@@ -31,40 +31,40 @@ def run(self):
3131 metric2_cutoffs=[2.], category='All')
3232 """
3333 for c in self .class_names :
34- # super().compute_and_plot_overall(c, category='All')
35- # super().compute_and_plot_overall(c, category='True Positive')
36- #
37- # # Plotting the results based on the selection of dense parameters
38- # for s in SharedResources.getInstance().studies_selections_dense:
39- # parsing = s.split(',')
40- # metric1 = parsing[0]
41- # metric2 = parsing[1]
42- # if parsing[2] != '':
43- # metric2_cutoff = [float(x) for x in parsing[2].split('-')]
44- # else:
45- # metric2_cutoff = None
46- # category = parsing[3]
47- # self.compute_and_plot_metric_over_metric_categories(class_name=c, metric1=metric1, metric2=metric2,
48- # metric2_cutoffs=metric2_cutoff, category=category)
49- #
50- # # Plotting the results based on the selection of categorical parameters
51- # for s in SharedResources.getInstance().studies_selections_categorical:
52- # parsing = s.split(',')
53- # metric1 = parsing[0].strip()
54- # metric2 = parsing[1].strip()
55- # if parsing[2].strip() != '':
56- # metric2_cutoff = [x for x in parsing[2].split('-')]
57- # else:
58- # metric2_cutoff = None
59- # category = parsing[3].strip()
60- # self.compute_and_plot_categorical_metric_over_metric_categories(class_name=c, metric1=metric1,
61- # metric2=metric2,
62- # metric2_cutoffs=metric2_cutoff,
63- # category=category)
64- #
65- # # Correlation matrix between all metrics
66- # super().compute_and_plot_metrics_correlation_matrix(class_name=c, category='All')
67- # super().compute_and_plot_metrics_correlation_matrix(class_name=c, category='True Positive')
34+ super ().compute_and_plot_overall (c , category = 'All' )
35+ super ().compute_and_plot_overall (c , category = 'True Positive' )
36+
37+ # Plotting the results based on the selection of dense parameters
38+ for s in SharedResources .getInstance ().studies_selections_dense :
39+ parsing = s .split (',' )
40+ metric1 = parsing [0 ]
41+ metric2 = parsing [1 ]
42+ if parsing [2 ] != '' :
43+ metric2_cutoff = [float (x ) for x in parsing [2 ].split ('-' )]
44+ else :
45+ metric2_cutoff = None
46+ category = parsing [3 ]
47+ self .compute_and_plot_metric_over_metric_categories (class_name = c , metric1 = metric1 , metric2 = metric2 ,
48+ metric2_cutoffs = metric2_cutoff , category = category )
49+
50+ # Plotting the results based on the selection of categorical parameters
51+ for s in SharedResources .getInstance ().studies_selections_categorical :
52+ parsing = s .split (',' )
53+ metric1 = parsing [0 ].strip ()
54+ metric2 = parsing [1 ].strip ()
55+ if parsing [2 ].strip () != '' :
56+ metric2_cutoff = [x for x in parsing [2 ].split ('-' )]
57+ else :
58+ metric2_cutoff = None
59+ category = parsing [3 ].strip ()
60+ self .compute_and_plot_categorical_metric_over_metric_categories (class_name = c , metric1 = metric1 ,
61+ metric2 = metric2 ,
62+ metric2_cutoffs = metric2_cutoff ,
63+ category = category )
64+
65+ # Correlation matrix between all metrics
66+ super ().compute_and_plot_metrics_correlation_matrix (class_name = c , category = 'All' )
67+ super ().compute_and_plot_metrics_correlation_matrix (class_name = c , category = 'True Positive' )
6868
6969 # Cascading results based on a combination of the selected dense/categorical parameters
7070 self .compute_and_plot_metric_over_metric_cascading_categories (class_name = c , category = 'All' )
0 commit comments