diff --git a/stud/gabdulkhakov/lab1-02.csv b/stud/gabdulkhakov/lab1-02.csv
new file mode 100644
index 0000000..b51d696
--- /dev/null
+++ b/stud/gabdulkhakov/lab1-02.csv
@@ -0,0 +1,200 @@
+1.323232323232323315e+00,1.443073977815279932e+03
+2.373737373737373701e+00,1.779828148747385512e+03
+8.878787878787878896e+00,1.171073792088650407e+04
+8.555555555555555358e+00,1.096294178596679194e+04
+2.858585858585859008e+00,3.494724975328934306e+03
+3.060606060606060996e+00,3.076934703109438942e+03
+5.000000000000000000e+00,3.449812301427973125e+03
+3.989898989898990056e+00,3.227964081758717839e+03
+4.717171717171718015e+00,4.152722122339604539e+03
+2.212121212121211933e+00,2.282157266514218009e+03
+3.101010101010101216e+00,2.534969004079638125e+03
+7.464646464646465418e+00,6.618487754956825484e+03
+4.515151515151515582e+00,3.672154153351821606e+03
+2.656565656565656575e+00,3.639942621652056005e+03
+7.626262626262626299e+00,6.824860826120186175e+03
+2.939393939393939448e+00,2.070370092178918640e+03
+7.141414141414141881e+00,6.191579405437350033e+03
+3.747474747474747847e+00,3.859765993285859622e+03
+5.646464646464646187e+00,4.177392957730947273e+03
+7.868686868686868507e+00,8.232150361344811245e+03
+3.585858585858586078e+00,3.788092592639980012e+03
+8.191919191919192045e+00,8.870069324078378486e+03
+5.808080808080807955e+00,3.562966325954404056e+03
+1.000000000000000000e+00,1.078366652069409838e+03
+6.737373737373737015e+00,5.550691497553604677e+03
+5.929292929292929060e+00,4.129098232504151383e+03
+9.000000000000000000e+00,1.219688365372766930e+04
+4.757575757575757791e+00,4.544638034932118899e+03
+7.747474747474747403e+00,8.291381723829346811e+03
+4.676767676767676463e+00,4.080186621231382105e+03
+2.252525252525252597e+00,2.521625300112412788e+03
+1.484848484848484862e+00,1.614805043579787480e+03
+5.686868686868686851e+00,3.913750166927032751e+03
+5.767676767676768179e+00,5.246017605858847674e+03
+3.949494949494949836e+00,4.106109068771669627e+03
+6.777777777777777679e+00,5.161126375051736431e+03
+8.070707070707070940e+00,9.698554344046497135e+03
+4.474747474747474918e+00,3.837397819501816230e+03
+4.797979797979798455e+00,4.253543243680213891e+03
+5.848484848484848619e+00,3.192289818573757202e+03
+8.030303030303031164e+00,8.072620599557676542e+03
+1.565656565656565746e+00,2.122814081383021403e+03
+7.545454545454545858e+00,7.299286409923799511e+03
+5.565656565656565746e+00,4.147062532255998121e+03
+1.606060606060605966e+00,2.693320088379907247e+03
+1.888888888888888840e+00,2.862980304513796909e+03
+8.515151515151515582e+00,1.036596823752695491e+04
+5.888888888888889284e+00,4.868403869158999441e+03
+4.191919191919192045e+00,3.218546566306835302e+03
+1.242424242424242431e+00,1.012840673121595728e+03
+2.616161616161616355e+00,2.952776384928454263e+03
+4.919191919191919560e+00,3.879006494206254956e+03
+1.444444444444444420e+00,2.155725471812979777e+03
+6.292929292929293261e+00,4.635995073205393965e+03
+7.828282828282828731e+00,8.088324187507078022e+03
+1.969696969696969724e+00,9.995160740803162298e+02
+5.484848484848484418e+00,3.664165797021849812e+03
+1.686868686868686851e+00,1.911865609148577732e+03
+6.131313131313131493e+00,4.551154851550320927e+03
+8.313131313131313149e+00,1.067827966717312302e+04
+6.575757575757576134e+00,5.681701647333922665e+03
+7.989898989898989612e+00,8.294374523817476074e+03
+5.323232323232323537e+00,3.567146633610082517e+03
+5.969696969696969724e+00,3.020639498180716146e+03
+8.474747474747474030e+00,1.039378335952224916e+04
+2.454545454545454586e+00,1.859613492354619211e+03
+2.090909090909090828e+00,1.738249774946290700e+03
+1.929292929292929504e+00,2.116845042181957524e+03
+1.080808080808080884e+00,8.794196506190251057e+02
+5.000000000000000000e+00,3.694759607801453967e+03
+4.595959595959596911e+00,3.519510735534980995e+03
+3.505050505050505194e+00,3.514405651254799523e+03
+7.060606060606060552e+00,6.108904301480353752e+03
+1.848484848484848619e+00,1.191655271504332859e+03
+3.424242424242424310e+00,3.670235758333404647e+03
+7.303030303030302761e+00,6.375444736179774736e+03
+6.171717171717171269e+00,4.346207688914192659e+03
+3.020202020202020332e+00,3.095644756951766794e+03
+5.363636363636363313e+00,4.095816710251841414e+03
+1.525252525252525304e+00,9.281646121052089029e+02
+6.818181818181818343e+00,5.591746181008742496e+03
+6.454545454545455030e+00,4.146347153688197068e+03
+4.393939393939394478e+00,3.773397882219677285e+03
+6.858585858585859008e+00,6.227267392157050381e+03
+2.494949494949494806e+00,2.278127343292411751e+03
+5.444444444444444642e+00,4.220703288691405760e+03
+8.151515151515152269e+00,8.693850241470674518e+03
+7.101010101010101216e+00,5.632945863062757780e+03
+2.696969696969697239e+00,2.338385177159061186e+03
+6.333333333333333925e+00,4.692700314111441912e+03
+2.777777777777777679e+00,2.534070574132241290e+03
+6.535353535353535470e+00,4.888994831353419613e+03
+2.535353535353535470e+00,2.529424283730647403e+03
+6.656565656565656575e+00,6.124073059467725216e+03
+7.585858585858586522e+00,7.837324010864234879e+03
+5.080808080808080440e+00,3.176778402979363818e+03
+1.404040404040403978e+00,1.073243610280292614e+03
+7.505050505050505194e+00,7.384688561926723196e+03
+3.545454545454545858e+00,3.340549549526318060e+03
+5.040404040404040664e+00,3.416786826382895015e+03
+5.727272727272727515e+00,3.143702877670913040e+03
+3.141414141414141437e+00,3.025554677740814441e+03
+1.767676767676767735e+00,3.248839269637335747e+03
+2.010101010101010388e+00,2.047811654726937377e+03
+3.909090909090909172e+00,3.257046729327966204e+03
+6.090909090909090828e+00,3.798227548988594208e+03
+5.404040404040403978e+00,3.155879098696296751e+03
+7.262626262626262985e+00,6.069124865206546019e+03
+3.262626262626262985e+00,2.686712882762474692e+03
+3.464646464646464974e+00,2.834618185909245767e+03
+3.828282828282828731e+00,3.453272652196691070e+03
+2.131313131313131493e+00,2.474144411324955399e+03
+8.757575757575757791e+00,1.210587615416094013e+04
+2.333333333333333481e+00,2.499917421452550116e+03
+4.151515151515152269e+00,3.163431163044117966e+03
+6.616161616161615910e+00,5.393346251245277017e+03
+8.676767676767676463e+00,1.134412096303745057e+04
+7.707070707070707627e+00,6.639196472283304502e+03
+8.353535353535352925e+00,1.028517727053740236e+04
+2.737373737373737459e+00,2.973318092436598818e+03
+3.666666666666666963e+00,3.177261119632346890e+03
+4.111111111111110716e+00,3.344450925950234705e+03
+7.383838383838384090e+00,6.882856133313098326e+03
+4.030303030303031164e+00,2.893268910558789230e+03
+5.202020202020202433e+00,3.300196892514481988e+03
+8.393939393939394478e+00,1.006104815823435638e+04
+4.313131313131313149e+00,4.651202222759340657e+03
+2.979797979797980112e+00,2.443877414760145712e+03
+4.434343434343434254e+00,4.320969853531641093e+03
+7.666666666666666963e+00,7.413603477813789141e+03
+4.636363636363636687e+00,4.052407541739210046e+03
+8.232323232323231821e+00,1.039426103851322114e+04
+1.121212121212121104e+00,9.303091655263904158e+02
+3.343434343434343425e+00,3.444325045320776098e+03
+5.525252525252525082e+00,2.963948910212121518e+03
+4.070707070707070940e+00,4.404220800006266472e+03
+2.171717171717171713e+00,2.250123974404549244e+03
+1.161616161616161547e+00,1.176598448593118519e+03
+3.181818181818182101e+00,3.091476046659829535e+03
+3.303030303030303205e+00,2.916822452617429917e+03
+6.696969696969697239e+00,4.868116794574791129e+03
+1.808080808080808177e+00,1.565080188359543399e+03
+5.242424242424242209e+00,3.186512928700053635e+03
+8.717171717171718015e+00,1.156428804880644202e+04
+4.555555555555555358e+00,4.129658549535746715e+03
+8.838383838383839120e+00,1.117825702567918961e+04
+1.282828282828282873e+00,1.807652110832155586e+03
+7.020202020202020776e+00,6.063647702811695126e+03
+6.494949494949494806e+00,4.600259143719979875e+03
+4.232323232323232709e+00,4.619593993295479777e+03
+7.787878787878788067e+00,8.093200344573799157e+03
+6.939393939393939448e+00,4.916561557320512293e+03
+4.959595959595960224e+00,3.784233667637480266e+03
+6.373737373737373701e+00,4.001887356196625205e+03
+8.959595959595960224e+00,1.212444187219442574e+04
+6.979797979797980112e+00,5.349954316210300021e+03
+2.818181818181818343e+00,2.912967376185543344e+03
+7.222222222222222321e+00,6.739561484634094086e+03
+4.353535353535353813e+00,4.128833714373778093e+03
+8.919191919191920448e+00,1.205933946549514803e+04
+2.292929292929293261e+00,2.470447887235636699e+03
+1.040404040404040442e+00,1.083404929574051266e+03
+4.878787878787878896e+00,3.688239574764450481e+03
+2.050505050505050608e+00,2.692938748666037554e+03
+5.606060606060606410e+00,4.708073300120162457e+03
+2.898989898989899228e+00,2.575166904845308636e+03
+8.434343434343434254e+00,1.074196745749859110e+04
+3.626262626262626299e+00,2.683094241967944981e+03
+7.909090909090909172e+00,8.103696501810111840e+03
+8.797979797979799343e+00,1.196649416377223133e+04
+1.727272727272727293e+00,1.145191734721537159e+03
+3.868686868686868952e+00,3.492320011499153225e+03
+6.414141414141414366e+00,4.396712619863309556e+03
+8.595959595959596911e+00,1.049430373232315105e+04
+7.949494949494949836e+00,9.061618871991513515e+03
+3.222222222222222321e+00,3.431319195207082885e+03
+7.424242424242423866e+00,7.369732593857854226e+03
+3.787878787878788067e+00,3.560887015697468996e+03
+8.272727272727273373e+00,9.607119566154147833e+03
+2.575757575757576134e+00,3.282651744414733002e+03
+5.161616161616161769e+00,3.408032736360088620e+03
+6.010101010101010388e+00,4.079845920706757624e+03
+4.838383838383839120e+00,3.311552696622762141e+03
+3.707070707070707183e+00,2.306237731971446919e+03
+1.363636363636363757e+00,1.993482942197045304e+03
+3.383838383838384090e+00,3.265691423210565063e+03
+2.414141414141414366e+00,2.143336489522508600e+03
+6.898989898989899672e+00,5.363513541779556363e+03
+6.252525252525252597e+00,4.661977387494251161e+03
+5.121212121212121104e+00,3.193685381539437458e+03
+6.212121212121211933e+00,4.399354863409351310e+03
+8.636363636363636687e+00,1.117075090698572239e+04
+6.050505050505050164e+00,4.737924464626492409e+03
+1.202020202020201989e+00,1.098663924892374780e+03
+5.282828282828282873e+00,3.955504262468179149e+03
+4.272727272727273373e+00,3.707267625388993565e+03
+7.181818181818181657e+00,6.327589251170996249e+03
+7.343434343434343425e+00,6.981198238102608229e+03
+8.111111111111110716e+00,8.755806933133022540e+03
+1.646464646464646631e+00,2.170094377022198842e+03
diff --git a/stud/gabdulkhakov/lab1.ipynb b/stud/gabdulkhakov/lab1.ipynb
new file mode 100644
index 0000000..758debd
--- /dev/null
+++ b/stud/gabdulkhakov/lab1.ipynb
@@ -0,0 +1,925 @@
+{
+ "cells": [
+ {
+ "cell_type": "code",
+ "execution_count": 59,
+ "id": "416671c1",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "import numpy as np\n",
+ "import pandas as pd\n",
+ "import matplotlib.pyplot as plt\n",
+ "import seaborn as sns\n",
+ "from sklearn.model_selection import train_test_split\n",
+ "from sklearn.linear_model import LinearRegression\n",
+ "from sklearn.metrics import r2_score, mean_squared_error, mean_absolute_error"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "9ae5184c",
+ "metadata": {},
+ "source": [
+ "## 1. Загрузить данные из файла.\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 60,
+ "id": "89c16289",
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "
\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " X \n",
+ " Y \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " 0 \n",
+ " 1.323232 \n",
+ " 1443.073978 \n",
+ " \n",
+ " \n",
+ " 1 \n",
+ " 2.373737 \n",
+ " 1779.828149 \n",
+ " \n",
+ " \n",
+ " 2 \n",
+ " 8.878788 \n",
+ " 11710.737921 \n",
+ " \n",
+ " \n",
+ " 3 \n",
+ " 8.555556 \n",
+ " 10962.941786 \n",
+ " \n",
+ " \n",
+ " 4 \n",
+ " 2.858586 \n",
+ " 3494.724975 \n",
+ " \n",
+ " \n",
+ "
\n",
+ "
"
+ ],
+ "text/plain": [
+ " X Y\n",
+ "0 1.323232 1443.073978\n",
+ "1 2.373737 1779.828149\n",
+ "2 8.878788 11710.737921\n",
+ "3 8.555556 10962.941786\n",
+ "4 2.858586 3494.724975"
+ ]
+ },
+ "execution_count": 60,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "df = pd.read_csv('lab1-02.csv', header=None)\n",
+ "df.columns = ['X', 'Y']\n",
+ "df.head()"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "0c79f2a3",
+ "metadata": {},
+ "source": [
+ "## 2. Визуализировать загруженные данные (диаграмма рассеяния, график)."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 61,
+ "id": "9cceef26",
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAA3kAAAJOCAYAAAAK+M50AAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjYsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvq6yFwwAAAAlwSFlzAAAPYQAAD2EBqD+naQAAl9BJREFUeJzt3Xl8lOXV//HvTMgGWUGSgCKbViCgEGyFuD/yiEhbtVarwk8sVquCdSluraVStW64VVG0rSvavVqrVuWpVmyDG4tCQKrIYtWEJTuEJGTm98fpJJlkkswks9wz+bxfr7zGzH3nzjXXTHDOnOs6x+X1er0CAAAAACQEd6wHAAAAAAAIH4I8AAAAAEggBHkAAAAAkEAI8gAAAAAggRDkAQAAAEACIcgDAAAAgARCkAcAAAAACYQgDwAAAAASCEEeAAAAACQQgjwAAAAASCAEeQAA/fGPf5TL5Qr4NX78+FgPDwAAhKBfrAcAAHCOH/3oRxo7dmzL97feemsMRwMAAHqCIA8A0OJ///d/dcIJJ7R8/6tf/Uq7du2K3YAAAEDIWK4JAFBjY6Mkye3u/n8LTzzxhFwul7Zu3dpyn8fj0eGHHy6Xy6Unnnii5f4PP/xQF1xwgUaNGqW0tDQVFBRo7ty52r17t981b7rppoBLRfv1a/0s8oQTTtD48eO1atUqFRcXKz09XSNHjtTSpUs7PJaFCxdq8uTJys7O1oABA3TsscfqjTfe8Dtv69atLb/n+eef9zu2b98+5ebmyuVyafHixR3GmZeXp6amJr+f+c1vftNyvbaB8V/+8hfNnDlTQ4cOVWpqqkaPHq2bb75Zzc3N3c617/d99NFHOvvss5WVlaVBgwbpiiuu0L59+/zOffzxx/U///M/ysvLU2pqqsaNG6eHH3444HX/9re/6fjjj1dmZqaysrL01a9+Vc8++6zfOe+8845OPfVU5ebmasCAATr88MN1//33+53z0Ucf6dvf/rYGDhyotLQ0HXnkkXrhhRc6/L41a9bolFNO0eDBg/2e369//est5/heV++//77fz+7atUsul0s33XRTh3lpq66uTgUFBXK5XPrHP/7hd+zhhx/W+PHj1b9/f7/f/8c//jHg/ABAvCOTBwBoCfJSU1N79PNPP/201q1b1+H+5cuX69NPP9V3v/tdFRQUqLS0VI8++qhKS0v19ttvd3ij/vDDDysjI6Pl+/ZBZ2VlpU499VSdffbZOvfcc/X73/9el156qVJSUjR37lxJUk1NjX71q1/p3HPP1UUXXaTa2lr9+te/1vTp0/Xuu+9q4sSJftdMS0vT448/rtNPP73lvj//+c8dgqi2amtr9eKLL+qMM85oue/xxx9XWlpah5974oknlJGRoauvvloZGRl6/fXXtXDhQtXU1Oiuu+7q9He0dfbZZ2vEiBG67bbb9Pbbb+sXv/iFKisr9dRTT/nNXWFhob75zW+qX79++utf/6rLLrtMHo9H8+bN8xvP3LlzVVhYqBtuuEE5OTlas2aNXnnlFZ133nmS7Hn7+te/riFDhuiKK65QQUGBNm7cqBdffFFXXHGFJKm0tFRHH320DjzwQF1//fUaMGCAfv/73+v000/Xn/70p5a5qa6u1owZM+T1enX11Vdr2LBhkqSrrroqqMcerLvvvlvl5eUd7v/d736nyy67TCeccIIuv/xyDRgwQBs3btTPf/7zsP5+AHAULwCgz7vvvvu8krwffPCB3/3HH3+8t7Cw0O++xx9/3CvJu2XLFq/X6/Xu27fPe/DBB3tnzJjhleR9/PHHW87du3dvh9/1m9/8xivJu2LFipb7fvrTn3oleXfu3NnpGI8//nivJO/dd9/dcl9DQ4N34sSJ3ry8PG9jY6PX6/V69+/f721oaPD72crKSm9+fr537ty5Lfdt2bLFK8l77rnnevv16+ctKytrOXbSSSd5zzvvPK8k71133dVhnOeee67361//esv927Zt87rdbu+5557b4XEEmoPvf//73v79+3v37dvX6eNt+/u++c1v+t1/2WWXdXi+Av2e6dOne0eNGtXyfVVVlTczM9N71FFHeevr6/3O9Xg8Xq/X5m/kyJHe4cOHeysrKwOe4/XaHE2YMMHvMXg8Hm9xcbH30EMPbbnv1Vdf9Ury/uY3v/G71vDhw70zZ85s+d73unrvvff8ztu5c6dXkvenP/1ph3nx2bFjhzczM7PlNfjGG2+0HDv33HO9OTk5fo/3jTfe8Ery/uEPf+gwZwCQCFiuCQBoWT45ePDgkH92yZIl2r17t3760592OJaent7y3/v27dOuXbs0ZcoUSdLq1atD/l39+vXT97///ZbvU1JS9P3vf187duzQqlWrJElJSUlKSUmRZMtIKyoqtH//fh155JEBf2dRUZEKCwv19NNPS5K2bdumN954QxdccEGn45g7d65eeeUVlZWVSZKefPJJTZ06VV/5ylc6nNt2Dmpra7Vr1y4de+yx2rt3rz766KOgHnfbTJwkXX755ZKkl19+OeDvqa6u1q5du3T88cfr008/VXV1tSTL0NXW1ur6669XWlqa3zV9WdU1a9Zoy5YtuvLKK5WTkxPwnIqKCr3++us6++yzWx7Trl27tHv3bk2fPl0ff/yxPv/885bHLEmDBg0K6rH6xu77qqio6PZnbr75ZmVnZ+sHP/hBh2O1tbXq379/h8cLAImMIA8AoG3btqlfv34hB3nV1dX6+c9/rquvvlr5+fkdjldUVOiKK65Qfn6+0tPTNXjwYI0cObLlZ0M1dOhQDRgwwO8+X2DVdo/gk08+qcMPP1xpaWkaNGiQBg8erJdeeqnT3/nd735Xjz/+uCRbzlhcXKxDDz2003FMnDhR48eP11NPPSWv16snnnhC3/3udwOeW1paqjPOOEPZ2dnKysrS4MGDNXv2bEnBz0H7sYwePVput9vvMf/rX//StGnTNGDAAOXk5Gjw4MH60Y9+5Pd7Nm/eLEldtsUI5pxPPvlEXq9XP/nJTzR48GC/L1+wv2PHDknSkUceqeTkZN10001as2ZNS/Dm8XgCXnvatGl+1zvssMO6mhpt2bJFjzzyiBYtWhQwkJs6daq++OIL3XTTTdq+fbt27drVo9ceAMQT9uQBALRp0yaNGjXKr9BJMO644w653W5dc801HYqpSLaXrKSkRNdcc40mTpyojIwMeTwenXLKKZ2+ye+tZcuW6YILLtDpp5+ua665Rnl5eUpKStJtt93WEsC0N3v2bF177bV6++239eSTT+rGG2/s9vfMnTtXDz30kL72ta+prKxMZ599tu6++26/c6qqqnT88ccrKytLP/vZzzR69GilpaVp9erVuu6663o8B+33Mm7evFknnXSSxowZo3vuuUfDhg1TSkqKXn75Zd17771hn2vf9RYsWKDp06cHPOeQQw6RJA0fPlyPP/64rrjiChUVFfmdc/jhh3f4uSVLlvhlRGtqanTmmWd2OpYf//jHOvTQQzVnzhy99dZbHY5fddVV2rRpk26++WYtWrSo+wcHAAmAIA8A+riGhgatXbvWr/BIML744gvdf//9uu2225SZmdkhyKusrNTf//53LVq0SAsXLmy5/+OPP+7xWL/44gvt2bPHL5v373//W5I0YsQISdbYfdSoUfrzn//sFwwFWk7qM2jQIH3zm99sWfp59tlnd9s6YtasWbrmmmt0xRVX6Nvf/rYyMzM7nPOPf/xDu3fv1p///Gcdd9xxLfdv2bIlqMfr8/HHH7dkQCXLpHk8npbH/Ne//lUNDQ164YUXdPDBB7ec176i6OjRoyVJ69evbwnC2mt7zrRp0wKeM2rUKElScnJyp+e0NWvWLG3fvl2LFi3S008/rdzc3JZsZntf+9rXdOSRR7Z839XzsGbNGv32t7/V888/r6SkpIDnpKen65e//KXWrFmj7Oxs/fSnP9UHH3ygBQsWdDtuAIhXLNcEgD7u2WefVUNDg0466aSQfm7RokXKz8/XJZdcEvC470231+v1u/++++7r0Tglaf/+/XrkkUdavm9sbNQjjzyiwYMHa/LkyZ3+3nfeeUcrV67s8tpz587Vhx9+qLPOOsuvwmdnBg4cqNNOO00ffvhhS2XP9gKNpbGxUQ899FC3129ryZIlft8/8MADkqQZM2Z0+nuqq6tblqD6nHzyycrMzNRtt93WoQqo72eLioo0cuRI3Xfffaqqqgp4Tl5enk444QQ98sgj+vLLLzuMd+fOnX7fr169Wj/96U91++2366yzztK0adPCskfu+uuv19FHH61vfvObXZ53ww03aPv27Vq2bJmmTZvW8loBgERFJg8A+qg9e/bogQce0M9+9jMlJSXJ6/Vq2bJlfueUl5errq5Oy5Yt0//+7//67bt77bXX9Mwzz7QUOWkvKytLxx13nO688041NTXpwAMP1GuvvRZyFqutoUOH6o477tDWrVv1la98Rb/73e+0du1aPfroo0pOTpYkff3rX9ef//xnnXHGGZo5c6a2bNmipUuXaty4caqrq+v02qeccop27twZVIDn88QTT2jJkiU64IADAh4vLi5Wbm6u5syZox/84AdyuVx6+umnOwS+3dmyZYu++c1v6pRTTtHKlSu1bNkynXfeeTriiCMkWfCWkpKib3zjG/r+97+vuro6/fKXv1ReXp5fEJaVlaV7771X3/ve9/TVr35V5513nnJzc/XBBx9o7969evLJJ+V2u/Xwww/rG9/4hiZOnKjvfve7GjJkiD766COVlpbq1VdflWSB5zHHHKMJEybooosu0qhRo1ReXq6VK1fqP//5jz744ANJ0t69e3XeeefphBNOaGm/EC6vvfaa/vWvf3V5zv/93//p3nvv1dNPP63hw4eH9fcDgFMR5AFAH7Vz507dcMMNLd+3rVrZ3v/7f/9Pb7zxhl+QN3HiRJ177rld/o5nn31Wl19+uZYsWSKv16uTTz5Zf/vb3zR06NAejTk3N1dPPvmkLr/8cv3yl79Ufn6+HnzwQV100UUt51xwwQUqKyvTI488oldffVXjxo3TsmXL9Ic//KFDk+y2XC5Xp8FaZ9LT0/2qWrY3aNAgvfjii/rhD3+oG2+8sWWZ4kknndTpXrZAfve732nhwoW6/vrr1a9fP82fP9+vx95hhx2mP/7xj7rxxhu1YMECFRQU6NJLL9XgwYM7ZBkvvPBC5eXl6fbbb9fNN9+s5ORkjRkzxq9v3fTp0/XGG29o0aJFuvvuu+XxeDR69Gi/eR43bpzef/99LVq0SE888YR2796tvLw8TZo0yW957lVXXaVdu3bp9ddf77CXsLdOO+00FRcXd3p89+7dmjNnjs455xzNmjUrrL8bAJzM5Q3140QAQELYunWrRo4cqTfeeEMnnHBCr8+LtBNOOEG7du3S+vXrYzaGaLvpppu0aNEi7dy5M+QAFADQd7EnDwAAAAASCEEeAPRRGRkZmjVrVsD+dj05DwAAOAN78gCgjzrggAM6FFrpzXkAAMAZ2JMHAAAAAAmE5ZoAAAAAkEAI8gAAAAAggbAnL0w8Ho+++OILZWZmhr0PEAAAAAB4vV7V1tZq6NChcrs7z9cR5IXJF198oWHDhsV6GAAAAAAS3GeffaaDDjqo0+MEeWGSmZkpySY8KysrxqOxzOLOnTs1ePDgLqN89B5zHR3Mc/Qw19HDXEcH8xw9zHV0MM/R47S5rqmp0bBhw1pij84Q5IWJb4lmVlaWY4K8ffv2KSsryxEvyETGXEcH8xw9zHX0MNfRwTxHD3MdHcxz9Dh1rrvbHuackQIAAAAAeo0gDwAAAAASCEEeAAAAACQQgjwAAAAASCAEeQAAAACQQAjyAAAAACCBEOQBAAAAQAIhyAMAAACABEKQBwAAAAAJhCAPAAAAABIIQR4AAAAAJBCCPAAAAABIIAR5AAAAAJBACPIAAAAAIIEQ5AEAAABAAiHIAwAAAIB2PB5p/frWL48n1iMKXr9YDwAAAAAAnKSkRHrwQWnTJmn4cGnbNumww6T586Xi4liPrntk8gAAAADgv0pKpAULpNWrpexsKT/fbtessftLSmI9wu4R5AEAAADo8zwe6YMPpIULpS+/lEaPljIyJLfbbkePliorpSVLnL90k+WaAAAAAOKWxyOVlloAlpsrFRZaYBYK3/LM1aulrVulfv2ktWulkSOlYcPsHJdLKiiQNmyw3zdhQrgfSfgQ5AEAAACIS77gbONGqaFBSk2Vxo4Nbe+cb3lmRYWUnm4BXkqKVF0tffSRNGpU67np6VJ5uQWUTsZyTQAAAABxp+3euZwcacQIuw1271yg5ZlZWVJSkmUC+/eXGhulHTskr9d+pr7eAsnc3Ag/uF4iyAMAAAAQVzwey+BVVEiHHGJ75pKSgt87V1IizZ4tfec70j//Ke3cacszm5rsGvv22fLM1FQL7GprLdArK5PGjbMloU5GkAcAAAAgrpSW2hLNIUMsGGur/d659tpmAAMtzxw0yL7fs8fO93gsyNu82TJ48+aFvucv2mI6vBUrVugb3/iGhg4dKpfLpeeff77lWFNTk6677jpNmDBBAwYM0NChQ3X++efriy++8LtGRUWFZs2apaysLOXk5OjCCy9UXV2d3zkffvihjj32WKWlpWnYsGG68847O4zlD3/4g8aMGaO0tDRNmDBBL7/8ckQeMwAAAIDeqay0PXjp6YGPp6fb8fZ759pnAAMtz9y92/b1ZWfbNZqbLZtXVCQtXkyfvG7t2bNHRxxxhJYsWdLh2N69e7V69Wr95Cc/0erVq/XnP/9ZmzZt0je/+U2/82bNmqXS0lItX75cL774olasWKGLL7645XhNTY1OPvlkDR8+XKtWrdJdd92lm266SY8++mjLOSUlJTr33HN14YUXas2aNTr99NN1+umna/369ZF78AAAAAB6JDe3dSllW16vVFNje+w8HgvU2mqfAczM7Lg8s67OsnsTJ0p5ebY089lnpaefjo8AT4pxdc0ZM2ZoxowZAY9lZ2dr+fLlfvc9+OCD+trXvqbt27fr4IMP1saNG/XKK6/ovffe05FHHilJeuCBB3Tqqadq8eLFGjp0qJ555hk1NjbqscceU0pKigoLC7V27Vrdc889LcHg/fffr1NOOUXXXHONJOnmm2/W8uXL9eCDD2rp0qURnAEAAAAAoSostGzbmjW2B8/lsuzc1q0WpO3bJw0YIN1+u3T55a3BWfsMoMtlbRI2bLDlmamplrmrqbGCK/n50nnnSYcf7vwlmm3FVQuF6upquVwu5eTkSJJWrlypnJyclgBPkqZNmya326133nlHZ5xxhlauXKnjjjtOKSkpLedMnz5dd9xxhyorK5Wbm6uVK1fq6quv9vtd06dP91s+2l5DQ4MaGhpavq+pqZEkeTweeRzQHdHj8cjr9TpiLImOuY4O5jl6mOvoYa6jg3mOHuY6OphnM2+edO210pYtUlqaBXi+t+cZGVZt88MPpWuuke68U5o61apvpqdbEJiRYecOHGhB49atti/P47HrTJ4sXXKJR6NHO2eugx1H3AR5+/bt03XXXadzzz1XWVlZkqSysjLl5eX5ndevXz8NHDhQZWVlLeeMHDnS75z8/PyWY7m5uSorK2u5r+05vmsEctttt2nRokUd7t+5c6f27dsX+gMMM4/Ho+rqanm9Xrnj6WOHOMRcRwfzHD3MdfQw19HBPEcPcx0dzLMZPVq65RbpxRetiMphh0nJyRbE5edbEOeriPncc5axO+AA6cQTpU8/teIsvqItw4ZJ48dL//mP3T93rjR8uCR5VFXlnLmura0N6ry4CPKampp09tlny+v16uGHH471cCRJN9xwg1/2r6amRsOGDdPgwYNbgtBY8ng8crlcGjx4sCNekImMuY4O5jl6mOvoYa6jg3mOHuY6OpjnVnl5tj/vb3+z4C4lxQK9ysrWoit1ddIbb0jnn2+B3BlnWAZw0yYLBtPTbW9febll+q6/XjrqKPtZp811WlpaUOc5PsjzBXjbtm3T66+/7hdAFRQUaMeOHX7n79+/XxUVFSooKGg5p7y83O8c3/fdneM7HkhqaqpSU1M73O92ux3xApAkl8vlqPEkMuY6Opjn6GGuo4e5jg7mOXqY6+hgnlv9d9eU8vOtUqbU2rxcsqWcZWVSVZXtqzv6aOmuu6zK5saNdiw11QqtzJvXsbiKk+Y62DE4OsjzBXgff/yx3njjDQ0aNMjv+NSpU1VVVaVVq1Zp8uTJkqTXX39dHo9HR/03/J46dap+/OMfq6mpScnJyZKk5cuX67DDDlPuf1vVT506VX//+9915ZVXtlx7+fLlmjp1ahQeJQAAAICealtp07fPrq36ejv+37f+kiyQmzLFqm1WVtqxwsL4Kq7SlZg+jLq6Oq1du1Zr166VJG3ZskVr167V9u3b1dTUpG9/+9t6//339cwzz6i5uVllZWUqKytTY2OjJGns2LE65ZRTdNFFF+ndd9/Vv/71L82fP1/nnHOOhg4dKkk677zzlJKSogsvvFClpaX63e9+p/vvv99vqeUVV1yhV155RXfffbc++ugj3XTTTXr//fc1f/78qM8JAAAAgOD5Km2Wlfln8KTWPXnjxtl5bbnd0oQJ0nHH2W2iBHhSjIO8999/X5MmTdKkSZMkSVdffbUmTZqkhQsX6vPPP9cLL7yg//znP5o4caKGDBnS8lVSUtJyjWeeeUZjxozRSSedpFNPPVXHHHOMXw+87Oxsvfbaa9qyZYsmT56sH/7wh1q4cKFfL73i4mI9++yzevTRR3XEEUfoj3/8o55//nmNHz8+epMBAAAAIGRutzR/vmXjNm+2PXjNzXa7ebPdP29eYgVx3Ynpcs0TTjhB3vbhdhtdHfMZOHCgnn322S7POfzww/XWW291ec5ZZ52ls846q9vfBwAAAMBZioulxYtb99mVl9sSzaKiwPvsEp2j9+QBAAAAQDCC2Wfn8STuPry2CPIAAAAAJATfPrtASkpaM30NDZbpGzvWlnomWqYvAeNWAAAAAGhVUiItWGBN03NypBEj7HbNGru/TcmPhECQBwAAACBheTyWwauokA45xNosJCXZ7ejRtnRzyRI7L1EQ5AEAAABIWKWltkRzyBDJ5fI/5nJJBQXShg12XqIgyAMAAACQsCorbQ9eenrg4+npdryyMrrjiiQKrwAAAACIG6FWyMzNtSIr9fW2RLO9+no7npsbuTFHG0EeAAAAgLjQkwqZhYV2zpo1tgev7ZJNr1cqK7N+eoWF0XkM0cByTQAAAACO19MKmW63BYG5udLmzVJdndTcbLebN9v98+YlVr+8BHooAAAAABJRbytkFhdLixdLkyZJVVXS1q12W1Rk9ydanzyWawIAAABwtFAqZHbWDL24WJoyJbT9fPGKIA8AAACAowVTIbO8vPsKmW5350FgIknAuBUAAABAImlbITOQRKyQ2RsEeQAAAAAczVchs6zMKmK25auQOW5cYlXI7A2CPAAAAACO1hcrZPYG0wAAAADA0TweKTNTmj1bGjnS9t4leoXM3qDwCgAAAADHat8APSVFGjpU+vrXpWOPTdwKmb1BkAcAAADAkXwN0CsqrH1CeroVWdmyRVq2TJo4kQAvEKYEAAAAgOP0tgF6X0aQBwAAAMBxQmmADn8EeQAAAAAcJ5gG6A0N3TdA74sI8gAAAAA4Dg3Qe44gDwAAAICjeDz2NWiQtUpov+8u2AboHo+0bp20YoXd9pX9e1TXBAAAAOAYbVsmVFZKO3dKu3db8ZWCAsvglZV13wC9feuF1FRp7Fhrqp7oPfXI5AEAAABwBF/LhNWrpZwcy9Qddpgd27TJCq0E0wC9/XVGjLDbNWvs/pKSqDycmCGTBwAAACDm2rdM8FXUPPBAq7C5caO1Tli8WJowofMMXmfX8bVe2LzZWi9MmZK4PfYS9GEBAAAAiCddtUxwu6Xhw6Vdu+y/uwrOaL1AkAcAAADAAcLVMoHWCwR5AAAAABwgXC0TaL1AkAcAAADAAQoLrfplWZm1SGgr2JYJ4bxOPCPIAwAAABB17XvYSdbeIDfXiqPU1UnNzXa7eXP3LRN83O7wXCeeUV0TAAAAQFR11cNu8eLWY+XldqyoyAKzYPvbFReH5zrxiiAPAAAAQNT4ethVVFgFzPR02yfn62G3eLG0bJlVv6ystMxbYWHombfiYmuT0NvrxCOCPAAAAABREUoPuwkTev/73O7wXCfe9IE4FgAAAIAT0MMuOgjyAAAAAEQFPeyigyAPAAAAQFTQwy46CPIAAAAARAU97KKDIA8AAABAVNDDLjqYPgAAAABh0b7BucfT8RxfD7tJk6SqKmnrVrstKrL7E72HXTTQQgEAAABAr3XV4Lx94NaXe9hFA0EeAAAAgF4JpsF5+0Cvr/awiwZiZQAAAACd6m4JZvsG5xkZUlJSa4PzykprcB5o6SYig0weAAAAgICCWYIZSoNzMnfRQSYPAAAAQAe+JZirV0s5OdKIEXbrW4JZUmLn0eDceQjyAAAAAPgJZQkmDc6dhyAPAAAAgJ9QlmDS4Nx5CPIAAAAA+AllCSYNzp2HqQYAAADgJ9QlmDQ4dxaqawIAAADw41uCuWaN7cFru2TTtwSzqMh/CWZvGpx7PDRGDyeCPAAAAAB+fEswFyywJZcFBa0NzsvKOl+C2ZMG58G0aUBoiI8BAAAAdBCNJZjBtmlAaMjkAQAAAAioN0swu9O+TYNvSaivTcPmzdamYcoUlm6GiiAPAAAA6MO62w/XkyWYwVw3lDYNPfn9fRlBHgAAANBHRWo/XKDrjhkjnXqqNHy4BX27d3ffpqG83IJEhIYgDwAAAOiDfPvhKiosm+YrrOLbD9fTfXeBrltWJr30kvTCC9LgwRbkDRki7d9vvzMjo+N12rdpQPBY3QoAAAD0Me33w2VkSElJrfvhKittP5zH0/vr1tRY0ZbmZmu/0NgoZWdLn35q523ZYve35WvTMG6cf5sGBIcgDwAAAOhjQtkP15vrer0WxDU2WsCXni7t2WP3H3KINGCAff/JJ1JdnQWCdXVWdKWzNg3oHss1AQAAgD6msrJn++G6K6bS/rq1tRa0paXZ90lJFvA1NVkQOGqU9Pnndvvll/Y7U1OtTcO8efTJ6ymCPAAAAKCPyc21YCqU/XDBFGlpf92mJgsMfYFgc7P9d3KyfZ+eLvXrJ117rTRoUPjbNPRVTB0AAADQxxQWWoBWVhbcfrhgm5a3v25ysgVrHo9939BgwV9mpp3vCyYHDbI2CccdZ7cEeL3D9AEAAAB9jNttGbjcXNv/1tV+uFCKtLS/rstl++727rWvlBQLEH379SiuEhkEeQAAAEAfVFxsbRImTZKqqqwCZlWV7Ydr2z4h1CItba9bXW2BnctlgeGIEVZZk+IqkcWePAAAAKCPKi6WpkwJrZhKe4GKtLS/7rZt0ssvSx99ZMEkxVUiiyAPAAAA6MPcbtsH15meFGkJdN1Zs7oOJhE+BHkAAAAAOuUrprJmje3Ba7tk07evrqio+3113QWTCB9iZwAAAACdCqVIC5yBpwIAAABAlzor0jJpknTppdL+/dK6dVZhE7HHck0AAAAA3eqsmMo993TeHB2xQSYPAAAAQFB8++r69ZMeftj26XXVHB2xEdMgb8WKFfrGN76hoUOHyuVy6fnnn/c77vV6tXDhQg0ZMkTp6emaNm2aPv74Y79zKioqNGvWLGVlZSknJ0cXXnih6urq/M758MMPdeyxxyotLU3Dhg3TnXfe2WEsf/jDHzRmzBilpaVpwoQJevnll8P+eAEAAIB4F0pzdMRGTIO8PXv26IgjjtCSJUsCHr/zzjv1i1/8QkuXLtU777yjAQMGaPr06dq3b1/LObNmzVJpaamWL1+uF198UStWrNDFF1/ccrympkYnn3yyhg8frlWrVumuu+7STTfdpEcffbTlnJKSEp177rm68MILtWbNGp1++uk6/fTTtX79+sg9eAAAACAOhdocHdEX0z15M2bM0IwZMwIe83q9uu+++3TjjTfqtNNOkyQ99dRTys/P1/PPP69zzjlHGzdu1CuvvKL33ntPRx55pCTpgQce0KmnnqrFixdr6NCheuaZZ9TY2KjHHntMKSkpKiws1Nq1a3XPPfe0BIP333+/TjnlFF1zzTWSpJtvvlnLly/Xgw8+qKVLl0ZhJgAAAID40JPm6IguxxZe2bJli8rKyjRt2rSW+7Kzs3XUUUdp5cqVOuecc7Ry5Url5OS0BHiSNG3aNLndbr3zzjs644wztHLlSh133HFKSUlpOWf69Om64447VFlZqdzcXK1cuVJXX3213++fPn16h+WjbTU0NKihoaHl+5qaGkmSx+ORxwG5aY/HI6/X64ixJDrmOjqY5+hhrqOHuY4O5jl6mOvoiPU85+RYILdvX+Dm6Pv22fGcnPhfshnruW4v2HE4NsgrKyuTJOXn5/vdn5+f33KsrKxMeXl5fsf79eungQMH+p0zcuTIDtfwHcvNzVVZWVmXvyeQ2267TYsWLepw/86dO/2Wk8aKx+NRdXW1vF6v3DQtiSjmOjqY5+hhrqOHuY4O5jl6mOvoiPU8H3CAdOKJ0qef2tLMzpqjH3CAtGNH1IcXVrGe6/Zqa2uDOs+xQZ7T3XDDDX7Zv5qaGg0bNkyDBw9WVlZWDEdmPB6PXC6XBg8e7IgXZCJjrqODeY4e5jp6mOvoYJ6jh7mODifM8xlnSNdeK23aJOXnW+auvt6WaebkSD/8oQWA8c4Jc91WWlpaUOc5Nsgr+O+rory8XEOGDGm5v7y8XBMnTmw5Z0e7jwf279+vioqKlp8vKChQeXm53zm+77s7p6CLV2ZqaqpSU1M73O92ux3xApAkl8vlqPEkMuY6Opjn6GGuo4e5jg7mOXqY6+iI9TwffbR0111WZXPjRsvepaZKEydK8+YlVp+8WM91W8GOIfYj7cTIkSNVUFCgv//97y331dTU6J133tHUqVMlSVOnTlVVVZVWrVrVcs7rr78uj8ejo446quWcFStWqKmpqeWc5cuX67DDDlNubm7LOW1/j+8c3+8BAAAA4K+4WFq2THrqKWnpUrt9+unECvDiVUwzeXV1dfrkk09avt+yZYvWrl2rgQMH6uCDD9aVV16pW265RYceeqhGjhypn/zkJxo6dKhOP/10SdLYsWN1yimn6KKLLtLSpUvV1NSk+fPn65xzztHQoUMlSeedd54WLVqkCy+8UNddd53Wr1+v+++/X/fee2/L773iiit0/PHH6+6779bMmTP129/+Vu+//75fmwUAAAAA/nzN0eEsMQ3y3n//fZ144okt3/v2uM2ZM0dPPPGErr32Wu3Zs0cXX3yxqqqqdMwxx+iVV17xW4v6zDPPaP78+TrppJPkdrt15pln6he/+EXL8ezsbL322muaN2+eJk+erAMOOEALFy7066VXXFysZ599VjfeeKN+9KMf6dBDD9Xzzz+v8ePHR2EWAAAAACB8XF6v1xvrQSSCmpoaZWdnq7q62jGFV3bs2KG8vDxHrB9OZMx1dDDP0cNcRw9zHR3Mc/Qw19HBPEeP0+Y62JjDsYVXAAAAAATP45FKS60JeW6uVFhoyynR9xDkAQAAAHGupKS10mVDg1W6HDtWmj+fQih9EbE9AAAAEMdKSqQFC6TVq61H3YgRdrtmjd1fUhLjASLqCPIAAACAOOXxWAavokI65BApI0NKSrLb0aNt6eaSJXYe+g6CPAAAACBOlZbaEs0hQySXy/+YyyUVFEgbNth5wfJ4pHXrpBUr7JYAMf6wJw8AAACIU5WVtgcvPT3w8fR0qbzczgsGe/sSA5k8AAAAIE7l5logVl8f+Hh9vR3Pze3+WuztSxwEeQAAAECcKiy0TFtZmdS++7XXa/ePG2fndYW9fYmFIA8AAACIU263LaXMzZU2b5bq6qTmZrvdvNnunzev+355kdjbh9ghyAMAAADiWHGxtHixNGmSVFUlbd1qt0VFdn8we+mC2dvX0BD83j7EFoVXAAAAgDhXXCxNmWKZtspKy+AVFnafwfNpu7cvI6Pj8VD29iH2CPIAAACABOB2SxMm9OxnfXv71qyxPXhtl2z69vYVFXW/tw/OwHJNAAAAoI8L194+OANPEwAAAICw7O2DM7BcEwAAAICk3u/tgzMQ5AEAAABo0Zu9fXAGYnIAAAAASCAEeQAAAACQQAjyAAAAACCBEOQBAAAAQAIhyAMAAACABEKQBwAAAAAJhCAPAAAAABIIQR4AAAAAJBCCPAAAAABIIAR5AAAAAJBA+sV6AAAAAAAC83ik0lKpslLKzZUKC2M9IsQDgjwAAADAgUpKpAcflDZulBoapNRUaexYad48afToWI8OTsZyTQAAAMBhSkqkBQuk1aulnBxpxAi7XbNGuvZaC/yAzhDkAQAAAA7i8VgGr6JCOuQQKSNDSkqy29Gjpaoq6aWX7DwgEII8AAAAwEFKSy1TN2SI5HL5H3O5pPx86bPPpA0bYjM+OB9BHgAAAOAglZW2By89PfDx9HSpqcnOAwIhyAMAAAAcJDfXiqzU1wc+Xl8vJSfbeUAgBHkAAACAgxQWWhXNsjLJ6/U/5vVK5eXSsGHSuHGxGR+cjyAPAAAAcBC3W5o/3zJ1mzdLdXVSc7Pdbt5sVTZnzrTzesrjkdatk1assFuKuCQW+uQBAAAADlNcLC1e3Nonr7zclnAWFUmXXda7Pnmd9d+bP99+L+IfQR4AAADgQMXF0pQpVm2zstIye4WFdmzHjp5d09d/r6LCqnemp9sevzVr7P7Fiwn0EgFBHgAAAOBQbrc0YYL/fT1dWtm+/56vPYOv/97mzdKSJRZY9mYpKGKPpw8AAADoA7rrv1dQYL33SktjMz6ED5k8AAAAIMF4PB2XeQbTf6+8nP57iYAgDwAAAEggnRVWmTGjtf9eRkbHn6uvt+P034t/BHkAAABAguissMrq1ZbZS06Wtm61Hntt9915vdaXr6iotbgL4hdBHgAAAJAAOius0tQk1dTY/UlJFtDt3m3nFBRYEFhWZhm8efMoupIICPIAAACABBCosEplpRVTaWy0rF5zs3TggdLnn0ubNlngl5trGbx582ifkCgI8gAAAIAE0L6witcrbdliAd6AAfb9/v0W1I0aZQHh6NHWG2/CBDJ4iYSnEgAAAEgAubmthVUkqbZWqquT0tLs++ZmC+SSk+12+HBp1y77bwK8xMLTCQAAACSAwkKrollWZlm7pibbp+d22/cNDVZVMzPTzk9Pt/tomZB4CPIAAACABOB2S/PnW0Zv82YL8lwuu927V0pJkUaMaN2vR8uExEWQBwAAACSI4mLbYzdpUmuQV18vZWdblm/gQDvP1zJh3DhaJiQiCq8AAAAACaS4WJoyxaptvvWW9MgjtiwzJcX25dEyIfER5AEAAAAJxu22ipkTJkgTJ1r/vI0bpfJyW6JJy4TERpAHAAAAJLC2mb3KSsvgFRaSwUtkBHkAAABAgvNl9tA3EL8DAAAAQAIhyAMAAACABEKQBwAAAAAJhCAPAAAAABIIhVcAAACAMPJ4IlPJ0nfdigprg3DAAVTIRGAEeQAAAECYlJS09qRraLBgbOxYaf783vWka3vdpiYLHPv1o9cdAiP2BwAAAMKgpERasEBavVrKyZFGjLDbNWvs/pKS8Fx3+HBpwABp7dreXReJiyAPAAAA6CWPxzJtFRXSIYdIGRlSUpLdjh5tSzeXLLHz2v/cunXSihV2G+h4oOump0ujRnV+XfRtLNcEAAAAeqm01JZSDhkiuVz+x1wuqaBA2rDBzvM1JQ9maWdPrguQyQMAAAB6qbLSArX09MDH09PteGWlfR/s0s5QrwtIBHkAAABAr+XmWiauvj7w8fp6O56bG9rSzlCuC/gQ5AEAAAC9VFhoSy3LyiSv1/+Y12v3jxtn54WyBDOU6wI+BHkAAABAL7ndtpcuN1favFmqq5Oam+1282a7f948O6+rJZher7R/v53z/vt2X6Dr1tdLn37qf13Ah5cDAAAAEAbFxdLixdKkSVJVlbR1q91OmiRdeqkFb+vWSZmZthTzyy+lmprWDF1Fhe3JW7PGMnR33CHNnm3H2l532zZpzx5p4kT/61JhEz5U1wQAAADCpLhYmjLFllpWVlpA9vLL0j33WPZu/367raiQGhultDTbizdwoPT553afx2PfFxS0FmJZvFhatsyuW1EhffGF9Ne/tl43XE3XkRjI5AEAAABh5HZbO4N+/aSHH7ZALSfHvsrLLUvn8UgpKVJTkwVtmzZJe/daVi8tzXrgZWb6F2KRWq/78svWDD2cTdeROAjyAAAAgDBrX0FzwADL6jU3S9nZVmAlLc2CM7fbgr39++37ceNaq2W2L8Ti8UgPPWR780aPDr7pOvoWRwd5zc3N+slPfqKRI0cqPT1do0eP1s033yxvm9JCXq9XCxcu1JAhQ5Senq5p06bp448/9rtORUWFZs2apaysLOXk5OjCCy9UXV2d3zkffvihjj32WKWlpWnYsGG68847o/IYAQAAkHjaV9CsrbXALC3Nvk9NtaWZhxxiX6mp9nXIIR3bIbTthVdaKn30kZ3TXWVO9F2ODvLuuOMOPfzww3rwwQe1ceNG3XHHHbrzzjv1wAMPtJxz55136he/+IWWLl2qd955RwMGDND06dO1b9++lnNmzZql0tJSLV++XC+++KJWrFihiy++uOV4TU2NTj75ZA0fPlyrVq3SXXfdpZtuukmPPvpoVB8vAAAAEkP7CppNTZZd81XBTEqy733Zu5SU1vPaa9sLz3fd1NTAv5fm6JAcXnilpKREp512mmbOnClJGjFihH7zm9/o3XfflWRZvPvuu0833nijTjvtNEnSU089pfz8fD3//PM655xztHHjRr3yyit67733dOSRR0qSHnjgAZ166qlavHixhg4dqmeeeUaNjY167LHHlJKSosLCQq1du1b33HOPXzAIAAAABKNtE/OMDCk52QI8j8cCvOZm+z452fbepadL1dW2364tXy+8oqLWHnupqRbIBUJzdEgOD/KKi4v16KOP6t///re+8pWv6IMPPtA///lP3XPPPZKkLVu2qKysTNOmTWv5mezsbB111FFauXKlzjnnHK1cuVI5OTktAZ4kTZs2TW63W++8847OOOMMrVy5Uscdd5xSfB+hSJo+fbruuOMOVVZWKjfAX0lDQ4Ma2vx11dTUSJI8Ho88DlgE7fF45PV6HTGWRMdcRwfzHD3MdfQw19HBPEcPc91q7FjbW7d2rQV5WVn2VV0t9e9vGbvsbLtPsvskadcuC/TS0y1gKy+3SpuXXdZ63bFjPaqu9kry+C3Z9HqlHTus1cLYsezLCwenvaaDHYejg7zrr79eNTU1GjNmjJKSktTc3Kxbb71Vs2bNkiSVlZVJkvLz8/1+Lj8/v+VYWVmZ8vLy/I7369dPAwcO9Dtn5MiRHa7hOxYoyLvtttu0aNGiDvfv3LnTb6lorHg8HlVXV8vr9cpNd8yIYq6jg3mOHuY6epjr6GCeo4e59ve970mPPWY97XJypBNOkLZvtwAvOVk6+GC7raqSjjlGOukkaf166bPP7JyMDMvgzZxpRVV27LDrzp3r0SuvVGvzZq+ys90tmb2qKjt/7lwLFtF7TntN19bWBnWeo4O83//+93rmmWf07LPPtiyhvPLKKzV06FDNmTMnpmO74YYbdPXVV7d8X1NTo2HDhmnw4MHK8n0kE0Mej0cul0uDBw92xAsykTHX0cE8Rw9zHT3MdXQwz9HDXPvLy7O9dg89JH3wQWufvMZGu3/37tb+dpdcIk2datm3DRtsT11urmUD20/lAQd4JLn02GOD9cEHbr8+eb7rIDyc9ppOS0sL6jxHB3nXXHONrr/+ep1zzjmSpAkTJmjbtm267bbbNGfOHBUUFEiSysvLNWTIkJafKy8v18SJEyVJBQUF2uH72OO/9u/fr4qKipafLygoUHl5ud85vu9957SXmpqq1AA7Xt1utyNeAJLkcrkcNZ5ExlxHB/McPcx19DDX0cE8R08izbXH09rUPDfX9sSF+rCOPtqCrrbXGTvWKm8Guq7bLR1+ePfXHTfOpSeecGvjRnevxofuOek1HewYHB3k7d27t8MDSUpKalmLOnLkSBUUFOjvf/97S1BXU1Ojd955R5deeqkkaerUqaqqqtKqVas0efJkSdLrr78uj8ejo446quWcH//4x2pqalJycrIkafny5TrssMMCLtUEAABAYispsT53GzfKL1M2f75UXBzatXzN0dtq/31PBLouIDm8hcI3vvEN3XrrrXrppZe0detWPffcc7rnnnt0xhlnSLKo+sorr9Qtt9yiF154QevWrdP555+voUOH6vTTT5ckjR07Vqeccoouuugivfvuu/rXv/6l+fPn65xzztHQoUMlSeedd55SUlJ04YUXqrS0VL/73e90//33+y3HBAAAQN9QUiItWCCtXm176UaMsNs1a+z+kpIYDxDohqMzeQ888IB+8pOf6LLLLtOOHTs0dOhQff/739fChQtbzrn22mu1Z88eXXzxxaqqqtIxxxyjV155xW+96jPPPKP58+frpJNOktvt1plnnqlf/OIXLcezs7P12muvad68eZo8ebIOOOAALVy4kPYJAAAAfYzHYxm8igprTO6rXpmRYcVPNm+WliyRpkxhaSScy+X1er2xHkQiqKmpUXZ2tqqrqx1TeGXHjh3Ky8tzxPrhRMZcRwfzHD3MdfQw19HBPEdPIsz1unXS+edb5i4jo+PxujqrYvnUU7FbKpkI8xwvnDbXwcYcsR8pAAAA4BCVlbYHLz098PH0dDteWRndcQGhIMgDAAAA/is314qs1NcHPl5fb8epzQcnI8gDAAAA/quw0KpolpVJ7Tc1eb12/7hxdh7gVAR5AAAAwH+53dYmITfXiqzU1UnNzXa7ebPdP28eRVfgbLw8AQAAgDaKi6XFi6VJk6zIytatdltUZPeH2icPiDZHt1AAAAAAYqG42NoklJZakZXcXFuiSQYP8YAgDwAAAAjA7Y5dmwSgN/gsAgAAAAASCEEeAAAAACQQgjwAAAAASCAEeQAAAACQQAjyAAAAACCBUF0TAAAACJHHQ3sFOBdBHgAAAPqkngZqJSXSgw9KGzdKDQ1Saqo0dqw0fz6N0uEMBHkAAABIWJ0Fcj0N1EpKpAULpIoKacgQKT1dqq+X1qyx+xcvJtBD7BHkAQAAICF1Fsgdf7z05JOhB2oej12vokI65BDJ5bL7MzKk0aOlzZulJUukKVNYuonYIsgDAABAwuks47Z6tfTaa9KAAdKECaEFaqWlFjAOGdL6cz4ul1RQIG3YYOdNmBCdxwkEwmcMAAAASCjtM24ZGVJSkt3m5Ul1ddK+fYF/NiNDevdd6bnn7DptVVZaRjA9PfDPpqfb8crK8D4eIFQEeQAAAEgoXWXc9u+3gK++Xqqtbb2/stKWa27aJG3fLl1/vTR7tmUEfXJzbclnfX3g31tfb8dzc8P/mIBQEOQBAAAgoXSVcUtOtiCvuVlqamo9f8MGqbrajqWmSjk5rXv0fIFeYaHt6Ssrk7xe/+t6vXb/uHF2HhBLBHkAAABIKF1l3DIzpbQ0C/L69bPgbMsWqbFR6t/fAr/MTCk/3/boVVbaHj2Px/bozZ9v19+82ZZ9Njfb7ebNdv+8eRRdQezxEgQAAEBC6SrjJlkwl5Eh7dghlZfbss3kZGnvXiklRRoxwpZ5ti+mIlnVzcWLpUmTpKoqaetWuy0qon0CnIPqmgAAAEgovozbggWWYSsoaK2uWVYmDR0qzZkjvfmm9N57re0VsrMtwBs4sPVa6ekWCLYtplJcbNU3e9JIHYgGgjwAAAAkHF/Gzdcnr7zcArmiIltSWVwsXXSRVdG8/nrbg5ef37FQS2fFVNxu2iTAuQjyAAAAkJC6y7i53dIZZ0h/+pMVWcnP9/95XzGVoiKKqSC+EOQBAAAgYXWXcetuaSfFVBCPeLkCAACgT6OYChINmTwAAAD0eRRTQSIhyAMAAABEMRUkDj6bAAAAAIAEQiYPAAAAcc3jYZkl0BZBHgAAAOJWSUlrLzxfU/OxY61iJgVT0FfxGQcAAADiUkmJtT5YvdqamY8YYbdr1tj9JSUxHiAQIwR5AAAAiDsej2XwKiqkQw6RMjKkpCS7HT3alm4uWWLnAX0NQR4AAADiTmmpLdEcMkRyuVrv93ql2lopLU1atUpaty52YwRihSAPAAAAcaey0vbgpaf737dmjbR2rfTxx9bU/Ic/ZNkm+h6CPAAAAMSd3FwrslJfb99XVkobNkjV1VJyspSSIvXrJ23eHJ79eR6PZQVXrLBbloHCyaiuCQAAgLhTWGhVNNeskUaNkrZskRobpQEDbMnmvn1SdrY0bpz06ae2P2/KlJ61VqCCJ+INmTwAAADEHbfbgqzcXAu+qqst+Nq/X9q71zJ5I0bYeQUFluUrLQ3991DBE/GIIA8AAACOE8zyyOJiafFiy+Tt329Ztv37LYM3dqw0cKCdl55uxyorQx8DFTwRj1iuCQAAAEcJZXlkcbF0993Sd75jwVxWlpSZ6V9xs77erpGbG9o4OqvgKdn3bTOEEyb07LECkUAmDwAAAI7Rk+WREyZIRUW2D699gOf1SmVltjevsDC0sQSq4NlWTzOEQKQR5AEAAMARero8su3+vM2bpbo6qbnZbjdvtvvnzQu96Er7Cp7t9TRDCEQaQR4AAAAcIZTlke359udNmiRVVVmPvKoqy/AtXtyzKpi+Cp5lZZYRbKt9hpAWC3AS9uQBAADAEYJZHlle3vnyyOJia5NQWmrn5OZaANY2g+fxdH28LV+GcMECywgWFNgY6ustwPNlCN9+mxYLcBaCPAAAADhC2+WRGRkdjwezPNLt7rwISk/63fkyhL6fKy+3nysqsgBPsiCwosIykL4g0LeHsKdZRKA3CPIAAADgCG0bnI8eHbiASlFR6AVUpNaCLj0JxjrLEErS7Nmtewh94/XtIdy8uXdN2IGe4uUGAAAAR4hUAZVw9LvzZQiPO85u3e7e7SEEIinoP5EvvvgikuMAAAAAIlJAJVLBGC0W4FRBL9csLCzUkiVLdN5550VyPAAAAOjjgimgEoreFnTpTDj2EAKREPSfyq233qrvf//7Ouuss1RRURHJMQEAAKCPC7Q8sqci1e8ulBYLQDQF/edy2WWX6cMPP9Tu3bs1btw4/fWvf43kuAAAAICwiFQwFqk9hEBvhVRdc+TIkXr99df14IMP6lvf+pbGjh2rfv38L7F69eqwDhAAAADojWD73fUkGOuuxQLtExALIbdQ2LZtm/785z8rNzdXp512WocgDwAAAHCaSAZj4d5DCPRWSBHaL3/5S/3whz/UtGnTVFpaqsGDB0dqXAAAAEBAHk/PAqpIBmNdNWEHoi3oIO+UU07Ru+++qwcffFDnn39+JMcEAAAABFRS0pqNa2iwbNzYsbYcM5hsHMEY+oKgg7zm5mZ9+OGHOuiggyI5HgAAAPRBwWTnSkpsX11FhfW88+2rW7PG7u9pHz0g0QQd5C1fvjyS4wAAAEAfFUx2zuOxcyoqpEMOaW1qnpEhjR5tBVWWLLHlmOyFQ1/HnwAAAABixpedW71aysmRRoywW192rqTEzisttSBwyJDWAM/H5bKKmRs22HlAX0eQBwAAgJhon53LyJCSklqzc5WVlp3zeOy/GxpsiWYg6el2vLIyuo8BcCL6HwAAAMBPT6tXhiqU7Fxuri3jrK+3ILC9+no7npsb/nEC8YYgDwAAAC16W70yFMFk58rL7bxjjrFxrFljWb62QaHXa03Ni4osIAX6OpZrAgAAQFLw++PCweORdu6Umprs1uvteE7b7JzbbYFmbq4VWamrk5qb7XbzZrt/3jyKrgASQR4AAAAU2v643iopkWbPlm6+WdqxQ1q3zgLLtvvpfNm5ceNas3PFxdYmYdIkqapK2rrVbouKaJ8AtMVyTQAAgATRm710oeyP600z8UC97jZskHbvlvbssaAuLc0CvEDZueJia5MQjT2DQLwiyAMAAEgAvd1LF8r+uGC1DzrHju3Y6y4jQxo/3rJyu3dbwDdypGXn5s0LPHa3u3eBJpDoCPIAAADiXKDsWH196166YJYyhrt6ZaCgc8gQ6ZNPpAMP9M8WDhxo1y0vt+WXP/mJdMYZZOeAnuJPBwAAII6Fay9dYaFl2srKOhZBCbQ/rqvxPPOMdPHF0sqVUnZ2awGX0lLpP/+R9u3r+HMulzR4sJScbLdtAzyPx/btrVhht+HYFwgkMjJ5AAAAcSxce+l81SsXLLBqlQUFrRnBzvbHtbdypfTnP0tPPGFVL9PSpMZGC/IGDpSGD7ds3aefSoMGdRxvoGxhNFs6AImCTB4AAEAcC2YvXUNDcHvpelO9sqREuvZaadMma4uQkSH16ydVV1uAVlEhZWXZV3W1VFPj//OBsoXRbOkAJBLHB3mff/65Zs+erUGDBik9PV0TJkzQ+++/33Lc6/Vq4cKFGjJkiNLT0zVt2jR9/PHHfteoqKjQrFmzlJWVpZycHF144YWqq6vzO+fDDz/Uscceq7S0NA0bNkx33nlnVB4fAABAb7TdSxdIqHvpioulZcukp56Sli6126ef7jrA8y0Z9RVYcblsyWi/flL//pbN27rVzvU1Mt+2reted9Fs6QAkGkcHeZWVlTr66KOVnJysv/3tb9qwYYPuvvtu5bb5V+rOO+/UL37xCy1dulTvvPOOBgwYoOnTp2tfm8Xes2bNUmlpqZYvX64XX3xRK1as0MUXX9xyvKamRieffLKGDx+uVatW6a677tJNN92kRx99NKqPFwAAIFTh2kvXlq965XHH2W13BVB8S0YLCiyw8wVpkgV0qakWyNXW2hLOYcNsPF1lC0NZhgrAn6P35N1xxx0aNmyYHn/88Zb7Ro4c2fLfXq9X9913n2688UaddtppkqSnnnpK+fn5ev7553XOOedo48aNeuWVV/Tee+/pyCOPlCQ98MADOvXUU7V48WINHTpUzzzzjBobG/XYY48pJSVFhYWFWrt2re655x6/YBAAAMBpwrGXrrfaLhlNT7dsW2WlNGCAHU9KsmxeY6MFdF/9qvTkkxbEddbrLhItHYC+wtFB3gsvvKDp06frrLPO0ptvvqkDDzxQl112mS666CJJ0pYtW1RWVqZp06a1/Ex2draOOuoorVy5Uuecc45WrlypnJyclgBPkqZNmya326133nlHZ5xxhlauXKnjjjtOKSkpLedMnz5dd9xxhyorK/0yhz4NDQ1qaGho+b7mvwvLPR6PPA5YN+DxeOT1eh0xlkTHXEcH8xw9zHX0MNfR0RfmecoU6a67pIcekj76SNq507JnkydLl15qxyP58HNyLOjat88jt9urkSM9qq+3QDMtzX63yyXt2GFB6GWXWUDXPrvYdoyt1wzc0mHfPjuek9P3lmz2hde0UzhtroMdh6ODvE8//VQPP/ywrr76av3oRz/Se++9px/84AdKSUnRnDlzVFZWJknKz8/3+7n8/PyWY2VlZcrLy/M73q9fPw0cONDvnLYZwrbXLCsrCxjk3XbbbVq0aFGH+3fu3Om3VDRWPB6Pqqur5fV65abJTEQx19HBPEcPcx09zHV09JV5Hj3aAr3t221pZEaGdPDBFkzt2BHZ333AAdKJJ0pbtng0aFC1JkzwauRIt8rLLdBramoNOmfOtLF2NybfNT/91ALDtks2fctQi4rsvEg/PqfpK69pJ3DaXNfW1gZ1nqODPI/HoyOPPFI///nPJUmTJk3S+vXrtXTpUs2ZMyemY7vhhht09dVXt3xfU1OjYcOGafDgwcrKyorhyIzH45HL5dLgwYMd8YJMZMx1dDDP0cNcRw9zHR19bZ4LCmLze884Q7ruOo8kl6qqBistza2GBunzz634yqWXSueeG9qy0TPOaK3YmZ/fugy1vNwyeD/8Yewebyz1tdd0LDltrtPS0oI6z9FB3pAhQzRu3Di/+8aOHas//elPkqSC//5Vl5eXa8iQIS3nlJeXa+LEiS3n7Gj38c7+/ftVUVHR8vMFBQUqLy/3O8f3fUEn/3KkpqYqNTW1w/1ut9sRLwBJcrlcjhpPImOuo4N5jh7mOnqY6+hgniPv6KOlO+6QnnvOpTfecKu+3q3UVOmoo2xPYE962h19tGUnfX3yysosIzhxYs+vmSh4TUePk+Y62DE4Osg7+uijtWnTJr/7/v3vf2v48OGSrAhLQUGB/v73v7cEdTU1NXrnnXd06aWXSpKmTp2qqqoqrVq1SpMnT5Ykvf766/J4PDrqqKNazvnxj3+spqYmJScnS5KWL1+uww47LOBSTQAAAHQ0dao0cqR0/vlWYCVQQZVQFRfbnsLS0s6LtADw5+gg76qrrlJxcbF+/vOf6+yzz9a7776rRx99tKW1gcvl0pVXXqlbbrlFhx56qEaOHKmf/OQnGjp0qE4//XRJlvk75ZRTdNFFF2np0qVqamrS/Pnzdc4552jo0KGSpPPOO0+LFi3ShRdeqOuuu07r16/X/fffr3vvvTdWDx0AACAuud3S+PHhDcJ8LR0ABMfRQd5Xv/pVPffcc7rhhhv0s5/9TCNHjtR9992nWbNmtZxz7bXXas+ePbr44otVVVWlY445Rq+88orfetVnnnlG8+fP10knnSS3260zzzxTv/jFL1qOZ2dn67XXXtO8efM0efJkHXDAAVq4cCHtEwAAAADEHZfX275tJnqipqZG2dnZqq6udkzhlR07digvL88R64cTGXMdHcxz9DDX0cNcRwfzHD3MdXQwz9HjtLkONuaI/UgBAAAAAGHj6OWaAAAAaOXxUIAEQPcI8gAAAOJASUlrK4GGBmslMHasNH9+324lAKAjPvsBAABwuJISacECafVqawI+YoTdrllj95eUxHiAQfJ4pHXrpBUr7NbjifWIgMREJg8AAMDBPB7L4FVUSIccIrlcdn9GhjR6tLR5s7RkifWSc/LSTTKRQPQ4+J8CAAAAlJZaYDRkSGuA5+NySQUF0oYNdl5PRTrDliiZSCBekMkDAABwsMpKy3ylpwc+np4ulZfbeT0R6QxbomQigXjCnxIAAICD5eZa4FVfH/h4fb0dz83t+jqBsnXRyLBFIxMJwB+ZPAAAAAcrLLTM2po1lvlqGyh5vVJZmVRUZOd1JlC2bswYaffuyGfYIp2JBNARmTwAAAAHc7tt6WRurgVedXVSc7Pdbt5s98+b13kg1lm27u23pX/9S+rfP7IZtnBlIgEEjyAPAADA4YqLpcWLpUmTpKoqaetWuy0qsvs72zvXfj9cRoaUlGS3BQXS/v2WCfR6O/5serpl4HqbYfNlIgP9Hl8mcty4rjORAELDck0AAIA4UFxsSydLSy3wys21wKirpZRd7YdLSZGSk6WaGqm2VsrK8j8ergybLxO5YIFlHgsKLICsr7cAr7tMJIDQEeQBAADECbdbmjAh+PO72g+XmWmB3e7dUmOj/7Fg9/oFy5eJ9O0LLC+3ALKoyAI8+uQB4UWQBwAAEKc8nq4ze233w2Vk+P+sb99ddbUFXWlpkc2w9SQTCaBnCPIAAADiUDD97bqrzFlfLx19tDRokPTRR51n2LoLJoMVaiYSQM8Q5AEAAMQZX8XMigrbb+fLwPn62/mKsQSzH+6mm7rOsHUXTLYNAHNypAMOiOXMAJAI8gAAAOJK+4qZ3fW3C3Y/XKAMW3fB5Jw50ptvtgaA6enSiSdKZ5xhGUIAsUGQBwAAEEe6qpjZvr+dL3DryX647oLJ9eulH//YlnoOHWoB3r590qefStdeK911FwVVgFhhqysAAEAc6apiptR5fzvffrjjjrPb7vbUdRVMStLevdaQPT+/Y/+9qirLJno8PXqIAHqJIA8AADiCxyOtWyetWGG3BAiBta2YGUi4+tt1FUzW1lrWLinJGqq35XJZ4OfLJgKIPpZrAgCAmAumUiRMdxUzw9Xfrqv2C01NUnOzBXnJyR1/Nj3dxtE+mwggOsjkAQCAmPIV91i92qozjhhht77iHiUlMR6gw/gqZubmWpGVujoLuOrq7Ptw9bfzBZNlZRY8ttWvn/3O9HRrqt5euLKJAHqGIA8AAMRM++Iebfd2jR5tmSD2dnXkq5g5aZLtf9u61W6LilrbJ3Snu+WxXQWTO3bYc5SW1vG6Xq9V8Bw3rvfZRAA9w3JNAAAQMz2pFAnTk4qZPsEuj+2s/cLkyVbA5ckn/fvv7dtnmb+cnPBkEwH0DEEeAACImWAqRZaXs7erM76KmaEItpG6T1fB5IQJ/gFgerplE3/4Q/ZSArFEkAcAAGKmq+IeEnu7wi3URuo+nQWT7QPAnBzpgAMsswcgdkiiAwCAmOmquIevUiR7u8InlOWxwWrbf2/8eJZoAk7AnyEAAIiZaFWKhOlpI3UA8YV/MgEAQEyFo1IkghOtRuoAYos9eQAAIOZ6UykSwYtWI3UAsUWQBwAAHKEnlSIRGt/y2AUL/Fsf1NdbgMfyWCAx8CcMAADQh7A8Fkh8ZPIAAAD6mN4sj/V4WFYLOB1BHgAAgINFKqjqaSN1X/PzhgYr0jJ2rC0BJQMIOAdBHgAAiDt9JZvUm6Aq3HNUUmJ7+SoqrM+eby/fmjV2/+LFlh0EEHsEeQAAIK70lWxSMEFVZ4833HPk8dj1KiqkQw5prcqZkWFVOjdvlpYskb72tZ4/XgDhk4CfeQEAgETlC3xWr5ZycqQRI+zWF/iUlMR4gGHSPqjKyJCSklqDqspKC6o8no4/G4k5Ki21gHHIEP+2C5J9X1AgbdhgXwBijyAPAADEhd4EPvEm2KCqtNT/WKTmqLLSMoLp6YGPp6fb8crK0K4LIDII8gAAQFzoaeATj3oaVEVqjnJzbclnfX3g4/X1djw3N7TrAogMgjwAABAXwpVN8nikdeukFSvs1omZv54GVZHKuBUW2p6+sjLJ6/U/5vXa/ePG2ReA2CPIAwAAcSEc2aSSEmn2bOn886VLLrHb2bOdt5cv2KCqsND/WKQybm63FW3JzbUiK3V1UnOz3W7ebPfPm5eYFU6BeMSfIgAACJtIZsl6Gvj4rFwZvaItvZ2HngZVvZ2jrhQXW0XPSZOkqipp61a7LSrqutIngOijhQIAAAiLSLc28AU+CxZYoFNQ0NpWoKys62ySxyM99FD3LQCmTOl9Nipc8+ALqnzXKi+3axUV2eMMdK3ezFGwY5oypW/0KATiGUEeACBm+kpD676gNz3dQtGTwEeStm+XPvoouIIkEyYEN5ZAr9+33w7vPPQkqOrpHAXL7Q5+jgDEBkEeACCiOgvk+kpD674g2EbZ4ciSST0LfOrqui9IUl4efEGSQK/fww6Ttm2TvvhCGj5cGjDA5qK389CToIqMG9C3EeQBACKms0Du+OOlJ5+MfNYH0RFK2f5wZYBCDXwyMloLkmRkdDweSkGSQFnLsjLpxRelvXullBTbq5aRIY0cadcMZR7CleEm4wb0XQR5AICI6Gz53urV0muvWZZjwoTIZ30QecGU7Q8lSxYJBx8sjRljr7/Ro/2DUV9BkqKi7guSBMpaVlZaEZL9+1vP69dPqq62oG7cOAvWgpkHMtwAwoH/fQIAwq79G+GMDCkpyW7z8mzp3L59HX/OiQ2t46GnWqzFQ6Nst1u67LLuq1VKXT/f7bOWXq+0ZYvU2GgfXLjdrcHegAF2/5Ytdl538+D7YCQa1T8BJDYyeQCAsOtq+d7+/Rbw1ddLtbVSVpb/cSdkfXzIqgTHV7Z/zZreZckiberUrguSSNYzr6vnu33WsrbWAsW0NHtdJyVJTU0WQPbrZ/fX1Uk1NdLOnZ3PQ7T3NQJIbPwzAQAIu66W7yUn2xvh5mZ7M9yeE7I+ElmVUMRTo+ziYmnZMumpp6SlS+326aftWDDPd/usZVOTBWi+x5aWZgFaY6N9oOFy2e22bV3PQyj7GgGgOw745xYAkGi6Wr6XmWlvhH2ZjrZ626w5XLpabjp6tAWxS5awdLOteGqU7StIctxxrYVJgn2+2zcbT06263k89n1zszRwoAWI+/dbIRaPRxo/vut5CGZfY0ODMzLcAJyP5ZoAgLDravmeJPXvb298d+ywN9PhbNYcDrGoFpkI4rVsf6jPd9tm4/n5tveuqsoeZ0qK9JWv2GOvqbEM3vjx0l/+0vFDjbbafjDS2+qfAODwf3YBAPGou+V7Q4dKt95qWR4nZn3IqvRc+yyZ0wM8KfTnu23WsrraAjuXyz6wGDFCys6W9uyxPXgHHij9+MddB3hSxwxhW07JcAOIH2TyAADd6knfLt8b4c6KXBQXSxdd5MysD1mVviXY5zs72ypu+l6vTz1lr+3KSsvYvfyy9NFH9qFF+9d6e4H+ptpmCAsKnJfhBhA/CPIAAF3qTYXJ7pbvObVZc7xUi0R4BPN8Dxsm3X67BXHt/w6OO87OnTUruA8tuvqb6u6DEQAIBkEeAKBTnTU091UcDGZppVMDua74lpuSVekbunq+v/zSCqh88on08cfS8OG2pzTQ30Ewr/Vg/qaWLXNmhhtA/OCfDABAQE6rMBntpuTxVC0SvRfo+f78cwvAysvtv3fvtkCvpqZnfwfB/k1J8bevEYCzkMkDAAS0YYNzKkzGqil5vFaLRM+0fb7fekt65BHrg+f1WgVNt9sKrWzYYEVQcnND+zugaiuAaOF/UwCAgJxSYTLWTcnjsVokes7ttkD+n/+013dBgQVg/fpZ1m3AAGt0vmWLBX+h/B045W8KQOLjf1UAgIC6amguRafCZF9fMorYaJtxS0mxwK+5ufV4Wpq1A6mtDe3vwAl/UwD6BpZrAgACGjcu9hUmnbS8LVZLRmOlJ20zEkXbjJvbbR8qVFfbBwwul93n8VhGz7dPM5i/A6q2AoiWPvLPNQAgVN01NI9GhUmnLG+L9ZLRaCspkWbPls4/X7rkErudPTvxHmdn2mbcXC57vlNSpL17rdJmc7MFZeXlof0dOOFvCkDfwD8jAIBOxbrCpBOWtzltyWikhTugjcclrr6MW1mZBXMDB9r32dkW5NXVWdA3ZUrofwex/psC0DewXBMA0KVYVpiMxfK29ssUPR7nLBmNtPYBre/x+gLazZstoJ0yxf/572xpZ7wucQ3UNy87Wzr0UGnbNiu+ct111vy8J38H7f+msrPt/upqC4T70tJYAJFBkAcA6Fa0GpoHChZ60pS8p/vJAgUlgwbZdYYMCfwz6em2bC8RKiL2ZA9kZ4Hc8cdLTz7ZddPvcAZ64d5D6Mu4+R5bebk9tuJie831duy+v6mSEumOO+IvEAbgbAR5ANBHOa2wRldZn0BvtouKAr/Z7mn2yLdMsX1QsnmztHOnBZUHHtjx5+K5ImL718Du3d3vgWwb0HY2Z6tXS6+9ZhmvCROCzwj2VKQyhpHOYnc2f5EKhAH0HQR5ANAHdfWmeMqU2Iynuze7y5Z1/2a7J2+afXvGFi6UvvzSqor6rpuRYd/v3m2ByZAh/r8znisiBnoNDBlie87q6+2xt9c2oO1qaWdenu01S0rqeI1wL3EN5jn/2tdsPJs22f66UAK1SGWxe7o0FgCCQZAHAH1Md2+K77rL3mRGSyhvdrt6sx3KdSQLMN56S3rxRTu2bZs1vF671oqNDBxo57nddr1NmywgGj48uCWjTtbZa+DTT+2+xkZp/Piu90B2tbRz/34L8OrrrZdcVpb/8XAtcQ3mOb/pJumAA6yKZWmplJzsjOWQTmoPAiDxxNH/kgAAvRVMpciHH45uBcRQ3uyG4zrPPGPtAM48U/rhD6XXX5d27LBzUlKs+MXGjTZHPgUF0uDB0qhR8V8RsavXwCGH2BLLPXukTz7pusR/V+0tkpPtms3NUlNTx+PhWuLa3XOeni7961/SO+/Y4xo+3DmtL5zSHgRAYiKTBwB9SDCB0MaN0vbt9t/REMyb3WCyPsFcZ8sWK3Kxf78Fc263lJZmQUdTkwV5/ftbP7StWy0IcbnseG6udPfdrQGOE/Yx9kR3r4FRo6TPP7fbL7/sfA9k2/YW7Zd2ZmbavNbUWHa0rXAuce3qOff9nv37pfx8O6ftBxrRXg7Zfv9jdnbn8yfF915PALEXV/9ruv322+VyuXTllVe23Ldv3z7NmzdPgwYNUkZGhs4880yVl5f7/dz27ds1c+ZM9e/fX3l5ebrmmmu0f/9+v3P+8Y9/qKioSKmpqTrkkEP0xBNPROERAUB0BZs9qKuL3pjC1Quvu+vs3WuB3Z49tmds3z57vP362Ztsl8uOSXadujpbaugLFsaNs2VzEyZIxx1nt/EW4EnBvQb69ZOuvVZ66ilp6VK7ffpp/4xl+15y7fXvb/O6Y0fkmn539ZzX1lqQmZxswXtboWSIwyFQc/nbb7dlpIHmr+1rLt72egJwhrj539N7772nRx55RIcffrjf/VdddZX++te/6g9/+IPefPNNffHFF/rWt77Vcry5uVkzZ85UY2OjSkpK9OSTT+qJJ57QwoULW87ZsmWLZs6cqRNPPFFr167VlVdeqe9973t69dVXo/b4ACAagg2oAmUWIqWrYCGUN7vdXWf7dvvv4cMtu+PxtAYZLpcFJV5va4Db3GxBQjiDkmgL1Ig82NfAoEFdB7S+XnK5uTZH7QO5oUOlW2+1jF2klrh29Zw3Nlp2NivLMovtRWs5ZGfN5deutXH36xd4/uL1NQfAGeLin466ujrNmjVLv/zlL5Xb5qPc6upq/frXv9Y999yj//mf/9HkyZP1+OOPq6SkRG+//bYk6bXXXtOGDRu0bNkyTZw4UTNmzNDNN9+sJUuWqLGxUZK0dOlSjRw5UnfffbfGjh2r+fPn69vf/rbuvffemDxeAIiUYAKqsWOlgw+O3pi6CxaCfbPb3XX697clcv37W3bH7fbfe5iaal/9+9ubf1+VyXjcdycFzh7Nnm3ZzHAE1VJrL7lJkwIHct//vlVF7Soj2BtdPee+AKqgoOOyVCk6yyG72wO7f78tm504Mf73egJwlrjYkzdv3jzNnDlT06ZN0y233NJy/6pVq9TU1KRp06a13DdmzBgdfPDBWrlypaZMmaKVK1dqwoQJys/Pbzln+vTpuvTSS1VaWqpJkyZp5cqVftfwndN2WWh7DQ0NamhoaPm+pqZGkuTxeOSJZsWCTng8Hnm9XkeMJdEx19HBPIfPvHm2FG/Llta9SvX1tvdq4EDpkks8crmiO9dTplhVz4cekj76yPrSpaZKkydLl15qx4MZTlfXmT5duu8+W6aZlWVf1dVWkEOyN9ypqRbgfPGF7Um7806rMtk+IAyXSL2uV66057iy0r+B/AcfSNddZwHftm2dvwYuu8w3vu5/15Qp1qJgw4bW/Wa+NhS+n28bMHo80vr1Hc/tqc6e8+Jiadcu6T//kSR7TbtcNiCv15aRTppkAW+kXurr11tV1qFDOz5Gl8sCvN277XXWdq9n+/mLJ/xbHR3Mc/Q4ba6DHYfjg7zf/va3Wr16td57770Ox8rKypSSkqKcnBy/+/Pz81VWVtZyTtsAz3fcd6yrc2pqalRfX6/0ABsXbrvtNi1atKjD/Tt37tS+ffuCf4AR4vF4VF1dLa/XKzdrPSKKuY4O5jl8Ro+WbrlFeukl6bPPbElbRoZlD2bOlEaN8qiqKvpzPXq0vVnfvt0yMRkZllF0u+0NeW+vI1mQ8+mnFvgMHGjn7N9vmb2mJisWkpFhSzrnzrXzdu3q2ePxeAI/Fv9zwv+69nik556zfYdHHOGfxRozxjJcH38s3Xyz9PLLgV8Do0eHNueS/b68PPvvzuZs40b/111ysjRsmP3OsWN79nilzp/zTZukxx6T9u71KDOzWkOHetXQ4G7Jls2d2/PnNxg7dthrKT8/cCDr8VhgvWuXfZjQ3fzFA/6tjg7mOXqcNte1tbVBnefoIO+zzz7TFVdcoeXLlystLS3Ww/Fzww036Oqrr275vqamRsOGDdPgwYOV1b4hUAx4PB65XC4NHjzYES/IRMZcRwfz3MrjCZw1CUVennTssZ1lX2I71+Gq6hnoOmecYRmuTZvsjXdDgwV9NTX22A86SDrySFveOHVqz3/3ypWtmSVfo/ExYyxD1va6kZjr9eulN96wpanNzR2P19XZcV/xj96+loK1cqV0443+2cWqKhvvypWWzerNnEsdn/OCAiu68vDDHm3Z4tKGDYOVnOzW2LG9f46DkZdnGdOqqsD7XOvqLJvcNkCOd7H+96OvYJ6jx2lzHWxM5Oggb9WqVdqxY4eKiopa7mtubtaKFSv04IMP6tVXX1VjY6Oqqqr8snnl5eUq+O+/9AUFBXr33Xf9ruurvtn2nPYVOcvLy5WVlRUwiydJqampSk1N7XC/2+12xAtAklwul6PGk8iY6+hgnm2f1YMPWkbEFzz0tLGz2y21q2XVIh7mun1J+mDaGRx9tGV82s5hQYEt55w50wLf3rZFKCmRrrmmY6Px1avt/vZ7rcI911VV9vvy8wNXvUxLs2xeVZXtWevsNRBOHo+1K9i9279p+YAB0siRtp/uoYcs6Ar3S+7oo6WjjpLef9+lhga3Bg50R631xfjx0mGHWV++0aM7Npf/8kvLKPqWBCeKePj3IxEwz9HjpLkOdgyODvJOOukkrVu3zu++7373uxozZoyuu+46DRs2TMnJyfr73/+uM888U5K0adMmbd++XVP/+/Hc1KlTdeutt2rHjh3K++/HZMuXL1dWVpbGjRvXcs7LL7/s93uWL1/ecg0AcAJflb72wYOvsXNfKtTQm2C3uNj2cYUaIAajfaEN35v6aPZm66p/nRSb/muhNLyfMCH8v9/ttqqWeXnRDaZ8hWEWLLDnvu3+yLIyKmgCiBxHB3mZmZkaP368330DBgzQoEGDWu6/8MILdfXVV2vgwIHKysrS5ZdfrqlTp2rKlCmSpJNPPlnjxo3T//t//0933nmnysrKdOONN2revHktmbhLLrlEDz74oK699lrNnTtXr7/+un7/+9/rpZdeiu4DBtCnhJKJckLw4BThCHbd7sgEE10FM5I9X+++a3vmzjgj/L9faq2g2ln2KFyNyEMRrob3kdCTjHAofBVIfR9KdNZcHgDCydFBXjDuvfdeud1unXnmmWpoaND06dP10EMPtRxPSkrSiy++qEsvvVRTp07VgAEDNGfOHP3sZz9rOWfkyJF66aWXdNVVV+n+++/XQQcdpF/96leaPn16LB4SgD4g1ExUrDMhsdL+DfjYsc4OdjsLZioqrDx+ba0dv/566U9/sjf5o0eHdwxOzB45MbsohXf5c1cimT0GgEDiLsj7xz/+4fd9WlqalixZoiVLlnT6M8OHD++wHLO9E044QWvWrAnHEAGgSz3JRDk5ExIpgd6ADxkiffKJdOCBzgx2AwUzFRX2GBobrZpkaqo1w16zxorA3HJL+ItuOC175MTsYrSXP0cqewwAgcRdkAcA8aynyy6dmgnpiWCWx3X2Bry01PqgDRoUeB5iHey2D2Yky+A1NlqT9b17replfr59bdliLQWOPTb8WR0nZY+cll1k+TOARMc/XQAQRaEsu2zLFzyUlXWsmOjLhIwbF91MSE+UlEizZ1v5/ksusdvZs+1+n/ZvwDMypKSk1v51Ho+1PQhUOdIJwe6MGTbe0lJ7XmprLYO3d6+V8x850r+65McfS3/5S2QaX/uyR8cdZ7exDFh82cVJk6yy59ataulXF+2iQT39OwSAeEEmDwB6IdSiDT1ddum0TEhPBLs8rqs34FlZ9lVdbb3tsrNbj3k81pNs9Gj7b48nuvPRdnmpr//Zrl3Svn32WLOzLcDLzbXnd8sWac8ea2Pwox/ZHr1w7wULl3AVJ3FKdrEvLn8G0LcQ5AEISqQr0MWjnhRt6M2yS6ftswpFKMvjunoD7nLZ+WvXWkA3apSdV1Zme/Wam+13XXBBZApodKZ9ADtkiGXuPvlEamqyPYS+vWiVlZYlamy05y852QJAp7bCCHdxEifsTUuk5c8AEAhBHoBuRasCXTzpadGG3hagcEomJFShLI/r7g14Wpo0bJgFi19+aRmxnTttieRhh9m1otk/sLMANjNTOuII6a23pC++sIBUsvH69uj5snxZWVZ8xWl7wRK1N6MTC8EAQDg54H8hAJzM9yZv9WqrCDhiRGtlwAUL/PdS9RVd7RkbPdqCryVLAu+x8i27zM21N/R1dZZ9qquz74NZdumkfVbBCmZ5XEODnRfM/sOvflV64QXpiSfsOcjLs+IlBx4Y/HMRLl0FsG63jW//fgtiy8s77tHLy7Ofc9pesN68zp0uHH+HAOBk/PMFoFOJ/CavN3pbtCHcBSg8HmndOmnFCrt14vPRNjsXSNvlccG+Ae/Xz87dvds+fGj/hjxaQVN3AWxBgTR4sP3NVFXZuc3NtkRzzBjL+Pm0DXYjIZTXihOKk0Tyte2kQjAAEG4s1wTQqb7agLs74SjaEK5ll/GylDbU5XHB7j90QgGNYPZ35eZKd99te/Suv96y4fn5HZ/vSO4FC/W1Euu5jcZrO16XPwNAdwjyAHQq1m/ynCrYog3Z2ZZ96OzNY28LUMTTfqmeVAcN5g14uJ6L3gg2gJ0wwb7+9Cc7Nz/f/zqR3AvWk9dKLIuTRPO17YRCMAAQbnxWBaBToSyxC0U8LC/sSjB7xgYPlm6/vet+cL0R7FLa/fudM9c9WR7X3f5DJzwXoezvCnSuxxPZvWA9XXYdq96MLBMHgN4jyAPQqUi8yQumGbbTdfemvl8/q/q4Zk3kitUEs5T2vfekb37TWXNdXCwtWyY99ZS0dKndPv10z7MyTngufI8r2AC27bnV1ZYNr66O3F6wnu6ti1VxEifsBQSAeMdyTQCdCncDbictLwyl71+gczvbMzZpkpXz/+yz7vvB9ebNcWdLab1eq964a5e0fbuV6B892llLOcO9PK6r58I3D5F8LtqOI9j9XcXF0te+Jv3lL63nnnaaBaXh1ptl17HozcgycQDoPYI8AF0K15u8UJphR7roQSgFHbo7t/2bel8j7kgXqwm0X6qy0nqw1dVJe/bYWOrrrRl3RkZs5jpaYvlctBVsAOt7XW3aJA0fbpm/X/9a+vrXrRVEqB86dPU89nZvXbSLk9CoHAB6jyAPQLfC8SbPKZU6Q8kmBntu2/GuWBGdLET7Yh9VVTZ/jY22f8nrtazQ3r12/7hx9rwlclXU9gFWtJ6LULV9XQ0dKg0YYEtKN2yQ3njDGr0feWTPPnQIJByNv6NZnIRG5QDQewnyGS6ASOttA+5QmmFHSigFHXpa/CFSxWraa7tf6pNPpH//u/VNf2OjnTNggI23sdEyfL59ldGYayeI1nMRivavq8ZG6T//sczrgAH2vFZXS6tXd9wz6AsOV68ObX9hvDX+jrfxAoAT8U8kgKhwwhvuULKJPS3+0FWxGo/HluUdcEBrINkbvqW0o0bZPjzJqmlmZkppaa1vgtPS7A2y75xwzHU8VEiNVXXIrrR9XUnStm32nPXvb5nX9HTbR5mXF54PHXzirfF3vI0XAJyG5ZoAosIJS7BCLejQk6V+nRWrKSuzjFtzsz3eCy4IT2Pn4mLp2muljz6ywCA11d74r11rGaGkJBuTx2N788Ix1/HSgD3chYMCCXV/XNvXYG2tBd/Jyfb34PW2Plf793f8IKG3y53jrfF3vI0XAJyEfyoBtIhkdsYJS7BCySb2JvPYPguxYYMV2JCkww6z7FE4y/gPGmTNvtPTpawsm8MRI6SUFNuT19RkgUBTU+/nuqdLBmMlkhmhnrQDafu6amqyv7G2z4Pv++Rk/2W1XX1A4fXatSorpfff7/rvtrfLrqMt3sYLAE5BJg+ApOhkZ2JRjr2tULOJgc71eqWaGltmN368ndPZY50yxYLlH/7Qfn7cuNY3qeGsdBnocQ0caPdt3Srt3m3z3NRkwc6MGa1N0kPJjDipQmooIpER6mk7kLbP1eDBrZk7n337LGDPzLR9em0/SAhUcdJXUbW62p7TO+6Qli93XlYVABBdDvrfMBBZ8bCHKFaimZ0JdzPsUISSTQx07q5d1mD83XelHTukjz+27E1XBS/cbguyRozoGFSEq7FzZ48rJcWChcMOk267zYJNr1e6556eNUeP5ybV4cwI9WZ/XNvnascO2y/Z1GQB2p499pyNHGnntt0zGGh/YWWlzXdVlf2ugQPtOXBqVhUAED0EeegTerKsqq/obUGHnojlEqxQlu+1Pffzz6UPPrCMSXa23Xfggd2/oY5WVdHOHtfkydLDD0sTJ9rtmjWdB/K+D0Leest+vv1zHuxj2b07sT9Q6W2w63uuiorsteT1WoDXv78F5MnJ3X/oUFsrffqpZf5cLgsWR460oD5Sf7cAgPjBck0kvJ4uq+ornNK/LppCWb5XXCx97WvSN79pAczw4bbvzTdX3S1TjGZj584el2QfanS1zPKmm2xv30cfWWapsNCqPbZdRhvMY9m/X7rzTuv75uSiLL0RagGfQHzP1fr1to8uO9s+SKiutsCt/RJmj8cCuNmzpRdftOesosKeo+xsC9oHDmy9fkaGZZyfe0464wxnLZ/tqVCL3ABAX0aQh4QWr3uIoikcb1jjUSjNnTdutKBl1KiOwU13gXBPq4r29A1toMe1bl3XgXx6uvSvf1l1zhEjLKM0YID0zjv+H4R09Vg8Hisus3ev9X7zXScRP1AJV+Dudtu+zrw8W12wcWPr8z12rH2/YoXt/3z5ZQvAGxpsSWdurgWEhx5qQZ7vuaiosCxsba2de/310p/+FP9BdrxUdAUAp+ijb2vRV8TzHqJocUL/OqfrzZLLnlQVDffy4u4qM5aVtZbs9y3XTU+3oLbtsr/OHsvnn9sSzx07bNlhZaXtV6yujuyy31iJRP+9tkuYa2vtOfd9XXKJ9NJL9m/WiBGt+/lqa22+2wZ4Gze2ts5ITQ1tb20s9i0H8zvjraIrADgBQR4SWrT2Q8UzJzaMdpreBsKh7AOMxBvarsZfW2vVQpOTLUPUVqAPQjprD+Hx2DWysmwJYXW1BRwVFYn3gUok24G0ff6zsy0r6vXa9bdutecqI8P+ZpOS7Pd5PHbO1q12fv/+tuQ2M1PKzw8uyI7FvuVgfmcs9gwDQCIgyENCI0vVPSf0rwuWx2N7mHqSaehNliIcgXAwVUUj9Ya2q/E3NlpAkJVlQUF7gT4I8T2WJ56wcebl2bLDfv1svP36WaDR2GiBh9ebeB+oRKL/Xvvn31eQJT3dXgONjdYuwdc0/ZBDLAO7YYMtqa6ttUB7797WKp0uV/dBdiwyZcH+TlZjAEDPsCcPCa2n+6H6mlj3rwvGypVWROKNN1qD8zFjpFNPtWIoXe1b6+1+Hl8gvGCBBb4FBa0FfMrKgg+Eu9sHGKkiOF2Nv7zcgrKCgo6/U+r8g5D27SF8yzk9Hgv0XC77ubo6Cz7c7sT7QCXc/ffaP/++ZulJSXY8La11PrOy7DmrqLB/27Zta31tZ2dbgNd2rjvbWxuLfcuh/M6+umcYAHqLIA8JLVxvzvuCSDSMDpeSEunaay1jlJ1tS9DKymyf0gsvWFNpX7GK9oFbuKqrRiMQjuQb2s7GP2WKtHOn9J//2AcfoXwQ0na8bre9Sa+utqItkgUnjY325ctyJdoHKqEU8OlO++c/Odmu39xsgbgviG5qsuP19fa6v/tu6ZNPrMhKTo79fbQP2DsL1mNRXTeU3xnN6rQAkEgI8pDw4iFL5RThfMMaLr5P/SsrpSOOsDe8vgqCzc0WiDQ2WvDXNnCbMsWWZS5caJUxx41rDVh7mqWIdCAc6Te0nY3/7bf9PwjxVcX89NOuPwhpP96RI+3N+Z49lnXy7RUrK7M39Hyg0rX285mZ2Ro4JyW1ZkuTk/0D8AkT7OtPf7K/gfx8/+t2FazHIlMWyu885pjwVKcdOzZ84weAeECQhz7ByVkqdM33qb9vOaHXa/uSGhvtDfD+/RZUeL0de76tWWPBYL9+0tq1/kvYepqliGQgHI3lxYHG3/6DkJ07bW4nTZIuu6zzD0Lajzc314LpLVtaS/j37y9NnUqp+2AEev5HjLDnZO9eC1xycuz+QPtle7JqIRaZslB+Z09WYwRanj1unPS979lqAADoCwjy0Gc4MUuVSCLVqLj9p/61tbYvKS3NvvctCWxq6tjzLSfHArzUVMuGbNhgb/Z8b1idtp8nlsuL234QUlFhc3bkkTZ/oYw3K8t6t23fbgHedddJs2bxgUowAs2nr9H5J59YoJ+SYq/lQCsRerJqIdp9HHvyO0N5XJ0tz167VnrsMZu/o48ObpwAEM8I8gB0Ktg3cpFsVNy+QqqvGIVvHM3NHZew+Xq+paS0Fq0YMMAyflu2tGZDnLifJ5bLi30fhHg81oct2CWsgcY7dSrLoXuis/n8+telGTO6LzIU6qqFcGXKIl3IKJjH1VVBl4wM+/t/+GF7bfKhA4BER5AHIKBg38gFU9ikN0tlfZ/6f/CBVdP0FaPwBXoNDZbtyMzs2POt/Z6mttUJMzMjk6UIh3hbXhxv43W63s5nqKsWwpEpi0Yho95Wp83JsX9HwllEBgCciiAPQAfBvpELphS6b3/cRx/17lP/a66xoMzlsqxcVZUdS0mx5WwuV+uyzUGDLIhrv6cpJcUyfzU1lqmKRJYiXJywvDiUYNcJ400k0Z7P3mbKnFDIqLuCLqmpidWrEQC6QpAHBBDrTE4shfJGrrtPztvujxsxonef+t95Z2ufvJQUu35Skl03O9sydGVlHXu+DRxoQdrWrZbR27/fxjB5cuSyFIlg40bpV7+yfYyxDHYRPbHo4xjOYLa7gi6+17GTlmcDQKQQ5AHtOCWTEyuhvJHr6pPz9vvjfG+6evqp/9SpVh3z/PMti7dtm/Tyy5Yh3Lq1dR/Yrl3SZ5/593wbONCWam3YYIHr4sX2xjKSWYp4tnKlFanwlePvy8EuWjm9MXl3BV2qqux4ovVqBIBACPKANsjkhPZGrqtPztvvj2urN5/6jx/fGmTNmtV9z7e2BR2GDJEWLbJ+e+2FK0sR71lgj0d66CFb3jp6dOv9fTHYhT+nNybvqqDLjh223++SS3jdAugb+KcO+K/2mZyMDFsO6HtzW1lpb249nliPNLLaV7Nsr+0bOd8n52Vl9kl5W779cVlZtj+uvfT03u+P8S31Ou641sycr6DDpEn2yf3WrXZbVNR1kB5McNvdeEtKpNmzLdt4ySV2O3u23R8vSkstO5qb232wi76lq793X+Z+3LjYZso6+/ufNEmaO9ey/QDQF5DJA/4rEvtN4lEoPay6K4Xefn9cW5H81L8nBR16m6VIlCywL9hNTQ18PNZL8hA7sezjGIpAf/9jx9pSbgDoK8jkAf8VjkxOIvC9kcvNtTdydXVWkbKuzr5v/0aus0/Op061psP19bH51D9Qlq8rvclSJFIW2BfsNjQEPh7rJXmIrZ5myqMt1L9/AEg0ZPKA/3L6fpNoCrWHVWeZs672xznlU3+f3mQpEikLXFho/QirqjoPdgP1FkTfQV9EAHA+gjzElUgWtQhlmWIsxhdtob6RC1QKvScNj2Opp+N1etXBULjd0mWXSUuXSqtXW/sLJwfniA36IgKAsxHkIW5EurVBb/ebrFxpS/ISqfVCON7IxcOn/u2D86eesucxWvv5Ao0hlnM0daoVzvF4LAPp9OAcAAD4I8hDXIhWUYueZnI2bpRuvFHavTu+i25EipM/9e/qw4PjjgvuGr3NAjuxN+PYsdKTT4YW7AIAAGcgyIPjRbtJdaiZJ49HeuklO7evN9GON+H68KA3WWAnV+V0cnAOAAA6x1tOOF4oRS3CJZTKbBs2SJ99FrhVAH3FnCvcFTF7UnUwkapyAgAA5yCTB8dzelGLykpr+u3U8TldrPaiRaIiZqhZ4ESqygkAAJyDIA+O5/TWBrm5UnKyZW0GDOh4PNbjc7JY7kWL1IcHoSxxdPoHGAAAID6xXBOO15sm1dEwbpw0bJi9GQ/n+Dwead06acUKu43Ekr1I/Y5gruvbi7Z6tZSTI40YYbe+vWglJZH5vT5tPzwIJBrBuRPGAAAAEg+ZPDheb1sbRGN8M2daC4Vwja+7DFc4ljhGKosWzHUjUUwn1McTjr6IveWEMQAAgMRDJg9xoSdFLaJp7Fjpzju7H19PM1zZ2RZEXnyxtHChNGuWdP750iWX2O3s2aFlviKRRQvluuEuptOTx+P78CA314LKujqpudluN2+OzocHThgDAABIPGTyEDec3lR76lT76mx8Pc1wVVRY0FhXJ/3nP9LPfy7172/HR4wIvdx+pFpShHLdUPai+bKWFRU2Zwcc4D+u3jyenvZFDCcnjAEAACQWgjzEFaf37epsfMH2Qmuf4aqosO8bG+2Nv8tlmZ79+y3wS0+XBg4MLTiLVEXHUK4bbDGdbdukpUvtuk1NFjT36+cf/PT28TjhwwMnjAEAACQO3kIAERZKL7S2GS6v1wK5xkbL3Pmu5XJZANTYaMe93tCWOAaTRWtoCL2iYyjXDaaYzuDB0kMPtS7BHD7cqpeuXeu/BDMcjyeUvoiR4oQxAACAxMDbCCDCeprhqq21JZq+DJ7X2xrQud12f12dnScFH5xFqqJjKNftbi9aTo491spK/8A4PV0aNco/MKZCJQAAgD+CPCDCeprhamy0ICYpyc7zBYhJSbZkMSnJjjc12f3BBjORakkR6nW7KqZz2WXSrl3BBcZOb7EBAAAQbQR5QIT1NMPlC1r277csV0ODBXa+oK+52c5PTg4tmAlXRcf2lUKl0K9bXCwtWyY99ZTtvXvqKenpp21pZrCBMRUqAQAA/PG2B4iwnma4pkyxAG7PHsvqZWdLY8ZIaWkWwNTX2x41lyv0YKa3LSlKSqxtQ/s2DlLo1w20Fy3UJZhOb7ERDpFqXA8AABIP1TWBCAu2mbtkb9591RWfflr6zW+kO+6Q9u6VDj7YCrD06yd98ollq1JSpOrq0Mrt+1oS7N8vXXed3VddHXxFx2AqhS5b1rtKkT1pEp7IFSoj1bgeAAAkJoI8IAoC9UJLSbEiIjNnWvD3wAPSRx91fBP/6KOtP7djhx37+telGTNsWWMowUxXwUIw7RJC6UnXm1YXgQLj/v0tmPz0086zlk5vsdETwbbfAAAA8CHIA6KkbabprbekF1+UPv9cuvNOaedO22vXWYPz3mbGpPAEC5HqsRdI+8B4504LJidNssIsfSGwiVTjegAAkNgI8oAocrut5cGyZfbGvaDAsnNer72h76rBeW+CpnAFC8FUCi0vD73HXmfaBsYVFZZ5PPJIW7LaF0QzqAYAAImDz36BKGofbHm9Vlilf3/76mmD8+6EEix0JRY96XxLMI891rKcfSljFanG9QAAILH1obdLcJJwVQqMt4qD7YOtpiYbs9tt3/e0wXl3whUs0JMuumj0DgAAeqKPLHqCk4RaKdBXDbL9frR4rDjYPthKTrbH4mt6npRk2bxQG5y3FWi+2gYLGRkdfybY3xNspdC+lG2LpJ5UGQUAACDIQ1SFWvyjs0Du+OOlJ5+MXsXBzgLNULUPtjIz7ba62nreBWpwHsqb+M7m67LLwhcsBKoUmpoaWhsHBIegGgAA9ARBHqIm1OIfnQWEq1dLr71mQdGECZGvOBjOjGGgzMzIkbYfrq7OAq6cnJ41OO8qgL72WmnOHNvvF45gIZF70jkNQTUAAAgVQR6iJpTiH4WFnQeEeXkWrCQldfwd4a44GEzm8Wtfs/Fs2mRVMbsKdgJlZrKyrKBIbxucdxdAr1hh7Roeeig8wUKketKFK2uaSAiqAQBAKAjyEDWhlN/vKiDcv98CvPp6K1CSldX5dXojmMDpppukAw6w4Ky01JZZdpfl6ywz09MG51LwAXR2dnh67kVKV1nTKVNiPbrYSsRG7wAAIDII8hA1oRT/6CogTE62IK+5ubVASWfX6Y3uAqf0dOlf/7IA6vjjLTjbuze4fYHhzsyEEkA7NVjoLmt6110WXAMAAKBrDvn8PrDbbrtNX/3qV5WZmam8vDydfvrp2rRpk985+/bt07x58zRo0CBlZGTozDPPVHl5ud8527dv18yZM9W/f3/l5eXpmmuu0f79+/3O+cc//qGioiKlpqbqkEMO0RNPPBHph5fQArU2CKX8flel4zMzLQBobu7YFDucZfy7Cpx8v2f/fik/385JSmrN8lVW2r7Arlo6+IKt446z295k0+K91H77rGlGRsf5fPhh57fIAAAAcAJHB3lvvvmm5s2bp7ffflvLly9XU1OTTj75ZO3Zs6flnKuuukp//etf9Yc//EFvvvmmvvjiC33rW99qOd7c3KyZM2eqsbFRJSUlevLJJ/XEE09o4cKFLeds2bJFM2fO1Iknnqi1a9fqyiuv1Pe+9z29+uqrUX28iaKkRJo9Wzr/fOmSS+x29mzp7bdt2V1uri11rKuzQK2urmORka4CQklKS7Ngb8eOrq/TG10FTrW1Uk2NZRVTUvyPhbOJebDivX9dMMtNN26Utm+PzfgAAADiiaODvFdeeUUXXHCBCgsLdcQRR+iJJ57Q9u3btWrVKklSdXW1fv3rX+uee+7R//zP/2jy5Ml6/PHHVVJSorfffluS9Nprr2nDhg1atmyZJk6cqBkzZujmm2/WkiVL1NjYKElaunSpRo4cqbvvvltjx47V/Pnz9e1vf1v33ntvzB57vPItuVu92qpEjhhht74ld5ItY5w0SaqqsoIlVVVW/KPt8kZfgZLOAsIDD5RuucV+rqvr9EZXgZOvl11WlgWb7YWriXmwupsvp5faD7ZZe11ddMcFAAAQj+JqT151dbUkaeDAgZKkVatWqampSdOmTWs5Z8yYMTr44IO1cuVKTZkyRStXrtSECROUn5/fcs706dN16aWXqrS0VJMmTdLKlSv9ruE758orr+x0LA0NDWpoaGj5vqamRpLk8XjkccCaMo/HI6/XG9WxeDy2RLGqSjr00NaMjK8X3KefWmXHJ56QnnrKMl2+/WjjxrU2BfeZMsX2YT30kPTRR9LOnZZZmzxZuvRSaepU6cIL/a8zZoyd++ab/tftqXnzrP3Ali2tyzLr6y2DmJJimSe32yOXyyuXq3Xw+/bZuTk50Vti2N18TZni3OWOOTk2X/v2Bd6vuW+flJbm0YAB0X1N91Wx+Pejr2Kuo4N5jh7mOjqY5+hx2lwHO464CfI8Ho+uvPJKHX300Ro/frwkqaysTCkpKcrJyfE7Nz8/X2VlZS3ntA3wfMd9x7o6p6amRvX19UoPkF647bbbtGjRog7379y5U/v27evZgwwjj8ej6upqeb1euaOUvtm61faoTZkSOCMzeLC0Z4/0/vuW4cvLsy9J2rUr8DVHj7bAZft2y+JkZEgHH2yB244ddo7vOhs3Sj/6kfTZZ5ZlS06Whg2TZs60jFxPjB5tGcOXXmq9bkaGZQxramzcQ4Z4dMABNteS26+5+AEHtI4zGoKZLyc64ADpxBPtg4CCgsDN2idP9ig7u1o7dkTvNd1XxeLfj76KuY4O5jl6mOvoYJ6jx2lzXVtbG9R5cRPkzZs3T+vXr9c///nPWA9FknTDDTfo6quvbvm+pqZGw4YN0+DBg5XVvqZ/DHg8HrlcLg0ePDhqL8hNm2xv1fDhgXvYNTdL27bZsjtfcBesgoKuj69cKd14o2X0fI2+q6qk9evt2J13WuavJ/LypGOP7Zh5fOcdy/J9/LFHX/uaS+Xlg7V3r1vl5ZaZ+uEPux93pLT9vR5P4Kyp05xxhs3npk3+WVPffF59tUe5udF9TfdVsfj3o69irqODeY4e5jo6mOfocdpcp6WlBXVeXAR58+fP14svvqgVK1booIMOarm/oKBAjY2Nqqqq8svmlZeXq+C/73ILCgr07rvv+l3PV32z7TntK3KWl5crKysrYBZPklJTU5Wamtrhfrfb7YgXgCS5XK6ojmfgQMue7d0beMnd3r12fODA8AYZvmWiu3f797MbMEAaOdL2pD30kAV5Pf29brd0+OH+9x19tGXNliyR6upc2rrVreRktyZO7Flz8Ujoqu+cE8bXlm8+feMtK7Px+uZzyhRpx47ovqb7smj/+9GXMdfRwTxHD3MdHcxz9DhproMdg6ODPK/Xq8svv1zPPfec/vGPf2jkyJF+xydPnqzk5GT9/e9/15lnnilJ2rRpk7Zv366p/03bTJ06Vbfeeqt27NihvP+mj5YvX66srCyNGzeu5ZyXX37Z79rLly9vuQYC83j8+7yNHWtfa9bYssFAS+6KisJf4THYRuClpeHvD1dcLH3ta7YEtaHBAlinNBfvru9cuArUhFNX/QMdshQeAADA8Rwd5M2bN0/PPvus/vKXvygzM7NlD112drbS09OVnZ2tCy+8UFdffbUGDhyorKwsXX755Zo6daqmTJkiSTr55JM1btw4/b//9/905513qqysTDfeeKPmzZvXkom75JJL9OCDD+raa6/V3Llz9frrr+v3v/+9XnrppZg9dqfrLEN0/PG2N2/z5tZlk/X1FuBFqsJjKI3AI8Htbt1jGKvgLlDA3bbvnC/49fWd27zZMpBTpjgjIG3Lqc3aAQAA4oWjg7yHH35YknTCCSf43f/444/rggsukCTde++9crvdOvPMM9XQ0KDp06froYceajk3KSlJL774oi699FJNnTpVAwYM0Jw5c/Szn/2s5ZyRI0fqpZde0lVXXaX7779fBx10kH71q19p+vTpEX+M8airDNHWrdKcOVbdcuNGC65SUy2DF6kljG372QVaJur0RuC9FSjgHjJE+uQTazUR7ewmAAAAYsvRQZ43UBfsdtLS0rRkyRItWbKk03OGDx/eYTlmeyeccILWrFkT8hj7Go+n+wzRihXWImHjxo5L7iLB188u2stEg9E+wxbueegs4C4ttWqaBxwQOPCNdHYTAAAAsePoIA/OE+z+t40bo5ch8jUCX7AgustEuxPpoiddBdzDh1sQt3mz7RNs/1wlenYTAACgL3PYbhw4XTD73xoaop8hKi62QiKTJlnrhK1b7baoKDYFRnwZttWrrfz/iBF26yt6UlLS+9/RVcCdlSVlZ0vV1dbPry1fdnPcuNhkNwEAABBZZPIQEifvf+uqMmM0BbOkNRxFT7oKuF0uadQo6YMPrDfhqFHOyG4CAAAg8gjyEBIn73+TnFGZMVotHboLuNPSpIMOskDzyy+jUwQHAAAAsUeQh5BEYv9bpIuTRFu0WjoEE3B/9avSk09GrwgOAAAAYo8gDyHz7X/zFRXpTYYo0sVJYiFaS1qDDbj79Yt9dhMAAADRQ5CHHgnH/reu+u0tWBD5gimRyiBGc0lrOANuAAAAJAaCPPRYb/a/Ras4SWcimUGMdksHpxScAQAAgDPwNhAxEUpxknCLRnuDaLd08AXcxx1ntwR4AAAAfReZPMREtIqTtBfNDCIZNgAAAMQCQR5iIlb99qLV3sDHCS0dAAAA0LeQU0DYeDzSunXSihV26/F0fq6vOElZmRUjactXnGTcuPD32wsmg9jQEP4MIgAAABAtZPIQFqEWMol2cRKfWGUQAQAAgGghk4de62khk2gXJ5Fil0EEAAAAooVMHnqlt4VMol2cJFYZRAAAACBaCPLQK+EoZBLt4iQ0EAcAAEAiI8hDr8SqFUJv0d4AAAAAiYogD70Sz4VMaG8AAACARETeAr1CIRMAAADAWQjy0Cu+Qia5uVbIpK5Oam62282bKWQCAAAARBtvvdFrsWiFAAAAACAw9uQhLOK9kInHE79jBwAAANoiyIOf3gQ78VrIpKSktZ1CQ4MVihk71pahkoUEAABAvCHIQ4tEC3aCCVhLSqwxekWF9frzNUZfs8buZ7kpAAAA4g1BHiQlXrATTMDq8dg5FRXSIYe0NnPPyJBGj7bCMUuW2DJUlm4CAAAgXvDWFR2CnYwMKSnJbkeNkr78UvrpT6UPPrBznc4XsK5eLeXkSCNG2K0vYC0psfNKSy0IHDKkNcDzcbmkggJpwwY7DwAAAIgXBHkJyOOR1q9v/dq/X1q3Tlqxwm7bB2qdBTsVFdLatdLOndJbb0nf+Y40e3ZrkBTqmLoaQ7h0FbCOHm1LN5cssfMqKy3Ll54e+Frp6Xa8sjIyYwUAAAAigeWaCca3THHTJmn4cMtE1dfbcsV+/QIvWwwU7FRUWODX2CilpNh96ek9W74Zzb1+oWTncnNtLPX1FgS255u33NzwjhEAAACIJDJ5CaTtMsXsbGnAAKm8XCors9ucnMDLFtsGO5Lk9Vqvu8ZGqX9/24+WlCRlZUmDB0uffy7deqtlCEMZU1dLJ8MllOxcYaEFm2Vl9pjb8nrt/nHj7DwAAAAgXhDkJYj2yxQHDLBlls3NFvA1N0vbttn97Zcttg92amulujoL/Fwuad8+y+Z98onty9u1S3r9demb3+w6SAtl6WS4tA9Y22ubnXO7LZuYm2tFVurqbJ7q6uz73Fxp3ryORVeitfQUAAAA6AmCvATRfplibW1rQONySWlpFrzU1nZcttg+2KmpsWBHkvbsseMNDVJ1tZSc3JrdKy3tOhsXi8ImoWbniott6emkSVJVlWUwq6qkoqLAS1JLSmxf4vnnS5dcYrdz5tjjBAAAAJyAPXkJov0yxaYmy5olJVlw43ZbxqmpyY6np9sSTl9REV+w8+CDtrTStxQzO9uWbdbXWxZQsmP9+tmev507O28zEMzSybZjCAdfwLpggQWsBQWt7SDKygJn54qLbfw97am3dq302GOW7Tz66PA9FgAAAKAnyOQliPbLFJOTLVvmy8h5PBa0JCfb974sX3Z269LDzEzpqaek3/1OOuYYKS/PllU2NlomULKAsaHBllxmZXWdjQtl6WRbvV0OGWp2TrK5mTBBOu44uw20RLOrNhN79kgPP8zSTQAAAMQembwE4VumuGaNBWaZmZa1a2iwAG3fPgvoMjNbly0OGybdfrv00Ucdq17+7GeWtdq2zTJ3KSl229Bg/z1ihAWRXWXj2o+p7ZJN3xiKivwLm4SrEmew2blgdbf0NCfH9iuWllqQCAAAAMQKmbwE0X5f3Z49VgkzKcn20iUlSQcfbPd/8okFbJ98Ir39tgV/7ateSpb1Kiy07NTevfYz2dkWdA0caOd01WYg1MIm4a7E2V12LhTdLT1NTaWnHgAAAJyBIC+BtF2mWF1tAV1+vmWf8vPtvs8/t6xeWZn99+7d0scfW7GV9lUvp0yRXnhBOvFE6YADpCOOsGv7Arxg2gwEu3QyFpU4Q9Hd0lNf1pGeegAAAIg1lmsmGN8yxfXrpR07bF/duHG21PCtt6RHHrE9dl6vFVJxuy3427DBzsvN9d9nN2GCdOONlknbudMCr+4KmXQ2pq6WToZSiTMWyyG7W3paVWXH6akHAACAWCOTl4Dcbmn8+Navfv0s+PjnPy3j5Auk+vWzoG3AAAv8tmyxgKVtw3CpZ4VMAo2pq6WToTQxj4Wulp5++qnN4aWX9m5JKAAAABAOZPL6iLaZMl+lzeZmC/Qk/z56bnfHpYfhLmTSXtvlkBkZHY93tfcvWtq2mdi40QrOpKZa8Dt3rjR1auzGBgAAAPgQ5PURbTNlbrcFUr6CLC5Xax+9xsbWLF37pYe+bFwk9KQSZywECnbHjpV27YrtuAAAAAAfFpf1EW0zZS6XVa5MSWmtmtncbMFUeXlw++zCLdRKnLEUzqqdAAAAQLjx9rSP8GXKysosmBs40L7PzrYgr67Ogr4pU4LfZxdu4dj7BwAAAPR1LNfsI3yZsgULLDNWUGAB3qGHWsPzAQOk666TZs2KbWYq0nv/AAAAgERHkNeHdFY4pLjYlkI6JVMWyb1/AAAAQKIjyOtjyJQBAAAAiY0grw8iUwYAAAAkLvI3AAAAAJBACPIAAAAAIIEQ5AEAAABAAiHIAwAAAIAEQpAHAAAAAAmEIA8AAAAAEghBHgAAAAAkEII8AAAAAEggBHkAAAAAkEAI8gAAAAAggRDkAQAAAEACIcgDAAAAgARCkAcAAAAACYQgDwAAAAASCEEeAAAAACSQfrEeQKLwer2SpJqamhiPxHg8HtXW1iotLU1uN7F8JDHX0cE8Rw9zHT3MdXQwz9HDXEcH8xw9TptrX6zhiz06Q5AXJrW1tZKkYcOGxXgkAAAAABJZbW2tsrOzOz3u8nYXBiIoHo9HX3zxhTIzM+VyuWI9HNXU1GjYsGH67LPPlJWVFevhJDTmOjqY5+hhrqOHuY4O5jl6mOvoYJ6jx2lz7fV6VVtbq6FDh3aZWSSTFyZut1sHHXRQrIfRQVZWliNekH0Bcx0dzHP0MNfRw1xHB/McPcx1dDDP0eOkue4qg+cT+4WlAAAAAICwIcgDAAAAgARCkJegUlNT9dOf/lSpqamxHkrCY66jg3mOHuY6epjr6GCeo4e5jg7mOXrida4pvAIAAAAACYRMHgAAAAAkEII8AAAAAEggBHkAAAAAkEAI8hLMihUr9I1vfENDhw6Vy+XS888/H+shJazbbrtNX/3qV5WZmam8vDydfvrp2rRpU6yHlXAefvhhHX744S39aaZOnaq//e1vsR5Wwrv99tvlcrl05ZVXxnooCeemm26Sy+Xy+xozZkysh5WwPv/8c82ePVuDBg1Senq6JkyYoPfffz/Ww0ooI0aM6PCadrlcmjdvXqyHlnCam5v1k5/8RCNHjlR6erpGjx6tm2++WZTYCL/a2lpdeeWVGj58uNLT01VcXKz33nsv1sMKGs3QE8yePXt0xBFHaO7cufrWt74V6+EktDfffFPz5s3TV7/6Ve3fv18/+tGPdPLJJ2vDhg0aMGBArIeXMA466CDdfvvtOvTQQ+X1evXkk0/qtNNO05o1a1RYWBjr4SWk9957T4888ogOP/zwWA8lYRUWFur//u//Wr7v14//HUdCZWWljj76aJ144on629/+psGDB+vjjz9Wbm5urIeWUN577z01Nze3fL9+/Xr97//+r84666wYjiox3XHHHXr44Yf15JNPqrCwUO+//76++93vKjs7Wz/4wQ9iPbyE8r3vfU/r16/X008/raFDh2rZsmWaNm2aNmzYoAMPPDDWw+sW1TUTmMvl0nPPPafTTz891kPpE3bu3Km8vDy9+eabOu6442I9nIQ2cOBA3XXXXbrwwgtjPZSEU1dXp6KiIj300EO65ZZbNHHiRN13332xHlZCuemmm/T8889r7dq1sR5Kwrv++uv1r3/9S2+99Vash9KnXHnllXrxxRf18ccfy+VyxXo4CeXrX/+68vPz9etf/7rlvjPPPFPp6elatmxZDEeWWOrr65WZmam//OUvmjlzZsv9kydP1owZM3TLLbfEcHTBYbkmECbV1dWSLABBZDQ3N+u3v/2t9uzZo6lTp8Z6OAlp3rx5mjlzpqZNmxbroSS0jz/+WEOHDtWoUaM0a9Ysbd++PdZDSkgvvPCCjjzySJ111lnKy8vTpEmT9Mtf/jLWw0pojY2NWrZsmebOnUuAFwHFxcX6+9//rn//+9+SpA8++ED//Oc/NWPGjBiPLLHs379fzc3NSktL87s/PT1d//znP2M0qtCwPgQIA4/HoyuvvFJHH320xo8fH+vhJJx169Zp6tSp2rdvnzIyMvTcc89p3LhxsR5Wwvntb3+r1atXx9Weg3h01FFH6YknntBhhx2mL7/8UosWLdKxxx6r9evXKzMzM9bDSyiffvqpHn74YV199dX60Y9+pPfee08/+MEPlJKSojlz5sR6eAnp+eefV1VVlS644IJYDyUhXX/99aqpqdGYMWOUlJSk5uZm3XrrrZo1a1ash5ZQMjMzNXXqVN18880aO3as8vPz9Zvf/EYrV67UIYccEuvhBYUgDwiDefPmaf369XHz6U68Oeyww7R27VpVV1frj3/8o+bMmaM333yTQC+MPvvsM11xxRVavnx5h08uEV5tP3E//PDDddRRR2n48OH6/e9/zxLkMPN4PDryyCP185//XJI0adIkrV+/XkuXLiXIi5Bf//rXmjFjhoYOHRrroSSk3//+93rmmWf07LPPqrCwUGvXrtWVV16poUOH8poOs6efflpz587VgQceqKSkJBUVFencc8/VqlWrYj20oBDkAb00f/58vfjii1qxYoUOOuigWA8nIaWkpLR8cjZ58mS99957uv/++/XII4/EeGSJY9WqVdqxY4eKiopa7mtubtaKFSv04IMPqqGhQUlJSTEcYeLKycnRV77yFX3yySexHkrCGTJkSIcPg8aOHas//elPMRpRYtu2bZv+7//+T3/+859jPZSEdc011+j666/XOeecI0maMGGCtm3bpttuu40gL8xGjx6tN998U3v27FFNTY2GDBmi73znOxo1alSshxYU9uQBPeT1ejV//nw999xzev311zVy5MhYD6nP8Hg8amhoiPUwEspJJ52kdevWae3atS1fRx55pGbNmqW1a9cS4EVQXV2dNm/erCFDhsR6KAnn6KOP7tDa5t///reGDx8eoxEltscff1x5eXl+hSoQXnv37pXb7f/2PSkpSR6PJ0YjSnwDBgzQkCFDVFlZqVdffVWnnXZarIcUFDJ5Caaurs7v0+AtW7Zo7dq1GjhwoA4++OAYjizxzJs3T88++6z+8pe/KDMzU2VlZZKk7Oxspaenx3h0ieOGG27QjBkzdPDBB6u2tlbPPvus/vGPf+jVV1+N9dASSmZmZof9pAMGDNCgQYPYZxpmCxYs0De+8Q0NHz5cX3zxhX76058qKSlJ5557bqyHlnCuuuoqFRcX6+c//7nOPvtsvfvuu3r00Uf16KOPxnpoCcfj8ejxxx/XnDlzaAkSQd/4xjd066236uCDD1ZhYaHWrFmje+65R3Pnzo310BLOq6++Kq/Xq8MOO0yffPKJrrnmGo0ZM0bf/e53Yz204HiRUN544w2vpA5fc+bMifXQEk6geZbkffzxx2M9tIQyd+5c7/Dhw70pKSnewYMHe0866STva6+9Futh9QnHH3+894orroj1MBLOd77zHe+QIUO8KSkp3gMPPND7ne98x/vJJ5/EelgJ669//at3/Pjx3tTUVO+YMWO8jz76aKyHlJBeffVVryTvpk2bYj2UhFZTU+O94oorvAcffLA3LS3NO2rUKO+Pf/xjb0NDQ6yHlnB+97vfeUeNGuVNSUnxFhQUeOfNm+etqqqK9bCCRp88AAAAAEgg7MkDAAAAgARCkAcAAAAACYQgDwAAAAASCEEeAAAAACQQgjwAAAAASCAEeQAAAACQQAjyAAAAACCBEOQBAAAAQAIhyAMAAACABEKQBwBAlDQ3N6u4uFjf+ta3/O6vrq7WsGHD9OMf/zhGIwMAJBKX1+v1xnoQAAD0Ff/+9781ceJE/fKXv9SsWbMkSeeff74++OADvffee0pJSYnxCAEA8Y4gDwCAKPvFL36hm266SaWlpXr33Xd11lln6b333tMRRxwR66EBABIAQR4AAFHm9Xr1P//zP0pKStK6det0+eWX68Ybb4z1sAAACYIgDwCAGPjoo480duxYTZgwQatXr1a/fv1iPSQAQIKg8AoAADHw2GOPqX///tqyZYv+85//xHo4AIAEQiYPAIAoKykp0fHHH6/XXntNt9xyiyTp//7v/+RyuWI8MgBAIiCTBwBAFO3du1cXXHCBLr30Up144on69a9/rXfffVdLly6N9dAAAAmCTB4AAFF0xRVX6OWXX9YHH3yg/v37S5IeeeQRLViwQOvWrdOIESNiO0AAQNwjyAMAIErefPNNnXTSSfrHP/6hY445xu/Y9OnTtX//fpZtAgB6jSAPAAAAABIIe/IAAAAAIIEQ5AEAAABAAiHIAwAAAIAEQpAHAAAAAAmEIA8AAAAAEghBHgAAAAAkEII8AAAAAEggBHkAAAAAkEAI8gAAAAAggRDkAQAAAEACIcgDAAAAgARCkAcAAAAACeT/A485eIR5e39AAAAAAElFTkSuQmCC",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "x_column = 'X'\n",
+ "y_column = 'Y'\n",
+ "\n",
+ "fig, (ax1) = plt.subplots(1, figsize=(9, 6))\n",
+ "\n",
+ "ax1.scatter(df[x_column], df[y_column], alpha=0.7, color='blue')\n",
+ "ax1.set_xlabel(x_column)\n",
+ "ax1.set_ylabel(y_column)\n",
+ "ax1.set_title('Диаграмма рассеяния')\n",
+ "ax1.grid(True, alpha=0.3)\n",
+ "plt.tight_layout()\n",
+ "plt.show()"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "a58999a9",
+ "metadata": {},
+ "source": [
+ "## 3. Разбить данные на обучающую и тестовую выборки."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 62,
+ "id": "7749313c",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "X = df[[x_column]]\n",
+ "y = df[y_column]\n",
+ "\n",
+ "X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "76690306",
+ "metadata": {},
+ "source": [
+ "## 4. Выбрать модель регрессии."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 63,
+ "id": "448a82c9",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "model = LinearRegression()"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "1d5b315f",
+ "metadata": {},
+ "source": [
+ "## 5. Обучить модель регрессии на обучающих данных."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 64,
+ "id": "68b0980a",
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "LinearRegression() In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook. On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org. \n",
+ "
\n",
+ "
\n",
+ " Parameters \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " fit_intercept \n",
+ " True \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ " copy_X \n",
+ " True \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ " tol \n",
+ " 1e-06 \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ " n_jobs \n",
+ " None \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ " positive \n",
+ " False \n",
+ " \n",
+ " \n",
+ " \n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
"
+ ],
+ "text/plain": [
+ "LinearRegression()"
+ ]
+ },
+ "execution_count": 64,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "model.fit(X_train, y_train)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "bc83d8ea",
+ "metadata": {},
+ "source": [
+ "## 6. Визуализируем полученный график"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 65,
+ "id": "fa224f9e",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "y_train_pred = model.predict(X_train)\n",
+ "y_test_pred = model.predict(X_test)\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 66,
+ "id": "e6dc3ac4",
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAk0AAAGwCAYAAAC0HlECAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjYsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvq6yFwwAAAAlwSFlzAAAPYQAAD2EBqD+naQAAc2hJREFUeJzt3XtcVHX+P/DXMAqCCgoiIINCZmpqqV0Mi9KVDdu+LoqXIrftftm0xDbXXK9sma6Wl26m9S3br3kXtXW7mUFa+lPzbrpmqYkIeAW8oTJ8fn+czjgznDNzznDmBq/n4zEP5MxnznzOgJ63n8/78/6YhBACRERERORSiL87QERERBQMGDQRERERacCgiYiIiEgDBk1EREREGjBoIiIiItKAQRMRERGRBgyaiIiIiDRo4O8O1BXV1dU4fvw4mjZtCpPJ5O/uEBERkQZCCJw7dw6tWrVCSIjrsSQGTQY5fvw4kpKS/N0NIiIi8kBhYSEsFovLNgyaDNK0aVMA0oceGRnp594QERGRFhUVFUhKSrLdx11h0GQQeUouMjKSQRMREVGQ0ZJaw0RwIiIiIg0YNBERERFpwKCJiIiISAPmNPmY1WrF1atX/d0NononNDTU7XJiIiJXGDT5iBACJSUlKCsr83dXiOqlkJAQpKSkIDQ01N9dIaIgxaDJR+SAqWXLloiIiGABTCIfkovPFhcXo3Xr1vz7R0QeYdDkA1ar1RYwxcTE+Ls7RPVSbGwsjh8/jqqqKjRs2NDf3SGiIMQJfh+Qc5giIiL83BOi+kuelrNarX7uCREFKwZNPsQpASL/4d8/IqotTs8RERFRQLNagQ0bgOJiICEBSEsDzGbf94NBExEREQWsvDxgxAjg2LFrxywWYPZsICvLt33h9BwREREFHKsV+Mc/gIEDHQMmACgqAgYNkgIqX2LQFGSsVqCgAFi0SPrq7ZzWRx99FP37969xvKCgACaTiXWniIhIM633sLw8IDkZmDhR+XkhpK85Od6/D9pj0BRE5F+i3r2Bhx6SviYn+z7SJiIi0kvrPWzZMuXRJWdCAIWFUq6TrzBoChJ5edJQZKAMUTo7ffo0srOzkZiYiIiICHTp0gWLFi1yaGMymbBq1Srb9/Pnz0ezZs1s3//yyy/IzMxEXFwcmjRpgttuuw1ff/11jfeaNGkSTCaTw8N+NCw5ORmzZs1S7WuvXr2Qk5NT45xdu3a1fa82wgYAs2bNQnJyssOxDz74AB07dkSjRo3QoUMHvPvuu6rvL5NH6+wf9p8HAIwePRo33HADIiIicN1112H8+PEO2/A499v+vPIooPPnDABHjhyByWTCzp07FV9jr6ysDCaTCQUFBbZje/fuxX333YcmTZogLi4ODz/8ME6dOuX2momoftJ6D1u+HMjO1nfu4mJj+qgFg6YgYLVKSXDycKQ9fw1ROqusrMQtt9yC//znP9i7dy+efvppPPzww9iyZYvmc5w/fx5/+MMfsG7dOuzYsQN9+/ZFv379cPToUYd2Qgh06tQJxcXFKC4uxpAhQ4y+HF0++eQTTJgwAZMnT8b+/fvx2muvYfz48fj44481vf7AgQMoLi5WDPSaNm2K+fPnY9++fZg9ezbef/99zJw50+Ar0KesrAy/+93v0K1bN/zwww/44osvUFpa6vefAxEFJnf3MCGk55cvBwYP1n8vS0gwpp9a+DVoWr9+Pfr164dWrVrVGIW4evUqRo8ejS5duqBx48Zo1aoV/vznP+P48eMO5zhz5gyGDh2KyMhINGvWDE888QTOnz/v0Gb37t1IS0tDo0aNkJSUhGnTptXoy7Jly9ChQwc0atQIXbp0wWeffeaVa/bEhg2uhym9PUS5Zs0aNGnSxOFx3333ObRJTEzESy+9hK5du+K6667D888/j759+2Lp0qW2No0aNcKlS5dU3+fmm2/GM888g86dO6Ndu3Z45ZVX0LZtW3z66acO7a5evYrw8HDEx8cjPj4e4eHhxl6wThMnTsQbb7yBrKwspKSkICsrCyNHjsTcuXNdvu7y5csApM8uPj4eUVFRNdqMGzcOPXv2RHJyMvr164eXXnrJ4TP1h7fffhvdunXDa6+9hg4dOqBbt2748MMPkZ+fj59++smvfSOiwOPuHgZIzz/xhL7zmkxAUpJUfsBX/Bo0XbhwATfffDPeeeedGs9dvHgR27dvx/jx47F9+3bk5eXhwIED+OMf/+jQbujQofjxxx+xdu1arFmzBuvXr8fTTz9te76iogL33nsv2rRpg23btmH69OmYNGkS5s2bZ2uzceNGZGdn44knnsCOHTvQv39/9O/fH3v37vXexeugdejRW0OUvXv3xs6dOx0eH3zwgUMbq9WKV155BV26dEF0dDSaNGmCL7/80mGUqHPnzli+fLnD9JK98+fP46WXXkLHjh3RrFkzNGnSBPv3768x0lRRUYHGjRu77PPo0aPRpEkTtGzZEr169cL333/v8Py7777rEAS+9tprNc4hB4vNmzfHzTffjA8//LBGmwsXLuCXX37BE0884XC+V199Fb/88ovLPp4+fRoNGjRwWSl+yZIluPPOOxEfH48mTZpg3LhxNT6PPXv2uAxoAaC8vNyhTadOnRTfz2KxoGnTpkhJScFTTz2F8vLyGm127dqF/Px8h/N16NABANxeMxHVP1rvTRUV+s89a5Zv6zX5tU7Tfffdp/gPPABERUVh7dq1Dsfefvtt3H777Th69Chat26N/fv344svvsDWrVtx6623AgDeeust/OEPf8Drr7+OVq1a4ZNPPsGVK1fw4YcfIjQ0FJ06dcLOnTsxY8YMW3A1e/Zs9O3bF6NGjQIAvPLKK1i7di3efvttvPfee178BLTROvTorSHKxo0b4/rrr3c4dszpvw3Tp0/H7NmzMWvWLNvoYE5ODq5cuWJrM2vWLPTv3x+NGzdGaGgoqqqq0KhRI9vzL730EtauXYvXX38d119/PcLDwzFo0CCHcwDA8ePH0apVK5d9HjVqFB599FFcuHAB06dPR79+/VBSUmLbSmPo0KEYO3asrf2bb76J9evXO5yjd+/emDNnDq5evYrPPvsMTz75JLp06eLQRh7VfP/999GjRw+H58xu/iYfOnQIbdq0Ua1UvWnTJgwdOhS5ubnIyMhAVFQUFi9ejDfeeMOhXfv27R1G4zZv3ow//elPDm2aNm2K7du3274vKipCr169arznhg0b0LRpUxw5cgRPPvkkxo4di1dffbXGNffr1w///Oc/a7w+wZfj5EQUFLzxz4K/6jQFVXHL8vJyh2TZTZs2oVmzZraACQDS09MREhKCzZs3Y8CAAdi0aRPuvvtu280SADIyMvDPf/4TZ8+eRfPmzbFp0ya8+OKLDu+VkZHhMF3o7PLly7bpFUAa/fCWtDTpF6SoSHlO2GSSnvflEKWz77//HpmZmbabdXV1NX766SfceOONtjZ33nknSkpKcPToUVitVuTl5TmM8Hz//fd49NFHMWDAAADSzfnIkSMO71NdXY3t27dj2LBhLvvTokULW6A3ZswYfPLJJzh69KjtWFRUlEMgGB0dXeMc9sFix44dMXXqVOzatcuhTVxcHFq1aoVDhw5h6NChLvvk7Ntvv0Waix/axo0b0aZNG4fg7tdff63RLjQ01OFanANaAAgJCXFo06CB8l/9lJQUNGvWDNdffz0GDx6MTZs21WjTvXt3rFixAsnJyarnISKSyfcwd1N0WuXmAmPH+qcieNAkgldWVmL06NHIzs5GZGQkAKCkpAQtW7Z0aNegQQNER0ejpKTE1iYuLs6hjfy9uzby80qmTJmCqKgo2yMpKal2F+iC2SxF1IAUINmTv/f1EKWzdu3aYe3atdi4cSP279+PZ555BqWlpTXamc1mpKSk4Prrr6/xs2vXrh3y8vKwc+dO7Nq1Cw899BCqq6ttzxcWFuKpp57CiRMn8MADD7jsT1VVFSorK3H69Gl8+OGHHv2MqqurUVlZiXPnzmHJkiU4ffo0OnfuXKNdbm4upkyZgjfffBM//fQT9uzZg48++ggzZsxQPO+VK1ewYsUKfPPNN8jMzERJSQlKSkpQXl4OIQROnjxp+zyOHj2KxYsX45dffsGbb76JlStX6roGvS5fvozKykr897//xeeff654vcOGDcOZM2eQnZ2NrVu34pdffsGXX36Jxx57jJvhElEN9vew2p5n6VJgwgT/3e+CImi6evUqhgwZAiEE5syZ4+/uAJBGL8rLy22PwsJCr75fVpa0siAx0fG4xSId9/UQpbNx48ahe/fuyMjIQK9evRAfH6+6ZF/NjBkz0Lx5c/Ts2RP9+vVDRkYGunfvbnt+9uzZ+Pnnn/HVV1+hdevWLs81atQohIeHIykpCRs2bMDKlSsRFhamqz///ve/ER4ejujoaIwbNw5vvfUW7rjjjhrtnnzySXzwwQf46KOP0KVLF9xzzz2YP38+UlJSFM+7ceNGDBo0CNXV1RgwYAASEhKQkJCAnJwcVFRU4LbbbgMA/PGPf8TIkSMxfPhwdO3aFRs3bsT48eN1XYNecmJ9Wloabr75ZkyZMqVGm1atWuH777+H1WrFvffeiy5duiAnJwfNmjVDSEhQ/JNCRD6WlSWNENXG4sXS6jq/EgECgFi5cmWN41euXBH9+/cXN910kzh16pTDc//7v/8rmjVr5nDs6tWrwmw2i7y8PCGEEA8//LDIzMx0aPPNN98IAOLMmTNCCCGSkpLEzJkzHdpMmDBB3HTTTZr7X15eLgCI8vLyGs9dunRJ7Nu3T1y6dEnz+dRUVQmRny/EwoXS16qqWp+SfCw/P1/cc889is+dPXtWtGnTxqf9qS+M/HtIRPpVVQlhschFBmo+TCYhYmKESEx0PJ6UJMSKFd7rl6v7t7OATkiQR5gOHjyI/Px8xMTEODyfmpqKsrIybNu2DbfccgsA4JtvvkF1dbUtKTc1NRVjx47F1atX0bBhQwDA2rVr0b59ezRv3tzWZt26dQ4FD9euXYvU1FQfXKU+ZjOgkL9LQSQ0NFQxhwqQco9iY2N93CMiIu+Tp+kGDZK+t8/RlVNNXngBaNsWOHkSiI2VZlfS0vybfuLAe7Gbe+fOnRM7duwQO3bsEADEjBkzxI4dO8Svv/4qrly5Iv74xz8Ki8Uidu7cKYqLi22Py5cv287Rt29f0a1bN7F582bx3XffiXbt2ons7Gzb82VlZSIuLk48/PDDYu/evWLx4sUiIiJCzJ0719bm+++/Fw0aNBCvv/662L9/v5g4caJo2LCh2LNnj+Zr8dVIExF5hn8PiQLDihU1R5xiYqSH/TGLxbsjTDI9I01+DZry8/MFgBqPRx55RBw+fFjxOQAiPz/fdo7Tp0+L7Oxs0aRJExEZGSkee+wxce7cOYf32bVrl7jrrrtEWFiYSExMFFOnTq3Rl6VLl4obbrhBhIaGik6dOon//Oc/uq6FQRNRYOPfQ6LAYZ9qkpurPl1nMnk/cNITNJmEUFrETnpVVFQgKioK5eXlttV9ssrKShw+fBgpKSkOdYmIyHf495Ao8Fit0qa9auUI5JI6hw97b4rO1f3bGZe6EBERkVdZrUBBAbBokfRVrk7i723C9AroRHAiIiIKbnl50oa89sGRXNHbrka0S97aJkwvjjQRERGRV+TlSavlnEeTioqk4wcPajtPoOzQxKCJiIiIDGe1SiNMSpnT8rH335fKCqhswQmTCUhK8u82YfYYNBEREZHhtOQrHTsGPP209H2gbhNmj0ETufToo4/CZDKpPsrKyvzdRSIiCkBa85DatQvsbcLsMRE82FitUvheXCxN8vqgVGrfvn3x0UcfORzbuHEjBg4c6NX3JSKi4OW0J7uqhARpp4vMTJ/f3nTjSFMwycuTClr07g089JD0NTlZOu5FYWFhiI+Pd3g4bwMyf/58NGvWDKtWrUK7du3QqFEjZGRk1NjIePXq1ejevTsaNWqE6667Drm5uaiqqnJoM2nSpBojWs6b/37//ffo1asXIiIi0Lx5c2RkZODs2bMAgF69ejlsifPBBx+gWbNm2L59OwDAarXiiSeeQEpKCsLDw9G+fXvMdtqC++WXX0arVq0QGhqKxMREjB49GtXV1Zpf/+ijj9bos/wZ2V9n165dHdoUFBQ4jOA5v8bezp07YTKZcOTIEdux7777DmlpabbNil944QVcuHBB8fX2lEYRd+7caXv+//7v/3DrrbeiadOmiI+Px0MPPYQTJ06o9tv+vKtWrQIAHDlypMZ5ASA5ORmzZs1SfI2zrl27YtKkSbbvy8rK8OSTTyI2NhaRkZH43e9+h127drm9XiLyrrw84JFHXLdxzleStwnLzpa+BlrABDBoCh7uliB4OXDS4uLFi5g8eTL+9a9/4fvvv0dZWRkefPBB2/MbNmzAn//8Z4wYMQL79u3D3LlzMX/+fEyePLnGuTp16oTi4mIUFxdjyJAhDs/t3LkTffr0wY033ohNmzbhu+++Q79+/WCVC3/YWbp0KUaOHIlPP/0U3bt3BwBUV1fDYrFg2bJl2LdvHyZMmIC///3vWLp0qe119957L9asWYOff/4ZH3zwAebNm4cFCxZofr0//PLLL+jbty8GDhyI3bt3Y8mSJfjuu+8wfPhwTa//6KOPUFxcjC1bttR47urVq3jllVewa9curFq1CkeOHMGjjz5q8BXoN3jwYJw4cQKff/45tm3bhu7du6NPnz44c+aMv7tGVG/Jt6uiIvU2gZivpAWn54KBuyUIJhOQkyONbfrxt+/q1at4++23bZslf/zxx+jYsSO2bNmC22+/Hbm5uXj55ZfxyG///bjuuuvwyiuv4G9/+xsmTpxoO8/ly5cRHh6O+Ph4AEB4eDgu2xXzmDZtGm699Va8++67tmOdOnWq0Z/PP/8cjz32GJYtW4a7777bdrxhw4bIzc21fZ+SkoJNmzZh6dKltgDtd7/7ne15q9WK8PBwW1Cm5fX+MGXKFAwdOtQ2ytauXTu8+eabuOeeezBnzhzVKtjyZxsbG4v4+HhUVlbWaPP444/b/nzdddfhzTffxG233Ybz58+jSZMmxl+MBt999x22bNmCEydOICwsDADw+uuvY9WqVVi+fDmelrNLichnXN2u7CUmSnWaAilfSQsGTcFAT8nUXr181i1nDRo0wG233Wb7vkOHDmjWrBn279+P22+/Hbt27cL333/vMLJktVpRWVmJixcvIiIiAgBw+vRpl6Xsd+7cicGDB7vsy5YtWzBv3jw0adLEFsTZe+edd/Dhhx/i6NGjuHTpEq5cuVJjquy1117Dq6++ikuXLmH48OH485//rOv1a9ascQgoqqqqagQue/bscWijNFpWXl6OJk2aICQkBHFxccjMzMSUKVNqtNu1axd2796NTz75xHZMCIHq6mocPnwYHTt2VPysTp8+DQAuP/Nt27Zh0qRJ2LVrF86ePWubqjx69ChuvPFGWzuLxaJ6DlnPnj0REnJtkPvixYs12mRnZ8NsNqNp06bo3r07pk+f7vA+8vWeP38eMTExDscvXbqEX375xW0/iMh47m5XsvnzgT59vN4dwzFoCgZalyAESslUFefPn0dubi6yFP5rYR9MHDp0CCkpKarnCQ8Pd/temzZtwpw5c7B8+XIMHz4cixYtsj23ePFivPTSS3jjjTeQmpqKpk2bYvr06di8ebPDOZ599llkZWVh27ZtyMnJQVZWFnr37q359b1798acOXNs3+fl5eG1115zaNO+fXt8+umntu83b96MP/3pTw5tmjZtiu3bt0MIgX379uGRRx5BfHw80tPTHdqdP38ezzzzDF544YUan0fr1q1VP6tDhw4BgOpnfuHCBWRkZCAjIwOffPIJYmNjcfToUWRkZODKlSsObTds2ICmTZvavm/Xrl2N8y1ZssQhgOulEOjPnDkT6enpKCsrw9///ncMGTIEe/furXG9CQkJKCgoqPF6tTwwIvIurbchOSXSD2ubaoVBUzDQWgrVzyVTq6qq8MMPP+D2228HABw4cABlZWW2G2T37t1x4MABXH/99arnqKysxJYtW/Dwww+rtrnpppuwbt06hykyZw8//DCeffZZ3HfffejcuTNWrlyJAQMGAJCSyHv27InnnnvO1l5pZCI6OhrR0dHo0KEDli9fjhUrVqB3796aX9+4cWOHa22psJQkNDTUoc0xhf+ihYSE2Nq0a9cOv//977Fz584aQVP37t2xb98+l5+vkm+//RbJycmqo0T//e9/cfr0aUydOhVJSUkAgB9++EGxbUpKituAJSkpyaGPDRrU/GcoPj7e1mbEiBHo168frl696tCme/fuKCkpQYMGDZCcnOzyPYnIN/RU+Ha1vUqgTtsxETwYpKVJv0kBXjK1YcOGeP7557F582Zs27YNjz76KO644w5bEDVhwgT861//Qm5uLn788Ufs378fixcvxrhx4wBIIwcTJkwAANx1110oKSlBSUkJLl26hMuXL6O8vBwAMGbMGGzduhXPPfccdu/ejf/+97+YM2cOTp06ZeuLvLqvTZs2mD59Ov7yl7/YpqHatWuHH374AV9++SV++uknjB8/Hlu3bnW4lnfffRc//vgjjhw5ggULFmDt2rXo1q2b5tcbrbKyEpcuXcK2bdvw3XffoXPnzjXajB49Ghs3bsTw4cOxc+dOHDx4EKtXr3aZCL5z50688847GDx4sO3zPnnyJABp2s5qtaJ169YIDQ3FW2+9hUOHDuHTTz/FK6+84rVrBaT8uMrKSpSUlGDBggW44YYb0LBhQ4c26enpSE1NRf/+/fHVV1/hyJEj2LhxI8aOHasa1BGR9+TlAXaLWxXJt6tTpwJ+bZMiBk3BwGyWQm8goEumRkREYPTo0XjooYdw5513okmTJliyZInt+YyMDKxZswZfffUVbrvtNtxxxx2YOXMm2rRpA0BK4p0+fTrOnTuH66+/HgkJCUhISMDSpUvxxRdfYMSIEQCAG264AV999RV27dqF22+/HampqVi9erXiiAUAPPPMM+jcuTOef/552/dZWVl44IEH0KNHD5w+fdph1AgA/vOf/6BXr17o0KEDcnNz8fe//92WDK3l9UYqLy9HeHg4GjdujP/5n//BgAED8OKLL9Zod9NNN+Hbb7/FTz/9hLS0NHTr1g0TJkxAq1atVM/drVs3FBcXY/r06bbPWw5y09PTUVhYiNjYWMyfPx/Lli3DjTfeiKlTp+L111/32vUCwJAhQxAeHo4bbrgBxcXFDr9HMpPJhM8++wx33303HnvsMdxwww148MEH8euvvyIuLs6r/SMiR1oTwIUA3ngDGDnS9fYqOTnSOQONSQh3l0haVFRUICoqCuXl5TUSaisrK3H48GGkpKSormDSRGksMylJCpj8PJY5f/585OTk1KpCuFx/Z5LCf1VWrVqFVatWYf78+R6fn2oymUxQ+yega9euWLVqVZ2Z+jLs7yER1VBQIJUOdCc3F7j7bm1t8/N9s7bJ1f3bGXOagklWVnCUTPWQq6XrjRo1QlRUlA97Uz+4GpFp0aIFzHXkd4uIvEvPlinBvLaJQVOwkUum1kEvvfSS6nN9+/ZF3759fdib+qGkpET1ua+//tqHPSGiYGW1AqWl2trqWa/k57VNipjTRIZ49NFHuXkvEVE9I+/uNXKk63b265WCZG2TIgZNREREpJva7l7OnNcrBcnaJkUMmnyIOfdE/sO/f0TG0bpaDpBGlZYvd1yvlJUlHUtMdN82kDCnyQfk+jIXL17UVM2aiIwnVy9ncjtR7WndLmXmTOD555VHjYJxbRODJh8wm81o1qwZTvxWNz4iIgImtclcIjJcdXU1Tp48iYiICNV6XkSkndaVbXFxroOgYFvbxH89fCQ+Ph4AbIETEflWSEgIWrduzf+wEHnAeY84hV2hFAXiCrjaYNDkIyaTCQkJCWjZsmWNPbSIyPtCQ0MREsI0TiK91PaIi4kBzpxRzmsymaQ2gbgCrjYYNPmY2WxmTgUREQUc59GktDRg9WpphZxzYFRUdO2YyeT4fKCvgKsNBk1ERET1nNJoUmIiUFmpvkecyQRERwONGklBlMxiCYjdvbyCQRMREVE9JtdbUhpNckUI4PRp4OuvpRGlYFkBVxsMmoiIiOopPfWW1Jw4AWRnG9enQMasSCIionpKa70lV+raCjlXONJERERUT2mtt6TEeYWcUiJ5XZumY9BERERUT3k6SuS8Qk6tLMHs2XUrIZzTc0RERPVUWpoU3KjVfDWZpHpMFovjcfs94tQ27i0qko7n5Xmn7/5gEtzF0hAVFRWIiopCeXk5IiMj/d0dIiIiVfZTaQcPAhMnqtdbWr782h5xRUXAyZNAbKxUkqBnT6BtW/W8KHkK7/DhwJ2q03P/5vQcERFRPaI0lRYTI309ffraMed6S2fOAC+/7Pi6pk2Bc+fU30sIoLBQCriCaY85NQyaiIiI6gm1mkxnzkhfc3OBdu1qJnKrvc5VwGSvNgnngYQ5TURERPWAq5pM8rEPPgAGDpT+vHQpUFAAXLlS+1pOdaUsAUeaiIiI6gF3NZnkqbTERODUqWvHY2OlPCZP1LWNeznSREREVA9onSKzD5iA2gVMQN3auJdBExERUT3g6yky+7IEdQWn54iIiOoBuSZTUVHt8pPcGTcO6NOnblYE50gTERFRPWA2SxW6AfVilrVhMgFJScCkSVJ5gboWMAEMmoiIiOqNrCxpyiwx0fF4bKy216vVfqyL+UtKGDQRERHVI1lZwJEjQH4+sHCh9PXYMdfbqQDS8ydPSrWcoqNrPlfX8peUcBsVg3AbFSIiCmZyAUtAOecpJgaYN08KjOy3YXEuhBls9Ny/GTQZhEETEREFu7w84OmnHbdTkdnvRVeXRpT03L/9Oj23fv169OvXD61atYLJZMKqVascnhdCYMKECUhISEB4eDjS09Nx8OBBhzZnzpzB0KFDERkZiWbNmuGJJ57A+fPnHdrs3r0baWlpaNSoEZKSkjBt2rQafVm2bBk6dOiARo0aoUuXLvjss88Mv14iIqJAlpkJhIcrPycPseTkSCNN9ZFfg6YLFy7g5ptvxjvvvKP4/LRp0/Dmm2/ivffew+bNm9G4cWNkZGSgsrLS1mbo0KH48ccfsXbtWqxZswbr16/H008/bXu+oqIC9957L9q0aYNt27Zh+vTpmDRpEubNm2drs3HjRmRnZ+OJJ57Ajh070L9/f/Tv3x979+713sUTEREFGK1Vwzds8F2fAooIEADEypUrbd9XV1eL+Ph4MX36dNuxsrIyERYWJhYtWiSEEGLfvn0CgNi6dautzeeffy5MJpMoKioSQgjx7rvviubNm4vLly/b2owePVq0b9/e9v2QIUPE/fff79CfHj16iGeeeUa1v5WVlaK8vNz2KCwsFABEeXm5Zx8AERGRny1cKIQUGrl+LFzo754ap7y8XPP9O2BXzx0+fBglJSVIT0+3HYuKikKPHj2wadMmAMCmTZvQrFkz3HrrrbY26enpCAkJwebNm21t7r77boSGhtraZGRk4MCBAzh79qytjf37yG3k91EyZcoUREVF2R5JSUm1v2giIiI/0lo1vK5swKtXwAZNJSUlAIC4uDiH43FxcbbnSkpK0LJlS4fnGzRogOjoaIc2Suewfw+1NvLzSsaMGYPy8nLbo7CwUO8lEhERBRS5arha6QG5gGVd2YBXr4ANmgJdWFgYIiMjHR5ERETBzFXV8PpSwNKVgA2a4uPjAQClpaUOx0tLS23PxcfH48SJEw7PV1VV4cyZMw5tlM5h/x5qbeTniYiI6gu1quH1pYClKwEbNKWkpCA+Ph7r1q2zHauoqMDmzZuRmpoKAEhNTUVZWRm2bdtma/PNN9+guroaPXr0sLVZv349rl69amuzdu1atG/fHs2bN7e1sX8fuY38PkRERMHCagUKCoBFi6SvnpQHUKoafvhw/Q6YAPh39dy5c+fEjh07xI4dOwQAMWPGDLFjxw7x66+/CiGEmDp1qmjWrJlYvXq12L17t8jMzBQpKSni0qVLtnP07dtXdOvWTWzevFl89913ol27diI7O9v2fFlZmYiLixMPP/yw2Lt3r1i8eLGIiIgQc+fOtbX5/vvvRYMGDcTrr78u9u/fLyZOnCgaNmwo9uzZo/la9GTfExERecOKFUJYLI4r3SwW6Tgp03P/9mvQlJ+fLwDUeDzyyCNCCKnswPjx40VcXJwICwsTffr0EQcOHHA4x+nTp0V2drZo0qSJiIyMFI899pg4d+6cQ5tdu3aJu+66S4SFhYnExEQxderUGn1ZunSpuOGGG0RoaKjo1KmT+M9//qPrWhg0ERGRP61YIYTJVLM8gMkkPRg4KdNz/+Y2KgbhNipEROQvViuQnKxemNJkknKSDh+umcRdl/aR80TQbKNCREREtedpJe+8PCnY6t0beOgh6WtysnScamLQREREFOSKi/W3y8sDBg2qGWwVFUnHGTjVxKCJiIgoyOmt5G21AiNGXNuE1x435lXHoImIiCjI6a3kzY15PcOgiYiIKMjpreTtyXQeMWgiIiKqE/RU8ubGvJ5hyQGDsOQAEREFAi0lBOQSBUVFynlNrkoU1DV67t8NfNQnIiIi8gGzGejVy32b2bOlVXImk2PgxI151XF6joiIqB7ixrz6caSJiIionsrKAjIz63dFcD0YNBEREdVjWqbzSMLpOSIiIiINGDQRERERacCgiYiIiEgD5jQREREFGS21mMh4DJqIiIiCSF6etNmu/d5xFotUd4llAryL03NERERBIi9PKkjpvNluUZF0PC/PP/2qLxg0ERERBQGrVRphUtr2RD6WkyO1I+9g0ERERBQENmyoOcJkTwigsFBqR97BoImIiCgIFBcb2470YyI4ERFREEhIqH07rrqrHY40ERERBYG0NGmVnMmk/LzJBCQlSe2U5OUByclA797AQw9JX5OTmTyuB4MmIiKiIGA2S2UFgJqBk/z9rFnKI0dcdWcMBk1ERERBIisLWL4cSEx0PG6xSMed6zRZrcC6dcBTT3HVnRFMQih9jKRXRUUFoqKiUF5ejsjISH93h4iI6jAtuUlKRTBdyc8HevUyvKsBT8/9m4ngREREQcZsdh3gyNNxeoZFuOrOPU7PERER1SGuimC6onV1Xn3GkSYiIqI6xF0RTGcmk5QTpbbqjq7hSBMREVEdoneaTQj1VXfkiCNNREREdYjeabbc3Jqr7gCwEqYCjjQRERHVIXIRTK3atVM4yEqYihg0ERER1SH2RTC1qDEyxUqYqhg0ERER1TFZWcCyZa5n0xS3XXG19I6VMBk0ERER1UWDBgGLFik/p7rtiruld0IAhYVSu3qIQRMREVEdNXgwsGJFzRwntW1XNC+9q6eVMLl6joiIqA7LygIyMzUuhNO69K6eVsJk0ERERBQAPF3hr+V17rZdsZGX3hUVKec11fNKmJyeIyIi8jNPV/gbXhnAfumdnPgkU02Eqj8YNBEREfmRlhX+VitQUCAldhcUSN97rTJAVpaU8JSY6HhcNRGq/jAJoXdLP1JSUVGBqKgolJeXIzIy0t/dISKiIGC1SiNDagvWTCYgOhpo1EgKhmSJiUBlJXD6tPrrLBbg8OFaDArVk4rgeu7fzGkiIiLyEy0r/JUCI/sASu11cmUATblMSjQnQtUfnJ4jIiLyE2+v3K+nlQG8hkETERGRn3h75X49rQzgNQyaiIiI/ERe4e+8UM0IZjNw8qTx563PGDQRERH5id7NdWUhsOIeFOBBLMI9KEAIau4FZ7UCDzxQr/fXNRyDJiIiIj/KygKWLNG+MG0A8nAEyShAbyzCQyhAbxxBMgZAOTqqx/vrGi6ggyar1Yrx48cjJSUF4eHhaNu2LV555RXYV0kQQmDChAlISEhAeHg40tPTcfDgQYfznDlzBkOHDkVkZCSaNWuGJ554AufPn3dos3v3bqSlpaFRo0ZISkrCtGnTfHKNREREsbHaApsByMNyDEIiHJfcJaIIyzGoRuBUz/fXNVxAB03//Oc/MWfOHLz99tvYv38//vnPf2LatGl46623bG2mTZuGN998E++99x42b96Mxo0bIyMjA5WVlbY2Q4cOxY8//oi1a9dizZo1WL9+PZ5++mnb8xUVFbj33nvRpk0bbNu2DdOnT8ekSZMwb948n14vERHVT1pWuYXAitkYAUDUuHmHQBpMmIUcxak6rqIziAhg999/v3j88ccdjmVlZYmhQ4cKIYSorq4W8fHxYvr06bbny8rKRFhYmFi0aJEQQoh9+/YJAGLr1q22Np9//rkwmUyiqKhICCHEu+++K5o3by4uX75sazN69GjRvn171b5VVlaK8vJy26OwsFAAEOXl5bW/cCIiqlfy84WQxoXUH/dAQyNA3IP8Gofz8/18gQGsvLxc8/07oEeaevbsiXXr1uGnn34CAOzatQvfffcd7rvvPgDA4cOHUVJSgvT0dNtroqKi0KNHD2zatAkAsGnTJjRr1gy33nqrrU16ejpCQkKwefNmW5u7774boaGhtjYZGRk4cOAAzp49q9i3KVOmICoqyvZISkoy9uKJiKjOUNoGxZ79Kjq1JO8EaBsusm9nMgFJSfV2f13DBXRF8JdffhkVFRXo0KEDzGYzrFYrJk+ejKFDhwIASkpKAABxcXEOr4uLi7M9V1JSgpYtWzo836BBA0RHRzu0SUlJqXEO+bnmzZvX6NuYMWPw4osv2r6vqKhg4ERERDXk5QEjRjhW/rZYpFVz8jZu8iq6TwbmYRZGIMkuZ6kQFozAbBRDW9EluR331zVeQI80LV26FJ988gkWLlyI7du34+OPP8brr7+Ojz/+2N9dQ1hYGCIjIx0eRERE9vRsqpvlJsm7BU7huNkCAeWiTtUw4SiSsAHSsBL31zVeQAdNo0aNwssvv4wHH3wQXbp0wcMPP4yRI0diypQpAID4+HgAQGlpqcPrSktLbc/Fx8fjxIkTDs9XVVXhzJkzDm2UzmH/HkRERHpYrdIIk92Cbxv5mK0cwG+NTSpJ3iYAC2JfRNwnM6QRJOdqmCYTTCagIncWFiw0Iz9f2qyXAZOxAjpounjxIkJCHLtoNptRXV0NAEhJSUF8fDzWrVtne76iogKbN29GamoqACA1NRVlZWXYtm2brc0333yD6upq9OjRw9Zm/fr1uHr1qq3N2rVr0b59e8WpOSIiIne0bMZrKwfgprEJAo1OFsIcFysNHyUmOjawWGBavhydJ2QhO1vaZ5dTcsYL6Jymfv36YfLkyWjdujU6deqEHTt2YMaMGXj88ccBACaTCTk5OXj11VfRrl07pKSkYPz48WjVqhX69+8PAOjYsSP69u2Lp556Cu+99x6uXr2K4cOH48EHH0SrVq0AAA899BByc3PxxBNPYPTo0di7dy9mz56NmTNn+uvSiYgoyGld5i+109E4OxvIzJQCreJiaYO5tDRGST4Q0EHTW2+9hfHjx+O5557DiRMn0KpVKzzzzDOYMGGCrc3f/vY3XLhwAU8//TTKyspw11134YsvvkCjRo1sbT755BMMHz4cffr0QUhICAYOHIg333zT9nxUVBS++uorDBs2DLfccgtatGiBCRMmONRyIiIi0kPrZrlSO12NpQCpVy8PekW1YRJCabaV9KqoqEBUVBTKy8uZFE5ERLBageRkKelb6U5rMknJ2ocPA2boacwRJSPpuX8HdE4TERFRsLLfjFchbxuAXTkAXY3JXxg0EREReUlWlmreds1yALoakz9wes4gnJ4jIiI1VquOvG1djam29Ny/AzoRnIiIqC7QlbfNJO+AxaCJiIjIxziYFJwYNBEREdWCcwDUsyewcaN6QKRlLzoKTAyaiIiIPKQUAJnNv22N8hv7gEjei845m1jei4753oGNieAGYSI4EVEdpjCflrfarBgAqZk4Efjf/1XfLYWlmPyDieBERERGURhOEhYLPr80G0JoHxbKzXX9vP1edMwDD0ys00RERKRGnk9zHh46VoS5pwdhAPIMf0ute9aR7zFoIiIiUmK1SiNMCvNvJkjHZiEHIbDWeL42tO5ZR77HoImIiEjJhg3qCUgAQiDQGoVIwwZD3s5kApKSpNV2FJiY00RERPWbWtEkjfNkCaj9fBq3lwsODJqIiKj+clU0SeM8WQlqP59msUgBE8sNBDYGTUREVD+5K5q0ZIkUzRQVKdcVMJlwMdqCQ43SgKJrh53rNCm8DImJwPz5wIkTrAgeTJjTRERE9Y+LJG/bsb/+FZg5U/qzPH8m++37iHmzcOhXM/LzgYULgfx84OJF9fIC8mlmzwb69AGys6XyAgyYggODJiIiqn/cJHnbiia1aCGV6U5MdHj6QrQFeycthzUzy7a/rhwAhYYCEyYAK1ZIA1X2LBZW/Q5mDJqIiKj+0VoMqbhYinCOHMH63HwMj16IXshH5OnD6DIxC8nJ0iyfkt9e5jAKdfgwA6ZgxpwmIiKqf7QWQ/qtXd5qMwZN6qV7zzh5FIrqBo40ERFR/ZOWJs2VOecqyeyKJrlLfxICePZZ4MoV73aZ/I9BExER1T9ms5SNDagmectFk9ylPwHAyZNS2pPaVB3VDQyaiIiofsrKUkzyds7W1pr+dOqUNFXnKnCyWoGCAmDRIumrq9IEFHhMQigNOJJeFRUViIqKQnl5OSIjI/3dHSIi0kqtIvhvCgqA3r21ncpkkmKuw4drlhFwVUeTyeH+o+f+zaDJIAyaiIjqBucYqmdPoG1b9RqXSvLzHRPA1epoyjOBLEPgP3ru35yeIyIi+k1eHpCcLI0sPfSQ9LVtW6kGkx72U3pa6mjm5HCqLhgwaCIiIsK10SDnpO+iIuD114GXXgJiY7Wdy76igdY6mhs26O8z+RaDJiIiqve0jAYtXgz8+qtUJFyNXaUCG62J5CtWMDk80DFoIiKiwOPjZWZaR4M2bwbmzpWCI6VKBUIAAwdK55O7rLWO5ttvS9OBrqqMk38xaCIiosCilFjk5UhC764qSpUKQn67o86a5dhld3U0nclVxhk4BR4GTUREFBisVuAf/5CGapQSi7wYSejcVcVhX7mcHOmY82CY3OXVq9XraCphcnjgYskBg7DkABGRh6xWYPJkaYjm7Fn1dq6KIBnQheRk9bICam8tv05tas/+datX16zT5I5z6QIyHksOEBFRcMjLA+LigIkTXQdMgFeXmenYVcWBnpVx9qNTw4dr65fWaUPyDQZNRETkH/Ia/9On9b3OS5GExl1VPOqK3M5slkaOBg7U9jqt04bkGw383QEiIqpH5HLbRUXAyJHaS2zb82IkkZUFZGa63FXFo644t5OTw91NB9qXLiD/Y9BERES+obT5mh4+iiTk0SB7atvTeRr8yNOBgwZdK1Vg/xpAeTqQ/IvTc0RE5H1q5bb18mIkoVYaylUFBE9zoQDPpgPJv7h6ziBcPUdEpMLdEjMtLBYpOvFSJKE0CGaxSHvOvf66+412lV6flCQFTO66rDaKRb6h5/6tOWg6fvw4WrVqZUgH6yIGTUREKgoKpOEZT+XmAmPHei2SkAfBlAIjV3dI5zIEDH6Ck577t+acpk6dOuGdd97BQw89VOsOEhFRPeLpareYGGDePLdDNbUJVrTsOafGvpxAr17KuVBUt2jOaZo8eTKeeeYZDB48GGfOnPFmn4iIqC7Ru9otJkYaXSotdRsw1XbHFXd1lrRgLaX6Q3PQ9Nxzz2H37t04ffo0brzxRvz73//2Zr+IiKiu0LL5WmwssGCBVPmxtBSYMMHtcJFabrmeHVdWr9bQfzdYS6n+8CgR/O2338bIkSPRsWNHNGjgOMO3fft2wzoXTJjTRETkghzhAMrr652Wi7mbctOzfYnz6+TzHjwoFSL3lBd3dSEf8kpOk+zXX39FXl4emjdvjszMzBpBExERUQ3y+nqlJWpOS8zUVrLZL57Ts32JnGdU2zJR9lhLqX7SFfG8//77+Otf/4r09HT8+OOPiI2N9Va/iIgokBixNExDuW21lWzylJs8IKV3+5Jly4AhQ/R11xWFWI/qAc3Tc3379sWWLVswa9Ys/PnPf/Z2v4IOp+eIqM7SMvRjAD1Tbhs2aKtikJ8PnDoFPPjgtWKVRli27NpsIwU3PfdvzYngVqsVu3fvZsBERFSfGJFtrZGeKTd3ueUmk1Rc8tQpYPBgYwMmkwl48UVjz0nBQXPQtHbtWlgsFm/2RVFRURH+9Kc/ISYmBuHh4ejSpQt++OEH2/NCCEyYMAEJCQkIDw9Heno6Dh486HCOM2fOYOjQoYiMjESzZs3wxBNP4Pz58w5tdu/ejbS0NDRq1AhJSUmYNm2aT66PiChgaSlilJNjWPSgZ8pNy/Ylb7wh7QlsNPvgjeqXgN577uzZs7jzzjvRsGFDfP7559i3bx/eeOMNNG/e3NZm2rRpePPNN/Hee+9h8+bNaNy4MTIyMlBZWWlrM3ToUPz4449Yu3Yt1qxZg/Xr1+Ppp5+2PV9RUYF7770Xbdq0wbZt2zB9+nRMmjQJ8+bN8+n1EhEFFD1DPwbQunRfbudu77bYWGOSvtWwPlM9JALY6NGjxV133aX6fHV1tYiPjxfTp0+3HSsrKxNhYWFi0aJFQggh9u3bJwCIrVu32tp8/vnnwmQyiaKiIiGEEO+++65o3ry5uHz5ssN7t2/fXvW9KysrRXl5ue1RWFgoAIjy8nKPr5eIKKAsXCiEFBq5fixcaMjbVVUJYbEIYTIpv43JJERSktTO+XX5+VI38vOvPa+1+86P2Fht7fLzDbls8rPy8nLN9++AHmn69NNPceutt2Lw4MFo2bIlunXrhvfff9/2/OHDh1FSUoL09HTbsaioKPTo0QObNm0CAGzatAnNmjXDrbfeamuTnp6OkJAQbN682dbm7rvvRmhoqK1NRkYGDhw4gLNnzyr2bcqUKYiKirI9kpKSDL12IiK/0zv0U0taptyUlvjL25dkZ1/bzkRvt3JzgYULpcTxY8e05UulpWk/P9UNAR00HTp0CHPmzEG7du3w5Zdf4i9/+QteeOEFfPzxxwCAkpISAEBcXJzD6+Li4mzPlZSUoGXLlg7PN2jQANHR0Q5tlM5h/x7OxowZg/LyctujsLCwlldLRBRgtGZbGxg9uJty07NYT0shcrMZWLpUKkAuB12hoZ4Fb1T3BXTQVF1dje7du+O1115Dt27d8PTTT+Opp57Ce++95++uISwsDJGRkQ4PIqI6xdOhn1rKygKOHJFGfeTRn8OH9Vc3cNV92eLF0uo6pT4YFbxR3RHQQVNCQgJuvPFGh2MdO3bE0aNHAQDx8fEAgNLSUoc2paWltufi4+Nx4sQJh+erqqpw5swZhzZK57B/DyKieslP0YPalJteat1PSgJWrHBda8mo4I3qjoDeA+XOO+/EgQMHHI799NNPaNOmDQAgJSUF8fHxWLduHbp27QpAWgm3efNm/OUvfwEApKamoqysDNu2bcMtt9wCAPjmm29QXV2NHj162NqMHTsWV69eRcOGDQFIJRbat2/vsFKPiKhe0lDJuzaMKDbuSm26LwdvRAACe/Xcli1bRIMGDcTkyZPFwYMHxSeffCIiIiLEggULbG2mTp0qmjVrJlavXi12794tMjMzRUpKirh06ZKtTd++fUW3bt3E5s2bxXfffSfatWsnsrOzbc+XlZWJuLg48fDDD4u9e/eKxYsXi4iICDF37lzNfdWTfU9ERJIVK6QVc/ar0iwW6TiRL+i5fwd00CSEEP/+979F586dRVhYmOjQoYOYN2+ew/PV1dVi/PjxIi4uToSFhYk+ffqIAwcOOLQ5ffq0yM7OFk2aNBGRkZHiscceE+fOnXNos2vXLnHXXXeJsLAwkZiYKKZOnaqrnwyaiIj0WbFCubyAySQ9vB04qZUqoPpFz/1b895z5Br3niMi0k7PPnNq02i1mdbz0XZ6FAT03L8DOqeJiIjqJj3Fxnv1qhkgnTolbZHiSdAjb6fnPGQgb6fH1XGkhkETERH5nJ595pRGhZRoCXrcbadnMknb6WVmsg4T1RTQJQeIiEiB1QoUFACLFklfDdow15e0Vus+eFAKhLTsIadlD2Efb6dHdQyDJiKiYJKXJyUD9e4NPPSQ9DU5WToeRLQUG7dYgHnzlEeF1LgLevSMcBE5Y9BERBQMrFbgH/8ABg6sOVQiz0sFUeCkpdj4U09Jl+YJtaDHx9vpUR3DoImIKNDJo0sTJyo/r2VeKgCpVetu3hyYNAlo29bzc5eWKn8UfthOj+oQlhwwCEsOEJFXqC31UpOfH3QlrK1WYPJkaeTpzJlrx2NjgZMnPT+vxQLMnAm0aOFYlmD16mvbp9h/rHIgxdVz9Yue+zdHmoiIApWrpV5qgjAZZ/VqaWTJPmACpLICtXHsmLQZr3P6F8DNeMkzLDlARBQonIsRWa3alo3ZC7JkHHclAIxmX5bgyBHv7nlHdQ+DJiKiQKBUjCg6WvvrTSaIRAu+taaheFHwBAHuSgDIWrRwHHlKSgLeeEMKgkaO1P5+zrWYgmwmk/yMQRMRkb+p5S05z1e5IATw9KVZ+CD9WpQUDNuCaJ1NnDVLmk5zHhVatEj/ezpXGyfSikETEZGv2U/DtWypP2/JycVoCx4+Mxt5px2jo2DYFkTrbGJiouN2KkuXSq9t2dLz9w7C9C/yMwZNRES+pHVPEI2sE3PR8YOxOIqa83DBsC2IXAKgqEg5bpSLXKalKX90iYlATIw0KKc37gyy9C8KAFw9R0TkK/I0nCcBk3N+U1ISsGIFNvSagKNF6tFQoG8LoqXI5axZ18oEOH90x48Dp09fCxC1YC0m8hRHmoiIfMGT8gH2li6VIgynpJ5ijTk9gTwVJRe5dB5FslikgCkzUyoV4GqT3ehoIDzcfTxqH4gF4sgbBTYGTUREvqB1mZgzeX6qVy/Fu3xd2RYkK0sKjpRKABQUuN9k9/Rp4OuvHePKkyeBF19UDsQCNceLAhuDJiIiIznXWpLv/J4M9WgYFtGTExTozGbl1WxaP7oTJ4DsbMdjWVmsxUTGYdBERGQUpUxled2/J0M9GoZF5JygQYOkAElpW5Bgn4qqzWiaWiBG5AkmghMRGUEtyVte93/qlPudYi0WaY5p4UJpD7nDhzXNI6ltfFtXtgXRu8mu1SpN6S1aJH0Noj2MKcBxw16DcMNeonrMapUyldUSb+SA6I03gAcekI55YadYtZnBQKWnv3JMCrj+6FwN9gV78Ejeoef+zaDJIAyaiOoRpT3i0tPdvy4/Xyoo5HxXT0ryenZyoAVUWoMb+34fPAjMmycN3snsPzq1wuoGxaRURzFo8gMGTUT1hNoecVq2PFm4UMpU9nEEE2ijL1qDG7V+P/UU0K6d40endbDv8OHAHn0j32PQ5AcMmojqAbW7vVb5+T7PSg600Retwc2MGcCQIdr7XVAA9O7t/v398COgAKfn/s1EcCIiV+Ss4k8+AZ55xrOAyU8lqF3V05SP5eRcS5T2RQK1u3JVcgXz557T3m9Ae1mCQC7ySYGPJQeIiJRYrcDkydIclpapNzUGrfv3ZEZPa4CyYYNyqpU3pvC0Bi0nT6o/Z99vedSorhT5pMDGkSYiImd5eUBcHDBxov6AyXmPOAPW/eflSVNavXsDDz0kfU1Olo67ojVAUdvXTa6WoPY+ziNTV664H6kyMmixvz69ZQmIPMGRJiLyu4Ba2VXbvCWVPeKM7o4c0LiKx7QGKJ984npft5wcaYsT+8tQStJ2Lq6pNFKlpYJ5ixauR5pk9tdXH4p8kv8xEdwgTAQn0s7dMnK/rexyl6XsiheWZ9V2RZj8eiMCFPsEaq1xpVLStjzrOXGievslS6Q949xtDaN03UrBnA8qOlAQ03P/5kgTEfmU0k3NmZZRFEMo1VvyNGACDB/K0JOTpLQiTMvoy9ChUrfdkafCXCWXK/XPfqRq9WrXP3v7XWPMZs9GjVxt/EtUWwyaiMhntI5QuJoW8lSNKcBTeTCPVKi35AkNe8R5wogVYfIWK0pJ3rNmSZesJWjat+9anpKeuFIO7CZPBiZNUv/Z5+YCY8de+1m767erj5r7zZG3cHrOIJyeI3LN05kvI+rqOI9uDUAelmMQTBBQyRt2LzYWmDlT2vDNS0MZRtYeUssbczeF50xrHU89r3M13RZQ+W5UJ7G4pR8waCJyTWsA4Ewuou0p59GtEFhxBMlIxLHaLR9escLrSTJacpKMSKNS29fN11h4kvyBxS2JKOB4WlSwNkvUlfJv0rABSbUJmGJifBIwAddykoCaS+mNTKOSp8ISE2t3HjVaZz1ZeJICHYMmIjKUWlVpvcGPEXV1lBKpE6Dxzux8p4+JkRJvSkt9ugxLLaAxoPxTjfc5ckQa7Rk3zphzyv74R23tWHiSAh0TwYnIMK42hs3MdF2fx55RoyhKIxfF0HhnNrjeUm34akWYnEBt1IhPkyZAWBgwf77rdvI0IwtPUqBj0EREhtBShFFt+bsz+xVStUkEVhq52IA0FMKCRBQhBC4ShXr1CqiMY1+uCKvtiE90NPD730tx5/nzrtuy8CQFE07PEVGtad0YNjNTfaopN1dK+s7PlxKbs7I83z5EprS1RjXMGIHZv/3Zi4lCQczdliTOTCZpMeGCBdLPr7gY+P57bUnlRk8zEnkTV88ZhKvnqD7TuzRey+iR2siVUpVpV9RWhg1AHmZjBJLA0tFK8vKAgQP1vUb++Wr9fZg5E3j++Xodn1IA4Oo5IvIpvUUY5amm7GzlWTCtI1dKG8I6U0ukXoksJOMIeiEfw6MXYn2u3RCXj6klz/tTVpY0+qeH/PPV+vsQF8eAiYILgyYiqjWtOTBa2+nZPkQLeWWYcxBQDTO+RS+8ezYbvSb1Qt5q39/BPZmC9FWQ1a6dvvbyz9fo3weiQMFEcCKqNS071+tZHWXE9iEyeSqwqAh4+23lNt7YtkULLcnzzqvmTp6UNrNVWqFo9CCZnqDGvjyEu98HgKvlKDgxp8kgzGmi+kQpJ2n1auXcIb05SFYr8NZbwMiR0vchsCING5CAYhQjARuQhmpIUc3XX7uuCqBlc2BnvqpK7W5bGZNJWoXWqJEUfLjiyWesZUWi1i1WTKaa7+2uynhMDDBvHtPHyP903b8FGaK8vFwAEOXl5f7uCpFXrVghhMUihHQrlB4Wi3Rc6bmkJOm43nOHoEqMQ644hWiHEx6FRWRhhYiJUe+HEEIsXer4nNbHwoXe++xkVVVCzJzpWf/UHiaT9FlXVbl+b6WfUWKiELm50rXn5zueY8UK6dwmk/L7xsSo/3xXrJCeV+uvyaT9d4PIW/Tcvxk0GYRBE9UH8g3U1Q2wqkq68SrdgLWcWw6WKtBE8W5rhUlYYRIDsEK1H0OGqN/k3T3y8734AQrloMXIh6v+q/38nB/2wadan6OjpUDL1c+3qkoKyGob6BF5k577N6fnDMLpOarrtEwnebp5rHzu247lYR6eRgucdtm+GiYcgwUpOGybqqstoza/dUUth8lIahscu/v52VOa7tNbZNR5mtUVbtRL/sSSA0RkOKNXtDmf+7ZjeViOgYhxEzABQAgEWqMQafDgzRT4oqalqzIKRlJL3nb387Mn99G+rIO7MhH25BWBWgImgBv1UvAIqqBp6tSpMJlMyMnJsR2rrKzEsGHDEBMTgyZNmmDgwIEoLS11eN3Ro0dx//33IyIiAi1btsSoUaNQVVXl0KagoADdu3dHWFgYrr/+esx3t1kSUT1j5Io2ZyVFVszGCABwrtHtkubNd93wZlVquTzApEn6EtL1crfBsd6fi6dBsDyapudaWXqAgkXQBE1bt27F3LlzcdNNNzkcHzlyJP79739j2bJl+Pbbb3H8+HFk2f3LZ7Vacf/99+PKlSvYuHEjPv74Y8yfPx8TJkywtTl8+DDuv/9+9O7dGzt37kROTg6efPJJfPnllz67PqJA583aOx1ObkASjun+B0nz5rsK7Lf98FZNS/saTK++qv11Fou0ukzrNiaAFOS88Yb6CJCngYmeYEvvaJq7QI8o4Hg9w8oA586dE+3atRNr164V99xzjxgxYoQQQoiysjLRsGFDsWzZMlvb/fv3CwBi06ZNQgghPvvsMxESEiJKSkpsbebMmSMiIyPF5cuXhRBC/O1vfxOdOnVyeM8HHnhAZGRkqPapsrJSlJeX2x6FhYVMBKeg5i6Bu6pKSgZWSySuTVKvdcFCXdnOVkD8iiQRgiqPE6bVVm15msjuTGvStfNj5kzpPd2tWtOSwO18Xa5+fkYkxufnaz8vV89RoNCTCB4UI03Dhg3D/fffj/T0dIfj27Ztw9WrVx2Od+jQAa1bt8amTZsAAJs2bUKXLl0QFxdna5ORkYGKigr8+OOPtjbO587IyLCdQ8mUKVMQFRVleyQlJdX6Oon8RUtVarNZKqAI1BwBqW1OUEii9mEQAWkKLwezIEz638xsBpYuVR5Zqu0GwTJP8pfkURd5Lza17V+SkoCXXlI+h1wUU6m/rn5+rvqjZxRIz6gUN+qlYBTwQdPixYuxfft2TJkypcZzJSUlCA0NRbNmzRyOx8XFoaSkxNbGPmCSn5efc9WmoqICly5dUuzXmDFjUF5ebnsUFhZ6dH1E3uZuyw21HBSlG7DajbzWN8DfSkgLDRlNpxCDgViBlchCiAf/gi1eDAweXPO42udw7Ji0ce2yZdrfQ0/SNaAedMrbv+TnS6vi8vOBn3+WrkGJUgK3PbWfn1p/nnxSCjC1btWidQpw5ky/bfNHVCsBvY1KYWEhRowYgbVr16JRo0b+7o6DsLAwhIWF+bsbRC4pVcS233LD3ca4SluLZGXV3NrD3fJzt34bBjENGgQBE0wKHapAE0zHKLyGsbYyA/KNPCcHaN4cmDhR6rPS9biqQK1lZCg7Wzq3XOXaFb1J1xaLFDAp9U1etSYrKNC+ilFpGb/zz+/gQeD99x3PGR0tfZ040bGP7rZq0bqdjjyaRhR0fDBd6LGVK1cKAMJsNtseAITJZBJms1l8/fXXAoA4e/asw+tat24tZsyYIYQQYvz48eLmm292eP7QoUMCgNi+fbsQQoi0tDRbnpTsww8/FJGRkZr7yuKWFGi0FKLUmoOiq+BjbZKCFKoonkS0GIdc1fwl+1wqpSKMMTHuizDqycXRkoOj9Xzjxun/iBZqTP/SU9nc/keWm1u7HCS1XCzmMFGgqjMVwSsqKsSePXscHrfeeqv405/+JPbs2WNLBF++fLntNf/9738FUDMRvLS01NZm7ty5IjIyUlRWVgohpETwzp07O7x3dna2y0RwZwyaKJDISb+uknCTkoRYsMDgG7CrPVZU+ukcX61YWiV6IV88iIXiHuRrTvaWAztPYjatn4N8Oe7O6c2kea8Euk79dvd748lWLXq20yHypToTNCmxXz0nhBDPPvusaN26tfjmm2/EDz/8IFJTU0Vqaqrt+aqqKtG5c2dx7733ip07d4ovvvhCxMbGijFjxtjaHDp0SERERIhRo0aJ/fv3i3feeUeYzWbxxRdfaO4XgybyB7UAQeuNVev+Z5puwFqGtpyaK8VXanuVGTmy4tyP2Fh975Wbq/3j0DPioiXgC5aAzKhViETeVq+CpkuXLonnnntONG/eXERERIgBAwaI4uJih9ccOXJE3HfffSI8PFy0aNFC/PWvfxVXr151aJOfny+6du0qQkNDxXXXXSc++ugjXf1i0FR3BMs/9q4GdbRO4SxYYNANWOcQhafL8WsbyCh9hp72Q8uoiZ4RFz2DdN6aAvPG1B9RoKvTQVOgYtBUN+icXfIbd4M6ankpSiMGhtyAdQxRuIuvavPQ83OqbT+0juZoCcJ1DtLZXmP0FJg3p/6IAhU37PUDbtgb/NQ2U1XavNSftGycm5goXcfx4zWvR25jvzmt0iq76Gjp2Nixdiud1HZtXbRIKmzkzsKFKEjIRu/eeq/aPb0b7hYUoNb90LPRrNpHV5uNkF1toqt3g135NcnJ7le/eXNTYyJf03X/9noIV09wpCm4GZUA6wtaRwMGDlS/FqXRi6oqaYQqOlplpM3VMJyOIQqtU0CePuSK2u4Y0Q+t01QGfXSa1WbElKvfqL6pcxXBibzNXTFCIZQ3L3VXONIbtNYAWrFC+uo8IqBWiHL1amlT2TNnHI8XFQELBuZBDBwEoVYB8+RJ6cRqpabtykt7e3PWkSO1VfE2oh9azuGueOjq1dreS+vPXU+xUiVeK2BKVBf4IIirFzjSFNw8SYD1Vv6TqxyYqirtK97sRwgAIXJy3K/IUnp9CKrEUViE1d0w3LJlmoYotKz+iokRIjHR8bieFW5aRkU83YvN/pK1lh5wdR6t16V1xZpRI6bBsiCCqLaYCO4HDJqCm94pEk8Sd7VwFYgpPWfUTd7++kNQJe6xq5PUG19r/3A0ZidrmQJyvmlfvqwvyNESILjqh7vzL1167Ty1Lf3QooUxJQSYyE2kH4MmP2DQFNz01L7xVv6Tq0DMk0BJz81SHmkbgBXiKBwv7hSitZ1cHobTOEThyeovtSCnNgGCWj9GjXJ93pgY9WBWb+mHnBxj8ohYMoBIP+Y0Eenkagd4581UPc1/csXdHnBGUcuLSUgABiAPyzEIiXC8uOY4o/wipZMAts3SrEOyUYBeWLTUrJjvpbQZrbtNXLVuOGvPXS6Q2qa4ixa5ft3p09JGvgMHqucPHTyorY+ZmcbkEWnN0/J2XhlRXRXQG/YS+ZJ8Q1ba4NZ+M1WtCbl6Nm11F4gZRe0mntbTihvMIwCrgPP/pEIAyHGbYpq3vA49Lc12yN1GwTLnzWi1kDecfestKenbHVcBgvOy/CFDpD652xTXHTnQffttoFUr6fxKwa/9R2c2134jZK0b5tr9qIhIBwZNVO853zh/+QXYuFH9xuWN/83rCbDUREcDZ8+6HpmaNAno3LnmyIV54wa0sqpHCXKwVA04BFUCJuk5eRgO6vWu5NEXI1Zgmc3A888Db7zheYDgKrC7fLl2/ZOdPAlERkr9M5kc++k8ggl4FkTak0dMBw3S9n5EpA+n58gw/lh+X1t5edLy9N69pdqMvXsDbdtKy+6zs6UbmPMNRv7fvIbV9ZoZMV3y+99rm8rLyVH42WiM2s4i2uH742YLlg5ZjkWXs1BQAFy54n6aUfH9PaBnStWZu2X5WqfVtKiokL5GO350XlvCz5IBRN7DiuAGqe8VwbVOxwSS2lQAl18LKP9vXu/NyV0lZi1MJml6ackS921rVLLWWB77d/ga1TAjAcUoRgI2IA3VuBaVtGgBnDrl/v3HjQP69NE//aRE6XcvKclxStWenorqRUW165u9xETg44+BEyc8m3rTSx5BLSqSRrxiY6U+ePt9iYINK4L7QX1ePeet5ffeZMQKOKP3/qrN8ne5XUyMtrYLFjgtcLvsevmgFSbxK5JECKo0r1rT8jBqXz89NYW0LsvXun+fnofzpsLeroUULHspEvkTSw74QX0NmoJp+xF7RtWzMfqm5yoQM/Im7lxQ0WIRYtMo5ajNCpOwwiQGYIXhQYQ/Ams9y/JXrNAeiGp9yNdqZECj9HsYjP+ZIfIHPfdvJoJTrehZfl+bBFejGbUCTmvirpbNU61WKe9l6lTl6RStyclaEsJPnnT8vqgI6Pl6Fja+tBx3LBrh8EMtb2LBE+dnYSWMn2cVQpoOy8mRVo75YtpITyJ/r15SvyZPlqaanbeY8YSc0/XAAzV/Rp4ky6tNjV+6pPw74I/PnKjO8EEQVy/U15GmYC2m58vKyUojCtHR0siRPDKlZdRBz7SS3gKQ8ghEUtJvU3V2wxb5Xxs7JefNz1oLPYVM7V2+LFXuNuJaXZ1Hz+is2mhSoH3mRIGMxS3JZ4K1mJ43VsApUVuldeYMMHEi0LIl8OCDrgskyhusau3z2LHKq6diY1331TYquPG34bPflg+m9TK7fF+jGFF2QQtPV91t3KgtyV0LV+exH511xVVBVK2KioJvxSuRPzFoolrxVfBhtNosV9dKy03tzBn11W7y6+TpHD19VqpyPXOmtn47By+u3leJyVRzeb0WvgysPVmW76ugTuv7GVEQdeRIx3IbycnXgnQiqolBE9WKL4IPb1G7cUZHS0UgMzOvHfOkBpURNzXnUQc9N3uz44CR5q1HlIIXrduXyD/zESO0vZf8Gn8E1nq3cTEiqDOZ3I/4yVq2dP07Z0QQp5TbZj+6SUSOWKfJIKzTpK9WTiCxWpUTfeU6U0DNa0tMBJ5+GmjXTj2xe9Ei6X/wRliwQHpPOZG8Z0/XVcvVrtNVLSi5gvbhw+rnsk9oP3gQmDfPsZaR/DPPzNRed8pkCo6ii3praalV5F66VBrhcfVziI4GwsNd1z3TWFpLNy2/B0R1Ces0+UF9TQS35+2aM97iamm21oRapaXiWhO3tTyUSgR4smTcVS0oT5ahyz/zBQuEmDnzWv0n+yXvrj7H2tS18gd31xQTI7VxV8PLk5pczj8jLQntMTFCJCa6/l1ikjjVd6zT5AcMmlwL1IDKXZ0prQ+loMOoc+t5Py2fsTeKcqqt/FN6LjZWiJycwPo90EPLakgh3P881D43V3WhnFfWaQmCnfuxYIG237FAW/FK5C167t+cnjNIfZ+ecyWQt1gxcopDaVpDbasWo99v9Wp9n7GWulFaaNmKJjPTmPcKJEZ9fs7nsVqB9HT3r7PfBkfv1LjW3/kaW+0Q1VF67t8MmgzCoElZbfZ38wUj845kzjebvDwp/+n0aX3n0bqPW26ulLju689Yyx5uzI3RR+vv48KFUoK/TE8QZ0RuG1Fdouf+zdVz5DWultzLx4za8d5T3ljm7ryqKSsLKC2VghutS/Fzc6WRAi1mz/bPZ6ynGjxp42ndM+eVkq6CnWBe8UrkbwyaSBNvLLkPhJuquzpTnlC68ZnNwIQJ0g738hL33Fzpve0lJQErVkhttZYIcLW1hzc/Y6O2oqFrfFX3zJM6VUQEcO85csvTnCS9N1Wj8kT0kP/XPWiQ8hJx+Xvn55TI0xqubmjOe9WNHat+zT17SjV9nGvp2L9fdLS2aT9vfMbBWg0+kLn7fQSMGwXKyqqb+WZEXuXlpPR6o66unqvNTul69nczcsd3T69TbUWZ0nOefB617Y/S++Xm+u8z9nQPN3LP6BWORKSOq+f8oC4mgtc20VdrwumMGcCQIf5PFnc1CuNc1PH9971XyFPLijutRSS9/RnLfQWUR0U41eM5f4y8EtVHXD3nB3UxaDJiabK7m+qSJcCLLwbfCiylGxpQ+5ucu0AVkKbsjh0DQkOl7/39GQdzNXgiIq6eI0MYkejrLuFUDgDUqCUye5KYbsTr5dctXSp9P2SIFDCuXi0FO1o3P1V7fy371Z08KW2hIvPWZ6yV3j3ciIiCFRPBSZVRib6uEk4XLdL2HvaBmVpi+owZUoDgbqTH08R2tddlZwOvv15z6kve/NR5isrV+1++7PpzkCmVNTDyM9bLOcGdiKguYtBEquTlz+7yZbQsf1a7qWoNzEpLpdGY1auV832OHZNGfewpBUJq+UJqAY671x07Bkyf7ngsBFakYQMSRDFKkIAXR6QhM9MMs9n9+0+a5PajAKBe1qA2nzFXuRERucacJoPUxZwmwPuJvnp2jrdYgEuXtFfWdu6jp4ntWvKMAClY+jsmIwezEYNrxZMKYcHOx2Yj470stG3r+v3lKTYjqzWzAjQRkTrmNJFhvF0Ez1V1YmfHjunbisS5IranxTa15BkNQB5KEYdXMNEhYAKARBTh/o8G4ZnYPLfvf+wY8NRT0vdGVWtmBWgiImMwaCK3vJ3oqxaYGcE+EPI0sd3d6wYgD8sxCDFQjuhCIEVvuRU5CIH7jPN27YwPVFkBmoio9pjTRJp4O9FXTmR+6y1g5Ejjzy8nR2sht5NHp/btU28bAitmYwRMEHA1UBYCgdYoRBo24Fv0cvv+vXoZX62ZFaCJiGqHQRMFDLMZiIvzzrnlAMFicZ/TlJamvMJNSRo2IAluGtn3A+rDVs6J9d4IVJ3PKZc+YBBFROQegyYKKN5YwSVvcLp6tZRIrsQ+t0dthZ6SVi6CICXFUL5Af+QWeVp6gYiovmJOEwUUd7u8e8I+EFJLJI+OlnJ7MjOlQELrmtKqWG1RXjWAo0jCBkjDSC1aOD7v69wieVWk80iaXPpArSgnEVF9xpEm0sXb+2G52uVdr5gYYN68a/uzuTpXePi1fB93U3IAMG4c0KcPkNYzDWjropgVAPloDmZBmMxIsgA//yxV9fbHtJjVqh4YCiF97jk50ufBqToioms40kSatxTJy9O3VYin5JVerVp59vqYGCA3Fzh+XBpBmjTJfSB07Ji+FXY33ijlBplD3ddMOIUYDMIKrDJJw0izZkn7xvXqJVUT79XLt8GJp6UXiIjqOwZN9Zy7QEgOqEaOBAYOrP10jtYALSsL+PhjfdcyfLhUDqG0FOjcGWjbVrqeV1/V9npPVtjZOquwnv+MKQbjkYt4lGIlsgJmeb8RewoSEdVHnJ6rx9xt6fHSS1Jw425UQut0jt7E4xMndF0OBg6URm3Urssd+xV2ureOsVvPX11UjN0nE7AvJg0xp834V6wUTwXKyjRuq0JE5Bluo2KQYNtGRevWIHrk56svkVcLZOS8pdxcqaijfX5PQYE0UqRFUpJUcBPQf13O24jUZuuYYFiRxm1ViIiu4TYqpEqeHtOS56OX2nSOu8RjAJg4seb0oJ6VdPJSfa2J3DKlpf6eVs8OlhVp3FaFiMgzHGkySDCMNGkt2OgptZEmPSNGgOOIDqA86iOTV8jJgcyiRVLwpSYEVqRhAxJQjGIk4IglDTNmmxUDIT0rBT3dDNiflH4fkpKkgClQRsWIiLytzow0TZkyBbfddhuaNm2Kli1bon///jhw4IBDm8rKSgwbNgwxMTFo0qQJBg4ciNLSUoc2R48exf3334+IiAi0bNkSo0aNQlVVlUObgoICdO/eHWFhYbj++usxf/58b1+eT6mNghjBZLpWQFKJ3oRi+412MzOVR33kFXKlpY43eLU8nBBYMQ7/wAm0RAF6YxEeQgF64zCSkQXlISC5eraWFW7BuCLN23sKEhHVOSKAZWRkiI8++kjs3btX7Ny5U/zhD38QrVu3FufPn7e1efbZZ0VSUpJYt26d+OGHH8Qdd9whevbsaXu+qqpKdO7cWaSnp4sdO3aIzz77TLRo0UKMGTPG1ubQoUMiIiJCvPjii2Lfvn3irbfeEmazWXzxxRea+1peXi4AiPLycmMu3kBVVUJYLEJIt27vPJYtU3///HzPz5uff+0a8vOFWLhQ+lpV5fpaTaZr5xiAFeIkYpTfwGSSHitW1OozXrhQ2/UsXFirtyEiIoPpuX8HdNDk7MSJEwKA+Pbbb4UQQpSVlYmGDRuKZXZ37P379wsAYtOmTUIIIT777DMREhIiSkpKbG3mzJkjIiMjxeXLl4UQQvztb38TnTp1cnivBx54QGRkZKj2pbKyUpSXl9sehYWFARs06Q1a7AMOrQ+LRT3uUApktD48CTJWrJDey4wqMQ65ohoQ1e4uOClJPRIz8DOWg0AiIgoMeoKmgJ6ec1ZeXg4AiI6OBgBs27YNV69eRXp6uq1Nhw4d0Lp1a2zatAkAsGnTJnTp0gVxdjvBZmRkoKKiAj/++KOtjf055DbyOZRMmTIFUVFRtkdSUpIxF+kFeqfHLBZg1Chp2k3rdiaukp1dJR6748my96wsYONLeTga0gavYCJMAFy+rQFzZ+6S1t1NYRIRUeALmqCpuroaOTk5uPPOO9G5c2cAQElJCUJDQ9GsWTOHtnFxcSgpKbG1sQ+Y5Ofl51y1qaiowCWVHV7HjBmD8vJy26OwsLDW1+gNVquU96PFuHHX8lqmTVPOJVLL67HPQ1IqWKm2Ik1NrYKMvDzc8fogJFQX6XtdLao5ckUaEVHdFzRB07Bhw7B3714sXrzY310BAISFhSEyMtLhEWjkat8jR7puJwcokyY5Jjw7JwrPnKlewRtwP2DjfL7cXOXRrFoFGVYrxIgREEK4Hl1SUstqjp6WKiAiouAQFBXBhw8fjjVr1mD9+vWwWCy24/Hx8bhy5QrKysocRptKS0sRHx9va7NlyxaH88mr6+zbOK+4Ky0tRWRkJMLDw71xSV6ntSq2uwBFXkEGSMv5tXA1YGN/PkDa7sR52XtiIvDUU8Dly1K5Aj2VtNdP3oC7dS4RFABMBs2d2RUG98tmvERE5D0BPdIkhMDw4cOxcuVKfPPNN0hJSXF4/pZbbkHDhg2xbt0627EDBw7g6NGjSE1NBQCkpqZiz549OGG3J8fatWsRGRmJG2+80dbG/hxyG/kcwcZVMUlnekZBvLH9htLokxDKxS4dKGxil5cHvDdR3xSb9BGZDJ0701OqgIiIgojX09Jr4S9/+YuIiooSBQUFori42Pa4ePGirc2zzz4rWrduLb755hvxww8/iNTUVJGammp7Xi45cO+994qdO3eKL774QsTGxiqWHBg1apTYv3+/eOedd4K65IDWlVwzZ+pbMOZuFVxtF6HJq95cVgWoqhIiN1eI6GiHRtUWi3gyZoW4Bxov/rfHCcSIPbm1KzdARETBq86UHIA0EFDj8dFHH9naXLp0STz33HOiefPmIiIiQgwYMEAUFxc7nOfIkSPivvvuE+Hh4aJFixbir3/9q7h69apDm/z8fNG1a1cRGhoqrrvuOof30CKQgiZPawZpqYUkBzbOwU1tyx25qyVlMgnxVMwKUR2jXG+pGiZhhUkMxFJxFBZhhev6BicRLcYjV7SxVNWm0gAREQW5OhM0BZNACpo8qRm0YkXNoEWt9pJS26Sk2tWHdNfnAVghrDC5rLdkhUn8iiQxEMuE9bcgyvF56TEOucKMKiNqWhIRUZDTc//m3nMGCaS95/TuYq+WNG6/B5xzzpOrfdn07Nkmc7VnXAisOIJkWHBM04q4XshHNM5gNkYgCdeSwo8iCTmYhZXI4h5rREQEQN/9OyhWz5E+cs2gQYOkwMc+GHJeLecqaVwIqb28B5x94OO8Ck6mtAmsxSL1x1WAYp887rypbgisDsGPOwkoxmJkYzUyHc7z3xZpeGOWGS8kckUbERHpx5EmgwTSSJNMyy72BQXSCjV38vOVgyTn99M7YiWTR8duP5aHWU4jRKcRjRiccd/J3/RGPgpwrbNa3p+IiOonjjQRAMeaQUVFwMmTQGwsEB0tBSlms/Yi2O7aeTpiJTObgWXZebh9+iDIhQBkzXUETBdjknCoURpgVwzcYuFUHBER1R6DpjrObAbOnAFefll5ysyo2ksbNjie35l9tXDFESurFXcsGgGBmpW8Q/BbAUoN/YyYNwuHMs0sLklERIZj0FTHqU2ZyRvsLlkiBVDuksbdFcvWPWLlnC1utQLH1BO93QZMMTHAvHlAVhbMcD+VSEREpBeDpjpMy5TZX/8q7Sk3ZIj7pHFXNI9YtbQC/5gsDXOdsZt2i47WdoLoaMfXxcQAL7wAjB3L4SQiIvIqBk11mNYpsxYtpCRppVVvWnOB0tJcj1iZYcXUyMm4p/904Pz5mg3OaMxbWrr0WjIW596IiMiHGDTVYXqmzLKza7fRrKsyB1nIw1w8jRYVp/VfhEyeJ+RmbkRE5CcMmuowvUnearWXtMrKqjliNQB5WIaBmpK4VemZJyQiIvKSEH93gLxHnjIzqUQsJpNUt8ldkrceWVnAkSNSXadFC6xY2GIETNC28s3GOb/JYmGRJSIi8juONNUBatuW6KkMbiR5xGr9Pzag0SntlbxtmLdEREQBiEFTkHO3bYnSlJncxqiCj9YrVux5dwMu/lKMiLYJ6PJcGlavMWP5xGLcrfdkSUnMWyIiooDEbVQM4q1tVORRJPuK3om/7Z22erVyDSbZ0qXA4MGO5zF68Ob//S0PrWeMQCvrtYjsuNmCMeGz8ev5aBRAwx4tMpOJ03BERORT3EaljlAaRZJZLMClS+oBEyCtiDOZpMDKOcnbapX2natNEPX//qa87Um8tQgfnR+EIViCQliQiCKEwE1sbleckoiIKBAxETxAyZW81eosHTsGnHazgt9qlUaali+vee7kZGmj3ocekr4mJ0vHtbJesaL1jBEARI1fIjlAmoG/YiRmAgCq1VLBmzQBcnOB0lIGTEREFNAYNAUgV5W8PfHgg8CyZdKf1YIxeVsVrYHTnnc3oJX1mOovUAgEWqMQp9ACg7AcRUh0eP4UorGxby4Wv1eGgrsnwArmMBERUWDj9FwAclfJWy+rVdomZelS4MUXXW+rkpMjFbl0N1V38RdtlTMTUIzFyMZqZCING5CAYhQjARtD0nD1CzPwhdTOPnmdiIgoEDFoCkBaK3nrNWyYlEyuRt5WpaDA/Yr/iLbaKmcWQ2pXDTO+Ra9rT1Q7tpNHupgHTkREgYrTcwFIayVvvVwFTPaGDHGf79TluTQcN1tUc5WqYcKxkCQcauVYOVNtBEse/crJkUbGiIiIAg2DpgAkV/L2F+e9c5XyncyhZhx9cTaAmkne8vfH/joLh4+akZ8PLFwIzJzpOiCSR7o2bDDkMoiIiAzFoCkAyZW81bY/qY3YWP3nVRsFumNaFraMWo4Ss2OSd7HZgi2jluOOaVm2UgfZ2UBcnLb389b0JBERUW0waApQciVvo0ac5H3m3n332vd6qI0C3TEtC3EXj2DnzHxsHL4QO2fmI/7iYdwxrWZikt4NhImIiAIJg6YAJm9+O3Nm7c5jv8+cnGyd6Dg4hJgYbedSGgUyh5rRNacXer6Vja45vWAOVU5c8scGwkREREZh0BTgzGbt01pqLBbHVWlyMCbnGuXnA0uWaDtXbUaB5GlHoGbg5M0NhImIiIzAkgNBQE+gYjJJo0jz5wMnTqiXDFDaVsVikZK+leo4mUzS87UdBfLFBsJERETewA17DeKtDXsBKaBJTlYPaGTyaI2ntY7kauGA4/vU9rxKvLWBMBERkR567t+cngsCrqa17DlPw+kljwI55zvV9rxK7FfV9erFgImIiAIfR5oM4s2RJlleXs1prdhYYOhQaesTo0ZrOApERET1hZ77N4Mmg/giaAIY0BARERlJz/2bieBBxjmBGwAjKSIiIh9g0BTslObsLBYpCYpL0YiIiAzDRPBgtnw5MHCgY8AEKG8WR0RERLXCoCnYWK1AQYE0uvTAA8pt1DaLIyIiIo9xei6YKE3FqbHfLK5GEhQRERHpxaApWMiVJ/UudlTaLI6IiIh04/RcMLBapREmT6pD1GazOCIiIrJh0BQMNmzQNiXnLCmp9pvFEREREQAGTcHB0ym2WbNYr4mIiMggDJqCgd4pNrMZWLaMdZqIiIgMxKApGKSlSQUrXe3Wa2/RIilpnIiIiAzDoCkYmM1ShW/AdeCUlASsWAEMHuybfhEREdUjDJqCRVaWVAE8MdHxeGysVMQyPx84fJhTckRERF7COk3BJCsLyMzk5rxERER+wKAp2JjNrPBNRETkB5yeIyIiItKAQZOTd955B8nJyWjUqBF69OiBLVu2+LtLREREFAAYNNlZsmQJXnzxRUycOBHbt2/HzTffjIyMDJw4ccLfXSMiIiI/MwnhyYZmdVOPHj1w22234e233wYAVFdXIykpCc8//zxefvllh7aXL1/G5cuXbd9XVFQgKSkJ5eXliIyM9Gm/iYiIyDMVFRWIiorSdP/mSNNvrly5gm3btiE9Pd12LCQkBOnp6di0aVON9lOmTEFUVJTtkZSU5MvuEhERkY8xaPrNqVOnYLVaERcX53A8Li4OJSUlNdqPGTMG5eXltkdhYaGvukpERER+wJIDHgoLC0NYWJi/u0FEREQ+wpGm37Ro0QJmsxmlpaUOx0tLSxEfH++nXhEREVGgYND0m9DQUNxyyy1Yt26d7Vh1dTXWrVuH1NRUP/aMiIiIAgGn5+y8+OKLeOSRR3Drrbfi9ttvx6xZs3DhwgU89thjbl8rL0KsqKjwdjeJiIjIIPJ9W0sxAQZNdh544AGcPHkSEyZMQElJCbp27YovvviiRnK4knPnzgEAV9EREREFoXPnziEqKsplG9ZpMkh1dTWOHz+Opk2bwmQyGXpuuQZUYWFhnawBxesLfnX9Guv69QF1/xp5fcHPW9cohMC5c+fQqlUrhIS4zlriSJNBQkJCYLFYvPoekZGRdfYvA8Drqwvq+jXW9esD6v418vqCnzeu0d0Ik4yJ4EREREQaMGgiIiIi0oBBUxAICwvDxIkT62wxTV5f8Kvr11jXrw+o+9fI6wt+gXCNTAQnIiIi0oAjTUREREQaMGgiIiIi0oBBExEREZEGDJqIiIiINGDQFMDWr1+Pfv36oVWrVjCZTFi1apW/u2SoKVOm4LbbbkPTpk3RsmVL9O/fHwcOHPB3twwzZ84c3HTTTbZCbKmpqfj888/93S2vmTp1KkwmE3JycvzdFcNMmjQJJpPJ4dGhQwd/d8tQRUVF+NOf/oSYmBiEh4ejS5cu+OGHH/zdLcMkJyfX+BmaTCYMGzbM310zhNVqxfjx45GSkoLw8HC0bdsWr7zyiqZ91ILFuXPnkJOTgzZt2iA8PBw9e/bE1q1b/dIXVgQPYBcuXMDNN9+Mxx9/HFlZWf7ujuG+/fZbDBs2DLfddhuqqqrw97//Hffeey/27duHxo0b+7t7tWaxWDB16lS0a9cOQgh8/PHHyMzMxI4dO9CpUyd/d89QW7duxdy5c3HTTTf5uyuG69SpE77++mvb9w0a1J1/Ns+ePYs777wTvXv3xueff47Y2FgcPHgQzZs393fXDLN161ZYrVbb93v37sXvf/97DB482I+9Ms4///lPzJkzBx9//DE6deqEH374AY899hiioqLwwgsv+Lt7hnjyySexd+9e/N///R9atWqFBQsWID09Hfv27UNiYqJvOyMoKAAQK1eu9Hc3vOrEiRMCgPj222/93RWvad68ufjggw/83Q1DnTt3TrRr106sXbtW3HPPPWLEiBH+7pJhJk6cKG6++WZ/d8NrRo8eLe666y5/d8OnRowYIdq2bSuqq6v93RVD3H///eLxxx93OJaVlSWGDh3qpx4Z6+LFi8JsNos1a9Y4HO/evbsYO3asz/vD6TkKGOXl5QCA6OhoP/fEeFarFYsXL8aFCxeQmprq7+4YatiwYbj//vuRnp7u7654xcGDB9GqVStcd911GDp0KI4ePervLhnm008/xa233orBgwejZcuW6NatG95//31/d8trrly5ggULFuDxxx83fGN1f+nZsyfWrVuHn376CQCwa9cufPfdd7jvvvv83DNjVFVVwWq1olGjRg7Hw8PD8d133/m8P3VnnJmCWnV1NXJycnDnnXeic+fO/u6OYfbs2YPU1FRUVlaiSZMmWLlyJW688UZ/d8swixcvxvbt2/2WX+BtPXr0wPz589G+fXsUFxcjNzcXaWlp2Lt3L5o2berv7tXaoUOHMGfOHLz44ov4+9//jq1bt+KFF15AaGgoHnnkEX93z3CrVq1CWVkZHn30UX93xTAvv/wyKioq0KFDB5jNZlitVkyePBlDhw71d9cM0bRpU6SmpuKVV15Bx44dERcXh0WLFmHTpk24/vrrfd8hn49tkUdQx6fnnn32WdGmTRtRWFjo764Y6vLly+LgwYPihx9+EC+//LJo0aKF+PHHH/3dLUMcPXpUtGzZUuzatct2rK5Nzzk7e/asiIyMrDNTrA0bNhSpqakOx55//nlxxx13+KlH3nXvvfeK//mf//F3Nwy1aNEiYbFYxKJFi8Tu3bvFv/71LxEdHS3mz5/v764Z5ueffxZ33323ACDMZrO47bbbxNChQ0WHDh183heONJHfDR8+HGvWrMH69ethsVj83R1DhYaG2v43dMstt2Dr1q2YPXs25s6d6+ee1d62bdtw4sQJdO/e3XbMarVi/fr1ePvtt3H58mWYzWY/9tB4zZo1ww033ICff/7Z310xREJCQo2Rz44dO2LFihV+6pH3/Prrr/j666+Rl5fn764YatSoUXj55Zfx4IMPAgC6dOmCX3/9FVOmTKkzo4Vt27bFt99+iwsXLqCiogIJCQl44IEHcN111/m8L8xpIr8RQmD48OFYuXIlvvnmG6SkpPi7S15XXV2Ny5cv+7sbhujTpw/27NmDnTt32h633norhg4dip07d9a5gAkAzp8/j19++QUJCQn+7ooh7rzzzhplPn766Se0adPGTz3yno8++ggtW7bE/fff7++uGOrixYsICXG8lZvNZlRXV/upR97TuHFjJCQk4OzZs/jyyy+RmZnp8z5wpCmAnT9/3uF/tIcPH8bOnTsRHR2N1q1b+7Fnxhg2bBgWLlyI1atXo2nTpigpKQEAREVFITw83M+9q70xY8bgvvvuQ+vWrXHu3DksXLgQBQUF+PLLL/3dNUM0bdq0Rv5Z48aNERMTU2fy0l566SX069cPbdq0wfHjxzFx4kSYzWZkZ2f7u2uGGDlyJHr27InXXnsNQ4YMwZYtWzBv3jzMmzfP310zVHV1NT766CM88sgjdapkBAD069cPkydPRuvWrdGpUyfs2LEDM2bMwOOPP+7vrhnmyy+/hBAC7du3x88//4xRo0ahQ4cOeOyxx3zfGZ9PCJJm+fn5AkCNxyOPPOLvrhlC6doAiI8++sjfXTPE448/Ltq0aSNCQ0NFbGys6NOnj/jqq6/83S2vqms5TQ888IBISEgQoaGhIjExUTzwwAPi559/9ne3DPXvf/9bdO7cWYSFhYkOHTqIefPm+btLhvvyyy8FAHHgwAF/d8VwFRUVYsSIEaJ169aiUaNG4rrrrhNjx44Vly9f9nfXDLNkyRJx3XXXidDQUBEfHy+GDRsmysrK/NIXkxB1qGwoERERkZcwp4mIiIhIAwZNRERERBowaCIiIiLSgEETERERkQYMmoiIiIg0YNBEREREpAGDJiIiIiINGDQRERERacCgiYiIiEgDBk1ERAqsVit69uyJrKwsh+Pl5eVISkrC2LFj/dQzIvIXbqNCRKTip59+QteuXfH+++9j6NChAIA///nP2LVrF7Zu3YrQ0FA/95CIfIlBExGRC2+++SYmTZqEH3/8EVu2bMHgwYOxdetW3Hzzzf7uGhH5GIMmIiIXhBD43e9+B7PZjD179uD555/HuHHj/N0tIvIDBk1ERG7897//RceOHdGlSxds374dDRo08HeXiMgPmAhOROTGhx9+iIiICBw+fBjHjh3zd3eIyE840kRE5MLGjRtxzz334KuvvsKrr74KAPj6669hMpn83DMi8jWONBERqbh48SIeffRR/OUvf0Hv3r3xv//7v9iyZQvee+89f3eNiPyAI01ERCpGjBiBzz77DLt27UJERAQAYO7cuXjppZewZ88eJCcn+7eDRORTDJqIiBR8++236NOnDwoKCnDXXXc5PJeRkYGqqipO0xHVMwyaiIiIiDRgThMRERGRBgyaiIiIiDRg0ERERESkAYMmIiIiIg0YNBERERFpwKCJiIiISAMGTUREREQaMGgiIiIi0oBBExEREZEGDJqIiIiINGDQRERERKTB/wdj2bxPYUnMugAAAABJRU5ErkJggg==",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "plt.scatter(X, y, color='blue', label='Начальные данные')\n",
+ "plt.scatter(X_test, y_test_pred, color='red', label='Предсказанные данные')\n",
+ "plt.xlabel('X')\n",
+ "plt.ylabel('Y')\n",
+ "plt.legend()\n",
+ "plt.show()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 67,
+ "id": "bb8da46b",
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "R2: 0.8013765670559003\n"
+ ]
+ }
+ ],
+ "source": [
+ "print('R2:', r2_score(y_test, y_test_pred))"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "930a1c4e",
+ "metadata": {},
+ "source": [
+ "Метрика имеет неплохое значение, для этого набора данных. Рассмотрим другие метрики"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 68,
+ "id": "21ad4795",
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "MSE: train = 1726452.6703531637, test = 878266.8452145274\n",
+ "MAE: train = 1050.7518155844155, test = 773.634556461533\n"
+ ]
+ }
+ ],
+ "source": [
+ "train_mse = mean_squared_error(y_train, y_train_pred)\n",
+ "train_mae = mean_absolute_error(y_train, y_train_pred)\n",
+ "\n",
+ "test_mse = mean_squared_error(y_test, y_test_pred)\n",
+ "test_mae = mean_absolute_error(y_test, y_test_pred)\n",
+ "\n",
+ "print(f\"MSE: train = {train_mse}, test = {test_mse}\")\n",
+ "print(f\"MAE: train = {train_mae}, test = {test_mae}\")"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "46cff092",
+ "metadata": {},
+ "source": [
+ "Ошибки оказались очень большими, потому что модель не может в полной мере описать данные"
+ ]
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Global Environment",
+ "language": "python",
+ "name": "my_global_env"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 3
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython3",
+ "version": "3.12.3"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 5
+}