Skip to content

Commit bfa5d3e

Browse files
committed
Fix format
1 parent c67b81a commit bfa5d3e

File tree

1 file changed

+67
-67
lines changed

1 file changed

+67
-67
lines changed
Lines changed: 67 additions & 67 deletions
Original file line numberDiff line numberDiff line change
@@ -1,68 +1,68 @@
1-
# ©2023 PyJs
2-
3-
import os
4-
try:
5-
import cv2
6-
except:
7-
os.system("pip3 install opencv-python")
8-
import cv2
9-
print("THIS USES CV2. RUN \"pip uninstall opencv-python\" TO UNINSTALL.")
10-
# Initialize a list to store enrolled faces
11-
enrolled_faces = []
12-
13-
face_cascade = cv2.CascadeClassifier(cv2.data.haarcascades + "haarcascade_frontalface_default.xml")
14-
15-
def scan_face():
16-
cap = cv2.VideoCapture(0)
17-
ret, frame = cap.read()
18-
return frame
19-
20-
def enroll_face():
21-
frame=scan_face()
22-
global enrolled_faces
23-
24-
# Convert the frame to grayscale for face detection
25-
gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
26-
27-
# Detect faces in the frame
28-
faces = face_cascade.detectMultiScale(gray, scaleFactor=1.1, minNeighbors=5, minSize=(30, 30))
29-
30-
if len(faces) > 0:
31-
for (x, y, w, h) in faces:
32-
# Crop and store each enrolled face
33-
enrolled_faces.append(frame[y:y+h, x:x+w])
34-
35-
return True
36-
else:
37-
return False
38-
39-
# Function to match a face
40-
def is_match():
41-
global enrolled_faces
42-
frame=scan_face()
43-
# Convert the frame to grayscale for face detection
44-
gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
45-
46-
# Detect faces in the frame
47-
faces = face_cascade.detectMultiScale(gray, scaleFactor=1.1, minNeighbors=5, minSize=(30, 30))
48-
49-
if len(faces) > 0:
50-
for (x, y, w, h) in faces:
51-
# Crop the detected face for comparison
52-
detected_face = frame[y:y+h, x:x+w]
53-
54-
# Check if the detected face matches any of the enrolled faces
55-
for enrolled_face in enrolled_faces:
56-
if reuowg_w(enrolled_face, detected_face):
57-
return True
58-
59-
return False
60-
61-
# Function to compare faces (a basic image comparison)
62-
def reuowg_w(face1, face2):
63-
# Resize the images to the same size
64-
face1 = cv2.resize(face1, (200, 200))
65-
face2 = cv2.resize(face2, (200, 200))
66-
diff = cv2.absdiff(face1, face2)
67-
mean_diff = diff.mean()
1+
# ©2023 PyJs
2+
3+
import os
4+
try:
5+
import cv2
6+
except:
7+
os.system("pip3 install opencv-python")
8+
import cv2
9+
print("THIS USES CV2. RUN \"pip uninstall opencv-python\" TO UNINSTALL.")
10+
# Initialize a list to store enrolled faces
11+
enrolled_faces = []
12+
13+
face_cascade = cv2.CascadeClassifier(cv2.data.haarcascades + "haarcascade_frontalface_default.xml")
14+
15+
def scan_face():
16+
cap = cv2.VideoCapture(0)
17+
ret, frame = cap.read()
18+
return frame
19+
20+
def enroll_face():
21+
frame=scan_face()
22+
global enrolled_faces
23+
24+
# Convert the frame to grayscale for face detection
25+
gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
26+
27+
# Detect faces in the frame
28+
faces = face_cascade.detectMultiScale(gray, scaleFactor=1.1, minNeighbors=5, minSize=(30, 30))
29+
30+
if len(faces) > 0:
31+
for (x, y, w, h) in faces:
32+
# Crop and store each enrolled face
33+
enrolled_faces.append(frame[y:y+h, x:x+w])
34+
35+
return True
36+
else:
37+
return False
38+
39+
# Function to match a face
40+
def is_match():
41+
global enrolled_faces
42+
frame=scan_face()
43+
# Convert the frame to grayscale for face detection
44+
gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
45+
46+
# Detect faces in the frame
47+
faces = face_cascade.detectMultiScale(gray, scaleFactor=1.1, minNeighbors=5, minSize=(30, 30))
48+
49+
if len(faces) > 0:
50+
for (x, y, w, h) in faces:
51+
# Crop the detected face for comparison
52+
detected_face = frame[y:y+h, x:x+w]
53+
54+
# Check if the detected face matches any of the enrolled faces
55+
for enrolled_face in enrolled_faces:
56+
if reuowg_w(enrolled_face, detected_face):
57+
return True
58+
59+
return False
60+
61+
# Function to compare faces (a basic image comparison)
62+
def reuowg_w(face1, face2):
63+
# Resize the images to the same size
64+
face1 = cv2.resize(face1, (200, 200))
65+
face2 = cv2.resize(face2, (200, 200))
66+
diff = cv2.absdiff(face1, face2)
67+
mean_diff = diff.mean()
6868
return mean_diff < 50

0 commit comments

Comments
 (0)