@@ -28,24 +28,31 @@ python -m tello_vision.app
2828## First Steps
2929
3030### 1. Test Detection Without Drone
31+
3132Good for verifying everything works:
33+
3234``` bash
3335python examples/test_detector.py --source 0 # Webcam
3436```
3537
3638### 2. Benchmark Your Setup
39+
3740See what FPS you can get:
41+
3842``` bash
3943python examples/benchmark.py
4044```
4145
4246### 3. Full Drone Mode
47+
4348With Tello connected:
49+
4450``` bash
4551python -m tello_vision.app
4652```
4753
4854Controls:
55+
4956- ** Tab** : Takeoff
5057- ** W/A/S/D** : Move
5158- ** Space/Shift** : Up/Down
@@ -60,29 +67,33 @@ Controls:
6067Edit ` config.yaml ` :
6168
6269** Want faster FPS?** Use smaller model:
70+
6371``` yaml
6472detector :
6573 yolov8 :
66- model : " yolov8n-seg.pt" # n=nano (fastest)
74+ model : " yolov8n-seg.pt" # n=nano (fastest)
6775` ` `
6876
6977**Only track people?**
78+
7079` ` ` yaml
7180detector :
7281 target_classes : ["person"]
7382` ` `
7483
7584**Adjust visualization:**
85+
7686` ` ` yaml
7787visualization :
78- mask_alpha : 0.4 # Mask transparency
88+ mask_alpha : 0.4 # Mask transparency
7989 show_confidence : true
8090` ` `
8191
8292**Performance tuning:**
93+
8394` ` ` yaml
8495processing :
85- frame_skip : 1 # Process every 2nd frame (doubles FPS)
96+ frame_skip : 1 # Process every 2nd frame (doubles FPS)
8697` ` `
8798
8899## Project Structure
@@ -131,8 +142,9 @@ This demonstrates reactive control suitable for autonomous vehicles.
131142## For Self-Driving Car Work
132143
133144This gives you:
145+
134146- Real-time object detection pipeline
135- - Target tracking framework
147+ - Target tracking framework
136148- Reactive control examples
137149- Extensible architecture for adding SLAM, planning, etc.
138150
@@ -145,19 +157,38 @@ Check `examples/object_follower.py` for autonomous navigation basics.
1451573 . ** Modify config.yaml** - Tune for your use case
1461584 . ** Extend** - Add your own detectors/controllers
147159
148- ## Performance Reference
160+ ## Performance Reference - NVIDIA RTX 500 Ada Generation Laptop GPU
161+
162+ | Model | Size | FPS | Avg (ms) | Std (ms) | Min (ms) | Max (ms) | Notes |
163+ | ------------------ | ------ | ----- | -------- | -------- | -------- | -------- | ------------------- |
164+ | YOLOv8n-seg | Nano | 207.8 | 4.8 | 0.4 | 4.4 | 8.2 | Fastest model |
165+ | YOLOv8s-seg | Small | 120.2 | 8.3 | 0.1 | 8.2 | 9.1 | Most stable latency |
166+ | YOLOv8m-seg | Medium | 53.2 | 18.8 | 0.5 | 16.4 | 19.6 | Balanced trade-off |
167+ | Detectron2 R50-FPN | Large | 9.7 | 102.7 | 0.8 | 101.2 | 107.5 | Slow but accurate |
168+
169+ ---
170+
171+ ## Performance Reference Across GPUs
172+
173+ | GPU | Model | FPS Range |
174+ | ----------- | ------- | --------- |
175+ | RTX 3060 | YOLOv8n | 25–30 |
176+ | RTX 3060 | YOLOv8s | 18–22 |
177+ | GTX 1050 Ti | YOLOv8n | 18–22 |
178+ | CPU | YOLOv8n | 2–3 |
179+
180+ ---
181+
182+ ** Summary:**
149183
150- | GPU | Model | FPS |
151- | -----| -------| -----|
152- | RTX 3060 | YOLOv8n | 25-30 |
153- | RTX 3060 | YOLOv8s | 18-22 |
154- | 1050 Ti | YOLOv8n | 18-22 |
155- | CPU | YOLOv8n | 2-3 |
184+ - ** Fastest model:** YOLOv8n-seg (Nano) — 207.8 FPS
185+ - ** Most stable latency:** YOLOv8s-seg (Small) — ±0.1 ms
186+ - ** Performance leap:** RTX 500 Ada delivers ** ~ 7–8× speedup** over RTX 3060 for YOLOv8n.
156187
157188## Files to Know
158189
159190- ** config.yaml** - All settings
160- - ** tello_vision/app.py** - Main application
191+ - ** tello_vision/app.py** - Main application
161192- ** tello_vision/detectors/base_detector.py** - Add custom models here
162193- ** examples/object_follower.py** - Autonomous control reference
163194
0 commit comments