYtGMeba16+//mqtXLnSXDfWSytfslLvT7XkNqm5pN2fZraHy4QJE8xrmjlzZq3tCxYsMNu9LV682Bo0aJDVsmVLq3379tawYcOsn3/+2Vq0aJHVrFkzq6ioqGbf4uJiKykpyXrkkUdqtun/e/bsaTVv3tw65JBDrGeffbbmvqlTp5qvF+iix6lmz55ttWvXrtZx6dfSfT755BNzW4/H+7EdO3a0xo4da/3000/meHWb7mP78ssvrTPOOMO8platWlm9evWycnJyrKqqKr/vWffu3R2P1X7uhQsXWr179zbvV//+/c37p/fre+vvuL2f/4EHHqi57f0Y20knnWRlZ2f7PSZ9Dcccc4z1zjvvmPuGDx9e8/6pnTt3WrfeequVnp5uvhfJycnm9a9YscKKdaH4PQQQvN2Vu61FxYusuSvmmmu9HWvnb28e/adh4RV8VVRUmE/rmuXwLezVT/TFxcVm6EezNI0Vrws/atsB72tv2mNIL9pjKRrokJ32JbILtn17Gmn/I391Rwi/UP0eInLi9W+eGxRESSPlvT1/e2MYLkbEa9rYqbhYT3oNHYILJ53+7294Tunwmw5RAnDXyRb+Gyn71tnajZS1wD4Wv4dklmIkswSg8fg9jP2TrV2nGasn23jJBqbnpQfsD2hPSirOLo6aLGGwmSX6LAEAokI0rVqA8DZSjjUESwCAqODmk208KG9kI2UNfhevXSzzPptnrqMxGKZmCQAQFaJl1QJErpFyQYzUp5FZAgBEhWhYtQB730jZ47OcjE23pyWl1TRStuvTfLOJdjG43h8tXBUs6QKtxxxzjFnKQjtE63Rt34Vffem0c4/HU+tCITYARP/JFrG7/l5ljNWnuSpY0qUmtPOyrlq/cOFC2bVrl5xyyimmc7ETrYAvLy+vuaxbty5ixwwAqMZit+5Zfy8lKaXWdg2CvWcyBl2fVrxYZPFikXnzqq8rmyZ4clXNUmFhYZ2skWaYdHHQE088MeDjNJuka2wBAJoWi93Gx/p75UHUnZ2xUuSY40eLfPfT7xt1ndK8PJERka1nclWw5Ev7Jihd18uJrj+mq8Dr6u+6gOqdd94phx12mOPaYnrx7tPgNrpK/TPPPBPw/p9//tksRgsgtsRCZ2wWu3V/I+Vkr7qzhCqRjHUiydtEytuIFHUXGb5aJH++Dt95BUqqrExk5EiR/PyIBkyuDZY08NHlJY4//njp27dvwP0OPfRQs7ioLhaqwdW9994rgwYNki+++EJSNYINUBs1bdo0iShNPRYViZSXiyQni+jK8AG6RYdKVlaWzJ49u9a2999/X84888ywfl0A4RErM4/iedWCeKtPO/Z/pZJbKJLmlXMoaSvSanf1/+tUr+kKbR6PSE6OyPDhYT8PurJmyZvWLn3++edmlXgnAwcONCut/+EPf5CTTjrJrHivy1Y8/vjjAR8zZcoUE1jZl5KSEgmrggJdeExk8GCRsWOrr/W2bg+jli1bmuFJ74tvlk6HOjXDpGu0HXzwwaY4ftiwYXXek1deecVk7fT+nj17mmBz9+49vw176PpvvsX2WqTv7b///a9ZX61169ZmCRH9WprlUrpdA2TbP/7xD3NsH3/8sbldWVkpF1xwgemm3qpVKxMo52k618vkyZOla9euZmmSlJQUufHGG03gHezjNSPne8z2e+T9OvXnzZuuKaevd/PmzX4f42358uVm37Vr19Zs+89//iMZGRnmuNLS0uSqq66qt1ZP+b7fetHnt/3zn/+Uo48+2kya0O//2LFj5fvvvw943N7Pqz8TSo/T93mVrqGXm5vr9zG+9P3yXh9Qv96FF15ofle15vDkk0+WTz/9tN7XG89iaeYR3C8xIVFeTBwjL84XSfEZnEnZKtLxV4cARQMmPcdoAiFCXBksXXHFFfL666/LokWLAmaHAmnevLkcccQR8vXXXzsGEfoH2vsSNhoQacqxtNR/KjLMAVMwtm/fLjNmzJBnn33WBDN6Ijv77LNr7i8qKjIBaXZ2tqxcudIEohoM6GN86fCnXWg/evToWvfpyXbIkCHSp08fWbJkiQkQ/vKXv5ggxtf8+fPl6quvlldffdUEaUqDHv15ePHFF81x3HrrrfLXv/7V7GvTCQH6s6Pffw22Zs2aJc8991zQj28K33zzjckCasZvxYoV8sILL5j3Rn8PgqHZQ32/ly5dWuc+nSRx++23m0BEAxkNfDQgbGqjRo0yQdsbb7xhahL1e6w/Gz/95JOyhxFrM48Qwyorqwux58wR0Q9Deu2vMLuyUo67Z57JHCU0NjDRkZYIcdUwnGVZcuWVV8qCBQvMJ17NADSUnng/++wzOfXUU8NyjA08GJHs7OooOkpSkf7oCfXhhx+WAQMGmNta69S7d29z8j322GNNFkkzNhMmTDD3a2ZJT8A33HCDTJ06teZ5tA5MMyN2sb3+37s27G9/+5vJcjzyyCM12/zVlukJ9LzzzjNBjXdhvwbC3sOn+vOhQZcGO3ZgphkK758FPQY7GAvm8U1Bh4XHjRtXk1XTDN+DDz5oMqWPPvpowFYY9nur2Rl9z3X9NF/nn39+zf/1+6bPq+05tM7PaZHjcNJAUH+2NFjSDy5Kh881mMvPz5eLLrqoSY7LLZ2xGfpCo8tDNm0Sueaauh/u/RVm6+NKSwM0iQiSfs0Iaea2obe5c+eaIR8dNti4caPZrovk6UlPaYZDh1f0BKOmT58uxx13nBx00EEmI3LPPfeY1gGa4m9ye36YJJhUZGbTje03a9bMnEBtvXr1MkNIq1atMsGSZiU04+SdSdIARE/OmpXSITX1448/OmbpNLOkGQUnehLVbJCeyO3gzdvf//53U6O2fv16+fXXX2Xnzp11hsS0wP+OO+4w92t2Rn9mGvJ4zUx5BxI63OgbsGhA7r2Pv+yYDvHqPgkJCXLAAQfI8OHDa35uven7qxmlOfoJzuuDg2bCdBFnDVz90fdbOb3nmrXR4S/9GjrcaQ9J6uvXDJ8tmAyu1gLqa7Hp997XmDFjJDEx0fz+arZIfx+9v479ejVY23///Wtt1++HZtlQF52xEXIFBdUf5p3OUd50P+/C7L3JCmmiQP/maO1uhLgqWNJP0Xbtiu8wgz10oH/kvf9g6wlg0qRJJrDSGpijjjrKFDH7/oFuEsH+MEUwFdkYemLTjMwIPzMXvIOIb7/91jEbaAe8TjTToz8HmmHQQGee9ubYQ+vXrrvuOrnvvvtMrZqekPVk/MEHH9R6jksuucQcqwYKmq3R/w8ePDjox+u+9s+i0jo4DcC8ab2TDhHa9DnOOeecWvvo82u9lQY+OuynmTnNAA0dOrTO+3vxxRebOiVf3bp1C/he6futAr3nWvOkNWF60UBMM1D6+6O3NUj0pkOterw2zW750uFB78DN9/dUPfDAA+b16QcXHeLUjJ3WHvq+3uTkZJM99sUMTf/ojI2wlIdYfkY9nOj+9mhIY7NCGigpHeKL4IiKq4IlPanUx/cPrP5x1ktUCvaHKYKpSH80c/LRRx+ZLJLSrul6srNPjJoh0G2avQtEs0yaFTr33HMD7qMzFt9++23HmYj6eA12/vSnP5lZkDoke8YZZ5j7NLul2Y3LLrusZn9/mQgtYteLZsg06HrppZdMABTs4/fdd99ar1V7ffnSAnLvfUr9fDrToN7eR4OPP/7xjya75hss6furwZTT+xuoiasWWQfKCq1evdpkn+666y5TNK70++yPBlz1BSr6HN7HqBlJXxoM2vtojZvWpOkwr+/r1Q83+ng9fgQ/80iLuf3VLWl3Zb2fzthxpjGzrCsdykOCYY+G6NfSvz1af+vvuTQo0glF+iHZ+++jPkYDpQj3WXJlgbdr2D9MdiTtS7frSSyCqUh/tJZHa8U0O6LZGM3i6dCmHTxpIbQWf2uQoy0ZdHhOszQ333xzTaZA91EnnHCCORHqRYdVtK7G7pelsxA//PBDE6zosJOezDWD88MPP9Qciz1bT/tmadbn0ksvrRlu0oBDT/ZvvvmmfPnll3LLLbeY5/Om9VB6jFrIrIXd2gleC/6DfXyoaRCp74O+r1qr468Nhs7Y02yoZtI0mPrqq6/MULRTgbfup0OKOqxpv9+btN5gz/CcDgtqVkqDuoceeshkoTQTprVm4aSBkb5mPR59/w855BDz8+VNg0XN7Omsw3//+9/me6Wv/6abbgoYzMU7OmMjZLOsi+opDwmGBmcalNmziX3PcfbtWbN0Oq3IokUic+dWXxcXRzxQMizstS1btmhYbK59/frrr9bKlSvNdaO89JJleTzVl+r4u/pib9P7w2DChAnW8OHD62xftGiRea0///yzuT179myrXbt21ksvvWT17NnTatmypTV06FBr3bp1tR5XWFhoDRo0yGrVqpWVlJRkHXvssdasWbPMfVOnTjXPGeiix2JbvHixeR79Ou3bt7eGDRtWcywnnXSSlZ2dXbNvVVWVNWTIEGvMmDHm9m+//WZNnDjRHK8+9tJLL7UmT55sHX744TWPOfXUU62OHTua5z/ooIOsGTNmmOcJ9vH+3jf7PbLp6/V+TKD31X79Ho/H6tKli/l6O3bssD755BOzvbi4uObxS5cutf74xz9abdq0sfbdd1+rf//+5tgDcXq/vZ977ty5Vnp6unk/Bg4caL366qvmfj0Gf8ft/fwLFiww/9fn8n6MrXv37tYDDzzg95jatm1rvp/Lly839+n7pe+braKiwrryyiutrl27Ws2bN7fS0tKscePGWevXr/f7evf699AlXlr5kpV6f6olt0nNJe3+NLMdLrV7t/6i6i9z9bXets8r3ueUYM8rc+fWfVxDL3ocNv1aqam1709LC9u5rSHnb28e/SfyIZq7aAdvLSLXDIhvsax+StYiWx2maPQCvf4K6TSj1ASpSF/aAkDrenz77DSE3T/Hu4+OTWc46UW/DkJHexoF+tXXgnV9z900xBWS30OXiIUO3ggRf+cOHa349VdNITsXT2sGx9+Q3OLF1VmoxtJzl+9zN0HT5WDO366tWXItDYi0IK6JfpjCzWkKup7Y9AcZoaWz6wLp2LGjmZEGd4p0Z2yCs1C9kQ0MKAIVYdc3hFbfLOuMemqNnGgg5q8wW2834YzuYBAsxYoY+GFqLJ1hFog2W9QLQstuq+HPW2+9xduNuFteJSYzRIEWlN3bImynWdaJe2qNNBDT4CfYr9HI0ZBoCbYZhouFYTgAe4Xfw6ZbXsV39p3OvFP5o/MJmIJ6IwNkiOwiaH8Lyu7tUJnSYmqnD+gFAcpD7r9f09PVmSedNNKpk0hKSqNGQyIRbAc7DEewFOY3mz/SQNPj9zCyNBuQnpcesGu43aqgOLuYeinHN7KyeoZaoKGzQPVF2l9OZ7g1Rn01S97CWGsUqWA72GCJ1gERQh090HT4/Yve5VUQolUcGtF7z3cAzWpow8fEPeUhY8ZUX4coUIrGtQwJlsLMLpT17XgMIHLspVV8ezYhPOJ2eRV7EVnN7PhbPDZSqzgE0aNvR/u2Up5UOwTY0C5B/pd73V7Nsq6sqpTFaxfLvM/mmevGBDTRGGxT4B3uN7hZM7P2mTb80z/U3kutAAh/RkkDJV10VzuMM8svMuJyeZWGFmGHcxUHpyJsbRsilow9Zau83EskY51I8jaR8jYi/+leKVU/3yv5q45r1BBXQYhqjKIx2CZYikA/G13HSou8dYFeAJGngZIupYLoWF5F7d9qf5N10EvM93naU4Stwbl3LscqKxOP9+KxDRXMkiCBFpTVr6df1yeAs1JT5KIhv0pBenWfpXd9lob07BniGn7o8AZ9XwoC1Bjpz4Bub0iNUTQG2xR4h0AwBWK6WjtDcUDkaUaXjFLk2SdPFShgckUrgT1F2FZpaa1AyWZ5RDypfhoxNnQ2nHmy2hkio75AzKcIe3FapQx+rvb6kv4smrAo6H5clSEu6Lefr761DEMxQYCmlFFGh99oHQAgXmjwo9kE32EZX43JPERjEXaA6iDx6LneqcljfQJkiIJeUNanR1/5Z/NCPsRV1IAao2ACMHstQ/250MDIO2CyZ8PlZuVGNCNJAQ0AICw0+FmbvVbeOvct6dCqepHrqJjdFMJC7CodIgvhfn5pQBSiBWXDMcRVHoYaIzvYTklKqbVdM0pNEVhTswQACBv99K+Xn379KWSZh2gqxF6RuEn+EML9wr2KQ331ZPYQl+4XrOQw1RhpQKS1U9HQwZvMEgAgrF5Z/Up0zG6y6398exdp1ke36/0NtLpXJylJEqkKcL9uX59UvV80sIe4vIe09naIK2NPAOb7fN7Pm5aU1qAAzPt4NYAe02+MuW6qyQAESwDQRELRkyYWCr1zP8ht+tlNTuul2dtycho8JNelfYpk71m+0jdgsm/nZFXvFy1CPcSVGIYALNowGy4Egq2mB4B4WmS2vllS3jTzENblT4JdL62+NdECvMZj/1cquYUiaRW/36cZpauzRD48LsyvrZFCvUhtgZ+faf2+aqAUrT/TzIYDgCgVyp400ay+WVLe6mQeQr3uWGO7YQc7c6tipLzSy5ITajV5FKlK8Eh+lGZV7CGuUBkRRTVGoUaBNwBEUH3rXumwRWOaAkYjfzVICVW1u0YXdRe5alBO7eAwmrphN7BNwrsJsZNViYUALFoQLAGIWaEeRoiEUPekiWb6PbGDo5StIid/I3L6GpH9f/t9Hy2O3pK8X90ibN/aIrsIuym6YcdwViUWf0eiEcESgJgUqzU/0bjuVbhkfPSDlOQlStctgYumUypEUi+7TaRzX5Hhw52LsDWg0SJs3a+hQ3L1rJdmaJPHvRjqi7asSrh/RyrjKBBjNhyAmK358c3Q2DU/en+0isZ1r8KioEASR4+WZIdAyT4JmVBFgyAtwvad1u9NAxy7G3Zj2N2wU3xmpmlGqbEZqzj9HSlYVWAK2wc/M1jGFow113o7mn/39gaz4UKA2XBA5IR6HapIi+S6Vw0/uBAVVe9ZL80x8PHn5ptF7rij/v20i/WYMdJooS4ej7PfkYIAExTsNgGxNEEh2PM3mSUAMaUhNT/RqMl70gRa6kNrhTTA0en1Y8dWX+vtRjRqtNdLC5tGFGH77YatAZdeuyhQCvfvSGU9ExQivnRNhBAsAYgpbqj5iei6V97B0fTpIt271w2IbrghtJ2tGzj9voYGLjokZtcQ+dLtaWmNLsKOF+H8HSmK8Q8rjUWBN4CY4paan5DOngo0rORvCr4vve+ee/zf19ii6sZkfjQI0mApzEXY8SCcvyPlLviw0hhklgDElHCuQxVWfoa/Ei2RzLUiYz6vvtbbDRZo+CxQtqihGlNUbU/TD5Qh8scOguKoCDsWf0eSXfJhpaHILAGIKTUdk+ePNH/0vWsnwlLzY2dtdEhq0yaRTp2qT+QNKQr2l+HZf//q6x9/bHzjRaeeRIGyRY3VkKE172n69dH3Ydas2q9Z/6+ZLBcXYYdzmn44f0cy9gRi9U1QiLoPK3uJ2XAhwGw4IPJCug5VY4axgg1sAgU0/tiZmGAyKI2dcdZYDVwzzXB6/zRIuuoqkZtuiusgKJz9ksK1VlvBntlwyl8g5sbZcARLEXyzAYRWSJriBVpaQ2dK3XuvWJYuQeIQ3DgFNo0JaOxO0sXFzkFEsAvD7iXLI+JJTav/eMKZmYtjeztNP1yNIwticNFcfwiWovDNBhBie9svp56sj2717E1gszcBTX2ZHK190hqlELC8rr0LWav2XC/Nu16Ou+pvIflacE9PsUoXdPCmzxIAd9vbvkAaaAVaWmMPz94WPzd2Cn0wj93bXkN7WB6taRH52yCRMp/PeqVJIqNGi4yufN51fXNiQbRP00/cs7zLmH5jzHWsBUoS77Ph/v73v0t6errss88+MmDAAFm6dKnj/i+++KL06tXL7N+vXz/517/+FbFjBdAIdkZob/oChbJxYqDAZm8Cmvoe25gZZ37s6NJRRo4WmXyKSHqOSOYEkTFnVl/3yBEp6COu7JsTC+J1mn40cl2w9MILL8g111wjU6dOlY8//lgOP/xwGTZsmHz//fd+93///fdlzJgxcsEFF8gnn3wip59+url8/vnnET92IFQ0C7B47WKZ99k8c+2qrIBTRsjepn2B7M7UgexN1sf3kA7oHLqAJtjGi3tmnGl2wR4us1XtqTWS66+v/vre9Pa0adVLhixaJC//6wFZ0GfP4xJE3u0h8ny/6mu9beOEHHnxOk0/GrkuWLr//vtl0qRJct5550mfPn3ksccek9atW8tTTz3ld/+8vDzJysqS66+/Xnr37i233367HHnkkfLwww8H/Bo7duww45zeFyBauH6By/oyQsH2BQrBMJYGJeuTRIq61zOFXgUTMDWw8WJBb5GRo/wPn+n2gvOOE1m7trr+aU9wZG7femvNUh9d2vv0MwqAE3LkxWxPMRdyVbC0c+dOWbZsmQwdOrRmW0JCgrm9ZMkSv4/R7d77K81EBdpfzZw50xR025c0/RQIxMFK41Eh2IxQPftVHj9INrRLrJOVqZWd8Spy9ne/yskSKd/uP3NtBGqyqFPn7V5LjWi8aK/RpcNk/obPFvTxVK/RpedZh3XQOCFHryZfRxDuDJZ++OEHqayslAMOOKDWdr29ceNGv4/R7Q3ZX02ZMsXMfLMvJfopFmhiUbXAZaDFWkMh2IxQPfsVlb0vVwyrPi5/w1gSoOi5VvZmtAYlQWRdNPjxzfB89131xXubzqoLsiGld/Gvv+GzYIt/OSFHt4iuI4iA6ODdCC1btjQXIFZnzujMlbAJ1LeoIZ2pndh1QFrM7a9uyZ7OX0/Nj9bgaKCjAU9eoUhaRe1ASDNGev9fh4pkrBPpulWk8y8im/YVKWtbPfRmJegwSJDdiu2V7n01tNGj1/EHQ7OKWrfmNL3bPiH7a3wYa31z3Cik6wiiUVwVLHXs2FESExPlO/205kVvd+nSxe9jdHtD9geiVVTMnHFafkO3h2JtL++lNPZisVU7G6QB0Su9qgOi5G0i5W2qAyG7uLnNPknybo+6dYlNPQwSbA1Rzps58sP2H+rt/MwJObrZ0/TRNFw1DNeiRQs56qij5O23367ZVlVVZW4PHDjQ72N0u/f+auHChQH3B6JVk8+cCdUstWCEYLFV71odf8NYdvHspus3ybTMadKhVYeoGgapr9bI5h0o1Ve/Fk99c4CGcN1yJ9o6YMKECfL444/LscceK7m5uTJ//nxZvXq1qUUaP368pKSkmCJtu3XASSedJHfddZecdtpp8vzzz8udd95p2g707ds3qK9JB29EU7ff+ha4DFu332C7VTdmjbEwdfBuyBpX0dit2On4/f0MREvnZyBaxG0H77POOkvuvfdeufXWW+UPf/iDLF++XAoLC2uKuNevXy/lXrNkBg0aJHPnzpVZs2aZnkz5+fny8ssvBx0oAdGiyQt1QzRLrUHsOqAAM71CWTwbjVmXQMffsXVHx8c1dednINa4LrPUFMgsIZo02QKXTZFZCpFozBrtzfFrdvGcBefU+7i5I+aa4A+IVxVBZpZcVeANoAkLdUM0S60pxHrxrO/x6+y3YNBoEggOwRLgQk1y8g/RLDWErvi7vvo1Oj8DwXFdzRKAJhSCWWpwQf0a4DLULIUANUtAaGepIcbr1wCXnb8JliL4ZgNRgUAmrsR68ToQThR4A4j8UiSIOrFevA5EA2qWgHhhL0XiHSh5L0Wi9wMA6iBYAlyuctdOWT7nPvntvPFiRWIpEgBwGYIlwMX+9+AN8l2n1vKHc66TfSp+CbyKmAZMJSXVRdkIW+2Q9j+a99k8c623AcQG+iwBblRZKStzxsmxD7/QsMeFaCkSiorrn5WmfY50ej+z0oDoR7AEuIkOo82YIVZenvT56aeGP16n+e8lAgP/i936NofUhpG63XcNOgDRh9YBIUDrAEQFLdC+6CKRH39s+GPtpUiKi/eqH1KgwMBuhBhvgYFm2NLz0mtllPx10i7OLmY6PxDF529qlgC3BEpnntn4QCkES5FoYKBDTf6W17C35RTmxFWtjvY3ChQo2e9LSUWJ2Q9A9CJYAtww9Ka9kxorREuREBjUpY0gQ7kfgKZBzRIQIwIWTesMNt/eSfWoEpHNrT3S7uVCSTx5SEiWIiEwqEu/T6HcD0DTIFgCYoBj0XT5jgYHSurLmdfJcX88JWTHSGBQlwa0+n3SYm5/w5N2zZLuByB6MQwHRDm7aNq39sWeTfXezq8a9Hzl7RJkad71ctxVfwtLYOC7yr1Nt+sirvEUGGjmTwNa5fu+2Ld1UVvWagOiG8ESEMWCKZo+94dZsqFdQk3GyB9rz6X46vOky6ZfQx4oKQID/3T2n84CTElKqbVdA8t4mx0IxCpaB4QArQMQLtrpefAzg83/E6pEMtaJJG8TKW8jUtRdpGrPx50zVorkzw/8CWhTK5Hv7p8mfS+5NewNI/0NGWpGSTMo8RwY0KgTiN3zN8FSBN9soKF0aYyxBWNNMJRXKJJW8ft9JUki2VkiC/pU3/a3zw+tRPIGiNx5oshzI+dKy2YtI9JJmsAAQCwgWIrCNxtoTGbpwRsH+80a2cNuI0f/HjA5ZZ+mZU6T2xbfRsNIANiDYCmCCJYQLpW7dpqFcLtsqfQ7vKYBU3n7RBl40wFS+kt5wBlXWi9jWZaUbS3z+3XoJA0gHlXQwRuIfYn/fV+6BgiUlG5P2Vwpz3W62HHG1aQjJwUMlBSdpAEgMGbDAdGsPLjOzie2ONhxxtXBHQ4O7svRSRoA6qApJRDNkoPs7JycLCN6Z8rwQ4f7nemmtU9BPQ2dpAGgDoIlIJplZFSv3VZWJmJZ/hfB1ft1vz29jjLTM+s+DZ2kAaDRGIYDopmu2ZaX93tg5M2+nZtb79puNIwEgMYjWAKi3YgRIvn5Iim165FMRkm36/3BPA2dpAGgUWhKGQK0DkBEVFaKFBVVF31rLZMOvdWTUfL7NGHu4A0Abjt/U7MExAoNjDIz9/5pAtQ1AQD8YxgOAADAAZklIEaH0wAAkeGazNLatWvlggsukB49ekirVq3kwAMPlKlTp8rOnTsdH5eZmSkej6fW5ZJLLonYcSPOFBSIpKeLDB4sMnZs9bXe1u0AgKjkmszS6tWrpaqqSh5//HE56KCD5PPPP5dJkybJL7/8Ivfee6/jY3W/6dOn19xu3bp1BI4YcUcDopEj6/ZL0h5Kur0BM9sAAJHjmmApKyvLXGw9e/aUNWvWyKOPPlpvsKTBUZcuXYL+Wjt27DAX72p6oN6ht+xs/40ldZv2TMrJERk+nCE5AIgyrhmG80enAnbo0KHe/ebMmSMdO3aUvn37ypQpU2T79u2O+8+cOdNMNbQvaWlpITxquJLWKJWWBr5fA6aSkur9AABRxTWZJV9ff/21PPTQQ/VmlcaOHSvdu3eXrl27yooVK+TGG280GakChxoSDaiuueaaWpklAiaEYkHcoPcDAERM1AdLkydPlrvvvttxn1WrVkmvXr1qbpeVlZkhuVGjRpl6JCcXXXRRzf/79esnycnJMmTIEPnmm29Mkbg/LVu2NBcgHAviAgCiS9R38N60aZP8+OOPjvtofVKLFi3M/zds2GBmuB133HHy9NNPS0JCw0YatSC8TZs2UlhYKMOGDQvqMXTwRlA1Szrrrb4FcYuLqVkCgAhxTQfvTp06mUswNKM0ePBgOeqoo2T27NkNDpTU8uXLzbVmmICQL4irs940MPIOmBqwIC4AIPJcU+CtgZJmlLp162bqlDQjtXHjRnPx3keH65YuXWpu61Db7bffLsuWLTN9ml599VUZP368nHjiidK/f/8mfDVwpRAtiAsAiKyozywFa+HChaaoWy+pevLxYo807tq1yxRv27PddOjurbfektzcXDP8pkXaZ555ptx8881N8hoQBzQg0vYAdPAGgJgR9TVLsYCaJQAA3Hv+ds0wHAAAQDgQLAEAADggWAIAAHBAsAQAABAPs+GAWFFZVSlF64ukfGu5JLdNloxuGZKYQH8lAIhWBEtABBWsKpDswmwprfh9Ud3UpFTJy8qTEb3pswQA0YhhOCCCgdLI+SNrBUqqrKLMbNf7AQDRh2AJiNDQm2aULKnb1szellOYY/YDAEQXgiUgArRGyTej5BswlVSUmP0AANGFYAmIAC3mDuV+AIDIIVgCIkBnvYVyPwBA5BAsARGg7QF01ptHPH7v1+1pSWlmPwBAdCFYAvzQQuvFaxfLvM/mmeu9LbzWPkraHkD5Bkz27dysXPotAUAUIlgCfOgU/vS8dBn8zGAZWzDWXOvtvZ3ar32U8kfnS0pSSq3tmnHS7fRZAoDo5LEsq+5cZjRIRUWFtGvXTrZs2SJJSUm8ey7oheQ7xd/O/oQiqKGDNwDE1vmbYCmCbzaimwYxmkEKNMVfAybNAhVnFzNcBgBxdP5mGA7Yg15IAAB/WBsO8NPjKKFKJGOdSPI2kfI2IkXdRar2fLSgFxIAxBeCJcCnx9EZK0XyCkXSKn5/a0qSRLKzRBb0oRcSAMQbhuGAPbTH0YVr95f8+SIpXoGS0tu6fdLa/emFBABxhmAJ2CPREsl7w/8vhn07t7B6PwBA/CBYAmxFRdL6ux8D/lLo9tYbfzT7AQDiB8ESYCsvD+1+AABXIFgCbMnJod0PAOAKBEuALSNDJDVVxON/sVuzPS2tej8AQNwgWAJsiYkiedWL3dYJmOzbubnV+wEA4gbBEuBtxAiR/HyRlNqL3ZqMk27X+wEAcYWmlIAvDYiGD6+e9abF3FqjpENvZJQAIC4RLCF+VVYGDoj0OjOzqY8QABAFCJYQnwoKRLKzRUpLaw+1ac0SQ20AAC/ULCE+A6WRI2sHSqqsrHq73g8AwB4ES4i/oTfNKFl+1iyxt+XkVO8HAIDbgqX09HTxeDy1LnfddZfjY3777Te5/PLLZf/995c2bdrImWeeKd99913EjhkRpjVKvhkl34CppIQlTQAA7gyW1PTp06W8vLzmcuWVVzruf/XVV8trr70mL774orz77ruyYcMGGUHNinuxpAkAIN4LvNu2bStdunQJat8tW7bIk08+KXPnzpWTTz7ZbJs9e7b07t1b/ve//8lxxx3n93E7duwwF1tFRUWIjh5hx5ImAIB4zyzpsJsOqR1xxBFyzz33yO7duwPuu2zZMtm1a5cMHTq0ZluvXr2kW7dusmTJkoCPmzlzprRr167mkqZLYCA2sKQJACCeg6WrrrpKnn/+eVm0aJFcfPHFcuedd8oNN9wQcP+NGzdKixYtpH379rW2H3DAAea+QKZMmWKyUvalRGtcEBtY0gQA4LZgafLkyXWKtn0vq1evNvtec801kpmZKf3795dLLrlE7rvvPnnooYdqDZmFQsuWLSUpKanWBTGEJU0AAG6qWbr22mtl4sSJjvv07NnT7/YBAwaYYbi1a9fKoYceWud+rW3auXOnbN68uVZ2SWfDBVv3hBjFkiYAALcES506dTKXxli+fLkkJCRI586d/d5/1FFHSfPmzeXtt982LQPUmjVrZP369TJw4MC9Om7EAJY0AQC4IVgKlhZkf/DBBzJ48GAzI05va1uAc845R/bbbz+zT1lZmQwZMkSeffZZOfbYY01x9gUXXGCG7zp06GCG07TVgAZKgWbCwT0qqyqlaH2RlG8tl+S2yZLRLUMSE/asDQcAgNuCJa0j0uLu2267zdQo9ejRwwRLGgjZdOabZo62b99es+2BBx4w2SfNLOnjhg0bJo888kgTvQpESsGqAskuzJbSit8bVKYmpUpeVp6M6D2CbwQAoIbHsvyt+4CG0D5LmqXSmXEUe8dGoDRy/kixpPaPvkc85jp/dD4BEwDEgYogz99RPxsOCPXQm2aUfAMlZW/LKcwx+wEAoAiWEFe0Rsl76M1fwFRSUWL2AwBAESwhrmgxdyj3AwC4H8ES4orOegvlfgAA9yNYQlzR9gA6680u5val29OS0sx+AAAogiXEFe2jpO0BlG/AZN/Ozcql3xIAoAbBEuKO9lHS9gApSSm1tmvGibYBAABf9FkKAfosxSY6eANAfKsIss9S0B28N2zYIF27dg3V8QFRMSSXmZ7Z1IcBAHDLMNxhhx0mc+fODe/RAAAAxGqwNGPGDLn44otl1KhR8tNPP4X3qAAAAGItWLrssstkxYoV8uOPP0qfPn3ktddeC++RAQAARIGga5ZUjx495J133pGHH35YRowYIb1795ZmzWo/xccffxzqYwQAAIiNYEmtW7dOCgoKZL/99pPhw4fXCZYAAADcpEGRzhNPPCHXXnutDB06VL744gvp1KlT+I4MAAAgloKlrKwsWbp0qRmCGz9+fHiPCgAAINaCpcrKSlPgnZqaGt4jAur/YRQpKhIpLxdJThbJyBBJTOR9AwA0bbC0cOHC8BwB4kZIOmYXFIhkZ4uUlv6+TQP4vDyRESNCfswAAFCdjYgoWFUg2YXZUlpRWmstNl3UVtdqC+5JCkRGjhSxrNrby8qqt+fnEzABAEKOhXQRkUBp5PyRtQIlVVZRZrbr/UENvWlGyTdQUva2nJzq/QAACCGCJYR96E0zSpbUDXLsbTmFOWY/R1qj5D30VufJLJGSkur9AAAIIYIlhJXWKPlmlHwDppKKErOfIy3mDkaw+wEAECSCJYSVFnOHZD+d9RaMYPcDACBIBEsIK531FpL9tD2AznrzePzfr9vT0qr3AwAghAiWEFbaHkBnvXnEf5Cj29OS0sx+jrSPkrYHMA/yeS77dm4u/ZYAACFHsISw0j5K2h5A+QZM9u3crNzg+i1pHyVtD5CSUnu7ZpxoGwAACBOPZfmbi42GqKiokHbt2smWLVskKSmJNy/IPkuaUdJAKeg+SzY6eAMAInj+JliK4Jsd70LSwRsAgAifv+ngjYjRwCgzPZN3HAAQU6hZAgAAcECwBAAA4IBgCQAAIB6CpcWLF4vH4/F7+fDDDwM+LjMzs87+l1xySUSPHQAARC/XFHgPGjRIyn3WBbvlllvk7bfflqOPPtrxsZMmTZLp06fX3G7dunXYjhMAAMQW1wRLLVq0kC5dutTc3rVrl7zyyity5ZVXmmyREw2OvB8LAADgumE4X6+++qr8+OOPct5559W775w5c6Rjx47St29fmTJlimzfvt1x/x07dpjeDN4XNK7v0uK1i2XeZ/PMtd4GACDauCaz5OvJJ5+UYcOGSaouheFg7Nix0r17d+natausWLFCbrzxRlmzZo0UFBQEfMzMmTNl2rRpYTjq+O7orWvI6dIoDe7oDQBAGEV9B+/JkyfL3Xff7bjPqlWrpFevXjW3S0tLTQA0f/58OfPMMxv09d555x0ZMmSIfP3113LggQcGzCzpxaaZpbS0NDp4NyBQGjl/pFhi+V0rLn90PgETACDsXLPcyaZNm8xwmpOePXuamiXb7bffLg899JCUlZVJ8+bNG/T1fvnlF2nTpo0UFhaazFQwWO4keDrUlp6XXiuj5BswaYapOLuYpVAAAGHlmuVOOnXqZC7B0thv9uzZMn78+AYHSmr58uXmOjk5ucGPRf10bbhAgZLSbFNJRYnZj6VRAADRwHUF3jqMVlxcLBdeeGGd+zTTpMN1S5cuNbe/+eYbk4VatmyZrF271hSFa5B14oknSv/+/Zvg6N1PF9EN5X4AAIRb1GeWGkoLu7XnkncNk3c7AS3etme76dDdW2+9Jbm5uWb4TeuOtMbp5ptvboIjjw/JbZNDuh8AAOEW9TVLsYCapYbXLJVVlImnypKMdSLJ20TK24gUdRexEuqvWdLn0GE6zT5pUJXRLYP6JgBA/NYswV00ANL2AHNuO1NyC0XSvFpUlSSJ5GRZMu623IDBDy0HAACR5rqaJUS/EatE8l8USfHp5am3dbve79RywLdAXLNUul3vBwAg1AiWEFmVlSLZ2eKx6v7wJdi9lnJyqvfzflhVpWli6dubSdnbcgpz6AIOAAg5giVEVlGRdg0NfL+W0JWUVO/XyJYDAACEEsESIqu8vFH70XIAANBUCJYQWcE2+/TZj5YDAICmQrCEyMrIENHFjT3V68DVodvT0qr3835YtwzTUsBeP67Ow8QjaUlpZj8AAEKJYAmRlZgokpdX/X/fgMm+nZtbvZ+flgNmN5+Ayb6dmxW45QAAAI1FsITIGzFCJD9fJCWl9nbNOOl2vd/fw3qPkPzR+ZKSVPtxmnHS7Xo/AAChRlNKRI62A9BZblq8rTVJ33wj8v77v9/WoTefjJIvDYiGHzqcDt4AgIghWEJkFBSY/kq12gZoJkmH5MaMadBT6VBbZnpm6I8RAAA/GIZDZAKlkSPr9lcqK6vervcDABClCJYQkY7dptmkL3ubn47dAABEC4IlRGXHbgAAogXBEqKyYzcAANGCYAlR2bEbAIBoQbCEqOzYDQBAtCBYQlR27AYAIFoQLCFqO3YDABANaEqJyNCAaPjw2h28g+jYDQBAUyNYQuRoYJRJ520AQGxhGA4AAMABwRIAAIADgiUAAAAHBEsAAAAOCJYAAAAIlgAAABqHzBIAAIADgiUAAAAHBEsAAAAOCJYAAAAcECwBAAC4IViaMWOGDBo0SFq3bi3t27f3u8/69evltNNOM/t07txZrr/+etm9e7fj8/70008ybtw4SUpKMs97wQUXyLZt28L0KgAAQKyJmWBp586dMmrUKLn00kv93l9ZWWkCJd3v/fffl2eeeUaefvppufXWWx2fVwOlL774QhYuXCivv/66vPfee3LRRReF6VUAAIBY47Esy5IYogFQTk6ObN68udb2N954Q/785z/Lhg0b5IADDjDbHnvsMbnxxhtl06ZN0qJFizrPtWrVKunTp498+OGHcvTRR5tthYWFcuqpp0ppaal07do1qGOqqKiQdu3ayZYtW0yGCgAARL9gz98xk1mqz5IlS6Rfv341gZIaNmyYeSM0cxToMTr0ZgdKaujQoZKQkCAffPBBwK+1Y8cO87zeFwAA4E6uCZY2btxYK1BS9m29L9BjtLbJW7NmzaRDhw4BH6NmzpxpIlH7kpaWFpLXAAAAok+TBkuTJ08Wj8fjeFm9erVEmylTppiUnX0pKSmRuFJZKbJ4sci8edXXehsAAJdq1pRf/Nprr5WJEyc67tOzZ8+gnqtLly6ydOnSWtu+++67mvsCPeb777+vtU1nz+kMuUCPUS1btjSXuFRQIJKdLVJa+vu21FSRvDyRESOa8sgAAHBfsNSpUydzCYWBAwea9gIa/NhDazrDTQu2tIg70GO0UHzZsmVy1FFHmW3vvPOOVFVVyYABA0JyXK4LlEaOFPGdE1BWVr09P5+ACQDgOjFTs6Q9lJYvX26utU2A/l8vdk+kU045xQRF5557rnz66afy5ptvys033yyXX355TRZIM0+9evWSMj25i0jv3r0lKytLJk2aZO7773//K1dccYWcffbZQc+Eixs61KYZJX+TJ+1tOTkMyQEAXCdmgiXtl3TEEUfI1KlTTYCk/9fLRx99ZO5PTEw0fZL0WjNG55xzjowfP16mT59e8xzbt2+XNWvWyK5du2q2zZkzxwRQQ4YMMS0DTjjhBJk1a1aTvMaoVlRUe+jNX8CktVu6HwAALhJzfZaiUVz0WdJi7rFj699v7lyRMWMicUQAAOyVuOuzhPCqPKBzSPcDACBWECwhKEXdRUqSRKoC3K/b1ydV7wcAgJsQLCEo5du/l+ys6v/7Bkz27Zys6v0AAHATgiUEJbltsizoIzJytEiZz7BuaVL1dr1f9wMAwE2atM8SYkdGtwxJTUqVl/uUySu9LMlYJ5K8TaS8TfXQm5XgkbSkVLMfAABuQmYJQUlMSJS8rDzzfw2M3u0h8nw/Mdd6W+Vm5Zr9AABwE4IlBG1E7xGSPzpfUpJSam3XjJNu1/sBAHAb+iyFQFz0WfJSWVUpReuLpHxrualR0qE3MkoAALeev6lZQoNpYJSZnsk7BwCICwzDAQAAOCBYAgAAIFgCAABoHDJLAAAADgiWAAAAHBAsAQAAOCBYAgAAcECwBAAA4IBgCQAAwAHBEgAAgAOCJQAAAAcESwAAAA4IlgAAABwQLAEAADggWAIAAHBAsAQAAOCAYAkAAMABwRIAAIADgiUAAAAHBEsAAAAOmjndidhVWVUpReuLpHxruSS3TZaMbhmSmJDY1IcFAEDMIVhyoYJVBZJdmC2lFaU121KTUiUvK09G9B7RpMcGAECsYRjOhYHSyPkjawVKqqyizGzX+wEAgAuDpRkzZsigQYOkdevW0r59+zr3f/rppzJmzBhJS0uTVq1aSe/evSUvL6/e501PTxePx1Prctddd0msDr1pRskSq8599racwhyzHwAAcNkw3M6dO2XUqFEycOBAefLJJ+vcv2zZMuncubM899xzJmB6//335aKLLpLExES54oorHJ97+vTpMmnSpJrbbdu2lVikNUq+GSXfgKmkosTsl5meGdFjAwAgVsVMsDRt2jRz/fTTT/u9//zzz691u2fPnrJkyRIpKCioN1jS4KhLly4S67SYO5T7AQCAGBqGa4wtW7ZIhw4d6t1Ph932339/OeKII+See+6R3bt3O+6/Y8cOqaioqHWJBjrrLZT7AQCAGMosNZQOw73wwgvyf//3f477XXXVVXLkkUeaoEofM2XKFCkvL5f7778/4GNmzpxZk+mKJtoeQGe9aTG3v7olj3jM/bofAACIgczS5MmT6xRX+15Wr17d4Of9/PPPZfjw4TJ16lQ55ZRTHPe95pprJDMzU/r37y+XXHKJ3HffffLQQw+Z7FEgGlBp1sq+lJSUSDTQPkraHsAOjLzZt3Ozcum3BABArGSWrr32Wpk4caLjPlp71BArV66UIUOGmOLum2++ucHHNGDAADMMt3btWjn00EP97tOyZUtziUbaRyl/dL5c/a+rpMdnZZK8TaS8jcjafily/6n0WQIAIKaCpU6dOplLqHzxxRdy8skny4QJE0yrgcZYvny5JCQkmJl1sWrEKpEzcj3i8ZoYZ6WKeHqISO+mPDIAAGJPzBR4r1+/3gQyel1ZWWn+r5dt27bVDL0NHjzYDLvp0NrGjRvNZdOmTTXPsXTpUunVq5eUlZWZ2zpbLjc31/Ro+vbbb2XOnDly9dVXyznnnCP77befxKSCApGRI8VTWruFgEdf88iR1fcDAICgeSzLqlsJHIV0uO6ZZ56ps33RokWm5ui2227zW3TdvXt3M6SmFi9ebAKq4uJi04zy448/lssuu8zURWmNUo8ePeTcc881wVZDhtl0Nly7du1M/VJSUpI0mcpK7bIp4hMo1fB4RFJTRYqLRRJZJw4AEN8qgjx/x0ywFM2iJlhavFhk8OD691u0SCSTppQAgPhWEeT5O2aG4RCE8vLQ7gcAAAiWXCU5ObT7AQAAgiVXyciorknS2iR/dHtaWvV+AAAgKAzDuYkWbedVN6WsEzDZt3NzKe4GAKABCJbcZsQIkfx8kZSU2ts146Tb9X4AABA0164NF9c0IBo+XKSoqLqYW2uUdOiNdgEAADQYwZJbaWBEewAAAPYawVIs0yaUZI8AAAgrgqVYpcuWZGfX7tatdUla4E1dEgAAIUOBdwyv/1ZnWRPWfwMAIOQIlmJx6E0zSv5WqbG35eRU7wcAAPYawVKs0RqlQAvl2gFTSUn1fgAAYK8RLMUa1n8DACCiCJZiDeu/AQAQUQRLsYb13wAAiCiCpVjD+m8AAEQUwVIsYv03AAAihqaUsYr13wAAiAiCpVjG+m8AAIQdw3AAAAAOCJYAAAAcMAwXrXS5Eu3CrU0otbeStgzQYTcAABBRBEvRulCurv/mvaxJaqpIXl51YTcAAIgYhuGiMVAaObLu+m9lZdXb9X4AABAxBEvRNvSmGSVdDNeXvS0np3o/AAAQEQRL0URrlHwzSr4BU0lJ9X4AACAiCJaiiRZzh3I/AACw1wiWoonOegvlfgAAYK8RLEUTbQ+gs948Hv/36/a0tOr9AABARBAsRRPto5SXJ5ZYUuVzl97W7ZKbS78lAAAiiGApyhT0Fhk5SqQsqfb20qTq7Xo/AACIHI9l+ZunjoaoqKiQdu3ayZYtWyQpySfKaYDKqkpJz0uX0opSSagSyVgnkrxNpLyNSFF3ESvBI6lJqVKcXSyJCXTzBgAgEufvmMkszZgxQwYNGiStW7eW9u3b+93H4/HUuTz//POOz/vTTz/JuHHjzJukz3vBBRfItm3bpCkUrS8ygZKqShB5t4fI8/2qr/W2DsOVVJSY/QAAQGTETLC0c+dOGTVqlFx66aWO+82ePVvKy8trLqeffrrj/hooffHFF7Jw4UJ5/fXX5b333pOLLrpImkL51vKQ7gcAAOJobbhp06aZ66efftpxP80OdenSJajnXLVqlRQWFsqHH34oRx99tNn20EMPyamnnir33nuvdO3aVSIpuW1ySPcDAABxlFkK1uWXXy4dO3aUY489Vp566ilxKslasmSJCa7sQEkNHTpUEhIS5IMPPgj4uB07dphxTu9LKGR0yzA1SR7x3zpAt6clpZn9AABAZLgqWJo+fbrMnz/fDKmdeeaZctlll5lMUSAbN26Uzp0719rWrFkz6dChg7kvkJkzZ5qCMPuSpr2PQkCLtvOy8sz/fQMm+3ZuVi7F3QAAxEuwNHnyZL9F2d6X1atXB/18t9xyixx//PFyxBFHyI033ig33HCD3HPPPSE/7ilTppjKeftSouu1hciI3iMkf3S+pCSl1NquGSfdrvcDAIA4qVm69tprZeLEiY779OzZs9HPP2DAALn99tvNsFnLli3r3K+1Td9//32tbbt37zYz5JzqnvS5/D1fqGhANPzQ4WbWmxZza42SDr3RLgAAgDgLljp16mQu4bJ8+XLZb7/9AgY2AwcOlM2bN8uyZcvkqKOOMtveeecdqaqqMoFWU9LAKDM9s0mPAQAAxNBsuPXr15uMj15XVlaaQEgddNBB0qZNG3nttdfku+++k+OOO0722WcfU7d05513ynXXXVfzHEuXLpXx48fL22+/LSkpKdK7d2/JysqSSZMmyWOPPSa7du2SK664Qs4+++yIz4QDAADRKWaCpVtvvVWeeeaZmttal6QWLVokmZmZ0rx5c/n73/8uV199tZkBp0HU/fffbwIh2/bt22XNmjUmKLLNmTPHBEhDhgwxs+C0MPzBBx+M8KsDAADRiuVOomi5EwAAEDmuW+4EAACgKRAsAQAAOCBYAgAAcEOBN+qqrKqkFxMAAGFGsBSjClYVSHZhtpRWlNbq8q3LpdDlGwCA0GEYLkYDpZHzR9YKlFRZRZnZrvcDAIDQIFiKwaE3zShZYtW5z96WU5hj9gMAAHuPYCnG6Hpxvhkl34CppKLE7AcAAPYewVKM0YV1Q7kfAABwRrAUY5LbJod0PwAA4IxgKcZkdMsws9484vF7v25PS0oz+wEAgL1HsBRjEhMSTXsA5Rsw2bdzs3LNfgAAYO8RLMUg7aOUPzpfUpJSam3XjJNup88SAACh47Esq+4cdIRl1eJQo4M3AADhP3/TwTuG6VBbZnpmUx8GAACuxjAcAACAA4IlAAAABwRLAAAADgiWAAAAHBAsAQAAOCBYAgAAcECwBAAA4IBgCQAAwAHBEgAAgAM6eIeAvWKMtk0HAACxwT5v17fyG8FSCGzdutVcp6WlheLpAABAhM/jukZcICykGwJVVVWyYcMGadu2rXg8npBEuhp4lZSURHRh3khy+2t0++tTvMbYx/cw9vE93DuaUdJAqWvXrpKQELgyicxSCOgbnJqaKqGmJ1m3nmjj5TW6/fUpXmPs43sY+/geNp5TRslGgTcAAIADgiUAAAAHBEtRqGXLljJ16lRz7VZuf41uf32K1xj7+B7GPr6HkUGBNwAAgAMySwAAAA4IlgAAABwQLAEAADggWAIAAHBAsBRF3nvvPfnLX/5iOolqJ/CXX35Z3GTmzJlyzDHHmE7nnTt3ltNPP13WrFkjbvLoo49K//79axrEDRw4UN544w1xq7vuusv8rObk5DT1oYTMbbfdZl6T96VXr17iNmVlZXLOOefI/vvvL61atZJ+/frJRx99JG6Rnp5e5/uol8svv1zcoLKyUm655Rbp0aOH+f4deOCBcvvtt9e7xlms2bp1q/n70r17d/M6Bw0aJB9++GHEj4MO3lHkl19+kcMPP1zOP/98GTFihLjNu+++a/5QacC0e/du+etf/yqnnHKKrFy5Uvbdd19xA+3krgHEwQcfbP5oPfPMMzJ8+HD55JNP5LDDDhM30T9Yjz/+uAkO3Ua/V2+99VbN7WbN3PWn8ueff5bjjz9eBg8ebIL5Tp06yVdffSX77befuOnnUwMK2+effy5//OMfZdSoUeIGd999t/lwpn9j9OdVA93zzjvPdKO+6qqrxC0uvPBC87375z//aRIJzz33nAwdOtScN1JSUiJ3IBaikn5rFixYYLnZ999/b17nu+++a7nZfvvtZ/3jH/+w3GTr1q3WwQcfbC1cuNA66aSTrOzsbMstpk6dah1++OGWm914443WCSecYMUT/Rk98MADraqqKssNTjvtNOv888+vtW3EiBHWuHHjLLfYvn27lZiYaL3++uu1th955JHWTTfdFNFjYRgOTWbLli3mukOHDq78Luin2ueff95kDHU4zk00Q3jaaaeZT3hupFkW/RTbs2dPGTdunKxfv17c5NVXX5Wjjz7aZFl0SPyII46QJ554Qtxq586dJiOhWftQLHYeDXQ46u2335Yvv/zS3P7000/lP//5j/zpT38St9i9e7f5O7rPPvvU2q7DcfpaI8lduWXEjKqqKjMOrUMBffv2FTf57LPPTHD022+/SZs2bWTBggXSp08fcQsNAD/++OMmqRuIhAEDBsjTTz8thx56qJSXl8u0adMkIyPDDAVovZ0bfPvtt2YI55prrjHD4fq91KGbFi1ayIQJE8RttP5z8+bNMnHiRHGLyZMnS0VFhamnS0xMNEHFjBkzTHDvFm3btjV/S7UWq3fv3nLAAQfIvHnzZMmSJXLQQQdF9mAimsdC0Nw+DHfJJZdY3bt3t0pKSiy32bFjh/XVV19ZH330kTV58mSrY8eO1hdffGG5wfr1663OnTtbn376ac02tw3D+fr555+tpKQkVw2lNm/e3Bo4cGCtbVdeeaV13HHHWW50yimnWH/+858tN5k3b56VmppqrlesWGE9++yzVocOHaynn37acpOvv/7aOvHEE805UYfkjjnmGDPU2KtXr4geB5klRNwVV1whr7/+upn9pwXRbqOfzu1PPUcddZT51J6Xl2eKoWPdsmXL5Pvvv5cjjzyyZpt+otXv5cMPPyw7duwwn3LdpH379nLIIYfI119/LW6RnJxcJ9upn9xfeuklcZt169aZYv2CggJxk+uvv95kl84++2xzW2cz6mvVWcduyg4eeOCBZnKQljNoJk1/ds866ywzRB5J1CwhYjRhpoGSDku98847ZsprvAw5ahDhBkOGDDHDjMuXL6+5aO2Lpv71/24LlNS2bdvkm2++MX+k3UKHv33bdmjti07PdpvZs2ebuiytsXOT7du3S0JC7VO4/v7p3xs32nfffc3voM7kfPPNN80s40gisxRlf5S9P70WFxebE5AWQHfr1k3cUBQ8d+5ceeWVV8xY9MaNG812neqqBXtuMGXKFFNgqd8v7Q+ir3fx4sXml9sN9PvmW2Omf8S0V49bas+uu+460+9MA4cNGzbI1KlTzUlozJgx4hZXX321KRC+8847ZfTo0bJ06VKZNWuWubiJBg4aLGmmxW3tH/RnVGuU9G+Ntg7Q9iT333+/KWJ3kzfffNN80NYaQj0/akZN67S0TUJERXTQD44WLVpkxmV9LxMmTHDFO+fvtell9uzZllvoVF6txWrRooXVqVMna8iQIda///1vy83cVrN01llnWcnJyeZ7mJKSYm5r3YTbvPbaa1bfvn2tli1bmvqPWbNmWW7z5ptvmr8xa9assdymoqLC/N5169bN2meffayePXua6fRaM+kmL7zwgnlt+vvYpUsX6/LLL7c2b94c8ePw6D+RDc8AAABiBzVLAAAADgiWAAAAHBAsAQAAOCBYAgAAcECwBAAA4IBgCQAAwAHBEgAAgAOCJQAAAAcESwAAAA4IlgDAS2VlpVk3bcSIEbXely1btkhaWprcdNNNvF9AnGG5EwDw8eWXX8of/vAHeeKJJ2TcuHFm2/jx4+XTTz+VDz/8UFq0aMF7BsQRgiUA8OPBBx+U2267Tb744gtZunSpjBo1ygRKhx9+OO8XEGcIlgDAD11j/OSTT5bExET57LPP5Morr5Sbb76Z9wqIQwRLABDA6tWrpXfv3tKvXz/5+OOPpVmzZrxXQByiwBsAAnjqqaekdevWUlxcLKWlpbxPQJwiswQAfrz//vty0kknyb///W+54447zLa33npLPB4P7xcQZ8gsAYCP7du3y8SJE+XSSy+VwYMHy5NPPmmKvB977DHeKyAOkVkCAB/Z2dnyr3/9y7QK0GE49fjjj8t1111nir3T09N5z4A4QrAEAF7effddGTJkiCxevFhOOOGEWu/NsGHDZPfu3QzHAXGGYAkAAMABNUsAAAAOCJYAAAAcECwBAAA4IFgCAABwQLAEAADggGAJAADAAcESAACAA4IlAAAABwRLAAAADgiWAAAAHBAsAQAASGD/D7SEEzAmAfdKAAAAAElFTkSuQmCC",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "plot_predictions(raw_x_test, raw_y_test, polinomial_pred)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 13,
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "MSE error: 0.7107910962318101\n",
+ "R^2 score: 0.9652702233721828\n"
+ ]
+ },
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAksAAAG1CAYAAADpzbD2AAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjcsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvTLEjVAAAAAlwSFlzAAAPYQAAD2EBqD+naQAAa09JREFUeJzt3Ql4U2XWB/B/WtmhQNlpyyqyCG4omxaLOIDboBSKCAO44Aq0oH6CoFAUkUGgVcYFN3SQtRRRR1FBijioKA6yIzu0lF0oi4K0+Z7zlluSNLm5abPe/H/zZGqSmzRJQ3N63vOeY7FarVYQERERkVMRzi8mIiIiIgZLRERERG4ws0RERESkg8ESERERkQ4GS0REREQ6GCwRERER6WCwRERERKSDwRIRERGRDgZLRERERDoYLBERERGFS7A0fvx4WCwWu1OLFi10b7Nw4UJ1TPny5dGmTRt8/vnnfnu8REREFPxMFSyJK6+8Erm5uUWn7777zuWxq1evRr9+/fDggw/if//7H+6++2512rhxo18fMxEREQUvi5kG6Upm6eOPP8a6desMHd+3b1+cOXMGn332WdFlHTp0wDXXXIM333zT8PctKCjAgQMHUKVKFZXNIiIiouAnIdCpU6dQv359RES4zh9dBpPZvn27etKyrNaxY0dMmjQJDRo0cHrs999/j5EjR9pd1r17dxVw6Tl37pw6aXJyctCqVSsvPQMiIiLyp/379yM2NjY8gqX27dtj1qxZaN68uVqCS01NRXx8vFpWk6yPo4MHD6JOnTp2l8l5uVyPBGBy385e7KioKC88EyIiIvK1vLw8xMXFOY0RTBss3XbbbUX/fdVVV6ngqWHDhliwYIGqS/KW0aNH22WktBdbAiUGS0RERKHFXQmNqYIlR9WqVcMVV1yBHTt2OL2+bt26OHTokN1lcl4u11OuXDl1IiIiIvMz3W44W6dPn8bOnTtRr149p9dLTdPy5cvtLvv666/V5URERESmC5aeeuoprFy5Env27FFtAe655x5ERkaq9gBi4MCBaglNk5ycjKVLl2Lq1KnYunWr2k33888/Y+jQoQF8FkRERBRMTLUMl52drQKjY8eOoVatWrjpppvwww8/qP8W+/bts9sa2KlTJ8yZMwdjx47Fs88+i2bNmqmdcK1btw7gsyAiIqJgYqo+S4EiBd5Vq1bFyZMnWeBNRERkss9vUy3DEREREXkbgyUiIiIiHQyWiIiIiHQwWCIiIiIKl91wRERE5D35BflYtW8Vck/lol6VeohvEI/IiMiwe4kZLBEREVExmVsykbw0Gdl52UWXxUbFIr1HOnq17BVWrxiX4YiIiKhYoNR7QW+7QEnk5OWoy+X6cMJgiYiIiOyW3iSjZEXxNozWi5elLE1Rx4ULBktERERURGqUHDNKjgHT/rz96rhwwWCJiIiIikgxtzePMwMGS0RERFREdr158zgzYLBERERERaQ9gOx6s8Di9FWxwIK4qDh1XLhgsERERERFpI+StAcQjgGT5eL5tB5pYdVvicESERER2ZE+ShlJGYiJirG7XDJOcnm49VmyWK3W4nsDySN5eXmoWrUqTp48iaioKL56RERkis7bZu/gnWfw85sdvImIiEzEm523JTBKaJSAcMdlOCIiIpNg523fYLBERERkAuy87TsMloiIiEwgVDtv5xfkI2tPFuZumKu+BuMYFdYsERERmUAodt7O9GJ9lS8xs0RERGQCodZ5O3NLJnov6F0sG5aTl6Mul+uDBYMlIiIiEwilztv5BfkqoyRLg460y1KWpgTNkhyDJSIiIhMIpc7bq0KsvorBEhERkUmESuft3BCrr2KBNxERkYlIQNSzec+g7rxdL8TqqxgsERERmUywd96Ov1hfJcXczuqWZNlQrg+G+irBZTgiIiLyq8gQqq8SDJaIiIjI73qFSH2VsFit1uL5L/LJ1GIiIiKyJ+0BAlVfZfTzmzVLREREIfLhbkaRQV5fJRgsERGR6fgqoCnpeA4GWKGNwRIREZmKr+aNaeM5HHdvaeM5XNXZhMr8M3KNNUtewJolIqLg4Cqg0XZYlbRwWDJDjdIbuew6rW1135282y6D5avHUxrMcnn++c3dcEREZAq+nDdWkvEcwTj/TII3Cfq6fNAF92Xep77K+WAaWhuMTBUsTZo0CTfccAOqVKmC2rVr4+6778a2bdt0bzNr1ixYLBa7U/ny5f32mImIKPjnjZVkPEewzT/TslyOj0lbRmTAFCbB0sqVK/HEE0/ghx9+wNdff42//voL3bp1w5kzZ3RvJ6m33NzcotPevXv99piJqDj5SztrTxbmbpirvgbL5HEKbr6cN2Z07MahM4eK3q/BNP8sGLNcRuT/dR7r5qVh9eRh6qucDwRTFXgvXbq0WNZIMkxr165F586dXd5Oskl169b1wyMkIndYDEvBOG/M3XgOzYgvR2Dq91NV8XYwzT/zJMsVFNv48/OxKaU/6r+3ANecvfR6H6j6FPZNGIkOw//p14djqsySIynYEtHR0brHnT59Gg0bNkRcXBx69uyJTZs26R5/7tw5VRRmeyKi0uMyAZWGFtA4js/QyOVxUXElmjemN57DkbasdeTMEZ89Hk/5K8uVbyArXOwYyRZlZQFz5xZ+zcjAuRrVcOWM+ahuEyiJuifz0S55Cn549f/gT6YNlgoKCpCSkoIbb7wRrVu3dnlc8+bN8d5772HJkiWYPXu2ul2nTp2QnZ2tWxsl1fPaSYIsIgrPZQIKn3ljrsZzuHq/PvnVk5jebbrPHo8n/JHlyjRQPG57zICM+7D8/i7Iq1oe6NIFuO8+9dXapw/KnjytG7TEjZvm1yU507YOeOyxx/DFF1/gu+++Q2xsrOHbSZ1Ty5Yt0a9fP7zwwgsuM0ty0khmSQImjjshKjn5C1N+gbqzYtCK4FgmoJBaypUMjgQm3timLwH7a2teU0tuRt6vx/847tPH40nrA1fLiK5aHxiV6a5FQuJ81Fy7BW9+Og4HKwLx+4CnvgeqOIl35B70c3eF1s2djmvuTUFphPW4k6FDh+Kzzz7Dt99+61GgJMqUKYNrr70WO3bscHlMuXLl1ImIvCeYimEpNGn9g85dOIdZPWepyw6fOez1kSRyP3Uq1TH8fu3Xph96Nu8Z0BEpWtZNAhoJYGyDmtJmufLdZIV7bQY6TL8X9U8WwHX18CVGAiVxdu9O+IupgiVJkg0bNgyLFy9GVlYWGjdu7PF95OfnY8OGDbj99tt98hiJyLlgKoYlc20M8EYm0rGRY+1KtT16vwbD/DNtGdHZ6+RJlivf4bWQ89r9RRQA8XuBeqeB3MpAzbPAgoVyTYHXn0/Fhk3hL6Zahnv88ccxZ84cVX8ktUgaSbFVqFBB/ffAgQMRExOj6o7EhAkT0KFDB1x++eU4ceIEpkyZgo8//ljtoGvVqpWh78sO3kTBv0xA5uXrLtlOA7Eqsfjjwh9qia2k79dAddIuzffN3JKJEZ8PR+MNOah/Cqh9BsiLKotdFc+j5hlg+ldAnM2epwsWINJqPFtkhIRdudUiUffwWUSWKVuq+wrLZbg33nhDfU1IsI/e33//fQwePFj99759+xARcamu/ffff8eQIUNw8OBBVK9eHW3btsXq1asNB0pEFPzLBGRe7paA5L0jGwNkGcybtTg5py4F9SV5vwayRYZHWa78fGDVKiAnB79uWIZ9WbPw0wag9lnbgwoLj+QVcPwpXObldIx2d/tTRyKmlIFS2GaWAoWZJaLQKc4lc/HlxgAj8+CiK0Sj/GXlVfBk9P0ajPPi7AKj3Fygdu3C/37tNeD4cUM3N1qYXRrHK0bgt0lPeq3PUlhmlogo9MmHRKCLYSl0+HJjgJFGjsf+OIZl/1im3p9G3q++zoR5mi3CkSNArVrAzp3A228DOm1z3PFloPRn1crIfaA3Gkx+Cx38mFHSMFgioqATDMWwFBp8uTHAaID18daPkdgqEUlXJrkNcPzWSdtZQBQTAxw9CowYUaqgyNfOVauMcjPfK3zMkuWqVw/l4+PRODJwfzAxWCKisBWoAlvyHndjSLRC65J0yTYaYM34aYY6Gak58kkmzDEw2rMHmDOn8L9DSF5Z4JVOwId3VsPOxF5B9W+RwRIRhSXOoDMHX24MMDoPznHMiV7NkVczYRIkTZwIpKcbrisKhAI5WVwXex+tAKS3B17qDBTI/qvT2cEzo+4iFnh7AQu8iUJL0BbYhilvZPh8tTFAe68IIwGTu5YBqmg8rRGyT2Ubu72r5TT578ceA44dQzCxOtYuWQoD2Ef+EY3fLMdV/6VDFQsPqnOmsBfTqoYXgyQbs++ZrcbK+Drra/Tzm8GSH19sIrMLhWUtIzuc2M/Jf+8Fb2b4fPX+c/YYS7r7Tu7r4U8fVoXhjiIvNnSc3DoFba++Dfv+Mwf13s9A+bwzCAXWi1/tgiWZnZqWhvy7CzdtLN+1HC+uetHtfdWsWBNHzx71eVsFBkt+xGCJKHSWtTiDLnjeC55k+PwdiDt+v06xnbA6ezUWbV6k6pPcmdNrjhpzYkt7vpYCqwqKtKaOsgzVZTdwzzYg+k+ErJxqkdg/LgUdrrmzqDAb8fGATWG2u+azrvgq68tgyY8YLFG4C6Vlrbkb5qqJ6CX5sCPvvRc8yfAt2bbEr4G4XrAnfZU86ut0cRmtYP9+pC4aimoH89C/WFPHEFSrFgruvRe7qhXgcAUrKjZuhjaJjxvqqO1qadOx5swfWV8GS37EYInCWagta3maWQqFpcVQfC/Ia2rk55CakIrxWeP9Foi7C/bm956PkV+NdJoZkblonfcCV+ZHI/3+BYg8/jusI0bAEmTb9F01j9RtKhkdDfz978CttxbWTDlkjLwRkNaqWAtHzh7xSYNRV9iUkoj8wm99YwKw1TxUlhZD8b1gdGt8+o/pfmvgaKRh5JNfPYnp3aYjKSOpKBMiQdKz3wIpPwI1/pCjjwOzb/Vgkcm/O9NcBUT7qwDvtAWOx0YjfdA8RFoigMOHnS6n+aL5rPybHLB4gE8ajJYWWwcQUdB2UC4pvWyQ0a3msvTjdCaYge3h4cqT94LRLfQyqNZfgbjRYK9m+erIajQeC79OwzUbf0fSZqDKX85v4+vxH57KjgJGdgOOVgJiTgG1zgCHKwEHqgDfqV1pFmQkvY3Iln8r/m9qT5ZXM6yOzWcl6+urBqOlxWCJiIK2g3JJGMkGyVcJdpwdJ4GS/MUry0kBHUlhQLAtEXryXjCS4ateobpusOTtQNzZ/UjWyLYYu+EJoEP6PSj/+yl0dnN/gQ6UZIv+nDbA3mqXAiLZpm+NKJxpt0Nnpp3te2v78e14e+3bdu0OfJFh9WWD0dJisEREpvkF53JCvJNskN4MOvkLN9iXFt0FhYEIpDx5LxjJ8CW3T8a4rHF+C8TrVayNm3ejsBdQJeCmvUDyGm1pzdYpBKOj5YElzYFvmgI5VZz3LyqkP9POSKuEHB9kWH3ZYLS02GfJC1jgTeFOb3eL8MeSlTcLzYN9x5y7IuSnOj2FuRvnBqTWytP3gl4zSS3D5y74KvXmgYudsK3p6bAEcSdsOPYvmjYNy/N+xTufv+iyuWNJ2xt4owFnSfmqwagzLPAmIr9xt6zlj9oebxaaB9vSoidFyGLK6inFrvNXrZWn7wW9DJ9wlWkQcv6h6x4y9sC0TtjS/6d27cLLpHh5+3bg1VdVJ+xAL5vpOV7RgrxuCWjU+0G73Wj/XbkZ89qU7D4d37967y1/ZljdvScCgZklL2BmiSjwNTSlyQY5a0DY9LWmvs9o+LD1gTP+fNylfS841szMXDvTrr7GltOsme2YkGXLgE8+cTk/TXfLfCmV5L6lSeWr7QoLrrWRIA8nf4j7rv1HsQxM4oJEr70PSvremhPCPcmYWSIiv3Pc3eJPJc0Guar96de6H15Z/UrQ1E5owYN0kC4pf9Zalea94PRnUiUWfa/si/mb5hc7PvdENl6bnIjYVsPRrmxjYM8e4KOPgKOXxmXo8WWg5Mqf0VEoP2AwdlTNx/gN/0LNP+yLsB2X08ZXj3OaBfKU3vu3pIXy9QKQYfU3FngTUdgWmusVhEug5Kr2x19Li6WZTRZsfWqMcvkzOZVTFChpO9Rk6/stO4G7twE11JiQVxFMJEP02B322/Tza1RHn24p6DxgjFpGa1yQj5XpSzzeIOFu2VkTVTYKeefzDL1/PQ16LAHcneZvDJaIyBQ83UljpAHhvI3zsHPYTjUTLFC1E54U3Brl6kMx0K0I9H4mMk9NumP/fRswYH1wjwvJKwNMuRF4qXNhhkg6Uw/pPh0xUTHFXlP5b2ly2Sejj0+yQK/f8br6vkZ+pu7+4LAV6N1p/sZgiYhMw5PiYqMF4RIoBWpp0dOC29JkAoKhW/mq3Vlo+ms2bpKt+xUL18ekZufyY8DDa4G44Nyxb5dJSm9/KUjSyAgPCVicvY/kdR/x1Qin9+eNLJCr7+vKkOuGGGrXEBuADGsgMVgiIr/wV9bC6E6aYOw87sjoUovt9up7W9+rlhCFs91jU7tNLfZaeNKfyic/04tb9ztOm4Ksk84PCbrRIbVqAffdh7Vlj2Hqztkua4303kfusobys3IVjHi7v5m7pd7YKrEY0nYImkU3C4rdaf7GYImIfM7fWQtnxcWOH+y1K13cPu7G5iOb1S4hvQ8HXwWCRgO1oTcMRWKrxKLv2yG2g8sPPhkCK8dor7uR5Uhn3coN/0xtt+w7mzGWmQk8/LDaul9O5zkGfFt/9epAz57FBsme2pOFuR/M9vo2fW0OnbyWzt5L3mzg6C5oS01IxZj4MWEVHDli6wAvYOsAopI3UPRHw0pnH+wxVWLw54U/1TgNI8tcroI7XwaCRrdyO5vCnrEpQ7cORnvdS/I9XP1MIy8WXk9unYJ2195ZGCS99pr9lv3YWCA9HejVqzBQSvR867uvt/efq1oZBwYnosEd9yHy6DHdQbJaM1RP20yU5mdr+70nrpqohg3bjoXxpIGjN5u5hiK2DiCigCtp1sKbXH2wHzh1oOgyZw0PHTlbkvJk+cpI9slZv6eSLLXI/biqg3F83T1djsz/6zzmzngEfQ9Z1UgQeVh1zwC37gJ6btNGg6RdPDl7IXOA3r2BBQuAEc4fo7/trwK83RbIrl0Ouyucw6qGp1EQ8QFiNy5Xxdc1KwG5mxc4/bmVNMNT2mVgZ0G6zHuTETGeZIG82czVzLgMR0Q+E+hfxBI0DP9iuG6wJh8wFS6rYDck1EiQIYwGgku2LXGbffJmvydPXnd3hcLaNv02y9Yjd8KHqLp0BRaePocSs1oBiwV4/HHgyBH4m2SNZrS34D91TqHO2cKGj/9taMGFCHlt7Z+XvIaO2TlnWcOSdLAvTZd4V0H673/8jvFZ49G6dmvDWc1QqN0LBgyWiMhnAv2LWJYoXHV9FlaHgaLLdy3Hi6teNBRkCCMBiTwG+QDTyz4JT/s9Va9QXWURtMCtpK970pVJaFA5Bk025KD+xV5AWnPEmmeB6V8CcapNz8vwGgmY/BAoSePH2VfmY2PFMzhSqXC47KYWZfBEh+EY0yAen/32Geb9mOZR+birondPR3SUtEDb29naYB7tE0wYLBGRz3jzF7GnRdTy17eRLdDi8JnDalyDL4I7qSfR+2BTH3xWq6F+Ty//9+Wi+hQ5yfN7+5e3i2U65PXRMkISANU+g6Jg4b9xwI37gXqngZbNDyFyaya2TPkTFQ+FwA40d6Kjgb//XRVhf3thJ27ZNQ75jrvTzv2O1JWpiC4fDYtkuDykF5B40rW8pMt33s7WentXnVkxWCIin/HWL2JP6zM8HQWhBWu++CvbtvDWkbwm7loDaB9+k799CSs+TEV3m+BHlpAs1mws+i4RTZsNxtVtCndqxR86hP3pkah/Mr/Y/V2wAJdpP4pFhTVD0tIoILvQatZUu+BUpqmEW/fRqFHhf9vsUJOff//0RsUDJRvH/3T9c3HHW8vHRpbvtD8S5N+Q9Gvafmy7VwN6b+6qMzPuhvMC7oYjck2rrxDOfhG72w3nbltzjQo1MPOumXb34clAUNk5pO308WRnk3B3rAR0ssznipb9kSyPqp2xyfpoxdP1zgBdd8lIDwui/7CWeoCrL4fGeiQuDpg6FejbtzBb4+6pyS66IUOAZs10d6eVdthwIAbIusqalmbMjd4uOmecfS9PdtWFKu6GI6KgUJLiV086WEsw4lhD4skymW2TRk//yk7/2zS89kpSUa3PkYpArbOFWZ+Dla0YdPUdWLr+Q5UJku7OtsNSa54Bpn+l1QM5yfoU41n2xVVAFOhAST0LC2BJS1PtA/ItFhx66F67LJi8Vq+2A75rWLjT7kKdWpibthORZcoGVTGyt+p4nC3flXTMTUmXzTytuQo3XIYjIp8r6S9iox2s5QPFtobEkw8x1aTRCvQ6Wks1TuxVrx4yEudjxJcj0HhDDmLzgA7ZQOUyFXFtfB9c3fTOwhtmZqJX8kj00n14H2Kgy8dcPPyRx2F2xyoAj9wF9G8JSGi76vqa6Jqcb5dhK94J+wgezzE+dsbXxci+ruMp6Zib0i6beVJzFW4YLBGRX5TkF7EnGQLbGhLbWikZwKpNqHfM/sgHc/zebNw8JglQ/YEK9apRA/fIh4/dCtoZYPUs4JV/A3feCXzySclqbWxEBFnWx19z06wRFvxk0+dJAqOVjT1/LzjW88jAWpmFpvWnKsnylTv+qOPxdMxNuM5r8ycGS0QUtDzNEBw8kQNkZSEyJwefHboV32TNQv8NJZhQf+yY68BFxncsWYLSCpXAqCQ1TuerVcGLV59Sy2gyCLd4tsh4nyeN43F69Ty2/an0sjOu+mxJHdzw9sPRsmZLlXn0dPm4tDxdRnQcd0Pex2CJiIKWliGy/bCyLYrWiqCluaBMpr/7zRTg4FF13NUXT1TygKhAJ1CSTNFr7YCtLWviycb3oV3ZxkW70jKr5eCFJQMM93nydMeku3oeeb9o/ane+997TovstQyRbA7QWyKWoMjfdTye/pEggRKXz3zLlMHSv/71L0yZMgUHDx7E1Vdfjddeew3t2rVzefzChQvx3HPPYc+ePWjWrBkmT56M22+/3a+PmYiKUwXXf5uGV19JUstoXe1GahRnRWGgRMbpLSRmRwEjuwFHK11axtQK1CVT9OzNYzEnYXxR8KAti23atdVwUOBpUb3Reh65XvpTHRh5wK4/lasMkatgIxB1PO5abtiSHWvh3gPJH0zXOmD+/PkYOHAg3nzzTbRv3x5paWkqGNq2bRtq1y4+ZXz16tXo3LkzJk2ahDvvvBNz5sxRwdIvv/yC1q1bG/qebB1AZJxuc0ltQr3MD5MOz7t3A3PnBmQsRijTXTqT7fbyOl+0TwKi7sDRis4DIvtCa/3huka3uTsbzmp067qnbQG0x+hpU9NAM7IbTl5HfwyiNjOjn9+mC5YkQLrhhhswY8YMdb6goABxcXEYNmwYRo0aVez4vn374syZM/jss8+KLuvQoQOuueYaFXAZwWCJyBjHD0RZUut1tCaebngf2m09VVgLZDuhnkokp1ok9o9LQYdr7rwUeGqNGzt1kr8SUZCTg76rU5BZ86huQGQk2PFkm7tefy0jAc3cDXNxX+Z9fu+FFAh6AWg49EDyh7Dss3T+/HmsXbsWo0ePLrosIiICt956K77//nunt5HLR44caXdZ9+7d8fHHH7v8PufOnVMn2xebiPRpH6iyO+3mvcDftwED1kvxtSydvRpSL5/V5muEN7M/DlkfZ45XAPK6d0Gj3g/i2/PbkboiVRVR2440+a5hPgpOTkNGnU7oldC/+J0kJODbPVnI2OH5sqXj0pin29z1CqSNLHl5Ws8TyjPNbFtuOO74C/bMmNmYKlg6evQo8vPzUadOHbvL5fzWrc7X0KWuydnxcrkrsmSXmprqpUdNZH7ygTri8+EYk2VFyo+ua46Chfax76oDtvi4OXB9rn1TSU8cqBaJum/NQaSUB+TmFnalvpj1kfPf/rlNBULSlNF2aUx2mBVEZGH+NY9h5FfvIrup8/uXx643UNXojivZLaZX62N0m/vY+LHo2qRrqT/kw62eh72PgoOpgiV/kcyVbTZKMkuy1EdEsK89uhgEbNmchbXP5agO1qHgQqUKOFnwh9PHm28BpnYERnW7tDPPVQ8n+SyXYMdZB+9VDfPx1fU1EBkB5NaQDAgQf1kkIhMSimab6QVCT3z+hMo0lHR+mdGMy4LeC9QHtqulMaNBV6tarbxSKG1bEO4uA8aZZuQtpgqWatasicjISBw6ZD8+W87XrVvX6W3kck+OF+XKlVMnInISJE2cCKSn29UeXRkqL1SNGsDw4Vj096bov3iACoS0Dt6Sw9gZDfzrBuDCxd+cRpop6knKSCqWtZFAQLI57ibL6wVKtlwFM0aHHEuAo5cJ8sXw4ZKO0NGwnoe8zVTBUtmyZdG2bVssX74cd999d1GBt5wfOnSo09t07NhRXZ+SklJ02ddff60uJyIPg6QpU4DTpwPWhNHVLrAjlSJQ48GhiGjcuDAgkkn3UvCs/VF0+LDdcNa6e7LsAqGPPGjYJEFGzYo1DQUztoGSkMBFMibJ7ZPhLa6CFG9NmzcadHl7OYz1PORPpgqWhCyPDRo0CNdff73qrSStA2S32/3336+ul7YCMTExqu5IJCcn4+abb8bUqVNxxx13YN68efj5558xc+bMAD8TMqtQ28Jc2iDJn92q91cB3m5bmAGyLXhe1bAAy++/x/AykCd1Mba0IGPg1QOR9kMa8q36xdqO5HvJfXy04SNDx0ux79GzR0scpJRmyLG3g66SYD0P+YvpgiVpBXDkyBE8//zzqkhbWgAsXbq0qIh73759aoecplOnTqq30tixY/Hss8+qppSyE85ojyWi0m4F1pZeQmYLsFaPJNv833tPivYC8jCOV7Sg6pNjkdUgH+8sfcnFANaSjZAwEgBId+i5G+cW+1ne2/pet2M29GhLbJKdOnb2mG4gNK3bNLWUV5ogxRvT5r0RdBEFM9P1WQoE9lkiI1z1otHrOxMK9Uj+cKgiMKcNsLeafcPE5fevUNcbaVJo20DRKHeNEh2zhDLAtelrTXXrjSIQgQI1SERfSocUpP+Qrv7bWSCkvV+MNnP0B1NlTSks5IVrU8pAYLBERj5EGsnuJhcfos46Gvvqg8jj+zG41OZNR8sDS5oDy5vqd5KWhoMyW0xeW3c1M3qvrbdeL0+7S7sL7qSmyUggxCCFqGTCsiklUbBy14vG3TZvby3fGb4fHyy1uSq+PlEWeP/a4lkjI12lSzJbzJd1MZ70Lvr9j9/d1hrJ9zayRObJY2RgReQ5BktEfmD0Q9TZca6W77SdU0aX7wzdzxU9fbLU5ix9LX2H0tsDL3U2FhjpFS8HS82M0e3xstttfNZ4Q8GdN4uYTVEzRxQADJaI/KCkvWj0RkloO6ce/exR/PHXH7ojEIzcz9J/Pox7Ph0CyzHv1yNJYPTYHYXT619qORQX6tbCLbvGoSDCPlgwwlW2yBuFyqVldBv9mPgxaF27tV+DO28F3c4wW0Vmx5olL2DNEhmtWfK0rsbTGhhXWQJ395O4EViQUbhM5s1t/nllgSmd7LNHWqG1J1PqQ6nhoBaUuCvM9meQ4Y2aOVeYraJw+Pwu6QxIIvKAVldj+6FppK7Gk+3utlkC+QAzej+Jm4B5iwp/GVi8GCQ9lwBUHwW8mFAYKMnztJ3VJQHDnuQ9KnhKbue8CaPl4v9SE1JVMbccKx/owRoo2S4JSqbPlgQjjtkbbYmtX5t+bjtl+6tmriSBoeN9u3ofEoUqLsMR+UlJ6mo8HRGhLak5DlB1dT/3bAYWLvRekOSqDslVQCj/LTu+Fm1d5PT+3C1LBevyTzAsCXqrZs4VI0u7eoN8iUIJgyWiIP4QLUknaWc762zvx1JgVTPP6p8C0paW/jmdKAe8dy3wSXPXu9hcBT2u6mg0U7tNdRkoBfvyTzB1l/bF/LbS7vAkCiUMloiC+ENUb1u8J1kC7X4+Gp+oAqQ4LzTdzisDTLlRfzdbSvsU9GzR02lAqJeZEPJ8n/zqSRX4ON7Wl8XKZuSL+W2+yFYRBSvWLBEFOVc1MJ5mCXptATIWAjGlDJSs0dGY0j0K1UdfqkdyFGmJxMLeCzG9x3SXtTglraNxt/wjZPlHjqPS1cz5O1tFFKwYLBGFANti6Nn3zFZzw1xxLKQuajKZnAyLtWT/6E+Ws6AgORlYsQIr1yzA/3XM0+2NJANka1Zy/RhLk5nwVbGy2XlSeO5Jtsox+NJ9HxKFKC7DEYXg8l2FMhV0t6cXyxJIN+5sz7boC8nNTLgZuHrGfPRq3UddlrthrqHbuguGSpqZ4PJPcBSe+7pzOlEwYWaJKByyBLme1Y3ImFf56Huof2Vc/caiokDJm8svJc1McPmndLzZrsDb2SqiYMWmlF7AppQUKMW2zsd0QuR/VxcGR/XqAfHxQGQkkJUFdDHe3HJfFJDSA/ipQ6xa/rP9QC1pg83SNnD0xfcn7wjWFg5E7nCQLlG47azLzATim9ovt8XGFs5569mz8L9zcgCr1Wkm6UhFYGQPIMd2kG1edrGt395cfilJ7yku/wSfYGqTQOQLzCx5ATNLFPC/2jMygD6XlsqKWCyXrhe9C7M4tgGTBErqqiRgcavidyGds2XJxkifo5KOIilJZsKb35+IwlOewXEnDJb8+GITecpQ40Vpwd2vX+GON2ckYJKs0u7dwJIlalecbfZJW3JzFijZznJzFtjUrlRbXXb4zOGALL9w+YeISoPBkh8xWCJfcNV40a6eZ2M+kJRk7A5XrAASEgqDqlWrUJCTg76rU7C45lHkO9nq4az2J9i7ZhMReYKDdIlCmJHGi19OfhhWySgZpe2Ik4LvhARE9O+PfkPfQkFE4bBaW85qjzg0lYjCFVsHEAUhd40X795sxZsfHIPF1dKbM7I7roRbv9k1m4jCGZtSEgUhvcaLEQVAuqcDcOPiCtsIlLBRIYemElE4Y7BEFIScNV6UICl+L3DLLs8G4cqinSUtrXD5rYRbv9k12/9YvE4UPBgsEYXAlPh7NhdmkzwJksQFC3Bvb+C+lkBpyq/ZNdu/WEhPFFxYs0Tk5WxA1p4szN0wV32V86WdEt97I5CxAIjxMFCS/kn3JgKZV1qQsjSlxI9Fbien6ArRLo/h0FTvYSE9UfBhZokoSLMBcpvVVUfihkVTPf6rRmWUEoFFreWcFfvz9hfrxG1kCWjJ1iX4aMNHOHL2iMtjOTTVe9wV0strLYGv1JhxnAiR/zCzRBSs2YDMTHQYMRWRxT833Q7AlaW3wkDJ87ojeawye63LB12Q9mOabqAkODTVezwppCci/2GwRFRKPtlWf/488OijHj+W7CggMQlYdGXJ6o5cBX16pnabyoaUXlqGZSE9UXDiMhxRKXl9W70MxH3kEeDoUcOPYUJn4JvGNgNwnXTilqLxkgZ9ep786kkVLIX7spA3lmFZSE8UnJhZIiolr2YDZOBtYqLhQKng4my31ARgZePigZLGthN3SYM+V7gs5L1lWG0XpGNHdQ0L6YkCg8ESUSl5LRuwcCGs997r8feXIbiugiQxPmG8ocyG0aDP27cNdd5chrXdBWlkBA0R+QeDJaJS8ko2IDMT1qQkj8aXFEREIKk3sLiV/nHNopt5Nejz9m1DnbeLso2OoCEi/2HNElEpadkAWW6RwMg2w2AoG5Cfj7OPDUF5dbxxm197DouOpHotkHFshGmE0XooM/NFUbaRETRE5D/MLBF5QWmyAfkvvoCKh48b/8dYqxawaBFaPvqcV+tb9JaAXN2/CPdlIV8VZWsjaPq16ae+hvNrTBRoFqvV6tnWFyomLy8PVatWxcmTJxEVFcVXKIx5PM9Llt8SEw1llNSMNwmUsrOBsmXtCosLry+e0SrJso2zXV1RZaNQgAKcPn+66DIJxCRQCvdlIfmZS18qVxk5Lfu2O3k3Ax6iEP38Nk2wtGfPHrzwwgv45ptvcPDgQdSvXx8DBgzAmDFjUPbiB4szCQkJWLlypd1ljzzyCN58803D35vBEpWI1Cc1agRrdrbxYGnRIqBXL7fBTWkDGWdBn+CykHO+CFqJyPeMfn6bpmZp69atKCgowFtvvYXLL78cGzduxJAhQ3DmzBm88sorureV4yZMmFB0vmLFin54xBT2Vq1SWSKLwfElW2eMQ2uHQMlX9S3aEpAjo+NSwnUZ1lmfJWbfiEKfaTJLzkyZMgVvvPEGdu3apZtZuuaaa5CWlmb4fs+dO6dOtpFpXFwcl+HCeTnNozvPhwqUJEs0Y4ahXkqPDYzG6+8f5jJOOL9viMjrwi6z5Iw8+eho15PSNR999BFmz56NunXr4q677sJzzz2nm12aNGkSUlPd70Ki8OnEbPhDUrpzJycX1h0ZND4B6D7qbX7ohgBXGTkiCm2mzSzt2LEDbdu2VUtwsszmysyZM9GwYUNV47R+/Xo888wzaNeuHTLlQ80FZpbMX3viWKirV3tiOLhauBBISjL8WCSjdLBaJH5YNRe9Wvcp+ZMiIiJzF3iPGjUKkydP1j1my5YtaNGiRdH5nJwc3HzzzWqJ7Z133vHo+0mBeNeuXVWw1bRpU0O3YYG3uXY1uWow6GxXk+HgSsaYSHdug00nrRcLmQoWLERk78LCYSIi8i7TBEtHjhzBsWPHdI9p0qRJ0Y63AwcOqCCpQ4cOmDVrFiIiPGslJQXhlStXxtKlS9G9e3dDt2GwZA4yJb7LB13cHrdi0Aq11GI4uIqbhsg+HmaG4uIAqaNzUtBNRETeYZqapVq1aqmTEZJR6tKli1p+e//99z0OlMS6devU13r1wnd8Q7jytBOzkTEXOSf2469/PgbDJb5DhxYO0o2PByJZGExEFAxM08FbAiXJKDVo0EDVKUlGSvotycn2GFmuW7NmjTq/c+dO1Ztp7dq1qk/TJ598goEDB6Jz58646qqrAvhsKBQ6MRsJrp79Fih/8KjxByGBUkICAyUioiAS9Jklo77++mtVZySn2NhYu+u0lca//voL27Ztw9mzZ9V5WbpbtmyZahsgy2+y/T8xMRFjx44NyHOgwHI3G81xDpq74OqezUBqlodLb5JR4hZ0IqKgEvQ1S6GANUvh2YlZb8zFZReAnGlAzbMepG8vducuSesCIiLy3ee3aZbhiPw9ENfV4FnJKEmgVNtooCS1SQsWFAVKEqw51kJJQCaXy/VERORfzCx5ATNL4d2J2TYTJIFSxgIJngpPhkj/pd69S9S6gIiISs40u+GIgr0Tc9Fstt1ZaHdjEiw4bjhQ2jS0L668GCi9tuY1t7vr9uftV0Ecu0QTEfkPgyUibwVXH/0XOHTccHfu7CrA1dHzMfLrBpi7ca5uoFSSFgdEROQdDJaIvEHG44wbZzhQEim3AfkRwJTVU3zS4oCIiLyDBd5EpSUjTGQ4rkFHKgK9k4DFrTz7NlKzFBcVV9S6gIiI/IOZJaLSmjgRyHa/hCbNBQ5XBGJHAhc8/Jen7bZL65HG4m4iIj9jZonIT8tv4rE7PQ+UXLUuICIi/2Bmiaikzp8HHn3U8OHPJ3i+9Camd5+OYe2GMaNERBQgzCwRlTSjFBMDHDliaPltXxVgUmf7y20bWerVKDFQIiIKLAZLRCUJlHr3Bo4aG5ArIdGBF59GvWqxxZbWnu70tAqKHAMn1igREQUPLsMRlWTnmycjFVNT0WH489hTMMlpV/AOsR2czoKTYm7WKBERBR7HnXgBx52EkawsoEsX48fHxgJ79hTOf/PSeBUiIvIOjjsh8oUlS4wfa7EA6eluAyVPx6sQEZF/cRmOyJNapbQ0Y8fWqgW8+SbQqxezRkREIY7BEpHRWqXhw429VrVqIX/fXqw6+COWfDkCs9fPxtGzR+3qkdJ7pLMeiYgoRDBYIjLapTsnx9ChP4wdjD5vXOFyMG5OXg56L+jNJpNERCGCrQOIvNile/vAO9Hp91dcBkrCqjovASlLU9QSHRERBTcGS0ReHJL7bOUfioIhPXLM/rz9agccEREFNwZLRHpWrTI0JFf8Wa8WMmsaa1SpkVYBREQU3BgsEenJNR7M/PR0fxR4+C9KeioREVFwY7BEpKeewWAmNRX59/Q0/Fpqc9+k+SQREQU3BktErmqVsrJQsH8/jlaKQIGLV0kuP1AtEvmjR6nAR9oCuBuQq5FxJuzSTUQU/BgsUdiSnWhZe7Iwd8Nc9bVoZ5rsfmvUSI01iRg4EDXPFKjwxzFg0s4P7ZaPVTmrVeAj/ZOEXsAkGaWMpAz2WSIiChHss0RhKXNLptPhtQsj+6FDyivFBuXKOcfwJzsKSOkBLG4F9LlYqC2DbyUQcrzvWhVroX+b/ujZoifnvhERhRgGSxSWgZI0hXTc4p97IhsxaVNUnGRxkoKVTNLhisDIHkBOFWBVQxQVdNsWakvA1LN5Tw7GJSIyCQZLFFZkqU2yPs56Id20F4jLc31biYvqnC0MlFY2RtFym2SkHAu1ORiXiMg8WLNEYUWaQLrqrv33bcbuo95p2NUlsVCbiMjcGCxRWHHVBPKezcCIHwzeR+XCr5JRYqE2EZH5cRmOwoqzJpARBUD6UudF3Lbk+nP1auHRlOkYXy2GhdpERGGCwRKFFa0XUk5eTlHdUrybWiWNBFLlZ7yJe6/pZdd6QLJVEoTJfbNvEhGR+TBYorCi9UKS3XBScyQBk1aD5E5BcjIievXSbT0g9y274YiIyDxYs0Rh13xStvVLrVFMVIxdDZI76zs0sms94FgoLtkquVyuJyIi82BmiUzNaQaoSiyGtB2CyQkvoez3P+LUqa04XHE5ap51/tdDwcUGlFtb1EKbgnwM/2K409YDcplkq1KWpqiAjEtyRETmYKrMUqNGjWCxWOxOL7/8su5t/vzzTzzxxBOoUaMGKleujMTERBw6dMhvj5l8x1UGKPtUNta9Pg7xCQPR+4l/4f6py1H7LHRHmkin7rrVYjBx1UTknMpx+T0lYNqft1+1KCAiInMwVbAkJkyYgNzc3KLTsGHDdI8fMWIEPv30UyxcuBArV67EgQMH0OtiXQqZs/mktAnIWADEOBR1uxpp0icJ+LlDHI6cOYJxWeNK1aKAiIhCj+mW4apUqYK6desaOvbkyZN49913MWfOHNxyyy3qsvfffx8tW7bEDz/8gA4dOji93blz59RJk5dnYCsVBUXzSa1NgPpvnZEmI3oAB6oA36mRJhYs6DYNI74aUaoWBUREFJpMl1mSZTdZUrv22msxZcoUXLhwweWxa9euxV9//YVbb7216LIWLVqgQYMG+P77713ebtKkSahatWrRKS4uzuvPg0rHVWZHaxMQ4WakyYGLI03qV4tTxeA1K9V02fnbUVxUXLHxJ0REFAaZJVmeql+/PoLZ8OHDcd111yE6OhqrV6/G6NGj1VLctGnTnB5/8OBBlC1bFtWqVbO7vE6dOuo6V+R+R44caZdZYsAUXFxldoyONHmp5VCc75tY1DtJdtIZxfEnRERhmlm68sor1XKVv40aNapY0bbjaevWrepYCWASEhJw1VVX4dFHH8XUqVPx2muv2S2ZeUO5cuUQFRVld6LgbD6pzW/TapVSDI406dQ+EQmNEop2tBldVktNSGWfJSKicM0sTZw4EY888ggWL16Mt956S2Vv/OHJJ5/E4MGDdY9p0qSJ08vbt2+vluH27NmD5s2bF7teapvOnz+PEydO2GWXZDec0bonCr7CbqlXkmW4IdcNwfis8SpgshRYi2qV9FglAI+NBeLj3Xb+diTXj4kf462nQkREoRYsPf7447jtttvw4IMPolWrVnj77bdx1113+fbRAahVq5Y6lcS6desQERGB2rVrO72+bdu2KFOmDJYvX65aBoht27Zh37596NixY6keNwVHT6UaFWqor603HzM20sRqBdLSgMjCjJJe5++i21zMXsn17K1ERBTmu+EaN26Mb775BjNmzFDb62XX2GWX2d/FL7/8gkCQguwff/wRXbp0UTvi5Ly0BRgwYACqV6+ujsnJyUHXrl3x4Ycfol27dqo4W4I/Wb6TTJksp0mrAQmUXO2Eo+DuqeSY9Tn+x3F1mdFaJaSkAC5aR8gYEyn2djbmROqUOOaEiMicPG4dsHfvXmRmZqoApGfPnsWCpUCROqJ58+Zh/PjxqkZJAjsJlmwLsWXnm2SOzp49W3TZ9OnTVfZJMktyu+7du+P1118P0LMgb/dUksukVmmEwVol9Oype7UERNKdW1vq4wBdIiLzs1itsu5gjCy9SQ2RbLWXuqWSLo+ZjeyGkyyV9G1isbf/yby3Lh90cXqd9FXak1bYgFJvN4NqSCktIHbvLrYER0RE4f35bTgt1KNHD6xZs0YtwQ0cONBbj5Oo1PS6ZWt9lQxxUqtERERkOFjKz8/H+vXrESs7hYiCiN62fqO1StkP9EYcx9wQEVFpgqWvv/7a6KFEfuVqW78ntUr1+z/quwdIREQhzXTjTij8aNv6bbfxazPg3BXkySy4s3VrIPLmBD88UiIiCkUMlsgUtG39MVEx6vzNe/RnwGkktKr4r5msVSIiIpcYLJGpAqY9yXuwoU4qPv+4kqHbWHT6KhEREYngaJJE5CWRHy9B68fHA0Y7Yrjpq0RERMRgicwjPx9ITjYWKFksgJMZcERERI64DEfmsWoVkH1pDIlb7KtEREQGMFgi81iyxNhxNWoAGRmsVSIiIkO4DEfmkJlZmCkyYv58oGtXXz8iIiIyCWaWyDy1SkbI/LcE9lQiIiLjGCxReNUqsU6JiIg8xGCJQl+u60G6dthTiYiISoDBEoW+7duNHceeSkREVAIs8KbQL+weN073EKvMNImNhYU9lYiIqASYWSJTF3ZLe0rpUflw1z+Q+ZvB1gJEREQ2GCyRqQu7Jak0LgF4t9Fx9F7QG5lbMv328IiIyBwYLJHpC7t31JAMU+EIlJSlKcgvyPfxAyMiIjNhsEShq149Q4flVi78KgHT/rz9WLVvlW8fFxERmQqDJQpdUrAtw3BlKK4TBQD2RQGrGtpfnnvKYKsBIiIiBksUimQZLWtPFuZuXoCNY4YULrA5BEwSKImUHkCBw58E9aoYy0gREREJtg6gkCIF2iM+H47GG3JQ7zTwVmXgin9EI+1LCyoeOlZ0XHZUYaC0uNWl21pgQWxULOIbxAfmwRMRUUhisEQhFSh9ND4R3y0F4vIuXb4/6jgGdgeG35GK8kd+xzMb09TSW36EfaAk0nqkITIiMgCPnoiIQhVrlihklt6++OfDWLgAiLEJlIScX7AQmJ31KtqOfAXDnlmEetVi7Y6RjFJGUgZ6tezl3wdOREQhz2K1Sss+Ko28vDxUrVoVJ0+eRFRUFF9MH8jauRxNr7tVBUbOIvyCi0tvu35ZhoSmXVVwJbvepJhbapRk6Y0ZJSIiKsnnN5fhKCTkr8yyW3pzJAFUgzxg+8osoGlXFRglNErw50MkIiKT4jIchYQr/rvV0HHHdm1UO+XYeJKIiLyFwRIFv8xMxL6XYejQ17M/RpcPuqBReiOONiEiIq9gsEQhPyzXWQPKnLwczoIjIiKvYLBEITEs13mPbnu2DSg5C46IiLyFwRIFtYKcHEPHpXWwb0ApOAuOiIi8gcESBbW9a5cZOu6T5q6v4yw4IiIqDbYOoOCVmYlG02ep2W+uluG0/kqOw3JtcRYcERGVhmkyS1lZWbBYLE5PP/30k8vbJSQkFDv+0Ucf9etjJyfy83H28Yd1AyWrzrBcbcRJXFQcZ8EREVGpmCaz1KlTJ+Tm5tpd9txzz2H58uW4/vrrdW87ZMgQTJgwoeh8xYoVffY4yZj8b5bbDcZ1RoKo5xOK1yoVXsdZcERE5B2mCZbKli2LunXrFp3/66+/sGTJEgwbNkxli/RIcGR7W3fOnTunTrbt0smLMjNR8OBgGBl3u6MG8HSnpzF341xk52XbzYKTobmcBUdERKVl2tlwixYtQlJSEvbu3YvYWPuhqo7LcJs2bYK8DBIw3XXXXSojpZddGj9+PFJTU4tdztlwXpCZCfTurX4eRtoFzJiciKH/l8FZcERE5LPZcKYNlm6//Xb19fPPP9c9bubMmWjYsCHq16+P9evX45lnnkG7du2QKR/aHmSW4uLiGCx5owFlo0aqr5I7joNziYiIwnaQ7qhRozB58mTdY7Zs2YIWLVoUnc/OzsaXX36JBQsWuL3/hx9+uOi/27Rpg3r16qFr167YuXMnmjZt6vQ25cqVUyfyTQNKI4GSeLFXDbzRmMNyiYjIt4I+WHryyScxePBg3WOaNGlid/79999HjRo18Pe//93j79e+fXv1dceOHS6DJfIRhwJ9V45XAB65C+j/fzMRGWGksomIiMjEwVKtWrXUyShZVZRgaeDAgShTpozH32/dunXqq2SYyM+2bzd02NBBNdF/+Fss3iYiIr8wTZ8lzTfffIPdu3fjoYceKnZdTk6OWq5bs2aNOi9LbS+88ALWrl2LPXv24JNPPlFBVufOnXHVVVcF4NGHMakRGzeuqHeSq+W3k7Wj8NGrOQyUiIjIb0wXLL377ruq55JtDZNtO4Ft27bh7NmzRe0Gli1bhm7duqnjZckvMTERn376aQAeeZgXdicnG2pA+fTtZYBILr0REZH/mHY3XDBW05MLWVlAly5uX57nEoAXE4AVg1YgoRELu4mIyD+f36bLLJF5C7ulAaU6/JSx44mIiLyBwRIFnsFi+tzKFw+vwuJ7IiLyHwZLFHjx8Thbp0ZR/yRHcvm+KOC7huBgXCIi8jsGSxRw+RYg+bbC/3YMmLTzKT2AggiLmvfG3kpERORPDJYosLvgsrKwbcZ4bLceQ1JvIMehvk5GmvROAha3AsYnjGfLACIi8rugb0pJJu6rlJysxpu0kg1xAPZHASO6A0crAvVOF9YorWooGaXCmzSLbhboR01ERGGIwRIFJlDq3VvardtdHJMHLFhYmEma16b4zVjYTUREgcBlOApIA0rHQMn2zZi2FIiwKV6ywMLCbiIiChgGS+Rfq1appTe9N2SDPCB+76VASbCwm4iIAoXBEgVlA0qpWRKxUbHISMpgYTcREQUMa5bIq/IL8rFq3yrVZVtqjOIbxNtv9TfYgPKh28fikVu6Fr89ERGRnzFYIq/J3JKJ5KXJyM67tMwmmaH0HumXMkPx8UBsLKw52bA4mUpotQCW2Dh0HTSeA3OJiCgocBmOvBYo9V7Q2y5QEjl5OepyuV6JjMQPT/dT9d3OGlDK5T88dS8DJSIiChoMlsgrS2+SUbKieKrIevF/yV8kq+Pk1Cd/rmoP4KwBZZ8kICl/njqOiIgoGHAZjkpNapQcM0qOsk9l46WsF3DX4Wq46b/ZquFkk+HAjfudNKDM26/uM6FRAn86REQUcAyWqNSkmNudezYDg6elIi4PmHvxMunYndzDeQNKI/dJRETkD1yGo1Jz11lbAqWMBYUdum3Jeblcrvf0PomIiPyFwRKVmmzvl11vTt9gBUD6UudvNmcdu9mtm4iIgg2DJSo16YMk7QGckU7csvQWYaBjN7t1ExFRMGKwRF4hfZRSE1JdduJ2R45jt24iIgpGDJbIa8bEj0FsFfvluMuPGbvtM72nY3fybo41ISKioMNgiby7HHdbulpOk/9J4XZqlvRa0mGxAHFxuKbPMI41ISKioMRgiTwmDSOz9mRh7oa56qttA0lZjpPBt3GV6xcVdlv07kxadqelsWM3EREFLfZZIq/Pf5OvPXOrIjLvVvd3mJoK9Lo4N46IiCgIMbNE3p//JktyuQeN3WmzZvwJEBFRUGOwRF6Z/yZSlqYULsllZgIjRhi743psPklERMGNwRJ5Zf6bBEz78/Zjy8yJQO/ewJEj+nd4sbAb8fH8CRARUVBjsESGGJnVJl24G49PLyzaNoKF3UREFAIYLJEhRma1SRfuSoeOu7+zWrWAjAwWdhMRUUhgsEQezX/TRpI4ksv7765s6L4Kpk5loERERCGDwRJ5PP/NMWAqbEBpxUPfGptt0veHkXY754iIiIIZgyUyTGs4GRMVY3d5g8ox+PfKGvrNJyWjBGBfFJBZ8ygSFyQiY1MGX30iIgp6FqvVaDUuuZKXl4eqVavi5MmTiIqKMv0LJe0BZHecFH1LLVP8rnxEdnXfgFLeaIlJwOJWhecjLZGYmzgXfa7s4/sHTUREVMLP75DJLE2cOBGdOnVCxYoVUa1aNafH7Nu3D3fccYc6pnbt2nj66adx4cIF3fs9fvw4+vfvr14kud8HH3wQp08bW04K5yW5hEYJ6Nemn/oaeeiwodtN73ApUBL51nwkZSRxSY6IiIJayARL58+fR58+ffDYY485vT4/P18FSnLc6tWr8cEHH2DWrFl4/vnnde9XAqVNmzbh66+/xmeffYZvv/0WDz/8sI+ehUlt327osE+aO7+8qJklERFREAq5ZTgJgFJSUnDixAm7y7/44gvceeedOHDgAOrUqaMue/PNN/HMM8/gyJEjKFu2bLH72rJlC1q1aoWffvoJ119/vbps6dKluP3225GdnY369esbekxmX4YrtuzWIF5llxTp1p2Y6LZWKTsKaJwCFLgIz1cMWqGyVERERP5iumU4d77//nu0adOmKFAS3bt3Vy+EZI5c3UaW3rRASdx6662IiIjAjz/+6PJ7nTt3Tt2v7cmsZNdao/RG6PJBF9yXeZ/6KufVbrb8fCA5Wff2WiSe0sN1oGS06SUREVEgmCZYOnjwoF2gJLTzcp2r20htk63LLrsM0dHRLm8jJk2apCJR7RQnYzvCcHDut7MnAtmuR6AI2SE3LsG+VqmkTS+JiIjCLlgaNWoULBaL7mnr1q0INqNHj1YpO+20f/9+hOPg3AXLCvsuubOrpuumAtKjKS4qTi3tERERBaPLAvnNn3zySQwePFj3mCZNmhi6r7p162LNmjV2lx06dKjoOle3OXzYfieX7J6THXKubiPKlSunTuE+OHdjpIHRJgCG3P485uxLLXa51twyrUfapRooIiKiIBPQYKlWrVrq5A0dO3ZU7QUk+NGW1mSHmxRsSRG3q9tIofjatWvRtm1bddk333yDgoICtG/fHuHMSA3RqoZATlUL6p20Ok1RSmF3brVIxA94Fot2XKUyVbYBmIxPkUBJml0SEREFq4AGS56QHkqS8ZGv0iZg3bp16vLLL78clStXRrdu3VRQ9I9//AP//Oc/Vc3R2LFj8cQTTxRlgSTzNHDgQCxfvhwxMTFo2bIlevTogSFDhqidc3/99ReGDh2Ke++91/BOOLMyUkMkBdvDuluRsaAwMLINmOS8GNYtH8NzVquAqGfznq531REREQWpkAmWpF+S9E7SXHvtterrihUrkJCQgMjISNUnSfowScaoUqVKGDRoECZMmFB0m7Nnz2Lbtm0qKNJ89NFHKkDq2rWr2gWXmJiIV199FeFOG5wrxdzO6pY0UrjdOwlIXwrE2WwKlFYBsgNOru9zMUulNbMkIiIKJSHXZykYmbXPkrYbzjFYiigA4vcC9U4DuZULl+OE42VaqwD2UCIiolD+/A6ZzBL5nyydjU8Yj3FZ44ouu2dz8SzS/igg+WIWybGAW7JT3OlGREShzDR9lsg3mkU3swuUpD4pxqEHp5yXy+V6DXe6ERGRWTBYIkOF3rL0JhklZ28a7Xza0sLjhGSUMpIyuNONiIhCHpfhyFCh9+W/ZtstvcFJwNQgD/iq4VhE3tKVO92IiMg0mFkiXbKDLb1HuircNqJrhVZqxxtbAhARkVkwWCJDhd5j6/U19krV44w3IiIyFy7DkXuZmWg1Y75qIOByypvFAsTGAvGc8UZERObCzBLpy88HkpPVf7oeh3tRWhoQyY7cRERkLgyWSN+qVUC264G6RcaPB3pxxhsREZkPgyXSl+t+oK7S7FI/JiIiIjNhsET6tm839gqxsJuIiEyKBd5hLL8gH6v2rULuqVzVfFJ6Ktlt+c/MLFxe08PCbiIiMjkGS2FKhuQmL01Gdt6leqSaFWtiwFUD0LN5T8THdEKkFHa7m7Ms17Owm4iITMxitbr7NCRvTS0OpkCp94LesKpmAM71PlwTC18/6v7OUlOB55/37gMkIiIKos9v1iyF4dKbZJT0AiVR9qCBQEmwsJuIiEyOwVKYkRol26U3Z+7ZDEy/ODTXLRZ2ExGRybFmKcxIMbe7QCljgYE7YmE3ERGFCWaWwozsenMlogBIX2rgjSGBkmBhNxERhQEGS2FG2gPERsXC4mR4SfxeIC7PwJuiZk0gI4Mdu4mIKCwwWAoz0kcpvUe60+v+vs3YfRRMncpAiYiIwgaDpTDUq2UvZCRlqAyTba1Syg/Gbr++zDHfPTgiIqIgw2ApjAOmPcl7sGLQCoy4fjhe+9L9W6EAwL4oYGuLWn55jERERMGAwVKYL8klNErAtEr3IOZkgds3g1Q5pfQA6laL8dMjJCIiCjwGSwTk6rcT0KR1AH7uEKeKxImIiMIFgyUCtm839Cp80hxI65FmP2yXiIjI5BgshbvMTGD8eLe1SjnVIjHsqQWq1omIiCicsIN3OMvPB5KTAZ1ZytaLtUp1356HXq17+/XhERERBQMGS+Fs1SogW39OnGpdmZqKyN4MlIiIKDxxGS6c5eQYO65ZM18/EiIioqDFYCmca5VSUowdW8/1PDkiIiKz4zJcuAZKsqymU6tUNDA3NhaIZ6sAIiIKX8wshRsDRd1FgZJISwMi2SqAiIjCF4OlcGOgqFupWRPIyODAXCIiCnsMlsLNkiXGjps+nYESERFRKGWWJk6ciE6dOqFixYqoVq1aset//fVX9OvXD3FxcahQoQJatmyJ9PR0t/fbqFEjWCwWu9PLL78M09YqybKaETGc/0ZERBRSBd7nz59Hnz590LFjR7z77rvFrl+7di1q166N2bNnq4Bp9erVePjhhxEZGYmhQ4fq3veECRMwZMiQovNVqlSBaWuV3GFRNxERUWgGS6mpqerrrFmznF7/wAMP2J1v0qQJvv/+e2RmZroNliQ4qlu3LkzNaK2SFH6zqJuIiCj0luFK4uTJk4iOjnZ7nCy71ahRA9deey2mTJmCCxcu6B5/7tw55OXl2Z2CXm6useOk91Ivzn8jIiIKucySp2QZbv78+fjPf/6je9zw4cNx3XXXqaBKbjN69Gjk5uZi2rRpLm8zadKkokxXyNi+3dhxPXv6+pEQERGFFIvV6q7hju+MGjUKkydP1j1my5YtaNGiRdF5WYZLSUnBiRMnXN5m48aN6NKlC5KTkzF27FiPHtN7772HRx55BKdPn0a5cuVcZpbkpJHMktRJSSYrKioKwdqEUn7UF7snFVMA4M+6NVAx+xD7KhF5WX5+Pv766y++rkR+VqZMGVW77Ip8fletWtXt53dAM0tPPvkkBg8erHuM1B55YvPmzejatasq7vY0UBLt27dXy3B79uxB8+bNnR4jQZSrQCpYC7v1AiUtWk7pAbxhAdiCksg75N/dwYMHdf+4IyLfkh30Upcsu91LKqDBUq1atdTJWzZt2oRbbrkFgwYNUq0GSmLdunWIiIhQO+vMVNit9xaR655PAN5udAz37VuFhEYJfnyAROalBUry+0TanpTmlzURef7HytmzZ3H48GF1vl4p5pyGTM3Svn37cPz4cfVVUtoS1IjLL78clStXVktvEih1794dI0eOVL+khKTftIBszZo1GDhwIJYvX46YmBi1W+7HH39US3ayI07OjxgxAgMGDED16tVhCgYLu3fUuHj4KYOF4ESkS35PaYGSbCAhIv+TvotCAib5t6i3JGeKYOn555/HBx98UHRedq6JFStWICEhARkZGThy5IjqsyQnTcOGDdWSmpAIc9u2bUW1A7KUNm/ePIwfP17VIDVu3FgFSxJsmYbBSDq38sXDq5Q88iaiS7TfM5JRIqLA0f4Nyr/JkgZLAS3wNgujBWIBq1lq1AjWnBz5YTst7M6OApqkAPWrxWF38m5ERrBqiai0/vzzT+zevVv9EVa+fHm+oERB+G/R6Oe3qfsshTUJkrKygAULgCFDVKBktRQPlMSIHkBBhAVpPdIYKBEREYXqMhx52CpARpvYduyuUaOwyPvYsaKLJKMkO+B+7hCHjB5p6NWSzSiJiIgcMVgym4s9ldTYElvHjxd+TU1FQdOmWB95BFtb1MLwajGIbxDPjBIREZELDJbMOCzXWRmaXCbblt95BxG7d+OayEhcE4jHSEQeyy/Ix6p9q9RuVdmE4es/cKT/nezk+/jjj4su27t3r+o9J5thWOpK4YbBkpl+ge7KR6TesFwJmPbvL+y9lMBeSkShIHNLJpKXJiM779K/7dioWKT3SPfr0vlzzz3HPlEUtljgHcK/QBulN0KXD7rgvsz71Nf3Uu/27lBdIgr4v/PeC3rbBUoiJy9HXS7X+8OGDRvw0UcfYdiwYcWu++9//6vat8j2bOlPJ73ufv/9d9XKRbomv/TSS0XHyvzNsmXLql53mjfeeANNmzZVl0vm6t///nex7yHtXaShp+3p7rvvthuDJV2abUnLGDlO68mXlZWlzjvrpi6XyXVyjEZ69912222qj1+dOnXwj3/8A0ePHnX7WjVq1KjYY7XN0C1duhQ33XSTerzSf+vOO+/Ezp07XT5u2/tNS0srOu94v0J+DjIOzNVtbMnrZztBQzKGTz31lOpBWKlSJTXNwvb1CHcMlkzyC/SezcCD3542dPv8OrV1s1VZe7Iwd8Nc9VXOE5H/yb89yShZiwYSXaJdlrI0xS//RmWO51133YVOnTrZXS4f6DJeqlWrVqqp73fffaeOk4ac0gxYZm1KoPPzzz/j1KlTKuAYOnSouo1YvHixmuEpo68kOJG5nPfff7/qn+foyiuvVEPO5ZSUlOTT5yvBkzQ5ln5+8tglwDl06JDh7zthwoSix+rozJkzqpef3K8EjTIx4p577kFBgbY/OTDk5yI/Q+k9uH79evTp0wc9evTAdqND2E2Oy3Am+AUaUQCkL3V/W62n0q6GQEIQp/uJCGqJ3TGjZEt+B+zP26+O8+WIom+//RZffvmlyi5JU19b//znP3H99dfj9ddftwtqNLfffjuGDBmC/v37q+MkYzFp0qSi61955RWV3Xj88cfVeQkifvjhB3W5TFawzXpIJ2bJVAn5b9th5t42Y8YMFSjZZsUk8JOB6b/99huuuOIKl7eVxxUdHV30WB0lJibanZf7lcBS5pq2bt0agSCTMd5//331tX79+uoyyTJJkCiXv2TzOoQrZpZM8As0fi8Ql+f+hymtA6RVQO7Zwjk5wZjuJyLPRg/5ekSRZJVk3mbLli2LXadllvRI4CPDyRcuXKiW8myHkG/ZsgU33nij3fFyXi63dezYMbcNf6WpoCyZaSfboM1WbGysGm8lDQolkJPbOfr1119Vdsv2/lq0aKGus10yc0bGcuk9VsnU9OvXTw2Jl+NkqUxIoGJLsni239/xeiH3Y3vMKqlHdfDMM8+o62TUhyzTybKpIwmEJRsoQaDt/a1cudLt8w0XzCyFGGe/GOsZW33D9A7A4lbAcIeRJu7S/RZYVLq/Z/OebDFA5CdGRw/5ckSRLJP973//wwJpbqszd0uPfNgeOHBALTNJPU6bNm08fhy7du1SwY0eCYB++eWXovM5OTkqOHAkAYUcK4/loYcewpgxY/Diiy/aHXP69Gm1nDh58uRit9cbxpqdnY3z58/rPla5XxnD9fbbb6ssjrwuklGS29maP3++XYDq7LlMnz4dt956a9F5yeA5evrpp1X2Tpb/pkyZor6/NjvV9vnKGJC1a9cWGwciQRMxWAo5zn4xanPd3Pm0ORAXFae2HQdjup+ILpF/p7IMLtldZ3/IyB8xcr3jv2dvkUyDBBJS1C3ZGGeuuuoqVXeTmprq9HoJAGQwed++fVXxtgQnksWQLIeQYEAyHZK50sh5qYGyHVUhQ9Cl3kmP1P7IYHXNZZc5zwVIICPF1XKs1OVInY6j6667DosWLVJZH1f344xkYiSAlCVHZyRDJkuZEijFxxf+3KTOyxlZ8nP3fGSpz/YYZ8FrzZo1i44ZPXq0yu45ZqlkyVF+3jJsVntcZI/LcCH6C1R+UWpWNQT2R10aX+JILt8XVXics5EmwZLuJ6JL5N+p1AsK23/vtud9OaJo2bJlqkBZPmBdket++uknVXMkRcFbt25Vu9u0XWMSbMky16uvvqqWg2SZ54EHHrDLeshONrmNLE9NmzYNmZmZql5Gy3jIEHUhO8gkIyKnP/74Q9UGOVtCc0duJwGYPNYvvvjCaZ3QE088oZbTZJlLnp9kx6RuS4rPJahwRo55+eWX0bNnT1Ugrj1WIeclcJTdgrIDbubMmdixYwe++eYbnw9ulyVQeb4SqEl9lMxBk0DMlvxcJCs1cOBA9frLHDUJUKW+7D//+Y9PH1+oYLAUpFztSrP9BRpZANy8G0jaBMy8rvB2jgGTdv7FXjUwL2khoitEF7vPYEj3E1FxsrEiIykDMVExdpfLH0xyuS83XsgHrAQ48gHvinzIfvXVV6rGp127dujYsSOWLFmisiCy7Vy2rUsrAKnNkcyP/Lcsg0lwpG1fT09PV3VNUmP01ltvqYJibclJLpelI9lJJ9kRWQKTkywLSvGx7KTzlGRjJAMjGZSrr77aruBcI8tjkuGSwKhbt25q6VC25EtGSp6HM1K7JTv6ZDeZ9ji1JTsJsqRtgtxWrpflLgnSRowYoZ6fL0lAKs9XAiR57WVp1bZuTCOvuwRLsjNRsoDys5FAsUGDBj59fKHCYmUr1lIzOrXYKCO70n549f/Q4PlpqH/y0l85xytGoFKZiih38lIR05m6NbB73HBsiW+JkV+NdHqfUoskPZvcpft3J+9mzRKRFyadB3sH72AhbQdsv9qSHkNyksxUMJAlOwkQtYJtWxJ4SLDlrO6IAvtv0ejnNwu8g4y2K80xaNF2pam/JrcAHVJeKTZyoPofVuCPM9g94n7k1qmEig2bok3i4/htx2fo6+Y+JWiS/5bAyPY4f6T7iUif/NsLx3pBveJi+dCTD7lgIdv/HYujNZKdk6abFLqYWQqizJL89SgZHlfF1hK4NKgcg91pgMXFWBOtl1LjFKAgAoipEoM/L/yJY38cc3mfWtZoybYlxTJaUhAugRL7LBEFLrNERCXHzJLJGNmV1mhDNiw6499kNb1BXmHvpZWNgZxTObrf03anmwREsiQXjul+IiIiV7gMF0SM7Db7u30DXZeM9l5y/N7hmu4nIiJyhbvhgoi73WYy/y3lB2P3ZbT3ktHvTUREFK4YLAV5DyW7+W9fuL8P255KRsj3ctaokoiIiAoxWAqRJnRjvgXiThmf/ybF3e5wpxsREZF7DJZCoAmdLL+lZnk2/80xKKpRoQZiq8T6vbEdERFRqGOBdxCy3ZV28EQO7n5zBIAjhue/OcsezbxrJne6ERERlQCDpSBVtCstKws46D5QkjaSf9StgV1tygOnc+yyR7Z9krjTjYjckSn1H3zwgcvrf//9dzX6gyhcMFgKdrnGhtdKsLR+9APYNXQS+yQRmY0Mb121qvD3gcwbk8nwLrpFe0uPHj3UvDBbMt8sMTHRp9+XKBixZinYXRzE6M74BCApf15R9qhfm37qKxtKEoW4zEwZPAZ06QLcd1/hVzkvl/uQDFuVobO2p+joaLtjZC6bZJhkRluzZs1Up/Lu3btj//79dsfJcN3rrrtOXd+kSROkpqbiwoULdsfI/DeLxWJ3kplqtmS4rcxXq1ixohohIt9LslxCLpf5a5p33nlHPbZffvlFnZehuA8++KDqqC6DZWVYrAzxtTVq1Cg1RFdGk8TExKhBwgUFBYZvLxk5x8esvUa2z/Oaa66xO0ZmysnzPXHihNPb2Fq3bp06ds+ePUWXfffdd2owsDYwd/jw4Thz5gzccXy95ST3r5HBx9dffz2qVKmifv733XcfDh8+7PJx296vvCeEPE7H+xUyQ08GLTu7jSN5vWznA8r3e+ihh9SIGZmaccstt6hhzr7EYCmY/5KUJbicHKBmTSfjbe1bBUzsjKJO3ERkEhIQ9e4NOI43kt8LcrmPAyYjzp49i4kTJ+LDDz9UwYx8kN17771F18uke5lmn5ycjM2bN+Ott95SwYDcxtGVV16J3NxcdUpKSrK7Tj5su3btilatWuH7779XAcJdd92lghhHCxYswIgRI/DJJ5+oIE1I0BMbG4uFCxeqx/H888/j2WefVcdqunXrhs8++ww7duxQwdbMmTMxe/Zsw7cPhJ07d6osoGT81q9fj/nz56vXZujQoYZuL9lDeb3XrFlT7Lq//voLL7zwggpEJJCRwEcCwkDr06ePCtq++OILrF27Vv2M5b1x/Phxn31PLsMFI/kFmJxc7BdkgUN0W/j3jn2rACNdwIkoBEgQIL8HHAZmK3KZxQJIJqVnT58vyemRD9QZM2agffv26rzUOrVs2VJ9+LZr105lkSRjM2jQIHW9ZJbkA/j//u//MG7cuKL7OXfunMqMSAZDyH/LZZp//vOfKsvx+uuv2wVXjuQD9P7771dBTefOnYsuL1OmjHosGskQSdAlwY4WmEmGQiNBmDwGLRgzcvtAmDRpEvr371+UVZMM36uvvoqbb74Zb7zxhsu5hNprK9kZec1lfpqjBx54oOi/mzRpou73hhtuwOnTp3WHHPuSBILy3pJgSbKf4pVXXlHBXEZGBh5++GGffF8GS8H6l6TDL0g559iqUgbmSqBk2yqAnbiJTEJqlFwMzFbkd4Qsd8lxCYEbUXTZZZepD1BNixYt1BLSli1bVLAkWQnJONlmkiQAkQ9nyUrJkpo4duyY7iByySxJRkGPfIhKNkg+yLXgzda//vUvvPfee9i3bx/++OMPnD9/vtiS2EsvvYQXX3xRXS/ZGcmKeXJ7yUzZBhKy3OgYsGzYsMHuGGfZMRnMLsdERESgTp066NmzpwqMHMnrKxmljz76qOgyq9WqMmEyyFkCV2fk9RZ6r7lkbWT569dff1XLndqSpDx/yfBpJOPmTqdOndRz0cjP3lG/fv0QGRmplv0kWzRlyhS776M9XwnWatSoYXe5/Dwky+YrDJZC5C9JeYvJ2/RwRWBED+BAlcIu3bbNJ9mJmyj8NncYPi5A5INNMjK9ehXv52YbROzatUtla1yRLI87kumRbIpkGCTQmTt3btF18+bNw1NPPYWpU6eiY8eO6gNZPox//PFHu/t49NFH1WOVQEGyNfLfXbp0MXx7OVYegyYzM1MFYLak3kmWCDVyHwMGDLA7Ru5f6q0k8JFlP8nMSQbo1ltvLfb6PvLII6pOyVGDBg1cvlbyegtXr7nUPElNmJw++ugjlYGSIEnOS5BoS5Za5fFqJLvlSJYHbQM3qTFzNH36dPX8ZClXljglY7dx48Ziz7devXqqXsqRL3doMlgKob8kJS6qc7YwUFrp5P0tLQJY0E0UXps7DB/nI5I5+fnnn1UWSWzbtk192GkfjJIhkMsuv/xyl/chWSbJCv3jH/9wecxVV12F5cuX2y2FOZLbS7Bz2223oXXr1li8eDHuuecedZ1ktyS78fjjjxcd7ywTIUXscpIMmQRdixYtUgGQ0dtXqlTJ7rnWrl272DFSQG57TLaT3/uShdGOkeDjb3/7m8quOQZL8vpKMKX3+jqzcuVKVWTtKiu0detWlX16+eWXVdG4kJ+zMxJwuQtU5D5sH6NkJB1JMKgdIzVuUpMmy7yOz/fgwYPq9vL4/YUF3sHE4F+I9U4XvyylQwo7cROZibQHkA8yqU1yRi6XDzE5LoCklmfYsGEqOyLZGCkA7tChQ1HwJIXQUvwtQc6mTZvU8pxkacaOHVuUKZBjxE033aQ+COUkyypSVyPLUWL06NH46aefVLAiy07yYS4ZnKNHjxY9Fm23XsOGDVXW57HHHitabpKAQz7sv/zyS/z222947rnn1P3ZknooeYxSyCyF3V9//TWuvfZaw7f3Ngki5XWQ11VqdSQAdCQ79qSlg2TSJJjavn272n2oV+Atx8mSoixraq/3kSOF/fzk9ZJlQclKSVD32muvqSyUZMKk1syXJDCS5yyPR17/K664Qr2/bEmwKJk92XX41VdfqZ+VPP8xY8a4DOa8gcFSMDH4F2Kuk7o66fhNRCYiRdva1nTHgEk7L1uvA1jcLaTmSD6wZVv5jTfeqOpsZMlFI8s2UscjH2xS2ySBlCy3SECjFedKYHPq1CmVVZAlFjlJ4fTSpUtVhkHIB6fch9SsSCAmH5gSFDjLUAhZmpLgQgI57bwsqfXt21fVM0lQYJslEv/5z3/U8pBklSS4k6UgrcjZyO29SYJEWXqUTNWdd96pMmQjR450mnGTLJEEcNI+QII7CT6lBYIrcozsgJPXXXu9teBWghFp/SDLbrJrUQrlW7VqpTJM8rPyJVl2k+csP2t5fLbvI9sWA59//rkq3pdCfjlWdl/u3btX1Xb5isUqC6JUKnl5eahatap6c+sVyxmqWZK0omwLdvJjKbhY1N045VKtkowzkS7du5N3cwmOKIjIX8hSYCtLFK52JJV4d6xklCRQclIH5E/yYSp1PY59djyh9c+x7aOjkR1OcpLvQ94jAYerj34pWJfX3J9LXIH8t2j08ztkMkuyk0LWi+WvGFdro84abEm6V4/0ZZBtl/Iiyf1K0zFJCwfbX5LO2gRoc99Yq0RkYhIQSQPCFSuAOXMKv+7eHfBAyVskE+VqG7p8sMkHGXmXXgamZs2aakcahWiBt1Tfy/qqpF7fffdd3QZb0qBL467oTAIlSffJ2rSsl0paT/o0zJFfSoEgvwAzMor9Jfln3RpIljYBjQrX353NfSMik5IPrwC2B/Al2WHmivwut/19Tt4hNUGuLFu2jC+zGZbh9NK+kkmS3Q+O7eZdkUJDWYuVIj1pdiZkjfz2229XuxP01nx9sgznZhZUvgWc+0YUbstwRBTwZbiQySwZ9cQTT6iZMdJtVLaQSqZIgihXPTkk86QFSlpxm2zZlJ0d2pZTR7JDw7azrLzY/vhLUhKjMu+NiIiI/MdUwdKECRNUu3qpa5JdE7JTQeqPnDXr0lKRjj0wZGeFbD/VS1NKF1W9Xh9ERJoQS94TmY7VC/8GA1rgLfOCnBVl256kl4ZR0vdCtq7KtkjZyiqzh2RrpLdJvw9J2WknxwnbRERafxhnYx2IyH+0f4OOPZtCJrP05JNPup1gLMtpJSW9MKSJliyZaQP3HLuFyjA+x260skNOG+bojNyXs/sjItLIjiJZ5td+x0jG21VJABH5JqMkgZL8G5R/i6XZ5RfQYEmaXsnJV6RLafXq1V0GNrKzTgrFpTtq27Zt1WXffPONGhbobAgjEZEntD+6HP8oIyL/kUBJLwFiqpolGeAnGR/5Kq3YJRAS0vFVenR8+umnOHTokOoOK9Xu0gpAhhfabkuV2UMyQVrmC8XExKjZRbItdciQIXjzzTdV6wBpES/dQI3uhCMickUySdIdWWojHWdcEZHvydKbN/pGhUywJO3bP/jgg6Lz2ryeFStWqPb08oLIrJsRI0ao1JsEUdOmTVOBkEbScTLQ0faXlkxTlgCpa9euahdcYmIiXn31VT8/OyIyM/llzUZ/RKEr5PosBSOf9FkiIiIinzLduBMiIiKiQGCwRERERGSGmqVgpq1k+qSTNxEREfmE9rntriKJwZIXnDp1Sn2Ni4vzxt0RERGRnz/HpXbJFRZ4e4H0ZTpw4ACqVKni1aZzEvFKACYdws1aOG7252j25yf4HEMff4bmYPafY54Pnp9klCRQknZBsiPeFWaWvEBe4NjYWPiKvCnM+MYPp+do9ucn+BxDH3+G5mD2n2OUl5+fXkZJwwJvIiIiIh0MloiIiIh0MFgKYjLTbty4caYe2mv252j25yf4HEMff4bmYPafY7kAPj8WeBMRERHpYGaJiIiISAeDJSIiIiIdDJaIiIiIdDBYIiIiItLBYCkIffvtt7jrrrtUR1HpCP7xxx/DTCZNmoQbbrhBdTyvXbs27r77bmzbtg1m8sYbb+Cqq64qap7WsWNHfPHFFzCrl19+Wb1XU1JSYBbjx49Xz8n21KJFC5hNTk4OBgwYgBo1aqBChQpo06YNfv75Z5hFo0aNiv0c5fTEE0/ADPLz8/Hcc8+hcePG6ufXtGlTvPDCC25nnYWaU6dOqd8vDRs2VM+zU6dO+Omnn/z2/dnBOwidOXMGV199NR544AH06tULZrNy5Ur1i0oCpgsXLuDZZ59Ft27dsHnzZlSqVAlmIB3dJYBo1qyZ+qX1wQcfoGfPnvjf//6HK6+8EmYiv7DeeustFRyajfysli1bVnT+ssvM9Svz999/x4033oguXbqoYL5WrVrYvn07qlevDjO9PyWg0GzcuBF/+9vf0KdPH5jB5MmT1R9n8jtG3q8S6N5///2qK/Xw4cNhFg899JD62f373/9WiYTZs2fj1ltvVZ8bMTExvn8AVgpq8iNavHix1cwOHz6snufKlSutZla9enXrO++8YzWTU6dOWZs1a2b9+uuvrTfffLM1OTnZahbjxo2zXn311VYze+aZZ6w33XSTNZzIe7Rp06bWgoICqxnccccd1gceeMDusl69eln79+9vNYuzZ89aIyMjrZ999pnd5dddd511zJgxfnkMXIajgDt58qT6Gh0dDTOSv2rnzZunMoayHGcmkiG844471F94ZiRZFvkrtkmTJujfvz/27dsHM/nkk09w/fXXqyyLLIlfe+21ePvtt2FW58+fVxkJydp7c+h5IMly1PLly/Hbb7+p87/++iu+++473HbbbTCLCxcuqN+j5cuXt7tcluPkufqDuXLKFHIKCgrUOrQsBbRu3RpmsmHDBhUc/fnnn6hcuTIWL16MVq1awSwkAPzll1/8WjfgT+3bt8esWbPQvHlz5ObmIjU1FfHx8WopQOrtzGDXrl1qCWfkyJFqOVx+lrJ0U7ZsWQwaNAhmI/WfJ06cwODBg2EWo0aNQl5enqqni4yMVEHFxIkTVXBvFlWqVFG/S6UWq2XLlqhTpw7mzp2L77//Hpdffrl/HoRf8ldUYmZfhnv00UetDRs2tO7fv99qNufOnbNu377d+vPPP1tHjRplrVmzpnXTpk1WM9i3b5+1du3a1l9//bXoMrMtwzn6/fffrVFRUaZaSi1Tpoy1Y8eOdpcNGzbM2qFDB6sZdevWzXrnnXdazWTu3LnW2NhY9XX9+vXWDz/80BodHW2dNWuW1Ux27Nhh7dy5s/pMlCW5G264QS01tmjRwi/fn5klCpihQ4fis88+U7v/pCDabOSvc+2vnrZt26q/2tPT01UxdKhbu3YtDh8+jOuuu67oMvmLVn6WM2bMwLlz59RfuWZSrVo1XHHFFdixYwfMol69esWynfKX+6JFi2A2e/fuVcX6mZmZMJOnn35aZZfuvfdedV52M8pzlV3HZsoONm3aVG0OknIGyaTJe7dv375qidwfWLNEficJMwmUZFnqm2++UVtew2XJUYIIM+jatataZly3bl3RSWpfJPUv/222QEmcPn0aO3fuVL+kzUKWvx3bdkjti2zPNpv3339f1WVJjZ2ZnD17FhER9h/l8u9Pft+YUaVKldS/QdnJ+eWXX6pdxv7AzFKQ/lK2/et19+7d6gNICqAbNGgAMxQFz5kzB0uWLFFr0QcPHlSXy1ZXKdgzg9GjR6sCS/l5SX8Qeb5ZWVnqH7cZyM/NscZMfolJrx6z1J499dRTqt+ZBA4HDhxQ087lQ6hfv34wixEjRqgC4ZdeeglJSUlYs2YNZs6cqU5mIoGDBEuSaTFb+wd5j0qNkvyukdYB0p5k2rRpqojdTL788kv1h7bUEMrno2TUpE5L2iT4hV8W+8gjK1asUOuyjqdBgwaZ4pV09tzk9P7771vNQrbySi1W2bJlrbVq1bJ27drV+tVXX1nNzGw1S3379rXWq1dP/QxjYmLUeambMJtPP/3U2rp1a2u5cuVU/cfMmTOtZvPll1+q3zHbtm2zmk1eXp76d9egQQNr+fLlrU2aNFHb6aVm0kzmz5+vnpv8e6xbt671iSeesJ44ccJv398i/+efsIyIiIgo9LBmiYiIiEgHgyUiIiIiHQyWiIiIiHQwWCIiIiLSwWCJiIiISAeDJSIiIiIdDJaIiIiIdDBYIiIiItLBYImIiIhIB4MlIiIb+fn5al5ar1697F6XkydPIi4uDmPGjOHrRRRmOO6EiMjBb7/9hmuuuQZvv/02+vfvry4bOHAgfv31V/z0008oW7YsXzOiMMJgiYjIiVdffRXjx4/Hpk2bsGbNGvTp00cFSldffTVfL6Iww2CJiMgJmTF+yy23IDIyEhs2bMCwYcMwduxYvlZEYYjBEhGRC1u3bkXLli3Rpk0b/PLLL7jsssv4WhGFIRZ4ExG58N5776FixYrYvXs3srOz+ToRhSlmloiInFi9ejVuvvlmfPXVV3jxxRfVZcuWLYPFYuHrRRRmmFkiInJw9uxZDB48GI899hi6dOmCd999VxV5v/nmm3ytiMIQM0tERA6Sk5Px+eefq1YBsgwn3nrrLTz11FOq2LtRo0Z8zYjCCIMlIiIbK1euRNeuXZGVlYWbbrrJ7rXp3r07Lly4wOU4ojDDYImIiIhIB2uWiIiIiHQwWCIiIiLSwWCJiIiISAeDJSIiIiIdDJaIiIiIdDBYIiIiItLBYImIiIhIB4MlIiIiIh0MloiIiIh0MFgiIiIi0sFgiYiIiAiu/T8V8EERcPxJSQAAAABJRU5ErkJggg==",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "polinomial_pred_train = grid.predict(raw_x_train)\n",
+ "print_evaluation(raw_y_train, polinomial_pred_train)\n",
+ "plot_predictions(raw_x_train, raw_y_train, polinomial_pred_train)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Получили очень хорошие значения метрик и на тестовой выборке и на тренировочной. Конечно, существует риск переобучения модели при такой высокой степени полинома и небольшом количестве данных, но R^2 близко к 1 в обоих случаях, значит модель хорошо обобщается и результаты приемлемые."
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Выводы\n",
+ "\n",
+ "При выполнении данной лаборатоной работы удалось поработать с библиотекой scikit-learn и обучить модели регрессии.\n",
+ "\n",
+ "В результате получились следующие показатели:\n",
+ "\n",
+ "| | MSE | R^2 |\n",
+ "|-------------------------|-------|-------|\n",
+ "|Линейная регрессия | 7.202 | 0.682 |\n",
+ "|Полиноминальная регрессия| 1.078 | 0.952 |"
+ ]
+ }
+ ],
+ "metadata": {
+ "accelerator": "GPU",
+ "colab": {
+ "gpuType": "T4",
+ "provenance": []
+ },
+ "kernelspec": {
+ "display_name": "venv",
+ "language": "python",
+ "name": "python3"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 3
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython3",
+ "version": "3.11.5"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}