Skip to content

Commit e119858

Browse files
authored
Merge pull request #154 from liangxhao/update_readme
add readme for models list and benchmark
2 parents cbf2409 + acedb78 commit e119858

File tree

4 files changed

+66
-2
lines changed

4 files changed

+66
-2
lines changed

README.md

Lines changed: 3 additions & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -77,7 +77,9 @@ We will use **CRNN** model and **LMDB** dataset for demonstration, although othe
7777

7878
#### Inference with MX Engine
7979

80-
Please refer to [mx_infer](docs/cn/inference_cn.md).
80+
Please refer to [mx_infer tutorial](docs/cn/inference_tutorial_cn.md) for detailed inference tutorial.
81+
82+
Please refer to [mx_infer results](docs/cn/inference_models_cn.md) for detailed performance of the supported inference models.
8183

8284
#### Inference with Lite
8385

README_CN.md

Lines changed: 3 additions & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -69,7 +69,9 @@ MindOCR支持多种文本识别模型及数据集,在此我们使用**CRNN**
6969

7070
#### 使用MX Engine推理
7171

72-
请参考[mx_infer](docs/cn/inference_cn.md)
72+
教程请参考[mx_infer](docs/cn/inference_tutorial_cn.md)
73+
74+
模型列表和Benchmark请参考 [mx_infer](docs/cn/inference_models_cn.md)
7375

7476
#### 使用Lite推理
7577

docs/cn/inference_models_cn.md

Lines changed: 60 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,60 @@
1+
### MindOCR推理
2+
3+
#### 支持模型列表
4+
5+
##### 文本检测
6+
7+
| 模型 | 链接 | 来源 |
8+
|-------------|------------------------------------------------------------------------------------|-----------|
9+
| DBNet_Res18 | https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_server_v2.0_det_infer.tar | PaddleOCR |
10+
| DBNet_MV3 | https://paddleocr.bj.bcebos.com/PP-OCRv3/chinese/ch_PP-OCRv3_det_infer.tar | PaddleOCR |
11+
12+
##### 文本方向分类
13+
14+
| 模型 | 链接 | 来源 |
15+
|-----|------------------------------------------------------------------------------------|-----------|
16+
| MV3 | https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_cls_infer.tar | PaddleOCR |
17+
18+
##### 文本识别
19+
20+
| 模型 | 链接 | 来源 |
21+
|------|------------------------------------------------------------------------------------|-----------|
22+
| CRNN | https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_server_v2.0_rec_infer.tar | PaddleOCR |
23+
| SVTR | https://paddleocr.bj.bcebos.com/PP-OCRv3/chinese/ch_PP-OCRv3_rec_infer.tar | PaddleOCR |
24+
25+
#### Benchmark
26+
27+
1. 测试数据
28+
29+
数据集:ICDAR2019-LSVT
30+
31+
下载链接:https://rrc.cvc.uab.es/?ch=16
32+
33+
数据描述:30000张,街景图像,比如各种店铺招牌和地标等
34+
35+
36+
2. 测试环境
37+
38+
Device: Ascend310P
39+
40+
MindX: 3.0.0
41+
42+
CANN: 6.3
43+
44+
CPU: Intel(R) Xeon(R) Gold 6148, 2.40GHz, 2x20 physical cores
45+
46+
3. 评估说明
47+
48+
- 性能:包括从图像输入到结果输出的完整阶段,设置mindocr推理命令--save_log_dir参数,保存日志中会记录性能数据
49+
- 精度:参考评估脚本 mindocr/deploy/eval_utils/eval_script.py,输出结果包括文本检测的Precision、Recall和F-score,文本识别的Accuracy
50+
51+
4. 精度和性能评估结果
52+
53+
文本检测+方向分类+文本识别的端到端流水线评估结果如下:
54+
55+
| 检测 | 分类 | 识别 | Precision | Recall | F-score | Accuracy | FPS |
56+
| ----------- | ---- | ---- | --------- | ------ | ------- | -------- | ----- |
57+
| DBNet_Res18 | / | CRNN | 69.42% | 55.01% | 61.38% | 47.12% | 38.59 |
58+
| DBNet_Res18 | MV3 | CRNN | 69.42% | 55.01% | 61.38% | 46.85% | 37.40 |
59+
| DBNet_MV3 | / | SVTR | 67.01% | 56.34% | 61.21% | 46.77% | 46.65 |
60+
| DBNet_MV3 | MV3 | SVTR | 67.01% | 56.34% | 61.21% | 46.45% | 42.81 |
File renamed without changes.

0 commit comments

Comments
 (0)