You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
{{ message }}
This repository was archived by the owner on Jun 3, 2025. It is now read-only.
| YOLOv5s Baseline | The baseline, small YOLOv5 model used as the starting point for sparsification. | ``` python train.py --cfg ../models/yolov5s.yaml --weights "" --data coco.yaml --hyp data/hyp.scratch.yaml ``` | 0.556 | 154 MB | 78.2 img/sec |
154
-
| [YOLOv5s Pruned](https://github.com/neuralmagic/sparseml/blob/main/integrations/ultralytics-yolov5/recipes/yolov5s.pruned.md) | Creates a highly sparse, FP32 YOLOv5s model that recovers close to the baseline model. | ``` python train.py --cfg ../models/yolov5s.yaml --weights PATH_TO_COCO_PRETRAINED_WEIGHTS --data coco.yaml --hyp data/hyp.scratch.yaml --recipe ../recipes/yolov5s.pruned.md ``` | 0.534 | 32.8 MB | 100.5 img/sec |
155
-
| [YOLOv5s Pruned Quantized](https://github.com/neuralmagic/sparseml/blob/main/integrations/ultralytics-yolov5/recipes/yolov5s.pruned_quantized.md) | Creates a highly sparse, INT8 YOLOv5s model that recovers reasonably close to the baseline model. | ``` python train.py --cfg ../models/yolov5s.yaml --weights PATH_TO_COCO_PRETRAINED_WEIGHTS --data coco.yaml --hyp data/hyp.scratch.yaml --recipe ../recipes/yolov5s.pruned_quantized.md ``` | 0.525 | 12.7 MB | 198.2 img/sec |
156
-
| YOLOv5l Baseline | The baseline, large YOLOv5 model used as the starting point for sparsification. | ``` python train.py --cfg ../models/yolov5l.yaml --weights "" --data coco.yaml --hyp data/hyp.scratch.yaml ``` | 0.654 | 24.8 MB | 22.7 img/sec |
157
-
| [YOLOv5l Pruned](https://github.com/neuralmagic/sparseml/blob/main/integrations/ultralytics-yolov5/recipes/yolov5l.pruned.md) | Creates a highly sparse, FP32 YOLOv5l model that recovers close to the baseline model. | ``` python train.py --cfg ../models/yolov5l.yaml --weights PATH_TO_COCO_PRETRAINED_WEIGHTS --data coco.yaml --hyp data/hyp.scratch.yaml --recipe ../recipes/yolov5l.pruned.md ``` | 0.643 | 8.4 MB | 40.1 img/sec |
158
-
| [YOLOv5l Pruned Quantized](https://github.com/neuralmagic/sparseml/blob/main/integrations/ultralytics-yolov5/recipes/yolov5l.pruned_quantized.md) | Creates a highly sparse, INT8 YOLOv5l model that recovers reasonably close to the baseline model. | ``` python train.py --cfg ../models/yolov5l.yaml --weights PATH_TO_COCO_PRETRAINED_WEIGHTS --data coco.yaml --hyp data/hyp.scratch.yaml --recipe ../recipes/yolov5l.pruned_quantized.md ``` | 0.623 | 3.3 MB | 98.6 img/sec |
153
+
| YOLOv5s Baseline | The baseline, small YOLOv5 model used as the starting point for sparsification. | ``` python train.py --cfg ../models/yolov5s.yaml --weights "" --data coco.yaml --hyp data/hyp.scratch.yaml ``` | 0.556 | 24.8 MB | 78.2 img/sec |
154
+
| [YOLOv5s Pruned](https://github.com/neuralmagic/sparseml/blob/main/integrations/ultralytics-yolov5/recipes/yolov5s.pruned.md) | Creates a highly sparse, FP32 YOLOv5s model that recovers close to the baseline model. | ``` python train.py --cfg ../models/yolov5s.yaml --weights PATH_TO_COCO_PRETRAINED_WEIGHTS --data coco.yaml --hyp data/hyp.scratch.yaml --recipe ../recipes/yolov5s.pruned.md ``` | 0.534 | 8.4 MB | 100.5 img/sec |
155
+
| [YOLOv5s Pruned Quantized](https://github.com/neuralmagic/sparseml/blob/main/integrations/ultralytics-yolov5/recipes/yolov5s.pruned_quantized.md) | Creates a highly sparse, INT8 YOLOv5s model that recovers reasonably close to the baseline model. | ``` python train.py --cfg ../models/yolov5s.yaml --weights PATH_TO_COCO_PRETRAINED_WEIGHTS --data coco.yaml --hyp data/hyp.scratch.yaml --recipe ../recipes/yolov5s.pruned_quantized.md ``` | 0.525 | 3.3 MB | 198.2 img/sec |
156
+
| YOLOv5l Baseline | The baseline, large YOLOv5 model used as the starting point for sparsification. | ``` python train.py --cfg ../models/yolov5l.yaml --weights "" --data coco.yaml --hyp data/hyp.scratch.yaml ``` | 0.654 | 154 MB | 22.7 img/sec |
157
+
| [YOLOv5l Pruned](https://github.com/neuralmagic/sparseml/blob/main/integrations/ultralytics-yolov5/recipes/yolov5l.pruned.md) | Creates a highly sparse, FP32 YOLOv5l model that recovers close to the baseline model. | ``` python train.py --cfg ../models/yolov5l.yaml --weights PATH_TO_COCO_PRETRAINED_WEIGHTS --data coco.yaml --hyp data/hyp.scratch.yaml --recipe ../recipes/yolov5l.pruned.md ``` | 0.643 | 32.8 MB | 40.1 img/sec |
158
+
| [YOLOv5l Pruned Quantized](https://github.com/neuralmagic/sparseml/blob/main/integrations/ultralytics-yolov5/recipes/yolov5l.pruned_quantized.md) | Creates a highly sparse, INT8 YOLOv5l model that recovers reasonably close to the baseline model. | ``` python train.py --cfg ../models/yolov5l.yaml --weights PATH_TO_COCO_PRETRAINED_WEIGHTS --data coco.yaml --hyp data/hyp.scratch.yaml --recipe ../recipes/yolov5l.pruned_quantized.md ``` | 0.623 | 12.7 MB | 98.6 img/sec |
159
159
160
160
** DeepSparse Performance measured on an AWS C5 instance with 24 cores, batch size 64, and 640x640 input with version 1.6 of the DeepSparse Engine.
0 commit comments