Skip to content

Commit 6ab2af6

Browse files
committed
Adding some more tiny test models to train
1 parent ee5b1e8 commit 6ab2af6

File tree

4 files changed

+80
-6
lines changed

4 files changed

+80
-6
lines changed

timm/models/convnext.py

Lines changed: 34 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -951,6 +951,17 @@ def _cfgv2(url='', **kwargs):
951951
hf_hub_filename='open_clip_pytorch_model.bin',
952952
mean=OPENAI_CLIP_MEAN, std=OPENAI_CLIP_STD,
953953
input_size=(3, 256, 256), pool_size=(8, 8), crop_pct=1.0, num_classes=1024),
954+
955+
"test_convnext.r160_in1k": _cfg(
956+
# hf_hub_id='timm/',
957+
input_size=(3, 160, 160), pool_size=(5, 5), mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5)),
958+
"test_convnext2.r160_in1k": _cfg(
959+
# hf_hub_id='timm/',
960+
input_size=(3, 160, 160), pool_size=(5, 5), mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5)),
961+
"test_convnext3.r160_in1k": _cfg(
962+
# hf_hub_id='timm/',
963+
input_size=(3, 160, 160), pool_size=(5, 5), mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5)),
964+
954965
})
955966

956967

@@ -1146,6 +1157,29 @@ def convnextv2_huge(pretrained=False, **kwargs) -> ConvNeXt:
11461157
return model
11471158

11481159

1160+
@register_model
1161+
def test_convnext(pretrained=False, **kwargs) -> ConvNeXt:
1162+
model_args = dict(depths=[1, 2, 4, 2], dims=[24, 32, 48, 64], norm_eps=kwargs.pop('norm_eps', 1e-5), act_layer='gelu_tanh')
1163+
model = _create_convnext('test_convnext', pretrained=pretrained, **dict(model_args, **kwargs))
1164+
return model
1165+
1166+
1167+
@register_model
1168+
def test_convnext2(pretrained=False, **kwargs) -> ConvNeXt:
1169+
model_args = dict(depths=[1, 1, 1, 1], dims=[32, 64, 96, 128], norm_eps=kwargs.pop('norm_eps', 1e-5), act_layer='gelu_tanh')
1170+
model = _create_convnext('test_convnext2', pretrained=pretrained, **dict(model_args, **kwargs))
1171+
return model
1172+
1173+
1174+
@register_model
1175+
def test_convnext3(pretrained=False, **kwargs) -> ConvNeXt:
1176+
model_args = dict(
1177+
depths=[1, 1, 1, 1], dims=[32, 64, 96, 128], norm_eps=kwargs.pop('norm_eps', 1e-5), kernel_sizes=(7, 5, 5, 3), act_layer='silu')
1178+
model = _create_convnext('test_convnext3', pretrained=pretrained, **dict(model_args, **kwargs))
1179+
return model
1180+
1181+
1182+
11491183
register_model_deprecations(__name__, {
11501184
'convnext_tiny_in22ft1k': 'convnext_tiny.fb_in22k_ft_in1k',
11511185
'convnext_small_in22ft1k': 'convnext_small.fb_in22k_ft_in1k',

timm/models/efficientnet.py

Lines changed: 10 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -1804,6 +1804,10 @@ def _cfg(url='', **kwargs):
18041804
"test_efficientnet.r160_in1k": _cfg(
18051805
hf_hub_id='timm/',
18061806
input_size=(3, 160, 160), pool_size=(5, 5)),
1807+
"test_efficientnet_gn.r160_in1k": _cfg(
1808+
hf_hub_id='timm/',
1809+
mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5),
1810+
input_size=(3, 160, 160), pool_size=(5, 5)),
18071811
})
18081812

18091813

@@ -2792,6 +2796,12 @@ def test_efficientnet(pretrained=False, **kwargs) -> EfficientNet:
27922796
return model
27932797

27942798

2799+
@register_model
2800+
def test_efficientnet_gn(pretrained=False, **kwargs) -> EfficientNet:
2801+
model = _gen_test_efficientnet(
2802+
'test_efficientnet_gn', pretrained=pretrained, norm_layer=partial(GroupNormAct, group_size=8), **kwargs)
2803+
return model
2804+
27952805
register_model_deprecations(__name__, {
27962806
'tf_efficientnet_b0_ap': 'tf_efficientnet_b0.ap_in1k',
27972807
'tf_efficientnet_b1_ap': 'tf_efficientnet_b1.ap_in1k',

timm/models/nfnet.py

Lines changed: 14 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -607,6 +607,10 @@ def _dm_nfnet_cfg(
607607
nf_ecaresnet26=_nfres_cfg(depths=(2, 2, 2, 2), attn_layer='eca', attn_kwargs=dict()),
608608
nf_ecaresnet50=_nfres_cfg(depths=(3, 4, 6, 3), attn_layer='eca', attn_kwargs=dict()),
609609
nf_ecaresnet101=_nfres_cfg(depths=(3, 4, 23, 3), attn_layer='eca', attn_kwargs=dict()),
610+
611+
test_nfnet=_nfnet_cfg(
612+
depths=(1, 1, 1, 1), channels=(32, 64, 96, 128), feat_mult=1.5, group_size=8, bottle_ratio=0.25,
613+
attn_kwargs=dict(rd_ratio=0.25, rd_divisor=8), act_layer='silu'),
610614
)
611615

612616

@@ -730,6 +734,11 @@ def _dcfg(url='', **kwargs):
730734
'nf_ecaresnet26': _dcfg(url='', first_conv='stem.conv'),
731735
'nf_ecaresnet50': _dcfg(url='', first_conv='stem.conv'),
732736
'nf_ecaresnet101': _dcfg(url='', first_conv='stem.conv'),
737+
738+
'test_nfnet.r160_in1k': _dcfg(
739+
# hf_hub_id='timm/',
740+
mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5),
741+
crop_pct=0.875, input_size=(3, 160, 160), pool_size=(5, 5)),
733742
})
734743

735744

@@ -1029,3 +1038,8 @@ def nf_ecaresnet101(pretrained=False, **kwargs) -> NormFreeNet:
10291038
""" Normalization-Free ECA-ResNet101
10301039
"""
10311040
return _create_normfreenet('nf_ecaresnet101', pretrained=pretrained, **kwargs)
1041+
1042+
1043+
@register_model
1044+
def test_nfnet(pretrained=False, **kwargs) -> NormFreeNet:
1045+
return _create_normfreenet('test_nfnet', pretrained=pretrained, **kwargs)

timm/models/resnet.py

Lines changed: 22 additions & 6 deletions
Original file line numberDiff line numberDiff line change
@@ -16,8 +16,8 @@
1616
import torch.nn.functional as F
1717

1818
from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD
19-
from timm.layers import DropBlock2d, DropPath, AvgPool2dSame, BlurPool2d, GroupNorm, LayerType, create_attn, \
20-
get_attn, get_act_layer, get_norm_layer, create_classifier, create_aa
19+
from timm.layers import DropBlock2d, DropPath, AvgPool2dSame, BlurPool2d, LayerType, create_attn, \
20+
get_attn, get_act_layer, get_norm_layer, create_classifier, create_aa, to_ntuple
2121
from ._builder import build_model_with_cfg
2222
from ._features import feature_take_indices
2323
from ._manipulate import checkpoint_seq
@@ -286,7 +286,7 @@ def drop_blocks(drop_prob: float = 0.):
286286

287287

288288
def make_blocks(
289-
block_fn: Union[BasicBlock, Bottleneck],
289+
block_fns: Tuple[Union[BasicBlock, Bottleneck]],
290290
channels: Tuple[int, ...],
291291
block_repeats: Tuple[int, ...],
292292
inplanes: int,
@@ -304,7 +304,7 @@ def make_blocks(
304304
net_block_idx = 0
305305
net_stride = 4
306306
dilation = prev_dilation = 1
307-
for stage_idx, (planes, num_blocks, db) in enumerate(zip(channels, block_repeats, drop_blocks(drop_block_rate))):
307+
for stage_idx, (block_fn, planes, num_blocks, db) in enumerate(zip(block_fns, channels, block_repeats, drop_blocks(drop_block_rate))):
308308
stage_name = f'layer{stage_idx + 1}' # never liked this name, but weight compat requires it
309309
stride = 1 if stage_idx == 0 else 2
310310
if net_stride >= output_stride:
@@ -490,8 +490,9 @@ def __init__(
490490
self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
491491

492492
# Feature Blocks
493+
block_fns = to_ntuple(len(channels))(block)
493494
stage_modules, stage_feature_info = make_blocks(
494-
block,
495+
block_fns,
495496
channels,
496497
layers,
497498
inplanes,
@@ -513,7 +514,7 @@ def __init__(
513514
self.feature_info.extend(stage_feature_info)
514515

515516
# Head (Pooling and Classifier)
516-
self.num_features = self.head_hidden_size = channels[-1] * block.expansion
517+
self.num_features = self.head_hidden_size = channels[-1] * block_fns[-1].expansion
517518
self.global_pool, self.fc = create_classifier(self.num_features, self.num_classes, pool_type=global_pool)
518519

519520
self.init_weights(zero_init_last=zero_init_last)
@@ -1301,6 +1302,11 @@ def _gcfg(url='', **kwargs):
13011302
hf_hub_id='timm/',
13021303
url='https://github.com/rwightman/pytorch-pretrained-gluonresnet/releases/download/v0.1/gluon_senet154-70a1a3c0.pth',
13031304
first_conv='conv1.0'),
1305+
1306+
'test_resnet.r160_in1k': _cfg(
1307+
#hf_hub_id='timm/',
1308+
mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5),
1309+
input_size=(3, 160, 160), pool_size=(5, 5), first_conv='conv1.0'),
13041310
})
13051311

13061312

@@ -2040,6 +2046,16 @@ def resnetrs420(pretrained: bool = False, **kwargs) -> ResNet:
20402046
return _create_resnet('resnetrs420', pretrained, **dict(model_args, **kwargs))
20412047

20422048

2049+
@register_model
2050+
def test_resnet(pretrained: bool = False, **kwargs) -> ResNet:
2051+
"""Constructs a tiny ResNet test model.
2052+
"""
2053+
model_args = dict(
2054+
block=[BasicBlock, BasicBlock, Bottleneck, BasicBlock], layers=(1, 1, 1, 1),
2055+
stem_width=16, stem_type='deep', avg_down=True, channels=(32, 48, 48, 96))
2056+
return _create_resnet('test_resnet', pretrained, **dict(model_args, **kwargs))
2057+
2058+
20432059
register_model_deprecations(__name__, {
20442060
'tv_resnet34': 'resnet34.tv_in1k',
20452061
'tv_resnet50': 'resnet50.tv_in1k',

0 commit comments

Comments
 (0)