Skip to content

Commit 1352cf0

Browse files
committed
Theme: Use modernized crate-docs-theme
It includes two bugfix iterations already, so this is a good chance to test it in production.
1 parent 17bf5ed commit 1352cf0

File tree

14 files changed

+105
-59
lines changed

14 files changed

+105
-59
lines changed

docs/_include/card/timeseries-datashader.md

Lines changed: 2 additions & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -1,7 +1,8 @@
11
::::{info-card}
22

3-
:::{grid-item} **Display millions of data points using hvPlot, Datashader, and CrateDB**
3+
:::{grid-item}
44
:columns: auto 9 9 9
5+
**Display millions of data points using hvPlot, Datashader, and CrateDB**
56

67
[HoloViews] and [Datashader] frameworks enable channeling millions of data
78
points from your backend systems to the browser's glass.

docs/_include/card/timeseries-explore.md

Lines changed: 2 additions & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -1,7 +1,8 @@
11
::::{info-card}
22

3-
:::{grid-item} **CrateDB for Time Series Modeling, Exploration, and Visualization**
3+
:::{grid-item}
44
:columns: auto 9 9 9
5+
**CrateDB for Time Series Modeling, Exploration, and Visualization**
56

67
Access time series data from CrateDB via SQL, load it into pandas DataFrames,
78
and visualize it using Plotly.

docs/domain/analytics/index.md

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -82,7 +82,7 @@ to deal with so many data records and keep them all available for querying in
8282
real time.
8383
:::
8484

85-
:::{grid-item}  
85+
:::{grid-item}
8686
:columns: 4
8787

8888
<iframe width="240" src="https://www.youtube-nocookie.com/embed/4BPApD0Piyc?si=J0w5yG56Ld4fIXfm" title="YouTube video player" frameborder="0" allow="accelerometer; autoplay; clipboard-write; encrypted-media; gyroscope; picture-in-picture; web-share" allowfullscreen></iframe>

docs/domain/industrial/index.md

Lines changed: 6 additions & 6 deletions
Original file line numberDiff line numberDiff line change
@@ -91,7 +91,7 @@ With high scalability and easy integration, CrateDB is a strategic database
9191
component of ABB Ability™ Genix across industries.
9292
:::
9393

94-
:::{grid-item} &nbsp;
94+
:::{grid-item}
9595
:columns: 4
9696

9797
<iframe width="240" src="https://www.youtube-nocookie.com/embed/45fZYJLh2Qg?si=J0w5yG56Ld4fIXfm" title="YouTube video player" frameborder="0" allow="accelerometer; autoplay; clipboard-write; encrypted-media; gyroscope; picture-in-picture; web-share" allowfullscreen></iframe>
@@ -147,7 +147,7 @@ made Rauch choose it over other databases, such as PostgreSQL compatibility,
147147
the support for unstructured data, and its excellent customer support.
148148
:::
149149

150-
:::{grid-item} &nbsp;
150+
:::{grid-item}
151151
:columns: 4
152152

153153
<iframe width="240" src="https://www.youtube-nocookie.com/embed/gJPmJ0uXeVs?si=J0w5yG56Ld4fIXfm" title="YouTube video player" frameborder="0" allow="accelerometer; autoplay; clipboard-write; encrypted-media; gyroscope; picture-in-picture; web-share" allowfullscreen></iframe>
@@ -204,7 +204,7 @@ help the mining businesses save resources, workforce, and losses, due to
204204
decreased downtime.
205205
:::
206206

207-
:::{grid-item} &nbsp;
207+
:::{grid-item}
208208
:columns: 4
209209

210210
<iframe width="240" src="https://www.youtube-nocookie.com/embed/eRqn7GhFO-s?si=J0w5yG56Ld4fIXfm" title="YouTube video player" frameborder="0" allow="accelerometer; autoplay; clipboard-write; encrypted-media; gyroscope; picture-in-picture; web-share" allowfullscreen></iframe>
@@ -260,7 +260,7 @@ migration path, it was easy to start with CrateDB, and now it is at the
260260
heart of everything they are doing, and gives them peace of mind.
261261
:::
262262

263-
:::{grid-item} &nbsp;
263+
:::{grid-item}
264264
:columns: 4
265265

266266
<iframe width="240" src="https://www.youtube-nocookie.com/embed/X2o0-W8-mCM?si=J0w5yG56Ld4fIXfm" title="YouTube video player" frameborder="0" allow="accelerometer; autoplay; clipboard-write; encrypted-media; gyroscope; picture-in-picture; web-share" allowfullscreen></iframe>
@@ -298,7 +298,7 @@ its ability to aggregate different data formats and the ability to query this
298298
information without further ado.
299299
:::
300300

301-
:::{grid-item} &nbsp;
301+
:::{grid-item}
302302
:columns: 4
303303

304304
<iframe width="240" src="https://www.youtube-nocookie.com/embed/6dgjVQJtSKI?si=J0w5yG56Ld4fIXfm" title="YouTube video player" frameborder="0" allow="accelerometer; autoplay; clipboard-write; encrypted-media; gyroscope; picture-in-picture; web-share" allowfullscreen></iframe>
@@ -342,7 +342,7 @@ high variety, unstructured features, and at different data frequencies.
342342

343343
:::
344344

345-
:::{grid-item} &nbsp;
345+
:::{grid-item}
346346
:columns: 4
347347

348348
<iframe width="240" src="https://www.youtube-nocookie.com/embed/ugQvihToY0k?si=J0w5yG56Ld4fIXfm" title="YouTube video player" frameborder="0" allow="accelerometer; autoplay; clipboard-write; encrypted-media; gyroscope; picture-in-picture; web-share" allowfullscreen></iframe>

docs/domain/ml/index.md

Lines changed: 2 additions & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -216,8 +216,9 @@ or RAG. RAG is a technique for augmenting LLM knowledge with additional data.
216216

217217
::::{info-card}
218218

219-
:::{grid-item} **How to Use Private Data in Generative AI**
219+
:::{grid-item}
220220
:columns: auto auto 8 8
221+
**How to Use Private Data in Generative AI**
221222

222223
In this video recorded at FOSDEM 2024, we explain how to leverage private data
223224
in generative AI on behalf of an end-to-end Retrieval Augmented Generation (RAG)

docs/domain/telemetry/index.md

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -74,7 +74,7 @@ to use CrateDB as remote storage.
7474
[Prometheus with CrateDB: Long Term Metrics Storage]
7575
:::
7676

77-
:::{grid-item} &nbsp;
77+
:::{grid-item}
7878
:columns: 4
7979

8080
<iframe width="240" src="https://www.youtube-nocookie.com/embed/EfIlRXVyfZM?si=J0w5yG56Ld4fIXfm" title="YouTube video player" frameborder="0" allow="accelerometer; autoplay; clipboard-write; encrypted-media; gyroscope; picture-in-picture; web-share" allowfullscreen></iframe>

docs/domain/timeseries/advanced.md

Lines changed: 12 additions & 6 deletions
Original file line numberDiff line numberDiff line change
@@ -34,8 +34,9 @@ detection and/or [forecasting] methods.
3434

3535
::::{info-card}
3636

37-
:::{grid-item} **Use MLflow for time series anomaly detection and time series forecasting**
37+
:::{grid-item}
3838
:columns: auto 9 9 9
39+
**Use MLflow for time series anomaly detection and time series forecasting**
3940

4041
Guidelines and runnable code to get started with [MLflow] and CrateDB, exercising
4142
time series anomaly detection and time series forecasting / prediction using
@@ -58,8 +59,9 @@ NumPy, Merlion, and Matplotlib.
5859

5960
::::{info-card}
6061

61-
:::{grid-item} **Use PyCaret to train time series forecasting models**
62+
:::{grid-item}
6263
:columns: auto 9 9 9
64+
**Use PyCaret to train time series forecasting models**
6365

6466
This notebook explores the [PyCaret] framework and shows how to use it
6567
to train various time series forecasting models.
@@ -107,8 +109,9 @@ effectively.
107109

108110
::::{info-card}
109111

110-
:::{grid-item} **Analyze trend, seasonality, and fluctuations with PyCaret and CrateDB**
112+
:::{grid-item}
111113
:columns: auto 9 9 9
114+
**Analyze trend, seasonality, and fluctuations with PyCaret and CrateDB**
112115

113116
Learn how to extract data from CrateDB for analysis in PyCaret, how to
114117
further preprocess it and how to use PyCaret to plot time series
@@ -148,8 +151,9 @@ engineering and model building.
148151

149152
::::{info-card}
150153

151-
:::{grid-item} **Exploratory data analysis (EDA) with PyCaret and CrateDB**
154+
:::{grid-item}
152155
:columns: auto 9 9 9
156+
**Exploratory data analysis (EDA) with PyCaret and CrateDB**
153157

154158
Learn how to access time series data from CrateDB using SQL, and how to apply
155159
exploratory data analysis (EDA) with PyCaret.
@@ -189,8 +193,9 @@ operations.
189193

190194
::::{info-card}
191195

192-
:::{grid-item} **Analyzing Device Readings with Metadata Integration**
196+
:::{grid-item}
193197
:columns: auto 9 9 9
198+
**Analyzing Device Readings with Metadata Integration**
194199

195200
This tutorial illustrates how to augment time series data with metadata, in
196201
order to enable more comprehensive analysis. It uses a time series dataset that
@@ -220,8 +225,9 @@ CrateDB offers enhanced features for analysing time series data.
220225

221226
::::{info-card}
222227

223-
:::{grid-item} **Analyzing Weather Data**
228+
:::{grid-item}
224229
:columns: 9
230+
**Analyzing Weather Data**
225231

226232
Run aggregations with gap filling / interpolation, using common
227233
table expressions (CTEs) and LAG / LEAD window functions.

docs/domain/timeseries/longterm.md

Lines changed: 10 additions & 5 deletions
Original file line numberDiff line numberDiff line change
@@ -13,8 +13,9 @@ and insightful analysis, even considering historic data records.
1313

1414
::::{info-card}
1515

16-
:::{grid-item} **Optimizing storage for historic time series data**
16+
:::{grid-item}
1717
:columns: auto 9 9 9
18+
**Optimizing storage for historic time series data**
1819

1920
This tutorial illustrates how to reduce table storage size by 80%,
2021
by using arrays for time-based bucketing, a historical table having
@@ -36,8 +37,9 @@ a dedicated layout, and querying using the UNNEST table function.
3637

3738
::::{info-card}
3839

39-
:::{grid-item} **Notebook: How to Build Time Series Applications with CrateDB**
40+
:::{grid-item}
4041
:columns: auto 9 9 9
42+
**Notebook: How to Build Time Series Applications with CrateDB**
4143

4244
This notebook illustrates how to import and work with time series data in CrateDB.
4345
It uses Dask to import data into CrateDB.
@@ -63,8 +65,9 @@ Dask is a framework to parallelize operations on pandas data frames.
6365

6466
::::{info-card}
6567

66-
:::{grid-item} **CrateDB as metrics and log data store for the long term**
68+
:::{grid-item}
6769
:columns: auto 9 9 9
70+
**CrateDB as metrics and log data store for the long term**
6871

6972
Store and analyze high volumes of system monitoring information.
7073
Read more about using CrateDB as [](#metrics-store).
@@ -82,8 +85,9 @@ Read more about using CrateDB as [](#metrics-store).
8285

8386
::::{info-card}
8487

85-
:::{grid-item} **CrateDB provides real-time analytics on raw data stored for the long term**
88+
:::{grid-item}
8689
:columns: auto 9 9 9
90+
**CrateDB provides real-time analytics on raw data stored for the long term**
8791

8892
Keep massive amounts of data ready in the hot zone for analytics purposes.
8993
Read more about using CrateDB for [](#analytics).
@@ -103,8 +107,9 @@ Read more about using CrateDB for [](#analytics).
103107

104108
::::{info-card}
105109

106-
:::{grid-item} **Storing and analyzing massive amounts of synoptic weather data**
110+
:::{grid-item}
107111
:columns: auto 8 8 8
112+
**Storing and analyzing massive amounts of synoptic weather data**
108113

109114
Wetterdienst uses CrateDB for mass storage of weather data, allowing you to
110115
query it efficiently. It provides access to data at more than ten canonical

docs/domain/timeseries/video.md

Lines changed: 13 additions & 9 deletions
Original file line numberDiff line numberDiff line change
@@ -8,8 +8,9 @@ Video tutorials about time series with CrateDB.
88

99
::::{info-card}
1010

11-
:::{grid-item} **A collection of videos about how CrateDB deals with time-series data**
11+
:::{grid-item}
1212
:columns: 9
13+
**A collection of videos about how CrateDB deals with time-series data**
1314

1415
<iframe width="560" height="315" src="https://www.youtube-nocookie.com/embed/videoseries?si=C5ayK8bqkhRYovjc&amp;list=PLDZqzXOGoWUKTZwR7zOY8s1sTvZOAa7cy" title="YouTube video player" frameborder="0" allow="accelerometer; autoplay; clipboard-write; encrypted-media; gyroscope; picture-in-picture; web-share" allowfullscreen></iframe>
1516

@@ -22,7 +23,7 @@ insights from large-scale and high-volume time-series datasets.
2223
Learn more about CrateDB and [](#timeseries).
2324
:::
2425

25-
:::{grid-item} &nbsp;
26+
:::{grid-item}
2627
:columns: 3
2728

2829
{tags-secondary}`Introduction` \
@@ -38,8 +39,9 @@ Learn more about CrateDB and [](#timeseries).
3839

3940
::::{info-card}
4041

41-
:::{grid-item} **The basics of `COPY FROM` and `COPY TO`**
42+
:::{grid-item}
4243
:columns: 9
44+
**The basics of `COPY FROM` and `COPY TO`**
4345

4446
<iframe width="560" height="315" src="https://www.youtube-nocookie.com/embed/xDypaX37XZQ?si=J0w5yG56Ld4fIXfm" title="YouTube video player" frameborder="0" allow="accelerometer; autoplay; clipboard-write; encrypted-media; gyroscope; picture-in-picture; web-share" allowfullscreen></iframe>
4547

@@ -55,7 +57,7 @@ For more information about how to import and export
5557
data from/into CrateDB, please refer to [](#import-export).
5658
:::
5759

58-
:::{grid-item} &nbsp;
60+
:::{grid-item}
5961
:columns: 3
6062

6163
{tags-secondary}`Introduction` \
@@ -72,8 +74,9 @@ data from/into CrateDB, please refer to [](#import-export).
7274

7375
::::{info-card}
7476

75-
:::{grid-item} **From raw data to fast analysis in only three steps**
77+
:::{grid-item}
7678
:columns: 9
79+
**From raw data to fast analysis in only three steps**
7780

7881
<iframe width="560" height="315" src="https://www.youtube-nocookie.com/embed/7biXPnG7dY4?si=J0w5yG56Ld4fIXfm" title="YouTube video player" frameborder="0" allow="accelerometer; autoplay; clipboard-write; encrypted-media; gyroscope; picture-in-picture; web-share" allowfullscreen></iframe>
7982

@@ -91,7 +94,7 @@ Our speakers will also show you how to find the right sharding and partitioning
9194
strategy for your time series data in CrateDB.
9295
:::
9396

94-
:::{grid-item} &nbsp;
97+
:::{grid-item}
9598
:columns: 3
9699

97100
{tags-secondary}`Extensive` \
@@ -110,16 +113,17 @@ strategy for your time series data in CrateDB.
110113

111114
::::{info-card}
112115

113-
:::{grid-item} **Real-time analytics on raw tracking data**
116+
:::{grid-item}
114117
:columns: 9
118+
**Real-time analytics on raw tracking data**
115119

116120
Learn how Bitmovin leverages CrateDB to support real-time analytics on
117121
top of tracking data from their video streaming broadcasting system.
118122

119123
- [](#bitmovin)
120124
:::
121125

122-
:::{grid-item} &nbsp;
126+
:::{grid-item}
123127
:columns: 3
124128

125129
{tags-secondary}`Extensive` \
@@ -152,7 +156,7 @@ world.
152156
- [](#tgw)
153157
:::
154158

155-
:::{grid-item} &nbsp;
159+
:::{grid-item}
156160
:columns: 3
157161

158162
{tags-secondary}`Extensive` \

0 commit comments

Comments
 (0)