@@ -195,7 +195,7 @@ protected with nosimpl.
195195*/
196196
197197require open Stdlib .Set Stdlib .Prop Stdlib .FOL Stdlib .Eq
198- Stdlib .Nat Stdlib .Bool ;
198+ Stdlib .Nat Stdlib .Bool Stdlib . Prod ;
199199
200200(a :Set ) inductive 𝕃:TYPE ≔
201201| □ : 𝕃 a // \Box
@@ -583,20 +583,20 @@ symbol zip [a b] : 𝕃 a → 𝕃 b → 𝕃 (a × b);
583583rule zip □ □ ↪ □
584584with zip □ _ ↪ □
585585with zip _ □ ↪ □
586- with zip ($x ⸬ $l ) ($y ⸬ $m ) ↪ $x & $y ⸬ zip $l $m ;
586+ with zip ($x ⸬ $l ) ($y ⸬ $m ) ↪ ( $x ‚ $y ) ⸬ zip $l $m ;
587587
588588symbol unzip1 [a b ] : 𝕃 (a × b ) → 𝕃 a ;
589589
590590rule unzip1 □ ↪ □
591- with unzip1 ($x & _ ⸬ $l ) ↪ $x ⸬ unzip1 $l ;
591+ with unzip1 (( $x ‚ _ ) ⸬ $l ) ↪ $x ⸬ unzip1 $l ;
592592
593593symbol unzip2 [a b ] : 𝕃 (a × b ) → 𝕃 b ;
594594
595595rule unzip2 □ ↪ □
596- with unzip2 (_ & $y ⸬ $l ) ↪ $y ⸬ unzip2 $l ;
596+ with unzip2 ((_ ‚ $y ) ⸬ $l ) ↪ $y ⸬ unzip2 $l ;
597597
598- assert ⊢ unzip1 ((3 & 5 ) ⸬ (6 & 4 ) ⸬ (7 & 2 ) ⸬ (8 & 1 ) ⸬ □) ≡ 3 ⸬ 6 ⸬ 7 ⸬ 8 ⸬ □;
599- assert ⊢ unzip2 ((3 & 5 ) ⸬ (6 & 4 ) ⸬ (7 & 2 ) ⸬ (8 & 1 ) ⸬ □) ≡ 5 ⸬ 4 ⸬ 2 ⸬ 1 ⸬ □;
598+ assert ⊢ unzip1 ((3 ‚ 5 ) ⸬ (6 ‚ 4 ) ⸬ (7 ‚ 2 ) ⸬ (8 ‚ 1 ) ⸬ □) ≡ 3 ⸬ 6 ⸬ 7 ⸬ 8 ⸬ □;
599+ assert ⊢ unzip2 ((3 ‚ 5 ) ⸬ (6 ‚ 4 ) ⸬ (7 ‚ 2 ) ⸬ (8 ‚ 1 ) ⸬ □) ≡ 5 ⸬ 4 ⸬ 2 ⸬ 1 ⸬ □;
600600
601601symbol all2 [a b ] : (τ a → τ b → 𝔹) → 𝕃 a → 𝕃 b → 𝔹;
602602
@@ -687,12 +687,12 @@ begin
687687 apply @seq_ind2 a b (λ l1 l2 , (zip (l1 ++ sa ) (l2 ++ sb ) = zip l1 l2 ++ zip sa sb )) _ _ la lb h {
688688 reflexivity ;
689689 } {
690- assume l1 l2 e1 e2 h1 h2 ; simplify ; apply feq (λ l , e1 & e2 ⸬ l ) h2 ;
690+ assume l1 l2 e1 e2 h1 h2 ; simplify ; apply feq (λ l , ( e1 ‚ e2 ) ⸬ l ) h2 ;
691691 };
692692end ;
693693
694694opaque symbol nth_zip [a b ] (x :τ a ) (y :τ b ) la lb i : π(size la = size lb ) →
695- π(nth (x & y ) (zip la lb ) i = nth x la i & nth y lb i ) ≔
695+ π(nth (x ‚ y ) (zip la lb ) i = nth x la i ‚ nth y lb i ) ≔
696696begin
697697 assume a b x y ; induction
698698 { assume lb i h ;
0 commit comments