From 00428b8f3ef201a251c566436eb2c77ca83e977b Mon Sep 17 00:00:00 2001 From: Nemath Ahmed <39413792+nemathahmed@users.noreply.github.com> Date: Mon, 4 Nov 2019 02:05:14 +0530 Subject: [PATCH 1/4] YOLO Implemented Apply YOLO for the object detection on the live video stream from hololens. --- Yolo_Algo/Yolo_sensor_receiver.py | 139 +++++++++++++ Yolo_Algo/cfg/coco.names | 80 ++++++++ Yolo_Algo/cfg/extraction.cfg | 206 +++++++++++++++++++ Yolo_Algo/cfg/extraction.conv.cfg | 179 ++++++++++++++++ Yolo_Algo/cfg/tiny-yolo-4c.cfg | 134 ++++++++++++ Yolo_Algo/cfg/tiny-yolo-voc.cfg | 134 ++++++++++++ Yolo_Algo/cfg/tiny-yolo.cfg | 134 ++++++++++++ Yolo_Algo/cfg/v1.1/person-bottle.cfg | 128 ++++++++++++ Yolo_Algo/cfg/v1.1/tiny-coco.cfg | 125 ++++++++++++ Yolo_Algo/cfg/v1.1/tiny-yolo-4c.cfg | 128 ++++++++++++ Yolo_Algo/cfg/v1.1/tiny-yolov1.cfg | 126 ++++++++++++ Yolo_Algo/cfg/v1.1/yolo-coco.cfg | 255 +++++++++++++++++++++++ Yolo_Algo/cfg/v1.1/yolov1.cfg | 257 +++++++++++++++++++++++ Yolo_Algo/cfg/v1/tiny-old.profile | Bin 0 -> 43671 bytes Yolo_Algo/cfg/v1/tiny.profile | 1 + Yolo_Algo/cfg/v1/yolo-2c.cfg | 141 +++++++++++++ Yolo_Algo/cfg/v1/yolo-4c.cfg | 237 ++++++++++++++++++++++ Yolo_Algo/cfg/v1/yolo-full.cfg | 234 +++++++++++++++++++++ Yolo_Algo/cfg/v1/yolo-small.cfg | 239 ++++++++++++++++++++++ Yolo_Algo/cfg/v1/yolo-tiny-extract.cfg | 175 ++++++++++++++++ Yolo_Algo/cfg/v1/yolo-tiny-extract_.cfg | 177 ++++++++++++++++ Yolo_Algo/cfg/v1/yolo-tiny.cfg | 138 +++++++++++++ Yolo_Algo/cfg/v1/yolo-tiny4c.cfg | 141 +++++++++++++ Yolo_Algo/cfg/yolo-voc.cfg | 244 ++++++++++++++++++++++ Yolo_Algo/cfg/yolo.cfg | 258 ++++++++++++++++++++++++ 25 files changed, 4010 insertions(+) create mode 100644 Yolo_Algo/Yolo_sensor_receiver.py create mode 100644 Yolo_Algo/cfg/coco.names create mode 100644 Yolo_Algo/cfg/extraction.cfg create mode 100644 Yolo_Algo/cfg/extraction.conv.cfg create mode 100644 Yolo_Algo/cfg/tiny-yolo-4c.cfg create mode 100644 Yolo_Algo/cfg/tiny-yolo-voc.cfg create mode 100644 Yolo_Algo/cfg/tiny-yolo.cfg create mode 100644 Yolo_Algo/cfg/v1.1/person-bottle.cfg create mode 100644 Yolo_Algo/cfg/v1.1/tiny-coco.cfg create mode 100644 Yolo_Algo/cfg/v1.1/tiny-yolo-4c.cfg create mode 100644 Yolo_Algo/cfg/v1.1/tiny-yolov1.cfg create mode 100644 Yolo_Algo/cfg/v1.1/yolo-coco.cfg create mode 100644 Yolo_Algo/cfg/v1.1/yolov1.cfg create mode 100644 Yolo_Algo/cfg/v1/tiny-old.profile create mode 100644 Yolo_Algo/cfg/v1/tiny.profile create mode 100644 Yolo_Algo/cfg/v1/yolo-2c.cfg create mode 100644 Yolo_Algo/cfg/v1/yolo-4c.cfg create mode 100644 Yolo_Algo/cfg/v1/yolo-full.cfg create mode 100644 Yolo_Algo/cfg/v1/yolo-small.cfg create mode 100644 Yolo_Algo/cfg/v1/yolo-tiny-extract.cfg create mode 100644 Yolo_Algo/cfg/v1/yolo-tiny-extract_.cfg create mode 100644 Yolo_Algo/cfg/v1/yolo-tiny.cfg create mode 100644 Yolo_Algo/cfg/v1/yolo-tiny4c.cfg create mode 100644 Yolo_Algo/cfg/yolo-voc.cfg create mode 100644 Yolo_Algo/cfg/yolo.cfg diff --git a/Yolo_Algo/Yolo_sensor_receiver.py b/Yolo_Algo/Yolo_sensor_receiver.py new file mode 100644 index 0000000..cabe94c --- /dev/null +++ b/Yolo_Algo/Yolo_sensor_receiver.py @@ -0,0 +1,139 @@ +from __future__ import print_function +import tensorflow as tf +gpu_options = tf.GPUOptions(per_process_gpu_memory_fraction=0.82) +sess = tf.Session(config=tf.ConfigProto(gpu_options=gpu_options)) + +import darkflow + +from darkflow.net.build import TFNet + +import argparse +import socket +import sys +import binascii +import struct +from collections import namedtuple +import cv2 +import numpy as np +import matplotlib.pyplot as plt + +options = {"model": "cfg/yolo.cfg", + "load": "bin/yolo.weights", + "threshold": 0.1, + "gpu": 1.0} + +tfnet = TFNet(options) +def boxing(original_img, predictions): + newImage = np.copy(original_img) + + for result in predictions: + top_x = result['topleft']['x'] + top_y = result['topleft']['y'] + + btm_x = result['bottomright']['x'] + btm_y = result['bottomright']['y'] + + confidence = result['confidence'] + label = result['label'] + " " + str(round(confidence, 3)) + + if confidence > 0.3: + newImage = cv2.rectangle(newImage, (top_x, top_y), (btm_x, btm_y), (255,0,0), 3) + newImage = cv2.putText(newImage, label, (top_x, top_y-5), cv2.FONT_HERSHEY_COMPLEX_SMALL , 0.8, (0, 230, 0), 1, cv2.LINE_AA) + + return newImage + +PROCESS = True + +# Definitions + +# Protocol Header Format +# Cookie VersionMajor VersionMinor FrameType Timestamp ImageWidth +# ImageHeight PixelStride RowStride +SENSOR_STREAM_HEADER_FORMAT = "@IBBHqIIII" + +SENSOR_FRAME_STREAM_HEADER = namedtuple( + 'SensorFrameStreamHeader', + 'Cookie VersionMajor VersionMinor FrameType Timestamp ImageWidth ImageHeight PixelStride RowStride' +) + +# Each port corresponds to a single stream type +# Port for obtaining Photo Video Camera stream +PV_STREAM_PORT = 23940 + + +def main(argv): + """Receiver main""" + parser = argparse.ArgumentParser() + required_named_group = parser.add_argument_group('named arguments') + + required_named_group.add_argument("-a", "--host", + help="Host address to connect", required=True) + args = parser.parse_args(argv) + + # Create a TCP Stream socket + try: + s = socket.socket(socket.AF_INET, socket.SOCK_STREAM) + except (socket.error, msg): + print("ERROR: Failed to create socket. Code: " + str(msg[0]) + ', Message: ' + msg[1]) + sys.exit() + + print('INFO: socket created') + + # Try connecting to the address + s.connect((args.host, PV_STREAM_PORT)) + + print('INFO: Socket Connected to ' + args.host + ' on port ' + str(PV_STREAM_PORT)) + + # Try receive data + try: + quit = False + while not quit: + reply = s.recv(struct.calcsize(SENSOR_STREAM_HEADER_FORMAT)) + if not reply: + print('ERROR: Failed to receive data') + sys.exit() + + data = struct.unpack(SENSOR_STREAM_HEADER_FORMAT, reply) + + # Parse the header + header = SENSOR_FRAME_STREAM_HEADER(*data) + + # read the image in chunks + image_size_bytes = header.ImageHeight * header.RowStride + image_data = bytes() + + while len(image_data) < image_size_bytes: + remaining_bytes = image_size_bytes - len(image_data) + image_data_chunk = s.recv(remaining_bytes) + if not image_data_chunk: + print('ERROR: Failed to receive image data') + sys.exit() + image_data += image_data_chunk + + image_array = np.frombuffer(image_data, dtype=np.uint8).reshape((header.ImageHeight, + header.ImageWidth, header.PixelStride)) + if PROCESS: + + image_array=image_array[:,:,:3] + + + results = tfnet.return_predict(image_array) + new_frame = boxing(image_array, results) + + + cv2.imshow('Photo Video Camera Stream',new_frame) + + if cv2.waitKey(1) & 0xFF == ord('q'): + break + except KeyboardInterrupt: + pass + + s.close() + cv2.destroyAllWindows() + cap.release() + out.release() + cv2.destroyAllWindows() + +if __name__ == "__main__": + main(sys.argv[1:]) + #main(192.168.100) \ No newline at end of file diff --git a/Yolo_Algo/cfg/coco.names b/Yolo_Algo/cfg/coco.names new file mode 100644 index 0000000..5ec6eee --- /dev/null +++ b/Yolo_Algo/cfg/coco.names @@ -0,0 +1,80 @@ +person +bicycle +car +motorbike +aeroplane +bus +train +truck +boat +traffic light +fire hydrant +stop sign +parking meter +bench +bird +cat +dog +horse +sheep +cow +elephant +bear +zebra +giraffe +backpack +umbrella +handbag +tie +suitcase +frisbee +skis +snowboard +sports ball +kite +baseball bat +baseball glove +skateboard +surfboard +tennis racket +bottle +wine glass +cup +fork +knife +spoon +bowl +banana +apple +sandwich +orange +broccoli +carrot +hot dog +pizza +donut +cake +chair +sofa +pottedplant +bed +diningtable +toilet +tvmonitor +laptop +mouse +remote +keyboard +cell phone +microwave +oven +toaster +sink +refrigerator +book +clock +vase +scissors +teddy bear +hair drier +toothbrush diff --git a/Yolo_Algo/cfg/extraction.cfg b/Yolo_Algo/cfg/extraction.cfg new file mode 100644 index 0000000..75b7b43 --- /dev/null +++ b/Yolo_Algo/cfg/extraction.cfg @@ -0,0 +1,206 @@ +[net] +batch=128 +subdivisions=1 +height=224 +width=224 +max_crop=320 +channels=3 +momentum=0.9 +decay=0.0005 + +learning_rate=0.1 +policy=poly +power=4 +max_batches=1600000 + +[convolutional] +batch_normalize=1 +filters=64 +size=7 +stride=2 +pad=1 +activation=leaky + +[maxpool] +size=2 +stride=2 + +[convolutional] +batch_normalize=1 +filters=192 +size=3 +stride=1 +pad=1 +activation=leaky + +[maxpool] +size=2 +stride=2 + +[convolutional] +batch_normalize=1 +filters=128 +size=1 +stride=1 +pad=1 +activation=leaky + +[convolutional] +batch_normalize=1 +filters=256 +size=3 +stride=1 +pad=1 +activation=leaky + +[convolutional] +batch_normalize=1 +filters=256 +size=1 +stride=1 +pad=1 +activation=leaky + +[convolutional] +batch_normalize=1 +filters=512 +size=3 +stride=1 +pad=1 +activation=leaky + +[maxpool] +size=2 +stride=2 + +[convolutional] +batch_normalize=1 +filters=256 +size=1 +stride=1 +pad=1 +activation=leaky + +[convolutional] +batch_normalize=1 +filters=512 +size=3 +stride=1 +pad=1 +activation=leaky + +[convolutional] +batch_normalize=1 +filters=256 +size=1 +stride=1 +pad=1 +activation=leaky + +[convolutional] +batch_normalize=1 +filters=512 +size=3 +stride=1 +pad=1 +activation=leaky + +[convolutional] +batch_normalize=1 +filters=256 +size=1 +stride=1 +pad=1 +activation=leaky + +[convolutional] +batch_normalize=1 +filters=512 +size=3 +stride=1 +pad=1 +activation=leaky + +[convolutional] +batch_normalize=1 +filters=256 +size=1 +stride=1 +pad=1 +activation=leaky + +[convolutional] +batch_normalize=1 +filters=512 +size=3 +stride=1 +pad=1 +activation=leaky + +[convolutional] +batch_normalize=1 +filters=512 +size=1 +stride=1 +pad=1 +activation=leaky + +[convolutional] +batch_normalize=1 +filters=1024 +size=3 +stride=1 +pad=1 +activation=leaky + +[maxpool] +size=2 +stride=2 + +[convolutional] +batch_normalize=1 +filters=512 +size=1 +stride=1 +pad=1 +activation=leaky + +[convolutional] +batch_normalize=1 +filters=1024 +size=3 +stride=1 +pad=1 +activation=leaky + +[convolutional] +batch_normalize=1 +filters=512 +size=1 +stride=1 +pad=1 +activation=leaky + +[convolutional] +batch_normalize=1 +filters=1024 +size=3 +stride=1 +pad=1 +activation=leaky + +[convolutional] +filters=1000 +size=1 +stride=1 +pad=1 +activation=leaky + +[avgpool] + +[softmax] +groups=1 + +[cost] +type=sse + diff --git a/Yolo_Algo/cfg/extraction.conv.cfg b/Yolo_Algo/cfg/extraction.conv.cfg new file mode 100644 index 0000000..c86eae4 --- /dev/null +++ b/Yolo_Algo/cfg/extraction.conv.cfg @@ -0,0 +1,179 @@ +[net] +batch=1 +subdivisions=1 +height=256 +width=256 +channels=3 +momentum=0.9 +decay=0.0005 + +learning_rate=0.5 +policy=poly +power=6 +max_batches=500000 + +[convolutional] +filters=64 +size=7 +stride=2 +pad=1 +activation=leaky + +[maxpool] +size=2 +stride=2 + +[convolutional] +filters=192 +size=3 +stride=1 +pad=1 +activation=leaky + +[maxpool] +size=2 +stride=2 + +[convolutional] +filters=128 +size=1 +stride=1 +pad=1 +activation=leaky + +[convolutional] +filters=256 +size=3 +stride=1 +pad=1 +activation=leaky + +[convolutional] +filters=256 +size=1 +stride=1 +pad=1 +activation=leaky + +[convolutional] +filters=512 +size=3 +stride=1 +pad=1 +activation=leaky + +[maxpool] +size=2 +stride=2 + +[convolutional] +filters=256 +size=1 +stride=1 +pad=1 +activation=leaky + +[convolutional] +filters=512 +size=3 +stride=1 +pad=1 +activation=leaky + +[convolutional] +filters=256 +size=1 +stride=1 +pad=1 +activation=leaky + +[convolutional] +filters=512 +size=3 +stride=1 +pad=1 +activation=leaky + +[convolutional] +filters=256 +size=1 +stride=1 +pad=1 +activation=leaky + +[convolutional] +filters=512 +size=3 +stride=1 +pad=1 +activation=leaky + +[convolutional] +filters=256 +size=1 +stride=1 +pad=1 +activation=leaky + +[convolutional] +filters=512 +size=3 +stride=1 +pad=1 +activation=leaky + +[convolutional] +filters=512 +size=1 +stride=1 +pad=1 +activation=leaky + +[convolutional] +filters=1024 +size=3 +stride=1 +pad=1 +activation=leaky + +[maxpool] +size=2 +stride=2 + +[convolutional] +filters=512 +size=1 +stride=1 +pad=1 +activation=leaky + +[convolutional] +filters=1024 +size=3 +stride=1 +pad=1 +activation=leaky + +[convolutional] +filters=512 +size=1 +stride=1 +pad=1 +activation=leaky + +[convolutional] +filters=1024 +size=3 +stride=1 +pad=1 +activation=leaky + +[avgpool] + +[connected] +output=1000 +activation=leaky + +[softmax] +groups=1 + diff --git a/Yolo_Algo/cfg/tiny-yolo-4c.cfg b/Yolo_Algo/cfg/tiny-yolo-4c.cfg new file mode 100644 index 0000000..c89161c --- /dev/null +++ b/Yolo_Algo/cfg/tiny-yolo-4c.cfg @@ -0,0 +1,134 @@ +[net] +batch=64 +subdivisions=8 +width=416 +height=416 +channels=3 +momentum=0.9 +decay=0.0005 +angle=0 +saturation = 1.5 +exposure = 1.5 +hue=.1 + +learning_rate=0.001 +max_batches = 40100 +policy=steps +steps=-1,100,20000,30000 +scales=.1,10,.1,.1 + +[convolutional] +batch_normalize=1 +filters=16 +size=3 +stride=1 +pad=1 +activation=leaky + +[maxpool] +size=2 +stride=2 + +[convolutional] +batch_normalize=1 +filters=32 +size=3 +stride=1 +pad=1 +activation=leaky + +[maxpool] +size=2 +stride=2 + +[convolutional] +batch_normalize=1 +filters=64 +size=3 +stride=1 +pad=1 +activation=leaky + +[maxpool] +size=2 +stride=2 + +[convolutional] +batch_normalize=1 +filters=128 +size=3 +stride=1 +pad=1 +activation=leaky + +[maxpool] +size=2 +stride=2 + +[convolutional] +batch_normalize=1 +filters=256 +size=3 +stride=1 +pad=1 +activation=leaky + +[maxpool] +size=2 +stride=2 + +[convolutional] +batch_normalize=1 +filters=512 +size=3 +stride=1 +pad=1 +activation=leaky + +[maxpool] +size=2 +stride=1 + +[convolutional] +batch_normalize=1 +filters=1024 +size=3 +stride=1 +pad=1 +activation=leaky + +########### + +[convolutional] +batch_normalize=1 +size=3 +stride=1 +pad=1 +filters=1024 +activation=leaky + +[convolutional] +size=1 +stride=1 +pad=1 +filters=45 +activation=linear + +[region] +anchors = 1.08,1.19, 3.42,4.41, 6.63,11.38, 9.42,5.11, 16.62,10.52 +bias_match=1 +classes=4 +coords=4 +num=5 +softmax=1 +jitter=.2 +rescore=1 + +object_scale=5 +noobject_scale=1 +class_scale=1 +coord_scale=1 + +absolute=1 +thresh=.6 +random=1 diff --git a/Yolo_Algo/cfg/tiny-yolo-voc.cfg b/Yolo_Algo/cfg/tiny-yolo-voc.cfg new file mode 100644 index 0000000..55a0648 --- /dev/null +++ b/Yolo_Algo/cfg/tiny-yolo-voc.cfg @@ -0,0 +1,134 @@ +[net] +batch=64 +subdivisions=8 +width=416 +height=416 +channels=3 +momentum=0.9 +decay=0.0005 +angle=0 +saturation = 1.5 +exposure = 1.5 +hue=.1 + +learning_rate=0.001 +max_batches = 40100 +policy=steps +steps=-1,100,20000,30000 +scales=.1,10,.1,.1 + +[convolutional] +batch_normalize=1 +filters=16 +size=3 +stride=1 +pad=1 +activation=leaky + +[maxpool] +size=2 +stride=2 + +[convolutional] +batch_normalize=1 +filters=32 +size=3 +stride=1 +pad=1 +activation=leaky + +[maxpool] +size=2 +stride=2 + +[convolutional] +batch_normalize=1 +filters=64 +size=3 +stride=1 +pad=1 +activation=leaky + +[maxpool] +size=2 +stride=2 + +[convolutional] +batch_normalize=1 +filters=128 +size=3 +stride=1 +pad=1 +activation=leaky + +[maxpool] +size=2 +stride=2 + +[convolutional] +batch_normalize=1 +filters=256 +size=3 +stride=1 +pad=1 +activation=leaky + +[maxpool] +size=2 +stride=2 + +[convolutional] +batch_normalize=1 +filters=512 +size=3 +stride=1 +pad=1 +activation=leaky + +[maxpool] +size=2 +stride=1 + +[convolutional] +batch_normalize=1 +filters=1024 +size=3 +stride=1 +pad=1 +activation=leaky + +########### + +[convolutional] +batch_normalize=1 +size=3 +stride=1 +pad=1 +filters=1024 +activation=leaky + +[convolutional] +size=1 +stride=1 +pad=1 +filters=125 +activation=linear + +[region] +anchors = 1.08,1.19, 3.42,4.41, 6.63,11.38, 9.42,5.11, 16.62,10.52 +bias_match=1 +classes=20 +coords=4 +num=5 +softmax=1 +jitter=.2 +rescore=1 + +object_scale=5 +noobject_scale=1 +class_scale=1 +coord_scale=1 + +absolute=1 +thresh = .5 +random=1 diff --git a/Yolo_Algo/cfg/tiny-yolo.cfg b/Yolo_Algo/cfg/tiny-yolo.cfg new file mode 100644 index 0000000..f7ede36 --- /dev/null +++ b/Yolo_Algo/cfg/tiny-yolo.cfg @@ -0,0 +1,134 @@ +[net] +batch=64 +subdivisions=8 +width=416 +height=416 +channels=3 +momentum=0.9 +decay=0.0005 +angle=0 +saturation = 1.5 +exposure = 1.5 +hue=.1 + +learning_rate=0.001 +max_batches = 120000 +policy=steps +steps=-1,100,80000,100000 +scales=.1,10,.1,.1 + +[convolutional] +batch_normalize=1 +filters=16 +size=3 +stride=1 +pad=1 +activation=leaky + +[maxpool] +size=2 +stride=2 + +[convolutional] +batch_normalize=1 +filters=32 +size=3 +stride=1 +pad=1 +activation=leaky + +[maxpool] +size=2 +stride=2 + +[convolutional] +batch_normalize=1 +filters=64 +size=3 +stride=1 +pad=1 +activation=leaky + +[maxpool] +size=2 +stride=2 + +[convolutional] +batch_normalize=1 +filters=128 +size=3 +stride=1 +pad=1 +activation=leaky + +[maxpool] +size=2 +stride=2 + +[convolutional] +batch_normalize=1 +filters=256 +size=3 +stride=1 +pad=1 +activation=leaky + +[maxpool] +size=2 +stride=2 + +[convolutional] +batch_normalize=1 +filters=512 +size=3 +stride=1 +pad=1 +activation=leaky + +[maxpool] +size=2 +stride=1 + +[convolutional] +batch_normalize=1 +filters=1024 +size=3 +stride=1 +pad=1 +activation=leaky + +########### + +[convolutional] +batch_normalize=1 +size=3 +stride=1 +pad=1 +filters=1024 +activation=leaky + +[convolutional] +size=1 +stride=1 +pad=1 +filters=425 +activation=linear + +[region] +anchors = 0.738768,0.874946, 2.42204,2.65704, 4.30971,7.04493, 10.246,4.59428, 12.6868,11.8741 +bias_match=1 +classes=80 +coords=4 +num=5 +softmax=1 +jitter=.2 +rescore=1 + +object_scale=5 +noobject_scale=1 +class_scale=1 +coord_scale=1 + +absolute=1 +thresh = .6 +random=1 diff --git a/Yolo_Algo/cfg/v1.1/person-bottle.cfg b/Yolo_Algo/cfg/v1.1/person-bottle.cfg new file mode 100644 index 0000000..56d3587 --- /dev/null +++ b/Yolo_Algo/cfg/v1.1/person-bottle.cfg @@ -0,0 +1,128 @@ +[net] +batch=64 +subdivisions=2 +height=448 +width=448 +channels=3 +momentum=0.9 +decay=0.0005 + +saturation=.75 +exposure=.75 +hue = .1 + +learning_rate=0.0005 +policy=steps +steps=200,400,600,800,20000,30000 +scales=2.5,2,2,2,.1,.1 +max_batches = 40000 + +[convolutional] +batch_normalize=1 +filters=16 +size=3 +stride=1 +pad=1 +activation=leaky + +[maxpool] +size=2 +stride=2 + +[convolutional] +batch_normalize=1 +filters=32 +size=3 +stride=1 +pad=1 +activation=leaky + +[maxpool] +size=2 +stride=2 + +[convolutional] +batch_normalize=1 +filters=64 +size=3 +stride=1 +pad=1 +activation=leaky + +[maxpool] +size=2 +stride=2 + +[convolutional] +batch_normalize=1 +filters=128 +size=3 +stride=1 +pad=1 +activation=leaky + +[maxpool] +size=2 +stride=2 + +[convolutional] +batch_normalize=1 +filters=256 +size=3 +stride=1 +pad=1 +activation=leaky + +[maxpool] +size=2 +stride=2 + +[convolutional] +batch_normalize=1 +filters=512 +size=3 +stride=1 +pad=1 +activation=leaky + +[maxpool] +size=2 +stride=2 + +[convolutional] +batch_normalize=1 +size=3 +stride=1 +pad=1 +filters=1024 +activation=leaky + +[convolutional] +batch_normalize=1 +size=3 +stride=1 +pad=1 +filters=256 +activation=leaky + +[select] +old_output=1470 +keep=4,14/20 +bins=49 +output=588 +activation=linear + +[detection] +classes=2 +coords=4 +rescore=1 +side=7 +num=2 +softmax=0 +sqrt=1 +jitter=.2 + +object_scale=1 +noobject_scale=.5 +class_scale=1 +coord_scale=5 \ No newline at end of file diff --git a/Yolo_Algo/cfg/v1.1/tiny-coco.cfg b/Yolo_Algo/cfg/v1.1/tiny-coco.cfg new file mode 100644 index 0000000..b87ebdf --- /dev/null +++ b/Yolo_Algo/cfg/v1.1/tiny-coco.cfg @@ -0,0 +1,125 @@ +[net] +batch=64 +subdivisions=2 +height=448 +width=448 +channels=3 +momentum=0.9 +decay=0.0005 + +hue = .1 +saturation=.75 +exposure=.75 + +learning_rate=0.0005 +policy=steps +steps=200,400,600,800,100000,150000 +scales=2.5,2,2,2,.1,.1 +max_batches = 200000 + +[convolutional] +batch_normalize=1 +filters=16 +size=3 +stride=1 +pad=1 +activation=leaky + +[maxpool] +size=2 +stride=2 + +[convolutional] +batch_normalize=1 +filters=32 +size=3 +stride=1 +pad=1 +activation=leaky + +[maxpool] +size=2 +stride=2 + +[convolutional] +batch_normalize=1 +filters=64 +size=3 +stride=1 +pad=1 +activation=leaky + +[maxpool] +size=2 +stride=2 + +[convolutional] +batch_normalize=1 +filters=128 +size=3 +stride=1 +pad=1 +activation=leaky + +[maxpool] +size=2 +stride=2 + +[convolutional] +batch_normalize=1 +filters=256 +size=3 +stride=1 +pad=1 +activation=leaky + +[maxpool] +size=2 +stride=2 + +[convolutional] +batch_normalize=1 +filters=512 +size=3 +stride=1 +pad=1 +activation=leaky + +[maxpool] +size=2 +stride=2 + +[convolutional] +batch_normalize=1 +size=3 +stride=1 +pad=1 +filters=1024 +activation=leaky + +[convolutional] +batch_normalize=1 +size=3 +stride=1 +pad=1 +filters=256 +activation=leaky + +[connected] +output= 4655 +activation=linear + +[detection] +classes=80 +coords=4 +rescore=1 +side=7 +num=3 +softmax=0 +sqrt=1 +jitter=.2 + +object_scale=1 +noobject_scale=.5 +class_scale=1 +coord_scale=5 diff --git a/Yolo_Algo/cfg/v1.1/tiny-yolo-4c.cfg b/Yolo_Algo/cfg/v1.1/tiny-yolo-4c.cfg new file mode 100644 index 0000000..398be64 --- /dev/null +++ b/Yolo_Algo/cfg/v1.1/tiny-yolo-4c.cfg @@ -0,0 +1,128 @@ +[net] +batch=64 +subdivisions=2 +height=448 +width=448 +channels=3 +momentum=0.9 +decay=0.0005 + +saturation=.75 +exposure=.75 +hue = .1 + +learning_rate=0.0005 +policy=steps +steps=200,400,600,800,20000,30000 +scales=2.5,2,2,2,.1,.1 +max_batches = 40000 + +[convolutional] +batch_normalize=1 +filters=16 +size=3 +stride=1 +pad=1 +activation=leaky + +[maxpool] +size=2 +stride=2 + +[convolutional] +batch_normalize=1 +filters=32 +size=3 +stride=1 +pad=1 +activation=leaky + +[maxpool] +size=2 +stride=2 + +[convolutional] +batch_normalize=1 +filters=64 +size=3 +stride=1 +pad=1 +activation=leaky + +[maxpool] +size=2 +stride=2 + +[convolutional] +batch_normalize=1 +filters=128 +size=3 +stride=1 +pad=1 +activation=leaky + +[maxpool] +size=2 +stride=2 + +[convolutional] +batch_normalize=1 +filters=256 +size=3 +stride=1 +pad=1 +activation=leaky + +[maxpool] +size=2 +stride=2 + +[convolutional] +batch_normalize=1 +filters=512 +size=3 +stride=1 +pad=1 +activation=leaky + +[maxpool] +size=2 +stride=2 + +[convolutional] +batch_normalize=1 +size=3 +stride=1 +pad=1 +filters=1024 +activation=leaky + +[convolutional] +batch_normalize=1 +size=3 +stride=1 +pad=1 +filters=256 +activation=leaky + +[select] +old_output=1470 +keep=8,14,15,19/20 +bins=49 +output=686 +activation=linear + +[detection] +classes=4 +coords=4 +rescore=1 +side=7 +num=2 +softmax=0 +sqrt=1 +jitter=.2 + +object_scale=1 +noobject_scale=.5 +class_scale=1 +coord_scale=5 \ No newline at end of file diff --git a/Yolo_Algo/cfg/v1.1/tiny-yolov1.cfg b/Yolo_Algo/cfg/v1.1/tiny-yolov1.cfg new file mode 100644 index 0000000..4906596 --- /dev/null +++ b/Yolo_Algo/cfg/v1.1/tiny-yolov1.cfg @@ -0,0 +1,126 @@ +[net] +batch=64 +subdivisions=2 +height=448 +width=448 +channels=3 +momentum=0.9 +decay=0.0005 + +saturation=.75 +exposure=.75 +hue = .1 + +learning_rate=0.0005 +policy=steps +steps=200,400,600,800,20000,30000 +scales=2.5,2,2,2,.1,.1 +max_batches = 40000 + +[convolutional] +batch_normalize=1 +filters=16 +size=3 +stride=1 +pad=1 +activation=leaky + +[maxpool] +size=2 +stride=2 + +[convolutional] +batch_normalize=1 +filters=32 +size=3 +stride=1 +pad=1 +activation=leaky + +[maxpool] +size=2 +stride=2 + +[convolutional] +batch_normalize=1 +filters=64 +size=3 +stride=1 +pad=1 +activation=leaky + +[maxpool] +size=2 +stride=2 + +[convolutional] +batch_normalize=1 +filters=128 +size=3 +stride=1 +pad=1 +activation=leaky + +[maxpool] +size=2 +stride=2 + +[convolutional] +batch_normalize=1 +filters=256 +size=3 +stride=1 +pad=1 +activation=leaky + +[maxpool] +size=2 +stride=2 + +[convolutional] +batch_normalize=1 +filters=512 +size=3 +stride=1 +pad=1 +activation=leaky + +[maxpool] +size=2 +stride=2 + +[convolutional] +batch_normalize=1 +size=3 +stride=1 +pad=1 +filters=1024 +activation=leaky + +[convolutional] +batch_normalize=1 +size=3 +stride=1 +pad=1 +filters=256 +activation=leaky + +[connected] +output= 1470 +activation=linear + +[detection] +classes=20 +coords=4 +rescore=1 +side=7 +num=2 +softmax=0 +sqrt=1 +jitter=.2 + +object_scale=1 +noobject_scale=.5 +class_scale=1 +coord_scale=5 + diff --git a/Yolo_Algo/cfg/v1.1/yolo-coco.cfg b/Yolo_Algo/cfg/v1.1/yolo-coco.cfg new file mode 100644 index 0000000..d4ad818 --- /dev/null +++ b/Yolo_Algo/cfg/v1.1/yolo-coco.cfg @@ -0,0 +1,255 @@ +[net] +batch=64 +subdivisions=4 +height=448 +width=448 +channels=3 +momentum=0.9 +decay=0.0005 + +hue = .1 +saturation=.75 +exposure=.75 + +learning_rate=0.0005 +policy=steps +steps=200,400,600,800,100000,150000 +scales=2.5,2,2,2,.1,.1 +max_batches = 200000 + +[convolutional] +batch_normalize=1 +filters=64 +size=7 +stride=2 +pad=1 +activation=leaky + +[maxpool] +size=2 +stride=2 + +[convolutional] +batch_normalize=1 +filters=192 +size=3 +stride=1 +pad=1 +activation=leaky + +[maxpool] +size=2 +stride=2 + +[convolutional] +batch_normalize=1 +filters=128 +size=1 +stride=1 +pad=1 +activation=leaky + +[convolutional] +batch_normalize=1 +filters=256 +size=3 +stride=1 +pad=1 +activation=leaky + +[convolutional] +batch_normalize=1 +filters=256 +size=1 +stride=1 +pad=1 +activation=leaky + +[convolutional] +batch_normalize=1 +filters=512 +size=3 +stride=1 +pad=1 +activation=leaky + +[maxpool] +size=2 +stride=2 + +[convolutional] +batch_normalize=1 +filters=256 +size=1 +stride=1 +pad=1 +activation=leaky + +[convolutional] +batch_normalize=1 +filters=512 +size=3 +stride=1 +pad=1 +activation=leaky + +[convolutional] +batch_normalize=1 +filters=256 +size=1 +stride=1 +pad=1 +activation=leaky + +[convolutional] +batch_normalize=1 +filters=512 +size=3 +stride=1 +pad=1 +activation=leaky + +[convolutional] +batch_normalize=1 +filters=256 +size=1 +stride=1 +pad=1 +activation=leaky + +[convolutional] +batch_normalize=1 +filters=512 +size=3 +stride=1 +pad=1 +activation=leaky + +[convolutional] +batch_normalize=1 +filters=256 +size=1 +stride=1 +pad=1 +activation=leaky + +[convolutional] +batch_normalize=1 +filters=512 +size=3 +stride=1 +pad=1 +activation=leaky + +[convolutional] +batch_normalize=1 +filters=512 +size=1 +stride=1 +pad=1 +activation=leaky + +[convolutional] +batch_normalize=1 +filters=1024 +size=3 +stride=1 +pad=1 +activation=leaky + +[maxpool] +size=2 +stride=2 + +[convolutional] +batch_normalize=1 +filters=512 +size=1 +stride=1 +pad=1 +activation=leaky + +[convolutional] +batch_normalize=1 +filters=1024 +size=3 +stride=1 +pad=1 +activation=leaky + +[convolutional] +batch_normalize=1 +filters=512 +size=1 +stride=1 +pad=1 +activation=leaky + +[convolutional] +batch_normalize=1 +filters=1024 +size=3 +stride=1 +pad=1 +activation=leaky + +####### + +[convolutional] +batch_normalize=1 +size=3 +stride=1 +pad=1 +filters=1024 +activation=leaky + +[convolutional] +batch_normalize=1 +size=3 +stride=2 +pad=1 +filters=1024 +activation=leaky + +[convolutional] +batch_normalize=1 +size=3 +stride=1 +pad=1 +filters=1024 +activation=leaky + +[convolutional] +batch_normalize=1 +size=3 +stride=1 +pad=1 +filters=1024 +activation=leaky + +[local] +size=3 +stride=1 +pad=1 +filters=256 +activation=leaky + +[connected] +output= 4655 +activation=linear + +[detection] +classes=80 +coords=4 +rescore=1 +side=7 +num=3 +softmax=0 +sqrt=1 +jitter=.2 + +object_scale=1 +noobject_scale=.5 +class_scale=1 +coord_scale=5 + diff --git a/Yolo_Algo/cfg/v1.1/yolov1.cfg b/Yolo_Algo/cfg/v1.1/yolov1.cfg new file mode 100644 index 0000000..795dcd5 --- /dev/null +++ b/Yolo_Algo/cfg/v1.1/yolov1.cfg @@ -0,0 +1,257 @@ +[net] +batch=1 +subdivisions=1 +height=448 +width=448 +channels=3 +momentum=0.9 +decay=0.0005 +saturation=1.5 +exposure=1.5 +hue=.1 + +learning_rate=0.0005 +policy=steps +steps=200,400,600,20000,30000 +scales=2.5,2,2,.1,.1 +max_batches = 40000 + +[convolutional] +batch_normalize=1 +filters=64 +size=7 +stride=2 +pad=1 +activation=leaky + +[maxpool] +size=2 +stride=2 + +[convolutional] +batch_normalize=1 +filters=192 +size=3 +stride=1 +pad=1 +activation=leaky + +[maxpool] +size=2 +stride=2 + +[convolutional] +batch_normalize=1 +filters=128 +size=1 +stride=1 +pad=1 +activation=leaky + +[convolutional] +batch_normalize=1 +filters=256 +size=3 +stride=1 +pad=1 +activation=leaky + +[convolutional] +batch_normalize=1 +filters=256 +size=1 +stride=1 +pad=1 +activation=leaky + +[convolutional] +batch_normalize=1 +filters=512 +size=3 +stride=1 +pad=1 +activation=leaky + +[maxpool] +size=2 +stride=2 + +[convolutional] +batch_normalize=1 +filters=256 +size=1 +stride=1 +pad=1 +activation=leaky + +[convolutional] +batch_normalize=1 +filters=512 +size=3 +stride=1 +pad=1 +activation=leaky + +[convolutional] +batch_normalize=1 +filters=256 +size=1 +stride=1 +pad=1 +activation=leaky + +[convolutional] +batch_normalize=1 +filters=512 +size=3 +stride=1 +pad=1 +activation=leaky + +[convolutional] +batch_normalize=1 +filters=256 +size=1 +stride=1 +pad=1 +activation=leaky + +[convolutional] +batch_normalize=1 +filters=512 +size=3 +stride=1 +pad=1 +activation=leaky + +[convolutional] +batch_normalize=1 +filters=256 +size=1 +stride=1 +pad=1 +activation=leaky + +[convolutional] +batch_normalize=1 +filters=512 +size=3 +stride=1 +pad=1 +activation=leaky + +[convolutional] +batch_normalize=1 +filters=512 +size=1 +stride=1 +pad=1 +activation=leaky + +[convolutional] +batch_normalize=1 +filters=1024 +size=3 +stride=1 +pad=1 +activation=leaky + +[maxpool] +size=2 +stride=2 + +[convolutional] +batch_normalize=1 +filters=512 +size=1 +stride=1 +pad=1 +activation=leaky + +[convolutional] +batch_normalize=1 +filters=1024 +size=3 +stride=1 +pad=1 +activation=leaky + +[convolutional] +batch_normalize=1 +filters=512 +size=1 +stride=1 +pad=1 +activation=leaky + +[convolutional] +batch_normalize=1 +filters=1024 +size=3 +stride=1 +pad=1 +activation=leaky + +####### + +[convolutional] +batch_normalize=1 +size=3 +stride=1 +pad=1 +filters=1024 +activation=leaky + +[convolutional] +batch_normalize=1 +size=3 +stride=2 +pad=1 +filters=1024 +activation=leaky + +[convolutional] +batch_normalize=1 +size=3 +stride=1 +pad=1 +filters=1024 +activation=leaky + +[convolutional] +batch_normalize=1 +size=3 +stride=1 +pad=1 +filters=1024 +activation=leaky + +[local] +size=3 +stride=1 +pad=1 +filters=256 +activation=leaky + +[dropout] +probability=.5 + +[connected] +output= 1715 +activation=linear + +[detection] +classes=20 +coords=4 +rescore=1 +side=7 +num=3 +softmax=0 +sqrt=1 +jitter=.2 + +object_scale=1 +noobject_scale=.5 +class_scale=1 +coord_scale=5 + diff --git a/Yolo_Algo/cfg/v1/tiny-old.profile b/Yolo_Algo/cfg/v1/tiny-old.profile new file mode 100644 index 0000000000000000000000000000000000000000..079906116df8475d095a04de0486fe340a05260f GIT binary patch literal 43671 zcmc)Td9;pY|2JUsEJPAACPFe~CPOM2Ln!k+lX)I1naMm)WhM~{k*N$JM1%~@WhzNB z#9NQ!T)(xhwf55UzQ46ze{}eq*Lm+{yZ3#%_UGB(`xzXkVVBqqyTr-Wyi<>ko%`f# z{z})D`8xLK(7kQbu3ekejt$kLKNzbcuU+SCURG?q2N@uX3!RwPQCM zRCWH3{_~&8 zvAQ=KQG0MKzhW~E<1!xOGXWDa5fd{BlQJ2T^FF3v_hxP4w)vk=CDA{h%ELq3Bpgxu zCp%*O|N5h)^an`A`LM3%jv9d$KqC zus;WI5F@Xer2o8X*8S&Ivn2e>^Y_m1stHTce~e=KN9h0d)e%nibpDjl6Fr=9;nfk& zx^S{*@wor?j0tD=JS@ahP!is!B0>s1k64biXqdwsPx z^zp-2dt7LP`<%o9L|v( z#nBwYu^h)YIi3?Zk&`)vQ#pgPIGb}gm-G2H7jPk$a4DDZ9j@eRzQ;9O%XR#K8@Q1l zax1rSJ9qG7?&ed|13bjfd6-9dl*jlbkMjgi@++R=S$@rL_#J=XkNk;0^Bm9f z0x$6wUgmGS!ryt7*La;bc$2qyn|ByF#gqMgidU@?`#;BclO+Fhe8;st9ux8JE&utI zl*yQ!srdlI@%*41)A1aR8C^ljJF!%4wX*S)9!| zj2^E`tuNzpuHZXd$#=P$?{N*+avk6225#hs+{BN#g?hWDaSuP`K7Pgn zJjl;^gvWS-C;1gm@ifoyYldU>TlpN%^8zpO5`W>Z4993VKCfE8#y@$JxA+%t^A6+0 zzWbZFjK{=G!emU&luX43n3fOnA*N>rW@IL2W)@~;HfHCe%*kAQjCq)sk24?hvmgtx zFpID#i?KLMvNX%G9Luu;pJPQkK0oQW_H}XSn;%08=4t~s?+{NA8 z!%w-F`?#M6c!-Dj1&{GKPw*5^^9;}OYktFT`8|K&kG#N(yu@F4nZNN0uksIG<6peZ z$n9tHe{MgU#`(|fXQFWL`1eU`cdYo1-vms^L`=*SOvAKH$LMWmX6sp)mEm^tQ8^bM zV{YbQUgqNy%+G=>#3vbUH;c-}7;ZC5%Vk)WPU`^I$UB1NnY`{ir z!e(sF=+RW@-PwcD+rV)9*Vpxa?9Txl$Uz*;A$*NH`Y!HaOt)j7 zxqg5Ld5E9$Fu&kYMsL$jTK|ft7;e|XZP|C$zvqwqi9hokf8npZ%&Yu^fATtS@D{`E z*&R7foV({&0w!c4CSg)0V=CUy2bqo;n2DL0joJAKb1)b4Ffa2lKMSxB3$qwY@+p>K zS(f9|tiWejk(F4PRalMH`2uUOCTp<{>#{x@upt|Mm%+4Il$y|JlxtWKL^9kl>0TyH-7G@C^WigguNtR-1KE<+pnicpgEAn|( zVpUe-3#`Fftj#*C%X+NO25iViY|JKX#^!9nmTbeeY{w4l$XD2fUD=I2*o(c{m;KnE zgE)k*aVUpzI7e_K$8apia{?!FGN*7VXK^m)aX#PTLN4M`F5_~p;5%H&)m+PUT+a>M z!mZrKUEIx2xsUt#84vJt9^p|QB4Zq{}{DJ3rk(c-@f8+1`gV%VS zH+Yk`c!!ai?7kRkGP`5N^X+G}E{oP=N$pF{P@9G3EsgaDn3mBREra!pe3+S-mD!ks z(ONCkY0(-jruwX~k5il_S(;C=EX%PxpJoL zvObwpIF-{loiiA%+vZrG%Xxf@Z*vht{T6Ds<aV_XsJ#ZsgBfbB*W^%hg?ej*^^qLK(Hz5Z9M4d9O_D?16>6^O)@N}x z=W-tB^KCBRLWUY_vAmos_zqX{U9MuN#X=pn-ugyv=11JZt=z_sxs#z5+b!?mr`*c} z3^iD&yS}u3oF{m%+Uu-+Uo+HRKggl}`dL25i@d~N80xPpa;U+s$=7*iaTu5J7*jo#*!3h##?(y12bh)*GCeaeBOhiahWae4oQ>J}2y^gJ=47;1d)#`c z)t-<;y;evr%Hk}^QY_7KEYGL;44-FZR%NtCi`Hkg?W@DOe2Fi!J{zzho3J@Ujn+zT z%{FYu_I!n1*p=Pbojur-eK>%FIG98DDqrL49LC`s#Za@oDTjJ(svPRHner^oW~kBT z%JVp%3%Qs}xSXLrTP?5U`;69PA6ehR9gNmud#vwesKY*!4=`Gf{lC^?r+wVB{Dz?p z`$7JR(OT@h^-Byj*>Ca{{=pl($y@x3vEn+17?;sHEP?ezOw9kb9!u?U4=^p$G1Oxj zR{^;o3$ZYZvKWiA1WU3MqxDu9>t$Jvq278m_rz9t=Hvf zy%nvqVydwwdHiHf;Z#oJbk62HhC1tQc>zPMwOC%xm0ZP8W4$M@;aa}W5BMQB@gr{G zR)(5uyS#%R^Aql5Om)~^*Z1=fKj&c{tL zp%%L=|He>@U6udfHU7!#yvbYqi!sz>DPpL}BByAKby-5+o+f58Cg*(&wb}i0v_4C3 zJ=9~F$s#PqP?tR=mtk3!)rWqjgwK z>$UhIYqKt2W_^ZQtdZQ9O?j_+tgU_Fr_egc9od;(8EUea>aqUz4dM{K#!!z9l|xN7 zQXa+89LtFe^;fj+n(6v1&gDGL=K?O_QZ8etxmL>WaShkOU z+xQ9h@Kf&Pejem;Mr*7y*3a^5e#3A19lz%fJjV;X$p7s+>yD2bEB4*r#9;y^Vqzv? zQYPblOu!kHlJj1j6 zmfta2bNyuf9MAItqjlG>*01m?uQAkIq1O7#`W?n{Lll>x&PpVQ+A66W>Z|+Y6imhY znVK=xTMxM&Q@s_fwX)bBQ>_(htjFxj!@LZ2Rw4OG7G|igLTy#ndQ7!d1=pWrMTQ!y zk{nZwRnzra4E0s0t?F5i)>e(IH(|84YH2-MU$wO!t*<&-4>eY2Ia+7MRAcqBzc)jz z)mQGvfsCo0i*dJ=H5%NfmVyL^u%AxieFNgYTqCA;X7_G&oTc5$0YO+v|g<9+_ z``_jwMr*RA)|WHXW$(x<`7T3!woVQ;+9vrUhWc!)yq!DvF+br>?&5Cl;iufoP`B-u zKjQ%&;^#cVFL;c{d4i{SnrC>H(VFc?>-VbLF4}jAzw!!y=T(OK?N9kSZ!o4h?zZcp zZcF0Z(qv4|`X0EqjOSWdH&DzQB*@4meth4nl z?8ffw!Jh2J-t5DE?9V|Q%vbq3-{3Hg;7E?<7>?yQj^_kU$Sz! zmvK2)@Exw?y9{;OI(Z{EaWg}mcCQ*OTA%Il_`TfEgFM8~d6-A|1&=b+W+&xSJk3y> zeJ6*y><9Tr##EbKbp2Oe=5M^hm};{duHWP>-sT-fewr-h-!)m~(RbhSBi{eaS~}EX zY{!!LE;lKYF*#E*HPiATMq9Cmt!HKyW@oe&%VRw+^D#d|3szVT?NhN1l$Cy(a@hE{BnJeTu0pKo&^qd(-e%=&V!;5!U$*t_y7 zu4ZV-qOI76u7AwXa_y3Lb1(OCKM(LA5Akyz<`EuaXva>0>4O&+!wh?Ef4;ac%$mMEcLKL`=eDOwMrJ zq>@uJ4a4#Cpq!537|I}r<0q?}gO4(L4CS_-hj|%}qbKBWEESLoF?u|ewqAzi7(JGr zwO)~xSeeyWoiDOB>o6Qc_2dR@$VP0;CTz-ZJhhVBFdR?q zII2%X|1KKjQ&LkDV{9ALVhLU`)r)8Q0J98-B~5_%qM(JTLGvukb3b z@lS^1CLAxZV&A$6wr{V*QmgNsy&%~_E#_W8QIhluf8A|kgawyRY$OT!L zMHnsBLz(_>OY@38PGyGDyrx{2^%zR=267`dW)n7Lv@CCBy*1mgJv%d6hWE98uhRPs z`$EY*S{}=Be3PNar&^qwov=i6Msg$(8Q5;!I9UD@V)g zZPs^i7k6_nLs`9FKEQjG)?e9on%^>%(m%_gguYk#{JZ_3biN_qVkn(s#ku?XjL*bO z%H)ie$PZe7n3&3nt$RT`{;b#t`rR;FmM=+GHp=_OGeKJGoI!&Iz zS)9!|oX2R%8ZB3s+IO!~b(MYZF_fzx$m_X*p=8}G|Jzb^kNu%U4drPlO%J+$l%W(o zDSyRN{F>kJJBD&JT8dt9{TKemP<~#M|J#x?R@}R<-*}AAgbY7xm{d;A6uh4gG6OR* z6Eia#b1)}!F)#Bml$r(Pf_##NS(MRIvxN1SO3m`FKhLVH#ur$h4cLfH*^KupC)?T= zO3IkZ$?o>WR66!`y&nfKT0Rc3{whNWIaD6TP(F^5$1s$SZ^|*1kCR*vCFE2&T1L*W zKAUqmpW$cxqNQUf8`s#kmZ5BXUtZ4*{E(Zug`s@hDeqz^89$Xn*|<;M&uHlwEgM70 zc+CFeJi(Lvil_Mvqd%(`Q|Wlg{%EQAhxO|W;Ial&s zuI3u9<$7-5Mt;c6{D@n)jXU@;KjAL!;iufk{rrrFc$i1|B~S1xp5fR0hTrpNp63N# zimb%StjcPv&KFpdwOE^VSeGyHW!7T@HewStWiz&9 zE4E_?c48NHWjA(bPxfXX4&-1C72fJ?ZHEBFpqauwHbE!XjVe!%tIzz?~J zTeyv%a3??IUVg?yJj^3J%47VJCwP)y@ifoyEWhUW{DD969MAItFYz*e=O4Vr>->v% z7(1cw^BJEBn23p)l*yTjX_%G|F+DRfGqW%&voSj#VGcgZoXpKU%*!WOfQ9%Zi?SF? zup~>d49oIqR$wJoWi?i34c25WzR23F!@7Kl_1J)o*^;f;hHcr7?b(r?*@a!%oqgG# z12~vN_&SGi1V?im$8!Rwayn;lHs^32=kskY;1Vw5a<1emzQ?s(&kfwnkGO?fxq~0` zGaleU9^zph;ZYvv37+IvJjK&I!>{=bzvcJ*f#-OE7kP=l@K;{ub>8A_-eIgnch7~` zjKjE$$M{UhL`=*iOv>cEk13dvshEZjFdZM_!_36Y%*GsijCq)kPp}XRvj~f_7)!A< z%d#BH^J!M#bF9e9tjZd!$y$7ob=i=O*@R8mjIG$3ZP}h3*oj@(ojuu$z1fHT*q=lA zDqrUaj^rqg<`}-o@tnv>oXn}5$=RICd7RI;xqu6~h>N*|OSyvYauwg>8otlX+{*3T z$z9ydz1+{wcz_3am|yT1zvKy?<{5s&@AxBs;yGU6MPA|W{F66%i?U@DOvJUI95gW4!Td*xVunW7f z2Ya#?`>-$ju|EfL2w&yv9LixF!I2!r(Hz6E9LMpTz^RwEzwlRH z=2c$fpS;1FjFrT{(~QHojK@Sw%p^?4J=pGdpweQRZYWKE~Y4 z!@PW)`S=9$vjB^*D2uTqOR)^g@;O%I^Q^=wtjcPv&RVR)x_p`S*?>*ijLq4SZP<<- z*om*OGrO=S`>-GTb1;YSRld%le1pR{oFh1rqd1lmIEj-vg;P0=(>a4PIg7LT7T@Lq zF61IE<`ORFO0ME+uH#02$W8o+TezJ&xQm~1ANTVB5AqNX^9WD!6u;)T{DJ3qo)>tD zzwk1DW-p3S7$y7|u2bqrPnSq&^g;|-6+4%@_ zG8c0*5A!k~3$hTOWHAym*ay+MU8fS18XLAl0a4DB@ zIal&MuH`zu&kwks8@Q1lauYw|7H;Ks?%>D#ggd#5ySayZxsUt#IgjuQ9_4YK;7Ok4 z5B!ZS(uGEn3K7fm-(2V1^Fb4uoz3R9Luu;pJPQsbzjaT?Pukt!?@FxG_ZQfz5`}84<%Xo~>1Wd>zOwKfXi0PSu8Tl}?F*|cGCv)*J z=H=te&jKvWA}q?{EXgt~%kq4V&$ALMvnpR;4c26B)?q!?XJa;DGqz-FwqbjAW>72otoXvTh&$qaci@2D}xSa2D6<2c&*K!@# za|1VW6SwhW?&MzX<9>d|gFMV5Jj!D{&J#Sv(>%ko{EpxA2mZ*P_%ko^GJoS0{?2Q> z$=kfcSSjwl-s3R=6EYDKGYOM31yeH(A7nbFX9hmZOw7Wp%+0*a$NVh7f-JZs!hu%ul$R z2l+XV@CzQ}NuJ_qp5=G^k>`1V7x^py;C0^MP2T1mM&2Ia{(s&c;H|s=kMJoUxcid+ z=f9>3!!%)-N{aE_O0)~HBBw*F)IMbR&}rqE-XsgtN*_o4%F*oxtFCS+<7GY5q zXGuoi7ND&4axBkEtjwyc#_FuWnykg}HUV|y==gtA>&@7lE!moF*p8jpmEG8rz1W9+ z*^m7>fCKp&-{3F~=O~WhIEJzQ3GxiiWEk6@FE8LCF5^nR%QalbFs{E{-oa0}hx>Sx z#~8-$PswL_j^}xi(Xsj8t>0i6lfNU!j(ztx37LpVct2C~K|aKc4CC=x@FWK8MSrIhNx%ffE_tQ!b2g z&ayt2^Y|9SIOigHF_-ckuH-64$2`M$=LfEb@y?BM81vjFZ|BF{$=!^OcZRXf&s;yi z=y+r*V^jAtHPf&Ni?SGtvjoHVVkx;a|J!lK3Lf_ipJjB+@p0j_kxRhS^!} z!mjMb=vZb?>(TMdKGyrPANz9vqhp(ctq)-s<9tniokJNN>l|)<1V=KAdybaJa4g61 zO^#=DEOe6f$(+KeoW|*#!I_-J*_^|& zRq|@S$2DBbb$p*6a6LD0BR}LOZstea!mZrK?Tl%>b*JlL%yqZChhf}xue^`@`56!J zAP@0#9_A5#!J|CJFL|6Nc#>c76i@RE&+==AaoTU?@Ay4`;E()?Kl2>_?fC7l_Fv|2 zyu#mkm4EOW|KxSv;7#7*U%bsbj1|WF7>98gkMSACcoWKDoHwzYgwe6yr-fK)ai+%rgT=-G@!`N^x`7!2Z7$?pvKhAu7g85m11zCts zGK?b^k&Chzi?akvGK?#imY-r6UoI<$G3N5})2zT}_$;I2&d*z~#4z?;MZVYga}E1y zvKC+De>)Cc-{ZnqbVIoj8?y Date: Mon, 4 Nov 2019 02:06:17 +0530 Subject: [PATCH 2/4] Create README.md --- Yolo_Algo/README.md | 1 + 1 file changed, 1 insertion(+) create mode 100644 Yolo_Algo/README.md diff --git a/Yolo_Algo/README.md b/Yolo_Algo/README.md new file mode 100644 index 0000000..3506a90 --- /dev/null +++ b/Yolo_Algo/README.md @@ -0,0 +1 @@ +# YOLO Object Detection for Hololens Video Stream From 3b427e0568f4a875e16d496800fac1d7aec38451 Mon Sep 17 00:00:00 2001 From: Nemath Ahmed <39413792+nemathahmed@users.noreply.github.com> Date: Mon, 4 Nov 2019 02:07:18 +0530 Subject: [PATCH 3/4] Update README.md --- Yolo_Algo/README.md | 6 ++++++ 1 file changed, 6 insertions(+) diff --git a/Yolo_Algo/README.md b/Yolo_Algo/README.md index 3506a90..65d1b79 100644 --- a/Yolo_Algo/README.md +++ b/Yolo_Algo/README.md @@ -1 +1,7 @@ # YOLO Object Detection for Hololens Video Stream + +Receives a video stream from Microsoft Hololens AR Headset on a local server and then processes the video. YOLO algorithm is applied to processed video. + +Create a file with name bin and download the weights from https://drive.google.com/drive/folders/0B1tW_VtY7onidEwyQ2FtQVplWEU. Change the model name accordingly in the sensor_receiver.py file and then run the python file. + +A stream of video signal is collected, it is processed for faster fps generation and then YOLO model is applied. Check and verify the active server-ports before running the python file. From 56b831b36f4f05e768f314c61d8694c625a0d627 Mon Sep 17 00:00:00 2001 From: Nemath Ahmed Date: Sun, 19 Apr 2020 20:48:22 +0530 Subject: [PATCH 4/4] Update README.md --- README.md | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/README.md b/README.md index 8b291f6..f859d1b 100644 --- a/README.md +++ b/README.md @@ -40,7 +40,7 @@ Windows Holographic devices include the Microsoft HoloLens and the Microsoft Hol Additionally, to stay on top of the latest updates to Windows and the development tools, become a Windows Insider by joining the Windows Insider Program. - [Become a Windows Insider](https://insider.windows.com/) + [Become Windows Insider](https://insider.windows.com/) ## Using the samples