@@ -22,18 +22,73 @@ database access interfaces like ODBC or JDBC, and a proprietary HTTP interface
2222on top.
2323
2424
25+ (abb)=
26+ ## ABB Insights
27+
28+ Advanced Analytics Platform for Industrial Data.
29+
30+ :Industry:
31+ {tags-secondary}` Engineering ` {tags-secondary}` Manufacturing `
32+ {tags-secondary}` Production `
33+
34+ :Tags:
35+ {tags-primary}` SCADA ` {tags-primary}` MDE ` {tags-primary}` PLC `
36+ {tags-primary}` Data Historian ` {tags-primary}` Industrial IoT `
37+ {tags-primary}` Multi Tenancy ` {tags-primary}` Platform `
38+
39+
40+ ::::{info-card}
41+
42+ :::{grid-item}
43+ :columns: 8
44+
45+ {material-outlined}` analytics;2em `   ; ** ABB Genix: Advanced Analytics Platform**
46+
47+ Learn how ABB recommends tangible actions to optimize operations and increase
48+ asset availability in industrial use cases by analyzing vast amounts of data
49+ in real time with CrateDB.
50+
51+ - [ ABB: AI and Analytics applied to Industrial Data]
52+
53+ ABB Ability™ Genix Industrial Analytics and AI Suite is an advanced analytics
54+ platform and application portfolio that unlocks value from industrial data and
55+ drives better business results.
56+
57+ With high scalability and easy integration, CrateDB is a strategic database
58+ component of ABB Ability™ Genix across industries.
59+ :::
60+
61+ :::{grid-item}   ;
62+ :columns: 4
63+
64+ <iframe width =" 240 " src =" https://www.youtube-nocookie.com/embed/45fZYJLh2Qg?si=J0w5yG56Ld4fIXfm " title =" YouTube video player " frameborder =" 0 " allow =" accelerometer; autoplay; clipboard-write; encrypted-media; gyroscope; picture-in-picture; web-share " allowfullscreen ></iframe >
65+
66+ ** Date:** 23 May 2023 \
67+ ** Speakers:** Marko Sommarberg, Christian Lutz
68+ :::
69+
70+ ::::
71+
72+
2573(rauch)=
2674## Rauch Insights
2775
76+ Scaling a high-speed production environment with CrateDB.
77+
78+ :Industry:
79+ {tags-secondary}` Food ` {tags-secondary}` Packaging ` {tags-secondary}` Production `
80+
81+ :Tags:
82+ {tags-primary}` SCADA ` {tags-primary}` MDE ` {tags-primary}` PLC `
83+ {tags-primary}` Data Historian ` {tags-primary}` Industrial IoT `
84+
2885::::{info-card}
2986
3087:::{grid-item}
3188:columns: 8
3289
3390{material-outlined}` data_exploration;2em `   ; ** Rauch: High-Speed Production Lines**
3491
35- _ Scaling a high-speed production environment with CrateDB._
36-
3792Rauch is filling 33 cans per second and how that adds up to 400 data records
3893per second which are being processed, stored, and analyzed. In total, they are
3994within the range of one to ten billion records persisted in CrateDB.
@@ -44,9 +99,6 @@ The use-case of Rauch demonstrates why traditional databases weren't capable to
4499deal with so many data records and unstructured data. The benefits of CrateDB
45100made Rauch choose it over other databases, such as PostgreSQL compatibility,
46101the support for unstructured data, and its excellent customer support.
47-
48- :Industry: {tags-secondary}` Food ` {tags-secondary}` Packaging ` {tags-secondary}` Production `
49- :Tags: {tags-primary}` SCADA ` {tags-primary}` MDE ` {tags-primary}` Data Historian ` {tags-primary}` Industrial IoT ` {tags-primary}` PLC `
50102:::
51103
52104:::{grid-item}   ;
@@ -64,6 +116,52 @@ the support for unstructured data, and its excellent customer support.
64116(tgw)=
65117## TGW Insights
66118
119+ Today's warehouses are complex systems with a very high degree of automation.
120+
121+ :Industry:
122+ {tags-secondary}` Logistics ` {tags-secondary}` Shipping `
123+
124+ :Tags:
125+ {tags-primary}` SCADA ` {tags-primary}` MDE ` {tags-primary}` PLC `
126+ {tags-primary}` Data Historian ` {tags-primary}` Industrial IoT `
127+ {tags-primary}` Digital Twin `
128+
129+ ::::{info-card}
130+
131+ :::{grid-item}
132+ :columns: 8
133+
134+ {material-outlined}` hub;2em `   ; ** TGW: Connected Warehouses**
135+
136+ _ CrateDB's support for unstructured data, its fast query engine,
137+ scalability, and excellent support, is unparalleled._
138+
139+ TGW Logistics Group implements advanced analytics for automated warehouses
140+ they are operating across the globe for customers like Amazon, Coop, and
141+ Zalando. Their systems collect a vast amount of data, apply AI to them,
142+ and support all kinds of data-driven applications.
143+
144+ - [ TGW: Connected Warehouses]
145+
146+ TGW removed data silos with all different kinds of data formats, data
147+ structures from PLCs, databases, sensor information, etc.
148+
149+ NoSQL databases weren't a sustainable solution for their use case. On the
150+ migration path, it was easy to start with CrateDB, and now it is at the
151+ heart of everything they are doing, and gives them peace of mind.
152+ :::
153+
154+ :::{grid-item}   ;
155+ :columns: 4
156+
157+ <iframe width =" 240 " src =" https://www.youtube-nocookie.com/embed/X2o0-W8-mCM?si=J0w5yG56Ld4fIXfm " title =" YouTube video player " frameborder =" 0 " allow =" accelerometer; autoplay; clipboard-write; encrypted-media; gyroscope; picture-in-picture; web-share " allowfullscreen ></iframe >
158+
159+ ** Date:** 20 Mar 2023 \
160+ ** Speaker:** Alexander Mann
161+ :::
162+
163+ ::::
164+
67165
68166::::{info-card}
69167
@@ -75,8 +173,6 @@ the support for unstructured data, and its excellent customer support.
75173_ Storing, querying, and analyzing industrial IoT data and metadata without
76174much hassle._
77175
78- Today's warehouses are complex systems with a very high degree of automation.
79-
80176TGW Logistics Group implements key factors to the successful operation of these
81177warehouses, by having a holistic view on the entire system acquiring data from
82178various components like sensors, PLCs, embedded controllers, and software
@@ -91,9 +187,6 @@ information in various data structures and different ways to access it.
91187After trying multiple database systems, TGW Logistics moved to CrateDB for
92188its ability to aggregate different data formats and the ability to query this
93189information without further ado.
94-
95- :Industry: {tags-secondary}` Logistics ` {tags-secondary}` Shipping `
96- :Tags: {tags-primary}` SCADA ` {tags-primary}` MDE ` {tags-primary}` Data Historian ` {tags-primary}` Industrial IoT ` {tags-primary}` PLC `
97190:::
98191
99192:::{grid-item}   ;
@@ -139,19 +232,11 @@ high variety, unstructured features, and at different data frequencies.
139232- Real-World Applications: Exploration of actual customer use cases to
140233 illustrate how CrateDB can be applied in various industrial scenarios.
141234
142- :Industry: {tags-secondary}` Logistics ` {tags-secondary}` Shipping `
143- :Tags: {tags-primary}` Data Historian ` {tags-primary}` Industrial IoT ` {tags-primary}` Digital Twin `
144235:::
145236
146237:::{grid-item}   ;
147238:columns: 4
148239
149- <iframe width =" 240 " class =" speakerdeck-iframe " style =" border : 0px ; background : rgba (0 , 0 , 0 , 0.1 ) padding-box ; margin : 0px ; padding : 0px ; border-radius : 6px ; box-shadow : rgba (0 , 0 , 0 , 0.2 ) 0px 5px 40px ; width : 100% ; height : auto ; aspect-ratio : 560 / 315 ;" frameborder =" 0 " src =" https://speakerdeck.com/player/acb78531a07e4238ac662539b0c23609 " title =" Not all time-series are equal Challenges of storing and analyzing industrial data " allowfullscreen =" true " data-ratio =" 1.7777777777777777 " ></iframe >
150-
151- ** Date:** 23 Nov 2022 \
152- ** Speaker:** Marija Selakovic
153-
154-
155240<iframe width =" 240 " src =" https://www.youtube-nocookie.com/embed/ugQvihToY0k?si=J0w5yG56Ld4fIXfm " title =" YouTube video player " frameborder =" 0 " allow =" accelerometer; autoplay; clipboard-write; encrypted-media; gyroscope; picture-in-picture; web-share " allowfullscreen ></iframe >
156241
157242** Date:** 5 Oct 2023 \
@@ -162,8 +247,9 @@ high variety, unstructured features, and at different data frequencies.
162247
163248
164249
165-
250+ [ ABB: AI and Analytics applied to Industrial Data ] : https://youtu.be/45fZYJLh2Qg?feature=shared
166251[ CrateDB: Challenges in industrial data ] : https://speakerdeck.com/cratedb/not-all-time-series-are-equal-challenges-of-storing-and-analyzing-industrial-data
167252[ Rauch: High-Speed Production Lines ] : https://youtu.be/gJPmJ0uXeVs?feature=shared
168- [ TGW: Fixing data silos in a high-speed logistics environment ] : https://youtu.be/6dgjVQJtSKI?feature=shared
253+ [ TGW: Connected Warehouses ] : https://youtu.be/X2o0-W8-mCM?feature=shared
254+ [ TGW: Fixing data silos in a high-speed logistics environment ] : https://youtu.be/6dgjVQJtSKI?feature=shared
169255[ TGW: Storing and analyzing real-world industrial data ] : https://youtu.be/ugQvihToY0k?feature=shared
0 commit comments