@@ -194,7 +194,7 @@ def convert_from_keras_model(
194194 hls_config = None ,
195195 ** kwargs ,
196196):
197- """Convert to hls4ml model based on the provided configuration.
197+ """Convert Keras model to hls4ml model based on the provided configuration.
198198
199199 Args:
200200 model: Keras model to convert
@@ -221,7 +221,7 @@ def convert_from_keras_model(
221221 kwargs** (dict, optional): Additional parameters that will be used to create the config of the specified backend
222222
223223 Raises:
224- Exception: If precision and reuse factor are not present in 'hls_config'
224+ Exception: If precision and reuse factor are not present in 'hls_config'.
225225
226226 Returns:
227227 ModelGraph: hls4ml model.
@@ -256,54 +256,35 @@ def convert_from_pytorch_model(
256256 hls_config = None ,
257257 ** kwargs ,
258258):
259- """
259+ """Convert PyTorch model to hls4ml model based on the provided configuration.
260+
261+ Args:
262+ model: PyTorch model to conert.
263+ input_shape (list): The shape of the input tensor.
264+ output_dir (str, optional): Output directory of the generated HLS project. Defaults to 'my-hls-test'.
265+ project_name (str, optional): Name of the HLS project. Defaults to 'myproject'.
266+ input_data_tb (str, optional): String representing the path of input data in .npy or .dat format that will be
267+ used during csim and cosim. Defaults to None.
268+ output_data_tb (str, optional): String representing the path of output data in .npy or .dat format that will be
269+ used during csim and cosim. Defaults to None.
270+ backend (str, optional): Name of the backend to use, e.g., 'Vivado' or 'Quartus'. Defaults to 'Vivado'.
271+ board (str, optional): One of target boards specified in `supported_board.json` file. If set to `None` a default
272+ device of a backend will be used. See documentation of the backend used.
273+ part (str, optional): The FPGA part. If set to `None` a default part of a backend will be used.
274+ See documentation of the backend used. Note that if `board` is specified, the part associated to that board
275+ will overwrite any part passed as a parameter.
276+ clock_period (int, optional): Clock period of the design.
277+ Defaults to 5.
278+ io_type (str, optional): Type of implementation used. One of
279+ 'io_parallel' or 'io_stream'. Defaults to 'io_parallel'.
280+ hls_config (dict, optional): The HLS config.
281+ kwargs** (dict, optional): Additional parameters that will be used to create the config of the specified backend.
282+
283+ Raises:
284+ Exception: If precision and reuse factor are not present in 'hls_config'.
260285
261- Convert a Pytorch model to a hls model.
262-
263- Parameters
264- ----------
265- model : Pytorch model object.
266- Model to be converted to hls model object.
267- input_shape : @todo: to be filled
268- output_dir (str, optional): Output directory of the generated HLS
269- project. Defaults to 'my-hls-test'.
270- project_name (str, optional): Name of the HLS project.
271- Defaults to 'myproject'.
272- input_data_tb (str, optional): String representing the path of input data in .npy or .dat format that will be
273- used during csim and cosim.
274- output_data_tb (str, optional): String representing the path of output data in .npy or .dat format that will be
275- used during csim and cosim.
276- backend (str, optional): Name of the backend to use, e.g., 'Vivado'
277- or 'Quartus'.
278- board (str, optional): One of target boards specified in `supported_board.json` file. If set to `None` a default
279- device of a backend will be used. See documentation of the backend used.
280- part (str, optional): The FPGA part. If set to `None` a default part of a backend will be used.
281- See documentation of the backend used. Note that if `board` is specified, the part associated to that board
282- will overwrite any part passed as a parameter.
283- clock_period (int, optional): Clock period of the design.
284- Defaults to 5.
285- io_type (str, optional): Type of implementation used. One of
286- 'io_parallel' or 'io_stream'. Defaults to 'io_parallel'.
287- hls_config (dict, optional): The HLS config.
288- kwargs** (dict, optional): Additional parameters that will be used to create the config of the specified backend
289-
290- Returns
291- -------
292- ModelGraph : hls4ml model object.
293-
294- See Also
295- --------
296- hls4ml.convert_from_keras_model, hls4ml.convert_from_onnx_model
297-
298- Examples
299- --------
300- >>> import hls4ml
301- >>> config = hls4ml.utils.config_from_pytorch_model(model, granularity='model')
302- >>> hls_model = hls4ml.converters.convert_from_pytorch_model(model, hls_config=config)
303-
304- Notes
305- -----
306- Only sequential Pytorch models are supported for now.
286+ Returns:
287+ ModelGraph: hls4ml model.
307288 """
308289
309290 config = create_config (output_dir = output_dir , project_name = project_name , backend = backend , ** kwargs )
@@ -335,49 +316,37 @@ def convert_from_onnx_model(
335316 hls_config = None ,
336317 ** kwargs ,
337318):
338- """
319+ """Convert Keras model to hls4ml model based on the provided configuration.
320+
321+ Args:
322+ model: ONNX model to convert.
323+ output_dir (str, optional): Output directory of the generated HLS
324+ project. Defaults to 'my-hls-test'.
325+ project_name (str, optional): Name of the HLS project.
326+ Defaults to 'myproject'.
327+ input_data_tb (str, optional): String representing the path of input data in .npy or .dat format that will be
328+ used during csim and cosim.
329+ output_data_tb (str, optional): String representing the path of output data in .npy or .dat format that will be
330+ used during csim and cosim.
331+ backend (str, optional): Name of the backend to use, e.g., 'Vivado'
332+ or 'Quartus'.
333+ board (str, optional): One of target boards specified in `supported_board.json` file. If set to `None` a default
334+ device of a backend will be used. See documentation of the backend used.
335+ part (str, optional): The FPGA part. If set to `None` a default part of a backend will be used.
336+ See documentation of the backend used. Note that if `board` is specified, the part associated to that board
337+ will overwrite any part passed as a parameter.
338+ clock_period (int, optional): Clock period of the design.
339+ Defaults to 5.
340+ io_type (str, optional): Type of implementation used. One of
341+ 'io_parallel' or 'io_stream'. Defaults to 'io_parallel'.
342+ hls_config (dict, optional): The HLS config.
343+ kwargs** (dict, optional): Additional parameters that will be used to create the config of the specified backend
344+
345+ Raises:
346+ Exception: If precision and reuse factor are not present in 'hls_config'.
339347
340- Convert an ONNX model to a hls model.
341-
342- Parameters
343- ----------
344- model : ONNX model object.
345- Model to be converted to hls model object.
346- output_dir (str, optional): Output directory of the generated HLS
347- project. Defaults to 'my-hls-test'.
348- project_name (str, optional): Name of the HLS project.
349- Defaults to 'myproject'.
350- input_data_tb (str, optional): String representing the path of input data in .npy or .dat format that will be
351- used during csim and cosim.
352- output_data_tb (str, optional): String representing the path of output data in .npy or .dat format that will be
353- used during csim and cosim.
354- backend (str, optional): Name of the backend to use, e.g., 'Vivado'
355- or 'Quartus'.
356- board (str, optional): One of target boards specified in `supported_board.json` file. If set to `None` a default
357- device of a backend will be used. See documentation of the backend used.
358- part (str, optional): The FPGA part. If set to `None` a default part of a backend will be used.
359- See documentation of the backend used. Note that if `board` is specified, the part associated to that board
360- will overwrite any part passed as a parameter.
361- clock_period (int, optional): Clock period of the design.
362- Defaults to 5.
363- io_type (str, optional): Type of implementation used. One of
364- 'io_parallel' or 'io_stream'. Defaults to 'io_parallel'.
365- hls_config (dict, optional): The HLS config.
366- kwargs** (dict, optional): Additional parameters that will be used to create the config of the specified backend
367-
368- Returns
369- -------
370- ModelGraph : hls4ml model object.
371-
372- See Also
373- --------
374- hls4ml.convert_from_keras_model, hls4ml.convert_from_pytorch_model
375-
376- Examples
377- --------
378- >>> import hls4ml
379- >>> config = hls4ml.utils.config_from_onnx_model(model, granularity='model')
380- >>> hls_model = hls4ml.converters.convert_from_onnx_model(model, hls_config=config)
348+ Returns:
349+ ModelGraph: hls4ml model.
381350 """
382351
383352 config = create_config (output_dir = output_dir , project_name = project_name , backend = backend , ** kwargs )
0 commit comments