@@ -69,7 +69,7 @@ def test_2d_transformer(self, data, one_hot_encoder, label_encoder):
6969
7070 def test_many_x (self , data , label_binarizer , label_encoder ):
7171 lb2 = LabelBinarizer ().fit (data ['var2' ])
72- bs = BatchShaper (x_structure = [( 'var1' , label_binarizer ), ('var2' , lb2 )] ,
72+ bs = BatchShaper (x_structure = (( 'var1' , label_binarizer ), ('var2' , lb2 )) ,
7373 y_structure = ('label' , label_encoder ),
7474 data_sample = data )
7575 batch = bs .transform (data )
@@ -87,7 +87,7 @@ def test_many_x(self, data, label_binarizer, label_encoder):
8787 def test_many_y (self , data , label_binarizer , label_encoder ):
8888 lb2 = LabelBinarizer ().fit (data ['var2' ])
8989 bs = BatchShaper (x_structure = ('var1' , label_binarizer ),
90- y_structure = [( 'label' , label_encoder ), ('var2' , lb2 )] ,
90+ y_structure = (( 'label' , label_encoder ), ('var2' , lb2 )) ,
9191 data_sample = data )
9292 batch = bs .transform (data )
9393 assert type (batch ) == tuple
@@ -111,7 +111,7 @@ def test_predict_batch(self, data, label_binarizer, label_encoder):
111111 so for predict, the generator must return a tuple (x,), where x is a list of inputs
112112 """
113113 lb2 = LabelBinarizer ().fit (data ['var2' ])
114- batch_shaper = BatchShaper (x_structure = [( 'var1' , label_binarizer ), ('var2' , lb2 )] , data_sample = data )
114+ batch_shaper = BatchShaper (x_structure = (( 'var1' , label_binarizer ), ('var2' , lb2 )) , data_sample = data )
115115 batch = batch_shaper .transform (data )
116116 assert isinstance (batch , tuple )
117117 assert len (batch ) == 1
@@ -146,7 +146,7 @@ def test_init_with_data_sample(self):
146146 pass
147147
148148 def test_none_transformer (self , data , label_binarizer , label_encoder ):
149- bs = BatchShaper (x_structure = [( 'var1' , label_binarizer ), ('var2' , None )] ,
149+ bs = BatchShaper (x_structure = (( 'var1' , label_binarizer ), ('var2' , None )) ,
150150 y_structure = ('label' , label_encoder ),
151151 data_sample = data )
152152 batch = bs .transform (data )
@@ -157,7 +157,7 @@ def test_none_transformer(self, data, label_binarizer, label_encoder):
157157 assert np .array_equal (batch [0 ][1 ], np .expand_dims (data ['var2' ].values , axis = - 1 ))
158158
159159 def test_const_component_int (self , data , label_binarizer , label_encoder ):
160- bs = BatchShaper (x_structure = [( 'var1' , label_binarizer ), (None , 0 )] ,
160+ bs = BatchShaper (x_structure = (( 'var1' , label_binarizer ), (None , 0 )) ,
161161 y_structure = ('label' , label_encoder ),
162162 data_sample = data )
163163 batch = bs .transform (data )
@@ -169,7 +169,7 @@ def test_const_component_int(self, data, label_binarizer, label_encoder):
169169 assert batch [0 ][1 ].dtype == int
170170
171171 def test_const_component_float (self , data , label_binarizer , label_encoder ):
172- bs = BatchShaper (x_structure = [( 'var1' , label_binarizer ), (None , 0. )] ,
172+ bs = BatchShaper (x_structure = (( 'var1' , label_binarizer ), (None , 0. )) ,
173173 y_structure = ('label' , label_encoder ),
174174 data_sample = data )
175175 batch = bs .transform (data )
@@ -181,7 +181,7 @@ def test_const_component_float(self, data, label_binarizer, label_encoder):
181181 assert batch [0 ][1 ].dtype == float
182182
183183 def test_const_component_str (self , data , label_binarizer , label_encoder ):
184- bs = BatchShaper (x_structure = [( 'var1' , label_binarizer ), (None , u'a' )] ,
184+ bs = BatchShaper (x_structure = (( 'var1' , label_binarizer ), (None , u'a' )) ,
185185 y_structure = ('label' , label_encoder ),
186186 data_sample = data )
187187 batch = bs .transform (data )
@@ -194,7 +194,7 @@ def test_const_component_str(self, data, label_binarizer, label_encoder):
194194
195195 def test_metadata (self , data , label_binarizer , label_encoder ):
196196 VarShaper ._dummy_constant_counter = 0
197- bs = BatchShaper (x_structure = [( 'var1' , label_binarizer ), (None , 0. )] ,
197+ bs = BatchShaper (x_structure = (( 'var1' , label_binarizer ), (None , 0. )) ,
198198 y_structure = ('label' , label_encoder ),
199199 data_sample = data )
200200 md = bs .metadata
@@ -228,7 +228,7 @@ def test_metadata(self, data, label_binarizer, label_encoder):
228228
229229 def test_dummy_var_naming (self , data , label_binarizer , label_encoder ):
230230 VarShaper ._dummy_constant_counter = 0
231- bs = BatchShaper (x_structure = [( 'var1' , label_binarizer ), (None , 0. ), (None , 1. )] ,
231+ bs = BatchShaper (x_structure = (( 'var1' , label_binarizer ), (None , 0. ), (None , 1. )) ,
232232 y_structure = ('label' , label_encoder ),
233233 data_sample = data )
234234 md = bs .metadata
@@ -258,7 +258,7 @@ def inverse_transform(self, data):
258258 return data
259259
260260 a = A ()
261- bs = BatchShaper (x_structure = [( 'var1' , label_binarizer ), ('var1' , a )] ,
261+ bs = BatchShaper (x_structure = (( 'var1' , label_binarizer ), ('var1' , a )) ,
262262 y_structure = ('label' , label_encoder ),
263263 data_sample = data )
264264 shapes = bs .shape
@@ -283,22 +283,22 @@ def inverse_transform(self, data):
283283 return data
284284
285285 a = A ()
286- bs = BatchShaper (x_structure = [( 'var1' , label_binarizer ), ('var1' , a )] ,
286+ bs = BatchShaper (x_structure = (( 'var1' , label_binarizer ), ('var1' , a )) ,
287287 y_structure = ('label' , label_encoder ), data_sample = data )
288288 n_classes = bs .n_classes
289289 pass
290290
291291 def test_inverse_transform (self , data , label_binarizer , label_encoder ):
292292 le2 = LabelEncoder ().fit (data ['var2' ])
293293 bs = BatchShaper (x_structure = ('var1' , label_binarizer ),
294- y_structure = [( 'label' , label_encoder ), ('var2' , le2 )] ,
294+ y_structure = (( 'label' , label_encoder ), ('var2' , le2 )) ,
295295 data_sample = data )
296296 batch = bs .transform (data )
297297 inverse = bs .inverse_transform (batch [1 ])
298298 assert inverse .equals (data [['label' , 'var2' ]])
299299 # Check inverse transform when constant field is in the structure
300300 bs = BatchShaper (x_structure = ('var1' , label_binarizer ),
301- y_structure = [( 'label' , label_encoder ), ('var2' , le2 ), (None , 0. )] ,
301+ y_structure = (( 'label' , label_encoder ), ('var2' , le2 ), (None , 0. )) ,
302302 data_sample = data )
303303 batch = bs .transform (data )
304304 # check that the constant field was added to the y output
@@ -309,7 +309,7 @@ def test_inverse_transform(self, data, label_binarizer, label_encoder):
309309 assert inverse .equals (data [['label' , 'var2' ]])
310310 # Check inverse transform when direct mapping field is in the structure
311311 bs = BatchShaper (x_structure = ('var1' , label_binarizer ),
312- y_structure = [( 'label' , label_encoder ), ('var2' , le2 ), ('var1' , None )] ,
312+ y_structure = (( 'label' , label_encoder ), ('var2' , le2 ), ('var1' , None )) ,
313313 data_sample = data )
314314 batch = bs .transform (data )
315315 # check that the constant field was added to the y output
@@ -366,7 +366,7 @@ def test_batch_forking(self, data, label_binarizer, label_encoder):
366366 # check that data is not modified
367367 assert data .equals (data_snapshot )
368368 assert data_xy_fork .columns .nlevels == 2
369- bs = BatchShaper (x_structure = [( 'var1' , label_binarizer ), ('label' , label_encoder )] ,
369+ bs = BatchShaper (x_structure = (( 'var1' , label_binarizer ), ('label' , label_encoder )) ,
370370 y_structure = ('label' , label_encoder ),
371371 data_sample = data )
372372 tr = bs .transform (data_xy_fork )
@@ -384,7 +384,7 @@ def test_batch_forking(self, data, label_binarizer, label_encoder):
384384 batch_fork_01 = BatchFork (levels = (0 , 1 ))
385385 data_01_fork = batch_fork_01 .transform (data )
386386 assert data_01_fork .columns .nlevels == 2
387- bs = BatchShaper (x_structure = [( 'var1' , label_binarizer ), ('label' , label_encoder )] ,
387+ bs = BatchShaper (x_structure = (( 'var1' , label_binarizer ), ('label' , label_encoder )) ,
388388 y_structure = ('label' , label_encoder ),
389389 multiindex_xy_keys = (0 , 1 ),
390390 data_sample = data )
0 commit comments