Skip to content

Commit 2a790a8

Browse files
committed
Industrial Data: Add use cases with ABB and TGW
1 parent 9b04f35 commit 2a790a8

File tree

2 files changed

+115
-24
lines changed

2 files changed

+115
-24
lines changed

docs/domain/industrial/index.md

Lines changed: 106 additions & 20 deletions
Original file line numberDiff line numberDiff line change
@@ -22,18 +22,73 @@ database access interfaces like ODBC or JDBC, and a proprietary HTTP interface
2222
on top.
2323

2424

25+
(abb)=
26+
## ABB Insights
27+
28+
Advanced Analytics Platform for Industrial Data.
29+
30+
:Industry:
31+
{tags-secondary}`Engineering` {tags-secondary}`Manufacturing`
32+
{tags-secondary}`Production`
33+
34+
:Tags:
35+
{tags-primary}`SCADA` {tags-primary}`MDE` {tags-primary}`PLC`
36+
{tags-primary}`Data Historian` {tags-primary}`Industrial IoT`
37+
{tags-primary}`Multi Tenancy` {tags-primary}`Platform`
38+
39+
40+
::::{info-card}
41+
42+
:::{grid-item}
43+
:columns: 8
44+
45+
{material-outlined}`analytics;2em`   **ABB Genix: Advanced Analytics Platform**
46+
47+
Learn how ABB recommends tangible actions to optimize operations and increase
48+
asset availability in industrial use cases by analyzing vast amounts of data
49+
in real time with CrateDB.
50+
51+
- [ABB: AI and Analytics applied to Industrial Data]
52+
53+
ABB Ability™ Genix Industrial Analytics and AI Suite is an advanced analytics
54+
platform and application portfolio that unlocks value from industrial data and
55+
drives better business results.
56+
57+
With high scalability and easy integration, CrateDB is a strategic database
58+
component of ABB Ability™ Genix across industries.
59+
:::
60+
61+
:::{grid-item}  
62+
:columns: 4
63+
64+
<iframe width="240" src="https://www.youtube-nocookie.com/embed/45fZYJLh2Qg?si=J0w5yG56Ld4fIXfm" title="YouTube video player" frameborder="0" allow="accelerometer; autoplay; clipboard-write; encrypted-media; gyroscope; picture-in-picture; web-share" allowfullscreen></iframe>
65+
66+
**Date:** 23 May 2023 \
67+
**Speakers:** Marko Sommarberg, Christian Lutz
68+
:::
69+
70+
::::
71+
72+
2573
(rauch)=
2674
## Rauch Insights
2775

76+
Scaling a high-speed production environment with CrateDB.
77+
78+
:Industry:
79+
{tags-secondary}`Food` {tags-secondary}`Packaging` {tags-secondary}`Production`
80+
81+
:Tags:
82+
{tags-primary}`SCADA` {tags-primary}`MDE` {tags-primary}`PLC`
83+
{tags-primary}`Data Historian` {tags-primary}`Industrial IoT`
84+
2885
::::{info-card}
2986

3087
:::{grid-item}
3188
:columns: 8
3289

3390
{material-outlined}`data_exploration;2em` &nbsp; **Rauch: High-Speed Production Lines**
3491

35-
_Scaling a high-speed production environment with CrateDB._
36-
3792
Rauch is filling 33 cans per second and how that adds up to 400 data records
3893
per second which are being processed, stored, and analyzed. In total, they are
3994
within the range of one to ten billion records persisted in CrateDB.
@@ -44,9 +99,6 @@ The use-case of Rauch demonstrates why traditional databases weren't capable to
4499
deal with so many data records and unstructured data. The benefits of CrateDB
45100
made Rauch choose it over other databases, such as PostgreSQL compatibility,
46101
the support for unstructured data, and its excellent customer support.
47-
48-
:Industry: {tags-secondary}`Food` {tags-secondary}`Packaging` {tags-secondary}`Production`
49-
:Tags: {tags-primary}`SCADA` {tags-primary}`MDE` {tags-primary}`Data Historian` {tags-primary}`Industrial IoT` {tags-primary}`PLC`
50102
:::
51103

52104
:::{grid-item} &nbsp;
@@ -64,6 +116,52 @@ the support for unstructured data, and its excellent customer support.
64116
(tgw)=
65117
## TGW Insights
66118

119+
Today's warehouses are complex systems with a very high degree of automation.
120+
121+
:Industry:
122+
{tags-secondary}`Logistics` {tags-secondary}`Shipping`
123+
124+
:Tags:
125+
{tags-primary}`SCADA` {tags-primary}`MDE` {tags-primary}`PLC`
126+
{tags-primary}`Data Historian` {tags-primary}`Industrial IoT`
127+
{tags-primary}`Digital Twin`
128+
129+
::::{info-card}
130+
131+
:::{grid-item}
132+
:columns: 8
133+
134+
{material-outlined}`hub;2em` &nbsp; **TGW: Connected Warehouses**
135+
136+
_CrateDB's support for unstructured data, its fast query engine,
137+
scalability, and excellent support, is unparalleled._
138+
139+
TGW Logistics Group implements advanced analytics for automated warehouses
140+
they are operating across the globe for customers like Amazon, Coop, and
141+
Zalando. Their systems collect a vast amount of data, apply AI to them,
142+
and support all kinds of data-driven applications.
143+
144+
- [TGW: Connected Warehouses]
145+
146+
TGW removed data silos with all different kinds of data formats, data
147+
structures from PLCs, databases, sensor information, etc.
148+
149+
NoSQL databases weren't a sustainable solution for their use case. On the
150+
migration path, it was easy to start with CrateDB, and now it is at the
151+
heart of everything they are doing, and gives them peace of mind.
152+
:::
153+
154+
:::{grid-item} &nbsp;
155+
:columns: 4
156+
157+
<iframe width="240" src="https://www.youtube-nocookie.com/embed/X2o0-W8-mCM?si=J0w5yG56Ld4fIXfm" title="YouTube video player" frameborder="0" allow="accelerometer; autoplay; clipboard-write; encrypted-media; gyroscope; picture-in-picture; web-share" allowfullscreen></iframe>
158+
159+
**Date:** 20 Mar 2023 \
160+
**Speaker:** Alexander Mann
161+
:::
162+
163+
::::
164+
67165

68166
::::{info-card}
69167

@@ -75,8 +173,6 @@ the support for unstructured data, and its excellent customer support.
75173
_Storing, querying, and analyzing industrial IoT data and metadata without
76174
much hassle._
77175

78-
Today's warehouses are complex systems with a very high degree of automation.
79-
80176
TGW Logistics Group implements key factors to the successful operation of these
81177
warehouses, by having a holistic view on the entire system acquiring data from
82178
various components like sensors, PLCs, embedded controllers, and software
@@ -91,9 +187,6 @@ information in various data structures and different ways to access it.
91187
After trying multiple database systems, TGW Logistics moved to CrateDB for
92188
its ability to aggregate different data formats and the ability to query this
93189
information without further ado.
94-
95-
:Industry: {tags-secondary}`Logistics` {tags-secondary}`Shipping`
96-
:Tags: {tags-primary}`SCADA` {tags-primary}`MDE` {tags-primary}`Data Historian` {tags-primary}`Industrial IoT` {tags-primary}`PLC`
97190
:::
98191

99192
:::{grid-item} &nbsp;
@@ -139,19 +232,11 @@ high variety, unstructured features, and at different data frequencies.
139232
- Real-World Applications: Exploration of actual customer use cases to
140233
illustrate how CrateDB can be applied in various industrial scenarios.
141234

142-
:Industry: {tags-secondary}`Logistics` {tags-secondary}`Shipping`
143-
:Tags: {tags-primary}`Data Historian` {tags-primary}`Industrial IoT` {tags-primary}`Digital Twin`
144235
:::
145236

146237
:::{grid-item} &nbsp;
147238
:columns: 4
148239

149-
<iframe width="240" class="speakerdeck-iframe" style="border: 0px; background: rgba(0, 0, 0, 0.1) padding-box; margin: 0px; padding: 0px; border-radius: 6px; box-shadow: rgba(0, 0, 0, 0.2) 0px 5px 40px; width: 100%; height: auto; aspect-ratio: 560 / 315;" frameborder="0" src="https://speakerdeck.com/player/acb78531a07e4238ac662539b0c23609" title=" Not all time-series are equal ​ Challenges of storing and analyzing industrial data" allowfullscreen="true" data-ratio="1.7777777777777777"></iframe>
150-
151-
**Date:** 23 Nov 2022 \
152-
**Speaker:** Marija Selakovic
153-
154-
155240
<iframe width="240" src="https://www.youtube-nocookie.com/embed/ugQvihToY0k?si=J0w5yG56Ld4fIXfm" title="YouTube video player" frameborder="0" allow="accelerometer; autoplay; clipboard-write; encrypted-media; gyroscope; picture-in-picture; web-share" allowfullscreen></iframe>
156241

157242
**Date:** 5 Oct 2023 \
@@ -162,8 +247,9 @@ high variety, unstructured features, and at different data frequencies.
162247

163248

164249

165-
250+
[ABB: AI and Analytics applied to Industrial Data]: https://youtu.be/45fZYJLh2Qg?feature=shared
166251
[CrateDB: Challenges in industrial data]: https://speakerdeck.com/cratedb/not-all-time-series-are-equal-challenges-of-storing-and-analyzing-industrial-data
167252
[Rauch: High-Speed Production Lines]: https://youtu.be/gJPmJ0uXeVs?feature=shared
168-
[TGW: Fixing data silos in a high-speed logistics environment]: https://youtu.be/6dgjVQJtSKI?feature=shared
253+
[TGW: Connected Warehouses]: https://youtu.be/X2o0-W8-mCM?feature=shared
254+
[TGW: Fixing data silos in a high-speed logistics environment]: https://youtu.be/6dgjVQJtSKI?feature=shared
169255
[TGW: Storing and analyzing real-world industrial data]: https://youtu.be/ugQvihToY0k?feature=shared

docs/domain/timeseries/video.md

Lines changed: 9 additions & 4 deletions
Original file line numberDiff line numberDiff line change
@@ -140,11 +140,14 @@ Georg Traar
140140

141141
::::{info-card}
142142

143-
:::{grid-item} **High-Speed Production Lines and Logistics**
143+
:::{grid-item}
144144
:columns: 9
145145

146-
Learn how Rauch and TGW leverage CrateDB to support high-speed shop-floor
147-
production lines and logistics databases for warehouses around the world.
146+
**Industrial Analytics Platform, High-Speed Production Lines, and Logistics**
147+
148+
Learn how ABB, Rauch, and TGW leverage CrateDB to support their application
149+
platforms, high-speed shop-floor production lines, and logistics databases
150+
for warehouses around the world.
148151

149152
- [](#rauch)
150153
- [](#tgw)
@@ -160,8 +163,10 @@ production lines and logistics databases for warehouses around the world.
160163

161164
Alexander Mann, \
162165
Arno Breuss, \
166+
Christian Lutz, \
163167
Georg Traar, \
164-
Jan Weber
168+
Jan Weber, \
169+
Marko Sommarberg
165170
:::
166171

167172
::::

0 commit comments

Comments
 (0)