@@ -1925,8 +1925,8 @@ PyObject *igraphmodule_Graph_radius(igraphmodule_GraphObject * self,
19251925}
19261926
19271927/** \ingroup python_interface_graph
1928- * \brief Converts a tree graph into a Prufer sequence
1929- * \return the Prufer sequence as a Python object
1928+ * \brief Converts a tree graph into a Prüfer sequence
1929+ * \return the Prüfer sequence as a Python object
19301930 * \sa igraph_to_prufer
19311931 */
19321932PyObject *igraphmodule_Graph_to_prufer(igraphmodule_GraphObject *self, PyObject* Py_UNUSED(_null))
@@ -2024,7 +2024,7 @@ PyObject *igraphmodule_Graph_Atlas(PyTypeObject * type, PyObject * args)
20242024}
20252025
20262026/** \ingroup python_interface_graph
2027- * \brief Generates a graph based on the Barabasi -Albert model
2027+ * \brief Generates a graph based on the Barabási -Albert model
20282028 * This is intended to be a class method in Python, so the first argument
20292029 * is the type object and not the Python igraph object (because we have
20302030 * to allocate that in this method).
@@ -3290,7 +3290,7 @@ PyObject *igraphmodule_Graph_Random_Bipartite(PyTypeObject * type,
32903290}
32913291
32923292/** \ingroup python_interface_graph
3293- * \brief Generates a graph based on sort of a "windowed" Barabasi -Albert model
3293+ * \brief Generates a graph based on sort of a "windowed" Barabási -Albert model
32943294 * \return a reference to the newly generated Python igraph object
32953295 * \sa igraph_recent_degree_game
32963296 */
@@ -13864,8 +13864,8 @@ struct PyMethodDef igraphmodule_Graph_methods[] = {
1386413864 METH_VARARGS | METH_CLASS | METH_KEYWORDS,
1386513865 "Barabasi(n, m, outpref=False, directed=False, power=1,\n"
1386613866 " zero_appeal=1, implementation=\"psumtree\", start_from=None)\n--\n\n"
13867- "Generates a graph based on the Barabasi -Albert model.\n\n"
13868- "B{Reference}: Barabasi , A-L and Albert, R. 1999. Emergence of scaling\n"
13867+ "Generates a graph based on the Barabási -Albert model.\n\n"
13868+ "B{Reference}: Barabási , A-L and Albert, R. 1999. Emergence of scaling\n"
1386913869 "in random networks. I{Science}, 286 509-512.\n\n"
1387013870 "@param n: the number of vertices\n"
1387113871 "@param m: either the number of outgoing edges generated for\n"
@@ -14084,7 +14084,7 @@ struct PyMethodDef igraphmodule_Graph_methods[] = {
1408414084 METH_VARARGS | METH_CLASS | METH_KEYWORDS,
1408514085 "Preference(n, type_dist, pref_matrix, attribute=None, directed=False, loops=False)\n--\n\n"
1408614086 "Generates a graph based on vertex types and connection probabilities.\n\n"
14087- "This is practically the nongrowing variant of L{Establishment}.\n"
14087+ "This is practically the non-growing variant of L{Establishment}.\n"
1408814088 "A given number of vertices are generated. Every vertex is assigned to a\n"
1408914089 "vertex type according to the given type probabilities. Finally, every\n"
1409014090 "vertex pair is evaluated and an edge is created between them with a\n"
@@ -14140,7 +14140,7 @@ struct PyMethodDef igraphmodule_Graph_methods[] = {
1414014140 {"SBM", (PyCFunction) igraphmodule_Graph_SBM,
1414114141 METH_VARARGS | METH_CLASS | METH_KEYWORDS,
1414214142 "SBM(n, pref_matrix, block_sizes, directed=False, loops=False)\n--\n\n"
14143- "Generates a graph based on a stochastic blockmodel .\n\n"
14143+ "Generates a graph based on a stochastic block model .\n\n"
1414414144 "A given number of vertices are generated. Every vertex is assigned to a\n"
1414514145 "vertex type according to the given block sizes. Vertices of the same\n"
1414614146 "type will be assigned consecutive vertex IDs. Finally, every\n"
@@ -14494,7 +14494,7 @@ struct PyMethodDef igraphmodule_Graph_methods[] = {
1449414494 "of the vertices.\n\n"
1449514495 "This coefficient is basically the correlation between the actual\n"
1449614496 "connectivity patterns of the vertices and the pattern expected from the\n"
14497- "disribution of the vertex types.\n\n"
14497+ "distribution of the vertex types.\n\n"
1449814498 "See equation (21) in Newman MEJ: Mixing patterns in networks, Phys Rev E\n"
1449914499 "67:026126 (2003) for the proper definition. The actual calculation is\n"
1450014500 "performed using equation (26) in the same paper for directed graphs, and\n"
@@ -14684,7 +14684,7 @@ struct PyMethodDef igraphmodule_Graph_methods[] = {
1468414684 "closeness(vertices=None, mode=\"all\", cutoff=None, weights=None, "
1468514685 "normalized=True)\n--\n\n"
1468614686 "Calculates the closeness centralities of given vertices in a graph.\n\n"
14687- "The closeness centerality of a vertex measures how easily other\n"
14687+ "The closeness centrality of a vertex measures how easily other\n"
1468814688 "vertices can be reached from it (or the other way: how easily it\n"
1468914689 "can be reached from the other vertices). It is defined as the\n"
1469014690 "number of vertices minus one divided by the sum of\n"
@@ -14717,7 +14717,7 @@ struct PyMethodDef igraphmodule_Graph_methods[] = {
1471714717 "harmonic_centrality(vertices=None, mode=\"all\", cutoff=None, weights=None, "
1471814718 "normalized=True)\n--\n\n"
1471914719 "Calculates the harmonic centralities of given vertices in a graph.\n\n"
14720- "The harmonic centerality of a vertex measures how easily other\n"
14720+ "The harmonic centrality of a vertex measures how easily other\n"
1472114721 "vertices can be reached from it (or the other way: how easily it\n"
1472214722 "can be reached from the other vertices). It is defined as the\n"
1472314723 "mean inverse distance to all other vertices.\n\n"
@@ -14744,7 +14744,7 @@ struct PyMethodDef igraphmodule_Graph_methods[] = {
1474414744 METH_VARARGS | METH_KEYWORDS,
1474514745 "connected_components(mode=\"strong\")\n--\n\n"
1474614746 "Calculates the (strong or weak) connected components for a given graph.\n\n"
14747- "Atttention : this function has a more convenient interface in class\n"
14747+ "Attention : this function has a more convenient interface in class\n"
1474814748 "L{Graph}, which wraps the result in a L{VertexClustering} object.\n"
1474914749 "It is advised to use that.\n"
1475014750 "@param mode: must be either C{\"strong\"} or C{\"weak\"}, depending on\n"
0 commit comments