|
4 | 4 | Quickstart Guide |
5 | 5 | ################ |
6 | 6 |
|
7 | | -Under development. |
| 7 | +Installation |
| 8 | +------------ |
| 9 | + |
| 10 | +**obsarray** is installable via pip. |
| 11 | + |
| 12 | +.. code-block:: |
| 13 | +
|
| 14 | + pip install obsarray |
| 15 | +
|
| 16 | +
|
| 17 | +Dependencies |
| 18 | +------------ |
| 19 | + |
| 20 | +**obsarray** is an extension to `xarray <https://docs.xarray.dev/en/stable/>`_ to support defining, storing and interfacing with measurement data. It is designed to work well with `netCDF <https://www.unidata.ucar.edu/software/netcdf/>`_ files, using the `netcdf4 <https://unidata.github.io/netcdf4-python/>`_ library. |
| 21 | + |
| 22 | +The pip installation will also automatically install any dependencies. |
| 23 | + |
| 24 | + |
| 25 | +Example Usage |
| 26 | +------------- |
| 27 | + |
| 28 | +First we build an example dataset that represents a time series of temperatures (for more on how do this see the `xarray <https://docs.xarray.dev/en/stable/>`_ documentation). |
| 29 | + |
| 30 | +.. ipython:: python |
| 31 | +
|
| 32 | + import numpy as np |
| 33 | + import xarray as xr |
| 34 | + import obsarray |
| 35 | +
|
| 36 | + # build an xarray to represents a time series of temperatures |
| 37 | + temps = np.array([20.2, 21.1, 20.8]) |
| 38 | + times = np.array([0, 30, 60]) |
| 39 | + ds = xr.Dataset( |
| 40 | + {"temperature": (["time"], temps, {"units": "degC"})}, |
| 41 | + coords = {"time": (["time"], times, {"units": "s"})} |
| 42 | + ) |
| 43 | +
|
| 44 | +Uncertainty and error-covariance information for observation variables can be defined using the dataset's ``unc`` accessor, which is provided by **obsarray**. |
| 45 | + |
| 46 | +.. ipython:: python |
| 47 | +
|
| 48 | + # add random component uncertainty |
| 49 | + ds.unc["temperature"]["u_r_temperature"] = ( |
| 50 | + ["time"], |
| 51 | + np.array([0.5, 0.5, 0.6]), |
| 52 | + {"err_corr": [{"dim": "time", "form": "random"}]} |
| 53 | + ) |
| 54 | + # add systematic component uncertainty |
| 55 | + ds.unc["temperature"]["u_s_temperature"] = ( |
| 56 | + ["time"], |
| 57 | + np.array([0.3, 0.3, 0.3]), |
| 58 | + {"err_corr": [{"dim": "time", "form": "systematic"}]} |
| 59 | + ) |
| 60 | +
|
| 61 | +Dataset structures can be defined separately using **obsarray**'s :ref:`templating <template>` functionality. This is helpful for processing chains where you want to write files to a defined format. |
| 62 | + |
| 63 | +The defined uncertainty information then can be interfaced with, for example: |
| 64 | + |
| 65 | +.. ipython:: python |
| 66 | +
|
| 67 | + # get total combined uncertainty of all components |
| 68 | + ds.unc["temperature"].total_unc() |
| 69 | + # get total error-covariance matrix for all components |
| 70 | + ds.unc["temperature"].total_err_cov_matrix() |
| 71 | +
|
| 72 | +This information is preserved in metadata when written to netCDF files |
| 73 | + |
| 74 | +.. ipython:: python |
| 75 | +
|
| 76 | + # show uncertainty components |
| 77 | + ds.unc["temperature"] |
| 78 | + # write file |
| 79 | + ds.to_netcdf("~/temp_ds.nc") |
| 80 | + # reopen file |
| 81 | + ds = xr.open_dataset("~/temp_ds.nc") |
| 82 | + # show uncertainty components |
| 83 | + ds.unc["temperature"] |
| 84 | +
|
| 85 | +Similarly, data flags can be defined using the dataset’s ``flag`` accessor, which again is provided by **obsarray**. These flags are defined following the `CF Convention <https://cfconventions.org/Data/cf-conventions/cf-conventions-1.10/cf-conventions.html#flags>`_ metadata standard. |
| 86 | + |
| 87 | +A flag variable can be created to store data for a set of flags with defined meanings |
| 88 | + |
| 89 | +.. ipython:: python |
| 90 | +
|
| 91 | + ds.flag["quality_flags"] = ( |
| 92 | + ["time"], |
| 93 | + {"flag_meanings": ["dubious", "invalid", "saturated"]} |
| 94 | + ) |
| 95 | + print(ds.flag) |
| 96 | +
|
| 97 | +These flag meanings can be indexed, to get and set their value |
| 98 | + |
| 99 | +.. ipython:: python |
| 100 | +
|
| 101 | + print(ds.flag["quality_flags"]["dubious"].value) |
| 102 | + ds.flag["quality_flags"]["dubious"][0] = True |
| 103 | + print(ds.flag["quality_flags"]["dubious"].value) |
0 commit comments