|
1 | | -"""Strain analysis methods of structural mechanics. |
| 1 | +"""Calculate fundamental strain metrics and invariants. |
2 | 2 |
|
3 | | -A group of methods evaluating equivalent strain based on full-tensor input. |
| 3 | +These functions provide principal strains, hydrostatic strain, von Mises equivalent |
| 4 | +strain, and invariants of the strain tensor. They are essential for strength, fatigue, |
| 5 | +and fracture analyses under both uniaxial and multiaxial loading conditions. |
| 6 | +
|
| 7 | +Conventions: |
| 8 | +- Vectors use Voigt notation with shape (..., 6), where the last dimension |
| 9 | + contains the six Voigt components and leading dimensions are preserved: |
| 10 | +
|
| 11 | + (ε_11, ε_22, ε_33, ε_23, ε_13, ε_12) |
| 12 | + (ε_xx, ε_yy, ε_zz, ε_yz, ε_xz, ε_xy) |
| 13 | +
|
| 14 | +- Principal strains are ordered in descending order throughout the module: |
| 15 | + ε1 ≥ ε2 ≥ ε3. |
| 16 | +- Principal directions (eigenvectors) are aligned to this ordering |
| 17 | + (columns correspond to ε1, ε2, ε3). |
4 | 18 | """ |
| 19 | + |
| 20 | +import numpy as np |
| 21 | +from numpy.typing import NDArray |
| 22 | + |
| 23 | +from fatpy.utils import voigt |
| 24 | + |
| 25 | + |
| 26 | +def calc_principal_strains_and_directions( |
| 27 | + strain_vector_voigt: NDArray[np.float64], |
| 28 | +) -> tuple[NDArray[np.float64], NDArray[np.float64]]: |
| 29 | + r"""Calculate principal strains and principal directions for each state. |
| 30 | +
|
| 31 | + ??? abstract "Math Equations" |
| 32 | + Principal strains and directions are found by solving the eigenvalue problem |
| 33 | + for the strain tensor: |
| 34 | +
|
| 35 | + $$ \varepsilon \mathbf{v} = \lambda \mathbf{v} $$ |
| 36 | +
|
| 37 | + Args: |
| 38 | + strain_vector_voigt: Array of shape (..., 6). The last dimension contains the |
| 39 | + Voigt strain components. Leading dimensions are preserved. |
| 40 | +
|
| 41 | + Returns: |
| 42 | + Tuple (eigvals, eigvecs): |
| 43 | + - eigvals: Array of shape (..., 3). Principal strains |
| 44 | + (descending: ε_1 ≥ ε_2 ≥ ε_3) with leading dimensions preserved. |
| 45 | + - eigvecs: Array of shape (..., 3, 3). Principal directions (columns are |
| 46 | + eigenvectors) aligned with eigvals in the same order. The last two |
| 47 | + dimensions are the 3x3 eigenvector matrix for each input. |
| 48 | +
|
| 49 | + Raises: |
| 50 | + ValueError: If the last dimension is not of size 6. |
| 51 | + """ |
| 52 | + voigt.check_shape(strain_vector_voigt) |
| 53 | + |
| 54 | + tensor = voigt.voigt_to_tensor(strain_vector_voigt) |
| 55 | + eigvals, eigvecs = np.linalg.eigh(tensor) |
| 56 | + sorted_indices = np.argsort(eigvals, axis=-1)[..., ::-1] |
| 57 | + eigvals_sorted = np.take_along_axis(eigvals, sorted_indices, axis=-1) |
| 58 | + eigvecs_sorted = np.take_along_axis( |
| 59 | + eigvecs, np.expand_dims(sorted_indices, axis=-2), axis=-1 |
| 60 | + ) |
| 61 | + |
| 62 | + return eigvals_sorted, eigvecs_sorted |
| 63 | + |
| 64 | + |
| 65 | +def calc_principal_strains( |
| 66 | + strain_vector_voigt: NDArray[np.float64], |
| 67 | +) -> NDArray[np.float64]: |
| 68 | + r"""Calculate principal strains for each strain state. |
| 69 | +
|
| 70 | + ??? abstract "Math Equations" |
| 71 | + Principal strains are found by solving the eigenvalue problem |
| 72 | + for the strain tensor: |
| 73 | +
|
| 74 | + $$ \varepsilon \mathbf{v} = \lambda \mathbf{v} $$ |
| 75 | +
|
| 76 | + Args: |
| 77 | + strain_vector_voigt: Array of shape (..., 6). The last dimension contains the |
| 78 | + Voigt strain components. Leading dimensions are preserved. |
| 79 | +
|
| 80 | + Returns: |
| 81 | + Array of shape (..., 3). Principal strains (descending: ε1 ≥ ε2 ≥ ε3). |
| 82 | +
|
| 83 | + Raises: |
| 84 | + ValueError: If the last dimension is not of size 6. |
| 85 | + """ |
| 86 | + voigt.check_shape(strain_vector_voigt) |
| 87 | + |
| 88 | + tensor = voigt.voigt_to_tensor(strain_vector_voigt) |
| 89 | + eigvals = np.linalg.eigvalsh(tensor) |
| 90 | + |
| 91 | + return np.sort(eigvals, axis=-1)[..., ::-1] |
| 92 | + |
| 93 | + |
| 94 | +def calc_strain_invariants( |
| 95 | + strain_vector_voigt: NDArray[np.float64], |
| 96 | +) -> NDArray[np.float64]: |
| 97 | + r"""Calculate the first, second, and third invariants for each strain state. |
| 98 | +
|
| 99 | + ??? abstract "Math Equations" |
| 100 | + $$ |
| 101 | + \begin{align*} |
| 102 | + I_1 &= tr(\varepsilon), \\ |
| 103 | + I_2 &= \tfrac{1}{2}\big(I_1^{2} - tr(\varepsilon^{2})\big), \\ |
| 104 | + I_3 &= \det(\varepsilon) |
| 105 | + \end{align*} |
| 106 | + $$ |
| 107 | +
|
| 108 | + Args: |
| 109 | + strain_vector_voigt: Array of shape (..., 6). The last dimension contains the |
| 110 | + Voigt strain components. Leading dimensions are preserved. |
| 111 | +
|
| 112 | + Returns: |
| 113 | + Array of shape (..., 3). The last dimension contains (I1, I2, I3) for |
| 114 | + each entry. |
| 115 | +
|
| 116 | + Raises: |
| 117 | + ValueError: If the last dimension is not of size 6. |
| 118 | + """ |
| 119 | + voigt.check_shape(strain_vector_voigt) |
| 120 | + |
| 121 | + tensor = voigt.voigt_to_tensor(strain_vector_voigt) |
| 122 | + invariant_1 = np.trace(tensor, axis1=-2, axis2=-1) |
| 123 | + invariant_2 = 0.5 * ( |
| 124 | + invariant_1**2 - np.trace(np.matmul(tensor, tensor), axis1=-2, axis2=-1) |
| 125 | + ) |
| 126 | + invariant_3 = np.linalg.det(tensor) |
| 127 | + |
| 128 | + return np.stack((invariant_1, invariant_2, invariant_3), axis=-1) |
| 129 | + |
| 130 | + |
| 131 | +def calc_volumetric_strain( |
| 132 | + strain_vector_voigt: NDArray[np.float64], |
| 133 | +) -> NDArray[np.float64]: |
| 134 | + r"""Calculate the volumetric (mean normal)strain for each strain state. |
| 135 | +
|
| 136 | + ??? abstract "Math Equations" |
| 137 | + $$ \varepsilon_{vol} = \frac{1}{3} \, tr(\varepsilon) = |
| 138 | + \frac{1}{3}(\varepsilon_{11} + \varepsilon_{22} + \varepsilon_{33}) |
| 139 | + $$ |
| 140 | +
|
| 141 | + Args: |
| 142 | + strain_vector_voigt: Array of shape (..., 6). The last dimension contains the |
| 143 | + Voigt strain components. Leading dimensions are preserved. |
| 144 | +
|
| 145 | + Returns: |
| 146 | + Array of shape (...). Volumetric (mean normal) strain for each input state. |
| 147 | + Tensor rank is reduced by one. |
| 148 | +
|
| 149 | + Raises: |
| 150 | + ValueError: If the last dimension is not of size 6. |
| 151 | + """ |
| 152 | + voigt.check_shape(strain_vector_voigt) |
| 153 | + |
| 154 | + return ( |
| 155 | + strain_vector_voigt[..., 0] |
| 156 | + + strain_vector_voigt[..., 1] |
| 157 | + + strain_vector_voigt[..., 2] |
| 158 | + ) / 3.0 |
| 159 | + |
| 160 | + |
| 161 | +def calc_deviatoric_strain( |
| 162 | + strain_vector_voigt: NDArray[np.float64], |
| 163 | +) -> NDArray[np.float64]: |
| 164 | + r"""Calculate the deviatoric strain for each strain state. |
| 165 | +
|
| 166 | + ??? abstract "Math Equations" |
| 167 | + The strain tensor decomposes as: |
| 168 | +
|
| 169 | + $$ \varepsilon = \varepsilon_{dev} + \varepsilon_{vol} \mathbf{I} $$ |
| 170 | +
|
| 171 | + where the deviatoric part is traceless and obtained by subtracting the |
| 172 | + volumetric part from the normal components. |
| 173 | +
|
| 174 | + $$ \varepsilon_{dev} = \varepsilon - \frac{1}{3} tr(\varepsilon) $$ |
| 175 | +
|
| 176 | + Args: |
| 177 | + strain_vector_voigt: Array of shape (..., 6). The last dimension contains the |
| 178 | + Voigt strain components. Leading dimensions are preserved. |
| 179 | +
|
| 180 | + Returns: |
| 181 | + Array of shape (..., 6). Deviatoric strain for each input state. |
| 182 | +
|
| 183 | + Raises: |
| 184 | + ValueError: If the last dimension is not of size 6. |
| 185 | + """ |
| 186 | + voigt.check_shape(strain_vector_voigt) |
| 187 | + |
| 188 | + volumetric = calc_volumetric_strain(strain_vector_voigt) |
| 189 | + deviatoric = strain_vector_voigt.copy() |
| 190 | + deviatoric[..., :3] = deviatoric[..., :3] - volumetric[..., None] |
| 191 | + |
| 192 | + return deviatoric |
| 193 | + |
| 194 | + |
| 195 | +# Von Mises functions |
| 196 | +def calc_von_mises_strain( |
| 197 | + strain_vector_voigt: NDArray[np.float64], |
| 198 | +) -> NDArray[np.float64]: |
| 199 | + r"""Von Mises equivalent strain computed directly from Voigt components. |
| 200 | +
|
| 201 | + ??? abstract "Math Equations" |
| 202 | + $$ |
| 203 | + \varepsilon_{vM} = \tfrac{\sqrt{2}}{3}\sqrt{ |
| 204 | + (\varepsilon_{11}-\varepsilon_{22})^2 |
| 205 | + +(\varepsilon_{22}-\varepsilon_{33})^2 |
| 206 | + +(\varepsilon_{33}-\varepsilon_{11})^2 |
| 207 | + + 6(\varepsilon_{12}^2+\varepsilon_{23}^2+\varepsilon_{13}^2)} |
| 208 | + $$ |
| 209 | +
|
| 210 | + Args: |
| 211 | + strain_vector_voigt: Array of shape (..., 6). The last dimension contains the |
| 212 | + Voigt strain components. Leading dimensions are preserved. |
| 213 | +
|
| 214 | + Returns: |
| 215 | + Array of shape (...). Von Mises equivalent strain for each entry. |
| 216 | + Tensor rank is reduced by one. |
| 217 | +
|
| 218 | + Raises: |
| 219 | + ValueError: If the last dimension is not of size 6. |
| 220 | + """ |
| 221 | + voigt.check_shape(strain_vector_voigt) |
| 222 | + |
| 223 | + e11 = strain_vector_voigt[..., 0] |
| 224 | + e22 = strain_vector_voigt[..., 1] |
| 225 | + e33 = strain_vector_voigt[..., 2] |
| 226 | + e23 = strain_vector_voigt[..., 3] # epsilon_23 |
| 227 | + e13 = strain_vector_voigt[..., 4] # epsilon_13 |
| 228 | + e12 = strain_vector_voigt[..., 5] # epsilon_12 |
| 229 | + return np.sqrt( |
| 230 | + (2.0 / 9.0) |
| 231 | + * ( |
| 232 | + (e11 - e22) ** 2 |
| 233 | + + (e22 - e33) ** 2 |
| 234 | + + (e33 - e11) ** 2 |
| 235 | + + 6.0 * (e12**2 + e23**2 + e13**2) |
| 236 | + ) |
| 237 | + ) |
| 238 | + |
| 239 | + |
| 240 | +def calc_signed_von_mises_by_max_abs_principal( |
| 241 | + strain_vector_voigt: NDArray[np.float64], |
| 242 | + rtol: float = 1e-5, |
| 243 | + atol: float = 1e-8, |
| 244 | +) -> NDArray[np.float64]: |
| 245 | + r"""Calculate signed von Mises equivalent strain for each strain state. |
| 246 | +
|
| 247 | + Sign is determined by average of the maximum and minimum principal strains. |
| 248 | +
|
| 249 | + ??? note "Sign Convention" |
| 250 | + The sign assignment follows these rules: |
| 251 | +
|
| 252 | + - **Positive (+)**: When (ε₁ + ε₃)/2 > 0 (tension dominant) |
| 253 | + - **Negative (-)**: When (ε₁ + ε₃)/2 < 0 (compression dominant) |
| 254 | + - **Positive (+)**: When (ε₁ + ε₃)/2 ≈ 0 (within tolerance, default fallback) |
| 255 | +
|
| 256 | + Tolerance parameters ensure numerical stability in edge cases where the |
| 257 | + determining value is very close to zero, preventing erratic sign changes |
| 258 | + that could occur due to floating-point precision limitations. |
| 259 | +
|
| 260 | + ??? abstract "Math Equations" |
| 261 | + $$ |
| 262 | + \varepsilon_{SvM} = \begin{cases} |
| 263 | + +\varepsilon_{vM} & \text{if } \frac{\varepsilon_1 + \varepsilon_3}{2} \geq 0 \\ |
| 264 | + -\varepsilon_{vM} & \text{if } \frac{\varepsilon_1 + \varepsilon_3}{2} < 0 |
| 265 | + \end{cases} |
| 266 | + $$ |
| 267 | +
|
| 268 | + Args: |
| 269 | + strain_vector_voigt: Array of shape (..., 6). The last dimension contains the |
| 270 | + Voigt strain components. Leading dimensions are preserved. |
| 271 | + rtol: Relative tolerance for comparing the average of maximum and minimum |
| 272 | + principal strain to zero. Default is 1e-5. |
| 273 | + atol: Absolute tolerance for comparing the average of maximum and minimum |
| 274 | + principal strain to zero. Default is 1e-8. |
| 275 | +
|
| 276 | + Returns: |
| 277 | + Array of shape (...). Signed von Mises equivalent strain for each entry. |
| 278 | + Tensor rank is reduced by one. |
| 279 | +
|
| 280 | + Raises: |
| 281 | + ValueError: If the last dimension is not of size 6. |
| 282 | + """ |
| 283 | + voigt.check_shape(strain_vector_voigt) |
| 284 | + |
| 285 | + von_mises = calc_von_mises_strain(strain_vector_voigt) |
| 286 | + principals = calc_principal_strains(strain_vector_voigt) |
| 287 | + |
| 288 | + avg_13 = 0.5 * (principals[..., 0] + principals[..., 2]) |
| 289 | + sign = np.sign(avg_13).astype(np.float64, copy=False) |
| 290 | + sign = np.where(np.isclose(avg_13, 0, rtol=rtol, atol=atol), 1.0, sign) |
| 291 | + |
| 292 | + return sign * von_mises |
0 commit comments