- Errata 1
$$
\mathbb{E}[XY] = \int_{X,Y} f_{X,Y}(x,y) dF_X(x)dF_y(y)
$$
should be
$$
\mathbb{E}[XY]= \int_{X}\int_Y xy f_{X,Y}(x,y) dx dy
$$
- Errata 2
$$
\mathbb{E}_{\varphi(X,Y)|X=x}[=]\int_{-\infty}^{\infty} \varphi(x,y)f_{Y|X}(y|x)dx
$$
should be
$$
\mathbb{E}\left[{\varphi\left(X,Y\right)\mid X=x}\right]=\int_{-\infty}^{\infty} \varphi\left(x,y\right)f_{Y\mid X}\left(y\mid x\right)d\color{red}y
$$
The conditional expectation is a random variable of condition $X$.
Meanwhile, I suggest you add another formula:
$$
\mathbb{E}_{XY}\left[\varphi\left(X,Y\right)\right]=\mathbb{E}_X\left[\mathbb{E}\left[\varphi\left(X,Y\right)\mid X\right]\right]
$$