@@ -389,7 +389,7 @@ def pruning_perf_sens_one_shot_iter(
389389 model : Union [str , ModelProto ],
390390 data : DataLoader ,
391391 batch_size : int ,
392- num_cores : int = - 1 ,
392+ num_cores : int = None ,
393393 iterations_per_check : int = 10 ,
394394 warmup_iterations_per_check : int = 5 ,
395395 sparsity_levels : List [float ] = default_pruning_sparsities_perf (),
@@ -408,7 +408,8 @@ def pruning_perf_sens_one_shot_iter(
408408 to calculate the sparse sensitivity analysis for
409409 :param data: the data to run through the model
410410 :param batch_size: the size of the batch to create the model in neural magic for
411- :param num_cores: number of physical cores to run on
411+ :param num_cores: number of physical cores to run on. Default is the maximum number
412+ of cores available
412413 :param iterations_per_check: number of iterations to run for perf details
413414 :param warmup_iterations_per_check: number of iterations to run before perf details
414415 :param sparsity_levels: the sparsity levels to calculate the loss for for each param
@@ -484,7 +485,7 @@ def pruning_perf_sens_one_shot(
484485 model : Union [str , ModelProto ],
485486 data : DataLoader ,
486487 batch_size : int ,
487- num_cores : int = - 1 ,
488+ num_cores : int = None ,
488489 iterations_per_check : int = 10 ,
489490 warmup_iterations_per_check : int = 5 ,
490491 sparsity_levels : List [float ] = default_pruning_sparsities_perf (),
@@ -500,7 +501,8 @@ def pruning_perf_sens_one_shot(
500501 to calculate the sparse sensitivity analysis for
501502 :param data: the data to run through the model
502503 :param batch_size: the size of the batch to create the model in neural magic for
503- :param num_cores: number of physical cores to run on
504+ :param num_cores: number of physical cores to run on. Default is the maximum
505+ available
504506 :param iterations_per_check: number of iterations to run for perf details
505507 :param warmup_iterations_per_check: number of iterations to run before perf details
506508 :param sparsity_levels: the sparsity levels to calculate the loss for for each param
0 commit comments