|
| 1 | +submodule(nf_embedding_layer) nf_embedding_layer_submodule |
| 2 | + use nf_base_layer, only: base_layer |
| 3 | + implicit none |
| 4 | +contains |
| 5 | + module function embedding_layer_cons(& |
| 6 | + sequence_length, vocab_size, model_dimension& |
| 7 | + ) result(res) |
| 8 | + integer, intent(in) :: sequence_length, vocab_size, model_dimension |
| 9 | + type(embedding_layer) :: res |
| 10 | + |
| 11 | + res % vocab_size = vocab_size |
| 12 | + res % model_dimension = model_dimension |
| 13 | + res % sequence_length = sequence_length |
| 14 | + end function embedding_layer_cons |
| 15 | + |
| 16 | + module subroutine init(self, input_shape) |
| 17 | + class(embedding_layer), intent(in out) :: self |
| 18 | + integer, intent(in) :: input_shape(:) |
| 19 | + |
| 20 | + allocate(self % output(self % sequence_length, self % model_dimension)) |
| 21 | + allocate(self % gradient(self % sequence_length, self % vocab_size)) |
| 22 | + |
| 23 | + allocate(self % weights(self % vocab_size, self % model_dimension)) |
| 24 | + self % weights = 0.1 |
| 25 | + |
| 26 | + allocate(self % dw(self % vocab_size, self % model_dimension)) |
| 27 | + self % dw = 0.0 |
| 28 | + end subroutine init |
| 29 | + |
| 30 | + pure module subroutine forward(self, input) |
| 31 | + class(embedding_layer), intent(in out) :: self |
| 32 | + integer, intent(in) :: input(:) |
| 33 | + integer :: i |
| 34 | + |
| 35 | + do concurrent(i = 1: self % sequence_length) |
| 36 | + self % output(i, :) = self % weights(input(i), :) |
| 37 | + end do |
| 38 | + end subroutine forward |
| 39 | + |
| 40 | + pure module subroutine backward(self, input, gradient) |
| 41 | + class(embedding_layer), intent(in out) :: self |
| 42 | + integer, intent(in) :: input(:) |
| 43 | + real, intent(in) :: gradient(:) |
| 44 | + real :: db(self % model_dimension) |
| 45 | + real :: dw(self % vocab_size, self % model_dimension) |
| 46 | + integer :: i |
| 47 | + end subroutine backward |
| 48 | + |
| 49 | + pure module function get_num_params(self) result(num_params) |
| 50 | + class(embedding_layer), intent(in) :: self |
| 51 | + integer :: num_params |
| 52 | + |
| 53 | + ! Number of weigths times number of biases |
| 54 | + num_params = self % vocab_size * self % model_dimension + self % model_dimension |
| 55 | + |
| 56 | + end function get_num_params |
| 57 | + |
| 58 | + |
| 59 | + module function get_params(self) result(params) |
| 60 | + class(embedding_layer), intent(in), target :: self |
| 61 | + real, allocatable :: params(:) |
| 62 | + real, pointer :: w_(:) => null() |
| 63 | + |
| 64 | + w_(1: product(shape(self % weights))) => self % weights |
| 65 | + params = [w_] |
| 66 | + end function get_params |
| 67 | + |
| 68 | + |
| 69 | + module function get_gradients(self) result(gradients) |
| 70 | + class(embedding_layer), intent(in), target :: self |
| 71 | + real, allocatable :: gradients(:) |
| 72 | + real, pointer :: dw_(:) => null() |
| 73 | + |
| 74 | + dw_(1: product(shape(self % dw))) => self % dw |
| 75 | + gradients = [dw_] |
| 76 | + end function get_gradients |
| 77 | + |
| 78 | + |
| 79 | + module subroutine set_params(self, params) |
| 80 | + class(embedding_layer), intent(in out) :: self |
| 81 | + real, intent(in), target :: params(:) |
| 82 | + |
| 83 | + real, pointer :: p_(:,:) => null() |
| 84 | + |
| 85 | + ! check if the number of parameters is correct |
| 86 | + if (size(params) /= self % get_num_params()) then |
| 87 | + error stop 'Error: number of parameters does not match' |
| 88 | + end if |
| 89 | + |
| 90 | + associate(n => self % vocab_size * self % model_dimension) |
| 91 | + ! reshape the weights |
| 92 | + p_(1:self % vocab_size, 1:self % model_dimension) => params(1 : n) |
| 93 | + self % weights = p_ |
| 94 | + end associate |
| 95 | + |
| 96 | + end subroutine set_params |
| 97 | +end submodule nf_embedding_layer_submodule |
0 commit comments