Skip to content

Commit e95b2e0

Browse files
author
Saumya Saksena
committed
Add stats
1 parent cc70548 commit e95b2e0

File tree

1 file changed

+43
-12
lines changed

1 file changed

+43
-12
lines changed

QUICKSTART.md

Lines changed: 43 additions & 12 deletions
Original file line numberDiff line numberDiff line change
@@ -28,24 +28,31 @@ python -m tello_vision.app
2828
## First Steps
2929

3030
### 1. Test Detection Without Drone
31+
3132
Good for verifying everything works:
33+
3234
```bash
3335
python examples/test_detector.py --source 0 # Webcam
3436
```
3537

3638
### 2. Benchmark Your Setup
39+
3740
See what FPS you can get:
41+
3842
```bash
3943
python examples/benchmark.py
4044
```
4145

4246
### 3. Full Drone Mode
47+
4348
With Tello connected:
49+
4450
```bash
4551
python -m tello_vision.app
4652
```
4753

4854
Controls:
55+
4956
- **Tab**: Takeoff
5057
- **W/A/S/D**: Move
5158
- **Space/Shift**: Up/Down
@@ -60,29 +67,33 @@ Controls:
6067
Edit `config.yaml`:
6168

6269
**Want faster FPS?** Use smaller model:
70+
6371
```yaml
6472
detector:
6573
yolov8:
66-
model: "yolov8n-seg.pt" # n=nano (fastest)
74+
model: "yolov8n-seg.pt" # n=nano (fastest)
6775
```
6876
6977
**Only track people?**
78+
7079
```yaml
7180
detector:
7281
target_classes: ["person"]
7382
```
7483
7584
**Adjust visualization:**
85+
7686
```yaml
7787
visualization:
78-
mask_alpha: 0.4 # Mask transparency
88+
mask_alpha: 0.4 # Mask transparency
7989
show_confidence: true
8090
```
8191
8292
**Performance tuning:**
93+
8394
```yaml
8495
processing:
85-
frame_skip: 1 # Process every 2nd frame (doubles FPS)
96+
frame_skip: 1 # Process every 2nd frame (doubles FPS)
8697
```
8798
8899
## Project Structure
@@ -131,8 +142,9 @@ This demonstrates reactive control suitable for autonomous vehicles.
131142
## For Self-Driving Car Work
132143

133144
This gives you:
145+
134146
- Real-time object detection pipeline
135-
- Target tracking framework
147+
- Target tracking framework
136148
- Reactive control examples
137149
- Extensible architecture for adding SLAM, planning, etc.
138150

@@ -145,19 +157,38 @@ Check `examples/object_follower.py` for autonomous navigation basics.
145157
3. **Modify config.yaml** - Tune for your use case
146158
4. **Extend** - Add your own detectors/controllers
147159

148-
## Performance Reference
160+
## Performance Reference - NVIDIA RTX 500 Ada Generation Laptop GPU
161+
162+
| Model | Size | FPS | Avg (ms) | Std (ms) | Min (ms) | Max (ms) | Notes |
163+
| ------------------ | ------ | ----- | -------- | -------- | -------- | -------- | ------------------- |
164+
| YOLOv8n-seg | Nano | 207.8 | 4.8 | 0.4 | 4.4 | 8.2 | Fastest model |
165+
| YOLOv8s-seg | Small | 120.2 | 8.3 | 0.1 | 8.2 | 9.1 | Most stable latency |
166+
| YOLOv8m-seg | Medium | 53.2 | 18.8 | 0.5 | 16.4 | 19.6 | Balanced trade-off |
167+
| Detectron2 R50-FPN | Large | 9.7 | 102.7 | 0.8 | 101.2 | 107.5 | Slow but accurate |
168+
169+
---
170+
171+
## Performance Reference Across GPUs
172+
173+
| GPU | Model | FPS Range |
174+
| ----------- | ------- | --------- |
175+
| RTX 3060 | YOLOv8n | 25–30 |
176+
| RTX 3060 | YOLOv8s | 18–22 |
177+
| GTX 1050 Ti | YOLOv8n | 18–22 |
178+
| CPU | YOLOv8n | 2–3 |
179+
180+
---
181+
182+
**Summary:**
149183

150-
| GPU | Model | FPS |
151-
|-----|-------|-----|
152-
| RTX 3060 | YOLOv8n | 25-30 |
153-
| RTX 3060 | YOLOv8s | 18-22 |
154-
| 1050 Ti | YOLOv8n | 18-22 |
155-
| CPU | YOLOv8n | 2-3 |
184+
- **Fastest model:** YOLOv8n-seg (Nano) — 207.8 FPS
185+
- **Most stable latency:** YOLOv8s-seg (Small) — ±0.1 ms
186+
- **Performance leap:** RTX 500 Ada delivers **~7–8× speedup** over RTX 3060 for YOLOv8n.
156187

157188
## Files to Know
158189

159190
- **config.yaml** - All settings
160-
- **tello_vision/app.py** - Main application
191+
- **tello_vision/app.py** - Main application
161192
- **tello_vision/detectors/base_detector.py** - Add custom models here
162193
- **examples/object_follower.py** - Autonomous control reference
163194

0 commit comments

Comments
 (0)