Skip to content

Commit 8660a7c

Browse files
Fix merge conflict
Merge branch 'master' of https://github.com/itsrainingdata/ccdrAlgorithm # Conflicts: # README.Rmd # README.md
2 parents c6cb31c + b5a3cf3 commit 8660a7c

File tree

2 files changed

+6
-10
lines changed

2 files changed

+6
-10
lines changed

README.Rmd

Lines changed: 3 additions & 4 deletions
Original file line numberDiff line numberDiff line change
@@ -18,7 +18,6 @@ knitr::opts_chunk$set(
1818
[![](http://www.r-pkg.org/badges/version/ccdrAlgorithm)](http://www.r-pkg.org/pkg/ccdrAlgorithm)
1919
[![CRAN RStudio mirror downloads](http://cranlogs.r-pkg.org/badges/ccdrAlgorithm)](http://www.r-pkg.org/pkg/ccdrAlgorithm)
2020

21-
2221
`ccdrAlgorithm` implements the CCDr structure learning algorithm described in [[1-2](#references)]. This algorithm estimates the structure of a Bayesian network from mixed observational and experimental data using penalized maximum likelihood based on L1 or concave (MCP) regularization.
2322

2423
Presently, this package consists of a methods that implement the main algorithm and generate data (with interventions if necessary) from a Gaussian Bayesian network. To simulate random networks, it is recommended to use the [`sparsebnUtils`](https://cran.r-project.org/package=sparsebnUtils) package. Other packages for simulating DAGs and observational data include [bnlearn](https://cran.r-project.org/package=bnlearn), [pcalg](https://cran.r-project.org/package=pcalg), and [igraph](https://cran.r-project.org/package=igraph).
@@ -45,8 +44,8 @@ You can install:
4544

4645
## References
4746

48-
\[1\] Aragam, B. and Zhou, Q. (2015). [Concave penalized estimation of sparse Gaussian Bayesian networks.](http://jmlr.org/papers/v16/aragam15a.html) _The Journal of Machine Learning Research_. 16(Nov):22732328.
47+
[1] Aragam, B. and Zhou, Q. (2015). [Concave penalized estimation of sparse Gaussian Bayesian networks.](http://jmlr.org/papers/v16/aragam15a.html) _The Journal of Machine Learning Research_. 16(Nov):22732328.
4948

50-
\[2\] Zhang, D. (2016). Concave Penalized Estimation of Causal Gaussian Networks with Intervention. Masters thesis, UCLA.
49+
[2] Zhang, D. (2016). Concave Penalized Estimation of Causal Gaussian Networks with Intervention. Masters thesis, UCLA.
5150

52-
\[3\] Fu, F. and Zhou, Q. (2013). [Learning sparse causal Gaussian networks with experimental intervention: Regularization and coordinate descent.](http://amstat.tandfonline.com/doi/abs/10.1080/01621459.2012.754359) Journal of the American Statistical Association, 108: 288-300.
51+
[3] Fu, F. and Zhou, Q. (2013). [Learning sparse causal Gaussian networks with experimental intervention: Regularization and coordinate descent.](http://amstat.tandfonline.com/doi/abs/10.1080/01621459.2012.754359) Journal of the American Statistical Association, 108: 288-300.

README.md

Lines changed: 3 additions & 6 deletions
Original file line numberDiff line numberDiff line change
@@ -34,11 +34,8 @@ You can install:
3434
References
3535
----------
3636

37-
1
38-
Aragam, B. and Zhou, Q. (2015). [Concave penalized estimation of sparse Gaussian Bayesian networks.](http://jmlr.org/papers/v16/aragam15a.html) *The Journal of Machine Learning Research*. 16(Nov):22732328.
37+
\[1\] Aragam, B. and Zhou, Q. (2015). [Concave penalized estimation of sparse Gaussian Bayesian networks.](http://jmlr.org/papers/v16/aragam15a.html) *The Journal of Machine Learning Research*. 16(Nov):22732328.
3938

40-
2
41-
Zhang, D. (2016). Concave Penalized Estimation of Causal Gaussian Networks with Intervention. Masters thesis, UCLA.
39+
\[2\] Zhang, D. (2016). Concave Penalized Estimation of Causal Gaussian Networks with Intervention. Masters thesis, UCLA.
4240

43-
3
44-
Fu, F. and Zhou, Q. (2013). [Learning sparse causal Gaussian networks with experimental intervention: Regularization and coordinate descent.](http://amstat.tandfonline.com/doi/abs/10.1080/01621459.2012.754359) Journal of the American Statistical Association, 108: 288-300.
41+
\[3\] Fu, F. and Zhou, Q. (2013). [Learning sparse causal Gaussian networks with experimental intervention: Regularization and coordinate descent.](http://amstat.tandfonline.com/doi/abs/10.1080/01621459.2012.754359) Journal of the American Statistical Association, 108: 288-300.

0 commit comments

Comments
 (0)