@@ -14530,7 +14530,7 @@ struct PyMethodDef igraphmodule_Graph_methods[] = {
1453014530 "the number of vertices in the graph, a list of shifts giving\n"
1453114531 "additional edges to a cycle backbone and another integer giving how\n"
1453214532 "many times the shifts should be performed. See\n"
14533- "U{http ://mathworld.wolfram.com/LCFNotation.html} for details.\n\n"
14533+ "U{https ://mathworld.wolfram.com/LCFNotation.html} for details.\n\n"
1453414534 "@param n: the number of vertices\n"
1453514535 "@param shifts: the shifts in a list or tuple\n"
1453614536 "@param repeats: the number of repeats\n"
@@ -16222,7 +16222,7 @@ struct PyMethodDef igraphmodule_Graph_methods[] = {
1622216222 " small-world networks. I{Nature} 393(6884):440-442, 1998.\n"
1622316223 " - Barrat A, Barthelemy M, Pastor-Satorras R and Vespignani A:\n"
1622416224 " The architecture of complex weighted networks. I{PNAS} 101, 3747 (2004).\n"
16225- " U{http ://arxiv.org/abs/cond-mat/0311416}.\n\n"
16225+ " U{https ://arxiv.org/abs/cond-mat/0311416}.\n\n"
1622616226 "@param vertices: a list containing the vertex IDs which should be\n"
1622716227 " included in the result. C{None} means all of the vertices.\n"
1622816228 "@param mode: defines how to treat vertices with degree less than two.\n"
@@ -16820,7 +16820,8 @@ struct PyMethodDef igraphmodule_Graph_methods[] = {
1682016820 "forces among the vertices and then the physical system is simulated\n"
1682116821 "until it reaches an equilibrium or the maximal number of iterations is\n"
1682216822 "reached.\n\n"
16823- "See U{http://www.schmuhl.org/graphopt/} for the original graphopt.\n\n"
16823+ "See U{https://web.archive.org/web/20220611030748/http://www.schmuhl.org/graphopt/}\n"
16824+ "and U{https://sourceforge.net/projects/graphopt/} for the original graphopt.\n\n"
1682416825 "@param niter: the number of iterations to perform. Should be a couple\n"
1682516826 " of hundred in general.\n\n"
1682616827 "@param node_charge: the charge of the vertices, used to calculate electric\n"
@@ -17135,7 +17136,7 @@ struct PyMethodDef igraphmodule_Graph_methods[] = {
1713517136 "Read_DIMACS(f, directed=False)\n--\n\n"
1713617137 "Reads a graph from a file conforming to the DIMACS minimum-cost flow file format.\n\n"
1713717138 "For the exact description of the format, see\n"
17138- "U{http ://lpsolve.sourceforge.net/5.5/DIMACS.htm}\n\n"
17139+ "U{https ://lpsolve.sourceforge.net/5.5/DIMACS.htm}\n\n"
1713917140 "Restrictions compared to the official description of the format:\n\n"
1714017141 " - igraph's DIMACS reader requires only three fields in an arc definition,\n"
1714117142 " describing the edge's source and target node and its capacity.\n"
@@ -17171,7 +17172,7 @@ struct PyMethodDef igraphmodule_Graph_methods[] = {
1717117172 "Read_GraphDB(f, directed=False)\n--\n\n"
1717217173 "Reads a GraphDB format file and creates a graph based on it.\n\n"
1717317174 "GraphDB is a binary format, used in the graph database for\n"
17174- "isomorphism testing (see U{http ://amalfi.dis.unina. it/graph/}).\n\n"
17175+ "isomorphism testing (see U{https ://mivia.unisa. it/datasets/ graph-database/arg-database /}).\n\n"
1717517176 "@param f: the name of the file or a Python file handle\n"
1717617177 "@param directed: whether the generated graph should be directed.\n"},
1717717178 /* interface to igraph_read_graph_graphml */
@@ -17394,7 +17395,7 @@ struct PyMethodDef igraphmodule_Graph_methods[] = {
1739417395 "algorithm.\n\n"
1739517396 "Passing the permutation returned here to L{permute_vertices()} will\n"
1739617397 "transform the graph into its canonical form.\n\n"
17397- "See U{http ://www.tcs.hut. fi/Software /bliss/index.html } for more information\n"
17398+ "See U{https ://users.aalto. fi/~tjunttil /bliss/} for more information\n"
1739817399 "about the BLISS algorithm and canonical permutations.\n\n"
1739917400 "@param sh: splitting heuristics for graph as a case-insensitive string,\n"
1740017401 " with the following possible values:\n\n"
@@ -17420,7 +17421,7 @@ struct PyMethodDef igraphmodule_Graph_methods[] = {
1742017421 "count_automorphisms(sh=\"fl\", color=None)\n--\n\n"
1742117422 "Calculates the number of automorphisms of a graph using the BLISS isomorphism\n"
1742217423 "algorithm.\n\n"
17423- "See U{http ://www.tcs.hut. fi/Software /bliss/index.html } for more information\n"
17424+ "See U{https ://users.aalto. fi/~tjunttil /bliss/} for more information\n"
1742417425 "about the BLISS algorithm and canonical permutations.\n\n"
1742517426 "@param sh: splitting heuristics for graph as a case-insensitive string,\n"
1742617427 " with the following possible values:\n\n"
@@ -17471,7 +17472,7 @@ struct PyMethodDef igraphmodule_Graph_methods[] = {
1747117472 " sh1=\"fl\", sh2=None, color1=None, color2=None)\n--\n\n"
1747217473 "Checks whether the graph is isomorphic to another graph, using the\n"
1747317474 "BLISS isomorphism algorithm.\n\n"
17474- "See U{http ://www.tcs.hut. fi/Software /bliss/index.html } for more information\n"
17475+ "See U{https ://users.aalto. fi/~tjunttil /bliss/} for more information\n"
1747517476 "about the BLISS algorithm.\n\n"
1747617477 "@param other: the other graph with which we want to compare the graph.\n"
1747717478 "@param color1: optional vector storing the coloring of the vertices of\n"
@@ -18264,15 +18265,15 @@ struct PyMethodDef igraphmodule_Graph_methods[] = {
1826418265 "community_infomap(edge_weights=None, vertex_weights=None, trials=10)\n--\n\n"
1826518266 "Finds the community structure of the network according to the Infomap\n"
1826618267 "method of Martin Rosvall and Carl T. Bergstrom.\n\n"
18267- "See U{http ://www.mapequation.org} for a visualization of the algorithm\n"
18268+ "See U{https ://www.mapequation.org} for a visualization of the algorithm\n"
1826818269 "or one of the references provided below.\n"
1826918270 "B{References}\n"
1827018271 " - M. Rosvall and C. T. Bergstrom: I{Maps of information flow reveal\n"
1827118272 " community structure in complex networks}. PNAS 105, 1118 (2008).\n"
18272- " U{http ://arxiv.org/abs/0707.0609}\n"
18273+ " U{https ://arxiv.org/abs/0707.0609}\n"
1827318274 " - M. Rosvall, D. Axelsson and C. T. Bergstrom: I{The map equation}.\n"
1827418275 " I{Eur Phys J Special Topics} 178, 13 (2009).\n"
18275- " U{http ://arxiv.org/abs/0906.1405}\n"
18276+ " U{https ://arxiv.org/abs/0906.1405}\n"
1827618277 "\n"
1827718278 "@param edge_weights: name of an edge attribute or a list containing\n"
1827818279 " edge weights.\n"
@@ -18301,7 +18302,7 @@ struct PyMethodDef igraphmodule_Graph_methods[] = {
1830118302 "B{Reference}: Raghavan, U.N. and Albert, R. and Kumara, S. Near linear\n"
1830218303 "time algorithm to detect community structures in large-scale\n"
1830318304 "networks. I{Phys Rev E} 76:036106, 2007.\n"
18304- "U{http ://arxiv.org/abs/0709.2938}.\n"
18305+ "U{https ://arxiv.org/abs/0709.2938}.\n"
1830518306 "\n"
1830618307 "@param weights: name of an edge attribute or a list containing\n"
1830718308 " edge weights\n"
@@ -18356,7 +18357,7 @@ struct PyMethodDef igraphmodule_Graph_methods[] = {
1835618357 "\n"
1835718358 "B{Reference}: VD Blondel, J-L Guillaume, R Lambiotte and E Lefebvre: Fast\n"
1835818359 "unfolding of community hierarchies in large networks. J Stat Mech\n"
18359- "P10008 (2008), U{http ://arxiv.org/abs/0803.0476}\n"
18360+ "P10008 (2008), U{https ://arxiv.org/abs/0803.0476}\n"
1836018361 "\n"
1836118362 "Attention: this function is wrapped in a more convenient syntax in the\n"
1836218363 "derived class L{Graph}. It is advised to use that instead of this version.\n\n"
@@ -18495,7 +18496,7 @@ struct PyMethodDef igraphmodule_Graph_methods[] = {
1849518496 "Attention: this function is wrapped in a more convenient syntax in the\n"
1849618497 "derived class L{Graph}. It is advised to use that instead of this version.\n\n"
1849718498 "B{Reference}: Pascal Pons, Matthieu Latapy: Computing communities in large\n"
18498- "networks using random walks, U{http ://arxiv.org/abs/physics/0512106}.\n\n"
18499+ "networks using random walks, U{https ://arxiv.org/abs/physics/0512106}.\n\n"
1849918500 "@param weights: name of an edge attribute or a list containing\n"
1850018501 " edge weights\n"
1850118502 "@return: a tuple with the list of merges and the modularity scores corresponding\n"
0 commit comments