-
Notifications
You must be signed in to change notification settings - Fork 7
Description
ℹ️ General Information
Component Name: Kohout-Věchet curve
Component Location: material_laws/SN/
Suggested Python Name: wohler_kohout_vechet
FABER WG Relation: 2.1
Brief Description: Stress to life and life to stress calculation via the Kohout-Věchet curve
Priority: 9
Technical Complexity: 3
Estimated Effort: 4
Dependencies: -
Implementation Details
📋 Specification
A function implementing the Kohout-Věchet representation of an S–N curve, allowing the computation of the number of cycles (
Mathematical Formulation
Stress amplitude from life:
$$ \displaystyle \sigma_a = A\left( C\frac{N+B}{N+C} \right)^{\beta} $$
Use the Newton iterative scheme to get life (
where
and
$$ \displaystyle N^{i+1}=N^{i}-\frac{f(N^i)}{f'(N^i)}, $$
$$ \displaystyle f(N) =A\left( C\frac{N+B}{N+C} \right)^{\beta} - \sigma_a $$
$$ \displaystyle f'(N) =A\beta C^{\beta}\frac{(N+B)^{\beta-1}(C-B)}{(N+C)^{\beta+1}} $$
Inputs
- Kohout-Věchet model regression parameters
| Parameter | Symbol | Type | Description | Units | Constraints |
|---|---|---|---|---|---|
| KV_A | array of floats | K-V coefficient | - | ||
| KV_B | array of floats | K-V coefficient | - | ||
| KV_C | array of floats | K-V coefficient | - | ||
| KV_beta | array of floats | K-V exponent | - |
- Stress / Strain values or life
| Parameter | Symbol | Type | Description | Units | Range |
|---|---|---|---|---|---|
| stress_amp | array of floats | Stress amplitude | MPa | ||
| life | array of floats | Number of cycles | - |
Outputs
| Parameter | Type | Description | Units | Range |
|---|---|---|---|---|
| array of floats | Number of cycles | - | ||
| array of floats | Stress amplitude | - |
Expected Behavior
🔧 Implementation Guidelines
Function Signature
# Suggested function signatureCode Structure
Error Handling
✅ Validation & Testing
Test Cases
| Test Case | Inputs | Expected Outputs | Notes |
|---|---|---|---|
| Example 1 |
Validation Criteria
- Mathematical accuracy verified against literature
- Edge cases handled appropriately
- Output format matches specification
📚 References & Resources
Kohout, J., Věchet, S., 2001. A new function for fatigue curves characterization and its multiple merits. Int. J. Fatigue 23, 175–183. https://doi.org/10.1016/S0142-1123(00)00082-7