Skip to content

Commit e1c02de

Browse files
authored
update Fcenet readme (#475)
* update fcenet readme * Update README.md change the mindir file path * Update README_CN.md change the mindir file path
1 parent e6aebcf commit e1c02de

File tree

2 files changed

+2
-2
lines changed

2 files changed

+2
-2
lines changed

configs/det/fcenet/README.md

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -51,7 +51,7 @@ The FCENet in MindOCR is trained on ICDAR 2015 dataset. The training results are
5151

5252
| **Model** | **Context** | **Backbone** | **Pretrained** | **Recall** | **Precision** | **F-score** | **Train T.** | **Throughput** | **Recipe** | **Download** |
5353
|---------------------|----------------|---------------|------------|------------|---------------|-------------|--------------|-----------|-------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
54-
| FCENet | D910x4-MS2.0-F | ResNet50 | ImageNet | 81.51% | 86.90% | 84.12% | 33 s/epoch | 7 img/s | [yaml](fce_icdar15.yaml) | [ckpt](https://download.mindspore.cn/toolkits/mindocr/fcenet/fcenet_resnet50-43857f7f.ckpt) \| [mindir](https://download.mindspore.cn/toolkits/mindocr/fcenet/fcenet_resnet50-43857f7f-5e765611.mindir) |
54+
| FCENet | D910x4-MS2.0-F | ResNet50 | ImageNet | 81.51% | 86.90% | 84.12% | 33 s/epoch | 7 img/s | [yaml](fce_icdar15.yaml) | [ckpt](https://download.mindspore.cn/toolkits/mindocr/fcenet/fcenet_resnet50-43857f7f.ckpt) \| [mindir](https://download.mindspore.cn/toolkits/mindocr/fcenet/fcenet_resnet50-43857f7f-dad7dfcc.mindir) |
5555

5656
</div>
5757

configs/det/fcenet/README_CN.md

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -53,7 +53,7 @@ MindOCR中的FCENet网络在ICDAR 2015数据集上训练。训练结果如下:
5353

5454
| **模型** | **环境配置** | **骨干网络** | **预训练数据集** | **Recall** | **Precision** | **F-score** | **训练时间** | **吞吐量** | **配置文件** | **模型权重下载** |
5555
|---------------------|----------------|---------------|------------|------------|---------------|-------------|--------------|-----------|-------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
56-
| FCENet | D910x4-MS2.0-F | ResNet50 | ImageNet | 81.51% | 86.90% | 84.12% | 33 s/epoch | 7 img/s | [yaml](fce_icdar15.yaml) | [ckpt](https://download.mindspore.cn/toolkits/mindocr/fcenet/fcenet_resnet50-43857f7f.ckpt) \| [mindir](https://download.mindspore.cn/toolkits/mindocr/fcenet/fcenet_resnet50-43857f7f-5e765611.mindir) |
56+
| FCENet | D910x4-MS2.0-F | ResNet50 | ImageNet | 81.51% | 86.90% | 84.12% | 33 s/epoch | 7 img/s | [yaml](fce_icdar15.yaml) | [ckpt](https://download.mindspore.cn/toolkits/mindocr/fcenet/fcenet_resnet50-43857f7f.ckpt) \| [mindir](https://download.mindspore.cn/toolkits/mindocr/fcenet/fcenet_resnet50-43857f7f-dad7dfcc.mindir) |
5757

5858
</div>
5959

0 commit comments

Comments
 (0)